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Particle, Polymer & Phase Dynamics In Living Fluids

Abstract
Flocks of birds, schools of fish, and jams in traffic surprisingly mirror the collective motion observed in the
microscopic wet worlds of living microbes, such as bacteria. While these small organisms were discovered
centuries ago, scientists have only recently examined the dynamics and mechanics of suspensions that contain
these swimming particles. I conduct experiments with the model organism and active colloid, the bacterium
Escherichia coli, and use polymers, particles, and phase-separated mixtures to probe the non-equilibrium
dynamics of bacterial suspensions. I begin by examining the hydrodynamic interactions between swimming E.
coli and particles. For dilute suspensions of bacteria in Newtonian fluids, I find that larger particles can diffuse
faster than smaller particles - a feature absent in passive fluids, which may be important in particle transport in
bio- and geo-physical settings populated by microbes. Next, I investigate E. coli dynamics in non-Newtonian
polymeric solutions. I find that cells tumble less and move faster in polymeric solutions, enhancing cell
translational diffusion. I show that tumbling suppression is due to fluid viscosity while the enhancement in
swimming speed is due to fluid elasticity. Visualization of single fluorescently-labeled DNA polymers reveals
that the flow generated by individual E. coli is sufficiently strong that polymers can stretch and induce elastic
stresses in the fluid. These, in turn, can act on the cell in such a way to enhance its transport. Lastly, I probe the
interplay between kinetics, mechanics, and thermodynamic of active fluids by examining the evolution of an
active-passive phase interphase. I create this interface by exposing regions of a dense bacterial swarm to UV
light, which locally immobilizes the bacteria. Vortices etch the interface, setting interface curvature and speed.
The local interface curvature correlates with the interface velocity, suggesting an active analog of the Gibbs-
Thomson boundary condition. My results have implications for the burgeoning field of active soft matter,
including insight into their bulk rheology, how material properties are defined and measured, and their
thermodynamics and kinetics.
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ABSTRACT

PARTICLE, POLYMER & PHASE DYNAMICS IN LIVING FLUIDS

Alison E. Koser

Paulo E. Arratia

Flocks of birds, schools of fish, and jams in traffic surprisingly mirror the col-

lective motion observed in the microscopic wet worlds of living microbes, such as

bacteria. While these small organisms were discovered centuries ago, scientists have

only recently examined the dynamics and mechanics of suspensions that contain these

swimming particles. I conduct experiments with the model organism and active col-

loid, the bacterium Escherichia coli, and use polymers (< 1 µm), particles (1-10 µm),

and phase-separated mixtures (> 100 µm) to probe the non-equilibrium dynamics of

bacterial suspensions. I begin by examining the hydrodynamic interactions between

swimming E. coli and particles. For dilute suspensions of bacteria in Newtonian flu-

ids, I find that larger particles can diffuse faster than smaller particles - a feature

absent in passive fluids, which may be important in particle transport in bio- and

geo-physical settings populated by microbes. Next, I investigate E. coli dynamics

in non-Newtonian polymeric solutions. I find that cells tumble less and move faster

in polymeric solutions, enhancing cell translational diffusion. I show that tumbling

suppression is due to fluid viscosity while the enhancement in swimming speed is due

to fluid elasticity. Visualization of single fluorescently-labeled DNA polymers reveals

that the flow generated by individual E. coli is sufficiently strong that polymers can

stretch and induce elastic stresses in the fluid. These, in turn, can act on the cell

in such a way to enhance its transport. Lastly, I probe the interplay between kinet-

ics, mechanics, and thermodynamic of active fluids by examining the evolution of an
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active-passive phase interphase. I create this interface by exposing regions of a dense

bacterial swarm to UV light, which locally immobilizes the bacteria. Vortices etch

the interface, setting interface curvature and speed. The local interface curvature cor-

relates with the interface velocity, suggesting an active analog of the Gibbs-Thomson

boundary condition. My results have implications for the burgeoning field of active

soft matter, including insight into their bulk rheology, how material properties are

defined and measured, and their thermodynamics and kinetics.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Active materials are ubiquitous in nature and permeate an impressive range of length

scales, ranging from collectively swimming schools of fish (L ∼ km) [1] and marching

armies of ants (L ∼mm) [2] to motile microorganisms (L ∼ µm) [3–6] and cellular

molecular motors (L ∼ nm) [1, 8]. Suspensions of self-propelling active particles,

which inject energy internally and create flows within the fluid medium, constitute

so-called active fluids [9, 10]. The internally-injected energy drives the fluid out of

equilibrium (even in the absence of external forcing) and can lead to swirling collective

motions [11] and beautiful pattern formations [12,13], that naively appear unique to

life. Indeed, the motility of swimming microorganisms such as nematodes, bacteria,

protozoa and algae has been a source of wonder and curiosity for centuries now.

Indeed, upon discovering bacteria in 1676, Anton van Leeuwenhoek proclaimed: “I

must say, for my part, that no more pleasant sight has ever yet come before my eye

than these many thousands of living creatures, seen all alive in a little drop of water,

moving among one another” [14].

Since then, scientists have observed and classified other collective large-scale pat-
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Figure 1.1: An overview of active colloidal systems - natural and synthetic. (a)-(c): Individual
natural swimming microorganisms arranged in order of increasing size: (a) prokaryotic bacterium
Escherichia coli with cell body approximately 2 µm [29], (b) Eukaryotic unicellular alga Chlamy-
domonas reinhardtii with a cell body that is approximately 8 µm [5], and (c) multi-cellular organism
C. elegans that is appoximately 1 mm long [30]. (d)-(f) Examples of collective behavior seen in
aggregates of microorganisms: (d) a bacterial colony of P. vortex on agar [31], (e) bioconvection of
algae under shear [17], and (f) cooperative behavior in sperm [32]. (g)-(i) Synthetic swimmers: (g)
field driven translation of helical magnetic robots [33], (h:A) magnetically driven chain comprised
of paramagnetic spheres attached via DNA strands [34], (h:B) metachronal waves generated by re-
constituted microtubule-motor extracts [35], and (i) magnetically driven surface snakes comprised
of self-assembled 80-100 µm spheres [36].
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terns in active fluids, such as vortices [15, 24], flocks [16], and plumes [17–19] that

form at high concentrations of their organisms and highlight the link between life,

fluid flow, and complex behavior. Surprisingly, recently-developed synthetic materi-

als/particles also exhibit these life-like complex behaviors, and include materials, such

as shaken grains [20,21], phoretic colloidal particles [11,22], and soft field-responsive

gels [23]. These active particles (living or synthetic, hard or soft), as collected in Fig.

1.1, have sizes that range from a few tenths of a micron to a few hundred microns,

spanning colloidal length scales over which thermal noise is important [24]. The per-

sistent motion of these active colloids allows one to either direct (channel) or extract

(harness) the energy injected at one length scale at other scales. For instance, activ-

ity can render large, normally athermal spheres diffusive [25] and yield controllable,

directed motility of micro-gears [26–28].

Recent interest in active fluids is driven by both practical and scientific rele-

vance [10]. From a technological and engineering standpoint, active suspensions play

an integral role in medical, industrial, and geophysical settings. A handful of ex-

amples include the spread and control of microbial infections [37, 38], the design

of microrobots for drug delivery [39] or non-invasive surgery [40], the biofouling of

water-treatment systems [41] and the biodegradation of environmental pollutants [42].

From a scientific standpoint, active suspensions are interesting in their own right

because they are non-equilibrium systems that exhibit unique and curious features

such as turbulent-like flow in the absence of inertia [43,44], anomalous shear viscosi-

ties [45–47], enhanced fluid mixing [48, 49], and giant density fluctuations [21, 24].

Because these features are generic to many other active materials (e.g. cell, tissues,

vibrated granular matter), active suspensions serve as a playground for understanding

and deciphering generic features of active materials across many length scales.
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The suspending fluid in these active suspensions can be simple and Newtonian

(e.g. water) or complex and non-Newtonian (e.g. mucus). Complex fluids are ma-

terials that are usually homogeneous at the macroscopic scale and disordered at the

microscopic scale, but possess structure at the intermediate scale. Examples include

polymeric solutions, dense particle suspensions, foams, and emulsions. These com-

plex fluids often exhibit non-Newtonian fluid properties under an applied deformation.

These properties include viscoelasticity, yield-stress, and shear-thinning viscosity. An

overarching goal in the study of complex fluids is to understand the connection be-

tween the structure and dynamics of the fluid microstructure to its bulk flow behav-

ior [22, 51]. For example, recent experiments by Keim and Arratia [52, 53], which

visualize a monolayer of dense colloidal particles under cyclic shear at low strains,

have shown how local particle re-arrangements connect to the suspension bulk yield-

ing transition. This work highlights how local measures of the microstructure can

shed new light on the bulk material response in an amorphous material.

In active fluids, it is even more challenging to link the activity at the microscale

to the fluid meso- and macro-scales. This is is because the interplay between the

motion of active particles and the complex fluid rheology of the suspending medium

leads to a number of intricate and often unexpected results. In particular, the local

mechanical stresses exerted by microorganisms in an active colloidal suspension can

alter the local properties of its environment [54]; while, simultaneously, the complex

fluid rheology modifies the swimming gaits and spread of individual organisms [55,75].

It is essential to understand this two-way coupling in order to predict, control, and

mimic the properties of this emerging class of soft active materials.

An important example of this is in living tissues, which are continuously exposed to

stimuli that lead to growth and remodeling of their structure. This remodeling in the

4



tissue microstructure is often implicated in medical conditions such as asthma. Recent

work by Park et al. [56] has shown how tissue microstructural details, such as cell

shape, affects bulk properties, such as fluidity and rigidity. In a similar vein, recent

experiments have shown that the interplay between the motion of active particles

and the complex fluid rheology of the suspending medium leads to a number of

intricate and often unexpected results. In particular, the local mechanical stresses

exerted by swimming bacteria in polymeric solutions can alter the local properties of

its environment [54]; while simultaneously, the complex fluid rheology modifies the

swimming gaits of individual organisms [55, 75]. It is essential to understand this

two-way coupling in order to uncover the universal principles underlying these active

complex materials and in order to design and engineer new active materials.

Here, I review recent work on active colloids moving in fluidic environments and

discuss how recent theory and experiments have elucidated connections between

micro-scale descriptions and the resulting macro-scale collective response. Next, I

identify remaining challenges and present my thesis which investigates the dynamics

of particle, polymers, and phases in suspensions of bacteria as model active fluids.

1.2 Background

1.2.1 Fluid rheology and single swimmers

Single swimmer in Newtonian fluids

Many organisms move in the realm of low Reynolds number Re ≡ `Uρ/µ� 1 because

of either small length scales `, low swimming speeds U or both. In a Newtonian fluid

with density ρ and viscosity µ, this implies that inertial effects are negligible, the

hydrodynamics is governed by the Stokes’ equation, and stresses felt by the swimmer

5



are linear in the viscosity. To therefore achieve any net motion (i.e. swim), microor-

ganisms must execute non-reversible, asymmetric strokes as shown in Fig. 1.2 in

order to break free of the constraints imposed by the so-called “scallop theorem” [57].

In the Stokes’ limit, the flow caused by the moving particle can then be described

as linear superposition of fundamental solutions such as stokelets and stresslets. The

exact form of the generated flow depends on the type of swimmer. For instance, an

externally-actuated swimmer with fixed gaits creates flow that decay a distance r

away from the swimmer as 1/r. A freely propelled swimmer is however both force

free and torque free; therefore the induced fields are due to force dipoles, which decay

as 1/r2, or higher order multipoles. Naturally-occurring, freely-moving organisms can

typically be classified into one of two categories: (i) pullers (negative force dipole)

such as Chlamydomonas reinhardtii [5] or (ii) pushers (positive force dipole) such as

the bacteria Escherichia coli [48] and Bacillus subtilis [24,45]. Note that other organ-

isms such as the alga Volvox carteri may fall between this pusher/puller distinction;

other organisms move by exerting tangential waves along their surfaces and are called

squirmers [4]. While this pusher/puller classification is limited and oversimplified, it

provides a dichotomy for a reasonable framework.

The dipole approximations are useful in estimating force disturbances far from the

swimmer. Closer to the moving swimmer, the flow field is time-dependent and can

significantly deviate from these dipole approximations [58,59]. Significant theoretical

work exists on characterizing these complex temporal and spatial flow fields around

individual swimmers and obtaining approximate descriptions that may then be used

as a first step in understanding how two and more swimmers interact [60]. Other

geometries such as infinitely long waving sheets and cylinders have also been used to

gain insight into the motility behavior of undulatory swimmers such as sperm cells

6



Figure 1.2: Single natural swimmers moving in Newtonian fluids. (a) (i) Experimentally mea-
sured period averaged, color-coded velocity field around Escherichia coli bacterium [60]. (ii) Three-
dimensional streamlines of a simulation of the flow in a frame co-moving with the bacterium [58]. (b)
(i) Averaged streamlines around Chlamydomonas reinhardtii [61] - the color map denoting velocity
magnitudes. (ii) Snapshots of the computed nutrient concentration fields C around a model swim-
mer swimming in a nutrient gradient with undulatory strokes (A) and breaststrokes (B) [62]. (c)
(i) Streamlines around a swimming nematode C. elegans [67] .(ii) Computed velocity fields around
a flexible self-propelling swimmer [68].
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and nematode (C. elegans) [62–64].

A feature common to these theoretical studies is that the swimming gait - i.e, the

temporal sequence of shapes generating the propulsion - is assumed to be constant

and independent of the fluid properties. Recent experiments paint a more colorful

picture. Even in simple Newtonian fluids, fluid viscous stresses can significantly affect

the microorganisms swimming gait and therefore their swimming speed [55,65].

Single swimmer in complex fluids

The two-way coupling between swimmer kinematics and fluid rheological properties

can give rise to many unexpected behaviors for microorganism swimming in complex

fluids. For instance, the stresses in a viscoelastic fluid are both viscous and elastic, and

therefore time dependent. Consequently, kinematic reversibility can break down and

propulsion is possible even for reciprocal swimmers [66, 69]. This effect is especially

important for small organisms since the time for the elastic stress to relax is often

comparable to the swimming period [55, 70]. Therefore, elastic stresses may persist

between cyclic strokes.

Emerging studies - some of which are highlighted in Fig. 1.3 - are revealing the

importance of fluid rheology on the swimming dynamics of microorganisms. Consider

the effects of fluid elasticity on swimming at low Re. Would fluid elasticity enhance

or hinder self-propulsion? Theories on the small amplitude swimming of infinitely

long wave-like sheets [73] and cylinders [74] suggest that fluid elasticity can reduce

swimming speed, and these predictions are consistent with experimental observations

of undulatory swimming in C. elegans [75]. On the other hand, simulations of finite-

sized moving filaments [76] or large amplitude undulations [70] suggest that fluid

elasticity can increase the propulsion speed - consistent with experiments on rotating
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Figure 1.3: Single swimmers moving in viscoelastic fluids. (a) The axial component of fluid velocity
generated by a rotating, force-free helical segment [71]. (b) Particle image velocimetry results for
flow field around a flexible artificial swimmer moving in a two-dimensional fluid (i) vorticity (colors)
and velocity (arrows) and (b) cycle averaged magnitude of the rate of strain tensor. The vorticity
and rate-of-strain fields are normalized by the oscillation frequency. The white regions show the
position of the swimmer at different instants throughout a cycle [72]. (c) (i) The sequence of shapes
(swimming gait) attained by the cilia in Chlamydomonas reinhardtii in Newtonian fluid of viscosity
around 6 Pa.s. The direction of the power stroke is indicated. (ii) The ciliary shapes seen when the
same organism moves in a viscoelastic fluid are dramatically different [55]. (d) Contour plots of the
polymers stress generated around a moving soft swimmer for a (i,ii) soft kicker and a (iii, iv) soft
burrower. The mobility is affected by both the softness of the swimmer as well as by the elasticity
of the fluid through which the swimmer moves [70]. (e) (1) Escherichia coli trajectories in water-
like Newtonian fluid. Trajectories consist of straight segments punctuated by re-orienting tumbles.
(Inset) The cell body wobbles with a characteristic amplitude and frequency. (ii) Replacing the
Newtonian fluid with a viscoelastic fluid results in straighter trajectories with suppressed tumbling
and cell body wobbles [65].
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rigid mechanical helices [77]. In recent work on Chlamydomonas reinhardtii [55], the

investigators found that that the beating frequency and the wave speed characterizing

the cyclical bending of the flagella are both enhanced by fluid elasticity. Despite these

enhancements, the net swimming speed of the alga is hindered for fluids that are

sufficiently elastic. Additionally shear-thinning viscosity effects E. coli may contribute

to the increase in cell velocity [54] in polymer solutions but had little to no effect on

the swimming speed of C. elegans [67]. Overall, the emerging hypothesis is that there

is no universal answer to whether motility is enhanced or hindered by viscoelasticity

or shear-thinning viscosity. Instead, the microorganism propulsion speed in complex

fluids depends on how the fluid microstructure (e.g. polymers, particles) interact with

the velocity fields generated by a particular microorganism.

1.2.2 Suspensions of Active Colloids & Swimmers

In general, a single active entity in a fluid - Newtonian or complex - behaves very dif-

ferently from a suspension comprised of multiple such entities. Examples are shown

in Fig. 1.4. Interactions between multiple swimmers (or active colloids) can lead to

many fascinating phenomena not seen in suspension of passive particles at equilib-

rium including anomalous density and velocity fluctuations, large scale vortices and

jets, and traveling bands and localized asters. Identifying means to relate the mi-

crostructural features (e.g. swimmer local orientation) to macrostructural properties

and bulk phenomena would yield ways to control, manipulate, and even direct the

properties in these novel living systems.
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Figure 1.4: Collective dynamics in active colloids. (a) A snapshot of a swarming bacterial colony of B.
subtilus on agar. Velocity vectors are overlayed on the bacteria. The lengths correspond to the speeds
and are used to identify individual clusters [24]. (b) Scalar fields such as tracer concentration can be
passively advected by the background velocity field generated by motile bacteria, demonstrating the
mixing efficacy of active suspensions [78]. (c) (i-iii) Simulated spatial distribution of microorganisms
in Taylor-Green vortices for different mobilities and elasticities. Relatively higher elastic effects cause
an initially uniform distribution of microorganisms to aggregate. In real systems, where bacteria
secrete polymers, this effect may enhance the aggregation and biofilm formation [79].(iv) Bacterial
biofilm streamers (red) form efficiently at high bacterial concentrations and may lead to catastrophic
blockage in synthetic and natural channels through which fluids flow [80]. (d) Bright field microscopy
image of a mixture of motile bacteria and polymers, evidencing the formation of bacterial clusters
due to depletion effects [81]. (e) (i) Florescence microscopy image of a microtubule active nematic
with defects of charge +1/2 (red) and -1/2 (blue). (ii) Snapshot of simulated nematic with marked
defects. The color of the rod indicates its orientation and the black streamlines guide the eye over
the coarse-grained nematic field [82].
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Figure 1.5: Interplay between passive and active particles. (a) Passive spheres temporarily capture
micro-swimmers. The active colloids are Au-Pt rods moving in aqueous hydrogen peroxide [83].
Trajectories of single rods are shown in blue. (b) Bacterially driven microgears: Collisions between
swimming bacteria and gears drive clockwise or counterclockwise rotation depending on the orien-
tation of the teeth (i vs ii) [26]. (c) Surface topology in the presence of motile bacteria guides an (i)
initial distribution of colloids to (ii) either aggregated (left) or depleted (right) regions [84].
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Dilute suspensions of active particles

A suspension of active colloids is considered dilute when interactions among particles

are negligible. Even in the absence of particle interactions, however, the interplay

between activity and the fluidic environment, as reviewed below, leads to novel and

even unexpected phenomena.

Active particles in Newtonian fluids

In the absence of activity, the shear viscosity η of a dilute suspensions of (passive)

hard spheres is given by the Einstein relation, η = ηs(1 + 5
2
φ) [85], where ηs is the

viscosity of the suspending fluid and φ is the volume fraction of the particles. In

the presence of activity, however, the shear viscosity can be a strong function of

the microorganisms swimming kinematics. We will briefly discuss the origins of this

behavior below.

By using a kinetic theory based approach and solving the Fokker-Plank equation

for the distribution of particle orientations under shear, Saintillan [86] showed that for

a dilute suspension of force dipoles, the zero-shear viscosity η still follows an Einstein-

like relation, η = ηs(1+Kφ), with the constant K now related to swimmer kinematics.

For pushers, K < 0, while for pullers, K > 0. This leads to an interesting result:

activity can either enhance or reduce the fluid viscosity depending on the swimmer

kinematics (puller or pusher).

Due to the exceptionally low shear rates and stresses needed to realize these po-

tential modifications in viscosity, experimental verifications of theories have been

limited [45–47]. In 2009, Sokolov and Aranson [45] presented some of the first ex-

perimental evidence of activity-modified viscosity in a fluid film of pushers (Bacillus

subtilis). They found that the presence of bacteria significantly reduces the suspension

13



effective viscosity. Subsequent experiments using shear rheometers have shown that

the fluid viscosity can be effectively larger in suspensions of C. reinhardtii (pullers) [46]

or lower in suspensions of E. coli (pushers) [47] compared to the case of passive par-

ticles (non-motile organisms) for the same shear-rates. Activity also seems to affect

the suspension extensional viscosity in a similar way [87,88].

Clearly, activity has a fascinating effect on the viscosity of active suspensions; the-

oretical and numerical investigations seem to predict a regime in which the viscosity

of the suspension can be lower than the viscosity of the suspending fluid. This strik-

ing phenomenon has been recently observed in experiments for E. coli (pushers) [45],

where it was also found that the suspension viscosity linearly decreased as the bacte-

rial concentration increased (in the dilute regime). Despite such advances, however,

it has been a challenge to experimentally visualize the evolution of the microstructure

(particle positions and orientations) during the rheological (viscosity) measurements.

This type of information and measurements are critical to obtain insights into the

physical mechanisms leading to this “vanishing” viscosity phenomenon in bacterial

suspensions.

Active particles in complex fluids

Given the evidence that bacterial activity can alter suspension viscosity, it is nat-

ural to expect that the interaction of active particles or microorganisms with the fluid

microstructure (polymers, particles, liquid crystals, cells, and networks) in complex

fluids can also lead to interesting phenomena. Indeed, an extreme example of this is

how even dilute concentrations of bacteria can disrupt long range order in lyotropic

liquid crystals. The presence of bacteria can locally melt the underlying nematic order

and generate large scale undulations with a length scale that balances bacterial activ-
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ity and the anisotropic viscoelasticity of the suspending liquid crystal [89]. Related

experiments using active liquid crystals comprised of reconstituted microtubule-motor

mixtures [82] suggest similar disruptive effects on long range order. In this case, the

active entities are motile defects, which generate flow, and are spontaneously created

and annihilated within the ambient environment, as shown in Fig. 1.4e. These stud-

ies illustrate how even dilute concentrations of active particles can locally deform and

activate the microstructure of complex fluids. These synergistic and dynamic mate-

rials possess qualities (new temporal and spatial scales) distinct from both passive

complex fluids and suspensions of active particles in Newtonian fluids.

