
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Causal Inference Using Variation In Treatment
Over Time
Xinyao Ji
University of Pennsylvania, xinyaoji@wharton.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Statistics and Probability Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2368
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Ji, Xinyao, "Causal Inference Using Variation In Treatment Over Time" (2017). Publicly Accessible Penn Dissertations. 2368.
https://repository.upenn.edu/edissertations/2368

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/219377796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fedissertations%2F2368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2368?utm_source=repository.upenn.edu%2Fedissertations%2F2368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2368
mailto:repository@pobox.upenn.edu


Causal Inference Using Variation In Treatment Over Time

Abstract
This thesis and related research is motivated by my interest in understanding the use

of time-varying treatments in causal inference from complex longitudinal data, which

play a prominent role in public health, economics, and epidemiology, as well as in

biological and medical sciences. Longitudinal data allow the direct study of temporal

changes within individuals and across populations, therefore give us the edge to utilize

time this important factor to explore causal relationships than static data. There are

also a variety challenges that arise in analyzing longitudinal data. By the very nature

of repeated measurements, longitudinal data are multivariate in various dimensions

and have completed random-error structures, which make many conventional causal

assumptions and related statistical methods are not directly applicable. Therefore,

new methodologies, most likely data-driven, are always encouraged and sometimes

necessary in longitudinal causal inference, as will be seen throughout this thesis

As a result of the various topics explored, this thesis is split into four parts corresponding

to three dierent patterns of variation in treatment. The rst pattern

is the one-directional change of a binary treatment assignment, meaning that each

study participant is only allowed to experience the change from untreated to treated

at the staggered time. Such pattern is observed in a novel cluster-randomized design

called the stepped-wedge. The second pattern is the arbitrary switching of a binary

treatment caused by changes in person-specic characteristics and general time

trend. The patterns is the most common thing one would observe in longitudinal

data and we develop a method utilizing trends in treatment to account for unmeasured

confounding. The third pattern is that the underlying treatment, outcome,

covariates are time-continuous, yet are only observed at discrete time points. Instead

of modeling cross-sectional and pooled longitudinal data, we take a mechanistic view

by modeling reactions among variables using stochastic dierential equations and

investigate whether it is possible to draw sensible causal conclusions from discrete
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ABSTRACT

CAUSAL INFERENCE USING VARIATION IN
TREATMENT OVER TIME

Xinyao Ji

Dylan S. Small

This thesis and related research is motivated by my interest in understanding the use
of time-varying treatments in causal inference from complex longitudinal data, which
play a prominent role in public health, economics, and epidemiology, as well as in
biological and medical sciences. Longitudinal data allow the direct study of temporal
changes within individuals and across populations, therefore give us the edge to utilize
time this important factor to explore causal relationships than static data. There are
also a variety challenges that arise in analyzing longitudinal data. By the very nature
of repeated measurements, longitudinal data are multivariate in various dimensions
and have completed random-error structures, which make many conventional causal
assumptions and related statistical methods are not directly applicable. Therefore,
new methodologies, most likely data-driven, are always encouraged and sometimes
necessary in longitudinal causal inference, as will be seen throughout this thesis

As a result of the various topics explored, this thesis is split into four parts cor-
responding to three different patterns of variation in treatment. The first pattern
is the one-directional change of a binary treatment assignment, meaning that each
study participant is only allowed to experience the change from untreated to treated
at the staggered time. Such pattern is observed in a novel cluster-randomized design
called the stepped-wedge. The second pattern is the arbitrary switching of a bi-
nary treatment caused by changes in person-specific characteristics and general time
trend. The patterns is the most common thing one would observe in longitudinal
data and we develop a method utilizing trends in treatment to account for unmea-
sured confounding. The third pattern is that the underlying treatment, outcome,
covariates are time-continuous, yet are only observed at discrete time points. Instead
of modeling cross-sectional and pooled longitudinal data, we take a mechanistic view
by modeling reactions among variables using stochastic differential equations and
investigate whether it is possible to draw sensible causal conclusions from discrete
measurements.
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1
Introduction

This thesis and related research is motivated by my interest in understanding the

use of time-varying treatments in causal inference from complex longitudinal data,

which play a prominent role in public health, economics, and epidemiology, as well

as in biological and medical sciences. By measuring study participants over time,

longitudinal data allow the direct study of temporal changes within individuals and

across populations, therefore facilitate estimating the causal effect of certain treat-

ment on the outcome. There are also a variety challenges that arise in analyzing

longitudinal data. By their very nature, the repeated measures are multivariate and

have a complex random-error structure that must be appropriated accounted for in

the analysis. Hence, conventional causal assumptions and related statistical methods

are not directly applicable to the topics that I explored in the thesis. They are either

extended or modified and coupled with new methodologies depending on each data-

driven problem.

As a result of the various topics explored, this thesis is split into four parts cor-

responding to three different patterns of variation in treatment. The first pattern

is the one-directional change of a binary treatment assignment, meaning that each

study participant is only allowed to experience the change from untreated to treated
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at staggered time. Such pattern is observed in a novel cluster-randomized design

called the stepped-wedge. The second pattern is the arbitrary switching of a binary

treatment caused by changes in person-specific characteristics and general time trend.

The third pattern is that the underlying treatment, outcome, and other covariates

are time-continuous, and that they are only observed at discrete time points.

The majority of the work in this document is joint with my adviser Dyan S. Small and

each chapter’s contributors are appropriately marked at the beginning of the chapter

and project-specific acknowledgments are appropriately marked at the close of each

chapter.

Chapter II

Here, I write about the work I did in stepped-wedge cluster-randomized experiments

in which all clusters start out in the control and then clusters are randomized to

cross over to the treatment at staggered time. I investigated statistical properties of

the stepped-wedge design following the parametric mixed model approach proposed

by Hussey and Hughes in 2007. I found that testing for the treatment effect is

generally sensitive to specification of the parametric model. For instance, if one

fails to account for cluster-by-time interactions present in the data, the Type I error

rate is severely inflated. My collaborators and I developed a more robust and efficient

strategy-randomization inference as a unified framework to test for constant treatment

effects with guaranteed Type I error rate and satisfying power. The proposed method

was applied to the Burkina Faso CBHI dataset to study the financial benefits of

community-based health insurance (CBHI) schemes. We concluded that the insurance

had limited effects on reducing the likelihood of low to moderate levels of catastrophic

health expenditure, but substantially reduced the likelihood of extremely high health

2



expenditure that exceeds half of a person’s monthly income.

Chapter III

One-directional change of treatment status is a very strict rule for treatment as-

signment and randomized experiments are not always ethical and realistic to be

implemented. For the majority of existing observational data sets in the fields of

epidemiology, treatments, like prescriptions of a drug, are observed to switch sta-

tuses in unequal-spaced time intervals. Epidemiologic designs such as the cohort

study have been extensively studied to examine causal effects of such treatment using

individual-level data, yet can be biased if there are unmeasured competing risk fac-

tors. As a response, my collaborators and I proposed a hybrid ecologic-epidemiologic

design called the trend-in-trend (TT) design utilizing a strong time-trend in exposure.

Rather than comparing exposed vs. unexposed persons, the TT design derives causal

estimates by examining time-trends in outcome as a function of time-trends in expo-

sure across strata with different time-trends in exposure. We gave a mathematical

derivation of using aggregated data that are covariates-free to infer individual-level

causality. We reported a simulation study illustrating that the odds ratio estimated

using the TT method is much less biased than that estimated using cohort meth-

ods when there is unmeasured confounding. Finally, we applied the TT method to

healthcare data to reproduce the known positive association between rofecoxib and

acute myocardial infarction (AMI), and two presumably null associations: rofecoxib

and severe hypoglycemia, and rofecoxib and bone fracture.

3



Chapter IV

The inference part of the TT design inspired me and my collaborators to think about

developing corresponding a sequential testing methodology. Sequential testing meth-

ods are powerful tools that facilitate early termination of a newly introduced drug

when the drug exceeds the pre-assumed adverse event rate. However, all the existing

sequential testing methods in observational settings rely heavily on the unstable as-

sumption of no unmeasured confounding. Because electronic health records are not,

in general, collected for scientific purposes, the no unmeasured confounding assump-

tion is unlikely to hold. We generalized the standard sequential likelihood ratio test

to trend-in-trend design settings that utilizes time trends in exposure prevalence and

accounts for both measured and unmeasured confounding under certain assumptions.

As the log likelihood ratio of the TT design does not have known asymptotic distri-

bution, we approximated the critical value using a Monte Carlo simulation method

involving α-spending approaches. The performance of the proposed approach is ex-

amined and compared to other approaches using simulation studies. We showed that

the results obtained by the existing methods may be misleading with an inflated Type

I error rate in the presence of unmeasured confounding while the proposed method

provides valid results.

Chapter V

While working on projects involving exploring discrete time-varying treatments, I

realized that in many real world data sets, it is more reasonable to assume that

the underlying processes are time-continuous processes, and that are only observed

at discrete time points. In particular, most cross-sectional and pooled panel data

that the Mendelian randomization is applied to are actually discrete snapshots of

dynamic processes, in which the outcome, the exposure, and covariates exhibit non-

4



negligible serial correlations, and the outcome is an important determinant of future

exposure levels either directly or indirectly through other unmeasured factors. When

observations are inherently dynamic, conclusions from the Mendelian randomization

are hard to be interpreted. Even worse is that the conventional exclusion restriction

assumption, which is crucial for the validity of causal estimates is ungrounded so

that estimators derived based on static analysis could be severely biased from what

they were intended to estimate. We are therefore motivated to take a mechanistic

view by modeling reactions among variables using stochastic differential equations.

We show that discrete observations of a s time-continuous process generally obscure

the underlying local independence between the outcome and the instrument. Hence,

applying the Mendelian Randomization to discrete observational data without explicit

time justification, could give insensible conclusions.

5



2
Randomization Inference for Stepped-wedge

Cluster-Randomized Trials: an Application to

Community-based Health Insurance

Abstract

National health insurance schemes are generally impractical in low-income countries

due to limited resources and low organizational capacity. In response to such obsta-

cles, community-based health insurance (CBHI) schemes have emerged over the past

20 years. CBHIs are designed to reduce the financial burden generated by unantici-

pated treatment cost among individuals falling sick, and thus are expected to make

health care more affordable. In this paper, we investigate whether CBHI schemes

effectively protect individuals against large financial shocks using a stepped-wedge

cluster-randomized design on data from a CBHI program rolled out in rural Burk-

ina Faso. We investigate statistical properties of the stepped-wedge design following

the parametric mixed model approach proposed by Hussey and Hughes in 2007. We

find that testing for the treatment effect is generally sensitive to specification of the

∗Joint work with Gunther Fink, Paul Jacob Robyn, Dylan Small
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parametric model. For instance, if we fail to account for cluster-by-time interactions

present in the data, the Type I error rate is severely inflated. We develop a more

robust and efficient strategy – randomization inference. We demonstrate how to ap-

ply randomization inference to test for constant treatment effects and discuss test

statistics suitable for the stepped-wedge design. Randomization inference guarantees

a valid Type I error rate; simulation studies show that randomization inference test

statistics also have power that is comparable to the currently used procedures that do

not guarantee a valid Type I error rate. Finally, we apply our proposed method to the

Burkina Faso CBHI dataset. We conclude that the insurance had limited effects on

reducing the likelihood of low to moderate levels of catastrophic health expenditure,

but substantially reduced the likelihood of extremely high health expenditure that

exceeds half of a person’s monthly income.

2.1 Introduction and Motivation

Community-based health insurance

The design of adequate health financing systems in low-income countries is a sub-

ject of significant debate. Due to low or modest economic growth, limited public tax

resources, and low organizational capacity, national health insurance schemes are gen-

erally impractical. In response to such obstacles, community-based health insurance

(CBHI) schemes, which are comparatively easier to set up, have emerged over the

past 20 years (Asenso-Okyere et al., 1997; De Allegri et al., 2006; Devadasan et al.,

2006; Ekman, 2004; Wang et al., 2009).

CBHI schemes are micro-insurance schemes that are voluntary, not-for-profit health

insurance schemes organized at the community level. Under CBHI schemes, members

7



of a community, often defined by geographical proximity or through employment-

based relationships, pool resources in order to provide support for covering health

expenditure (Robyn et al., 2012). CBHI schemes seek to reduce the financial bur-

den generated by unanticipated treatment cost among individuals falling sick and are

thus expected to make health care more affordable. A natural question that emerges

then is: do CBHI schemes work as intended and in fact enhance universal financial

protection?

We consider a study of a CBHI program in rural Burkina Faso that was imple-

mented by the Ministry of Health and Nouna Health Research Center in the Nouna

District using a stepped-wedge cluster-randomized trial (Fink et al., 2013). We dis-

cuss properties of stepped-wedge cluster-randomized trials, problems with the cur-

rently used analysis methods for stepped-wedge cluster randomized trials, present

solutions to these problems and analyze the study of the CBHI program in Burkina

Faso.

Stepped-wedge cluster-randomized trials

A stepped-wedge cluster-randomized trial is a one-way crossover trial in which all

clusters start out in the control and then clusters are randomized to cross over to the

treatment at staggered times (Hall et al., 1987; Hussey and Hughes, 2007). Figure

2.1 illustrates the treatment schedule for a stepped-wedge trial; the name ”stepped-

wedge” refers to the series of steps of the treatment schedule, which results in a wedge

shape.

8



Figure 2.1: Illustration of a stepped-wedge design where different groups of clusters

switch from control to treatment during different calendar periods.

The stepped-wedge design has been gaining popularity in recent years because of

a number of attractive features (Mdege et al., 2011). First, the stepped-wedge design

is useful for settings in which limited resources or geographical constraints make it

financially or logistically difficult to start the intervention in many clusters at once

(e.g., (Brown and Lilford, 2006; Hall et al., 1987; Mdege et al., 2011; Moulton et al.,

2007)). For example, in a parallel design (randomize half the clusters to treatment

during during single calendar period) or a traditional crossover design (randomize half

the clusters to treatment at baseline and then switch these clusters to control and

the other clusters to treatment midway through the trial), the intervention must be

implemented in half of clusters simultaneously, while the stepped-wedge design allows

researchers to implement the intervention in a smaller fraction of clusters during each

calendar period (Hussey and Hughes, 2007). Second, the stepped-wedge design (as

with a traditional crossover design) allows clusters to serve as their own controls,

which increases power when there are substantial cluster effects (Woertman et al.,

2013). The stepped-wedge design differs from a traditional crossover design, however,

9



in that the crossovers are only in one direction; in particular, the intervention is never

removed once it has been implemented (at least over the course of the trial). Third,

because all clusters receive the treatment by the end of the trial and a cluster is never

withdrawn from receiving the treatment, the stepped-wedge design is particularly

useful for settings in which it would not be ethical, healthy or practical to withdraw

the treatment or in which it would be difficult for participants to quickly revert to

their pretreatment condition quickly after the withdrawal (Rhoda et al., 2011). The

stepped-wedge design is also useful for evaluating the population-level impact of an

intervention that has been shown to be effective in an individually randomized trial

or for which there is a majority opinion that the intervention will be effective so that

equipoise does not exist (Hussey and Hughes, 2007).

All these features made the stepped-wedge design ideal for studying the benefits

of the CBHI program in Burkina Faso. Because the CBHI program was expected to

confer benefits, every village in the study area wanted to be enrolled in the program

at the early stage. However, it takes time to scale up the program, so the CBHI

management team and the health district had no option but to rollout the program

in a progressive manner. The stepped-wedge design allowed the program to be rolled

out in a fair manner and the effect of the program to be studied through a randomized

trial. The stepped-wedge nature of the trial also helped to alleviate the spillover effect,

as the incentive to migrate to a different area just to benefit from the intervention

was counterbalanced by the fact that this very same intervention was going to be

implemented in the entire study area within the next few years.

Analysis Methods

In line with the increasing interest in employing and implementing the stepped-wedge

design, a handful of pivotal articles on testing intervention effects, sample size calcula-

10



tions, and analytical methods for continuous or dichotomous outcomes have emerged

in the literature (e.g.,(Dimairo et al., 2011; Hussey and Hughes, 2007; Moulton et al.,

2007; Woertman et al., 2013)). Most of them have adopted the linear mixed model

approach proposed by Hussey and Hughes (2007).

Hussey and Hughes (2007) considered the linear mixed model:

Yijk = µ+ αi + βj + Zijθ + eijk, (2.1)

where Yijk is the observed response corresponding to individual k during calendar

period j from cluster i and Zij denotes whether cluster i has been assigned the

treatment by calendar period j. αi is a random effect for cluster i such that αi are

iid N(0, τ 2), βj is a fixed effect corresponding to time interval j (j in 1, . . . , T − 1,

βT = 0 for identifiability), θ is the treatment effect and eijk are individual, time period

specific effects that are assumed to be iid N(0, σ2
e) and independent of αi.

One possible violation of assumptions in the linear mixed model (2.1) is the exis-

tence of cluster-by-time interactions, which are prevalent in a number of settings. For

example, cluster-by-time interactions were a concern in a recent proposal for using

the stepped-wedge design to study a vaccine for Ebola while the Ebola epidemic was

going on, because the Ebola epidemic, like other pandemics, was spreading from place

to place over time (Bellan et al., 2015; van der Tweel and van der Graaf, 2013). In the

CBHI study we are considering, cluster-by-time interactions are a concern because

the clusters are communities that are affected by different local economic and political

developments.

