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Role Of Maternal Sin3a In Reprogramming Gene Expression During
Mouse Preimplantation Development

Abstract
In mouse, the maternal-to-zygotic transition entails a dramatic reprogramming of gene expression during the
course of zygotic genome activation, which is essential for continued development beyond the 2-cell stage.
Superimposed on zygotic genome activation and reprogramming of gene expression is formation of a
chromatin-mediated transcriptionally repressive state that promotes repression of genes at the 2-cell stage.
Experimentally inducing global histone hyperacetylation relieves this repression and histone deacetylase 1
(HDAC1) is the major HDAC involved in the development of this transcriptionally repressive state. Because
SIN3A is essential for mouse development and is part of a HDAC1/2-containing complex, I investigated the
role of maternal SIN3A in the development of the global transcriptionally repressive state that develops during
the course of genome activation and reprogramming. In addition, previous microarray data generated from
our lab of oligo (dT) primed mouse oocyte and 1-cell embryo cDNA revealed an elevation in the relative
abundance of the Sin3a transcript between the oocyte and 1-cell stages; the elevation in relative transcript
abundance suggests that the Sin3a transcript undergoes translational recruitment during oocyte maturation
because the elevation occurs during a period of transcriptional quiescence. Here I show that the Sin3a
transcript is recruited for translation during oocyte maturation and following fertilization. I demonstrated that
maternal SIN3A is essential for preimplantation development and the reprogramming of genes expression,
because inhibiting the maturation-associated increase in SIN3A leads to an arrest in mouse embryonic
development and unfaithful reprogramming of gene expression in 2-cell mouse embryos. The mid 1-cell
embryo contains the maximum level of maternal SIN3A protein and the protein then rapidly decreases to
essentially an undetectable level by the mid 2-cell stage; the rapid loss of maternal SIN3A is likely mediated by
the proteasome because a proteasome inhibitor substantially inhibits the loss of maternal SIN3A. Due to the
restricted presence of the maturation-associated increase in SIN3A, the function of maternal SIN3A is likely
constrained to the 1-cell stage of mouse development. However, the increase in maternal SIN3A does not play
a role in the minor ZGA, as depleting maternal SIN3A had no effect on global transcription in 1-cell embryos,
but surprisingly results in histone hypoacetylation in 1-cell mouse embryos. Maintaining the presence of
maternal SIN3A beyond the 1-cell stage had no effect on pre- and postimplantation development.
Collectively, these findings indicate that the maturation-associated increase in SIN3A regulates the
reprogramming of gene expression and the oocyte may utilize the translational recruitment of transcripts
encoding chromatin-modifying-related factors during oocyte maturation as a post-transcriptional mechanism
to faithfully execute the reprogramming of gene expression through the utilization of a maternally-derived
transcription machinery.
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ABSTRACT 

ROLE OF MATERNAL SIN3A IN REPROGRAMMING GENE EXPRESSION 

DURING MOUSE PREIMPLANTATION DEVELOPMENT 

Richard A. Jiménez 

Richard M. Schultz 

In mouse, the maternal-to-zygotic transition entails a dramatic reprogramming of 

gene expression during the course of zygotic genome activation, which is 

essential for continued development beyond the 2-cell stage.  Superimposed on 

zygotic genome activation and reprogramming of gene expression is formation of 

a chromatin-mediated transcriptionally repressive state that promotes repression 

of genes at the 2-cell stage.  Experimentally inducing global histone 

hyperacetylation relieves this repression and histone deacetylase 1 (HDAC1) is 

the major HDAC involved in the development of this transcriptionally repressive 

state.  Because SIN3A is essential for mouse development and is part of a 

HDAC1/2-containing complex, I investigated the role of maternal SIN3A in the 

development of the global transcriptionally repressive state that develops during 

the course of genome activation and reprogramming.  In addition, previous 

microarray data generated from our lab of oligo (dT) primed mouse oocyte and 1-

cell embryo cDNA revealed an elevation in the relative abundance of the Sin3a 

transcript between the oocyte and 1-cell stages; the elevation in relative 

transcript abundance suggests that the Sin3a transcript undergoes translational 

recruitment during oocyte maturation because the elevation occurs during a 

period of transcriptional quiescence.  Here I show that the Sin3a transcript is 

recruited for translation during oocyte maturation and following fertilization.  I 