The microstructure of complex fluids, however, does not simply submit to the

flow generated by active particles. Instead, as discussed in Section 2.2 and 2.3, the

microstructure couples to the active particles, altering their swimming gait and speed.

Indeed, the microstructure can even be exploited to adaptively guide active particles.

For instance, it has recently been shown that the underlying nematic structure of

lyotropic liquid crystals can align bacteria, controlling their motility and direction [89].

The nematic director can even set the bacterial direction near walls, where near-wall

hydrodynamic torques can reorient cells [90]. In recent experiments, Trivedi et al. [91]

demonstrated that in lyotropic liquid crystals bacteria can transport particles and

non-motile eukaryote cells along the nematic director. Conversely, passive particles

(≈ 1-15 µm diameter) can be used to manipulate and capture active particles (self-

propelled Au-Pt rods) [83], which tend to orbit along surfaces of passive particles, as

shown in Fig. 1.5a. Together, these works seem to mirror the trafficking of cargo in

cells by active motors [1] and suggest novel methods to transport active and passive

components of these living, complex fluids, some of which are highlighted in Fig. 1.5.
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Non-dilute suspensions of active particles

The investigations briefly discussed above highlight the striking role of activity on

material fluid properties even in the dilute regime when particle interactions are neg-

ligible. As the concentration of particles increases, however, the particle interactions

(either steric and aligning interactions or hydrodynamic interactions) can suddenly

give rise to collective motion and unexpected fluid rheology, as reviewed next.

Perhaps one of the first models for collective motion was proposed by Toner and

Tu [16] using a modification of the classical liquid crystal model in the absence of

fluid hydrodynamic interactions. This seminal work has been significantly extended

theoretically to cover a range of interactions. Interestingly, these models as well as

simpler discrete agent-based simulations are able to capture many of the universals

features observed in natural active colloidal systems including flocking and collective

behavior.

In order to incorporate the role of fluid interactions, recent mean-field models use

dipole approximations in simple (Newtonian) fluids. Recent reviews by Koch and

Subramanian [92] and Marchetti, et al. [10] summarize linear stability analyses of

these mean-field models. The general consensus of these studies is that hydrody-

namic interactions mediated by the fluid can, in some cases, destabilize homogeneous

suspensions and assist collectively moving states.

Even when the suspending fluid is Newtonian, interactions between active par-

ticles can induce non-Newtonian features, such as elasticity. In order to model the

rheology of active suspensions, Hatwalne et al. [93] generalized the kinetic equations

for liquid crystals and obtained a general expression for frequency-dependent stress in

an oscillatory shear flow. This stress depends on the detailed swimming kinematics

(pusher or puller), the active correlation times, and the density. Importantly, the
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theory predicts that – as the system approaches an orientational-order transition –

this previously Newtonian fluid begins to exhibit elasticity, with elastic stresses than

increase with the orientational order. This work highlights how the active particle

microstructure can dramatically alter the bulk material properties.

On this front, experimental investigations have remained a challenge. It is difficult

to track the dynamics of dense active particles and the resultant fluid flows they

generate, and coupling these types of observations with simultaneous bulk rheology

measurements has yet to be done in detail. More studies are needed to understand

this coupling - even in the case of a suspending simple Newtonian fluid. The structure

and dynamics of dense active suspensions - in the case of non-Newtonian suspending

fluids - is new ground for exploration.

1.3 Thesis Overview

After review of the current literature, it is clear that many outstanding questions

remain to be answered. In this work, I will focus on two of these questions. They are

1. One, how does the two-way, non-linear coupling between swimmer and fluid at

microscopic scales affect the dynamics and properties at macroscopic scales?

2. Two, is it possible - as in classical, passive mechanics and thermodynamics -

that effective equations of state can describe these active, far from equilibrium

systems?

To this end, I explore particle, polymer, and phase dynamics in suspensions of

the archetypical model organism E. coli. This work spans a wide class of active

materials, bridging Newtonian and non-Newtonian suspending fluids and bacterial
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concentrations that range from dilute and non-interacting to dense and collectively-

moving. Figure 1.6 shows snapshots of the diverse experimental fluids. The following

is a brief outline of the thesis work.

Chapter 2 starts by examining the dynamics of swimming E. coli suspended in

Newtonian fluids by using tracer particles of varying size. For dilute suspensions of

bacteria in Newtonian fluids, I find that larger particles can diffuse faster than smaller

particles - a feature absent in passive fluids. This anomalous particle-size dependence

is due to an interplay between the active dynamics of the E. coli and the passive

Brownian motion of the particle and has broad implications for particle transport in

active fluids ranging from geophysical to biophysical settings.

In Chapter 3, I investigate E. coli swimming dynamics in non-Newtonian fluids,

namely, polymeric solutions. I find that even small amounts of polymer in solution

can drastically change E. coli dynamics: cells tumble less and their velocity increases,

leading to an enhancement in cell translational diffusion and a sharp decline in ro-

tational diffusion. I show that tumbling suppression is due to fluid viscosity while

the enhancement in swimming speed is mainly due to fluid elasticity. Visualization

of single fluorescently-labeled DNA polymers reveals that the flow generated by in-

dividual E. coli is sufficiently strong to stretch polymer molecules and induce elastic

stresses in the fluid, which in turn can act on the cell in such a way to enhance its

transport. These results show that the transport and spread of chemotactic cells can

be independently modified and controlled by the fluid material properties.

Chapter 4 describes tests of the use of constitutive equations and thermodynamic

equations of state to active fluids, by creating and examining the structure and dy-

namics of an active-passive phase separated system. This interface is created in a

bacterial swarm, by transforming regions of the swarm into passive phases by expos-
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Figure 1.6: Snapshots of experimental fluids. (A) Particles: A sample trajectory of a 39 µm bead
in a suspension of E. coli (B) Polymers: A fluorescently stained DNA molecule with polymer end-
to-end distance ` suspended in an active environment. (C) Phases: An active phase comprised of a
bacterial swarm on agar.

ing them to UV light, which immobilizes the bacteria. We find that the interface

stabilizes the collective motion of the bacteria, generating larger and longer-lasting

vortex structures compared to the bulk. The vortices, in return, etch the interface,

setting the interface’s structure and curvature. The local interface curvature correlates

with the local interface velocity, suggesting an active analog of the Gibbs-Thomson

boundary condition.

I conclude in Chapter 5 by summarizing the results, discussing its implications,

and providing perspective.
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Chapter 2

Particle dynamics in active fluids:

The role of particle size on particle

diffusion in aqeuous E. coli

suspensions.

2.1 Introduction

The diffusion of molecules and particles in a fluid is a process that permeates many aspects of our

lives including fog formation in rain or snow [1], cellular respiration [2], and chemical distillation

processes [3]. At equilibrium, the diffusion of colloidal particles in a fluid is driven by thermal motion

and damped by viscous resistance [4]. In non-equilibrium systems, fluctuations are no longer only

thermal and the link between these fluctuations and particle dynamics remain elusive [5]. Much effort

has been devoted to understanding particle dynamics in non-equilibrium systems, such as glassy

materials and sheared granular matter [6]. A non-equilibrium system of emerging interest is active

matter. Active matter includes active fluids, that is, fluids that contain self-propelling particles,

such as motile microorganisms [7, 24], catalytic colloids [9, 11] and molecular motors [11]. These
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particles inject energy, generate mechanical stresses, and create flows within the fluid medium even

in the absence of external forcing [12,13]. Consequently, active fluids display fascinating phenomena

not seen in passive fluids, such as spontaneous flows [24], anomalous shear viscosities [7,14], unusual

polymer swelling [15, 16], and enhanced fluid mixing [2, 4, 8, 19]. Active fluids also play important

roles in varied biological and ecological settings, which include the contributions of suspensions

of microorganisms to biofilm infections [21, 22], biofouling of water-treatment systems [23], and

biodegradation of environmental pollutants [24].

The motion of passive particles in active fluids (e.g. suspension of swimming microorganisms)

can be used to investigate the non-equilibrium properties of such fluids. At short times, particle

displacement distributions can exhibit extended non-Gaussian tails. At long times, particles exhibit

enhanced diffusivities Deff greater than their thermal (Brownian) diffusivity D0 [2, 2, 4, 4, 8–10, 19,

25]. These traits are a signature of the non-equilibrium nature of active fluids; the deviation from

equilibrium also manifests in violations of the fluctuation dissipation theorem [28].

In bacterial suspensions, the enhanced diffusivity Deff depends on the concentration c of bacteria.

In their seminal work, Wu and Libchaber [25] experimentally found that Deff increased linearly with

c in suspensions of E. coli. Subsequent studies [7,9,10,29–31] have observed that this scaling holds at

low concentrations and in the absence of collective motion. In this regime, Deff can be decomposed

into additive components as Deff = D0 +DA [7,9,10,29–31] where D0 and DA are the thermal and

active diffusivities, respectively. It has been proposed that the active diffusivity DA is a consequence

of advection due to far-field interactions with bacteria [9] and may even be higher near walls [9,10].

While a majority of studies have focused on the role of bacterial concentration c on particle

diffusion, the role of particle diameter d remains unclear. In the absence of bacteria, the diffusivity of

a sphere follows the Stokes-Einstein relation, D0 = kBT/f0, where kB is the Boltzmann constant, T is

the temperature, and f0 = 3πµd is the Stokes friction factor [4] in a fluid of viscosity µ. In a bacterial

suspension, this relation is no longer expected to be valid. Surprisingly, for large particles (4.5 and

10 µm), Wu and Libchaber [25] suggested that Deff scales as 1/d, as in passive fluids. Recent theory

and simulation by Kasyap et al. [7] however do not support the 1/d scaling and instead predict a non-

trivial dependence of Deff on particle size, including a peak in Deff . This non-monotonic dependence

of Deff on particle size implies that measures of effective diffusivities [25], effective temperatures [12,

33], and momentum flux [9, 10] intimately depend on the probe size and thus are not universal
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Figure 2.1: Trajectories of 2 µm particles (a) without bacteria and (b) with bacteria (c = 3 × 109

cells/mL) for time interval 8 s. Trajectories of (c) 0.6 and (d) 16 µm particles (c = 3×109 cells/mL).
Scale bar is 20 µm.
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measures of activity. This has important implications for the common use of colloidal probes in

gauging and characterizing the activity of living materials, such as suspensions of bacteria [9, 10],

biofilms [11,34], and the cytoskeletal network inside cells [36], as well as in understanding transport in

these biophysical setting. Despite the ubiquity of passive particles in active environments, the effects

of size on particle dynamics in active fluids has yet to be systematically investigated in experiments.

In this chapter, I experimentally investigate the effects of particle size d on the dynamics of

passive particles in suspensions of Escherichia coli. Escherichia coli [37] are model organisms for

bacterial studies and are rod-shaped cells with 3 to 4 flagella that bundle together as the cell swims

forward at speed U approximately 10 µm/s. I change the particle size d from 0.6 µm to 39 µm, above

and below the effective total length (L ≈ 7.6 µm) of the E. coli body and flagellar bundle. I find

that Deff is non-monotonic in d, with a peak at 2 < d < 10 µm; this non-monotonicity is unlike the

previously found 1/d scaling [25] and suggests that larger particles can diffuse faster than smaller

particles in active fluids. Furthermore, the existence and position of the peak can be tuned by

varying the bacterial concentration c. The active diffusion DA = Deff −D0 is also a non-monotonic

function of d and can be collapsed into a master curve when rescaled by the quantity cUL4 and

plotted as a function of the Péclet number Pe = UL/D0 (cf. Fig. 2.5(b)). This result suggests

that the active contribution to particle diffusion can be encapsulated by an universal dimensionless

dispersivity D̄A that is set by the ratio of times for the particle to thermally diffuse a distance L

and a bacterium to swim a distance L.

2.2 Experimental Methods

Active fluids are prepared by suspending spherical polystyrene particles and swimming E. coli (wild-

type K12 MG1655) in a buffer solution (67 mM NaCl in water). The E. coli are prepared by growing

the cells to saturation (109 cells/mL) in culture media (LB broth, Sigma-Aldrich). The saturated

culture is gently cleaned by centrifugation and resuspended in the buffer. The polystyrene particles

(density ρ = 1.05 g/cm3) are cleaned by centrifugation and then suspended in the buffer-bacterial

suspension, with a small amount of surfactant (Tween 20, 0.03% by volume). The particle volume

fractions φ are below 0.1% and thus considered dilute. The E. coli concentration c ranges from

0.75 to 7.5 ×109 cells/mL. These concentrations are also considered dilute, corresponding to volume
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fractions φ = cvb <1%, where vb is the volume [9] of an E. coli cell body (1.4 µm3).

A 2 µl drop of the bacteria-particle suspension is stretched into a fluid film using an adjustable

wire frame [2,7,38] to a measured thickness of approximately 100 µm. The film interfaces are stress-

free, which minimizes velocity gradients transverse to the film. I do not observe any large scale

collective behavior in these films; the E. coli concentrations I use are below the values for which

collective motion is typically observed [7] (≈ 1010 cells/ml ). Particles of different diameters (0.6 µm

< d < 39 µm) are imaged in a quasi two-dimensional slice (10 µm depth of focus). I consider the

effects of particle sedimentation, interface deformation, and confinement on particle diffusion and

find that they do not significantly affect my measurements of effective diffusivity in the presence of

bacteria (for more details, please see Appendix A.1). Images are taken at 30 frames per second using

a 10X objective (NA 0.45) and a CCD camera (Sony XCDSX90), which is high enough to observe

correlated motion of the particles in the presence of bacteria (Fig. 2.2) but small enough to resolve

spatial displacements. Particles less than 2 µm in diameter are imaged with fluorescence microscopy

(red, 589 nm) to clearly visualize particles distinct from E. coli (2 µm long). I obtain the particle

positions in two dimensions over time using particle tracking methods [38, 39]. All experiments are

performed at T0 = 22◦C.

2.3 Results and Discussion

2.3.1 Mean Square Displacements

Representative trajectories of passive particles in the absence and presence of E. coli are shown

in Fig. 2.1 for a time interval of 8 s. By comparing Fig. 2.1(a) (no E. coli) to Fig. 2.1(b)

(c = 3 × 109 cells/mL), I readily observe that the presence of bacteria enhances the magnitude of

particle displacements compared to thermal equilibrium. Next, I compare sample trajectories of

passive particles of different sizes d, below and above the E. coli total length L ≈ 7.6 µm. Figure

2.1(c) and 2.1(d) show the magnitude of particle displacement for d = 0.6 µm and d = 16 µm,

respectively. Surprisingly, I find that the particle mean square displacements in the E. coli suspension

are relatively similar for the two particle sizes even though the thermal diffusivity D0 of the 0.6 µm

particle is 35 times larger than that of the 16 µm particle. The 16 µm particles also appear to

be correlated for longer times than the 0.6 µm particles. These observations point to a non-trivial
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dependence of particle diffusivity on d.

Figure 2.2: (a) Mean-square displacements (MSD) of 2 µm particles versus time ∆t for varying
bacterial concentration c. Dashed line is a fit to Langevin dynamics (eqn (2.1)). (b) MSD for
varying particle diameter d versus time for bacterial concentration c = 3.0 × 109 cells/mL. The
MSD peaks at d = 2 µm. The cross-over time τ (arrows) increases with d. Solid lines are Langevin
dynamics fits.

To quantify the above observations, I measure the mean-squared displacement (MSD) of the

passive particles for varying E. coli concentration c (Fig. 2.2(a)) and particle size d (Fig. 2.2(b)).

Here, I define the mean-squared particle displacement as MSD(∆t) = 〈|r(tR + ∆t)− r(tR)|2〉, where

the brackets denote an ensemble average over particles and reference times tR. For a particle

executing a random walk in two dimensions, the MSD exhibits a characteristic cross-over time

τ , corresponding to the transition from an initially ballistic regime for ∆t� τ to a diffusive regime

with MSD ∼ 4Deff∆t for ∆t� τ .

Figure 2.2(a) shows the MSD data for 2 µm particles at varying bacterial concentrations c. In

the absence of bacteria (c = 0 cells/mL), the fluid is at equilibrium and Deff = D0. For this case, I

are unable to capture the crossover from ballistic to diffusive dynamics due to the lack of resolution:
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for colloidal particles in water, for example, cross-over times are on the order of nanoseconds and

challenging to measure [40]. Experimentally, the dynamics of passive particles at equilibrium are

thus generally diffusive at all observable time scales. I fit the MSD data for the d = 2 µm case (with

no bacteria) to the expression MSD = 4D0∆t, and find that D0 ≈ 0.2 µm2/s. This matches the

theoretically predicted value from the Stokes-Einstein relation; the agreement (O) can be visually

inspected in Fig. 2.3(a).

In the presence of E. coli, the MSD curves exhibit a ballistic to diffusive transition, and I find

that the cross-over time τ increases with c. For ∆t � τ , the MSD ∼ ∆t with a long-time slope

that increases with bacteria concentration c. Additionally, the distribution of particle displacements

follows a Gaussian distribution (see Appendix A.2 for details and measures of the non-Gaussian

parameter). These features, MSD ∼ ∆t and Gaussian displacements, indicate that the long-time

dynamics of the particles in the presence of E. coli is diffusive and can be captured by a physically

meaningful effective diffusion coefficient Deff .

I next turn our attention to the effects of particle size. For varying particle diameter d at a fixed

bacterial concentration (c = 3 × 109 cells/ml), the MSD curves also exhibit a ballistic to diffusive

transition, as shown in Fig. 2.2(b). Surprisingly, I find a non-monotonic behavior with d. For

example, the MSD curve for the 2 µm case sits higher than the 39 µm case and the 0.6 µm case.

This trend is not consistent with classical diffusion in which MSD curves are expected to decrease

monotonically with d (D0 ∝ 1/d). I also observe that the cross-over time τ increases monotonically

with d. As I will discuss later in the chapter, the cross-over time scaling with d also deviates from

classical diffusion.

2.3.2 Diffusivity and Cross-over Times

I now estimate the effective diffusivities Deff and cross-over times τ of the passive particles in the

bacterial suspensions. To obtain Deff and τ , I fit the MSD data shown in Fig. 2.2 to the MSD

expression attained from the generalized Langevin equation [6], that is

MSD(∆t) = 4Deff∆t
(

1− τ

∆t

(
1− e−∆t

τ

))
. (2.1)

Equation 1 has been used previously to interpret the diffusion of bacteria [16] as well as the diffusion
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Figure 2.3: (a) Effective particle diffusivities Deff versus particle diameter d at varying c. The
dashed line is particle thermal diffusivity D0. (b) The crossover-time τ increases with d, scaling as
approximately dn, where 1/2 . n . 1. This is not the scaling in passive fluids [6] where τ ∝ d2.

of particles in films with bacteria [11]. In the limit of zero bacterial concentration, DA = 0 and

eqn (2.1) reduces to the formal solution to the Langevin equation for passive fluids, MSD(∆t) =

4D0∆t
(
1− τ0

∆t

(
1− e−∆t/τ0

))
with τ0 = τ(c = 0). For more details on the choice of model, see

Appendix A.3.

Figure 2.3 shows the long-time particle diffusivity Deff (Fig. 2.3(a)) and the cross-over time τ

(Fig. 2.3(b)) as a function of d for bacterial concentrations c = 0.75, 1.5, 3.0 and 7.5×109 cells/mL. I

find that for all values of d and c considered here, Deff is larger than the Stokes-Einstein values D0 at

equilibrium (dashed line). For the smallest particle diameter case (d = 0.6 µm), Deff nearly matches

D0. This suggests that activity-enhanced transport of small (d . 0.6 µm) particles or molecules

such as oxygen, a nutrient for E. coli, may be entirely negligible [7]. For more information, including

figures illustrating the dependence of Deff on c and comparisons between my measured effective

diffusivities and previous experimental work, see sections Appendix A.2.4 and Appendix A.2.3 in

the supplemental materials.

Figure 2.3(a) also reveals a striking feature: a peak Deff in d. My data demonstrates that,

remarkably, larger particles can diffuse faster than smaller particles in suspensions of bacteria. For

example, at c = 7.5×109 cells/mL (©) the 2 µm particle has an effective diffusivity of approximately

2.0 µm2/s, which is nearly twice as high as the effective diffusivity of the 0.86 µm particle, Deff =1.3

µm2/s. I also observe that the peak vanishes as c decreases. For the lowest bacterial concentration

(c = 0.75× 109 cells/mL), there is no peak: Deff decreases monotonically with d. Clearly, Deff does
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not scale as 1/d.

Figure 2.3(b) shows the cross-over times τ characterizing the transition from ballistic to diffusive

regimes as a function of particle size d for varying c. I find that the values of τ increase with d and c.

I note that the variation of τ with c (Figure A.3 in Appendix) does not follow a linear form. Instead,

the data suggests possible saturation of τ for suspensions of higher – but still dilute – concentrations.

The cross-over time τ scales with particle diameter approximately as τ ∼ dn, where 1
2 . n . 1. This

cross-over time does not correspond to the inertial relaxation of the particle. Therefore, this scaling

does not follow the trend seen for passive particles at thermal equilibrium [6], where τ , being the

Stokes relaxation time (order 1 ns), scales as m/f0 ∝ d2 with particle mass m ∝ d3. The data (Fig.

2.3(b)) highlights that in active fluids the super-diffusive motion of the passive particles cannot be

ignored – even for time scales as large as a second – and that the time scales over which diffusive

motion is valid (∆t > τ) depends on the size d of the particle. Further implications of a particle

size-dependent cross-over time will be discussed below.

2.3.3 Effective Temperature

The data so far suggests that particle dynamics in bacterial suspensions, while having an anomalous

size-dependence (Figs. 2.1,2.2,2.3), maintain the characteristic super-diffusive to diffusive dynamics

for passive fluids [6]. The long-time diffusive behavior (Fig. 2.2) and enhancement in Deff (Fig.

2.3(a)), which is rooted in particle-bacteria encounters, suggest that the particles behave as if they

are suspended in a fluid with an effectively higher temperature.

To explore the concept of effective temperature in bacterial suspensions, I measure the distribu-

tion of particle speeds p(v) as a function of bacterial concentration c. The particle speed distributions

determine the mean kinetic energy of the particles. If the distribution follows a Maxwell Boltzmann

form – as is always the case in fluids at equilibrium – the mean kinetic energy is related to the

thermodynamic temperature via the equipartition theorem. Such a relationship may not always

exist for out-of-equilibrium fluids.