From a statistical point of view, adding an interaction term would increase the

correlation among observations within the same cluster and time period, therefore

changing the structure of the covariance matrix. Consequently, a larger sample size

would be required to achieve sufficient statistical power and, even worse, lead to

11



invalid levels if the testing procedure is not chosen carefully.

Including all cluster-by-time interactions into the model as fixed effects would

make the treatment effect unidentifiable. Hussey and Hughes (2007) proposed one

strategy to deal with cluster-by-time interactions and still be able to estimate the

treatment effect: create strata of clusters with similar expected time trends and then

include stratum-by-time interaction as a factor in the model. This strategy requires

some knowledge of the expected time trends before the trial and runs the risk of

overfitting if interactions do not exist or are negligible. Without strong a priori

knowledge of the pattern of cluster-by-time interactions, a better approach is needed

to gauge the treatment effect than either excluding cluster-by-time interactions or

including a specific pattern of them.

Randomization inference

In this paper, we develop another approach for the analysis of stepped-wedge cluster-

randomized trials that accounts for potential cluster-by-time interactions – random-

ization inference. In randomization inference as developed by Fisher (1935), hypothe-

ses are tested using only the assumption that the randomization has been properly

carried out. Fisher said that randomization inference is ”reasoned basis for infer-

ence” because it uses only the physical act of randomization as a basis for inference,

and is exact and distribution-free. Tukey (1993) said that randomization inference

is the ”platinum standard” inference. For discussion and examples of randomization

inference, see Welch (1937); Raz (1990); Gail et al. (1996); Braun and Feng (2001);

Rosenbaum (a,b); Greevy et al. (2004); Ho and Imai (2006); Small et al. (2008);

Hansen and Bowers (2009).

Randomization inference can be applied to any test statistic of treatment effects.

Here we consider Wald test statistics based on the model (2.1) or other generalized

12



linear mixed models. Because the randomization procedure adds an extra layer of

security to the inference, the Type I error rate is valid even if parametric models for

responses are misspecified such as failing to account for cluster-by-time interactions.

We contribute to the literature by applying randomization inference to stepped-

wedge cluster-randomized trials. We build a unified framework to develop the ran-

domization distribution for any test statistic, which can be used to calculate p-values

and construct confidence intervals. Regarding our specific question, to what extent

do CBHI schemes enhance universal financial protection, we use the data from the

Burkina Faso study (Fink et al., 2013) to examine whether CBHI schemes help to

reduce the likelihood of catastrophic health expenditure. Our final results show that

the insurance had limited effects on reducing the likelihood of low to moderate lev-

els of catastrophic health expenditure, but substantially reduced the likelihood of

extremely high health expenditure that exceeds half of a person’s monthly income.

The outline of our paper is as follows. In Section 2, we introduce the potential

outcomes notation and set up that will be used throughout the paper. In Section 3,

we discuss consequences of failing to consider cluster-by-time interactions. In Section

4, we develop our randomization inference approach for the stepped-wedge design.

In Section 5, we conduct simulation studies comparing the randomization inference

approach to other analytical approaches for the stepped-wedge design. In Section 6,

we apply randomization inference for stepped-wedge trials to a study of a community-

based insurance program in rural Burkina Faso(Fink et al., 2013; Robyn et al., 2012).

In Section 7, we provide a summary.
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2.2 Notation and Set Up

There are I clusters, T calendar periods, and nij individuals sampled from cluster i

during calendar period j. N =
∑I

i

∑T
j nij is the total number of observations in the

study design. Let ijk index individual k in cluster i during calendar period j. An

individual might be sampled at multiple time points; the indices k = 1, . . . , nij are

time specific so that the same individual might have index k and k′ 6= k at different

times. During calendar period j, mj clusters are randomized to start treatment, where

m1 + · · ·+mT = I, so that each cluster eventually starts treatment. m1,m2, . . . ,mT

are prespecified before the start of the trial. Let Zij be the treatment corresponding

to cluster i during calendar period j, where Zij = 1 for the active treatment and 0

for the control. Since the trial is cluster-randomized, we index the treatment status

for clusters rather than individuals. Let Z be the vector of all treatment assignments,

Z = (Z11, Z12, . . . , ZIT ). Write Ω for the set containing |Ω| =
(

I
m1,...,mT

)
possible values

z of Z. Let Yijk be the observed response and Y be the vector of all observed responses,

Y = (Y111, Y112, . . . , YITnIT
). In case of a possible lag between the time of treatment

assignments and the time that responses are observed, we assume that if individual k

in cluster i enters the trial during calendar period j, so is assigned treatment Zij, then

that individual will continue to receive treatment Zij until response Yijk is recorded.

Each individual has a (row) vector of pretreatment covariates Xijk. X is the matrix

whose rows are Xijk.

We define the causal effect of interest under the potential outcomes framework.

We extend the notation of Neyman (1990) and Rubin (1974a) by representing each

potential outcome as a function of the vector of all treatment assignments z (Rosen-

baum, 2007). Write Y
(z)
ijk the response that the kth individual in cluster i during

calendar period j would have if the treatment assignment Z = z for z ∈ Ω. Y
(z)
ijk indi-

cates that each individual has |Ω| possible outcomes, only one of which is observed,
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namely Y
(Z)
ijk . Fisher’s sharp null hypothesis of no-treatment effect says that every

unit would exhibit the same response under all treatment assignments, Y
(z)
ijk = Y

(z′)
ijk

for all z, z′ ∈ Ω. Under the alternative hypothesis, observed outcomes may exhibit

arbitrary dependence.

We let F = 〈Y ,X〉, where Y is the unobserved array with N rows and |Ω| columns

having entries Y
(z)
ijk . F does not change as the treatment assignments, Z, change,

whereas Y is a function of F and Z so may change with Z. To employ the cluster-

randomized inference, as shown in Section 4, we assume the following assumptions

hold for F :

Assumption I: (a) there are no hidden variations of treatments and (b) Y
(z)
ijk = Y

(z′)
ijk

whenever zij = z′ij. Assumption I(a) is part of the Stable Unit Treatment Value

Assumption (Rubin, 1980; Imbens and Rubin, 2015) and says that an individual

receiving level z of the treatment cannot receive different forms of the treatment which

have different effects. The assumption is implicit in the notation Y
(z)
ijk which says that

there is a single potential outcome for level z of the treatment. Assumption I(b)

asserts that the potential outcomes would not be affected by treatment assignments

in other clusters or subjects in different clusters do not interfere. Note that this

assumption still allows for the possibility that units within a cluster at a given time

interfere with each other. Assumption I(b) can be seen as a relaxation of the usual

no interference part of the stable unit treatment value assumption (SUTVA) in the

sense that a group of concentrated individuals are allowed to interfere with each other

at a given time but interference is not allowed between groups or time points. This

assumption also implies no carry-over effect, that is, a previous treatment for one

subject does not affect later responses of this same subject and also treatments for

other subjects in the same cluster at previous times do not affect the response of the

given subject at this time.
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Assumption II: Pr(Z = z|F) = 1
|Ω| = 1

( I
m1,...,mT

)
. This assumption says that

the clusters are randomly assigned as to when to start treatment according to the

stepped-wedge design and the conditional distribution of treatment assignments given

the potential responses and covariates is a fixed known constant.This assumption

guarantees that tests derived solely from the randomization have the correct level

whether or not potential responses within the same cluster are subject to interference

(Fisher, 1935; Welch, 1937).

Assumption III: If z and z′ are the same except that zij = 1 while z′ij = 0, then

Y
(z)
ijk −Y

(z′)
ijk = θ. This assumption implies that the treatment effect is constant across

population and over time. By removing the treatment effect from the whole cluster

during a calendar period, the observed responses would be the same as if there were

no treatments assigned. This constant effect θ is the causal effect of interest.

2.3 The Importance of Cluster-by-Time Interac-

tions

To motivate the need for accounting for cluster-by-time interactions, we assume that

Yijk is generated by the model

Yijk = µ+ αi + βj + γij + Zijθ + eijk (2.2)

For simplicity, we assume the eijk are independent but correlation among the eijk (as

might arise if individuals are observed multiple times) can be accommodated.

Both models (1.1) and (3.1) are observed data models that are consistent with

Assumptions I and II. Compared to the model (2.1), the model (2.2) has an additional

term γij that accounts for cluster-by-time interactions. γij’s are assumed to be iid

N(0, η2) and independent of α and e. Using matrix notation, the model (2.2) can be
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rewritten as

Y ∼ N(MΓ,Σ = σ2I + τ 2A+ η2B) (2.3)

where Y = (Y111, . . . , Y112, . . . , YITnIT
), Γ = (µ, β1, . . . , βT , θ)

T , and M is the N×(T+

2) design matrix. Let Yp denote the pth element in the vector Y which corresponds

to a value of ijk, then Mpq = 1 if (1) q = 1 or (2) 2 ≤ j ≤ T + 1 and Yp is observed

during calendar period q − 1 or (3) q = T + 2 and Yp is both observed and treated.

Mpq = 0 otherwise. A and B are symmetric positive definite matrices corresponding

to cluster and cluster-by-time interactions, respectively:

A = diag(1n1.1
T
n1.
, . . . ,1nI.

1TnI.
) (2.4)

B = diag(1n111
T
n11
,1n121

T
n12
, . . . ,1nIT

1TnIT
) (2.5)

where 1n1 denote a column vector of 1’s with length n1 and ni. =
∑T

j=1 nij is the size

of cluster i.

Given σ2, τ 2, η2, the covariance matrix Σ is known. The best linear unbiased esti-

mator of Γ is the Generalized Least Squares (GLS) estimator, which asymptotically

has a normal distribution.

Γ̂GLS = (M ′Σ−1M)−1M ′Σ−1Y (2.6)

Γ̂GLS
d−→ N(Γ, (M ′Σ−1M)−1) (2.7)

If σ2, τ 2, η2 are not known, an implementable version of the GLS estimator is the

Feasible Generalized Least Squares (FGLS) estimator, which requires a consistent

estimate of Σ, say Σ̂.

Γ̂FGLS = (M ′Σ̂−1M)−1M ′Σ̂−1Y (2.8)

One common strategy to find a consistent estimate Σ̂ is to start by finding Γ̂OLS or
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another consistent (but inefficient) estimator, take the residuals from OLS to build a

consistent estimator of the error covariance matrix Σ, update the FGLS estimation,

and then apply the same idea iteratively until the estimators vary less than some tol-

erance. Under regularity conditions, such a FGLS estimator has the same asymptotic

distribution as a GLS estimator.

Γ̂FGLS
d−→ N(Γ, (M ′Σ−1M)−1) (2.9)

For finite samples, the estimated covariance matrix of Γ̂FGLS is

V̂ ar[Γ̂] = (M ′Σ̂−1M)−1 (2.10)

which converges to the asymptotic covariance matrix (M ′Σ−1M)−1 given that Σ̂ con-

verges to Σ (Greene, 2003).

However, it is not always the case that we can find a consistent estimator of the

covariance matrix Σ. The convergence of Σ̂ to Σ relies on the correct specification

of matrix structure and normality assumptions (Jacqmin-Gadda et al., 2007). In the

process of iteratively computing Σ̂, any deviation from the correct model would lead to

an inconsistent version of Σ̂. In particular, if we failed to account for cluster-by-time

interactions in the case of stepped-wedge cluster-randomized trials, we would specify

the structure of covariance matrix in a different form from the actual covariance

matrix, i.e., we would assume the consistent estimate of Σ to be Σ̂ = σ̂2I+ τ̂ 2A while

the actual covariance matrix is in the form of Σ = σ2I + τ 2A + η2B. Since B is a

positive definite matrix as defined in 2.5, no values of σ̂2 and τ̂ 2 would satisfy the

equation σ̂2I + τ̂ 2A = σ2I + τ 2A + η2B. Consequently, any computed Σ̂ would be

inconsistent, even if it maximizes the likelihood. Therefore, inferences based on Σ̂

using the asymptotic distribution would be invalid.
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We use a simulation study to examine this difference between the estimated vari-

ance of the treatment effect, which is the last diagonal element of Σ̂ and the Monte

Carlo simulation of the true variance, which is the last diagonal element of Σ. R code

for the simulation is available in supplementary materials.

In the simulation, I and T are set to be 30 and 4, respectively. All clusters start

with control at T = 1 and during each calendar period starting from T =2, 10 clusters

in the control group are randomly selected to be assigned to treatment. All clusters

have equal size 100 and the true treatment effect θ = 0. The magnitude of clustering

is calibrated by the intracluster correlation coefficient (ICC), which is the proportion

of the total variation explained by the respective blocking factor. In particular, the

correlation between two randomly selected observations in the same cluster is:

ICCI =
τ 2

τ 2 + η2 + σ2
(2.11)

The correlation between two randomly selected observations in the same cluster and

during the same calendar period is:

ICCIT =
τ 2 + η2

τ 2 + η2 + σ2
(2.12)

As a result, the magnitude of interaction can be calibrated by ICCIT − ICCI =

η2

τ2+η2+σ2 , which is the extra correlation from the same cluster and calendar period

compared to just the cluster.

In Figure 2.2, we compare the distribution of estimated variances V̂ ar[θ̂] over

10000 simulations with the Monte Carlo simulation of the true variance. When there

are no cluster-by-time interactions, i.e., the model (2.1) is correctly specified, the left

plot in Figure 2.2 indicates that the distribution of V̂ ar[θ̂] is centered around the

true variance, marked by the red vertical line. However, when interactions do exist,
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the estimated variances are far off the true variance. The right plot describes two

scenarios with different magnitudes of interactions. Neither of the distributions is

close to the true variance.

(a) No cluster-by-time interactions
(b) With cluster-by-time Interactions

Figure 2.2: Comparison of estimated and true variances of the treatment effect in

different settings of cluster-by-time interactions. In (a), there are no cluster-by-time

interactions, ICCI := τ2

τ2+σ2 = 0.02. In (b), there are cluster-by-time interactions,

ICCI := τ2

τ2+σ2 = 0.02, ICCIT := τ2+η2

τ2+η2+σ2 = 0.025(upper) and 0.04 (lower).

Table 2.1 gives a more detailed summary of the estimated treatment effect θ̂ given

by the FGLS estimator when the cluster-by-time interactions are not included in the

model. As shown by column E[θ̂], θ̂ is consistent in all settings. When there are

no cluster-by-time interactions as shown by the first two rows, the average of the

estimated variances E(V̂ ar[θ̂]) is almost the same as the Monte Carlo simulation

of the true variance V ar[θ̂]. But this is not the case when the interaction term γ

is nonzero. The last column SD(V̂ ar[θ̂]) describes the dispersion of the estimated

variances, which is of a much smaller order than its average.
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dim(M) α γ ε E[θ̂] V ar[θ̂] E(V̂ ar[θ̂]) SD(V̂ ar[θ̂])
N(0,1) Zero N(0,49) -0.0031 0.0544 0.0548 0.0012

I=30 N(0,1) Zero 7/
√

3t(3) -3.4e−5 0.0544 0.0545 0.0080
N(0,1) N(0,.25) N(0,48.75) -0.0008 0.0816 0.0549 0.0012

T=4 N(0,1) N(0,.5) N(0,48.5) -0.0008 0.1083 0.0550 0.0012
N(0,1) N(0,1) N(0,48) -0.0008 0.1626 0.0552 0.0011

Table 2.1: Properties of the estimated treatment effect given by the Feasible Gener-

alized Least Square estimator

The above simulation results show that fitting a linear mixed model for the

stepped-wedge design while ignoring cluster-by-time interactions can lead to severely

wrong standard errors, and this leads to poor control of Type I error rate, as shown

by Table 2.2.

dim(M) α γ ε ICCI ICCIT Type I error
N(0,1) Zero N(0,49) 0.02 0.02 0.052

I= 30 N(0,1) Zero 7/
√

3t(3) 0.02 0.02 0.054
N(0,1) N(0,.25) N(0,48.75) 0.02 0.025 0.511

T=4 N(0,1) N(0,.5) N(0,48.5) 0.02 0.03 0.658
N(0,1) N(0,1) N(0,48) 0.02 0.04 0.756

Table 2.2: Type I error of linear mixed models not accounting for cluster-by-time

interactions

2.4 Randomization Inference for Stepped-Wedge

Cluster-Randomized Trials

We would like to develop a strategy that accounts for cluster-by-time interactions if

they exist. We will consider randomization inference. In randomization inference as

developed by Fisher (1935), hypotheses are tested using only the assumption that

the randomization has been properly carried out and randomization inference pro-

vides exact, distribution-free inferences. The significance level is always guaranteed
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regardless of the underlying mechanism that generates the data.

A General Setup

There are I clusters and T calendar periods. At time t, mt clusters are randomized

to start treatment, where m1 + · · · + mT = I, so that each cluster eventually starts

treatment. Collect all possible values z of the treatment assignments Z in a set Ω,

|Ω| =
(

I
m1,...,mT

)
. Because random numbers are used to assign which clusters start

treatment at which times, P (Z = z) = 1/|Ω| for each z ∈ Ω.

