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Abstract
The immune system is inseparable from every part of human biology. From cell intrinsic mechanisms of
pathogen recognition to multi-cellular interactions over vast ranges of time and space, the immune system is
both essential for protection from infection and central to the pathogenesis of many diseases. Thus
understanding it has long been a focus of biomedical research. While in vitro molecular, biochemical, and
cellular techniques as well as complex genetically modified animal models have been developed, these
approaches still only approximate true human disease and in vivo human biology. Primary
immunodeficiencies are inborn genetic defects of immunity and present rare opportunities to observe, study,
and understand how genetic perturbations impact human immunity directly. I therefore clinically and
genetically analyzed three patient families with unidentified primary immunodeficiencies. Using whole exome
sequencing coupled with in vitro and in vivo biochemical and cellular assays, I identified two novel genetic
etiologies of primary immunodeficiency. I first identified de novo missense mutations in GNAI2, the gene
encoding the ubiquitously expressed heterotrimeric G-protein Gαi2, in 2 families with life-threating multi-
organ system autoimmunity and immunodeficiency to mucocutaneous infections. Gαi2 is essential for
chemokine mediated leukocyte migration as well as regulating development, inflammation, and metabolism
in the immune system and beyond. The heterozygous dominant gain-of-function patient proteins impaired
chemokine signaling and chemotaxis in addition to augmenting T cell activation by constitutively activating
costimulatory pathways and reducing the requirement for T cell costimulation. I also identified homozygous
missense mutations in IFIH1, the gene encoding the cytosolic pattern recognition receptor of dsRNA MDA5,
in the third family of study. The affected individual presented with recurrent severe respiratory infections with
RNA viruses including human rhinovirus, coronaviruses (HKU1, OC43, NL63), influenza virus, and
respiratory syncytial virus. The mutant protein lost the ability to bind dsRNA and failed to initiate antiviral
interferon-β and pro-inflammatory NF-κB responses. Using gene knockdown and gene editing in
immortalized and patient derived cell lines, I demonstrated an essential role for MDA5 in restricting
rhinovirus infection in human respiratory epithelium. Thus this work demonstrates the power of human
genetics to identify disease causing mutations in rare individuals and reveal how the immune system uses
molecules involved in cell migration, activation, and nucleic acid sensing to robustly protect us from virus
infections without causing autoimmunity.
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ABSTRACT 
 

THE GENETIC, MOLECULAR, AND CELLULAR BASES OF UNIDENTIFIED PRIMARY 
IMMUNODEFICIENCIES 

 
Ian T. Lamborn 

Helen C. Su, M.D., Ph.D. 

The immune system is inseparable from every part of human biology.  From cell intrinsic 

mechanisms of pathogen recognition to multi-cellular interactions over vast ranges of time and 

space, the immune system is both essential for protection from infection and central to the 

pathogenesis of many diseases.  Thus understanding it has long been a focus of biomedical 

research.  While in vitro molecular, biochemical, and cellular techniques as well as complex 

genetically modified animal models have been developed, these approaches still only 

approximate true human disease and in vivo human biology.  Primary immunodeficiencies are 

inborn genetic defects of immunity and present rare opportunities to observe, study, and 

understand how genetic perturbations impact human immunity directly.  I therefore clinically and 

genetically analyzed three patient families with unidentified primary immunodeficiencies.  Using 

whole exome sequencing coupled with in vitro and in vivo biochemical and cellular assays, I 

identified two novel genetic etiologies of primary immunodeficiency.  I first identified de novo 

missense mutations in GNAI2, the gene encoding the ubiquitously expressed heterotrimeric G-

protein Gαi2, in 2 families with life-threating multi-organ system autoimmunity and 

immunodeficiency to mucocutaneous infections.  Gαi2 is essential for chemokine mediated 

leukocyte migration as well as regulating development, inflammation, and metabolism in the 

immune system and beyond.  The heterozygous dominant gain-of-function patient proteins 

impaired chemokine signaling and chemotaxis in addition to augmenting T cell activation by 

constitutively activating costimulatory pathways and reducing the requirement for T cell 

costimulation.  I also identified homozygous missense mutations in IFIH1, the gene encoding the 

cytosolic pattern recognition receptor of dsRNA MDA5, in the third family of study.  The affected 

individual presented with recurrent severe respiratory infections with RNA viruses including 
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human rhinovirus, coronaviruses (HKU1, OC43, NL63), influenza virus, and respiratory syncytial 

virus.  The mutant protein lost the ability to bind dsRNA and failed to initiate antiviral interferon-β 

and pro-inflammatory NF-κB responses.  Using gene knockdown and gene editing in 

immortalized and patient derived cell lines, I demonstrated an essential role for MDA5 in 

restricting rhinovirus infection in human respiratory epithelium.  Thus this work demonstrates the 

power of human genetics to identify disease causing mutations in rare individuals and reveal how 

the immune system uses molecules involved in cell migration, activation, and nucleic acid 

sensing to robustly protect us from virus infections without causing autoimmunity. 
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CHAPTER 1:  Introduction  

 

1.1  Nature’s experiments in immunology:  Primary 
immunodeficiencies, a powerful lens for understanding the 
immune system 
 

“Nevertheless, human immunodeficiency disease is still the best source of insight 
into normal pathways of host defense against infectious diseases in humans.”[1] 

        Janeway’s Immunobiology 

 

Human primary immunodeficiencies (PIDs) are genetic inborn errors of immunity that 

result in a wide range of immunological and sometimes non-immunological 

presentations.  Since O.C. Bruton’s seminal description of the first recognized primary 

immunodeficiency in 1952, patients with PIDs have been identified as providing 

invaluable insight into the essential workings of the immune system in humans.[2, 3] 

Methods for determining the underlying genetic cause of PIDs have dramatically evolved 

since the origin of this field. It is founded on a principle of “forward genetics” involving 

first clinically observing a phenotype and then working to identify the underlying genetic 

cause.  These diseases are extremely rare; many have been identified in <10 affected 

individuals (several in only 1 individual thus far) and the most common PID, selective IgA 

deficiency, has been observed at a rate of only 1 in 800 in the general population.  The 

number of identified PIDs is rapidly growing (and expected to keep growing).  Today 

over 300 PIDs are causally linked with single-gene defects.[4]  While any individual PID 

is very rare, we now recognize that individuals with primary immunodeficiencies are far 

more common than once thought.  In fact, the massive increase in the proportion of 
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newly identified PIDs arising from extremely rare de novo mutations has lead some to 

hypothesize that most life-threatening infection seen in the general population is actually 

evidence of latent primary immunodeficiency within the global population which is now 

largely masked by advances in modern medicine and public health.[5, 6] 

 The process of investigating naturally-occurring PIDs to understand the immune 

system has consistently and significantly impacted our understanding of immunology 

and medicine over six decades for several reasons.[7]  First, studying PIDs allows for 

direct genotype-phenotype observations in humans, bypassing the limitations of in vitro 

and animal models of human disease.  Secondly, patients with PIDs reveal the identity 

of the immunodeficiency in natura, highlighting the specific pathogens the genetically 

altered pathways have evolved to protect against.  The advantages of observing a 

natural course of infection has been increasingly appreciated as more and more PIDs 

are being identified with a very narrow infectious susceptibility (1-3 organisms), a finding 

which often contrasts to wide infectious susceptibility seen in the disease-analogous 

mouse models subjected to laboratory infections.[8] 

 The similarity of studying PIDs (and other genetic diseases in humans) to various 

forward genetics approaches in mice (ENU mutagenesis, etc.) has led many to refer to 

PIDs as “experiments of nature.”  These experiments have provided groundbreaking 

insight into the development of the immune system, novel T helper cell subsets, new 

processes of establishing peripheral tolerance, and much more.[9-11]  Additionally, the 

study of PIDs has spearheaded major medical advances by providing unique medical 

needs, opportunities for novel treatment, and proof-of-principle demonstration for novel 

therapies such as immunoglobulin replacement therapy, hematopoietic stem cell 

transplantation, and gene therapy.[12] 
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1.2 Combined Immunodeficiencies – T cells, B cells, and more 

Combined immunodeficiencies (CID) are a class of PIDs that impair both the cellular and 

humoral arms of the adaptive immune response.[13]  Severe combined 

immunodeficiency (SCID) is the most severe form of CID and typically manifests with a 

severe defect in T cell numbers (T- SCID) or function and may also present with an 

absence of B and/or natural killer (NK) cells (B- and/or NK- SCID).  SCID is often 

differentiated from less severe CID by the fact that it results in fatal infection within the 

first year of life without treatment.[14]  While SCID had long been recognized as a 

clinical entity (most commonly via X-linked recessive inheritance presenting in males), it 

was not until 1972 when Dr. Elo Giblett discovered two patients who completely lacked 

protein bands known to be adenosine deaminase (ADA) on red blood cell 

electrophoresis that the first molecular diagnosis of PID was made.[15] 

The association between the SCID phenotype and ADA-deficiency in these two 

boys was clear; however the idea that ADA-deficiency caused SCID was immediately 

questioned.  Commentary co-published with the Giblett’s original article stated that ADA, 

an enzyme known at the time to be required for the catabolism of purines, was unlikely 

to be essential for the development or “division of T cells in carrying out their 

function.”[16]  In the decades since this sentinel discovery, mutations of many other 

“non-immune” genes have been shown to cause SCID.  Currently more than 49 

recognized genetic causes comprise the CID disease family.[4]  The genes that make up 

this list encode proteins involved in a vast range of cellular processes including cytokine 

sensing, DNA repair, metabolism, chemotaxis, antigen receptor signaling, and more.[17-

22]  Thus, it has become clear that T cell development and function relies on a complex 

network of molecules and processes, many of which are not intrinsic to the T cell (but 
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are essential for T cell mediated immunity in vivo), and many which are likely still 

unidentified. 

The work put forth here represents an initial investigation into the genetic and 

molecular mechanism of three families who presented with CID and susceptibility to 

virus infections.  As the differences in their clinical presentations suggest, the underlying 

molecular bases for their diseases are widely varied, a finding that supports and adds to 

the complex network of essential genes for protective B and T cell function in humans. 

1.3 Approach to Understanding Inherited Defects of Immunity 

For many of the reasons discussed in Chapter 1.1 regarding the success and impact of 

forward genetic studies of primary immunodeficiencies on the field of immunology and 

medicine, the work described in Chapter 2 and Chapter 3 largely represent a 

modernized strategy for exploring the genetic causes and molecular mechanisms of 

PIDs.  

 Over the past 8 years the number of identified genetic causes of PIDs has more 

than doubled the total number of those identified over the first 56 years following 

Bruton’s description of congenital agammaglobulinemia.[2, 4, 23, 24]  This dramatic 

increase in the rate of discovery is notable for two reasons.  First, it is largely a reflection 

of advances in and accessibility of massively parallel or next generation DNA 

sequencing (NGS) in the setting of molecular biology techniques such as polymerase 

chase reaction (PCR), cloning, RNA interference (RNAi), and Clustered regularly 

interspaced short palindromic repeats (CRISPR) which can accurately validate gene 

candidates.  Secondly it is notable because in the years prior to this surge in genetic 

discovery it was commonly thought the field was nearing the point of having described 
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most PIDs.[5]  This was clearly not the case, and recent trajectory of the field lends 

credence to those who endorse the hypothesis that rare, personalized genetic mutations 

(now uncovered by NGS and present in all individuals) underlie most, if not all, life-

threatening infections. 

 My approach to understanding novel genetic immunodeficiencies can be broken 

down into three major stages:  (1) information gathering – a synergistic effort combining 

clinical history of affected individuals and their family members, a laboratory workup 

based on their clinical history, and whole exome or whole genome sequencing (WES 

and WGS, respectively); (2) functional validation of candidate genes – a wet bench 

demonstration of in vitro cellular abnormalities with a complementary demonstration of 

the candidate genetic mutation’s sufficiency to recapitulate the patient’s cellular 

phenotype in otherwise normal cells; and (3) information synthesis – an experimental 

and intellectual effort to understand the mutant gene product’s role in normal immunity 

and how its perturbation results in disease (Figure 1.1). 

 The information gathering stage (stage 1) first involves the selection of patients 

to work with and the collection of extensive clinical and laboratory data for those 

patients.  When selecting patients to study, I consider the likelihood that the patient’s 

disease is due to a genetic cause.  Multiple affected individuals over multiple 

generations within the pedigree is the strongest indicator; however early (<1 year of 

age), severe onset is also a positive indicator of a likely genetic etiology.[6]  Additionally, 

it is critical to rule out all known potential causes of the patient’s disease in order to 

enrich the studied patient population for novel etiologies.  I also consider the wiliness of 

the patient and family to cooperate with the often rigorous demands of our research.  

This is particularly important during the second stage of my approach when I am 
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dependent upon the availability of patient tissue (blood, skin, saliva, etc.) to identify 

patient-specific cellular abnormalities. 

 The second half of the information gathering stage is WES or WGS on the 

patient(s) and unaffected family members.  In this work, I employed WES, which 

generates an extensive (hundreds to thousands) list of candidate gene mutations.  The 

synergy of the clinical and genetic data is critical for appropriately ranking candidate 

genetic lesions.  To pare down and prioritize the list of candidates, I fit the genetic data 

to the patient pedigree assuming different potential models of inheritance.  For instance, 

if the patient has two unaffected parents, I assume either recessive inheritance 

(compound heterozygous in the absence of observed consanguinity or homozygous 

recessive if consanguinity is present) or a de novo mutation.  I next consider the 

expression profile of the gene in light of what we know clinically about the patient.  For 

example, if the patient has extensive developmental or non-immune abnormalities, I 

prioritize genes that are expressed during development as well as in non-immune 

tissues.  If the patient has a specific absence of antibodies and recurrent sinopulmonary 

bacterial infections, I would prioritize genes expressed in B cells and T cells.  Lastly I 

consider a host of bioinformatic information about each candidate mutation including the 

frequency of the mutation in the general population, the type of mutation (coding vs. non-

coding, missense vs. non-sense, etc.), the predicted effect on RNA and protein 

expression and function (e.g. via databases such as PolyPhen2), and the degree of 

conservation (both DNA and protein) at the site of mutation.  Together, the genetic and 

clinical information is integrated to create a ranked list of candidate genetic mutations. 

 The second stage of my approach is the functional validation of candidate genes.  

The goal is to determine whether a candidate mutation is contributing to or causing a 
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patient’s disease.  This is accomplished by first identifying a functional cellular 

abnormality in the patient’s cells and subsequently demonstrating the sufficiency of the 

patient’s mutations to cause the in vitro cellular phenotype.  The experiments performed 

are heavily guided by both the clinical presentation of the patient (what lab values are 

affected in the patient?  What infections has the patient suffered from?) and the identity 

and function (if known) of the top gene candidates.  Once an in vitro cellular abnormality 

is demonstrated with the patient cells, I attempt to phenocopy the patient’s cellular 

abnormality by genetically mimicking the patient (i.e. gene knockout, knockdown, 

overexpression, etc.) using cells from healthy individuals.  For instance, small molecule 

inhibitors, small interfering RNA (siRNA) gene silencing, short-hairpin RNA (shRNA), 

and CRISPR are used to suppress gene expression/function in primary cells from 

healthy individuals, mimicking loss-of-function (LOF) mutations in recessively inherited 

diseases or diseases of haploinsufficiency.  Similarly, overexpression and knock-in 

studies are used to model dominant negative and gain-of-function (GOF) mutations.  

Ultimately, the goal of these experiments is to demonstrate the sufficiency of a candidate 

gene mutation to recapitulate a disease-relevant cellular phenotype in healthy control 

cells. 

 The third stage of my approach is an intellectual and experimental period of 

synthesizing what I have observed in clinical history of the affected individuals with the 

identity of the candidate gene shown to be sufficient to elicit diseased behavior in cells.  

What can I infer about the role of this gene product in normal human immunity?  How 

does the mutation in this gene product result in disease?  The degree of insight into 

normal human immunity at this stage is wide-ranging.  Often the mutated gene is not 

known to regulate the abnormal cellular processes observed in the patient cells.  Other 
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times, however, the pathways are better understood and immediate efforts can be made 

to therapeutically intervene.  

1.4 A Note on Studying Individual Patients and Extremely Rare 

Diseases 

It has long been held that identifying multiple affected individuals with a given genetic 

lesion is necessary evidence for defining a causative relationship between an identified 

mutation and a new genetic disease; however it is now possible to convincingly 

demonstrate the relationship between a given candidate gene mutation and a novel 

immunodeficiency in an individual patient.[25]  This is largely due to the advent of WES 

and WGS as well as major advances in genetic manipulation of primary cells from 

healthy individuals (i.e. gene silencing, advances in transfection 

methods/overexpression, and CRISPR) that are used to validate the sufficiency of a 

genetic lesion to cause disease-related dysfunction in relevant cell types.  The ability to 

identify and rigorously establish a causal relationship between a novel genetic lesion and 

a disease phenotype in single patients has been a significant contribution to the recent 

explosion in the number of newly identified PIDs.  However, strict criteria must be met in 

order make this conclusion.[26, 27] 

 Criteria for establishing causality of a genetic lesion in a single patient has been 

thoroughly described by Casanova, et al.[27]  Similar criteria employed by our lab are 

summarized here. 

1. The patient’s candidate genotype must be unique to the patient (i.e. not 

present in other unaffected family members) and present within the 

population at rate less than or equal to the prevalence of the disease.  As 



 

 

9

such, this criterion precludes the sufficient establishment of causality of a 

mutation in a disease that is not highly penetrant. 

2. Experimental studies must demonstrate that the candidate genetic mutation 

impairs, destroys, or alters gene expression or protein function. 

3. The genetic mutation must be sufficient to recapitulate the disease feature(s) 

of the patient or patient cells when introduced into healthy control cells or an 

animal model. 

The massive increase in DNA sequencing over the past decade revealed much greater 

genetic variation among individuals than was generally thought to exist.[28]  Every 

individual harbors extensive genetic variation, a significant amount of which is unique to 

an individual’s ‘clan’ or nuclear family (and distinct from the general population) and 

additional variation that is unique to the individual entirely (and distinct even from his/her 

parents).[29, 30]  Thus extremely rare, sporadic diseases likely exist throughout the 

population, and NGS efforts coupled with investigation into patient phenotypes is 

confirming this.[31]  The establishment of guidelines for implicating a genetic lesion in 

the causality of a novel disease is thus critical for ensuring that extremely rare patients 

are identified and published as it may be years before the identification of another 

patient. 

1.5 Gααααi2, Heterotrimeric G proteins, and Immunity 

Heterotrimeric G proteins are an evolutionarily conserved protein family and one of the 

longest studied protein families in biomedical research.  Decades before the advent of 

molecular cloning and genetics, Sutherland and others observed that stimulating cells 

with a range of hormones resulted in the production of cyclic adenosine monophosphate 
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(cAMP), the first identified second messenger.[32, 33]  Although it would be years until 

this was shown be a GTP-dependent process (thus requiring G proteins), Sutherland 

received the Nobel Prize in Medicine or Physiology for his work in 1971.[34]  

Subsequent work studying the effects of cholera toxin, a product of Vibrio cholerae, 

revealed constitutive production of cAMP in targeted cells.  Surprisingly the target of 

cholera toxin was not the cAMP-generating enzyme adenylyl cyclase (AC), but rather a 

heterotrimer of 45, 25, and 8-10 kDa proteins intermediaries that became ADP-

ribosylated.  The work of Martin Rodbell and others in 1970’s demonstrated the role of 

GTP in hormone receptor signaling and that GTP was bound by the trimeric target of 

cholera toxin.  Thus these proteins became known as the heterortrimeric ‘G proteins’ 

Gα, Gβ, and Gγ, and Rodbell received the Nobel Price in Medicine or Physiology in 1994 

for the discovery of G proteins.[35-38]   

 Extensive sequencing efforts and bioinformatics analysis has demonstrated that 

heterotrimeric G proteins are expressed and highly conserved throughout eukaryotes 

from excavates to animals.[39]  Their conservation and centrality to eukaryotic biology is 

evidenced by the co-evolution of multiple toxins from other organisms that directly target 

these proteins.  Notably pertussis toxin (PTX) and the related cholera toxin (CTX) are 

ADP-ribosylases that catalyze the addition of NAD+ to C-terminal residues within Gαi 

and Gαs family subunits, respectively.  This results in the inactivation (PTX) or 

constitutive activation (CTX) of Gα proteins (Gαi/o and Gαs family members, 

respectively) leading to cellular pathology.[40, 41]  Furthermore, the wasp venom 

component mastoparan allosterically activates Gαi/o family proteins, demonstrating that 

eukaryotes have also evolved mechanisms of targeting these proteins.[42, 43] 
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 The primary identified function of heterotrimeric G proteins is their function as 

molecular switches, activating intracellular signaling cascades in response to 

extracellular ligands sensed by G-protein coupled receptors (GPCRs).  To date, there 

are nearly 800 GPCRs identified in humans, and, as such, they influence nearly every 

aspect of eukaryotic cellular biology.  GPCRs also serve as the principle target of ~30% 

of drugs available today, underscoring their importance in medicine.[44-46]  Despite the 

vast diversity of the GPCR superfamily, these receptors rely on a relatively tiny 

repertoire of heterotrimeric G proteins to transmit signals within the cell.  16 Gα, 5 Gβ, 

and 12 Gγ genes in humans form hundreds of different potential trimer combinations, 

providing specificity and the capacity for unique regulation of the GPCRs.  Still many 

heterotrimeric G-proteins must be widely expressed and service multiple GPCRs within 

a given cell type. 

 The Gα subunits provide the molecular switching function of heterotrimeric G 

proteins (overview of this and the GTPase cycle are provided in the introduction of 

Chapter 2) and are sub-divided into four Gα families:  Gαs, Gαi/o, Gαq, and Gα12 

based on their primary effectors.[47]  The inhibitory Gαi subunits were named because 

of their inhibition of cAMP production by adenylyl cylase, and consists of four members 

in humans:  Gαi1, Gαi2, Gαi3, and Gαo.  Of these, Gαi2 and Gαi3 are highly expressed 

in lymphocytes.  Gαi1 is also expressed in lymphocytes, but at much lower levels.[48, 

49] 

There is considerable co-regulation of Gαi-coupled GPCR signaling by Gαi2 and 

Gαi3 in lymphocytes, however Gαi2 appears to serve a much broader non-redundant 

role in immune function and elsewhere in the body.  In particular, Gαi2 is the principle 
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Gα subunit regulating chemokine receptor signaling and leukocyte migration.[50, 51]  

Consistent with this, mice lacking Gαi2 are immunodeficient while Gαi1 or Gαi3 deficient 

mice do not exhibit any overt phenotype.[47, 52]  As would be expected from a 

ubiquitously expressed protein regulating dozens of different receptors, Gαi2 knockout 

mice exhibit a wide range of defects including abnormal T cell and B cell development, 

loss of glucose regulation, failure of cancer suppression, aberrant cardiac function, 

abnormal bone growth and fusion, and develop spontaneous colitis.[47, 53-57]   Thus 

Gαi2 functions as a critical regulator of the immune system as well as a non-redundant 

component of the endocrine, cardiac, skeletal, and gastrointestinal systems. 

1.6 MDA5, Pattern Recognition Receptors, and Immunity 

Pattern recognition receptors (PRRs) are genetically encoded, non-variable receptors 

that recognize microbially generated (non-self) products, or pathogen-associated 

molecular patters (PAMPs).  Thus, these are distinct from heterogenous T cell and B cell 

receptors that are products of gene rearrangements and genomic editing.  PRRs are 

expressed all throughout the body and, upon binding their cognate ligand(s), they 

immediately initiate an anti-microbial inflammatory response.  It is now appreciated that 

this innate immune response is necessary for priming the adaptive immune 

response.[58, 59] 

 The seeds of the idea that microbial products resulted in inflammation can be 

traced all the way back to descriptions by Koch and Pasteur of the germ theory of 

disease.  Throughout the decades that followed, many investigators extracted purified 

components of infection secretions and studied their effects on uninfected hosts.  The 

extracted components were sufficient to recreate many aspects of infectious 
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inflammation such as fever, pus, and immune cell infiltration, however they were not 

sufficient to propagate infection[58]  It was not until the 1960s that lipopolysaccharide 

(LPS), likely the predominant PAMP studied in the purifications efforts of the 19th, and 

early 20th centuries, was chemically characterized and identified as a major component 

of the cell wall of gram negative bacteria.[60-63]   

Despite these advances in innate immunology, the decades of immunological 

research that followed were defined by major advances in our understanding of the 

adaptive immune system, furthering our understanding of the adaptive immune 

response.  The idea that unique T cell receptors enabled education of self and non-self 

in the thymus coupled with convincing demonstrations of the clonal selection theory and 

the generation of immunologic memory via long-lived memory cells were elegant and 

revolutionary. As a result, the study of LPS and the effects of other PAMPs on the 

immune system shifted out of focus [64-67]. 

However, throughout the many immunizations and infectious challenges that took 

place during these decades of research, it became increasingly apparent that non-self 

antigen alone was not sufficient to generate an adaptive immune response, but rather 

microbial products needed to be co-inoculated with non-self antigen for immunization to 

occur.  Perhaps most famously put forth in 1989 by Charles Janeway Jr., he and others 

hypothesized that sensing of microbial products by the innate immune system provided 

a second necessary signal for the initiation of the adaptive immune response.[68]  In 

close succession, discoveries in the mid 1990s conclusively revealed a family of 

receptors, now known as mammalian Toll-like receptors (TLRs), as the link between 

pathogenic microbial products and the full activation of costimulatory antigen presenting 

cells.[69-72] 
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The first Toll-like receptor identified in mice and humans was Toll-like receptor 4 

(TLR4), now known to bind and signal LPS.[69-72]  Subsequent investigation into other 

Toll-related genes reveal an entire family of Toll-like receptors whose ligands included a 

broad range of bacterial, fungal, and viral products.  Stimulation through these receptors 

was sufficient to transition innate immune cells into a state which enable them to provide 

necessary costimulation to the adaptive immune system.  Genetic deletion of these 

receptors resulted in impaired recognition and infectious susceptibility to classes of 

pathogens expressing associated TLR-activating molecules.[73] 

Not only was it amazing that one family of receptors could recognize such a diverse 

range of PAMPs, it suggested that cells may have alternative PRRs for directly 

recognizing pathogens and their byproducts.  In 2004, Yoneyama, et al. first described a 

role for a cytosolic RNA-helicase that could recognize double-stranded RNA (a 

replicative byproduct of many viral infections) and induce an interferon (IFN) mediated 

antiviral response.[74]  This receptor, retinoic acid inducible gene I or RIG-I, is the first 

member of what is now known as the RIG-I like receptors (RLRs).  This discovery 

prompted investigation into similar functions in the RIG-I paralog, melanoma 

differentiation antigen 5 (MDA5), where it too was found to sense dsRNA and initiate an 

IFN-mediated antiviral response.[75]  Initially it seemed RIG-I and MDA5 had redundant 

function; however work by Kato, et al. and others clearly demonstrated that these 

receptors had differential roles in the recognition of RNA viruses.[76-78] 

We now know that RIG-I recognizes the ends of uncapped 5’ triphosphorylated and 

5’ diphosphorylated RNAs, while MDA5 is preferentially stimulated by long double 

stranded RNAs[77, 78].  There is still considerable uncertainty about exactly what the 

identity and scope of the in vivo ligands are for these receptors, but is clear that they 
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recognize different RNA structures and distinct but overlapping sets of viruses.  Elegant 

work by Sun Hur and others, has demonstrated that MDA5 can bind and oligomerize 

along the shank of dsRNAs in a dynamic process that is regulated by the length of the 

dsRNA and hydrolysis of ATP by MDA5.  Stabilized dsRNA-bound MDA5 oligomers then 

interact with mitochondrial antiviral protein (MAVS) on the surface of the mitochondria, 

initiating an antiviral gene response through the activity of the transcription factors IRF3 

and NF-κB.  While RIG-I has been demonstrated to have antiviral functions towards a 

large range of infections, the role of MDA5 appears to be somewhat more limited.  Many 

studies on the recognition and antiviral function of RIG-I vs. MDA5 have clarified a non-

redundant role for murine MDA5 in restricting the murine picornavirus, 

encephalomyocarditis virus (EMCV) while RIG-I appears to be the predominant RLR in 

initiating antiviral responses to paraymyxoviruses, orthomyxoviruses, and others [76, 79-

89]  Still many studies have conflicting results that appear to be highly dependent on 

virus strain, cell type/species of organism, and the experimental system used.[90, 91]  

Common human pathogens related to EMCV (picornaviridae) are enteroviridae and the 

closely related human rhinivorus (HRV, common cold) as well as the coronaviridae 

family viruses which have an increasingly recognized role in human disease.[92] [93] 

Because of decades of research innate immune sensing, we have a broad base of 

information about the interactions between the innate immune and adaptive immune 

systems, the role of PRRs, RLRs, and what these receptors recognize and signal.  

However, the fundamental question of what role MDA5 plays in human immunity 

remains unanswered.   
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1.7 Figures 

Figure 1.1  Forward genetics approach to identifying genetic causes of PIDs 
 

 

Figure 1  Forward genetics approach to identifying genetic causes in patients with 
primary immunodeficiencies. 
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CHAPTER 2 - Dominant-activating Gαi2 mutations cause human 
immunodeficiency and autoimmunity by defective leukocyte migration 
and altered T cell activation 
 

2.1 Abstract 
 

The ubiquitously expressed heterotrimeric G-protein, Gαi2, relays signals for dozens of 

G-protein-coupled receptors throughout the body and is critical for leukocyte biology.  

We found dominant missense mutations in GNAI2, the gene encoding Gαi2, in patients 

with life-threatening, multi-organ system autoimmunity and susceptibility to 

mucocutaneous bacteria and virus infections.  The mutant proteins impaired immunity by 

uncoupling chemokine receptor signaling and thereby interfering with leukocyte 

chemotaxis in vitro and to sites of inflammation in vivo.  They also augmented T cell 

effector responses and diminished the requirement of costimulation for T cell activation 

by constitutively signaling downstream costimulatory pathways.  These results identify 

essential roles of Gαi2 in maintaining immune-competence and self-tolerance in humans 

and highlight Gαi2-responsive pathways as potential candidates for new therapeutics for 

autoimmune diseases. 

