
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2016

Within-Host Evolution Of Hiv-1: Novel Pathways
Of Virus Escape From Cellular And Humoral
Immunity
Edward Kreider
University of Pennsylvania, fkreider@upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Microbiology Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2406
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Kreider, Edward, "Within-Host Evolution Of Hiv-1: Novel Pathways Of Virus Escape From Cellular And Humoral Immunity" (2016).
Publicly Accessible Penn Dissertations. 2406.
https://repository.upenn.edu/edissertations/2406

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=repository.upenn.edu%2Fedissertations%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2406?utm_source=repository.upenn.edu%2Fedissertations%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2406
mailto:repository@pobox.upenn.edu


Within-Host Evolution Of Hiv-1: Novel Pathways Of Virus Escape From
Cellular And Humoral Immunity

Abstract
Longitudinal HIV-1 single genome sequencing (SGS), which permits unambiguous genetic characterization
of circulating viral strains without introduction of PCR error, can be used to identify sites in the viral genome
that are under selective pressure. Following transmission, the earliest sites under positive selection often fall in
cytotoxic T lymphocyte (CTL) epitopes. During escape from CTL immune pressure, viral sequences
typically exhibit nonsynonymous mutations within the span of the cognate T cell epitope. I applied SGS to
study sequence evolution in the HIV-1 5’ leader sequence, which is thought to be translationally silent. I
observed mutational patterns consistent with CTL escape and demonstrated that the HIV-1 5’ leader
expresses T cell antigens from non-canonical one-off AUG codons (e.g. CUG). While these non-canonical
start codons can be mutated during CTL escape, a reverse transcriptase overextension error periodically
restores a one-off AUG within the 5’ leader. As infection ensues, sites under selection within the gene
encoding the viral envelope glycoprotein (Env) often fall within autologous neutralizing antibody epitopes. In
a subset of individuals, the strain-specific neutralizing antibody response develops into a broadly cross-
reactive neutralizing antibody (bnAb) response. To understand what factors influence bnAb ontogeny, I used
SGS to study Env evolution both during natural infection and immunotherapy. I found viral diversification in
bnAb contact residues and divergence of the virus population into multiple persistent lineages to precede
bnAb development. Taken together, these data demonstrate that longitudinal HIV-1 SGS can be used to
discover novel aspects of virus biology and host-pathogen interactions.
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ABSTRACT 

 

WITHIN-HOST EVOLUTION OF HIV-1: NOVEL PATHWAYS OF VIRUS ESCAPE 

FROM CELLULAR AND HUMORAL IMMUNITY 

Edward F. Kreider 

Beatrice H. Hahn, MD 

 

Longitudinal HIV-1 single genome sequencing (SGS), which permits 

unambiguous genetic characterization of circulating viral strains without introduction of 

PCR error, can be used to identify sites in the viral genome that are under selective 

pressure. Following transmission, the earliest sites under positive selection often fall in 

cytotoxic T lymphocyte (CTL) epitopes. During escape from CTL immune pressure, viral 

sequences typically exhibit nonsynonymous mutations within the span of the cognate T 

cell epitope. I applied SGS to study sequence evolution in the HIV-1 5’ leader sequence, 

which is thought to be translationally silent. I observed mutational patterns consistent 

with CTL escape and demonstrated that the HIV-1 5’ leader expresses T cell antigens 

from non-canonical one-off AUG codons (e.g. CUG). While these non-canonical start 

codons can be mutated during CTL escape, a reverse transcriptase overextension error 

periodically restores a one-off AUG within the 5’ leader.  As infection ensues, sites under 

selection within the gene encoding the viral envelope glycoprotein (Env) often fall within 

autologous neutralizing antibody epitopes. In a subset of individuals, the strain-specific 



 iv

neutralizing antibody response develops into a broadly cross-reactive neutralizing 

antibody (bnAb) response. To understand what factors influence bnAb ontogeny, I used 

SGS to study Env evolution both during natural infection and immunotherapy. I found 

viral diversification in bnAb contact residues and divergence of the virus population into 

multiple persistent lineages to precede bnAb development. Taken together, these data 

demonstrate that longitudinal HIV-1 SGS can be used to discover novel aspects of virus 

biology and host-pathogen interactions. 
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Edward F. Kreider 

 

Departments of Medicine and Microbiology, Perelman School of Medicine at the 
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All figures appear at the end of this chapter  
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Section 1.1 – AIDS and HIV-1 

In 1981, the Centers for Disease Control published a Morbidity and Mortality 

Weekly Report describing five cases P. jiroveci pneumonia (formerly known as P. carinii 

pneumonia) in young, otherwise healthy gay men (www.cdc.gov/mmwr). This MMWR 

would mark the first official reporting of Acquired Immunodeficiency Syndrome (AIDS) 

in the United States (1). Since 1981, over 35 million people have died from AIDS-related 

illnesses worldwide (www.UNAIDS.org). The causative agent is a lentivirus called 

human immunodeficiency virus type 1 (HIV-1, Figures 1.1 and 1.2). HIV-1 primarily 

infects CD4+ T cells (2, 3). Viral entry into a new target cell is mediated by the Env 

glycoprotein, which engages the host cell receptor (CD4) and a coreceptor (e.g. CCR5, 

CXCR4) (3). These events trigger a series of Env conformational changes that ultimately 

result in fusion of the viral and host membranes and delivery of the vial payload into the 

host cell cytoplasm (3). After entry, HIV-1 undergoes reverse transcription and 

integration (4). During reverse transcription, the single stranded RNA genome is 

converted into a double stranded DNA provirus (5). This DNA provirus is then trafficked 

to the nucleus where it is integrated into the host genome (4). 

 

  



 3

Section 1.2 – Biology of the 5’ leader sequence 

 The HIV-1 5’ leader is a conserved RNA element that lies at the 5’ end of every 

HIV-1 RNA transcript and performs multiple essential replicative functions. It extends 

from nucleotide 1 of R through the gag AUG, approximately 336 nucleotides in most 

subtype B and C viruses (Figure 1.3). Given its placement upstream of all coding 

sequences, the 5’ leader has the alternative designation of the 5’ untranslated region. The 

various functions of this region depend on proper folding of mRNA secondary structure 

(6, 7) and/or exact sequence identity (5).  

 

R elements  

The first two RNA features of the 5’ leader – TAR and the polyA signal – fall in 

the retroviral Repeat element (R). As shown in Figure 1.1, the DNA provirus is flanked 

by two long terminal repeats (LTRs). Promoter and enhancer elements within the Unique 

3 (U3) element of the 5’ LTR are bound by a variety of host transcription factors, like 

NF-κB (8), that regulate transcription of viral RNA (9). Early studies of the HIV-1 LTR 

revealed that an additional regulatory element fell downstream of the transcription start 

site and required expression of a factor in trans for efficient transcription (the 

transactivator of transcription, Tat). This additional cis acting regulatory domain called 

TAR is encoded by the first 59 nucleotides (nts) of R (9). It was found that TAR RNA, 

not DNA, is bound by a viral protein called Tat via a bulge in the stem loop structure 

(10). If the TAR RNA element is properly folded and Tat is expressed, viral RNA is 
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efficiently transcribed (11, 12). If Tat is not expressed, HIV-1 elongation is potently 

restricted by a host factor called negative elongation factor (9). As a result, Tat acts in a 

positive feedback loop in which Tat expression drives higher levels of transcription and 

more Tat expression.  The next R element, the polyA signal, is silenced at the 5’ end of 

the genome such that premature polyadenylation does not occur (13-15). 

 

Primer binding site and reverse transcription 

 The next 5’ leader element, the primer binding site (PBS), plays multiple essential 

roles in virus reverse transcription. Retrovirus reverse transcription is primed by a host 

tRNA(Lys,3), which is incorporated into budding virions during assembly (Figure 1.4 A) 

(16-18). The tRNA anneals to the viral PBS via the 18 nucleotides (nts) at its 3’ end 

(Figure 1.4, bent cyan arrow). As minus strand DNA is polymerized, the RNase H 

domain of RT cleaves RNA in RNA:DNA hybrids (5). Once RT reaches the 5’ RNA cap 

(Figure 1.4 B), the newly synthesized DNA undergoes the first strand transfer (19). In 

this reaction, the R element of the minus strand DNA is annealed to the complementary R 

element at the 3’ end of the genome (Figure 1.4 C). Post-strand transfer, minus strand 

synthesis commences once again along with concomitant digestion of the RNA template 

by RNase H (5). Stretches of the plus strand RNA that are rich in purines (called 

polypurine tracts) are RNase-resistant (Figure 1.4 D) and can serve as the primers for 

plus strand DNA synthesis (20). RT extends plus strand synthesis past the 5’ end of the 

negative strand DNA, transcribing 18 nts of the host tRNA and generating the PBS in the 
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plus strand intermediate (Figure 1.4 E) (5, 21, 22). It is hypothesized that RT reverse 

transcribes the host tRNA until it encounters a modified base, which is a methyl-

adenosine at position 58 of the tRNA, 19 bases from the 3’ end (22-24). Subsequently RT 

performs the second strand transfer reaction (Figure 1.4 F) and completes synthesis a full 

length, 2-LTR DNA provirus is generated (Figure 1.4 G).  

 

Ψ Stem Loops 

 The final set of RNA elements in the 5’ leader are collectively referred to as the Ψ 

packaging stem loops and are involved in mRNA splicing and virion assembly. 3 Ψ stem 

loops fall within the 5’ leader and have been named stem loop 1, 2, and 3 (25). Within the 

loop of Stem loop 1, HIV-1 encodes a palindromic 6-8 nt sequence called the 

dimerization initiation site (DIS). During virion assembly, two HIV-1 genomes base pair 

via the DIS and initiate the genomic dimerization reaction (25-27). Co-packaging of 

HIV-1 genomes is a requirement for virus particle infectivity (28) and can result in 

recombination if two genetically distinct viruses infect the same cell (29). Stem loop 2 

encodes the first, or major, splice donor (SD1), which is used as the splice donor in every 

HIV-1 splicing reaction (30). Although this secondary structure has only been recently 

been directly detected using nuclear magnetic resonance methods (31), the proper folding 

of this motif is crucial to viral fitness (32). Collectively, these three stem loops (plus one 

that falls downstream of the gag AUG) play an important role in accurate genomic 
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packaging. When the Ψ signal is removed, cellular RNAs are nonspecifically packaged 

into budding virions (33).  

 

HIV-1 translation 

 In addition to the conserved functions discussed above, the 5’ leader plays an 

important role in regulation of virus translation. Because all HIV-1 RNAs are 5’ 7-

methylguanosine capped, it has been proposed that translation initiation should be 

mediated by typical, cap-dependent ribosomal scanning (34). When ligated to a reporter, 

however, regions of the HIV-1 5’ leader inhibit ribosomal scanning and downstream 

translation initiation (35, 36). Thus, many alternative mechanisms of HIV-1 translation 

regulation have been proposed (reviewed in (37)). Multiple groups have identified 

Internal Ribosomal Entry Sites (IRESs) in various regions of the HIV-1 genome (38-40), 

however assays used to characterize these elements are subject to false positive results 

(37). Thus, new methods of assessing the mechanism HIV-1 translation initiation are 

needed.  

Additionally, a growing body of literature concerning eukaryotic and viral 

translation has suggested that “untranslated regions,” like the HIV-1 5’ leader, may 

actually be translated. While AUG codons are heavily disfavored in the 5’ leader, one-off 

AUGs (e.g. CUG) have been shown to mediate translation initiation (41, 42). Further, 

ribosomal profiling in the presence of lactimidomycin or harringtonine – two drugs that 

that lead to the accumulation of ribosomes at translation initiation sites – has supported 
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the notion that upstream, one-off AUGs initiate translation. For example, 96 of 506 

mapped initiation sites in the human cytomegalovirus genome were one-off AUGs (43). 

These findings, while further removed from HIV-1 itself, shed light on the complexities 

of eukaryotic translation and may inform our ultimate understanding of HIV-1 translation 

regulation.  
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Section 1.3 –HIV-1 evolution and the T cell response 

Acute HIV-1 infection 

For 7-21 days following transmission, newly infected individuals generally show 

no signs or symptoms of HIV-1 infection (44). During this eclipse phase, the virus 

undergoes an initial local expansion, infecting CD4+ T cells in the genital mucosa, 

submucosa and draining lymphoid tissue (45). When local infection disseminates into the 

bloodstream, the first clinical markers of HIV-1 infection are detected (44). These include 

viral RNA (Fiebig stage I), Gag p24 antigen (Fiebig stage II), and, in some cases, a “flu-

like” acute retroviral syndrome (46, 47). Once viral RNA is detected in the blood, the 

virus population increases in size exponentially with a median doubling time of ~16 

hours and a Ro of 8 (48). Infection spreads from the local site of infection to the gut 

associated lymphoid tissue (GALT), leading to a massive depletion of mucosal CD4+ T 

cells (45, 47, 49). During this viral ramp up, viral loads frequently reach >1 million 

copies/mL (44, 47). Analysis of viral sequences taken at this time reveals random 

mutation with no evidence of positive selection.  If these sequences demonstrate both a 

star-like phylogeny with coalescence to a single ancestral sequence and Poisson 

distribution of Hamming Distances (50, 51), it can be inferred that infection was 

established by a single transmitted founder virus. In 2008, Keele and colleagues studied 

this process using single genome sequencing. Single genome amplification of end-point 

diluted plasma followed by direct amplicon sequencing (single genome sequencing or 

SGS) eliminates Taq-induced errors, Taq-mediated recombination, and cloning bias (51-

53). Using this model, paired with single genome sequencing, it has been determined that 
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70-80% of sexually transmitted HIV-1 infections are established by a single transmitted 

founder (TF) virus (47, 50, 54). 

Around 22 days post-infection, viral load peaks and begins to decline. This drop 

in viral load is accompanied by the appearance of HIV-1 specific, non-neutralizing 

antibodies (44, 55) and the first detectable T cell response (56, 57). As an HIV-infected 

person transitions into chronic infection, viral load reaches a quasi-stable set point 

(usually between 100-100,000 copies/mL) that is maintained for years (46).    

 

Factors affecting within patient HIV-1 evolution 

Longitudinal HIV-1 sequence analysis has revealed that the genetically 

homogeneous population present during acute infection accumulates remarkable genetic 

diversity over time (46, 58, 59). Two parameters contribute to this feature of the virus: 

the mutation rate and the turnover rate. While estimates of the substitution rate vary 

slightly based on method, it is generally agreed that the HIV-1 substitution rate ranges 

between 1.4-3.4 x 10-5 mutations/base pair/cycle (5, 51, 60, 61). With a genome size of 

approximately 10 kilobases, it can be conservatively estimated that 1 in 10 progeny 

genomes will harbor a base substitution relative to the parental virus per generation. The 

next parameter, the virus turnover rate, has been estimated using data from monotherapy 

trials. Mathematical modeling has demonstrated that infected cells and virions have a 

short half-life of 1-2 days and <6 hours, respectively (46, 62-65). Based on this clearance 

rate, ~1010 new virions must be produced each day in an infected individual (65). The 
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combined effect of the HIV-1 error and turnover rates is staggering – every substitution at 

every position of the viral genome is sampled hundreds to thousands of times per day 

(64).  

Another hallmark of HIV-1 evolution within a host is the iterative fixation of 

immune escape mutations over time (59, 66). Longitudinally collected sequences taken 

during chronic infection exhibit a time-ordered phylogenetic structure, characteristic of a 

pathogen evolving under positive selection (66, 67). When single genome sequencing is 

used to generate these data, the molecular pathway of virus evolution can be ascertained 

(51, 52, 68). An important consequence of SGS is the maintenance of genetic linkage 

across the entire amplicon. The application of this tool is best illustrated through an 

example. Figure 1.5 depicts longitudinally collected single genome sequences from 

subject CH40 in a synonymous/nonsynonymous highlighter plot (68). In this plot, 

horizontal lines represent sequences generated using plasma from days 45-412 post-trial 

enrollment, with the genomic map shown at the bottom. Tick marks represent nucleotide 

changes relative to inferred transmitted founder virus, with green ticks representing 

synonymous changes, red ticks nonsynonymous, and blue ticks changes outside of viral 

ORFs. Concentrated non-random mutations away from the TF (positive selection) are 

observed in nearly all day 45 sequences in five regions throughout the viral genome. 

Figure 1.6 zooms in on such region in Nef that demonstrates a pattern of mutation called 

toggling. As shown in Figure 1.6, sequences from days 45-412 exhibited toggling of one 

of three nonsynonymous changes in Nef: S188N, R192H, and R196Q. These three 

mutations are embedded in a peptide – SLAFRHVAR – that was encoded by the 
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autologous TF virus. Multiple studies have shown that this pattern of mutation is 

consistent with escape from an autologous T cell response (68-71), which can be 

measured using interferon-γ ELISPOT assays (Figure 1.7). As subjects are followed for 

longer durations of time, more shared mutations away from the TF are observed – in 

CH40 at least 14 sites within the viral genome exhibit concentrated, non-random 

mutations at day 412. In this way, virus evolutionary patterns found in SGS datasets can 

be used to precisely characterize host-pathogen interactions and directly measure positive 

selection. Similar analysis has revealed that this technique can also be applied to study 

escape from the neutralizing antibody response (53, 72-74).  

In summary, acute and chronic HIV-1 infection are characterized by different 

evolutionary processes. During acute infection, the virus exhibits random diversification 

and exponential population growth (50). During chronic infection, the population 

demonstrates continuous, strong positive selection (66). As demonstrated by the Nef-SR9 

example, mutations can serve as footprints of selection that provide insight into immune 

pressure in vivo (68, 71).  

However, certain selected mutations in longitudinal SGS datasets represet 

synonymous changes or fall outside of canonical HIV-1 ORFs. As shown in Figure 1.3, 

CH40 sequences taken at day 412 have shared synonymous mutations in viral ORFs 

(green tick marks, in pol and env, Figure 1.5) and shared mutations outside of canonical 

coding regions (blue tick marks). These selected mutations, while less commonly 

observed than their nonsynonymous counterparts, could potentially represent a number of 

processes. They may represent escape from immune responses directed at alternative 
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reading frame peptides (75, 76); alterations to functional RNA elements and secondary 

structures (7); or genetic “hitchhikers” that are linked to neighboring CTL escape 

mutations (77). A subset of these selected changes fall in the 5’ leader sequence (blue tick 

marks, Figure 1.3), which has the alternative designation of “5’ untranslated region.” In 

Chapters 2 and 3, I will investigate two such patterns of non-random mutation within 

longitudinally collected HIV-1 5’ leader sequences. The first pattern is a set of non-

random mutations, similar to T cell escape mutations observed within canonical HIV-1 

epitopes like Nef-SR9 described above. The second pattern of mutation falls in a short 5’ 

leader motif called the primer overextension sequence.  
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Section 1.4 – HIV-1 and the neutralizing antibody response 

 Following the initial T cell response, neutralizing antibodies (nAbs) against the 

Env glycoprotein rise. The fully folded mature Env protein is a trimer of non-covalently 

bound heterodimers (78, 79). The protein is expressed as a gp160 polyprotein that is 

cleaved by the host protease furin into gp120 and gp41 subunits (3). gp120 is partitioned 

into constant regions (C1-5) and variable loops (V1-5), which harbor hypervariable 

regions that are not readily aligned when comparing strains (3). gp41 consists of an 

extracellular region, a transmembrane domain, and a long cytoplasmic tail. Like the 

cytotoxic T lymphocyte response, the neutralizing antibody (nAb) response potently 

drives selection for virus escape mutations (53, 72, 74, 80).  

 In a subset of individuals, the autologous strain-specific antibody response 

matures into a broadly cross-reactive one (81, 82). A cross-sectional analysis of plasma 

neutralization breadth from 205 individuals using a heterologous panel of 219 viruses 

revealed that neutralization breadth exists on a spectrum from narrowly strain-specific to 

broadly cross-reactive during chronic infection (83). Advances in B cell cloning and Ig 

locus amplification have permitted the rapid isolation and cloning of broadly neutralizing 

monoclonal antibodies (bnAbs) from subjects who exhibit broad plasma neutralization 

(84, 85). These monoclonal bnAbs recapitulate the neutralization patterns observed in 

plasma and exhibit atypical properties such as: unusually long heavy chain 

complementarity determining region 3s (HCDR3s), high levels of somatic hypermutation 

(upwards of 30% mutated relative to the germline), and autoreactivity (84, 86).  
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 Monoclonal bnAbs bind at multiple sites of vulnerability on the Env trimer 

(Figure 1.8). The three most commonly targeted sites are (1) the high mannose patch at 

the base of V3, (2) the CD4 binding site (CD4bs), and (3) V2 at the apex of the trimer 

(79). V3 glycan bnAbs that target the high mannose patch often engage Env at different 

angles relative to the viral membrane (87). These antibodies all contact a short motif in 

the descending arm of V3 (324GDIR327) and an N-linked glycan at position 332 (87, 88). 

CD4bs bnAbs come in multiple flavors: VRC01-like bnAbs are restricted in which VH 

gene is used (1-2 and 1-46), while others converge on a common mode of Env-binding 

via their HCDR3s (73, 89, 90). V2 apex bnAbs typically have long HCDR3s that interact 

with strand C of the V2 loop and a set of adjacent glycans at N156 and N160 (91). The 

remaining bnAb classes target additional sites on the Env trimer, but may be elicited less 

frequently during natural HIV-1 infection (79, 84). These include gp120-gp41 interface, 

membrane proximal external region, and fusion peptide-directed bnAbs (84, 92).  

 

bnAb/virus co-evolution 

It has been proposed that molecular characterization of virus/antibody co-

evolution during bnAb development may inform HIV vaccine design (92, 93). Through 

genetic and phenotypic characterization of both B cell and virus evolution, these types of 

studies identify crucial steps along the path of bnAb development and the viral antigens 

that drove this maturation. Here, I will introduce the first and most well characterized 

individuals studied with this technique, CH0505 (72-74). CH0505 is an African man who 
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was infected with a single Subtype C virus and sampled regularly over more than six 

years of infection, prior to initiation of antiretroviral therapy (ART, Haynes, B., 

unpublished). An CD4 binding site bnAb lineage designated CH103 was isolated from 

CH0505 and extensively characterized for its autologous and heterologous binding and 

neutralization properties (72). Interestingly, the unmutated common ancestor (UCA) of 

the CH103 lineage bound, but did not neutralize, the autologous transmitted founder (TF) 

virus (72). Evaluation of virus sequence evolution during the first 4 weeks of infection 

revealed that a small subset of Envs harbored changes in Loop D of the CD4 binding site. 

Interestingly, the sampled Loop D mutations sensitized autologous Envs to neutralization 

by the CH103 lineage (72, 74). A second, strain-specific CD4bs antibody, called CH235, 

was then isolated from CH0505. Loop D variants were neutralization resistant when 

assayed with CH235 antibodies, suggesting that these mutations were driven by immune 

pressure from CH235 nAbs in vivo. In other words, the CH235 antibody lineage 

cooperated with the CH103 lineage, sensitizing Envs to CH103 binding and 

neutralization (74). Env sequences subsequently showed significantly increased 

diversification within CD4 binding site contact residues, prior to the development of 

heterologous neutralization breadth when compared to subject who did not develop 

bnAbs (72). A recent follow up study revealed that the CH235 lineage, which was 

initially a strain-specific nAb, underwent continued affinity maturation for five years of 

infection and developed into an even broader bnAb than CH103 (73). Thus, in CH0505, 

the development of bnAb lineages involved bnAb precursor engagement of the TF Env, 
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cooperation between multiple nAb lineages to maintain Env neutralization sensitivity, 

diversification in bnAb contacts, and extended affinity maturation over many years.  

 Antibody/virus coevolution in other subjects has supported the findings in 

CH0505. For example, human subjects CAP177 and CAP331 both developed broadly 

cross-reactive neutralizing serum that was dependent on the glycan at 332 for 

neutralization (V3 glycan bnAbs). The transmitted founder viruses from both of these 

individuals lacked this glycan, raising the question of what stimulated these N332-glycan 

dependent bnAbs (94). Likely as a result of autologous immune escape from another nAb 

lineage, the plasma virus acquired the glycan at 332 ~6 months into infection and 

heterologous neutralization breadth subsequently developed. While monoclonal 

antibodies were not isolated from these individuals, this pattern in plasma neutralization 

is consistent with the idea of cooperating nAb lineages. In fact, findings consistent with 

cooperating antibody lineages were seen in CAP256 (95, 96), PC76 (97), and CAP257 

(98). Together, these data suggest that, perhaps unsurprisingly, bnAb lineages do not 

develop in isolation during natural HIV-1 infection.  

Unfortunately, comprehensive Env sequencing is not available for all of these 

subjects for direct comparison to virus evolution in CH0505. In one subject, CAP256, 

deep sequencing of V2 (the target of the bnAb response) revealed that, like CH0505, the 

plasma quasispecies exhibited diversification prior to neutralization breadth development 

(95). Future studies in more subjects will be needed to explore whether similar patterns of 

Env diversification precede breadth. In Chapter 4, I will present one such study, the 



 17

virus-antibody co-evolution in a human subject, CH0848, who developed V3-glycan 

specific bnAbs.  
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Section 1.5 – Monoclonal bnAbs in prevention and therapy 

The recent explosion in the number of cloned monoclonal bnAbs has led to the 

development of exciting prevention and therapeutic modalities. Non-human primate 

studies have demonstrated that passive immunization of rhesus macaques with 

monoclonal bnAbs prevents simian/human immunodeficiency virus (SHIV) infection 

(99). These and other findings have led to the hypothesis that bnAb expression at the time 

of transmission may prevent infection in humans (92). To test this hypothesis, ~4,200 

HIV-negative adults will be infused with a CD4bs bnAb called VRC01 and monitored for 

HIV-1 acquisition. This study’s findings will be important for the HIV vaccine field, no 

matter the outcome. 

bnAbs have also been tested as possible therapeutics. Monoclonal antibodies may 

provide benefit over small molecule inhibitors based on their ability to engage the host 

innate immune response (100). Initial studies in humanized mice demonstrated that 

treatment with 3-5 bnAbs were required to completely suppress viremia (101). This 

finding was followed up by two non-human primate trials in which suppression of 

simian/human immunodeficiency viruses (SHIV) replication in macaques was achieved 

with one or a combination of bnAbs (102, 103). Given the success of these non-human 

studies, monoclonal bnAb infusions have now been tested in humans in two settings: 

viremic individuals (104, 105) and antiretroviral therapy (ART)-suppressed individuals 

(106). In these trials, bnAb treatment was safe and, in some cases, may have offered 

therapeutic benefit in the form of a delay in rebound viremia and a restriction in the 

number of rebounding viruses (106). In all cases, however, bnAb treatment led to the 
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emergence of resistant viral strains. Future studies will be needed to test if combination 

bnAb treatment can fully suppress viremia and prevent the development of resistance. 

Further, comparisons must be made to small molecule inhibitors to determine whether 

bnAb infusion has added benefit over combination ART. In Chapter 5, I will present a 

study that monitored bnAb and virus evolution after bnAb immunotherapy.  
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Section 1.7 – Figures  

 

Figure 1.0-1 HIV-1 RNA and DNA Genomic Organization 

 (A) During the HIV-1 lifecycle, the viral genome is converted between a single stranded, 
positive-sense RNA molecule and a double stranded DNA molecule (top and bottom, 
respectively). All transcripts begin with the 5’ leader sequence. It harbors the retroviral 
repeat (R) element, the unique 5 (U5) element, and the gag leader sequence (GLS). 
Following are the nine canonical HIV-1 open reading frames (ORFs): gag, pol, vif, vpr, 
tat, rev, vpu, env, and nef. The viral group specific antigen (gag) encodes structural 
proteins including matrix, capsid, and nucleocapsid (3, 25, 107). The pol gene encodes 
the enzymes protease, reverse transcriptase, and integrase (4, 5, 25). rev and tat encode 
the two essential viral regulatory factors that mediate viral RNA nuclear export and 
transactivation, respectively (9, 108). env encodes the Envelope glycoprotein, which 
mediates viral entry (3). The remainder of the viral ORFs encode so-called accessory 
proteins: Nef, Vif, Vpu, and Vpr (109). These proteins perform functions that are 
sometimes dispensable for replication in vitro, but affect pathogenesis in vivo (109). 
Finally, the RNA genome ends with a retroviral unique 3 element (U3) and the 3’ R 
element. (B) Upon reverse transcription into a DNA provirus, the HIV-1 genome is 
flanked by two complete long terminal repeats (LTRs), each consisting of U3, R, and U5 
elements. The spans of these elements are depicted.  Abbreviations: R – repeat element, 
U5 – unique 5 element, GLS – gag leader sequence, U3 – unique 3 element, 3’ UTR – 3’ 
untranslated region, LTR – long terminal repeat. Adapted from www.hiv.lanl.gov. 
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Figure 1.0-2 HIV-1 Group M env diversity. 

HIV-1 strains can be categorized into four lineages, which are referred to as Groups M, 
N, O, and P. Group M strains, which cause the vast majority of HIV-1 infections, have 
been further classified as one of nine subtypes (A-D, F-H, J, K) or recombinants 
thereof. Depicted is a maximum likelihood env phylogenetic tree with 208 representative 
sequences from major Group M subtypes and circulating recombinant forms (CRFs). 
Adapted from Bonsignori, et al., submitted.   
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Figure 1.0-3 Secondary structure of the 5’ leader sequence. 

Depicted is a graphical representation of the RNA secondary structure of the 5’ leader. 
Adapted from Lu, et al., 2011. Abbreviations – transactivation response element (TAR), 
poly-adenylation signal (polyA), primer binding site (PBS), dimerization initiation site 
(DIS), major splice donor (SD), psi packaking signal stem loop 3 (Ψ). 
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Figure 1.0-4 Reverse trascription 

As described in the text, depicted are the steps of reverse transcription. tRNA(Lys,3) is 
represented as a bent cyan arrow, plus strand RNA in cyan (digested RNA dotted), and 
DNA in dark blue. (A) Priming from tRNA(Lys,3). (B) reverse transcription of U5 and R 
and digestion of viral RNA in RNA:DNA duplex until the minus strand strong stop. (B) 
to (C) First strand transfer. (D) Continued minus strand synthesis and RNA digestion 
(except for the polypurine tracts, ppt). (E) plus strand synthesis using the ppt as a primer 
until plus strand strong stop, typically after 18 nts of the tRNA are copied. (E) to (F) 
Second strand transfer. (G) full extension of both plus and minus strands. Adapted from 
Hu and Hughes, 2011.  
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Figure 1.0-5 HIV01 sequence evolution in CH40 

CH40 is a human subject who was identified during acute infection and sampled 
longitudinally. Depicted is a nucleotide highlighter plot in which horizontal lines 
represent single genome sequences derived at screening (S), day 6, day 45, day 11, day 
181, and day 412 post-screening. Tick marks denote sequence changes relative to the 
transmitted founder (TF) virus. Red ticks are nonsynonymous, green are synonymous, 
and blue fall outside of known ORFs. Selected mutations are embedded in cytotoxic T 
lymphocyte (CTL) epitopes (grey squares) and neutralizing antibody (Nab) epitopes 
(orange triangles) and confer escape from these immune responses in ex vivo assays. 
Viral load (vL) is indicated to the left. Adapted from Salazar-Gonzalez, et al., 2009, 
Goonetilleke, et al., 2009, and Bar, et al., 2012.  
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Figure 1.0-6 Amino acid toggling in Nef. 

Depicted is an amino acid alignment of Nef positions 185-202 from CH40 (far right, 
figure 1.3). The inferred transmitted founder sequence is depicted at the top. Mutations 
relative to this sequence are highlighted in red. 15, 12, 6, and 12 single genome 
sequences were generated at days 45, 111, 181, and 412, respectively. The number of 
SGS matching each amino acid variant is indicated to the left. 100% of sequences from 
day 45 onward harbored a nonsynonymous mutation relative to the TF within a 9 amino 
acid span, SLAFRHVAR. Sequences that did not encode a full length, gross non-
defective nef reading frame were excluded. 
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Figure 1.0-7 CH40 immune recognuition of Nef-SR9. 