Let e be a function of F = 〈Y ,X〉 and let t(Z, e,X) be any function of Z, e,X.

Because e and X are functions of F and randomization ensures P (Z|F) = 1/|Ω|, it

follows that for all v,

P (t(Z, e,X) ≥ v|F) =
|{z ∈ Ω : t(z, e,X) ≥ v}|

|Ω|
, (2.13)

which is the randomization distribution of t(Z, e,X). In words, given F , the chance

that t(Z, e,X) ≥ v is simply the proportion of treatment assignments z ∈ Ω such that

t(Z, e,X) ≥ v. Moreover, (2.13) is the distribution of t(Z, e,X) given F no matter

what process produced F . Fisher’s (1935) description of randomization inference as

the “reasoned basis for inference” refers to the fact that randomization creates the

distribution (2.13) for every function e of F without further assumptions.

Test of No Effect

The sharp null hypothesis of no effect asserts that the response of each individual is

unchanged by receiving the treatment, H0 : ∀z, z′ ∈ Ω, Y
(z)
ijk = Y

(z′)
ijk for i = 1, . . . , I,

t = 1, . . . , T , k = 1, . . . , nit, i.e., Y(z) = Y(z′). If H0 were true, randomization would

label clusters treated or control but the observed outcomes would be unchanged. If
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H0 were true, the observed response Y(Z) would equal Y(0), a special case where all

clusters are under control. Thus, under the null hypothesis of no treatment effect,

the randomization distribution of t(Z,Y,X) = t(Z,Y(0),X) would be given by (2.13)

with e = Y(0), where both t(Z,Y(0),X) and its null distribution (2.13) would be

calculated from the observed data when H0 were true. For instance, in completely

randomized experiments, Welch (1937) tested the null hypothesis of no effect using

the randomization distribution of a test statistic suggested by analysis of variance

and Raz (1990) used the randomization distribution of a test statistic that adjusted

for X using a data smoother.

Test of Constant Treatment Effect

The above method can be directly extended to test for constant treatment effect

H0 : θ = θ0 v.s. H1 : θ = θ1

Under the null hypothesis of θ = θ0, Y(0) = Y − Zθ0. If e = Y(0), t(Z, e,X) =

t(Z,Y − Zθ0,X) = t′(Z,Y,X), where t′ is a function on Z,Y,X. This is to say

t′(Z,Y,X) would also have the randomization distribution given by (2.13).

Because of the randomization procedure, any function t on Z,Y(0),X is a valid

test statistic with the Type I error controlled by the prespecified significance level.

However, it does not mean that any arbitrarily chosen t is a good test statistic. We

need to consider power. In the next section, we will discuss test statistics suitable for

stepped-wedge cluster-randomized experiments.
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Wald Randomization Test

A natural choice of t is the Wald statistic based on the maximum likelihood estimation

of the treatment effect under the model (2.1) or (2.2). Under the null hypothesis H0 :

θ = θ0, Y − Zθ0 = Y(0) = e. The maximum likelihood estimator of L(θ|Z,Y,X) =

L(θ|Z, e + Zθ0,X) is a function on Z, e, and X. t(Z, e,X) can be chosen as the Wald

statistic of the null hypothesis H0 : θ = θ0 over the alternate hypothesis H1 : θ 6= θ0

t(Z, e,X) =
(θ̂ − θ0)2

V̂ ar(θ̂)
(2.14)

Instead of using its asymptotic distribution, which is a χ2 distribution under the

null hypothesis, the level is calculated using the randomization distribution given by

(2.13). We can also investigate the power by randomly generating numerous data sets

under a pre-specific alternative hypothesis. For each of these data sets, randomization

inference is carried out and the evidence for or against the null hypothesis is recorded.

The Wald randomization test is applicable to a wide range of parametric models

corresponding to different distributions of observed outcomes and can be implemented

using standard functions in R, such as lmer() in the lme4 package for linear mixed

models, glm() for generalized linear models, and censReg() in the censReg package

for censored regression models.

Other Randomization Tests

Instead of calculating the maximum likelihood estimate and its standard deviation,

other test statistics are available for stepped-wedge cluster-randomized trials. For

example, because the design is essentially a two-way layout, we can first eliminate

row and column effects by estimating their values or using the median polish method if

robustness is a concern (Hoaglin et al., 1983). We then carry out the aligned rank test
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to compare the adjusted responses between clusters with different interventions (Sen,

1968). If responses have heavy-tailed distributions, we may consider test statistics

involving ranks to avoid bias caused by extreme values.

Covariates Adjustment

The discussion in Sections 4.2 and 4.3 make no use of the covariates, X, but it is

straightforward to incorporate them, with no change in the logic, see Rosenbaum

(a). Instead of letting e = Y(0), e could also be a function on X. For example, e

could be residuals when Y(0)is regressed on X by any method of regression. The

randomization distribution of t(Z, e,X) would still be given by (2.13).

2.5 Simulation Study

We use a simulation study to investigate the level and the power of the Wald test

statistic with usual asymptotic inference and with randomization inference in the

stepped-wedge design. For demonstration purpose, we assume responses are normal

and continuous. In all simulation settings, I = 30 and T = 4. When t = 0, all clusters

are in the control group. When t = 1, 10 out of 30 clusters are randomly selected

to receive treatment. When t = 2, 10 out of the remaining 20 untreated clusters

are randomly selected to receive treatment. When t = 3, all clusters are assigned to

treatment. Cluster sizes are randomly sampled between 1000 and 2000 and fixed over

time. The true treatment effect θ0 is set to be 0 and the power is calculated under

the alternative θ1 = .25, .5, 1, 1.5, 2. ICCI = τ2

τ2+η2+σ2 is the intracluster correlation

coefficient corresponding to clusters. ICCIT = τ2+η2

τ2+η2+σ2 is the intracluster correlation

coefficient corresponding to both clusters and interactions. All numbers reported are

the average over 1000 sets of randomly simulated data set.
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We first examine the Type I error rate in several scenarios. Waldasy and Waldrand

are obtained under the model (2.1) with usual asymptotic inference and with ran-

domization inference. Wald∗asy and Wald∗rand are obtained under the model (2.2) with

usual asymptotic inference and with randomization inference.

α γ e Waldasy Waldrand Wald∗asy Wald∗rand
N(0,1) Zero N(0,49) .045 .061 .044 .061

N(0,1) Zero 7/
√

3t(3) .042 .055 .042 .054
N(0,1) Zero Cauchy .055 .050 .051 .053
N(0,1) N(0,1) N(0,48) .315 .055 .069 .059

N(0,1) N(0,1) 4
√

3t(3) .342 .051 .069 .054
N(0,1) N(0,1) Cauchy .056 .054 .063 .060

Table 2.3: Type I error rate of the Wald test statistic based on the asymptotic

distribution and the randomization distribution

It can be seen from Table 2.3 that both randomization procedures Waldrand and

Wald∗rand guarantee the correct Type I error rate in all settings. When the interaction

γ is zero, the Type I error rate is well-controlled by both tests with usual asymptotic

inference. However, when γ has a stand normal distribution, which leads to a small in-

tracluster correlation coefficient ICCIT = 0.04, the Type I error rate given by Waldasy

is inflated to .315 and .342 when e follows a normal and a t distributions, respectively.

The Wald∗asy test performs better than Waldasy as it incorporates cluster-by-time in-

teractions, but its Type I error rate is still slightly higher than its randomized version.

Such phenomenon disappears when e follows a Cauchy distribution. This might be

explained by the fact that the Cauchy distribution is so heavy-tailed that it dominates

the small interaction term γ.

We next examine power. According to results in Table 2.4, when there are no

cluster-by-time interactions, the randomization tests have comparable power with the

tests using the asymptotic distribution. When there are cluster-by-time interactions,

we ignore the power calculated from Waldasy and Wald∗asy as the level is no longer
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valid, but only focus on their randomized versions, which give sufficient power to

detect wrong values of the treatment effect.

θ1 α γ e ICCI ICCIT Waldasy Waldrand Wald∗asy Wald∗rand

.25 N(0,1) Zero N(0,49) .02 .02 . 254 .275 .254 .276
.5 N(0,1) Zero N(0,49) .02 .02 .723 .715 .721 .725
1 N(0,1) Zero N(0,49) .02 .02 .999 .999 .999 .999

1.5 N(0,1) Zero N(0,49) .02 .02 1 1 1 1
2 N(0,1) Zero N(0,49) .02 .02 1 1 1 1

.25 N(0,1) N(0,1) N(0,48) .02 .04 . 427 .096 .136 .108
.5 N(0,1) N(0,1) N(0,48) .02 .04 .636 .253 .335 .277
1 N(0,1) N(0,1) N(0,48) .02 .04 .941 .726 .798 .752

1.5 N(0,1) N(0,1) N(0,48) .02 .04 .999 .969 .982 .975
2 N(0,1) N(0,1) N(0,48) .02 .04 1 1 1 1

.25 N(0,1) Zero 7/
√

3t(3) .02 .02 .266 .272 .261 .280

.5 N(0,1) Zero 7/
√

3t(3) .02 .02 .751 .734 .740 .744

1 N(0,1) Zero 7/
√

3t(3) .02 .02 .998 .999 .998 .999

1.5 N(0,1) Zero 7/
√

3t(3) .02 .02 1 1 1 1

2 N(0,1) Zero 7/
√

3t(3) .02 .02 1 1 1 1

.25 N(0,1) N(0,1) 4
√

3t(3) .02 .04 .416 .107 .124 .115

.5 N(0,1) N(0,1) 4
√

3t(3) .02 .04 .630 .240 .310 .272

1 N(0,1) N(0,1) 4
√

3t(3) .02 .04 .942 .718 .786 .786

1.5 N(0,1) N(0,1) 4
√

3t(3) .02 .04 .999 .971 .999 .992

2 N(0,1) N(0,1) 4
√

3t(3) .02 .04 1 1 1 1

Table 2.4: Power of the Wald test statistic for linear mixed models based on the

asymptotic distribution and the randomization distribution

We also carry out a set of simulations for dichotomous outcomes, according to the

model

logit(E(Yijk)) = µ+ αi + βj + γij + Zijθ (2.15)

Results are summarized in Table 2.5, showing similar advantages of using ran-

domization inference for the stepped-wedge cluster-randomized trials.
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θ1 α γ e ICCI ICCIT Waldasy Waldrand Wald∗asy Wald∗rand

0 N(0,1) Zero N(0,49) .02 .02 .043 .051 .044 .051
.5 N(0,1) Zero N(0,49) .02 .02 .223 .208 .216 .195
1 N(0,1) Zero N(0,49) .02 .02 .791 .747 .773 .740

1.5 N(0,1) Zero N(0,49) .02 .02 1 .999 .998 .998

0 N(0,1) N(0,1) N(0,48) .02 .04 .217 .060 .091 .048
.5 N(0,1) N(0,1) N(0,48) .02 .04 .412 .172 .318 .159
1 N(0,1) N(0,1) N(0,48) .02 .04 .726 .448 .544 .377

1.5 N(0,1) N(0,1) N(0,48) .02 .04 .922 .681 .837 .572

Table 2.5: Power of the Wald test statistic for generalized linear mixed models based

on the asymptotic distribution and the randomization distribution

2.6 Application to Study of Community-Based Health

Insurance Program

Background

The Ministry of Health and Nouna Health Research Center in Nouna District, Burkina

Faso implemented a CBHI scheme from 2004 to 2006 that aimed to make health

care more affordable and to protect local communities from large health expenditure

shocks (Fink et al., 2013; Robyn et al., 2012). To allow for a proper evaluation, the

rollout of the program followed a stepped-wedge cluster-randomized design, enrolling

randomly selected communities in three phases. In order to investigate the effect of

CBHI schemes on household welfare, we follow Fink et al. (2013) to analyze the effect

of CBHI schemes on catastrophic expenditure.
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2.6.1 Data

The data we use is the Nouna Health and Demographic Surveillance Site (HDSS)

survey data collected from 2003 to 2008. Data from year 2003 are the baseline prior

to the intervention and data from years 2007 and 2008 are controls after the final

rollout phase. There are 48 areas in the health district and each of them is considered

a cluster. Due to residential mobility and migration, the study population is dynamic

with an attrition rate of 59% from 2003 to 2008. There are 59,905 records in total and

the number of individuals targeted by the insurance program in phase I, II, and III are

27,696, 14,292, and 17,917, respectively. Equal mean test indicates that these three

rollout groups have balanced covariates of age, gender, years of education, literacy,

religion, marital status, household size, and wealth index, see Table 4 in Fink et al.

(2013).

Since the primary objective of CBHI schemes is to protect individuals against large

financial shocks, we investigate the probabilities of facing health expenditure greater

than 5%, 10%, 15%, 25% and 50% of monthly income. The catastrophic expenditure

is a dichotomous outcome, which is coded as one if the total health expenditure is

greater than a certain percentage of the monthly income. For example, in the 2003

data suggest that about 10.4% of individuals faced health expenditure larger than 5%

of their monthly income in the sample, and 2.7% of individuals had to cover health

expenditure of more than half their monthly income. See Table 2.6 for a detailed

year-by-year summary of the data.
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Year Population Expenditure Cutoff
size ≥ 5% ≥10% ≥15% ≥25% ≥50%

2003 7796 814 610 460 347 207
2004 8619 1037 716 577 361 191
2005 6875 1402 977 742 519 311
2006 10712 925 576 481 306 224
2007 13784 1316 939 690 377 211
2008 12118 950 663 452 291 141

Table 2.6: Distribution of catastrophic expenditure over time, Nouna HDSS House-

hold Survey, 2003 – 2008.

Model

The models (2.1) and (2.2) assume the continuity of observed responses and the nor-

mality of random components. In our data, catastrophic health expenditure is binary

so we use the generalized linear mixed model and then apply the Wald randomiza-

tion test. In particular, we use Pijk to denote the probability of facing catastrophic

expenditure for individual k during calendar period j from cluster i, the observed

response Yijk follows the model

Yijk ∼ Bernoulli(Pijk) (2.16)

logit(Pijk) = µ+ αi + βj + Zijθ +XT
ijkγ + eijk

where αi, βj, Zij, and θ are defined the same as in the model (2.1) and Xijk is a vector

of covariates that we adjust for, which are age, gender, years of education, literacy,

religion, marital status, household size, and wealth index. Because we have repeated

observations on people and there might be unmeasured covariates not included in

Xijk, eijk could be correlated for j ∈ {1, 2, . . . , T}. As a result, we include person-
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level random effects to allow for correlation between eijk and eij′k.

Results

We first investigate catastrophic expenditure that is greater than 5% of monthly in-

come. We use the function lmer() from the package lme4 to solve for the maximum

likelihood estimate of θ in (2.16), which has mean value -0.3966 and standard devia-

tion 0.0554. Hence, the Wald test statistic for the actual insurance rollout is 51.093

with p-value < 0.001, indicating that there is significant evidence that the CBHI in-

surance program helped to reduce the likelihood of facing health expenditure greater

than 5% of monthly income. We then carry out the Wald randomization test by

assuming that there was no such effect. The p-value given by (2.13) is 0.117, indicat-

ing that there is no strong evidence that insurance had an effect on the catastrophic

expenditure. We also consider an expanded version of the model (2.16) that includes

cluster-by-time interactions:

Yijk ∼ Bernoulli(Pijk) (2.17)

logit(Pijk) = µ+ αi + βj + γij + Zijθ +XT
ijkγ + eijk

The Wald statistic based on this model for the actual insurance rollout is 2.229 with

p-value 0.135 and the Wald randomization test gives p-value 0.115.

We repeat the same analysis for expenditure cutoffs 10%, 15%, 25%, and 50%

and summarize results in Table 2.7. P-values in columns Waldasy and Waldrand are

obtained under the model (2.16) with usual asymptotic inference and with random-

ization inference. P-values in columns Wald∗asy and Wald∗rand are obtained under the

model (2.17) with usual asymptotic inference and with randomization inference.
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Expenditure p-value
cutoff Waldasy Waldrand Wald∗asy Wald∗rand
≥5% < .001 .117 .135 .115
≥10% < .001 .339 .351 .331
≥15% < .001 .431 .463 .427
≥25% < .001 .442 .422 .410
≥50% .009 .041 .014 .038

Table 2.7: CBHI’s impact on catastrophic health expenditure based on generalized

linear mixed models

Conclusion

Based on randomization inference that controls the Type I error rate properly, there

is no strong evidence that the CBHI program carried out in Nouna District, Burkina

Faso affected catastrophic expenditure that are defined to be greater than 5%, 10%,

15%, and 25% of monthly income. The CBHI program, however, conferred a large

benefit to people facing extremely high health expenditure that exceeds half of their

monthly income. We see discrepancy between results from the model (2.16) and the

model (2.17) using asymptotic inference. The model (2.16) would conclude that the

CBHI program substantially reduced the likelihood of all levels of catastrophic health

expenditure, but the model (2.17) would conclude so only for the 50% cutoff.