 

2.2 Introduction 
 

Heterotrimeric G-proteins are the molecular switches that activate intracellular signaling 

programs in response to ligand activated G-protein-coupled receptors.  As such, they 

serve essential roles in a broad range of cellular processes including development, 

hormone signaling, neurotransmission, metabolism, inflammation, and chemotaxis.[95-

100]   Each heterotrimer is composed of three subunits in a 1:1:1 ratio:  a guanine 
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nucleotide-binding Gα subunit and a Gβγ dimer (composed of Gβ and Gγ).  Gα proteins 

enable the molecular switch function.  In the basal, GDP-bound state, Gα is “off” 

(inactive) and complexed tightly with Gβγ, poised for activation by GPCRs.  Upon ligand 

binding, GPCRs catalyze the release of GDP allowing uptake of GTP by Gα.  The GTP-

bound Gα is “on” (activated) and dissociates from Gβγ to initiate distinct downstream 

signaling from both Gα and Gβγ.  Ultimately, GTP hydrolysis by Gα returns Gα to its 

GDP-bound, Gβγ-complexed “off” state.  To ensure the switch is efficiently regulated, 

Regulator of G-protein Signaling (RGS) proteins function as GTPase Activating Proteins 

(GAPs) to accelerate the intrinsic GTPase activity of Gα and rapidly stop further 

signaling.[46, 101, 102]  The human genome encodes 16 Gα subunits responsible for 

the signaling of nearly 800 GPCRs, thus each Gα subunit couples to a wide range of 

GPCRs.[94]  Gαi2 (encoded by GNAI2) is ubiquitously expressed and, along with Gαi3, 

is one of two Gαi-family subunits highly expressed in lymphocytes[48, 49] where knock-

out studies have demonstrated its non-redundant role in nearly all chemokine signaling 

in addition to regulating thymocyte egress[54, 103, 104], inflammatory cytokine 

production,[105, 106] and B cell and lymph node development.[51, 53, 104]  Studies 

utilizing RGS-insensitive Gαi2 mutants, which cause prolonged GPCR dependent Gαi2 

signaling, also revealed defects in cell migration, hematopoietic development, and 

immunity, emphasizing the importance of tightly regulating Gαi2 activity[107], [108].  

Despite decades of research on heterotrimeric G-proteins, the fundamental question of 

how Gαi2 activity modulates human immunity remains unanswered. 

 The integrity of the immune response depends upon leukocytes’ ability to 

precisely respond to chemokine gradients to exit the circulation into sites of 
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inflammation, retain protective immune cell populations in non-inflamed tissues, and 

downregulate retentive chemokine signaling to respond to infection elsewhere.[109-111]  

Severe bacterial infections and periodontal disease affect humans with leukocyte 

adhesion deficiency (LAD) due to loss of integrin-β2 (CD18, LAD I)[112], its ligands 

(fucosylated selectins, LAD II)[113, 114], or the ability to activate integrins in response to 

endothelial displayed chemokines (Kindlin-3 deficiency, LAD III).[115]  Each of these 

defects impairs chemokine-mediated leukocyte exit from the blood stream resulting in 

massive accumulation of circulating leukocytes, deficient leukocyte numbers at the site 

of infection, and recurrent mucocutaneous bacterial infections.[116]  The immune 

system’s ability to respond to chemokines is also critical for controlling chronic infections 

through the maintenance of lymphocyte populations at barrier sites.[117]  Human 

DOCK8 deficiency impairs the lymphocyte migration machinery essential for normal cell 

movement creating deficient resident T cell numbers in the skin.[118]  These patients 

suffer from uncontrolled human papillomavirus (HPV), mulluscum contagiosum, herpes 

simplex virus (HSV), and herpes zoster infections.[110]  Equally important, is turning off 

chemokine signaling to allow cells to leave resident sites in order to respond to infection 

elsewhere.  Warts, hypogammaglobulinemia, infection, and myelokathexis (WHIM) 

syndrome is caused by heterozygous mutations in the cytoplasmic tail of the chemokine 

receptor CXCR4 which impair receptor downregulation.[119]  Constitutive signaling from 

CXCR4 causes retention of B cells and neutrophils in the bone marrow and a paucity of 

circulating neutrophils leading to recurrent bacterial infections.[120]  Although these and 

other diseases of cell migration emphasize the importance of precisely regulating 

chemotaxis, WHIM syndrome is the only known disease of cell migration caused by 

mutations to a chemokine receptor.  Furthermore, no disease of cell migration is known 
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to result from mutations in a heterotrimeric G protein.  Thus it remains unknown how 

disrupting chemotaxis at the level of the heterotrimeric Gα subunit would affect cell 

migration and effector responses in humans. 

 The sensitivity of the T cell receptor (TCR) to various types, strengths, and 

durations of stimulation determine which signals generate effector responses and which 

will not.  Mechanisms both enhancing T cell activation and preventing it ensure T cell 

effector responses are only unleashed against appropriate stimuli at the correct time.  A 

fundamental mechanism increasing the specificity of T cell activation is the requirement 

of a second costimulatory signal (signal 2) in addition to the TCR signal (signal 1) for full 

activation (metabolic shift, proliferation, cytokine production).  Signal 1 occurs when the 

TCR encounters an activating peptide-MHC (major histocompatibility complex) complex 

on an antigen presenting cell (APC).  Signal 2 is a verification signal canonically 

mediated through CD28 (on the T cell) via interaction with CD80 or CD86 (on APCs) that 

ensures the T cell should be fully activated and is not simply responding to self-peptide-

MHC complexe Because potent costimulatory molecules are restricted to APCs 

activated by microbial products or inflammatory cytokines, a highly specific set of 

immunological events must occur for T cell activation.[121]  CD28 and dozens of other 

costimulatory receptors regulate full T cell activation by amplifying TCR signaling by 

recruiting Src and phosphatidylinosital-3-OH kinases (PI(3)K), sustaining intracellular 

Ca2+ levels, promoting interleukin-2 (IL-2) production, stimulating protein synthesis, and 

shifting cellular metabolism to glycolysis for rapid cellular proliferation although the exact 

requirements for sufficient costimulation are still unknown.[122-124]  Chemokine 

stimulation activates many of the same pathways via Gαi2 and its co-regulated Gβγ 

subunits, including Src and PI(3)K activity, Ca2+ flux, and increased protein synthesis via 
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phosphorylation of ribosomal protein S6, in addition to actin cytoskeleton 

rearrangements important for the formation of the immunological synapse.[95, 125, 126]  

Thus increased Gαi2 signaling during T cell activation would be expected to augment 

proliferation and effector responses, and indeed this occurs when T cells are activated in 

the presence of Gαi2 activating chemokines CXCL12 and CCL21.[127, 128]  However, 

chemokine mediated Gαi2 activation is quickly turned off following receptor stimulation, 

limiting its costimulatory effect on T cell activation.[129]  Human T cell lymphomas as 

well as cells exogenously expressing the constitutively activating R179C Gαi2 mutant 

exhibit activation of key costimulatory pathways and characteristics of malignant 

transformation highlighting the importance of downregulating Gαi2 activity.[130, 131]  

Still the consequences of constitutive Gαi2 activity on T cell activation and human 

immunity are unknown.  Here we describe two patients with combined immunodeficiency 

and life-threatening autoimmunity who share gain-of-function mutations in GNAI2.  

These mutations dominantly impaired chemokine signaling causing impaired cell 

migration to sites of inflammation and simultaneously altered T cell activation, reducing 

the requirement for costimulation to elicit effector function. 

2.3 Results 
 

Life-threatening autoimmunity and immunodeficiency 

We studied two patients with life-threatening multisystem autoimmunity and combined 

immunodeficiency (Table 2.1 and Supplementary Note 2.1 and 2.2).  Both presented in 

the first year of life with recurrent sinus, lung, and middle ear infections (Supplementary 

Fig. 2.1a).  Immunoglobulin replacement therapy and antibiotic prophylaxis only partially 

reduced the infection rate (Supplementary Fig. 2.2m-p).  Among the recurrent 



 

 

22

infections, were bacterial and viral skin infections including Staphylococcus aureus, 

herpes zoster, and surgically refractive human papillomavirus driven warts on the arms, 

hands, and feet of P1 (Supplementary Fig. 2.1b). 

 Early in life, both patients developed autoimmune thrombocytopenia and 

hemolytic anemia with anti-red blood cell antibodies (DAT+).  Despite splenectomy (P1), 

treatment with corticosteroids, and B cell depletion (rituximab), both manifested recurrent 

hemolytic crises requiring transfusions (Supplementary Fig. 2.1a and 2.2h).  At age six 

P1 was diagnosed with autoimmune arthritis of her knees, which later involved her 

ankles, wrists, fingers, and jaw.  The arthritis caused “Swan neck” finger deformities 

(Supplementary Fig. 2.1c) and required right knee replacement surgery.  By age 21 

she had developed plaque psoriasis of her arms and legs (Supplementary Fig. 2.1a).  

Following an episode of bacterial meningitis at age 4, P2 developed a progressive 

leukodystrophy with diffuse T cell infiltration (Supplementary Fig. 2.1d).  By age 5 he 

developed recurrent seizures and lost the ability to walk and speak before passing away 

at age 8 due to declining brain function. Extensive testing revealed no viral or metabolic 

etiology. 

 Longitudinal laboratory testing revealed mildly low absolute CD4+ and CD8+ T 

cell counts (normalized following splenectomy in P1) with a normal ratio of CD4+ to CD8+ 

T cells (Supplementary Fig. 2.2a,b,c).  The relative numbers and percentages of 

CD45RA+CCR7+ naïve T cells within the CD4+ and CD8+ compartments were decreased 

(P1; peripheral blood no longer available for P2) (Supplementary Fig. 2.2i-l).  P1 

exhibited normal percentages of senescent (CD57+), exhausted (PD-1+), and recent 

thymic emigrants (CD31+) (Supplementary Fig. 2.1h,i).  Both patients developed a 

progressive leukocytosis, with expansion of neutrophils, monocytes, and B cells pre-
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rituximab treatment (Supplementary Fig. 2d,f,g).  Non-immune abnormalities included 

intrauterine growth restriction with slow post-natal growth, mild dysmorphism, clubfeet, 

congenital hip dislocations, butterfly vertebrae (P1), hemivertebrae (P2), and small 

bowel malrotation (P1) (Table 2.1). 

De novo mutations of the active site of Gααααi2 

Both patients’ severe, early-onset disease suggested a genetic etiology. As all family 

members were healthy and  without history of consanguinity, we suspected an 

autosomal dominant disease from de novo mutations or an autosomal recessive disease 

with compound heterozygous mutations. We carried out whole exome DNA sequencing 

(WES) on both patients and their immediate family members which revealed novel 

heterozygous missense mutations of threonine 182 (T182) in GNAI2 (P1: c.544A>G, 

p.T182A; P2 c.545C>T, pT182I), the gene encoding the ubiquitously expressed 

heterotrimeric G-protein Gαi2 (Fig. 2.1a).  These mutations were not present in any 

parent, the sibling, 13,006 exomes from publically available databases[132], or >700 

previously sequenced exomes from our immunodeficiency cohort.  WES and 

confirmatory Sanger dideoxy sequencing confirmed equal copy number of the wild-type 

(WT) and mutant alleles in the patients’ leukocytes (Fig. 2.1b and Supplementary Fig. 

2.3a) and dermal fibroblasts (Supplementary Fig. 2.3b and data not shown), 

suggesting it arose in the germ cell or early during embryonic development.[31]  This 

mutation was the only non-synonymous de novo mutation found in either patient.  We 

identified several compound heterozygous mutations, but none was biallelic, predicted to 

be damaging (PolyPhen2 > 0.8), nor expressed in immune and non-immune tissues 

(Supplementary Table 2.1 and 2.2).  Gαi2 is a 355 amino acid protein composed of a 

helical domain and a highly conserved GTPase domain shared by the entire GTPase 
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superfamily (Fig. 2.1c).[45]  T182 is evolutionary constrained (GERP, 5.0) and highly 

conserved within the eukaryote GTPase superfamily (PhastCons, 1) as the central 

amino acid of a Mg2+ binding element (RXXTXGI) in first of three flexible ‘Switch regions’ 

(Fig. 2.1c, d).  In the GTP-bound state, T182 interacts directly with the Mg2+ ion at the 

active site, coordinating the γ-phosphate of GTP (Fig. 2.1e)[133, 134], and mutagenesis 

studies using the rat ortholog of Gαi2 or human Gαs have previously demonstrated a 

critical role for T182 in efficient GTP hydrolysis.[135, 136]  Thus, overall it seemed likely 

that these novel T182 mutations were contributing to disease. 

Hyperactivation in T182 Gααααi2 mutants 

The activation and inactivation of Gα proteins is tightly regulated.  Activation (GTP 

binding) first requires release of GDP from the nucleotide binding pocket, the rate-

limiting step imposed by the high affinity of Gα for GDP.  Since the patients’ cells 

expressed normal total levels of Gαi2 protein compared to healthy controls (Fig. 2.2a 

and Supplementary Fig. 2.3c) and a 1:1 ratio of WT to mutant transcripts 

(Supplementary Fig. 2.3d), we hypothesized that the T182 Gαi2 mutations might alter 

GDP:GTP exchange to favor the active, GTP-bound state.  We therefore purified 

recombinant Gαi2 proteins and conducted in vitro GTP-binding assays, by co-incubating 

non-hydrolyzable BODIPY-GTPγS with GDP-bound WT, T182A, and T182I Gαi2 and 

monitored GTPγS uptake in real time.  The known partially activating RGS-insensitive 

G184S mutant, and constitutively active, GTPase-deficient Q205L Gαi2 were included 

for comparison.[107, 137]  We found that T182 mutant proteins bound GTPγS 

significantly faster than WT Gαi2 and the activating G184S and Q205L mutants (Fig. 

2.2b,c).  These data implied that the T182 mutant proteins rapidly shed GDP, thus 
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opening the binding site for GTP and spontaneously accelerating transition into the 

active GTP-bound state, an observation consistent with similar studies of this threonine 

in other G-proteins[135, 136]. 

 Once activated, Gαi family subunits are further controlled by two methods of 

inactivation:  self-inactivation via intrinsic GTPase activity, and accelerated extrinsic 

inactivation (10 to 100 fold) through RGS mediated GAP activity.[45, 138]  We hypothesized 

that mutating T182 impaired the intrinsic and/or RGS accelerated inactivation of Gαi2 

and tested this via in vitro GTP hydrolysis assays. We found that the T182 mutants 

markedly impaired intrinsic GTP hydrolysis compared to WT (Fig. 2.2d dotted lines, and 

Fig. 2.2e) although to a lesser extent than the constitutively active, GTPase deficient 

Q205L mutant.  We also found that adding RGS16, a RGS family protein highly 

expressed in immune cells, greatly accelerated GTP hydrolysis by WT Gαi2 but did not 

affect RGS-insensitive G184S, GTPase-deficient Q205L, or patient-derived T182A or 

T182I mutants (Fig. 2.2d solid lines, Fig. 2.2e). Furthermore, we conducted RGS-

binding assays to test the ability of purified RGS proteins to bind each Gαi2 mutant.  

Consistent with the results of the GTP hydrolysis assays, WT Gαi2 but neither T182A 

nor T182I Gαi2 stably complexed with RGS proteins (Supplementary Fig. 2.4a,b).  

Thus, the T182A and T182I mutations impaired both intrinsic and extrinsic modes of 

inactivation.  Taken together, these data suggested that T182A and T182I Gαi2 are 

dominant gain-of-function mutants and might contribute to disease through overactive 

Gαi2 effector function. 

Defective leukocyte chemotaxis in vitro and in vivo 
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Gαi2 couples to most chemokine receptors and is a critical mediator of chemokine 

signaling in the immune system.[54, 103, 104]  Given its altered GTP hydrolysis and 

nucleotide binding, we tested the migration of the patient’s cells in vitro.  Compared to 

healthy controls, patient T cells and neutrophils showed impaired chemotaxis towards 

increasing doses of CXCL12 and CCL21 (T cells) or fMLP, IL-8, and leukotriene B4 

(neutrophils) but normal responses to C5a. (Fig. 2.3a and Supplementary Fig. 2.5a).  

We stimulated patient T cells with CXCL12, CCL19, CCL21, CCL3, CCL4, and CCL5 

and found reduced chemokine induced Ca2+ fluxes (Fig. 2.3b,c and data not shown) and 

normal or slightly low surface expression of chemokine receptors (Supplementary Fig 

2.5b,c).  To determine the sufficiency of T182 mutations to inhibit chemokine receptor 

signaling and chemotaxis, we expressed T182A Gαi2 in healthy control T cells via 

lentiviral transduction and examined chemokine-induced migration and Ca2+ flux. T182A 

and the constitutively active Q205L Gαi2 but not WT Gαi2, RGS-insensitive G184S Gαi2 

or a control protein (Luciferase) impaired both chemotaxis and Ca2+ flux without altering 

receptor levels (Fig 2.3d,e,f and Supplemental Fig. 2.5d,e).  Thus, recapitulating 

results from patient cells, overexpressed T182A Gαi2 was sufficient to disrupt 

chemotaxis and proximal chemokine receptor signaling in vitro supporting our 

hypothesis that these mutations are dominantly causing disease. 

The patients’ recurrent sinopulmonary and chronic skin infections are similar to 

that seen in other inherited diseases of defective leukocyte migration[116, 118, 119].  To 

determine if T182 mutations affected T cell homing in vivo, we used retroviral 

transduction (green fluorescent protein positive, GFP+) to stably express WT or T182A 

Gαi2 in murine T cells (Thy1.1+CD45.2+) and co-transferred the cells with an equal 

number of transduced T cells stably expressing WT Gαi2 (Thy1.1+CD45.1+) into a WT 
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recipient (Thy1.2+).  Upon examining the ratio of transduced CD45.2+ to CD45.1+ cells in 

various target organs, we observed a significantly decreased proportion of T182A Gαi2 

expressing cells in the splenic white pulp and lymph nodes (Fig. 2.3e,f) but not in 

circulation (Supplementary Fig. 2.5f).  We further confirmed this defect by in vivo 

measurements of leukocyte migration into the P1’s skin.  To do this, small blisters were 

placed on the skin of the patient and healthy controls, thereby creating a 

chemoattractant source via sterile inflammation.  Despite >10 times normal circulating 

leukocyte counts (Supplementary Fig. 2.2g), the patient’s skin blisters contained <5% 

healthy control leukocyte concentration (Supplementary Fig. 2.5g).  Additionally, we 

isolated and enumerated leukocytes migrating into the oral cavity and observed reduced 

numbers in the patient compared to healthy controls, a finding consistent with her early-

onset periodontal bone loss[139] (Supplemental Fig. 2.5i). Taken together, these 

findings show a clear deficit in leukocyte migration. 

Activating Gααααi2 mutations uncouple chemokine receptor signaling 

The ability of patient derived Gαi2 to impair chemokine receptor signaling in healthy 

control cells suggested a dominant interfering mechanism of action.  This was surprising 

because it also exhibited RGS-insensitivity and a deficiency in GTPase activity (Fig. 

2.2b,c), both hallmarks of constitutively active Gα subunits (e.g. Q205L Gαi2).[140]  We 

reasoned that T182 mutants might be uncoupled from chemokine receptors due to 

constitutive activation, and therefore unable to respond to receptor ligation, a situation 

that causes receptor hypo-responsiveness for other activating mutations.[141]  

Alternatively T182 mutants might stably bind GPCR cytoplasmic tails, blocking them 

from activating WT Gα proteins (“GPCR sequestration”).[142, 143]  We tested the ability 

of Gαi2 mutants to bind with chemokine receptors in living cells using bioluminescence 
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resonance energy transfer (BRET).  This technology measures protein-protein 

interactions (<10 nm) between a photon donor (Renilla luciferase, RLuc91) embedded 

within Gαi2 that excites a photon acceptor (yellow fluorescent protein, YFP) on the 

GPCR cytoplasmic tail (Fig. 2.4a).[144]  G184S Gαi2 bound CXCR4 and CCR7 with 

similar affinity (BRETmax, Supplementary Fig. 2.6a,b) to WT Gαi2, however the 

constitutively active Q205L Gαi2 and patient derived T182A Gαi2 mutants showed 

minimal interaction, suggesting these mutations impaired GPCR-Gαi2 coupling (Fig. 

2.4b,c) without affecting receptor expression or localization (Supplementary Fig. 2.6c-

h).  GPCR-induced Gα activation results in large conformational shifts within both 

proteins resulting in a loss of the baseline BRET signal (Fig 2.4a).[44]  Using BRET, we 

tested the ability of T182A Gαi2 to be activated by receptor stimulation.  GPCR 

stimulation resulted in a dose-dependent reduction in BRET signal from WT and G184S 

Gαi2-coupled GPCRs, but no change in BRET intensity from the constitutively activated 

Q205L Gαi2 or patient derived T182A Gαi2-coupled GPCRs (Fig. 2.4d,e).  Notably, full-

activation of WT and G184S Gαi2 resulted in a BRET signal comparable to the pre-

stimulation BRET signal of Q205L and T182A Gαi2, suggesting these mutants 

spontaneously adopt an active conformation with respect to GPCRs.  Together these 

data provided strong evidence that T182A Gαi2 exists in an active conformation with 

respect to GPCRs and thereby disrupts chemokine signaling as its activity cannot be 

induced upon receptor ligation. 

Hyper-responsive T Cell Phenotype   

Although the patient’s chemokine receptor signaling defects leading to impaired 

leukocyte migration could explain her immunodeficiency, the etiology of her 
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autoimmunity was less clear. To better understand this, we examined T cell functions in 

vitro.  Compared to normal controls, we observed elevated IL-17 producing CD4+ T cells, 

reduced IFN-γ producing T cells, but normal percentages of CD4+CD25+CD127loFoxP3+ 

Treg cells (Supplementary Fig. 2.7a,b,c).  The patient’s T cells exhibited augmented 

induction of activation markers CD69 and CD25 and increased cell proliferation in 

response to TCR stimulation (soluble anti-CD3 and anti-CD28), a difference that could 

be masked by using more potent TCR stimulation (immobilized anti-CD2, anti-CD3, anti-

CD28). Similar results were obtained in purified T cells stimulated with soluble anti-CD3 

without additional costimulation (Fig. 2.5a,b,c and Supplementary Fig. 2.7d,e), 

supporting the notion that the patient’s T cells had a lower threshold for activation.  To 

ensure that this effect was not due to heterogeneity within the T cell preps, we purified 

patient, parent, and healthy control naïve and memory CD4+ T cells by flow cytometry 

and observed marked hyper-responsiveness in her naïve and memory T cells compared 

to the other specimens.  Notably, naïve CD4+ cells from healthy controls only responded 

to the strongest stimulation (immobilized anti-CD2, anti-CD3, and anti-CD28); by 

contrast, patient naïve CD4+ T cells proliferated in response to much weaker stimulation 

(soluble anti-CD3 and anti-CD28) and even upregulated CD69 in response to anti-CD3 

only (Supplementary Fig. 2.7 f,g,h,i).  We next examined if the patient’s hyper-

responsive T cell phenotype reflected more proximal events in TCR signaling.  Following 

TCR ligation we saw no consistent differences in the magnitude or kinetics of TCR 

induced phosphorylation of CD3ζ, ZAP70, LAT, or PLCγ1 (data not shown), however, 

patient T cells exhibited increased cytosolic Ca2+ fluxes following TCR crosslinking 

compared to healthy controls (Fig. 2.5d).  Gαi2 and other Gα-subunits are known to 

modulate T cell activation, but exactly how they influence activation remains unclear. 
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[145, 146]  To determine the sufficiency of activating Gαi2 mutants to augment T cell 

Ca2+ responses, we stably expressed WT, T182A, G184S, or Q205L Gαi2 in T cells from 

healthy controls and examined TCR-mediated Ca2+ fluxes.    Prolonged expression (21-

35 days), but not short term expression (7-10 days), resulted in elevated TCR-induced 

Ca2+ fluxes in T182A and Q205L Gαi2 expressing cells but not cells expressing WT or 

G184S Gαi2 or a control protein (luciferase) (Fig. 2.5e,f).  Thus exogenous expression 

of activating Gαi2 mutations was sufficient to augment TCR-induced Ca2+ fluxes as seen 

in patient cells, supporting our hypothesis that activating Gαi2 mutants augment TCR 

activation, reducing the requirement for costimulation. 

Activating Gααααi2 mutations stimulate translational machinery 

Gαi family subunits, including Gαi2, are direct inhibitors of cyclic adenosine 

monophosphate (cAMP) production by adenylyl cyclase (AC).  Since cAMP is a potent 

inhibitor of T cell activation and proliferation, we hypothesized that T182 Gαi2 mutants 

might constitutively lower cAMP levels resulting in T cell hyperactivation.[147]  To 

determine if activating Gαi2 mutants constitutively inhibit AC, we expressed WT, T182A, 

G184S, and Q205L Gαi2 along with a BRET mediated cAMP reporter in cells and 

monitored drug induced cAMP levels.  We found the activating T182A and Q205L Gαi2 

mutants inhibited drug induced cAMP production compared to WT and G184S Gαi2 

(Fig. 2.6a).  However we did not detect differences in baseline or drug induced cAMP 

levels in patient T cells compared to healthy controls (Fig. 2.6b).  Additionally 

pharmacological elevation of cAMP levels via phosphodiesterase inhibitor (Piclamilast) 

treatment did not normalize the patient T cell hyperactivation compared to healthy 

controls (Fig. 2.6c). 
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 The activation of Gαi2 co-regulates the activation of Gβγ.[100]  Since a primary 

effector of Gβγ in lymphocytes is the p110γ subunit of PI(3)K, we hypothesized that 

increased p110γ activity in patient’s T cells may be promoting T cell activation and 

effector function as demonstrated by activating mutations in other components of the 

PI(3)K pathway.[148-151]  We therefore treated healthy control and patient T cells with 

increasing doses of the p110γ inhibitor (AS605240), assessed T cell activation, and 

found that p110γ inhibition did not normalize patient T cell activation relative to healthy 

controls (Fig. 2.6d).  Additionally, baseline and TCR-induced phosphorylation of AKT 

(PKB), a downstream consequence of increased PI(3)K activity, was not increased in 

patient T cell relative to healthy controls (Fig. 6e). 

  A critical component of T cell activation and proliferation is the mobilization of 

translational machinery necessary to meet the increased protein synthetic demand.  

Activated 70 kDa ribosomal S6 kinase (p70S6K) phosphorylates ribosomal protein S6.  

This enhances translation of ribosomal proteins and elongation factors and permits rapid 

cellular proliferation.[152]  We accessed S6 phosphorylation at residues S235/S236 and 

S240/S244 before and after TCR stimulation and found increased levels of 

phosphorylated S6 in patient T cells compared to healthy controls (Fig. 2.6f).  To 

determine the sufficiency of activating Gαi2 mutations to induce S6 phosphorylation, we 

stably expressed WT, T182A, G184S, and Q205L Gαi2 in a human acute T cell 

leukemia line and observed increased phosphorylation of S6 in T182A and Q205L Gαi2 

expressing cells compared to cells expressing WT Gαi2 (Fig. 2.6g).  These data 

demonstrate that T182 Gαi2 mutants constitutively activate the translational machinery 

necessary for rapid proliferation, likely contributing to the hyper-responsiveness of 

patient T cells to TCR ligation.  Together these data support the hypothesis that 
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activating mutations in Gαi2 decouple Gαi2-associated GPCRs resulting in impaired 

chemokine signaling and susceptibility to mucocutaneous infections while 

simultaneously reducing the requirements for full T cell activation by augmenting 

costimulatory pathways (Fig. 2.7).  

2.4 Discussion 
 

Genetic immunodeficiencies in humans frequently co-present with autoimmunity, but 

how individual gene products simultaneously regulate immune-competence and prevent 

autoimmunity is not well understood.[153, 154]  Gαi2 knockout mice are susceptible to 

bacterial and viral infections; they also develop autoimmune colitis and 

adenocarcinomas on some genetic backgrounds but not on others.[54, 155]  Knock-in 

mice bearing the partially activating RGS-insensitive G184S Gαi2 are mildly 

immunodeficient, but do not develop autoimmune disease.[108, 156]  These studies 

place Gαi2 at the nexus of immunodeficiency and autoimmunity, but do not provide a 

simple explanation where a lack of Gαi2 activity leads to immunodeficiency and 

increased Gαi2 activity leads to autoimmunity.  Recently the two activating mutations 

found here (T182A and T182I Gαi2) and two other constitutively activating Gαi2 

mutations were found to be overrepresented in somatic mutations in T cell 

lymphomas.[130]  This corroborates earlier findings of activating Gαi2 mutations in other 

tumors and the idea that the pathways driven by activating Gαi2 promote tumorigenesis 

possibly through promoting mitogenesis and cell cycle dysregulation.[131]  Despite 

growing evidence of the importance of Gαi2 in immune regulation and development 

among other functions, the full phenotypic effect of GNAI2 mutations in humans has not 

been described.  We have now reported the identification of two patients with 
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heterozygous de novo activating mutations affecting multiple organ systems resulting in 

a novel immunodysregulation disorder comprising life-threatening immunodeficiency and 

autoimmunity. 