demonstrated that maternal SIN3A is essential for preimplantation development 

and the reprogramming of genes expression, because inhibiting the maturation-

associated increase in SIN3A leads to an arrest in mouse embryonic 

development and unfaithful reprogramming of gene expression in 2-cell mouse 
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embryos.  The mid 1-cell embryo contains the maximum level of maternal SIN3A 

protein and the protein then rapidly decreases to essentially an undetectable 

level by the mid 2-cell stage; the rapid loss of maternal SIN3A is likely mediated 

by the proteasome because a proteasome inhibitor substantially inhibits the loss 

of maternal SIN3A.  Due to the restricted presence of the maturation-associated 

increase in SIN3A, the function of maternal SIN3A is likely constrained to the 1-

cell stage of mouse development.  However, the increase in maternal SIN3A 

does not play a role in the minor ZGA, as depleting maternal SIN3A had no effect 

on global transcription in 1-cell embryos, but surprisingly results in histone 

hypoacetylation in 1-cell mouse embryos.  Maintaining the presence of maternal 

SIN3A beyond the 1-cell stage had no effect on pre- and postimplantation 

development.  Collectively, these findings indicate that the maturation-associated 

increase in SIN3A regulates the reprogramming of gene expression and the 

oocyte may utilize the translational recruitment of transcripts encoding chromatin-

modifying-related factors during oocyte maturation as a post-transcriptional 

mechanism to faithfully execute the reprogramming of gene expression through 

the utilization of a maternally-derived transcription machinery.  
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Overview of mouse oogenesis and preimplantation development 
 Mammalian oocytes embark on the path to fertilization and embryogenesis 

within the functional unit of the ovary, the ovarian follicle.  Each follicle is 

composed of a single oocyte arrested in prophase I of meiosis enclosed by one 

or more layers of specialized somatic cells that communicate with and support 

the oocyte during its growth and development via gap junctions.  Starting with a 

resting or primordial follicle that comprises of an oocyte surrounded by a single 

layer of squamous, flattened, pre-granulosa cells, each primordial follicle’s 

prolonged resting phase is interrupted by factors that recruit the follicle for 

development into a primary follicle.  The size of the initial primordial follicle pool 

in part dictates reproductive senescence in females.  

 Since the 1950s, the prevailing view was that mammalian females are 

provided with an extensive, but finite, nonrenewable ovarian reserve around the 

time of birth for mice or during mid-gestation in humans, which is diminished as 

the follicles are recruited to grow (Zuckerman, 1951).  However, some 

investigators challenge the 50-year dogma and contend that the ovarian reserve 

could be replenished by female germline stem cells referred to as oogonial stem 

cells.  These paradigm-shifting studies claim that a population of cells isolated 

from both neonatal and adult mouse ovaries and adult human ovaries have stem 

cell characteristics and, specifically for the cells isolated from mouse ovaries, are 

capable of differentiating into oocytes that are able to mature, ovulate, and 

fertilize to produce viable embryos and pups (Johnson et al., 2004; Pacchiarotti 

et al., 2010; Zou et al., 2009; White et al., 2012).  The surface protein used to 

isolate the oogonial stem cells from the ovarian tissue, and the condition of the 

human ovarian tissues used to isolate the human stem cell-like cells are 

questionable and need to be investigated more thoroughly in order to definitively 

determine if the ovarian reserve can be replenished.  

 The regulatory factors primarily responsible for activation of primordial 
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follicles are locally produced (Kezele et al., 2002) and include epithelial growth 

factor kit ligand (KITL), leukemia inhibiting factor (LIF), basic fibroblast growth 

factor (BFGF), platelet derived growth factor (PDGF), keratinocyte growth factor 

(KGF) and connective tissue growth factor (CTGF) (Kezele et al., 2005; Nilsson 

et al., 2006; Nilsson and Skinner, 2004; Skinner, 2005; Schindler et al., 2010).  

KITL activates the ubiquitous phosphatidylinositol-3-kinase (PI3K) signaling 

pathway, which is important for the activation and survival of primordial follicles 

because removal of PTEN, a PI3K antagonist, leads to premature activation of 

follicles in mouse (Reddy et al., 2008; John et al., 2008).  Once the primordial 

follicle is activated, the surrounding squamous pre-granulosa cells differentiate 

into cuboidal granulosa cells and begin to proliferate, while the oocyte grows 

remarkably (increases in size from about 20 µm to 80 µm in diameter) (Eppig and 

O’Brien, 1996).  The growing primary follicles will subsequently develop into 

secondary and antral follicles.   

