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prove that, for a class of existing privacy--preserving mechanism, it is possible to effectively relax privacy
constraints gradually. Additionally, we provide a privacy--aware mechanism for time--varying private data,
where we wish to protect only the current value of it. Finally, in the context of location--based services, we
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These contributions increase the applicability of differential privacy and set future directions for more flexible
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ABSTRACT

PRIVACY IN MULTI–AGENT AND DYNAMICAL SYSTEMS

Fragkiskos Koufogiannis

George J. Pappas

The use of private data is pivotal for numerous services including location–based ones,

collaborative recommender systems, and social networks. Despite the utility these services

provide, the usage of private data raises privacy concerns to their owners. Noise–injecting

techniques, such as differential privacy, address these concerns by adding artificial noise

such that an adversary with access to the published response cannot confidently infer the

private data. Particularly, in multi–agent and dynamical environments, privacy–preserving

techniques need to be expressive enough to capture time–varying privacy needs, multiple

data owners, and multiple data users. Current work in differential privacy assumes that

a single response gets published and a single predefined privacy guarantee is provided.

This work relaxes these assumptions by providing several problem formulations and their

approaches. In the setting of a social network, a data owner has different privacy needs

against different users. We design a coalition–free privacy–preserving mechanism that allows

a data owner to diffuse their private data over a network. We also formulate the problem

of multiple data owners that provide their data to multiple data users. Also, for time–

varying privacy needs, we prove that, for a class of existing privacy–preserving mechanism,

it is possible to effectively relax privacy constraints gradually. Additionally, we provide

a privacy–aware mechanism for time–varying private data, where we wish to protect only

the current value of it. Finally, in the context of location–based services, we provide a

mechanism where the strength of the privacy guarantees varies with the local population

density. These contributions increase the applicability of differential privacy and set future

directions for more flexible and expressive privacy guarantees.
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CHAPTER 1: Introduction

In the Internet of Things (IoT) era, a plethora of applications provide information to the

end users as a service. Examples include traffic maps that assist users with navigating

congested roads and collaborative recommender systems that suggest buyers potentially

interesting products. Despite the utility such services provide, these applications rely on

gathering, aggregating, and processing personal data from individuals. For example, traffic

maps are typically constructed from users that report their current position and speed, and

product are suggested based on the buying habits of previous buyers with similar buying

history. This usage of personal data has raised privacy concerns. These concerns lead to

the need for strong and formal privacy guarantees for the data owners while still enabling

services that rely on accessing private data. In fact, privacy is already sought after∗ and

people oppose when their privacy is blatantly violated†.

Providing privacy is a nontrivial task and, to this end, a variety of approaches that formalize

the problem has been proposed. Generally, the problem of protecting privacy is formulated

as follows. Given a private input, we wish to evaluate a function and publicly release

its output such that the published output does not reveal sensitive parts of the private

input. The unifying idea of privacy–preserving approaches is injecting artificial noise or

encoding/perturbing the private data such that the system is resilient to inference attacks by

a curious adversary. Specifically, an adversary that observes the output of the system should

not be able to accurately infer the original private data. Some of these privacy–preserving

approaches, which will be discussed in more detail later, include differential privacy —which

is employed in this work—, k–anonymity, information–theoretic approaches, game–theoretic

ones, unobervability notions, and other.

In most of these approaches the strength of the privacy guarantees can be quantified and,

∗Senator requests strong privacy guarantees: https://www.wyden.senate.gov/news/press-
releases/wyden-pushes-for-stronger-security-in-collection-of-personal-information

†People boycott clothing company for employing RFIDs for tracking: http://www.boycottbenetton.com/
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intuitively, a privacy–utility tradeoff emerges: strong privacy guarantees result in less utility

of the public output. In differential privacy, this tradeoff is termed privacy level. A impor-

tant limitation that we identify in the literature and explore in this work is the underlying

assumption of a single, fixed privacy level. Specifically, prior work assumes that the privacy

level is a designer’s choice and that the same output is shared with everyone. In practice,

individuals’ privacy needs may vary over time, while data owner re–evaluate their privacy

preferences. Additionally, these privacy needs also may also depend on the trust level of

the end user or may depend on the private data itself. This work focuses on introducing

problems and providing approaches where composite privacy guarantees are needed and,

thus, aiming to broaden the applicability of differential privacy to IoT applications.

1.1. Related Work

Privacy has been identified as an important challenge in developing intelligent infrastructure

as pointed out in surveys such as Atzori et al. (2010) and white papers such as Dwork and

Pappas (2017).

Preserving privacy is not straightforward. This has become apparent when seemingly

privacy–preserving approaches led to significant leaks of privacy. In the infamous case

of the Netflix prize (Bennett et al. (2007)), Netflix released the database of users’ reviews

after scrubbing personal attributes from it and, thus, de–anonymizing it. Nonetheless, Na-

rayanan and Shmatikov (2006) managed to reconstruct the users’ identities after correlating

the released database with information available from IMDb. Furthermore, Acquisti and

Gross (2009) showed that although the Social Security Number (SSN) is deemed a personal

data, it can often be predicted from publicly available information. Moreover, Sweeney

(1997) provides another inference attack on de–anonymized medical records. The lessons

learned from this privacy breach were twofold. First, guaranteeing privacy is not trivial

and, secondly, unexpected side information can be catastrophic for privacy.

In the following, we summarize some privacy–preserving approaches that have been explo-

2



red in the literature. Sweeney (2002) introduced k–anonymity, where an individual should

be indistinguishable from k − 1 other individuals. A similar cloaking technique was ex-

plored by Hoh et al. (2007) and Hoh et al. (2008) for traffic monitoring. However, the

privacy guarantees provided are fragile when side information becomes available as sur-

veyed by Ohm (2009). Nonetheless, the strength of privacy guarantees is quantified by the

parameter k which is assumed to be a designer’s choice. Conceptually related to our work,

Speranzon and Bopardikar (2016) revisited k–anonymity and explored the evolution of the

privacy–preserving mechanism for varying parameter k. Interpreting privacy as unobserva-

bility, Pequito et al. (2014) and Fanti et al. (2017) provide privacy–preserving techniques

in networks of agents.

Another popular privacy–preserving approach is based on information–theoretic measures.

Serjantov and Danezis (2002) and Sankar et al. (2013b) propose adding artificial noise

such that the mutual information between private input and the public output is bounded.

This approach is especially appealing for smart grid applications where the private input is a

signal (Rial and Danezis (2011), Sankar et al. (2013a)). Information–theoretic quantities are

also used by Han et al. (2016) and Tanaka et al. (2017) to provide privacy. However, these

works typically assume a prior over the private data and provide privacy in expectation.

Therefore, rare but severe privacy leaks may still occur. Wang et al. (2016) show that

overcoming these limitations leads to notions similar to differential privacy.

Differential privacy was introduced by Dwork et al. (2006) and was initially tailored to ans-

wering queries on private databases. Differential privacy is formally explained in Section 2.

Intuitively, a mechanism is differentially private if small variations of the private input do

not change the output significantly. Specifically, the dependency of the probability distri-

bution of the published output on the private data should be bounded. Therefore, a curious

adversary cannot accurately infer the private data. The popularity of differential privacy

is attributed to its properties. For example, it degrades gracefully in the presence of arbi-

trary side information, its definition is versatile, and it can often be translated to concrete

3



application–specific guarantees. On a side note, differential privacy is becoming an industry

standard as companies including Google (Erlingsson et al. (2014)) and Apple‡ deploy it in

their products.

In the literature, differential privacy has been explored in combination with every imaginable

field. On the theoretical side, Dwork et al. (2006) defined differential privacy, provided the

Laplace and the Gaussian mechanism which are used as building blocks for more complicated

privacy–preserving mechanisms, and early versions of the composition theorems. Tighter

versions of the composition theorems were provided by Kairouz et al. (2017) for general

cases. Although relevant to this work, our results in Chapter 3 and Chapter 4 provide better

privacy for the cases considered than what composition theorems suggest. Furthermore,

several variations of differential privacy have been explored in the literature. For example,

Chatzikokolakis et al. (2013) provides a slight reformulation that is appealing for metric

spaces and is employed in this work. More recently, Dwork and Rothblum (2016) and

Mironov (2017) propose other variations of differential privacy. Although this work is not

using these definitions, the concepts are still applicable.

Constructing optimal differential private mechanisms is an important problem. The opti-

mality of the Laplace mechanism is established by Ghosh et al. (2012), Geng and Viswanath

(2014), and Wang et al. (2014). Hardt and Talwar (2010) provides asymptotic results for

linear queries and Kairouz et al. (2014) prove optimality results under the model of local

differential privacy. For our work, the optimality of the Laplace mechanism is utilized in

formulating the problems in Chapter 3 and Chapter 4. Additionally, we provide a novel

short proof of a result similar to the one by Geng and Viswanath (2014) and Wang et al.

(2014).

Closer to applications, existing work provides differentially private versions of existing al-

gorithms and functions. For example, Le Ny and Pappas (2014) build a private version of

filters for private input signals, Mo and Murray (2017), Huang et al. (2012), and Katewa

‡https://techcrunch.com/2016/06/14/differential-privacy/
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et al. (2015) provide private consensus algorithms that guarantee the privacy of the initial

states or the communication graph, Han et al. (2014), Hale and Egerstedty (2015), and

Huang et al. (2015) propose private optimization algorithms for the case that the objectives

or the constraints are private. For results of differential privacy on databases, machine le-

arning, and mechanism design, we refer the reader to the book by Dwork and Roth (2013).

The majority of our work is not bound to a specific application and, for example, the results

in Chapter 4 add flexibility to existing domain–specific results such as that by Erlingsson

et al. (2014).

A key quantity of differential privacy is the so–called privacy level which quantifies the

trade–off between the strength of the privacy guarantees and the utility of the published

response. The majority of literature work assumes a single privacy level that is a designer’s

choice. Works that deviate from this assumption include joint differential privacy introduced

by Hsu et al. (2016) and personalized/heterogeneous privacy introduced by Alaggan et al.

(2016) and Ebadi et al. (2015). These works seem more relevant to the problems explored in

Chapter 3 and Chapter 7. Also relevant to this work, methods for choosing an appropriate

privacy level have been proposed either before accessing the private data (Ghosh and Roth

(2015)) or, more generally, after accessing them (Ligett et al. (2017) builds on the results

presented here).

Finally, we mention that cryptographic techniques have been proposed as a means of pro-

viding privacy. Works such as those presented by Garcia and Jacobs (2010) and Shoukry

et al. (2016) leverage partial homomorphic encryption schemes such as the one introduced

by Paillier (1999) and handle only encrypted private data. Although these techniques do

not inject noise and, thus, do not suffer from utility degradation, they are computationally

expensive, are not robust against arbitrary side information, and are not very versatile. Im-

portantly, the aforementioned works as well as hardware variants of it such as Intel’s SGX

instruction set extension (Costan and Devadas (2016)) can be viewed as instances of secure

multiparty computation systems. As such, they guarantee that the algorithmic implemen-
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tation does not leak anything about the private data other than what the public output

already does. However, the output may already reveal too much private information. As

such, we view crypto–based approaches as orthogonal to privacy–preserving notions such

as differential privacy§.

1.2. Outline and Contributions

The unifying underlying idea of this work is to extend differential privacy and render it

more applicable for dynamical and multi–agent environments such as those found in IoT

applications. Specifically, instead of providing a single privacy guarantee, that of protecting

a private input given a public output, with a single privacy level, we explore cases where

the privacy level changes over time, varies across data users, or depends on the private data

itself. A brief description of each of these cases follows.

Diffusing Private Data

In Chapter 3, we introduce the problem of sharing private data with multiple users under

different privacy levels. For example, in a social network, a data owner has different privacy

needs against different users, i.e. friends are more trusted than strangers and, thus, less

privacy is needed. The problem does not decompose across users, since users may collude,

exchange information, and, thus, harm the privacy guarantees. In order to address this

challenge, we derive a privacy–preserving mechanism that enables private data to be diffused

over a network. In particular, each user receives a differentially private proxy of the owner’s

private data where coalitions of users and de–incentivized. We illustrate our mechanism

with two examples: one on synthetic data where the users share their GPS coordinates; and

one on a Facebook ego–network where a user shares her infection status. A journal version

§This distinction between security and privacy was pointed out in the seminal paper of differential
privacy by Dwork et al. (2006).
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of this work is found in Koufogiannis and Pappas (2017a).

Gradual Releasing Private Data

In Chapter 4, we introduce the problem of releasing private data under differential privacy

when the privacy level is subject to change over time. Existing work assumes that privacy

level is determined by the system designer as a fixed value before private data is released.

For certain applications, however, users may wish to relax the privacy level for subsequent

releases of the same data after either a re-evaluation of the privacy concerns or the need

for better accuracy. Specifically, given a database containing private data, we assume that

a response y1 that preserves ε1–differential privacy has already been published. Then, the

privacy level is relaxed to ε2, with ε2 > ε1, and we wish to publish a more accurate response

y2 while the joint response (y1, y2) preserves ε2–differential privacy. How much accuracy is

lost in the scenario of gradually releasing two responses y1 and y2 compared to the scenario

of releasing a single response that is ε2–differentially private? Our results consider the more

general case with multiple privacy level relaxations and show that there exists a composite

mechanism that achieves no loss in accuracy.

We consider the case in which the private data lies within Rn with an adjacency relation

induced by the `1-norm, and we initially focus on mechanisms that approximate identity

queries. We show that the same accuracy can be achieved in the case of gradual release

through a mechanism whose outputs can be described by a lazy Markov stochastic process.

This stochastic process has a closed form expression and can be efficiently sampled. Moreo-

ver, our results extend beyond identity queries to a more general family of privacy-preserving

mechanisms. To this end, we demonstrate the applicability of our tool to multiple scenarios

including Google’s project RAPPOR, trading of private data, and controlled transmission

of private data in a social network. Finally, we derive similar results for the approximated
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differential privacy. Koufogiannis et al. (2016) is a published version of this work.

Current State Privacy

In Chapter 5, we introduce the problem of protecting the privacy of time-varying sensitive

data using differential privacy. Contrary to prior work that considers fixed private data, we

wish to design a privacy-preserving mechanism that, at each time and given the observations

so far, keeps the current state of a dynamical system private. Our work protects dynamical

systems from being tracked by an adversary by providing differentially private guarantees.

Specifically, we propose a mechanism which adds artificial noise to (i) the input of the

system and (ii) the measurements which are then published. In particular, two scenarios

are considered: for a scalar dynamical system under ε–differential privacy, we derive a

mechanism that, at each time, publishes the most accurate approximation of the current

state while preserving privacy. Next, for a general linear system under (ε, δ)–differential

privacy, we propose a Gaussian–based privacy–preserving mechanism with a quadratic cost.

A version of this work is Koufogiannis and Pappas (2017b).

Location–dependent Privacy

In Chapter 6, we consider an application of differential privacy to individuals’ GPS positions.

Motivated by the need for different privacy levels in different areas —sufficient privacy

with less noise can be achieved in urban environments— we propose a generalization of

the privacy constraints where the privacy level ε is a function of the private data. Next,

we establish a connection between this extended notion of differential privacy and a partial

differential equation called the “eikonal equation”. Exploiting this connection, we propose an

algorithm for numerically computing privacy–preserving mechanisms by leveraging existing

optimized solvers. The result is demonstrated around the Philadelphia greater area. The
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work in this chapter was published in Koufogiannis and Pappas (2016a).

Multi–owner, Multi–user Privacy

In Chapter 7, we focus on designing differentially private mechanisms in a multi–owner

multi–user scenario. Specifically, we consider multiple data owners holding a piece of private

data and multiple users, each interested in a different function of the entire private data.

We formulate the problem of multi–owner multi–user privacy and explore some variations

of it. The problem formulation is a generalization of that in Chapter 3, however, the result

does not extend for this problem. We focus on owners possessing real–valued private data

and users seeking linear functions of this data. Within approximate differential privacy, we

propose a Gaussian-based mechanism and express the privacy constraints as constraints on

the covariance matrix. Then, we design the mechanism by relaxing these constraints to

semi-definite problem. We illustrate our approach in the setting of n agents, each acting

both as an data owners and data users. Our approach is numerically evaluated both in terms

of efficiency (how much noisier the responses are because of the multiple users) and in terms

of incentive to collaborate (how much more information users can gain by collaborating).

A conference paper version is Koufogiannis and Pappas (2016b).
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CHAPTER 2: Differential Privacy

Differential privacy was introduced by Dwork et al. (2006) and dictates that, whenever

private data is accessed, a noisy response is returned. The injected noise is designed to

ensure the following two things. First, an adversary that observes the noisy response cannot

confidently infer the original private data. Secondly, the noisy response can still be used

as a surrogate for the exact response without severe performance degradation. In order to

formally define differential privacy, we need the following ingredients:

• Let U be the space of private data. Private data can be databases, real numbers,

vectors, signals, etc. Also, let Y be the set of possible responses.

• Let A ⊆ U2 be a symmetric binary relation on the space of private data U called

adjacency relation. The adjacency relation is a designer’s choice and contains the

pairs of inputs that need to be rendered almost indistinguishable.

• Let Q be a randomized function, called mechanism, that maps private data u ∈ U to

a response y ∈ Y. Equivalently, mechanism Q can be viewed as a function that maps

inputs u to distributions over (a sufficiently rich σ–algebra of) Y.

• Let ε > 0 and δ ∈ [0, 1] be two parameters that capture the strength of the privacy

guarantees. Smaller values imply stronger privacy guarantees, while the special case

of δ = 0 is of particular importance.

2.1. Definition

The following formal definition introduces the conditions under which a mechanism is dif-

ferential private.

Definition 1 (Differential Privacy). Let U be a set of private data, A ⊆ U2 be an adjacency

relation and Y be the set of possible responses. For ε > 0 and δ ∈ [0, 1], the mechanism
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Q : U → ∆ (Y) is (ε, δ)-differentially private if∗

P(Qu ∈ S) ≤ eε P(Qu′ ∈ S) + δ, ∀(u, u′) ∈ A, ∀S ⊆ Y. (2.1)

The special case of δ = 0 is referred to as ε–differential privacy or pure differential pri-

vacy whereas the general case is referred to as (ε, δ)–differential privacy or approximate

differential privacy.

Remark 1. In Equation (2.1), if we set ε = δ = 0, then, we require that P(Qu ∈ S) =

P(Qu′ ∈ S), for all (u, u′) ∈ A and, thus, for meaningful adjacency relations, the response

cannot depend on the private data at all. On the other hand, for ε → ∞ or δ = 1, any

mechanism satisfies the privacy constraint in Equation (2.1).

Remark 2. We assume the existence of a rich–enough σ–algebra M ⊆ 2Y on the set of

possible responses Y. Then, ∆ (Y) denotes the set of probability measures over (M,Y).

Often, we will let Y = Rn and, thus, we use the Borel set Bn.

Remark 3. Let y ∼ Qu be a noisy response produced by the ε–differentially private mecha-

nism Q. For brevity, we say that “output y preserves ε–privacy (or (ε, δ)–privacy) of the

input u”.

2.2. Adjacency relations

The adjacency relation A captures the aspects of the private data u that are deemed sensi-

tive. Consider a scheme with n users, where each user i contributes her real–valued private

data ui ∈ R, and, thus, a private database u = [u1, . . . , un] ∈ Rn is built. For α > 0, an

adjacency relation that captures the participation of a single individual to the aggregating

scheme is defined as:

(u, u′) ∈ A`0 ⇔ ∃ j s.t. ui = u′i, ∀i 6= j and |uj − u′j | ≤ α. (2.2)

∗We denote the output of the mechanism Q on the private data u with Qu instead of Q(u) in order to
simplify expressions.
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Adjacency relation A`0 is often replaced by A`1 , which is induced by the `1–norm and is

defined as:

(u, u′) ∈ A`1 ⇔ ‖u− u′‖1 ≤ α, (2.3)

where it holds that A`0 ⊆ A`1 .