CH40 PBMCs taken at day 45 were stimulated with the autologous TF Nef peptide 
SLAFRHVAR or one of two Nef peptide variants (NLAFRHVAR and SLAFRHVAQ, 
see Figure 1.4) and assayed with an interferon-γ ELISPOT. Stimulation with the TF 
peptide resulted in more than 75 spot forming units/million PBMCs (SFU/million). 
Stimulation with Nef peptide variants that were selected observed day 45 and after 
yielded fewer than 20 SFU/million PBMCs.  Adapted from Goonetilleke, et al., 2009. 
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Figure 1.0-8 Broadly neutralizing antibody sites of vulnerability on the Env trimer. 

Adapted from Haynes, et al., 2016 

  



 43

CHAPTER 2  

 

NOVEL T CELL ANTIGENS ENCODED BY THE HIV-1 5’ LEADER 

SEQUENCE  

 

 

Edward F. Kreider1,2, Hui Li1,2, Ranjit Warrier1,2, Katja Pfafferott3, Thomas Partridge3, 

Nicola Ternette3, Michael Lopker1,2, Yingying Li1,2, Gerald H. Learn1,2, Katherine 

Roberts3, Benedikt Kessler3, Andrew J. McMichael3, Beatrice H. Hahn1,2, Persephone 

Borrow3, George M. Shaw1,2 

 

Affiliations: 

 

1Departments of Medicine and 2Microbiology, Perelman School of Medicine at the 

University of Pennsylvania 

3Nuffield Department of Medicine, Oxford University 

 



 44

Contributions: This study was initially conceived following work on SIVmac239/766 

performed by ML, HL, and GMS. I designed, executed, and analyzed sequencing and 

immunologic experiments with technical assistance and insight from HL, KP, KR, RW, 

GHL, and YL and under the supervision of AJM, BHH, PB, and GMS. Mass 

spectrometry experiments were performed by TP, NT under the supervision of BK, AJM, 

and PB. I wrote this chapter with assistance from GMS. These data will be submitted as 

part of a larger manuscript in Fall 2016. 

 

All figures appear at the end of this chapter  



 45

Section 2.1 – Abstract 

Introduction: The lentiviral 5’ leader is a conserved RNA structure that lies upstream of 

canonical coding regions and is conventionally considered “untranslated.” Nonetheless, 

we recently observed concentrated, non-random mutations within the 5’ leader of 

SIVmac strains sequenced longitudinally from Mamu-B*29+ macaques. Follow up 

studies revealed that this sequence evolution represented virus escape from a Mamu-

B*29-restricted cytotoxic T lymphocyte (CTL) response targeting a 5’ leader-encoded 

peptide called KA9 (KGAGRYQTA). We hypothesized that the HIV-1 5’ leader also 

expressed peptides that were recognized by host T cells during infection.  

Methods: Longitudinal plasma viral single genome sequences were generated from 27 

human subjects who were acutely infected with HIV-1. Ex vivo interferon-γ ELISPOT 

assays were performed on human PBMCs stimulated with autologous transmitted founder 

virus peptides or putative escape variants encoded by the viral 5’ leader and proteome. 

Mass spectrometry analysis of major histocompatibility complex (MHC)-presented 

epitopes was conducted on peptides purified using MHC immunoprecipitation, acid 

elution, and reverse phase liquid chromatography of lysates from HIV-infected CD4+ T 

cells. 

Results: Longitudinal 5’ leader sequencing from 13 out of 27 HIV-1-infected human 

subjects revealed mutational patterns consistent with escape from CTLs. Interferon-γ 

ELISPOT assays using PBMCs from three of these subjects (infected with subtype A or 

C HIV-1) demonstrated autologous T cell recognition of five HIV-1 5’ leader peptides 

(5’L-ER10, 5’L-LL9, 5’L-IA9, 5’L-RS9, and 5’L-AA10). These peptides were encoded 
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by reading frames +1 and +3 within R or around Stem Loop 1. Mutations selected in vivo 

either conferred nonsynonymous changes that abrogated host CTL recognition or altered 

the 5’ leader reading frame by through start codon deletion, nonsense mutation, or 

frameshifts. Morevoer, these putative escape mutations spared known functional RNA 

stems and loops and were predicted to not alter stem base-pairing. A sixth 5’ leader 

peptide encoded by reading frame +2 within the R element of a subtype B virus was 

detected using mass spectrometry.  

Conclusions: These data collectively demonstrate that 5’ leader sequences from subtype 

A, B, and C HIV-1s express peptides from all three forward reading frames. During 

natural infection, these peptides elicit robust T cell responses that potently drive virus 

escape. These findings provide new insight into mechanisms of viral translation and will 

inform future vaccine efforts that target this region of the genome.  
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Section 2.2 – Introduction 

The lentiviral 5’ leader sequence is polyfunctional RNA structure that lies 

upstream of the canonical coding regions in every viral transcript. It spans from the first 

nucleotide of the long terminal repeat (LTR) R element to either the gag AUG or the first 

splice donor. Within its primary and secondary RNA structure, the HIV-1 5’ leader 

encodes a series of functional domains that perform essential replicative functions 

throughout the viral lifecycle (1). These include the transactivation response element 

(TAR) (2,3), the poly-adenylation signal (polyA) (4,5), the tRNA primer binding site 

(PBS) (6,7), the genomic dimerization initiation site (DIS) (8), the major splice donor 

(SD1) (9), and the Ψ packaging signal (10). Proper RNA hairpin folding is required for 

many 5’ leader functions (9,11-13) and is evolutionarily conserved among primate 

lentiviruses (14). Because the leader falls upstream of the canonical viral open reading 

frames (ORFs), it has the alternative designation of 5’ “untranslated” region.  

Based on this conserved structure and function, we became interested in 

evaluating whether the 5’ leader sequence evolved over time during infection. We have 

previously developed an experimental strategy based on single viral template 

amplification followed by direct amplicon sequencing (single genome sequencing, SGS) 

that has permitted the genetic inference of transmitted HIV-1 strains (15,16) and 

molecular characterization of immune escape pathways (17-20). Application of this 

method to canonical viral ORFs has demonstrated that concentrated nonsynonymous 

mutations within a 30-45-nucleotide window (10-15 amino acids, toggling) serves as a 

strong indicator of an embedded cytotoxic T lymphocyte (CTL) epitope (18,19,21). Thus, 
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we applied this method to study virus evolution of the simian immunodeficiency virus 

(SIV) challenge strains SIVmac239/SIVmac766 during infection of Indian rhesus 

macaques. Strikingly, viruses from 14 of 14 Mamu-B*29:01+ macaques demonstrated 

rapid and complete selection confined to a 27-nucleotide (nt) span within Ψ Stem Loop 1 

of the 5’ leader (Figure 2.1A). 100% of mutations conferred nonsynonymous or nonsense 

changes within a predicted 9-amino acid span (9-mer), KGAGRYQTA (5’L-KA9). Thus, 

we hypothesized that 5’L-KA9 was expressed from the SIVmac 5’ leader and targeted by 

a host CTL response. 

To test this hypothesis, we performed interferon-γ (IFN-γ) ELISPOT assays, 

stimulating macaque PBMCs with predicted peptides from all 6 5’ leader reading frames 

(3 forward and 3 reverse). Autologous CTLs demonstrated reactivity to the 5’L-KA9 

peptide (Figure 2.1B) that was later confirmed with tetramer staining (Li, H., Shaw, G., 

unpublished). Ribosomal profiling of SIVmac766 demonstrated that the translation of 

5’L-KA9 was initiated at two tandem one-off AUG codons (ACGACG) at positions 388-

390 and 391-393, immediately upstream of 5’L-KA9 (Figure 2.1C, Warrier, R., Shaw, 

G., unpublished). Thus, our studies in SIV-infected macaques demonstrated that 5’L-

KA9 is a novel Defective Ribosomal Product (DRiP) that is expressed from an ACG 

codon within the 5’ leader and elicits a robust CTL response during natural infection.  

Given this surprising discovery, we hypothesized that the 5’ leader of HIV-1 also 

expressed DRiPs that would elicit host CTL responses. Here, we tested this hypothesis 

using longitudinal SGS, ex vivo immunophenotypic assays, and a mass spectrometric 

analysis of MHC-loaded peptides.   
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Section 2.3 – Results 

Prevalence of 5’ leader mutation during infection 

 To determine whether mutational selection within the 5’ leader is common during 

HIV-1 infection, we evaluated longitudinally collected HIV-1 single genome sequences 

from 27 subjects (17-19,21). Sequences from 19 of these subjects were available from 

previous studies of viral evolution (17-19,21) (Li, H., Hahn, B., Shaw, G., unpublished) 

and we performed 5’ leader-specific sequencing on the remaining eight subjects 

(CH0236, CH0694, R463F, R880F, CH0470, CH0256, CH0042, CH0850). Table 2.1 

summarizes the sites and frequency of selection for longitudinal virus sequences from all 

27 subjects, who were infected with either a subtype A, B, or C virus. Viruses from 13/27 

subjects exhibited selection within the 5’ leader over time, suggesting that 5’ leader 

sequence evolution is common during HIV-1 infection.   

 

HIV-1 Whole Genome Evolution in 3 Subjects  

We selected three subjects, CH0236, CH0694, and R463F, for more in-depth 

study. These individuals were prospectively followed from acute HIV-1 infection for 1-4 

years and exhibited diverse human leukocyte antigen (HLA) genotypes (Table 2.2). 

CH0236 and CH0694 were identified during acute HIV-1 infection, enrolled in a Center 

for HIV/AIDS Vaccine Immunology (CHAVI) acute infection cohort (CHAVI 001), and 

followed for 1.5 and 4 years of infection, respectively. R463F was identified as the acute 

recipient in a heterosexual transmission pair, enrolled into an International AIDS Vaccine 
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Initiative (IAVI) Protocol C acute infection cohort, and followed for 1 year of infection 

(22). Viral setpoint for all three subjects fell between 105-106 copies/mL and CD4+ T cell 

counts steadily declined over the course of follow up in all subjects (Figure 2.2). To 

compare patterns of 5’ leader sequence evolution to that seen throughout other regions of 

the viral genome, we collected either half genome or near-full genome single genome 

sequences (SGSs) on human subject plasma. For CH0236 and CH0694, 3’ and 5’ half 

genome SGSs were generated at 6 and 4 time points, respectively (Figures 2.3 and 2.4). 

Near-full length SGSs from six R463F plasma samples had been previously published 

(Figure 2.5, GenBank accession numbers KJ190253-62; KP223729-75) (22). 

 Studies of virus sequence evolution are facilitated by genetic inference of the 

transmitted HIV-1 strain because it provides a reference point of comparison for all 

sequences obtained at later time points. 70-80% of mucosally transmitted HIV-1 

infections are established by a single transmitted founder (TF) virus (23-25). To test if 

this was the case in CH0236, CH0694, and R463F, we applied the Poisson Fitter v2 tool. 

Poisson Fitter measures A) if sequences exhibit a star-like phylogeny with coalescence 

back to a single transmitted founder virus, B) if Hamming Distances between sequences 

exhibit a Poisson Distribution (nonsignificant p-value indicates a Poisson Distribution 

consistent with random diversification), and C) estimates time since infection. Using this 

tool, sequences from all three subjects coalesced to a single transmitted founder virus (TF 

virus, Table 2.2) (15,26). A note on the CH0236 TF inference is discussed in the Methods 

section. 
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We have previously shown that sites within the viral proteome that exhibit 

positive selection often overlap with cytotoxic T lymphocyte (CTL) epitopes (17-19). 

Therefore, we evaluated longitudinal sequences from these three subjects for regions 

under selection (mutually exclusive mutations relative to the TF in >67% of sequences in 

a 45-nt sliding window) (18,21).  As expected, plasma virus SGSs from all three subjects 

accumulated an increasing number of sequence changes relative to the TF virus 

throughout the viral genome over time. Six months post trial enrollment, concentrated, 

nonrandom mutations relative to the TF were observed in 7-19 regions of the HIV-1 

genome (Table 2.3), including the 5’ leader. 17/44 (38%) of these selected sites fell 

within Env, which is consistent with previous studies that have linked to Env evolution to 

escape from either CTL responses (18,21,27) or neutralizing antibodies (19,20,27). Thus, 

these subjects exhibited typical HIV-1 sequence evolution throughout the proteome along 

side potent, early selection within the 5’ leader. 

 

5’ leader evolution and immune recognition in CH0236  

 To further evaluate sequence evolution within the CH0236 viral 5’ leader, we 

performed additional 5’ leader SGS on eight longitudinally collected plasma samples. 5’ 

leader sequences from CH0236 exhibited selection for non-TF variants at multiple sites 

during follow up (Figure 2.6A). At RNA position 169 in U5 (HXB2 position 624), a T-

to-A substitution was observed in 16/36 (44%) week 24 sequences, 24/24 (100%) week 

36 sequences, and 47/47 (100%) week 60 sequences. Additionally, toggling of mutually 
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exclusive mutations was observed in a 61-nt span (RNA 352-412, HXB2 680-740) in 

11/15 (73%) week 1 sequences, 16/18 (89%) week 2 sequences, and >90% of sequences 

thereafter. 44/47 (94%) week 60 sequences shared an insertion mutation immediately 

following RNA position 255 (HXB2 710). Thus, CH0236 5’ leader sequences exhibited 

mutational selection at two sites within the 5’ leader. 

To test if either of these patterns of 5’ leader mutation correlated with immune 

escape from a CTL response, we performed autologous interferon-γ ELISPOT assays 

(18,21,22). Overlapping 18-mer peptides (OLPs) encoded by all six reading frames of the 

CH0236 TF 5’ leader and the canonical viral proteome were synthesized (Sigma-Genosys 

or MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine). 5’ 

leader peptides were pooled by reading frame and proteome peptides were pooled using a 

previously described matrix approach (18,21,28). CH0236 enrollment and week 12 cells 

reacted with pooled peptides encoded by the +1 reading frame (RF) of the 5’ leader 

(Figure 2.6B). Deconvolution of this peptide pool revealed that this reactivity could be 

mapped to the 18-mer RRRTRLAEVHSARGEGRR (RR18). Stimulation of CH0236 

PBMCs with 8-11-mers within this 18-mer span demonstrated host recognition of the 

autologous 11-mer AEVHSARGEGR (Figure 2.6C). To conserve cells, we then 

generated an RR18-specific, short-term CD8+ T cell line (29). Stimulation of this T cell 

line with the 11-mer AR11 and a shorter 10-mer (EVHSARGEGR, ER10) at a range of 

peptide concentrations revealed that ER10 was recognized by CH0236 PBMCs and was 

the minimal epitope (Figure 2.6C). 
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We next evaluated whether mutations observed in longitudinal 5’ leader 

sequencing data overlapped with ER10. ER10 is encoded by a potential 5’ leader open 

reading frame (ORF) that spans RNA positions 178-312, surrounding Stem Loop 1 of the 

Ψ packaging signal (Figure2.6D, HXB2 positions 633-765). While the ER10 ORF does 

not encode AUG codons, we have previously shown that SIVmac766 5’L-KA9 was 

expressed from a one-off AUG (e.g. CUG, ACG). Therefore, all one-off AUGs in the 

ER10 ORF are highlighted in green. Two observed mutations upstream of ER10 

eliminated a one-off AUG codon (AUC) at RNA positions 226-228 (HXB2 681-683). 

Substitutions at 232 and 263 each incorporated a stop codon in the ER10 reading frame. 

Six additional substitutions were embedded in ER10. An insertion immediately 

downstream of RNA position 255 resulted in a frameshift within ER10. The five 

remaining mutations within in ER10 conferred a nonsynonymous changes at the first, 

fourth, or tenth residue. Autologous CH0236 T cells did not recognize any of these five 

ER10 variants (Figure 2.6E, GVHSARGER, KVHSARGER, EVHLARGER, 

EVHSARGEQ, or EVHSARGEW), demonstrating that these mutations conferred CTL 

escape. And finally, the substitution at RNA position 287 (HXB2 742) confers a 

nonsynonymous change downstream of ER10. NetChop 3 analysis revealed that this 

mutation removes a predicted proteasomal cleavage site, and thus may affect peptide 

processing (30-32). In sum, toggling mutations either A) deleted a one-off AUG, B) 

incorporated a stop codon, C) shifted ER10 into another reading frame, or D) conferred a 

nonsynonymous change within or downstream of ER10. 
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Finally, we compared the kinetics of the ER10 response to T cell responses 

against the canonical viral proteome. CH0236 T cells recognized 19 autologous TF 

proteome peptides: Gag-QQ28, Gag-DI8, Pol-FL9, Pol-NNY9, Pol-NPY-9, Pol-KY9, 

Vif-KY9, Vif-SY9, Vif-DR9, Tat-KY9, Rev-AY9, Env-DL13, Env-DF9, Env-RY9, Env-

GR9, Nef-WM8, Nef-QY9, Nef-LF9, and Nef-DW9 (Fig. 2.7). Concentrated, 

nonsynonymous mutations were embedded within 11/19 of these peptides (Figure 2.3). 

The 5’L-ER10 response in CH0236 was detected at trial enrollment but was smaller in 

magnitude when compared to the early Vif-KY9 (green) and Nef-QY9/NefLF9 (blue) 

responses (Fig. 2.7). Thus, the 5’L-ER10 CTL response was among the earliest CTL 

responses and potently drove virus escape. 

 

5’ leader evolution and immune recognition in CH0694 

 Similar to CH0236, 5’ leader sequencing over three years of CH0694 infection 

revealed multiple, complex patterns of selection (Figure 2.8A). At week 24, 26/30 (87%) 

SGSs demonstrated toggling mutations between RNA positions 44-59 (HXB2 497-513). 

At subsequent time points, a base substitution at position 50 was observed in all variants. 

All week 24 variants also encoded a substitution at RNA position 179 (HXB2 633), 

which was observed for the remainder of follow up. Complex toggling was observed 

between positions 200-264 (HXB2 654-718). This toggling, which resembled that seen in 

CH0236 both in span and location, involved single and double mutations at RNA 

positions 200 and 201 (HXB2 654-655), a substitution at position 228 (HXB2 682), an 
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insertion downstream of position 238 (HXB2 692), an insertion downstream of position 

254 (HXB2 708), and a substitution at position 263 (HXB2 717). One of these mutations 

was present in 30/34 (88%) week 96 sequences and 23/23 (100%) week 140 sequences.   

 Screening ELISPOT assays revealed that CH0694 PBMCs taken from week 16 

and 48 reacted with pooled 5’ leader peptides from +3 RF and +1 RF, respectively 

(Figure 2.8B). Deconvolution of the reading frame +3 pool response demonstrated that 

the reactive peptide was a 9-mer LAIWGTHCL, encoded by RNA positions 40-58 of the 

TAR stem loop (5’-LL9, Figure 2.8C). 5/6 toggling mutations fell within 5’L-LL9 and 

conferred nonsynonymous changes to the epitope, whereas the selected variant encoded a 

stop codon at the fourth amino acid (Figure 2.8D). Due to restrictions on cell availability, 

we were unable to test 5’L-LL9 variant peptides in IFN-γ ELISPOT assays. 

Deconvolution of the RF+1 pool response revealed immune recognition of two 

partially overlapping peptides, ISRRRTRLA (5’L-IA9) and RTRLAEVHS (5’L-RS9, 

Figure 2.8E). 5’L-IA9, 5’L-RS9, and 5’L-ER10 were all encoded by the same open 

reading frame; that is, they shared upstream one-off AUG codons. Consistent with this 

finding, mutations in the CH0694 5’L-IA9/5’L-RS9 reading frame closely resembled 

those observed in CH0236 5’L-ER10 (Figure 2.8F). In the CH0236 TF virus, one-off 

AUGs upstream of 5’L-ER10 were observed at positions 193, 223, 226, and 238 (HXB2 

positions 648, 678, 681, and 693). In the CH0694 TF virus, upstream one-off AUGs were 

found at 179, 194, 200, 227, and 239 (HXB2 positions 633, 648, 654, 681, and 693). 

Variants that deleted the one-off AUG at HXB2 position 681 were observed in both 

subjects (AUC, bolded residue mutated). Additional variants in CH0694 harbored 
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mutations in one-off AUGs at HXB2 positions 633 (RNA 179, AAG) and 654 (RNA 199, 

UUG), which were not present in the CH0236 TF virus. Thus, even though these two 

subjects mounted immune responses to different peptides in this 5’ leader reading frame, 

virus variants from both subjects exhibited similar patterns of mutation, including 

deletion of the same one-off AUG. 

Finally, we compared the kinetics of the anti-5’ leader T cell responses against 

those targeting peptides derived from the viral proteome. CH0694 PBMCs from the first 

year of infection recognized 13 peptides from the proteome: Gag-YL9, Gag-TE18, Gag-

TA18, Gag-GL9, Pol-Tl9, Vif-WI9, Vpr-CL9, Rev-IL9, Rev-DN18, Env-VL18, Env-

RR11, Nef-KM9, and Nef-TL10 (Figure 2.9). Concentrated non-random, 

nonsynonymous changes were embedded in 10/13 (77%) of these epitopes during follow 

up. Interestingly, 43/52 (83%) week 24 sequences harbored a single nucleotide insertion 

in Env-RR11, throwing the cytoplasmic tail of this protein out of frame (Figure 2.4, 

orange tick marks). The resulting Env protein had a 19-amino acid cytoplasmic tail 

truncation that was later replaced by one of two other variants that restored the reading 

frame. Similar to CH0236, 5’ leader responses were detected throughout CH0694 

infection, albeit at lower magnitude than responses against canonical proteome epitopes: 

T cells specific for 5’L-LL9 were detectable at enrollment and quickly waned, whereas T 

cells specific for other 5’ leader peptides arose later.  

 

5’ leader evolution and immune recognition in R463F 
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 A previous study of subject R463F mapped autologous T cell responses against 

the entire viral proteome, but did not investigate 5’ leader sequence evolution or T cell 

responses (22). We, therefore, performed 5’ leader sequencing on three time points of 

infection (Figure 2.10A, plasma availability restricted analysis). Of note, the R463F TF 

virus harbors a 20-nt insertion downstream of the PBS that is seen ~20% of subtype A 

viruses and most CRF_01 subtype AE viruses (M group alignment, www.hiv.lanl.gov). 

Sequences derived from week 24 plasma demonstrated toggling of mutations between 

RNA positions 274-287 (HXB2 717-723). These included an insertion downstream of 

nucleotide 274 (HXB2 709), a single nucleotide deletion at RNA position 281 (HXB2 

717), a substitution at 283 (HXB2 719), and a two-nt deletion at 286-287 (HXB2 722-

723). Previously published sequences harbored two more sequences changes – an 

insertion at 257 (HXB2 692) and a substitution at 259 (HXB2 694) (22).  

Screening ELISPOT assays demonstrated that R463F PBMCs reacted with pooled 

peptides from the +3 RF and deconvolution of this pooled mapped the minimal epitope to 

AECTQQEARA, which was encoded by Stem Loop 1 of the Ψ packaging signal (RNA 

positions 270-299, HXB2 726-757, Figure 2.10B and C, 5’L-AA10). Similar to CH0236 

and CH0694, R463F viral variants observed during infection harbored a mutation in an 

upstream one-off AUG, a substitution within 5’L-AA10, and frameshift mutations. Week 

46 PBMCs reacted with the TF 5’L-AA10 variant, but not the week 24 variant 

(AECTRQERA, Figure 2.10D). Thus, all three subjects mounted CTL responses against 

5’ leader encoded peptides that potently drove viral turnover and escape. 
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Escape mutation location on stem loop structure 

 Previous studies have shown that the RNA sequence and secondary structure of 

the HIV-1 5’ leader play crucial roles in the leader’s function (9,12,33). We, therefore, 

mapped the mutations observed during 5’ leader sequence evolution in CH0236, 

CH0694, and R463F onto a previously published 5’ leader secondary structure (14) to 

determine if any of these mutations fell in functional stem loops. This structure, which 

was determined using selective 2’-hydroxyl acylation analyzed by primer extension 

(SHAPE), was used as a scaffold that we threaded each TF virus sequence into (Figure 

2.11 and Figure 2.12) (14). Because the R463F encoded a 20-nt insertion in this region 

downstream of the primer binding sequence (PBS), it could not be aligned to the 

sequence used to build the SHAPE structure (NL4.3), and we omitted this part of the 

structure in Figure 2.11. 5’L-ER10, 5’L-IA9, 5’L-RS9 and 5’L-AA10 (bracketed) all 

overlapped with Ψ stem loop 1, which contains the palindromic dimerization initiation 

site (DIS). While this palindromic sequence can differ between subtypes, all three TF 

viruses encoded GUGCAC (Figure 2.11). Mutations observed in longitudinal sequence 

datasets all spared the DIS and, in CH0694 and CH0236, spared the residues in the stem. 

5’L-LL9 was encoded by the TAR stem loop of R (Figure 2.12). The sites of mutations in 

CH0694 viruses are shown relative to the functional TAR loops/bulges, which have 

known functions in directly engaging both Tat and Cyclin T1 during transactivation (34-

36). The G-to-A substitution at RNA position 50 (starred) was selected for during 

CH0694 follow up and alters a G-U base pair to a Watson-Crick A-U base pair. Thus, 
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escape mutations spared functional sequences like the DIS or Tat binding bulge and were 

predicted to maintain stem base-pairing.  

 

Mass Spectrometry Detection of a 5’ Leader Peptide 

 We next attempted to directly detect 5’ leader DRiPs during in vitro infection. 

Ternette and colleagues recently developed a mass spectrometry-based approach for the 

identification of peptides loaded onto MHC complexes from cells infected with HIV-1 

(37). We applied this technique HIV-1 IIIB-infected CD4+ T cells from a donor who 

expressed HLA-A*01:01, HLA-A*02:01, HLA-B*07:02, HLA-B*08:01, HLA-C*07:01, 

and HLA-C*07:02 to screen for 5’ leader peptides. Mass spectrometry analysis identified 

four HIV-1 peptides: two overlapping 5’ leader peptides (LSLGALWLAREPTA and 

LSLGALWL, Figure 2.13) and two overlapping Gag peptides (FLGKIWPSY and 

FLGKIWPS, data not shown). To verify peak assignments, we synthesized 

LSLGALWLAREPTA (5’L-LA14) and collected spectra on this synthetic standard 

(Figure 2.13 bottom). Spectral matching between the infected-cell derived and synthetic 

peptide suggested that peak assignment was correct. Consistent with the HLA of this 

donor, both 5’L-LA14 and Gag-FS8 were predicted HLA-A*02:01 epitopes (NetMHC 

predicted affinity <500nM) (38). 5’L-LA14 was encoded by RNA positions 23-64 

(HXB2 477-518) in a distinct reading frame from 5’L-LL9, but also overlapping with the 

TAR stem loop. Thus, mass spectrometry of in vitro infection can be readily used to 



 60

detect 5’ leader DRiPs and facilitated the identification of a protein encoded by the first 

~60 nts of the HIV-1 RNA.  
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Section 2.4 – Conclusions 

 We recently demonstrated that the 5’ leader of SIVmac766 expresses an 

immunogenic peptide called 5’L-KA9. In this study, we investigated whether diverse 

HIV-1 strains expressed peptides from their 5’ leader sequences by correlating virus and 

CTL evolution and developing a mass spectrometry-based approach for the identification 

of MHC-loaded peptides. We provided evidence that at least six 5’ leader peptides are 

expressed from four different subtype A, B, and C HIV-1 strains. Further, we reported 

indirect evidence of 5’ leader peptide immune pressure and viral escape in 13/27 subjects.  

Our findings, while rooted in the observation of immune escape variants that arise 

during infection, have implications for models of lentivirus translation regulation. During 

typical cap-dependent eukaryotic translation, the 43S preinitiation complex (comprised of 

the 40S ribosome and ternary complex) binds to the 7-methylguanylate 5’ RNA cap and 

scans 5’ to 3’ through the RNA leader sequence until it reaches a translation initiation 

codon (39). Unlike most other eukaryotic 5’ “untranslated” regions, the HIV-1 5’ leader 

is long (~336 nts in unspliced transcripts) and exhibits extensive secondary structure, two 

features that impede cap-dependent ribosomal scanning in vitro (40-42). Whether HIV-1 

translation initiation occurs via 5’ RNA cap-dependent (43) or cap-independent (44-47) 

mechanisms is a matter of controversy within the field. The identification of 5’ leader 

DRiPs in all three forward reading frames, however, suggests that cap-dependent 

ribosomal scanning is a major contributor to HIV-1 translation initiation. Moreover, these 

data provide direct evidence that ribosomes frequently initiate translation at one-off 

AUGs while scanning through this region (48-51). Future studies will be needed to 
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investigate the factors that impact translation initiation efficiency at these one-off AUGs, 

including Kozak context and RNA secondary structure (52-54). 

This study also expands upon our previous observation of 5’ leader DRiP 

expression from SIVmac766. Here, we identified 5’ leader peptides encoded by all three 

forward reading frames of Subtype A, B, and C viruses using multiple different methods. 

Collectively, these findings suggest that 5’ leader DRiP expression is a general feature of 

lentivirus infection. Further, mutations during escape from peptides derived from the 

same 5’ leader ORF (5’L-ER10, 5’LIA9/5’L-RS9) often overlapped with one another and 

have help identify candidate ORF start codons. We have recently proposed that lentiviral 

5’ leader DRiPs offer an exciting new vaccine target and are in the process of testing 5’ 

leader peptide vaccine efficacy using the RhCMV68.1 platform (55-57). Translation of 

these rhesus/SIV vaccines into an HIV-1 vaccine would require an understanding of 

which 5’ leader ORFs are expressed and how often these ORFs are present in circulating 

HIV-1s. This study sheds light on both of these considerations and, along with future 

studies, will help define the rules underlying 5’ leader DRiP expression.  
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Section 2.5 – Methods 

Viral sequencing 

Single genome amplification followed by direct amplicon sequencing (SGS) was 

performed for 3’ half and 5’ half genomes as previously described (17-19,21).  

CH0236 TF Inference 

CH0236 sequences exhibited shared differences from the first time point consensus 

within the rev1-tat1 overlap, changes that could confound TF inference. Despite these 

shared changes, Poisson fitter analysis of both the 5’ and 3’ half genomes yielded a 

Poisson distribution of Hamming Distances (p=0.515 for the 3’ half genome) and a star-

like phylogeny. This pattern is consistent with one of two scenarios: recent infection by 

multiple viruses that differed from one another at one nucleotide or infection by a single 

TF virus that developed early escape mutations from an early autologous T cell response. 

26 of 36 screening time point sequences harbored a single nucleotide difference when 

compared to the most recent common ancestor (MRCA) of these sequences. Of these 26 

changes, 26 were nonsynonymous in a Rev peptide (MRCA variant AVRTKILLY, 

AY9). CH0236 PBMCs reacted with Rev-AY9 (data not shown), therefore, we concluded 

that CH0236 was infected with a single TF virus, whose genetic identity was the 

coalescent of the screening time point sequences. CH0694 and CH0236 were each 

infected with a subtype C virus and R463F was infected with a subtype A virus. 

 

Interferon-γ ELISPOT assays 
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ELISPOT assays were performed as previously described (18,21). Short term cell lines 

were generated as previously described (29) 

 

HIV IIIB infection 

Primary CD4+ T cells were isolated from Donor 97 (HLA type: A*01:01, A*02:01, 

B*07:02, B*08:01, C*07:01, C*07:02) with the CD4+ T cell isolation kit (Miltenyi 

Biotec) according to the manufacturer’s instructions. Cells were infected the lab-adapted 

strain HIV-1 IIIB at an MOI of 0.1 then cultured in RPMI 1640 medium containing 20% 

FBS and 20 U/ml IL-2 at 2 x 106/ml. Purification of MHC class I-bound peptides was 

performed as described previously (Ternette et al 2015 EJI). Briefly, peptide-MHC class I 

complexes were captured from cleared cell lysates by protein A resin coupled to W6/32 

antibody. Complexes were washed with 50 mM Tris buffer pH 8.0 first with 150 mM 

NaCl, then 450 mM NaCl then without salt. Complexes were then eluted in 10% acetic 

acid, dried then loaded onto a 4.6 x 50 mm ProSwift RP-1S column (ThermoFisher 

Scientific) and eluted using a 500 ul/min flow rate over 10 minutes from 2-35% Buffer B 

(0.1% formic acid in acetonitrile) in Buffer A (0.1% formic acid in water) using an 

Ultimate 3000 HPLC system (ThermoFisher Scientific).  