 After exposure to a preovulatory surge of luteinizing hormone (LH) from 

the pituitary gland, mammalian oocytes overcome meiotic arrest and proceed 

through meiotic maturation before ovulating (Russell et al., 2007).  An increase in 

the activity of maturation-promoting factor (MPF), a cyclin B-CDK1 complex, 

drives meiotic progression of mammalian oocytes (Nurse, 1990).  Mitogen-

activated protein kinase (MAPK) cascade is another important kinase necessary 

for resumption of meiosis that interacts intimately with the MPF pathway in many 

species except for mice (Verlhac et al., 1993), where a normal pattern of MPF 

activity is seen when the MAPK  cascade is disrupted in mice lacking c-MOS, a 

MAPK pathway activator (Araki et al., 1996).   

Meiotic maturation entails nuclear membrane breakdown (germinal vesicle 

breakdown, GVBD), meiosis I spindle assembly, extrusion of the first polar body, 

and meiosis II spindle assembly.  Also, a meiosis-specific deacetylation of 

histones occurs during meiotic maturation in mouse, where all of the acetylated 

histones examined, with the exception of H4K8ac, are deacetylated to 

undetectable levels at the end of meiosis (Kim et al., 2003).  Global deacetylation 
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shortly after meiotic resumption may facilitate chromosome condensation that 

occurs during oocyte maturation because hyperacetylation of H4K16 likely 

contributes to defective chromosome condensation observed in histone 

deacetylase 2 (Hdac2) null mouse oocytes (Ma and Schultz, 2013).  Meiotic 

maturation is complete after arrest at metaphase of meiosis II.  Mouse oocytes 

acquire meiotic competence in a stepwise manner at the time of follicular antrum 

formation, where they first acquire the ability to reinitiate meiosis but are unable 

to complete meiosis I and, at a later time, acquire the capacity to complete 

meiosis I and progress to metaphase of meiosis II (Szybek, 1972; Sorensen and 

Wassarman, 1976; Wickramasinghe et al., 1991).  However, meiotically 

competent oocytes are unable to support preimplantation embryonic 

development until additional metabolic and structural modifications are acquired 

during the periovulatory period (Eppig et al., 1994; Eppig, 1996).  Competence to 

complete preimplantation development is also acquired by growing oocytes in a 

stepwise manner where they initially acquire the capacity to undergo fertilization 

and development to the 2-cell stage, and later acquire competence to develop 

from the 2-cell stage to the blastocyst stage (Eppig and Schroeder, 1989).  

After ovulation, the metaphase II arrested mouse egg is fertilized within 

the oviduct, which triggers the completion of meiosis and formation of a 1-cell 

embryo.  The newly formed 1-cell embryo enters the first mitotic cell cycle that 

begins with a prolonged Gap 1 (G1) phase during which two spatially separated 

maternal and paternal haploid pronuclei form, with the larger paternal pronucleus 

forming first between 4 and 8 hours post-fertilization (hpf) and the maternal 

pronucleus forming between 5 and 9.5 hpf (Howlett and Bolton, 1985).  Each 

pronucleus undergoes DNA replication before entering the first mitosis to 

produce a 2-cell embryo, which continues to undergo successive reductive 

cleavage divisions without a significant increase in cell volume to form the 4-cell 

embryo, 8-cell embryo, and later the blastocyst (Lehtonen, 1980).   

By the late 2-cell stage, the initiation of de novo transcription from the 

newly formed embryonic genome, known as embryonic genome activation (EGA) 
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or zygotic gene activation (ZGA), has occurred.  ZGA occurs in two phases: (i) 

minor ZGA occurs at the late one-cell stage, which results in a low-level of global 

transcriptional activation and generation of non-functional transcripts because 

they are inefficiently spliced and polyadenylated (Latham et al., 1991; Park et al., 

2013; Abe et al., 2015), and (ii) major ZGA occurs at the late two-cell stage, 

which generates distinct functional transcripts that are not expressed in the germ 

cells, thus promoting a dramatic reprogramming of gene expression (Zeng et al., 

2005; Hamatani et al., 2004).  Interestingly, when transcription in mice was 

analyzed at the 1-cell stage either using a luciferase plasmid-born reporter gene 

or BrUTP incorporation to assess endogenous gene transcription, enhanced 

luciferase expression or BrUTP incorporation was observed from the male 

pronucleus (Ram and Schultz, 1993; Wiekowski et al., 1993; Aoki et al., 1997).  