The patients described here presented early in life with combined 

immunodeficiency of T and B cells and recurrent sinopulmonary tract infections.  A 

distinguishing feature of this disease is recurrent mucocutaneous bacteria and viral 

infections with a progressive neutrophilia and monocytosis. This phenotype is 

reminiscent of the LADs and consistent with the role of Gαi2 in leukocyte chemotaxis 

and extravasation from the circulation.[52]  The presentation of severe recurrent human 

papillomavirus and herpes zoster infections (chronic cutaneous DNA virus infections) 

without concomitant cytomegalovirus or Epstein-Barr virus viremia (chronic lymphocyte 

DNA virus infections), is tightly associated with impaired T cell chemotaxis and effector 

function in solid tissues (e.g, DOCK8).[110]  Thus the immunodeficiency has features of 

defects of both neutrophil migration (e.g. LAD)[113, 114, 116] and lymphocyte migration 

(e.g. DOCK8)[110] such as Wiskott-Aldrich syndrome (WAS)[157, 158] or WHIM.[119, 

120]  Both patients exhibited decreased antibody production (IgM and IgG); however, 

thorough analysis of the B cell compartment was not possible due to therapeutic B cell 

ablation for treatment of autoimmune cytopenias.  We have shown impaired neutrophil 

and T cell chemotaxis and chemokine signaling in patients with activating Gαi2 

mutations as well as the sufficiency of exogenously expressed GOF Gαi2 to impair 

chemotaxis in healthy control cells.  Of note, our clinical observations and in vitro and in 

vivo experiments demonstrate the migration defect is partial compared to severe forms 

of LAD and DOCK8 deficiency.[116, 118]  This is likely due to the heterozygous state of 

de novo mutations as the mutant proteins tested in isolation showed severely impaired 
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GTP hydrolysis and GPCR coupling/responsiveness.  Furthermore, we have shown in 

living cells that activating mutations in Gαi2 decouple Gαi2-chemokine receptor 

interactions, breaking the signaling circuit necessary for chemokine responsiveness.  

This observation is similar to the reduced effectiveness of drugs/stimuli on their targets 

after repeated stimulation (i.e. tachyphylaxis), and consider it “genetic tachyphylaxis” 

from the perspective of chemokine signaling.  Through this mechanism, activating Gαi2 

mutations represent the first human disease of cell migration due a mutation in a 

heterotrimeric G-protein. 

Autoimmunity is commonly observed in Mendelian  forms of immunodeficiency, 

however the features of autoimmunity are highly diverse and often difficult to 

explain.[153]  While defects in cell migration such as WAS and DOCK8 deficiency may 

be associated with autoimmune cytopenias, impaired chemotaxis alone is infrequently 

associated with severe multi-organ system autoimmunity as seen in our patients.[159] 

Defects in TCR signaling, thymic selection, and peripheral tolerance, in addition to 

activating germline mutations in cytokine signaling proteins such as STAT3 and STAT1, 

all cause life-threatening multi-organ system autoimmunity.[141, 160, 161]  We  

therefore focused on the patient T cells and demonstrated a reduced requirement for T 

cell costimulation (a necessary mechanism of peripheral tolerance), augmented TCR 

mediated Ca2+ fluxes (a fundamental part of TCR signaling and a critical determinant of 

thymic selection), and hyperactivation of translational machinery necessary for cell 

growth and division.  While significant dysregulation of any one of these processes can 

result in life-threatening autoimmune disease[153, 159], we propose that augmented 

TCR signaling, constitutive activation of downstream translational machinery, and likely 
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other, yet unidentified, processes are working together to permit otherwise suboptimal 

TCR signals to result in full T cell activation and proliferation. 

We have shown exogenous expression of activating Gαi2 mutants in control T 

cells is sufficient to impair chemokine signaling and augment TCR mediated Ca2+ fluxes.  

Short term expression of activating Gαi2 mutants immediately impaired chemokine 

signaling; however, prolonged expression of activating Gαi2 over multiple cell divisions 

was required to phenocopy the augmented TCR-mediated Ca2+ responses observed in 

patent T cells.  That we could recapitulate this behavior in healthy control peripheral T 

cells demonstrates that the patient T cell phenotype is not simply a result of aberrant 

selection in the thymus, however our results cannot rule out that abnormal thymic 

selection does not occur in patients.  Gαi2 knockout mice have been reported to have 

defects in thymic egress and some have postulated that this contributes to the 

autoimmune colitis they exhibit on the 129SvEv background.[54, 155, 162]  Interestingly, 

T cells from these mice exhibit augmented TCR mediated Ca2+ fluxes and reduced 

costimulatory requirement; however, this may be an effect of T cells developing in the 

absence of Gαi2 rather than a reflection of the role of Gαi2 in normal T cells.[146]  

Because Gαi2 mutations constitutively inhibit cAMP production in vitro and 

phosphorylation of S6 in patient cells, our results suggest the patients’ T cell hyper-

responsiveness is not simply the result of deficient Gαi2-dependent GPCR signaling, but 

rather that enhanced Gαi2 signaling reprograms T cells overtime, altering their response 

to TCR stimulation and reducing their requirement for costimulation.  The inability of 

acute pharmacological inhibition of PDEs or p110γ to normalize patient T cell responses 

supports the hypothesis of a more permanent hyper-responsive state being established 

by activating Gαi2 mutants over time. 
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These observations supported the rationale for generating a knock-in mouse 

bearing a highly active Gαi2 (T182I), however our efforts suggested in utero selection 

against T182I Gαi2 expressing embryos (Supplementary Table 2.3).  While G184S 

Gαi2 knock-in mice are viable even as homozygotes, both heterozygous and 

homozygous mice are born below Mendelian frequencies.[108]  Therefore, it is likely that 

more activating T182 mutations are also subject to in utero selection.  As sequencing 

efforts expand worldwide, it will be important to determine the incidence of this disease 

compared to the spontaneous mutation rate at the GNAI2 locus.  If in utero selection is 

occurring, understanding the genetic variation that permits survival of these patients will 

be important for understanding the pathogenesis of this disease. 

In conclusion, we have identified a previously unknown human 

immunodysregulation disorder we call ‘MAGIS syndrome’ (Myelocytosis, Autoimmunity, 

Gain-of-function Gαi2, Immunodeficiency, and Short stature).  This disease is 

characterized by dominant, gain-of-function mutations in GNAI2, and results in 

developmental abnormalities, immunodeficiency due to chemotaxis and chemokine 

signaling, and autoimmunity characterized by hyper-responsive T cell activation and a 

reduced requirement for T cell costimulation. 
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2.5 Tables 

Table 2.1  Patient Characteristics. 
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2.6 Figures 

Figure 2.1  De novo mutations at the active site of Gαi2. 
 

 

Figure 2.1 De novo mutations at the active site of Gαi2. (a)  Patient pedigrees showing 
de novo mutations c.544A>G, p.T182A (P1) and c.545C>T, pT182I (P1), WT = wild type 
(b) Sanger sequencing electropherograms of genomic DNA (isolated from blood 
leukocytes) bases corresponding to the mutations indicated by the inverted triangle; 
green = adenine, red = thymine , black = guanine, blue = cytosine.  P1 family (left); P2 
(right) (c) Schematic representation of Gαi2 showing the helical domain (green) and 
GTPase domain (blue) containing three switch regions (red).  Black line indicates 
location of patient mutations. (d) Amino acid sequence alignment of corresponding 
protein region from all human heterotrimeric Gα subunits and selected Gαi2 sequences 
from other species.  Amino acids not conserved with human Gαi2 are shown in red; the 
affected threonine is boxed and bolded.  (e)  Structural ribbon representation of Gαi2 
(dark green) bound to GTP (left) with zoomed view (right) showing GTP (purple) bound 
by GTPase binding domain and threonine 182’s (T182, blue) role in the octahedral 
coordination shell of Mg2+ (bright green sphere). Additional ionic bonds (yellow dashes) 
are with the β-phosphate of GTP, γ-phosphate of GTP, serine 47 (S47, light gray), 
glutamine 205 (Q205, dark gray), and two with free water molecules (red X’s).  
Mentioned amino acids are shown in ‘tube’ format.  Structures represent fitting primary 
amino acid sequence of Gαi2 onto the structure of Gαi3 (Protein Data Bank accession 
code 2V4Z). Standard single amino acid code is employed throughout. 
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Figure 2.2  T182 Gαi2 mutants are activated in multiple ways. 
 

 

Figure 2.2 T182 Gαi2 mutants are activated in multiple ways. (a) Immunoblot analysis of 
Gαi2 and heat shock protein 90 (HSP90) loading control from whole cell extracts from 
patient and healthy control fibroblasts (b,c,d,e) In vitro biochemistry comparing WT, 
T182A (P1’s mutation), T182I (P2’s mutation), G184S (RGS-insensitive only), and 
Q205L (GTPase deficient, RGS-insensitive).  BODIPY-GTP analogs increase 
fluorescence upon G-protein binding and fluorescence is lost upon GTP hydrolysis.[163] 
(b)  In vitro GTP binding assay.  Purified WT or various mutant Gαi2 proteins were 
incubated with non-hydrolyzable GTP analog BODIPY-GTPγS.  Changes in 
fluorescence were measure in real time. (c) Quantification of the binding rate constant 
(kon�GTPγS) from (b) as described in Methods. (d) In vitro GTP hydrolysis assay.  
Hydrolysis of BODIPY-GTP was measured in the presence of purified WT or various 
mutant Gαi2 proteins with (solid lines) or without (individual points) purified RGS16. (e) 
Quantification of hydrolysis rate constant (kcat�GTP) from (d) as described in Methods.  
Data representative of three independent experiments (a,b,d) or means ± SD of three 
independent experiments (c,e).  * p < 0.05, ** p <0.01, by Kruskal-Wallis test (c,e). 
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Figure 2.3  Activating Gαi2 mutants impair chemokine receptor signaling and 
chemotaxis. 
 

 

Figure 2.3 Activating Gαi2 mutants impair chemokine receptor signaling and 
chemotaxis.  (a) Proportion of healthy control or patient activated T cells migrating 
through transwell inserts in response to CXCL12 (upper) or CCL21 (lower). (b) 
Representative Ca2+ fluxes from healthy control and patient activated T cells stimulated 
with 500 ng/mL CXCL12 (upper) or 1 μg/mL CCL21 (lower) measured as the ratio of 
violet to blue fluorescence intensity of Indo-1 AM; see Methods for details. (c) 
Quantification of repeated Ca2+ fluxes from (b) as area under curve measurements 
normalized to healthy controls assessed in each experiment. (d) Same as (a) using 
activated healthy donor T cells stably expressing luciferase, WT Gαi2, or T182A Gαi2. 
(e) Same as (b) using activated healthy donor T cells stably expressing luciferase, WT 
Gαi2, or T182A Gαi2. (f) Quantification of repeated Ca2+ fluxes in (e) as area under 
curve measurements normalized to Ca2+ fluxes of untransduced cells in each culture.  
G184S and Q205L Gαi2 were included as additional controls. (g, h) Ratio of transduced 
(GFP+) murine T cells stably expressing WT or T182A Gαi2 (CD45.2+Thy1.2+) to 
transduced (GFP+) T cells stably expressing WT Gαi2 (CD45.1+Thy1.2+) 36 hours after 
co-transfer into a WT (Thy1.1+) recipient and recovered from splenic white pulp (g, red 
pulp T cells were excluded via intravascular labeling, see Methods for details) or inguinal 
lymph nodes (f).  Data show means ± SD (a,c,d,f,g,h) or representative data (b,e) from 
five independent experiments (d,e,f, upper), four independent experiments (d,e,f, lower), 
2 independent experiments with three mice per group (g,h, open circles represent 
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individual mice), or five independent experiments with 10 (a,b,c, upper), 9 (a, lower), or 
8 (b,c, lower) healthy controls. * p < 0.05, ** p < 0.01, by Kruskal-Wallis test in (d, 
comparing area under curve for each overexpression) and (f). 
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Figure 2.4  Impaired GPCR coupling and GPCR induced activation of T182 Gαi2 
mutants. 

 

Figure 2.4 Impaired GPCR coupling and GPCR induced activation of T182 Gαi2 
mutants. (a) Schematic of BRET reaction between the photon donor Gαi2-RLuc91 and 
photon acceptor GPCR-YFP.  Ligand binding (right) results a conformational shift of the 
GPCR cytoplasmic tail, activation of WT Gαi2, and a reduction of pre-ligand (left) BRET 
signal (green).  RLuc91 = Renilla luciferase. (b,c)  Net BRET signal of WT, T182A, 
G184S, or Q205L Gαi2-RLuc91 and CXCR4-YFP (b) or CCR7-YFP (c) co-expressed in 
293T cells without exogenous ligand.  (d,e)  Net BRET signal of WT, T182A, G184S, or 
Q205L Gαi2-RLuc91 and CXCR4-YFP (d) or CCR7-YFP (e) co-expressed in 293T cells 
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after stimulation with increasing doses of CXCL12 and CCL21, respectively.  Data show 
means ± SEM of three to four independent experiments performed in triplicate.  
Statistical significance of the differences between BRET signal measured with WT Gi2-
RLuc91 and mutant Gi2-RLuc91 constructs: ***, p< 0.001, ****, p< 0.0001 by 
Bonferroni’s multiple comparison test in (d,e). 
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Figure 2.5  Gain-of-function Gαi2 augments T cell activation. 

 

Figure 2.5 Gain-of-function Gαi2 augments T cell activation. (a,b) CD69 expression (a) 
or CD25 expression (b) on purified CD4+ T cells after 20 hours stimulation with anti-CD2 
+ anti-CD3 + anti-CD28 immobilized on beads (Miltenyi biotech, bead to cell ratio = 1:1), 
1 μg/mL of anti-CD3 and anti-CD28, 1 μg/mL anti-CD3 only, or unstimulated (Unstim.). 
(c) CFSE dilution in purified CD4+ T cells after 96 hours stimulation as in (a,b).  (d) 
Representative T cell receptor mediated Ca2+ fluxes (left) with quantification (right, 
independent experiments showing area under curve calculations normalized to healthy 
controls from each) of patient and healthy control activated CD4+ cells stimulated with 10 
μg/mL anti-CD3 cross-linked with 200 ng/mL protein A. (e,f) Representative T cell 
receptor mediated Ca2+ fluxes (left) of healthy control CD4+ T cells stably expressing 
T182A Gαi2 (GFP+) and co-cultured non-transduced cells (GFP-) with quantification 
(right) of independent experiments showing area under curve for cells stably expressing 
luciferase or WT, T182A, G184S, or Q205L Gαi2 (GFP+) normalized to co-cultured non-
transduced cells (GFP-) and stimulated as in (d) after short term (7-10 days) expression 
(e) and long term (21-35 days) expression (f).  All fluxes were measured as the ratio of 
violet to blue mean fluorescent intensity of Indo-1 AM; see Methods for details.  Data 
show means ± SD (d,e,f right side) or representative data (a,b,c and d,e,f left side) from 
four independent experiments with 15 healthy controls (a,b), three independent 
experiments with 11 healthy controls (c), five independent experiments with 10 healthy 
controls (d), three independent experiments (e) or four to six independent experiments 
(f). ** p < 0.01, ***, p< 0.001 by Kruskal-Wallis test (e,f). See Supplementary Fig. 2.7 
d,e for full quantification of (a,b,c). 
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Figure 2.6  Activating Gαi2 mutants stimulate translational machinery. 
 

 

Figure 2.6 Activating Gαi2 mutants stimulate translational machinery.  (a) cAMP BRET 
reporter Rluc3-EPAC-GFP10 activity in 293T cells expressing WT, T182A, G184S, or 
Q205L Gαi2 upon treatment with increasing doses of forskolin (adenylyl cyclase 
agonist).  (b) cAMP levels determined by competitive ELISA of patient, parent, and 
healthy control T cell lysates either unstimulated (Unstim.) or stimulated with PGE2 or 
Forskolin.  (c,d) CD69 expression of purified patient and healthy control CD4+ T cells 
pretreated for 6 hours with vehicle control (DMSO) or different doses of the PDE4 
inhibitor, Piclamilast (c), or the p110γ inhibitor, AS605240 (d). and activated with 1µg/mL 
anti-CD3 and anti-CD28 for 20 hours. (e,f) Phosphorylation of AKT at Ser473 (p-
AKT(S473)) (e) or S6 at Ser235/S236 (p-S6(S235/S236)) (f) in patient and healthy 
control T cell blasts either unstimulated or stimulated with anti-CD3 (10µg/mL) plus 
protein A (200ng/mL) for indicated time. (g) Phosphorylation of S6 at Ser235/S236 (p-
S6(S235/S236)) in unstimulated Jurkat cells (rested and fixed in serum free media) 
stably expressing WT, T182A, or Q205L Gαi2.  Data show means ± SEM from 
representative experiment done in triplicate (a) (n=2), or representative data from four 
independent experiments (b,e,f) or two independent experiments (c,d,g). 
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Figure 2.7  Proposed model for the effects of activating mutations of Gαi2 on T 
cell chemotaxis and T cell activation. 
 

 

Figure 2.7 Proposed model for the effects of activating mutations of Gαi2 on T cell 
chemotaxis and T cell activation.  Activating mutations in Gαi2 uncouple Gαi2 from 
chemokine receptors resulting in blunted chemokine signaling, defective chemotaxis, 
and impaired cutaneous immunity.  Activating Gαi2 mutations augment TCR mediated 
Ca2+ and activate translational machinery promoting T cell hyperactivation. 
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2.7 Supplementary Figures 

Supplementary Figure 2.1  Patient Characteristics. 
 

 

Supplementary Figure 2.1 Patient Characteristics (a) Graphical clinical summary for 
P1. (b) Clinical photography of HPV warts on foot (P1). (c) Clinical photography of 
“Swan neck” deformity of fourth digit (P1). (d) Head MRI (T2 TSE) of P2 at age 6 
showing leukodystrophy. (e) Frequencies of CD57+ or PD-1+ cells among CD4+ T cells 
and CD31+ cells among CD4+CD45RA+ naïve cells.  (f) Frequencies of CD57+ or PD-1+ 
cells among CD8+ T cells.  Data represent means ± SD of three independent 
experiments with 10-12 healthy controls (e,f). 
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Supplementary Figure 2.2  Patient laboratory values. 
 

 

Supplementary Figure 2.2 Patient laboratory values (a-p) Patient laboratory values 
measuring the peripheral blood for absolute CD4+ (a) and CD8+ (b) T cell count; the ratio 
of CD4+ to CD8+ T cells (c); absolute B cell (d), natural killer (NK) cell (e), monocyte (f), 
and neutrophils (g); hemoglobin concentration (h); the percentages of naïve 
CD4+CD45RA+ (i) and naïve CD8+CD45RA+ (k) T cells among CD4+ and CD8+ T cells, 
respectively; the percentages of memory CD4+CD45RO+ (j) and memory CD8+CD45RO+ 
(l) T cells among all CD3+ T cells; serum immunoglobulin concentrations: IgM (m), IgG 
(n), IgA (o), and IgE (p).  Gray range indicates 5th to 95th percentile of normal values vs. 
age.  Blue circles represent P1.  Black circles represent P2. 
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Supplementary Figure 2.3  WT and mutant DNA, RNA, and protein levels. 
 

 
Supplementary Figure 2.3  WT and mutant DNA, RNA, and protein levels (a) 
Percentage of WT and mutant (c.544A>G, p.T182A = “T182A” or c.545C>T, pT182I = 
“T182I”) WES DNA sequencing reads from blood leukocytes. Data represent WES reads 
as percent of reads mapping to aforementioned point mutation site (coverage >100X at 
this site for all samples).  (b) Sanger sequencing electropherograms of genomic DNA 
(isolated from dermal fibroblasts) base corresponding to the mutations indicated by the 
inverted triangle .  P1 and healthy control; P2 (data not shown); green = adenine, red = 
thymine , black = guanine, blue = cytosine. (c) Immunoblot analysis of Gαi2 and β-actin 
loading control from whole cell extracts from P1, parent, and healthy control activated T 
cells. (d)  Quantification of wild-type (WT) and mutant (c.544A>G, p.T182A = “T182A” or 
c.545C>T, pT182I = “T182I”) transcripts from control and patient T cells (P1) or patient 
fibroblasts (P2).  Messenger RNA was reverse transcribed into cDNA.  GNAI2 
transcripts were PCR amplified and sub-cloned into pCR4-TOPO vector (Life 
Technologies).  Individual clones (96 control, 96 from each patient) were selected and 
sequenced.  Data are representative of three independent experiments (c). 
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Supplementary Figure 2.4  T182 Gαi2 mutants abrogate RGS-binding. 
 

 

Supplementary Figure 2.4  T182 Gαi2 mutants abrogate RGS-binding (a) RGS-binding 
assay.  Purified recombinant His-Gαi2 (WT, T182A, T182I, G184S, or Q205L), purified 
recombinant GST-RGS16, and glutathione sepharose beads were co-incubated together 
with GDP with or without aluminum magnesium fluoride (AMF), which mimics the pre-
transition state of GTP hydrolysis, the stabilized state during RGS binding.[164]  Beads 
were washed, bound proteins were eluted, and pulldown (PD) contents were separated 
by SDS-PAGE.  Immunoblot for pulled down RGS16 (anti-GST) and associated Gαi2 
(anti-Gαi2) is shown. Gαi2 only lane (left lane for each blot) shows 20% of input Gαi2 
protein. (b)  Quantification of Gαi2 pulldown signal from AMF+ (right lane for each blot) 
compared to the amount of WT Gαi2 bound to RGS16 (100%).  Representative data (a) 
or means ± SD of 3-4 independent experiments (b), **p = 0.002; ***p < 0.0004, one-way 
ANOVA with Dunnett’s multiple comparison test. 
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Supplementary Figure 2.5  Activating Gαi2 mutants impair chemotaxis in vitro 
and in vivo. 
 

 

Supplementary Figure 2.5  Activating Gαi2 mutants impair chemotaxis in vitro and in 
vivo. (a) Neutrophil chemotaxis assay from P1 and healthy controls in response to 
indicated chemokines.  Connected data points indicate samples purified and analyzed 
together.  All measurements done using the NeuroProbe chemotaxis system; see 
Methods for details (n=3).  (b,c) Flow cytometry staining for surface expression of 
CXCR4 (b) and CCR7 (c) on healthy control and patient (P1) naïve (CD45RA+), memory 
(CD45RO+), or cycling CD4+ or CD8+ T cell blasts.  Mean fluorescence intensity (MFI) of 
patient is shown relative to the healthy control MFI from each experiment. Data shows 
mean ± SD of 3 or 4 independent experiments.  (d,e) Flow cytometry staining for surface 
expression of CXCR4 (d) and CCR7 (e) in healthy donor T cells stably expressing 
luciferase or WT, T182A, G184S, or Q205L Gαi2.  MFI of transduced cells is shown 
relative to non-transduced cells in the same culture. (f) Ratio of transduced (GFP+) 
murine T cells stably expressing WT or T182A Gαi2 (CD45.2+Thy1.2+) to transduced 
(GFP+) T cells stably expressing WT Gαi2 (CD45.1+Thy1.2+) 36 hours after co-transfer 
into a WT (Thy1.1+) recipient and recovered from the blood. (g)  Concentration of 
leukocytes in blister fluid from in vivo chemotaxis assay from healthy controls (mean and 
95% CI) and P1 (n = 1). (h)  Absolute number of granulocytes recovered from oral cavity 
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from healthy controls (mean and 95% CI) and P1 (n = 3) by oral rinse and quantified by 
flow cytometry.  Data representative of mean ± SD of 3 independent experiments 
(a,b,c,d,e) or 2 independent experiments with 3 mice per experiment (f, individual data 
points represent individual mice). 
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Supplementary Figure 2.6  Determination of BRETmax and acceptor/donor 
expression levels in BRET experiments 
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Supplementary Figure 2.6  Determination of BRETmax and acceptor/donor expression 
levels in BRET experiments.  (a,b) Acceptor/donor titration curves for determination of 
BRET maximum (BRETmax).  293T cells were transfected with WT, T182A, G184S, or 
Q205L Gαi2-RLuc91 (donor) and increasing amounts of CXCR4-YFP (a) or CCR7-YFP 
(b) (acceptors).  The net BRET signal was determined and graphed as a function 
GPCR-YFP fluorescence (acceptor) to Gαi2-RLuc91 chemiluminescence (donor) ratio 
(YFP/Rluc).  (c,d) Total WT, T182A, G184S, or Q205L Gαi2-RLuc91 expression in the 
presence of CXCR4-YFP (c) or CCR7-YFP (d) measured by total Renilla luciferase 
expression from transfections in Fig. 4b-e (at BRETmax).  (e,f)  Total CXCR4-YFP (e) or 
CCR7-YFP (f) expression measured by YFP fluoresence in transfections in Fig. 4b-e (at 
BRETmax).  (g,h) Cell surface expression of CXCR4-YFP (g) or CCR7-YFP (h) measured 
by flow cytometry in transfections in Fig. 2.4b`e (at BRETmax).  Data shows means ± 
SEM of triplicate measurements of one representative experiment of four independent 
experiments (a,b) or means ± SEM of four independent experiments performed in 
triplicate (c-h).  
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Supplementary Figure 2.7  Patient T cell cytokine production and activation. 
 

 

Supplementary Figure 2.7  Patient T cell cytokine production and activation.  (a,b) 
Unstimulated ex vivo purified T cells were stimulated with PMA and ionomycin for 8 
hours in the presence of Brefeldin A and then stained intracellularly for the indicated 
cytokines.  Data shown are the percentages of cytokine expressing cells within the 
CD45RO+ memory population for CD4+ (a) or CD8+ (b) T cells.  Lines connecting healthy 
controls (or parents) and P1 indicate samples processed and analyzed together (an 
independent experiment). (c) Unstimulated ex vivo T cells stained for 
CD4+CD25+CD127loFoxP3+ regulatory T helper cells (Treg) shown as a percentage of 
CD4+ T cells. (d,e) CD69 expression (left), CD25 expression (center), or percent CFSE 
diluted (≥1 cell division) of purified ex vivo pan T cells either CD4+ gated (d) or CD8+ 
gated (e) following 20 hours (CD69 and CD25) or 96 hours (CFSE dilution) stimulation 
with anti-CD2 + anti-CD3 + anti-CD28 immobilized on beads (Miltenyi biotech, bead to 
cell ratio = 1:1), 1 μg/mL of anti-CD3, or anti-CD28, or 1 μg/mL anti-CD3 only.  (f,h) 
CD69 expression on flow cytometry purified naïve (CD4+ CD45RA+ CD45RO- CCR7+) (f) 
or memory T cells (CD4+ CD45RO+ CD45RA-) (h) 20 hours after stimulation.  (g,i) CFSE 
dilution of naïve (g) or memory (i) CD4+ T cells after stimulation with either anti-CD2 + 
anti-CD3 + anti-CD28 immobilized on beads (bead to cell ratio = 1:1), 1 μg/mL of anti-
CD3, or anti-CD28, or 1 μg/mL anti-CD3 only.  Data represent two to five independent 
experiments with eight to sixteen healthy control or parent samples per cytokine (a,b), 
three independent experiments and seven healthy controls (c), three to four independent 
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experiments with ten to fifteen healthy control or parent samples (d,e), or 1 independent 
experiment with 3 healthy controls (f-i). 

  



 

 

57

 

2.8 Supplementary Tables 
 

Supplementary Table 2.1  Summary of WES Variants found at each filtering 
stage for P1. 
 

  Patient 

Total variants from WES (SNP/indels) 80213 

Nonsynonymous variants 10906 

Novel or Rare variants 2551 

Genes which fit genetic model  5 

Candidate causal gene (deleterious, expressed, etc) 1 

 

Supplementary Table 2.1  Summary of WES variants found at each filtering stage for P1.  Total 

number of variants (single nucleotide polymorphisms, i.e. SNPs, and insertion/deletions, i.e. 

indels) found by WES.  The number of remaining variants after each filtering stage of 

bioinformatics analysis is shown. 
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Supplementary Table 2.2  P1 candidate gene list by genetic model. 

 

Table 2.2 continued 

 

Supplementary Table 2.2  P1 candidate gene list by genetic model.  Candidate gene mutations, 

found by WES, their status in immediate family members, and bioinformatics analysis (type, 

frequency, prediction of functional effect, etc.) are shown for P1 and grouped by the genetic 

model they fit (de novo, autosomal recessive - compound heterozygous, or autosomal recessive 

– homozygous). 
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Supplementary Table 2.3  CRISPR targeting Gnai2 in mouse embryos. 
 

 

*This mouse included the silent mutations from the HR donor template, but excluded the T182I 

Gnai2 missense mutation 

Supplementary Table 2.3  CRISPR targeting Gnai2 in mouse embryos.  Clustered, regularly 

interspaced, short palindromic repeat (CRISPR)-Cas9 technology was used to target mouse 

embryos along with homologous recombination (HR) donor to induce knock-in (KI) of the 

indicated mutations (T182I or G184S Gnai2).  Total numbers of screen mice and or early 

embryos (~8 cell) with any modification, an HR mediated recombination event, and those with 

the intended (correct) HR-mediated KI event. 
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2.9 Supplementary Notes 
 

Supplementary Note 2.1  P1 clinical course. 
 

This 28-year old Caucasian female has a combined immunodeficiency with recurrent 

sinopulmonary and viral skin infections, as well as autoimmunity with autoimmune 

hemolytic anemia and psoriatic arthritis. She also has developmental abnormalities 

involving gastrointestinal tract, bone, and vasculature. 

Parents are nonconsanguineous, and neither they nor her older sister have a 

history of immunodeficiency or autoimmunity. She was born by repeat cesarean at 39 

weeks and 5 days gestational age.  Pregnancy was complicated by intrauterine growth 

restriction. Her birth weight was 4 pounds and 9 ounces. Congenital hip dysplasia and 

clubfeet were corrected with a Pavlik harness and casting. Throughout childhood she 

remained at < 3rd percentile for age in height and weight, although these were 

proportional until she gained weight from chronic corticosteroids. Bone age was 

consistent with chronological age on multiple examinations.  

Mild dysmorphic features include hypotelorism with reduced inner canthal 

distance, small ears, and plagiocephaly. She was suspected of having autosomal 

dominant spondylocostal dysostosis, with scoliosis, spondylolithesis, occult spina bifida, 

and short stature present in her mother, and scoliosis in maternal grandfather.  She has 

dextroscoliosis of 35o from T10 to L2, butterfly vertebrae at T8, and osteopenia 

secondary to chronic corticosteroid use with vitamin D deficiency, which was 

complicated by a compression fracture at T12. 
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At six months of age, she began to develop recurrent upper respiratory tract 

infections. This was followed by several episodes of mostly clinically diagnosed 

pneumonia associated with reactive airways disease exacerbations, including a 

hospitalization for respiratory syncytial virus at 18 months. She had recurrent otitis 

media, complicated by mastoiditis and mild conductive hearing loss, which required 

placement of eight sets of tympanostomy tubes and hearing aids. She also developed 

recurrent sinusitis, confirmed radiographically, which required nine sinus surgeries with 

polypectomies. She has received antibiotics every few weeks for most of her life for 

sinusitis, bronchitis, or otitis media. A trial of rotating prophylactic antibiotics was 

marginally effective in controlling her sinus infections. At 14 years of age, she was 

started on Ig replacement therapy, which was associated with a reduction in 

sinopulmonary infections. Periodontal examination revealed generalized moderate bone 

loss around teeth unexpected for her age, and mild gingival inflammation. 