 

LC-MS/MS 
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Peptides were separated on an ekspert nanoLC 400 cHiPLC system (Eksigent) 

supplemented with a 15 cm x 75 µm ChromXP C18-CL, 3 µm particle size by 

application of a linear gradient from 8% buffer A to 35% buffer B at a flow rate of 300 

nl/min for 60 min. Peptides were introduced by an electrospray source to a TripleTOF 

5600 mass spectrometer (Sciex). Collision-induced dissociation was induced on the 30 

most abundant ions per full MS scan using ramped collision energy and a unit quadrupole 

isolation width of 0.7 amu. All fragmented precursor ions were actively excluded from 

repeated selection for 15 s. 

 

Raw data were analyzed using Peaks 7.0 software (Bioinformatics Solutions). Sequence 

interpretation of MS/MS spectra were performed using a database containing all 

annotated human SwissProt entries including translations of all six reading frames of the 

sequenced HIV-1 IIIB genome in addition to translations of all known assigned HIV-1 

protein coding regions (GenBank KJ925006). The false discovery rate was determined by 

decoy database searches and a general cutoff  below 5% was applied. 

 

 

  



 66

Section 2.6 – References  

1. Berkhout B. Structure and function of the human immunodeficiency virus leader 

RNA. Prog Nucleic Acid Res Mol Biol. 1996 ed. 1996;54:1–34.  

2. Berkhout B, SILVERMAN RH, Jeang KT. Tat Trans-Activates the Human 

Immunodeficiency Virus Through a Nascent Rna Target. Cell. 1989;59(2):273–82.  

3. SELBY MJ, BAIN ES, LUCIW PA, PETERLIN BM. Structure, Sequence, and 

Position of the Stem Loop in Tar Determine Transcriptional Elongation by Tat 

Through the Hiv-1 Long Terminal Repeat. Genes & Development. 1989 

Apr;3(4):547–58.  

4. ASHE MP, GRIFFIN P, JAMES W, PROUDFOOT NJ. Poly(a) Site Selection in 

the Hiv-1 Provirus - Inhibition of Promoter-Proximal Polyadenylation by the 

Downstream Major Splice Donor Site. Genes & Development. 1995;9(23):3008–

25.  

5. ASHE MP, Pearson LH, PROUDFOOT NJ. The HIV-1 5' LTR poly(A) site is 

inactivated by U1 snRNP interaction with the downstream major splice donor site. 

Embo J. 1997;16(18):5752–63.  

6. Beerens N, Klaver B, Berkhout B. A structured RNA motif is involved in correct 

placement of the tRNA(3)(Lys) primer onto the human immunodeficiency virus 

genome. Journal of Virology. American Society for Microbiology (ASM); 2000 

Mar;74(5):2227–38.  



 67

7. Beerens N, Berkhout B. The tRNA primer activation signal in the human 

immunodeficiency virus type 1 genome is important for initiation and processive 

elongation of reverse transcription. Journal of Virology. American Society for 

Microbiology (ASM); 2002 Mar;76(5):2329–39.  

8. Ennifar E, Yusupov M, Walter P, Marquet R, Ehresmann B, Ehresmann C, et al. 

The crystal structure of the dimerization initiation site of genomic HIV-1 RNA 

reveals an extended duplex with two adenine bulges. Structure. 1999 Nov 

15;7(11):1439–49.  

9. Abbink TEM, Berkhout B. RNA structure modulates splicing efficiency at the 

human immunodeficiency virus type 1 major splice donor. Journal of Virology. 

American Society for Microbiology; 2008 Mar;82(6):3090–8.  

10. Lu K, Heng X, Garyu L, Monti S, Garcia EL, Kharytonchyk S, et al. NMR 

detection of structures in the HIV-1 5'-leader RNA that regulate genome 

packaging. Science. 2011 ed. 2011 Oct 14;334(6053):242–5.  

11. van Bel N, Das AT, Berkhout B. In Vivo SELEX of Single-Stranded Domains in 

the HIV-1 Leader RNA. Journal of Virology. 2014 Jan 31;88(4):1870–80.  

12. van Bel N, Ghabri A, Das AT, Berkhout B. The HIV-1 leader RNA is exquisitely 

sensitive to structural changes. Virology. 2015 Sep;483:236–52.  

13. Das AT, Klaver B, Berkhout B. A hairpin structure in the R region of the human 

immunodeficiency virus type 1 RNA genome is instrumental in polyadenylation 



 68

site selection. Journal of Virology. American Society for Microbiology (ASM); 

1999 Jan;73(1):81–91.  

14. Pollom E, Dang KK, Potter EL, Gorelick RJ, Burch CL, Weeks KM, et al. 

Comparison of SIV and HIV-1 genomic RNA structures reveals impact of 

sequence evolution on conserved and non-conserved structural motifs. PLoS 

Pathog. 2013 ed. 2013;9(4):e1003294.  

15. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et 

al. Identification and characterization of transmitted and early founder virus 

envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA. 2008 May 

27;105(21):7552–7.  

16. Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, Keele BF, et 

al. Deciphering human immunodeficiency virus type 1 transmission and early 

envelope diversification by single-genome amplification and sequencing. Journal 

of Virology. 2008 Apr;82(8):3952–70.  

17. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. 

Genetic identity, biological phenotype, and evolutionary pathways of 

transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med. 2009 

Jun 8;206(6):1273–89.  

18. Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV, 

et al. The first T cell response to transmitted/founder virus contributes to the 



 69

control of acute viremia in HIV-1 infection. J Exp Med. 2009 ed. 2009 Jun 

8;206(6):1253–72.  

19. Bar KJ, Tsao C-Y, Iyer SS, Decker JM, Yang Y, Bonsignori M, et al. Early low-

titer neutralizing antibodies impede HIV-1 replication and select for virus escape. 

PLoS Pathog. 2012;8(5):e1002721.  

20. Liao H-X, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, et al. Co-evolution of a 

broadly neutralizing HIV-1 antibody and founder virus. Nature. 2013 Apr 

25;496(7446):469–76.  

21. Liu MK, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, Brackenridge S, et al. 

Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J 

Clin Invest. 2012 ed. 2013 Jan;123(1):380–93.  

22. Yue L, Pfafferott KJ, Baalwa J, Conrod K, Dong CC, Chui C, et al. Transmitted 

virus fitness and host T cell responses collectively define divergent infection 

outcomes in two HIV-1 recipients. PLoS Pathog. 2015 ed. 2015 

Jan;11(1):e1004565.  

23. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et 

al. Identification and characterization of transmitted and early founder virus 

envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA. 2008 ed. 2008 

May 27;105(21):7552–7.  

24. Tully DC, Ogilvie CB, Batorsky RE, Bean DJ, Power KA, Ghebremichael M, et 



 70

al. Differences in the Selection Bottleneck between Modes of Sexual Transmission 

Influence the Genetic Composition of the HIV-1 Founder Virus. Swanstrom R, 

editor. PLoS Pathog. Public Library of Science; 2016 May;12(5):e1005619.  

25. Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, Keele BF, et 

al. Deciphering human immunodeficiency virus type 1 transmission and early 

envelope diversification by single-genome amplification and sequencing. Journal 

of Virology. 2008 ed. 2008 Apr;82(8):3952–70.  

26. Giorgi EE, Funkhouser B, Athreya G, Perelson AS, Korber BT, Bhattacharya T. 

Estimating time since infection in early homogeneous HIV-1 samples using a 

poisson model. BMC Bioinformatics. BioMed Central; 2010;11(1):532.  

27. Gao F, Bonsignori M, Liao H-X, Kumar A, Xia S-M, Lu X, et al. Cooperation of 

B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell. 2014 

Jul 31;158(3):481–91.  

28. Roederer M, Koup RA. Optimized determination of T cell epitope responses. J 

Immunol Methods. 2003 Mar 1;274(1-2):221–8.  

29. Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, Mahmoud A, et al. 

Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-

specific T cells capable of proliferation in healthy subjects by using a prime-boost 

regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines 

expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. Journal of Virology. 



 71

American Society for Microbiology; 2006 May;80(10):4717–28.  

30. Nielsen M, Lundegaard C, Lund O, Keşmir C. The role of the proteasome in 

generating cytotoxic T-cell epitopes: insights obtained from improved predictions 

of proteasomal cleavage. Immunogenetics. 2005 Apr;57(1-2):33–41.  

31. Draenert R, Le Gall S, Pfafferott KJ, Leslie AJ, Chetty P, Brander C, et al. 

Immune selection for altered antigen processing leads to cytotoxic T lymphocyte 

escape in chronic HIV-1 infection. J Exp Med. 2004 ed. 2004 Apr 5;199(7):905–

15.  

32. Allen TM, Altfeld M, Yu XG, O'Sullivan KM, Lichterfeld M, Le Gall S, et al. 

Selection, transmission, and reversion of an antigen-processing cytotoxic T-

lymphocyte escape mutation in human immunodeficiency virus type 1 infection. 

Journal of Virology. American Society for Microbiology; 2004 Jul;78(13):7069–

78.  

33. Berkhout B. Structure and function of the human immunodeficiency virus leader 

RNA. Prog Nucleic Acid Res Mol Biol. 1996;54:1–34.  

34. Richter S, Cao H, Rana TM. Specific HIV-1 TAR RNA loop sequence and 

functional groups are required for human cyclin T1-Tat-TAR ternary complex 

formation. Biochemistry. 2002 May 21;41(20):6391–7.  

35. Richter S, Ping Y-H, Rana TM. TAR RNA loop: a scaffold for the assembly of a 

regulatory switch in HIV replication. Proc Natl Acad Sci USA. National Acad 



 72

Sciences; 2002 Jun 11;99(12):7928–33.  

36. KARN J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-

1 gene expression. Cold Spring Harb Perspect Med. 2012 ed. 2012 

Feb;2(2):a006916.  

37. Ternette N, Block PD, Sanchez-Bernabeu A, Borthwick N, Pappalardo E, Abdul-

Jawad S, et al. Early Kinetics of the HLA Class I-Associated Peptidome of 

MVA.HIVconsv-Infected Cells. Journal of Virology. 2015 ed. 2015 

Jun;89(11):5760–71.  

38. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-

3.0: accurate web accessible predictions of human, mouse and monkey MHC class 

I affinities for peptides of length 8-11. Nucleic Acids Res. Oxford University 

Press; 2008 Jul 1;36(Web Server issue):W509–12.  

39. Hinnebusch AG. eIF3: a versatile scaffold for translation initiation complexes. 

Trends Biochem Sci. 2006 Oct;31(10):553–62.  

40. Miele G, Mouland A, Harrison GP, Cohen E, Lever AM. The human 

immunodeficiency virus type 1 5' packaging signal structure affects translation but 

does not function as an internal ribosome entry site structure. Journal of Virology. 

1996 ed. 1996 Feb;70(2):944–51.  

41. Parkin NT, Cohen EA, Darveau A, Rosen C, Haseltine W, Sonenberg N. 

Mutational analysis of the 5' non-coding region of human immunodeficiency virus 



 73

type 1: effects of secondary structure on translation. Embo J. 1988 ed. 1988 

Sep;7(9):2831–7.PMC457075.  

42. Bolinger C, Boris-Lawrie K. Mechanisms employed by retroviruses to exploit host 

factors for translational control of a complicated proteome. Retrovirology. 2009 

ed. 2009;6:8.  

43. Berkhout B, Arts K, Abbink TE. Ribosomal scanning on the 5'-untranslated region 

of the human immunodeficiency virus RNA genome. Nucleic Acids Res. 2011 ed. 

2011 Jul;39(12):5232–44.  

44. Buck CB, Shen X, Egan MA, Pierson TC, Walker CM, Siliciano RF. The human 

immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. 

Journal of Virology. 2000 ed. 2001 Jan;75(1):181–91.  

45. Brasey A, Lopez-Lastra M, Ohlmann T, Beerens N, Berkhout B, Darlix JL, et al. 

The leader of human immunodeficiency virus type 1 genomic RNA harbors an 

internal ribosome entry segment that is active during the G2/M phase of the cell 

cycle. Journal of Virology. 2003rd ed. 2003 Apr;77(7):3939–49.  

46. Vallejos M, Deforges J, Plank TD, Letelier A, Ramdohr P, Abraham CG, et al. 

Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal 

ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Res. 

2011 ed. 2011 Aug;39(14):6186–200.  

47. Plank T-DM, Whitehurst JT, Kieft JS. Cell type specificity and structural 



 74

determinants of IRES activity from the 5' leaders of different HIV-1 transcripts. 

Nucleic Acids Res. 2013 May 9;41(13):6698–714.  

48. Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY, Huang SX, et al. 

Decoding human cytomegalovirus. Science. 2012 ed. 2012 Nov 

23;338(6110):1088–93.  

49. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis 

in vivo of translation with nucleotide resolution using ribosome profiling. Science. 

2009 ed. 2009 Apr 10;324(5924):218–23.  

50. Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, et al. 

Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation 

by MHC class I. Science. 2012 Jun 29;336(6089):1719–23.  

51. Starck SR, Shastri N. Non-conventional sources of peptides presented by MHC 

class I. Cell Mol Life Sci. 2011 Mar 10;68(9):1471–9.  

52. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger 

RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–48.  

53. Kozak M. Context effects and inefficient initiation at non-AUG codons in 

eucaryotic cell-free translation systems. Mol Cell Biol. American Society for 

Microbiology (ASM); 1989 Nov;9(11):5073–80.  

54. Kozak M. Downstream secondary structure facilitates recognition of initiator 



 75

codons by eukaryotic ribosomes. Proc Natl Acad Sci USA. 1990 

Nov;87(21):8301–5.  

55. Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, et al. 

Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. 

Science. 2013 May 24;340(6135):1237874.  

56. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, 

et al. Effector memory T cell responses are associated with protection of rhesus 

monkeys from mucosal simian immunodeficiency virus challenge. Nature 

Medicine. 2009 Mar;15(3):293–9.  

57. Hansen SG, Piatak MJ, Ventura AB, Hughes CM, Gilbride RM, Ford JC, et al. 

Immune clearance of highly pathogenic SIV infection. Nature. 2013 ed. 2013 Oct 

3;502(7469):100–4.  

  



 76

Section 2.7 Figures and Tables
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Figure 2-1 Expression and immune recognition of the SIVmac766 5’ leader DRiP 

KA9 

A) Highlighter plot of HIV-1 half genome single genome sequences (SGSs). Horizontal 
lines represent SGSs and tick marks denote mutations relative to the infecting stock 
(SIVmac766). Green = mutation to A, Blue = C, Orange = G, Red = T, and Grey = gap. 
B) Interferon-γ ELISPOT assays. Peptides and overlapping peptide pools used to 
stimulate autologous PBMCs from macaque HD35 are indicated at the bottom. Plotted on 
the y-axis are spot forming units/million PBMCs. All non-KA9 peptides encoded by the 
5’ leader (p1+p2+p3 pool (-) KA9-like and m1+m2+m3 pool representing plus frame and 
minus frame peptides, respectively) were not recognized by autologous PBMCs. KA9 
and any KA9-containing peptide (e.g. CSYKGAGRYQTA) were recognized. The 
selected variant at week 4 (see A) – KSAGRYQTA – was not recognized, demonstrating 
complete viral escape. Positive controls include a Nef-(W9 peptide and 
phytohemagglutinin (PHA). C) Ribosomal profiling of the SIVmac 766 5’ laeder. Shown 
are the sites of ribosome protected fragments (x-axis) and the normalized number of 
reads (y-axis) for experiments run under four conditions: red = lactimidomycin (LTM), 
freezes initiating ribosomes; green = cyclohexamide, freezes initiating or elongating 
ribosomes; blue = Pateamine A, freezes stalled ribosomes; and black = DMSO, drug 
solvent control. Enriched LTM signal (red) indicates initiating ribosomes. Arrows 
indicate two one-off AUG codons (ACGs) upstream of KA9 (shown below). Right: 
Comparison of the wildtype and a start site mutant SIVmac766 in which the putative start 
codons (ACG ACG, arrows) were replaced with two-off codons (UCG UCG). Panel 
depicts zoom in on the ribosomal profile of the KA9 ORF for the wildtype (top) and start 
site mutant (bottom) SIVmac766.   
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Table 2-1 Prevalence of selection in longitudinal HIV-1 5’ leader sequence datasets 

Subject Subtype R U5/PBS DIS/SD/Ψ 

CH0236 C   x x 

CH0694 C x x x 

R463F A     x 

R880F A x    

CH0325 C     x 

CH1432 C     x 

CH0256 C x     

CH0042 C     x 

CH0164 C     x 

CH0058 B   x   

CH0198 C     x 

CH0040 B x     

CAP210 C x     

CH0185 C       

CH0107 C       

CH0067 C       

CH0077 B       

CH0131 C       

CH0159 C       

CH0162 C       

CH0264 C       

CH0443 C       

CH0569 C       

CH0752 C       

CH0470 B       

CH0850 C       
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First column indicates subject ID, second column subtype of HIV-1 infection, and 
remainder represent regions of the 5’ leader. X indicates selection detected 
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Figure 2-2 Viral load and CD4 counts for study subjects 
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Table 2-2 HLA typing for study subjects 

Participant Id CH0236 CH0694 R463F 

HLA-A allele 1 A*30:02/33 A*30:01  A*01:01 

HLA-A allele 2 A*66:01/08 A*74:01/02/03/09 A*30:02 

HLA-B allele 1 B*08:01/19N B*42:02 B*15:03 

HLA-B allele 2 B*18:01/17N B*15:10 B*45:01 

HLA-C allele 1 C*07:01/06/18/52/
57/116 

C*17:01/02/03/04 C*02:10 

HLA-C allele 2 C*17:01/02/03 C*03:04/06/09/19/23/24/26/32/37/44/46/48/54/
57/63/64/72/73/74/77/78 

C*06:02 
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Figure 2-3 Longitudinal whole genome SGS for subject CH0236 

Depicted is a synonymous/nonsynonymous mutation highlighter plot. Horizontal lines represent sequences and tick marks denote 
changes relative to the inferred transmitted founder virus (TF). Color code indicated at the bottom. Sequences are arranged 
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longitudinally from top to bottom with the trial time point indicated to the left. Alignment position (not HXB2) indicated at the 
bottom. Genomic organization is shown at the bottom with relevant viral landmarks noted.  



 84

 



 85

Figure 2-4 Longitudinal whole genome SGS for subject CH0694 

 

 

Figure 2-5 Longitudinal whole genome SGS for subject R463F 
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Table 2-3Poisson fitter analysis 

Subject Star-like 

phylogeny 

p-value Estimated 

Days Post 

Infection 

Harmonic 

mean 

(Days) 

95% 

Confidence 

Interval 

CH0236.5 Yes 0.895 17 21 (18,24) 

CH0236.3 Yes 0.515 27 

CH0694.5 Yes 0.390 9 9 (6,12) 

CH0694.3 Yes 0.704 11 

R463F Yes 0.668 12 N/A (6,18) 

Sequences from the earliest time point were analyzed using Poisson Fitter v2. Sequences 
used are indicated in the left column (.3 and .5 represent 3’ and 5’ half genomes, 
repsecitvely). Nonsignificant p-value indicates a Poisson distribution of Hamming 
Distances, consistent with random diversification from a single virus. Dates from 
infection estimates are indicated. To obtain a single estimate for subjects with two date 
estimates, the harmonic mean was taken. 95% confidence interval for the date of 
infection estimates is indicated to the far right.  
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Table 2-4 Sites under selection at week 24 

CH0236 

Region 5'L Gag Pol Pol Vif Vif Tat Rev Env   

HXB2 680-719 1160-1177 2118-2130 3931-3965 5150 5318 5917 6022-6030 6705   

#SGS 18/18 18/18 18/18 18/18 7/7 7/7 7/7 5/7 7/7   

Region Env Env Env Env Env Env Nef Nef Nef   

HXB2 7113 7718-7723 7826 8587g 8657 8718 9110-9120 9308 9522   

#SGS 7/7 7/7 5/7 7/7 5/7 6/7 6/7 5/7 5/7   

R463F 

Region 5'L Gag Tat Env Env Env Nef       

HXB2 717-723 1242-1247 5947-5949 6618-6621 6658-6662 7397-7408 9347       

#SGS 14/14 14/14 14/14 14/14 10/14 14/14 14/14       

CH0694 

Region 5'L 5'L Gag Vpr Tat Tat/Rev Vpu Env Env   

HXB2 497-513 633 1804-1808 5789-5810 5933-5934 6019 6164-6172 6232-6246 6372   

#SGS 29/30 30/30 30/30 77/82 52/52 52/52 48/52 52/52 46/52   

Region Env Env Env Env Env Nef Nef Nef U3 R 

HXB2 7062-7063 7548-7555 7600-7601 8070 8728-8732 8867 9008 9049 9525-9538 9582-9591 

#SGS 50/52 47/52 51/52 52/52 52/52 49/52 52/52 52/52 52/52 52/52 
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A sliding window of 45-nts (15 amino acids) was used to detect positive selection due to CTL escape (Goonetilleke, et al., 2009) in 
sequences taken ~6 months post infection. Indicated is the region of the genome that the selection fell in, the HXB2 coordinates of the 
span of nucleotide mutations, and the number of sequences of the total number with a mutation in that span.
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Figure 2-6 Immune recognition of a 5’ leader DRiP during CH0236 infection 

A) Nucleotide highlighter plot of 5’ leader sequences taken from enrollment through 
week 60. Color code same as Figure 2.1A. Landmarks of the 5’ leader are indicated at 
the bottom. B) Interferon-γ ELISPOT data using pooled peptides from the six reading 
frames of the 5’ leader (+1, +2, +3, -1, -2, -3), an autologous Nef peptide and PHA. 
Reactivity above 50 SFUs was seen for the RF +1 pooled peptides. C) mapping of the 5’ 
leader epitope within RF+1 peptides to RR18 and the AR11 (left). Comparison of AR11 
and ER10 at 4 peptide concentrations demonstrates that ER10 is the minimal epitope. D) 
Nucleotide alignment translated into the ER10 RF demonstrating changes to the ER10 
reading frame due to mutations observed in (A). Variants that were present in 3 or more 
sequences were included. ER10 ORF spans from RNA position 178-312. One-off AUGs 
highlighted in green, ER10 highlighted in yellow. Nucleotide mutations are highlighted 
with the same color code as (A). Nonsynonymous changes are highlighted in red at the 
amino acid level. E) IFN-γ ELISPOT assays of ER10 and variants observed over time 
demonstrates complete abrogation of immune recognition.
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Figure 2-7 Kinetics of the autologous HIV-specific responses in CH0236 

For the 19 autologous TF peptides recognized during the first year of infection (right), the percent of the total HIV-specific response is 
plotted over time (calculated as #SFU/total SFUs for that timepoint). 
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Figure 2-8 Immune recognition of the CH0694 5’ leader DRiP during infection 

A) Nucleotide highlighter plot of longitudinal 5’ leader sequences, same as Figure 2.7A. 
B) IFN-γ ELISPOT assays using pooled peptides from all 6 5’ leader reading frames 
demonstrate reactivity toward RF+1 and RF+3 pools. C) Deconvolution of the RF+3 
pool using week 16 cells reveals the responsible peptide, LL9. D) Mutations mapped to 
the LL9 reading frame confer nonsynonymous changes or nonsense mutations. E) 
Deconvolution of the RF+1 pool from (B) reveals immune recognition of two partially 
overlapping peptides IA9 and RS9. F) Mutations mapped to the IA9/RS9 RF. Note – 
included variants were present in 3 or more sequences. Multiple variants with mutation 
at RNA positions 200+201 were present in the sequence dataset but did not appear 3 or 
more times. 



 92

 

Figure 2-9 Kinetics of the autologous HIV-specific responses in CH0694 

For the 17 autologous TF peptides recognized during the first year of infection (right), the percent of the total HIV-specific response is 
plotted over time (calculated as #SFU/total SFUs for that timepoint).
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Figure 2-10 Immune recognition of a 5’ leader DRiP during R463F infection 

A) Nucleotide highlighter plot of longitudinal 5’ leader sequences, same as Figure 2.7A. 
B) IFN-γ ELISPOT assays using pooled peptides from all 6 5’ leader reading frames 
demonstrate reactivity toward RF+3 pool. C) Deconvolution of the RF+3 pool using 
week 46 cells reveals the responsible peptide, AA10. D) Immune recognition of AA10, 
but not variant AA10 observed at week 24 and beyond. E) Mutations mapped to the 
AA10 RF. Note – because of limited sample availability, sequences from the original 
near-full length sequencing were included here. The 5’ end of these sequences is 228 due 
to primer placement. 
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Figure 2-11 Location of 5’ leader mutations on the RNA secondary structure, DIS 

ORF 

3 subjects targeted peptides encoded by stem loop 1, also known as the DIS stem loop. 
Shown is the RNA structure of this region as determined by SHAPE (Pollom, et al., 
2013) with the primer binding site (PBS), dimerization initiation site (DIS), and major 
splice donor (SD1) indicated. The TF sequence from each of these three subjects was 
substituted for the sequence used to determine the RNA folding. Watson-Crick base 
pairing indicated with black bars, G-U base pairing in grey. Highlighted residues 
demonstrated mutation during follow up (key bottom right). Carrots indicate insertions. 
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Due to a 20 nt insertion, the R463F does not have homology to other viruses 
immediately following the PBS. This region was therefore omitted.
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Figure 2-12 Location of the 5’ leader mutations on the RNA secondary structure, R 

ORF 

CH0694 targeted LL9, encoded by the TAR stem loop. Mutations are indicated as in 
Figure 2.11. The asterisk indicates the selected variant, which converts a G-U base pair 
to a Watson-Crick base pair.
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Figure 2-13 Comparison of experimenta LSLGALWLAREPTA fragmentation 

spectra with synthetic peptide standard 

For each spectrum, the detected mass over charge ratio [M+np]n (where n is the number 
of charges), the PEAKS software peptide score and the measured precursor mass error 
(in parts per million) are shown. The detected fragment ions in each spectrum are 
displayed in the peptide sequence where b and y represent N- and C-terminal fragment 
ions, respectively.  
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Section 3.1 – Abstract  

Introduction: HIV-1 5’ leader sequences exhibit multiple patterns of sequence evolution 

in infected subjects over time. One pattern was recently shown to reflect escape from 

CTL responses targeting 5’ leader peptides expressed from one-off AUG codons (e.g. 

CUG). Here, we investigated another pattern within a motif called the primer 

overextension sequence (POS). In vitro, HIV-1 reverse transcriptase (RT) periodically 

overextends while copying the tRNA template by 4 nucleotides, incorporating TTGA into 

the POS.  

Results: We identified 11 subjects who were infected with single transmitted founder 

(TF) viruses that did not match the canonical TTGA motif at 1 or 2 sites (non-

overextension variants, GCGA, CCGA, CAGA, or CTGA). Variants that matched the 

TTGA motif (overextension variants) were subsequently observed in 10 of these subjects 

and shown to increase in frequency over time. Interestingly, only 52% of M group 

sequences matched the tRNA complement within the POS, leaving nearly half of HIV-1 

strains with a one or two base pair mismatch relative to the tRNA. In an in vitro extension 

assay, HIV-1 RT initiated polymerization despite a two-base pair mismatch within the 

POS with 82% efficiency. We then identified 8 additional subjects whose TF viruses 

matched the canonical TTGA motif. In one subject, the POS mutated away from TTGA 

in concert with downstream cellular immune escape mutations in a newly identified 5’ 

leader open reading frame. In this case, different mutations in the POS deleted a one-off 

AUG codon (bold, TTGA-> CGGA, CCGA, CAGA, TGGA, TCGA) and thus likely 

abrogated the expression of the 5’ leader peptide.  
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Conclusions: Sequence analysis of HIV-1 quasispecies in infected subjects over time 

indicates that RT overextension incorporates a one-off AUG initiation codon within the 

HIV-1 5’ leader. Cellular immune responses provide an antagonizing force that selects 

for POS mutations that delete this one-off AUG. This finding provides new insight into 

peptide expression from the HIV-1 5’ leader and may inform future interventions that 

target this region of the genome. 
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Section 3.2 – Introduction 

The HIV-1 5’ leader is often cited as the most conserved region of the viral 

genome (1-4). Nonetheless, we recently observed multiple patterns of non-random 

mutation within the 5’ leaders of HIV-1 and SIVmac strains that were sequenced over 

time (Chapter 2). One of these patterns – the toggling of mutations in a 27-62 nucleotide 

span – resembled cytotoxic T lymphocyte (CTL) escape that is typically observed within 

viral coding sequences (5, 6). This finding led to the hypothesis that the 5’ leader, a 

designated “untranslated” region, expressed peptides that could serve as CTL antigens. 

Using interferon-γ ELISPOT assays, we confirmed this hypothesis and demonstrated host 

CTL recognition of multiple HIV-1 5’ leader encoded peptides (Chapter 2). Ribosomal 

profiling studies revealed that translation of these peptides is initiated at one-off AUG-

like start codons (one-off AUGs, e.g. CUG, Chapter 2, Warrier, R., Shaw, G., 

unpublished) (7-9). Thus, based on virus sequence evolution, we were able to identify a 

novel class of HIV-1 Defective Ribosomal Products (DRiPs) that are expressed and 

presented in the context of major histocompatibility complexes, and may serve as early 

indicators of pathogen invasion (10-13).  

In this study, we sought to identify other causes of 5’ leader mutation and to 

correlate these to viral variants observed in vivo. Reverse transcriptase (RT) 

overextension offered one such candidate (14). HIV-1 reverse transcription is primed by 

an uncharged host tRNA(Lys,3), which anneals to the viral genome at the primer binding 

site (PBS) (15, 16). During plus strand DNA synthesis, RT copies 18 nucleotides of this 
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primer, replicating the PBS (14, 17-20). In vitro studies have suggested that RT pauses 

elongation upon encountering the plus strand strong stop signal, a modified adenosine at 

tRNA position 58 (m1A-58) (14, 17). This DNA intermediate must then undergo strand 

transfer, anneal to the minus strand via the PBS, and prime RT extension. In vitro, RT 

periodically overextends tRNA replication beyond the strong stop, yielding DNA 

intermediates that harbor 4 or 21 additional nucleotides of the host tRNA sequence (21, 

22). Muthuswami and colleagues demonstrated that the 4-nt overextended intermediate, 

but not the 21-nt overextended one, could undergo strand transfer and prime RT 

extension. Further, they found that  >60% of HIV-1 strains matched the host tRNA 

complement in the four nts adjacent to the PBS and named this region the primer 

overextension sequence (POS, Figure 3.1). Based on their analysis, however, certain 

HIV-1 strains would not match the tRNA complement at position 1 and/or 2 of the POS 

(non-overextension variants). Strand transfer during reverse transcription of one of these 

non-overextension variants would result in donor-acceptor strand mismatches (Figure 

3.1), which may either mutate the virus (19, 20) or decrease RT extension efficiency (23, 

24). To test for evidence of RT overextension in vivo, we applied a previously developed 

experimental strategy based on single genome amplification of HIV-1 RNA and direct 

amplicon sequencing (single genome sequencing, SGS) that can be used to infer the 

genetic identity of the transmitted founder virus (25) and characterize molecular 

pathways of virus evolution (26, 27). We applied this tool to evaluate POS sequence 

evolution in subjects who had been longitudinally followed from acute infection. 
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Section 3.3 – Results 

 We studied 5’ leader sequence evolution in a cohort of 19 subjects who were 

followed starting from acute HIV-1 infection over 0.5-3 years. Single genome sequences 

from 12 of these subjects have been previously published (26, 28). Poisson fitter analysis 

of 5’ half genome sequences from the earliest time point demonstrated that each subjects 

was infected with a single transmitted founder (TF) virus (data not shown) (25, 26, 28, 

29). TF strains from 8 subjects matched the tRNA complement within the POS (TTGA, 

overextension variants), whereas 11 did not (non-overextension variants). 