This transcription is about four to five times greater in the male pronucleus than 

that of the female pronucleus, which is consistent with a greater concentration of 

transcription factors present in the male pronucleus, such as the TATA-box 

binding protein (TBP) and SP1 transcription factor (Ram and Schultz, 1993; 

Wiekowski et al., 1993; Worrad et al., 1994).  The difference in the transcriptional 

activity and transcription factor concentration between the male and female 

pronucleus may likely reflect the difference in chromatin organization between 

the two pronculei.  As discussed below, the male pronucleus exchanges the 

sperm-derived protamines that densely package the sperm DNA for maternally-

derived histones during pronuclear formation (Nonchev and Tsanev, 1990), 

thereby providing a more open chromatin structure for transcription factors to 

associate preferentially with and likely enhancing the transcriptional activity of the 

male pronucleus. 

During the 8-cell stage, the first grossly morphological differentiation of the 

embryo occurs: compaction.  Compaction is where the individual blastomeres 

become nearly indistinguishable due to the formation of desmosomes and gap 

junctions between the blastomeres (Johnson and Marco, 1986; Fleming et al., 

2001).  The cell adhesion surface molecule E-cadherin mediates the calcium-
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dependent compaction process because E-cadherin null embryos fail to maintain 

compaction, in addition to failing to form an intact trophectodermal epithelium or 

a blastocoele cavity (Larue et al., 1994).  Following compaction, further cleavage 

divisions and blastocoele cavity formation, a blastocyst is formed.  The blastocyst 

stage represents the first cellular differentiation event during development where 

two distinct cellular populations are formed: an outer layer of trophectoderm (TE) 

cells that give rise to extraembryonic tissues and allow for embryo implantation, 

and an inner layer of inner cell mass (ICM) cells, which gives rise to the embryo 

proper.  One day after the formation of the blastocyst, the mouse embryo 

implants into the uterine wall, which marks the completion of preimplantation 

development. 

 

1.2 Global transcriptional repression and large-scale changes to chromatin 
structure in mouse oocytes 
 Towards the end of the oocyte growth phase, a dramatic change in the 

transcriptional activity and chromatin organization occurs (Bouniol-Bay et al., 

1999).  Global transcription within the full-grown oocyte rapidly ceases and the 

oocyte becomes transcriptionally inactive and remains largely inactive until the 2-

cell stage is reached in mouse (Moore and Lintern-Moore, 1978).  The chromatin 

in mouse oocytes progressively transforms from a decondensed configuration 

(referred to as non-surrounded nucleolus, NSN) to a condensed configuration 

(surrounded nucleolus, SN) during the final stages of oocyte growth (Debey et 

al., 1993).  This alteration in chromatin organization is temporally correlated with 

but not required for global transcriptional repression in mammalian oocytes 

because global transcription is repressed in nucleoplasmin 2 (Npm2) null oocytes 

despite failing to remodel their chromatin into the SN configuration (Bouniol-Bay 

et al., 1999; Burns et al., 2003; De La Fuente et al., 2004).  It has been 

suggested that the condensed chromatin configuration and silencing of global 

transcription is not only needed for effective resumption and completion of 

meiosis by mouse oocytes but is also needed for the subsequent activation of the 
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egg (Liu et al., 2002).   

 The mechanism responsible for this large-scale chromatin structure 

alteration and global silencing of transcription in mouse oocytes remains to be 

determined.  However, histone deacetylases (HDACs) may participate in the 

maintenance of the SN chromatin configuration in mouse oocytes (De La Fuente 

et al., 2004); exposing transcriptionally quiescent, full-grown mouse oocytes 

exhibiting the SN configuration to trichostatin A (TSA), an inhibitor of HDACs 

(Yoshida et al., 1995), induced large-scale chromatin structure decondensation 

without restoring the transcriptional activity of the oocyte.  However, TSA 

exposure had no effect on the immunostaining patterns of histone H3 and H4 

acetylation.  The observed failure to restore transcriptional activity in oocytes that 

underwent chromatin condensation after TSA treatment is consistent with the 

observation that Npm2 null mouse oocytes are still able to undergo 

transcriptional silencing despite failing to undergo chromatin condensation (Burns 

et al., 2003; De La Fuente et al., 2004). 