Table 2.7 suggests that conclusions given by the asymptotic inference and the ran-

domization inference are consistent only for the model (2.17), which is an indication

of the presence of cluster-by-time interactions. If we failed to consider the cluster-by-

time interactions, the standard asymptotic inference is likely to greatly overestimate

the protective effects of the insurance program
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2.7 Summary

There is a lack of literature on the theoretical aspects of analyzing the stepped-wedge

cluster-randomized trials. We focus on statistical properties of the stepped-wedge

design following the linear mixed model approach proposed by Hussey and Hughes

(Hussey and Hughes, 2007). Our simulations raise a red flag about using model-

based inference for stepped-wedge trials. Specifically, the results can be very sensitive

to model misspecification. As a result, bias can be introduced by cluster-by-time

interactions and any other violations of assumptions.

We thus propose a new approach to the analysis of stepped-wedge cluster-randomized

trials – using randomization inference to test for constant interventions. We introduce

a unified framework to develop the randomization distribution for any test statistic,

which can be used to calculate p-values and construct confidence intervals. Simula-

tions based on linear mixed models show that randomization inference always guar-

antees the valid Type I error rate and has power comparable to the usual asymptotic

inference.

We demonstrate our method using the Burkina Faso CBHI dataset to investi-

gate whether CBHI schemes protect individuals against large financial shocks. We

conclude that the insurance had limited effects on reducing the likelihood of low to

moderate levels of catastrophic health expenditure in the target areas, but substan-

tially benefited people facing extremely high health expenditure that exceeds half of

their monthly income.

We hope that this paper serves as a valuable contribution to the literature on

statistical properties of stepped-wedge cluster-randomized trials and its practical im-

plementation in health economics, education, public health and other fields in which

cluster-randomized trials are of interest. Our goal in this paper is to emphasize the

value of randomization inference for stepped-wedge cluster-randomized trials and pro-
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vide methods for implementing such randomization inference. With a strong belief

in a parametric model, one can make inferences and calculate power and sample size

based on asymptotic distributions but these inferences can be sensitive to the model;

randomization inference can deliver similar power while the inferences remain valid

regardless of whether the parametric model holds or not.
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3
The Trend-in-trend Design for Causal Inference

Abstract

Cohort studies can be biased by unmeasured confounding. We propose a hybrid

ecologic-epidemiologic design called the trend-in-trend design, which requires a strong

time-trend in exposure, but is unbiased unless there are unmeasured factors affecting

outcome for which there are time-trends in prevalence that are correlated with time-

trends in exposure across strata with different exposure trends. Thus, the conditions

under which the trend-in-trend study is biased are a subset of those under which a

cohort study is biased. The trend-in-trend design first divides the study population

into strata based on the cumulative probability of exposure (CPE) given covariates,

which effectively stratifies on time-trend in exposure, provided there is a trend. Next,

a covariates-free maximum likelihood model estimates the odds ratio (OR) using data

on exposure prevalence and outcome frequency within CPE strata, across multiple pe-

riods. In simulations, the trend-in-trend design produced ORs with negligible bias in

the presence of unmeasured confounding. In empiric applications, trend-in-trend re-

produced the known positive association between rofecoxib and myocardial infarction

∗Joint work with Sean Hennessy, Charles Leonard, Dylan Small
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(observed OR: 1.23, 95% confidence interval: 1.05, 1.44), and known null associations

between rofecoxib and severe hypoglycemia [OR = 1.09 (0.92, 1.28)] and non-vertebral

fracture [OR = 0.84 (0.64, 1.09)]. The trend-in-trend method may be useful in set-

tings where there is a strong time-trend in exposure, such as a newly-approved drug

or other medical intervention.

3.1 Introduction

Many important causal questions cannot be addressed through randomized trials be-

cause of ethical or practical reasons. Ecologic studies address causal questions by

examining time trends in exposure and outcome, but can be biased by co-occurring

trends in other factors affecting outcome (Cook et al., 1979). Epidemiologic designs

such as the cohort study can be biased if there are unmeasured determinants of expo-

sure that are associated with outcome (i.e., unmeasured confounders). In this paper,

we introduce a novel hybrid ecologic-epidemiologic design called the trend-in-trend

design. Rather than comparing exposed vs. unexposed persons, the trend-in-trend de-

sign examines time-trends in outcome as a function of time-trends in exposure across

strata with different time-trends in exposure. Intuitively, in a population stratified on

time-trends in exposure, an association between exposure time-trends and outcome

time-trends across strata should provide evidence for causation unless there are un-

measured factors affecting outcome for which there are time-trends in prevalence that

are correlated with time-trends in exposure across strata. Thus, the scenarios under

which a trend-in-trend study is susceptible to unmeasured confounding should be a

subset of those under which a cohort study is susceptible, making the trend-in-trend

design more resistant to unmeasured confounding. The trade-offs are that a trend-

in-trend study is feasible only when there is a strong time-trend in exposure, and a
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trend-in-trend study should have less statistical precision than a cohort study.

While novel, the trend-in-trend design is related to two established econometric

approaches. One is the difference-in-difference (DID) method (Lechner et al., 2011;

Meirik, 2008), as both address unmeasured confounding by examining within-group

changes and time-trends in outcome. However, unlike the DID method, the trend-

in-trend design estimates an individual-level causal parameter. In particular, the

trend-in-trend design yields the odds ratio (OR), which approximates the risk ratio

when the outcome is rare (Viera, 2008). The trend-in-trend method is also related to

the use of calendar time as an instrumental variable (IV) (Cain et al., 2009; Johnston

et al., 2008), and in fact the two are equivalent if only a single stratum is used in

the trend-in-trend design. However, use of calendar time as an IV can be biased by

any time-trend in the prevalence of an unmeasured factor that affects outcome. In

contrast, the trend-in-trend design is biased by such a trend only if the time-trend

in the unmeasured factor is correlated with the time-trends in exposure across strata

defined by factors associated with exposure. The trend-in-trend design therefore

relaxes the assumptions under which a calendar time IV study is valid.

In this paper, we first introduce the cumulative probability of exposure (CPE),

which is used to divide the population into strata with different exposure prevalences

and thus different time-trends in exposure, provided that an overall time-trend exists.

We then propose two reasonable models for individuals and subgroups respectively.

Under the assumptions that the outcome is rare, covariates are either time-invariant or

change randomly over time within person, and there are no time-trends in unmeasured

causal factors that are associated with time-trends in exposure across strata, we give

a mathematical derivation of the connection between individuals and subgroups and

a method to estimate the OR using group-level data. We then show mathematically

that this estimate is unbiased by both measured and unmeasured confounders. We
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report a simulation study illustrating that the OR estimated using the trend-in-trend

method is much less biased than that estimated using cohort methods when there is

unmeasured confounding by factor with no trend in prevalence. Finally, we apply the

trend-in-trend method to healthcare data to reproduce the known positive association

between rofecoxib and acute myocardial infarction (AMI) (Jüni et al., 2004), and two

presumably null associations: rofecoxib and severe hypoglycemia, and rofecoxib and

bone fractur (Vestergaard et al., 2006).

3.2 Method and Models

3.2.1 Stratification based on the Cumulative Probability of
Exposure (CPE)

The analysis of a trend-in-trend study involves two stages. In the first stage, we

estimate the CPE, which is the predicted probability of exposure over the entire study

period, based on variables other than exposure, outcome, and their potential effects.

In particular, suppose we observe a population in which each individual’s binary

exposure status over the study period is observed. We also observe a set of variables

that affect but are known from subject-area knowledge not to be affected by exposure,

such as age, sex, geographic residence, diagnoses, etc. We fit a logistic regression

model using these variables as independent variables, with the dependent variable

being exposure. The fitted value is the estimated CPE. Since the unit of analysis for

the CPE model is the individual, and covariates are treated as invariant, each subject

will be in the same CPE stratum for all observation periods. If, analogously to a new

user cohort study, subjects are required to be present for a baseline period prior to

the first opportunity for exposure, then the values for all variables in the CPE model

can be fixed at the first opportunity for exposure (e.g., drug approval). However,
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many healthcare databases have high turnover rates, and restricting the study to

persons with sufficient baseline period prior to the first opportunity for exposure

may drastically reduce available sample size. In such a situation, one can allow the

value of CPE variables that require time to ascertain (e.g., appearance of diagnoses)

to be determined by data observed during the study period, provided that subject-

area knowledge can rule out the possibility that exposure status affected any CPE

variable. For an exposure with an overall time-trend in prevalence, intuition tells us

that the magnitude of the trend should vary across strata defined by the CPE. The

CPE is similar to the propensity score (Rosenbaum and Rubin, 1983), since both

predict exposure, but differs from it in that the propensity score is used to balance

observed covariates across exposure groups, while the CPE is used to identify strata

with different time-trends in exposure. It may also be possible to directly model the

trend itself rather than the CPE. The second stage analysis, described below, applies

to any population stratified on time-trend in exposure prevalence.

3.2.2 Models in the Trend-in-Trend Design

To derive a quantitative estimate of a causal effect, we propose two models of out-

comes. One model is defined for each subject at each time point to account for

covariates heterogeneity across population and time trends of outcome. The other

one is specified at the population level at each time point, which depicts the mean

outcome among those subjects within the same subgroup. We assume that the study

population consists of N individuals and there are T time periods. Let X t
i denote the

vector of covariates associated i with individual t at time period , which represents

intrinsic characteristics that might influence a particular exposure and/or outcome.

X t
i can be either observed, unobserved, or partially observed. X t

i is assumed to follow

a distribution F across the population. Zt
i and Y t

i are exposure and outcome variables
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for individual i at time period t. G is the index for CPE strata.

3.2.2.1 Subject-Specific Model

The conditional expected outcomes are assumed to satisfy

h(µti) = β0 + β1Z
t
i + β2t+ γTX t

i (3.1)

where h is the link function. The subject-specific model is a special case of the

generalized linear mixed model with exposure and time period being the fixed effects

and the covariates for an individual (some of which may be unobserved) represented

as random effects (Zeger et al., 1988). Because the trend-in-trend design is intended to

estimate the instantaneous risk of an exposure, only Zt
i instead of the past treatment

history Z1:T
i is considered as a predictor of the the conditional expected outcome.

The coefficient β1 for exposure has a causal interpretation at the individual level. It

is also the logarithm of the OR when both exposure and outcome are binary, and the

function h is logit.

When unmeasured confounding does not exist, i.e., X t
i can be fully observed, it is

valid to estimate all coefficients in equation (1) using individual-level data. For ex-

ample, the cohort design utilizes information about every unit in a group to examine

associations with exposures (Benjamin et al., 1994). However, in observational stud-

ies, we cannot rule out the existence of unmeasured confounding, which may distort

estimates of the fixed effects coefficients. In addition, the subject-specific model can

be computationally challenging for the study of rare diseases because a large number

of subjects is required.
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3.2.2.2 Population-Averaged Model

We assume the marginal expectation

h∗(νti ) = β∗0 + β∗1Z
t
i + β∗2t+ C(Zt

i , G) (3.2)

where h∗ is the link function. C(Zt
i , G) is a function on exposure and group, which rep-

resents the heterogeneity across exposed and unexposed subgroups. The population-

averaged model is the marginal expectation of the subject-specific model. It does not

require knowledge of covariates or assumptions of the heterogeneity across individu-

als. Its coefficients are directly estimable from the aggregated data on exposure and

outcome, but do not have individual causal interpretation.

3.2.2.3 Connection between the Subject-Specific Model and the Population-
Averaged Model

In general, the two models can be related by integrating out X t
i . In Zeger et al.

(1988),10 the cases of identity, log, probit, and logit link functions are discussed and

the corresponding mathematical relations between (β0, β1, β2) and (β∗0 , β
∗
1 , β

∗
2) are

listed in detail. The trend-in-trend method will be built on the population-averaged

model. With the purpose of making causal inferences on individuals with a binary

outcome, we require the link function h to be logistic such that deriving OR eβ1

is possible and the estimated quantity approximates the risk ratio obtained from a

cohort study of a rare outcome.

We next provide a mathematical derivation of the connection between the two

models and of how to estimate the causal OR using only data on trends in the

prevalence of both exposure and outcome in strata. We further show that under

plausible assumptions, the trend-in-trend method is unconfounded by measured and

unmeasured factors, provided that there are no trends in the prevalence of covariates
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that are correlated with the prevalence of the exposure over time. As the scenarios

that will lead to a confounded estimate in a trend-in-trend study are a subset of those

that will lead to a confounded estimate in a cohort study, the trend-in-trend design

is more resistant to potential confounding. However, unlike the cohort design, the

trend-in-trend design requires a strong time-trend in exposure, so is available in fewer

scenarios.

3.2.3 Estimation of the Odds Ratio

We first stratify the entire population into K strata according to the quintiles of

the estimated CPE. For each subgroup G and each time period t, we aggregate the

individual-level data to obtain quantities in the following table.

Outcome Y t
i = 1 Outcome Y t

i = 0 Total
Exposure Zt

i = 1 nt11 nt10 nt1
Exposure Zt

i = 0 nt01 nt00 nt0

Because h is the logit function, we have

E(Y t
i |Zt

i , G) = E(E(Y t
i |Zt

i , G,X
t
i ))

=

∫
exp(β0 + β1Z

t
i + β2t+ γTX t

i )

1 + exp(β0 + β1Zt
i + β2t+ γTX t

i )
dF (X t

i |Zt
i , G) (3.3)

In general, there is no closed-form for the marginal mean as a function of the fixed

effects and β1 cannot be identified. However, an approximate form is available when

we impose the following assumptions:

(1) Covariates and time period have multiplicative effects on being exposed. i.e.,

P (Zt
i |X t

i ) = h1(X t
1)h2(t). h1 and h2 are two deterministic functions but un-

known.
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(2) Covariates for all individuals in any subgroup G are either time-invariant or

change randomly over time. They are random variables from an unknown dis-

tribution, i.e., P (X t
i |G) = fG.

(3) The outcome is rare, and therefore we can omit the denominator of the integrand

in equation.

With these assumptions, we have:

E(Y t
i |Zt

i , G) ≈
∫
exp(β0 + β1Z

T
i + β2t+ γTX t

i )dF (X t
i |Zt

i , G)

= exp(β0 + β1Z
T
i + β2t)E(γTX t

i |Zt
i , G) (3.4)

In order to expand E(γTX t
i |Zt

i , G), we compute the conditional distribution of co-

variates X t
i given ZT

i and G using the Bayes rule:

p(X t
i |Zt

i = 1, G) =
p(Zt

i = 1, X t
i |G)

p(Zt
i = 1|G)

=
p(Zt

i = 1|X t
i , G)p(X t

i |G)

p(Zt
i = 1|G)

=
p(Zt

i = 1|X t
i )p(X

t
i |G)

p(Zt
i = 1|G)

=
h1(X t

i )h2(t)fG
p(Zt

i = 1|G)
(3.5)

p(X t
i |Zt

i = 0, G) =
p(Zt

i = 0, X t
i |G)

p(Zt
i = 0|G)

=
p(Zt

i = 0|X t
i , G)p(Xi|G)

p(Zt
i = 0|G)

=
p(Zt

i = 0|X t
i )p(X

t
i |G)

p(Zt
i = 0|G)

=
fG − h1(X t

i )h2(t)fG
p(Zt

i = 0|G)
(3.6)

Therefore,

p(X t
i |Zt

i = 1, G) =
h1(X t

i )h(t)fG
p(Zt

i = 1|G)
(3.7)

p(X t
i |Zt

i = 0, G) =
fG − h1(X t

i )h2(t)fG
p(Zt

i = 0|G)
(3.8)
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Define the following constants which only depend on G

C1G :=

∫
exp(γTX t

i )h1(X t
i )fGdX

t
i (3.9)

C2G :=

∫
exp(γTX t

i )fGdX
t
i (3.10)

C3G :=

∫
h1(X t

i )fGdX
t
i (3.11)

The marginal expectation E(Y t
i |Zt

i , G) now becomes:

E(Y t
i |Zt

i = 1, G) = exp(β0 + β1 + β2t)
C1G

C3G

(3.12)

E(Y t
i |Zt

i = 0, G) = exp(β0 + β2t)
C2G − C1Gh2(t)

1− C3Gh2(t)
(3.13)

where C1G, C2G, C3G are unknown constants that depend on group.

Equations (3.12) and (3.13) are covariate-free. In other words, the marginal ex-

pectation of outcome is the same across treated/control individuals within the same

subgroup. Because each Y t
i is binary, aggregating outcomes for the treated and un-

treated yields two binomial distributions. Consequently, we can write the parametric

likelihood for (nt11, n
t
10, n

t
01, n

t
00):

n11 ∼ Binomial(nt11 + nt10, e
β0+β1+β2t

C1G

C3G

) (3.14)

n01 ∼ Binomial(nt01 + nt00, e
β0+β2t

C2G − h2(t)C1G

1− h2(t)C3G

) (3.15)

(β0, β1, β2C1G, C2G, C3G) are unknown parameters and can be estimated by maximiz-

ing the above likelihood using an optimization algorithm. In particular, eβ1 is the

OR of interest. We have written a package for the R computing language called

TrendInTrend that performs this maximization and calculates the OR with its 95%

confidence interval given (nt11, n
t
10, n

t
01, n

t
00), t ∈ {1, 2, . . . , T} .
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3.3 Simulations: Comparing the Trend-in-trend De-

sign with the Cohort Study Method

Setup

We performed simulation studies to confirm that when unmeasured confounding is

present, the OR produced by the trend-in-trend method is negligibly biased (albeit

somewhat less precise) than that produced by a cohort study. We simulated a study

population of size 250,000 with 20 calendar quarters as study periods. The data were

generated according to the following procedure:

• Step 1: The covariates X t
i are a five-dimensional vector with three entries gener-

ated from a multivariate Gaussian distribution and two other entries generated

from Bernoulli distributions with different success probabilities. Three scenar-

ios are examined: 1) covariates are sampled only once and fixed over time 2)

covariates are sampled independently for each calendar period 3) covariates are

sampled repeatedly for each calendar period with autocorrelation coefficient of

0.5.