Another adjacency that is commonly used for private GPS signals (as by Andrés et al.

(2013)) and private signals (as by Le Ny and Pappas (2014)) is induced by the `2–norm

defined as follows.

(u, u′) ∈ A`2 ⇔ ‖u− u′‖2 ≤ α, (2.4)

Adjacency relation A`2 is invariant under rotations which makes it appealing for Euclidean

spaces.

Finally, we argue that the adjacency relation needs to capture the domain–specific privacy

needs. For instance, Koufogiannis et al. (2014) introduces a more complicated adjacency

relation in the context of smart grids and provides an efficient mechanism.

2.3. Properties

An important property of differential privacy is its resilience to post–processing which is

the analog of the data processing inequality often used in information–theoretic privacy fra-

meworks (Sankar et al. (2013b)). The property establishes that any post–processing on the

output of an (ε, δ)–differentially private mechanism cannot weaken the privacy guarantees.

Proposition 2 (Resilience to Post–Processing). Let Q : U → ∆ (Y) be an (ε, δ)–differentially

private mechanism and g : Y → Z be a possibly randomized function. Then, the mechanism

g ◦Q is also (ε, δ)–differentially private.

More complicated mechanisms can be defined from simple ones using the composition the-

orem.
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Proposition 3 (Composition Theorem). Let mechanisms Q1, Q2 : U → ∆ (Y) respectively

satisfy (ε1, δ1) and (ε2, δ2)–differential privacy. Then, the composite mechanism Q : U →

∆
(
Y2
)

defined by Q = (Q1, Q2) is (ε1 + ε2, δ1 + δ2)–differentially private.

Proposition 3 provides privacy guarantees whenever the same sensitive data is repeatedly

used. Moreover, the resulting privacy level (ε1 + ε2, δ1 + δ2) given by Proposition 3 is

an upper bound and can severely over–estimate the actual privacy level. Kairouz et al.

(2017) stated tighter bounds for the privacy level degradation. These results are general

and are satisfactory when the mechanisms Q1 and Q2 are independent and, thus, the joint

mechanism (Q1, Q2) is less private. Results in Chapter 3 and Chapter 4 avoid unnecessary

privacy leaks by strongly correlating the two mechanisms Q1 and Q2.

A slightly stronger version of ε–differential privacy that is often used when the private data

belong to a metric space is defined as a Lipschitz constraint as in Chatzikokolakis et al.

(2013). In this case, the adjacency relation is replaced by a metric d(·, ·) on U . This notion

results in more concise proofs in Chapter 3, Chapter 4, and Chapter 5, and is generalized

in Chapter 6. The discrepancy between the original ε–differential privacy and its Lipschitz

reformulation is discussed in the Appendix A, where the Laplace mechanism is optimal only

in the latter case.

Definition 4 (Lipschitz Privacy). Let (U , d) be a metric space and Y be the set of possible

responses. For ε > 0, the mechanism Q is ε–Lipschitz private if the log–likelihood probability

is ε–Lipschitz in u, i.e.

∣∣lnP(Qu ∈ S)− lnP(Qu′ ∈ S)
∣∣ ≤ ε d(u, u′), ∀u, u′ ∈ U , ∀S ⊆ Y. (2.5)

Any Lipschitz private mechanism is also differentially private. This implies that our privacy

results remain valid within the original framework of differential privacy.

Proposition 5. For any α > 0, an ε–Lipschitz private mechanism Q is αε–differentially
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private under the adjacency relation A:

(u, u′) ∈ A ⇔ d(u, u′) ≤ α. (2.6)

The adjacency relations A`p , p ∈ {1, 2}, defined in (2.3) and(2.4) can be captured by the

`1–norm under the notion of Lipschitz privacy; the metric d is d(u, u′) = ‖u− u′‖p.

Similar to differential privacy, Lipschitz privacy is preserved under post-processing (Proposi-

tion 2) and composition of mechanisms is possible (Proposition 3). Compared to differential

privacy, Lipschitz privacy is more convenient to work with when the data and adjacency

relation are defined on a metric space, which allows for the use of calculus tools.

Remark 4. Under mild assumptions, the Lipschitz condition (2.5) is equivalent to a deri-

vative bound. In particular, for U = Rn equipped with the metric induced by the norm ‖ · ‖,

a mechanism Q is ε–Lipschitz private if

‖∇u lnP(Qu = y)‖∗ ≤ ε, (2.7)

where ‖ · ‖∗ is the dual norm of ‖ · ‖. In practice, we check condition (2.7) to establish the

privacy properties of mechanism Q.

Finally, two important elementary privacy–preserving mechanisms are the Laplace and the

Gaussian one described next. Many domain–specific mechanisms are composed from these

two mechanisms. The Laplace mechanism leads to ε–privacy and is tailored with optimality

results. On the other hand, the Gaussian mechanism results in weaker (ε, δ)–privacy (with

δ > 0), has lighter tales, and is suitable for traditional linear Gaussian systems.

Theorem 6 (Laplace/Gaussian Mechanism). Consider the mechanism Q : U → ∆ (Rn)

that adds noise to the result of query q : U → Rn:

Q(u) = q(u) + V. (2.8)
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Then,

• Laplace mechanism: for n = 1, if V ∼ Lap
(
‖∆q‖1
ε

)
, the mechanism Q is ε–

differentially private;

• Gaussian mechanism: if V ∼ N
(

0,
‖∆q‖22
κ2(ε,δ)

)
, the mechanism Q is (ε, δ)–differentially

private;

where ‖∆q‖1 = max(u,u′)∈A ‖q(u)−q(u′)‖1, ‖∆q‖2 = max(u,u′)∈A ‖q(u)−q(u′)‖2, Lap is the

Laplace distribution, N is the normal distribution, κ(ε, δ) = 2ε
K+
√
K2+2ε

, and K = Q−1(δ),

where Q is the tail probability of the normal distribution.

The quantity ‖∆q‖p is the sensitivity of the query q and has a key role in differential privacy.

As demonstrated in the next chapters, the Laplace and the Gaussian mechanism are often

used as building blocks, this work focuses mostly on them. The derived results can, then,

be generalized to a broader class of private mechanisms.
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CHAPTER 3: Diffusing Private Data

3.1. Motivation and Problem Formulation

In the era of social networks, individuals’ profiles include an increasing amount of private

information. Although sharing part of this data with close friends under no privacy may be

acceptable, privacy concerns arise when less trusted agents use their data. Here, we seek a

privacy–preserving technique where the strength of privacy guarantees scales with the trust

level of each data user.

Traditionally, these privacy concerns are mitigated by restricting access rights discussed in

Section 3.1.2. Instead, we employ differential privacy where the privacy level captures the

trust level for each data user. Such an approach allows for a different privacy level against

each user. Also, every user in the receives some information about each data owner and,

thus, global statistics are possible.

System model is presented in Subsection 3.1.1, a baseline approach based on an access–rights

scheme is discussed in Subsection 3.1.2, and a concrete problem formulation is presented in

Subsection 3.1.3.

3.1.1. System Model

Consider a network represented as a graph G with |V| = N nodes. For simplicity, we assume

that the graph is undirected and unweighted, although this assumption can be removed.

Each node i ∈ V represents a user and (i, j) ∈ E ⊆ V × V represents the friendship relation

between users i and j. Each user owns a private data ui ∈ U . Typical examples of private

data include:

1. Timestamps: let ui ∈ R be a real-valued representation of a timestamp such as date

of birth, e.g. Unix time Wikipedia (2015) is a popular way of mapping timestamps

to integers;
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2. Location: let ui ∈ R2 be the GPS coordinates of the residence of an individual i;

3. Binary states: let ui ∈ {0, 1} indicate user’s i status such as infected or healthy,

married or single etc.

Further, we want the severity of the privacy concerns to scale with the distance between

two nodes. Typical choices for the distance function d : V × V → R+ are as follows:

1. Shortest path distance: let dij be the length of the shortest path connecting nodes i

and j;

2. Resistance distance: let dij be the resistance between nodes i and j, where the edges

of graph G are associated with unit resistors Babić et al. (2002).

Distance functions that are more suitable for social networks have been proposed in the

literature; e.g., see Figure 2 of Liben-Nowell and Kleinberg (2007). In this paper, we assume

that these distances are given and we focus on preserving the privacy of the users’ data.

Moreover, distances dij may not depend only on the structure of the underlying network

but also on the attributes of the nodes. For instance, a family relationship between users i

and j may lead to a smaller value of dij . Further, directed edges (e.g. blocked users) can

be also be allowed in social network scenarios.

Then, user i generates an approximation yij of ui and securely communicates yij to user j.

More specifically, each user i requires her data ui to be ε(dij)-differential privacy against user

j, where dij is a distance function dij : V×V → R+ and ε : R+ → R+ is a decreasing function

that converts distance d to a privacy level ε(d). Therefore, we need to design a mechanism

that generates accurate responses {yij}j∈V while satisfying different privacy constraints for

different recipients based on the distance on the network. Specifically, accuracy is meant

in the expected mean–squared error sense; the response yij should an accurate but private

proxy of the private data ui.

Additionally, we assume the existence of a trusted central authority. Users provide their
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noiseless private data to this authority —already the case with modern social networks—,

which executes a privacy–preserving mechanism, adds noise, and securely communicates

the responses to each user. Then, differential privacy protects user’s i private data from

inference attacks by an adversarial user j while honest users locally run any post–processing

such as a recommendation system. The assumption of a central authority can be relaxed

by considering honest–but–curious users with only local secure communications.

3.1.2. Access Rights Scheme

Now, we describe a typical approach for handling privacy concerns in social network while

highlighting its limitations and motivating the need for a more sophisticated privacy–aware

approach. Figure 1a shows a synthetic network with 150 nodes, where the starred node

wishes to share her sensitive information with the rest of the network. Privacy concerns can

be handled by regulating access privileges. For example, friends of a user can access her

data, whereas every other user cannot. Such a scheme has limitations. On one hand, users

are coarsely partitioned to friends and strangers as depicted in Figure 1a; friends of the

star-labeled user are colored white whereas strangers are colored black. On the other hand,

the distance between two users can be more finely quantified by a real-valued function, and

each user has access only to neighboring information. Although restricting access rights

meets privacy concerns, computing global statistics on the network is impossible, limiting

the global utility of the network. Indeed, any estimator of global quantities (mean value,

histogram etc.) will to be biased. Therefore, the user may choose to collaborate, merge

their local information, and damage any privacy guarantees. Figure 1b overcomes these

limitations by defining a distance function d : V ×V → R+ which quantifies the strength of

the privacy concerns. In this case, users share privacy–aware versions of their profile with

every member of the network.
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(a) An access right scheme. (b) A distance-based scheme.

Figure 1: A synthetic network with 150 nodes and 1256 edges is shown. Each node represents
a user of the network and each edge indicates a friendship. The user indicated with the star
wishes to share her sensitive information with the rest of the network. Privacy concerns can
be addressed by managing access privileges. Under an access right scheme (Figure 1a), only
friends of the starred user (blue nodes) are granted access to the exact information, whereas
any other member (red nodes) have no access. Such a scheme partitions users to only two
groups; friends and strangers. Moreover, each user has access only to local information and
cannot estimate the global state of the network. Therefore, any estimator constructed by
the diamond user will be independed of the data of the starred user and, thus, biased. On
the other hand, Figure 1b proposes an approach where users’ privacy concerns scale with
the distance from others. Friends (blue nodes) receive a less noisy versions of the private
data, whereas strangers (red nodes) receive only heavily perturbed versions. Despite the
increased noise, estimates of aggregate statistics are possible. However, coalitions might be
encouraged and initial privacy guarantees can quickly degrade. For example, users within
the circle can combine their estimates and infer the private data of the starred user.
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3.1.3. Problem Statement

Under the modeling introduced in Subsection 3.1.1, we pose the problem of designing a

mechanism that diffuses private data over a network as follows.

Problem 1. Design a privacy–aware mechanism Q : U → ∆
(
UN
)

that privately releases

user’s i sensitive data ui ∈ U over a social network. Specifically, design mechanism Q that

generates N responses {yj}Nj=1, where yij is the securely communicated response to user j.

Further, the mechanism Q needs to satisfy the following properties:

• Privacy: The mechanism must generate the response yij which preserves ε(dij)–differential

private of data ui.

• Utility: Response yij must be an accurate approximation of data ui, i.e. for real–valued

private data, it should minimize the expected squared–error

EQ‖yij − ui‖22. (3.1)

Specifically, whenever individual i shares her sensitive information to another individual

j, she requires ε(dij)–differential privacy, where ε(·) : R+ → R+ is a decreasing function

that coverts a distance d to a privacy level ε(d). People residing close (w.r.t. a distance) to

individual i receive a loose privacy constraint εij � 1, whereas strangers get noisier versions

εij � 1.

Problem 1 admits a straightforward but unsatisfying approach. Let yj = ui + V , where

V ∼ Lap (dij), independently for each user j ∈ V. Subsequently, a group of users j ∈ A ⊆ U

have the incentive to collaborate share their estimates {yj}j∈A in order to derive a more

accurate estimator yA of ui described by

yA =
∑
j∈A

wjyj . (3.2)
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Figure 1b depicts a group of users forming such a coalition. The possibly large group A

resides far away from the user indicated by the star, dij � 1,∀j ∈ A. Although each user

j in the group A receives a highly noisy estimate of ui, estimator yA is more accurate.

The composition theorem of differential privacy Dwork and Roth (2013) guarantees only(∑
j∈A ε(dij)

)
-privacy which can be rather looser than each of the ε(dij)-privacy guarantees;

larger values of ε imply less privacy.

Therefore, Problem 1 is subject to coalition attacks. Thus, we restate Problem 1 by requiring

that any group A that exchanges their estimates {yj}j∈A cannot produce a better estimator

of ui than the best estimator among the group yj∗ , where j∗ = arg minj∈A dij is the user

closest to user i. This problem can be stated as follows:

Problem 2. Design a privacy-aware mechanism Q : U → ∆
(
UN
)

that releases a approxi-

mation of user’s i sensitive data ui ∈ U over a social network. Specifically, mechanism M

generates N responses {yj}Nj=1 and securely communicates response yj to user j. Mechanism

Q needs to satisfy:

• Privacy: For any group of users A ⊆ V, response {yj}j∈A must be maxj∈A ε(dij)–

differential private.

• Utility: Response yj must be an accurate approximation of the sensitive data ui.

3.2. Results

In this section, we derive a privacy–preserving mechanism that is resilient to coalitions. Sub-

section 3.2.1 derives the needed theoretical results and establishes that the accuracy of each

estimate yij depends only on the distance dij . Moreover, algorithmic implementations of

the composite mechanism Q should scale for vast social networks. Subsection 3.2.2 provides

algorithmic implementations of the mechanism Q with complexity O
(

ln
(

maxi,j∈V ε(dij)
mini,j∈V ε(dij)

))
.
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3.2.1. Theoretical Result

For n–dimensional real–valued private data u ∈ Rn, we derive a composite mechanism that

generates the response yij that user j receives as an approximation of user’s i private data

ui. This mechanism has the following two properties. First, the accuracy of the response

yij depends solely on the distance dij between nodes i and j. Specifically, the expected

squared–error E‖yij − ui‖22 does not depend on any other parameters of the network (e.g.

size, topology) or the rest of the responses {yik}k∈V\{j}. Second, any group of users A ⊆ V

that decides to collaborate and share their responses {yij}j∈A is unstable; i.e. the group

does not learn more about ui than what a member of the group already knows. Algorithmic

aspects of the composite mechanism are deferred until Subsection 3.2.2.

Definition 7 introduces a continuous domain stochastic process {Vε}ε>0 which is used in

Theorem 8 to define a composite privacy–preserving mechanism. Properties, sampling

algorithms and the derivation of it are deferred for later.

Definition 7. Define the stochastic process {Vε}ε>0 with the following properties:

• for ε > 0, it is dP(Vε = v) ∝ e−ε ‖v‖2;

• the process is Markov; i.e. for any 0 < ε1 < ε2 < ε3, it holds that Vε1 ⊥ Vε3 |Vε2;

• for any 0 < ε1 < ε2, with τ = ε2
ε1
− 1, it is

dP(Vε1 = v1|Vε2 = v2) ∝ δ(v1 − v2)

+
(n+ 1)ε

1+n
2

1 ‖v1 − v2‖
1−n

2
2

(2π)
n
2

Kn
2
−1(ε1‖v1 − v2‖2)τ

+O(τ2),

where K is the modified Bessel function of the second kind.

Theorem 8. Let dij ∈ R+ denote the distance between users i and j, and ui ∈ R be the

22



private data of user i. Consider the mechanism Q that generates the responses:

yij = ui + V
(i)
ε(dij)

, (3.3)

where {V (i)
ε }ε>0 is a sample of a Markov stochastic process {Vε}ε>0. Then, mechanism Q

provides a solution to Problem 2. In particular, it has the following properties:

• The variance of response yij is n (n+1) ε(dij)
−2 and, thus, depends only on the distance

between users i and j.

• For any subset of users A ⊆ V, the mechanism that releases the responses {yij}j∈A is(
max
j∈A

ε(dij)

)
–differential private.

The proof of Theorem 8 is presented in Appendix B. The main idea is to correlate the

responses {yij}j∈V . For n = 1, the stochastic process {Vε}ε has closed–form expressions,

whereas, for n > 1, closed–form expressions are derived only for the infinitesimal increments

Vε+dε − Vε. Nonetheless, we provide a sampling algorithm that allows for exact (in the sense

that we do not use an approximation or discretization of the process) and efficient (in the

algorithmic complexity sense) sampling of the process. Furthermore, our proof techniques

are robust and can possibly be applied beyond the Laplace mechanism; for example, the

K–norm mechanism Hardt and Talwar (2010) that appears in a different setting than the

one considered here.

Figure 2 pictures two samples of the stochastic process {Vε}ε>0, for n = 2, in polar coordi-

nates and shows that the process is a jump process; i.e., with high probability, the process is

constant in small intervals. Figure 3 pictures two samples of the process in high dimensions.

The process is again lazy, yet, the jumps are more often.

A major consequence of Theorem 8 is that mechanism Q does not incentivize coalitions.

Specifically, consider a group of curious users A ⊆ V who wish to estimate ui more accurately

and, thus, collaborate and share their knowledge {yij}j∈A. In practice, such a group can

23



10
−1

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

Privacy level ε

N
o
is

e
 m

a
g
n
it
u
d
e
 |
|V

ε
||

10
−1

10
0

10
1

10
2

10
3

−4

−2

0

2

4

Privacy level ε

N
o
is

e
 a

n
g
le

 a
rg

(V
ε
)

Figure 2: Two samples of the two-dimensional process which is the underlying object for
diffusing private GPS coordinates over a network.
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Figure 3: The `2-norm of two samples of the stochastic process {Vε}ε>0 in high-dimensions
(n = 20) which can be used to diffuse private signals over networks, such as power con-
sumption in smart grids.
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be fake accounts of a single but distant (in the sense of d) user. Then, given this shared

knowledge, the best estimator is:

ûi = yij∗ |j∗∈arg minj∈A dij
. (3.4)

Therefore, user j∗ is not benefited by such a coalition and, thus, she has no incentive

to participate in the coalition and share her information yij∗ . In fact, Theorem 8 solves

Problem 2 in the best possible way: the existence of multiple users asking for the same

private data under different privacy levels does not require additional privacy–preserving

noise.