Figure 2.4(a) shows p(v) for d = 2 µm case for a range of c. I define the particle speeds v over

a time interval of 0.5 s. This time interval is greater than the crossover times for the 2 µm particles

(cf. Appendix Figure A.3) to ensure that a particle samples multiple interactions with bacteria and

exhibits diffusive behavior. In the absence of bacteria, the system is in thermal equilibrium and p(v)
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Figure 2.4: (a) Distribution of 2 µm particle speeds p(v) follow a Maxwell-Boltzmann distribution
(solid curves) with clear peaks that shift right as c increases. (b) The effective temperature Teff

extracted by fitting p(v) data to eqn (2.2) (4) matches those obtained from an extended Stokes-
Einstein relation (©). (c) The effective temperature Teff increases with d for varying c.

follows the two dimensional Maxwell-Boltzmann distribution,

p(v) = vm(kBTeff)−1e
−mv2

2kBTeff , (2.2)

with peak speeds vmax =
√

2kBTeff/m, where m is the mass of the polystyrene particle. Fitting the

p(v) data in the absence of bacteria (∇ in Fig. 2.4(a)) to eqn (2.2) yields Teff ≈ T0, as expected.

In the presence of bacteria, the particle speed distributions also follow a Maxwell-Boltzmann

form, eqn (2.2), with peaks that shift toward higher values of v as the E. coli concentration c

increases. Because the data follows the Maxwell-Boltzmann form (Fig. 2.4(a)) for all c, this indicates

that there is no correlated motion at long times as is the case in swarming bacterial suspensions, for

which the particle speed distribtuions exhibits an exponential decay [42]. I also note that the power

spectra of particle speeds (Appendix A.2.4) are reasonably flat, consistent with white-noise forcing

and an absence of correlated motion. Figure 2.4(a) thus indicates that an effective temperature Teff

can be defined from p(v) and is increasing with the bacterial concentration.

To quantify this ‘enhanced’ temperature and the deviation from equilibrium behavior, I fit the

p(v) data (Fig. 2.4(a)) to eqn (2.2). These fits allow us to obtain Teff as a function of c, as shown

in Fig. 2.4(b) (4). Also shown in Fig. 2.4(b) are the values extracted of Teff (©) from an extended

Stokes-Einstein relation, Teff = 3πµdDeff/kB , where Deff are the values from the MSD fits shown in

Fig. 2.3(a) and µ is the viscosity of the solvent (µ ≈ 1 mPa s). I find that both estimates of Teff are

higher than room temperature T0 and increase linearly with c.

For a fluid at equilibrium, the temperatures from these two methods, MSD and p(v), are expected
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to be the same but not for systems that are out of equilibrium [5, 6, 43, 44], such as the bacterial

suspensions investigated here. The good agreement in Fig. 2.4(b) suggests that Teff may be a useful

signature of bacterial activity with some analogies to equilibrium systems. Note that in defining the

effective temperature via the generalized Stokes-Einstein relation, I have assumed the viscosity to

be a constant and independent of bacterial concentration, which may not be true when the bacterial

concentrations are sufficiently high [45]. Figure 2.4(b) suggests that an unchanging viscosity is a

valid assumption for my system.

As shown in Fig. 2.4(b), the estimates of Teff are higher than room temperature T0 and increase

linearly with c at least for c < 7.5 × 109 cells/mL. In this regime (c < 7.5 × 109 cells/mL), the

bacterial suspensions can be consider dilute and homogenous with particle-bacteria interactions

being binary to leading order. Additionally, in the absence of collective behavior, fluctuations in

bacterial concentration scale as
√
c. These features imply that the effective diffusivity Deff has a

linear dependence on c, consistent with my measurements (see Appendix A.2.4 for figure and more

details). Therefore, the extended Stokes-Einstein relationship suggests effective temperature also

scales linearly with concentration, as shown in Fig. 2.4(b).

At the highest concentration (c = 7.5 × 109 cells/mL), the slope in the Teff versus c curve

decreases. This decreasing slope may be understood using a momentum flux argument for purely

steric interactions that include the bacteria and particle size. In the over-damped systems, as in my

bacteria suspensions, the momentum flux to the particle due to bacteria-particle interactions results

in excess kinetic energy, which is eventually dissipated away viscously. At low concentrations, the

flux (and therefore the active temperature) is proportional to c. If interactions are not purely binary,

as at high concentrations, the bacteria size as well as particle size may limit the number of bacteria

interacting with the particle at any given time and Teff may saturate due to finite size effects.

Finally, I investigate the role of particle diameter in the suspension effective temperature. Figure

2.4(c) show the values of Teff estimated from an extended Stokes-Einstein relation as a function of

d for different values of c. Surprisingly, I find that Teff increases with particle size d, a behavior

different from thermally equilibrated systems where temperature does not depend on the probe size.

I note that for the largest particle diameter, d = 39 µm, estimated Teff values are approximately 100

times greater than room temperature T0 = 295 K, consistent with previous reports [25].

The dependence of Teff on particle size d (Fig. 2.5(a)) may be understood through the previously
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introduced extended Stokes-Einstein relation, Teff = Defff0/kB = T0 + (3πµDA/kB) d, where T0 =

(3πµD0/kB)d. If DA were independent of d, then Teff would be linear in d. However, a linear fit does

not adequately capture the trend over the full range of particle diameters. This is a consequence of

the particle size dependent Deff shown in Fig. 2.3(b) and hints at a particle-size dependent active

diffusivity DA. This variation of Teff with d highlights the interplay between particle size and the

properties of the self-propelling particles (E. coli) as well as challenges in gauging activity using

passive particles.

2.3.4 Active Diffusivity of Passive Particles in Bacterial Sus-

pensions

To explore the aforementioned dependence of DA on particle size, I plot DA = Deff − D0 with d.

Here, D0 is the particle thermal diffusivity (in the absence of bacteria1) and is obtained from the

Stokes-Einstein relation D0 = kBT0

3πµd . Indeed, as shown in Fig. 2.5(a), DA exhibits a non-monotonic

dependence on d for all c.

To understand the observed dependence of the active diffusivity on the particle size, I consider

the relevant time scales in my particle/bacteria suspensions, namely: (i) the time for the particle to

thermally diffuse a distance L equal to the total bacterial length L2/D0, (ii) the time for a bacterium

to swim at a speed U for a distance L given by L/U , and (iii) the mean run time which is the inverse

of the tumbling frequency ω−1
T . Dimensionless analysis then suggests there are two independent

time parameters: (i) the ratio of the first two above, which is the Péclet number, Pe ≡ UL/D0, and

(ii) τ∗ = U/ωTL, which is the ratio of the run length U/ωT to the bacterial length.

It is these two parameters, Pe and τ∗, that govern the particle dynamics in my experiments.

When the Péclet number is much less than one, then the thermal particle diffusion dominates

and transport by the bacteria is ineffective. When the Péclet number is much larger than one, then

thermal diffusion is negligible and the transport is due to the convection from bacteria.The swimming

1For a suspension of passive particles of volume fraction φ, the Einstein viscosity [46] is µ =
µ0(1 + 5φ/2), where µ0 is the viscosity of the suspending medium. In the absence of collective
motion, the maximum change in the viscosity due to bacteria (since they are force free and exert
no drag on the fluid) in my bacterial suspensions (with volume fractions of φ = 1%) is thus 2.5%.
Therefore, µ and D0 is not expected to change significantly with the bacterial concentrations used
here. This is consistent with the observation that the effective temperature estimates from both an
extended Stokes-Einstein relation and particle speed distribution (Fig. 4b) agree.
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speed U , tumble frequencies ω−1
T , and combined length of the cell body and flagellar bundle L are

estimated from prior experiments [16,47] with E. coli as approximately 10 µm/s, 1 s−1, and L ≈ 7.6

µm, respectively. Thus, in my experiments, the Péclet number varies from approximately 130 to

8600, via the particle bare diffusivity D0 (through the particle diameter). I note that one stain

of bacteria is used – thus, the run length and bacteria size do not change in my experiments, and

consequently, τ∗ ≈ 1.8 is a constant.

Figure 2.5: (a) Active diffusivities DA = Deff −D0 are non-monotonic with particle size for varying
concentrations of bacteria. (b) Scaled hydrodynamic diffusivity DA = DA/cUL

4 collapses with
Péclet number Pe = UL/D0. The maximum DA occurs at PeA between 450 and 4500. For 100 <
Pe < PeA, DA scales as Peα, where α ≈ 2.

In order to gain insight into the non-trivial dependence of DA on d, I scale out the concentration

dependence by introducing the dimensionless active diffusivity DA = DA/cUL
4 and plot it against

the Péclet number, Pe. Figure 2.5(b) shows that all the active diffusion DA versus d data shown in

Figure 2.5(a) collapses into a single master curve, thereby indicating that DA is independent of c,

at least for dilute suspensions investigated here.
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I find that for Pe . 103, the values of DA initially increases with increasing Pe (or particle size)

and follows a scaling DA ∼ Pe2. The observed increase of DA with Pe may be due to the decreasing

particle Brownian motion, which allows the particle’s motion to be correlated with the bacterial

velocity disturbances for longer times.

In the limit of Pe →∞, the particle’s Brownian motion vanishes and the particle displacements

are dominated by the convective transport via bacteria-particle interactions. Thus DA is expected

to be independent of Pe and depend only on the parameter τ∗, defined here as the ratio of the

run length U/ωT to the bacterial length L. My experimentally measured DA, which correspond

to τ∗ ≈ 1.8, exhibit a slight decline with Pe at high Pe and have magnitudes that agree well with

recent theoretical predictions [7] (dashed lines in Fig. 2.5(b)) for very large Péclet at τ∗ = 1 and

τ∗ = 4. An increase in the run time (or τ∗) would increase the asymptotic value of the scaled active

diffusivity DA (see Appendix A.4).

An important feature of the data shown in Fig. 2.5(b) is the peak in DA at PeA ≈ 103. The

appearance of the peak in DA in my data may be due to the weak but non-zero effects of Brownian

motion, which allows particles to sample the bacterial velocity field in such a way that the mean

square particle displacements and correlation times are higher compared to both the very high Pe

(negligible Brownian motion) as well as the very low Pe (Brownian dominated) [7]. This feature

(i.e. peak in DA) is surprising because it suggests an optimum particle size for maximum particle

diffusivity that is coupled to the activity of the bacteria. The existence of such a peak has been

predicted in a recent theory/simulation investigation [7], and my data agrees at least qualitatively

with such predictions. I note that the predicted peak in DA happens at a Pe ≈ O(10), which is

smaller than my experimental values of (Pe ≈ 103). One reason why may be due to variations

in bacterial concentration within the film, especially near the film’s surfaces where bacteria may

cluster.

2.4 Maximum Particle Effective Diffusivity Deff

My data (Fig. 2.5(b)) shows that the dimensionless active diffusion DA collapses unto a universal

curve with a peak in Pe for all bacterial concentrations. The data also shows that, with the exception

of the lowest bacterial concentration c, the particle effective diffusivityDeff exhibits a peak in d, which
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varies with c (Fig. 2.3(a)). For instance, for c = 1.5 × 109 cells/mL, the peak is at approximately

2 µm, while for larger concentrations (c = 7.5× 109 cells/mL), the peak (as obtained by fitting the

data to a continuous function) shifts to higher values of d. This suggests that one can select the

particle size which diffuses the most by tuning the bacteria concentration.

In what follows (see also Appendix A.5, I provide a prediction, based on my experimentally-

measured universal curve of DA with Pe (Fig. 2.5(b)) for the existence as well as the location of

the peak of Deff in d. As noted before, the particle effective diffusivity Deff can be described as the

linear sum of the particle thermal diffusivity D0, which is independent of c and decreases with d,

and the active diffusivity DA, which is linear in c and non-monotonic in d, through the particle-size

dependent DA. Therefore, I can recast the effective diffusivity as

Deff = D0 + (cL3) (UL)DA. (2.3)

The criterion for the existence of a maximum Deff is obtained by taking the derivative of eqn (2.3)

with respect to the Péclet number and setting the derivative to zero. In order to estimate DA (and

its slope), I fit the data in Fig. 2.5(b) near the peak in the range 200 < Pe < 4000 with a second

order polynomial equation. I find that a peak exists in Deff if

cL3 & 0.4. (2.4)

For the bacterial length used here L = 7.6 µm, this yields c ≈ 0.9 × 109 cells/mL, which is in

quantitative agreement with the concentration range (0.75×109 cells/mL < c < 1.5×109 cells/mL)

in which the peak in Deff emerges in my data (Fig. 2.3(a)). As described in Appendix A.5, I find

that the location of the Deff peak in d here defined as dmax
eff is given by

dmax
eff ≈ dA

[
1−

(
1

5cL3 − 2

)]
(2.5)

where dA corresponds to the Péclet number PeA ≈ 1000 at which DA is maximum. For the E.

coli used here, dA = kTPeA/3πµUL ≈ 6 µm. Note that dmax
eff is always less than or equal to dA

and increases with c, consistent with my experimental observations (Fig. 2.3(a)). In general the

criterion, eqn (2.4), and dmax
eff , eqn (2.5), will depend on τ∗. For suspensions of bacteria, the universal

curve of DA informs when and where a peak in the particle diffusivity occurs.
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2.5 Summary and Conclusions

In summary, I find that the effective particle diffusivity Deff and temperature Teff in suspensions of

E. coli show strong deviations from classical Brownian motion in the way they depend on particle

size d. For example, Fig. 2.3(a) shows that Deff depends non-monotonically in d and includes a

regime in which larger particles can diffuse faster than smaller particles. The existence as well as the

position of a Deff peak in d can be tuned by varying the bacterial concentration c. I also find that

the cross-over time τ increases with particle size and scales as approximately dn, where 1/2 . n . 1,

as shown in Fig. 2.3(b).

Measures of Teff obtained from either an extended Stokes-Einstein relation or particle speed

distributions seem to agree quite well (Fig. 2.4(b)). This is surprising since this kind of agreement is

only expected for systems at equilibrium. The good agreement between the measurements suggests

that Teff may be a useful signature of bacterial activity. However, unlike thermally equilibrated

systems, Teff varies with size d (Fig. 2.4(c)). This non-trivial dependence of both Deff and Teff on

particle size d implies that these common gauges of activity are not universal measures. Nevertheless,

my data suggest that one can define optimal colloidal probes of activity for suspensions of bacteria,

which correspond to Pe = UL/D0 ≈ 103. At these Pe values, D̄A is maximized, which provides

ample dynamical range (magnitude of the signal). Also at these Pe values, the cross-over time

τ is still relatively small, which allows for adequate temporal resolution. Both of these features

are important in using passive particles to characterize a spatially and temporally varying level of

activity in materials.

My anomalous particle-size dependent results in active fluids has important implications for

particle sorting in microfluidic devices, drug delivery to combat microbial infections, resuspension

of impurities and the carbon cycle in geophysical settings populated by microorganisms. A natural

next step would be to study the role of external fields such as gravity or shear in influencing particle

transport in these active environments.
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Chapter 3

Polymer dynamics in active fluids:

how swimming E. coli and

polymer molecules interact.

3.1 Introduction

Flagellar propulsion of microorganisms is perhaps one of the earliest forms of motility [1, 2]. This

flagellar propulsion plays an important role in various biological and ecological settings, such as

the spread and control of diseases [3-6], transport in lakes and oceans [7] and the biodegradation of

environmental pollutants [8]. Therefore, it is essential to understand the role of the ambient environ-

ment in mediating and influencing the motility of microorganisms. Many of these environments are

liquid-like and contain particles, polymers or other macromolecules, which introduce non-Newtonian

features to the fluid such as shear-thinning viscosity and elasticity. These so-called complex fluids

can strongly affect the motility of microorganisms [9-12]. For instance, glycoproteins in the stomach

mucus form a viscoelastic gel that offer an effective barrier against most parasitic microorganisms.

Yet, the bacterium H. pylori excretes enzymes that transform the impenetrable gel into a viscous
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polymer solution, which enables swimming and ultimately leads to persistent infections [13]. In this

case, the subtle interplay of cell activity and complex material properties has significant impact: H.

pylori alone infects 50% of the world’s population [5], and more generally, bacteria comprise 65% of

human microbial infections [14].

Many additional biological functions rely on the motion of living particles in complex fluids,

including fertilization through sperm cells swimming within cervical mucus [15] and the transport of

mucus in the human lungs by rhythmically beating cilia [16]. An emerging number of investigations

reveal intricate (and sometimes contradictory) ways in which the fluid material properties affect the

motility of microorganisms. For example, fluid elasticity has been found to either enhance [17-21]

or hinder [10, 22, 23] microorganism’s swimming speed depending on the details of the swimming

kinematics and the generated flow fields. Recently, the effects of shear-thinning viscosity, a common

attribute of many polymeric fluids, have been found to have little to no effect on swimming speed in

experiments [24, 25] and theoretical studies [26]. In contrast, experiments with the bacterium E. coli

indicate that the shear-thinning viscosity of semi-dilute polymer solutions can lead to an enhance-

ment in swimming speed [25]. Together, these works highlight the subtle interplay between fluid

material properties and swimming kinematics, which results in a striking and often unanticipated

variety of outcomes.

In this chapter, I focus on run-and-tumble motility, a general mechanism employed by many

prokaryotic flagellated bacteria (e.g. E. coli, S. marcescens, and V. alginolyticus) and even some

eukaryotic organisms such as the green algae C. reinhardtii [27]. This mechanism can be described

as a repeating sequence of two actions: (i) a period of nearly constant-velocity straight-line trans-

lation (run) followed by (ii) a seemingly erratic rotation (tumble). This run and tumble series –

a hallmark of many swimming bacteria ultimately dictates their spread and transport. Here, the

transport is effectively described by a persistent random walk with an active effective diffusion co-

efficient. While the run and tumble mechanism has been widely studied in simple, water-like (i.e.

Newtonian) fluids [28-31], many bacteria that employ this mechanism live in biological fluids that

contain macromolecules and are not Newtonian. Since motility is directly linked to virulence [3,

6], understanding the role of fluid rheology on run-and-tumble dynamics and the overall spread of

bacteria is therefore of much practical interest.
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3.2 Methods

Here, the run-and-tumble motility of the bacterium E. coli is experimentally investigated in poly-

meric solutions using cell tracking methods and single molecule experiments. The bacterium E.

coli is an archetypical model for studies of run-and-tumble dynamics [28, 31]. E. coli is known to

thrive in the human digestive tract (a viscoelastic medium) and is a common agent for food poi-

soning [32]. I find that the presence of even small amounts of polymers in solution dramatically

alters the cell motility: tumbling is suppressed and cells swim faster. By varying (i) the type of

polymer, (ii) polymer molecular weight (MW) and (iii) polymer concentration, I show that fluid

viscosity suppresses tumbles while fluid elasticity enhances swimming speed. I also show in single

molecule experiments using fluorescently labeled DNA polymers that the flow field generated by E.

coli is able to stretch initially coiled polymer molecules, and thus induce elastic stresses in the fluid.

These changes in motility behavior, driven by the material properties of the ambient fluid, can have

profound influences on transport and foraging of nutrients. My results also suggest that tuning the

material properties of the fluidic environment can control the spreading of bacteria.

I experiment with different types of polymeric fluids and a water-like buffer solution. Three main

types of polymer molecules are used: poly-ethylene glycol (PEG, Sigma-Aldrich, MW = 8.0× 104,

Rg = 6 nm), carboxy-methyl cellulose (CMC - a linear, flexible polymer, Sigma-Aldrich, MW =

7.0 × 105, Rg = 28 nm) and xanthan gum (XG, Sigma Aldrich, MW= 2.0x106, Rg = 600 nm),

where Rg is the polymer radius of gyration. I note that radius of gyration of the polymer molecules

range from 6 nm to 600 nm. This range is comparable to the width of a single E. coli flagellum

(approximately 20 nm) but smaller than total effective length of the bacterium (body plus flagellar

bundle) of approximately 7 µm [28]. I varied CMC concentrations from 10 to 500 ppm, significantly

below the overlap concentration of 104 ppm, to diminish the role of polymer-polymer interactions

and avoid the presence of polymer networks. To discriminate between the roles of elasticity and

shear-thinning fluid properties, I also use CMC of different molecular weights (9.0 ×104, 2.5× 105,

and 7.0 × 105) as well as solutions of xanthan gum, a semi-rigid polymer. Xanthan gum solutions

exhibit shear-thinning viscosity and elasticity. By adjusting the polymer concentration and MW, I

make fluids of desirable viscosity (1.0 < 20 mPa s) and elasticity (fluid relaxation time λ up to 50 ms

[33]). Finally, Newtonian fluids are prepared using (i) a water-like buffer solution of 67 mM NaCl in

water and (ii) PEG aqueous solutions. The concentration of PEG in solution varies from 1.3 to 3.5%
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by weight. All PEG solutions display Newtonian viscosity. See Appendix B.1 for rheology details.

My experimental protocol consists of directly observing E. coli cells suspended in thin fluid

films (Appendix B.2). I track the orientation of representative cell bodies via the angle φ, defined

as the angle made by the unit vector aligned with the major axis of the elliptical cell body p and

the x-axis, cos φ= p · ex. The orientation of the trajectory is tracked using the angle θ defined by

cos θ=(r · ex)/|r|, where ex is the unit vector aligned with the x-axis.

3.3 Results & Discussion

3.3.1 E. coli trajectories

Representative E. coli trajectories in buffer (Newtonian) and carboxy-methyl cellulose (CMC, MW =

7.0×105, c = 500 ppm) solutions are shown in Fig. 3.1(a) and 3.1(b), respectively. In buffer solution,

cells swim in various directions, executing a random walk and frequently change direction, typical

of the run-and-tumble mechanism [28]. Figure 3.1(b) reveals a very different behavior. If I replace

the Newtonian fluid by the CMC solution, the cell paths are smoother and straighter, exhibiting

changes in direction less frequently. I further illustrate these changes in swimming behavior by

examining sample trajectories (time interval of 2 seconds) in buffer (Fig. 3.1c) and CMC (Fig. 3.1d)

solutions. I identify tumbles (arrows in Fig. 3.1c and d) in the sample trajectories by tracking sudden

changes in direction and simultaneous drops in speed. Surprisingly, I find that cell trajectories in the

CMC solutions are nearly devoid of tumbles compared to the buffer case. Figure 3.1(e,f) shows the

instantaneous cell body orientation φ during sample trajectories for a fixed distance (∼ 10 µm). The

data shows that φ is also strikingly different for cells swimming in polymeric solutions. Figure 3.1(e)

shows that, in buffer solution, the orientation of the cell body oscillates significantly along its path.