She received all recommended vaccinations during her childhood without 

adverse effect including oral polio vaccination. While 4 years of age, she had a mild case 

of chicken pox; varicella vaccination was not standard of care at that time. At 7 years 

years of age, she began to develop progressively worsening warts (> 400), most 

extensive on her antecubital fossa, hands, and soles; these worsened before she started 

receiving chronic corticosteroids, and have recurred despite surgical removal under 

general anesthesia. At 16 years of age, she had herpes zoster which recurred at 23 

years of age. She never developed recurrent yeast or fungal infections.  

Standard immune evaluations completed in early childhood did not reveal a 

known cause of immunodeficiency. She had normal sweat chloride, cilia ultrastructure, 

neutrophil oxidative burst, complement levels, 22q11 FISH, and 46XX karyotype. 
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Directional and random chemotaxis of neutrophils were decreased when evaluated at 

age 6 years of age. Quantitative immunoglobulins were initially normal; while receiving 

IgG for infection prophylaxis, she developed decreased IgG, decreased IgM, and 

occasionally increased IgA. Post-immunization tetanus and pneumococcal titers were 

normal, as were titers post-infection or post-immunization to parvovirus B19, varicella, 

and rubeola. Isohemaglutinins were present at normal titers. Mitogen proliferation 

responses to concanavalin A (Con A), pokeweed mitogen (PWM), and 

phytohemagglutinin A (PHA) ranged from moderately decreased to within normal values. 

Antigen stimulation studies to Candida and tetanus toxoid also varied from normal to low 

back to normal on subsequent assessment. CTL and NK cell cytotoxicity were normal. 

Although absolute lymphocyte count was normal during infancy, she later developed 

intermittent lymphopenia involving T cells and NK cells or lymphocytosis involving B 

cells. She has naïve T cell lymphopenia but normal numbers of effector/memory 

phenotype T cells. T-cell Receptor V beta repertoire clonogram was normal. 

Splenomegaly was first noted at 4 years of age while she had chickenpox. She 

developed autoimmune hemolytic anemia (DAT+) when 6 years of age. She also had 

rare thrombocytopenia with her massive splenomegaly. Bone marrow biopsy showed 

trilineage maturation without findings suggestive of Gaucher’s or other storage diseases. 

Antinuclear antibodies and autoantibodies (rheumatoid factor, anti-mitochondrial, anti-

centromere, anti-smooth muscle, anti-liver/kidney microsomal, anti-cardiolipin, anti-

thyroglobulin antibodies) were negative. At 10 years of age, oral corticosteroids were 

started for falling hemoglobin and platelet counts and need for transfusions. She had 

multiple hemolytic crises, particularly in the couple of days following surgical procedures. 

At 11 years of age, she underwent splenectomy and cholecystectomy because of 
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splenic infarction and cholelithiasis. Histopathology showed infarction, fibrosis, and 

chronic inflammation of the spleen, with Gamna-Gandy bodies and lymphocytosis in the 

red pulp consisting of a mixture of scattered B cells, a few polyclonal plasma cells, and 

more numerous T cells, as well as chronic inflammation of the gallbladder. Following 

splenectomy, she developed baseline leukocytosis (~20 K/µL) reflecting neutrophilia and 

monocytosis, but her hemolytic anemia did not improve. Rituximab was started at 14 

years, along with IVIG, which has improved control of her hemolytic anemia. She 

continues to have intermittent softening of her skull bones suggestive of extramedullary 

hematopoiesis. She has not had persistent lymphadenopathy. 

She developed arthritis with effusion of the knees starting at 6 years. Arthritis 

progressed to involve ankle joints. By 12 years of age, MCP joints were involved, with 

progressive multi-articular arthritis, affecting knees, ankles, MCP, DIP and toe joints. 

She developed avascular necrosis of ankles and knees, osteochondritis dissecans of 

knees, and underwent right knee replacement at 20 years of age. At age 21 years, she 

developed red plaques on the skin on her extremities, leading to a diagnosis of psoriatic 

arthritis for which she currently takes mesalamine (did not tolerate plaquenil). She has 

also developed arthritis of the TMJ joints, which at time of manuscript are her most 

painful joints. She takes NSAIDs and has received corticosteroid joint injections which 

have provided some relief. 

Immunologic history is also notable for mild eczema limited to early childhood 

and persistent asthma treated with theophylline in early life, later improving to become 

intermittent in adulthood. Skin testing for common aeroallergens at 16 years of age was 

negative. In childhood, she also had an episode of suspected alopecia areata partialis of 

the scalp that lasted for a year. 
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Non-immunologic history is notable for chronic intermittent non-bloody diarrhea and 

abdominal pain that began around 7 years of age, with negative infectious and 

malabsorption studies.  Intestinal malrotation was detected on abdominal/pelvic CT 

performed as an adult and confirmed by upper gastrointestinal series. She underwent 

surgical correction by Ladd’s procedure with appendectomy at 23 years of age, with 

resolution of chronic gastrointestinal symptoms. She subsequently developed 

hepatomegaly and coarsened echogenicity on ultrasound. Liver biopsy showed nodular 

regenerating hyperplasia. Transjugular wedge pressures revealed portal hypertension, 

but EGD and colonoscopy showed no varices. Histopathology of biopsied gut showed 

duodenitis, cryptitis and chronic colitis in the ascending and transverse colon, and 

prominent lymphoid nodules with mild architecture distortion in the descending colon.  

She has primary amenorrhea with menses that can be triggered by various oral 

contraceptives.  She had decreased IGF-1 and received human growth hormone starting 

at age 12 for 5 years for short stature. 

She was found to have unusual brachiocephalic vessels with anomalous course 

of draining systemic vein from left upper extremity and unusual branching pattern from 

left-sided aortic arch with aberrant right subclavian artery and common origin for carotid 

arteries. Echocardiogram was normal. 

In summary this 28-year-old female has a combined immunodeficiency 

manifesting with recurrent sinopulmonary and viral skin infections, as well as 

autoimmunity comprised of autoimmune hemolytic anemia and psoriatic arthritis. She 

also has developmental abnormalities involving gastrointestinal tract, bone, and 

vasculature.  
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Supplementary Note 2.2  P2 clinical course. 
 

This deceased 8-year-old Caucasian male had a combined immunodeficiency 

manifesting with recurrent sinopulmonary infections, E. coli meningitis with empyema, 

and macrophage activation syndrome in response to viral gastroenteritis, and 

autoimmunity manifesting with autoimmune hemolytic anemia, mild to moderate 

thrombocytopenia, and progressive leukodystrophy.  He also had global developmental 

delay and fetal developmental abnormalities involving bone and the genitourinary tract.  

Parents were nonconsanguineous and neither they nor his 3 half-siblings had 

any evidence of immunodeficiency.  The father has inflammatory bowel disease and no 

other immediate family member has evidence of  autoimmunity.  He was born by at 37 

weeks.  Pregnancy was complicated by asymmetric intrauterine growth restriction.  

Postnatal growth continued to be slow with height <1st percentile and weight at the 3rd 

percentile.  He had global developmental delay.  He had mild facial dysmorphism.  Other 

non-immune abnormalities included short stature, small hands and feet, hemivertebrae 

T5 and T7, bilateral hip dysplasia, talipes, micropenis and bifid scrotum, and bilateral 

vesico-ureteric reflux.  

He had recurrent respiratory infections from the first year of life, with an 

admission to the intensive care unit at 10 months of age with RSV bronchiolitis 

complicated by apneas.  Reactive airways and suppurative bronchiolitis were evident by 

15 months and nocturnal oxygen was instituted.  Bilateral bronchiectasis was present by 

2 ½ years of age. He also had multiple episodes of otitis media and externa and one 

episode of E.coli meningitis with empyema at 4 years of age.  
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Hypogammaglobulinemia was diagnosed at 2 years of age and he commenced 

replacement intravenous gammaglobulin. Gammaglobulin levels were high (IgG > 15 

g/L) early in his clinical course with hypogammaglobulinemia in correlation with rituximab 

therapy.  There was an episode of macrophage activation syndrome following viral 

gastroenteritis at 6 ½ years of age, treated with corticosteroids, cyclosporine and 

etoposide.  

The child exhibited gut dysmotility from the first few months of life with chronic 

constipation, marked bowel distension, mild gut protein losses and very slow transit time 

demonstrated by barium meal and follow-through. Stomach, small and large bowel and 

rectal biopsies at 15 months of age were non-diagnostic although there was submucosal 

lymphocytic infiltrate of the distal biopsies, and bowel dysmotility was presumed to be 

autoimmune enteropathy.  

At 8 months of age he developed impressive leukocytosis (WCC 76.9 x 109/L and 

neutrophil 63.1 x 109/L, with leukoerythroblastic blood film) and mild 

hepatosplenomegaly that were noted during an E.Coli urinary tract infection. Bone 

marrow biopsy ruled out leukemia (JMML).  Leukocytosis resolved and 

hepatosplenomegaly improved once the UTI resolved.  Impressive leukocytosis was 

observed in response to infections (sometimes minor viral infections) on several other 

occasions, with white cell counts ranging from 50 to 70 x 109/L with neutrophilia and left-

shift, which sometimes plummeted to neutropenic levels some days later.  

Autoimmune hemolytic anemia developed from 11 months of age, with relapsing 

course and recurrent episodes, refractory to intravenous gammaglobulin and 

mycophenolate but responsive to corticosteroids and rituximab.  Intermittent mild-
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moderate autoimmune thrombocytopenia with detectable anti-platelet autoantibodies 

was present from 11 months of age. There was persistent splenomegaly from a year of 

age; the splenic size fluctuated and was massive on several occasions. Splenomegaly 

was at its smallest following etoposide therapy for macrophage activation.  

Lymphadenopathy was not a prominent feature.  

He manifested progressive neurological decline from 3½ - 4 years of age, with 

symptoms predating the E.coli meningitis. He was increasingly reluctant to walk and was 

using a walking-frame by 4 years. There was progressive spasticity of all limbs, and he 

lost the ability to walk and speak accompanied by the onset of seizures by 5 years. 

Swallowing became unsafe and a gastrostomy was inserted to facilitate feeding. Neuro-

imaging showed progressive leukodystrophy of the brain with sparing of the spinal cord. 

Extensive testing for an etiology found no viral or metabolic cause. Brain biopsy revealed 

no features of viral infection, vasculitis or malignancy but there was diffused T-

lymphocytic infiltration with gliosis and no demyelination or neuronal loss. These findings 

were suggestive of an autoimmune inflammatory process, which was refractory to all 

immune modulatory treatments tried, including high-dose corticosteroids and 

intravenous immunoglobulin, rituximab, cyclophosphamide and rapamycin. He 

progressed into a vegetative state and died at 8 years and 4 months from complications 

related to encephalopathy and respiratory infection.  

2.10 Materials and Methods 
 

Human Subjects and in vivo chemotaxis studies 

Patients and their relatives provided written informed consent to participate in research 

protocols approved by the National Institute of Allergy and Infectious Diseases (NIAID), 
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National Institutes of Health (NIH) Institutional Review Board (IRB) (NCT00246857) for 

P1 and the Human Research Ethics Committee of the Sydney Children’s Hospitals 

Network (ID number 10/CHW/114) for P2.  Whole blood samples were obtained from 

these individuals. Primary dermal fibroblast cultures were established from punch skin 

biopsies as part of the routine diagnostic workup of P1 and P2.  Buffy coat cells, which 

were by-products of volunteer-donor blood units, were distributed in an anonymized 

manner that was deemed exempted from informed consent and IRB review. 

Assessment of cell migration into cutaneous blister fluid of P1 and healthy volunteers 

was performed under a protocol (NCT00001257) approved by the NIAID, NIH IRB 

entitled “Comparison of Inflammatory Responses in Normal Volunteers and Patients with 

Abnormal Phagocyte Function using the Suction Blister Technique.”  (Kuhns, D.B., et al.  

J Clin Invest. 1992 Jun;89(6):1734-40) 

For assessment of leukocytes in the oral cavity, P1 and healthy volunteer subjects were 

consented to a protocol (NCT01568697) approved approved by the NIH National 

Institute of Dental and Craniofacial Research (NIDCR) IRB.  For inclusion in the healthy 

volunteer group, subjects reported in good general health and had no significant medical 

history. Subjects had to test negative for infectious agents hepatitis B, hepatitis C, and 

HIV by PCR and enzyme-linked immunosorbent assay and had HbA1C levels <6% with 

no history of diabetes. Pregnancy and lactation were exclusion criteria as were use of 

tobacco within 1 year, and use of antibiotics, immunosuppressive agents, or probiotics 

within 3 months. For inclusion healthy volunteers had to be in good oral health, with no 

visible mucosal lesions, no evidence or symptoms of xerostomia, have minimal 

history/presence of caries, and be periodontally healthy. Healthy volunteers were 
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approximately age matched (+/- 5 years) with patients.  (Wright D.G., et al.  Blood. 1986 

Apr;67(4):1023-30) 

 

Mice 

Mice were bred and used under animal study protocols approved by the NIAID Animal 

Care Use Committee.  Wild-type B6 (C57BL/6J, 000664), CD45.1 congenic B6 (B6.SJL-

Ptprca Pepcb/BoyJ, 002014), and Thy1.1 congenic B6 (B6.PL-Thy1a/CyJ, 000406) were 

purchased from the Jackson Laboratory (Bar Harbor).  Mice were genotyped by flow 

cytometry using the isoform specific antibodies anti-mouse CD45.1 APC (BioLegend, 

110714), anti-mouse CD45.2 BV711 (BD, 563685), anti-mouse Thy1.1 Pacific Blue 

(BioLegend, 202522), and anti-mouse Thy1.2 PE (BD, 553006).  Six to 8 week old 

female mice were used in all experiments.  Randomization and blinding were not 

performed. 

 

Whole Exome Sequencing 

Genomic DNA was isolated from PBMC for patients and unaffected family members using 

the DNeasy Blood and Tissue Kit (Qiagen, 69506). Exome libraries from the genomic DNA 

were generated using SureSelect Human All Exon 50Mb Kit (Agilent Technologies) 

according to manufacturer’s protocol and samples were sequenced by Illumina HiSeq 

Sequencing System (Illumina). For individual samples, whole exome sequencing (WES) 

produced ~50-100X sequence coverage for targeted regions.  
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WES analyses  

All DNA sequences were aligned to the hg19 human genome reference by Burrows-

Wheeler Aligner (BWA) using default parameters (Li H. and Durbin R. Bioinformatics, 2009 

May;25:1754-60).  Single nucleotide variant and indel calling were performed either using 

the Genome Analysis Toolkit (GATK, http://www.broadinstitute.org/gatk/) (McKenna A, et 

al. Genome Res. 2010 Jul;20:1297-303) and variants were annotated by SeattleSeq 

Annotation (http://snp.gs.washington.edu) or Real Time Genomics (Hamilton, New 

Zealand) integrated analysis tool rtgFamily v3.6.2 (Cleary J.G., et al.  J Comput Biol. 2014 

Jun; 21(6):405-19) and annotated using SnpEff v4.1k (Cingolani, P., et al. Fly (Austin). 

2012 Jun; 6(2):80-92). In-house custom analysis pipelines were used to filter and prioritize 

variants for autosomal recessive or de-novo disease-causal variants based on the clinical 

pedigree for the family. Existing exome sequencing databases such as ExAc (Exome 

Aggregation Consortium, http://exac.broadinstitute.org) and the NHLBI exome variant 

server (http://evs.gs.washington.edu/EVS/) have been used to extract previously reported 

frequency for any given variants and these were used to filter for novel or rare variants. 

All genomic variants are described according to Human Genome Variation Society 

recommendations (http://www.hgvs.org/mutnomen/recs.html), using NCBI Reference 

Sequences NM_002070.3 (cDNA) and NP_002061.1 (protein) based upon NCBI Build 38. 

Coding DNA variations are described with the A of the ATG translation initiation codon 

designated as nucleotide +1. The Illumina whole exome sequencing data has been 

deposited in dbGaP. 

 

Sanger sequencing 
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For confirmation of identified GNAI2 mutations in the patients, independent isolations of 

genomic DNA from both the original and alternative tissues (fibroblasts) were PCR 

amplified using forward primer 5’ - AGC TAC CTG AAC GAC CTG GA - 3’ and reverse 

primer 5’ - GAG CCT TGT AAA ACC TCA GTG G - 3’. Sanger sequencing of purified PCR 

amplified products was performed by the Genomics Unit of the Rocky Mountain 

Laboratories Research Technologies Section of the NIAID, using BigDye Terminator 

Sequencing kit (Life technologies) and sequenced on ABI3730xl genetic analyzer (Applied 

Biosystems).  

 

Cell Isolation and Culture 

Human peripheral blood mononuclear cells (PBMC) were collected from whole blood 

after Ficoll-Hypaque PLUS density gradient centrifugation (GE Healthcare).  Human pan 

T cells were isolated from PBMC by negative selection using the Human Pan T cell 

isolation kit (Miltenyi Biotech) according to manufacturers recommendations.  Of note, 

before isolating patient T cells (and T cells from the healthy controls purified in parallel 

with patient cells), PBMC preps were first depleted of CD15+ myeloid cells using Human 

CD15+ microbeads (Miltenyi Biotech) before negative selection using Human Pan T cell 

isolation kit (to minimize contaminating myeloid cells due to patient myelocytosis).  CD4+ 

CD45RA+ CD45RO- CCR7+ naive and CD4+ CD45RO+ CD45RA- memory T cells were 

isolated from PBMC by fluorescence-activated cell sorting (FACS) using a BD FACSAria 

III cell sorter.  T cell purities were greater than 99% after FACS, and greater than 97% 

after magnetic bead separation.  For isolation of murine leukocytes, inguinal and axial 

lymph nodes were minced together with spleens, passed through 40µM nylon filter 
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(Falcon), and erythrocytes lysed with ACK (Quality Biological).  Human T cells and 

mouse leukocytes were cultured in RPMI 1640 medium (Gibco) supplemented with 10% 

fetal bovine serum (Gibco), 4 mM L-glutamine (Invitrogen), 100 IU/mL penicillin 

(Invitrogen), 100 mg/mL streptomycin (Invitrogen), 50 mM 2-mercaptoethanol (Sigma), 

and 100 U/mL recombinant human IL-2 (Aldesleukin, Prometheus).   Excepting T cell 

receptor activation studies, human T cells were activated with anti-human CD2, CD3, 

and CD28 coated beads (1:1 bead to cell ratio) using T Cell Activation/Expansion Kit 

(Miltenyi Biotec).  Murine leukocytes were activated with plate bound anti-mouse CD3 (5 

µg/mL, BD clone 145-2C11) and soluble anti-mouse CD28 (1 µg/mL, BD clone 37.51).  

Human embryonic kidney 293T cells (293T, ATCC, passage number 5 to 15) were either 

cultured in Iscove’s modified Dulbecco’s medium (IMDM, Gibco) supplemented with 10% 

fetal bovine serum, 4 mM L-glutamine, and 50 mM 2-mercaptoethanol (for lentivirus 

production) or Dulbecco’s modified Eagle’s medium Glutamax (DMEM-Q, Gibco) 

supplemented with 10% fetal bovine serum (Atlanta Biologicals), 100 IU/mL penicillin, 

100 mg/mL streptomycin, 4 mM L-glutamine, and 50 mM 2-mercaptoethanol (for BRET 

assays).  The retroviral packaging line, Platinum-E (Cell Biolabs, RV-101), was carried in 

DMEM supplemented with 10% fetal bovine serum, 1 µg/mL puromycin (Gibco), 

10µg/mL blasticidin (Invivogen), 100 IU/mL penicillin (Gibco), 100 mg/mL streptomycin 

(Gibco), 4 mM L-glutamine (Gibco), and 50 mM 2-mercaptoethanol (Sigma).  Human 

Jurkat cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine 

serum, 4 mM L-glutamine, 100 IU/mL penicillin, 100 mg/mL streptomycin, and 2-

mercaptoethanol (Sigma, rest from Gibco).  Primary human dermal fibroblasts were 

isolated from skin punch biopsies as previously described (Jing H., et al., J Allergy Clin 

Immunol. 2014 Jun; 133(6):1667-75).   In brief, dermal and epidermal layers were 
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dissociated after overnight incubation of biopsy tissue with Dispase (BD Biosciences). 

The dermis was minced and cultured in complete DMEM-Dulbecco’s Modified Eagle 

Medium (Gibco) supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 

100 µg/mL streptomycin, and 55 µM -mercaptoethanol (Sigma-Aldrich, rest from 

Gibco) to allow fibroblasts to grow out.  Fibroblasts lines were grown and passaged in 

DMEM supplemented with 10% fetal bovine serum, 100 IU/mL penicillin, and 100 mg/mL 

streptomycin. 

 

Immunoblotting 

Five million cells were lysed in whole cell lysis buffer (2% sodium dodecyl sulfate, 2 mM 

ethylenediaminetetraacetic acid pH 8.0 [both KD Medical], 50 mM Tris⋅HCl pH7.5 

[Quality Biological]), heated to 95°C for 10 minutes, and chilled on ice.  Protein 

concentrations were quantified by BCA (Pierce).  Lysates were mixed with LDS Sample 

Buffer (Life Technologies) supplemented with 5% v/v 2-mercaptoethanol (Sigma), 

heated to 70°C for 10 minutes, and chilled on ice.  15 to 40 µg of protein were loaded 

per lane and were separated on NuPAGE Bis-Tris SDS-PAGE gels with MOPS running 

buffer (Invitrogen), followed by semi-dry transfer onto nitrocellulose membranes (Bio-

Rad). After blocking with 5% non-fat dry milk (Bio-Rad) in PBS containing 0.1% Tween 

20 (Sigma), membranes were incubated with the anti-human GNAI2 (Sigma Clone 2E4 

or Proteintech Group, 11136-1-AP).  Signal was detected by incubation with appropriate 

secondary antibodies (Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) or Peroxidase 

AffiniPure Goat Anti-Rabbit IgG (H+L) (both Jackson ImmunoResearch), followed by 
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application of SuperSignal West Pico Chemiluminescent substrate or SuperSignal West 

Dura Extended Duration Substrate (both Thermo Scientific) and exposing to film. 

 

Plasmids 

Human GNAI2 cDNA was obtained from Origene (clone SC118850).  The coding 

sequence was sequence confirmed to match the NCBI reference sequence 

NM_002070.3.   

pCL20c MSCV-GFP-T2A is a modified version of the lentiviral transfer vector pCL20c 

MSCV-GFP (Hanawa, H. et al. Blood. 2004 Jun 1;103(11):4062-9).  Briefly, a self-

cleavage T2A peptide sequence plus additional restrictions sites were added in-frame to 

the 3’ end of the GFP cDNA from pCL20c MSCV-GFP via PCR amplification of pCL20c 

MSCV-GFP using AccuPrime Pfx SuperMix (Invitrogen) and the following primers:  

forward primer 5’ – CTA GGC GCC GGA ATT ACC GGT GGC CGG CCG CGG GCC 

ACC ATG GTG AGC AAG GGC GAG GAG – 3’ and reverse primer 5’ – GGC ATC GAT 

GCG GCC GCA TGC TCA CCT GCA GGG GCC GGG GTT CTC CTC CAC GTC GCC 

GCA GGT CAG CAG GCT GCC CCG GCC CTC CTT GTA CAG CTC GTC CAT GCC 

GAG AGT GAT CC – 3’.  The resulting product was separated via agarose gel 

electrophoresis, gel purified (QIAquick Gel Extraction Kit, Qiagen), and ligated into the 

EcoRI and NotI (New England Biolabs) digested and gel purified vector backbone of 

pCL20c MSCV-GFP (digested to remove original GFP and multiple cloning site) using 

the In-Fusion HD Cloning Kit (Clontech).   
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MSCV-GFP-T2A is a modified version of the retroviral transfer vector MSCV IRES-

Thy1.1 (Addgene #17442).  The GFP-T2A cDNA and multiple cloning site of pCL20c 

MSCV-GFP-T2A were PCR amplified using AccuPrime Pfx SuperMix (Invitrogen) and 

the following primers:  forward primer 5’ – CGC CGG AAT TAG ATC ACT CCT TCT 

CTA GGC GCC GG – 3’ and reverse primer 5’ - ATC GAA TTC TAC GCG TAC GGC 

ATC GAT GCG GCC GC – 3’.  The resulting product was separated via agarose gel 

electrophoresis, gel purified (QIAquick Gel Extraction Kit, Qiagen), and ligated into the 

BglII and MluI (New England Biolabs) digested and gel purified vector backbone of 

MSCV-IRES-Thy1.1 (digested to remove IRES and Thy1.1 cDNA) using the In-Fusion 

HD Cloning Kit (Clontech).   

Site directed mutagenesis was used to generate the various GNAI2 point mutants.  

Briefly, 5’ and 3’ fragments were PCR amplified using AccuPrime Pfx SuperMix 

(Invitrogen) from wild-type GNAI2-expressing plasmids using shared start-codon (5’ 

fragment) or stop-codon (3’ fragment) primers (specific to each vector) and primers 

containing the appropriate point mutations.  The 5’ and 3’ fragments containing the 

specific point mutations were then joined together via short overlapping ends (SOEing) 

PCR using the appropriate start-codon and stop-codon primers for down stream ligation.  

The joined product was gel purified and ligated in pCL20c MSCV-GFP-T2A (SbfI 

digested), MSCV-GFP-T2A (SbfI digested), pQE-30 (BamHI and HindIII digested), or 

pcDNA3.1(HindIII and NotI digested) using the In-Fusion HD Cloning Kit (Clontech).  

Vector specific GNAI2 start and stop codon primers were as follows:  pCL20c MSCV-

GFP-T2A-GNAI2 Start 5’ – GAG AAC CCC GGC CCC ATG GGC TGC ACC GTG AGC 

GCC GAG G – 3’ and pCL20c MSCV-GFP-T2A-GNAI2 Stop 5’ – CCG CAT GCT CAC 

CTG CAG GTC AGA AGA GGC CGC AGT CCT TCA GG – 3’ (used for MSCV-GFP-
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T2A also); pQE-30 GNAI2 Start 5’ – TCA CCA TCA CGG ATC CAT GGG CTG CAC 

CGT GAG CGC – 3’ and pQE-30 GNAI2 Stop 5’ – TCA GCT AAT TAA GCT TTC AGA 

AGA GGC CGC AGT CC – 3’; pcDNA3.1+ GNAI2 start 5’ – AGG GAG ACC CAA GCT 

TGC CAC CAT GGG CTG CAC CGT GAG CGC and pcDNA3.1+ GNAI2 stop 5’ – TTT 

TGC TCT GCG GCC GCT AGA AGA GGC CGC AGT CCT TCA GG – 3’.   

Mutation specific primers used were as follows: T182A forward primer 5’- GCT ACG 

GAC CCG CGT AAA GGC CAC GGG GAT CGT GG - 3’, and reverse primer 5’- GTC 

TCC ACG ATC CCC GTG GCC TTT ACG CGG GTC CG - 3’; T182I forward primer 5’ – 

CCC GCG TAA AGA TCA CGG GGA TCG TGG AGA CAC AC – 3’ and reverse primer 

5’ – TCC ACG ATC CCC GTG ATC TTT ACG CGG GTC CGT AG – 3’; G184S forward 

primer 5’ – CCC GCG TAA AGA CCA CGA GCA TCG TGG AGA CAC AC – 3’ and 

reverse primer 5’ – AGT GTG TCT CCA CGA TGC TCG TGG TCT TTA CGC GG – 3’; 

Q205L forward primer 5’ – TTT GAT GTG GGT GGT TTG CGG TCT GAG CGG AAG 

AAG TGG – 3’ and reverse primer 5’ – GAT GTT TGA TGT GGG TGG TTT GCG GTC 

TGA GCG GAA – 3’. 

Firefly luciferase cDNA (used to control for protein overexpression) was obtain from 

IFNB-pGL3 (Promega), and was clone into pCL20c MSCV-GFP-T2A and MSCV-GFP-

T2A using the following primers:  iLuc_T2A_F 5’ – GAG AAC CCC GGC CCC ATG GAA 

GAC GCC AAA AAC ATA AAG AAA GG – 3’ and iLuc_R 5’ – CCG CAT GCT CAC CTG 

CAG GTT ACA CGG CGA TCT TTC CGC CCT TCT TGG – 3’.  The product was gel 

purified and ligated in pCL20c MSCV-GFP-T2A (SbfI digested) and MSCV-GFP-T2A 

(SbfI digested) using the In-Fusion HD Cloning Kit (Clontech). 
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All lentiviral and retroviral vectors were transformed into One Shot Stbl3 chemically 

competent E. coli (Invitrogen).  All other vectors were transformed into One Shot Top10 

chemically competent E. coli (Invitrogen) with the exception of the plasmid used for 

protein purification (pQE-30) which were transformed into XL-1 Blue Supercompetent E. 

coli (Stratagene).  Following chemical transformation and selection with appropriate 

antibiotics, DNA was purified using the PureLink HiPure Filter Plasmid Kit (Invitrogen).  

All plasmid sequences were confirmed by Sanger dideoxy sequencing. 

All primers were standard synthesis, unmodified, unsalted oligos from MWG Eurofins. 