3.2.2. Sampling Algorithm

Sampling from a continuous–domain stochastic process can often be performed only ap-

proximately. For example, consider the Brownian motion {Bt}t∈[0,1] which, for sampling

purposes, requires storing an infimum of real values. Contrary to Brownian motion, the

private process {Vε}ε>0 rarely changes value and is, thus, lazy. More formally, restricted to

a sufficiently small interval [ε1, ε2], the stochastic process {Vε}ε∈[ε1,ε2] is constant with high

probability. Furthermore, assuming the existence of an algorithm for computing the dis-

tance dij , the response yij can be generated during run-time. This property is crucial, since

it circumvents the O
(
N2
)

memory requirements of a static implementation. Proposition 9

characterizes the distribution of the number of jumps in a bounded interval.

Proposition 9. The number of jumps that the process {Vε}ε>0 performs in the interval

[ε1, ε2] is Poisson distributed with mean value (n+ 1) ln
(
ε2
ε1

)
.

P (k jumps in [ε1, ε2]) =
xk

k!
e−x, (3.5)

where x = (n+ 1) ln
(
ε2
ε1

)
.

Corollary 10. Process {Vε}ε>0 performs E[k] = (n + 1) ln 2 jumps (in expectation, with

variance Var[k] = (n + 1) ln 2) for every doubling of the privacy level, i.e. in the interval
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[ε, 2ε].

This laziness renders samples from the process highly–compressible. Indeed, given the

locations {ε(i)}ki=1 of the jumps and the values∗ {V
ε
(i)
−
}ki=1 near those points a sample can

be exactly reconstructed. The number k of jumps over a bounded interval [ε1, ε2] is itself a

random variable and captures the memory needs of our approach.

Furthermore, Proposition 9 suggests an efficient algorithm for directly sampling from the

process {Vε}ε∈[ε1,ε2], which we present in Algorithm 1. Algorithm 1 draws a sample {vε}ε∈[ε1,ε2]

from the stochastic process Vε over a bounded interval ε ∈ [ε1, ε2]. This sample {vε} is the

main object that performs diffusion of private data; whenever a user j requests user’s i

private data ui residing dij away, the estimator yij = ui + vε(dij).

Algorithm 1 draws a sample of the stochastic process by sampling Vε2 . Next, the algorithm

proceeds towards smaller values of the privacy level ε by sampling the dormant time and the

size of the jump. Specifically, the algorithm initializes a trace of the process by sampling

from the Laplace mechanism. This is done is two steps; using the Gaussian distribution,

the direction is drawn uniformly from the n− 1–sphere and, then, the magnitude is drawn

from the Gamma distribution. Then, the algorithm extends this trace backwards in ε

by sampling for the location of the next jump. The logarithm of the positions where

jumps occur define a Poisson process with rate λ = n + 1 and, thus, the length δε =

ln ε(i)− ln ε(i+1) of the interval until the next jump is exponentially distributed with density

δε ∼ λe−λ δε. Finally, conditioned on the event of a jump at ε(i), the size δv = V
ε
(i)
−
− V

ε
(i)
+

of the jump is Bessel–distributed with parameter 1
ε(i)

. The algorithm recycles until the

level ε1 is reached. Additionally, responses yij are generated upon request, and, thus, there

is no excessive memory requirement O(N2) for storing all the responses {yij}i,j∈V . The

number of iterations that Algorithm 1 performs is a random variable and is characterized

by Proposition 9.

Typical single–dimensional (n = 1) private data are date of birth, salary, and health status.

∗We use the notation Vε− = limτ↑ε Vτ and Vε+ = limτ↓ε Vτ .
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For n = 2, our results are applicable to geo–indistinguishability Andrés et al. (2013) which is

differential privacy for GPS locations and is experimentally illustrated in Subsection 3.3.1.

Finally, the case n → ∞ appeals to private signals that appear in filtering problems and

smart grid applications.

For completeness, Table 1 presents the parameterization of the elementary distributions used

by the proposed algorithms. We note that the Bessel distribution decays exponentially and

has closed-form expressions for odd n. Nonetheless, it is a single-dimensional distribution

and, thus, discritization and sampling through the inverse cumulative function is possible.

Algorithm 1 Sampling from the stochastic process Vε over a bounded interval ε ∈ [ε1, ε2]

can be performed both efficiently (with complexity O
(

ln
(
ε2
ε1

))
) and exactly (in the sense

that we are not discretizing the interval or approximating the procssess).

Require: Dimension n; Privacy levels ε1 and ε2, such that ε2 > ε1 > 0.
function SamplePrivateProcessL2(n, ε1, ε2)

k ← 1
ε(1) ← ε2
r ∼ Gamma

(
n, 1

ε2

)
v

(1)
1 , . . . , v

(1)
n

i.i.d.∼ Gaussian(0, 1)

v(1) ← r
‖v(1)‖2

v(1)

while ε(k) > ε1 do
δε ∼ Exponential(n+ 1)

ε(k+1) ← e−δε ε(k)

r ∼ Bessel
(
n
2 − 1, 1

ε(k+1)

)
δv1, . . . , δvn

i.i.d.∼ Gaussian(0, 1)

δv ← r
‖δv‖2 δv

v(k+1) ← v(k) + δv
k ← k + 1

end while

Return {(ε(i), v(i)}ki=1

end function

3.3. Simulations

We present two application that depict diffusion of private data over a network. These

example shows that bits of private information can be spread over the whole network, which
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Distribution Param. Supp. Density

Laplace β > 0 x ∈ R 1
2β e
− |x|

β

Exponential λ > 0 x ∈ R+ λe−λx

Gamma
n ∈ N,
β > 0

x ∈ R+
1

Γ(n)βnx
n−1e

− x
β

Bessel
n ∈ N,
β > 0

x ∈ R+

4

Γ(n2 )(2β)
n
2 +1

x
n
2Kn

2
−1

(
x
β

)
Table 1: The distributions that are used by Algorithm 1. Sampling from these distributions
can be performed using a uniform random variable and the quantile function.

allows users to estimate global quantities, such as epidemic spreading, while providing strong

privacy guarantees.

3.3.1. Synthetic Data

We consider the synthetic network in Figure 5 with N = |V| = 150 nodes and |E| = 1256

edges, where edges are formed based on proximity. Each user i ∈ {1, . . . , N} wishes to

publish her vector–valued private data ui ∈ R2, such as her GPS coordinates. For simplicity,

we focus on a single user; our technique can be applied independently for each user. The

distance dij between users i and j is captured by the shortest path length. We choose an

exponential function ε(·) that converts distances dij ∈ {1, . . . , 9} to privacy levels ε(dij) ∈

[.5, 15]. The function ε(·) that converts distances dij to privacy levels ε(dij) can be different

for each agent. In fact, user i may require any privacy level against user j. In practice,

these privacy levels can be manually chosen by each user or automatically generated by the

system operator based on the structure of the network and preferences of the nodes. In any

case, all privacy levels εij = ε(dij) are assumed public knowledge.

Algorithm 1 is executed by user i for n = 2 and the norms of several traces are shown

in Figure 4. For tight values of privacy level (ε → 0), large amounts of noises are added.

In Figure 5, nodes are colored based on the accuracy ‖yij − ui‖2 of the response yij they

receive.

Although we have assumed the existence of a secure communication channel between any
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Figure 4: Agent i uses Algorithm 1 with n = 2 and generates a single sample of the stochastic
process. For small values of privacy level, high noise values are more likely, whereas, for
loose privacy levels (ε→∞), the noise values decrease in magnitude. Despite the continuity
of the domain ε ∈ [0,∞), the process performs only a few jumps.

two users of the network and the existence of a central authority which computes the distan-

ces dij , an implementation that relaxes these assumptions is possible. Specifically, assuming

only local communications between neighboring users, an honest–but–curious model, and

knowledge of the privacy levels —which can be performed also in a decentralized manner—

a distributed approach is possible. In such an implementation, user i sends to all her neig-

hbors the signal {ui + Vε}ε∈(0,ε(1)). Then, each user j receives the signal {u+ Vε}ε∈[0,ε(dij)),

trims it to {u+ Vε}ε∈[0,ε(dij+1)), and broadcasts it to her friends. An application of this

variation is left for future work.

3.3.2. Real Dataset: Facebook

In this section, we present an application of diffusing sensitive data on a real network.

Specifically, an ego–network was introduced by Leskovec and Mcauley (2012) and is a the

sub–graph G = (V ∪ {Alice}, E) of Facebook induced by a single user, Alice, and her

friends V. Figure 7 plots such an ego-network, where the bottom–left node is the user

whose neighborhood is captured. The rest of the nodes represent Alice’s friends, edges

represent friendships between her friends, whereas, the edges between Alice and her friends

are omitted for clarity. We assume that Alice’s infection status is captured by a single bit

u ∈ {0, 1}. Then, Alice wishes to share this information with her friends in a privacy–
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Figure 5: Each individual j gets the value ui + Vε(dij), where ui is the true sensitive data,
dij is the number of hops between users i and j, and Vε is the result of Algorithm 1.

preserving way.

For each friend i ∈ V, the distance di is calculated by a central authority. Values {di}i∈V are

independent of the private data u, and can be computed without any privacy requirements.

The strength of the friendship between Alice and friend i is quantified by the value of di

and can be computed using methods from the social network literature such as the score

functions suggested in Liben-Nowell and Kleinberg (2007). Here, distances di are evaluated

according to Equation (3.6).

dij = Γii + Γjj − 2Γij , (3.6)

where Γ ∈ Rn×n is the pseudo–inverse of the Laplace matrix L of the network. Due to space

limitations, we use the fact that our technique allows post–processing of the responses yij

and, thus, is applicable for private bits.

Initially, Alice executes Algorithm 1 in order to generate a single sample {wε : ε ∈ [
¯
ε, ε̄]} of

the stochastic process {Vε : ε > 0}, where
¯
ε (resp. ε̄) is a lower (resp. upper) bound
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of the quantity min
i∈V

ε(di) (resp. max
i∈V

ε(di)). Function ε(·) : R+ → R+ is a decreasing

function which converts distances di to privacy levels εi = ε(di). In this example, we chose

ε(d) = exp(−3.3d + 4) which leads to privacy levels within [.5, 15]. In practice, any decre-

asing function resulting in any range of privacy levels can be used. The exact expression

is considered a designer’s choice that balances the users’ privacy needs and the accuracy of

network-wide statistics. Next, individual responses are generated during run-time. Whene-

ver user i requests access to the sensitive data u, the response yi is securely communicated

to user i:

yi = Π{0,1}(u+ wε(di)), (3.7)

where ΠS is the projection operator on the set S.

Figure 6 depicts two executions of Algorithm 1 with n = 1, whereas, Figure 7 plots the

ego-network centered around Alice. In particular, Alice is shown on the bottom-left corner

and each friend i is plotted at distance di from her. The blue and red circles mark the jumps

of the stochastic process for the two samples wblue
ε and wred

ε . Counter-intuitively, friends

i lying within two consecutive blue circles receive exactly the same response yi although

they are assigned different privacy levels ε(di). The paradox is settled by noticing that

the boundary circles are random variables themselves. Therefore, users receiving identical

responses have different confidence levels.
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Figure 6: Two samples of the stochastic process generated by Algorithm 1. The samples
are private information; a malicious user i can subtract the noise wε(di) from the received
response yi and exactly infer the private data u.

Figure 7: An ego-network is the part of the Facebook network that is visible from a fixed
user A (ego), shown in the bottom-left corner of the plot. Each friend i is plotted at distance
di. The locations of the jumps of the two samples shown in Figure 6 are depicted by the blue
and red circles. Although users residing within consecutive circles receive identical responses
yi, they are assigned different privacy levels ε(di) and, thus, have different confidence levels.
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CHAPTER 4: Gradual Release of Private Data

4.1. Motivation and Problem Formulation

Existing work on differential privacy assumes that the privacy level is determined prior

to releasing any data and remains constant throughout the life of the privacy–preserving

mechanism. However, for certain applications, the privacy level may need to be revised after

data has been released, due to either users’ need for improved accuracy or after owners’ re–

evaluation of the privacy concerns. One such application is trading of private data, where

the owners re–evaluate their privacy concerns after monetary payments. Specifically, the end

users initially access private data under ε1 privacy guarantees and they later decide to buy

more accurate data, relax privacy level to ε2, and enjoy better accuracy. Furthermore, the

need for more accurate responses may dictate a change in the privacy level. In particular, a

database containing sensitive data is persistent over time; e.g. a database of health records

contains the same patients with the same health history over several years. Future uses of

the database may require better accuracy, especially, after a threat is suspected (e.g. virus

spread, security breach). These two example applications share the same core questions.

Is it possible to release a preliminary response with ε1–privacy guarantees and, later, release

a more accurate and less private response with overall ε2–privacy guarantees? How would

this scenario compare to publishing a single response under ε2–privacy guarantees? In fact,

is the performance of the second response damaged by the preliminary one?

Composition theorems McSherry and Talwar (2007) provide a simple, but suboptimal, solu-

tion to gradually releasing sensitive data. Given an initial privacy level ε1, a noisy, privacy–

preserving response y1 is generated. Later, the privacy level is relaxed to a new value ε2,

where ε2 > ε1, and a new response y2 is published. For an overall privacy level of ε2, it is

sufficient for the second response y2 to be (ε2 − ε1)–private, according to the composition

theorem. Therefore, the accuracy of the second response deteriorates because of the initial

33



release y1.

More sophisticated approaches can be defined such that the suboptimality of subsequent

responses remains bounded. For instance, initially, we independently generate the respon-

ses {yi}∞i=−∞, where yi is 2i–private. For an ε1-private response, we release the sequence

{yi}blog2 ε1c−1
i=−∞ . According to composition theorems, this sequence is ε1–private and its accu-

racy is no worse than the accuracy of the last term yblog2 ε1c−1, which is that of an ε1
2 –private

mechanism. As soon as the privacy level is relaxed from ε1 to ε2, more elements of the se-

quence are released. Such a setting partially handles the loss of accuracy in gradually

relaxing the privacy level.

However, in this work, we derive an exact solution where there is no accuracy loss in-

curred. The solution to the problem formulated in this Chapter is closely related to the

solution of Chapter 3 where the privacy levels at different times are viewed as different data

users. Additionally, we extend the results to a broader class of existing privacy–preserving

mechanisms beyond the identity queries considered in Chapter 3.

Section 4.2 states the result and provides an efficient algorithm, and Section 4.3 illustrates

the applicability of them in Google’s project RAPPOR.

4.2. Results

This work introduces the problem of gradually releasing sensitive data. Our results focus

on the case of vector–valued sensitive data u ∈ Rn with an `1–norm adjacency relation.

Our first result states that, for the one–dimensional (n = 1) identity query, there is an

algorithm which relaxes privacy in two steps without sacrificing any accuracy. Although

our technical treatment focuses on identity queries, our results are applicable to a broader

family of queries; in particular, to a family of differentially private mechanisms that add

Laplace noise. We also prove the Markov property for this algorithm and, thus, we can

easily relax privacy in any number of steps; time complexity is linear in number of steps

and memory complexity is constant. Gradually releasing sensitive data is performed by
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sampling once from an underlying stochastic process. Although a different problem, the

solution is provided by the same stochastic process derived in Chapter 3. Here we state the

properties of this process in terms of the problem introduced, we extend our method for a

broader class of mechanisms, and provide an efficient algorithm.

For a mechanism that performs gradual release of private data has the following properties,

we require the following properties.

• Privacy: For any set of privacy levels {εi}mi=1, the mechanism that responds with

{Qεiu}mi=1 is (maxmi=1 εi)-private.

• Accuracy: For a fixed ε, the mechanism Qε is the optimal ε–private mechanism.

4.2.1. Theoretical Result

More formally, our main result derives a composite mechanism that gradually releases pri-

vate data by relaxing the privacy level in an arbitrary number of steps.

Theorem 11 (Gradual Privacy as a Composite Mechanism). Let Rn be the space of private

data equipped with an `1–norm adjacency relation. Consider m privacy levels {εi}mi=1 such

that 0 ≤ ε1 ≤ · · · ≤ εm which successively relax the privacy level. Then, there exists a

composite mechanism Q of the form

Qu := (u+ V1, . . . , u+ Vm) , (4.1)

such that:

1. The restriction of the mechanism Q to the first j coordinates (u + V1, . . . , u + Vj) is

εj-private, for any j ∈ {1, . . . ,m}.

2. Each coordinate j ∈ {1, . . . ,m} of the mechanism u+ Vj achieves the optimal mean-

squared error E‖Vj‖22 = 2n/ε2j .

The mechanism that satisfies Theorem 11 has a closed–form expression which allows for
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Figure 8: Gradual release of identity queries is achieved with the use of the stochastic
process Vε for ε ≥ 0, several samples of which are shown with different colors. In practice,
a single sample of this process is drawn and, for a privacy level ε0 and private data u, the
noise version u+ Vε0 is published. For tight values of privacy (ε→ 0), high values of noise
(
∣∣tan−1 Vε

∣∣→ π
2 ) are returned, whereas, almost zero samples (Vε → 0) are returned for large

privacy budgets (ε → ∞). The process Vε is Markov; future samples depend only on the
current value of the process which eases implementation. Furthermore, the process is lazy;
the value of the process changes only a few times.

computationally lightweight implementation with O(1) memory.

Theorem 11 is the result of the following two theorems. Theorem 12 handles a single round

of privacy level relaxation and leads to Algorithm 2 and Theorem 13 proves a Markov

property that allows the repetitive use of Theorem 12 for multiple rounds of privacy level

relaxation.

Theorem 12. Consider privacy levels ε1 and ε2 with ε2 ≥ ε1 > 0, and mechanisms of the

form:

Q1u := u+ V1 and Q2u := u+ V2, with (V1, V2) ∼ g, (4.2)

for some probability density g ∈ ∆
(
R2
)
. Then, for g = lε1,ε2 with:

lε1,ε2(x, y) =
ε21
2ε2

e−ε2|y|δ(x− y) +
ε1(ε22 − ε21)

4ε2
e−ε1|x−y|−ε2|y|, (4.3)
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where δ is the Dirac delta function, the following properties hold:

1. The mechanism Q1 is ε1–private.

2. The mechanism Q1 is optimal, i.e. Q1 minimizes the mean–squared error EV 2
1 .

3. The mechanism (Q1, Q2) is ε2–private.

4. The mechanism Q2 is optimal, i.e. Q2 minimizes the mean–squared error EV 2
2 .

Proof. We straightforwardly verify that Distribution (4.3) has the aforementioned proper-

ties.

Theorem 13. Consider m privacy levels {εi}mi=1 with 0 < ε1 < · · · < εm and mechanisms

Qi of the form:

Qiu = u+ Vi, with (V1, . . . , Vm) ∼ g ∈ ∆ (Rm) . (4.4)

Consider the distribution g = lε1,...,εm, with:

lε1,...,εm(v1, . . . , vm) = lε1(v1)
m−1∏
i=1

lεi,εi+1(vi, vi+1)

lεi(vi)
, (4.5)

where lε(v) = ε
2e
−ε|v|. Then, distribution lε1,...,εm has the following properties:

1. Each prefix mechanism (Q1, . . . , Qi) is εi–private, for i ∈ {1, . . . ,m}.

2. Each mechanism Qi is the optimal εi-private mechanism, i.e. it minimizes the mean-

squared error EV 2
i .