These two-dimensional lateral oscillations of the cell body, known as wobbling, are projections of the

cell’s three-dimensional helical trajectory [34, 35]. In the CMC solution, however, this oscillation

(wobbling) significantly diminishes, and φ remains relatively constant (Fig. 3.1f). This hints to a

change in the E. coli swimming kinematics such as the pitch or angle of the cell helical path. Overall,

the results shown in Fig. 3.1 indicate that the presence of even small amounts of polymer in liquids

can significantly affect the motility of microorganisms and, in the case of E. coli, suppresses tumbles

and body oscillations.
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Figure 3.1: Kinematics of swimming E. coli cells in both Newtonian and viscoelastic fluids. (A)
Trajectories of E. coli cells in buffer (1.0 mPa·s) and (B) in polymeric solution (CMC MW= 7.0×105,
c = 500 ppm, c∗ = 104, µ = 19 mPa· s). Cells in polymer solution move remarkably straighter
compared to cells in buffer. Sample cell trajectories in (C) buffer and (D) polymeric solutions
exhibit run-and-tumble i. e. nearly straight lines connected at random angles (tumbles denoted by
arrows). (E) The cell body orientation oscillates or ‘wobbles’ in the buffer solution. (F) Wobbles
diminish in the polymer solution.
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To quantify the above observations, I calculate the E. coli instantaneous velocity v and its

magnitude |v| as a function of time from the tracking data. The velocity vector is defined over a

time interval of t = 1/15 s, which is large enough to average over φ yet small enough to define an

average swimming orientation θ between tumbles (Fig. 3.2a). Figure 3.2b shows examples of velocity

magnitudes |v| as a function of time for buffer and CMC solutions (c = 500 ppm). The data shows

that cells swimming in CMC solutions execute tumbles (denoted by arrows) less frequently than in

buffer (Newtonian) solutions. Here, the cell in buffer tumbles 5 times in the span of 6 seconds. In

contrast, the cell in polymeric solution (CMC) tumbles only twice in the same time span.

The sample velocity records in Fig. 3.2(b) show that an individual E. coli swims faster in CMC

solution (25 µm/s) than in the buffer (10 µm/s) even though the CMC solution has a viscosity that

is over an order of magnitude (µ ≈ 20 mPa s) larger than that of the buffer (µ =1 mPa s). Figure

3.2(c) shows that the mean instantaneous cell velocity 〉 (averaged over hundreds of individual cells)

increases with polymer concentration from about 8.3 µm/s in buffer solution to 12.4 µm/s in CMC

solutions (c = 500 ppm); the speed in buffer is consistent with previous measurements [36]. This

enhancement in 〈v〉 with polymer concentration is somewhat counterintuitive, since the viscosity

increases as polymer is added to the fluid (Appendix B.1). I note that in a Newtonian fluid the

viscous torque on the cell flagella bundle τb is proportional to µω, where ω is the bundle rotation

rate. For E. coli swimming at constant motor torque τm [31], the torque balance yields τm ∼ τb,

and thus τm is also proportional to µω. In highly viscous environments corresponding to swimming

at low Reynolds number, Stokes equations hold and thus the speed varies with the frequency v ∝ ω

[11, 34, 37, 38]. Therefore, as viscosity increases, the bundle rotation rate ω and correspondingly

the forward velocity should decrease as µ−1. The increase in average velocity 〈v〉 with polymer

concentration is thus unexpected.

Similar increases in cell velocity with polymer concentration have been previously reported

[37, 39]. It has been argued that cell velocity is augmented by the presence of a gel-like network

which exerts an anisotropic viscous drag on the cell [40]. In the experiments, however, the CMC

(polymeric) solutions are considered dilute (c = 5% of the overlap concentration) in the sense that

polymer networks are not present. Thus the anisotropic viscosity argument given by [40] does not

explain my results. More recently, Martinez et al. [25] argued that shear-thinning viscosity of semi-

dilute polymeric solutions was responsible for enhancing the E. coli swimming velocity. Here, I will
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Figure 3.2: Swimming speeds of E. coli in buffer and polymeric solutions. (A) Velocity v, average
cell orientation θ, and instantaneous cell body orientation φ are defined as shown. (B) Temporal
variations in the cell body speeds in buffer and polymeric solutions (c = 500 ppm) reveal tumbles
(arrows) via sudden drops in v. The cell in buffer swims at a lower velocity and tumbles more
frequently compared to the cell in the polymer solution. (C) The mean cell velocity increases from
8.3 to 12.4 µm/s with increasing polymer concentration.

show an alternative explanation. Namely, the increase in swimming speed can also be due to extra

elastic stresses.

3.3.2 Statistical measures of cell motility

Next, I quantify the effective translational (DT ) and rotational (DR) diffusivity of swimming E. coli

by computing the mean-squared displacement (MSD) and the mean-squared angular displacement

(MSAD) from tracking data, as shown in Fig. 3.3(a) and 3.3(b). The mean-squared displacement is

defined as MSD(∆t)=|r(t0+∆t)−r(t0)|2. For a random walk, the MSD is 4DT∆t in two dimensions,

where DT is the effective translational diffusion coefficient. For a swimming E. coli at short time

intervals, the MSD is proportional to ∆t2 (Fig. 3.3a), indicating the cells swim ballistically during a

run. For times much larger than the mean run time τR, the cells tumble, decorrelating their motion.

Thus for very large ∆t >> τR, the motion is diffusive as seen in Fig. 3.3(a).

For E. coli, the dynamics can be captured using the relationship MSD(∆t)=4DT∆t(1−e(−∆t/τ)),

where τ is a typical crossover time marking the transition from ballistic to diffusive motion. The

crossover time depends on the mean run time τR corrected by a factor that accounts for the mean

cosine of the turning angle α such that τ = τR/(1−α) [41]. The MSD is proportional to 4DT (∆t)2/τ

for ∆t << τR and to 4DT∆t for ∆t >> τR. By fitting this relationship to the MSD data in Fig.

3.3(a), I find that the translational diffusion coefficient DT increases significantly from 10.8 to

101.6 µm2/s as polymer concentration (and viscosity) increases (Fig. 3.3c). The crossover time
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Figure 3.3: Statistical measures characterizing cell trajectories. (A) The mean-square displacement
for cells in buffer and CMC solutions (concentration c = 0, 35, 60, 100 ppm, MW=7×105). At short
times, ∆t < τR, where τR is the mean run time, the cell motion is ballistic, and MSD ∝ (∆t)2. At
longer times, ∆t > τR, the cell motion is diffusive and MSD ∝ ∆t. As c increases, the magnitudes of
the MSD curves increase. (B) The mean-square angular displacement of cells in buffer and polymeric
solutions increases linearly over time, indicating diffusive reorientations. (C) The translational
diffusion coefficient increases from 10.8 to 101.6 µm2/s as c increases. The result for buffer (c = 0
ppm) provides a reference (dashed line). (D) The rotational diffusion coefficient decreases from 5.6
to 0.7 rad2/s as c increases, reflecting suppressed tumbling in polymeric solutions.
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τ also increases with polymer concentration from 0.9 to 4.8 s (Appendix B.3). This suggests an

enhancement in mean cell run time, consistent with the observed suppressed tumbling in polymer

solutions (Fig. 3.1).

Next, the E. coli rotational diffusivity is calculated through the mean-squared angular displace-

ment, defined here as MSAD(∆t)=|θ(t0 + ∆t) − θ(t0)|2. I use the cell orientation θ to construct

the MSAD data, which is shown in Fig. 3.3b. Then, the data is fitted to MSAD = 2DR∆t in

order to obtain the effective rotational diffusion coefficient DR. For the buffer solution case, DR

is approximately 5.6 rad2/s (Fig. 3.3d). For cells swimming in CMC solutions, the values of DR

diminish to 0.7 rad2/s (c = 500 ppm). The decrease in rotational diffusivity is also consistent with

the appearance of nearly straight trajectories in polymeric solutions (Fig. 3.1b).

To connect the time-averaged statistical quantities of swimming E. coli to their instantaneous

kinematics, I measure the mean run and tumble times as shown in Fig. 3.4(a) and 3.4(b). Mean

run time is defined as the time intervals between successive tumbles, identified here by rapid drops

in velocity (Fig. 3.2b). I find as polymer (CMC) is added to the fluids, the run times increase

from approximately 0.9 to 3.5 s (Fig. 3.4). This enhancement in run time is consistent with the

nearly straight trajectories (c.f. Fig. 3.1b) and the reduction in rotational diffusivity in polymeric

solutions. The mean tumble times (Fig. 3.4b) are defined as the mean time intervals between runs.

This quantity also increases (from 0.2 to 0.4 s) with polymer concentration. This observed increase

in both run and tumble times is in marked contrast to chemotactic cells in chemical gradients in

which run times increase but tumble times remain constant [28]. Thus, the E. coli biochemical

signaling network cannot solely explain my results, suggesting that the fluid rheology is affecting

the cell motility behavior. I note that the mean run and tumble times are consistent with previous

measurements [29].

In order to investigate which fluid properties contribute to the changes in E. coli run and tumble

times, I measure the rotational diffusivity DR in fluids with varying rheological properties. I note

that DR for an E. coli is inversely proportional to the mean time τR (see Appendix B.4 for details)

[41]. These fluids are polymeric solutions of CMC of different molecular weight (MW) and XG.

Figure 3.4c shows the cell rotational diffusivity DR as a function of fluid viscosity µ. The data

clearly shows that, for all solutions, DR decreases with µ. The agreement in the data for multiple

fluids and two types of polymers indicates that DR is independent of the variations in elasticity and
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Figure 3.4: Viscosity suppresses tumbling. (A) The mean run time increases from 0.95 to 3.51 s
as the CMC polymer concentration c increases (MW= 7 × 105). (B) The mean tumble time also
increases with c from 0.16 to 0.37 s. (C) The rotational diffusion coefficient decreases with viscosity
for the CMC and XG solutions, indicating that suppressed tumbling is nearly independent of MW
or molecule, and is captured by proposed model. (D) The mean run and (E) mean tumble times for
individual tethered cells in Newtonian (PEG, blue squares) and viscoelastic (CMC, orange squares)
fluids as a function of µ. Lines correspond to regression analysis (Methods).

shear-thinning properties (Appendix B.1). The decrease in DR, which scales as DR ∼ 1/τR, thus

indicates an increase in run times DR, and the collapse in Fig. 3.4(c) strongly suggests that DR

predominately depends on fluid viscosity.

3.3.3 Enhancement in cell run time

To better understand the observed enhancement in run and tumble times with µ, I perform ex-

periments in which the run and tumble states of the cell can be directly visualized by the rotation

of tethered E. coli. Sticky-flagellated mutant E. coli can tether to glass slides [31]. The resulting

counter-clockwise (CCW) or clockwise (CW), rotation of cell bodies corresponds to the run or tum-

ble state of the motor, respectively (Appendix B.2). Figures 3.4(d) and 3.4(e) show the mean run

and tumble times as a function of viscosity for individual cells in viscoelastic (CMC) and Newto-

nian (PEG) fluids. The mean run and tumble times tend to increase with viscosity for both fluids.

Linear regression analysis reveals that this increase is statistically equivalent in the Newtonian and

viscoelastic fluids (Appendix B.2). The tethering results bolster my observations that the changes in

E. coli run and tumble times are mainly due to changes in viscous stresses. I propose that as viscous
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stresses increase, the mechanical (viscous) load on the cell also increases which in turn affects the

cell motor switching rates between run and tumble states. Previous experiments have in fact shown

that mechanical loading can significantly affect motor switching rates [42, 43], where mechanical

loads were introduced by attaching latex beads to the flagellar stubs.

To interpret these results (Fig. 3.4), I suggest a minimal model valid at high loads (as in my

experiments) that treats motor switching as an activated process with rates controlled by effective

energy barriers that need to be overcome for potential tumbles to occur [43, 44]. In the absence of

external loading, the motor switching rate k∗ depends on the chemical binding rate of a signaling

molecule Che-Y to the cell motor. Assuming that viscous drag on the cell flagella presents an

additional energy barrier to switch from one state to the other, the switching rate k is modified to

k ∝ k∗exp(−βM/kBT ), where M is a characteristic external torque generated by viscous drag on

the flagella and β is a characteristic angle determined by the internal details of the coupling between

the flagella and motor necessary to switch states (Appendix B.2). As fluid viscosity increases, the

torque M increases, and the switching rate decreases by a factor exp(−βM/kBT ), consistent with

the observed enhancement in run and tumble times (Fig. 3.4a-b,d-e).

As the motor switching rates diminish with increased viscous loading, the cell rotational diffusion

DR is suppressed (Fig. 3.4c). This decrease in DR may be interpreted as follows. The rotational

diffusivity of an E. coli is a sum of its Brownian rotational diffusivity D0
R, arising due to passive

thermal motion, and its active rotational diffusivity due to tumbles [41]. The Brownian rotational

diffusion of a particle is D0
R = kBT/f0µ, where f0 is the geometry-dependent resistivity according

to the Stokes-Einstein relationship. Assuming that the E. coli body is an ellipsoid (2 µm long and

1 µm wide), f0 is approximately 9.45 µm3 [45]. If the mean run time increases as exp(βM/kBT )

and the torque M is proportional to viscosity µ, then the rotational diffusion coefficient follows

DR = D0
R +A∗k∗e−βM/kBT = (kBT )/(f0µ) +Ae−Bµ. By fixing f0 to 9.45 µm3 and temperature T

to 22 ◦C, I fit this equation to the data in Fig. 3.4c and obtain A = 3.85 rad2/s and B = 68.3 (Pa

s)−1. The parameter A is a constant rotational diffusion based on the cells intrinsic motor switching

rate k∗. The parameter B, defined here as B = βM/kBTµ, corresponds to a motor torque M = 650

pN nm in water [34] and a characteristic angle β = 0.025◦ (Appendix B.2). The model seems to

capture the main features of the DR versus viscosity data and further supports the idea that the

decrease in rotational diffusion of swimming E. coli is due mainly to mechanical loading of the motor
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Figure 3.5: Elasticity suppresses wobbling while increasing cell velocity. (A) The body orientation φ
versus time for a cell in buffer and polymer solutions (CMC, MW= 7×105, c = 500 ppm). In buffer,
the cell wobbling amplitude is significantly larger than in the polymer solution. (B) The degree of
wobbling, 〈σ(φ)〉, decreases from 22.0 to 11.7 as the CMC polymer concentration increases. (Inset)
Mean cell velocity decreases with 〈σ(φ)〉, illustrating that cells which wobble less swim faster. (C)
Mean cell velocity versus viscosity for solutions of CMC of varying molecular weight and XG. The
velocity increases with µ for the largest MW of CMC but remains nearly constant in the lowest MW.
(D) As E. coli swim, they generate a fluid flow with curved streamlines [46]. This shear can stretch
polymers, producing first normal stress differences N1. Under these curved streamlines, a volume
force (N1/r) points inward to the cell body, suppressing wobbling, and allowing cells to translate at
higher v.

via viscous drag.

3.3.4 Enhancement in E. coli swimming speed and wobbling

suppression

Next, I investigate the enhancement of cell velocity with increasing polymer concentration (Fig.

3.2c). The increase in polymer (CMC) concentration leads to an increase in fluid viscosity µ and

elasticity (Appendix B.1). Here I argue that the observed increase in cell velocity is due to elastic

stresses, which suppress cell wobbling (as shown in Fig. 3.1 (e,f)) and allow the cells to translate more

efficiently. A decrease in E. coli wobbling has been previously observed in polymeric solutions [34],
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but the connection to cell swimming speed has not been made. I begin by tracking the orientation

of the cell body φ relative to the direction of its trajectory in buffer and CMC (c = 500 ppm, MW

= 7.0 × 105) solutions (Fig 3.5a). The estimated wobble angles are approximately 20◦ and 5◦ in

buffer and CMC solutions, respectively. There is, therefore, a significant suppression of wobbling

as polymer concentration is increased. I can further characterize this suppression by computing

the mean standard deviation of φ, 〈σ(φ)〉, over many cells. This quantity 〈σ(φ)〉 characterizes

the degree of wobbling. Figure 3.5b shows that the quantity 〈σ(φ)〉 decreases from 22.0◦ to 11.7◦

with increasing CMC polymer concentration. The decrease in 〈σ(φ)〉 signifies a change in the cell

swimming kinematic or stroke. Also, Fig. 3.5(b, inset) shows that the cell velocity 〈v〉 is inversely

proportional to the degree of wobbling 〈σ(φ)〉; that is, a suppression in wobbling leads to an increase

in cell velocity.

To distinguish between elastic and viscous effects, I measure E. coli mean cell velocity 〈v〉 and

degree of wobbling 〈σ(φ)〉 in CMC and XG solutions. Figure 3.5(c) shows 〈v〉 as a function of fluid

viscosity µ for CMC solutions of varying MW and a XG solution. While 〈v〉 increases with µ for

the highest molecular weight CMC and XG solutions, the relative enhancement in 〈v〉 diminishes as

the CMC molecular weight (and thus elasticity) decreases. This is evident if one considers µ = 11

mPa s, where 〈v〉 clearly decreases with the MW of CMC. This observation suggests that E. coli

swimming speed 〈v〉 is not a function of fluid viscosity. Also, it appears that shear-thinning effects

are negligible since the values of 〈v〉 for the highest molecular weight CMC (weakly shear-thinning,

power law index = 0.7) and XG (strongly shear-thinning, power law index = 0.5) solution in Fig.

3.5(c) are indistinguishable. The increase in 〈v〉 with CMC molecular weight (MW) is also consistent

with a simultaneous decrease in wobbling (Appendix B.5). I conclude that the suppression of cell

wobbling due to fluid elasticity results in an increase in cell swimming velocity 〈v〉.

What may cause fluid elasticity to suppress wobbling and thereby increase 〈v〉? I suggest a

mechanism supported by my experimental observations by which this is accomplished. As a single

E. coli swims through a fluid, it generates a flow with curved streamlines [46] due to the rotating

flagella and the concomitant counter-rotation of its body, as shown schematically in Fig. 3.5d. In

flow, shear can stretch flexible polymer molecules [47] (such as CMC) and generate first normal

stress differences N1. The combination of shear and curved streamlines produce a (volume) force

N1/r, which points inward in the radial direction (r). I propose that this force, which for an E. coli
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cell points into the cell body (Fig. 3.5d) and perpendicular to the cell’s swimming direction, causes

the cell body to align with the projected direction of motion. The resultant decrease in wobbling

amplitude would ultimately change the form (shape) of the swimming trajectory and increase the

cell swimming velocity 〈v〉. Thus, I propose that 〈v〉 increases with polymer concentration (Fig.

3.2c) primarily because of the appearance of the force N1/r, which is able to suppress wobbling φ

and cells that wobble less inherently swim faster. The combination of reduced wobbling (and thus

higher 〈v〉) with enhanced run times results in straighter, longer trajectories in polymeric solutions

(Fig. 3.1b).

3.3.5 Polymer dynamics in bacterial-generated flows

This argument however is contingent on the expectation that swimming E. coli cells can actually

generate flow fields strong enough to stretch polymer molecules and induce elastic stresses in a fluid.

In order to gain further insight and verify that this is the case, I directly visualize the interaction

of model polymer molecules and tethered E. coli. λ-DNA molecules are fluorescently stained and

suspended in a buffer solution with mutant E. coli cells (Methods). These mutants contain sticky-

flagella that can be tethered with ease and additionally also only ‘run’. As a result, there is a stable,

three dimensional, time-dependent flow generated by the CCW-rotation of the tethered E. coli cell.

I track the configurations of nearby DNA molecules over time, an example of which is shown in Fig.

3.6(a). Also shown in Fig. 3.6(a) are the cell body and a nearby DNA molecule tracks over time.

The sample snapshots (∆t = 0.4 s) qualitatively show that the DNA molecular configuration evolves

over time: it begins as a sphere, elongates and curves around the streamlines. These representative

snapshots provide evidence that flows generated by moving E. coli are capable of stretching nearby

polymer molecules, and thus induce elastic stresses in polymeric solutions.

To quantify the above observations, I measure the molecule (DNA) stretch length ` for two cases:

(i) the absence of cells (i.e., no flow) and (ii) near a tethered cell, approximately 5 µm away from the

cell. The distributions of DNA stretch lengths – normalized by the λ-DNA contour length (`c =22.0

µm [48]) – are shown in Fig. 3.6 (b) for both cases. In the absence of cells, the polymer molecules are

in equilibrium and their configurations fluctuate randomly due to Brownian forces. The observed

minimum `/`c in Fig. 3.6b corresponds to a length l of approximately 1.4 µm, consistent with the

length (2Rg) of a polymer with the inferred radius of gyration, Rg ≈ 0.7 µm [48]. The peak in
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Figure 3.6: Polymer stretching by a tethered E. coli cell. (A) The tethered cell rotates counter-
clockwise (CCW) in a steady, circular trajectory. An untethered polymer molecule near the cell also
rotates CCW due to hydrodynamic interactions with the cell. Sample configurations of the poly-
mer (t = 0.4 s) show extension and alignment with the flow. (B) The distribution of the normalized
lengths for the polymer near the tethered cell (2.5 µm) is shifted to the right of the distribution in the
absence of cells, suggesting that cell-generated flows stretch polymers and produce elastic stresses.
The dashed line is the fit of the distribution for a self-avoiding chain at equilibrium (Appendix B.7)
[49,50].

the distribution is followed by a rapid decay, which seems to follow the exponential decay of the

theoretical end-to-end distance distribution (dashed line in Fig. 3.6b) of a self-avoiding polymer

chain at equilibrium [49] and is also consistent with previous experimental measurements of λ-DNA

[48, 50]. Compared to the DNA at equilibrium case (in the absence of cells), the length distribution of

a polymer near a cell broadens and extends to higher values, reaching a maximum of approximately

7Rg (Fig. 3.6b). For the DNA, this observed shift in the distribution corresponds to an applied

force of approximately 4.5 fN (Appendix B.6) and is in reasonable agreement with expected viscous

extensional forces generated by the tethered cell (Appendix B.2). The shift illustrates that the flow

generated by the motion of the E. coli body in a fluid is indeed able to stretch polymer molecules

beyond their equilibrium configuration.

To compare the DNA polymer extension by the tethered E. coli (Fig. 3.6) to the potential

polymer extension by freely-swimming E. coli (Fig. 3.5), I estimate the Weissenberg number Wi

for both experiments. The Weissenberg number Wi = λγ̇, where λ and γ̇ are the fluid relaxation

time and applied shear rates. I find that the Wi of the CMC and DNA polymer experiments are

comparable, at approximately 13 and 8 respectively (SI7). This suggests that the CMC polymers

near swimming cells exhibit similar stretching to the DNA polymer (Fig. 3.6) and may generate
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elastic stresses.