For generation of the BRET constructs pcDNA3.1+ CXCR4-YFP and pcDNA3.1+ CCR7-

YFP, the circularly permutated citrine cDNA (citrine-cp229) was PCR amplified from 

pFB-Neo-CAMYEL (a kind gift from Iain Fraser) (Jiang, L.I., et al. J Biol Chem. 2007 Apr 

6;282(14):10576-84) using the following primers to add the flexible linker (GPPVAT) to 

the 5’ end of the cDNA:  GPPVAT_Citrine229cp_F 5’ – GGC CCT CCC GTG GCC ACC 

ATG ATC ACT CTC GGC ATG GAC G – 3’ and pcDNA3-NotI-Citrine229cp_R 5’ – TTT 

TGC TCT GCG GCC GCC TAC CCG GCG GCG GTC ACG AAC TCC – 3’.  CXCR4 

(Open Biosystems, IMAGE: 3846345, GenBank: BC020968) and CCR7 (cDNA 

Resource Center, #CCR0700000, GenBank: AY587876.1) cDNAs were PCR amplified 

using the following primers:  pcDNA_CXCR4_F 5’ – AGG GAG ACC CAA GCT TGC 

CAC CAT GGA GGG GAT CAG TAT ATA CAC – 3’, GPPVAT_CXCR4_R 5’ – TGA 

TCA TGG TGG CCA CGG GAG GGC CGC TGG AGT GAA AAC TTG AAG AC, 

pcDNA_CCR7_F 5’ – AGG GAG ACC CAA GCT TGC CAC CAT GGA CCT GGG GAA 

ACC AAT G – 3’, GPPVAT_CCR7_R 5’ – CCA CCA CCA CCT TCT CCC CAG GCC 

CTC CCG TGG CCA CCA TGA TCA – 3’.  All PCR products were gel purified and the 

citrine-cp229 cDNA amplicon was joined to each of the chemokine receptor amplicons 
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via SOEing PCR (primers:  ‘pcDNA_CXCR4_F’ or ‘pcDNA_CCR7_F’ and ‘pcDNA3-NotI-

Citrine229cp_R’) using AccuPrime Pfx SuperMix (Invitrogen).  The joined product was 

gel purified and ligated into pcDNA3.1+ (HindIII and NotI digested) using the In-Fusion 

HD Cloning Kit (Clontech).   

Untagged pcDNA3.1+ CXCR4 (#CXCR400000, GenBank:  AY242129) and pcDNA3.1+ 

CCR7 (#CCR0700000, GenBank: AY587876.1) were purchased from cDNA Resource 

Center. 

To generate pcDNA3.1+ GNAI2-91Rluc BRET constructs, Renilla Luciferase cDNA was 

PCR amplified from pFB-Neo-CAMYEL using the following primers to add flexible linkers 

(SGGGS) to the 5’ and 3’ end of the cDNA:  91Gi2_SGGGS_hRluc_F 5’ – AAG CCA 

TGG GCA ACC TGT CTG GTG GTG GTG GTT CTA TGG CTT CCA AGG TGT ACG 

ACC C – 3’ and 92Gi2_SGGGS_hRluc_R 5’ – TCG GCA AAG TCG ATC TGA GAA 

CCA CCA CCA CCA GAC TGC TCG TTC TTC AGC ACT CTC TCC – 3’.  The product 

was gel purified and inserted between residues 91 and 92 of the Gαi2 coding sequence 

(via PstI digestion) in pQE-30 GNAI2 (and analogous point mutation containing vectors).  

The resulting plasmids were used to PCR amplify GNAI2-91Rluc cDNAs (wild-type and 

point mutants) using the primers ‘pcDNA3.1+ GNAI2 start’ and ‘pcDNA3.1+ GNAI2 stop’ 

(sequences above).  The products were gel purified and ligated into pcDNA3.1+ (HindIII 

and NotI digested) using the In-Fusion HD Cloning Kit (Clontech).   

pcDNA3.1/Zeo GFP10-Epac-Rluc3, the BRET2-cAMP biosensor, was described 

previously3 and was a kind gift for Dr. Michel Bouvier (Université de Montréal).   

 

GTP-binding and GTPase Activity Assays 
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Protein expression and purification:  plasmids encoding 6xHis-tagged WT or mutant 

(T182A, T182I, G184S, Q205L) Gαi2 or RGS16 (all in pQE-30 backbone) were 

transformed in E. coli strain Rosetta Gami (λDE3). The cells were grown with shaking in 

LB medium at 37°C until they reached OD600 =1, then were cooled to 25°C and induced 

with 0.5mM IPTG (Sigma). After 8h of further growth the cells were harvested, lyzed in 

OneShot cell disrupter (Constant Systems) and the proteins were purified from lysate 

supernatant using Ni-NTA affinity resin (Qiagen). Purification was performed according 

to manufacturer's protocol using Tris-HCl buffer (pH 7.5) containing 150mM NaCl, 

0.2mM DTT buffer for washing steps and the same buffer supplemented with 0.3M 

imidazole for elution.  

GTP Binding and Hydrolysis Assays:  recombinant human Gαi2 (WT, T182A, T182I, 

G184S, Q205L) and RGS16 were brought into the 20mM Tris•HCl buffer (pH 7.5) 

containing 150mM NaCl, 0.2mM DTT and 5mM MgCl2  by 10000-fold buffer exchange 

into 1xHKB (50 mM Hepes, 65 mM KCl, and 10 mM NaHCO3) on Amicon 10K 

ultracentrifugation concentrators. 1µM His6-Gαi2 was mixed with 2µM RGS16, and 

0.66µM BODIPY-FL-GTP or 0.66µM BODIPY-FL-GTPγS  (both from Invitrogen) was 

added to the mixture after 5min incubation. The kinetics of in vitro Gαi2 protein activation 

was measured by the VICTOR3 multiwell reader (Perkin Elmer) as described elsewhere 

(Egger-Adam, D. and Katanaev, V.L.  Dev Dyn.  2010 Jan;239(1):168-83) (Koval, A., et 

al.  Anal Biochem. 2010 Feb; 397(2):202-7). 

Nucleotide binding data were fit with one phase exponential equation F=a - b e-kt , where 

F is a specific increase of fluorescence, to obtain the k1. GTP binding and hydrolysis 

curves were fit with the equation F = (Cok1 / (k2 – k1)) (e-k
1
t – e-k

2
t) for the intermediate 
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product in two sequential reactions (Lin, C., et al.  Mol Cell.  2014 Feb 20;53(4):663-71).  

Both fits were performed using Prism 5 software (GraphPad). 

 

Cell treatments 

For analysis of T cell activation, purified primary pan T cells, CD4+ CD45RA+ CD45RO- 

CCR7+ naive T cells or CD4+ CD45RO+ CD45RA- memory T cells (see cell isolations 

above) were stained with the CellTrace CFSE Cell Proliferation Kit (Molecular Probes) 

according to manufacturers recommendations.  Cells were then washed in complete 

medium and resuspended at 1x106 cells/mL in complete RPMI-1640 supplemented with 

100 IU/mL of recombinant human IL-2.  Cells were then stimulated with 1µg/mL soluble 

anti-human CD3 (OKT3, Janssen-Cilag) with or without 1µg/mL soluble anti-human 

CD28 (BioLegend, clone CD28.2) or anti-human CD2, CD3, and CD28 coated beads 

(1:1 bead to cell ratio) using T Cell Activation/Expansion Kit (Miltenyi Biotec).  Cells were 

analyzed at 20 hours and 96 hours after stimulation by flow cytometry.  For inhibitor 

studies, CFSE stained cells were then pre-incubated at 37°C for 6 hours in the presence 

of 10-10 to 10-8 M piclamilast (Sigma), 1uM to 5uM AS605240 (Sigma), or appropriate 

doses of the vehicle control, DMSO  (Sigma). 

For intracellular cytokine staining, unactivated purified pan T cells were stimulated at 

37°C for 1 hr with 100 ng/mL of PMA (Sigma-Aldrich) and 1 mg/mL of ionomycin (Sigma-

Aldrich) before GolgiStop (BD Biosciences) was added and stimulation continued for a 

total of 8 hrs.  Cells were then fixed and permeabilized with Intracellular Fixation & 

Permeabilization Buffer Set (eBioscience), before staining for flow cytometric analysis. 
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For TCR induced phospho-flow staining, primary T cells 12 to 24 days post-activation 

were resuspended at 4 x 106 cells/mL in serum free RPMI supplemented with 100 IU/mL 

of recombinant human IL-2 and incubated for 6 hours at 37°C.  Cells were then 

stimulated with 10 µg/mL anti-CD3 (OKT3, Janssen-Cilag) pre-crosslinked with protein A 

(200 ng/mL final concentration, Sigma).  Cells were maintained at 37°C throughout 

stimulation (variable time).  To stop stimulation, 10X the cell volume of ice-cold PBS 

(Lonza) containing paraformaldehyde (Sigma) was added to a final concentration to 

create a final concentration of 1.6% paraformaldehyde.  After 20 minutes cells were 

pelleted and permeabilized with Intracellular Fixation & Permeabilization Buffer Set 

(eBioscience), before staining for flow cytometric analysis. 

 

Calcium Flux Assays 

For chemokine induced calcium fluxes, non-transduced (patient studies) or transduced 

(phenocopy studies) primary T cells 12 to 24 days post-activation were used.  For TCR 

induced calcium fluxes unactivated ex vivo primary T cells or primary T cells 7 to 28 

days post-activation (both for patient studies) or 21-28 days post-activation (transduced 

phenocopy studies) were used.  0.5-1.0 x 106 cells were loaded with 2 µg/mL Indo-1 AM 

(Molecular Probes, I1223) in complete RPMI 1640 for 30 minutes at 37°C.  Cells were 

then washed with and stained in ice cold Ringer’s solution (155 mM NaCl, 4.5 mM KCl, 2 

mM CaCl2, 1 mM MgCl2, 10 mM D-glucose, 5mM HEPES pH 7.5) for 30 minutes at 4°C.  

For chemokine induced calcium fluxes, cells were stained with anti-human CD184 PE-

Cy7 or PE (both BD Pharmingen, 560669 or 555974, respectively), anti-human CCR7 

APC (R&D Systems, FAB197A), anti-human CD8 APC-eFluor 780 (eBioscience, 47-
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0088-42), and anti-human CD4 APC (BioLegend, 300537).  For TCR induced calcium 

fluxes, cells were stained with anti-human CD8 APC-eFluor 780 (eBioscience, 47-0088-

42) and anti-human CD4 APC (BioLegend, 300537).  Cells were washed and 

resuspended in ice cold Ringer’s solution containing 0.5µg/mL propidium iodide (Sigma, 

P4170).  Samples were warmed to 37°C for 7 minutes prior to collecting baseline 

calcium levels for 15 (chemokine studies) or 30 seconds (TCR studies).  Cells were then 

stimulated at a final concentration of 500 ng/mL CXCL12 (PeproTech), 1 µg/mL CCL21 

(PeproTech), or 10 µg/mL anti-CD3 (OKT3, Janssen-Cilag) pre-crosslinked with protein 

A (200 ng/mL final concentration, Sigma).  Samples were maintained at 37°C during 

collection and intracellular calcium was measured as the ratio of Indo-1 AM violet 

emission (395nm) to Indo-1 AM blue emission (500nm) using a BD LSRII flow 

cytometer.  FlowJo software package version 9.8.3 or 10.0.8 (TreeStar) was used to 

analyze single, live (propidium iodide low), CD4+ or CD8+ T cells using the kinetics 

platform to assess the changes in intracellular calcium over time and perform area under 

curve (AUC) measurements.  For quantification of phenocopy studies, AUC for 

transduced (GFP+) was normalized to non-transduced (GFP-) from the same culture as 

an internal control.  Chemokine receptor stains did not effect response (data not shown). 

 

In vitro Chemotaxis Assay 

For chemokine in vitro chemotaxis assays, non-transduced (patient studies) or 

transduced (phenocopy studies) primary T cells 12 to 24 days post-activation were used.  

Cells were maintained in complete RPMI 1640 with 100IU/mL of IL-2 throughout.  

Polycarbonate Transwell inserts containing 5-μm membrane pores were used in 24-well 
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plates (Corning).  A final concentration of 2 to 500 ng/mL recombinant human CXCL12 

(Life Technologies) or 40 to 1600 ng/mL CCL21 (PeproTech) was added to the lower 

compartment in addition to an equivalent number of CountBright Absolute Counting 

Beads (Molecular Probes) to each well.  1 x 105 cells were added to the upper 

compartment.   After incubating at 37°C in humidified 5% CO2 for 2 hr the insert was 

removed and the contents of the lower chamber were collected final concentration of 

1.6% for 15 min.  The contents of each well were collected and stained with anti-human 

CD8 APC-eFluor 780 (eBioscience, 47-0088-42) and anti-human CD4 APC (BioLegend, 

300537), and run in sample buffer containing propidium iodide (Sigma).  The number of 

viable (propidium iodide negative) CD4+ and CD8+ cells was normalized relative to the 

number CountBright Absolute Counting Beads collected and expressed as % of the total 

number of cells collected from a well lacking a transwell insert.  

 

In vivo Chemotaxis Assay 

Assessment of cell migration into cutaneous blister fluid of P1 and healthy volunteers:  

Following 1-1.5 hrs of gentle suction the neat blister fluid (hemolymph-like liquid forming 

the blister) was removed with a hypodermic syringe and the epidermis is removed.  The 

wound is bathed in 70% autologous serum (heat-treated at 56°C for 30 minutes, and 

filtered) for 16 hrs then the exudate is collected for analysis.  For fully detailed method 

see: Kuhns D.B., et al. J Clin Invest. 1992 Jun;89(6):1734-40. 

For assessment of leukocytes in the oral cavity, patient and healthy volunteers 

performed a timed (10 second) oral rinsing procedure with 10 ml of sterile saline (0.9% 

Sodium Chloride, B. Braun Medical Inc.) and rinse solution was spin down for 10 min at 
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1200 rpm.  The pellet was stained  with anti-human CD3 FITC (eBioscience, 11-0036-

42), anti-human CD19 FITC (eBioscience, 11-0199-42), anti-human CD20 FITC 

(eBioscience, 11-0209-73), anti-human CD15 PerCP-Cy5.5 (eBioscience, 46-0159-42), 

anti-human CD64 BV450 (BD, 562872), anti-human CD11b BV605 BD, 562721), anti-

human CD62L BV650 (BD, 563808), anti-human HLA-DR BV711 (BD, 563696), anti-

human CD14 BV786 (BD, 563698), anti-human Singlec-8 (BioLegend, 347104), anti-

human CD117 PE-Cy7 (eBioscience, 25-1178-42), anti-human CD18 APC (BD, 

551060), anti-human CD45 Alexa Fluor 700 (BioLegend, 304024), anti-human CD16 

APC-Cy7 (BD, 561726), and Live/Dead Fixable Aqua Dead Cell Stain Kit (Molecular 

Probes, L34966) according to standard flow cytometry protocol detailed below.  Cells 

were analyzed on a BD LSRFortessa.  (Fine, N., et al.  J Dent Res. 2016 Jul;95(8):931-

8).  

 

BRET Assays 

Materials:  Recombinant chemokines were from PeproTech, Inc. (Rocky Hill, NJ). 

Coelenterazine 400A for BRET2 experiments was from Biotium (Hayward, CA) and 

Coelenterazine h for BRET1 experiments was obtained from Nanolight technologies. 

Forskolin, pertussis toxin (PTX) and poly-D-lysine were from Sigma (St. Louis, MO), and 

the anti-CXCR4 12G5 and anti-CCR7 mAb directly coupled to phycoerythrin was from 

R&D Systems (Minneapolis, MN). Polyethylenimine (PEI) was obtained from 

Polysciences (CAT). Dulbecco’s modified Eagle’s medium Glutamax (DMEM-Q), 1% 

penicillin-streptomycin and Phosphate saline buffer (PBS) were from Life Technologies. 
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BSA fraction V, fatty acid free was from EMD Millipore and 96-well white microplates 

with clear bottom were from Corning.  

Cell culture and Transfection:  293T cells (passage number 5 to 15, ATCC, Manassas, 

VA) were maintained in DMEM-Q, 1% penicillin-streptomycin, and 10% fetal bovine serum 

(Atlanta Biologicals). Transient transfection was performed in six-well plates using the 

polyethylenimine (PEI) method as described previously (Percherancier, Y., et al. J Biol 

Chem. 2005 Mar 18;280(11):9895-903). The total amount of transfected DNA was kept 

constant at 2ug/well for six-well by adding empty vector pcDNA3.1+. Transient high-

throughput in-plate transfections were performed in 96-well plates also using the PEI 

method with some modifications. Briefly, cells were trypsinized, counted and mixed with 

the DNA- PEI (1:4 cDNA/PEI) complex then directly plated in 0.01% poly-D-lysine coated 

96-well plates at a density of 100,000 cells/well. The total amount of transfected DNA was 

kept constant at 200ng/well for 96 well plates by adding empty vector pcDNA3.1+.  

Flow Cytometry:  293T cells transfected in six-well plates with unfused and YFP fused 

CXCR4 and CCR7 were detached in ice cold PBS. Cells were labeled with monoclonal 

phycoerythrin-conjugated antibodies anti-CXCR4 12G5 and anti-CCR7 (BD Biosciences) 

for 30 minutes at 4°C in BRET buffer (PBS containing 0.5mM MgCl2 and 0.1% BSA). Cells 

were then washed three times in ice cold PBS. Cell surface expression was quantified by 

flow cytometry using the Accuri C6 flow cytometer (BD Biosciences).  

BRET Measurements:  cells expressing BRET fusions were seeded in 0.01% poly-D-

Lysine coated 96-well, white microplates with clear bottom 24 hours prior to BRET 

measurements at a density of 100,000 cells/well. On the day of the experiment, media 

was replaced with BRET buffer while cells remained attached to the plate. Coelenterazine 
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h, or coelenterazine 400A was added at the final concentration of 5M followed by 5 or 

10 min incubation at room temperature (RT), respectively. In BRET1 experiments, 

fluorescence and luminescence reading were collected by allowing the sequential 

integration of the signals detected in the 480 ± 20 nm and 530 ± 20 nm windows for 

luciferase (Rluc) and YFP light emissions, respectively. In BRET2 experiments readings 

were collected by allowing the sequential integration of the signals detected between 

Rluc3 and GFP10 of the signals detected in the 365 to 435 nm (Rluc3) and 505 to 525 nm 

(GFP10) windows. Luminescence and fluorescence readings were collected using the 

Synergy NEO plate reader from Biotek (Winooski, USA) and Gen5 software. BRET ratios 

were calculated as described previously (Leduc, M., et al.  J Pharmacol Exp Ther. 2009 

Oct;331(1):297-307) (Berchiche, Y.A., et al. Mol Pharmacol.  2011 Mar;79(3):488-98). 

Receptor-GNAI2 Interaction:  we assessed the interaction between CXCR4-YFP or 

CCR7-YFP and GNAI2-Rluc wild type or mutants in the absence and presence of 

chemokines using a BRET1 proximity assay. 293T cells were transfected with the high-

throughput in plate transfection method and BRET1 readings were performed 24 hours 

after transfection. First, we determined the assay conditions by determining the optimal 

donor (Rluc) quantity and then performed acceptor (YFP) titrations experiments with 

optimal donor quantity to determine BRETmax ratios for each -YFP and -Rluc fusion pair 

as described previously (Berchiche, Y.A., et al. J Biol Chem. 2007 Feb 23;282(8):5111-

5) (Kalatskaya, I., et al. Mol Pharmacol. 2009 May;75(5):1240-7) (Bonneterre, J., et al. 

Methods in enzymology. 2016 Jan; 570:131-53).  For dose-response experiments, cells 

expressing the –YFP and –Rluc fusion proteins at BRETmax ratios, were stimulated for 5 

min at 37°C with increasing concentrations of the indicated ligand before the addition of 
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the substrate. The values were corrected to net BRET by subtracting the background 

BRET1 signal detected when the –Rluc construct was expressed alone. 

Adenylyl cyclase activity:  cAMP levels were measured by using the Rluc3-EPAC-GFP10, 

a BRET2  cAMP sensor, a gift from Dr Michel Bouvier (Université de Montréal) as 

described previously (Leduc, M., et al.  J Pharmacol Exp Ther. 2009 Oct;331(1):297-307). 

Briefly, 293T cells co-transfected with 1.0g CXCR4 or 1.0g CCR7 and 0.06g Rluc3-

EPAC-GFP10 reporter in six-well plates were seeded in poly-D-Lysine coated 96-well, 

white microplates with clear bottom 24 hours after transfection. Forty-eight hours after 

transfection, coelenterazine 400A was added to the cells followed by a 10 min incubation 

at RT. Cells were then stimulated with chemokines in the presence of 5M of forskolin at 

RT for 5 min. 

 

Lentiviral and Retroviral Transductions 

Specific lentiviral transfer vectors (all in pCL20c MSCV-GFP-T2A) were generated as 

detailed above.  VSV-G–pseudotyped lentivirus particles were generated by transient 

co-transfection of the specific transfer vector together with the packaging plasmids 

pCMV delta R8.2 (HIV-1 GAG/POL, Tat, and Rev expressing plasmid, Addgene #12263) 

and pCMV VSV-G (VSV-G envelope expressing plasmid, Addgene #8454) (Stewart, 

S.A., et al. RNA. 2003 Apr;9(4):493-501) into 293T cells using calcium phosphate 

precipitation.  Briefly, 13 million 293T cells were seeded in poly-L-lysine (Sigma) coated 

Cell Culture Treated TripleFlasks (Nunc).  When cells reached 95% confluency, 250 µg 

of specific transfer vector, 125 µg pCMV delta R8.2, and 42 µg of pCMV VSV-G were 

precipitated with calcium phosphate and added to the cells.  DNA precipitate was 
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washed out 12 hours after transfection and cell supernatants were collected daily for 3 

days (stored at 4°C), filtered through 0.22 µm pore-size filter (GE), concentrated by 

centrifugation at 18,000 g for 3 hours at 4°C, resuspended in Opti-MEM I reduced serum 

media (Gibco), and stored at -80°C until use.   

All lentivirus preparations were titered on 293T to determine the concentration of 

infectious units.  1 x 105 293Ts were resuspended in complete IMDM containing 8 µg/mL 

polybrene (Sigma) and 10 µL of diluted lentivirus to a final volume of 1 mL.  The 

suspension was added to a 24-well plate (Corning) and spin infected at 1350 x g for 30 

minutes at 35°C.  48 hours later, cells monolayers were washed twice with PBS, 

trypsinized (Gibco), transferred to 14 mL round bottom FACS tubes (Falcon), washed 

with PBS, and resuspended in PBS containing 0.5µg/mL propidium iodide.  Single cell 

suspensions were then analyzed on a BD FACSCanto II to determine the percentage of 

GFP+ cells amongst the propidium iodide low (live) population.  Lentivirus dilutions 

transducing between 2 and 15% of target cells was used to determine concentration of 

each preparation. 

Specific retroviral transfer vectors (all in MSCV-GFP-T2A) were generated as detailed 

above.  Retrovirus particles psuedotyped with ecotropic envelope protein were 

generated via transient co-transfection of the specific retroviral transfer vector together 

with pCL-Eco (Ecotropic envelope expressing plasmid, Addgene #12371) into Platinum-

E cells via Lipofectamine 2000 (Invitrogen, cat no).  6 x 106 Platinum-E cells were plated 

on poly-L-lysine coated 10cm dish (Corning) in complete DMEM (without antibiotics).  24 

hours later, cells were transfected with 24 µg of transfer vector and 6 µg of pCL-Eco.   
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Flow Cytometric Analyses 

For assessments of activation, T cells were stained with the following antibodies: anti-

human CD69 BV421 (BD Biosciences, 562884), anti-human CD25 PE (BD Biosciences, 

555432), anti-human CD4 APC-Cy7 (BioLegend, 300518), anti-human CD8 PE-Texas 

Red (Life Technologies, MHCD0817), CellTrace CFSE Cell Proliferation Kit (Molecular 

Probes), and Zombie Aqua™ Fixable Viability Kit (BioLegend). 

For intracellular cytokine staining, T cells were stained with the following antibodies:  

anti-human IL-4 FITC (BD, 554484), anti-human IL-13 APC (R&D Systems, IC2131A), 

anti-human IL-2 PE (BD, 559334), anti-human TNFα PE-Cy7 (BD, 560678), anti-human 

IFNγ FITC (BD, 552887), anti-human IL-22 APC (eBioscience, 17-7222), anti-human IL-

17 PE (BD, 560486), anti-human IL-10 PE-CF594 (BD, 562400). 

For intracellular phospho-flow staining, T cells were stained with the following antibodies:  

anti-human CD4 PE-Cy7 (BioLegend, 300512), anti-human LAT (pY171) Alexa Fluor 

647 (BD Biosciences, 558518), anti-human ZAP70 (pY319)/Syk (Y352) PE-Cy7 (BD 

Biosciences, 561458), anti-human PLCγ1 Alexa Fluor 488 (BD Biosciences, 558566), 

anti-human PLCγ1 PE (BD Biosciences, 558575), anti-human Btk (pY551)/Itk (pY511) 

PE (BD Biosciences, 558129), anti-human Btk (pY223)/Itk (pY180) Alexa Fluor 488 (BD 

Biosciences, 564847), anti-human SLP-76 (pY128) PE (BD Biosciences, 558437), anti-

human phospho-S6 ribosomal protein (Ser235/236) Pacific Blue (Cell Signaling 

Technologies, 8520), anti-human phospho-S6 ribosomal protein (Ser240/244) Alexa 

Fluor 488 (Cell Signaling Technologies, 5018), anti-human phospho-Akt (Thr308) Alexa 

Fluor 647 (Cell Signaling Technologies, 3375), anti-human phospho-Akt (Ser473) PE 

(Cell Signaling Technologies, 5315), anti-human ERK1/2 (pT202/pY204) PE-Cy7 (BD, 
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560116), anti-human PLCγ1 (pY783) Alexa Fluor 647 Clone (BD, 557883), and Zombie 

Aqua™ Fixable Viability Kit (BioLegend, 423102). 

Samples were acquired on a BD LSRII or BD LSRFortessa instrument using FACSDiva 

software. Analyses were performed using the FlowJo software version 9 and higher 

(Tree Star). 

 

2.11 Contributions 
 

Yu Zhang, Joshua J. McElwee, Cas Simons, and John Christodoulou analyzed WES 

and discovered the GNAI2 mutations.  Ian T. Lamborn, Heardley M. Murdock, 

Hyoungjun Ham, and Sangeeta Bade assessed GNAI2 RNA and protein expression.  

Evan Masutani performed molecular modeling, and Ian T. Lamborn performed 

immunophenotyping.  BRET experiments were performed by Yamina A. Berchiche with 

help from Ian T. Lamborn (construct design and cloning).  In vitro biochemistry was 

performed by Alexey Koval (GTP binding and hydrolysis) and Kirk M. Druey (RGS 

binding).  Debra A. Long Priel and Douglas B. Kuhns performed neutrophil chemotaxis 

studies.  Uimook Choi and Ian T. Lamborn designed lentivirus approach and prepared 

lentivirus.  Ian T. Lamborn performed T cell chemotaxis, calcium fluxes, and activation 

studies.  Judith N. Mandl and Ian T. Lamborn performed murine in vivo chemotaxis 

studies. Kol A. Zarember (blister study) or Niki M. Moutsopoulos and Nicolas Raul 

Dutzan Munoz (oral migration) performed human in vivo chemotaxis experiments.  

Robert Brink performed CRISPR knock-in experiments.  Huie Jing and Ian T. Lamborn 

performed cAMP measurements.  Peter J. Mustillo cared for the patients and collected 

and analyzed clinical data with assistance from Juliana Teo, Melanie Wong, and Corinne 

S. Happel.   Tom Dimaggio, Helen F. Matthews, and Angela Wang coordinated clinical 



 

 

91

study protocol and sample collection. Helen C. Su planned and supervised the 

experimental work and data analyses.  Ronald N. Germain, Harry L. Malech, Thomas P. 

Sakmar, Vladimir L. Katanaev, Christopher C. Goodnow, and Michael J. Lenardo 

provided advice and assisted in supervising experimental work.  Helen C. Su and Ian T. 

Lamborn prepared the manuscript. All authors discussed and revised the manuscript. 
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CHAPTER 3 - Recurrent rhinovirus infections in a child with inherited 
MDA5 deficiency 

3.1  Abstract 

MDA5 is a cytosolic sensor of double-stranded RNA (ds)RNA including viral byproducts 

and intermediates characteristically produced by most viruses. However, the role of 

human MDA5 in the natural infectious environment during childhood is unknown. We 

studied a child with life-threatening and recurrent respiratory tract infections, caused by 

multiple viruses including rhinovirus, influenza virus, and respiratory syncytial virus 

(RSV). We identified  a homozygous missense mutation in IFIH1 that encodes MDA5. 

The MDA5 mutant protein was expressed, but did not recognize the synthetic MDA5 

agonist and dsRNA mimic polyinosinic-polycytidylic acid. When overexpressed, the 

mutant protein failed to activate IFN ISRE, and NF-B promoters, indicating its 

loss-of-function. In respiratory epithelial cells, wild-type but not mutant MDA5 restricted 

human rhinovirus infection while increasing IFN-regulated gene expression. Rhinovirus 

replication could be inhibited by transducing wild-type but not mutant MDA5. By contrast, 

wild-type MDA5 did not restrict influenza virus and RSV replication. Moreover, nasal 

epithelial cells from the patient showed increased replication of rhinovirus but not 

influenza or RSV, further suggesting that these infections in our patient were secondary 

complications of rhinovirus infection. Thus, MDA5-deficiency is a novel inborn error of 

innate immunity that results in impaired dsRNA-sensing, reduced IFN induction, and 

susceptibility to the common cold virus. 