To test for mutations consistent with overextension, we evaluated longitudinal 

HIV-1 5’ leader sequences from the 11 subjects who were infected by non-overextension 

variants. As shown in Table 1, these TF viruses demonstrated polymorphism at POS 

positions 1 and 2: four viruses encoded CTGA, one CAGA, one CCGA, and five GCGA.  

Sequences that encoded TTGA (overextension variants) were detected at subsequent time 

points during infection in 10 out of 11 of these subjects. The prevalence of these 

overextension variants increased over time: from 5.6% of sequences at enrollment to 25% 

at week 60 in CH0236; from 11% at enrollment to 25% at week 85 in CH077; and from 

10% at enrollment to 40% at week 24 in CH1432 (Figure 3.2). Thus, examination of 

longitudinal HIV-1 5’ leader sequences revealed mutations consistent with RT 

overextension in vivo.  

To assess the diversity in POS motifs from globally circulating HIV-1 strains, we 

obtained 979 HIV-1 group M sequences from the Los Alamos National Laboratory HIV 

Database that included this region (HXB2 positions 635-659). Consistent with previous 
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findings (22), group M sequences showed conservation (>97% identity) throughout the 

PBS and at positions 3 and 4 of the POS (Figure 3.3). Positions 1 and 2 of the POS, 

however, were polymorphic. Only 512/979 sequences (52%) matched the host tRNA 

throughout the POS (TTGA, Figure 3.4). 197/979 (20%) harbored a single base pair 

mismatch and 234/979 (24%) harbored two base pair mismatches. These findings 

demonstrate that polymorphism within the POS is primarily at positions 1 and 2. 

To test if these mismatches between the tRNA and the POS affected RT extension 

efficiency, we developed an in vitro extension assay. As outlined in Figure 3.5, 

fluorescein-labeled primers 18-22 nucleotides in length were annealed to a 31-nt template 

and incubated with purified HIV-1 reverse transcriptase. RT extension generated a 31-nt 

product (upper band) that could be visualized on a gel and quantified using densitometry. 

Three fluorescein-labeled primers were tested: an 18-nt primer representing the canonical 

plus strand DNA intermediate (PBS); a 20-nt primer that contained two additional Ts at 

its 3’ end (PBS+2); and a 22-nt primer that represented the overextended intermediate 

(PBS+4, Figure 3.3). These primers were duplexed with one of two 31-nt templates: one 

that was complementary to TTGA in the POS (match, overextension variants) and one 

that was complementary to GCGA (mismatch, non-overextension variant). The PBS+2-

mismatch template duplex was included as a control, since a two-base pair mismatch at 

the 3’ end should confer a decreased extension efficiency as long as conditions are not 

saturating (23, 24). The PBS+4/mismatch duplex (lane 9) primed RT extension with 82% 

extension efficiency as compared to duplexes with complete complementarity (lanes 2, 3, 

5, and 8), which showed efficiencies ranging from 74% to 94%  (Figure 3.5). Conversely, 
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a two base pair mismatch at the 3’ hydroxyl group decreased extension efficiency to 40% 

(lane 6), suggesting that these conditions were not saturating. Along with the in vivo 

evidence of RT overextension, these data suggest that RT can efficiently initiate 

polymerization despite a two-base pair mismatch within the POS. 

Based on the frequency of POS mutations observed in TF and group M viruses, 

we hypothesized that mutations away from TTGA would also occur during infection. To 

test this hypothesis, we examined sequence evolution in the 8 subjects infected with 

overextension variants (TTGA). Evaluation of 5’ leader sequences in these subjects 

revealed three patterns of evolution (Table 2). Three of the eight subjects retained TTGA 

within the POS throughout the duration of follow up. Sequences from four of the five 

remaining subjects demonstrated the same T-to-C transitions at position 1 of the POS 

(HXB2 position 654, Figure 3.6). This CTGA variant is found in 13.5% of group M 

sequences (Figure 3.6) and more commonly in non-primate lentiviruses (22). Finally, 

viral sequences from subject CH0694 demonstrated substitutions at both positions 1 and 

2 of the POS. 

As described in Chapter 2, longitudinally collected 5’ leader sequences from 

subject CH0694 accumulated non-random mutations during the course of his infection. 

We confirmed that CH0694 cytotoxic T lymphocytes recognized two autologous 5’ 

leader peptides (IA9 and RS9, HXB2 positions 681-719) using interferon-γ ELISPOT 

assays (Chapter 2). Translation of these peptides occurs at one-off AUG-like codons 

(one-off AUGs), which can be mutated during virus escape from 5’ leader peptide 

directed cellular immune responses (Chapter 2). Six one-off AUGs were observed 
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throughout the IA9/RS9 reading frame (HXB2 positions 633, 648, 654, 681, 693, and 

711). Four of these codons were upstream IA9/RS9, including a UUG that fell within the 

POS (UUGA, green highlighting, Figure 3.7). The POS was mutated in 5 of 34 (14.7%) 

day 695 variants and 11 of 27 (40.7%) day 1009 variants. All but one of these mutations 

deleted the embedded one-off AUG. The only one-off AUG upstream of IA9 and RS9 

that remained unaltered during immune escape fell within the invariant PBS (HXB2 

position 648). We hypothesize that any mutations within this codon would rapidly revert 

to match the PBS, similar to what has been observed with other PBS substitutions (19). 

Thus, in the context of immune escape, one-off AUG codons within the POS can be 

deleted.  
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Section 3.4 – Conclusions 

In this study, we evaluated intra-host sequence evolution of a 5’ leader motif 

called the primer overextension sequence (POS) and correlated these observations with in 

vitro functional studies of the reverse transcriptase. We observed mutations consistent 

with RT overextension in subjects infected with non-overextension variants, providing 

evidence that this process is not simply an in vitro phenomenon (Table 3.1). Moreover, 

overextension variants gradually increased in population frequency (Figure 3.2), 

suggesting that canonical plus strand intermediates are generated more commonly than 

their overextended counterparts (ratio of ~3.3:1 in vitro) (14). Finally, we tested the effect 

of a two base-pair mismatch within the POS on RT priming and observed little to no loss 

in extension efficiency (Figure 3.5). These data indicate that RT overextension occurs in 

vivo, even when the viral POS does not match the tRNA.  

Next, we evaluated sequence evolution in subjects infected with overextension 

variants and observed two different types of mutations. Viral sequences from four 

subjects exhibited a T-to-C transition at the first position of the POS (Table 2 and Figure 

3.6). This finding is consistent with the observation that RT favors transition over 

transversion mutations (30) and that non-human lentiviruses often harbor CTGA within 

the POS (14), but seemingly contradicts in vitro studies that have shown that m1A-58 is 

most commonly decoded as an adenosine (17).  Future biochemical studies of RT base 

misincorporations while decoding modified bases may reconcile these differences. 

Finally, we observed mutations that deleted a one-off AUG codon embedded in the POS 
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(UUGA), suggesting that this change confers immune escape from a host T cell response 

(Figure 3.7, Chapter 2).  

Collectively, the data presented here suggest that RT overextension occurs in vivo 

and incorporates a non-canonical translation initiation codon in the 5’ leader sequence. 

This one-off AUG can initiate expression of a downstream peptide, which in the case of 

subject CH0694 became the target of a CTL response. This link between RT 

overextension and 5’ leader peptide expression is relevant to the development of HIV 

vaccines targeting 5’ leader peptides. One concern for developing such a vaccine is that 

HIV-1 strains can delete one-off AUG codons upstream of targeted peptides. The data 

presented here indicates that certain mutated one-off AUGs can be restored by processes 

like RT overextension. Interestingly, another one-off AUG is encoded by the PBS (Figure 

3.7 AGG at position 648), which we hypothesize will not tolerate mutation (19, 20). 

Thus, the findings presented add to 5’ leader biology and inform interventions that target 

peptides encoded by this region of the genome. 
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Section 3.5 – Methods 

Single Genome Sequencing and Sequence Analysis. RNA extraction, complementary 

DNA synthesis, and single genome amplification were performed as previously described 

(29). Sequences were then aligned and analyzed using Geneious 7 software. Accession 

numbers for previously published sequences are as follows (fill in): CH0040: , CH0058: , 

CH0077: , CH0131: , CH0159: , CH0198: , CH0256: , CH0185: , CH0470: , CH0162: , 

CH0164: , CH0042: .  M group sequences were obtained from the Los Alamos 

Compendium and all sequences that did not include the 18 nucleotides of the PBS and 6 

nucleotides downstream were excluded. 

 

RT extension assay. In each condition, FAM-labeled primer was annealed to excess, 

unlabeled template (1:1.5 ratio) by heating to 95C for 5 minutes and then slowly cooling 

to room temperature. A master mix of 10 mM dNTPs, 1x RT reaction buffer, and 0.7 

units of RT (ThermoFisher) was assembled and aliquoted into reaction tubes. Extension 

reactions were initiated with 100nM of the primer:template duplexes, and were incubated 

at 37C for 2 minutes. The reactions were quenched with formamide buffer with 10 mM 

EDTA and were heated at 95C for 20 minutes. Samples were run on a preheated 20% 

acrylamide-TBE/Urea gel at 50C for 30 minutes. Gels were imaged using a Typhoon 

9410 (Amersham Biosciences). Intensities of unextended and extended primer bands 

were calculated using Bio-Rad QuantityOne software after subtracting background 

signal, and percent extensions were calculated by dividing the intensity of the extended 

band by the total intensity of both unextended and extended bands. 



 110

 

Section 3.6 – Competing interests, Contributions, and Acknowledgments  

The authors have no conflicts of interest to report. 

 

Authors’ contributions 

EFK conceived of the study, designed and carried out experiments, and drafted the 

manuscript. EKS helped devise and carry out in vitro biochemical assays. HL, RW, GHL, 

and PTH participated in sequence alignment and analysis. RMK devised the in vitro 

biochemical assays. GMS and BHH helped conceive of the study and draft the 

manuscript. 

 

Acknowledgements 

EFK is supported by a NIH NIAID F30 fellowship (F30 AI112426). We want to thank 

Hannah Barbian and Elizabeth Traxler for reviewing the manuscript. 

  



 111

Section 3.7 - References 

1. N. van Bel, A. T. Das, B. Berkhout, In Vivo SELEX of Single-Stranded Domains 

in the HIV-1 Leader RNA. Journal of Virology. 88, 1870–1880 (2014). 

2. S. C. Keane et al., RNA structure. Structure of the HIV-1 RNA packaging signal. 

Science. 348, 917–921 (2015). 

3. K. Lu et al., NMR detection of structures in the HIV-1 5'-leader RNA that regulate 

genome packaging. Science. 334, 242–245 (2011). 

4. E. Pollom et al., Comparison of SIV and HIV-1 genomic RNA structures reveals 

impact of sequence evolution on conserved and non-conserved structural motifs. 

PLoS Pathog. 9, e1003294 (2013). 

5. N. Goonetilleke et al., The first T cell response to transmitted/founder virus 

contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 206, 

1253–1272 (2009). 

6. J. F. Salazar-Gonzalez et al., Genetic identity, biological phenotype, and 

evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 

infection. J. Exp. Med. 206, 1273–1289 (2009). 

7. S. R. Starck et al., Leucine-tRNA initiates at CUG start codons for protein 

synthesis and presentation by MHC class I. Science. 336, 1719–1723 (2012). 

8. N. Stern-Ginossar et al., Decoding human cytomegalovirus. Science. 338, 1088–



 112

1093 (2012). 

9. N. T. Ingolia, S. Ghaemmaghami, J. R. Newman, J. S. Weissman, Genome-wide 

analysis in vivo of translation with nucleotide resolution using ribosome profiling. 

Science. 324, 218–223 (2009). 

10. B. P. Dolan, J. R. Bennink, J. W. Yewdell, Translating DRiPs: progress in 

understanding viral and cellular sources of MHC class I peptide ligands. Cell. Mol. 

Life Sci. 68, 1481–1489 (2011). 

11. L. C. Antón, J. W. Yewdell, Translating DRiPs: MHC class I immunosurveillance 

of pathogens and tumors. J Leukoc Biol. 95, 551–562 (2014). 

12. E. A. Reits, J. C. Vos, M. Gromme, J. Neefjes, The major substrates for TAP in 

vivo are derived from newly synthesized proteins. Nature. 404, 774–778 (2000). 

13. U. Schubert et al., Rapid degradation of a large fraction of newly synthesized 

proteins by proteasomes. Nature. 404, 770–774 (2000). 

14. R. Muthuswami et al., The HIV plus-strand transfer reaction: determination of 

replication-competent intermediates and identification of a novel lentiviral 

element, the primer over-extension sequence. Journal of Molecular Biology. 315, 

311–323 (2002). 

15. L. Kleiman, tRNA(Lys3): the primer tRNA for reverse transcription in HIV-1. 

IUBMB Life. 53, 107–114 (2002). 



 113

16. A. T. Das, S. KOKEN, B. ESSINK, J. VANWAMEL, B. Berkhout, Human-

Immunodeficiency-Virus Uses Trna(Lys,3) as Primer for Reverse Transcription in 

Hela-Cd4(+) Cells. FEBS Lett. 341, 49–53 (1994). 

17. S. Auxilien, G. Keith, S. F. Le Grice, J. L. Darlix, Role of post-transcriptional 

modifications of primer tRNALys,3 in the fidelity and efficacy of plus strand DNA 

transfer during HIV-1 reverse transcription. J Biol Chem. 274, 4412–4420 (1999). 

18. P. Charneau, M. Alizon, F. Clavel, A second origin of DNA plus-strand synthesis 

is required for optimal human immunodeficiency virus replication. Journal of 

Virology. 66, 2814–2820 (1992). 

19. C. M. Fennessey et al., Generation and characterization of a SIVmac239 clone 

corrected at four suboptimal nucleotides. Retrovirology. 12, 49 (2015). 

20. B. Berkhout, A. T. Das, On the primer binding site mutation that appears and 

disappears during HIV and SIV replication. Retrovirology. 12, 75 (2015). 

21. S. Auxilien, Role of Post-transcriptional Modifications of Primer tRNALys,3 in 

the Fidelity and Efficacy of Plus Strand DNA Transfer during HIV-1 Reverse 

Transcription. Journal of Biological Chemistry. 274, 4412–4420 (1999). 

22. R. Muthuswami et al., The HIV plus-strand transfer reaction: determination of 

replication-competent intermediates and identification of a novel lentiviral 

element, the primer over-extension sequence. Journal of Molecular Biology. 315, 

311–323 (2002). 



 114

23. L. Diaz, J. J. DeStefano, Strand transfer is enhanced by mismatched nucleotides at 

the 3' primer terminus: a possible link between HIV reverse transcriptase fidelity 

and recombination. Nucleic Acids Res. 24, 3086–3092 (1996). 

24. H. Yu, M. F. Goodman, Comparison of HIV-1 and avian myeloblastosis virus 

reverse transcriptase fidelity on RNA and DNA templates. J Biol Chem. 267, 

10888–10896 (1992). 

25. B. F. Keele et al., Identification and characterization of transmitted and early 

founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. U.S.A. 

105, 7552–7557 (2008). 

26. J. F. Salazar-Gonzalez et al., Genetic identity, biological phenotype, and 

evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 

infection. J. Exp. Med. 206, 1273–89. PMC2715054. (2009). 

27. K. J. Bar et al., Early low-titer neutralizing antibodies impede HIV-1 replication 

and select for virus escape. PLoS Pathog. 8, e1002721 (2012). 

28. M. K. Liu et al., Vertical T cell immunodominance and epitope entropy determine 

HIV-1 escape. J. Clin. Invest. 123, 380–93. PMC3533301. (2013). 

29. J. F. Salazar-Gonzalez et al., Deciphering human immunodeficiency virus type 1 

transmission and early envelope diversification by single-genome amplification 

and sequencing. Journal of Virology. 82, 3952–3970 (2008). 



 115

30. M. E. Abram, A. L. Ferris, W. Shao, W. G. Alvord, S. H. Hughes, Nature, 

position, and frequency of mutations made in a single cycle of HIV-1 replication. 

Journal of Virology. 84, 9864–9878 (2010). 

 

Section 3.8 – Figures and Tables    

   

Figure 3-1 Graphical representation of reverse transcriptase overextension and 

strand transfer 

During minus strand synthesis (blue arrow), RNA in RNA:DNA heteroduplexes is 
digested by reverse transcriptase’s RNase H activity (dotted gold line). Short RNA 
sequences called the polypurine tracts are RNase-resistant and can prime plus strand 
synthesis (green line). During canonical plus strand (green) synthesis, 18 nucleotides of 
the host tRNA (pink) are reverse transcribed prior to strong stop, generating the plus 
sense primer binding sequence (PBS, italics). During overextension, 4 additional 
nucleotides—TTGA—are added to the nascent strand. After RNase digestion of the host 
tRNA, plus strand DNA intermediates must undergo strand transfer and anneal to the 
minus strand (bottom). Viruses can either match (overextension variant) or mismatch 
(non-overextension variant) the four overextended tRNA encoded nucleotides.  
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Table 3-1 Percent Overextension Variants 

Subject ID 

 

POS motif at 

Transmission 

Total Number of 

Sequences 

Percent 

Overextension 

Variants 

CH0058 CTGA 36 8.3% 

CH0131 CTGA 17 12% 

CH0159 CTGA 16 6.3% 

CH0164 CTGA 54 57% 

CH0264 CAGA 136 2.9% 

CH0752 CCGA 26 12% 

CH0077 GCGA 36 11% 

CH0185 GCGA 52 0.0% 

CH0236 GCGA 367 8.2% 

CH0470 GCGA 95 6.3% 

CH1432 GCGA 20 25% 

 

Percent single genome sequences that are overextension variants in longitudinally followed subjects 

infected with a single transmitted founder virus. Transmitted founder (TF) viruses from 11 subjects did 
not match TTGA (column 2). Between 16 and 367 sequences were available per subject (column 3). The 
percent of these sequences that were TTGA variants, or overextension variants, is indicated in column 4. 
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Figure 3-2 Accumulation of overextension variants in viral sequences from subjects 

CH0236, CH0077, and CH1432 

CH0236, CH0077, and CH1432 were infected with non-overextension variants (GCGA). 
Depicted are nucleotide alignments of the PBS and POS variants observed over time, 
organized by timepoint. The number of single genome sequences (SGS) that were TF-
matched non-overextension variants (top), overextension-variants (second), or neither 
(bottom) are indicated to the right. Sequences changes relative to the TF virus are 
highlighted. 
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Figure 3-3 Nucleotide conservation of the PBS and POS relative to the reverse 

complement of tRNA(Lys,3) 

Nucleotide frequency was plotted for each position with the color code indicated to the 
right. The complement to the tRNA(Lys,3) is shown at the bottom. >99% conservation is 
observed at sites throughout the PBS and >97% conservation is seen at positions 3 and 4 
of the POS. Positions 1 and 2 of the POS exhibit polymorphism, with only 59.9% and 
69.4% of sequences matching the tRNA complement, respectively. 
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Figure 3-4 POS motifs present in published HIV-1 sequences 

Relative abundance of each 4-nt motif is depicted in a pie chart. TTGA, the complement 
of the tRNA(Lys,3) within the POS, is only observed in 52.3% of sequences. 

 



 120

 

Figure 3-5 Effect of primer overextension 2-base pair mismatch on RT 

polymerization efficiency 

To test the effect of base pair mismatch during primer overextension of non-
overextension variants, we developed an in vitro RT extension assay. Primer template 
pairs that were tested are represented graphically (top). PBS+4-template mismatch 
duplexes (lane 9) recapitulate the mispairing that would be observed during primer 
overextension of non-overextension variants. RT polymerization results in extension of 
the primer (length: 18-22 nts) to 31 nts. No RT was added to lanes 1, 4, and 7.  
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Table 3-2 Percent SGS mutated away from TTGA 

Subject ID 

 

POS motif at 

Transmission Total Number of 

Sequences Percent Mutated 

CH0325 TTGA 35 0.0% 

CH0042 TTGA 122 0.0% 

CH0569 TTGA 57 0.0% 

CH0198 TTGA 34 2.9% 

CH0040 TTGA 55 5.5% 

CH0850 TTGA 135 1.5% 

CH0256 TTGA 109 13.8% 

CH0694 TTGA 166 9.6% 

 

Percent single genome sequences mutated away from TTGA in longitudinally 

followed subjects infected with overextension variants 
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Figure 3-6 T-to-C transition at POS position 1 in subjects infected with TTGA 

variants 

CH0040, CH0850, CH0256, and CH0198 were each infected with a TTGA POS variant. 
During infection, CTGA variants were detected in all subjects.  
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Figure 3-7 Mutation in the POS in concert with downstream CTL escape 

Depicted is a longitudinal nucleotide/amino acid alignment in which identical sequences 
from a given timepoint are collapsed. Changes relative to the inferred transmitted founder 
variant (top) are highlighted both at the nucleotide and amino acid levels (key, right). 
Timepoint and number of identical single genome sequences (SGS) are indicated to the 
left. Numbering is relative to HXB2. Subject CH0694 T cells recognized two overlapping 
5’ leader peptides, IA9 and RS9, as measured by interferon-γ ELISPOT assays (Chapter 
2, position 681-719, yellow box). Translation initiation for such 5’ leader peptides occurs 
at one-off AUG-like codons, e.g. CUG or UUG (all one-off AUGs highlighted in green 
boxes). Changes within the POS at days 695 and 1009 mutated the embedded the one-off 
AUG (TTGA).  
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One sentence summary: Stages of V3-glycan neutralizing antibody development are 

identified that explain the long duration required for their development. 
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Section 4.1 – Abstract  

A glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein 

is an epitope for broadly neutralizing antibodies (bnAbs) and a desirable vaccine target.  

We identify here key events in the ontogeny of a V3-glycan bnAb.  Two autologous 

neutralizing antibody lineages selected for virus escape mutations and consequently 

allowed initiation and affinity maturation of a V3-glycan bnAb lineage.  The nucleotide 

substitution required to initiate the bnAb linage occurred at a low probability site for 

activation-induced cytidine deaminase activity.  Cooperation of B-cell lineages and an 

improbable mutation critical for bnAb activity define the necessary events leading to V3-

glycan bnAb development, explain why initiation of V3-glycan bnAbs is rare, and 

suggest an immunization strategy for inducing V3-glycan bnAbs. 
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Section 4.2 – Introduction  

A vaccine to prevent HIV-1 infection should include immunogens that can induce 

broadly neutralizing antibodies (bnAbs) (1, 2).  Of the five major targets for bnAbs, the 

glycan-rich apex of the HIV-1 envelope (Env) trimer and the base of the third variable 

loop (V3) are distinguished by the potency of antibodies directed against them (3-8). 

Although these antibodies have less breadth than those directed against the CD4 binding 

site (CD4bs) or the gp41 membrane-proximal region (MPER), one current goal of 

vaccine development is to elicit them in combination with other bnAb specificities to 

achieve broad coverage of transmitted/founder (TF) viruses (1, 2). 

   Mapping the co-evolution of virus and antibody lineages over time informs vaccine 

design by defining the succession of HIV-1 Env variants that evolve in vivo during the 

course of bnAb development (9-11).  Antibody lineages with overlapping specificities 

can influence each other's affinity maturation by selecting for synergistic or antagonistic 

escape mutations: an example of such "cooperating" lineages is provided by two CD4bs-

directed bnAbs that we characterized previously (11, 12). Thus, cooperating antibody 

lineages and their viral escape mutants allow identification of the specific Envs, among 

the myriads present in the infected individual, that stimulate bnAb development and that 

we wish to mimic in a vaccine. 

   Here we describe the co-evolution of an HIV-1 Env quasispecies and a memory B-cell 

lineage of gp120 V3-glycan directed bnAbs. To follow virus evolution, we sequenced 
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~1,200 HIV-1 env genes sampled over a 5 year period; to follow the antibody response, 

we identified natural heavy- and light-chain pairs of six antibodies from a bnAb lineage, 

designated DH270, and augmented this lineage by next generation sequencing (NGS).  

Structural studies defined the position of the DH270 Fab on gp140. We also found two B-

cell lineages (DH272 and DH475) with neutralization patterns that likely selected for 

observed viral escape variants, which in turn stimulated the DH270 lineage to potent 

neutralization breadth.  We found a mutation in the DH270 heavy chain that occurred 

early in affinity maturation at a disfavored activation-induced cytidine deaminase (AID) 

site and that was necessary for bnAb lineage initiation.  This improbable mutation can 

explain the long period of antigenic stimulation needed for initial expansion of the bnAb 

B-cell lineage in this individual. 
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Section 4.3 – Results  

Three N332 V3-glycan dependent antibody lineages   

We studied an African individual (CH848) followed from the time of infection to 

development of plasma neutralization breadth 3.5 years later. Reduced plasma 

neutralization of N332A Env-mutated HIV-1 pseudoviruses and plasma neutralization 

fingerprinting demonstrated the presence of N332-sensitive broadly neutralizing 

antibodies (bnAbs) (table 4.S1)(13). To identify these antibodies, we screened memory B 

cells from weeks 205, 232, and 234 post-infection using memory B cell cultures (14) and 

antigen-specific sorting (15) and found three N332-sensitive lineages, designated DH270, 

DH272 and DH475. Their genealogy was augmented by NGS of memory B-cell cDNA 

from seven time points spanning week 11 to week 240 post-transmission. 

DH270 antibodies were recovered from memory B cells at all three sampling times 

(weeks 205, 232, and 234) and expansion of the clone did not occur until week 186 (Fig. 

4.1A and table 4.S2). Clonal expansion was concurrent with development of plasma 

neutralization breadth (table 4.S3), and members of the DH270 lineage also displayed 

neutralization breadth (Fig. 4.1B).  The most potent DH270 lineage bnAb (DH270.6) was 

isolated using a fluorophore-labeled Man9 V3 glycopeptide that is a mimic of the V3-

glycan bnAb epitope (16). The lineage derived from a VH1~2*02 rearrangement that 

produced a CDRH3 of 20 amino acid residues paired with a light chain encoded by 

Vλ2~23 (fig. 4.S1). Neutralization assays and competition with V3-glycan bnAbs 

PGT125 and PGT128 confirmed lineage N332-dependence (fig. 4.S2).  
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     The DH475 mAb was recovered from memory B cells at week 232 post-transmission 

by antigen-specific sorting using the fluorophore-labeled Man9-V3 glycopeptide (16). 

The earliest DH475 lineage VHDJH rearrangements were identified with NGS at week 64 

post-transmission (fig. 4.S3A and table 4.S2). Its heavy chain came from VH3-23*01 (VH 

mutation frequency = 10.1%) paired with a Vλ4-69*02 light chain (fig. 4.S3B). 

      The DH272 mAb came from cultured memory B cells obtained at week 205 post-

transmission.  DH272 lineage VHDJH rearrangements were detected as early as 19 weeks 

post-transmission by NGS (fig 4.S3A and table 4.S2). The DH272 heavy chain used VH1-

2*02, as did DH270, but it paired with a Vκ 2-30 light chain.  Its CDRH3 was 17 amino 

acids long; VH mutation was 14.9%.  DH272, an IgA isotype, had a 6-nt deletion in 

FRH3 (fig. 4.S3B).  

   For both DH272 and DH475 lineages, binding to CH848 TF Env gp120 depended on 

the N332 potential N-linked glycosylation (PNG) site (fig. 4.S3C). DH272 binding also 

depended on the N301 PNG site (fig. 4.S3C). Neither lineage had neutralization breadth 

(fig. 4.S3D).   

 

Evolution of the CH848 virus quasispecies    

   We sequenced 1,223 HIV-1 3'-half single-genomes from virus in plasma collected at 26 

time points over 246 weeks.  Analysis of sequences from the earliest plasma sample 

indicated that CH848 had been infected with a single, subtype clade C founder virus, ~ 

17 (CI 14-19) days prior to screening (figs. 4.S4 and 4.S5). By week 51 post-infection, 
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91% of the sequences had acquired an identical, 10-residue deletion in variable loop 1, a 

region that includes the PGT128-proximal residues 133-135 and 141 (figs. 4.S6 and 

4.S7).  Further changes accrued during the ensuing four years, including additional 

insertions and deletions (indels) in V1, mutations in the 324GDIR327 motif within the V3 

loop, deletion or shifting of N-linked glycosylation sites at positions 301 and 322, and 

mutations at PGT128-proximal positions in V1, V3, and C4, but none of these escape 

variants went to fixation during 4.5 years of follow-up (figs. 4.S6-S9 and Supplemental 

Text).  

 

Ontogeny of DH270 lineage and acquisition of neutralization breadth 

As with other V3-glycan bnAbs, viral neutralization clade specificity and intra-clade 

breadth of DH270 depended primarily on the frequency of the N332 glycosylation site 

within the relevant clade (Fig. 4.2A and Supplemental Text). Heterologous breadth and 

potency of DH270 lineage antibodies increased with accumulation of VH mutations and 

although DH270.UCA did not neutralize heterologous HIV-1, five amino-acid 

substitutions in DH270.IA.4 (four in the heavy chain, one in the light chain) were 

sufficient to initiate the bnAb lineage and confer heterologous neutralization (Fig. 

4.2B,C).  

The capacity of the early DH270 lineage members to neutralize heterologous viruses 

correlated with the presence of short V1 loops (Fig. 4.2D).  As the lineage evolved, it 

gained capacity to neutralize viruses with longer V1 loops, although with reduced 

potency (Fig. 4.2D and fig. 4.S10A-C). Neutralization of the same virus panel by V3 
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glycan bnAbs 10-1074, PGT121 and PGT128 followed the same inverse correlation 

between potency and V1 length (fig. 4.S10D-F).  

 

Mutations in the DH270 antibody lineage that initiated heterologous neutralization 

     The likelihood of AID-generated somatic mutation has strong nucleotide-sequence 

dependence (17, 18).  Moreover, we have recently shown for CD4bs bnAbs that VH sites 

of high intrinsic mutability indeed determine many sites of somatic hypermutation  (11).  

Like the VRC01-class CD4bs bnAbs, both DH270 and DH272 used VH1~2*02 - 

although unlike the CD4bs bnAbs, V3 glycan bnAbs in general can use quite disparate 

VH gene segments (3, 19-23) - and antibodies in both lineages have mutations at the same 

amino acid positions that correspond to sites of intrinsic mutability that we identified in 

the VH1-2*02 CD4bs bnAbs (11) (fig. 4.S11A).    

     Presence of the canonical VH1-2*02 allele in individual CH848 was confirmed by 

genomic DNA sequencing (fig. 4.S11B).  Four nucleotide changes in the DH270 UCA 

conferred heterologous neutralization activity to the next intermediate antibody (IA4).  

The G92A and G102A nucleotide mutations in DH270.IA4 (and in DH272) occurred at 

"canonical" AID hotspots (DGYW); G164C (G164A for DH272) was in a "non-

canonical" AID hotspot with a comparable level of mutability (17) (Fig. 4.3A).  These 

high probability mutations encoded amino acid substitutions G31D, M34I and S55T (N 

for DH272). G31D and M31I became fixed in their respective lineages and S55T 

eventually became prevalent also in the DH272 lineage (Fig. 4.3B). In contrast, the 

G169C mutation in DH270.IA4, which encoded the G57R amino acid mutation, occurred 
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at a site with a very low predicted level of mutability (17) and generated a canonical cold 

spot (SYC) (Fig. 4.3A). Thus, once the rare G169C mutation had occurred, it had a high 

probability of being maintained, and indeed it was present in 523/758 (68%) DH270 

lineage VH sequences identified with NGS at week 186 post-transmission (Fig. 4.3C).  

The G169C mutation in DH270.IA4 also disrupted an overlapping AID hotspot at the 

adjacent guanine (170G).  While there were no mutations in DH272 at G169, the 

overlapping AID hotspot at G170 did mutate, resulting in an initial G57V substitution 

(Fig. 4.3A,C).  Thus, both the DH270 bnAb and DH272 autologous neutralizing lineages 

had mutations at Gly57, but the substitution in the DH270 lineage (G57R) was an 

improbable event whereas the substitution (G57V) in the DH272 lineage was much more 

likely. By week 111 post-transmission, all DH272 lineage VHDJH transcripts sequenced 

by NGS harbored a mutation in the Gly57 codon, which resulted in the predominance of 

an encoded aspartic acid (Fig. 4.3B).  In contrast, only 6/758 (0.8%) DH270 lineage 

transcripts isolated 186 weeks post-transmission had Val57 or Asp57; 48/758 (6.3%) 

retained Gly57, while over two-thirds, 514/758 (67.8%), had G57R (Fig. 4.3B). 