My experiments highlight the complementary roles played by the elastic and viscous properties

of complex fluids through which E. coli swim. For freely swimming E. coli, the stretching of nearby

polymer molecules can lead to extra elastic stresses in the fluid [47], which act to align the cell body,

reduce the degree of wobbling (Fig. 3.5b), and ultimately enhance cell velocity (Fig. 3.5). This

increase in cell velocity with elasticity combined with the observed suppression of cell tumbles due

to enhanced viscous loading (Fig. 3.4a) dramatically enhances the overall diffusivity and transport

properties of bacterial cells (Fig. 3.3a,c) in fluids with small amounts of polymer.

3.4 Conclusions

Fluid properties such as viscosity and elasticity have been shown to significantly affect the motility of

microorganisms. In this article, I investigated the effects of fluid material properties on the motility

of E. coli. Using polymeric solutions of varying molecular weight, I found that the viscosity and

elasticity can independently alter the swimming and transport of bacteria. In particular, I find that

fluid viscosity suppresses cell tumbling, while fluid elasticity increases cell velocity. I also found

that the flow generated by swimming bacteria influences the dynamics of polymers in solution, in

such a way that the cells motility is enhanced. Direct visualization of individual tethered cells and

nearby polymers reveals that cell-generated flows can indeed stretch and align polymer molecules,

actively inducing local elastic stresses, which in turn act on the cell. These results complement

recent simulations that predict unusual stretching in model polymers in the presence of multiple

bacteria [51]. More broadly, my experiments highlight the need to consider the interactions between

single polymer molecules and individual swimming microorganisms. These interactions and their

emergent feedback mechanisms are crucial to many outstanding issues in engineering, biology, and

medicine, such as the design of swimming micro-robots [12, 52] and the possible means to control

biofilm formations [3, 4, 6, 14, 53]. Finally, my work emphasizes the need to study microorganisms

in their natural, non-ideal environment, where complex material properties dramatically alter their

macroscopic transport behavior.

63



Bibliography

[1] Cosson J. 1996. A moving image of flagella: News and views on the mechanisms

involved in axonemal beating. Cell Biology International 20:83-94.

[2] Liu R, Ochman H. 2007. Stepwise formation of the bacterial flagellar system. Proceedings

of the National Academy of Sciences 104:17.

[3] Josenhans C, Suerbaum S. 2002. The role of motility as a virulence factor in bacteria.

Int. J. Med. Microbiol. 291:605-614.

[4] Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: A common cause of

persistent infections. Science284:1318-1322.

[5] Ottemann KM, Lowenthal AC. 2002. Helicobacter pylori uses motility for initial colo-

nization and to obtain robust infection. Infect. Immun. 70:1984-1990.

[6] Livorsi DJ, Stenehjem E, Stephens DS. 2011. Virulence factors of gram-negative bacteria

in sepsis with a focus on Neisseria meningitidis. Contrib. Microbiol. 17:31-47.

[7] Durham WM, et al., 2013. Turbulence drives microscale patches of motile phytoplank-

ton. Nature Communications 4:2148.

[8] Valentine DL, et al.. 2010. Propane respiration jump-starts microbial response to a

deep oil spill. Science 330:208.

[9] Lauga E. 2009. Life at high Deborah number. EPL 86:64001.

[10] Shen XN, Arratia PE. 2011. Undulatory swimming in viscoelastic fluids. Physical Review

Letters 106:208101.

64



[11] Yeomans JM, Pushkin DO, Shum H. 2014. An introduction to the hydrodynamics of

swimming microorganisms. Eur. Phys. J. Special Topics 223:1771-1785.

[12] Qiu T, et al. 2014. Swimming by reciprocal motion at low Reynolds number. Nature

Communications 5:5119.

[13] Celli JP, et al. 2009. Helicobacter pylori moves through mucus by reducing mucin

viscoelasticity. Proceedings of the National Academy of Sciences 106:14321-14326.

[14] Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol.

5:48-56.

[15] Fauci L, Dillon R. 2006. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech 38:371-

394.

[16] Lai SK, Wang Y, Wirtz D, Hanes J. 2009. Micro-and macrorheology of mucus. Adv. Drug

Deliver. Rev. 61:86-100.

[17] Espinosa-Garcia J, Lauga E, Zenit R. 2013. Fluid elasticity increases the locomotion of

flexible swimmers. Physics of Fluids 25:031701.

[18] Liu B, Powers TR, Breuer KS. 2011. Force-free swimming of a model helical flagellum

in viscoelastic fluids. Proceedings of the National Academy of Sciences 108:19516-19520.

[19] Spagnolie SE, Liu B, Powers TR. 2013. Locomotion of helical bodies in viscoelastic fluids:

Enhanced swimming at large helical amplitudes. Physical Review Letters 111:068101.

[20] Thomases B, Guy RD. 2014. Mechanisms of elastic enhancement and hindrance

for finite-length undulatory swimmers in viscoelastic fluids. Physical Review Letters

113:98102.

[21] Teran J, Fauci L, Shelley M. 2010. Viscoelastic fluid response can increase the speed

and efficiency of a free swimmer.Physical Review Letters 104:038101.

[22] Lauga E. 2007. Propulsion in a viscoelastic fluid. Physics of Fluids 19:083104.

[23] Qin B et al.. 2015. Flagellar Kinematics and Swimming of Algal Cells in Viscoelastic

Fluids. Scientific Reports 5:9190.

65



[24] Gagnon DA, Keim NC, Arratia PE. 2014. Undulatory swimming in shear-thinning fluids:

experiments with Caenorhabditis elegans. J. Fluid Mech. 758:R3.

[25] Martinez V, et al.. 2014. Flagellated bacterial motility in polymer solutions. Proceedings

of the National Academy of Sciences 111:17771-17776.
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Chapter 4

Phase dynamics in active fluids:

The growth and form of

active-passive phase boundaries in

dense swarms of bacteria.

4.1 Introduction

Understanding and predicting which phases of matter emerge in nature has been a driving question

of scientists for centuries. Classically, thermodynamics describes if certain phases will appear and

kinetic theory describes how. For instance, an out-of-equilibrium phase-separated system of passive

particles relaxes toward thermal equilibrium by the flux of particles across phase boundaries at a

rate set by the gradient in chemical potential, J = ∇µ. For systems of active particles, that is

self-propelling particles, no such unifying framework has been established.

Active particles are an essential component of living materials, which convert chemical energy

into particle motion at scales that range from cargo-carrying myosin motors of the cytoplasm [1],

propulsive-flagella of cells [2], and to wound healing [3] in collections of cells. The internal supply
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and injection of energy within the material continually drives the system out-of-equilibrium. These

materials are unable to relax to a thermodynamic equilibrium state, and over the past few decades,

scientists have uncovered dynamic quasi-steady states of active matter, such as asters [4], waves [5],

and dynamic collective flows [6, 7] that appear at high particle densities and particle velocities.

Recently, experimental studies have observed organization of active materials into seemingly

phase-separated regions. These observations include the formation of liquid-crystal order of motor-

activated microtubules during cell mitosis [8], the formation of membrane-less organelles that resem-

ble liquid-liquid phase transitions in the active cytoplasm [9], the aggregation of swimming bacteria

within polymer solutions [10], and the clustering of synthetic pheoretic particles into dense and

dilute phases [11]. Similar dense and dilute phase separations has been observed in simulations of

active Brownian spheres [12, 13], even in the absence of any attractive particle interactions. The-

ories [14, 15] have introduced an active contribution to the pressure, due to the self-propulsion of

the swimmers, that explains the origin of this active phase separation process in the absence of any

hydrodynamic interactions and collective flows. Collective flows naturally emerge in many active

materials, including swarming bacteria.

Swarming bacteria are a common and beautiful model system of active matter [16–25]. Bacte-

ria live in fluids and on surfaces [18, 26]. At surfaces such as soft agar gels, many Gram-negative

flagellated bacteria – including Escherichia coli [20, 21], Pseudomonas aeruginosa, Vibrio para-

haemolyticus, Bacillus subtilis [24], and Serratia marcesens [22, 23] – differentiate into ‘swarmer

cells’, by elongating their cell body (from 2 µm to 5-10 µm), expressing numerous flagella (10-100),

and collectively moving in dynamic bacterial ‘rafts’ or densely-packed clusters of aligned cells that

merge and dissolve in time [16–18, 24]. These dense packs (20 cells) move at velocities more than

twice the speed of individual cells (40 and 15 µm/s) [24], allowing the bacterial colony as a whole

to expand rapidly, at rates of 2-10 m/s - much higher than other surface motility forms, such as

twitching, gliding, and spreading at ∼ 0.1 m/s [18]. Unlike these other forms of motility, swarming

exhibits fascinating collective motions with patterns of jets and swirls [19, 22, 24]. This collective

motion is implicated in increased antibiotic resistance [17,27,28], which could be due to the isolated

clustering of damaged cells within swarms [29]. The clustering and transport of fungal spores [30]

and other bacterial species [31] within swarms can provide mutual assistance and cooperation in

gaining new environments [17, 32]. In contrast, when swarms of different strains meet, as in the
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bacteria Proteus, they compete, forming between them a sharp boundary [17,28]. Thus, the role of

boundaries - whether created or annihilated by swarming bacteria - play an important role in their

motility and function.

Despite its importance, the influence of collective flows on the stability and propagation of

boundaries is largely unknown. Equally important is the question how do boundaries affect collective

flows? This unknown boundary-flow interaction is central to understanding the growth and form of

active phase boundaries and the structure and dynamics of transient states in active environments.

To this end, I investigate the structure and dynamics of an active-passive interface in a swarm

of Serratia marcescens. The active-passive interface is created in a non-chemical and controllable

way by quenching a region of the swarm by exposing it to UV light, which permanently damages or

kills the cells. After exposure, the swarming bacteria dissolve the passive phase of bacteria and the

system evolves from an active/passive phase-separated system into a homogenous mixture. I define

a dynamic order parameter that characterizes the mean position and width of the interface over

time. For a flat interface, the mean boundary position propagates at a relatively constant velocity,

which suggest that particle flux across the interface is driven by an active pressure and fluid flow.

For interfaces with corners, the mean interface speed increases with the interface curvature over

time. I find that the interface stabilizes the dynamic flow of the bacterial, generating larger and

longer-lasting vortex structures compared to the bulk. The vortices, in return, etch the interface,

molding the interface’s structure and curvature. I find that the interface velocity correlates with the

interface curvature and bacterial flow, suggesting an active analog to the Gibbs-Thompson bound-

ary. My results have important implications for understanding transitions between equilibrium-like

states in active materials and for understanding how bacteria shape boundaries, compete for new en-

vironments, and mix particulates, such as damaged/dead bacteria, extracellular polymers, vesicles,

and other microbial species.

4.2 Methods

My active-passive interfaces are created in swarms of Serratia marcesens. Serratia marcesens are a

canonical organism for swarming studies [22,23]. Serratia marcesens are flagellated rod-shaped cells

with a width of 1 µm and a length of 6-7 µm when swarming. Swarms of Serratia marcesens (ATCC
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274) are grown on agar substrates. Agar plates are inoculated with cells from a frozen glycerol stock

and are incubated at 34 degrees Celsius. From the inoculation sight, a bacterial colony forms and

grows outward. After 8 to 16 hours, swarming motility is observed at the expanding edge of the cell

colony, as shown in Fig. 4.1a.

At this edge, the cells are a monolayer thick and exhibit local orientational order that resembles

a nematic liquid crystal, as shown in (Fig. 4.1aii). Figure 4.1aiii shows that this orientational

structure includes defects, a common feature of active nematic systems [7, 12].

It is in this region of the swarm that I create an active-passive phase-separated system. To

do this, I essentially quench a portion of the swarm by exposing it to UV light (Fig. 4.1b), which

damages and kills bacterial cells. These immobile cells form a passive phase that shares a sharp

boundary with the surrounding unexposed swarm. Passive phases of select size and shape are made

by adjusting the UV-light aperture. In this way, passive phases are created within the swarm without

the use of chemicals or mechanical stimuli, as to minimally invade the unexposed, active region of

the swarm.

To quantify the collective motion of the cells, I measure a cross-grained bacterial velocity field

using particle image velocity. A sample velocity field displays long-range correlations, as shown in

Fig. 4.1ci, and an array of clock-wise and counter-clockwise vortices and jets. The mean velocity

speed increases with increasing distance to the colony edge, reaching a pseudo-steady dynamic state

in the range of 50 to 500 m from the edge [20, 22]. In this range, I measure mean speeds of 24-32

µm/s.

After exposure, the active and passive phases interact through the boundary. Sample velocity

fields in Fig. 4.1cii show that there is no motion in that octagon-shaped region of the swarm that

has been exposed to UV light. The unexposed region of the swarm, in contrast, remains active with

collective flows near and far from the exposure boundary.

Zooming in at the boundary (4.1d and c), sample snapshots of the velocity field and streamlines

reveal the dynamic motion of individual vortices. Vortices at the surface (blue line) can detach

and move away (green, orange), while vortices from the bulk collide and attach it (brown). Others

appear to split and move along the interface (light blue and dark blue), while some simply fade away

(purple). The boundary is relatively stagnant during its interaction with a single vortex.

Over time, passive bacteria at the interface are convected into the active phase, and the size
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Figure 4.1: (A) The bacteria Serratia marcesens are grown on agar substrates, forming bacterial
colonies that contain swarming cells at the expanding edge. (Aii) At this edge, cells are a monolayer
thick, exhibit local body orientational order (Aiii). (B) Within this active swarming state, passive
phases are created by exposing regions of the swarm to UV light (overlaid octagon), which damages
cells motility and creates a region of immobile cells that behave as passive particles that is approx-
imately 120 µm in size. (C) At the colony edge, cells exhibit collective motions, highlighted by
the jets and swirls of the overlaid velocity fields that are measured from particle image velocimetry.
After exposure, the active and passive phases interact through the induced phase boundary. As time
passes, the size of the passive phase shrinks as immobile bacteria at the boundary are convected
away. At approximately t = 60 s, the passive phase vanishes and the swarm reaches an active phase
that mirrors the initial state. Snapshots of the velocity field (D) and streamlines (E) at the interface
reveal the dynamic motion of individual vortices. For instance, vortices in the bulk can collide and
attach to the interface (brown), while vortices at the surface can detach and move away (green,
orange). Others are seen to split and move along the interface (light and dark blue), while some
simply fade away (purple).
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of the passive region shrinks. At approximately 60 s, the initially 120 µm sized passive phase has

completely dissolved away and the swarm reaches an active state that mirrors its initial one.

My observations show that the UV-light exposure creates a quenched region of immobile bacteria

within an active swarm of bacteria. Separating these two regions is a boundary. This boundary

shares striking similarities with interfaces between two chemical species in passive thermodynamics.

Although I have the same bacteria in each phase, they are different ‘chemical species’ in respect to

their ability to self-propel. In this way, I have created an active-passive phase interface that samples

a gradient in activity. Figure 4.1 showcases the transient relaxation of this active-passive phase-

separated state into a homogenous mixture of active and passive bacteria. I use these experimental

method as a platform to characterize the growth and form of active-passive interfaces.

4.3 Results and Discussion

4.3.1 Active-Passive Phase Order Parameter

In this section, I examine the structure and dynamics of the active-passive interface. To identify the

interface, I define an order parameter φ that distinguishes between the active and passive phases.

In the active phase, bacteria self-propel, driving local fluctuations in bacterial concentration and

corresponding fluctuations in the image pixel intensities |∆I|. In the passive phase, the bacteria

do no move, and there are no fluctuations in concentration or image intensities. The intensity

fluctuations |∆I|, which reflect fluctuations in bacterial concentration, therefore provide a robust

means of distinguishing the active and passive phases.

I use a normalized measure of the intensity fluctuation |∆I| to define an order parameter field

in space and time:

φ(x, y, t) =
2|∆I(x, y, t)| − |∆IA| − |∆IP |

|∆IA| − |∆IP |
(4.1)

Here, |∆IA| and |∆IP | are the mean intensity fluctuations in the active and passive phases far from

the boundary. The order parameter φ(x, y, t) varies from -1 to 1, with -1 corresponding to the passive

phase and 1 corresponding to the active phase.

The phase boundary is defined over space for each time by the contour φ(x, y, t) = 0. Figure

4.2a shows the position of the interface for the octagonal exposure in Fig. 4.1 at 10 second intervals.

74



Figure 4.2: The active-passive phases evolve in space and time. (A and B) In the active phase, bac-
teria self-propel, driving local fluctuations in bacterial concentration and corresponding fluctuations
in image pixel intensities |∆I|. I define an order parameter in Eq’n 4.1 based on |∆I|, so that φ = 1
and φ = −1 correspond to active and passive phases, respectively. The phase boundary is defined
in space by the contour φ(x, y, t) = 0 and sample boundaries for the flat and octagonal exposures at
10 second intervals are shown in Ai and Bi. To obtain a corresponding phase profile for each time,
the order parameter is averaged along x for the flat exposure and azimuthally for the octagonal
exposure. (Aii and Bii) The phase profiles smoothly transition from 1 to -1 as it passes through the
active-passive interface (profiles correspond to the same time as contours). The mean interface posi-
tion d(t) and width w(t) are obtained by fitting the phase profiles to φ(y, t) = tanh[(y− d(t))/w(t)].
The mean, minimum, and maximum fitting parameters are gathered from four experiments and are
shown over time (Aiii, Aiv, Biii, Biv). (Aiii and Aiv) The active phase dissolves the flat passive
phase so that the mean interface position d increases in time, reaching a relatively constant velocity
of approximately 0.4 µm/s for t > 5 s. For reference, the dynamic scalings t1/3, t1/2, and t are shown
as green, red, and pink lines, respectively. The boundary width w is roughly 7 µm and constant
in time. The active phase dissolves the octagonal-shaped passive phase so that the azimuthally
averaged position of the interface decreases in time. The position scales as (t0 − t)1/2, where t0 is
the time the passive region disappears. (F) For t < 40 s, the mean boundary width w is between 5
and 10 µm. At t ≈ 40 s, the size of the passive phase, 2d ∼ 20 µm, is approximately the width of
the interface. For t > 40 s, the width rapidly increases as the passive domain dissolves entirely.
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Initially, the boundary positions reflect the shape of the octagonal exposure. Over time, the passive

region shrinks and the shape of the boundary deforms. Some corners smooth away while others

persist. At approximately 40 seconds, when the passive region is roughly 40 µm wide, the passive

region dissolves more rapidly and irregularly until it completely fades away.

Figure 4.2b shows the evolution of a flat interface that was created using an exposure with a long

straight edge. The boundaries are also shown at 10 second intervals. In this case, I find also find

that the interface propagates (up) as the passive phase dissolves into the active phase. Although the

UV exposure has a flat edge, the active-passive phase boundary is not. Instead, the phase boundary

is rough. This roughness appears to be set by the vortical flows of bacteria, which appear to etch

and smooth the interface boundary. I examine this flow-interface interaction in more detail in the

following sections.

Along the phase boundary contour, the active-passive interface is not infinitely shape but is

instead fuzzy, possessing an intrinsic width w. Intrinsic widths are a feature of all passive phase

boundaries. To examine the interface’s intrinsic width, I calculate spatially-averaged phase profiles

over time for the flat and octagonal exposures.

For the octagonal interface (Fig. 4.2aii), the phase profile φ(r, t) is obtained by averaging the

order parameter φ along θ at each distance r. Initially, the approximate radius of the of the passive

region is approximately 50 µm, so that φ = −1 for r << 50 µm and φ = 1 for r >> 50 µm. The

active-passive interface moves as the passive region dissolves away. For t > 40 seconds, φ > −1,

which signals the disappearance of the passive phase. At t = 50 seconds, the entire field is active

(φ ≈ 1).

For the flat interface, the phase profile φ(y, t) is obtained by averaging the order parameter

φ along x for each distance y. Sample phase profiles are shown in Fig. 4.2bii at 10 second time

intervals. Here, y = 0 µm corresponds to the initial position of the interface. At t = 0 s, the phase

profile φ is relatively constant at φ = 1 for y << 0 µm, which corresponds to the active phase.

For y >> 0 µm, φ = −1, which corresponds to the passive phase. The active-passive interface

corresponds to the range −10 < y < 10 µm in which φ smoothly transitions from 1 to -1. The

position of the interface moves as time passes.

The mean interface positions d(t) and widths w(t) are obtained as a function of time t by fitting
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the phase profiles to

φ(y, t) = tanh[(y-d(t))/w(t)]. (4.2)

This model captures the phase profile data, which supports the existence of an active/passive phase

interface in my experiments.

Figures 4.2aiii and iv and 4.2biii and iv plot the mean interface position and width over time

for the octagon and flat cases. These figures include the mean, minimum, and maximum values

gathered over four experiments.

For the octagonal exposure, the active phase dissolves the passive phase so that the azimuthally-

averaged position d of the interface decreases in time. The position d scales as (t0 − t)1/2, where t0

is the time the passive region disappears. For t < 40 s, the mean boundary width w varies between

5 and 10 µm. At t ≈ 40 s, the width is approximately 20 µm, which corresponds to the approximate

size of the passive phase 2d. For t > 40 s, the width rapidly increases as the passive domain dissolves

entirely.

For the flat interface, the mean interface position d increases with time t. After an initial

transient, the interface position d increases linearly in time at a constant velocity of 0.4 µm/s for

t > 5 s. For reference, d ∼ tn scalings are shown for n = 1/3, 1/2 and 1 by the green, red, and

pink lines in Fig. 4.2aiii, respectively. The boundary width w is approximately constant at 7 µm

for 0 < t < 80 seconds.

Together, the dynamic scalings of the interface position and width are fingerprints of the un-

derlying physical mechanism that govern the growth and form of the interface. For a propagating

interface in passive materials, if the order parameter is conserved, the velocity of the interface vint

is set by transport of the order parameter through the interface driven by the gradient in chemical

potential µ, such that vint ∝ Jin−Jout ∝ [∂µ]inout, where Jin and Jout are the flux of the order param-

eter in and out of the boundary [33]. For passive interfaces, the chemical potential µ is proportional

to the interface curvature C. For example, for a condensed phase surrounded by its vapor, regions

of convex curvature have relatively higher µ compared to a flat regions, whereas, regions of concave

curvature have relatively smaller µ [34]. This condition is the Gibbs-Thomson boundary condition.

These conditions are the basis of the Cahn-Hilliard model and lead to an interface position L that

scales as L ∼ t1/3. If transport of the order parameter is coupled to fluid flow, the interface position
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scales as L ∼ t [33].

I find that the mean position of the flat active-passive interface scales linearly in time and

has a constant interface width. This implies that the active interface dynamics are not diffusive.

Instead, these results suggest that transport of the passive bacteria is driven by an active chemical

potential and coupled to the fluid flow. Furthermore, the observation that the interface width

is constant also implies that the surface is in a pseudo-steady state with a corresponding surface

tension. In passive fluids, the energy is supplied by thermal fluctuations. In my system, in addition

to thermal energy, there is an energy supply from the active swarming bacteria. Because the interface

width w is constant, there must be a pseudo-steady constant supply of energy that maintains the

interface deformation. To examine the energy at the interface, estimate an active surface tension,

and understand the interface’s growth and form, I next consider the bacterial flow at the interface

and how it varies from the bulk active state.