3.2  Introduction 

Acute respiratory infections are the leading cause of acute illness worldwide 

[165]. Of these, upper respiratory infections are estimated at 18.8 billion per year, and 
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lower respiratory infections at 150 million per year. Most upper respiratory infections or 

common colds are caused by viruses, with human rhinoviruses (HRV) comprising over 

100 serotypes identified in up to half of cases [166, 167]. Although common colds are 

usually mild and self-limited, they can be complicated by sinus or middle ear infections 

and croup [168]. They can also spread to cause lower respiratory infections such as 

bronchiolitis and pneumonia, or worsen asthma or chronic obstructive pulmonary 

disease (COPD). Among lower respiratory infections, influenza virus (flu) is identified in 

~4-22% of cases, respiratory syncytial virus (RSV) in ~30-75%, and HRV in ~15-50% 

[168-171]. Of all commonly circulating respiratory viruses, flu leads in causing disability 

and death in hospitalized adults, whereas RSV, followed by HRV, does so in 

hospitalized infants and children [172]. Flu, RSV, and HRV are the three leading causes 

of disease burden in the elderly, further underscoring the pathogenic consequences of 

these viruses [172]. 

Host immunity to many viruses, including those targeting the respiratory tract, 

can be initiated in mice by the RIG-I-like helicase receptors (RLR) melanoma 

differentiation-associated protein 5 (MDA5) and retinoic acid-inducible gene 1 (RIG-I). 

MDA5 and RIG-I, which are encoded by the IFIH1 and DDX58 genes, function as 

intracellular cytoplasmic sensors of double-stranded (ds)RNA viral replicative 

intermediates or byproducts. Both sensors signal through the adaptor mitochondrial 

antiviral-signaling protein (MAVS, also known as IPS-1, Cardif, and VISA) to activate 

production of IFN and IFN-regulated gene transcription. This can inhibit virus replication 

and modulate cellular immune responses. MDA5 has a major role in recognizing and 

limiting picornavirus replication in mice and in vitro in human cells [76, 173-180]. 

Together with RIG-I, MDA5 can also recognize and limit replication of other positive 
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single-stranded RNA viruses of the coronavirus, calcivirus, and flavivirus families [79-

84], dsRNA viruses of the orthoreovirus family [83], negative single-stranded (ss)RNA 

viruses of the paramyxovirus and orthomyxovirus families [76, 85-89], and even a DNA 

virus of the poxvirus family [181, 182]. However, those studies were conducted in vivo in 

Mda5-deficient mice and in vitro using mouse and human cells. By contrast, the role of 

MDA5 deficiency in the course of human natural infections is not yet known.  

3.3  Results 
 

Genetic analysis 

Because the patient was from an isolated small people group of Burma (Myanmar), we 

hypothesized an autosomal recessive inheritance with a probable founder effect. Whole 

exome sequencing (WES) was performed on the patient and her healthy immediate 

relatives, which revealed 1.8% homozygosity in the patient, 2.7% in the mother, and 

2.0% in the father. These values were within the upper range of normal of previously 

exome-sequenced in our non-consanguineous immunodeficiency cohort (data not 

shown) and were consistent with the lack of known consanguinity in this family. The 

patient carried a homozygous missense mutation in IFIH1 NM_022168.3: c.1093A>G, 

p.K365E, which was confirmed by Sanger dideoxy sequencing (Fig. 3.2b, and Table 3.1 

and 3.2). This variant (rs117608083) was extremely rare with an average allele 

frequency in ExAC of 0.06%, where it was found in East and South Asian populations 

although no homozygotes were observed. The patient’s missense mutation occurred at 

a location that was conserved across species (PhastCons, 1) and under evolutionary 

constraint (GERP, 3.96). Substitution of glutamate for lysine resulted in loss of 

physicochemical conservation (Grantham score, 56) and was predicted to have 
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deleterious effects on protein structure and function (PolyPhen2, 0.998). The patient also 

carried several other rare homozygous missense mutations, but of these the IFIH1 

mutation was computationally predicted to be most deleterious (CADD score, 25) with its 

normal gene product being highly expressed in immune cells and lung (Table 3.2), so 

we focused our attention on this variant. 

Consequences of the MDA5 mutation 

The MDA5 protein encoded by IFIH1 consists of N-terminal tandem caspase activation 

recruitment domains (CARD) and a C-terminal domain (CTD), which surround a central 

tripartite helicase core [183]. MDA5 forms a “C”-shaped ring encircling dsRNA, such that 

its monomers stack together along the dsRNA stem to form long filaments necessary for 

recognition of viral RNA. Lysine at 365 is located in the Hel1 domain of the helicase core 

(Fig. 3.2b), where it interacts with the 2’-hydroxyl group of ribose in the target RNA 

backbone [183]. Substitution with glutamic acid introduces a negative charge that is 

predicted to abolish the protein-nucleic acid interaction and hence MDA5 oligomerization 

(Fig. 3.2c). Consistent with our prediction, either before or after induction by IFN- 

treatment, the endogenous MDA5 protein in homozygous mutant patient cells was 

expressed as well as in cells from normal healthy controls or heterozygous or 

homozygous wild-type family members (Fig. 3.2d, and data not shown). Levels of 

endogenous RIG-I or MAVS proteins were unaffected (Fig. 3.2d). However, when 

overexpressed in cells that lack endogenous protein, mutant MDA5 failed to affinity co-

precipitate with a synthetic MDA5 ligand, poly(I:C) (Fig. 3.2e) [76, 173]. 

These data suggested that K365E, although normally expressed in patient cells, 

could not assemble to activate downstream signals. We therefore overexpressed wild-

type or mutant MDA5 to test whether they could drive expression of luciferase from 
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several promoters. Cells transfected with wild-type MDA5 increased IFNB1 promoter 

activity after stimulation with intracellular poly(I:C) (Fig. 3.3a,b). By contrast, those 

transfected with the K365E mutant showed minimal activity above non-transfected cells, 

which did not increase upon stimulation. K365E also failed to drive luciferase activity 

from IFN-stimulated response element (ISRE)- and NF-B-driven promoters (Fig. 

3.3c,d). Co-transfections of the mutant with wild-type MDA5 showed no dominant 

negative effect (Fig. 3.3e,f). Although biallelic loss-of-function mutations in IFIH1 have 

not been previously identified in humans, mono-allelic gain-of-function mutations have 

been reported in humans with Aicardi-Goutières syndrome [184, 185], Singleton-Merton 

syndrome [186], and systemic lupus erythematosus with IgA deficiency [187]. Our 

patient had neurodevelopmental delay but lacked the cerebral calcifications or white 

matter abnormalities characteristic of Aicardi-Goutières syndrome or congenital infection 

(data not shown). Moreover, her K365E mutation did not increase luciferase activity, 

either at baseline or after stimulation, in contrast to the known gain-of-function MDA5 

mutants R337G or R779H (Fig. 3.2a,c,d) [184]. Additionally, our patient’s cells did not 

express a type I IFN transcriptional signature characteristic of gain-of-function IFIH1 

mutations (data not shown). Thus, we conclude that the K365E missense mutation was 

loss-of-function. 

Virus replication in respiratory epithelial cells 

The patient’s infection history suggested that MDA5 might function as a general 

sensor of viruses infecting the respiratory tract in humans, especially of HRV. 

Alternatively, MDA5 deficiency might underlie only a few viral diseases, perhaps even 

only one, causing respiratory lesions that could favor other viral diseases. To test innate 

immune responses in respiratory epithelium, we infected a transformed respiratory 
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epithelial cell line A549, in which genes of the RLR pathway were silenced by transient 

transfection of siRNA. Silencing of MDA5, RIG-I, or MAVS expression increased both 

HRV transcripts and production of infectious virus (Fig. 3.4a-f). HRV induced low levels 

of IFN-regulated transcripts, including MDA5 itself, which were decreased upon MDA5 

silencing, consistent with further impairment in virus recognition and antiviral responses 

(Fig. 3.5a,b). Increased HRV replication was also observed by 72 hours in primary 

respiratory nasal epithelial cells from the patient as compared to her parents (Fig. 3.6a 

and data not shown). Importantly, transduction with wild-type but not mutant K365E 

MDA5 improved control of HRV replication (Fig. 3.6b). Thus, the patient’s recurrent or 

persistent HRV infections supported an important role for MDA5 in their control in 

humans. 

Although RIG-I is thought to function as the major sensor for the 

orthomyxoviruses and paramyxoviruses especially in mice, a few studies have 

suggested an additional role for MDA5 in responding to flu A/B and RSV [83, 86, 89, 

188, 189]. We investigated these possibilities since our patient had been hospitalized for 

severe flu (flu B in 2011, flu A H3N2 in 2011 and 2014) and RSV infections. We silenced 

MDA5, RIG-I, or MAVS expression by transfecting siRNA in the respiratory epithelial cell 

line A549, which were then infected with a pathogenic flu A strain (H3N2) isolated in 

2011. Consistent with the literature using other flu strains, silencing of either RIG-I or 

MAVS expression increased flu transcripts (Fig. 3.7a,b). However, silencing of MDA5 

did not increase flu replication, nor did it increase pro-inflammatory cytokine production 

in contrast to silencing of RIG-I (Fig 3.7c-f). Infection of primary nasal epithelial cells 

from the patient did not show any increased flu replication as compared to her parents 

(Fig. 3.8a). Production of infectious flu (H1N1) virus was also unaltered in SV40-
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transformed fibroblasts in which CRISPR/Cas genome editing had been used to 

generate single-cell clones either hemizygous for the patient’s mutant IFIH1 allele or 

completely lacking both IFIH1 alleles (Fig. 3.8b, and data not shown). These cells did 

not exhibit increased cytotoxicity or decreased IFN- production (Fig. 3.8c,d). Finally, 

using a recombinant RSV that expresses enhanced GFP as a marker of virus 

replication, we observed that silencing MDA5 did not increase RSV transcripts, although 

it did decrease IFN-regulated transcripts, which were more rapidly induced to higher 

levels than during HRV infection (Fig. 3.9a-d). Unlike HRV, RSV transcripts or infectivity 

and spread were not increased in primary respiratory nasal epithelial cells from the 

patient (Fig. 3.9e,f). RSV replication was also unaltered in gene-edited fibroblasts either 

hemizygous for the patient’s mutant IFIH1 allele or completely lacking both IFIH1 alleles 

(data not shown). Together, these results show that under the same conditions where 

MDA5 deficiency results in increased HRV replication, flu and RSV replication remain 

unaffected. Hence, MDA5 has a non-redundant role in innate immune responses against 

respiratory infections caused by HRV. 

3.4  Discussion 

Studies in single patients can establish causality between genotype and 

phenotype in humans, provided that the mutant genotype is only found in the affected 

patient, the specific variant impairs corresponding protein function, and cellular 

phenotype can be recapitulated or rescued at the molecular level [27, 190]. By these 

criteria, we have shown that human MDA5 protects against respiratory infections caused 

by HRV. HRV accounts for a substantial disease burden of acute lower respiratory 

infections requiring hospitalization, especially in infants and children in whom it 
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surpasses that of flu [172]. Additionally, HRV is primarily responsible for half of upper 

respiratory infections, but has not been adequately studied as it is often dismissed as 

innocuous [165, 166]. This has impeded clinical recognition of additional patients with 

genetic susceptibility to the common cold. Whether MDA5 also physiologically protects 

against other respiratory viruses that we did not test such as human coronaviruses and 

adenovirus, or against systemic RNA viruses that our patient has not been exposed to 

such as poliovirus and Hepatitis A virus, is not yet known. Interestingly, our patient has 

not had hand-foot-mouth disease, nor has she had detectable non-respiratory 

enteroviruses associated with acute viral gastroenteritis, possibly due to protective 

effects of intravenous immunoglobulin treatments that variably contain neutralizing 

antibodies to enteroviruses [191, 192]. However, we speculate that the type 1 diabetes 

mellitus that she developed at two years of age might have been precipitated by 

persistent infection with pancreatropic enteroviruses which have been detected in 

pancreatic autopsy specimens from recent-onset disease [193, 194]. Moreover, it is also 

possible that she was congenitally infected with untested viruses that could cause 

systemic effects when MDA5 is lacking. 

Our patient clearly demonstrates that MDA5 has an important physiological and 

non-redundant role in the human respiratory tract, where it senses and initiates innate 

immune responses to HRV. Importantly, by carrying out in vitro infection experiments in 

MDA5-silenced respiratory epithelial cells – and also in the patient’s own MDA5-deficient 

nasal epithelial cells – we have established that the MDA5 genotype is responsible for 

the increased HRV replication and HRV clinical phenotype in our patient. By contrast, 

the lack of in vitro phenotypes for flu and RSV in the same cell types suggests that the 

MDA5 genotype is not responsible for these infections in our patient. These results also 
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indicate that, surprisingly, other viruses such as flu and RSV, which have dsRNA 

intermediates that can be recognized by MDA5, are recognized and controlled by other 

means when MDA5 is deficient. Although it is possible that defective responses to these 

viruses might occur in other MDA5-deficient cell types, our results clearly show that this 

does not occur at the initial site of infection in the lung within respiratory epithelial cells. 

Additionally, in our patient, the decreased incidence of infections with age coincided with 

maturation of antibody responses. This ability of antibodies to compensate for defective 

innate immunity is similarly observed in other deficiencies of innate immunity. For 

example, in IRF7 deficiency associated with isolated flu susceptibility, subsequent flu 

infection is prevented by annual seasonal flu vaccination [190]. 

Of note, our patient had several other unexplained clinical features including 

neurodevelopmental delay that could be explained by her other genetic findings, 

including copy number variation in the TM4SF20 gene (Supplemental Clinical 

Description) or alternatively de novo or rare autosomal recessive variants that were 

identified in genes highly expressed in the brain (Supplemental Table 2). Nevertheless, 

those clinical features and genetic findings do not diminish or negate our discovery that 

MDA5 is required for dsRNA-sensing, reduced IFN induction, and control of HRV 

infections in humans. 

HRV is generally considered relatively non-pathogenic when additional factors 

such as respiratory co-infection or underlying respiratory disease are absent. Thus, 

unlike other primary immunodeficiencies characterized by susceptibility to highly 

pathogenic microbes, the lack of strong purifying selection against homozygous 

genotypes is not unexpected for MDA5. As shown by our knockdown experiments, 

MDA5 function appears to be partially redundant with RIG-I function for controlling HRV 
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replication, where other sensors can contribute to protection when MDA5 function is 

lacking. Alternatively, other genetic variants in our patient might contribute to her 

susceptibility to flu or RSV. However, this explanation seems less likely since replication 

of flu or RSV in her nasal epithelial cells was comparable to that in cells from healthy 

controls. Given these considerations, in our patient’s particular case, it instead seems 

likely that her severe persistent HRV infections in infancy, which contributed to her 

chronic lung disease, in turn led to secondary complications including susceptibility to 

other viruses such as flu and RSV and bacterial superinfections. Thus, in some 

individuals, a selective genetic susceptibility to HRV can under certain circumstances 

contribute more broadly to the pathogenesis of severe respiratory infections during 

childhood.  
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3.5  Tables 

Table 3.1  Summary of WES Variants found after each filtering stage. 
DNA variants  Patient 

Total variants from WES (SNP/indels) 79315 

Nonsynonymous variants 11076 

Novel or Rare variants 2984 

Homozygous variants  18 

Candidate variants (deleterious, expressed, etc) 1 
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Table 3.2  Non-synonymous rare genetic variants found in the patient by WES. 
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3.6  Figures 

Figure 3.1  Infection history in a human with recurrent respiratory tract infections. 

 

Figure 3.1  Infection history in a human with recurrent respiratory tract infections. (a) 
Timeline of pathogens recovered from the respiratory tract. These were classified as 
positive single-stranded RNA virus, negative single-stranded RNA virus, double-
stranded DNA virus, bacteria as indicated in the adjacent symbol key. (b) RT-PCR 
molecular typing of RNA isolated from nasopharyngeal samples, using primer sets that 
preferentially amplify the indicated HRV species. Patient’s samples “a” to “h,” as 
indicated on (a), were collected between 2 and 4 years of age. Sample “a” was negative 
for respiratory pathogens and “h” positive for flu A. Purified HRV -B14 and -A16 virus 
stocks, and a sample from a different subject having respiratory symptoms but negative 
for HRV/enterovirus, were also tested. (c) Phylogenetic tree based on nucleotide 
sequences of 5’UTR of HRV isolates showing evolutionary relationship of the patient’s 
samples to closest serotypes and representative HRV species. Sample “b” has 91% 
homology to HRV-A46, and sample “g” has 98% homology to HRV-A38. 
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Figure 3.2  Autosomal recessive, homozygous IFIH1 mutation in the proband. 

 

Figure 3.2  Autosomal recessive, homozygous IFIH1 mutation in the proband. (a) 
Pedigree indicating genotypes. (b) Confirmatory Sanger sequencing. Schematic below 
showing mutation location relative to MDA5 protein domains. (c) Ribbon diagram of the 
MDA5 structure with close-up showing lysine 365 interaction with ribose in RNA, and 
effects of glutamic acid substitution on distances (Å) between charged groups (yellow 
sphere, positive; red spheres, negative). (d) Immunoblot of MDA5, RIG-I, and MAVS 
proteins, relative to -actin, in cycling T cells, either untreated or treated for 20 hours 
with IFN-. NC, healthy normal control. Pt, patient. (e) Immunoblotting of overexpressed 
MDA5 (wild-type (WT) or K365E) after affinity precipitation with biotinylated-poly(I:C). (d) 
and (e) are representative of four repeats. 
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Figure 3.3  Loss-of-function IFIH1 mutation. 

 

Figure 3.3  Loss-of-function IFIH1 mutation. (a,c,d) Relative increase in normalized 
luciferase activity driven by the IFN1 promoter (a), ISRE (c), or NF-B (d) reporter 
constructs. Cells were co-transfected with WT or mutant MDA5, and with (solid) or 
without (open) transfected poly(I:C) as indicated. R337G and R779 are gain-of-function 
mutants. (b) Immunoblotting for MDA5 proteins after transient transfection of 20 ng wild-
type (WT) or mutant K365E MDA5, both under CMV promoters. (e) Similar to (a) except 
that cells were co-transfected with 20 ng WT MDA5 (under CMV promoter), and either 
K365E MDA5 or empty vector (EV) (under MSCV promoter). (f) Immunoblotting for 
MDA5 proteins in lysates from (e). Data show means ± SD from four experiments in (a) 
and (e), three in (c), and five in (d). Data in (b) and (f) are examples from experiments 
shown in (a), (c), and (d), and (e), respectively. 293T cells lack endogenous MDA5 
expression (data not shown). Equivalent lysates from ~30,000 cells were run across 
lanes. ** p <0.01, *** p < 0.001, **** p < 0.0001, by one-way ANOVA. 
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Figure 3.4  Loss of MDA5 function results in increased replication of HRV in 
respiratory epithelial cells. 
 

 

Figure 3.4  Loss of MDA5 function results in increased replication of HRV in respiratory 
epithelial cells. (a) HRV transcripts, normalized to non-specific siRNA negative (siNeg) 
control. HRV-infected (MOI: 1) A549 cells were previously transfected with the indicated 
siRNA. (b) Immunoblotting showing efficiencies of MDA5 and RIG-I knockdown in (a). 
Transfected cells were left uninfected or infected with HRV for 48 hours. 120 µg of 
lysates were run per lane. (c) Similar to (a), at 48 hours after infection and two rounds of 
transient transfection with the indicated siRNA. (d) Immunoblotting showing efficiencies 
of MAVS and MDA5 knockdown in (c). (e) HRV transcripts and HRV simultaneously 
quantitated by infectious plaque assay, at 60 hours after infection. (f) Number of HRV 
reads in RNA-seq data during HRV infection. A549 cells were previously transfected with 
MDA5 or non-specific negative control siRNA (siNeg). Average of triplicate expression 
ratios from triplicate infections were shown for each time point. Data show means ± SD 
from five experiments in (a); eight in (c); four in (e). Representative experiments are 
shown in (b) and (d). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, by Kruskal-
Wallis test in (a) and (c); Mann-Whitney U test in (e); and Kolmogorov-Smirnov test in 
(f); other comparisons in (a) and (f) were non-significant. 
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Figure 3.5  MDA5 effects on IFN during HRV infection of respiratory epithelial 
cells. 

 

 

Figure 3.5  MDA5 effects on IFN during HRV infection of respiratory epithelial cells. (a) 
“Response to type I interferon” genes (GO term GO0034340) versus all genes. (b) 
Heatmap representation of RNA-seq data showing HRV-induced IFN-regulated gene 
transcripts (RPKM) over the course of infection.  Data in (a) show box-and-whisker plots 
from triplicate infections. A549 cells were previously transfected with MDA5 or non-
specific negative control siRNA (siNeg) and correspond to Fig. 4F. Average of triplicate 
expression ratios from triplicate infections were shown for each time point. * p < 0.05, by 
Kolmogorov-Smirnov test in (a) and (b); other comparisons were non-significant. 
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Figure 3.6  Loss of MDA5 function results in increased replication of HRV in 
respiratory epithelial cells. 

 

Figure 3.6  Loss of MDA5 function results in increased replication of HRV in respiratory 
epithelial cells. (a) HRV transcripts, normalized to non-specific siRNA negative (siNeg) 
control. Primary nasal epithelial cells from the patient and parents were infected with 
HRV (MOI: 1). (b) HRV transcripts in A549 cells previously transduced with empty vector 
(EV), wild-type (WT) or K365E MDA5, at 72 hours after infection. Data show means ± 
SD from three experiments in (a), and five in (b). * p < 0.05, by Kruskal-Wallis test in (b); 
other comparisons in (b) were non-significant. 
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Figure 3.7  Loss of MDA5 function does not affect replication of flu or production 
of pro-inflammatory cytokines in respiratory epithelial cells. 

 

Figure 3.7  Loss of MDA5 function does not affect replication of flu or production of pro-
inflammatory cytokines in respiratory epithelial cells. (a) Flu (MOI: 0.1) transcripts, 
normalized to siNeg control. Flu-infected A549 cells were previously transfected with the 
indicated siRNA. (b) Immunoblotting showing efficiencies of MDA5, RIG-I, and MAVS 
protein expression, relative to HSP90 loading control, after transient transfection with the 
indicated siRNA into A549 cells. Transfected cells were left uninfected or infected with 
flu strain A/Victoria/361/2011 (MOI: 0.5) for 24 hours or treated with IFN- (10 IU/mL) for 
24 hours. 20 µg of lysates were run per lane. Shown is a representative experiment 
corresponding to (a). (c-f) Pro-inflammatory gene transcripts quantitated by qRT-PCR 
from (a). Levels of IL-1 (c), IL-6 (d), IL-8 (e), TNF- (f) were normalized to -actin and 
are shown relative to normalized levels at 8 hours after infection. Data show means ± 
SD from six to seven experiments in (A) and three independent experiments in (a) to (f). 
* p < 0.05, ** p < 0.01, by Kruskal-Wallis test in (a); all other comparisons were non-
significant. 
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Figure 3.8  Loss of MDA5 function does not affect flu replication, or flu-induced 
IFN production or cytotoxicity, in respiratory epithelial cells or fibroblasts. 

 

Figure 3.8  Loss of MDA5 function does not affect flu replication, or flu-induced IFN 
production or cytotoxicity, in respiratory epithelial cells or fibroblasts. (a) Flu transcripts, 
normalized to siNeg control. Primary nasal epithelial cells from the patient, parents, and 
two normal healthy controls were infected with flu (MOI: 0.02). (b) Flu virus quantitated 
by infectious plaque assay, after infection (MOI: 1) of SV40-transformed fibroblasts 
having the indicated genotypes. (c) IFN- released into supernatants as measured by 
ELISA after infection with flu strain A/Puerto Rico/8/1934 (MOI: 0.37 – 54). Sendai Virus 
(SeV) was included as positive control of interferon induction. Genotypes of SV40-
transformed fibroblasts are as indicated. (d) LDH released into samples from (c). Data 
show means ± SD from four experiments in (a), three independent experiments in (b) 
that are representative of 11 experiments with varying MOIs (0.1 to 30) and three 
different flu strains (A/Netherlands/602/2009, A/California/4/2009, and A/Puerto 
Rico/8/1934), and three independent experiments in (c) and (d) that are representative 
of 6 and 7 experiments, respectively, in which the MOI were varied. 
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Figure 3.9  Loss of MDA5 function does not affect RSV replication while affecting 
RSV-induced IFN-regulated transcripts. 

 

Figure 3.9  Loss of MDA5 function does not affect RSV replication while affecting RSV-
induced IFN-regulated transcripts. (a) Number of RSV reads in RNA-seq data during 
RSV infection. RSV-infected (MOI: 1) A549 cells were previously transfected with MDA5 
or non-specific negative control siRNA (siNeg). (b) Immunoblotting showing efficiencies 
of MDA5 protein expression after transient transfection of A549 cells with the indicated 
siRNA, or without transfection (MOCK). Cells were either left uninfected or infected with 
RSV, as indicated. 20 µg of lysates were run per lane. Shown is a representative 
experiment corresponding to (a). (c) “Response to type I interferon” genes (GO term 
GO0034340) versus all genes, from (a). (d) Heatmap representation of RNA-seq data 
showing showing the expression change between MDA5 siRNA and non-specific siRNA 
control of IFN-regulated gene over the course of RSV infection. Average of triplicate 
expression ratios from triplicate infections were shown for each time point in (a), (c), and 
(d). (e) RSV transcripts in primary nasal epithelial cells from the patient (open bar), 
parents (hatched bars), and two normal healthy controls (solid bars), normalized to 
father, after RSV-GFP infection (MOI: 0.2). (f) % GFP+ of gated live RSV-infected cells 
from (e). Data show means ± SD from four experiments in (e) and (f). * p < 0.05, by 
Kruskal-Wallis test in (c) and (d); other comparisons were non-significant. 
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3.7  Supplementary Notes 

Supplementary Note 3.1  Patient clinical course. 

At birth, she was found to have intrauterine growth retardation. Infection 

screening during routine prenatal care had indicated past maternal infection with HSV-1, 

Toxoplasma, and CMV. At 40 days old, she had an upper respiratory infection that was 

PCR-positive for both HRV/enterovirus and flu B. She developed respiratory failure, 

which required mechanical ventilation including extra-corporeal membrane oxygenation. 

Tracheal aspirates grew out Haemophilus influenzae, Streptococcus viridans, 

Acinetobacter spp., enterococcus, Escherichia coli, and other coliform bacteria. 

Subsequently, she had more than 15 hospital admissions for respiratory distress 

precipitated by viral respiratory infections. Multiplex PCR revealed two episodes of flu A; 

three prolonged intervals of HRV/enterovirus shedding, for over more than half of her 

lifetime; four episodes of coronaviruses (OC43, NL63, HKU1); and one each of RSV, 

adenovirus, and human parainfluenza virus type 4. She continues to require 

supplemental oxygen, and had ground glass opacities but no bronchiectasis on chest 

CT. She has been hospitalized on multiple occasions for coliform urinary tract infection 

and acute gastroenteritis with dehydration but without detectable viral pathogens. She 

had an abscess near her G tube insertion site that grew out Klebsiella pneumonia and 

Enterobacter cloacae. Although she initially had low serum immunoglobulin levels and 

decreased lymphocyte counts (affecting T, NK, and B cell subsets), these all normalized 

between 3 to 4 years old. Replacement immunoglobulins were discontinued and she has 

responded with functional antibodies to tetanus, diphtheria, and Haemophilus influenzae 

vaccines. She has no history of opportunistic or chronic systemic virus infection including 

EBV or CMV despite serological evidence of past exposure. Additionally, when 2 years 
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old, she developed new-onset type 1 diabetes mellitus with detectable GAD65 

autoantibodies. She has short stature, low weight, hypotonia, weakness, and delays in 

motor and language development. Brain MRI showed low periventricular white matter 

volume with ventriculomegaly, and structural abnormalities of hippocampus, olfactory 

bulbs, septum pellucidum, and corpus callosum. High-resolution chromosomal 

microarray analysis identified a 4kb deletion on chromosome 2 that included the 

TM4SF20 gene. This copy number variant has been associated with language delay, 

white matter hyperintensities, and varied developmental abnormalities in South Asian 

populations [195]. Several regions of absence of heterozygosity (AOH) totaling 45 MB 

on 5 separate chromosomes were also identified. 

 

3.8  Materials and Methods 
 

Patients  

Whole blood, serum, skin biopsies, and nasal airway epithelial scrapings were obtained 

from the patient, her relatives, or paid healthy volunteers. These individuals gave written 

informed consent to participate in research protocols approved by Institutional Review 

Boards (IRB) at NIAID and National Jewish Health, which are registered in 

ClinicalTrials.gov under NCT00246857, NCT00128973, and NCT00895271. Buffy coat 

cells, which were by-products of volunteer-donor blood units, were distributed in an 

anonymized manner and thus were exempted from need for informed consent and IRB 

review. 

Rhinovirus Molecular Typing 
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TRIzol LS reagent (Ambion) was used to extract total RNA from 350 μL of 

nasopharyngeal washes/aspirates obtained from patients or anonymized controls, or 

from laboratory virus preparations. 20 μL of RNA was reverse-transcribed using a high-

capacity cDNA reverse transcription kit with RNase inhibitor (Applied Biosystems). PCR 

was performed as described previously [196], except that 32 cycles of a single round of 

PCR amplification were performed in a 25 µL volume using 2 μL cDNA template and 0.5 

μM of forward and reverse primers. The previously published primers, which were 

relatively species-specific, were used for amplification of the 5’UTR of Rhinovirus 

(5’UTRn-A1, 5’UTRn-A2, 5’UTRn-B1, 5’UTRn-Cc, 5’UTR-rev). The PCR-amplified 

products were resolved by electrophoresis on 2% agarose gel. PCR-amplified products 

were also purified by QIAquick Gel Extraction Kit (Qiagen) and cloned using TOPO TA 

Cloning Kit for Sequencing (Invitrogen). Plasmid DNA were isolated from transformed 

TOP10 E. coli colonies using the R.E.A.L. Prep 96 Plasmid Kit (Qiagen). For each PCR 

product, 96 cloned inserts were Sanger dideoxy sequenced using plasmid-specific M13 

Forward and Reverse primers. Sequences were analyzed using Sequencher 5.1 

software, and BLAST searches of GenBank sequences were performed to identify the 

virus serotype. The phylogenetic analysis was performed using the UPGMA method of 

MEGA 7 software, and all positions containing gaps and missing data were 

eliminated. The phylogenetic trees were drawn to scale, with branch lengths in the same 

units as those of the evolutionary distances used to infer the phylogenetic tree. The 

evolutionary distances were computed using the Maximum Composite Likelihood 

method and are in the units of the number of base substitutions per site. The NCBI HRV 

reference sequences included in the tree are HRV-A89 (NC_001617.1), HRV-B14 

(NC_001490.1), and HRV-C (NC_009996,1). 
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Genomic Analyses 

Genomic DNA from the patient and family members were isolated from PBMC using the 

DNeasy kit (Qiagen). Whole exome sequencing, using SureSelect Human All Exon 50 

Mb Kit (Agilent Technologies) coupled with massively parallel sequencing by Illumina 

HiSeq Sequencing System, was performed using 3 µg of genomic DNA collected from 

patient, both parents, and unaffected sister. Sequenced DNA reads were mapped to the 

hg19 human genome reference by Burrows-Wheeler Aligner (BWA) with default 

parameters. Single nucleotide variant and indel calling were performed using the 

Genome Analysis Toolkit (GATK, http://www.broadinstitute.org/gatk/). All SNVs/indels 

were annotated by SeattleSeq Annotation (http://snp.gs.washington.edu) and an in-

house custom analysis pipeline was used to filter and prioritize for nonsynonymous and 

novel/rare variants (MAF < 0.001) under autosomal recessive or de-novo genetic 

models. UCSC gene sorter Microarray data (GNF Expression Atlas 2 Data from U133A 

and GNF1H chips) and Illumina Human BodyMap RNA-seq data were used to prioritize 

variants for functional validation. For confirmation of IFIH1 mutations and genotyping of 

the brother, genomic DNA was PCR-amplified using forward primer 5’- CAA TGA CAC 

AAA TGC CAT CA-3’ and reverse primer 5’- CAG GGA GTG GAA AAA CCA GA-3’. 