 Changes in the nuclear availability or expression levels of several 

transcription factors like the TBP and SP1 transcription factor may be responsible 

for global transcriptional repression in mouse oocytes.  Interestingly, the nuclear 

concentration of both TBP and SP1 decreases during oocyte growth and then 

increases following fertilization, which is near the time global transcription 

reinitiates (Worrad et al., 1994).  Another locus of regulation may be at the level 

of the RNA polymerase II holoenzyme itself because a decline in the RNA 

polymerase II (Pol II) activity was seen as the oocyte reached maximum size 

(Moore and Lintern-Moore, 1978).  In somatic cells, transcription involves a cycle 

of phosphorylation and dephosphorylation of the carboxy-terminal domain (CTD) 

of Pol II, specifically the largest subunit RPB1, and therefore may be invovled in 

global repression of transcription in mouse oocytes (Dahmus, 1996).  Several 

studies have examined the phosphorylation status of RPB1 and found that the 

CTD of RPB1 undergoes phosphorylation through the action of MAPK during 

meiotic maturation (Wei et al., 2015; Abe et al., 2010).  When the localization of 
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RPB1 was investigated after permeabilizing the nuclear membrane before 

fixation, RPB1 was absent from the nuclei of full-grown mouse oocytes, although 

it remained in the nuclei of growing oocytes.   This suggests that Pol II is 

dissociated from DNA in full-grown oocytes and may be the cause of global 

repression of transcription in mouse oocytes.  Phosphorylation may destabilize 

the RNA polymerase II holoenzyme and lead to the dissociation of RNA 

polymerase II from the DNA. However, how CTD phosphorylation contributes to 

the abolishment of global transcription in mouse oocytes is not known and needs 

to be investigated further.  

 

1.3 Zygotic gene activation 
 ZGA serves two functions for embryonic development.  The first function is 

to replace maternal transcripts with embryonic transcripts that are common to the 

oocyte and embryo like tubulin (Schultz, 1993; Davis et al., 1996).  Expression of 

these transcripts is essential for further development but does not contribute to 

the reprogramming of gene expression, although they are part of the gene 

expression program.  The second function of ZGA is to promote a dramatic 

reprogramming of gene expression by transcribing a new set of mRNAs that are 

not expressed in the sperm or oocyte.  Support for the second function of ZGA 

was initially shown by analysis of high-resolution, two-dimensional gels, which 

revealed that a dramatic reprogramming in the pattern of protein expression 

occurred during the late 1-cell and mid 2-cell stages (Latham et al., 1991).  

However, only the change in the pattern of protein synthesis that occurred at the 

2-cell stage was dependent on de novo RNA transcription because the synthesis 

of several polypeptides at the 2-cell stage was inhibited by an RNA polymerase II 

inhibitor (i.e., α-amanitin), whereas the pattern of protein synthesis at the 1-cell 

stage was unaffected by α-amanitin (Flach et al., 1982; Bolton et al., 1984).  

Although an observable change in the pattern of protein synthesis by α-amanitin 

was not seen at the 1-cell stage, it is plausible that proteins affected during 1-cell 

stage are below the detection limit of the studies’ experimental design.  
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Interestingly, cleavage of 2-cell embryos to the 4-cell stage was inhibited by α-

amanitin, whereas cleavage of the 1-cell to 2-cell stage was unaffected (Flach et 

al., 1982; Bolton et al., 1984).  This result suggests that the expression of these 

new sets of genes at the 2-cell stage is essential for continued development 

beyond the 2-cell stage because perturbing their expression with an RNA 

polymerase II inhibitor (i.e., α-amanitin) results in an early embryonic arrest.  The 

reprogramming process is likely essential for transforming a highly differentiated 

oocyte and sperm into a totipotent blastomere, and if this crucial step is not 

successfully performed, it is plausible that a developmental checkpoint prevents 

further development of the embryo. 