Theorem 11 performs gradual release of private data by releasing responses that approximate

the identity query q(u) = u. In practice, however, the end–user is interested in more expres-

sive queries q such as the mean value 1
n

∑n
i=1 ui of a collection of private data u1, . . . , un and

solutions to optimization problems Han et al. (2014). Our results are directly applicable to

a family of queries which are approximated by private mechanisms built around the Laplace

37



mechanism. Specifically, consider mechanisms based on the Laplace mechanism and have

the form shown in Figure 9. The database of private data is initially pre-processed and,

then, additive Laplace–distributed noise is used. The result is post-processed in order to

maximize the accuracy of the response. Informally stated:

Corollary 14. Let (U , d) be a metric space of sensitive data, Y be a set of responses, and

ε > 0 be a privacy level. Let

• F : U → ∆ (Rn) be a preprocessing step with sensitivity β. Function F is assumed to

be invariant of ε, i.e. it does not change for different privacy levels,

• Lε : Rn → ∆ (Rn) be the Laplace mechanism with parameter ε:

Lεu = u+ V, where V ∼ e−
ε
β
‖V ‖1 , (4.6)

• Gε : Rn → ∆ (Y) be a post–processing step.

Consider the ε–private mechanism

Gε ◦ Lε ◦ F : U → ∆ (Y) . (4.7)

Then, there exists a composite mechanism that performs gradual release of private data

u ∈ U .

In this case, the term gradual release of private data should be understood in the scenario–

replicating sense; using Corollary 14 to relax privacy from ε1 to ε2, the resulting performance

is the same as if the initial privacy level ε1 had never occurred and the system was set at

privacy level ε2 from the beginning.

Finally, we provide another result that performs gradual release of private data under (ε, δ)–

differential privacy. In that case, the underlying stochastic process is a reparameterization

of the Brownian motion.
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Figure 9: User 1 wants to share his sensitive data, such as his date of birth, in the a social
network. Although, user 1 has no privacy concerns when sharing this information with his
close friends 2 and 3, he has gradually increasing privacy issues for other members of the
network. Specifically, a group A of distant users should not be able to collude and extract
more information than what it is intended.

Theorem 15. Let U be the space of privacy data, q : U → Rn be a query, and ∆ be the

`2-sensitivity for an adjacency relation A. Then, consider the privacy levels {(εt, δt)}t∈[0,∞)

such that σ(εt, δt) is a decreasing function of t. Then, the family of mechanisms Qt:

Qtu := q(u) + Vt, where Vt =


B

(1)
σ(εt,δt)

...

B
(n)
σ(εt,δt)

 and t ∈ (0,∞), (4.8)

where Vt =
[
V

(1)
t , . . . , V

(n)
t

]
and V

(i)
t

d
= Bσ(εt,δt) are independent samples of the Brownian

motion B:

• Privacy: For any t > 0, the mechanism that releases the signal {q(u) + Vτ}τ∈(0,t] is

(εt, δt)-private.

• Accuracy: The mechanism Qt that releases the random variable q(u) + Vt is the

Gaussian mechanism with σ(εt, δt).

We provide a short proof in Appendix C

4.2.2. Algorithm

In practice, gradual release of private data is achieved by sampling the stochastic process

{Vε}ε>0 from left to right.
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1. Draw a single sample {vε}ε>0 from the stochastic process {Vε}ε>0.

2. Compute the signal yε = u+ vε, ε > 0.

3. For ε1–privacy guarantees, release the random variable yε1 .

4. Once privacy level is relaxed from ε1 to ε2, where ε2 ≥ ε1, release the random variable

yε2 .

5. In order to relax privacy level in an arbitrarily many times, ε1 → ε2 → · · · → εm,

repeat the last step.

Specifically, Algorithm 2 is invoked repeatedly for each round of privacy level relaxation as

depicted in Figure 10.

Algorithm 2 Sampling from Distribution (4.3) for the second noise sample V2 = y given
the first noise sample V1 = x can be efficiently performed∗.

Require: Privacy levels ε1 and ε2, such that ε2 > ε1 > 0, and noise sample x.
function RelaxPrivacy(x, ε1, ε2)

switch
case with probability ε1

ε2
e−(ε2−ε1)|x|:

return y = x.

case with probability ε2−ε1
2ε2

:

draw z ∼

{
e(ε1+ε2)z, for z ≤ 0

0, otherwise.

return y = sgn(x)z.

case with probability ε1+ε2
2ε2

(
1− e−(ε2−ε1)|x|):

draw z ∼

{
e−(ε2−ε1)z, for 0 ≤ z ≤ |x|
0, otherwise.

y = sgn(x)z.

case with probability ε2−ε1
2ε2

e−(ε2−ε1)|x|:

draw z ∼

{
e−(ε1+ε2)z, for z ≥ |x|
0, otherwise.

return y = sgn(x)z.

end switch
end function
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Figure 10: Privacy level can be repeatedly relaxed. For each round of relaxation εi → εi+1,
the distribution of the next noise sample Vi+1 depends only on the last noise sample Vi.
Past noise samples {Vj}j<i can be discarded from memory, thus, there is no complexity
incurred from repeatedly relaxing privacy level.

4.3. Application

Examples of existing such privacy–aware mechanisms can be found in e.g. smart grids

Koufogiannis et al. (2014) and user’s reports Erlingsson et al. (2014). On the other hand, our

results do not address the gradual release of private through mechanisms that do not fulfill

this assumption, such as privately solving optimization problems with stochastic gradient

descent Han et al. (2014).

In particular, Google’s RAPPOR Erlingsson et al. (2014) is a mechanism that collects

private data from multiple users for “crowdsourcing statistics” and can be expressed in

terms of the Laplace mechanism. RAPPOR collects personal information from users such

as the software features they use and the URLs they visited, and provides statistics of this

information over a population of users. Algorithmically, a Bloom filter B of size k —which

is a bank of k hashing function in parallel— is applied to each user’s private data u:

B : U → {0, 1}k, y = [y1, . . . , yk] = B(u), (4.9)
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where U is the space of private data, in particular, the set of all strings. Next, each bit yi

is perturbed with probability f and the result is memoised:

f : {0, 1}k → {0, 1}k, z = [z1, . . . , zk] = f(y), where zi =


0, w.p. 1

2α,

1, w.p. 1
2α,

yi, w.p. 1− c1,

(4.10)

where “w.p.” stands for “with probability” and α ∈ [0, 1] is a parameter. Finally, RAP-

POR applies another perturbation each time a report is communicated to the server. This

perturbation is equivalent to the map (4.10) but differently parametrized:

g : {0, 1}k → {0, 1}k, w = [w1, . . . , wk] = f(z), where P(wi = 1) =


β, if zi = 1,

γ, if zi = 0,

(4.11)

where β, γ ∈ [0, 1] are parameters. RAPPOR’s differential privacy guarantees relax (incre-

ased ε) for small values of α and γ, and large values of β.

An important limitation of RAPPOR is that parameters α, β, and γ are forever fixed.

However, there are reasons that require the ability to update these values in a way that the

privacy is relaxed and the accuracy is increased:

• Due to the non-trivial algorithm of decoding the reports, a tight accuracy-analysis

is not possible. Instead, the accuracy of the system is evaluated once the system is

bootstrapped.† Our results make it possible to initialize the parameters with tight

values α→ 1, β → .5, γ → .5, and subsequently relax the parameters until a desired

accuracy is achieved.

• Once a process or URL is suspected as malicious, the server would be interested

†Even in that case, estimating the actual accuracy can be challenging since it should be performed in a
differential private way.
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in relaxing the privacy level and performing more accurate analysis of the potential

threat. Once such a threat is identified, our result allows users to gradually relax their

privacy parameters and the server can more confidently explore the potential threat.

In order to apply Theorem 11 to RAPPOR, we express the randomized maps (4.10) and

(4.11) using the Laplace mechanism. Specifically, consider the functions f̄ and ḡ that add

Laplace noise and project the result to {0, 1}:

f̄(ψ) =

[
ψ + Vf >

1

2

]
, where Vf ∼ Lap

(
1

−2 lnα

)
, (4.12)

ḡ(ζ) =

[
ζ + Vg >

ln(2γ)

ln (4γ(1− β))

]
, where Vg ∼ Lap

(
1

− ln (4β(1− γ))

)
, (4.13)

where ψ, ζ ∈ {0, 1}, Lap(b) is the Laplace distribution with parameter b, and the bracket

symbol [·] ∈ {0, 1} is 1 if, and only if, the inside expression is true. Note that functions

f̄ and ḡ have the structure of Figure 9. Moreover, it can be shown that f̄ and ḡ applied

component-wise to y and z are reformulations of the maps f and g. Therefore, privacy level

relaxation is achieved by sampling noises Vf and Vg as suggested by our results. Note that,

due to the Markov property, past privacy levels need not be stored in memory; only the

currently applicable privacy level is retained.
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CHAPTER 5: Privacy of Current State

5.1. Motivation

For time–varying private data, we may wish to only protect the privacy of the current value

of the private data. In such settings, we need to block an inference attack on the sensitive

data at the current time and not necessarily the whole trajectory as explored by Le Ny and

Pappas (2014). Specifically, at each time step and given the responses published so far, we

need to defend against an adversary that attempts to infer the current value of private data,

i.e. the current state of the system.

Specifically, existing work in differential privacy assumes that the private data is given and

fixed in time and proposes privacy–mechanisms for a wide spectrum of applications. Even

for e.g. private signals, the proposed mechanisms protect the privace of the signal as a

whole. As an implication, in dynamical phenomena, these works provide only static privacy

guarantees, i.e. the mechanism that maps private data to the responses is differentially

private. In practice, however, privacy needs may vary over time in one or more of the

following aspects: (i) the private data itself may change over time, (ii) additional responses

may be published, or (iii) the strength of privacy may be either revised at a later time.

More concretely, consider an individual using a location–based service and, thus, reporting

her GPS location. Such an individual may wish to protect her current location, while not

worrying about revealing her past locations. From a different point of view, an adversary

may wish to track the state of a dynamical system and decide when to deploy an attack.

In each case, we need to provide privacy guarantees that explicitly protect the current

state of the system. Motivated by such applications, this work introduces time–varying

privacy guarantees; at each time, the mechanism publishes additional information and the

private data evolves. Then, we wish to design a privacy–preserving mechanism such that

an adversary who observes the so–far responses of the mechanism cannot confidently infer

the current private data. In Chapter 4 we explored the case where only the strength of the
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required privacy varies over time.

Our work deviates from the literature by considering time–varying differentially private

guarantees. For an underlying dynamical system, we formulate and solve the problem of

designing a mechanism that provides the following privacy guarantees. At each time step,

an adversary that has observed the outputs of the mechanism so far cannot confidently

infer the current state of the system. The time–varying sense of a privacy statement stems

from the fact that the mechanism publishes new outputs with every step, thus, offering to

the adversary additional knowledge. Moreover, the private data that needs to be protected

is the current state which changes over time. On a technical note, we also allow the pri-

vacy level, i.e. the strength of the privacy guarantees, at each time step to vary as well;

either increase or decrease at each time step. Our contributions are both conceptual and

technical. Conceptually, we extend differential privacy for the case where the private is not

a fixed quantity. Also, the proposed mechanism overcomes the problem of depletion of pri-

vacy budget by changing the private data itself and, thus, allows for infinite horizons while

maintaining meaningful privacy guarantees and accuracy of the responses. Additionally,

contrary to existing privacy–preserving mechanisms that inject noise only in the published

responses, our mechanism consists of two noise sources: aside from corrupting the publis-

hed responses with noise, the mechanism perturbs the private data itself. Regarding our

technical contributions, we design a Gaussian–based privacy–preserving mechanism for a

linear system that provides (ε, δ)–differential privacy. Additionally, for scalar system under

a ε–differential privacy, we provide an efficient privacy–preserving mechanism that, at each

time, publishes the most accurate but private approximation of the current state. Both

mechanisms consist of two parts: the sensor part which misreports the current private data

by publishing only noisy versions of it and is typically used in differential privacy literature,

and the controller part which injects noise to the system and corrupts the private data

itself.
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5.2. Problem Formulation

5.2.1. Time–varying Private Data

As a motivating example, we consider a swarm of mobile agents collaboratively monitoring

a quantity of interest —e.g. a target’s position or a temperature field— and publishing an

estimate of this quantity. Additionally, the agents themselves do not want to be tracked

and, thus, have privacy needs for their current state —e.g. an adversary may try to localize

and attack them. Since the agents’ positions may be inferred from the published responses,

we wish to design a privacy–preserving mechanism that publishes accurate information

while guaranteeing the agents’ privacy. Another example, considers a vehicle traveling on a

highway segment and reporting its position for traffic–monitoring purposes. However, due

to privacy concerns, the vehicle does not wish to be accurately localized on the highway at

any time.

A key observation, to be exploited later, is that if the privacy requirements cannot be

satisfied by solely perturbing the published responses, the agent noisily perturbs its private

data. This observation deviates from the assumptions in the differential privacy literature

where the private data are assumed given and fixed over time and the mechanism cannot

tamper with them. In practice, although some private data such as health records cannot

be altered, in several scenarios, private data including sensor locations, leadership tokens,

and a dynamical system’s state can be updated by a mechanism.

We introduce our problem in its general form and, later, we will focus on linear instances

of it. Formally, we consider a dynamical system with state xt and open–loop dynamics

xt+1 = f(xt, ut). For each time t ∈ {1, . . . , T}, we wish to publish the observations yt =

g(xt). However, due to privacy concerns, at time t, we wish to protect the privacy of the

current state xt by appropriately injecting noise. Importantly, the privacy constraints are

time–varying; the data that needs to remain private is not always the same but it evolves

with time. Moreover, the adversary’s knowledge changes as additional observations are
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published and, thus, past noisy observations potentially can harm the privacy of the current

private data. To this end, we wish to design a privacy–preserving mechanism such that, at

time t, the mechanism that maps the current state xt to the so–far published observations

{ys : s ∈ 1 : t} is εt–differentially private. The sequence of privacy levels [εt]
T
t=1 is assumed

to be given.

Contrary to existing privacy–preserving mechanisms that only perturb the published re-

sponses, the approach proposed in this paper considers mechanisms that inject noise both

in the sensor and the controller, as depicted in Figure 11.

i. Sensor noise: instead of the exact measurement yt, the mechanism only publishes

noisy versions of it ŷt ∼ G(xt); for example, ŷt = yt + Vt, where Vt is suitable privacy-

preserving noise. Intuitively, noise Vt protects the current state xt from an adversary

that knows the current observation ŷt. This type of noise is similar to the noise added

by existing privacy–preserving mechanisms.

ii. Controller noise: the mechanism injects noise to the input of the system, ut ∼ H(u
(0)
t ),

where H is a suitable privacy-preserving mechanism; for example ut = u
(0)
t +Wt, where

u
(0)
t is an external control input —for simplicity we assume u(0) ≡ 0— and Wt is

appropriate noise. In words, if past observations ŷ1, . . . , ŷt−1 can be used to accurately

infer the next state xt, then, the injected noise perturbs the system’s state itself to

enforce privacy.

Regarding performance of the system, we wish to minimize the amount of injected noise; in-

creased sensor noise Vt renders the measurements ŷt uninformative, whereas increased noise

Wt changes the control input from the nominal one and, thus, degrades the performance of

the plant.
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Figure 11: We wish to design a privacy–preserving mechanism (H,G) such that, at time t
and given the published observations {ŷi}ti=1, the current state xt is εt–differentially private.

5.2.2. Problem Statement

Finally, we concretely formulate the problem of designing a mechanism that, at each time,

guarantees the privacy of the current state of a dynamical system. In this work, we consider

linear dynamical systems

xt+1 = At xt +Bt ut, (5.1)

yt = Ct xt (5.2)

Given a nominal input u
(0)
t , we wish to design a privacy-preserving mechanism (H,G) that

sets ut = H(u
(0)
t ) and ŷt = G(yt) as depicted in Figure 11. Specfically, this mechanism is

formulated in Problem 3.

Problem 3. Given a sequence of privacy levels [(εt, δt)]
T
t=1, design a mechanism (H,G)

such that

• Privacy: at time t, state xt is (εt, δt)-private, i.e.

P(ŷ1, . . . , ŷt|xt) ≤ eεt P(ŷ1, . . . , ŷt|x′t) + δt, (5.3)

for adjacent (xt, x
′
t) ∈ A;
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• Performance: the amount of injected noise is minimized

1

T

T∑
t=1

E [C1(0, ut)] + E [C2(yt, ŷt)] , (5.4)

where we assume that u
(0)
t = 0 and C1 and C2 are cost functions that penalize excessive

noise.

5.3. Results

We now solve two instances of Problem 3. Subsection 5.3.1 considers a linear system

under (ε, δ)–differentially private guarantees and, next, shows that our technique allows

for time–varying privacy levels. Subsection 5.3.2 considers a scalar linear time–varying

system under ε–differential privacy and provides a simple privacy–preserving mechanism

that allows infinite horizon.

5.3.1. Linear System under (ε, δ)–Differential Privacy

We now design a Gaussian–based privacy–preserving mechanism that solves Problem 3 for

a linear system in an LQG–like setting. Specifically, we consider the following linear, for

simplicity time invariant, system.

xt+1 = Axt +B ut, and yt = C xt. (5.5)

We assume that the system parameters A, B, and C are publicly known, that the system

starts at t = 0, but the first observation published is y1, and that (ε, δ) is a given privacy

level. Our results remain applicable for time–varying privacy levels, i.e. a given sequence

[(εt, δt)
T
t=1 of privacy levels, where T is a time horizon. Finally, we consider the adjacency
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relation (xt, x
′
t) ∈ A ⇔ ‖xt − x′t‖2 ≤ 1 and the quadratic cost

CT =
1

T

[
T−1∑
t=0

E (ut − u(0))T R (ut − u(0))+ (5.6)

T∑
t=1

E (ŷt − yt)T Q (ŷt − yt)

]
, (5.7)

where we assume R � 0 and Q � 0 are positive semi–definite matrices that penalize

control and output noise, respectively. Additionally, we assume that the nominal input

u
(0)
t is publicly known and, thus, we can ignore it by assuming u

(0)
t = 0. Since the input

signal may be computed based on public information or be inferred by past executions of

the system, we cannot argue about the privacy of the nominal input. Thus, following the

dogma of differential privacy for a powerful adversary, we assume that this signal is publicly

known.

In order to design a mechanism that, at time t, guarantees (ε, δ)–privacy of the current state

xt with respect to the adjacency relation A, we design a privacy–preserving mechanism of

the form

ut = u
(0)
t +Wt = Wt, and ŷ = yt + Vt. (5.8)

Then, Problem 3 is stated as in Problem 4.

Problem 4. Design the stochastic processes [Wt]
T
t=1 and [Vt]

T
t=1 such that the privacy–

preserving mechanism that inputs ut = Wt and publishes ŷt = yt + Vt satisfies the following

properties.

• At time t, the current state xt is (ε, δ)–differentially private.

• The quadratic cost CT is minimized; i.e. the processes W and V are not unnecessarily

noisy.

For this problem, we consider only zero–mean Gaussian–based privacy–preserving mecha-
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nisms of the form shown in Equation (5.8). Specifically, we design the covariance matrix


Et

Wt

Vt+1

 ∼ N
0,


Σt 0 Xt

0 Wt Yt

XT
t YT

t Zt


 , (5.9)

where Et = x̂t − xt and x̂t is the least–squares estimator of xt, given the responses {ŷi}ti=1.