Sanger dideoxy sequencing of purified PCR-amplified products was performed by the 

Genomics Unit of the Rocky Mountain Laboratories Research Technologies Section of 

the NIAID. The WES data will be deposited under dbGaP accession number X. 

Molecular Modeling 

Molecular dynamics simulations were carried out using the Assisted Model Building with 

Energy Refinement (AMBER14) simulation package [197] with GPU acceleration [198]. 
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The FF99SB all-atom potential [199] was used along with parameters for ATP [200] and 

Zn2+[201]. Starting with the crystal structure of MDA5 (PDB ID: 4GL2) [183], ANP was 

changed to ATP and lysine at position 365 was mutated to glutamic acid in PyMol (The 

PyMol Molecular Graphics System, Version 1.7.2.1, Schrödinger, LLC). The system was 

protonated in tleap, solvated with TIP3P explicit water in a periodic truncated octahedron 

extending 10A beyond the MDA5 complex, neutralized with Na+, and brought to 

approximately 150 mM of sodium chloride by randomly exchanging solvent molecules 

with Na+ or Cl-. The system was then subjected to energy minimization with diminishing 

harmonic restraints, followed by heating from 100K to 303K over 30 ps at constant 

volume with a Berendsen thermostat. Production runs were generated by switching the 

heated system to a constant pressure and temperature ensemble and allowing the 

system to equilibrate over 120 ps. All simulations were run in triplicate using the SHAKE 

algorithm. 

Primary T cells 

Peripheral blood mononuclear cells (PBMC) were isolated by density centrifugation 

through Ficoll-HypaqueTM PLUS (GE Healthcare Life Sciences). Pan T cells were 

isolated by negative selection using Pan T Cell Isolation Kit (Miltenyi Biotec) to ≥98 % 

purity. Pan T cells were stimulated with anti-CD2/CD3/CD28 coated beads from the T 

Cell Activation/Expansion Kit (Miltenyi Biotec), at a bead to cell ratio of 1:1. T cells were 

cultured in RPMI medium supplemented with 10% fetal bovine serum (FBS, Gibco), 100 

U/mL recombinant human IL-2 (Aldesleukin, Prometheus), 2 mM L-glutamine, 100 U/mL 

penicillin, 100 µg/mL streptomycin, and 55 µM -mercaptoethanol (Sigma-Aldrich, rest 

from Gibco). Where indicated, previously activated cycling T cells were treated with 100 
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IU/mL recombinant human IFN- (Intron A, Merck) for 20 hours to induce MDA5 

expression. 

Primary and SV40-Transformed Fibroblasts 

Fibroblasts were isolated from skin punch biopsies as previously described.[202] In brief, 

dermal and epidermal layers were dissociated after overnight incubation of biopsy tissue 

with Dispase (BD Biosciences). The dermis was minced and cultured in complete 

DMEM-Dulbecco’s Modified Eagle Medium (Gibco) supplemented with 10% FBS, 2 mM 

L-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 55 µM -

mercaptoethanol (Sigma-Aldrich, rest from Gibco) to allow fibroblasts to grow out. 

Fibroblasts isolated from a healthy normal donor or the patient’s mother were used for 

IFIH1 genome editing. Cells from the patient’s mother were used to generate wild-

type/null, mutant (c.1093A>G, p.K365E)/null, and null/null genotypes. U6gRNA-Cas9-

2A-GFP plasmids (HS0000455078, Sigma-Aldrich) were transfected into the fibroblasts 

using the P3 Primary Cell 96-well Nucleofector kit with Nucleofector Program 96-DT-130 

(Lonza). Three days after transfection, cells highly expressing GFP were single-cell 

sorted into 96-well plates using a BD FACSAria Fusion cell sorter and cultured until 

confluent. Cells from the patient’s mother, or from a healthy normal donor, that had not 

undergone genome editing were also single-cell sorted and cultured in parallel for use as 

controls. Genotypes for each genome-edited clone were screened by agarose gel 

electrophoresis of PCR amplified products using forward primer 5’-AAA GGG GAA ATA 

CGG AAT TGG-3’ and reverse primer 5’-GAG TCA ATG ACA CAA ATG CCA TC-3’, 

followed by confirmation by Sanger dideoxy sequencing. Three to five clones each of 

IFIH1 genotypes wild-type/null, mutant/null, wild-type/mutant, and null/null were selected 

and expanded for experiments.  
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To generate SV40-transformed fibroblast lines, 3 x 106 primary dermal fibroblasts were 

electroporated in 400 µL of complete DMEM with 3 µg of pLAS plasmid [203] in a 0.4 cm 

cuvette using the Gene Pulser® II electroporation system (1 pulse; 250 V, 1400 µF, 

resistance = ∞; Bio-Rad). Cells were divided into three 75cm2 flasks and monitored 1 to 

2 weeks for outgrowth of rapidly growing colonies. Cultures were then passaged > 4 

times to ensure elimination of primary fibroblasts. STAT1-deficient SV40-transformed 

fibroblasts were described previously [204]. 

Primary Nasal Epithelial Cells 

Nasal airway epithelial cells were collected from the lower surface of the inferior nasal 

turbinate using a sterile cytology brush (Cytosoft, Medical Packaging Corporation) as 

previously described.[205, 206] Cells were placed in Ham’s F-12 medium (Gibco) 

supplemented with 10% dimethyl sulfoxide (Sigma-Aldrich), 30% heat inactivated FBS 

(Gibco), and 0.1% Y-27632 Rho kinase inhibitor (ApexBio). The collection medium was 

also supplemented with 1.25 µg/mL amphotericin B (Sigma-Aldrich), 2 µg/mL 

fluconazole (Gallipot), and 50 µg/mL gentamicin (Gibco). Cells were stored 

cryopreserved until needed for culture, using adapted methods that combined use of an 

irradiated fibroblast feeder layer and Rho kinase inhibition.[207] The major modification 

was the use of irradiated 3T3 fibroblasts (ATCC) as the feeder cell layer. Nasal airway 

epithelial cells were cultured in T75 flasks to approximately 80% confluence and 

harvested using the multistep trypsinization procedure described [207]. Harvested cells 

were cryopreserved using the medium described above but without antibiotic 

supplementation. Cells of the same passage number and no greater than passage three 

were used for experiments. 
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Other Cell Lines 

The human embryonic kidney 293T cell line (ATCC) was cultured in DMEM medium 

(Gibco) supplemented with 10% FBS (Gibco or Hyclone), 2 mM glutamine, 100 U/mL 

penicillin, 100 µg/mL streptomycin, and 55 µM -mercaptoethanol (Sigma-Aldrich, rest 

from Gibco) for all experiments, or Iscove’s Modified Dulbecco’s Medium (IMDM, Gibco) 

supplemented with 10% FBS (Gibco or Hyclone) and 55 µM -mercaptoethanol (Sigma-

Aldrich) for lentivirus production. The monkey kidney cell line Vero E6 (ATCC) was 

cultured in DMEM supplemented with 10% FBS, 2 mM glutamine, 100 U/mL penicillin, 

100 µg/mL streptomycin, and 55 µM -mercaptoethanol. The lung epithelial carcinoma 

cell line A549 (ATCC) was cultured in F-12K medium (Gibco) supplemented with 10% 

FBS, 2 mM glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 55 µM -

mercaptoethanol. The H1-HeLa cell line (gift from Wai-Ming Lee) was cultured in MEM 

suspension medium with Earle’s salts and no calcium (Gibco, #11380-037), 

supplemented with 10% FBS (Hyclone), 1x MEM non-essential amino acids, 2 mM L-

glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, 0.1% Pluronic F-68, and 55 µM 

-mercaptoethanol (Sigma-Aldrich, rest from Gibco). H1-Hela cells were maintained in 

suspension by growing at 37oC on an incubator shaker set at 230 rpm. The Madin-Darby 

Canine Kidney (MDCK, ATCC) cell line was cultured in DMEM medium (Gibco) 

supplemented with 10% FBS (Gibco). 

Immunoblotting 

Five million cells were lysed in 2% SDS or LDS sample loading buffer (Pierce), with 5% 

2-mercaptoethanol (Sigma-Aldrich), and heated to 95oC for 10 minutes. Proteins 

contained within the supernatants were quantified by BCA (Pierce). Unless otherwise 
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indicated, 40 µg of protein were loaded per lane and were separated on NuPAGE Bis-

Tris SDS-PAGE gels with MOPS running buffer (Invitrogen), followed by semi-dry 

transfer onto nitrocellulose membranes (Bio-Rad). After blocking with 5% non-fat dry 

milk (Bio-Rad) in PBS containing 0.1% Tween 20 (Sigma-Aldrich), membranes were 

incubated with the antibodies directed against MDA5 (clone #D74E4), RIG-I (clone 

#D14G6), MAVS (clone #3993, all from Cell Signaling Technologies), -actin (clone 

#AC-15, Sigma-Aldrich), and HSP90 (clone 68, BD Biosciences). Signal was detected 

by incubation with appropriate HRP-conjugated secondary antibodies (Jackson 

ImmunoResearch or Southern Biotech), followed by application of SuperSignal West 

Pico Chemiluminescent substrate or SuperSignal West Dura Extended Duration 

Substrate (Pierce) and exposing to film. 

Plasmids and Molecular Cloning 

Firefly luciferase plasmid driven by the human IFN- promoter (IFNB-pGL3, 

Promega)[208] and the constitutively expressed Renilla luciferase reporter plasmid 

(pRL-TK, Promega) were kind gifts from Yong He. The firefly luciferase plasmids driven 

by the interferon-stimulated response element (pGL4.33-luc2P/ISRE/Hygro, Promega) 

and the NF-κB response element luciferase (pGL4.32-luc2P/NF-B-RE/Hygro, 

Promega) were modified to express GFP instead of the hygromycin resistance cassette. 

Briefly, pGL4.33-luc2P/ISRE/Hygro and pGL4.32-luc2P/NF-B-RE/Hygro plasmids were 

digested with BamHI and NotI (New England Biolabs) and gel-purified (QIAquick Gel 

Extraction Kit, Qiagen) to remove the hygromycin resistance cDNA. The coding 

sequence of EGFP was PCR-amplified from pcDNA3-EGFP (Addgene #13031) using 

AccuPrime Pfx SuperMix (Invitrogen) and subcloned into the linearized vector 
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backbones using the In-Fusion HD Cloning Kit (Clontech), to generate pGL4.33-

luc2P/ISRE/EGFP and pGL4.32-luc2P/NF-B-RE/EGFP. 

pCL20c MSCV-GFP-T2A is a modified version of the lentiviral transfer vector 

pCL20c MSCV-GFP [209]. Briefly, a self-cleavage T2A peptide sequence plus additional 

restriction sites were added in-frame to the 3’ end of the GFP cDNA from pCL20c 

MSCV-GFP. This was accomplished by PCR amplification of pCL20c MSCV-GFP using 

AccuPrime Pfx SuperMix (Invitrogen) with forward primer 5’-CTA GGC GCC GGA ATT 

ACC GGT GGC CGG CCG CGG GCC ACC ATG GTG AGC AAG GGC GAG GAG-3’ 

and reverse primer 5’-GGC ATC GAT GCG GCC GCA TGC TCA CCT GCA GGG GCC 

GGG GTT CTC CTC CAC GTC GCC GCA GGT CAG CAG GCT GCC CCG GCC CTC 

CTT GTA CAG CTC GTC CAT GCC GAG AGT GAT CC-3’.  The PCR-amplified product 

was resolved by agarose gel electrophoresis, gel-purified (QIAquick Gel Extraction Kit, 

Qiagen), and ligated using the In-Fusion HD Cloning Kit (Clontech) into the EcoRI- and 

NotI- (New England Biolabs) digested and gel-purified vector backbone of pCL20c 

MSCV-GFP (digested and purified to remove the original GFP and multiple cloning site). 

The lentiviral transfer vector pLenti-III-UbC/mCherry was generated by replacing 

the puromycin resistance cDNA in pLenti-III-UbC with mCherry cDNA from pLenti-PGK-

mCherry (both from Applied Biological Materials). The mCherry cDNA was PCR-

amplified with primers that appended 15bp that are homologous with the pLenti vector. 

pLenti-III-UbC/Puro was linearized by restriction digest with BsiWI. Homologous 

recombination of the linearized vector and mCherry cDNA was performed by mixing the 

vector, cDNA and Cold Fusion Cloning Kit master mix (System Biosciences) as per 

manufacturer’s protocol. 
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Human IFIH1 sequence-verified cDNA was purchased from Open Biosystems 

(Clone ID: 40008600) and subcloned into pcDNA3.1 (Invitrogen), pCL20 MSCV GFP 

T2A (immediately 3’ to T2A sequence), and pLenti-III-UbC/mCherry (under the ubiquitin 

C promoter) mammalian expression plasmids using the In-Fusion HD Cloning Kit 

(Clontech). Site-directed mutagenesis was used to generate constructs encoding the 

MDA5 mutants K365E, R337G, and R779H. In brief, wild-type MDA5-expressing 

plasmids were PCR-amplified using AccuPrime Pfx SuperMix (Invitrogen) and primers 

containing appropriate point mutations. Primers used were as follows: K365E forward 

primer 5’-GTT ATA GTT CTT GTC AAT GAG GTA CTG CTA G-3’, and reverse primer 

5’-GCT GTT CAA CTA GCA GTA CCT CAT TGA CAA G-3’; R337G forward primer 5’-

TAC AGG GAG TGG AAA AAC CGG AGT GGC TGT TTA CA-3’, and reverse primer 5’-

GGC AAT GTA AAC AGC CAC TCC GGT TTT TCC ACT CC-3’; R779H forward primer 

5’-GAA GTC ATT AGT AAA TTT CAC ACT GGA AAA ATA AA-3’, and reverse primer 5’-

GCA GAT TTA TTT TTC CAG TGT GAA ATT TAC TAA TG-3’. This was followed by 

Dpn1 digestion (New England Biolabs) and transformation into TOP10 competent cells 

(Invitrogen). Plasmid DNA was purified using the PureLink HiPure Filter Plasmid Kit 

(Invitrogen). The introduced mutations were confirmed by Sanger dideoxy sequencing. 

Affinity Precipitations 

Five hundred thousand 293T cells were seeded per well in tissue culture-treated 6 well 

plates (Corning). 12-16 hours later, cells were transfected with 4 µg of pCL20c MSCV 

GFP-T2A-WT MDA5, pCL20c MSCV GFP-T2A-K365E MDA5, or pmaxGFP (Lonza), 

complexed with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

recommendations. 48 hours later, cells were lysed in 0.05% Nonidet P-40 (Calbiochem), 

20 mM HEPES, 1.5 mM magnesium chloride (both from Quality Biological), 150 mM 
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sodium chloride, 0.038% of -mercaptoethanol (both from Sigma-Aldrich), and 1x 

cOmpleteTM EDTA-free protease inhibitor cocktail (Roche). After incubating on ice for 20 

minutes, cell lysates were mechanically disrupted by passing through a 25-gauge needle 

ten times. Lysates were centrifuged at 13,200 x g for 15 minutes at 4oC, before collecting 

supernatants. Proteins contained within the supernatants were quantified by BCA 

(Pierce). To 2 mg of protein, β,γ-methyleneadenosine 5′-triphosphate (ADPCP) (Sigma-

Aldrich) was added to a final concentration of 2 mM before adding 1 µg of biotin-labeled 

high molecular weight (HMW) polyinosinic:polycytidylic acid poly(I:C) (InvivoGen). After 

incubating at 37oC for 10 minutes, the mixture was added to M-270 hydrophilic 

streptavidin Dynabeads (Invitrogen) that had been pre-blocked for 20 minutes at 4oC 

with 600 µg to 1 mg of lysate from pmaxGFP (Lonza) transfected control 293T cells. 

After incubation at 4oC for 3 minutes, the beads were washed 3X with lysis buffer 

containing 2 mM ADPCP. MDA5 protein was eluted by incubating at 95oC for 5 minutes 

in 2X SDS buffer protein gel loading solution (Quality Biological) supplemented with 0.3 

M sodium chloride and 5% v/v 2-mercaptoethanol. Proteins were separated by SDS-

PAGE and immunoblotting for MDA5 was performed as described above.  

Luciferase Reporter Gene Assays 

Fifty- to 100- thousand 293T cells were seeded per well in 24-well tissue culture plates. 

After culture for 18-24 hours to ~70-80% confluency, Lipofectamine 2000 (Invitrogen) 

was used for co-transfections of cells with pcDNA 3.1 mammalian expression plasmids 

expressing wild-type MDA5 and/or mutants (20 ng or 100 ng), a firefly luciferase reporter 

plasmid (200 ng) driven by human IFN-β promoter, and a constitutively expressed 

Renilla luciferase reporter plasmid (20 ng). For some experiments, firefly luciferase 

reporter plasmids driven by the interferon-stimulated response element (ISRE) or NF-κB 
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response element were instead used. In dominant interference experiments, 20 ng 

pcDNA3.1 plasmid expressing wild-type MDA5, 100 ng pCL20 MSCV plasmid 

expressing GFP-T2A-K365E MDA5, and/or 100 ng pCL20 MSCV plasmid expressing 

GFP-T2A (empty vector) were transfected, along with luciferase reporter plasmids. Six 

hours later, cells were stimulated with a mixture of 1.2 µg high molecular weight poly(I:C) 

(InvivoGen) complexed with 1.5 µL Lipofectamine 2000 in 100 µL Opti-MEM® I reduced 

serum medium (Gibco), added to cells for an additional 18 to 24 hours before lysis. The 

Dual Luciferase Reporter assay (Promega) was used on a Fluostar Omega plate reader 

(BMG Labtech) to measure luciferase activities contained in cell lysates. Firefly 

luciferase activity was normalized to Renilla luciferase activity. Fold-increase in the 

normalized activity in MDA5-transfected cells is reported relative to normalized activity in 

untransfected cells. 

HRV Stocks 

Virus stocks were prepared from HRV-B14 seed stocks (a gift from Wai-Ming Lee) as 

previously described [210]. In brief, H1-HeLa cells were maintained in suspension at 

37oC using an incubator shaker set at 230 rpm. Cells were cultured in MEM suspension 

medium with Earle’s salts and no calcium (sMEM, Gibco, #11380-037), supplemented 

with 10% FBS (Hyclone), 1x MEM non-essential amino acids, 2 mM L-glutamine, 100 

U/mL penicillin, 100 µg/mL streptomycin, and 0.1% Pluronic F-68 (rest from Gibco). 

Cells were incubated with high-titer HRV-B14 at a MOI of 15, in DPBS containing 

calcium and magnesium (Lonza) for 1 hour at room temperature. After adsorption, 

infected H1-HeLa cells were cultured in complete medium for 8 more hours at 35oC, with 

shaking at 120 rpm. Cell pellets were subjected to three freeze-thaw cycles in 10 mM 

HEPES pH 7.2 (Quality Biological), and 0.5% Nonidet P-40 (Calbiochem) added before 
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lysates were clarified by high-speed centrifugation. After incubating clarified lysates with 

400 µg RNase A (Invitrogen) for 30 minutes at 35oC, 0.9% N-laurylsarcosine (Sigma-

Aldrich) and 28.5 µM 2-mercaptoethanol (Sigma-Aldrich) were added. Virions were 

concentrated and partially purified by ultracentrifuging for 2 hours at 40,000 rpm, 16oC, 

over a 30% (w/v) sucrose cushion (Sigma-Aldrich) containing 16.7 mM Tris acetate pH 

7.5 (Sigma-Aldrich) and 0.833 M sodium chloride (Quality Biological). The virus pellet 

was resuspended in DPBS containing calcium and magnesium, with 0.01 % bovine 

albumin fraction V (Sigma-Aldrich). Virus aliquots were stored at – 80oC until use. 

HRV Plaque Assay  

Plaque assays quantitating infectious HRV were performed as previously described, with 

modifications [211]. In brief, HRV-B14 virus stock or cell supernatants were serially 

diluted in DPBS containing calcium, magnesium, and 0.1% bovine albumin fraction V 

(Sigma-Aldrich). 200 µL diluted samples were added in duplicate to confluent 

monolayers of H1-HeLa cells in 6-well plates. After virus adsorption for 1 hour at room 

temperature, the cells were overlaid with 0.8% Noble agar (Sigma-Aldrich) in 1x P6 

medium (1x sMEM (Gibco), 26.2 mM sodium bicarbonate, 40.6 mM magnesium chloride 

hexahydrate, and 0.1% bovine albumin fraction V (rest from Sigma-Aldrich)). Nutritive 

medium was then overlaid to obtain final concentrations of 1x P6 medium, 2 mM L-

glutamine (Gibco), 1.2 mM pyruvic acid (Sigma-Aldrich), 2 mM oxaloacetic acid (Sigma-

Aldrich), and 0.1% glucose (Corning). After incubation at 35oC for 2 to 3 days, 

monolayers were fixed with 10% buffered formalin (Sigma-Aldrich) for 15 minutes at 

room temperature, overlaid agar removed, and plaques visualized by staining with 0.1% 

crystal violet (Sigma-Aldrich) in 20% ethanol for 1 hour. Plaques were counted and 

calculated as plaque forming units (PFU)/mL of original virus stock or cell supernatant. 
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HRV Infections 

For in vitro infections, A549 cells, seeded at 100,000 per well in 12-well tissue culture 

plates one day prior, were transfected when ~50-70% confluent with Stealth siRNA to 

MDA5 (HSS127414), RIG-I (HSS119008), and non-silencing negative control (Cat# 

12935300, all from ThermoFisher Scientific) at 40 nM in triplicate wells using siLentFect 

transfection reagent (Bio-Rad). For silencing of MAVS in parallel with controls, cells 

underwent a second round of Stealth siRNA (HSS127415) transfection 3 days after the 

first round. After transfection, cells were cultured for 48 to 72 more hours at 37°C prior to 

infection. HRV-B14 virus stock, diluted in DPBS containing calcium and magnesium 

(Lonza), and 0.1% bovine albumin fraction V (Sigma-Aldrich), was added at a MOI of 1. 

Virus was adsorbed for 1 hour at room temperature followed by 1 hour at 35oC. After 

washing 5 times with DPBS containing calcium and magnesium to remove unbound 

virus, infected cells were cultured in Ham’s F-12K (Kaighn’s) medium (Gibco), 

supplemented with 5% FBS (Hyclone), for 24 to 72 hours at 35oC. Cell supernatants 

were collected to measure virion release by plaque assay and total RNA isolated from 

cells to measure virus transcripts by qRT-PCR, as described below. In some 

experiments, A549 cells were transfected with a silencer siRNA to MDA5 (S34498) and 

Silencer® Select Negative Control (Cat# 4390843, ThermoFisher Scientific) before HRV 

infection. 

In other experiments, nasal epithelial cells were digested from feeder cells and seeded 

in 12-well plates at 100,000 cells per well in 1 mL epithelial culture medium (Promocell, 

cat# C21060) with 10 µM Y-27632 (ApexBio) and incubated at 37oC 5% CO2. The cells 

were seeded into plates that had been previously coated with 300 µl rat tail collagen (BD 

BioSciences, cat# 354236) at 30 µg/ml in PBS for 45 min at room temperature, washed 
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twice with PBS, and air dried for 20 minutes. The next day, the cells were washed once 

with DPBS and then infected with HRV-B14 at a MOI of 1 in DPBS with 0.25% bovine 

serum albumin (BSA, Sigma-Aldrich). Virus was adsorbed for 40 minutes at room 

temperature and then 90 minutes at 35oC. After washing 3 times with DPBS, the cells 

were cultured in epithelial culture medium with 10 µM Y-27632, for 48 or 72 hours at 

35oC. Total RNA isolated from cells were used to measure virus transcripts by qRT-

PCR, as described below.  

Pan-HRV qRT-PCR: 

After washing off non-adherent cells twice with PBS, total RNA was isolated using 

TRIzol extraction (Invitrogen). 2 µg total RNA was reverse transcribed using High-

Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems). 

Diluted cDNA was analyzed by quantitative real-time PCR using TaqMan Universal PCR 

Master Mix on a 7500 Real Time PCR System (Applied Biosystems), as previously 

described [212]. The forward primer D110 was 5’-CTA GCC TGC GTG G-3’, reverse 

primer RVQ1 was 5’-AAA CAC GGA CAC CCA AAG TAG T-3’, and probe RVQ2 was 5’-

6FAM-TCC TCC GGC CCC TGA-MGB-NFQ-3’. Viral copy numbers were calculated 

based upon a standard curve generated from HRV-B14 virion RNA and were shown 

relative to siRNA negative control. For infection of nasal epithelial cells, viral copy 

numbers were shown relative to values from father’s cells. 

Lentivirus Particle Production 

Specific lentiviral transfer vectors (all in pLenti-III-UbC/mCherry) were constructed as 

described above. VSV-G–pseudotyped lentivirus particles were generated by transient 

co-transfection into 293T cells of the specific transfer vector together with the packaging 
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plasmids pCMV delta R8.2 (HIV-1 GAG/POL, Tat, and Rev expressing plasmid, 

Addgene #12263) and pCMV VSV-G (VSV-G envelope expressing plasmid, Addgene 

#8454) [213] using calcium phosphate precipitation [214]. Briefly, 13 million 293T cells 

were seeded in poly-L-lysine (Sigma-Aldrich) coated Cell Culture Treated TripleFlasks 

(Nunc). When cells reached 95% confluency, 250 µg of specific transfer vector, 125 µg 

pCMV delta R8.2, and 42 µg of pCMV VSV-G were precipitated with calcium phosphate, 

mixed with 100 mL of complete IMDM, and added to the cells. DNA precipitates were 

washed out 12 hours after transfection and cell supernatants were collected daily for 3 

days (stored at 4°C), filtered through 0.22 µm pore-size filter (GE), concentrated by 

centrifugation at 18,000 x g for 3 hours at 4°C, and resuspended in Opti-MEM I reduced 

serum media (Gibco). Lentivirus preparations were stored at -80°C until use.   

All lentivirus preparations were titered on 293T cells to determine the concentration of 

infectious units. 100,000 293T cells were resuspended in complete IMDM containing 8 

µg/mL polybrene (Sigma-Aldrich) and 10 µL of diluted lentivirus to a final volume of 1 

mL. The suspension was added to a 24-well plate (Corning) and spin-infected at 1350 x 

g for 30 minutes at 35°C. 48 hours later, cell monolayers were washed twice with PBS, 

trypsinized (Gibco), transferred to 14 mL round bottom FACS tubes (Falcon), washed 

with PBS, and resuspended in PBS containing 0.5 µg/mL propidium iodide (Sigma-

Aldrich). Single cell suspensions were analyzed on a BD FACSCanto II to determine the 

percentages of GFP+ cells among the propidium iodide low (live) populations. Lentivirus 

dilutions transducing between 2 and 15% of target cells were used to determine 

concentration of each preparation. 

Wild-type IFIH1 (Genbank accession BC111750), or K365E IFIH1 cDNA were subcloned 
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under the human ubiquitin C promoter. VSV-G–pseudotyped lentivirus particles were 

generated by transient co-transfection into 293T cells of the specific transfer vector with 

the packaging plasmids pCMV delta R8.2 (HIV-1 GAG/POL, Tat, and Rev expressing 

plasmid) and pVSV-G (VSV-G envelope expressing plasmid).[213] Cell supernatants 

were collected daily for 3 days, filtered through 0.22 µm pore-size filter, concentrated by 

centrifugation at 18,000 x g for 3 hours at 4oC, resuspended in Opti-MEM® I reduced 

serum media (Gibco), and stored at -70°C until use. 

Assessment of in vitro Antiviral Function of K365E MDA5 

A549 cells, seeded at 50,000 per well in 24-well tissue culture plates 20 hours prior, 

were transduced with lentivirus stocks for 48 hours to similar transduction efficiencies. 

Briefly, the cell culture medium was replaced with lentivirus particles diluted in F-12K 

medium (Gibco) containing 8 µg/mL polybrene (Sigma-Aldrich) and spin-infected at 1350 

x g for 30 minutes at 35°C. Transduced cells were infected with HRV-B14 at MOI of 1 for 

72 hours, as described above. Transduction efficiencies were assessed by flow 

cytometry, after gating on dead negative (Zombie Aqua, BioLegend) transduced 

(mCherry+) cells. HRV-B14-infected cultures were washed with DPBS containing 

calcium and magnesium (Lonza), and pan-HRV qRT-PCR was performed as described 

above. 