4.3.2 Boundary-Flow interaction

In this section I consider the interaction between the interface and the collective flow of bacteria. To

investigate how the interface affects the collective flow, I begin by examining the bacterial velocity

fields for varying distances from the active-passive interface. A sample vorticity field in Fig. 4.3a

highlights the variation in collective flow across the flat interface (blue line). The bulk active phase

contains collective flow and vortical structures that are entirely absent in the passive phase. At the

interface between the two phases, a number of clockwise and counterclockwise vortices pattern the

surface. There is clearly a gradient in velocity and vorticity across the interface and the interface

does not appear to disturb the flow for distances beyond a vortex size (L ∼ 20 µm).

To examine these gradients more closely, for varying distances from the interface, I plot the

instantaneous profiles of the vorticity ω, velocity magnitude |v|, and the cosine of the velocity

orientation cosθ as a function of x. Since the interface position is changing in time, I identify the

distance from the interface in a moving frame Y (t) = d(t)−y, where d(t) is the mean position of the

interface (Fig. 4.2). At the interface (Y = 0 µm), the vorticity magnitude is nearly zero, as shown

in Fig. 4.3bi. Further into the bulk at Y = 20 µm, the vorticity profile fluctuates from negative

to positive along x with magnitudes up to 10 1/s. The velocity profile (Fig. 4.3bii) is also near

zero at the interface and increases as Y increases. The velocity orientations (Fig. 4.3biii) samples
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all direction, ranging from π < θ < −π. The instantaneous peaks and valleys in ω, |v|, and cos(θ)

reflect the corresponding clockwise and counter-clockwise vortical structures of the flow.

To examine the flow’s time-averaged structure, I calculate the velocity autocorrelation in space

for various Y . Here, I define the normalized spatial correlation of the velocity director v = v/|v|

as Cv(∆x) = 〈v(∆x) · v(x0 + ∆x)〉/〈v(∆x)2〉, where the brackets denote an average over time and

reference location ∆x0.

As shown in Fig. 4.3c, near the interface (Y = 30 µm), the correlation exhibits oscillations,

with six peaks in the span of 150 µm. These oscillations are consistent with a pair-wise ordering

of vortices approximately 20 µm in size. In the bulk (Y > 30 µm), the correlation magnitudes are

smaller compared to the interface, suggesting a reduction in the vortex order. The correlations do

not appear to oscillate at a single wavelength.

To compare the flow’s structure with the interface structure, I measure the static structure factor

of the interface. Here, I define the static structure factor over time as |∆hq(t)|2, where ∆hq(t) are

the Fourier modes of the height fluctuations ∆h(t, x). The height fluctuations are defined in space

and time as ∆h(t, x) = h(t, x)− d(t), where h(t, x) is the height profile along x (Fig. 4.2) and d(t)

is the mean interface position so that the Fourier modes of the height fluctuations are

∆hq(t) =
1

Lx

∫ Lx

0

∆h(x, t)e−iqxdx. (4.3)

Here, Lx is the length of the interface (approximately 200 µm) and q = nπx/Lx are the wave

numbers. The smallest q is 0.015 µm−1, which corresponds to the system size. The largest q I

consider is 1.0 µm−1, which corresponds to wavelengths of 1 µm, approximately half the length of one

cell. The interface profile h(t, x) can be reconstructed from the Fourier modes as h(t, x) =
∑
q hqe

iqx.

The time-averaged structure factor 〈|∆hq|2〉 is measured for four experiments and the mean is

shown in Fig. 4.4Ai. The static structure exhibits a peak at q = 0.15 µm−1, which correspond to an

approximate wavelength L = π/0.15 µm ≈ 20 µm. This wavelength corresponds to the same one for

the velocity autocorrelation of the flow (Fig. 4.3c), which suggests that the flow may be deforming

the interface and imprinting its structure to the surface.

For the case of a passive fluid-fluid interface excited by thermal noise, equipartition commands

〈∆hq2〉 =
1

κAq2
(4.4)
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Figure 4.3: The interface and active/passive phases interact. (A) A sample vorticity field of the flat
interface at t = 4 s highlights the counter-clockwise and clockwise vortex structures that decorate
the bulk active phase and the active-passive phase boundary (overlaid blue line). (B) Instantaneous
profiles of the vorticity ω, velocity magnitude |v|, and the cosine θ of the velocity orientation as a
function of x for various distances from the interface Y = d−y.The vorticity and velocity magnitudes
are nearly zero at the interface (Y = 0) and increase with increasing Y . The vorticity fluctuates
from negative to positive along x, indicative of the counter-clockwise and clockwise vortex structures
of the flow. The corresponding velocity magnitudes exhibits peaks between vortices and the cosine
of velocity orientation varies from -1 to 1. (C) The normalized spatial correlation of the velocity
director v = v/|v| along x, averaged over time and reference locations x0. Near the interface (Y =
30 µm), the correlation exhibits strong oscillations, with an amplitude of 0.5 and a wavelength of
approximately 20 µm. The wavelength, 20 µm, highlights the characteristic vortex size, and the
amplitude indicates a significant ordering of vortices along the interface for distances up to 150 µm.
In the bulk (Y > 30 µm), the correlation magnitudes are smaller compared to the interface, revealing
a reduction in the vortex size. The correlations does not appear to oscillate at single wavelength.
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Figure 4.4: (A) Interface and flow structure. (Ai) To quantify the interface structure, I measure the
structure factor |∆hq(t)|2, where ∆hq(t) is the Fourier modes of the height fluctuations ∆h(t, x).
The static structure exhibits a peak at q = 0.15 µm−1, which correspond to length 20 µm. The
red line is the q−2 scaling. Fitting the data to Eq’n 4.4 yields a surface stiffness of 5 µm−2. The
form of the energy spectrum varies with Y . (Aii) To quantify how the interface influences the flow
structure, I measure the flow energy spectrum (Eq’n 4.5) for various Y . The magnitude of the energy
spectrum increases with Y , since the vorticity magnitudes are higher in the bulk compared to the
interface This is shown in Diii, where the mean vorticity square 〈ω2〉 (averaged along x) is plotted
as a function of Y . The form of the energy spectrum varies with Y (Aii). At the interface (Y = 0
µm), the energy spectrum, excepts a peak near q = 0.15 µm−1, which corresponds to the peak in
the static structure of the interface and the vortex size 20 µm. Further from the interface at Y = 30
µm, the energy spectrum is more spread out for q < 0.2 µm−1, revealing that characteristic vortex
sizes do not have one dominant size but range over 15 < L < 70 µm. The red and black lines are
the scalings q5/3 and q−8/3, respectively. (B) Interface and flow dynamics. The temporal evolution
of the interface and flow. The height autocorrelation (Bi, Eq’n 4.6) decays in time more slowly than
the velocity autocorrelations (Bii, Eq’n 4.7). By fitting the correlations to exp(−∆t/τ), I obtain a
characteristic decay time τ of 16 s for the interface and 0.8 s for the flow near the interface (Y < 20
µm). (Biii) The velocity correlation time scales decreases to 0.2 s for Y > 20 µm, suggesting that
vortices near the boundary persist for longer times than in the bulk.
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where κ is the surface stiffness and A is the interface’s area. I find that in the active passive interface

the static structure factor scales as 〈|∆hq|2〉 ∼ q−2 (red line in Fig. 4.4Ai), which suggests there is

a quasi-steady supply of energy deforming interface over a wide range of wavelengths.

To estimate an active surface stiffness, I fit the data to Eq’n 4.4. I use the interfacial area h×LX ,

with h = 1 µm, the width of a single cell since the swarm layer is approximately one cell layer thick.

I find that κ is approximately 4.5 µm−2. This value is much smaller than the interfacial stiffness

of water in air (1.7×107 µm−2) but is similar to the stiffness phase-separated systems involving

colloids, which range from 0.1 to 20 µm−2 [35–39].

In a passive liquid-vapor interface, the surface tension is γ = κkBT , where kB is the Boltzmann

constant and T is the thermal temperature. In a passive fluid, thermal fluctuations drive interfaces

with Gaussian white noise at an energy magnitude kBT . In my active fluid, in addition to thermal

energy, there is an energy supply from the active swarming bacteria. To examine the energy supply by

the bacteria, I calculate the energy spectrum E(q) for various Y . The energy spectrum is calculated

as the Fourier transform of the velocity autocorrelation in space

E(q) =

∫ Lx

0

(∆x) · v(x0 + ∆x)〉eiqxdx. (4.5)

As shown in Fig. 4.4ii, the magnitude of the energy spectrum increases with Y : this is consistent

with the increase in vorticity magnitudes with Y shown in Fig. 4.3bi. Figure 4.4iii explicitly shows

the dependence of the mean vorticity square 〈ω2〉 (averaged along x and t) as a function of Y . At

the interface, 〈ω2〉 rapidly increases from 0 1/s2 (in the passive phase) to 15 1/s2 for Y > 50 µm (in

the active phase), highlighting a gradient in vortical energy at the interface.

Not only the magnitude but also the form of the energy spectrum varies with Y . At the interface

(Y = 10 µm), the energy spectrum exhibits a peak near q = 0.15 µm−1, which corresponds to the

peak in the static structure of the interface and the vortex size 20 µm. Further from the interface at

Y = 30 µm, the energy spectrum is more spread out for q < 0.2 µm−1, revealing that characteristic

vortex sizes do not have one dominant size but ranges over 15 < L < 70 µm.

The observed increase and decrease in the energy spectrum with is a unique characteristic of

active fluids and is attributed to the injection of energy at the particle level [6]. In Fig. 4.4aii,

I include two scalings that were observed in experiments of swimming Bacillus subtilis [6] in two-

dimensional microfluidic devices for comparison: there scalings are E(q) ∼ q5/3 for small q and
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E(q) ∼ q−8/3 for large q. I note that for passive 2D Kolmogorov-Kraichnan turbulence, E(q) ∼ q−5/3

[40].

My data suggests (Fig. 4.3c and 4.4aii) that the interface selects a dominant vortex size, 20

µm, from the range of vortex sizes in the bulk. This vortex size corresponds to the characteristic

wavelength of the interface structure (Fig. 4.4ai) and highlights a coupling between the interface

and flow structure.

I next consider the temporal evolution of the interface and flow. For the active-passive interface,

I measure the interface autocorrelation in time, defined here by

〈C∆h(∆t)〉 =
〈∆h(t0)∆h(t0 + ∆t)〉

〈|∆h(t0)|2〉 , (4.6)

where the correlation is averaged over reference locations and reference times t0. The autocorrelation

decays in time is shown in Fig. 4.4bi. I fit the data to exp(−∆t/τ) to obtain a characteristic decay

time τ of 16 s. For an over-damped passive fluid-fluid interface, as described by capillary wave

theory [38], correlations in the interface structure decay at a single exponential rate Γ. A single

exponential decay captures the main features of the data of an active-passive interface, consistent

with dynamics in a phase-separated passive system.

For the flow, I measure the velocity director v autocorrelation in time for various Y , defined

here as

Cv(∆t) =
〈v(t0)∆v(t0 + ∆t)〉

〈v(t0)2〉 , (4.7)

As shown in Fig. 4.4bii, Ct(∆t) decays slowest near the interface Y < 20 µm. I fit the data to

exp(−∆t/τ) at each Y to obtain a characteristic decay time τ as a function Y . I find that τ = 0.8

s for the flow near the interface (Y < 20 µm) and decreases to 0.2 s for Y > 20 µm (Fig. 4.4biii).

This indicates that the velocity correlation and associated vortices persist for longer times than in

the bulk and suggests that the interface stabilizes vortex structures.

The stabilization of vortical flows at phase boundaries has recently been observed in recent

simulations [41] involving mixtures of active and passive sphere. In this case, the boundary induced

vortical flows, which do not exist in the bulk and which drive particle flux through the boundary. My

results uncover a new means in which phase interfaces can stabilize vortical flows: in active bacterial

swarms with collective motion, the interface promotes a particular vortex size and increases vortex
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Figure 4.5: Phase interface velocity depends on interface curvature and bacterial flow. (A) A defini-
tion sketch denoting the direction of the interface curvature C, interface speed vint, and tangential
component of bacterial flow vN . (B) A 3d scatter plot of local interface speed vint, local interface cur-
vature C, and bacterial flow vN along the interface at 2 second intervals throughout the experiment.
The collapse to a plane suggests an active analog of the Gibbs-Thomson boundary condition.

life span.

4.3.3 The growth and form of active interfaces: Connecting

kinetics, thermodynamics, and mechanics

After examining the structure and dynamics of the active-passive interface and the collective motion

at the boundary, I strive to understand what drives the local propagation of the interface, that is

what sets the local interface velocity vint.

In passive systems, the local interface velocity -through the Gibbs-Thomson boundary condition-

is proportional to the interface curvature. In passive systems, the interface curvature is proportional

to the gradient in chemical potential across the interface. I ask if there exists an active Gibbs-

Thomson boundary condition analog in my active system, that is does the interface velocity depend

upon the curvature of the interface?

My system has the unique feature that the interface structure is coupled to active flow and

emergent vortices (Figs. 4.3, 4.4, and 4.5). In my system, however, it is unclear what plays the role

of an active chemical potential or how the transport of passive particles out of the passive region is

84



coupled to flow/activity. To this end, I postulate the existence of a plane-

vN = a+ bvint + cC

(4.8)

such that the local interface velocity depends on the interface curvature C and the tangential flow

of bacteria vN , as denoted in Fig. 4.5a.

To test this idea, I plot a three-dimensional scatter plot of the local interface speed vint, local

interface curvature C, and normal component of bacterial flow vN along the interface at various times

throughout the experiment for the flat interface case. As shown in Fig. 4.5b, I find that the data

collapses unto a plane, suggesting a correlation among the variables. The plane is a least squares fit

defined by the slopes a = 0.2 µm/s, b = −0.5, and c = −1.15 µm2/s in equation 4.8.

I find that the interface velocity is negatively correlated with curvature. Regions of negative

curvature move into passive phase relatively fastest, while regions of highest curvature tend to move

the slowest (see Fig. 4.5a). In addition, the interface velocity is negatively correlated with the

normal component of the flow. This suggests that for the interface to move into the passive phase

there is a flow of bacteria across the interface and into the bulk active phase.

The data is scatted about the plane, however, for an active, noisey, far-from equilibrium the exis-

tence the data remarkably collapses about a plane, suggesting an underlying active Gibbs-Thomson

boundary condition driving the interface growth and form.

4.4 Conclusions

Many motile bacteria swim in fluids and swarm at surfaces, injecting energy internally into their

ambient environment. How this internally-injected energy deforms phase boundaries and, likewise,

how the presence of boundaries influences the emergent collective motion of bacteria is largely

unknown. To this end, I investigated the interface between an active phase of swarming bacteria

and a passive phase of immobilized bacteria. I created this interface by locally immobilizing a

portion of an active swarm with UV light. The interface is unstable: the swarming bacteria dissolve
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the phase of passive bacteria and the system evolves from an active/passive phase-separated system

into a homogenous mixture. I measure the position and width of the interface over time and the

corresponding velocity fields of the bacteria. I find that the interface stabilizes the dynamic flow

of the bacterial, generating larger and longer-lasting vortex structures compared to the bulk. The

vortices, in return, etch the interface, molding the interface’s structure and curvature. The local

interface curvature correlations with the local interface velocity, suggesting an active analog of the

Gibbs-Thomson boundary condition. My results have important implications for understanding

transitions between equilibrium-like states in active materials and for understanding how bacteria

shape boundaries, compete for new environments, and mix particulates, such as damaged/dead

bacteria, extracellular polymers, vesicles, and other microbial species.
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Chapter 5

Summary & Perspectives

5.1 Summary

Understanding how the micro- and meso-scale swimmer-fluid interactions affect the bulk material

behavior provides a stage for controlling active bio- and geophysical environments as well as engi-

neering new, active materials. The aim of this work is to contribute to two outstanding questions in

the field of active fluids: (i) how the two-way coupling between swimmer and fluid at micro-scales

affects the dynamics and properties at macro-scales and (ii) to what extent passive mechanics and

thermodynamics techniques can be applied to active systems? To this end, I have explored the

dynamics of particles, polymers, and phases in experiments with model active fluids of bacterial sus-

pensions and have uncovered many new and fascinating features of active materials, as summarized

in the following.

Chapter 2 - Particle dynamics in active fluids: The role of particle size on particle

diffusion in aqeuous E. coli suspensions. I investigated the dynamics of swimming E. coli

suspended in Newtonian fluids by using tracer particles of varying size. For dilute suspensions of

bacteria in Newtonian fluids, I found that larger particles can diffuse faster than smaller particles

- a feature absent in passive fluids. This anomalous particle-size dependence is due to an interplay

between the active dynamics of the E. coli and the passive Brownian motion of the particle and

has broad implications for particle transport in active fluids ranging from geophysical to biophysical
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settings.

Chapter 3 - Polymer dynamics in active fluids: how swimming E. coli and polymer

molecules interact. I probed E. coli swimming dynamics in non-Newtonian fluids, namely, poly-

meric solutions. I found that even small amounts of polymer in solution can drastically change E.

coli dynamics: cells tumble less and their velocity increases, leading to an enhancement in cell trans-

lational diffusion and a sharp decline in rotational diffusion. I showed that tumbling suppression

is due to fluid viscosity while the enhancement in swimming speed is mainly due to fluid elasticity.

Visualization of single fluorescently-labeled DNA polymers reveals that the flow generated by indi-

vidual E. coli is sufficiently strong to stretch polymer molecules and induce elastic stresses in the

fluid, which in turn can act on the cell in such a way to enhance its transport. These results show

that the transport and spread of chemotactic cells can be independently modified and controlled by

the fluid material properties.

Chapter 4 - Phase dynamics in active fluids: The growth and form of active-passive

phase boundaries in dense swarms of bacteria. I tested the use of constitutive equations and

thermodynamic equations of state to active fluids, by examining the structure and dynamics of an

active-passive phase separated system. I created this interface in a bacterial swarm, by transforming

regions of the swarm into passive phases by exposing them to UV light, which locally immobilizes

the bacteria. I find that the interface stabilizes the collective motion of the bacteria, generating

larger and longer-lasting vortex structures compared to the bulk. The vortices, in return, etch the

interface, generating interface curvature and setting the interface’s structure. The local interface cur-

vature correlates with the local interface velocity, suggesting an active analog of the Gibbs-Thomson

boundary condition.

These results identify new avenues of transport, which include an anomalous particle-size de-

pendence on particle diffusion in active fluids, an enhancement in bacterial diffusion in polymeric

solutions, and the dissolution of passive materials by active swarms. In addition, the results have im-

plications for the bulk rheology of active materials, how material properties are defined and measured

in active fluids, and the thermodynamics and kinetics of active materials.
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5.2 Future Recommendations

This work has uncovered a number of dynamical regimes in active fluids at scales ranging from

polymers (< 1µm), particles (1-10 µm), and phase-separated mixtures (> 100 µm). These uncon-

ventional dynamics have broad implications for particle transport in active fluids and suggest means

to control the material properties of active soft environments. In the following, I highlight these

implications and provide my recommendations for extending this work.

Diffusion to Sedimentation: Role of hydrodynamic interactions

By investigating the diffusion of passive particles in active fluids, I found that particle diffusivity

- unexpectedly - is non-monotonic in particle size [1]. This unexpected dependence highlights the

interplay between passive and active components in a living fluid and their mediation through hydro-

dynamic interactions. In passive fluids, the role of hydrodynamic interactions on particle transport,

which may be negligible at dilute concentrations, becomes increasing more important as particles

interact at higher concentrations. Understanding the role of hydrodynamic interactions on parti-

cle transport has been a long-standing challenge in passive fluids. In passive fluids, hydrodynamic

interactions suppress particle diffusivity [4, 5]. Hydrodynamic interactions also play a role in the

sedimentation of a dilute colloidal suspension: a single particle sediments at a velocity that is pro-

portional to its size; while at higher particle concentrations, hydrodynamic interactions cause the

mean particle sedimentation velocity to decrease [2] and can drive large density fluctuations. This

phenomena has been the focus of intense research and debate [3,6,7] but is understood to be due to

long-range hydrodynamic interactions [2] combined with a Debye-like screening of particle’s velocity

disturbances [8]. Given the importance of particle diffusion and sedimentation in our understanding

of passive fluids, an exciting new focus of research would be particle sedimentation in active fluids.

Because particle diffusivity is non-monotonic in size in active fluids, it opens up the possibility that

particle sedimentation velocities may also have a non-monotonic dependence: can smaller particle

sediment faster than larger particles? As in passive fluids, it would be interesting to investigate

the hydrodynamic interactions between passive particles sedimenting in active fluids: do bacteria

enhance or hinder particle interactions? These questions may have important implications for the

sedimentation and transport of sediment and toxins in microbe-filled lakes and oceans [9].
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Rheology of active polymeric fluids

My investigation [10] of E. coli swimming dynamics in polymer solutions highlights a fasci-

nating coupling between microbe motility and fluid rheology. I found that bacteria can stretch

individual polymer molecules, increasing their average end-to-end distance. This finding suggests

that increased polymer stretching may lead to an additional elastic stress in active polymeric flu-

ids. An important next step is to understand how this bacteria-mediated stretching influences the

time-dependent rheology of the fluid: do bacteria enhance or hinder the relaxation of individual

polymers and how does this bacteria-polymer interaction influence the relaxation time of the bulk

fluid? Microfluidic-based rheology methods are an appealing experimental design to investigate the

rheology of active polymeric fluids. Microfluidic techniques allow for the simultaneous visualiza-

tion of the microstructure and measurement of steady [11] and time-dependent [3] bulk material

properties. By measuring polymer configurations through fluorescently-stained polymers [13, 14] or

tethered polymer experiments [15], the end-to-end statistics of polymers can be measured under the

influence of swimming bacteria and under applied flow. Furthermore, the polymers influence the

dynamic of the swimming E. coli (speed, diffusivity) [10], which could simultaneously be measured

in a microfluidic device. How this two-way coupling influences the bulk rheology is new ground for

exploration. An important application may be in understanding the formation of biofilms [16], in

which bacterial colonies excrete and assemble polymer molecules into protective shelters that are

both soft and active.