• Step 2: Assign Zt
i to 1 with the probability of ea0+a1Xt

I+a2t+a3t2 .

• Step 3: Simulate Y t
i based on the subject-specific model and the choice of link

function h.

We choose (a0, a1, a2, a3) such that the simulated exposure prevalence has the up-

and-down shape shown in Fig. 5.1, which mimics the exposure trend of a drug

that becomes widely used after introduction, and is then withdrawn (e.g., rofecoxib).

However, the method should work for a unidirectional trend as well.
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Figure 3.1: Simulated overall exposure prevalence over time

Based on the CPEs estimated via logistic regression, the study population was

stratified into quintiles, i.e., K = 5. As expected, these strata, each with 50,000

individuals, had different trends in exposure prevalence. The CPE model included

all five covariates, as shown in Fig.5.2.
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Figure 3.2: Simulated exposure prevalence across subgroups based on CPE quintiles

over time.

We considered the following scenarios under the rare events assumption: (1), the

OR takes values of 1.0, 1.5, 2.0, and 2.5; (2) the strength of the CPE model has

three levels quantified by 0, 2, and 4 omitted confounders out of 5 confounders in

total, and a c-statistic is calculated for each level to gauge unobserved heterogeneity

in factors affecting outcome; (3) the number of CPE strata is either 5. We compare

the estimated OR with those calculated using the cohort method. The results, which

are the average values of 1000 simulations, are summarized in Tables 3.1, 3.2, and

3.3, corresponding three different scenarios of covariates sampling as described above.
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Results

True Number of C-statistic Trend-in-Trend Odds Ratio Cohort Study Odds Ratio
Odds Unmeasured of the CPE
Ratio Confounders Model Mean (% bias) SD Mean (% bias) SD

2.5 0 0.68 2.47 (-1.2) 0.0165 2.50 (0.0) 0.0092
2.5 2 0.63 2.45 (-2.0) 0.0170 4.75 (90.0) 0.0091
2.5 4 0.51 2.43 (-2.8) 0.0171 4.80 (92.0) 0.0091

2.0 0 0.68 1.97 (-1.5) 0.0147 2.01 (0.5) 0.0087
2.0 2 0.63 1.95 (-2.5) 0.0153 4.22 (111) 0.0081
2.0 4 0.51 1.94 (-3.0) 0.0131 4.25 (113) 0.0078

1.5 0 0.68 1.52 (1.3) 0.0101 1.50 (0.0) 0.0083
1.5 2 0.63 1.49 (-0.7) 0.0106 3.25 (117) 0.0081
1.5 4 0.51 1.48 (-1.3) 0.0108 3.30 (120) 0.0082

1.0 0 0.68 1.02 (2.0) 0.0082 0.99 (-1.0) 0.0079
1.0 2 0.63 1.02 (2.0) 0.0089 2.08 (108) 0.0074
1.0 4 0.51 1.02 (2.0) 0.0089 2.20 (120) 0.0073

Table 3.1: Comparison of the estimated causal odds ratio using the time-in-trend

design and the cohort study method. Confounders are sampled only once and fixed

over time.
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True Number of C-statistic Trend-in-Trend Odds Ratio Cohort Study Odds Ratio
Odds Unmeasured of the CPE
Ratio Confounders Model Mean (% bias) SD Mean (% bias) SD

2.5 0 0.62 2.46 (-1.6) 0.0198 2.50 (0.0) 0.0101
2.5 2 0.57 2.45 (-2.0) 0.0207 4.79 (91.6) 0.0104
2.5 4 0.41 2.41 (-3.6) 0.0212 4.91 (96.4) 0.0104

2.0 0 0.62 2.03 (-1.5) 0.0184 2.01 (0.5) 0.0091
2.0 2 0.57 1.94 (-3.0) 0.0191 4.28 (114) 0.0089
2.0 4 0.41 1.93 (-3.5) 0.0177 4.32 (116) 0.0090

1.5 0 0.62 1.53 (2.0) 0.0124 1.51 (0.7) 0.0092
1.5 2 0.57 1.53 (2.0) 0.0132 3.24 (116) 0.0088
1.5 4 0.41 1.46 (-2.7) 0.0129 3.38 (125) 0.0094

1.0 0 0.62 1.02 (2.0) 0.0098 0.99 (-1.0) 0.0087
1.0 2 0.63 1.03 (3.0) 0.0111 2.11 (111) 0.0083
1.0 4 0.51 0.97 (-3.0) 0.0112 2.27 (127) 0.0084

Table 3.2: Comparison of the estimated causal odds ratio using the time-in-trend

design and the cohort study method. The population is stratified into five subgroups

for the time-in-trend algorithm. Confounders are sampled independently for each

calendar period.

True Number of C-statistic Trend-in-Trend Odds Ratio Cohort Study Odds Ratio
Odds Unmeasured of the CPE
Ratio Confounders Model Mean (% bias) SD* Mean (% bias) SD*

2.5 0 0.66 2.46 (-1.6) 0.0195 2.50 (0.0) 0.0097
2.5 2 0.60 2.45 (-2.0) 0.0202 4.78 (89.2) 0.0098
2.5 4 0.41 2.42 (-3.2) 0.0207 4.87 (94.8) 0.0098

2.0 0 0.66 1.98 (-1.0) 0.0176 2.00 (0.0) 0.0087
2.0 2 0.60 1.94 (-3.0) 0.0185 4.23 (112) 0.0086
2.0 4 0.46 1.94 (-3.0) 0.0172 4.30 (115) 0.0085

1.5 0 0.66 1.53 (2.0) 0.0119 1.51 (0.7) 0.0087
1.5 2 0.60 1.52 (1.3) 0.0125 3.25 (117) 0.0086
1.5 4 0.46 1.47 (-2.0) 0.0122 3.35 (123) 0.0091

1.0 0 0.66 1.02 (2.0) 0.0094 0.99 (-1.0) 0.0081
1.0 2 0.60 1.02 (2.0) 0.0105 2.09 (109) 0.0079
1.0 4 0.46 1.03 (3.0) 0.0107 2.20 (120) 0.0080

Table 3.3: Comparison of the estimated causal odds ratio using the time-in-trend

design and the cohort study method. Confounders are sampled with autocorrelation

0.5 between any two consecutive calendar periods.
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As expected, when there were no unmeasured confounders, both the trend-in-trend

and cohort designs yielded ORs that were close to the truth. However, as the number

of unmeasured confounders increased, the ORs produced by the cohort design became

very biased, with biases ranging from 90% to 127%, while those from the trend-in-

trend design remained close to the truth, with bias ranging from -3.5% to 3%. The

standard deviations for the trend-in-trend method were one to two times as large as

those for the cohort method, which is to be expected as individual-level information

is partially lost when counts of outcomes are aggregated.

3.4 Application: Confirming THE Causal effect of

Rofecoxib on AMI

We applied the trend-in-trend method to ClinformaticsTM Data Mart Database (Op-

tumInsight, Eden Prairie, MN) to examine association between rofecoxib and AMI,

severe hypoglycemia, and non-vertebral bone fracture. We first identified all persons

age 18 years or older in Optum who received one or more prescriptions for rofe-

coxib during the study period from April 1, 2000 through Dec 30, 2004. For each

rofecoxib-exposed person episode, we ascertained the first month and the last month

of their continuous enrollment episode (or episodes, for persons with multiple en-

rollment episodes) during the study period. Thus, the unit of observation was the

enrollment episode, defined as a period of continuous enrollment for a person. A per-

son could contribute multiple episodes. For each rofecoxib-exposed episode, we ran-

domly sampled, without replacement, nine rofecoxib-unexposed enrollment episodes

with an enrollment start date on or before no more than one year of the rofecoxib-

exposed subjects enrollment start date, and with an enrollment end date on or after

the rofecoxib-exposed subjects enrollment end date. The rationale for this criterion
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was to ensure sufficient overlap in follow-up calendar time for exposed and unexposed

subjects. Thus, the analysis set contained ten times as many total episodes as there

were rofecoxib-exposed enrollment episodes. This was done to improve computational

efficiency versus including the entire study population.

We then fit a logistic regression to estimate the CPE using age, sex, diagnosis

of rheumatoid arthritis, and diagnosis of osteoarthritis as explanatory variables. For

rofecoxib-exposed subjects, these covariates were measured at their first prescription

date. For control subjects, these covariates were measured the same date as their

corresponding exposed subjects. The c-statistic was 0.608, which produced good sep-

aration of exposure prevalence across quintiles, as shown in Figure 3. The estimated

coefficients and standard deviations (as shown in parentheses) are 0.0228 (0.0001)

for continuous age, 0.1458 (0.0027) for female sex, 2.4418 (0.0124) for rheumatoid

arthritis, and -0.6444 (0.0191) for osteoarthritis.

The trend-in-trend method yielded an OR (95% confidence interval) for rofecoxib

and AMI of 1.23 (1.05, 1.44), which is consistent with the results of prior epidemiologic

studies: a 2005 meta-analysis yielded a pooled relative risk of 1.20 (1.10, 1.30) for

cohort and nested case-control studies (Hernández-Dı́az et al., 2006), and a more

recent meta-analysis reported a pooled relative risk of 1.34 (1.22, 1.48) (Varas-Lorenzo

et al., 2013). The ORs for the negative control outcomes, severe hypoglycemia and

non-vertebral bone fracture (neither of which is thought to be affected by rofecoxib),

were 1.09 (0.92, 1.28) and 0.84 (0.64, 1.09), which are both consistent with no effect

(Solomon et al., 2010).
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3.5 Discussion

We describe a novel hybrid ecologic-epidemiologic study design called the trend-in-

trend design, provide a mathematical derivation of the resulting odds ratio, use sim-

ulation to confirm that the results are less biased (albeit somewhat less precise) than

those of a cohort study when there is unmeasured confounding, and apply that method

to reproduce one positive and two null associations using real-world data. The results

of the empiric study using real-world data show that the design is readily applicable

and produces expected results.

Importantly, the trend-in-trend design avoids the Achilles heel of most epidemi-

ologic studies of healthcare interventions: conflation of receiving a treatment with

needing that treatment. Unlike cohort studies, the trend-in-trend design does not

assume no unmeasured confounders, but instead examines changes in outcome occur-

rence as a function of changes in exposure prevalence across strata with differential

time-trends in exposure. Therefore, the results of a trend-in-trend study will be un-

confounded unless there are unmeasured factors affecting outcome for which there

are time-trends in prevalence that are correlated with time-trends in exposure across

the strata defined by exposure trend. This could occur if there are co-interventions

for which the trend in use is positively correlated with trends in use of the exposure,

or alternatives for which the trend in use is negatively correlated with trends in use

of the exposure. As the scenarios that would produce a confounded trend-in-trend

estimate are a subset of those that would produce a confounded cohort estimate, the

trend-in-trend design is more resistant to confounding. However, the trend-in-trend

design is feasible only if there is a strong time-trend in exposure prevalence. Sim-

ilarly, the effect estimates produced using calendar period as an IV will be biased

if there is any time-trend in an unmeasured causal factor, whereas a trend-in-trend

study will be biased only if changes in the prevalence of such a factor are correlated
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with changes in exposure prevalence across CPE strata. The trend-in-trend design

therefore relaxes the assumptions under which use of calendar time as an IV is valid.

The causal contrast examined by the trend-in-trend approach deserves discussion.

It is the instantaneous effect of use of the exposure of interest rather than the ex-

posure(s) (if any) that the increasing (or declining) trend in use of the exposure of

interest displaced (or was displaced by). In the example of rofecoxib, this is likely

to be some combination of nonselective nonsteroidal anti-inflammatory drugs, opi-

oids, and no treatment. Thus, the trend-in-trend results may not mimic the results

of placebo-controlled trials evaluating the study treatment. Nevertheless, the causal

contrast with the alternatives that it displaces or is displaced by is arguably more

relevant from a public health perspective.

The main limitations of the trend-in-trend method are the need for a strong trend

in exposure prevalence and the reduced statistical precision that accompanies group-

level rather than individual-level analyses. Limitations of the current study include

the modest range of scenarios simulated and the fact that there is no empirical ex-

ample with a causal effect known with complete certainty.

Additional work is needed to improve the utility of the trend-in-trend design. Such

work should address control for measured factors for which there may be time-trends

that are correlated with time-trends in exposure across CPE strata, examination of

treatment effect heterogeneity, sequential analysis methods to allow multiple looks

while limiting type-1 error, and estimation of statistical power and detectable alter-

native.

53



4
Squential Testing for the Trend-in-trend Design: an

Application to Drug Safety Surveillance In the

Presence of Unmeasured Confounding

Abstract

Post license drug safety surveillance is a critical step of the drug evaluation because

rare but serious adverse events may not be detected in pre-license randomized trials.

Sequential testing methods are powerful tools that facilitate early termination of the

drug usage when the drug exceeds the pre-assumed adverse event rate. However,

applying sequential tests on observational data can be misleading in the presence of

unmeasured confounders. We generalize the standard sequential testing to trend-in-

trend design settings that utilizes time trends in exposure prevalence and accounts

for both measured and unmeasured confounding. The performance of the proposed

approach is examined and compared to other approaches using simulation studies. We

also apply the method to Clinformatics Data Mart Database (OptumInsight, Eden

Prairie, MN) to test the risk of rofecoxib on acute acute myocardial infarction (AMI).

∗Joint work with Ashkan Ertefaie, Sean Hennessy, Charles Leonard, Dylan Small
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4.1 Introduction

Identifying all the adverse events (AE) of a drug may not be possible during the

pre-license randomized trials because such trials are often powered for efficiency (Du-

Mouchel, 1999; Davis et al., 2005). In fact, investigators often do not even have

a comprehensive list of all the possible AEs because treatments can interact with

patients’ genotype, characteristics and other treatments. Thus there are always pos-

sibilities of unexpected AEs. This motivates investigators to use big databases such

as electronic health records to study the risk of AEs among exposed and unexposed

groups. Another appealing feature of electronic health records is that because they

are updating frequently, investigators can monitor AEs in real time. For the public

health safety reasons, the drug use must be terminated as soon as there are enough

evidence of increased AEs rate which can only be done using sequential testing meth-

ods, see Ghosh et al. (2011); Mukhopadhyay and De Silva (2008); Govindarajulu

(2004).

Wald (Wald, 1945, 1947) proposed a sequential probability ratio test (SPRT),

where the null hypotheses of drug safety is rejected when the likelihood ratio exceeds

a predetermined critical value. SPRT approves the safety of the drug if by the end

of the study period, the likelihood ratio stays below the critical value. An important

feature of the test is that it adjusts for the p-values without knowing the number of

times that the test needs to be performed. One drawback of Wald test is that the

result highly depends on the specified alternative hypothesis. In fact, Kulldorf et.

al. Kulldorff et al. (2011) showed that for some alternative hypotheses, Wald test

can significantly delay or completely miss the signal. The latter paper proposed a

maximized sequential probability ration test (MaxSPRT) that handles the problem

by considering a composite alternative rather than simple (Hoel et al., 1976; Lachin,

1981; Meeker Jr, 1981; Van der Tweel et al., 1996). Sequential testing has also been
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extended to the Bayesian settings where a continuous-time Poisson process is assumed

for AEs (Lechner, 1962; Peskir and Shiryaev, 2000).

There are some sequential testing methods that are designed specifically for the

observation safety surveillance settings. Brown et. al. Brown et al. (2007) used a

Poisson based MaxSPRT that adjusts for confounding by stratifying patients based

on their baseline characteristics. However, this method requires reliable estimate of

the expected number of AEs under the null hypothesis which mat not be available

in many settings. Li (Li, 2009) addressed this shortcoming by proposing the condi-

tional sequential sampling procedure (CSSP) that preserves the type-I error rate by

implementing α-spending approaches. Li’s method also adjusts for confounding by

stratifying patients based on their baseline characteristics (see also Lan and DeMets

(1983) and Jennison and Turnbull (1997)). Group sequential generalized estimat-

ing equations (GS GEE) is another approach that adjusts for confounding using an

estimating equation based method (?). Lan and DeMets (Lan and DeMets, 1983)

also adopted the α-spending approach that adjusts for confounding in a regression

context (Jennison and Turnbull, 1997). For more detailed discussion on sequential

safety monitoring using observational data see Stratton (2012).