Reversion of Arg57 to Gly abrogated DH270.IA4 neutralization of autologous and 

heterologous HIV-1 isolates (Fig. 4.3D).  A DH270.IA4 R57V mutant, with the base 

change that would have occurred had the overlapping AID hotspot been used, also greatly 

reduced DH270.IA4 neutralization, confirming that Arg57, rather than the absence of 

Gly57 was responsible for the acquired neutralizing activity (Fig. 4.3D). Finally, the 

DH270.UCA G57R mutant neutralized both autologous and heterologous viruses, 

confirming that G57R alone could confer neutralizing activity on the DH270 germline 
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antibody (Fig. 4.3E). Thus, the improbable G169C mutation conferred reactivity against 

autologous virus and initiated acquisition of heterologous neutralization breadth in the 

DH270 lineage.   

 

Autologous neutralizing antibody lineages that cooperated with DH270 

Evidence for functional interaction among the three N332-dependent lineages came 

from the respective neutralization profiles against a panel of 90 autologous viruses from 

transmitted/founder to week 240 post-transmission (Fig. 4.4A). Both DH475 and DH272 

neutralized autologous viruses isolated during the first year of infection that were 

resistant to most DH270 lineage antibodies (only DH270.IA1 and DH270.4 neutralized 

weakly) (Fig. 4.4A). DH475 neutralized viruses from week 15 through week 39 and 

DH272 neutralized the CH848 transmitted/founder and all viruses isolated up to week 51, 

when viruses that resisted DH475 and DH272 became strongly sensitive to all mature 

antibodies in the DH270 lineage (Fig. 4.4A). 

The identification of specific mutations implicated in the switch of virus sensitivity 

was complicated by the high levels of mutations accumulated by virus Env over time (fig 

4.S12). We identified virus signatures that defined the DH270.1 and DH272/DH475 

immunotypes and introduced four of them, in various combinations, into the 

DH272/DH475-sensitive virus that was closest in sequence to the DH270.1-sensitive 

immunotype : a 10 amino-acid residue deletion in V1 (∆134-143); a D185N mutation in 

V2, which introduced an N-linked glycosylation site; an N413Y mutation in V4, which 

disrupted an N-linked glycosylation site; and a 2 amino-acid residue deletion (∆463-464) 
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in V5 (see Supplemental text).  The large V1 deletion was critical for DH270.1 

neutralization, with smaller contributions from the other changes; the V1 deletion 

increased virus resistance to DH475 (3.5-fold increase). V1-loop-mediated resistance to 

DH475 neutralization increased further when combined with the ∆463-464 V5 deletion 

(5-fold increase) (Fig. 4.4B). The V1 loop of the transmitted/founder virus (34 residues) 

was longer than the global mean of 28 (range 11 to 64) (24). As we found for 

heterologous neutralization, DH270 lineage antibodies acquired the ability to neutralize 

larger fractions of autologous viruses as maturation progressed by gaining activity for 

viruses with longer V1 loops, although at the expense of lower potency (fig. 4.S13A-C). 

This correlation was less clear for gp120 binding (fig. 4.S13D-F), however, suggesting 

that the V1 loop-length dependency of V3 glycan bnAb neutralization has a 

conformational component. Thus, DH475 cooperated with the DH270 bnAb lineage by 

selecting viral escape mutants sensitive to bnAb lineage members. 

For DH272, the variants that we made did not implicate a specific cooperating escape 

mutation. The ∆134-143 (V1 deletion) mutated virus remained sensitive to DH272 

neutralization; both combinations of the V1 deletion in our panel that were resistant to 

DH272 and sensitive to DH270.1 included D185N, which on its own also caused DH272 

resistance but did not lead to DH270.1 sensitivity (Fig. 4.4C). Thus, we have suggestive, 

but not definitive, evidence that DH272 also participated in selecting escape mutants for 

the DH270 bnAb lineage. 

 

Structure of DH270 lineage members 
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   We determined crystal structures for the Fabs of DH270.UCA3, DH270.1, DH270.3, 

DH270.5 and DH270.6, as well as for DH272 (Fig. 4.5; table 4.S6).  The variable 

domains of the DH270 antibodies all superposed well, indicating that antibody affinity 

maturation modulated the antibody-antigen interface without substantially changing the 

antibody conformation (Fig. 4.5A). Mutations accumulated at different positions for 

DH270 lineage bnAbs in distinct branches (fig. 4.S14), possibly accounting for their 

distinct neutralization properties. Because of uncertainty in the inferred sequence of the 

germline precursor (fig. 4.S15A,B), we also determined the structure of DH270.UCA1, 

which has a somewhat differently configured CDR H3 loop (fig. 4.S15C); 

reconfiguration of this loop during early affinity maturation could account for the 

observed increase (with respect to the UCA) in heterologous neutralization by several 

intermediates. DH272 had a CDRH3 configured differently from that of DH270 lineage 

members and a significantly longer CDRL1 (Fig. 4.5B), compatible with their distinct 

neutralization profiles.  

   We also compared the structures of DH270 lineage members with those of other N332-

dependent bnAbs. All appear to have one long CDR loop that can extend through the 

network of glycans on the surface of the gp120 subunit and contact the "shielded" protein 

surface.  The lateral surfaces of the Fab variable module can then interact with the 

reconfigured or displaced glycans to either side.  PGT128 has a long CDRH2 (Fig. 4.5C), 

in which a 6-residue insertion is critical for neutralization breadth and potency (5, 19). 

PGT124 has a shorter and differently configured CDR H2 loop, but a long CDR H3 

instead (Fig. 4.5D) (25). 



 137

 

Structure of the DH270 – HIV Env Complex 

We determined a three-dimensional (3D) image reconstruction, from negative-stain 

electron microscopy (EM), of the DH270.1 Fab bound with a gp140 trimer (92Br 

SOSIP.664) (Fig. 4.5E,F and fig. 4.S15).  The three DH270.1 Fabs project laterally, with 

their axes nearly normal to the threefold of gp140, in a distinctly more "horizontal" 

orientation than seen for PGT124 and PGT128 (Fig. 4.5G,H). This orientational 

difference is consistent with differences between DH270 and PGT124 or PGT128 in the 

lengths and configurations of their CDR loops, which required an alternative DH270 

bnAb position when docked onto the surface of the Env trimer. We docked the BG505 

SOSIP coordinates (26) and the Fab into the EM reconstruction, and further constrained 

the latter by the observed effects of mutations in the gp140 surface (fig 4.S16, 4.S17). 

Asp325 was essential for binding DH270.1; it is a potential partner for Arg57 on the Fab. 

Mutating Asp321 led to a modest loss in affinity; R327A had no effect (fig. 4.S18).  

These data further distinguish DH270 from PGT124 and PGT128.  Mutating W101, 

Y105, D107, D115, Y116 or W117 in DH270.1 individually to alanine substantially 

reduced binding to the SOSIP trimer, as did pairwise mutation to alanines of S106 and 

S109.  The effects of these mutations illustrate the critical role of the CDRH3 loop in 

binding with HIV-1 Env (fig. 4.S18). 
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Section 4.4 - Discussion 

   We can reconstruct from the data presented here a plausible series of events during the 

development of a V3-glycan bnAb in a natural infection.  The DH272 and DH475 

lineages neutralized the autologous TF and early viruses, and the resulting escape viruses 

were neutralized by the DH270 lineage.  In particular, V1 deletions were necessary for 

neutralization of all but the most mature DH270 lineage antibodies. DH475 (and possibly 

DH272) escape variants stimulated DH270 affinity maturation, including both somatic 

mutations at sites of intrinsic mutability (11) and a crucial, improbable mutation at an 

AID coldspot within CDRH2 (G57R). The G57R mutation initiated expansion of the 

DH270 bnAb lineage.   The low probability of this heterologous neutralization-conferring 

mutation and the complex lineage interactions that occurred likely explains why it took 

4.5 years for the DH270 lineage to expand.   

     The CH848 viral population underwent a transition from a long V1 loop in the TF (34 

residues) to short ones (16-17 residues) when escaping DH272/DH475 and facilitating 

expansion of DH270, to restoration of longer V1 loops later in infection as resistance to 

DH270 intermediates developed.  Later DH270 antibodies adapted to viruses with longer 

V1 loops, allowing recognition of a broader spectrum of Envs and enhancing breadth. 

DH270.6 could neutralize heterologous viruses regardless of V1 loop length, but viruses 

with long loops tended to be less sensitive to it.  Association of long V1 loops with 

reduced sensitivity was evident for three other V3 glycan bnAbs and may be a general 

feature of this class. 
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     Since we cannot foresee the susceptibility to a particular bnAb lineage of each specific 

potential transmitted/founder virus to which vaccine recipients will be exposed, it will be 

important for a vaccine to induce bnAbs of multiple specificities to minimize 

transmitted/founder virus escape (27, 28). 

     What stimulated the UCA of the DH270 bnAb lineage?  The absence of detectable 

binding to the CH848 TF envelope as gp120, gp140 or membrane bound trimers (Fig. 

4.6) raises two possibilities.  One is that the lineage arose at the end of year 1, either from 

a primary response to viruses present at that time (e.g., with deletions in V1-V2) or from 

subversion of an antibody lineage initially elicited by some other antigen. The other is 

that some altered form of the CH848 TF envelope protein -- e.g. shed gp120, or a 

fragment of it -- exposed the V3 loop and the N301 and N332 glycans in a way that 

bound and stimulated the germline BCR, even though the native CH848 TF Env did not.  

The latter explanation is in keeping with our observation that the DH270 lineage 

intermediate antibodies did not recognize free glycans or cell surface membrane 

expressed gp160 trimers (Fig. 4.6).  It is also consistent with the observation that a 

synthetic glycopeptide mimic of the V3-glycan bnAb gp120 epitope (Man9-V3 

glycopeptide) binds to the DH270 UCA (fig 4.S19A).  The synthesis, antigenicity and 

ability of the Man9-V3 glycopeptide to reflect the native Env V3-glycan bnAb epitope are 

described in detail by Alam and colleagues in the companion manuscript (16).  DH270 

UCA also bound to the aglycone form of the same peptide (fig. 4.S19B).  Similarly, the 

early intermediate antibodies (IA4, IA3, IA2) each bound to both the Man9V3 

glycopeptide and its aglycone form, and their binding was stronger to the aglycone V3 
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peptide than to the Man9-V3 glycopeptide (fig. 4.S19B).   Binding to the Man9-V3 

glycopeptide was low (>10μM) (fig. 4.S19A). DH270.1 bound the glycopeptide with 

higher affinity than did the aglycone (Kd,glycopeptide = 331nM), correlated with an increased 

nucleotide mutation frequency (5.6%) (fig. 4.S19A,B). As mutations accumulated in the 

DH270 bnAb lineage, binding of the Man9-V3 glycopeptide increased, culminating in a 

Kd of 188 nM in the most potent bnAb, DH270.6, which does not bind the aglycone-V3 

peptide (fig. 4.S19A,B).  Thus, both the Man9-V3 glycopeptide and the aglycone-V3 

peptide bound to the DH270.UCA and antibody binding was independent of glycans until 

the DH270 lineage had acquired a nucleotide mutation frequency of ~6%. These 

observations suggest that a denatured, fragmented or otherwise modified form of Env, 

with the V3-glycan epitope optimally exposed for binding the DH270 UCA, initiated the 

DH270 lineage (29, 30).   

  It will be important to define how often an improbable mutation such as G57R 

determines the time it takes for a bnAb lineage in an HIV-1 infected individual to 

develop, and how many of the accompanying mutations are necessary for potency or 

breadth rather than being non-essential mutations at AID mutational hotspots (11, 31).  

Mutations of the latter type might condition the outcome or modulate the impact of a key, 

improbable mutation, without contributing directly to affinity.  Should the occurrence of 

an unlikely mutation be rate-limiting for breadth or potency in many other cases, a 

program of rational immunogen design will need to focus on modified envelopes most 

likely to select very strongly for improbable yet critical antibody nucleotide changes.  A 

search for an Env that might select for the critical G57R mutation in DH270 UCA or 
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IA4-like antibodies yielded Env 10.17 from week 135 of infection (fig. 4.S20A,B), which 

derived from the only autologous virus Env that DH270.IA4 could bind.   

      The following proposal for a strategy to induce V3 glycan bnAbs recreates the events 

that led to bnAb induction in CH848: start by priming with a ligand that binds the bnAb 

UCA, such as the synthetic glycopeptide mimic of the V3-glycan bnAb gp120 epitope, 

then boost with an Env that can select G57R CDR H2 mutants, followed by Envs with 

progressive V1 lengths (fig. 4.S20C). We hypothesize that more direct targeting of V3-

glycan UCAs and intermediate antibodies can accelerate the time of V3-glycan bnAb 

development in the setting of vaccination. 

Finally, our study describes a general strategy for the design of vaccine immunogens that 

can select specific antibody mutations thereby directing antibody lineage maturation 

pathways. 
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Section 4.7 – Figures  

 

Figure 4-1 DH270 lineage with time of appearance and neutralization by selected 

members 
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 (A) Phylogenetic relationship of 6 mAbs and 93 NGS VHDJH sequence reads in the 
DH270 clonal lineage.  External nodes (filled circles) represent VHDJH nucleotide 
sequences of either antibodies retrieved from cultured and sorted memory B cells 
(labeled) or a curated dataset of NGS VHDJH rearrangement reads (unlabeled). Coloring 
is by time of isolation.  Samples from week 11, 19, 64, 111, 160, 186 and 240 were tested 
and time-points from which no NGS reads within the lineage were retrieved are reported 
in table 4.S2. The majority of NGS sequence reads were retrieved from week 186 (green 
circles; see details in Methods). Internal nodes (open circles) represent inferred ancestral 
intermediate sequences.  Units for branch-length estimates are nucleotide substitution per 
site. (B) Neutralization dendrograms display single mAb neutralization of a genetically 
diverse panel of 207 HIV-1 isolates. Coloring is by IC50.  
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Figure 4-2 Heterologous breadth in the DH270 lineage 

 (A) Neutralizing activity of DH270.1, DH270.5 and DH270.6 bnAbs (columns) for 207 
tier 2 heterologous viruses (rows). Coloring is by neutralization IC50 (μg/ml).  Keys to the 
presence of an N332 N-glycosylation site and clade are on the left. (B). Heterologous 
neutralization of all DH270 lineage antibodies for a 24-virus panel. Coloring follows 
panel A. See fig. S1 (C) Co-variation between VH mutation frequencies (x-axis), 
neutralization breadth (y-axis, top panels) and potency (y-axis, bottom panels) of 
individual antibodies against N332 viruses from the larger (left) and smaller (right) 
pseudovirus panels. (D) Correlation between viral V1 loop length and DH270 lineage 
antibody neutralization.  Top panel: neutralization of 17 viruses (with N332 and sensitive 
to at least one DH270 lineage antibody) by selected DH270 lineage antibodies from UCA 
to mature bnAbs (x-axis). Viruses are identified by their respective V1 loop lengths (y-
axis); for each virus, neutralization sensitivity is indicated by a clear circle and resistance 
by a solid circle. The p-value is a Wilcoxon rank sum comparison of V1 length 
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distributions between sensitive and resistant viruses. Bottom panel: regression lines (IC50 
for neutralization vs. V1 loop length) for DH270.1 and DH270.6, with a p-value based on 
Kendall’s tau.   
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Figure 4-3 A single disfavored mutation early during DH270 clonal development 

conferred neutralizing acitivty to the V3 glycan bnAb DH270 precursor antibodies 

(A) Nucleotide (nt) alignment of DH270.IA4 and DH272 to VH1-2*02 sequence at the 
four VH positions that mutated from DH270.UCA to DH270.IA4. The codons that encode 
the amino acids (aa) affected by the mutations are highlighted in yellow. AID hotspots 
are indicated by red and orange lines (canonical and non-canonical, respectively);  AID 
cold spots by blue lines (solid: canonical; dotted: non-canonical)(16). At position 169, 
DH270.IA4 retained positional conformity with DH272 but not identity conformity (red 
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boxes). (B) Sequence logo plot of aa mutated from germline (top) in NGS reads of the 
DH270 (middle) and DH272 (bottom) lineages at weeks 186 and 111 post-transmission, 
respectively.  Red asterisks indicate aa mutated in DH270.IA4. The black arrow indicates 
lack of identity conformity between the two lineages at aa position 57. (C) Sequence logo 
plot of nucleotide mutations (position 165-173) in the DH270 and DH272 lineages at 
weeks 186 and 111 post-transmission, respectively. The arrow indicates position 169. (D) 
Effect of reversion mutations on DH270.IA4 neutralization. Coloring is by IC50. (E) 
Effect of G57R mutation on DH270.UCA autologous (top) and heterologous (bottom) 
neutralizing activity. 
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Figure 4-4 Cooperation among DH270, DH272, and DH475 N332 dependent V3 

glycan nAb lineages 

 (A) Neutralizing activity of DH272, DH475 and DH270 lineage antibodies against 
CH848 viruses. Heat map summarizing neutralization data from 90 pseudoviruses (row) 
and 10 DH270 lineage mAbs plus DH272 and DH475 (columns). Neutralization potency 
(IC50) is shown in different colors from white (>50μg/ml) to dark red (<0.5μg/ml), as 
indicated in the bar. The Env pseudoviruses were generated for the CH848 TF virus and 
variants from weeks 11 to 246 post-transmission and were assayed in the TZM-bl cell-
based neutralization assay. For each pseudovirus, presence of an N332 PNG site and V1 
loop length are indicated on the right. (B, C) Susceptibility to DH270.1 and to (B) 
DH475 or (C) DH272 of autologous viruses bearing selected immunotype-specific 
mutations. Heat map as described for panel A. 
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Figure 4-5 Fab crystal structures and 3D reconstruction of DH270.1 bound with the 

92BR SOSIP.664 trimer 

Superposition of backbone ribbon diagrams for DH270 lineage members: UCA1 (gray), 
DH270.1 (green), and DH270.6 (blue): (A) alone, (B) with the DH272 cooperating 
antibody (red), (C) with PGT 128 (magenta), and (D) with PGT124 (orange).  Major 
differences in CDR regions are indicated by an arrow.  (E) Top and (F) side views of a fit 
of the DH270.1 Fab (green) and the BG505 SOSIP trimer (gray) into a map obtained 
from negative-stain EM.  (G) Top and (H) side views of the BG505 trimer (PDB ID: 
5ACO)(25) (gray, with V12 and V3 loops highlighted in red and blue, respectively) 
bound with PGT122 (PDB ID: 4NCO)(20) (orange), PGT128 (PDB ID: 3TYG)(18) 
(magenta), PGT135 (PDB ID: 4JM2)(19) (cyan) and DH270.1 (green), superposed to 
illustrate the different positions of the several Fabs on gp140.  The arrows indicate the 
direction of the principal axis of each of the bnAb Fabs; the color of each arrow is the 
color that represents the corresponding bnAb. 
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Figure 4-6 DH270 lineage antibody binding to autologous CH0848 Env components 

 (A) DH270 lineage antibodies (column) were tested by ELISA for binding to 120 CH848 
autologous gp120 Env glycoproteins (rows) isolated from time of infection (CH848.TF) 
to 245 weeks post-infection. CH848 Envs are grouped based on week of isolation. Day of 
isolation is also shown. The first column indicates presence or absence of an N-linked 
glycosylation site in position 332 with the color scheme of Figure 1. The second column 
shows V1 length of each CH848 virus. The binding of individual antibodies is expressed 
as log area under the curve (LogAUC) in a heat map color-coded as indicated. (B) Left: 
Binding to CH848.TF mutants with disrupted N301 and/or N332 glycan sites. Results are 
expressed as LogAUC. Middle: Binding to CH848 Env trimer expressed on the cell 
surface of CHO cells. Results are expressed as maximum percentage of binding and are 
representative of duplicate experiments. DH270 antibodies are shown in red. Palivizumab 
is the negative control (gray area).  Right: Binding to free glycans measured on a 
microarray.  Results are the average of background-subtracted triplicate measurements 
and are expressed in RU.  
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Section 4.8 – Materials and Methods 

 

Study Design 

The CH848 donor, from which the DH270, DH272 and DH475 antibody lineages 

were isolated, is an African male enrolled in the CHAVI001 acute HIV-1 infection cohort 

(32) and followed for 5 years, after which he started antiretroviral therapy. During this 

time viral load ranged from 8,927 to 442,749 copies/ml (median = 61,064 copies/ml), and 

CD4 counts ranged from 288 to 624 cells/mm3 (median = 350 cells/ mm3). The time of 

infection was estimated by analyzing the sequence diversity in the first available sample 

using the Poisson Fitter tool (33) as described in (10). Results were consistent with a 

single founder virus establishing the infection (34). 

MAbs DH270.1 and DH270.3 were isolated from cultured memory B cells isolated 

205 weeks post-transmission (14).  DH270.6 and DH475 mAbs were isolated from 

Man9-V3 glycopeptide-specific memory B cells collected 232 and 234 weeks post-

transmission, respectively, using direct sorting.  DH270.2, DH270.4 and DH270.5 mAbs 

were isolated from memory B cells collected 232 weeks post-transmission that bound to 

Consensus C gp120 Env but not to Consensus C N332A gp120 Env using direct sorting  

Experimental methods 

Detailed description of experimental methods is provided in Supplementary Materials 

and  

Flow Cytometry, Memory B Cell Cultures and mAb Isolation  
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A total of 30,700 memory B cells from individual CH848 were isolated from PBMC 

collected 205 weeks post-transmission using magnetic-activated cell sorting as described 

in (14). Memory B cells were cultured at limiting dilution at a calculated concentration of 

2 cells/well for 2 weeks as described in (11) using irradiated CD40L L cells (7,500 cGy) 

as feeder cells at a concentration of 5,000 cells/well; culture medium was refreshed 7 

days after plating. Cell culture supernatants were screened for neutralization of 

autologous CH848.TF virus using the tzm-bl neutralization assay (14, 36) and for binding 

to CH848.TF gp120 Env, CH848.TF gp140 Env, Consensus C gp120 Env and consensus 

C N332A gp120 Env. Concurrently, cells from each culture were transferred in RNAlater 

(Qiagen) and stored at -80°C until functional assays were completed. 

MAbs DH270.1 and DH270.3 were isolated from cultures that bound to CH848.TF 

gp120 Env and Consensus C gp120 but did not bind to C N332A gp120 Env. DH272 was 

isolated from a culture that neutralized 99% CH848.TF virus infectivity. DH272 

dependency to N332-linked glycans was first detected on the transiently transfected 

recombinant antibody tested at higher concentration and confirmed in the purified 

recombinant antibody (37). From the stored RNAlater samples, mRNA of cells from 

these cultures was extracted and retrotranscribed as previously described (14).  

DH270.6 and DH475 mAbs were isolated from Man9-V3 glycopeptide-specific 

memory B cells collected 232 and 234 weeks post-transmission, respectively, using direct 

sorting (16). Briefly, biotinylated Man9–V3 peptides were tetramerized via streptavidin 

that was conjugated with either AlexaFluor 647 (AF647; ThermoScientific) or Brilliant 

Violet 421 (BV421) (Biolegend) dyes. Peptide tetramer quality following conjugation 
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was assessed by flow cytometry to a panel of well-characterized HIV-1 V3 glycan 

antibodies (PGT128, and 2G12) and linear V3 antibodies (F39F) attached to polymer 

beads. PBMCs from donor CH848 were stained with LIVE/DEAD Fixable Aqua Stain 

(ThermoScientific), anti-human IgM (FITC), CD3 (PE-Cy5), CD235a (PE-Cy5), CD19 

(APC-Cy7), and CD27 (PE-Cy7) (BD Biosciences); anti-human antibodies against IgD 

(PE); anti-human antibodies against CD10 (ECD), CD38 (APC-AF700), CD19 (APC-

Cy7), CD16 (BV570),  CD14 (BV605) (Biolegend); and Man9GlcNac2 V3 tetramer in 

both AF647 and BV421. PBMCs that were Aqua Stain -, CD14-, CD16-, CD3-, CD235a-

, positive for CD19+, and negative for surface IgD were defined as memory B cells; these 

cells were then gated for Man9–V3+ positivity in both AF647 and BV421, and were 

single-cell sorted using a BD FACS Aria II into 96-well plates containing 20 μl of 

reverse transcriptase buffer (RT).  

DH270.2, DH270.4 and DH270.5 mAbs were isolated from memory B cells collected 

232 weeks post-transmission that bound to Consensus C gp120 Env but not to Consensus 

C N332A gp120 Env using direct sorting. Reagents were made using biotinylated 

Consensus C gp120 Env and Consensus C N332A gp120 Env by reaction with 

streptavidin that was conjugated with either AlexaFluor 647 (AF647; ThermoScientific) 

or Brilliant Violet 421 (BV421) (Biolegend) dyes, respectively. Env tetramer quality 

following conjugation was assessed by flow cytometry to a panel of well-characterized 

HIV-1 V3 glycan antibodies (PGT128, and 2G12) and linear V3 antibodies (F39F) 

attached to polymer beads. PBMCs were stained as outlined for DH475 and DH270.6, 

however these cells were then gated for Consensus C gp120 positivity and Consensus C 
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N332A gp120 negativity in AF647 and BV421, respectively, and were single cell sorted 

and processed as outlined for DH475 and DH270.6. 

For all antibodies, cDNA synthesis, PCR amplification, sequencing and V(D)J 

rearrangement analysis were conducted as previously described (11). Reported mutation 

frequency is calculated as frequency of nucleotide mutations in the V gene region of 

antibody sequence.  CDRH3 lengths reported are defined as the number of residues after 

the invariant Cys in FR3 and before the invariant Trp in FR4.    

 

Antibody production 

Immunoglobulin genes of mAbs DH270.1 through DH270.6, DH272 and DH475 were 

amplified from RNA from isolated cells, expression cassettes made, and mAbs expressed 

as described (12).  Inference of unmutated common ancestor (UCA) and intermediate 

antibodies DH270.IA1 through DH270.IA4 was conducted using methods previously 

described (38). 

Heavy chain plasmids were co-transfected with appropriate light chain plasmids at an 

equal ratio in Expi 293 cells using ExpiFectamine 293 transfection reagents (Thermo 

Fisher Scientific) according to the manufacturer’s protocols. We used the enhancer 

provided with the kit, transfected cultures were incubated at 37°C 8% CO2 for 2-6 days, 

harvested, concentrated and incubated overnight with Protein A beads at 4°C on a 

rotating shaker before loading the bead mixture in columns for purification; following 

PBS/NaCl wash, eluate was neutralized with trizma hydrochloride and antibody 
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concentration was determined by Nanodrop.  Purified antibodies were tested in SDS-Page 

Coomassie and western blots, and stored at 4°C. 

 

Next-generation sequencing 

PBMC-extracted RNA from weeks 11, 19, 64, 111, 160, 186, and 240 post-infection 

were used to generate cDNA amplicons for next-generation sequencing (Illumina Miseq) 

as described previously (35). Briefly, RNA isolated from PBMCs was separated into two 

equal aliquots before cDNA production; cDNA amplification and NGS were performed 

on both aliquots as independent samples (denoted A and B). Reverse transcription (RT) 

was carried out using human IgG, IgA, IgM, Igκ and Igλ primers as previously described 

(37).  After cDNA synthesis, IgG isotype IGHV1 and IGHV3 genes were amplified 

separately from weeks 11, 19, 64, 111, 160, and 186. IGHV1-IGHV6 genes were 

amplified at week 240. A second PCR step was performed to add Nextera index 

sequencing adapters (Illumina) and libraries were purified by gel extraction (Qiagen) and 

quantified by quantitative PCR using the KAPA SYBR FAST qPCR kit (KAPA 

Biosystems). Each replicate library was sequencing using the Illumina Miseq V3 2x 

300bp kit. 

NGS reads were computationally processed and analyzed as previously described (35).  

Briefly, forward and reverse reads were merged with FLASH (39) with average read 

length and fragment read length parameters set to 450 and 300, respectively.  Reads were 

quality filtered using FASTX (http://hannonlab.cshl.edu/fastx_toolkit/) for sequences 

with a minimum of 50 percent of bases with a Phred quality score of 20 or greater 
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(corresponding to 99% base call accuracy).  Primer sequences were discarded and only 

unique nucleotide sequences were retained. To mitigate errors introduced during PCR 

amplification, reads detected in sample A and B with identical nucleotide VHDJH 

rearrangement sequences were delineated as replicated sequences.  The total number of 

unique reads per sample and total number of replicated sequences (“Overlap”) across 

samples for each time point is listed in table S2. We used replicated sequences to define 

presence of antibody clonal lineages at any time-point. 

We identified clonally-related sequences to DH270, DH272 and DH475 from the 

longitudinal NGS datasets by the following procedure. First, the CDR H3 of the probe-

identified clonal parent sequence was BLASTed (E-value cutoff =.01) against the pooled 

sample A and B sequence sets at each timepoint to get a candidate set of putative clonal 

members (“candidate set”). Next we identified replicated sequences across samples A and 

B in the candidate set.  We then performed a clonal kinship test with the Cloanalyst 

software package (http://www.bu.edu/computationalimmunology/research/software/)  

(38, 40) as previously described (35) on replicated sequences.  Clonally-related 

sequences within Sample A and B (including non-replicated sequences) were identified 

by performing the same clonal kinship test with Cloanalyst on the candidate set prior to 

identifying replicated sequences.  

Clonal lineage reconstruction was performed on the NGS replicated sequences and 

probe-identified sequences of each clone using the Cloanalyst software package.   A 

maximum of 100 sequences were used as input for inferring phylogenetic trees of clonal 

lineages. Clonal sequence sets were sub-sampled down to 100 sequences by collapsing to 
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one sequence within a 2 or 9 base pair difference radius for the DH272 and DH270 

clones, respectively.    

The pre-vaccination NGS samples that were analyzed in fig. S11A were obtained from 

HIV-1 uninfected participants of the HVTN082 and HVTN204 trials as previously 

described (35). 

 

Sequence Analysis of Antibody Clonal Lineages  

Unmutated common ancestors (UCA) and ancestral intermediate sequences were 

computationally inferred with the Cloanalyst software package (38).  Cloanalyst uses 

Bayesian inference methods to infer the full unmutated V(D)J rearrangement thereby 

including a predicted unmutated CDR3 sequence.  For lineage reconstructions when only 

cultured or sorted sequences were used as input, the heavy and light chain pairing 

relationship was retained during the inference of ancestral sequences.  UCA inferences 

were performed each time a new member of the DH270 clonal lineage was 

experimentally isolated and thus several versions of the DH270 UCA were produced and 

tested.  UCA1 and UCA3 were used for structural determination.  UCA4 (referred to as 

DH270.UCA throughout the text), which was inferred using the most observed DH270 

clonal members and had the lowest uncertainty of UCAs inferred (as quantified by the 

sum of the error probability over all base positions in the sequence), was used for binding 

and neutralization studies.  Subsequently, the DH270 UCA was also re-inferred when 

NGS data became available.  We applied a bootstrapping procedure to infer the UCA 

with the NGS data included, resampling clonal lineage trees 10 times with 100 input 
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NGS sequences each.  The UCA4 amino acid sequence was recapitulated by 7 out of 10 

UCA inferences of the resampled NGS trees confirming support for UCA4.     

Each inference of V(D)J calls is associated with a probability.  The probability of the 

DH270 lineage to use the VH1-2 family gene was 99.99% and that of using allele 02 

(VH1-2*02) was 98.26%.  Therefore, there was a 0.01% probability that the family was 

incorrectly identified and a 1.74% probability that the allele was incorrectly identified.  

Therefore, we sequenced genomic DNA of individual CH848. As previously reported, 

positional conformity is defined as sharing a mutation at the same position in the V gene 

segment and identity conformity as sharing the same amino acid substitution at the same 

position (11). 

We refer to the widely established AID hot and cold spots (respectively WRCY and 

SRY and their reverse-complements) as “canonical” and to other hot and cold spots 

defined by Yaari et al.  as “non-canonical” (17, 41-43). 