Swarms: Particle transport and fluid rheology

The interesting particle and polymer dynamics observed in dilute bacterial suspensions [1] nat-

urally lends weight to the the case of dense suspensions. In dense suspensions, bacteria exhibit

collective motions with emergent vortical flows. This introduces a new length scale - or spectrum

of length scales - that particles in dense suspensions would sample. It would be interesting to in-

vestigate how the non-monotonic particle size dependence in dilute suspensions is influenced by

collective flows at higher bacterial concentrations. This has biological implications including how

bacteria communicate: bacteria package of chemical-signal into micron-sized vesicles [17], which are

observed throughout biofilms [18]. It would be interesting to explore the connection between vesicle

size, collective motion, and the biochemical adaptability of bacteria.
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Lastly, the role of extracellular polymers in the collective dynamics of bacteria is an ample

area of research. I have found that polymer molecules enhance the speed and diffusivity of non-

interacting swimming bacteria [10]. It would be interesting to explore the role of polymer molecules

in the collective motions of bacteria and how elastic stresses may enhance or hinder their collective

transport. Recent observations have shown that extracellular polymers are important in aligning

and directing flows of bacteria on surfaces [19]. Thus, an exciting avenue of research would be to

investigate the bio-mechanical coupling between bacteria polymer excretion and swimming dynamics

which may allow bacteria to collectively invade and gain new territories on surfaces and in fluid.

5.3 Perspectives

Centuries ago, Antony van Leeuwenhoek reported that - in a drop of pond water beneath his mi-

croscope - danced a vast array of ‘wee animacles’ and ‘cavorting beasts’ [20]. These ‘wee animacles’

included single cells, whose existence uncovered the building block of life and forged our under-

standing of modern biology. Their ‘cavortings’ – that is self-propulsion – distinguished these single-

and multi-celled organisms from their colloidal counterparts, passive particles enslaved to their fluc-

tuating Brownian environments. The drop of pond water, itself, remained a largely unexamined,

seemingly simple, dull and common fluid.

This work [1,10] – in conjunction with investigations over the last two decades – however reveal

that drops of pond water or - more generally - suspensions of self-propelling particles, so called

‘living’ or ‘active’ fluids, behave like no other fluids we know [21]. For instance, in a suspension

of passive, colloidal spheres, an increase in particle diameter decreases the particle diffusivity. In a

suspension of active, motile bacteria, an increase in particle diameter can enhance their diffusivity [1],

a phenomena not seen in passive fluids. Clearly, the presence of life creates unusual and unexpected

material properties. A living fluid, it seems, is as unique and distinct from a passive fluid as a living

microbe is from a passive colloid.

While deciphering the underlying physical mechanisms that govern the dynamics and mechanics

of active fluids may seem as daunting as characterizing the diversity of microbes within them, power-

ful techniques developed in passive mechanics and thermodynamics have been immensely successful

in understanding the mechanical properties of materials that also contain a terrifically diverse set
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of complex passive building blocks or microstructures [22, 23]. Classically, as in the case of passive

albeit complex fluids, the bulk response at large hydrodynamic scales is described through the use

of constitutive equations describing the features of the fluid, such as the stress and pressure, in

terms of variables such as the deformation and deformation rate. These constitutive equations are

related to the microstructure of the complex fluid using concepts from statistical physics and kinetic

theory. For example, the bulk polymeric stress in a flowing polymer suspension can be related to

the ensemble averaged mean stretch of the polymers provided polymer-polymer and polymer-solvent

interactions are known. The success of these techniques in passive complex fluids raises an important

question: to what extent can passive mechanics and thermodynamics techniques be applied to active

systems?

In this regard, I have found that the flow generated by E. coli is sufficiently strong to stretch

polymer molecules [10] – imparting an active component to the polymer end-to-end distance and

elastic stress. In addition, by examining an active-passive phase separated system in a bacterial

swarm, I have uncovered an equilibrium-like transient relaxation in active swarms (Chapter 4). The

phase boundary velocity depends on the interface curvature and the flow of the active bacteria in

such a way to suggest an active analog of the Gibbs-Thomson boundary condition.

“Living matter, while not eluding the“laws of physics” as established up to date, is likely to

involve “other laws of physics” hitherto unknown, which however, once they have been revealed, will

form just as integral a part of science as the former,” wrote Erwin Schrödinger [24] in 1944. It is in

this sentiment that while we search for tools in conventional passive materials to understand active

ones, we should be excited to uncover entirely new physical mechanisms – not or not yet seen in

passive fluids. In this way, we will obtain insight that will transform our understanding of matter –

living and non-living – as a whole.
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Appendix A

Supplementary Materials for

particle dynamics in E. coli

suspensions

A.1 Role of confinement and interfacial effects

The thickness of the film, hf , is about 100 ± 20 microns with the particle (tracer)

diameter d ranging from 0.6 − 39 µm. Thus the ratio hf/d ∼ 150 − 3. Given that

the ratio is large for all except the largest particle, I consider possible confinement

effects for the largest 39 micron particles. An upper bound for the thermal diffusivity

in the absence of bacteria can be obtained by assuming that the particle spans the

film and diffuses in the plane of the film using the Saffman-Delbruck [1] estimate.

According to this theory, the diffusivity of a sphere (diameter d ∼ hf) completely

confined in a free-standing film with viscosity µ surrounded by air with viscosity µa
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is given approximately by

Df
0 ≈

kBT0

3πµd

(
3

4

[
ln(2

µ

µa
)− 0.5772

])
.

Note that even the largest 39 micron particle is not as confined as the expression

assumes since the particle does not span the film. Furthermore I note that the diffu-

sivity Df
0 ∼ d−1, a functionality similar to the free thermal diffusivity D0. Plugging

in values for the viscosities of film, µ and air µa, I find Df
0 ≈ 0.05 µm2/s for the 39

micron particle. For the lowest bacterial concentration I used, the effective diffusivity

of the tracer particle is approximately 0.1 µm2/s, still higher than Df
0 . At concentra-

tions greater than 1.5×109 cells/mL, the effective diffusivity is an order of magnitude

higher and the particle diffusion is dominated by activity and not by confinement.

Particles are only tracked while in the plane of focus. For small particles (d < 3

µm), the sedimentation velocities are low (< 0.3µm/s) and the particles do not sedi-

ment significantly over the time scale of the experiment. The sedimentation velocity

of the 39 µm polystyrene particle in water is ≈ 50 µm/s. Before taking data, I allow

the 39 µm to settle near the bottom of the film. While the particle is close to the sur-

face, there is still a film of liquid and hence the comments in the previous paragraph

still apply - i.e., the effective diffusion is still dominated by activity. Any draining

of the fluid that results in the particle breaching the surface occurs over scales much

larger than the experimental times.

Finally, I consider the possible deformation of the interface from the particle due to

the weight of the particle by estimating maximum induced curvatures. The settling

particle exerts a force Fg = 1
6
πgµ∆ρd3 on the interface. Here, ∆ρ ≈ 0.05 × 103

kg/m3 and g ≈ 9.8 m/s2. This force acts on a surface with projected area of roughly

A = πd2/4. The pressure exerted, Fg/A, is less than the capillary pressure 4σ/d
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suggesting that any surface deformation occurs with curvatures smaller than the

particle curvature. Specifically for the 39 micron particle, the ratio (Fgd/4σA) is less

than 10−5.

A.2 Role of concentration on particle dynamics

A.2.1 Collapse of particle distributions

To probe the effect of bacteria-particle interactions on long time particle displace-

ments, I measure the van-Hove distribution - the probability distribution function

(PDF) of particle displacements ∆x - for varying concentrations of E. coli and dif-

ferent particle sizes. Shown in Fig. A.1(a) are the PDF’s of 2 µm particles measured

over a fixed time interval ∆t = 2 s. The PDF curves are nearly Gaussian (dashed

lines are fits) indicating diffusive behavior with widths that increase as the concen-

tration increases. When c = 0 cells/mL, the width of the distribution yields D0 ≈ 0.2

µm2/s, consistent with the Stokes-Einstein prediction for a freely diffusing tracer. In

the presence of bacteria, while still approximately Gaussian, the PDF’s exhibit devi-

ations at the tail end, particularly a relative enhancement compared to the Gaussian

fit. The tail-end deviations from Gaussianity tend to decrease at the highest bac-

terial concentration, c = 7.5 × 109 cells/mL. These observations are consistent with

previous experimental [2] and theoretical [3] studies of swimming microorganisms.

These studies have shown that while the tail ends of particle displacement distribu-

tion function in the bulk [4] exhibit strong deviations from Gaussianity, the tail ends

of the distribution function in a fluid film converge towards Gaussianity [2].

As shown in Fig. A.1(b), I can collapse the PDF curves of particle displacements

over time in the presence of E. coli (c = 1.5× 109 cells/mL), when the displacement
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∆x is rescaled by ∆x/〈
√

∆x〉2.

The Gaussian nature of the particle distributions is further exemplified by the

non-Gaussianity parameter NGP [5], which is defined as a function of time τ as

NGP(τ) =
〈∆x(τ)〉4

3〈∆x(τ)2〉2 − 1,

where the brackets denote ensemble averages. For a Gaussian distribution, the NGP

equals zero at all times, and thereby quantifies the deviation of a distribution from

a Gaussian one over time. For the 2 µm particle distributions shown Fig. A.2, I

have calculated the NGP in the absence (c = 0 cells/mL) and presence of bacteria

(c = 0.75 and 1.5× 109 cells/mL), as shown in Fig. A.1. As expected, in the absence

of bacteria, when the system is in thermal equilibrium, the NGP is approximately

zero (∼ 0.1) at all times. For c > 0 cells/mL, the NGP values are still close to zero,

which indicates that the distributions behave in a Gaussian way.

A.2.2 Effective diffusivity and cross-over time

I fit the MSD curves in Fig. 2.2(a) to the solution for generic Langevin dynamics - eqn

(2.1) [6]. This allows us to estimate Deff and τ . When the tracer size is held constant,

both Deff (Fig. A.3(a)) and τ (Fig. A.3(b)) increase with E. coli concentration.

For very dilute concentrations φ � 1, tracer-bacteria interactions are mainly

binary [7] and I expect the enhancement to the diffusivity to scale linearly with

concentration. An alternate way to explain the linear dependence is to note that

at low concentrations and in the absence of collective motion or anomalous density

fluctuations, fluctuations in bacterial concentration scale by the central limit theorem

as
√
c. The impulse due to these fluctuations sets the length scale characterizing
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Figure A.1: (a) The probability distribution of 2 µm particle displacements PDF(∆x,∆t, c) at
∆t = 2 s for varying bacterial concentrations c. Dashed lines are fits to a Gaussian. (b) The collapse
of the probability distribution at different time steps in a bacterial suspension with concentration
c = 7.5× 109 cells/mL.
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Figure A.2: The non-Gaussianity parameter of 2 µm tracers particles over time τ in the absence
(c = 0 cells/mL) and presence of E. coli (c = 0.75 and 3.0× 109 cells/mL).

bacteria-tracer encounters; this length scale scales as
√
c and thus the diffusivity

scales as the square of this length DA ∼ O(c). Indeed, our estimated values of Deff

increases linearly with bacterial concentration c, as shown by the dashed-line in Fig.

A.3(a). The variation of τ with concentration, however, does not follow a linear

form. Instead, Fig 3(b) suggests possible saturation of τ for suspensions of higher

concentrations (but still dilute).

A.2.3 Comparison to previous experiments

The enhanced diffusion of passive particles in suspensions of swimming microorgan-

isms has been previously verified in a variety of experimental techniques, including

particle tracking methods in films [2], dye transport in microfluidic [8], and differ-

ential dynamic microscopy in three-dimensional chambers [9]. Previous investigators

have proposed a linear relationship between the enhanced diffusivity and bacteria

concentration to interpret their results [7,9,10] i,e., Deff = D0 + βUc where D0 is the

thermal diffusivity that follows the Stokes-Einstein relationship, U is the character-
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Figure A.3: (a) Effective diffusivities, Deff for 2 µm particles, as a function of bacteria concentration,
c. The trend is roughly linear, with a fitted slope (dashed line) consistent with previous results. (b)
The corresponding crossover time τ increases monotonically with c.
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Figure A.4: Spectral density of particle speeds at varying E. coli concentrations of 0, 0.75, 1.5, and
7.5 ×109 cells/mL and particle diameters of 2 µm and 39 µm.

istic swimming speed (self-propulsive speed) of the microorganism and the quantity

Uc has been called the active flux JA [9, 10]. By dimensional arguments, it is clear

that β has units (length)4. Previous experimental investigations with E. coli have

assumed β is constant and has a magnitude between 5 to 13 µm4 [7–10]. A linear fit

to Fig. A.3(a) yields β ≈ 9 µm4 yields a reasonable fit consistent with the previous

measurements mentioned above.

I also note discrepancies that support the contention that β is not really a constant,

but varies with particle size. Following the theory by Kasyap et al. [7], I rewrite

β = L4D̄A, where L is the total length of the bacteria (7.6 µm for cell body and

flagella) and D̄A is a particle size-dependent dimensionless diffusivity which decays

to zero at small particle diameter.
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A.2.4 Spectral analysis

To quantify the velocity fluctuations, I measure the speed v of individual particles as

a function of time, where the speed v = ∆r/∆t is set by the frame rate ∆t = 1/30 s.

Next, a one-sided power spectra is then determined for each particle in a frequency

range of 0.1 to 15 Hz, which corresponds to 2∆t to 10 s. The power spectra are

normalized by N/2, where N is the number of data points. To determine an ensemble

average within an experimental sample, I average the power spectra over individual

particles, which have the same frequency binning intervals. As shown in Fig. A.4,

the power spectra are reasonably flat for varying E. coli concentrations and particle

diameters. At equilibrium, the magnitude of the random thermal forcing, which

appears as white noise, sets the temperature T [6], such that limt→∞v(t)v(t) = kBT
m
,

where m is the mass of the particle. In the the infinite time limit, the initial conditions

are forgotten.

Here, I find that the experimentally measured magnitudes of the power spectra

increases with E. coli concentration for d =2 µm. As predicted by the infinite time

limit, the increase in the magnitudes is consistent with an enhanced effective tem-

perature (Fig. A.5(a)). For d = 39 µm, the power spectra magnitude is reduced.

This is expected since the increase in the variance of the particle speeds - i.e, the

enhancement in the temperature is insufficient to overcome the increased mass.

A.3 MSD for a diffusing tracer

I consider a simple model of a spherical particle that undergoes an continuously

diffusive process (due to both thermal and active effects) involving a sequence of

small runs and random re-orientations. This is the case when the tracer is buffeted
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around by interactions with bacteria. These assumptions are consistent with the

sample trajectories shown in Fig. A.5.

Let the tracer be located at r(t) at time t and oriented with an angle θ(t). For

ease of analysis, I let the tracer move at a characteristic constant speed v between

significant reorientations. The speed may be formally considered a function of the

concentration of the bacteria and the tracer size. The position and orientation of

the tracer follows dr/dt = vt(t) and dθ/dt = η(t). Here, η(t) is a zero-mean, delta-

correlated Gaussian random variable such that 〈η(t)η(t′)〉 = 2DRδ(t − t′) and t is

the instantaneous, local tangent to the trajectory. Note that here DR is not equal to

D0
R, the rotational diffusivity in the absence of bacteria and purely due to Brownian

effects. Application of the central limit theorem shows that ∆θ has zero mean and

is distributed following a Gaussian profile. The pdf (probability density function), ψ

is given by ψ(t,∆θ) = (1/4πtDR)
1
2 exp(− ∆θ2

4πtDR
) which may then be readily used to

calculate averages. The mean square displacement (MSD) is obtained by evaluation

of the following integral expression 〈|r(t+∆t)−r(t)|2〉 = v2
∫ t+∆t

t
dt′
∫ t+∆t

t
〈cos[θ(t′)−

θ(t′′)]〉 dt′′ and is found to be MSD(∆t) = 2 (v2/DR)
(
t− 1−e−∆tDR

DR

)
.

The effective translational diffusivity is obtained by now rewriting this expression.

First, I introduce an average run time τ ≡ D−1
R , that characterizes the time for the

MSD to transition from ballistic to diffusive behavior and is related to the time for

the particle to forget its initial orientation. I then introduce an effective diffusivity

Deff that is the sum of its value at zero concentration and an excess concentration de-

pendent active diffusivity Deff = D0 +DA(c). To leading order for small concentration

DA is linear in bacterial concentration c when no collective motion exists. Adjusted
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50 μm

A

B

Figure A.5: Enhanced particle diffusion due to bacteria activity. Trajectories of 2 µm particles in a
film of fluid (a) without and (b) with bacteria (c = 0.75× 109 cells/mL) reveal that particles in the
presence of bacteria undergo larger magnitudes of displacement. Scale bars are 50 µm.

for the two dimensional nature of the motion, the MSD then writes as

MSD(∆t) = 4 (D0 +DA) ∆t
(

1− τ

∆t

(
1− e−∆t

τ

))
. (A.1)

Treating τ as a function of concentration, I take the limit of c→ 0 to obtain the

formal solution in the limit of zero concentration
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MSD(∆t)(c = 0) = 4D0∆t
(

1− τ0

∆t

(
1− e−∆t/τ0

))

where τ0 = τ(c = 0). Eqn (A.1) is valid in both active and passive limits and has

indeed be used to investigate diffusion of tracers in active fluids and biofilms [2, 11].

The long lag time limit taken when ∆t/τ � 1, gives us the asymptotic expression

MSD(∆t� τ) ∼ 4 (D0 +DA) ∆t− 4 (D0 +DA) τ

with corrections that are exponentially small. In the short lag time limit as ∆t/τ � 1,

I find the asymptotic expansion MSD(∆t� τ) ∼ 2 (Deff) (∆t)2/τ .

An alternate analytical expression for the MSD has been derived previously and

used to interpret the diffusion of active photo-colloids [12–14]:

MSD(∆t) = 4 (D0 +DA) ∆t− 4DAτ
(
1− e−∆t/τ

)
. (A.2)

Comparison of eqn (A.2) with eqn (A.1) reveals the following features. First the

long time effective diffusivities Deff predicted by the two expressions in the limit

∆t/τ →∞ are the same. Since DA = Deff −D0 and D0 is defined (and not a fitting

parameter), the values of the active diffusivity obtained from both forms are the

same. The short time asymptote of (A.1) and (A.2) for small lag time are however

different. Equation (A.2) yields MSD ∼ 4 (D0 +DA) ∆t − 4DAτ∆t/τ ∼ 4D0∆t in

contrast to the superdiffusive (ballistic to leading order) asymptotic form from (A.1).

Furthermore in the limit of zero bacterial concentration when DA = 0, eqn (A.2) does

not reduce to the formal solution to the Langevin equation.

I have used both eqn (A.1) and (A.2) to fit my data. Since D0 is not a fitting

parameter but is given by the analytical Stokes-Einstein relationship, I fit for DA
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and τ . I find that eqn (A.1) gives a better fit for τ for the two smallest particle

sizes at small times. For other cases, both equations yield comparable values of τ .

The values of DA obtained from the long time asymptotes are the same for (A.1)

and (A.2). Because of these considerations, I have chosen to use the MSD expression

given by eqn (A.1) to analyze the data.

A.4 Previous theory for small and large Peclet

number

Kasyap, Koch and Wu [7] recently presented a analytical theory supplemented by sim-

ulations of the diffusion of passive, Brownian tracer particles in three dimensional sus-

pensions of E. coli bacteria. They present an explicit expression for the hydrodynamic

particle diffusivity DA resulting from bacteria-particle interactions. Their analytical

theory assumes that encounters are binary, ignores steric interactions (which were

however considered in more detailed simulations) and uses two additional simplifica-

tions - first that orientations of bacterium before and after a tumble are uncorrelated

and second, that the fluid velocity disturbance created by each bacterium is small

compared to its swimming speed, U .

Both the analytical theory and the simulations show that the scaled hydrodynamic

diffusivity, DA = (Deff−D0)/cL4U is controlled by the two dimensionless parameters

- the Peclet number, Pe ≡ UL/D0 (the ratio of the time scale of bacterial swimming

to the tracer diffusion time and τ∗ ≡ Uω−1
T /L, (the inverse of the tumble frequency

ωT to the time a bacterium takes to swim a distance equal to its length L). In all

the experiments, I use the same strain of bacteria; thus, τ ∗ is held fixed. The theory

predicts that DA is a monotonically increasing function of τ∗ but a non-monotonic
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function of Pe. Below, I briefly summarize the theoretical predictions for small Pe� 1

and large Pe� 1.

Provided τ∗ ≥ O(1), as in my experiments, theory suggests that DA ∼
√

Pe for

Pe � 1. Thus the active diffusivity DA ∼ cUL4(UL/D0)
1
2 ; in terms of particle size

d, this predicts DA ∼
√
d. I do not access this small Peclet number regime in my

experiments.

The asymptotic result for very large values of τ∗ � 1 with Pe � 1 corresponds to

non-Brownian tracers in a suspension of non-tumbling bacteria. Both their analytical

theory and simulations predict the enhancement in diffusivity to asymptote to con-

stant values that are independent of the Peclet numbers as well as τ ∗. For finite values

of τ ∗ the value of DA as Pe →∞ depends only on τ ∗ and follows DA ≈ α2

192πM2f(τ∗),

where α and M are bacteria related geometry parameters and f(τ∗) is a scalar func-

tion and controls the time scale over which the velocity disturbances induced by

swimming bacteria stay correlated. The cells I use are wild type (strain MG1655)

with run times of roughly 1 second and τ∗ = 1.8. From Fig. A.5(b), I find that for the

largest Peclet number I attain, DA ≈ 3.0× 10−3. This is consistent with asymptotic

limits of DA ≈ 3.4 × 10−3 and 4.2 × 10−3 for α = 2/7 [15] and M = 0.18 at τ∗ = 1

and 4, respectively [7].

A.5 Qualitative estimate for the maximum effec-

tive particle diffusivity Deff

My experimental data suggests that both the existence and location of the peak can

be tuned by adjusting c and d as independent parameters. I now consider a minimal

model that yields a quantitative prediction for the existence as well as the location
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of the peak in Deff .

I first rewrite Deff to explicitly incorporate its linear dependence on c:

Deff = D0 + (cL3UL)DA. (A.3)

Differentiating Deff with respect to Pe yields

D′eff = (UL)

[
− 1

Pe2 + (cL3)D
′
A

]
. (A.4)

where primes denote differentiation. Setting eqn (A.4) to zero, I conclude that a

extremum (shown to be a maximum from the data) in Deff exists for

cL3 = (Pe2D
′
A)−1. (A.5)

The collapsed universal curve (Fig. 2.5(b)) depends on both Pe and τ ∗; in my case

τ ∗ is a constant. Using the experimentally collapse curve, I approximate the slope

D
′
A by fitting the data (Fig. A.5(b)) to the form

DA(Pe) ≈
[
A0 −

1

2
A1(PeA − Pe)2

]
. (A.6)

Here A0 = DA(PeA) with PeA being the Péclet number at which DA is a maximum.