In the structure of the correlation matrix in Equation (5.9), we allow for correlation between

the input and the output noise. However, we chose not to allow for any correlation between

the input noise and the error of the least–squares estimator. These properties are similar to

the mechanism presented in Subsection 5.3.2 for a scalar system under ε–differential privacy.

The covariance matrix in Equation (5.9) is derived from the following convex optimization

problem.

minimize
{Σt,Wt,Zt,Xt,Yt}Tt=1

T−1∑
t=0

[
tr(RWt) + tr(QZt)

]

s.t.


Σt 0 Xt

0 Wt Yt

XT
t YT

t Zt

 � 0,

Mt −Σt+1 Nt +MtC
T

∗ CMtC
T + Zt + sym(C Nt)

 � 0

Σt � κ−2(ε, δ) I, ∀t,

(5.10)

where matrices Mt and Nt are linear functions of the variables defined in the proof of

Theorem 16. The first constraint requires that the covariance block–matrix is well-defined,

whereas the second constraint recursively couples the covariance matrices across different

times. Lastly, the third inequality enforces the privacy constraint.
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The following result proves that, for a feasible solution of program in Equation (5.10), the

current state xt is (ε, δ)–private.

Theorem 16. Consider the linear system (5.5) with ut = Wt and ŷt = yt + Vt as defined

in (5.8) and a privacy level [(ε, δ)]Tt=1. If the covariance matrix satisfies the constraints of

the optimization problem in (5.10), then, at time t and given the observations [ŷi]
t
i=1, the

current state xt of the system is (ε, δ)–differentially private.

The proof of this result is included in the Appendix. The derivation of the result follows

the steps of Kalman estimation, in particular, as in Tanaka et al. (2014) and, then, invoking

the Gaussian mechanism from differential privacy. However, here we allow for correlation

between the control noise, the sensor noise, and the estimation error and, thus, the exact

expression is different. Specifically, we guarantee (ε, δ)–differential privacy for xt at time t,

if the least–squares estimator x̂t can be written in the form of a Gaussian mechanism

x̂t = xt + Et, (5.11)

where Var(Et) ≥ κ2(ε, δ) I.

The following result provides sufficient conditions for the feasibility of the optimization

problem.

Proposition 17. If the matrix [A;B] has full row rank, then, the problem in Equation 5.10

is feasible.

Sampling for the privacy–preserving noises [Wt]
T−1
t=0 and [Vt]

T
t=1 can be done as follows.

• The sensor part initializes the Kalman estimator by choosing E0 ∼ N (0,Σ0).

• At each time t, the controller part draws Wt ∼ N (0,Wt).

• At time t, the sensor part measures the state xt+1, infers Wt and Et, draws Vt+1

conditioned on Wt and Et, and publishes the response ŷt+1 = C xt+1 + Vt+1.
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Finally, we highlight that our technique allows for different privacy levels at each time step

t, which captures the scenario where the privacy of part of the trajectory needs to be better

protected. Specifically, given a sequence of privacy levels [(εt, δt)]
T
t=1, we can replace the

last constraint in Equation (5.10) with the time–dependent expression

Σt � κ−2(εt, δt) I, ∀t ∈ {1, . . . , T}. (5.12)

5.3.2. Scalar System under ε–Differential Privacy

In this section, we consider a scalar system and ε–differential privacy and we provide a

simple Laplace–based privacy–preserving mechanism that, at time t, protects the current

state xt with a privacy level εt. Specifically, we consider a noiseless scalar system with state

xt ∈ R and publicly known dynamics

xt+1 = at xt + ut and yt = xt, (5.13)

a sequence of privacy levels [εt]
T
t=1, where T ∈ N ∪ {∞} is a, possibly infinite, time horizon,

and the adjacency relation A defined as

(xt, x
′
t) ∈ A ⇔ |xt − x′t| ≤ 1. (5.14)

At time t, the value of εt captures the strength of the privacy guarantees. Importantly,

we do not make any assumptions on the monotonicity of the sequence of privacy levels

and, thus, we allow for both privacy relaxation and tightening over time. For constant

private data xt = x, ∀t, the problem of relaxing privacy (increasing sequences of εt) has

been explored in earlier work (Koufogiannis et al. (2016)) but in the case of fixed private

data, whereas, privacy tightening is conceptually impossible; once a response is published

it is impossible to recall it. In our setting, we overcome this limitation by allowing for the

privacy–preserving mechanism to noisily change the private data itself. Specifically, given
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the system in Equation (5.13), we consider a mechanism of the form

ut = Wt and ŷt = yt + Vt, (5.15)

where [Wt]
T
t=1 and [Vt]

T
t=1 are appropriate privacy–preserving stochastic processes. As men-

tioned earlier, the input noise Wt changed the private data and, thus, at time t + 1, we

need to protect the new private data at xt +Wt. Contrary to Wt which becomes part of the

private data, the output noise Vt is logistic; essentially the mechanism misreports its state.

Regarding accuracy, we consider a cost that penalizes inaccurate published data

CT =
1

T

T∑
t=1

E (ŷt − yt)2 =
1

T

T∑
t=1

EV 2
t . (5.16)

Then, Problem 3 takes the more specific form of Problem 5.

Problem 5. Design the stochastic processes [Wt]
T
t=1 and [Vt]

T
t=1 such that

• for each time t and given the current state xt, the mechanism that publishes {ŷi}ti=1

is εt–differentially private; and

• the published responses ŷt accurately approximate the desired output xt; i.e. minimizes

the cost CT .

Theorem 18 solves Problem 5 and hints to an efficient algorithm that draws a sample from

the stochastic processes Wt and Vt. In order to state Theorem 18, we define the following
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probability densities, where ε2 ≥ ε1 > 0:

`ε1(v) =
ε1
2
e−ε1 |v|, (5.17)

`ε2|ε1(v2; v1) =

[(
ε1
ε2

)2

δ(v1 − v2) +

(
1−

(
ε1
ε2

)2
)

(5.18)

`ε1(v1 − v2)

]
`ε2(v2)

`ε1(v1)
, (5.19)

`ε1|ε2(v) =

(
ε1
ε2

)2

δ(v) +

(
1−

(
ε1
ε2

)2
)
`ε1(v), (5.20)

where δ(·) is Dirac’s delta function. We refer the reader to earlier work Koufogiannis et al.

(2016) on the properties of these distributions. The proof of the following theorem, which

proposes a mechanism and proves its privacy guarantees, can be found in the Appendix.

Theorem 18. Given the sequence of privacy levels [εt]
T
t=1, define the processes [Wt]

T
t=1 and

[Vt]
T
t=1 such that V1 ∼ `ε1 and, for t ≥ 2,

• if εt > |at| εt+1, set

Wt ∼ `εt+1| εt|at|
and Vt+1 = at Vt −Wt; (5.21)

• if εt ≤ |at| εt+1, set

Wt = 0 and Vt+1|at Vt ∼ `εt+1| εt|at|
. (5.22)

Then,

• at time t and given the responses {ŷi}ti=1, the current state xt is εt–private.

• the cost CT is minimized; i.e. CT = 1
T

∑T
t=1

2
ε2t

.

The proof of this result can be found in the Appendix. Theorem 18 suggests a practical

online algorithm. Specifically, at time t, the samples Wt and Vt+1 depend only on the
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current level εt and the next one εt+1. Additionally, the controller and sensor part of the

privacy–preserving mechanism do not need to communicate —the sensor part can infer the

noises the controller injects. At each time step, Theorem 18 performs one of the following

actions.

• If the current privacy level is tighter than the next one (εt ≤ |at| εt+1), then, the sensor

performs gradual release of private data according to Koufogiannis et al. (2016), and

there is no need to inject any noise to the system.

• If the current privacy level is looser than the next one (εt > |at| εt+1), then, the

released information ŷt can be used to infer the next state xt+1 and, thus, violating

the privacy guarantees. Theorem 18 enforces privacy by injecting noise and driving

the next state of the system xt away from the predicted one at ŷt.

At each time, Theorem 18 publishes accurate responses ŷt of the current state yt = xt.

Specifically, any other proxy with smaller expected squared error E(ŷt − yt)2 would violate

the privacy constraints. Nonetheless, the algorithm does not penalize the use of input

noise and, therefore, minimizes the quadratic cost CT which penalizes inaccurate responses.

However, the cost CT does not penalize the noise Wt added to the private data.

Moreover, Theorem 18 is amenable to an infinite horizon setting since, intuitively, the

privacy budget is regenerated by the input noise Wt.
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Figure 12: Theorem 18 can be understood in terms of the stochastic process introduced in
Koufogiannis et al. (2016). At each time step, we either perform gradual release of private
data (denoted by red) and publish a more accurate reponse, or we tighten the privacy by
perturbing the private data itself (denoted by blue).
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CHAPTER 6: Location–dependent Privacy

6.1. Motivation

Location-based services (LBSs) are daily used by many individuals. In a typical scenario,

users retrieve their exact location using a GPS sensor, report it to a provider of an LBS, and

receive information regarding this location. For example, a user might request information

about nearby places of interest, such as gas stations and restaurants, or subscribe to alert

notifications, such as extreme weather and traffic conditions.

From a privacy point of view, reporting the exact GPS location poses a privacy threat to

the users and possibly deters them from using LBSs altogether. These privacy issues can be

mitigated if users perturb their exact location before using an LBS Andrés et al. (2013). By

reporting a noisy GPS location, user’s exact position cannot be confidently inferred. On the

other hand, the utility users receive from using the LBS does not dramatically deteriorate

when a perturbation is applied. Indeed, for example, consider a user on a highway inquiring

for nearby gas stations. A perturbation of the user’s location by a few miles is unlikely to

significantly affect the response by such an LBS. Nonetheless, for a user within an urban

environment such a perturbation possibly renders the responses from an LBS useless; within

city bounds, a perturbation of the user’s location by a few blocks is enough to provide

privacy without significantly distorting the response of the LBS. Therefore, the amount of

the required, yet acceptable, noise varies and depends on the private location itself.

Providing privacy guarantees for users’ locations has been studied in the literature. For

example, authors in Shokri et al. (2011) consider mobile users and an adversary that, given

a training set of traces, attempts to track them. The privacy is then defined by quantifying

the effectiveness of the adversary’s best inference attack in a game–theoretic approach.

Another method was proposed in Hoh et al. (2008) where users aggregate their traces using

cloaking techniques to provide privacy guarantees. Within differential privacy, the privacy
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of individuals’ locations is termed “geoindistiguishability” in Andrés et al. (2013), where the

authors consider stationary users interacting with LBSs and bound the privacy loss due to

the quantization of the GPS signal by the discritization grid of the map. In a different line of

work, Le Ny et al. (2014) consider the setting where, given individuals’ GPS locations, the

data curator directly publishes a privacy–preserving traffic map. In this work, we wish to

publish a privacy–preserving version of the user’s location itself, similarly to Andrés et al.

(2013). However, we relax the assumption of a single uniform privacy level everywhere.

Instead, in the proposed approach, we allow the privacy level to vary across the map. More

generally, allowing the privacy level to depend on the private data is beneficial in settings

such as the one considered in Hsu et al. (2014), where a single scalar cannot capture the

privacy needs over the whole space of private data.

Specifically, let (U , ‖ · ‖) be a normed space which includes the set of possible private data

and let q : U → Y be a deterministic query of interest, where Y is the set of possible

responses. In our case, we will focus on users reporting their locations to LBSs and, thus, we

will mostly focus on Euclidean spaces
(
R2, ‖ · ‖2

)
and identity queries q(u) = u. Moreover,

we consider a privacy level map ε : U → R+ where ε(u) quantifies the need for privacy in a

neighborhood of u —smaller values of ε(u) correspond to stronger privacy needs. Then, we

wish to design a mechanism Q which outputs a noisy approximation y = Q(u) of the private

data u which is “ε(u)-differential private around private data u”. Note that for constant

privacy level maps ε(u) = ε0, our problem reduces to standard ε-differential privacy.

There are several practical scenarios where an input-dependent privacy level is meaningful.

Specifically, we mention the following two examples:

• Location-based services: We consider users interacting with an LBS, as a running

example throughout the paper. Whenever the users report their location u with ε-

privacy, they release an approximation y = u+ V , where the noise V is proportional

to ε−1. However, in practice, the desired privacy level ε depends on the location

u itself. Specifically, as illustrated in Figure 13, densely-populated areas achieve

59



Figure 13: Within densely populated areas (user A), a small perturbation of the exact but
private GPS location provides significant privacy. On the contrary, user B requires a larger
perturbation in a sparsely-populated area. The figure is adapted from Statistics Canada.

sufficient privacy by using larger values of privacy level. Conversely, a user can more

easily be identified in less-crowded areas unless a smaller value of privacy level ε is

used. By allowing the privacy level to depend on the user’s location itself, we can

design a single mechanism that satisfies the privacy needs over all regions.

• Data-dependent incentives: From the system designer’s perspective, having a fixed

privacy level for all possible data inputs might not be possible. We depict this idea

by sketching the following scenario. Assume that users’ private data capture their

wealth u ∈ [0, 1], e.g., quantile of income distribution. Then, when users report their

private data, people with u → 0 may require a tight privacy level to protect their

privacy, whereas people with u → 1 might benefit by an increased accuracy of the

system and, thus, require larger values for privacy levels. Since people may opt out

of using such a system, having a flat privacy level is problematic. Instead, a privacy

level map ε : [0, 1]→ R+ captures the needs of all users.
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6.2. Problem formulation

In the case of users reporting their location, the private data u ∈ R2 is their GPS coordinates

and we focus on mechanisms Q that approximate the private data itself

Q(u) ≈ u. (6.1)

Nonetheless, the definition of Lipschitz privacy cannot directly capture the problem of input-

dependent privacy level, as motivated earlier in this section. Specifically, in Equation (2.5),

the privacy level ε is a uniform constant in u. Definition 19 alleviates this by using a privacy

level map.

Definition 19 (Local Lipschtiz Privacy). Consider a normed space (U , ‖·‖) of private data,

a privacy level map ε : U → R+, and a set Y of possible responses. Then, the mechanism

Q : U → ∆ (Y) is ε(·)-Lipschitz private if, for any S ⊆ Y, the function

fS(u) = lnP(Q(u) ∈ S) (6.2)

is locally Lipschitz continuous with constant ε(u) for any u ∈ U .

Locally Lipschitz privacy extends Lipschitz privacy, which implies the standard notion of

differential privacy (e.g. Proposition 6 in Koufogiannis et al. (2016)). Specifically, for

constant privacy level maps ε(u) = ε0, we retrieve Definition 4. Additionally, Proposition 20

states that, similar to differential privacy, locally Lipschitz privacy is resilient to post-

processing; any further processing of the outcome of a locally Lipschitz private mechanism

cannot break the privacy guarantees.

Proposition 20. Let Q : U → ∆ (Y) be a locally Lipschitz mechanism, and h : Y → Z be

a (possible randomized) post-processing, where Y and Z are two sets of responses. Then,

the mechanism h ◦ Q that post-process the outcome of mechanism Q is ε–locally Lipschitz

private.

61



Proof. The statement follows by re-writing the probability distribution of h ◦Q in terms of

that of Q

P ((h ◦ Q)(u) ∈ S) = P
(
Q(u) ∈ h−1 (S)

)
(6.3)

and noting that the right–hand side is locally Lipschitz at u with constant ε(u).

Remark 5. Similarly to the privacy level ε in differential privacy, the privacy level map

ε : U → R+ in Definition 19 is considered public knowledge and is a designer’s choice.

In the light of Definition 19, our problem can be naturally formulated as follows.

Problem 6. Given a set of private data (U , ‖ · ‖), a privacy level map ε : U → R+, and a

query q : U → Y, design an ε-locally Lipschitz private mechanism Q that approximates q.

6.2.1. Smooth Local Sensitivity

The notion of locally Lipschitz privacy is related to Nissim et al. (2007) which introduced the

notion of smooth local sensitivity as a mean of building differentially private mechanisms.

From a theoretical point of view, we consider our present work as the “dual” of Nissim et al.

(2007). Specifically, let (Rn, ‖ · ‖) be the space of private data and consider a real-valued

deterministic query q which mechanism Q should approximate:

q : Rn → R. (6.4)

The Laplace mechanism Dwork et al. (2006) allows one to build a private mechanism by

adding Laplace-distributed noise as in Proposition 21.

Proposition 21 (Laplace Mechanism). Consider the Laplace mechanism Q defined as

Q(u) = q(u) + V, with V ∼ Lap

(
∆qglobal

ε

)
, (6.5)

where Lap(b) is the Laplace distribution with probability density function fV (v) = 1
2b e
−b |v|

62



and ∆qglobal is the global sensitivity defined as

∆qglobal = max
u,u′: (u,u′)∈A

|q(u)− q(u′)|. (6.6)

Then, mechanism Q is ε-differentially private.

Proposition 21 shows that the ratio

sensitivity

privacy level
=

∆qglobal

ε
(6.7)

is a key quantity, determines the amount of the injected noise, and is independent of the

input u. Work in Nissim et al. (2007) considers input-dependent noise by replacing the

global sensitivity ∆qglobal by a smooth version of the local sensitivity ∆qlocal, where local

sensitivity is defined as

∆qlocal(u) = max
u′: (u,u′)∈A

|q(u)− q(u′)|. (6.8)

In our case, the sensitivity is independent of the input; in fact, we will later focus on identity

queries which reduces local sensitivity to a constant. Nonetheless, we allow the privacy level

ε to depend on the private data u and, thus, add input-dependent noise as well.

Although authors in Nissim et al. (2007) introduced smooth local sensitivity as a means

to create less noisy but still private mechanisms, we introduce the privacy level map to

increase the expressitivity of differential privacy. Moreover, authors in Nissim et al. (2007)

use heavy-tailed (polynomially decaying) noise V instead of the exponentially decaying

Laplace distribution. In our approach we exploit a link between differential privacy and the

eikonal equation in order to numerically design private mechanisms.
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6.3. The Eikonal Equation and Results

In the following we focus on Euclidean spaces (Rn, ‖ · ‖2) and we focus on building locally

Lipschitz private mechanisms that approximate a query q : Rn → Y. To this end, we

identify the privacy constraint of Definition 19 as an instance of the eikonal equation.

6.3.1. The Eikonal Equation

First, we provide a brief overview of the eikonal equation, a PDE that takes the form of

Equation (6.9):

‖∇u(x)‖2 = f(x), x ∈ Ω and u(x)|x∈∂Ω = 0, (6.9)

where Ω ⊆ Rn. The solution u(x) of Equation (6.9) can be thought as the shortest path

problem in the continuous domain

u(x) = min
y∈Ω

df (x, y), (6.10)

where df is a distance function such that df (x, x+ dx) ≈ f(x) ‖dx‖2, for small enough dx.

Although the boundary value problem in (6.9) does not always admit strong solutions, lite-

rature provides efficient algorithms for computing weak solutions of it. For example, authors

in Sethian (1996), Tsitsiklis (1995) introduced the fast-marching methods for numerically

solving such boundary value problems over discretized grids of N points with complexity

O (N logN). Following work provided improved algorithms for general meshes Sethian and

Vladimirsky (2000) and approaches with accuracy bounds Hassouna and Farag (2007).

By identifying the locally Lipschitz private property in Equation (6.9) as an eikonal equa-

tion, we leverage existing, efficient and accurate numerical solvers in order to build locally

private mechanisms.
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6.3.2. Computing Locally Lipschitz Private Mechanisms

Algorithm 3 proposes a technique to numerically compute locally Lipschitz private mecha-

nisms Q that approximate a query q.