Sequencing of germline variable region from genomic DNA. 

Genomic DNA was isolated from donor CH848 from PBMCs 3 weeks after infection 

(QIAmp DNA Blood mini kit; Qiagen). IGVH1-2 and IGVL2-23 sequences were 

amplified using 2 independent primer sets by PCR. To ensure amplification of non-

rearranged variable sequences, both primer sets reverse primers aligned to sequences 

present in the non-coding genomic DNA downstream the V-recombination site. The 

forward primer for set 1 resided in the IGVH1-2 and IGVL2-23 leader sequences and 

upstream of the leader in set 2. The PCR fragments were cloned into a pcDNA2.1 
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(TOPO-TA kit; Life technologies) and transformed into bacteria for sequencing of 

individual colonies. The following primers were used: VH1-2_1_S: 

tcctcttcttggtggcagcag; VH1-2_2_S: tacagatctgtcctgtgccct; VH1-2_1_tmAS: 

ttctcagccccagcacagctg; VH1-2_2_TmAS: gggtggcagagtgagactctgtcaca; VL2-23_2_S: 

agaggagcccaggatgctgat; VL2-23_1_S: actctcctcactcaggacaca; VL2-23_1_AS: 

tctcaaggccgcgctgcagca; VL2-23_2_AS: agctgtccctgtcctggatgg. 

We identified two variants of VH1-2*02: the canonical sequence and a variant that 

encoded a VH that differed by 9 amino acids.  Of these 9 amino acids, only 1 was shared 

among DH270 antibodies whereas 8 amino acids were not represented in DH270 lineage 

antibodies (fig. S11B).  The VH1-2*02 variant isolated from genomic DNA did not 

encode an arginine at position 57.  We conclude that between the two variants of VH1-

2*02 identified from genomic DNA from this individual, the DH270 lineage is likely 

derived from the canonical VH1-2*02 sequence.  

Direct binding ELISA 

Direct-binding ELISAs were performed as described (11).  Briefly, 384-well plates 

were blocked for 1 h at room temperature (RT) or overnight at 4°C (both procedures were 

previously validated); primary purified antibodies were tested at a starting concentrations 

of 100μg/ml, serially three-fold diluted and incubated for 1 h at RT; HRP-conjugated 

human IgG antibody was added at optimized concentration of 1:30,000 in assay diluent  

for 1 hour and developed using TMB substrate; plates were read at 450 nm in a 

SpectraMax 384 PLUS reader (Molecular Devices, Sunnyvale, CA); results are reported 

as logarithm area under the curve (LogAUC) unless otherwise noted. 
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For biotinylated avi-tagged antigens, plates were coated with streptavidin (2µg/ml); 

blocked plates were stored at -20°C until used and biotinylated avi-tagged antigens were 

added at 2 µg/ml for 30 minutes at RT. 

Competition ELISAs were performed using 10µl of primary purified monoclonal 

antibody, starting at 100µg/ml and diluted in a two-fold concentration, incubated for 1 h 

at RT. Ten µl of biotinylated target Mab was added at the EC50 determined by a direct 

binding of biotinylated-Mab for one hour at RT.  After background subtractions, percent 

inhibition was calculated as follows: 100-(test Ab triplicate mean/no inhibition control 

mean)*100. 

 

Assessment of virus neutralization 

Antibody and plasma neutralization was measured in TZM-bl cell-based assays 

performed as described previously (36). Neutralization breadth of DH270.1, DH270.5 

and DH270.6 was assessed using the 384-well plate declination of the assay using an 

updated panel of 207 geographically and genetically diverse Env-pseudoviruses 

representing the major circulating genetic subtypes and recombinant forms as described 

(44, 45).  The data were calculated as a reduction in luminescence units compared with 

control wells, and reported as IC50 in µg/ml (36). 

 

Single genome sequencing and pseudovirus production 

3’ half genome single genome sequencing of HIV-1 from longitudinally collected 

plasma was performed as previously described (46, 47). Sequence alignment was 
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performed using ClustalW (version 2.11) (48) and was adjusted manually using Geneious 

8 (version 8.1.6)(49). Env amino acid sequences were then aligned and evaluated for sites 

under selection using code derived from the Longitudinal Antigenic Sequences and Sites 

from Intra-host Evolution (LASSIE) tool (50). Using both LASSIE-based analysis and 

visual inspection, 100 representative env genes were selected for pseudovirus production. 

CMV promoter-ligated env genes were prepared and used to generate pseudotyped 

viruses as previously described (51). 

 

Generation of cell surface-expressed CH848 Env trimer CHO cell line. 

The membrane-anchored CH848 TF Env trimer was expressed in CHO-S cells. 

Briefly, the CH848 env sequence was codon-optimized and cloned into an HIV-1-based 

lentiviral vector. A heterologous signal sequence from CD5 was inserted replacing that of 

the HIV-1 Env.  The proteolytic cleavage site between gp120 and gp41 was altered, 

substituting serine residues for Arg508 and Arg511, the tyrosine at residues 712 was 

changed to alanine (Y712A), and the cytoplasmic tail was truncated by replacing the 

Lys808 codon with a sequence encoding (Gly)3 (His)6 followed immediately by a TAA 

stop codon. This env-containing sequences was inserted into the vector immediately 

downstream of the tetracycline (tet)-responsive element (TRE), and upstream of an 

internal ribosome entry site (IRES) and a contiguous puromycin (puro)-T2A-EGFP open 

reading frame (generating K4831), as described previously for the JRFL and CH505 

Envs (52). 
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CHO-S cells (Invitrogen) modified to constitutively express the reverse tet 

transactivator (rtTA) were transduced with packaged vesicular stomatitis virus (VSV) G 

glycoprotein-pseudotyped CH848 Env expression vector. Transduced cells were 

incubated in culture medium containing 1μg/ml of doxycycline (dox) and selected for 7 

days in medium supplemented with 25 µg/ml of puromycin, generating the Env 

expressor-population cell line termed D831. From D831, a stable, high-expressor clonal 

cell line was derived, termed D835. The integrity of the recombinant env sequence in the 

clonal cell lines was confirmed by direct (without cloning) sequence analysis of PCR 

amplicons. 

 

Cell surface-expressed trimeric CH848 Env binding. 

D831 Selected TRE2.CH848.JF-8.IRS6A Chinese Hamster Ovary Cells were cultured 

in DMEM/F-12 supplemented with HEPES and L-glutamine (Thermo Fischer, 

Cat#11330057) 10% heat inactivated fetal bovine serum [FBS] (Thermo Fischer, 

Cat#10082147) and 1% Penicillin-Streptomycin (Thermo Fischer, Cat#15140163) and 

harvested when 70-80% confluent by trypsinization. A total 75,000 viable cells/well were 

transferred in 24-well tissue culture plates.  After a 24-to-30-hour incubation at 37°C/5% 

CO2 in humidified atmosphere, CH848 Envs expression was induced with 1µg/mL 

doxycycline (Sigma-Aldrich, Cat#D9891) treatment for 16-20 hours.  Cells were then 

washed in Stain buffer [PBS/2% FBS] and incubated at 4°C for 30 minutes.  Stain buffer 

was removed from cells and 0.2ml/well of DH270 lineage antibodies, palivizumab 

(negative control) or PGT128 (positive control) were added at optimal concentration of 
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5µg/mL for 30 minutes at 4°C.  After a 2X wash, cells were stained with 40 ul of APC-

conjugated mouse anti-Human IgG (BD Pharmigen, Cat#562025) per well (final volume 

0.2 ml/well) for 30 minutes at 4°C.  Unstained cells were used as further negative control. 

Cells were washed 3X and gently dissociated with 0.3ml/well PBS/5mM EDTA for 30 

minutes at 4°C, transferred into 5mL Polystyrene Round-Bottom Tubes (Falcon, 

Cat#352054), fixed with 0.1mL of BD Cytofix/Cytoperm Fixation solution (BD 

Biosciences, Cat#554722) and kept on ice until analyzed using a BD LSRFortessa Cell 

Analyzer.  Live cells were gated through Forward/Side Scatter exclusion, and then gated 

upon GFP+ and APC.   

 

Oligomannose Arrays.  

Oligomannose arrays were printed with glycans at 100, 33, and 10 μM (Z Biotech).  

Arrays were blocked for 1h in Hydrazide glycan blocking buffer. Monoclonal antibodies 

were diluted to 50 μg/mL in Hydrazide Glycan Assay Buffer, incubated on an individual 

subarray for 1 h, and then washed 5 times PBS supplemented with 0.05% tween-20 

(PBS-T). Subarrays that received biotinylated Concanavalin A were incubated with 

streptavidin-Cy3 (Sigma), whereas all other wells were incubated with anti-IgG-Cy3 

(Sigma) for 1h while rotating at 40 rpm covered from light.   The arrays were washed 5 

times with 70 μL of PBS-T and then washed once with 0.01X PBS. The washed arrays 

were spun dry and scanned with a GenePix 4000B (Molecular Devices) scanner at 

wavelength 532 nm using GenePix Pro7 software. The fluorescence within each feature 

was background subtracted using the local method in GenePix Pro7 software (Molecular 
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Devices).  To determine glycan specific binding, the local background corrected 

fluorescence of the print buffer alone was subtracted from each feature containing a 

glycan. 

 

Affinity measurements  

Antibody binding kinetic rate constants (ka, kd) of the Man9-V3 glycopeptide and its 

aglycone form (16) were measured by Bio-layer Interferometry (BLI, ForteBio Octet Red96) 

measurements. The BLI assay was performed using streptavidin coated sensors (ForteBio) to 

capture either biotin-tagged Man9-V3 glycopeptide or Aglycone-V3 peptide. The V3 peptide 

immobilized sensors were dipped into varying concentrations of antibodies following 

blocking of sensors in BSA (0.1%). Antibody concentrations ranged from 0.5 to 150 μg/mL 

and non-specific binding interactions were subtracted using the control anti-RSV 

Palivizumab (Synagis) mAb. Rate constants were calculated by global curve fitting analyses 

to the Bivalent Avidity model of binding responses with a 10 min association and 15 min 

dissociation interaction time. The dissociation constant (Kd) values without avidity 

contribution were derived using the initial components of the association and dissociation 

rates (ka1 and kd1) respectively. Steady-state binding Kd values for binding to Man9-V3 

glycopeptide with avidity contribution were derived using near steady-state binding 

responses at varying antibody concentrations (0.5-80μg/mL) and using a non-linear 4-

paramater curve fitting analysis. 

 

HIV-1 Env site-directed mutagenesis 
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Deletion Mutant of CH0848.d0274.30.07 env gene was constructed using In Fusion 

HD EcoDry Cloning kit (Clontech, Mountain View, CA) as per manufacturer 

instructions. Quick Change II Site-Directed Mutagenesis kit (Agilent Technologies, Santa 

Clara, CA) was used to introduce point mutations. All final env mutants were confirmed 

by sequencing. 

 

Antibody site-directed mutagenesis 

Site-directed mutagenesis of antibody genes was performed using the Quikchange II 

lightening multi-site-directed mutagenesis kit following manufacturer’s protocol 

(Agilent). Mutant plasmid products were confirmed by single-colony sequencing. 

Primers used for introducing mutations were: DH270_IA4_D31G: 

cccagtgtatatagtagccggtgaaggtgtatcca; DH270.IA4 I34M: 

tcgcacccagtgcatatagtagtcggtgaaggtgt; DH270.IA4 T55S: 

gatggatcaaccctaactctggtcgcacaaactat; DH270.IA4 R57G: 

tgtgcatagtttgtgccaccagtgttagggttgat; DH270.IA4 R57V: 

cttctgtgcatagtttgtgacaccagtgttagggttgatc; DH270.UCA G57R: 

atcaaccctaacagtggtcgcacaaactatgcaca. 

 

Env glycoprotein expression 

The codon-optimized CH848-derived env genes were generated by de novo synthesis 

(GeneScript, Piscataway, NJ) or site-directed mutagenesis in mammalian expression 
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plasmid pcDNA3.1/hygromycin (Invitrogen, Grand Island, NY) as described (10), and 

stored at −80°C until use. 

 

Expression and purification of DH270 lineage members  

The heavy- and light-chain variable and constant domains of the DH270 lineage Fabs 

were cloned into the pVRC-8400 expression vector using Not1 and Nhe1 restriction sites 

and the tissue plasminogen activator signal sequence. The C terminus of the heavy-chain 

constructs contained a noncleavable 6x histidine tag. Site-directed mutagenesis was 

carried out, using manufacturer’s protocols (Stratagene), to introduce mutations into the 

CDR regions of DH270.1.   

Fabs were expressed and purified as described previously (53).   

 

Crystallization, structure determination, and refinement  

All His-tagged Fabs were crystallized at 20-25 mg/mL. Crystals were grown in 96-

well format using hanging drop vapor diffusion and appeared after 24–48 h at 20 °C. Fab 

crystals were obtained in the following conditions: 2.5 M ammonium sulfate and 100 mM 

sodium acetate, pH 5.0 for DH272; 1.5M ammonium sulfate and 100mM sodium acetate 

pH 4.0 for UCA1; 20% PEG 4K, 100 mM sodium acetate, pH 5 and 100 mM magnesium 

sulfate for UCA3; 10% PEG 8K, 100 mM PIPES pH 6 and 1M NaCl for DH270.1; 1.4M 

lithium sulfate and 100 mM sodium acetate, pH 4.5 for DH270.3; 40% PEG 400 and 100 

mM sodium citrate, pH 4.0 for DH270.5; and 30% PEG 4K, 100 mM PIPES pH 6, 1M 
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NaCl for DH270.6. All crystals were harvested and cryoprotected by the addition of 20–

25% glycerol to the reservoir solution and then flash-cooled in liquid nitrogen.  

     Diffraction data were obtained at 100 K from beam lines 24-ID-C and 24-ID-E at the 

Advanced Photon Source using a single wavelength. Datasets from individual crystals 

(multiple crystals for UCA1, DH270.1 and DH270.5) were processed with HKL2000 

(54). Molecular replacement calculations for the free Fabs were carried out with 

PHASER (55, 56), using I3.2 from the CH103 lineage [Protein Data Bank (PDB) ID 

4QHL](53) or VRC01 from the VRC01/gp120 complex [Protein Data Bank (PDB) ID 

4LST](57) as the starting models.  Subsequent structure determinations were performed 

using DH270 lineage members as search models. The Fab models were separated into 

their variable and constant domains for molecular replacement.  

     Refinement was carried out with PHENIX (58), and all model modifications were 

carried out with Coot (59). During refinement, maps were generated from combinations 

of positional, group B-factor, and TLS (translation/libration/screw) refinement 

algorithms. Secondary-structure restraints were included at all stages for all Fabs; 

noncrystallographic symmetry restraints were applied to the DH270.1 and UCA3 Fabs 

throughout refinement. The resulting electron density map for DH270.1 was further 

improved by solvent flattening, histogram matching, and non-crystallographic symmetry 

averaging using the program DM (60). Phase combination was disabled in these 

calculations. After density modification, restrained refinement was performed using 

Refmac in Coot. Structure validations were performed periodically during refinement 
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using the MolProbity server (61). The final refinement statistics are summarized in Table 

S4. 

 

Design of the 92BR SOSIP.664 construct 

To generate the clade B HIV-1 92BR SOSIP.664 expression construct we followed 

established SOSIP design parameters (62). Briefly, the 92BR SOSIP.664 trimer was 

engineered with a disulfide linkage between gp120 and gp41 by introducing A501C and 

T605C mutations (HxB2 numbering system) to covalently link the two subunits of the 

heterodimer (62). The I559P mutation was included in the heptad repeat region 1 (HR1) 

of gp41 for trimer stabilization, and part of the hydrophobic membrane proximal external 

region (MPER), in this case residues 664–681 of the Env ectodomain, was deleted (62). 

The furin cleavage site between gp120 and gp41 (508REKR511) was altered to 

506RRRRRR511 to enhance cleavage (62). The resulting, codon-optimized 92BR 

SOSIP.664 env gene was obtained from GenScript (Piscataway, NJ) and cloned into 

pVRC-8400 as described above for Fabs using Nhe1 and NotI. 

 

Purification of Envs for analysis by biolayer interferometry and negative stain EM 

SOSIP.664 constructs were transfected along with a plasmid encoding the cellular 

protease furin at a 4:1 Env:furin ratio in HEK 293F cells.  Site-directed mutagenesis was 

performed using manufacturer’s protocols (Stratagene) for mutations in the V3 region 

and glycosylation sites. The cells were allowed to express soluble SOSIP.664 trimers for 

5–7 days. Culture supernatants were collected and cells were removed by centrifugation 
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at 3800 x g for 20 min, and filtered with a 0.2 µm pore size filter. SOSIP.664 proteins 

were purified by flowing the supernatant over a lectin (Galanthus nivalis) affinity 

chromatography column overnight at 4°C.  The lectin column was washed with 1x PBS 

and proteins were eluted with 0.5 M methyl-α-D-mannopyranoside and 0.5 M NaCl. The 

eluate was concentrated and loaded onto a Superdex 200 10/300 GL column (GE Life 

Sciences) prequilibrated in a buffer of 10 mM Hepes, pH 8.0, 150 mM NaCl and 0.02% 

sodium azide for EM, or in 2.5mM Tris, pH 7.5, 350 mM NaCl, 0.02% sodium azide for 

binding analysis, to separate the trimer-size oligomers from aggregates and gp140 

monomers.  

 

Electron Microscopy 

Purified 92BR SOSIP.664 trimer was incubated with a five molar excess of DH270.1 

Fab at 4 °C for 1 hour. A 3 µL aliquot containing ∼0.01 mg/ml of the Fab - 92BR 

SOSIP.664 complex was applied for 15 s onto a carbon coated 400 Cu mesh grid that had 

been glow discharged at 20 mA for 30 s, followed by negative staining with 2% uranyl 

formate for 30 s. Samples were imaged using a FEI Tecnai T12 microscope operating at 

120kV, at a magnification of 52,000x that resulted in a pixel size of 2.13 Å at the 

specimen plane. Images were acquired with a Gatan 2K CCD camera using a nominal 

defocus of 1500 nm at 10° tilt increments, up to 50°. The tilts provided additional particle 

orientations to improve the image reconstructions. 

 

Negative Stain Image Processing and 3D Reconstruction 
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Particles were picked semi-automatically using EMAN2 (63) and put into a particle 

stack. Initial, reference-free, two-dimensional (2D) class averages were calculated and 

particles corresponding to complexes (with three Fabs bound) were selected into a 

substack for determination of an initial model. The initial model was calculated in 

EMAN2 using 3-fold symmetry and EMAN2 was used for subsequent refinement using 

3-fold symmetry. In total, 5,419 particles were included in the final reconstruction for the 

3D average of 92BR SOSIP.664 trimer complex with DH270.1.  The resolution of the 

final model was determined using a Fourier Shell Correlation (FSC) cut-off of 0.5. 

 

Model fitting into the EM reconstructions 

The cryo-EM structure of PGT128-liganded BG505 SOSIP.664 (PDB ID: 5ACO) (26) 

and crystal structure of DH270.1 were manually fitted into the EM density and refined by 

using the UCSF Chimera ‘Fit in map’ function (64). 

 

Biolayer Interferometry  

Kinetic measurements of Fab binding to Envs were carried out using the Octet QKe 

system (ForteBio); 0.2 mg/mL of each His-tagged Fab was immobilized onto an anti-

Human Fab-CH1 biosensor until it reached saturation. The SOSIP.664 trimers were 

tested at concentrations of 200 nM and 600 nM in duplicate. A reference sample of buffer 

alone was used to account for any signal drift that was observed during the experiment. 

Association and dissociation were each monitored for 5 min. All experiments were 

conducted in the Octet instrument at 30 °C in a buffer of 2.5 mM Tris, pH 7.5, 350 mM 
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NaCl and 0.02% sodium azide with agitation at 1,000 rpm. Analyses were performed 

using nonlinear regression curve fitting using the Graphpad Prism software, version 6. 

 

Protein Structure Analysis and Graphical Representations.  

The Fabs and their complexes analyzed in this study were superposed by least squares 

fitting in Coot. All graphical representations with protein crystal structures were made 

using PyMol. 

 

Definition of immunological virus phenotypes and virus signature analysis 

The maximum likelihood trees depicting the heterologous virus panel and the full set 

of Env sequences for the subject CH848 were created using the Los Alamos HIV 

database PhyML interface (65).  HIV substitution models (66) were used and the 

proportion of invariable sites and the gamma parameters were estimated from the data.  

Illustrations were made using the Rainbow Tree interface that utilizes Ape (67).  The 

analysis that coupled neutralization data with the within-subject phylogeny based on 

Envs that were evaluated for neutralization sensitivity was performed using LASSIE (50).  

Signature analysis was performed using the methods fully described in (68, 69). 

 

Statistical analysis 

Statistical analysis was performed using R (http://www.R-project.org).  Heat maps and 

logo plots (70) were generated using the Los Alamos HIV database web interfaces 

(www.hiv.lanl.gov, version Dec. 2015, HEATMAP and Analyze Align). 
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Accession Numbers 

Coordinates and structure factors for UCA1, UCA3, DH270.1, DH270.3, DH270.5, 

DH270.6, and DH272 have been deposited in the Protein Data Bank with accession code 

T.B.D., T.B.D., T.B.D., T.B.D., T.B.D., T.B.D., and T.B.D., respectively. 

Section 4.9 – Supplementary Text 

 

Evolution of the CH848 virus quasispecies  

Figure S6 shows that simultaneously with the first detection of the DH270 lineage 

at week 186, four distinctive phylogenetic lineages emerged in individual CH848 and 

each clade functionally defined a distinct immunological resistance profiles (i.e. 

immunotype). Figure S9 shows the position of the four virus immunotypes on the full 

CH848 tree. The first profile was a set of Envs that all shifted the PNG site at N332 to 

334 (fig. S6, open circles). Despite this mutation being associated with complete 

resistance to all antibodies in the DH270 lineage, this mutation was detected at relatively 

low frequency in CH848 (7-33% per sample), and was only detected transiently, not 

observed among 50 sequences from the last time point sampled (week 246). This 

suggested a balance where immune escape was countered by a cost in virological fitness. 

As noted above, the PNG site N332 was required for heterologous neutralization; the 

limited exposure in vivo may not have been adequate for selection of antibodies that 

could compensate for its loss.  Env in the other 3 resistance profiles all retained N332, 

and all were embedded in clades that persisted through the last time point sampled. Envs 
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in the second profile were completely neutralization resistant, and their gp120s did not 

bind to the DH270 antibodies (fig. S6, triangles and Additional Data table S3). The 

gp120s of the other two sets could bind to DH270 gp120; one had weak neutralization 

sensitivity but only to later antibodies in the lineage (fig. S6, “X”) the other had no 

detectable neutralization (fig. S6, “+”).   The selection for resistance to the DH270 

lineage as soon as it became established is clear: persistence of four divergent clades in 

CH848 Env protein, each with distinctive immunological resistance phenotypes, suggest 

multiple distinctive immune escape routes are explored and selected.  This would allow 

continuing Env escape mutations to accrue in distinct frameworks, and exposure of the 

antibody to Env diversity in the context of these frameworks may select for antibodies 

that provide greater breadth. 

 

Ontogeny of DH270 lineage and acquisition of neutralization breadth 

Only one of 62 pseudoviruses tested that lack the PNG site at N332, the B clade 

virus 5768.04, was sensitive to DH270.5 and DH270.6 (Additional Dataset S1).  Across 

the full M group HIV-1 virus isolate panel used in neutralization assays, the loss of the 

PNG N332 sites accounted for 70% of the observed neutralization resistance. The 

circulating recombinant form CRF01, commonly found in Asia, very rarely has this 

glycosylation site (3% of sequences in the Los Alamos database and 4% (1/23) in our test 

panel) and, as shown in Fig. 2A, DH270 lineage antibodies did not neutralize CRF01 

strains.  



 194

Other V3-glycan bnAbs (10-1074, PGT121 and PGT128) shared this N332 glycan 

dependency but PGT121 and PGT128 were not as restrictive (Additional Dataset S1)(5, 

6, 8). Antibody 10-1074 was similar to DH270.6 in that it more strictly required the N332 

PNG site, and its neutralization potency correlated with that of DH270.6 (Pearson’s p = 

8.0e-13, r = 0.63)(8). 

As a consequence of the N332 PNG site requirement of V3 glycan bnAbs to 

neutralize, in vitro estimation of neutralizing breadth was impacted simply by the fraction 

of CRF01 viruses included in the panel. Therefore, to evaluate the impact of other virus 

characteristics relevant to DH270 lineage neutralizing, we excluded viruses lacking the 

N332 PNG from the analysis.  In addition, reagents that target this epitope would be a 

poor choice for use in Asian populations where CRF01 is frequently observed.   

 

CH848 Env signatures 

We previously studied cooperation between lineages that occurred soon after 

infection, at a time when diversity in the autologous quasispecies was limited (12).  In 

contrast, in CH848 the earliest autologous quasispecies transition in sensitivity to 

DH272/DH475 neutralization to DH270 lineage members occurred between week 39 and 

week 51, when multiple virus variants were circulating.  Viral diversity made it 

impractical to test all the possible permutations or mutations from the transmitted founder 

virus.  To select a smaller pool of candidate mutations, we sought the two most similar 

CH848 Env sequences at the amino acid level with opposite sensitivity to DH272/DH475 

and DH270.1 neutralization around week 51 and identified clones CH0848.3.d0274.30.07 
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and CH0848.3.d0358.80.06 being the most similar (sim: 0.98713).  Among the 

differences in amino acid sequences between these two clones, the four that we selected 

(∆134-143 in V1); D185N in V2; N413Y in V4; ∆463-464 in V5) were the only ones 

consistently different among all clones with differential sensitivity to DH272 and 

DH270.1. We elected to use DH270.1 for these cooperating studies as the least mutated 

representative of DH270 antibodies that gained autologous neutralization at week 51.  

The D185N and N413Y mutations were also identified by the signature analysis shown in 

fig. S12 and Additional dataset S4. 

Among these four mutations, the large V1 deletion selected by DH475 was critical 

for DH270.1 neutralization.  This V1 deletion removed a PNG site at position 137. While 

the hypervariable nature of the V1 loop (which evolves by insertion and deletion, 

resulting in extreme length heterogeneity, as well as extreme variation in number of PNG 

sites) complicated the interpretation of direct comparisons between two unrelated HIV-1 

strains, it is worth noting that a PNG in this region specified as N137 in donor 17 was 

shown to be important for regulating affinity maturation of the PGT121 V3 glycan bnAb 

family, with some members of the lineage evolving to bind (PGT121-123) and others 

(PGT124) to accommodate or avoid this glycan (71). 
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Section 4.10 – Supplemental Figures and Tables 
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Figure 4.S1. Characteristics of DH270 lineage monoclonal antibodies. (A) 
Immunogenetics of DH270 lineage monoclonal antibodies; (B) Phylogenetic relationship 
of VHDJH rearrangements of the unmutated common ancestor (DH270.UCA) and 
maturation intermediates DH270.IA1 through DH270.IA4 inferred from mature 
antibodies DH270.1 through DH270.5. DH270.6 was not included and clusters close to 
DH270.4 and DH270.5 as shown in Figure 1.  DH270.6 addition did not modify the 
overall topology of the tree.  Importantly, it did not affect the inference of DH270.UCA 
and DH270.IA4 (details in Supplemental Text). (C) Amino acid alignment of the VHDJH 
rearrangements of the inferred UCA and intermediate antibodies and DH270.1 through 
DH270.6 mature antibodies. (D) Amino acid alignment of VLJL rearrangements 
rearrangements of the inferred UCA and intermediate antibodies and DH270.1 through 
DH270.6 mature antibodies. For DH270.6, all experimental data presented in this 
manuscript were obtained using the light chain sequence reported here. The light chain 
sequence of DH270.6 was subsequently revised to amino acids Q and A in positions 1 
and 3 (instead of T and L). This difference did not affect neutralization and binding of 
DH270.6. 

  



 198

 
 Neutralization IC50 µµµµg/ml 

 
AC13.8 

 

PVO.4 

 

TRO.11 

 

AC10.029 

 

RHPA.4259 

  wt N332A wt N332A wt N332A wt N332A wt N332A 

DH270.UCA >50 >50 
 

>50 >50 
 

>50 >50 
 

>50 >50 
 

>50 >50 

DH270.IA4 >50 >50 
 

42 >50 
 

43 >50 
 

>50 >50 
 

>50 >50 

DH270.IA3 >50 >50 
 

>50 >50 
 

0.2 >50 
 

>50 >50 
 

6.6 >50 

DH270.IA2 >50 >50 
 

>50 >50 
 

0.1 >50 
 

>50 >50 
 

6.4 >50 

DH270.1 >50 >50 
 

0.2 >50 
 

0.08 >50 
 

1.9 >50 
 

0.2 >50 

DH270.IA1 >50 >50 
 

0.07 >50 
 

0.05 32.4 
 

<0.02 >50 
 

0.04 >50 

DH270.2 21 >50 
 

0.3 >50 
 

0.06 >50 
 

0.3 >50 
 

0.1 >50 

DH270.3 >50 >50 
 

23 >50 
 

0.3 >50 
 

43 >50 
 

42 >50 

DH270.4 15 >50 
 

0.1 >50 
 

0.04 14 
 

<0.02 >50 
 

0.05 >50 

DH270.5 41 >50 
 

0.1 >50 
 

0.07 >50 
 

<0.02 >50 
 

0.04 >50 

DH270.6 1.4 >50 
 

0.03 >50 
 

0.02 >50 
 

<0.02 >50 
 

<0.02 >50 

 
 

 

Figure 4.S2. DH270 lineage displays a N332-dependent V3 glycan bnAb functional 
profile. (A) DH270 antibody lineage neutralization of five HIV-1 pseudoviruses and 
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respective N332A mutants.  Data are expressed as IC50 μg/ml. Positivity <10 μg/ml is 
shown in bold. (B,C) DH270.1 ability to compete gp120 Env binding of V3 glycan 
bnAbs PGT125 and PGT128.  DH270.1 (cold Ab) inhibited binding of PGT125 (B) and 
PGT128 (C) to JRFL gp120 Env with IC50 = 0.4μg/ml for both (black line). Inhibition by 
cold PGT125 or PGT128 (grey line) was used as control (see Methods). Dotted line 
indicates 50% inhibition.  
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Figure 4.S3. DH475 and DH272 are strain-specific, N332-glycan dependent antibodies. 
(A) Phylogenetic trees of DH475 (top) and DH272 (bottom) clonal lineages.  External 
nodes (filled circles) representing VHDJH observed sequences retrieved from cultured and 
sorted memory B cells (labeled) or NGS antibody sequences (unlabeled) are colored 
according to time point of isolation.  Internal nodes (open circles) represent inferred 
ancestral intermediate sequences.  Branch length estimates units are nucleotide 
substitution per site. (B) Immunogenetics of DH475 and DH272 monoclonal antibodies; 
(C) Binding of DH475 (top) and DH272 (bottom) monoclonal antibodies to wild-type 
CH848TF gp120 Env (wild-type (wt), on the x-axis, and mutants with disrupted the 301 
and/or 332 N-linked glycosylation sites. Results are expressed as LogAUC. (D) 
Heterologous neutralization profile of DH475 and DH272 monoclonal antibodies 
expressed as IC50 µg/ml on a multiclade panel of 24 viruses. White square indicates IC50 
> 50 µg/ml, the highest antibody concentration tested.  Clades are reported on the left and 
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virus identifiers on the right. DH475 neutralized no heterologous viruses and DH272 
neutralized one Tier 1 heterologous virus. 