All the existing sequential testing methods in observational settings rely heavily

on an unstable assumption of no unmeasured confounding. Because electronic health

records are not, in general, collected for scientific purposes, the no unmeasured con-

founding assumption is unlikely to hold. We propose a sequential likelihood ratio

test with trend-in-trend design (SLR-TT) that is robust to unmeasured confounding

under certain assumptions. Per the discussion in Chapter 3, the trend-in-trend design

is a novel design that is used in observational settings to study causal effect of treat-

ments for which there are strong time trends. We show that the results obtained by

the existing methods may be misleading in the presence of unmeasured confounding
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while the proposed SLR-TT provides valid results.

4.2 Sequential Testing for the Trend-in-trend De-

sign

Inferences based on observational data are subject to bias due to unmeasured con-

founding. Ji et. al. Ji et al. (2016) proposed a new hybrid ecologic-epidemiologic

design called the trend-in-trend design, that utilizes time trends in exposure preva-

lence and accounts for both measured and unmeasured confounding. In the trend-

in-trend design we first estimate the cumulative probability of exposure (CPE; the

predicted probability of cumulative exposure based on variables other than exposure

and outcome) to stratify individuals and hence identify subgroups with different ex-

posure trends over the period of study. For example, when we define the treated

group as patients who have been exposed to treatment at least once during, then the

CPE is a logistic regression that includes patients characteristics and possibly time

as independent variable and the treatment indicator as dependent variable. In this

particular example, the statistical model of CPE is similar to the propensity score.

However, the CPE is only used to identify subgroups with different trends in expo-

sure prevalence and not for balancing purposes. At the second stage, we aggregate

the data for each subgroup and each time, and form a 2 × 2 table that shows the

number of patients who did and didn’t experience the AE and AEs among treated

and untreated group. Then a likelihood is derived and the parameters of interest are

estimated using MLE approach. In the sequel, we discuss the trend-in-trend design

and the proposed sequential testing approach in more details.

We study the effect of two treatment groups on the rate of adverse events using

a longitudinal data collected over a fixed period of time. Our dataset is composed of n
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i.i.d. trajectories of length T . The ith trajectory is the sequence (Xi, Di1, Yi1, ..., DiT , YiT )

where Xi is a vector of measured baseline characteristics that follows a distribution

F . Dit is the treatment status at time t and Yit is the indicator of whether an AE has

happened between time t−1 and t. Let g = 1, 2, ..., G denote the index for subgroups

after stratification based on CEP. The aggregated individual-level data based on each

subgroup g and time t consists of nt11g patients who were treated and experienced AEs

and nt01g patients who were untreated and experienced AEs. We also have the number

of patients who were treated (untreated) and did not experience an AE denoted as

nt10g (nt00g).

4.2.1 Derivation of the Likelihood Ratio

Assuming a logit model for AEs, the conditional mean of Yit given Dit, and g is

E(Yit|Dit, g) = E[E(Yit|Dit, g,Xi)]

=

∫
exp(β0 + β1Dit + β2t+ γ>Xi)

1 + exp(β0 + β1Dit + β2t+ γ>Xi)
dF (Xi|Dit, g)

which does not have closed-form. However, assuming that the outcome is a rare

event and the covariates and time have multiplicative effects on being treated, i.e.

P (Dit|Xi) = h1(Xi)h2(t), the conditional mean can be written as

E(Yit|Dit, g) ≈
∫
exp(β0 + β1Dit + β2t+ γ>Xi)dF (Xi|Dit, g)

= exp(β0 + β1Dit + β2t)E(γ>Xi|Dit, g).
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Thus, β1 is the parameter of interest and null hypothesis can be written as H0 : β1 = 0.

Consequently, the likelihood in the trend-in-trend analysis is given by

L(β0, β1, β2) =
∏
g

∏
t

(
exp(β0 + β1 + tβ2)

C1g

C3g

)nt
11g
(

1− exp(β0 + β1 + tβ2)
C1g

C3g

)nt
10g

(
exp(β0 + tβ2)

C2g − h2(t)C1g

1− h2(t)C3g

)nt
01g
(

1− exp(β0 + tβ2)
C2g − h2(t)C1g

1− h2(t)C3g

)nt
00g

where

C1g =

∫
exp(γ>Xi)h1(Xi)fgdXi

C2g =

∫
exp(γ>Xi)fgdXi

C3g =

∫
h1(Xi)fgdXi,

are unknown constants that depend on stratum g and fg = f(Xi|g) Ji et al. (2016).

Following Shih et. al. Shih et al. (2010), the stopping rule is

τ = inf

{
t ≥ 1 : log

L(β̂0, β̂1, β̂2)

L(β̂H0
0 , 0, β̂H0

2 )
> c

}
,

where (β̂0, β̂1, β̂2) are the maximum likelihood estimates of the parameter vector

(β0, β1, β2) and (β̂H0
0 , 0, β̂H0

2 ) are the maximum likelihood estimates of the correspond-

ing parameters under the null hypothesis H0 : β1 = 0. The critical value c is approx-

imated using a Monte Carlo method that is discussed latter. The log-likelihood ratio

is

LLR = log
L(β̂0, β̂1, β̂2)

L(β̂H0
0 , 0, β̂H0

2 )

=
∑
g

∑
t

nt11g(β̂0 + β̂1 + tβ̂2) + nt11g log(κg) + nt10g log(1− exp(β̂0 + β̂1 + tβ̂2)κg)
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+ nt01g(β̂0 + tβ̂2) + nt01g log(κtg) + nt00g log(1− exp(β̂0 + tβ̂2)κtg)

− nt11g(β̂
H0
0 + tβ̂H0

2 )− nt11g log(κg)− nt10g log(1− exp(β̂H0
0 + tβ̂H0

2 )κg)

− nt01g(β̂
H0
0 + tβ̂H0

2 )− nt01g log(κtg)− nt00g log(1− exp(β̂H0
0 + tβ̂H0

2 )κtg)

=
∑
g

∑
t

nt11g(β̂0 − β̂H0
0 + β̂1 + tβ̂2 − tβ̂H0

2 ) + nt01g(β̂0 − β̂H0
0 + tβ̂2 − tβ̂H0

2 )

+ nt10g log
1− exp(β̂0 + β̂1 + tβ̂2)κg

1− exp(β̂H0
0 + tβ̂H0

2 )κg
+ nt00g log

1− exp(β̂0 + tβ̂2)κtg

1− exp(β̂H0
0 + tβ̂H0

2 )κtg

where κg = C1g

C3g
and κtg = C2g−h2(t)C1g

1−h2(t)C3g
.

4.3 The Sequential Likelihood Ratio Algorithm

1. With collected data up to T ≤ Tmax, fit a CPE model to stratify the population

and tabulate AEs in treated and control groups.

2. Estimate the log odds ratio and all nuisance parameters using MLE.

(β̂0, β̂1, β̂2, Ĉ1g, Ĉ2g, Ĉ3g).

3. Estimate nuisance parameters under the null hypothesis H0 : β1 = 0.

(β̂H0
0 , 0, β̂H0

2 , Ĉ1g, Ĉ2g, Ĉ3g).

4. Calculate log likelihood ratios, LLR = (LLR(1), LLR(2), . . . , LLR(T )).

5. Reject the null at time τ using the following Stopping Rule

τ = inf {t ≤ T : LLR(t) > cT}

6. If the τ > T , proceed to time T + 1 and repeat step 1.
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4.3.1 Critical Value Approximation

The log likelihood ratio of the trend-in-trend design does not have known asymptotic

distribution and we approximate the critical value c using a Monte Carlo simulation

method that is outlined below:

1. Consider a set of candidates for cT , say C.

2. Given the estimated parameters (β̂H0
0 , 0, β̂H0

2 , ĈH0
1g , Ĉ

H0
2g , Ĉ

H0
3g ) under the null hy-

pothesis, generate K simulated datasets and obtain K realizations of LLR, i.e.,

each realization is a vector LLRk = (LLRsim
k (1), ...LLRsim

k (T )).

5. For any c ∈ C, calculate the proportion of times that a signal is detected by T

using the stopping rule. Let p̂(LLR > c|H0) =
∑

k I(τK<=T )

K
.

τk = inf
{
t ≤ T : LLRsim

k (t) > c
}

6. Pick the value of cT such that p̂(LLR > c|H0) ≈ α(T ) where α(T ) is the type-I

error rate spent up to T .

4.4 Simulations: Comparing SLR-TT with CSSP

Setup

We present a simulation study with population size N=50,000 and calendar pe-

riods T = 10. We stratify the population based on CEPs into five subgroups,

hence each subgroup has 10,000 individuals. The vector of baseline covariates X =

(X1, X2, X3, X4, X5), where X1 ∼ N(2, 1), X2 ∼ N(2, 1), X3 ∼ Bernoulli(0.8),

X4 ∼ Bernoulli(0.2), and X5 ∼ Bernoulli(0.1).
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We consider three sets of simulation settings in which there are no unmeasured

confounders, 2 out of 5 unmeasured confounders, and 4 out of 5 unmeasured con-

founders. Within each set, the rejection rate and the average signal time of SLT-TT

and CSSP are evaluated under various scenarios with different values of the odds

ratio OR (which is approximately the risk ratio for rare events), and the exponent of

the α-spending function, where α(k) = α(k/K)γ and α = 0.05, γ = .5, 1, 2. Different

α-spending functions allocate different Type-I error we want to spend at each interim

test, as shown in Figure 4.1

Figure 4.1: Allocation of Type-I error rates for α-spending functions α(k) = α(k/K)γ

with α = 0.05 and γ = .5, 1, 2

At each calendar period t ≤ T , the treatment and outcome variables are generated

from

Zt ∼ Bernoulli(exp{α0 + α1X + α2t− α3t
2})

Y t ∼ Bernoulli(exp{β0 + β1Z
t + β2t+ β3X})
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where α0 = −15, α1 = (2, 1, 0.1, 0.1, 0.1), α3 = 0.031 and β0 = −4, β1 = log(OR), β2 =

0.001, β3 = 0.1(2, 1, 0.1, 0.1, 0.1). The parameter α2 represents the incidence rate of

exposure, which plays a critical role in the trend-in-trend analysis. Specifically, as the

value of α2 increases the power of the trend-in-trend analysis increases. To examine

the effect of the incidence rate of exposure in our sequential setting, we consider a

high incidence rate of exposure (α2 = 0.9 ) and a low incidence rate of exposure (α2 =

0.6). Moreover, we vary the odds ratio (OR) by setting β1 = log(2.5), log(2), log(1.5),

and 0. We parametrized the treatment assignment model so that the exposure has

an upward trend, which mimics the exposure trend of a newly approved drug that

becomes widely used after market debut (e.g., rofecoxib). The results are based on

1,000 datasets simulated from the generative models.

Results

Table 4.1 shows that when there is no unmeasured confounding, both SLR-TT and

CSSP achieve the 0.05 nominal error rate and when there is a relatively strong ex-

posure trend, i.e., α2 = 0.9, the proposed SLR-TT have more power than the CSSP.

The signal detection period is also shorter in SLR-TT. When the exposure trend is

weaker, i.e., α2 = 0.6, the SLR-TT has slightly less power than the CSSP and the

signal detection times are slightly longer as well.

Table 4.2 shows that, in the presence of unmeasured confounding, the CSSP

method results in an inflated type-I error rate that is roughly 3 time higher than

the nominal 0.05 rate, while the SLR-TT maintain the 0.05 rate.
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True Rejection Rate Rejection Periods
Odds SLR-TT CSSP SLR-TT CSSP
Ratio r=.5 r=1 r=2 r=.5 r=1 r=2 r=.5 r=1 r=2 r=.5 r=1 r=2

strong trend of exposure prevalence
1 .047 .046 .046 .047 .047 .047 4.144 4.921 6.890 4.681 5.462 7.002
1.5 .485 .481 .476 .337 .328 .327 3.591 4.845 5.689 4.026 5.373 6.155
2 .734 .717 .709 .581 .536 .522 2.680 3.750 4.717 3.441 4.335 5.702
2.5 1 1 1 .838 .815 .809 2.122 2.910 3.559 2.524 3.248 4.113

week trend of exposure prevalence
1 048 .046 .046 .048 .048 .047 4.566 6.226 7.021 4.130 5.966 6.771
1.5 .309 .293 .274 .372 .313 .290 4.788 5.871 6.513 4.210 5.502 6.193
2 .437 .426 .420 .538 .502 .485 4.012 4.755 5.787 3.745 4.586 5.228
2.5 .687 .671 661 .803 .770 .748 3.270 3.942 4.596 2.689 3.551 4.207

Table 4.1: Comparing rejection rates and average signal detection periods for different

odds ratio when there is no unmeasured confounding

Number of True Rejection Rate Rejection Periods
Unmeasured Odds SLR-TT CSSP SLR-TT CSSP
Confounders Ratio r=.5 r=1 r=2 r=.5 r=1 r=2 r=.5 r=1 r=2 r=.5 r=1 r=2

Strong Trend of Exposure Prevalence
1 .052 .049 .049 .127 .116 .113 4.529 5.210 6.223 4.487 5.209 6.138

2 1.5 .481 .476 .460 .493 .481 .478 4.211 5.010 5.980 4.209 5.053 5.991
2 .728 .711 .685 .657 .612 .601 2.993 3.985 5.102 3.401 4.355 5.366
2.5 1 1 .991 .837 .802 .793 2.367 3.206 3.981 2.647 3.690 4.351
1 .049 .047 .046 .189 .168 .150 4.561 5.412 6.311 4.424 5.210 6.126

4 1.5 .481 .477 .462 .505 .499 .484 4.422 5.340 6.080 4.168 4.943 5.941
2 .724 .709 .701 .733 .725 .699 3.302 3.994 5.137 3.329 3.954 5.114
2.5 1 1 .980 .844 .820 .809 2.514 3.366 4.205 2.988 3.769 4.310

Week Trend of Exposure Prevalence
1 .049 .049 .048 .114 .092 .089 5.257 6.402 7.124 5.016 6.101 7.087

2 1.5 .298 .290 .277 .390 .377 .363 4.810 5.991 6.796 4.625 5.730 6.419
2 .431 .419 .410 .591 .579 .554 4.106 4.857 5.987 3.891 4.657 5.578
2.5 .788 .779 .765 .804 .791 .782 3.354 4.056 4.818 3.102 3.924 4.927
1 .048 .047 .047 .141 .123 .116 5.710 6.617 7.218 5.317 6.352 7.204

4 1.5 .298 .287 .282 .397 .388 .370 5.340 6.125 6.981 4.890 5.896 6.715
2 .432 .414 .407 .607 .591 .573 4.284 4.946 6.082 4.033 4.882 5.919
2.5 .772 .766 .752 .820 .803 .794 3.509 4.277 5.161 3.216 4.049 5.002

Table 4.2: Rejection rates and average signal detection periods in the presence of

unmeasured confounding for different odds ratios

4.5 Application: Detecting the risk of Rofecoxib

using Sequential Data

We applied the SLR-TT method to Clinformatics Data Mart Database (OptumIn-

sight, Eden Prairie, MN) to test the risk of rofecoxib on acute acute myocardial infarc-

tion(AMI). The data were sampled as follows. We first identified all persons age 18

years or older in Optum who received one or more prescriptions for rofecoxib during

the study period from April 1, 2000 through Dec 30, 2004. For each rofecoxib-exposed

person episode, we ascertained the first month and the last month of their continuous
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enrollment episode (or episodes, for persons with multiple enrollment episodes) during

the study period. Thus, the unit of observation was the enrollment episode, defined

as a period of continuous enrollment for a person. A person could contribute mul-

tiple episodes. For each rofecoxib-exposed episode, we randomly sampled, without

replacement, nine rofecoxib-unexposed enrollment episodes with an enrollment start

date on or before no more than one year of the rofecoxib-exposed subjects enrollment

start date, and with an enrollment end date on or after the rofecoxib-exposed subjects

enrollment end date. The rationale for this criterion was to ensure sufficient overlap

in follow-up calendar time for exposed and unexposed subjects. Thus, the analysis

set contained ten times as many total episodes as there were rofecoxib-exposed enroll-

ment episodes. This was done to improve computational efficiency versus including

the entire study population.

We fit a logistic regression to estimate the CPE using age, sex, diagnosis of rheuma-

toid arthritis, and diagnosis of osteoarthritis as explanatory variables. For rofecoxib-

exposed subjects, these covariates were measured at their first prescription date. For

control subjects, these covariates were measured the same date as their correspond-

ing exposed subjects. The c-statistic was 0.608 and the estimated coefficients and

standard deviations (as shown in parentheses) are 0.0228 (0.0001) for continuous age,

0.1458 (0.0027) for female sex, 2.4418 (0.0124) for rheumatoid arthritis, and -0.6444

(0.0191) for osteoarthritis. We then stratified the study population into five strata

based on the estimated CPE quintiles.

Table 4.3 indicates that the proposed SLR-TT rejects the null hypothesis that

Rofecoxib has a potitive risk on AMI using sequentially available data at the third

calendar periods. The results are consistent for all three α-spending functions we are

considering, even though the critical values obtained via the Monte Carlo approxi-

mation are slightly different.
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However, the comparison method CSSP fails to detect the signal as the lowest

conditional probability that occurs at the forth calendar period is 0.1867, larger than

the overall Type-I error rate of 0.05.