 

1.4 Transcriptionally repressive state 
Superimposed on zygotic genome activation (ZGA) is the development of 

a transcriptionally repressive state.  Several lines of evidence support the 

developmental acquisition of a repressive state in the 2-cell embryo.  Studies 

using luciferase plasmid-born reporter genes driven by the thymidine kinase (tk)-

promoter demonstrated that by the 2-cell stage efficient luciferase expression 

requires an enhancer, e.g., the embryo-responsive polyomavirus F101 enhancer 

(Wiekowski et al., 1991; Majumder et al., 1993).  Enhancers are regulatory DNA 

elements that confer transcriptional activation by recruiting RNA polymerase, 

histone modifying enzymes or chromatin remodelers to promoters in a distance- 

and orientation- independent manner (Johnson and Bresnick, 2002).  The 

requirement for an enhancer following genome activation during the 2-cell stage 

suggests formation of a transcriptionally repressive state that is relieved by an 

enhancer.  Moreover, the strength of the transcriptionally repressive state 

increases with development because the level of enhancer-mediated stimulation 

of luciferase expression increased as 2-cell embryos developed into 4-cell 

embryos (Henery et al., 1995). Establishment of this repressive state involves 

DNA replication; inhibiting the second round of DNA replication with aphidicolin 

relieves the requirement for an enhancer for efficient transcription (Wiekowski et 
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al., 1991; Henery et al., 1995). 

Inducing histone acetylation by treating mouse embryos with butyrate, 

which is another inhibitor of histone deacetylases, also relieves the repression in 

2-cell embryos.  Histone hyperacetylation lead to an 18-fold stimulation of a 

promoter lacking an enhancer and reduced the enhancer stimulation of a 

promoter to only 2-fold in 2-cell embryos (Wiekowski et al., 1991).  

Experimentally induced histone hyperacetylation also relieves the repression 

observed for the expression of endogenous genes that transiently increases 

between the 1-cell and mid 2-cell stage, and then decreases by the late 2-cell/4-

cell stage.  A normal decrease in expression of endogenous genes like Eif1a is 

seen with formation of the transcriptionally repressive state, which is prevented 

when histone hyperacetylation is induced (Davis et al., 1996).  The repression of 

endogenous genes is believed to be global because inducing histone 

hyperacetylation results in a 2-fold increase in the extent of global BrUTP 

incorporation during the 2-cell stage (Aoki et al., 1997).  The increase in the total 

amount of BrUTP in the presence of a histone deacetylase inhibitor indicates an 

increase in global transcription due to a global relief of transcriptional repression.  

Therefore, formation of an enhancer and histone hyperacetylation responsive 

transcriptionally repressive state by the 2-cell stage of development is likely 

mediated by changes in histone acetylation and thus global changes in chromatin 

structure.   

Histone hyperacetylation also inhibited development of mouse embryos 

beyond the 2-cell stage.  Experimentally inducing histone hyperacetylation in 2-

cell embryos using TSA prevented cleavage to the 4-cell stage, whereas 

treatment of 1-cell embryos with TSA did not inhibit cleavage to the 2-cell stage 

(Ma et al., 2001).  Formation of the chromatin-mediated transcriptionally 

repressive state may be essential for further development because relief of this 

repressive state by inducing histone hyperacetylation prevents cleavage of 2-cell 

embryos.  Histone deacetylase 1 (HDAC1) is the major HDAC involved in the 

development of this transcriptionally repressive state.  Knockdown of HDAC1, but 
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not HDAC2 in preimplantation embryos leads to hyperacetylation of histone H4 

and prevented the normal decrease in expression of some endogenous genes 

including Eif1a (Ma and Schultz, 2008).  These results are consistent with the 

results observed following treatment of embryos with TSA.  However, induction of 

histone hyperacetylation following depletion of HDAC1 in 2-cell embryos did not 

stimulate global transcription as observed following treatment with TSA.  A likely 

explanation for this difference is that TSA treatment induces a more profound 

increase in histone acetylation than that observed following depletion of HDAC1.   

The role of the transcriptionally repressive state during the 2-cell stage of 

development needs to be further investigated.  It is likely that the development of 

the repressive stage is needed to sculpt and refine the global ZGA process that 

is occurring at around the same time that the repressive state is formed.  A 

foreseen consequence of a global process such as ZGA may be the 

inappropriate expression of many genes that are not conducive to the continued 

development of the embryo.  Formation of a transcriptionally repressive state 

may decrease or terminate expression of the inappropriately activated genes, but 

allow the continued expression of genes that are regulated by strong promoters 

or enhancers that are able to relieve the newly formed transcriptionally 

repressive state. 