Flu Stocks 

A/Victoria/361/2011 (H3N2), A/California/4/2009 (H1N1), and A/Puerto Rico/8/1934 

(H1N1) were propagated in embryonated chicken eggs from virus stocks as previously 

described.[215] A/Netherlands/602/2009 was propagated in cell culture on MDCK cells 
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as previously described [215]. All virus stocks were titered by infectious plaque assay on 

Madin-Darby Canine Kidney (MDCK) cells (ATCC) as previously described [215]. 

Flu Replication 

For infection of A549 cells, cells were seeded at 100,000 per well in 12-well tissue 

culture plates one day prior to transfecting when ~50-70% confluent with Stealth siRNA 

targeting MDA5 (HSS127414), RIG-I (HSS119008), MAVS (HSS127415), and non-

silencing negative control (Cat# 12935300, all from ThermoFisher Scientific) at 40 nM in 

triplicate wells using siLentFect transfection reagent (Bio-Rad).  After transfection, cells 

were cultured for 72 additional hours at 37°C prior to infection. Alternatively, primary 

nasal epithelial cells were digested from feeder cells and seeded in 24-well plates at 

100,000 cells per well in 0.5 mL epithelial culture medium (Promocell, cat# C21060) with 

10 µM Y-27632 (ApexBio) and incubated at 37°C in 5% CO2. The cells were seeded on 

plates previously coated with 150 µl rat tail collagen (BD BioSciences, cat# 354236) at 

30 µg/ml in PBS for 45 min at room temperature, washed twice with PBS, and air dried 

for 20 minutes. 36 hours later, the cells were washed twice with PBS before infection. 

Transfected A549 cells were infected with A/Victoria/361/2011 (H3N2) at MOI of 0.1 

(diluted in PBS containing 0.3% BSA (Sigma-Aldrich) to a final volume of 300 µL/12-well) 

for 1 hour at room temperature, washed twice with PBS to remove unadsorbed virus, 

and the medium was replaced with F-12K supplemented with 0.1% BSA, 0.1% FBS 

(Hyclone), 2 mM glutamine, 55 µM 2-mercaptoethanol, and 1 µg/mL TPCK-trypsin 

(Sigma-Aldrich).  Primary nasal epithelial cells were infected with A/Victoria/361/2011 

(H3N2) at MOI: 0.02 (diluted in complete epithelial culture medium without Y-27632 to a 

final volume of 150 µL/24-well) for 1 hour at room temperature, washed twice with PBS 
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to remove unadsorbed virus, and medium was replaced with complete epithelial culture 

medium plus 1 µg/mL TPCK-trypsin (Sigma-Aldrich) and without Y-27632.  Following 

infection, all cultures were returned to 37°C in 5% humidified CO2. 

SV40-transformed fibroblasts were seeded at 50,000 cells/well in 48 well tissue 

cultures plates in complete DMEM.  16-24 hours later, cells were infected with 

A/Netherlands/602/2009 (H1N1) or A/Puerto Rico/8/1934 (H1N1) at the indicated MOI 

for 60 minutes at 37°C in Hanks’s Balanced Salt Solution with Calcium and Magnesium 

(HBSS) supplemented with 0.3% bovine serum albumin (BSA, Sigma-Aldrich). Cells 

were washed twice with PBS and cultured at 37°C in DMEM supplemented with 0.1% 

FBS (Hyclone) and 0.3% BSA, 2 mM glutamine (Gibco), and 55 µM 2-mercaptoethanol 

(Sigma-Aldrich) in the presence of 1 μg/mL TPCK-trypsin (Sigma-Aldrich). Cell 

supernantants were collected at indicated time points after infection and stored at -

80°C. Once all samples were collected, supernatants were thawed and flu titers were 

determined by infectious plaque assay on MDCK cells as previously described.[215] 

Briefly, MDCK cells were plated in 12-well plates and grown to 100% confluency. Cells 

were washed twice with PBS, and serial dilutions of flu infection supernatants diluted in 

PBS were absorbed onto MDCK cells for 1 hour at room temperature. Cells were then 

overlaid with agar medium of MEM, 28 mM sodium bicarbonate, 2 mM L-glutamine, 100 

U/mL penicillin, 100 µg/mL streptomycin (all from Gibco), 0.4% BSA, 1 μg/mL TPCK-

trypsin (both from Sigma-Aldrich), and 1% Oxoid Agar (Thermo Scientific). After 36 to 60 

hours, plaques were counted by direct visualization or by fixation and crystal violet 

counterstain as described above in HRV plaque assay, and then calculated as PFU/ml 

of flu infection supernatant. 

qRT-PCR for Flu-induced Pro-inflammatory Cytokines 
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A549 cells in which MDA5, RIG-I, MAVS, or negative control were silenced by 

transfecting in siRNA were infected with flu strain A/Victoria/361/2011 (H3N2) as 

described above. Total RNA were isolated from Flu-infected A549 cells using TRIzol 

extraction (Invitrogen). 2 µg total RNA per sample was reverse transcribed using High-

Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (ABI). All quantitative RT-

PCR were performed by the SYBR green method on a 7500 Real Time PCR System 

(ABI). Primer sequences are as follows: human TNF- forward primer: 5’-CTG CTG 

CAC TTT GGA GTG AT-3’; human TNF- reverse primer: 5’-AGA TGA TCT GAC TGC 

CTG GG -3’; human IL-1 forward primer: 5’-ACT GCC CAA GAT GAA GAC CA-3’; 

human IL-1 reverse primer: 5’-CCG TGA GTT TCC CAG AAG AA-3’; human IL-6 

forward primer: 5’-AGT GAG GAA CAA GCC AGA GC-3’; human IL-6 reverse primer: 5’-

GTC AGG GGT GGT TAT TGC AT-3’; human IL-8 forward primer: 5’-TCC TGA TTT 

CTG CAG CTC TGT-3’; human IL-8 reverse primer: 5’-AAA TTT GGG GTG GAA AGG 

TT-3’; human -actin forward primer: 5’-GCA CAG AGC CTC GCC TT-3’; human -

actin reverse primer: 5’-GTT GTC GAC GAC GAG CG-3’.The expression of mRNA for 

pro-inflammatory cytokine genes of interest was normalized to the expression of -actin 

and then normalized to the control groups at 8 hours post-infection. 

Flu Induction of IFN-  ELISA and Cytotoxicity 

SV40-transformed fibroblasts were infected with flu (A/Puerto Rico/8/1934 (H1N1)) at 

the indicated MOI for 60 minutes at 37°C in Hanks’s Balanced Salt Solution with Calcium 

and Magnesium (HBSS) supplemented with 0.3% BSA. Cells were washed twice with 

PBS and cultured at 37°C in DMEM supplemented with 10% FBS. Cell supernatants 

were collected at the indicated time points after infection. Sendai Virus (SeV) infections 

were performed in parallel as positive controls, in which cells were infected with 5 
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hemagglutination units of SeV Cantell strain in DMEM supplemented with 10% FBS and 

left in the well until the time of collection. For quantitation of IFN-, supernatants were 

diluted twofold and were assayed for Human IFN-β using the VeriKine Human Interferon 

Beta ELISA Kit (PBL Assay Science). For quantitation of flu-induced cytotoxicity, 

supernatants were diluted 2.5-fold and were assayed for LDH release using the 

Cytotoxicity Detection Kit Plus (Roche) to measure enzymatic activity. Colorimetric 

absorbance was measured according to kit manufacturers’ recommendations, using a 

VICTOR X4 Multi-label Plate Reader (Perkin-Elmer). 

RSV Infections 

Recombinant wild-type RSV strain A2 in which enhanced GFP was inserted between the 

P and M genes was propagated, sucrose-purified, and titered by plaque assay on Vero 

cells as previously described [216]. The virus stock was sequenced and virus was 

recovered without any adventitious mutations as confirmed by Sanger dideoxy 

sequencing. A549 cells were seeded and transfected with siRNA to MDA5, RIG-I, 

MAVS, or a non-silencing negative control as described above for HRV infections. 

Alternatively, primary nasal epithelial cells were digested from feeder cells and seeded in 

12-well plates at 150,000 cells per well in 1 mL epithelial culture medium (Promocell, 

cat# C21060) with 10 µM Y-27632 (ApexBio) and incubated at 37°C in 5% CO2. The 

cells were seeded on plates previously coated with 300 µl rat tail collagen (BD 

BioSciences, cat# 354236) at 30 µg/ml in PBS for 45 min at room temperature, washed 

twice with PBS, and air dried for 20 minutes. 36 hours later, the cells were washed once 

with PBS. Transfected A549 cells or primary nasal epithelial cells were infected with 

RSV-GFP at an MOI of 1 or 0.2, respectively (diluted in appropriate complete medium, 

300 µL per 12-well) for 1 hour at room temperature, washed twice with PBS to remove 
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unadsorbed virus, medium was replaced (complete F-12K for A549; epithelial culture 

media without Y-27632 for nasal epithelial cells), and cultures returned to 37oC in 5% 

humidified CO2.  

RSV-GFP qRT-PCR 

At 6, 24, or 48 hours at RSV-GFP infection, infected cell cultures were washed twice 

with PBS to remove non-adherent cells, total RNA was isolated using TRIzol extraction 

(Invitrogen) according to manufacturer’s instructions. 0.5 to 2.0 µg total RNA was 

reverse transcribed using High-Capacity cDNA Reverse Transcription Kit with RNase 

Inhibitor (Applied Biosystems). Diluted cDNA (1:5 to 1:10 in H2O) was analyzed for RSV 

N gene transcripts by quantitative real-time PCR using TaqMan Universal PCR Master 

Mix on a 7500 Real Time PCR System (Applied Biosystems) per manufacturer’s 

instructions. The N gene forward primer sequence was 5’-TGG CAT GTT ATT AAT CAC 

AGA AGA TGC T -3’, N gene reverse primer sequence was 5’-TTC TCT TCC TAA CCT 

AGA CAT CGC ATA -3’, and the N gene probe sequence was 5’-6FAM-AAC CCA GTG 

AAT TTA TG -MGB-NFQ-3’. Viral copy numbers were calculated based upon a standard 

curve generated from RSV-GFP virion RNA and were shown relative to the RSV 

transcript levels in the father’s cells. 

RSV-GFP Flow Cytometry 

At 24 and 48 hours after RSV-GFP infection, whole well contents were collected for flow 

cytometric analysis. First, cell supernatants followed by sequential PBS washes were 

collected in 5 mL FACS tubes (Falcon). Next, single-cell suspensions were collected 

after treating with 0.25% trypsin/EDTA (Gibco) for 10 minutes and combining with cell 

supernatants and washes. Contents were washed 1 time with PBS and stained with 
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LIVE/DEAD Fixable Near-IR Dead Cell Stain (Molecular Probes) or Zombie NIR F ixable 

Viability Kit (Biolegend) for 20 minutes at room temperature, fixed in BD 

Cytofix/Cytoperm solution (BD Biosciences) or 1% paraformaldehyde (Electron 

Microscopy Sciences) in PBS for 20 minutes, washed and resuspended in PBS 

containing 1% FCS or 1% BSA and 0.09% sodium azide. The stained and fixed cells 

were acquired on a BD FACS Canto II or BD LSR II flow cytometers without 

compensation controls given the negligible spectral overlap between fluorophores. 

FlowJo 9.8.3 or 10.0.8 (TreeStar) software used to enumerate singlet live cells 

expressing GFP. The values of % GFP+ cells treated with siRNA to MDA5 are shown 

relative to the values for negative control siRNA.  

RNA-Seq 

A549 cells that had been transfected 48 hours earlier with siRNA to MDA5 or non-

specific negative control siRNA, were uninfected or infected for 6, 12, 24, and 48 hours 

with HRV-B14 or RSV, as described above. For each time point, infections were 

performed in triplicate. Total cellular RNA were isolated using RNeasy Mini Kit 

(Qiagen). Multiplexed RNA libraries were prepared using the Truseq RNA sample prep 

kit (Illumina). Briefly, poly(A)-containing mRNA were captured with oligodT beads, 

fragmented, reverse-transcribed, and the cDNA ligated to Illumina adapters containing 

indexing barcodes. Libraries were quantified using KAPA Library Quant Kits (KAPA 

Biosystems), before running on a HiSeq 2000 Sequencing System (Illumina) to produce 

50 bp single end reads. Sequencing reads were aligned with ELAND to the human 

reference genome version hg19. Count data of the annotated transcripts from individual 

samples were normalized for sequence depth. Analyses of differentially expressed 

genes were performed using the Statistical R package DESeq 
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(http://bioconductor.org/packages/2.12/bioc/html/DESeq.html). Sequencing reads were 

also aligned with Bowtie2 to the HRV-B14 or RSV reference genomes to count the read 

number corresponding to the virus transcripts. The RNA-seq coverage across the virus 

transcripts were checked for normal distribution and count data of the virus transcripts 

were also normalized for overall sequence depth. Fold changes were calculated by 

comparing the RPKM expression values (Reads Per Kilobase per Million mapped reads) 

under siNeg vs. siMDA5 conditions. Logarithm2-transformed expression fold changes 

were analyzed for distribution (box-and-whisker diagrams) and hierarchical clustering 

(heat map of expression values) using R. “Response to type I interferon” genes were 

selected based on the GO term definition (GO term GO0034340). The comparisons for 

the fold change distributions of different gene sets were performed using two sample 

Kolmogorov-Smirnov tests (KS tests). RNA-seq data will be deposited into the Gene 

Expression Omnibus (GEO) repository under accession number X. 

Statistical Analyses 

One-way ANOVA with Dunnett’s multiple comparisons, Kruskal-Wallis test with Dunn’s 

multiple comparisons, and Mann-Whitney U testing were performed using Prism 

software (GraphPad). Two sample Kolmogorov-Smirnov testing were performed using 

the Statistical R package. 

3.9  Contributions 
 

Yu Zhang, Joshua J. McElwee, and Jason D. Hughes analyzed WES, and Yu Zhang 

and Joshua J. McElwee discovered the IFIH1 mutation. Ian T. Lamborn and Heardley M. 

Murdock assessed MDA5 expression, Evan Masutani performed molecular modeling, 

and Heardley M. Murdock performed immunoprecipitations. Huie Jing, Ian T. Lamborn, 
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and Sangeeta Bade performed luciferase reporter assays. Huie Jing and Ian T. Lamborn 

performed HRV experiments. Shirin Munir developed methods for A549 siRNA 

transfections. Ian T. Lamborn, Shirin Munir, and Linda G. Brock performed RSV 

experiments. Ian T. Lamborn, Scott B. Drutman, Michael J. Ciancanelli, Celia P. Santos, 

and Huie Jing performed flu experiments. Yu Zhang evaluated transcriptomes and 

performed rhinovirus molecular typing for phylogenetic analysis. Heardley M. Murdock, 

Sangeeta Bade, and Emmanuel Y. Fordjour assisted with immunoblotting. Ian T. 

Lamborn, Huie Jing, and Michael J. Ciancanelli generated CRISPR fibroblast lines, and 

Dave P. Nichols generated nasal epithelial cell lines. Jordan K. Abbott and Erwin W. 

Gelfand cared for the patient, and collected and analyzed clinical data with assistance 

from Helen C. Su and Corinne S. Happel. Helen F. Matthews coordinated clinical study 

protocol and sample collection. Helen C. Su planned and supervised the experimental 

work and data analyses. Jean-Laurent Casanova, Michael J. Ciancanelli, Kanta 

Subbarao, and Peter L. Collins provided advice and assisted in supervising experimental 

work. Helen C. Su and Ian T. Lamborn prepared the manuscript. All authors discussed 

and revised the manuscript. 
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CHAPTER 4 – Discussion and Future Experiments 
 

The field of primary immunodeficiency research has matured and evolved immensely 

since its infancy in the 1960s.[2, 5]  From the first molecular diagnosis of a PID in ADA 

deficiency in 1972, there are now over 300 different causal genes implicated in the 

pathogenesis of primary immunodeficiencies, and that number is growing faster than 

ever.[4, 15, 16]  Here we implicate two additional genes in the pathogenesis of two 

previously unidentified immunodeficiencies.   

4.1  Dominant-activating mutations in Gααααi2 cause MAGIS 
Syndrome - Discussion and Future experiments 
 

 In Chapter 2 we present the identification of de novo mutations in GNAI2, the 

gene encoding the heterotrimeric G protein Gαi2, in two individuals who presented with 

life-threatening multi-system autoimmunity and immunodeficiency to mucocutaneous 

bacterial and viral infections.  Notably these patients presented with elevated circulating 

neutrophils and monocytes, likely attributable to impaired chemokine mediated leukocyte 

extravasation resulting in an accumulation of these cells in the blood.  We termed this 

disease ‘MAGIS syndrome’ (Myelocytosis, Autoimmunity, Gαi2 gain-of-function 

Immunodeficiency and Short stature). 

 Both patients exhibited apparently de novo mutations of the same amino acid 

(threonine 182) in Gαi2.  Mutational studies of Gα subunits have identified a number of 

missense mutations that result in differing degrees and types of activation.[135, 217, 

218]  It will be interesting to see if future sequencing efforts in healthy and diseased 

individuals uncover de novo or inherited less-activating mutations such as G184S Gαi2 

or more activating mutations such as R179C/H or Q205L Gαi2 and how presentation 
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among these individuals compares to the patients described here.  Although we will not 

be able to tell until the an accurate incidence of this syndrome can be ascertained and 

compared to estimates of the spontaneous mutation rate for this genomic region in 

humans, there is mounting evidence of in utero selection against activating mutations in 

Gαi2.  First, a G184S Gαi2 knock-in mouse has been shown to breed heterozygous and 

homozygous mutant pups at rates significantly below the expected Mendelian 

frequencies.[108]  Additionally, our own efforts to generate knock-in mice bearing the 

T182I Gαi2 allele are suggestive of significant embryonic lethality (Chapter 2, 

Supplementary Table 2.3) in heterozygous animals.  If, in time, it is determined that in 

utero selection against activating de novo mutations of Gαi2 occurs in humans, it will be 

important to see if co-inherited variations promote the survival patients who are born as 

these may shed light on potential targets for therapeutic intervention.  

 The clinical presentation of these patients and the deleterious effects of their 

mutations on leukocyte chemotaxis strongly argue that MAGIS syndrome is, at least in 

part, a disease of leukocyte migration.  Interestingly MAGIS syndrome, along with WHIM 

syndrome, which is due to dominant-activating mutations in the chemokine GPCR 

CXCR4, are the only two currently identified defects of leukocyte migration due to 

mutations in a GPCR or their associated G-proteins, the foundation of chemokine 

signaling.[219]  With the upward trajectory sequencing efforts and advances in medical 

care for immunodeficient patients, individuals with mutations other chemokine receptors 

or heterotrimeric G-proteins will likely be identified. 

 Our findings indicate a partial defect in chemotaxis, but it is clinically significant.  

It mimics aspects of other defects of chemotaxis (i.e. accumulation of circulating white 

blood cells, deficient antibody production, chronic viral skin infections, recurrent 
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sinopulmonary infections, etc.); however, as demonstrated by our in vivo assessment of 

leukocytes into the skin and oral cavity as well as the clinical findings of lymphocytic 

infiltration into the brain of P2, not so severe that leukocytes cannot enter solid tissues 

entirely.[109, 116]  Chemokine receptors rely on Gαi2 to differing degrees in a cell-type 

specific manner.[220, 221]  It will be interesting to dissect which chemokine receptor 

signaling pathways are affected in which cells types in MAGIS sydrome, and see how 

that break down influences disease pathogenesis. 

The complete etiology of the life-threatening autoimmune phenotype in these 

individuals is still largely unknown.  Other defects of chemotaxis often present with 

autoimmune cytopenias, autoimmune arthritis, vasculitis, and more, the etiology of which 

is poorly understood and most often attributed to generalized immune dysregulation as a 

result of impaired immune cell localization/interaction in lymphoid tissues or to sites of 

inflammation.[110, 222, 223].  While our studies cannot rule out that similar processes 

are contributing to autoimmunity in MAGIS syndrome, the TCR hyper-responsiveness 

seen in MAGIS syndrome T cells provides an additional possibility.  A fundamental 

determinant for the appropriate initiation of the immune response is the requirement for 

two signals for T cell activation:  the TCR signal and costimulation.[224, 225] The 

diminished requirement for T cell costimulation by MAGIS syndrome T cells in vitro 

represents an impairment of this fundamental protective mechanism, and a phenotype 

important to consider in further studies of the autoimmune etiology of MAGIS syndrome. 

 Exactly how increased Gαi2 activity (on effectors) or decreased Gαi2 activity (in 

response to chemokine receptor/GPCR signaling) effects T cell activation will 

necessitate further study.  The interaction between GPCR signaling and receptor 

tyrosine kinase (RTK) or non-receptor tyrosine kinase signaling (nRTK) signaling has 
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long been observed, but precise mechanisms have remained obscure.[226-228]  I have 

demonstrated augmented TCR-mediated Ca2+ fluxes in patient cells and that stable 

expression of patient derived Gαi2 in normal cells is sufficient to recapitulate this 

alteration in TCR signaling.  Notably, the changes in TCR mediate Ca2+ flux in healthy 

control cells occurred after prolonged expression (>21 days).  This suggests the mutant 

proteins’ effects are not simply a result of the acute presence of mutant protein within the 

cell, but a result of cellular changes due to the presence of the mutant protein over 

multiple cellular divisions.  Transcriptional and proteomic analysis of cells acutely 

expressing GOF Gαi2 versus cells after prolonged expression will be important for 

understanding how GOF Gαi2 is altering these cells over time. 

 One example of the cross-talk between GPCR signaling and RTK signaling, is 

the affect of either Gαi2 deficiency or expression of constitutively activated Q205L Gαi2 

on insulin receptor sensitivity and glucose uptake in mice.[55, 56]  An important role for 

glucose receptor upregulation and glucose uptake in T cells occurs as a consequence of 

T cell costimulation whereby the cells shift their metabolism from fatty acid oxidation to 

glycolytic metabolism, a process necessary for sustaining rapid cell growth and 

proliferation.[152, 229]  Additionally we have observed increased phosphorylation of 

ribosomal protein S6 in cell expressing activated Gαi2, a known consequence of 

increased glycolysis and anabolic metabolism from other studies.[148]  Studying the 

expression and responsiveness of glucose receptors in T cells from MAGIS syndrome 

patients will be an important initial step understanding the T cell hyper-responsive 

phenotype seen in these patients, and may provide insight into the costimulatory effect 

of GOF Gαi2 on T cell activation. 
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 The Signal transducer and activator of transcript (STAT) family proteins are 

members of the Janus kinase (JAK)-STAT signaling pathway, a nRTK (non-receptor 

tyrosine kinase) signaling family heavily utilized by cytokine receptors.  Once activated, 

STAT family members initiate a transcriptional program that is essential for T cell 

activation, differentiation, and effector function in addition to many other processes.[230]  

Patients with dominant interfering STAT3 mutations fail to generate T helper 17 (Th17) 

cells properly and suffer from chronic mucocutaneous candidiasis, recurrent 

staphylococcus skin infections, hyper IgE secretion, and bone and connective tissue 

abnormalities.[231-233]  Patients with germline GOF STAT3 mutations develop life-

threatening autoimmunity while identical somatic mutations are potent oncogenes 

promoting dysregulation of the cell cycle.[141, 234, 235]  Interestingly, STAT3 activity 

can be initiated and augmented by Gαi/o family members or their associated Gβγ 

dimers.[236]  Although Gαi2 is not yet a known driver of STAT3 signaling, the Gβγ 

dimers they regulate are.[237]  Furthermore, identifying effectors of GPCR pathways is 

very cell type dependent due to the cross utilization of Gα subunits and variety of 

combinations of Gβγ dimers by GPCRs.[46]  If the activating Gαi2 mutations observed in 

MAGIS syndrome are driving STAT3 activity, this could tie the autoimmunity of MAGIS 

syndrome to the life-threatening autoimmunity of patient’s with germline GOF STAT3 

mutations.  Additionally, P1 exhibited greatly increased Th17 cells and an elevated 

proportion of IL-17 producing CD8+ T cells, a consequence predicted from the known 

function of STAT3 and frequently observed in the GOF STAT3 patients.[141, 231]  It will 

be important to explore the effects of MAGIS syndrome-derived Gαi2 mutations on 

STAT3 activity in future studies to understand the autoimmune phenotype seen in this 

disease. 
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4.2  Human MDA5 Deficiency - Discussion and Future 

experiments 

In Chapter 3 we present the identification of homozygous missense mutations in MDA5, 

the gene encoding a cytosolic pattern recognition receptor of dsRNA, in an individual 

presenting with life-threatening respiratory infections with RNA viruses.  Although this 

patient inherited identical rare mutations from each parent, WES showed her rate of 

homozygosity was higher than average but still within the normal range, suggesting this 

inheritance was likely the result of a founder effect on a small and genetically isolated 

people group in Southeast Asia from which she originates. 

 As the genetic etiologies of more primary immunodeficiencies are discovered a 

few patterns have emerged.  One pattern is that it appears many essential genes and 

gene pathways of the immune system have been retained through genetic selection and 

evolved to resist a narrow range of pathogens encountered in the natural 

environment.[5]  A prominent example is the exploration of Mendelian susceptibility to 

mycobacterial disease (MSMD), which has uncovered dozens of genetic mutations in 

the sensing, production, or response to interferon gamma (IFNγ).  These patients 

consistently present with life-threatening susceptibility to weakly virulent mycobacterial 

species or occasionally other intramacrophagic infections.[238]  These studies 

demonstrated that the major function of IL-12 (the predominant cytokine generating IFNγ 

producing T helper type 1 or Th1 cells), IFNγ production, and IFNγ function in humans is 

to confer protection to mycobacterial infection.[239]  Similar efforts examining the 

genetic etiologies of chronic mucocutaneous candidiasis (CMC) and more recently of 

Epstein-Barr virus (EBV) viremia have corroborated the idea that major pathways of the 
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immune system have been selected and retained within the human immune system due 

to constant pathogenic pressure from common microbes and the protection they confer 

to them.[240, 241] 

The observations from efforts to understand the genetic basis of MSMD were 

surprising because mice carrying mutations in MSMD-associated genes (and thus 

deficient in Th1 mediated immunity), exhibited susceptibility to a much larger spectrum 

of pathogens including intracellular bacteria and viruses.[239]  We now recognize that 

many relevant animal models display much broader susceptibilities than the human 

diseases they model.[5, 8]  Before patients deficient in Toll-like receptor 3 (TLR3), a 

transmembrane sensor of dsRNA, were identified, TLR3 knockout mice exhibited lethal 

susceptibility to 8 of 16 viruses tested in the laboratory.[242]  However, humans deficient 

in TLR3 display highly specific susceptibility to Herpes simplex encephalitis (HSE) due to 

Herpes simplex virus 1 (HSV1) and many are known to live completely healthy 

lives.[243, 244]  This discrepancy between animal models and patients is likely due to 

the myriad of differences between laboratory infections in specific pathogen free 

environments and human infections in natura, not to mention the added complexity of 

outbred human genetics.   

As it pertains to this current study, MDA5 knockout mice or MDA5 deficient cells 

exhibit susceptibility to a host of RNA viruses in the laboratory setting including 

coronaviruses, calciviruses, flaviviruses, picornaviruses, orthoreoviruses, 

paraymyxoviruses, orthomyxoviruses, and more. [76, 79-89]  The patient we have 

identified with loss of function mutations in MDA5 has a history of recurrent viral 

infections including a picornavirus (i.e. rhinovirus), coronaviruses, orthomyxoviruses (i.e. 

influenza A and B), and paramxyoviruses (i.e. respiratory syncytial virus , human 
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parainfluenza virus 4).  This was somewhat surprising because many of these viruses 

such as influenza A (IAV) and B (IAB), respiratory syncytial virus (RSV), human 

parainfluenza virus 4 (HPIV4) are thought to be sensed and controlled through RIG-I 

mediated recognition with MDA5 being more critical and specific for picornavirus and 

coronavirus family members.  Although in one sense the patient’s range of infection was 

not broader than prior animal studies and in vitro experiments might have indicated, it 

was more inclusive than one might have predicted based on patient presentations from 

other PRR pathways such as TLR3, MyD88, IRAK4, etc. [243-247] 

I investigated the possibility that MDA5 played an unappreciated role in the 

recognition and/or control of IAV and RSV, two sources of significant medical 

burden.[248]  We did so using WT viruses and the primary targets of these viruses, 

human respiratory epithelium.  Consistent with the observation that defects in specific 

pathways of immunity predispose affected individuals to a narrow range of infection, I did 

not find that MDA5 deficiency resulted in a susceptibility to IAV or RSV.  I did however 

find that MDA5 deficiency significantly impaired restriction of human rhinovirus (HRV) 

infection. 

Exactly why the patient’s presentation includes such a broad range of severe 

respiratory infections remains to be answered.  One possibility is that chronic/prolonged 

infection with HRV predisposed the patient to the other infections endured by the patient.  

Because HRV, also known as the ‘common cold,’ is generally cleared quickly, the effects 

of prolonged infectious episodes on the human respiratory system are not well 

understood. [165, 166]  Early in life the patient did exhibit lung pathology consistent with 

bronchiectasis, a condition known to increase susceptibility to respiratory tract 

infections.[249]  Another possibility is that MDA5 is critical for protection against 
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paramyxoviruses and orthomyxoviruses in humans in vivo in coordinating a dynamic 

immune response involving multiple cell types.  Restriction and clearance of respiratory 

infections involves intrinsic cellular immunity (modeled in in vitro infections of respiratory 

epithelium), but also coordinated responses from the leukocytes of the innate immune 

system as well as the adaptive immune system.[250]  Signaling through MDA5 initiates 

transcription of the chemokines that promote leukocyte infiltration as well as 

proinflammatory cytokines that activate antigen presenting cells for antigen 

presentation.[251]  Additionally MDA5 is expressed in T cells and B cells and recent 

studies have demonstrated an essential role for RLRs in generating T cell independent 

antibody responses.[252]  Although T independent antibodies are not known to be 

critical for clearance and protection from RNA viruses, it is an indication that PRR like 

MDA5 are likely to have additional functions beyond the traditional roles in innate 

immunity. 
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