Algorithm 3 Building a mechanism that satisfies local Lipschitz privacy level map through
an eikonal equation solver.

Require: Privacy level map ε : Rn → R+ and query q : Rn → Y.
1: function PrivacyMapMechanism(Privacy map ε : U → R+, Query q : U → Y)
2: for each output y ∈ Y do
3: Compute fy by solving the eikonal equation problem

‖∇fy(u)‖ = ε(u) with fy(q
−1(y)) = 0. (6.11)

4: end for
5: Compute w(y) by solving the linear system∑

y∈Y
e−fy(u)w(y) = 1, u ∈ U . (6.12)

6: if w(y) ≥ 0, for all y ∈ Y then
7: Define mechanism Q as

P(Q(u) = y) = w(y) e−fy(u). (6.13)

8: end if
9: end function

Theorem 22. Let (Rn, ‖ · ‖2) be the space of possible private data and let q : Rn → Y be a

query. Then, in Algorithm 3, if

w(y) ≥ 0, ∀y ∈ Y, (6.14)

then, the mechanism Q is ε-locally Lipschitz private.

Proof. The proof is straightforward. The mechanism Q such that

P(Q(u) = y) = g(u, y) = w(y) e−fy(u) (6.15)

has, by assumption, a proper probability density; g(u, y) ≥ 0 and
∑

y∈Y g(u, y) = 1. More-
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over, we compute the following derivative in the weak sense

‖∇u lnP(Q(u) = y)‖2 = ‖∇u (ln w(y)− fy(u))‖ = ε(u). (6.16)

Therefore, mechanism Q satisfies Definition 19 and, thus, is ε-locally Lipschitz private.

Algorithm 3 works as follows. For each possible response y ∈ Y, we solve the following

boundary value problem stated in line 3, where the exact boundary condition fy(q
−1(y)) = 0

is a design choice. This choice stems from the need that the response y should be close to

u, although there is no guarantee that the mode of the resulting distribution P(Q(u) = y) is

at y = u. Next, line 5 of the algorithm computes the weights w(y) such that for each input

u, the probability P (Q(u) = y) = w(y) e−fy(u) is a probability distribution. If there exists

a positive solution to this linear system, then, the computed mechanism is locally Lipschitz

private. As a guideline, for smooth enough privacy maps (‖∇ε(u)‖ � 1) with loose privacy

at the edge of map (ε(u)|u∈∂U � 1) Algorithm 3 computes well-defined mechanisms.

In practice, Algorithm 3 fails when the privacy level map is not smooth enough although we

do not provide sufficient conditions. Nonetheless, for a constant privacy level map, identity

queries, and in the limit, we recover the Laplace mechanism.

6.4. Simulations

We demonstrate our technique in the scenario of users reporting their private GPS location

to a location-based service (LBS). Specifically, we consider an individual in the greater

Philadelphia area that observes her private position u ∈ R2, reports a proxy location y ∈ R2,

and receives a response from the LBS. Due to privacy concerns, the proxy location y is a

perturbed version of the exact position u with probability density

P(Q(u) = y) = g(u, y). (6.17)
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Under local Lipschitz privacy, we design a privacy level map such that we provide tighter

privacy (ε(u)→ 0) in sparsely populated areas. To this end, the privacy level map is derived

from the population density as

ε(u) = 10−4 d(u) + 0.4, (6.18)

where d(u) is the population density at location u. The constant term provides the tightest

possible privacy level and the linear term relaxes the privacy level in densely populated

areas. The population density map is originated from the Global Rural-Urban Mapping

Project (GRUMPv1) for International Earth Science Information Network CIESIN et al.

(2011) and truly is public knowledge. GRUMPv1 provides an estimate of the population of

the whole globe up to a grid size of 30 seconds of arc. —in our case, roughly 0.5 mi× 0.7 mi

rectangles. We focus on an area around Philadelphia of size about 9 mi × 6.2 mi which is

shown in Figure 14. Next, we super-sample this patch to a 200×200 grid, and, for simplicity,

we re-parametrize it such that u ∈ [0, 100]2.

We execute Algorithm 3 for the identity query q(u) = u in Matlab using an eikonal equation

solver Dirk-Jan. Algorithm 3 can be run offline and users perturb their private locations

by using the stored result. The range of values of the privacy level map is

ε(u) ∈ [0.4, 2.0]. (6.19)

Figure 14 shows the probability distributions P(Q(ui) = y) for three different locations.

Mechanism Q adapts to the different values of privacy level for different inputs. Therefore,

our approach can provide a single privatizing mechanism without the need to explicitly

partition the set of private data.

Finally, we evaluate the performance of the designed mechanism to the following two ap-

proaches. To this end, we consider a prior π on the private data u given by the population
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Figure 14: (Left) The population density in Philadelphia’s area is shown overlaid with the
map is a publicly available knowledge and, thus, has no privacy requirements. In more
densely populated areas (darker colored), the privacy level is larger and, thus, less noise is
required to mitigate privacy concerns. (Right) The figure shows the probability distribution
for three points (denoted with white circles) of high, medium, and low population density as
shown in Figure 14. Dense areas have higher values of privacy level and, thus, less amount
of noise is required to satisfy the privacy constraint.
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Mean-squared error

mseLaplace 37.5
mseeikonal 5.78
mseoptimal 1.37

Table 2: We evaluate the performance of the proposed approach to Laplace-based mecha-
nism and the optimal one.

density itself

π(u) ∝ d(u), (6.20)

where d is the population density and we compute the expected mean-squared error of the

mechanism Q

mseeikonal =

∫
U×U

π(u)P(Q(u) = y) ‖u− y‖22 du dy. (6.21)

We compare this to the mean-squared error mseLaplace of the Laplace mechanism with con-

stant privacy level minu∈U ε(u) and to the mean-squared error mseoptimal that is computed

by the following optimization problem

minimize
g:R4→R+

∫
R2×R2

g(u, y)π(u)‖y − u‖22 d2u d2u (6.22)

s.t.

∫
R2

g(u, y) d2y = 1, ∀u (6.23)

‖∇ug(u, y)‖ ≤ ε(u)g(u, y), (6.24)

where g(u, y) = P(Qopt(u) = y). Due to memory limitations, we solve a coarse (35 ×

35) discritization of Problem 6.22 and report the expected squared-error in Table 2. As

expected, a Laplace-based approach injects significant amount of noise which depends on

the minimum value of the privacy level map; a single area with tight privacy requirements

dramatically affects the performance of the mechanism. Moreover, post-processing the

responses of our approach can further improve performance.
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CHAPTER 7: Multi–owner Multi–user Privacy

7.1. Introduction

We introduce the problem explored in this chapter with the following example. A collabora-

tive recommender system for merchandise uses the buying history of customers in order to

propose an item for future transactions Adomavicius and Tuzhilin (2005). In such a setting,

a system that uses the purchase history of Alice to propose new products to her does not

harm Alice’s privacy. However, whenever Bob’s history is used in this process, then, his

privacy is compromised. The level of interaction between Alice and Bob is determined by

the following two factor: (i) How useful is Bob’s data for Alice? In fact, Alice is greatly

benefit only if the two agents have similar shopping habits. (ii) How much does Bob trusts

Alice? Specifically, if the two agents are close friends, there are little privacy concerns when

recommending products to each other.

More generally, the underlying private data curation process is viewed as follows. Multiple

agents, called data users, are interested in different aspects of a collection of private data,

where the private data is distributed across a set of agents, called data owners—the two

sets of agents are not necessarily disjoint. A key observation is that data users may benefit

from colluding by either performing their tasks more efficiently or violating owners’ privacy.

We now introduce the problem of multi–owner multi–user privacy. Initially, we informally

state the general problem and, in the end of this section, we formulate a concrete instance

of the problem. We consider two, possibly overlapping, groups of agents: data owners

and data users. Specifically, we consider n data owners with owner i ∈ [n] = {1, . . . , n}

possessing private data ui ∈ Ui, where Ui is the set of possible values for the private data

of owner i. Let u = [ui]
n
i=1 denote the set of everyone’s private data. We also consider m

data users, where each user j ∈ [m] = {1, . . . ,m} is interested in some function qj = qj(u)

of the private data. Furthermore, we quantify the severity of the privacy concerns that
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owner i has against user j with the privacy level εij , where smaller values indicate more

severe privacy concerns. Assuming there exists a trusted operator of the system, we wish

to design a (randomized) mechanism M which, given the set of private data u ∈ ×ni=1Ui,

computes the set of responses Y = [Yi]
m
j=1 and securely communicates response Yj to user

j as a proxy of qj(u). From a utility point of view, we wish each response Yj to be a good

approximation of qj(u). From a privacy point of view, we wish to guarantee that, given the

response Yj , private data ui remains εij–differentially private.

However, data users might decide to collude, share their responses, and violate the privacy

needs of a data owner. Therefore, mechanismM should not incentivized such coalitions. In

particular, for any group J ⊆ {1, . . . ,m} of data users and any data owner i, there should

exist a user j∗ ∈ J that does not gain any more information about ui by participating in

group J and, thus, leaves the coalition.

In this work, we focus on the case of real–valued private data ui, linear queries qj , and the

notion of approximate differential privacy.

7.1.1. SISO to MIMO Privacy

Figure 15 categorizes some of the literature in differential privacy. The vast majority of the

literature assumes a single data owner and provides a single response to everyone.

Next, authors of Ebadi et al. (2015) and those of Alaggan et al. (2016) considered n data

owners, each with a private data ui and a privacy level εi, and propose a mechanism that

computes a single output y which is publicly announced. Such a setting, which was also

used in Kearns et al. (2016), can be thought as multi–input single-output privacy and,

practically, is interpreted as in that, given the response y, each private data ui remains

εi-private.

Koufogiannis and Pappas (2017a), which was presented in Chapter 3, considered the single

input, multiple output case. A single data owner shares a private data u with m users under
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Figure 15: Differential privacy was initially formulated in Dwork et al. (2006) in a SISO way
(top-left; T-L); there is a single private data and the operator, shown as a gray bar, computes
and publishes a single output. Work in Alaggan et al. (2016), shown in B-L, considered a
MISO scenario where different data owners have different privacy requirements and, again,
a single output is evaluated and publicly announced. Earlier work Koufogiannis and Pappas
(2017a) introduced the case of a single data owner who responds with different privacy levels
to different data users (T-R). Here, we consider the multi-input, multi-output case (B-R)

different privacy levels εj , j ∈ [m] by responding with yj to user j. The authors propose

a mechanism such that, given yj , private data u remains εj-private. More importantly,

the proposed mechanism does not incentivize coalitions among the users; i.e. users are not

willing to collude and share information in order to damage owner’s privacy.

According to such a categorization, present work considers the multi-input, multi-output

scenario, where each data owner i has a different privacy level εij against each data user

j. Additionally, each data user is interested in a different aspect of the private data. For

example, within a sensor network, based on their location, sensors are interested in mostly

local information. As in the SIMO case, it is not enough to guarantee the privacy of owner

i against user j and, thus, the MIMO case cannot be decomposed to m MISO systems.

Instead, we need to model any possible interactions among the data users that can lead to

privacy breaches. Since we assume the existence of a trusted system operator, we focus only

on users’ interactions that occur after the execution of the differentially private mechanism.
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7.1.2. Effects of Coalitions

As briefly mentioned above, the case of designing a private mechanism M, where M(u) =[
Y1 · · · Ym

]
, and serve m data users does not decompose into m independent mecha-

nismsMj , j ∈ [m], whereMju = Yj . Such a decomposition is not possible due to possible

interactions among the data users. In fact, data users may collaborate and exchange infor-

mation for different reasons. Two models of the possible interaction among data users are

the following.

• Curious coalitions: Consider a group of data users J ⊆ {1, . . . ,m} and the responses

YJ = [Yj ]j∈J that they receive as a proxy to the quantities of interest [qj(u)]j∈J . If

there is a post-processing of the coalition’s knowledge YJ such that each colluding

user j ∈ J extracts a more accurate proxy Y ′j of the quantity of interest qj(u), then,

coalition J is stable. We call such a group a curious coalition because users focus on

simply improving the accuracy of their received responses while ignoring any privacy

requirements.

• Adversarial coalitions: In this case, a subset J ⊆ [m] of the users collude and share

their information YJ in order to infer private data ui and violate the privacy of a

targeted data owner i. In this case, data users are considered adversarial; for example,

they might be multiple personae of a single adversary.

Beyond curious and adversarial coalitions, as introduced here, further models exist. For

example, in the case that data users also act as data owners, they may or may not care

about their own privacy levels whenever they participate in a curious coalition. Specifically,

agents participate in a coalition J only if (i) the accuracy of the received responses is

improved and (ii) their privacy level is not compromised, even against other members of

the coalition.

In this paper, we will mostly focus on adversarial coalitions. As in the SIMO case Koufogi-

annis and Pappas (2017a), the main technique against coalitions is introducing correlation
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among the responses {Yj}mj=1 that the data users receive. Specifically, the main result of the

SIMO case designs a mechanism such that, in each possible coalition, there exists a data

user who does not benefit by colluding and, thus, leaves the coalition. Another possible,

but not exploited here, technique to de-incentivize coalitions is considering mechanisms that

return some side information Zj to data user j. Then, response Yj is used by honest users,

whereas, side information Zj is “used to gratify the curiosity” of dishonest users.

7.1.3. Linear Queries of Real-Valued Private Data

Here, we assume that each data owner i possesses a scalar private data ui ∈ R and each

data user j is interested in a linear form of all the private data

qj(u) =
n∑
i=1

aijui. (7.1)

Moreover, we assume that each data owner i requires (εij , δij)-differential privacy against

data user j. To that end, a trusted system operator receives all private data u, computes

the desired quantities {qj(u)}mj=1, adds noise V, and returns the response Yj = qj(u) + Vj

to user j:

Y =


Y1

...

Ym

 =


q1(u) + V1

...

qm(u) + Vm

 = Au + V, (7.2)

where A = [aij ] is the matrix of the coefficients and V is a privacy-enforcing noise. Now,

the problem of MIMO privacy can be formulated.

Problem 7 (MIMO Privacy). Consider a set of data users [n] and a set of data users [m].

For any user j ∈ [m], any subset of users J ⊆ [m], and any data owner i ∈ [n], consider

the mechanism in Equation (7.2), and let Mij be the sub-mechanism that releases Yj and
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let MiJ be the sub-mechanism that releases {Yj}j∈J , i.e.

Mij(ui) = Yj and MiJ (ui) = [Yj ]j∈J . (7.3)

Design the noise V such that,

• the mechanism Mij is (εij , δij)-private and

• for any group J and any owner i, there exists a user j∗ ∈ J such that, if Mij∗ is

(ε, δ)-private, then, MiJ is also (ε, δ)-private.

The first constraint of Problem 7 protects each owner’s private data against each user,

whereas, the second constraint provides privacy against adversarial coalitions. Specifically,

for any coalition J and any target owner i, there exists a data user j∗ who does not gain

any additional knowledge about owner i (in the sense of privacy level) by participating in

the coalition J and, thus, opts out of it.

7.2. Design via Semidefinite Programming

In this section, we employ the Gaussian mechanism and build a solution to a relaxed version

of Problem 7. Specifically, we assume that the system operator adds Gaussian noise with

zero mean and covariance matrix Σ ∈ Sm, where Sm is the set of positive-semidefinite

matrices of size m×m, i.e.

Y = Au + V, where V ∼ N (0m×1,Σ). (7.4)

7.2.1. Analysis of a Coalition

In order to provide an approach to Problem 7, we need to analyze the effect of a coalition.

To this end, consider a coalition of data users J ⊆ [m] and a target data owner i ∈ [n].

For the mechanism defined in Equation (7.4), the following lemma characterizes the privacy

level that owner i receives against the group J .
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Lemma 23. For a coalition J and a target owner i, the mechanism MiJ ,

MiJ (ui) = [Yj ]j∈J , (7.5)

is (ε, δ)-private if

κ2(ε, δ) ≥ aTiJ Σ−1
J aiJ , (7.6)

where aiJ = [aij ]j∈J ∈ R|J | and ΣJ = [Σjk]j,k∈J ∈ S|J |.

Sketch of proof. We focus on the following probability as a function of ui

P (MiJ (ui) = [yj ]j∈J ) . (7.7)

and we re-write the responses yi as noisy observations of the private data ui

yj =
∑
k∈[n]

akj uk + Vj ⇔ (7.8)

yj
aij
−
∑
k∈[n]

akj
aij

uk = ui +
1

aij
Vj ⇔ (7.9)

zij = ui +
1

aij
Vj , ∀j ∈ J (7.10)

where zij is considered an observation; it does not depend on the noise Vj or the private

data ui. Next, consider the optimal Bayesian linear estimator

ûi =
∑
j∈J

wj zij = ui +
∑
i∈J

wj
aij

Vj , (7.11)

for appropriate weights wj with
∑

j∈J wj = 1 and let {o1, . . . , o|J |−1} be |J |−1 orthogonal

to ûi linear combinations of the observations zij . Then, the mechanism in Equation (7.7)

can be viewed as the mechanism that releases ûi as in Equation (7.11) followed by a post-

processing which appends to ûi the independent responses {o1, . . . , o|J |−1}.
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The statement follows from observing that the mechanism in Equation (7.11) is a Gaussian

mechanism with variance
(
aTiJ Σ−1

J aiJ
)−1

and the resilience to post-processing theorem

Dwork et al. (2006).

A formal but less intuitive proof follows by massaging Equation (7.7)

P (MiJ (ui) = [yj ]) = P (Vj = aij zij − aij ui) (7.12)

∝ e−
1
2

[aij zij−aij ui]TΣ−1
J [aij zij−aij ui] (7.13)

= e−
1
2
C1 u2i+C2 ui− 1

2
C3 , (7.14)

with

C1 = [aij ]
T Σ−1
J [aij ], C2 = [zij ]

T Σ−1
J [aij ], (7.15)

C3 = [zij ]
T Σ−1
J [zij ], (7.16)

where, for clarity, we have dropped the subscript j ∈ J in all stacked vectors, e.g. [yj ].

Next, we compare Equation (7.12) to the probability density of a Gaussian mechanism W

that releases ui +W , where W ∼ N (0, σ2
w),

P(ui +W = w) ∝ e−
1
2
u2i σ

−2
w +ui wσ

−2
w − 1

2
w2σ−2

w , (7.17)

and we identify the terms

σ−2
w = [aij ]

TΣ−1
J [aij ], w =

[aij ]
TΣ−1
J [aijzij ]

[aij ]TΣ−1
J [aij ]

. (7.18)

Since Equation (7.17) satisfies the (ε, δ)-privacy constraint if κ(ε, δ) ≤ σ−1
w , then, Equa-

tion (7.7) also satisfies the (ε, δ)-privacy constraint and, thus, MiJ is (ε, δ)-private.
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7.2.2. Design of Covariance Matrix

We now formulate the problem of designing the covariance matrix Σ which provides a

solution to Problem 7. Specifically, we provide a solution to Problem 7 by formulating the

optimization problem in Theorem 24.

Theorem 24. Consider n data owners with private data u = [ui]i∈[n] ∈ Rn and m data

users where κij = κ(εij , δij) is the privacy level of owner i against user j. Then, consider

the mechanism M that securely returns Yj to user j

Mu = Au + V =


Y1

...