 

 
Figure 4.S4. CH848 was infected by a single transmitted founder virus. 79 HIV-1 3’ 
half single genome sequences were generated from screening timepoint plasma. Depicted 

 CH0848.3.d0017.10.02
 CH0848.3.d0017.10.06
 CH0848.3.d0017.210.33
 CH0848.3.d0017.10.07
 CH0848.3.d0017.10.03
 CH0848.3.d0017.500.20
 CH0848.3.d0017.210.48
 CH0848.3.d0017.210.66
 CH0848.3.d0017.10.04
 CH0848.3.d0017.210.19
 CH0848.3.d0017.210.27
 CH0848.3.d0017.210.43
 CH0848.3.d0017.210.54
 CH0848.3.d0017.210.50
 CH0848.3.d0017.210.56
 CH0848.3.d0017.210.24
 CH0848.3.d0017.210.39
 CH0848.3.d0017.210.31
 CH0848.3.d0017.500.01
 CH0848.3.d0017.500.03
 CH0848.3.d0017.210.59
 CH0848.3.d0017.500.12
 CH0848.3.d0017.500.18
 CH0848.3.d0017.210.71
 CH0848.3.d0017.210.80
 CH0848.3.d0017.500.04
 CH0848.3.d0017.500.23
 CH0848.3.d0017.10.08
 CH0848.3.d0017.210.87
 CH0848.3.d0017.500.02
 CH0848.3.d0017.500.21
 CH0848.3.d0017.210.83
 CH0848.3.d0017.210.18
 CH0848.3.d0017.210.44
 CH0848.3.d0017.210.16
 CH0848.3.d0017.210.46
 CH0848.3.d0017.500.13
 CH0848.3.d0017.500.16
 CH0848.3.d0017.210.53
 CH0848.3.d0017.210.67
 CH0848.3.d0017.210.52
 CH0848.3.d0017.500.14
 CH0848.3.d0017.210.17
 CH0848.3.d0017.210.21
 CH0848.3.d0017.500.10
 CH0848.3.d0017.210.35
 CH0848.3.d0017.500.22
 CH0848.3.d0017.210.03
 CH0848.3.d0017.500.17
 CH0848.3.d0017.210.85
 CH0848.3.d0017.210.70
 CH0848.3.d0017.210.13
 CH0848.3.d0017.210.49
 CH0848.3.d0017.210.01
 CH0848.3.d0017.210.45
 CH0848.3.d0017.210.62
 CH0848.3.d0017.210.36
 CH0848.3.d0017.210.38
 CH0848.3.d0017.210.05
 CH0848.3.d0017.210.32
 CH0848.3.d0017.210.23
 CH0848.3.d0017.210.06
 CH0848.3.d0017.210.61
 CH0848.3.d0017.500.06
 CH0848.3.d0017.210.28
 CH0848.3.d0017.210.42
 CH0848.3.d0017.210.63
 CH0848.3.d0017.210.04
 CH0848.3.d0017.210.81
 CH0848.3.d0017.210.47
 CH0848.3.d0017.210.88
 CH0848.3.d0017.500.05
 CH0848.3.d0017.210.20
 CH0848.3.d0017.500.15
 CH0848.3.d0017.210.84
 CH0848.3.d0017.210.89
 CH0848.3.d0017.210.26
 CH0848.3.d0017.210.57
 CH0848.3.d0017.210.86

4924
 

HXB2 nucleotide coordinate

A:Green, T:Red, G:Orange, C:Light blue, Gaps:Gray

6924 8924
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is a nucleotide Highlighter plot 
(http://www.hiv.lanl.gov/content/sequence/HIGHLIGHT/HIGHLIGHT_XYPLOT/highli
ghter.html ) demonstrating that this subject was infected with a single transmitted founder 
virus. Horizontal lines represent single genome sequences and tic marks denote 
nucleotide changes relative to the inferred TF sequence (key at top, nucleotide position 
relative to HXB2). Sequences exhibited random diversification from the TF virus as 
demonstrated by analysis using the Poisson Fitter v2 tool (pgoodness of fit = 0.806)(33). 
Transmission likely occurred approximately 17 days prior to screening (CI: 14-19). 
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Figure 4.S5. CH848 was infected by a subtype C virus. (A) PhyML (65) was used to 
construct a maximum likelihood phylogenetic tree comparing the CH848 transmitted 
founder virus to representative sequences from subtypes A1, A2, B, C, D, F1, F2, G, H, 
and K (substitution model: GTR+I+G, scale bar bottom right). The CH848 TF sequence 
(red) clusters with subtype C viruses, consistent with the 98.6% prevalence of this 
subtype in Malawi, where CH848 was enrolled during acute seroconvertion ( 
www.hiv.lanl.gov/components/sequence/HIV/geo/geo.comp). (B) The TF virus was 
typed using the Rega HIV-1 subtyping tool and the Recombination Identification 
Program (RIP)(72). Shown similarity plot was generated using RIP. Similarity to each 
subtype reference sequence is plotted on the y-axis and nucleotide position is plotted the 
x-axis (window size = 400 nt, significance threshold = 0.95, key to right). The two bars 
below the x-axis indicate which reference sequence is most similar to the CH848 TF 
sequence (“Best Match”) and whether this similarity is statistically significant relative to 
the second best match (“Significant”). Both analyses demonstrated that the CH848 3’ half 
genome represents a subtype C sequence with no evidence of inter-subtype 
recombination.
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Figure 4.S6. Co-evolution of CH848 autologous virus and N332-dependent V3 glycan 
antibody lineages DH272, DH475 and DH270. Mutations relative to the CH848 
transmitted founder virus in the alignment of CH848 sequences with accompanying 
neutralization data (Insertion/deletions = black. Substitutions: red = negative charge; blue 
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= positive charge; cyan = PNG sites)(50).  The transition between DH272/DH475 
sensitive and DH270 lineage sensitive virus immunotypes at day 356 (week 51) is 
indicated by the green line. Time points after week 186 (for which antibody isolation and 
NGS provided evidence of DH270 lineage presence) are highlighted. At this juncture 
four viral clades are established that co-exist and persist, each clade characterized by 
viruses with a distinct immunologically-defined DH270 resistance phenotypes (distinct 
patterns were defined by loss of N332 PNG site, gp120 binding and neutralization 
resistance). The sequences that represent these clades can be tracked through the full tree 
of all CH848 sequences (fig. S9). 
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Figure 4.S7. Mutations in CH848 Env over time.  (A) Variable positions that are close to 
the PGT128 epitope in a trimer structure (PDB ID: 4TVP)(13) are represented by spheres 
color-coded by the time post-infection when they first mutate away from the CH848 TF 
sequence. The PGT128 antibody structure (PDB ID: 5C7K)(73) was used as a surrogate 
for DH270, as a high resolution structure is not yet available for DH270. Env positions 
with either main chain, side chain or glycans within 8.5Å of any PGT128 heavy atom 
were considered to be proximal to PGT128. All such Env positions are shown in yellow 
surface and brown ribbon representations.  Mutations in the V3 region do not begin to 
accrue until after the first year of infection when the DH270 lineage was first detected; 
V1 mutations arise early. (B) Same as (A) for mutating Env sites that were autologous 
antibody signatures of antibody sensitivity and resistance.  
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Figure 4.S8. Accumulation of amino acid mutations in CH848 virus over time.  This 
figure shows all of the readily aligned positions near the contact site of V3 glycan 
antibodies in Fig. S7, (excluding amino acids that are embedded in the V1 hypervariable 
regions). The magenta O is a PNG site, whereas an N is an Asn that is not embedded in a 
glycosylation site. The logo plots represent the frequency of amino acids at each position, 
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and the TF amino acid is left blank to highlight the differences over time.
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Figure 4.S9. Multiple viral lineages persisted during bnAb development. 1,223 Env 
protein sequences translated from single genome sequences were used to generate a 
Maximum Likelihood phylogenetic tree (65) rooted on the transmitted founder sequence. 
Sequences sampled prior to the development of Tier 2 heterologous breadth (week 186) 
are shaded in grey and sequences from after week 186 are highlighted using the color 
scheme from fig. S6. By week 186, the quasispecies resolved into at least four distinct 
lineages with different DH270 binding and neutralization profiles. Envs indicated with a 
circle simultaneously lack the PNG site (NXS/T) at HXB2 position 301 and shift the 
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PNG site at 332 to 334. Loss of critical V3 glycan bnAb-binding amino acids conferred 
complete resistance to DH270 lineage Abs, and by week 246 this virus was undetected.  
Binding and neutralization assays using representative members of each of these lineages 
revealed that certain variants escape DH270 lineage pressure by abrogating antibody 
binding (circle and triangle) while other maintaining binding while disrupting 
neutralization (X and cross).   
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Fig. 4.S10. Inverse-correlation between the potency of V3 glycan broadly neutralizing 
antibodies and V1 length shown for the full panel of 207 viruses.  (A-C) In Fig. 2D, the 
impact of V1 loop length on potency for the panel of 24 viruses is shown. The impact of 
V1 length on potency and breadth diminishes as the antibody develops.  The same 
phenomenon is shown for each of the three DH270 lineage antibodies that were evaluated 
using the 207 virus heterologous panel. Correlation p-values are non-parametric two 
sided, Kendall’s tau.  Slopes are of the linear regression.  The impact of V1 length is over 
3 fold greater on DH270.1 than DH270.6, but still evident and statistically supported in 
DH270.6. In this figure you can also see the details of the increase in potency over the 
full set of Envs as the lineage evolves; the medians were provided in Fig. 2C, bottom left 
panel, to enable a comparison with the mutations in the antibody. The impact of V1 
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length on potency and breadth diminishes as the antibody develops.   (D-E).  Inverse-
correlation between the potency of other V3 glycan antibodies 10-1074, PG121, PG128 
and V1 length.  10-1074 was the most impacted by V1 loop length. 

A 

 

B 

 

Figure 4.S11. Role of VH1-2*02 intrinsic mutability in determining DH270 lineage 
antibody somatic hypermutation. (A) The sequence logo plot shows the frequency of 
VH1-2*02 amino acid (aa) mutations from germline at each position, calculated from an 
alignment of 10,995 VH1-2*02 reads obtained from 8 HIV-1 negative individuals by 
NGS (35). To distinguish genuine mutations from error introduced during PCR 
amplification, only sequences that replicated across two independent Illumina 
experiments were included in this analysis.  Frequency of mutated aa at each position is 
shown in the logo plot. In this dataset, 20 positions mutated frequently (>20%, indicated 
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by the red line). The VH aa sequences of DH270 lineage antibodies, DH272 and VRC01 
are aligned on the top. In the DH270 lineage, 12 of these 20 positions were also 
frequently mutated (red vertical stripes).  Mutations of the DH270 lineage antibodies 
were defined as “frequent” when they occurred in more than 25% of the isolated 
antibodies (inferred intermediate VH sequences were excluded from this analysis) Of 
these 12 positions, 11 mutated to one of the two most frequent aa mutated in non-HIV-1 
VH1-2*02 sequences (identity conformity). G57R was the lone exception.  DH272 
mutated in 6 of these 12 positions and VRC01 mutated in 11 out of 12 positions. (B) VH 
aa encoded by VH1-2 sequences from genomic DNA aligned to DH270 lineage 
antibodies aa sequences (see “Sequencing of germline variable region from genomic 
DNA” in methods). 
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Figure 4.S12. Virus signature analysis.  Logo plots represent the frequency of amino 
acids mutations in CH848 virus quasispecies from transmitted founder at indicated 
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positions over time.  Red indicates a negatively charged amino acid, blue positive, black 
neutral; the light blue O is a PNG site.  The signatures outlined in detail in Additional 
Dataset S4 are summarized in the bottom right column where a red amino acid is 
associated with resistance to the antibody on the right, a blue amino acid with sensitivity.  
Sites 325 and 624 are associated with mutual acquisition of resistance whereas the other 
seven are candidates for cooperativity. 
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Figure 4.S13. Autologous Env V1 length associations with DH270 lineage neutralization 
(A-C) and gp120 binding (D-F). Eighty-two virus Envs (the subset from Additional 
dataset S3 that were assayed for both neutralization and binding) were evaluated.  The 3 
Envs that had lost the PNG site at N332 were not included, as they were negative for all 
antibodies tested independently of V1 length.  Only points from positive results were 
plotted: IC50 <50 μg/ml for neutralization in panels A-C, and AUC >1 for binding in 
panels D-F. DH270.1 gp120 Env binding is slightly negatively impacted by longer loops, 
but most Envs can be bound and the association with V1 length is essentially lost for 
DH270.5 and DH270.4.  In contrast, DH270 lineage neutralization potency is profoundly 
impacted by V1 loop length.  The ability to detectably neutralize autologous CH848 
viruses increases as the lineage develops: N is the number of positive sample and ranges 
from N=45 (55%) for DH270.1 up to N=75 (91%) for DH270.4. These gains are mostly 
among viruses with long loops.  The slope and relationship is most profound for 
DH270.4, because the viruses with short V1 loops are more potently neutralized (shifting 
points on the left hand side of the plot down) and the viruses with long V1 loops - which 
were not neutralized by earlier members of the DH270 lineage - are weakly neutralized.  
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Figure 4.S14.  Accumulation of mutation in DH270 lineage antibodies.  Mutations are 
highlighted as spheres on the Fv region of each antibody, where the CDR regions, labeled 
on the backbone of the UCA, face outward.  The G57R mutation is shown in red; the 
other mutations incurred between the UCA and IA4 are shown in orange.  Mutations 
between intermediates are colored as follows: between IA2 and IA4, yellow; between 
IA1 and IA2, green; between IA3 and IA4, magenta.   Mutations between the late 
intermediates and DH270.1, DH270.2, DH270.3, DH270.4, and DH270.5 are in brown, 
light purple, dark purple, blue, and dark blue, respectively. 
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Figure 4.S15. UCA Differences. Sequence alignments of UCA3 and UCA1. (A) Heavy 
chains and (B) light chains, whose structures were obtained in this study, are aligned with 
UCA4, the germline antibody for the DH270 lineage (DH270.UCA).  The UCA3 and 
UCA4 light chains are identical. Asterisks indicate positions in which the amino acids are 
the same.  Colon “:”, period “.” And blanks “ “ correspond to strictly conserved, 
conserved and major differences, respectively.  (C) Superposition of UCA3 (cyan) and 
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UCA1 (gray).  Structural differences in CDR regions are indicated with an arrow. 
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Figure 4.S16. Negative stain EM of DH270 Fab in complex with the 92BR SOSIP.664 
trimer. (A) 2D class-averages of the complex.  Fabs are indicated with a red arrow.  (B) 
The Fourier shell correlation curve for the complex, along with the resolution determined 
using FSC = 0.5. 
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Figure 4.S17. Binding Kinetics. DH270.1 and 92BR SOSIP.664. (A) Glycans forming a 
“funnel” are shown on the surface of the trimer.  V1-V2 and V3 loops are colored red and 
blue. (B) Association and dissociation curves, using biolayer interferometry, against 
different 92BR SOSIP.664 glycan mutants. 
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Figure 4.S18. Binding Kinetics: DH270.1 and 92BR SOSIP.664. (A) Sequence Logo of 
the V3 region of CH848 autologous viruses are shown. (B) Binding kinetics, using 
biolayer interferometry, against different 92BR SOSIP.664 V3 loop region mutants. (C) 
DH270.1 heavy chain mutants and 92BR SOSIP.664.  Biolayer interferometry 
association and dissociation curves for the indicated Fab mutants for binding to 92BR 
SOSIP.664 (600nM curves are shown)  Not shown are curves for DH270.1 heavy chain 
mutants K32A, R72A, D73A, S25D, S54D, S60D and double mutant S75/77A for which 
there was little or no reduction in affinity. 
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Figure 4.S19. Man9-V3 glycopeptide binding of DH270 lineage antibodies. DH270 
lineage tree (A, top left) is shown with VH mutations of intermediates and mature 
antibodies. DH270.6 mAb, which clusters close to DH270.4 and DH270.5, is not shown 
in the phylogenetic tree.  Binding of Man9-V3 glycopeptide (74) and its aglycone form to 
DH270 lineage antibodies was measured by BLI assay using either biotinylated Man9-V3 
(A) or biotinylated aglycone V3 (B) as described in methods. DH270 lineage antibodies 
were each used at concentrations of 5, 10, 25, 50, 100, 150 µg/mL. Insets in (A) for UCA 
(150 µg/mL), IA4 (100, 50, 25 µg/mL), IA3 and IA2 (100, 50, 25, 10 µg/mL) show 
rescaled binding curves following subtraction of non-specific signal on a control antibody 
(Palivizumab). Rate (ka, kd) and dissociation constants (Kd) were measured for 
intermediate IA1 and mature mAbs with glycan-dependent binding to Man9-V3. Kinetics 
analyses were performed by global curve fitting using bivalent avidity model and as 
described in methods (“Affinity measurements” section). Inset in (B) show overlay of 
binding of each mAbs to Man9-V3 (blue) and aglycone V3 (red) at the highest 
concentration used in each of the dose titrations. 
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C 

 

 

Figure 4.S20. Example of an immunization regimen derived from studies of virus-

bnAb coevolution in CH848. (A) CH848 autologous gp120 Env clone d0949.10.17 
binding depends on presence of Arg57 in DH270.IA4 and DH270.UCA. DH270.IA4 
variants, reverted to UCA at positions of each of the 4 amino acids in VH that had 
mutated in DH270.IA4 from their identities in DH270.UCA (colored circles), were tested 
by ELISA for binding to CH848.d0949.10.17 gp120, the only autologous Env bound by 
wild-type DH270.IA4 (black squares and Fig. 6A). Antibodies were serially diluted with 
a starting concentration of 100 μg/ml.  Mean and standard deviation from duplicate 
observations are indicated for each datapoint and curve fitting (non-linear, 4-parameters) 
is shown for each dataset. Binding is quantified as background subtracted OD450 values. 
Reversion of R57G was necessary and sufficient to abrogate binding. (B) Introduction of 
G57R (red) in DH270.UCA (black) was sufficient to generate detectable binding with 
CH848.d0949.10.17 gp120 Env. (C) An immunization strategy composed of the 
following steps: first, prime with an immunogen that binds the UCA and the boost with 
immunogens with the following characteristics: i. engagement of DH270.IA4-like 
antibodies and selection for the G57R mutation; ii. Selection of antibodies that favor 
recognition of trimeric Env and expand the variation in the autologous signature residue 
to potentially expand recognition of diversity in population; iii. Exposing maturing 
antibodies to viruses with longer loops, even though these viruses are not bound or 
neutralized as well as viruses with shorter V1 loops, as this is the main constrain on 
antibody heterologous population neutralization breadth. 
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Table 4.S1. N332-dependent CH848 plasma neutralization.  

 
 

 CH848 plasma neutralization, week 186 post-transmission (EC50 titer) 

HIV-1 strain Wild-type A N332A mutant Fold-difference 

Q23.17 962 150 6 

Du156 170 <40 4 

TRO.11 204 <40 5 

Consensus C 4,261 1,569 3 

 

Fold difference in CH848 plasma neutralization IC50 of selected wild-type and N332 
mutant HIV-1 strains 
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Table 4.S2. NGS longitudinal sampling of VHDJH rearrangements assigned to the 

DH270, DH272 and DH475 lineages from memory B cell mRNA. 

  

A.  DH270 Lineage 
Weeka Sample A Sample B Overlapd Totale 

11 0 0 0 32,732 

19 0 0 0 31,179 

64 1 0 0 19,383 

111 0 0 0 87,224 

160 0 0 0 114,729 

186 9,365 14,268 776 161,104 

240c 3 251 1 171,012 

  
B.  DH272 Lineage 

Weeka Sample A Sample B Overlap Total 

11 0 0 0 32,732 

19 1,634 2,782 105 31,179 

64 48 0 0 19,383 

111 558 684 42 87,224 

160 0 0 0 114,729 

186 596 509 36 161,104 

240c 0 7 0 171,012 

  
C.  DH475 Lineage 
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Weekb Sample A Sample B Overlap Total 

11 0 0 0 30,764 

19 0 0 0 39,784 

64 378 276 3 21,353 

111 0 0 0 30,925 

160 0 0 0 96,301 

186 788 1590 50 37,648 

240c 0 0 0 171,012 

 
a Reads from VH1 family-targeted Illumina 
b Reads from VH3 family-targeted Illumina 
c Reads from VH1 through VH6 families-targeted Illumina  
d Number of clonally-related VHDJH sequences that replicated across samples A and B 
e Total number of replicated sequences at each timepoint 
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Table 4.S3. CH848 plasma neutralization breadth over time. 

 
 Week post-transmission, neutralization IC50 µµµµg/ml 

HIV-1 strain 51 100 111 113 136 160 186 205 

Du172.17 31 81 117 95 61 101 83 415 

6535.3 <10 <10 <10 32 <10 115 460 1,363 

Q23.17 <10 <10 <10 <10 64 <10 37 1,483 

Du156.12 <10 <10 <10 <10 <10 25 280 682 

SC422661.8 <10 <10 <10 <10 <10 38 92 207 

Q842.d12 <10 <10 <10 <10 <10 50 74 54 

QH0692.42 <10 <10 <10 <10 <10 <10 56 100 

PVO.4 <10 <10 <10 <10 <10 <10 32 251 

AC10.0.29 <10 <10 <10 <10 <10 <10 21 209 

RHPA4259.7 <10 <10 <10 <10 <10 <10 59 250 

Du422.1 <10 <10 <10 <10 <10 <10 152 341 

ZM197M.PB7 <10 <10 <10 <10 <10 <10 43 105 

Q259.d2.17 <10 <10 <10 <10 <10 <10 <10 112 

ZM214M.PL15 <10 <10 <10 <10 <10 <10 <10 37 

Q769.d22 <10 <10 <10 <10 <10 <10 <10 <10 

CAP45.2.00.G3 <10 <10 <10 <10 <10 <10 <10 <10 

SVA-MLV <10 <10 <10 <10 <10 <10 <10 <10 
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Table 4.S4. Data collection and refinement statistics 

 

 
Statistics for the highest-resolution shell are shown in parentheses. 
 
  

 

Data Collection 

 UCA1 UCA3 DH270.1 DH270.3 DH270.5 DH270.6 DH272 

Resolution (Å) 
50 - 3.31    

(3.37 - 3.31) 
50 - 2.26 

(2.30 - 2.26) 
50 - 3.47    

(3.53 - 3.47) 
50 - 2.50 

(2.54 - 2.50) 
50  - 1.85 

(1.88 - 1.85) 
50 - 2.73 

(2.78 - 2.73) 
50 - 2.68          

(2.73 - 2.68) 
Space group R 3 2 C 1 2 1 P 1 21 1 P 21 21 21 C 1 2 1 P 1 21 1 I 2 2 2 

Unit cell  
a,b,c (Å) 

209.1, 209.1, 
83.5  

98.5, 76.9, 
137.1 

83.8, 219.4, 
103.1 

63.2, 69.3, 
115.2 

135.1, 68.8, 
59.5 

67.1, 73.7, 
112.7 

60.9, 124.5, 
146.2 

Unit cell  
α, β, γ (°) 90 90 120 90,102, 90 90, 109, 90 90, 90, 90 90,113, 90 90, 107, 90 90, 90, 90 

Total reflections 65247 142800 168772 57856 126544 57894 47496 
Unique reflections 10410 46692 42952 17599 42441 27592 15439 

Redundancy 6.3 (5.0) 3.1 (3.0) 3.9 (2.2) 3.3 (3.0) 3.0 (2.1) 2.1 (2.1) 1.7 (1.6) 

Completeness (%) 97.6 (90.5) 99.1 (98.9) 94.1 (68.7) 97.1 (98.4) 96.2 (83.9) 97.2 (92.8) 97.5 (94.4) 

<I/σI> 7.0 (1.9) 7.3 (1.5) 6.7 (2.0) 6.8 (1.9) 5.6 (1.7) 6.00 (1.4) 9.3 (2.6) 
Rmerge 21.0 (88.3) 9.6 (87.8) 18.3 (32.0) 11.0 (66.2) 12.8 (56.0) 11.2 (64.2) 11.9 (63.8) 

Refinement 

Rwork/Rfree (%) 
26.4/27.6  

(34.6/41.2) 
23.6/26.5  

(33.8/37.6) 
22.5/25.3  

(28.8/31.1) 
21.2/24.8  

(33.0/42.0) 
17.6/21.4  

(23.9/26.3) 
24.3/26.5 

(34.0/35.7) 
22.0/26.7  

(34.1/44.7) 
No. atoms        

Protein 3215 6428 19474 3250 3303 6568 3376 
Ligand  1     30 
Water 0 195 0 114 353 0 41 

R.M.S. deviations 
Bond lengths (Å) 0.004 0.005 0.006 0.005 0.007 0.004 0.005 
Bond angles (°) 1.15 1.02 1.28 1.04 1.22 0.91 0.89 

B-factors (Å2)        
Protein 39.00 50.70 34.50 47.10 26.80 50.00 49.60 
Ligand  30.00     69.20 
Solvent  46.00  38.30 39.80  36.90 
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HIV-1 THERAPY WITH MONOCLONAL ANTIBODY 3BNC117 
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Section 5.1 – Abstract 

3BNC117 is a broad and potent anti-HIV-1 neutralizing antibody that targets the CD4 

binding site on the viral envelope spike. When administered passively, this antibody can 

prevent infection in animal models and suppress viremia in HIV-1-infected individuals. 

Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 impacts 

host antibody responses in viremic subjects and in individuals receiving anti-retroviral 

therapy. In comparison to untreated controls that showed little change in their 

neutralizing activity over a six-month period, 3BNC117 infusion significantly improved 

neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We 

conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to 

HIV-1. 
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Section 5.2 – Main Text 

Development of serum neutralization breadth during HIV-1 infection typically occurs 

after several years and exists on a continuum with ~50% of infected individuals 

developing some level of broad neutralization and a small fraction of individuals 

acquiring serum neutralizing activity of extraordinary breadth and potency (1-4). 

Antibody cloning experiments revealed that this activity is due to one or more potent 

broadly neutralizing antibodies (bNAbs) that target one or more epitopes on the viral 

spike protein, gp160 (1, 5-10). 

 

bNAbs show exceptional breadth and potency in vitro, and can protect against or 

suppress active infection in humanized mice (11-13) and macaques (14, 15). Moreover, 

in a phase I clinical trial, a single injection of 3BNC117, a CD4-binding-site specific 

bNAb (6) was safe and effective in suppressing HIV-1 viremia by an average of 1.48 logs 

(16).   

 

In addition to direct effects on target cells and pathogens, antibody-mediated 

immunotherapies have the potential to engage the host immune system and induce both 

innate and adaptive immune responses (17). In particular the Fc domains of antibodies 

interact with receptors on innate cells such as natural killer (NK) cells and phagocytes to 

enhance the clearance of viral particles and the killing of infected cells (Lu, 2016; Martin, 

2016).  
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A single 3BNC117 infusion was administered to HIV-1-infected individuals at doses of 

1, 3, 10, or 30 mg/kg (Fig. 1A, Table S1A) (16). To determine whether 3BNC117 therapy 

is associated with changes in viral sensitivity and serologic responses to autologous 

viruses, we cultured HIV-1 from peripheral blood mononuclear cells (PBMCs) of 9 

viremic individuals before (d0) and 4 weeks (wks) after 3BNC117 infusion (16). On d0, 

all but one of the cultured viruses were sensitive to 3BNC117 with IC50 values ranging 

from 0.09 - 8.8 µg/ml (Fig. 1B and (16)). At wk 4, we found increased resistance to 

3BNC117 in most individuals indicating selection for viral escape variants (Fig. 1B and 

(16)). 

 

When the same viral isolates were tested for sensitivity to the matched individual’s 

immunoglobulins (IgG) obtained before (d0) and 24 wks after 3BNC117 infusion (Fig. 

1A), we found increased neutralizing activity in the wk 24 IgG against both d0 and wk 4 

autologous viruses (p=0.0078, Fig. 1C, Table S2). Thus, while 3BNC117 infusion 

selected for 3BNC117-resistant HIV-1 variants, neutralizing antibody responses 

continued to develop against autologous viruses (18). 

 

To test for changes in heterologous neutralizing activity following 3BNC117 treatment, 

we assayed patients’ d0 and wk 24 IgG against a panel of tier 1 (n=1) and tier 2 (n=12) 

HIV-1 pseudoviruses that included globally circulating HIV-1 strains (19) (Fig. 2, Table 
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S1, S3, Table S4). Neutralizing activity was compared between the two time points by 

measuring the area under the neutralization curve for subjects’ isolated IgG against each 

virus (AUC) (Table S4B). 15 subjects that received 3BNC117 were not on anti-retroviral 

therapy (ART) and had starting viral loads from 640 - 53,470 copies/ml (Table S1A). 

Paired control IgGs were obtained from 36 viremic individuals, who did not receive 

3BNC117 and had starting viral loads ranging from 150 – 303,200 copies/ml (Fig. 2, 

Table S1B).  

 

During a 6-month observation period, control individuals’ neutralizing activity showed 

no consistent improvement in either breadth or potency (Fig. 2A and B, Fig. S1A, S2, 

Table S4, S5) (4, 20). In contrast, all but one of the 15 viremic individuals infused with 

3BNC117 showed increased breadth and/or potency against the pseudovirus panel at wk 

24 (p=7.1 x 10-7, Fig. 2A, S1B, S2, Table S4, S5, S6). The absolute change in 

neutralizing activity varied between viruses and individuals, ranging from small effects to 

dramatic increases (Fig. 2C, Table S1, S4, S5, S6). Significant differences were also 

evident between treated and control groups regardless whether sera from all individuals 

were considered in aggregate, or examined against individual viruses (p=1.9 x 10-9, Fig. 

2B, D).  

 

In addition to viremic subjects, we examined 12 individuals that received 3BNC117 

while on ART, with no detectable or low-level viremia (<20 - 100 copies/ml). In 
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comparison to viremic subjects, the increase in heterologous neutralizing activity was less 

pronounced in ART-treated individuals (p=0.037, Fig. 2A, B, and D, S1B, S2, Table S4, 

S5). 

 

The observed improvement in neutralizing activity could not be explained by 

confounding factors such as differences in initial viral load and CD4+ T cell levels (Fig. 

S3, Table S1, S7). Moreover, we found no correlation between d0 neutralizing activity 

and neutralization improvement (Fig. S4). A comparison of the pattern of neutralization 

increase with 3BNC117’s neutralization profile ruled out that remaining antibody is 

responsible for the effect (Fig. S5, Table S8). We conclude that 3BNC117 enhances host 

immunity to heterologous tier 2 HIV-1 viruses irrespective of initial neutralization 

breadth and potency. 

 

To examine the effects of 3BNC117 immunotherapy on the plasma viral population of 

treated individuals, we performed single genome sequencing (SGS) of over 1,000 

plasma-derived gp160 env genes (gp160) before (d0) and 4 (6), 12, or 24 weeks (wks) 

after infusion (Fig. 3A, B and S6, Table S9). With the exception of two individuals who 

were sexual partners, all other volunteers had epidemiologically unrelated infections (Fig. 

3A). On d0, env sequences from subjects 2A1, 2A3, and 2C4 comprised multiple 

lineages, which was reflected in a multimodal distribution of pairwise diversity 

measurements from these individuals (Fig. 3B, S6). Analysis of env sequences from 
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subsequent time points revealed significant shifts in both nucleotide (6 out of 9 

individuals, Fig. 3B) and amino acid sequence diversity (7 out of 9 individuals, Fig. S6). 

Consistent with the observation that env diversity is associated with neutralization 

breadth (21-23), there was a strong correlation between the initial level of neutralizing 

activity and the initial diversity of the circulating viral swarm (R2 = 0.92, Fig. 3C).   

 

We next evaluated viral sequence evolution in each of the 3BNC117-treated subjects over 

time. Shifts in the viral quasispecies were evident regardless of initial 3BNC117 

neutralization sensitivity and bNAb dose (Fig. 4, S7). However, the nature of these shifts 

differed depending on the subject (Fig. 4, S7-S9). For example, in subject 2A1, 15/27 d0 

sequences fell into a single clade marked “group A” (Fig. 4A, S8). Four weeks following 

3BNC117 infusion, group A viruses contracted (2/25 sequences) and group C viruses 

expanded (16/25). At wk 24, the viral quasispecies was primarily comprised of group B 

and D viruses (Fig. 4A, S8). This pattern of “clade shifting” was also seen in subjects 

2A3 and 2C4 (Fig. S7). Subjects with lower initial env diversities, such as 2E1, did not 

harbor distinct viral sublineages at d0 (Fig. 3A, B), but continued to accrue mutations 

some of which became fixed during the 24-week follow up (e.g. changes in V1/V2 in 

2E1, Fig. S9).  