In the general case, A0, A1 and PeA would be functions of τ ∗. I fit the collapsed

DA data (Fig. A.5(b)) for the range 200 < Pe < 4000 to eqn (A.6) and obtain

PeA ≈ 1000 and A1 ≈ 5× 10−7. From eqn (A.6), it follows that the slope is given by

D
′
A(Pe) ≈ A1(PeA − Pe).

I next estimate the magnitude and location of the maximum Deff by substituting

eqn (A.6) into eqn (A.5). The Péclet number Pemax at which Deff is maximum is
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given by the cubic equation

cL3A1(PeA − Pemax) = Pemax
−2. (A.7)

I are interested in how Pemax changes with c and so I seek an approximate asymptotic

real and physically valid solution for Pemax.

Let δPe be a measure of the deviation from PeA defined through Pemax = PeA −

δPe. Note that Pemax < PeA so that by definition δPe > 0. I substitute Pemax =

PeA − δPe into eqn (A.7), Taylor expand the right and left hand sides, simplify the

resulting expansions by utilizing the conditions Pemax
2 � 1 and δPe � PeA and

finally retain terms to O(δPe). This then gives us the equation

(Pe3
AcL

3A1 − 2) δPe ≈ PeA. (A.8)

The constraint that δPe > 0 results in the inequality Pe3
AcL

3A1 > 2 for a valid

solution to exist. Furthermore, eqn (A.8) provides the shift in the peak, δPe rel-

ative to PeA, when it exists. Using the expression for δPe from eqn (A.8) I ob-

tain expressions for the location of the peak Pemax and thereby its dependence on

c, Pemax = PeA

[
1−

(
1

Pe3
AcL

3A1−2

)]
, and dmax

eff = dA

[
1−

(
1

Pe3
AcL

3A1−2

)]
is the corre-

sponding location in particle size dmax
eff where dA is the particle diameter corresponding

to PeA. In my case, plugging in A1 ≈ 5× 10−7 and PeA ≈ 1000, yields

dmax
eff = dA

[
1−

(
1

5cL3 − 2

)]
(A.9)

Note that as c increases, dmax
eff increases, consistent with my experimental observations

(Fig. A.3(a)).

The magnitude of the maximum effective diffusivity Dmax
eff is thus evaluated as
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Dmax
eff

UL
= 1

PeA
+ cL3

(
A0 − A1

A2

)
where A2 = 2

Pe2
A

(
Pe3

AcL
3A1 − 2

)2
.
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Appendix B

Supplementary Materials for

swimming E. coli in polymer

solutions

B.1 Rheological characterization of solutions

B.1.1 Shear viscosity and elasticity of CMC solutions

The shear viscosity of the carboxymethyl cellulose solutions is measured with a cone-and-plate

rheometer, over a range of shear rates 10 to 1000 s−1. For dilute suspensions (c = 10 ppm), the fluid

is nearly Newtonian. However, at higher concentrations, the solutions are shear thinning. I define

an effective viscosity experienced by the bacterial cell as the average shear viscosity over the shear

rates of 10-100 s−1. This range of shear rates was chosen since it corresponds to E. coli flagellar

bundle rates (50-100 s−1) [1, 2]. As shown in Fig. B.1, the viscosity increases from 1.0 to 20.0 mPa

· s with polymer concentration for polymer molecular weight 9.0× 104, 2.5× 105, and 7.0× 105.

At low concentrations, the shear viscosity is nearly constant with shear rate. At higher concen-

trations, particular for MW= 7.0× 105, the shear viscosity begins to decrease with increasing shear

rate (Fig. B.1a). The shear-thinning viscosity η can be described by a model power law fluid, such
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Figure B.1: Shear viscosity of CMC solutions. (A) Shear viscosity of CMC (MW = 7.0 × 105) at
polymer concentrations ranging from 10 to 500 ppm. (B) The shear viscosity magnitude, defined
as the mean shear viscosity over 10-100 s-1, increases from 1.0 to 20.0 mPa · s as the polymer
concentration increases. The shear viscosities for MW = 2.5×105 (C, D) and MW = 9.0×104(E,F)
also range from 1.0 to 20.0 mPa·s.
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Figure B.2: The relaxation times for CMC (MW = 7.05) and XG solutions versus concentration
as determined by a microfluidic device are consistent with relaxation time measurements at higher
concentrations in a cone-and-plate rheometer [4].

that η = κγ̇n−1, where n is the shear-thinning index. At the highest concentration (c = 500 ppm,

MW = 7.0× 105), the shear-thinning index reaches a minimum of 0.70, as shown in Table B.1.

Table B.1: Rheological properties of CMC (MW = 7.0× 105 ) solutions

c (ppm) µ (mPa · s) n λ (ms)

0 0.97 N/A -
10 1.38 0.95 -
35 2.92 0.84 -
60 4.51 0.77 -
100 6.81 0.73 -
225 11.8 0.72 23.0
500 18.8 0.77 49.5

The fluid elasticity is quantified by measuring the relaxation time, λ of the CMC solutions (MW

7.0×105 ). This time scale is determined via a creep recovery test in a microfluidic device [3]. I find

that the relaxation times increase from 0.02 seconds to 2.0 seconds as the polymer concentration
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Figure B.3: Shear viscosity versus shear rate for Xanthan Gum solutions. The viscosity significantly
shear thins, particularly in the region of interest, γ̇ = 10 − 100 s−1. At the highest concentration,
the shear-thinning index n reaches a minimum of 0.50.

varies from 200 to 4000 ppm, as shown in Fig. B.2. The relaxation times I measure in the microfluidic

device are qualitatively consistent with measurements made independently in a macroscopic cone-

and-plate rheometer [4] and provides a measure of the elasticity in the highest concentrated CMC

solutions used with E. coli (c = 225, 500 ppm).

XG Rheology

As mentioned in the previous section, the relaxation times λ are determined via a creep recovery

test in a in-house microfluidic device. I find that for the highest XG concentration (c = 300 ppm),

λ is approximately 44 ms, as shown in Fig. B.2.

The shear viscosities of XG solutions are measure in a cone and plate rheometer. As shown in

Fig. B.3, the viscosity significantly shear thins, particularly in the region of interest, γ̇ = 10−100s−1.

At the highest concentration, the shear-thinning index n reaches a minimum of 0.50 (Table B.2).
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Table B.2: Rheological properties of XG

c (ppm) n

10 1.01
30 0.92
60 0.76
100 0.64
180 0.57
100 0.51

Figure B.4: Shear viscosity of PEG solutions at polymer concentrations ranging from 1.3 to 10%
by weight. The shear viscosity magnitude increases from 2 mPa·s to 30 mP·s. There is negligible
change in viscosity with shear rate, exhibiting Newtonian behavior.

Rheology of PEG solutions

The shear viscosities of PEG solutions are measured with a cone-and-plate rheometer. For the range

of concentrations used (c = 1.3-10% by weight), the shear viscosity increases from 2 to 30 mPa·s, as

shown in Fig. B.4. Furthermore, shear viscosity is nearly constant with shear rate, indicating that

PEG solutions provide a model Newtonian fluid.
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B.2 Methods

Prepping and tracking cells suspended in thin film

Suspensions of E. coli are prepared by growing the cells (wild type K12 MG1655) to saturation

(109cells/mL) in culture media (LB broth, Sigma-Aldrich). The saturated culture is gently cleaned

by centrifugation and re-suspended in the fluid of choice at dilute concentrations (5×107 cells/mL).

Experiments are performed in a thin fluid film by placing a 2-µL drop of cell-polymer/cell-buffer

suspension in an adjustable wire frame and stretching the film to measured thickness 80 µm. The

film interfaces are nearly stress-free which minimizes velocity gradients transverse to the film. E.

coli are imaged with phase-contrast microscopy, and videos are taken at 30 frames per second. The

positions of the cell body r(t) are gathered over time t via standard particle tracking techniques [54].

Run and tumble times of tethered cells

During the run or tumble states, the cell motor rotates in a counter clockwise (CCW) or clockwise

(CW) direction, respectively, when viewed from behind. I use a sticky-flagellated mutant E. coli

(strain MDG201) [31] to tether the cells to glass surfaces by their flagella. As the cell motor rotates,

the body of the cell rotates about its tethered flagella in either a CCW or CW fashion, revealing the

state of the motor. In SI Movie 2, sample tethered cells are shown in Newtonian fluids (solutions

of PEG) and viscoelastic fluids (solutions of CMC). As the viscosity increases, the tethered cells

exhibit two changes: (1) a decrease in rotational speed and (2) also an increase in both run (CCW)

and tumble (CW) time intervals, measured from approximately 100 switching events.

For a cell in a Newtonian fluid, the torque on the motor is proportional to the frequency of

rotation ω and the viscosity µ. For cells that operate at constant torque [28,31], an increase in

viscosity should yield lower rotation rates, consistent with the observed decrease in rotation rates.

In Fig 3.4 E, I see that the mean run and tumble times of individual cells tend to increase with

viscosity for both the CMC and PEG solutions. The increase in run and tumbles times are verified

by linear regressions, which reveal positive correlations among the time intervals and viscosity. Table

1 displays the slopes of the linear regressions. A t-test conducted at α = 0.05 (tc=1.68) indicate that

the slopes are statistically the same between the PEG and CMC solutions for the run time (t=0.9,

p-value= 7 × 107) with viscosity and the tumbles times (t=1.0, p-value= 2 × 105) with viscosity.
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Furthermore, the presence of elasticity in the CMC does not significantly alter the run and tumble

times. Instead, the increase in run and tumble times of tethered cells can statistically be accounted

for by viscosity alone.

Table B.3: Results of linear regression analysis

slope tc t p-value

CMC run time 1.59 1.68 0.86 7× 10−7

PEG run time 1.11 1.68 0.86 7× 10−7

CMC tumble time 0.053 1.68 1.04 2× 10−5

PEG tumble time 0.099 1.68 1.04 2× 10−5

Fluorescently-stained DNA molecules

I fluorescently stain λ-DNA (MW= 3 × 107) polymers to visualize the interaction of tethered cells

with individual polymer molecules. Suspensions of λ-DNA are prepared by heating λ-DNA stock

solution at a temperature of 65◦C for 10 min and then quenching the sample in an ice bath for 3

minutes. The DNA molecules were stained with YOYO-1 iodide at a dye to base pair ratio of 1:4

and left to incubate at room temperature for one hour. The stained molecules were suspended in

TE buffer with 4% (v/v) -mercaptoethanol, which reduces the amount of photo-bleaching. The final

concentration is 0.10 c∗, where c∗ = 40 µg/mL.

The fluorescently stained λ-DNA polymer molecules are suspended in a buffer solution with

mutant E. coli cells: These mutants, strain PL4, contain the sticky-flagella for tethering and also

always ‘run’. Once a tethered cell is identified using bright field microscopy, the polymer molecules

around the cells are visualized with fluorescence microscopy.

Model for tumbling rates

The E. coli motor is a rotary motor comprised of the flagellar hook and several rings of proteins and

is driven by an ion gradient acting across the cell membrane [31]. The flow of protons through the

motor induces conformational changes in the stator proteins, which generate a torque on the rotor.

The binding of a protein molecule Che-Y to the cell motor induces a conformational change of the
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motor, thereby promoting the switching of the motor direction from CCW to CW and initiating a

tumbling event. When Che-Y molecules unbind, the motor regains its original conformation and

reverses direction again.

Duke et al. [44] proposed a thermal isomerization model to describe the switching dynamics in

the absence of an external load. In this model, the motor switching rate is proportional to e−∆G/kT ,

where ∆G is the energy difference between the free energy of the barrier and the energy of the CCW

or CW state. The binding of Che-Y molecules to the motor lowers the free energy barrier, setting

the internal switching rate k∗ [31,32,43,44]. I propose that in a viscous fluid, the motor experiences a

mechanical load due to viscous drag on the flagella. In order to reverse the motor rotation direction,

the motor must overcome this viscous torque M . I hypothesize that this effect results in an additional

energy barrier that has to be overcome for an attempted switching event to be ultimately successful.

The height of this barrier may be estimated as the product of an external fluid resistive torque

(and therefore external viscosity) and an internal state variable related to motor configurations, a

characteristic angle β. With these simplifications, the net motor switching rate becomes k∗e−Mβ/kT

and thus decreases with viscous torque on the flagella. Using this model, I predict the rotational

diffusion of E. coli as a function of viscosity as DR = D0
R + A ∗ k ∗ e−/kT = kT

f0µ
+ Ae−Bµ, where

the mechanical loading is due to viscous stresses on the motor. The parameter B, defined as

B = /kTµ, corresponds to a motor torque M = 650 pN nm in water [34] and a characteristic angle

β = 0.025◦. This characteristic angle reflects the orientational change in the configuration of a stator

protein subunit during a switching event [43]. Since the flagellar motor contains many stator protein

subunits, one should more generally interpret β as a weighted angle and βM as a weighted average

amount of work performed by the stators to switch the motor.

Estimate of force generated from tethered cells

The tangential flow field around a sphere of radius rotating about an axis with angular frequency

ω and evaluated in its mid-plane is given by vθ(r) ∼ aω(a/r)2. Assuming the DNA molecule is

at distance R, the velocity gradient in the radial direction can be estimated and the shear rate is

roughly given by |γ| ∼ 2(a/R)3ω. The actual shear rate differs from the order of magnitude estimate

due to the shape of the bacterial cell and the presence of the wall. Using a = 0.7 µm, Rg = 2.4 µm

and ω = 0.9(2π)s−1, I find |γ| ∼ 2.8s−1. The polymer stretches from the small deviation from the
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Figure B.5: The crossover time τ increases from 0.9 to 4.8 s as polymer concentration increases up
to 500 ppm (CMC, MW = 7.0× 105). The result for buffer is included for reference.

streamline on which the center of mass moves. Balancing the lateral (cross streamline) extension of

the blob with radius of gyration Rg and persistence length Lp of approximately 50 nm with Brownian

forces, I estimate the flow induced force due to the fluid of viscosity η extending the polymer as

F = ζγ(2kBT/k⊥)1/2 where ζ = 6πηRg and k⊥ = kT/Lp`c are the viscous drag coefficient and

effective polymer stiffness respectively. Plugging in values, I find F ∼ 49 fN this estimate is an

upper limit.

B.3 MSD Crossover time increases with polymer

concentration

For E. coli, the dynamics of its entire trajectory can be captured using the relationship MSD(∆t) =

4DT∆t(1 − e−∆t/τ ), where τ is a typical crossover time marking the transition from ballistic and

diffusive manner. The crossover time is related to the mean run time of the ballistic runs τR. The

MSD is proportional to 4DT (∆t)2/τ for ∆t << τR and to 4DT∆t for ∆t >> τR. By fitting the

MSD data in Fig. 3.3(a) to this relation, I find that the crossover time τ increases with polymer

concentration from 0.9 to 4.8 s, as shown in Fig. B.5.
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B.4 E. coli Rotational Diffusivity and Mean Run

Time

The rotational diffusion DR for a run-and-tumble particle depends on the mean tumble angle α and

the mean run time τ as DR = (1 − cosα)/τR [5]. The tumble angles are defined by the angular

change in direction from run to run, as shown in Fig. B.6a. Averaging over multiple tumbles and

multiple cells, I find the mean tumble angle remains nearly constant with polymer concentration

Fig. B.6b. The tumble angle depends on the effective torque acting on the cell body that rotates

it about an axis different from the direction of motion- the rotation being due to the fact that the

flagella are unbundled [1]. Specifically, the tumble angle is proportional to this tumble torque τt and

the tumble time. The tumble torque τt is proportional to the fluid viscosity. In the experiments,

the fluid viscosity varies by a factor of about 20. Thus, I expect the tumble torque to increase

correspondingly by a factor of approximately 20 as well. However, this effect combined with the

simultaneously observed increased in mean tumble times (Fig. 3.4b and 3.4e) results in a nearly

constant mean tumble angle. A cell attempting to tumble in polymer solutions is successful and can

thus change direction by the same amount as in a fluid without polymer. This suggests that the

change in rotational diffusion of cells (Fig. 3.4c) is primarily due to the changes in run time and not

changes in tumble angle.

B.5 Suppression of Wobbling with Molecular Weight

Figure B.7a shows the mean cell velocity 〈v〉 as a function of fluid viscosity for CMC solutions of

different MW and a XG solution. While 〈v〉 increases with µ for the highest molecular weight CMC

and XG solutions, the relative enhancement in v diminishes as the CMC molecular weight (and

thus elasticity) decreases. This is evident if one selects a specific viscosity (µ= 11 mPa s, shaded in

Fig. B.7a, where 〈v〉v clearly decreases with CMC molecular weight. The increase in 〈v〉 with CMC

molecular weight (MW) is consistent with the simultaneous decrease in wobbling 〈σ(φ)〉 with MW,

shown in Fig. B.7b for µ = 11 mPa s. We note that E. coli swimming in the highest MW CMC

and XG solutions show effectively the same degree of wobbling 〈σ(φ)〉 (and 〈v〉) even though their

power law indexes are quite different, which strongly indicates that shear-thinning viscosity effects
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Figure B.6: (A) The tumble angles are defined by the angular change in direction from run to
run. (B) The mean tumble angle, averaged over multiple tumbles in multiple cells, remains nearly
constant with concentration.

are not important.

B.6 Polymer dynamics due to flow generated by

tethered cells

I quantify polymer extension by measuring an effective length of the polymer molecule, `, defined

to be the maximum distance along two points of the cell’s contour. This allows us to quantify the

polymer extension in terms of a single dimensionless function – the distribution of `/`c – where `c is

the contour length of (typically 22.0 µm for my DNA polymer) [14]. Note that this is not the same as

the end-to-end distance and so statistics of this normalized length yield order of magnitude estimates.

For weak flow fields, an estimate of the fluid force resulting in polymer stretching can be estimated by

examining the distribution of `/`c over a time for which the polymer feels the constant flow gradients.

While the actual flow field is time dependent, one may assume that sampling and reorientations are

sufficiently quick. In my case, this would correspond to sampling the lengths when the polymer is at

the same distance from the tethered cell. For ease of analysis, I assume that the statistical properties

of the end-to-end distance are comparable to that of `/`c of the DNA blob. Hence I now study the
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Figure B.7: (a) Cell velocities as a function of viscosity for varying polymers. At µ= 11 mPa
s (shaded), the velocity increases with MW. (b) For µ= 11 mPa s, 〈σ(φ)〉 decreases with MW,
suggesting that fluid elasticity suppresses wobbling. The result in buffer is included for reference.

shift in the distribution function characterizing the end-to-end distance as a function of extensional

forces generated as the DNA polymer samples the local flow field. The DNA configuration can

typically be modeled as a self-avoiding walk (SAW) in two-dimensions. The distribution of end-

to-end distance, x, under thermal fluctuations alone follows PDF (x) = ax1+σe−bx
δ

with scaling

exponents given by σ= 0.44 and δ= 4 [7, 8]. The constant a is determined by the normalization

condition. The constant b is related to the mean end-to-end distance and depends on the number of

effectively independent chains constituting the polymer chain, N , and an effective segment length

(r0 = 50 nm [6]), and is given by b = (r0N
3/4)−δ where the contour length `c = r0N . Rewritten

explicitly in terms of the contour length, I get in the absence of imposed forces the equilibrium

distribution

PDF (x/`c) = `1+σ
c a(x/`c)

1+σe
`cF (x/`c)
kBT (B.1)

where b∗ = b(`c)
δ = rδ0N

δ/4. When a constant stretching (elongational) force F is applied to the

polymer, the distribution function of end-to-end distances shifts. The distribution shifts accordingly

to accommodate entropic effects [9] and attains the form:

PDF (x/`c) = `1+σ
c a(x/`c)

1+σe−b
∗(x/`c)

δe
`cF (x/`c)
kBT (B.2)
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I next quantify the PDF of the scaled stretch near the cell (at a radial distance 5 µm) and the

PDF of the DNA in the absence of a cell both shown in Fig. B.8. Modeling the polymer in the

absence of cells using Eq’n B.1, and fixing σ= 0.44 and δ = 4, I obtain b∗ = 3100. By fixing σ =

0.44, δ = 4 and b∗ = 3100, I next fit the data in Fig. B.8 to Eq’n. B.2 and obtain F = 4.5 fN as

an estimate of the effective fluid flow induced extensional force stretching the polymer, as shown in

Fig. B.8.

B.7 Estimation of Weissenberg Numbers

A. Weissenberg numbers for freely swimming cells

The Weissenberg number Wi is defined here as the product of the fluid relaxation time λ and the

characteristic frequency of the swimmer f , where f is the rotation rate of the E. coli bundle. Thus,

Wi = 2πfλ. The relaxation times are estimated from previous measurements of CMC solutions in

a macroscopic cone-and-plate rheometer [7] using a simple extrapolation scheme.

Next, the bundle rotation rates for my polymeric solutions are estimated using their viscosity

values. Previous experiments have shown that bundle rotation rate decreases with viscosity [8].

Although the bundle rotation rate is not directly observed in the experiments, the viscosity of

the solutions is well characterized (c.f. Fig. B.1). I use the available data [8] to estimate the

average bundle rotation rate f . Assuming that the bundle rotation rate decreases as the inverse

of the viscosity, the estimated bundle rotation rate f decreases from 130 to 55 Hz as the polymer

concentration increases from 0 to 500 ppm, as shown in Table B.4. From these values, our estimated

range of Wi = 2πfλ is 0.03 to 13.6 (Table B.4).

Weissenberg numbers for DNA polymer near tethered E. coli

For the DNA molecule in water, the relaxation time λ is approximately 3 seconds [9]. The estimated

shear rates γ̇ due to the flow generated by the tethered cell (Fig. 6) are approximately 2.8 s−1 (B.6),

which leads to Wi = 2πfλ ≈ 8.4.
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Figure B.8: Stretching of polymer molecule quantified using the probability distribution of a normal-
ized extension given by the ratio of the length-scale ` (the maximum distance along two points of the
contour) and its contour length `c. (A) The PDF for polymer molecules in the absence of cells. The
dashed line corresponds to the predicted PDF for a self-avoiding random walk in two dimensions [7].
(Inset) Definition of the length `. (B) Normalized length fluctuations for the polymer near the cell
are due to a contribution of thermal motion and its interaction with the cell. As can be seen the
distribution function shifts to the right suggesting an extended state. The dashed line corresponds
to Eq’n B.2.
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Table B.4: Viscosity, concentration, relaxation time,and bundle rotation frequencies used to estimate
Wi in solutions of CMC.

µ (mPa s) c (ppm) λ (s) f (Hz) Wi

0.97 0 0.0 130 0
1.38 10 2.6 ×10−5 100 0.03
2.92 35 3.6×10−4 72 0.15
4.51 60 8.98 ×10−4 66 0.37
6.81 100 2.2×10−3 61 0.85
11.8 225 9.5 ×10−3 56 3.3
18.8 500 3.96 ×10−2 54 13.6
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