Calendar Quarter 1 2 3 4 5 . . .
TT Likelihood Ratio 0.6534 1.5946 2.2753 2.9431 2.2654 . . .

Critical Value for r= .5 1.2718 1.6517 1.8669 1.9829 2.0164 . . .
Critical Value for r =1 1.4763 2.0165 1.9829 2.0531 2.1782 . . .
Critical Value for r= 2 1.9523 2.1126 2.1126 2.2651 2.4497 . . .

Reject the Null No No Yes Yes Yes . . .

Table 4.3: SLR-TT rejects the null hypothesis of no adverse events of AMI at the

third calendar period for all three α-spending functions

Figure 4.2: CSSP fails to reject the null hypothesis of no adverse events of AMI for

all three α-spending functions as the lowest conditional probability is 0.1867 at the

forth time interval
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5
What Do IV Estimates Mean when A Long Gap

Exists between IV Creation and Treatment:

Implication from Mendelian Randomization

5.1 Introduction

Mendelian randomization is a method of using genetic variants as instruments to

examine the causal effect of a modifiable environmental exposure on the risk of dis-

ease in epidemiological studies. Since Mendelian genes are inherited randomly and

independently at conception, they are independent of confounding factors that are

hard to be accurately accessed. Genetic variants usually remain constant throughout

an individual’s lifetime, thus are not affected by occurrences of diseases and changes

in exposure levels. As a results, reserve causation, which generally distorts causal

estimates, can be avoided using the Mendelian randomization Smith and Ebrahim

(2003). Validity of the method relies on one crucial yet untestable assumption, that

is there is no direct effect of Mendelian genes on disease nor any other mediated effect

∗Joint work with Dylan Small
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other than through the exposure of interest. This assumption, known as the exclu-

sion restriction assumption, needs to be justified using background knowledge of the

underlying biology and may incur a sensitivity analysis if necessary.

Benefiting from the development of a sophisticated range of instrumental variables

methods in econometrics, the Mendelian randomization has been widely applied to

cross-sectional and pooled panel data to estimate causal effects. One of the most

well-known estimation techniques is the generalized method of moments (GMM),

introduced by Hansen (1982), and the two-stage least squares (2SLS) regression is

often adopted as a special case of GMM when both responses and exposures are

continuous.

Causal conclusions drawn from the Mendelian randomization have interpretations

as changes in a response resulted from hypothetical interventions imposed on an expo-

sure. For instance, in a study that confirmed significant causal relationships between

body mass index (BMI) and blood pressure, FTO and MC4R genotypes were used as

instruments using data were collected from 37,027 unrelated individuals in Denmark

Timpson et al. (2009). The study concluded that, if a person were able to reduce

BMI by 10%, she would decrease systolic blood pressure by 3.85 mm Hg (95% CI:1.88

to 5.83 mm Hg, P=0.0002) and diastolic blood pressure by 1.79 mmHg (95% CI: 0.68

to 2.90 mmHg, P=0.002). Such interpretations correspond to difference between

counterfacturals in the potential outcome framework developed by Rubin (1974b),

which makes sense for static and discrete data. However, if we take a hard look at

the underlying data generative process instead of the format of the observed data,

we see that both BMI and blood pressure are more naturally to be considered as

time-continuous variables. In the broader context of many epidemiological studies,

biological variables of interest are often inherently dynamic yet observed discretely

by design of experiments or data collection procedures. That being said, most cross-
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sectional and pooled panel data that the Mendelian randomization is applied to are

actually discrete snapshots of dynamic processes, in which (1) the outcome, the ex-

posure, and covariates exhibit non-negligible serial correlations; (2) the outcome is an

important determinant of future exposure levels either directly or indirectly through

other unmeasured factors; (3) treatment levels are modifiable but can only change

gradually in a continuous fashion.

When observations are inherently dynamic, conclusions from the Mendelian ran-

domization are hard to be interpreted. Even worse is that the conventional exclusion

restriction assumption is ungrounded in dynamic settings so that estimators derived

based on static analysis could be severely biased from what they were intended to esti-

mate. To illustrate this point, we consider a simple scenario in which there exist serial

correlations, feedbacks, and unmeasured confinding, and approximate the dynamics

using measurements taken at equally-spaced infinitesimal intervals as shown in Fig-

ure 5.1. We use Yt, Dt, Ct, t ∈ {1, 2, . . . , T} to denote repeatedly observed outcomes,

exposure levels, and confounders respectively. The exclusion restriction assumption

asserts that the effect of the instrument Z on the outcome only goes through the en-

dogenous exposure whereas Figure 5.1 depicts multiple pathways from the instrument

Z to the last observed outcome YT going through either YT−1, DT , or DT−1. When

data are inherently dynamic, the exclusion restriction assumption is sensible only

in the conditional sense, i.e., conditioned on previous exposure levels and outcome

history, the instrument Z affects the current outcome YT only through the current

exposure level DT . Such conditional assumption is not implementable on discrete

observations using adjustment techniques like stratification or matching as units in a

study are almost impossible to have exactly the same historical trajectories.

As a results, the Mendelian randomization may distort the true causal relation-

ships without a careful modeling of the entire dynamic system.
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Figure 5.1: Illustration of multiple pathways from the instrument to the outcome

In the literature, many papers have addressed limitations of the Mendelian ran-

domization, most of them are centered around genetic heterogeneity, the lack of suit-

able polymorphisms for studying modifiable exposures of interest, and confounding

of genotype such as intermediate phenotype-disease associations Smith and Ebrahim

(2003); Lawlor et al. (2008); Nitsch et al. (2006). But its applicability to dynamic or

even longitudinal data has not received a lot of attention, at least to our knowledge.

We think it’s important to delve into this problem as many biological variables are

indeed dynamic processes. We shall take a mechanistic view by modeling reactions

among variables using stochastic differential equations and give an explicit formula

of the 2SLS estimator derived from discrete observations of the system. We conclude

that the 2SLS estimator is a biased estimator of the immediate causal effect, which

corresponds to the usual constant treatment effect in static settings.

The paper is organized as follows. In Section 5.2, we review the main idea and

limitations of the existing methods to provide practical insights into the potential

fallacy of the Mendelian randomization applied to dynamic data. In section 5.3,

we take a mechanistic view starting from generalizing notation and assumptions to

dynamic data in the presence of a static instrument. In particular, we extend the
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exclusion restriction assumption and relate it to local independence, a concept long

existed in the literature of graphical models. We use a linear dynamic system, whose

time-local presentation is described by a system of stochastic differential equations, to

depict the causal mechanism in the Mendelian randomization. In Section 5.4, we de-

rive the distribution of discrete measurements and contrast it with the true dynamic

mechanism. In Section 5.5, we investigate whether the Mendelian randomization is

applicable to discrete observations generated by the dynamic system. We show that

discrete observations of a s time-continuous process generally obscure the underly-

ing local independence between the outcome and the instrument. Hence, applying

the Mendelian Randomization to discrete observational data without explicit time

justification, could give insensible conclusions. We provide main results and simu-

lated examples. We find that the 2SLS estimator can be used to test for whether

the immediate causation is significantly different from zero but does not gauge its

magnitude. Based on our derivation, the 2SLS estimator has a form that involves the

truth immediate causation as well as many other properties of the dynamic model.

In the end, we provide conclusion and discussion.

5.2 Review and Limitations of Static Models

The idea of using Mendelian genes as instrumental variables can be viewed as carry-

ing out a randomized encouragement experiment to estimate the causal effect of an

exposure as an alternative to measure all confounders Holland (1988). In the simplest

case, each unit i is associated with a quadruple (Yi, Di, Zi, Ui), where

• Yi is the observed response or outcome variable.

• Di is the observed exposure or treatment assignment.
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• Zi is the randomly assigned encouragement intervention that encourages unit i

to experience a higher exposure level or enroll in the treatment group.

• Ui is the joined effect of all excluded variables. Ui is independent of Zi since Zi

is randomized by the study design.

To quantify the causal effect of Di on Yi, Holland (1988) proposed the following

additive linear constant effects model and β represents the average causal effect of

interest.

Yi = α + βDi + ρZi + Ui (5.1)

If Ui is correlated with Di, i.e. there are unmeasured confounders that affect both

the response and the exposure, coefficients on Di and Zi from least squares regression

are generally biased estimates of β and ρ. In order to consistently estimate the

additive effect of Di, the direct effect of the encouragement intervention is assumed

to be zero,i.e., ρ = 0. Under the exclusion restriction, Zi is independent of Yi − βDi.

One can test H0 : β = β0 using a Wilcoxon rank sum test comparing Yi − β0Si

for Zi = 1 and Zi = 0 and estimate β using the generalized method of moments

(GMM) introduced by Hansen (1982). In particular, the two-stage least squares

(2SLS) regression is commonly adopted as a special form of GMM when distributions

of both Yi and Di are reasonably normal and homoscedastic.

However, in many epidemiological contexts, Yi and Di are usually time-continuous.

For example, both BMI and blood pressure associated with an individual are dynamic

processes. One can apply the model 5.1 to a single-time measure or pooled repeated

measurements of BMI and blood pressure by justifying that the additive effect β

is unchanged over the course of study period. However, we argue that coefficients

obtained from such static analysis is not interpretable and the model together with
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its assumption is unrealistic given the underlying dynamics.

First of all, it’s unlikely for a biological exposure like BMI to change by a certain

amount in an instant and, if causal, it takes time for changes in blood pressure to be

observed. This means that Yi has to be measured with some time lag ∆t after Di is

measured and the interpretation of the additive effect β corresponds to the change

of Yi that takes ∆t for one unit change in Di to take effect. The size of ∆t is an

important property of the additive effect but is not incorporated explicitly in the

model 5.1.

Second, time-continuous variables usually exhibit non-negligible serial correlations

and the response can be an important determinant of future exposure levels either

directly or indirectly through other excluded variables. In the BMI and blood pressure

example, both variables are naturally auto-correlated. The level of blood pressure

could either promote or suppress the weight trajectory of an individual. On the one

hand, people with severe hypertension tend to limit physical activity to avoid a short

time increase in blood pressure. On the other hand, people with moderate level of

hypertension are likely to eat a healthy diet, limit the amount of alcohol intake, and

exercise regularly in order to lower blood pressure, which either directly or indirectly

result in weight loss. The model 5.1 is limited to static settings and does not capture

possible complicated reactions between current and previous values, and between

current outcome and future exposure levels.

Third, the exclusion restriction assumption is ungrounded for time-continuous

variables. Since Zi is associated with the exposure, it is correlated with the entire

history of exposure levels before Di is measured. Zi could therefore affect Yi through

the entire history of exposure levels, which is on top of the additive effect of Di.

Therefore, we are motivated to take a mechanistic perspective by proposing time-

continuous models that incorporate serial correlations and possible feedbacks for
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Mendelian randomization analyses. We will show in the next section that param-

eters in our time-continuous models have straightforward causal interpretations and

the exclusion restriction assumption is modified to ”local” exclusion restriction as-

sumption that is sensible for variables that are inherently dynamic.

5.3 Time-continuous Models for Mendelian Ran-

domization Analyses

5.3.1 Additive Linear AR(1) Models

We first extend the model 5.1 to the following additive linear AR(1) model by adding

first-order lagged terms and specifying how the exposure is affected by the previous

response. Parameters and error terms are functions of ∆t representing additive effects

that take ∆t to take effect from the corresponding variables.

Yt+∆t,i = α1(∆t) + β11(∆t)Yt,i + β12(∆t)Dt,i + ρ(∆t)Zi + εi(∆t) (5.2)

Dt+∆t,i = α2(∆t) + β12(∆t)Yt,i + β22(∆t)Dt,i + γ(∆t)Zi + ηi(∆t) (5.3)

Certain functional restrictions are required to equalize both sides of the equations 5.2

and 5.3 when ∆t = 0, which are α1(0) = α2(0) = β12(0) = β22(0) = ρ(0) = γ(0) =

εi(0) = ηi(0) = 0 and β11(0) = β21(0) = 1. This additive linear AR(1) mode reduces

to the simple additive linear constant effects model 5.1 if β11 is constantly zero and

if ∆t is not explicitly expressed.

Assumptions are needed so that Zi is still a ”valid” instrument in the extended

AR(1) model. The exogenous condition of Zi requires that Zi is independent of εi(∆t)

and ηi(∆t) for any ∆t, which is reasonable if Zi is randomized prior to the start of the

dynamic processes. As the Mendelian gene is inherited independently and randomly
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at conception for each individual, this assumption holds in Mendelian randomization

analyses. The relevance condition is extended to the statement that γ(∆t) 6= 0 for

any ∆t so that Zi is associated with the exposure throughout the entire processes.

A naive translation of the exclusion restriction assumption in Holland’s model 5.1

is that ρ(∆t) = 0,∀∆t. However, such condition is strong and contradicts our previous

arguments that Zi could affect the outcome through the exposure history between t

and t+∆t for a sizable ∆t. As an alternative, we find that a weakened condition, which

we call ”local exclusion restriction”, is better suited to restrict the direct effect from

Zi on the outcome during ∆t and paves the way for eventual mechanistic modeling

when ∆t shrinks to zero.

5.3.2 Local Exclusion Restriction

The local exclusion restriction states that

ρ(∆t)

∆t
→ 0, as ∆t→ 0 (5.4)

In words, both the direct effect of the instrument on the outcome over the course

of ∆t and the rate of the change in its magnitute converge to zero. For example,

ρ(∆t) = (∆t)2 conforms to the local exclusion restriction but is non-zero for a sizable

∆t.

The local exclusion restriction is related to the concept of local independence

formulated by Aalen (1987) for dynamic modeling of causality. The main idea of

local independence is that the intensity of one type of event is independent of certain

past events once we know about specific other past events and observed covariates)

while the local exclusion restriction basically asserts that the dependence of Yt+∆t,i on

Zi given Dt,i converges to zero in a faster rate than the diminishment of time interval
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∆t. Local independence has been applied to graphical models Didelez (2007, 2008)

and time series models Eichler (2007); Eichler and Didelez (2010) and received much

attention in the literature. But local exclusion restriction has never been considered

in IV models yet is crucial for Mendelian randomization analyses to quantify the local

behavior of how the Mendelian gene affects the outcome through the exposure.

5.3.3 Dynamic Models as Limits of AR(1) Models

Given the local exclusion restriction assumption, we assume further that all param-

eters (not including the error terms) are differentiable at ∆t = 0 and decrease ∆t to

zero. Specifically, we subtract off Yt,i and Dt,i on both sides of equations 5.2 and 5.3

respectively and take the limit as ∆t goes to an infinitesimal time interval dt.

Yt+∆t,i − Yt,i = α1(∆t) + (β11(∆t)− 1)Yt,i + β12(∆t)Dt,i + ρ(∆t)Zi + εi(∆t) (5.5)

Dt+∆t,i −Dt,i = α2(∆t) + β12(∆t)Yt,i + (β22(∆t)− 1)Dt,i + γ(∆t)Zi + ηi(∆t) (5.6)

Given the boundary conditions that α1(0) = α2(0) = β12(0) = β22(0) = ρ(0) = γ(0)

and β11(0) = β21(0) = 1, limits of parameters in equations 5.5 and 5.6 are the

first order derivatives at ∆t = 0 multiplied by dt. We also impose distributional

assumptions on εi(dt), ηi(dt) so that they are normally distributed and correlated

with each other. In particular, we write the error terms as linear transformations of

changes in two independent Wiener processes W 1
t and W 2

t . It follows that the limit

of the additive linear AR(1) model is a system of stochastic differential equations

(SDEs) with parameters corresponding to instantaneous additive effects.

dYt,i = a1dt+ b11Yt,idt+ b12Dt,idt+ s11dW
1
t + s12dW

2
t (5.7)

dDt,i = a2dt+ b21Yt,idt+ b22Dt,idt+ rZidt+ s21dW
1
t + s22dW

2
t (5.8)
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in which α′1(0) = a1, β
′
11(0) = b11, β

′
12(0) = b12, α

′
2(0) = a2, β

′
21(0) = b21, β

′
22(0) =

b22, γ
′(0) = r. It is noteworthy ρ′(0) = 0 by the local exclusion restriction so that the

instrument Zi does not affect dYt,i.

From now on we shall use equations 5.7 and 5.8 to model the data generative pro-

cess for time-continuous response and exposure in the presence of a static instrument

variable. By our arguments, the newly proposed model is more suitable to describe

the relationship between BMI and blood pressure and may overturn the causal conclu-

sions in Timpson et al. (2009) drawn from discrete observations. We shall elaborate

on this point in the next section.