Ym

 , (7.19)

where V ∼ N (0m×1,Σ) and Σ ∈ Sm satisfies the constraints

Σjj ≥
a2
ij

κ2
ij

, ∀i ∈ [n], j ∈ [m] and (7.20)

1

aTiJ Σ−1
J aiJ

≥ min
j∈J

Σjj

a2
ij

, ∀J ⊆ [m], i ∈ [n]. (7.21)

Then, mechanism M is multi-input multi-out private. Specifically, M satisfies the privacy

requirements and does not incentivize adversarial coalitions.

Sketch of proof. The first set of constraints follows from the Gaussian mechanism and re-

quires that owner’s i data remains private from user j. The second set of constraints refers

to the correlation of the responses that different users receive and is interpreted as fol-

lows. For any coalition J and any targeted owner i, according to Lemma 23, the most

privacy-violating inference of the adversarial coalition has variance

1

aTiJ Σ−1
J aiJ

. (7.22)

We, then, require that there exists a colluding user j∗ ∈ J that already has inferred user’s
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i data ui with smaller variance.

Theorem 24 provides necessary conditions for a mechanism to be MIMO private. On the

downside, Theorem 24 has exponentially many in the number of users constraints. Addi-

tionally, the covariance matrix may be over-constrained and, thus, the feasibility problem

might be infeasible. Lastly, the second set of constraints is non-convex which makes the

design of the covariance matrix challenging.

Nonetheless, the expressitivity of Theorem 24 allows focusing only a subset of potential

coalitions. For example, the system designer can choose to focus only on coalitions up to

fixed size or ignore coalitions across non-cooperative groups of users. In particular, for

agents that act both as data owners and data users, we can ignore coalitions where agent i

participates and attempt to attack herself.

Next, in Theorem 25 we propose a convex relaxation which provides privacy of each owner

from each user and approximately de-incentivizes users’ coalitions.

Theorem 25. In the setting of Theorem 24, let the covariance matrix Σ be the solution of

the following optimization problem

minimize
Σ∈Sm

‖diag(Σ)‖p (7.23)

s.t. Σjj ≥ max
i

a2
ij

κ2
ij

, ∀j (7.24)D−1
iJ aTiJ

aiJ ΣJ

 � 0, ∀J , i, (7.25)

where

DiJ = min
j∈J

[
a−2
ij max

l∈[n]

(
alj
κlj

)2
]
. (7.26)

Then, M is approximately MIMO private. Specifically, M provides κij privacy of owner i

from user j and approximately de-incentives coalitions.
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Proof. Let Σ satisfy the constraints of Theorem 24. Then, for any J ⊆ [m] and i ∈ [n]

1

aTiJ Σ−1
J aiJ

≥ min
j∈J

Σjj

a2
ij

≥ min
j∈J

[
1

a2
ij

max
l∈[n]

(
a2
lj

κ2
lj

)]
= DiJ . (7.27)

Since DiJ > 0 and using Schur’s complement we get

1

aTiJ Σ−1
J aiJ

≥ DiJ ⇔

D−1
iJ aTiJ

aiJ ΣJ

 � 0. (7.28)

Regarding accuracy, user’s j response has variance Σjj and, thus, we choose an objective

function that minimizes the diagonal elements of Σ. This formulation approximates the

design of a MIMO private mechanism using a convex semi-definite program.

7.3. Simulations: Smooth Local Averaging

For a case study, we consider n agents who act both as data owners and data users. Spe-

cifically, we assume that each user i has a scalar private data ui ∈ R. For example, data

ui can capture the health status of agent i or a privately computed exposure to risk (e.g.

debt-to-equity ratio). Then, each agent wishes to estimate the smooth local average qi(u)

of its neighborhood. For instance, such an average captures the probability of an agent

getting infected by other nodes or the cascade exposure to risk.

Specifically, we consider n agents each placed at location xi ∈ [0, 1]2 uniformly randomly.

Then, each agent wishes to compute a smooth local average qi of the private data u,

qi(u) =
∑
j 6=i
‖xi − xj‖−1 uj . (7.29)

In words, agent i weighs input more from nearby agents than from more distant ones.

Additionally, we assume that the agents are connected by an undirected graph G = ([n], E),

where E ⊆ [n]2 captures the friendships; agents i and j are connected with an edge (i, j) ∈ E

whenever they are friends. Then, let d : [n]2 → R+ be a measure of how far away agents i
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and j lie in this graph, captures the trust level between the two agents, and quantifies the

privacy level required between i and j as follows

εij = d−1(i, j), δij = .01 εij , κij = κ(εij , δij). (7.30)

Here, we choose d(i, j) to be the resistance distance Klein and Randić (1993), Xiao and

Gutman (2003). Next, we apply Theorem 25 in order to design a MIMO private mechanism.

Specifically, we consider the following SDP, where we only consider coalitions of size up to

mmax and worst variance of the responses that agents receive.

minimize
Σ∈Sn

max
i

Σii (7.31)

s.t. Σii ≥ max
j

(
aij
κij

)2

, ∀i ∈ [n]; (7.32)D−1
iJ aTiJ

aiJ ΣJ

 � 0, (7.33)

∀J ⊆ [n] s.t. |J | ≤ mmax and ∀ i ∈ [n] \J . (7.34)

We evaluate our approach by computing the worst-case incentive to form a coalition; given

any potential coalition J and any targeted agent i, we compute how much more information

the most-informed agent j∗ ∈ J can extract about the targeted agent by participating in

the coalition. Formally, we define Incentive as

Incentive := max
i∈[n],

i 63J⊆[n]
s.t. |J |≤mmax−1

min
j /∈J
j 6=i

κ of i from J ∪ {j}
κ of i from j

, (7.35)

where the expression κ of i from j is the privacy level that protects agent’s i private data

from the response that agent j receives; as a reminder, larger values correspond to less

privacy. Specifically, min chooses the most informed agent j∗ and the max chooses the

worst-case option over all possible coalitions and possible targets. Figure 16 plots this

quantity for different sizes of the network n ∈ [2, 16] and coalition sizes up to mmax ∈ [2, 4].
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Furthermore, we evaluate the effect of performance of the SDP in the following two ways:

• We compare the variance
√

Σii of the response Yi that agent i receives to that a

baseline where each user uses the results in Chapter 3 which completely de–incentivizes

coalitions of any size. Specifically, Figure 17 plots the ratio Improvement defined as

Improvement := max
i∈[n]

√∑
j∈[n],
j 6=i

(
aij
κij

)2

√
Σii

, (7.36)

where the numerator is the variance of the baseline. Importantly, the baseline assumes

that each agent i retains all the information {Zji}j∈[n] as side information, whereas,

the proposed approach does not require agents to retain such side information.

• We compare the proposed method to the case where we do not protect the private

data against coalitions. This figure of merit captures how performance degrades in

order to defeat coalitions. Figure 18 compares the variance
√

Σii that agent i observes

to the variance maxi
aij
κij

that agent i would ideally observe in the absence of the rest

of the users:

Inefficiency := max
i∈[n]

√
Σii

maxj∈[n],
j 6=i

aij
κij

. (7.37)

In all cases, we averaged the figures of merit over 20 executions.
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Figure 16: The semidefinite constraints are not binding and, thus, there exists some incen-
tive for agents to form adverserial coalitions. Allowing coalitions of size up to mmax = 2, 3, 4,
we compute Incentive which captures this gap. Note that Incentive ≥ 1 and larger va-
lues result to stronger incentives for agents to collaborate.
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Figure 17: A baseline approach to MIMO privacy utilizes Koufogiannis and Pappas (2017a),
where agents independently diffuse their private data. The figure of merit Improvement
catpures the performance of proposed approach to such a baseline. Althouhg, for very
small sizes, the baseline performs better, the proposed approach outperforms the baseline
for larger networks.
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Figure 18: The existence of multiple users force the privacy-enforcing mechanism to inject
more noise. We quantify the toll on the accuracy of the responses by plotting Inefficiency
which compares the amount of noise added to that of a mechanism that ignores possible
coalitions and adds only privacy-preserving noise.
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CHAPTER 8: Conclusions and Future Directions

Privacy–preserving techniques are becoming immensely needed in IoT and cloud–based

services. Differential privacy provides a formal and robust solution by requiring that the

statistics of a published response have controlled dependence on the private data. Despite

the wide spectrum of applications within differential privacy, a common assumption states

that the private data is fixed, the strength of the privacy needs is predefined, and a single

response is published to everyone. The work in this thesis presents problems where these

underlying modeling assumptions are relaxed in various ways. Future work can potentially

focus on extending differential private mechanisms under such relaxed assumptions. For

example, in Chapter 4, gradual release of private data was proven to be possible only for

a class of privacy–preserving mechanisms. Extending these results to more sophisticated

mechanisms is of interest. Also, Chapter 6 presented a model and a numerical approach

to building privacy–preserving mechanisms where the local privacy level depends on the

private data itself. Although the so–called privacy level map was assumed given, in practice,

a technique for designing this map is needed. Additionally, Chapter 7 focused only on

linear queries and a specific model under which coalitions form. Extending this work to a

broader class of queries and other models of the data users is another important direction.

Furthermore, optimality results such as the ones presented in the appendix are scarce or are

stated in an asymptotic sense in the literature. The need for optimality results is dictated

by the fact that they are often needed in formulating problems similar to those presented

in Chapter 3.
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APPENDIX A: Optimality Results

Computing the optimal private mechanism for a fixed privacy level ε is considered an open

problem for the general case. The Laplace mechanism is a special instance of the exponential

mechanism (McSherry and Talwar (2007)) for real spaces (Rn, `1).

Definition 26 (Laplace Mechanism). Let (Rn, `1) be the space of private data. The Laplace

mechanism is defined as:

Qu = u+ V, where V ∼ e−ε‖V ‖1 . (A.1)

The Laplace mechanism can be shown to be ε-differentially private. In general, however,

the Laplace mechanism is suboptimal in the sense of minimum mean-squared error. For

the single-dimensional case, the staircase mechanism Geng and Viswanath (2014) is the

optimal ε-differentially private mechanism; the mechanism which adds noise V whose dis-

tribution is shown in Figure 19. However, the Laplace mechanism is widely used and has

several optimality results. Specifically, it is proven to be “universally” optimal —optimally

approximating a single linear query, under any prior on private data— and, additionally, it

is the optimal ε-Lipschitz private mechanism in the sense of both minimum entropy Wang

et al. (2014) and minimum mean–squared error Koufogiannis et al. (2015), whereas the

staircase mechanism fails to satisfy Lipschitz privacy due to its discontinuous probability

density function.

A.0.1. Identity Query under `1–norm

Theorem 27. Consider the ε-Lipschitz private (in (Rn, `1)) mechanism Q : Rn → ∆ (Rn)

of the form Qu = u+V , with V ∼ g(V ) ∈ ∆ (Rn). Then, the Laplace mechanism that adds

noise with density ln1 (v) =
(
ε
2

)n
e−ε‖v‖1 minimizes the mean-squared error. Namely, for any
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Figure 19: The staircase mechanism is the optimal ε-differential private mechanism, whereas
the Laplace mechanism is the optimal ε-Lipschitz private mechanism. The two distributions
are similar and there is only a small performance gap. Therefore, the Laplace distribution
is often used in practice.

density g, we have:

E‖Qu− u‖22 = E
V∼g
‖V ‖2 ≥ E

V∼ln1
‖V ‖22 =

2n

ε2
. (A.2)

For the scalar case (n = 1), we give the following proof. A more detailed one can be found

in Koufogiannis et al. (2015).

Proof. The optimal mechanism is the solution of the following optimization problem:

minimize
g∈∆(R)

E
V∼g

V 2

s.t. Q is ε-Lipschitz private.

(A.3)

The optimization is assumed over the infinite-dimensional space of probability measures

over the real line. For a simplified proof, we restrict our attention to probability measures

that are continuous and almost everywhere differentiable. This assumption is removed in
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the technical proof. The privacy constraint is massaged:

Q is ε-Lipschitz private ⇒∣∣∣∣ ddu lnP(Qu = y)

∣∣∣∣ ≤ ε, ∀u, y ⇔∣∣∣∣ dduP(V = y − u)

∣∣∣∣ ≤ εP(V = y − u), ∀u, y ⇔

∣∣g′(v)
∣∣ ≤ εg(v), ∀v.

(A.4)

Specifically, g should be continuous and g′ should exist almost everywhere. Problem (A.3)

can, then, be restated as a linear program:

minimize
g:AC(R→R+)

∫
R
v2g(v)dv

s.t.

∫
R
g(v)dv = 1,

− εg(v) ≤ g′(v) ≤ εg(v), ∀v ∈ R,

(A.5)

where AC denotes the set of absolutely continuous functions. Problem (A.5) is an infinite-

dimensional linear program with uncountably many constraints. We assign the dual varia-

bles λ ∈ R and κ, µ : R → R+ for the two constraints, respectively. The dual of Problem

(A.5) is:

maximize
λ∈R,η∈C1(R→R)

λ

s.t. η′(v) + ε|η(v)| ≤ v2 − λ, ∀v ∈ R,

lim
v→∞

η(v) ≥ 0, lim
v→−∞

η(v) ≤ 0.

(A.6)

Once both primal Problem (A.5) and dual Problem (A.6) are stated, we construct primal

and dual feasible solutions, summon weak duality, and establish optimality. The Laplace

distribution g(v) = ε
2e
−ε|v| is a primal feasible solution for Problem (A.5) with cost 2

ε2
.

Moreover, we construct a dual feasible solution for Problem (A.6) with cost arbitrarily

close to λ∗ = 2
ε2

. Specifically, for any λ < λ∗, we are able to construct a dual feasible
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Figure 20: The dual variable η(v) is the solution to the intial value problem η′(v)+ε|η(v)| =
v2 − λ, η(0) = 0 for different values of λ. A feasible solution needs to satisfy the boundary
constraint limv→∞ η(v) ≥ 0. For λ < λ∗, the solution η is feasible.

solution (λ, η) that satisfies the initial value problem:

η(0) = 0 and η′(v) + ε|η(v)| = v2 − λ, ∀v ∈ R\{0}. (A.7)

Figure 20 plots the unique solution η : R→ R of the initial value problem (A.7) for different

values of λ. For λ < λ∗, the unique solution η of the initial value problem (A.7) is feasible

since it satisfies the boundary constraints:

lim
v→∞

η(v) ≥ 0, lim
v→−∞

η(v) ≤ 0. (A.8)

On the contrary, the dual variable η is infeasible for λ ≥ λ∗. Weak duality establishes the

optimality of the Laplace mechanism. Surprisingly, the dual solution η(v) = − 1
ε2
v(ε|v|+ 2)

for the optimal value λ∗ is infeasible. The infinite dimensionality of the problem leads to

an open set of feasible solutions for problem (A.6) and generates this paradox.

For higher dimensions, we leverage the result for n = 1.
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Proof. The optimal mechanism is the solution of the following optimization problem:

minimize
g:AC(Rn→R+)

∫
Rn
g(v)vT vdv

s.t.

∫
Rn
g(v)dv = 1,

‖∇g(v)‖∞ ≤ εg(v), ∀v ∈ Rn.

(A.9)

The last constraint is equivalent to

−εg(v) ≤ ∂g

∂vi
≤ εg(v), ∀v ∈ Rn, ∀i ∈ {1, . . . , n}. (A.10)

We consider the dual variables λ ∈ R and κi, µi : Rn → R+, set ηi(v) = µi(v)− κi(v), and

derive the dual problem:

maximize
λ∈R,ηi∈C1(Rn→R)

λ

s.t.
n∑
i=1

{
∂ηi
∂vi

+ ε|ηi(v)|
}
≤

n∑
i=1

v2
i − λ,

lim
vi→∞

ηi(v) ≥ 0, lim
vi→−∞

ηi(v) ≤ 0, ∀i.

(A.11)

The solution g(v) =
(
ε
2

)n
e−ε‖v‖1 is feasible for the primal Problem (A.9) and features cost

2n
ε2

. A feasible solution for the dual Problem (A.11) is defined as:

ηi(v) = η1D(vi), λ = nλ1D, (A.12)

where (λ1D, η1D) is a feasible dual solution for the single-dimensional case given by the

initial value problem (A.7). Therefore, the dual Problem (A.11) admits a feasible solution

with cost arbitrarily close to 2n
ε2

. Weak duality establishes the optimality of the Laplace

mechanism.
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A.1. Identity Query under `2–norm

Differential privacy with respect to the `1-norm captures privacy against the participation of

individual users. The `2-norm is a more suitable for users that contribute high-dimensional

data such as GPS and power consumption traces. Once again, a version of the Laplace

mechanism is proven to achieve minimum mean-squared-error among all ε-Lipschitz private

mechanisms that approximate the identity query by adding oblivious noise:

Theorem 28. Consider the ε-Lipschitz private (with respect to the `2-norm) mechanism

Q : Rn → ∆ (Rn) of the form Qu = u + V , with V ∼ g ∈ ∆ (Rn). Then, the Laplace

mechanism that adds noise V with density g = ln2 (v) ∝ e−ε‖v‖2 minimizes the mean-squared

error:

E
V∼g
‖V ‖2 ≥ E

V∼ln2
‖V ‖22 =

n(n+ 1)

ε2
. (A.13)

Proof. Once again, the optimal private mechanism is posed as an optimization problem:

minimize
g:AC(Rn→R+)

∫
Rn
g(v) vT v dnv

s.t.

∫
Rn
g(v)dnv = 1,

∇g(v) · â ≤ εg(v), for a.e. v ∈ Rn,

∀â ∈ Rn, ‖â‖2 = 1,

(A.14)

where the last constraint is equivalent to the privacy constraint ‖∇g(v)‖∗2 ≤ εg(v). Consider

the dual variables λ ∈ R and κ : Rn × Sn−1 → R+, where Sn−1 = {â ∈ Rn : ‖â‖2 = 1}.
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Moreover, set η(v) = κ(v)− µ(v), and formulate the dual problem of Problem (A.14):

maximize
λ∈R,κ∈Rn×Sn−1→R+

λ

s.t. ∇ ·
(∫
Sn
âκ(v, â)dâ

)
+ ε

∫
Sn
κ(v, â)dâ ≤ vT v − λ,

lim
‖v‖2→∞

∫
Sn
â · v κ(v, â)dâ ≥ 0.

(A.15)

A feasible solution for the primal problem (A.14) is:

g(v) =
εnΓ

(
n
2 + 1

)
π
n
2 Γ(n+ 1)

e−ε‖v‖2 , (A.16)

with mean-squared error λ∗ = n(n+1)
ε2

. On the other hand, there exists a dual feasible

solution for Problem (A.15) with cost arbitrarily close to λ∗. Consider a dual feasible

solution of the form:

κ(v, â) = [η(‖v‖2)]+ δ

(
â+

v

‖v‖2

)
+ [η(‖v‖2)]− δ

(
â− v

‖v‖2

)
,

(A.17)

where δ is Dirac’s delta function on the unit n-sphere Sn−1, η : R+ → R is a suitable

function, and [·]+ and [·]− are the positive and negative parts of a function, respectively.

Then, we can reduce the feasible region of Problem (A.15) and rewrite it as

maximize
λ∈R,η:R+→R

λ

s.t. η′(r) +
n− 1

r
η(r) + ε|η(r)| ≤ r2 − λ

lim
r→∞

η(r) ≥ 0.

(A.18)

Similarly to the proof of Theorem 27, a feasible solution (λ, η) of Problem (A.18) of the
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Figure 21: The dual variable η(v) is the solution to the intial value problem η′(r)+ n−1
r η(r)+

ε|η(r)| = r2 − λ, η(0) = 0 for different values of λ. A feasible solution needs to satisfy the
boundary constraint limv→∞ η(v) ≥ 0. For λ < λ∗, the solution η is feasible.

following form is constructed:

η′(r) +
n− 1

r
η(r) + ε|η(r)| = r2 − λ and η(0) = 0 (A.19)

Figure 21 shows the solution of the initial value problem (A.19) for different values of λ.