 

To assess viral sequence changes following 3BNC117 infusion, we generated 

longitudinal logo plots depicting 3BNC117 contact residues (24, 25) for each subject 
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(Fig. 4B, S7, S10). While viruses from all nine subjects exhibited mutations within 

3BNC117 contact residues relative to the d0 consensus sequence, their number and 

position varied considerably as exemplified by subjects 2A1 and 2E1 (Fig. 4B, Fig. S7, 

S10). Using LASSIE (Longitudinal Antigenic Sequences and Sites from Intrahost 

Evolution)(26), we scanned the entire env protein sequence for sites selected within the 

24 wk time frame (selection cutoff ≥80% relative to d0 consensus) (Table S10). While 

selected sites were identified in all subjects, no consistent mutational pattern was 

observed (Table S10). These data suggest that 3BNC117 immunotherapy is associated 

with shifts in circulating quasispecies and a number of different env mutations, some of 

which persist even after the infused antibody levels drop below detection.  

 

To better understand the virus host-interactions that led to the development of enhanced 

heterologous neutralizing breadth, we performed neutralization assays on 63 

pseudoviruses expressing the gp160s found in the circulation on d0, wk 4, 12 and 24 

from 5 individuals (Fig. 4, S7, Table S11). The pseudoviruses were tested for sensitivity 

to the corresponding individual’s IgG obtained on d0 and wk 24. In all cases, we were 

able to identify d0 or wk 4 viruses that exhibited greater neutralization sensitivity to wk 

24 IgG compared to d0 IgG (Fig. 4, Fig. S7, Table S11). For example, all 2A1 and 2E1 

viruses were 3BNC117 sensitive and exhibited a wk 24/d0 fold change of 1.7 and 4.8 in 

IgG IC50 respectively (Fig. 4). On the other hand, all 2C4 viruses were 3BNC117-

resistant (mean IC50: >20 μg/ml), yet they were 5.8-fold more sensitive to wk 24 IgG 
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versus d0 IgG (Fig. S7). In conclusion, viremic individuals receiving 3BNC117 produced 

antibodies to autologous viruses that were both sensitive and resistant to 3BNC117.   

 

While exceptional broadly neutralizing antibodies to HIV-1 develop only sporadically in 

a fraction of infected individuals, most HIV-1 infected individuals develop some level of 

neutralization breadth (1-4). Here we show that 3BNC117 immunotherapy accelerates 

this process. This boost in heterologous breadth occurs irrespective of demographic, 

virologic, or dosage factors and was associated with both transient and lasting changes to 

the viral quasi-species. Of note, neutralization improvements observed were modest in 

most individuals, potentially owing to the transient nature of therapy with a single 

antibody as well as the short timeframe of observation. 

 

Although the effect of 3BNC117 on neutralizing responses to heterologous HIV-1 viruses 

may seem surprising, anti-HIV-1 antibodies have been associated with enhanced 

immunity in infants born to HIV-1-infected mothers that have circulating anti-HIV-1 

antibodies and macaques treated with monoclonal antibodies or neutralizing serum (27-

29). 

 

How passively administered antibodies to HIV-1 accelerate the emergence of bNAbs is 

not completely understood. One possibility is that 3BNC117 infusion selected for viral 
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variants with altered antigenic properties, which in turn stimulated new B cell lineages. 

(21-23, 30-32). A second possibility is that immune complexes formed by 3BNC117 and 

circulating viruses act as potent immunogens, a phenomenon that is believed to be 

responsible for the enhanced CD8+ T cell immunity to tumor antigens in individuals 

receiving monoclonal antibody based immunotherapy (33, 34). 

 

Irrespective of the mechanism(s), the enhanced antibody response found in individuals 

receiving 3BNC117 therapy indicates that immunotherapy boosts host immunity to HIV-

1. Moreover, the finding that antibody responses to heterologous tier 2 viruses develop in 

nearly all 3BNC117-treated individuals suggests that host genetics or a specific viral 

envelope sequence do not limit the development of neutralizing antibodies to HIV-1.  
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Section 5.5 - Figures 

 

 

Figure 5-1 Virus sensitivity to 3BNC117 and autologous antibody responses 

A. Graph displays kinetics of 3BNC117 antibody decay in HIV-1-infected individuals as 
determined by a validated anti-idiotype ELISA (16). Each sample measured in duplicates. 
Graphs show the mean antibody concentration of all patients infused for each of the 
indicated dose groups (n=3 (1 mg/kg), 3 (3 mg/kg), 8 (10 mg/kg), 13 (30 mg/kg)). Red 
arrows indicate the timepoints of IgG purification. B. Autologous virus sensitivity to 
3BNC117 before (day 0, grey) and 4 wks (black) after 3BNC117 infusion. Y-axis shows 
IC50s for 3BNC117 on viral culture supernatants from PBMCs determined by TZM.bl 
assay. Neutralization assays performed in duplicates. C. Graph shows the AUC of the 
neutralization curves of purified IgGs obtained from sera on day 0 (orange) or wk 24 
(green) against day 0 (left panel) or wk 4 (right panel) autologous viruses. Neutralization 
assays performed in duplicates.  p-values determined by Wilcoxon signed-rank test. 
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Figure 5-2 Heterologous antibody responses 

A. Graph shows the difference in overall AUC (mean AUC change) per individual in 
TZM.bl assays against 13 heterologous viruses (see 2D) for day 0 vs. wk 24 IgG obtained 
from 36 untreated viremic controls, 15 viremic individuals infused with 3BNC117, and 
12 ART-treated individuals receiving 3BNC117 infusion (16). Neutralization assays 
performed in duplicates. p-values determined by unpaired Wilcoxon rank-sum test. B. 
Graph shows the aggregated differences in AUC between d0 and wk 24 IgG assayed by 
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TZM.bl for all viruses and all individuals. Each dot represents a single AUC difference 
for a single virus from one individual displayed in A. p-values determined using 
generalized estimating equations (35). C. Graph shows 3BNC117 antibody levels and 
TZM.bl neutralization titer against tier 2 strain Q769.d22 in subject 2A3 D. Mean AUCs 
of IgGs of all individuals at d0 (grey) and wk 24 (color of respective group) for each 
HIV-1 pseudovirus tested. Changes in neutralization of viremic control individuals 
without 3BNC117 infusion are shown in yellow (left). Change in neutralization of 
3BNC117-treated individuals shown in dark (off ART, middle) and light blue (on ART, 
right). p-values determined using unpaired Wilcoxon test (rank-sum test). Red stars 
indicate significant p-values after Bonferroni-correction (threshold p < 0.0038). 
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Figure 5-3 HIV-1 quasispecies diversity before and after 3BNC117 infusion 

A. Maximum likelihood phylogenetic tree of single genome-derived env sequences from 
d0 plasma, before therapy with 3BNC117 (Table S9). Asterisks indicate bootstrap values 
of 100%. Individual viral sequences are color coded as indicated. B. Scatter plots 
depicting pairwise nucleotide sequence diversity of plasma env sequences on d0, and wk 
4 (2E5, wk 6), 12 and 24 after infusion. Each dot represents the pairwise genetic 
difference between two sequences at a given timepoint. Colored bars indicate median 
diversity, while black bars indicates the interquartile range. P-values were determined 
using a two-sample U-statistic based Z-test(36). C. Graph showing the relationship 
between d0 mean heterologous neutralizing AUC against a panel of tier 1 (n=1) and tier 2 
(n=12) viruses (abscissa) and the median pairwise nucleotide diversity (ordinate).  

  



 251

 

 

Figure 5-4 Antibody responses to the evolving viral quasispecies 

A. Maximum-likelihood phylogenetic trees of single genome-derived env gene sequences 
from subjects 2A1 and 2E1 sampled on d0 and wk 4, 12, and 24 after 3BNC117 infusion 
(left). Clades with bootstrap support ≥ 70% are indicated by a black asterisk and are 
arbitrarily named groups A-D in case of subject 2A1. Bar graphs (middle) indicate the 
timepoints from which sequences in the tree are derived. Heat maps (right) show the 
3BNC117 IC50, d0 IgG IC50 and wk 24 IgG IC50 values against autologous pseudoviruses 
using envs as indicated by colored stars. Neutralization assays performed in duplicates.  
B. Sequence logo plots illustrating longitudinal amino acid changes in and around known 
3BNC117-contact residues (24, 25) in subject 2A1 and 2E1. White boxes indicate that 
sequence matches to the d0 consensus, grey boxes indicate gaps in alignment. Colors 
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indicate basic (dark blue) and acidic (red) residues and a turquoise “O” is used instead of 
“N” to indicate a potential N-glycosylation site. Logo plots were generated using 
LASSIE (26). + indicate 3BNC117 contact residues confirmed by two crystal structures 
(24, 25) 
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Section 6.1 – HIV-1 5’ leader sequence evolution during infection 

 

Cytotoxic T lymphocyte responses against 5’ leader peptides 

 

 We recently demonstrated that the SIVmac766 5’ leader sequence, despite its 

alternative designation as an “untranslated” region, expresses a T cell antigen (KA9). 

This finding stemmed from the observation of viral escape mutations within the 5’ 

leaders of SIVmac strains sequenced longitudinally during infection. To test if similar 

patterns of sequence evolution and peptide expression occurred during HIV-1 infection, I 

studied a cohort of acutely infected human subjects who were followed for 1-4 years of 

infection. As described in Chapter 2, I used longitudinal single genome sequencing, ex 

vivo immunologic assays, and a mass spectrometry-based approach to identify six 

different 5’ leader peptides that were expressed during HIV-1 infection either in vivo or 

in vitro. These peptides were encoded by reading frames +1, +2, and +3 and overlapped 

with either the R element or the Ψ packaging signal. As discussed in Chapter 2, these 

findings suggest that HIV-1 translation initiation, which has been a controversial topic 

within the field, is mediated through cap-dependent ribosomal scanning (1-5). Moreover, 

5’ leader encoded peptides can be classified as viral Defective Ribosomal Products, or 

DRiPs. DRiPs are a class of T cell epitopes that are rapidly presented in major 

histocompatibility (MHC) complexes following translation and may play an important 

role in early immune surveillance of invading pathogens (6-9).  
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Due to some constraints of our initial analysis, future studies will be needed to 

characterize the extent of 5’ leader DRiP expression during HIV-1 infection. A major 

limitation of our study was the method we employed to discover 5’ leader DRiPs. By 

testing for virus escape mutations in longitudinal sequence datasets, we only detected 

DRiPs that were bound to the human leukocyte antigen (HLA) class I alleles expressed 

by the infected individual. To address this problem, we could implement two 

complementary approaches; we could 1) screen for 5’ leader sequence evolution in a 

large, diverse acute infection cohort and 2) apply the mass spectrometry approach 

introduced in Chapter 2 in cell lines and donor cells that express diverse MHCs. The U.S. 

Army has recently conducted a trial called RV 217 in Africa and Thailand in which study 

volunteers who were at high risk for HIV-1 infection were screened twice weekly for 

seroconversion. If a study volunteer became infected, s/he was sampled twice weekly for 

four weeks and every three months thereafter (10). With over 112 subjects longitudinally 

sampled from acute infection, this cohort would be ideal for screening a large number of 

HIV-1 infected humans for 5’ leader responses. Our current 5’ leader PCR protocol 

requires two amplification reactions to obtain the entire 5’ leader sequence. To make this 

process more high throughput, we could implement a 5’ Rapid Amplification of cDNA 

Ends (RACE) protocol to amplify the entire 5’ leader sequence in a single PCR reaction 

(11). 5’ RACE and amplicon sequencing of samples taken at an acute time point and ~six 

months post-infection in RV217 subjects could then be used to test for sequence changes 

suggestive of CTL escape. This approach would not only assist in the identification of 

new subjects who mount 5’ leader T cell responses, it would also give an accurate 
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estimate of the frequency of these responses during typical HIV-1 infection. While this 

approach will increase the number of viruses and subjects tested, it may still be limited by 

the human leukocyte antigen (HLA) genotype expressed by the study subjects. Thus, in 

parallel, we could extend the application of mass spectrometry-based approaches for 

peptide identification to include many donors or cell lines that express diverse HLA 

genotypes (12). Using multiple donors would potentially allow for a more complete 

characterization of protein expression and subsequent MHC-complex presentation of 5’ 

leader peptides expressed by a particular virus (12). The combination of these two 

methods could give insight into the extent of 5’ leader DRiP expression and the diversity 

of 5’ leader ORFs among globally circulating HIV-1 strains. 

Because 5’ leader peptides represent a novel set of DRiPs, we hypothesized that 

they will be rapidly cell surface expressed in MHC complexes (8,9,13). One approach to 

test the kinetics of 5’ leader peptide expression could be through implementation of the 

rhesus cytomegalovirus (RhCMV) 68.1 vaccine platform. This vaccine vector is capable 

of eliciting T cell responses against ~7 MHC-E and MHC-class II epitopes per 100 amino 

acids of vaccine insert in an MHC class-I independent manner (14-16). T cells are very 

sensitive to peptide-MHC complexes (requiring fewer than 10 on the cell surface for 

activation), so RhCMV-vaccine-primed PBMCs could serve as a sensitive reagent to 

screen for peptide-MHC surface expression of their target antigen (17). In preliminary 

experiments, we generated three RhCMV 68.1 vaccine vectors – one encoding each 

forward reading frame of the SIVmac766 5’ leader – and vaccinated macaques with one 

or all three vectors.  PBMCs from each vaccinated macaque specifically reacted with 
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SIV-infected CD4+ T cells, demonstrating that 5’ leader peptides are expressed from all 

three forward reading frames and that these primed PBMCs could be used to monitor for 

cell-surface expression of 5’ leader DRiP-MHC complexes (Figure 6.1). Moving 

forward, we can use these vaccine-primed PBMCs to generate 5’ leader peptide-specific 

T cell lines that could be used in cytotoxicity and viral suppression assays (18-20). For 

comparison to canonical epitopes, we could run these same assays using PBMCs from 

macaques vaccinated using the RhCMV/gag, RhCMV/rtn (rev/tat/nef), or RhCMV/env 

(21). Finally, we will be using these 5’leader-RhCMV vectors in a vaccine efficacy trial 

to test whether macaques vaccinated against 5’ leader DRiPs can clear newly acquired 

SIV infection (16,22). 

 If 5’ leader DRiP vaccination proves effective in the rhesus-SIV model system, 

the next step will be identifying conserved vaccine targets in globally circulating HIV-1 

strains. While the HIV-1 5’ leader RNA sequence and structure are heavily conserved, 

the open reading frames (ORFs) are not (Fischer, W., Kreider, E., Shaw, G., Korber, B., 

unpublished). Insertions and deletions are common within the 5’ leader and sometimes 

clade-specific. For instance, ~61% of Subtype A viruses encode a single nucleotide 

deletion in the Tat binding bulge of TAR (23). Further, in Chapter 2 I reported that 5’ 

leader CTL escape mutations included start site mutations, nonsense mutations, and 

insertions/deletions. Despite this heterogeneity, we have identified 12 conserved regions 

in the HIV-1 5’ leader that could serve as vaccine targets (Fischer, W., Korber, B., 

unpublished). These 12 regions, which are comprised of ~140 amino acids, could be used 
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to generate a 5’ leader vaccine insert that, if immunogenic and expressed by HIV-1 

strains, may elicit cross-subtype immune responses.  

 While the data I have presented thus far demonstrate that the HIV-1 5’ leader 

expresses peptides, they do not address an important question: do 5’ leader peptides 

perform a function? T cell recognition of an influenza alternative reading frame was 

previously used to discover a novel influenza protein, PB1-F2. In vitro and in vivo studies 

of PB1-F2 revealed that this protein compromises mitochondrial function, signals 

apoptosis, and can modify pathogenesis of both the primary viral infection and secondary 

bacterial pneumonia (24-26). An interesting future study could be a comparison of viral 

dynamics, T cell responses, and pathology in Mamu-B*29+ and Mamu-B*29- rhesus 

macaques infected with either the wildtype SIVmac766 clone or the 5’L-KA9 start site 

mutant (KA9 is a Mamu-B*29-restricted epitope). While I am unable to predict the 

outcome of such an experiment, even a negative result would be informative since it 

would indicate that KA9 expression is dispensable for viral replication and pathogenesis.   

 

Overextension mutation and expression of 5’ leader DRiPs  

 

 Longitudinal analysis of HIV-1 5’ leaders has revealed multiple patterns of 

sequence evolution that did not fall in cognate CTL epitopes. One region that consistently 

exhibited mutation among different subjects was a 4-nt motif called the primer 

overextension sequence (POS) (27). In Chapter 3, I used longitudinal single genome 



 259

sequencing, an in vitro extension assay, and ex vivo immunologic assays to provide 

evidence for two mechanisms that underlie this sequence variation. The first was reverse 

transcriptase (RT) overextension, a phenomenon in which RT replicates 22 nucleotides 

(nts) of tRNA sequence instead of 18, incorporating an additional TTGA downstream of 

the primer binding site (PBS) (27,28). Embedded in these four nts is a one-off AUG 

(UUGA) that lies upstream of a 5’ leader open reading frame (ORF) that I described in 

Chapter 2. A second pattern of POS mutation was the mutation of this one-off AUG 

during immune escape from a 5’ leader-directed T cell response. Collectively, these two 

findings demonstrated that processes like RT overextension can restore one-off AUGs in 

the 5’ leader that are deleted during virus immune escape.  

While the data presented in Chapter 3 support the conclusion that RT 

overextension incorporates TTGA into the POS, the mechanism by which this mutation 

occurs remains unclear. A recent study of the simian immunodeficiency virus clone  

SIVmac239 has sparked a debate surrounding this topic (29-31). SIVmac239 differs from 

the host tRNA(Lys,3) at one position within the PBS and this site is rapidly mutated to 

match the tRNA upon viral passage in vitro and in vivo (30). Fennessey and colleagues 

argued that this base pair mismatch within the PBS conferred a fitness cost to the virus 

and invoked DNA mismatch repair mechanisms to explain the rapid rate with which this 

mutation is reverted (30,32). Berkhout and colleagues, however, contested this 

interpretation, arguing that there is no fitness impact of a single base pair mismatch 

within the PBS and that the rapid reversion is likely due to the preferential incorporation 

of the tRNA(Lys,3) into assembling virions (31). Further, they argued that cell division 



 260

likely occurs too soon after proviral integration for mismatch repair to take place (31,33). 

However, mismatch repair of a similar mutation in MLV infection has been detected 

(32). To resolve this conflict, one would need to test frequency of PBS reversion during 

infection of CD4+ T cells that lacked mismatch repair mechanisms. While one could 

employ transformed cell lines or CRISPR technology to generate these mismatch repair-

deficient CD4+ T cells, there is a hereditary illness called Lynch Syndrome that is 

associated with mutations in mismatch repair genes (34).  Thus, one could compare the 

relative rates of PBS (or POS) reversion in CD4+ T cells from either healthy donors or 

donors with Lynch syndrome to determine the contribution of mismatch repair to this 

phenomenon. 

No matter how these mutations are incorporated, the process of one-off AUG 

incorporation during overextension has implications for 5’ leader peptide vaccine 

development. As presented in Chapter 2, viral escape from 5’ leader CTL responses 

differs from that seen in the canonical proteome; we have observed mutations in one-off 

AUGs, nonsense mutations, and even frameshift mutations. This observation raises an 

obvious question – why would the 5’ leader encode any one-off AUGs? One possible 

explanation is that the 5’ leader may require some one-off AUGs based on sequence 

constraints of the underlying functional RNA elements (35,36). Another possibility is that 

certain processes, like overextension, may restore these one-off AUGs as soon as they are 

deleted. This second possibility is particularly relevant to the development 5’ leader 

DRiP-based vaccine interventions – if the virus cannot eliminate a one-off AUG, then an 

intervention targeting the downstream peptide may be effective. Future studies will need 
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to investigate whether other processes maintain or incorporate one-off AUGs in the 5’ 

leader. 

In summary, the results presented in Section 6.1 provide insight into HIV-1 5’ 

leader peptide expression and immune recognition. Using HIV-1 sequence evolution as 

an indicator of underlying biology, I was able to identify peptide expression and immune 

recognition of five 5’ leader peptides and understand why certain translation initiation 

codons for these peptides are maintained in the 5’ leader. These findings have 

implications for future interventions that could target this region of the genome and 

deepen our understanding of retrovirus biology.   
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Section 6.2 – Env evolution during bnAb development 

 

Env evolution in natural infection 

 

The recent identification of over a hundred broadly neutralizing antibodies 

(bnAbs) that can potently inhibit diverse HIV-1 strains has led to general interest in their 

use in the prevention of HIV-1 infection (37-39). Eliciting these antibodies with a 

vaccine, however, has been challenging (40). One approach to understanding bnAb 

development has been the study of virus-antibody co-evolution in naturally infected 

human subjects who develop these responses (37,41-46). In Chapter 4, I presented one 

such study of a human subject called CH0848. By combining longitudinal plasma viral 

single genome sequencing, monoclonal antibody isolation, binding ELISAs, and 

neutralization assays, we were able to map the virus and antibody evolutionary pathways 

during CH0848 infection, which ultimately resulted in the development of the potent V3-

glycan bnAb, DH270.  

A major caveat to our interpretation of these data is that this report is a case study 

of only one human subject. Moreover, we only characterized three CH0848 neutralizing 

antibody lineages (DH270/DH272/DH475) out of a diverse, polyclonal response. This 

shortcoming is exemplified by the discrepancy between neutralization breadth of 

monoclonal DH270.6 and polyclonal CH0848 plasma – on the same 16 virus 

neutralization panel, CH0848 polyclonal plasma neutralized ~88% of viruses whereas the 
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monoclonal bnAb DH270.6 only neutralized 69% (Haynes, B., unpublished). Thus, 

understanding the complete development of heterologous neutralization breadth in 

CH0848 will require future studies.  

Despite this caveat, we were able to identify at least three major evolutionary 

events along the path to DH270 development that may inform vaccine immunogen 

design: a ten-amino acid (aa) V1 deletion in Env one year post-infection, a mutation 

within an AID coldspot during DH270 affinity maturation, and diversification of V1 

length and V3-glycan bnAb contact residues and signatures. We proposed a four-stage 

vaccine regimen in Chapter 4 that could theoretically recapitulate these events and will be 

tested in non-human primate trials in the near future. 

Beyond the identification of candidate vaccine immunogens, analysis of CH0848 

Env evolution revealed that the plasma virus population split into two persistent viral 

lineages starting week 186 post-infection (also the first time point that DH270 was 

detected). This finding, which was briefly covered in Chapter 4, is shown again in Figure 

6.2. Analysis of the DH270 bnAb contact residues and neutralization phenotype of these 

major (X, cross, and triangle) and minor (O) persistent lineages revealed differences. 

Minor lineage Envs encoded a known V3-glycan bnAb resistance mutation at the base of 

V3 that shifted a potential N-linked glycosylation (PNG) site from HXB2 position 332 to 

334 and were resistant to DH270 neutralization. Major lineage Envs, however, retained 

the PNG at N332 and exhibited a spectrum of DH270 binding and neutralization 

phenotypes. Surprisingly, a subset of major lineage Envs (indicated with an X in Figure 

6.2) remained neutralization sensitive to contemporaneous DH270 mAbs. I hypothesize 
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that these DH270 neutralization-sensitive Envs were important for late stages of DH270 

development – without sustained antigenic stimulation, DH270 may have been arrested at 

an earlier stage of maturation and never developed into a cross-reactive bnAb.  

Since the initial description of this pattern of lineage divergence in CH0848, we 

have evaluated Env evolution in other subjects who do and do not develop broadly cross-

reactive plasma neutralization. We can detect multiple persistent viral lineages in all 

subjects who develop bnAbs (N=4), but cannot in subjects who do not develop bnAbs 

(N=2, Kreider, E., Learn, G., Li, Y., Hahn, B., unpublished). Thus, while these data are 

preliminary, it appears that a viral correlate of neutralization breadth development may be 

the establishment and persistence of multiple, genetically distinct viral lineages. Future 

studies will be needed to increase the number of subjects evaluated for this quasispecies 

structure and to test whether these distinct viral lineages have different phenotypic 

properties as was observed in CH0848. 

Finally, comparison of virus evolution among human subjects, as I have done 

above, is confounded by many factors including genetic differences between transmitted 

founder viruses, the number of transmitted founder virus, viral load setpoint, frequency of 

sampling, and duration of follow up (41-47). To better understand the viral correlates of 

bnAb development, a more controlled, reproducible experimental system for virus-

antibody co-evolution studies is needed. A recent advancement in simian/human 

immunodeficiency virus (SHIV) design may be useful in controlling for some of these 

differences. SHIVs are chimeric viruses that encode an HIV-1 env within a SIV backbone 

and can cause persistent infection in rhesus macaques that recapitulates many of the 
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pathogenic features of HIV-1 infection (48,49). Li and colleagues have recently 

developed a method that has permitted the rapid cloning of SHIVs encoding primary, 

unadapted HIV-1 envs (48), including transmitted founder envs like those from CH0848 

and CH0505 (Li, H., Shaw, G., unpublished). Interestingly, preliminary studies have 

shown that early virus and antibody evolution over the first year of SHIV.CH0505.TF 

infection in rhesus macaques recapitulates events that occurred within the human subject 

CH0505 (Li, H., Williams, W., Haynes, B., Shaw, G., unpublished).  Thus, while this 

experimental model is still being developed, it will likely be an invaluable tool for 

understanding virus-antibody coevolution in the future. 

 

Virus evolution during bnAb immunotherapy 

 

In the last two years, multiple bnAbs have entered phase I human clinical trials 

for both safety and efficacy testing (50-53). A recent trial using the CD4 binding site 

(CD4bs) bnAb 3BNC117 found that viremic subjects experienced a 0.8-2.5 log drop in 

viral load upon bnAb infusion that was sustained for ~1 month (50). Rebounding viruses 

from these treated individuals demonstrated increased 3BNC117 neutralization resistance 

after 1-6 months as compared to pre-treatment (50). In order to understand the potential 

effects of bnAb therapy on viral populations and/or neutralizing antibody responses, we 

performed a follow-up longitudinal study of these 3BNC117-treated subjects, which was 

presented in Chapter 5. Subjects were followed for 6 months after infusion and assessed 
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for both virus evolution and changes in plasma neutralization. Using a combination of 

longitudinal single genome sequencing and neutralization assays, we demonstrated that 

3BNC117-treated subjects exhibited an increase in heterologous neutralization breadth as 

compared to untreated controls. Concomitantly, we observed measurable shifts within the 

virus population using phylogenetic and pairwise sequence comparisons. Interestingly, 

both increase in heterologous neutralization and virus population shifts were observed 

regardless of initial 3BNC117 sensitivity.  

While 3BNC117 infusion uniformly decreased viral loads, selected for increase 

bnAb resistance, and boosted host immune responses, the associated changes within the 

viral quasispecies were not consistent across subjects. As described in Chapter 5, certain 

subjects exhibited a pattern of “clade shifting,” whereas others demonstrated mutational 

selection within the 3BNC117 Env contact residues.  In hindsight, this pattern may have 

been expected based on a rhesus macaque trial in which SHIV-infected macaques were 

treated with either 3BNC117 or a V3-glycan bnAb 10-1074 (54). When the rebound 

viruses were sequenced in this macaque trial and assessed for changes in bnAb contact 

residues, no mutations were observed in rebound viruses from the 3BNC117-treated 

macaques. Viruses from 10-1074-treated macaques, however, all harbored deletions of 

the potential N-linked glycosylation (PNG) site at HXB2 position 332, a known 10-1074 

resistance mutation (54,55). 10-1074 has since been infused into viremic HIV-infected 

human subjects in a Phase I human clinical trial. Similar to sequence evolution in the 

macaques, nearly 100% of rebound viruses during this trial exhibited the deletion of the 

PNG site at N332 (Schoofs, T., Kreider, E., Hahn, B., Nussenzweig, M., unpublished).  
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This difference in virus escape patterns in treatment with a CD4 binding site 

antibody and a V3-glycan dependent antibody may be due to the nature of the targeted 

epitope. CD4 binding site antibodies engage the virus via the entry receptor contact 

residues – if these residues were substantially mutated, the virus may no longer be able to 

enter target cells (56). Shifts and deletions in the PNG site at HXB2 position 332, 

however, are commonly seen during autologous neutralizing antibody escape (41,57,58). 

Futher, because mutations that delete the PNG at N332 often abrogate 10-1074 binding, it 

will be interesting to see if subjects treated with 10-1074 also exhibit a boost in 

heterologous neutralization breadth.  

Finally, while this study had an interesting and somewhat unexpected outcome, it 

will require follow-up. Out of the 36 untreated and 15 treated viremic subjects within this 

trial, we focused our virus sequence analysis on nine individuals who demonstrated a 

range of 1) viral load setpoints, 2) years of HIV-infection, 3) initial 3BNC117 

neutralization sensitivities, and 4) infusion doses (50). Controlling for all of these 

variables while accounting for virus evolution would be impossible and precludes our 

ability to make generalizable conclusions. Further, we did not have virus sequencing on 

matched, untreated controls. Thus, while we interpreted that 3BNC117 infusion was 

followed by shifts in the virus population, we cannot conclude whether these shifts are 

larger than that seen in untreated controls.  
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In Chapters 4 and 5, I evaluated virus evolution during the development of 

heterologous neutralization breadth in two settings – natural infection and bnAb 

immunotherapy. Although these two settings are quite different, common themes 

emerged from our analysis. First, heterologous breadth correlated with the presence of 

cooperating neutralizing antibody lineages (42). In CH0848, these lineages were DH272 

and DH475. In the 3BNC117 trial, the cooperating antibody was the infused antibody, 

3BNC117 itself. A second common theme was the evolution of viral diversity during 

bnAb development. As discussed previously, we have observed multiple persistent viral 

lineages in longitudinally followed subjects who develop bnAbs. Interestingly, the 

subjects from the 3BNC117 trial with the broadest initial heterologous neutralization 

(2A1, 2A3, and 2C4) all harbored viral quasispeices with complex clades structures. 

Future studies will be needed to increase the number of subjects evaluated for this 

phenomenon and understand what role antigenic diversity plays in bnAb development.  

  

In conclusion, longitudinal single genome sequencing of plasma HIV-1 can be 

used to discover novel aspects of virus biology and host-pathogen interactions. Future 

studies should not only continue to build on these findings, hopefully revealing new 

aspects of virus and host biology, but also translate these discoveries into novel HIV 

vaccines and therapeutics. 
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Section 6.4 – Figures  

 

Figure 6-1 RhCMV68.1-5’L vaccination of five macaques 

Reading frame +1, +2, and +3 of the SIVmac766 5’ leader were each incorporated into a 
separate RhCMV68.1 vaccine vector. Macaques were immunized against RF+1, RF+2, 
RF+3, or all three. PBMCs from vaccinated macaques were then incubated with 
autologous T cells (taken prior to vaccination) that were either infected or not infected 
with SIVmac766. T cell recognition of infected cells was assayed with interferon-γ and 
TNF-α intracellular cytokine staining. SIV-specific T cell responses were elicited in 
macaques immunized against RF+1, RF+2, RF+3, or all three.   
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Figure 6-2 Multiple viral lineages persisted during bnAb development  

1,223 Env protein sequences translated from single genome sequences were used to 
generate a Maximum Likelihood phylogenetic tree rooted on the transmitted founder 
sequence. Sequences sampled prior to the development of Tier 2 heterologous breadth 
(week 186) are shaded in grey and sequences from after week 186 are highlighted. By 
week 186, the quasispecies resolved into at least two distinct lineages with different 
DH270 binding and neutralization profiles. Envs indicated with a circle simultaneously 
lack the potential N-linked glycosylation (PNG) site (NXS/T) at HXB2 position 301 and 
shift the PNG site at 332 to 334. Loss of critical V3 glycan bnAb-binding amino acids 
conferred complete resistance to DH270 lineage Abs, and by week 246 this virus was 
undetected.  Binding and neutralization assays revealed that certain variants escape 
DH270 lineage pressure by abrogating antibody binding (circle and triangle). Others 
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maintain binding while disrupting neutralization (cross) or maintain both binding and 
neutralization (X). 
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