Before moving on to inference using discrete observations, we want to clarify our

contributions of proposing the above dynamic model in the form of SDEs. The use of

SDEs for modeling biological variables has been long existed in the literature because

SDEs resemble many natural laws in biology and medicine. A few examples are the

relationship between the number of CD4 cells and virus concentrations in HIV infec-

tion Røysland et al. (2012) and biological pathways for cell signaling Perelson (2002);

Bardwell et al. (2007). The causal interpretation of SDEs has also been investigated

previously by Sokol and Hansen (2014) using post-intervention equations resulting

from a perturbation in the functional form. Sokol and Hansen (2014) showed that,

under regularity conditions, the solution to a post-intervention SDE is the limit of

a sequence of interventions in Euler structural equation models, which are discrete

approximations of the preintervention (observational) SDE. As a result, prescribing

a hypothetical perturbation of a dynamic system has a counterfactual interpretation

situation as in discrete settings. However, no researchers have ever related SDEs to

the original encouragement design that defines a valid instrumental variable. Our

derivation of equations 5.7 and 5.8, as limits of AR(1) models, which are extension of

Holland’s constant additive effect models, reveals a natural way to employ instrumen-
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tal variables methods on dynamic data and, at the same time, exposes the potential

fallacy of drawing causal conclusions from discrete observations.

5.4 Inference from Discrete Measurements

Parameter estimation for SDEs has been highly tackled in several areas of math-

ematics and statistics, often motivated by financial applications; for reviews, see

Sørensen (2004); Bishwal (2008). Estimation methods are centered around construct-

ing approximations of the continuous-time observation likelihood, which require high

frequency data with a small time step between two successive observations Pedersen

(1995). Unfortunately, data in epidemiological studies and medical fields are usually

collected sparsely, in the time unit of month, calendar quarter, or even year. As a

result, parameters in equations 5.7 and 5.8 are generally not identifiable from sparse

discrete observations. From now on, we assume that discrete observations are snap-

shots of dynamic processes generated by equations 5.7 and 5.8 and investigate the

possibility of drawing sensible causal conclusions without estimation of their param-

eters.

5.4.1 Distribution of Discrete Measurements

We first compute distributions of discrete observations by aggregating dYt,i and dDt,i

using stochastic calculus. To ease computation, we write Xt,i = (Yt,i, Dt,i, Zi)
T and

dXt,i = (dYt,i, dDt,i, 0)T . The dynamics of Xt,i is

dXt = µdt+ AXtdt+ σdWt (5.9)
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where

µ =


a1

a2

0

 , A =


b11 b12 0

b21 b22 r

0 0 0

 , σ =


s11 s12

s21 s22

0 0

 , dWt =

dW 1
t

dW 2
t

 (5.10)

We call A the transition matrix as it describes how local characteristics of Xi,t depend

functionally on past values. It is noteworthy that the upper right corner of A is

zero, which restricts the immediate direct effect of Zi on Yi,t and represents the local

exclusion restriction assumption of the instrument. By Ito’s isometry, the distribution

of Xt+∆t given Xt can be explicitly computed as a sum of deterministic terms and an

integral of a deterministic function with respect to a Wiener process with normally

distributed increments.

Xt+∆t = (eA∆t − I)A−1µ+ eA∆tXt + σ

∫ ∆t

0

eA(∆t−s)dWs (5.11)

The distribution of Xt+∆t given Xt is thus normal and E(Xt+∆t|X0) = (eA∆t −

I)A−1µ + eA∆tXt, where eA∆t =
∑∞

k=0
Ak(∆t)k

k!
. Therefore, associations between the

change in Xt,i over an infinitesimal interval and the change over an sizable interval

∆t is as the relationship between the transition matrix A and its exponential form

matrix eA∆t. These two matrices, though functionally related, have drastically dif-

ferent entries and structures. It particular, the upper right corner of eA∆t is likely to

be non-zero, which means that the local exclusion restriction would be smeared out

due to courser observations of the system. Moreover, the error terms as a stochastic

integral demonstrates the very complex covariance matrix as a function of ∆t.

The equation 5.11 shows that discrete observations with time step ∆t follow the
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additive linear AR(1) model bellow.

Yt+∆t,i = α1(∆t) + β11(∆t)Yt,i + β12(∆t)Dt,i + ρ(∆t)Zi + εi(∆t) (5.12)

Dt+∆t,i = α2(∆t) + β12(∆t)Yt,i + β22(∆t)Dt,i + γ(∆t)Zi + ηi(∆t) (5.13)

All parameters in equations 5.2 and 5.3 are functions of ∆t, representing the additive

effects of the corresponding variables that take ∆t to take effect. The aggregated

error terms εi(∆t) and ηi(∆t) are still normally distributed but their variances are

proportional to ∆t. We pay special attention to parameters of Yt,i, Dt,i and Zi, which

are related to parameters of the dynamic model via the matrix exponential function

and reduces to them when ∆t approaches zero.

A =


b11 b12 0

b21 b22 r

0 0 0

 , eA∆t =


β11(∆t) β12(∆t) ρ(∆t)

β21(∆t) β22(∆t) γ(∆t)

0 0 1

 (5.14)

Hence, one may get a different impression of the relationship between the response

and the exposure depending on whether one knows the true dynamic structure, rep-

resented by A, or one just has the empirical results for a few measurements of the

process. We shall use simulations to illustrate this point in the next section.

5.4.2 Change of Observational Associations Over Time

The first observation is that ρ(∆t) 6= 0, for ∆t > 0 and converges to zero in a faster

rate than the diminish of ∆t to conform to the local exclusion restriction of Zi. Such

result indicates that the instrument would have a direct effect on the outcome due

to courser observations of the dynamic process. The direct effect has nothing to do

with the physical law of instrument, but is introduced artificially because of latent
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interactions between the response and the exposure during the time interval ∆t.

The second observation is that all parameters in eA∆t depend on the size of

∆t, meaning that one may get a different impression of the relationship among

(Yt,i, Dt,i, Zi) . We use two numerical examples to investigate patterns of possible

changes of ρ(∆t) and β12(∆t), which is usually interpreted as the causal effect of the

exposure.

We consider two different transition matrices A1 and A2. Since all nonzero entries

of A1 are positive, both ρ(∆t) and β12(∆t) grow exponentially at ∆t increases, as

shown in the left panel of the Figure 5.2. A2 corresponds to a scenario in which the

exposure has a positive effect on the response but the increased response reversely

reduces the response in a larger magnitude. So the observational additive effect of

the exposure on the response β12(∆t) increases first and then drops to negative values

as ∆t becomes large, as shown in the right panel of the Figure 5.2

A1 =


.2 .2 0

.2 .2 .2

0 0 0

 A2 =


.1 .5 0

−1 .1 1

0 0 0

 (5.15)
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Figure 5.2: Illustration of variations in additive effect of the exposure and direct

effect of the instrument over time when the underlying mechanism follows a system

of stochastic differential equations. The left plot corresponds to A1 and the right plot

corresponds to A2
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5.4.3 Inference from Equally-spaced Repeated Measurements

Until now, we have made the point of the modeling the cause-effect relationship

as a time-local character for time-continuous variables and have discussed how the

mechanistic structure given by stochastic differential equations is often distorted when

we only get to observe the process at a few time points. We have also mentioned that

recovering the dynamic model which characterizes the true continuous cause-effect

relationship over time requires quite frequently measured data of a large number of

individuals. The questions is how ”frequent” is sufficient for different settings.

If the data are discrete measurements at regular times, say anthropometric mea-

surements every 6 months in a clinical trial for hypertension taking place over many

years. One could estimate eA∆t based on the additive linear AR(1) model 5.2 by

regressing Yt+∆t,i and Dt+∆t,i onto Yt,i, Dt,i and Zi. Theoretically, the obtained esti-

mates are asymptotically unbiased as the error terms are normally distributed with

mean zero and independent of all explanatory variables. But variances error terms

increase as ∆t becomes large, implying that a large sample size is needed to obtain

narrow confidence intervals of the estimates.

Suppose accurate estimation of eA∆t is available given appropriate sampling inter-

val ∆t and large enough study population, recovering the transition matrix A is still

not guaranteed simply because of the mathematical fact that logarithm of a matrix

is not an inevitable function. We have shown in the section 3.3 that eA∆t and A are

likely to have entries with opposite signs, hence we may even draw wrong qualitative

conclusions of the relationship between the exposure and the outcome using discrete

observations.
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5.5 Applying Static Analysis to Single Time Mea-

surement

In this section, we shall discuss the most extreme case in which we were only to see the

process once and possible consequences of applying the usual static analysis without

appropriately adjusting for the inherent dynamics. Suppose variables for each unit

are measured at some (unknown) time T after the start of the process. We investigate

whether it is still possible to get useful information from (YT,i, DT,i, Zi) and what

misleading results we would have by improperly applying static models. We shall use

2SLS regression as a demonstrating method.

Following the results in Section 5.4.1, we have

YT,i = α1(T ) + β11(T )Y0,i + β12(T )D0,i + ρ(T )Zi + εi(T ) (5.16)

DT,i = α2(T ) + β12(T )Y0,i + β22(T )D0,i + γ(T )Zi + ηi(T ) (5.17)

where Cov(εi(T ), ηi(T )) 6= 0 and (Y0,i, D0,i) are unknown initial states. Because Zi is

randomized prior to the start of the dynamic process, Cov(εi(T ), Z) = Cov(ηi(T ), Z) =

0.

5.5.1 Detecting Immediate Causation

Equations 5.16 and 5.17 reveal the true relationship between the measured response

YT,i and DT,i. If one falsely assume that there is no direct effect of Zi on YT,i, the

estimator obtained using the 2SLS regression is Ĉov(YT ,Z)

Ĉov(DT ,Z)
, which converges to the

following quantity

2̂SLS =
Ĉov(YT,i, Z)

Ĉov(DT,i, Z)
→ β12(T )Cov(D0,i, Zi) + ρ(T )V ar(Zi)

β22(T )Cov(D0,i, Zi) + γ(T )V ar(Zi)
(5.18)
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If we further assume that the instrument Zi is independent of the initial state of

exposure D0,i,the 2SLS estimator estimates the ratio of the direct effect of the instru-

ment on YT,i to the direct effect of the instrument on DT,i, which has no straightfor-

ward causal interpretation.

2̂SLS =
Ĉov(YT,i, Z)

Ĉov(DT,i, Z)
→ ρ(T )V ar(Zi)

γ(T )V ar(Zi)
(5.19)

However, the 2SLS estimator can be used to detect the immediate causation and we

have the following theorem.

Theorem 1. If the exposure has no immediate causation on the response and

the instrument satisfies the local exclusion restriction, i.e., dYi,t does not depend on

Di,t and Zi, then neither the exposure nor the instrument has a direct effect on the

response at any time.

Intuitively, all pathways from Zi to YT,i are blocked although YT,iand DT,i are still

correlated due to confounding and reverse causation. Theorem 1 also implies that if

dynamics between the exposure, the outcome, and the instrument follow equations 5.7

and 5.8 with constant parameters and the exposure has no immediate causation on

the response, i.e., b12 = 0, then the 2SLS estimator derived from observations at any

time is asymptotically zero.
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Figure 5.3: Illustration of the 2SLS estimator to detect immediate causal effect. The

left and right plots correspond to A1 and A2 respectively with b12 = 0.

5.5.2 Possible Misleading Results

Even though the 2SLS estimator can be used to detect the immediate causation, it

does not give a sensible estimate of its magnitude. If b12 6= 0, the 2SLS estimator is

generally a biased estimator of the immediate causal effect b12 and we use simulations

to investigate the bias of 2̂SLS. We consider two different setups with the following

parameters and the corresponding results are summarized in the table 5.1

A1 =


.2 b12 0

.2 .2 .2

0 0 0

 A2 =


.1 b12 0

−1 .1 .1

0 0 0

 (5.20)
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A b12 T=1 T=5

ρ(T ) γ(T ) 2̂SLS (SD) ρ(T ) γ(T ) 2̂SLS (SD)
.5 0.058 0.225 0.254 (0.066) 3.141 2.745 1.129 (0.062)
.75 0.087 0.227 0.375 (0.073) 5.257 3.364 1.550 (0.075)

A1 1 0.116 0.229 0.510 (0.081) 7.800 4.062 1.905 (0.089)
1.25 0.146 0.231 0.638 (0.086) 10.822 4.847 2.214 (0.104)
1.5 0.176 0.233 0.756 (0.095) 14.382 5.726 2.497(0.115)
.5 0.256 0.964 0.257 (0.013) 2.385 -1.372 -1.764 (0.019)
.75 0.376 0.921 0.416 (0.014) 1.419 -1.956 -0.676 (0.016)

A2 1 0.491 0.881 0.546 (0.016) 0.371 -1.618 -0.187(0.019)
1.25 0.601 0.841 0.705 (0.017) -0.360 -0.913 0.499 (0.032)
1.5 0.705 0.802 0.882 (0.020) -0.645 -0.171 3.709 (0.141)

Table 5.1: 2SLS estimator as a biased estimator of the immediate causal effect with

possibly negative signs

5.6 Summary and Discussions

In fields such as medicine, biology, and social science, variables of interest can be

time-continuous. Given the same exposure trajectory and starting values, the sam-

ple path of the exposure varies between persons and time points. Assuming that

the underlying dynamics following s diffusion process, we proved that local exclusion

restriction would be smeared out and additional connections with no causal interpre-

tations would be introduced due to courser observations of the system. In particular,

the Mendelian randomization with the 2SLS regression cannot be applied to discrete

measures to gauge the magnitude of causation. Significance level of the Mendelian

randomization, however, can be used to detect the existence of causal relationship

between the exposure and the outcome. These complete paths would of course never

be available to the researcher who would merely observe the process at a few dis-

tinct locations. It is expected that one would benefit from finer observations, but
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the time between consecutive measures relative to the length of study needs further

investigation. Now we revisit the BMI and blood pressure example that concluded

10% increase in body mass index would increase systolic blood pressure and diastolic

blood pressure by 3.85 mm Hg and1.79 mmHg, respectively. Based on Theorem 1,

the study confirms that BMI affects blood pressure in a cause-effect fashion, but the

numerical conclusions on cumulative changes in blood pressure caused by a given

percentage change in BMI are not sensible.

Of course the actual mechanism for a biological process can be far more complex

than our working model. For instance, parameters can change over time when the

system is non-stationary. We opt for the simplest model to demonstrate that asso-

ciations in discrete observations may be dramatically different from dependencies in

the underlying system, therefore inferring causality from discrete observations could

be problematic.
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De Allegri, M., Kouyaté, B., Becher, H., Gbangou, A., Pokhrel, S., Sanon, M., and Sauerborn,
R. (2006). Understanding enrolment in community health insurance in sub-saharan africa: a
population-based case-control study in rural burkina faso. Bulletin of the World Health Organi-
zation, 84(11):852–858.

Devadasan, N., Ranson, K., Van Damme, W., Acharya, A., and Criel, B. (2006). The landscape
of community health insurance in india: an overview based on 10 case studies. Health Policy,
78(2):224–234.

Didelez, V. (2007). Graphical models for composable finite markov processes. Scandinavian Journal
of Statistics, 34(1):169–185.

Didelez, V. (2008). Graphical models for marked point processes based on local independence.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):245–264.

Dimairo, M., Bradburn, M., and Walters, S. (2011). Sample size determination through power
simulation; practical lessons from a stepped wedge cluster randomised trial (sw crt). 12.

DuMouchel, W. (1999). Bayesian data mining in large frequency tables, with an application to the
fda spontaneous reporting system. The American Statistician, 53(3):177–190.

Eichler, M. (2007). Granger causality and path diagrams for multivariate time series. Journal of
Econometrics, 137(2):334–353.

Eichler, M. and Didelez, V. (2010). On granger causality and the effect of interventions in time
series. Lifetime data analysis, 16(1):3–32.

Ekman, B. (2004). Community-based health insurance in low-income countries: a systematic review
of the evidence. Health Policy and Planning, 19:249–270.

Fink, G., Robyn, P. J., Śıe, and Sauerborn, R. (2013). Does health insurance improve health?
evidence from a randomized community-based insurance rollout in rural burkina faso. Journal of
Health Economics, 32:1043–1056.

Fisher, R. A. (1935). Design of experiments.

Gail, M. H., Mark, S. D., Carroll, R. J., Green, S. B., and Pee, D. (1996). On design considerations
and randomization-based inference for community intervention trials. Statistics in Medicine,
15:1069–1092.

Ghosh, M., Mukhopadhyay, N., and Sen, P. K. (2011). Sequential estimation, volume 904. John
Wiley & Sons.

Govindarajulu, Z. (2004). Sequential statistics. World Scientific.

Greene, W. H. (2003). Econometric analysis. Pearson Education India.

Greevy, R., Silber, J. H., Cnaan, A., and Rosenbaum, P. R. (2004). Randomization inference with
imperfect compliance in the aaa randomized trial. Journal of the American Statistical Association,
99:7–15.

90



Hall, A. J., Inskip, H. M., Loik, F., Day, N. E., O’Conor, G., Bosch, X., and Muir, C. S. (1987).
The gambia hepatitis intervention study. Cancer Research, 47:5782–5787.

Hansen, B. B. and Bowers, J. (2009). Attributing effects to a cluster randomized get-out-the-vote
campaign. Journal of the American Statistical Association, 104:873–885.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econo-
metrica: Journal of the Econometric Society, pages 1029–1054.

Hernández-Dı́az, S., Varas-Lorenzo, C., and Garćıa Rodŕıguez, L. A. (2006). Non-steroidal antiin-
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