For λ < λ∗, the solution is feasible and, thus, the optimality of the density (A.16) for the

initial value problem (A.14) is established.

Again, for λ = λ∗, the dual solution η(r) = − r(rε+n+1)
ε2

is infeasible as a result of the

infinite-dimensional nature of problem (A.19).

Sample from distribution (A.16) can be efficiently generated. The magnitude r = ‖v‖2

of the noise is drawn from the Gamma distribution r ∼ εn

Γ(n)e
−εrrn−1 and the direction

v̂ = v
‖v‖2 is uniformly sampled from the sphere Sn−1.
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APPENDIX B: Proofs of Chapter 3

Theorem 8 is established in multiple steps. First, we focus on the discrete-domain process

{Vεi}mi=1, where ε1 ≤ · · · ≤ εm and, in particular, on the case of m = 2, with ε1 ≤ ε2 <
√

2ε1, where the second inequality is due to technical reasons. Next, we prove the Markov

property which allows m discrete privacy levels. Finally, we pass to the limit and derive

the continuous-domain process {Vε}ε>0 as stated in Theorem 8.

Proof for two privacy levels. We consider the stochastic process Vε supported on two pri-

vacy levels {ε1, ε2}, where ε1 ≤ ε2 <
√

2ε1. Allowing generalized functions, we assume that

the joint distribution of Vε1 and Vε2 has density:

P(Vε1 = x, Vε2 = y) = lε1,ε2(x, y) (B.1)

=: g(x, y), x, y ∈ Rn (B.2)

Density (B.1) should satisfy the following marginal distributions and privacy constraints:

∫
Rn
g(x, y)dny = εn1C1e

−ε1‖x‖2 , (B.3)∫
Rn
g(x, y)dnx = εn2C1e

−ε2‖y‖2 , (B.4)

‖∇xg(x, y) +∇yg(x, y)‖2 ≤ ε2 g(x, y), (B.5)

where C1 =
Γ(n

2
+1)

π
n
2 Γ(n+1)

. The first two constraints express that Vε1 and Vε2 should be Laplace-

distributed with parameters 1
ε1

and 1
ε2

, respectively. The last constraint enforces that the

mechanism that releases (u+ Vε1 , u+ Vε2) must be ε2-private and, thus, the mechanism’s

log-density needs to be ε2-Lipschitz. We solve for densities g of the form

g(x, y) = εn2C1φ(x− y)e−ε2‖y‖2 , (B.6)
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where φ : Rn → R is a (possibly generalized) function satisfying

∫
Rn
φ(x− u)εn2e

−ε2‖u‖2dnu = εn1e
−ε1‖x‖2 ,∫

Rn
φ(u)dnu = 1.

(B.7)

The first equation in (B.7) is a n-dimensional convolution with solution

Fφ(s) =
M(s; ε1)

M(s; ε2)
, (B.8)

whereM(s; ε) = F
{
εne−ε‖x‖2

}
(s), and s ∈ Rn is the frequency. Solution (B.8) satisfies the

second equation in (B.7) since

∫
Rn
φ(u)dnu = Fφ(s)|s=0 =

M(0; ε1)

M(0; ε2)
= 1. (B.9)

Finally, we need to prove that, for φ given in (B.8), density g is well-defined, specifically:

φ(z) ≥ 0, ∀z ∈ Rn. (B.10)

This is proven under the assumption that ε2 <
√

2ε1; this assumption will eventually be

removed. According to Lemma 29, we get:

Fφ(s) =
M(s; ε1)

M(s; ε2)
=

(
ε1
ε2

)n+1(
1 +

ε22 − ε21
ε21 + ρ2

)n+1
2

=

(
ε1
ε2

)n+1 ∞∑
k=0

(n+1
2

k

) ε22
ε21
− 1

1 + ρ2

ε21

k

,

(B.11)

where ρ = ‖s‖2. The sum in the right-hand side is an infinite series only when n is even,

and, for ε2 <
√

2ε1, it converges uniformly in s to the left-hand side. Lemma 30 can be
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used to invert the series:

φ(x) =

(
ε1
ε2

)n+1 ∞∑
k=0

(n+1
2

k

)
∗k
{(

ε22
ε21
− 1

)
εn1 (2π)−

n
2

(ε1r)
1−n

2Kn
2
−1(ε1r)

}
,

(B.12)

where r = ‖x‖2, Kk(x) is the modified Bessel function of the second kind, and ∗ is the

n-dimensional convolution. Since
ε22
ε21
−1 ≥ 0 and Kn

2
−1(r) ≥ 0, density g is well-defined.

Next, we prove that the discrete-domain stochastic process {Vεi}i∈{1,...,m} is Markov.

Proof of the Markov property. Consider the discrete-domain process {Vεi}i∈{1,...,m} suppor-

ted on m non-decreasing privacy levels {ε1, . . . , εm}, and the joint distribution that satisfies

the Markov property:

dP(Vεi = vi, ∀i) = lε1:m(v1, . . . , vm)

= dP(Vε1 = v1)d
m∏
i=2

P(Vεi = vi|Vεi−1 = vi−1)

= lε1(v1)
m∏
i=2

lεi−1:i(vi−1, vi)

lεi−1(vi−1)
,

(B.13)

where lε(v) ∝ e−ε‖v‖2 is the n-dimensional Laplace distribution with parameter ε−1 and

lε1,ε2(v1, v2) is the density g from the previous proof. Then, the joint distribution lε1:m

satisfies the following properties:

• Accuracy: Each coordinate Vεi is optimally-distributed, i.e. Laplace-distributed with
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parameter ε−1
i :

P(Vεi = vk) =

∫
Rn(m−1)

lε1:m(v1, . . . , vm)dv−i (B.14)

= lεi(vi), (B.15)

where dv−i = dv1 · · · dvi−1 dvi+1 · · · dvm.

• Privacy: The mechanism that releases {yi}mi=1, where yi = u+ Vεi is εm-private. In-

deed, the mechanism can be expressed as:



y1

...

ym−1

ym


=



u+ Vε1
...

u+ Vεm−1

u+ Vεm



= (u+ Vεm) +



∑m
i=2 Vεi−1 − Vεi

...

Vεm−1 − Vεm

0


.

(B.16)

Density lεi−1,εi defined in (B.12) can be re-written in the form

lε1:m(v1, . . . , vm)

= dP(Vm = vm)

m−1∏
i=1

dP(Vi = vi|Vi+1 = vi+1),
(B.17)

where

dP(Vi = vi|Vi+1 = vi+1) =
`εi:i+1(vi, vi+1)

`i+1(vi+1)
(B.18)

depends only on the quantity vεi−vεi+1 . Therefore, Vm is independent of the differences

Vεi − Vεi+1 . Thus, the mechanism can be viewed as the composition of the εm-private
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mechanism that releases u + Vεm post-processed by adding independent noise. Since

differential privacy is resilient to post-processing Dwork and Roth (2013), the overall

mechanism is εm-private.

Finally, we derive the continuous domain process {Vε}ε>0 by passing to the limit as the

m → ∞, ε1 = 0, and ε → ∞. Specifically, we derive closed-form expressions that lead to

efficient algorithms for sampling of the continuous-domain stochastic process.

Proof of the continuous-domain process. In density (B.12), let ε1 = ε and ε2 = (1 + τ)ε,

where 0 < τ � 1. Then, we prove that we can safely ignore high-order terms:

φε(x) ∝ δ(x) + F−1

{
(n+ 1)τ

1 + ρ2

ε2

}
+O

(
τ2
)

(B.19)

= δ(x) +
εn(n+ 1)

(2π)
n
2

(εr)1−n
2Kn

2
−1(εr)τ +O

(
τ2
)
, (B.20)

where r = ‖x‖2. We discretize a bounded interval [ε, ε] by considering K+1 points ε(i) = qiε,

where q =
(
ε
ε

)K−1

, and define the random variable Z as follows:

Z := Vε − Vε =

K∑
i=1

Vε(i−1) − Vε(i) , (B.21)

where the random variables {Vε(i)}Ki=0 form a discrete-domain stochastic process introduced

in (B.13). For large K, the step τ = q − 1 becomes arbitrarily small and, thus, we use the

first-order approximation in B.19 for each telescoping term (Vε(i−1) − Vε(i)) ∼ φε(i) . Finally,
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the random variable Z is distributed as:

Z ∼ ∗Ni=1φε(i)(Z) (B.22)

= ∗Ni=1

{
δ(Z) +

(
ε(i)
)n

(n+ 1)

(2π)
n
2

(ε(i)‖Z‖2)1−n
2 (B.23)

Kn
2
−1(ε(i)‖Z‖2)τ

}
+O (τ) , (B.24)

where we let τ → 0. This proves that we can approximate the continuous-domain stochastic

process by a first-order approximation of the discrete-domain process.

Equation (B.19) characterizes the stochastic process {Vε}ε>0. The atom renders the sto-

chastic process lazy; with high probability, the process is constant over sufficiently small

intervals. The linear term governs the statistics of the the jump.

B.1. Proof of Proposition 9

We now provide the proof of Proposition 9 that characterizes the jumps of the stochastic

process {Vε}ε>0 and, thus, captures the complexity of Algorithm 1.

Proof. Consider the first-order approximation of the backwards conditional distribution φε

derived in (B.19), where 0 < ε and 0 < δ � 1:

P(Vε = x|V(1+δ)ε = y) ≈ (1 + (n+ 1)τ)−1 (B.25)(
δ(x) +

εn(n+ 1)

(2π)
n
2

(εr)1−n
2Kn

2
−1(εr)τ

)
(B.26)

Let an(x) denote the probability that the process performs n jumps in the interval [ε, exε].

Equation (B.25) shows that, for sufficiently small intervals [ε, (1 + τ)ε], the process remains

constant with probability (1 + (n+ 1)τ)−1, therefore, an(x) is invariant of ε. Under the
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discretization introduced earlier, where ε← ε and ε← exε:

a0(x) = P(0 jumps in [ε, exε]) = e−(n+1)x. (B.27)

A limiting argument is used to compute a1(x):

a1(x) = lim
K→∞

K∑
k=1

P
(

0 jumps in [ε, ε(k−1)]
)

(B.28)

P
(

1 jump in [ε(k−1), ε(k)]
)
P
(

0 jumps in [ε(k), exε]
)

(B.29)

= (n+ 1)xe−(n+1)x. (B.30)

A similar argument provides a recurrent equation and eventually:

ak(x) =
((n+ 1)x)k

k!
e−(n+1)x. (B.31)

Therefore, for a bounded interval interval [ε, ε], the number n of jumps is characterized by

distribution (B.31), which is the Poisson distribution with mean value (n+ 1) ln
(
ε
ε

)
.

B.2. Fourier Transform Pairs

In this section, we derive two Fourier pairs used in the proof of Theorem 8. By convention,

the following definition of Fourier transform f
F↔ F is used:

F {f} (s) =

∫
Rn
f(x)e−jx·sdnx, (B.32)

(B.33)

where f, F : Rn → R.

Lemma 29. The n-dimensional Fourier transform F of f : Rn → R:

f(x) = e−‖x‖2 (B.34)
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is:

F {f} (s) =
π
n
2 Γ(n+ 1)

Γ
(
n
2 + 1

) (1 + ‖s‖22
)−n+1

2 , (B.35)

where s ∈ Rn.

Lemma 30. The n-dimensional Fourier transform F of f : Rn → R, f(x) = ‖x‖1−
n
2Kn

2
−1(‖x‖),

is:

F {f} (s) =
(2π)

n
2

1 + ρ2
, (B.36)

(B.37)

where x ∈ Rn, ρ = ‖s‖2, and Kk(z) is the modified Bessel function of the second kind.

The integrals are formulated using spherical coordinates and, then, symbolically evaluated

with Mathematica 10.0. For an non-automated evaluation of the expressions, we refer the

reader to MathWorld Weisstein (2015) and references therein, and integral look-up tables

Abramowitz and Stegun (1964). We remark that the Bessel function Kk(z) diverges at

z = 0; for 0 < z � 1, it is Kk(z) ≈ Γ(k)
2

(
2
x

)k
. Therefore, its Fourier integral converges as

the limit of the Laplace transform. This technicality is circumvented here by using look-up

tables.
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APPENDIX C: Proofs of Chapter 4

We provide a proof of Theorem 15 which allows relaxing the privacy parameters within the

framework of approximate differential privacy.

Proof. For a given t, the added noise Vt is distributed according to the Gaussian mechanism

for parameters (εt, δt). In order to prove the privacy property, we re-write the released signal

as follows:

{Qτu}tτ=−∞ = Qtu+ {Vτ − Vt}tτ=−∞. (C.1)

Mechanism (C.1) can, then, be viewed as the composition of the (εt, δt)-private mecha-

nism with a randomized post-processing. Indeed, the post-processing is independent of the

mechanism Qtu since:

Bσ(ετ ,δτ ) −Bσ(εt,δt) ⊥ Bσ(εt,δt), ∀τ ≤ t, (C.2)

where we used the monotonicity of σ(εt, δt).
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APPENDIX D: Proofs of Chapter 5

Here, we provide proofs for the two main theorems presented in this work.

Proof of Theorem 16. We will prove the theorem by assuming that the mechanism initially

publishes a noisy version x̂0 of the initial state x0, where

x̂0 = x0 + E0, (D.1)

where E0 is artificial noise and we are going to prove the privacy guarantees for such a

mechanism that publishes x̂0 and, then, sequentially, ŷt. The post–processing theorem

states that the privacy guarantees carry over for the mechanism that does not publish the

initial response x̂0.

At time t, given the initial estimator x̂0 and the published responses [ŷi]
t
i=1, we denote with

x̂t the least–squares estimator of the current state xt. For any time t, it suffices to prove

that the mechanism that, given xt as a private data, publishes the least–squares estimator

x̂t is (εt, δt)-differentially private. Indeed, given xt, the (randomized) function that maps

the estimator to the published responses

x̂t → (x̂0, ŷ1, . . . , ŷt) (D.2)

is a post–processing that is independent of the privacy–preserving mechanism that maps

the private state to its least–squares estimator

xt → x̂t. (D.3)

At time t + 1, for a fixed xt+1, the least–squares estimator x̂t+1 is derived as a linear

combination of the last estimator x̂t = xt + Et and the last published response ŷt+1 =

103



C xt+1 + Vt+1. Specifically, letting

Mt = AΣtA
T +BWtB

T and (D.4)

Nt = BYt −AXt. (D.5)

the least–squares estimator x̂t+1 is computed to be

x̂t+1 = xt+1 +K Vt+1 + (I −KC) (AEt −BWt), (D.6)

where K = (MtC
T + Nt) (CMtC

T + Zt + sym(C Nt))
−1 and sym(A) = A + AT . The

covariance of the estimation error Et+1 = x̂t+1 − xt+1 is then

Σt+1 = Mt − (MtC
T +Nt)

T (D.7)(
CMtC

T + sym(C Nt) + Zt
)−1

(MtC
T +Nt). (D.8)

Next, we relax this equality as follows. The direction of the inequality can be interpreted as

the mechanism publishing a more accurate least–squares estimator than the one computed

from x̂t and ŷt. Later, we will demand that this “tighter” estimator meets our privacy

requirements.

Σt+1 �Mt − (MtC
T +Nt)

T (D.9)(
CMtC

T + sym(C Nt) + Zt
)−1

(MtC
T +Nt) (D.10)

We apply Schur complement to retrieve the second inequality in the constraints of (5.10).

We complete the proof by invoking the Gaussian mechanism and requiring

Σt+1 � κ−2(εt, δt) I. (D.11)
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Proof of Proposition 17. In order to prove feasibility, we need to prove that, for a proper

choice of the decision variables, Σt has full rank. Then, we can scale any such solution in

order to satisfy the privacy constraint. For Zt arbitrarily large, i.e. Zt → ∞, the second

constraint, as stated in the form of Equation D.9 reduces to

Σt � AΣtA
T +BWtB

T . (D.12)

It suffices to prove that the right hand side of the inequality is full rank. Indeed, let v ∈ Rn

be such that vT
(
AΣtA

T +BWtB
T
)
v = 0. Then, vT AΣ

1
2
t = 0 and vT BW

1
2
t = 0 and,

thus, vT A = 0 and vT B = 0. Since [A;B] has rank n, this implies that v = 0 and this

completes the proof.

Proof of Theorem 18. For simplicity, we assume that at 6= 0. First, we observe that E(ŷt −

yt)
2 = EV 2

t ≥ 2
ε2t

due to the optimality of the Laplace mechanism Wang et al. (2014),

Koufogiannis et al. (2015). On the other hand, we use induction on t and prove that

Vt ∼ `εt . For t = 1, it holds that V1 ∼ `ε1 . For t+ 1, we consider two cases.

• If εt > |at| εt+1, since Vt ∼ `εt and Wt ∼ `εt+1| εt|at|
and are independent, it follows that

Vt+1 = at Vt −Wt ∼ `εt+1 .

• If εt ≤ |at| εt+1, then, by integrating out Vt we get that Vt+1 ∼ `εt+1 .

Therefore, the minimum cost is achieved and this proves the second part of Theorem 18.

Next, we prove the privacy guarantees using induction on t. We abuse notation by using the

symbol P for probability densities and re-use the same symbol for the random variable and

its value Specifically, we prove that, at time t and given the current state xt, the likelihood

probability of the past responses is of the form

P(ŷ1, . . . , ŷt) = `εt(ŷt − xt)h(ŷ1, . . . , ŷt), (D.13)
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for some function h. Note that the density in Equation (D.13) does not depend on past

states {xi}i<t. For t = 1 and given x1, it holds

P(ŷ1 = z1) = P(V1 = z1 − x1) = `ε1(z1 − x1). (D.14)

For t+ 1, we consider two cases.

• If εt > |at| εt+1, we condition on the Wt and from the induction hypothesis we get,

given xt+1

P(ŷ1, . . . , ŷt|Wt = w) (D.15)

= `εt

(
ŷt −

xt+1 − w
at

)
h(ŷ1, . . . , ŷt). (D.16)

Since ŷt+1 = at ŷt, we compute

P(ŷ1, . . . , ŷt+1) (D.17)

=

∫
R
P(ŷ1, . . . , ŷt|Wt = w)P(Wt = w) dw (D.18)

= `εt+1(ŷt+1 − xt+1)h1(ŷ1, . . . , ŷt+1), (D.19)

for a function h2.

• If εt ≤ |at| εt+1, given xt+1

P(ŷ1, . . . , ŷt) = `εt

(
ŷt −

xt+1

at

)
h(ŷ1, . . . , ŷt). (D.20)
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Then, given xt+1

P(ŷ1, . . . , ŷt+1) (D.21)

= P(ŷ1, . . . , ŷt)P(ŷt+1|ŷt) (D.22)

= P(ŷ1, . . . , ŷt) (D.23)

P
(
Vt+1 = ŷt+1 − xt+1|Vt = ŷt −

xt+1

at

)
(D.24)

= `εt+1(ŷt+1 − xt+1)h2(ŷ1, . . . , ŷt+1), (D.25)

for a function h2.

We finish the proof by noting that the log–likelihood function of the responses is εt-Lipschitz

in xt

∣∣∣∣ ddxt lnP(ŷ1, . . . , ŷt)

∣∣∣∣ = εt. (D.26)
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