 

1.5 Epigenetic reprograming in the zygote 
 Chromatin organization and epigenetic modifications of the male and 

female genomes are distinct at fertilization.  The male and female genomes are 

also in different stages of the cell cycle at insemination; the male genome has 

completed meiosis, whereas the female genome is arrested at metaphase II and 

needs to complete the second meiotic division.  Two different types of epigenetic 

modifications occur during zygotic development.  One type occurs at the 

chromatin level, whereas the other occurs at the DNA methylation level.  Upon 

fertilization, but before the first round of DNA replication, the unique, highly 

condensed protamine-rich chromatin of the sperm changes dramatically; the 
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protamines are rapidly exchanged with maternally-derived histones, whereas the 

maternal genome essentially retains a chromatin structure present at fertilization 

(Nonchev and Tsanev, 1990).  The exchange and assembly of the new 

nucleosomes on the paternal genome requires histone chaperones.  Specifically, 

histone variant H3.3-containing nucleosomes are assembled onto the sperm 

DNA and this process requires the H3.3-specific histone chaperone protein 

HIRA.  Loss of maternal HIRA in mouse zygotes leads to a paternal genome 

devoid of acetylated-H4, H2A and H3.3 (Lin et al., 2014; Loppin et al., 2005). 

 Histone replacement on the paternal genome affords the newly formed 

embryo a unique window of opportunity to dramatically remodel its chromatin.  

Once the histones are assembled and incorporated into the nucleosomes, 

changes in the acetylation and methylation pattern can occur.  Histones of both 

the maternal and paternal genome become acetylated soon after fertilization, 

with the paternal chromatin appearing more acetylated when compared to the 

maternal chromatin (Adenot et al., 1997; Santos et al., 2002).  Soon after histone 

acquisition of the paternal genome, the methylation status of the histones in the 

newly assembled nucleosomes changes also.  The paternal chromatin initially 

lacks H3K4me1 and H3K4me3 (active marks), H3K9me1, H3K9me2 and 

H3K9me3, H3K27me1, H3K27me2 and H3K27me3, and H4K20me3 (repressive 

marks), whereas the maternal genome maintains all of these histone 

modifications.  However, the paternal chromatin gains new histone post-

translational modifications such as H3K9me1 and H3K27me1 immediately after 

the protamine-histone exchange (Santos et al., 2005), and gains H3K4me1 and 

H3K4me3, H3K9me2, H3K27me2 and H3K27me3 modifications later during 

pronuclear development (Erhardt et al., 2003; Lepikhov and Walter, 2004; Liu et 

al., 2004).  The de novo appearance of histone methylation modifications within 

the paternal pronucleus at histone residues that can sustain alternative histone 

modifications indicates that a rapid deacetylation and subsequent 

monomethylation process by histone deacetylases and monomethyltransferases 

has occurred at these sites.  SET 7/9 methyltransferases are needed for K3K4 
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monomethylation, G9a and ESET methyltransferases are needed for K3K9me1, 

and the monomethyltransferases, EZH1/EED and EZH2/EED are responsible for 

H3K27me1 (Wang et al., 2001; Tachibana et al., 2002; Shen et al., 2008).  The 

new histone modifications accumulating in the paternal pronucleus conceivably 

shapes the newly formed paternal chromatin to a state equivalent to the mature 

maternal chromatin. 

 At the time of fertilization, the epigenetic modifications at the DNA level 

are diverse and change dramatically during zygotic development.  The two 

genomes contain sex-specific 5-methlycytosine (5mC) patterns, which are 

acquired during development of the gametes.  The global DNA methylation level 

in the paternal haploid genome is high, with 80%-90% of all CpG dinucleotides 

being methylated (Mayer et al., 2000; Santos et al., 2002; Peat et al., 2014).  The 

female haploid genome is less heavily methylated in the oocyte, where about 

40% of all CpG dinucleotides are methylated (Howlett and Reik, 1991; 

Smallwood et al., 2011; Peat et al., 2014).  Interestingly, over a decade ago, two 

pivotal studies observed by different methods that fertilization triggers rapid 

global and active loss of DNA methylation within the paternal genome, but not its 

maternal counterpart (Mayer et al., 2000; Oswald et al., 2000).  The initiation of 

this active DNA demethylation occurs shortly after histone acquisition of the 

paternal genome as evaluated by indirect immunofluorescence (Mayer et al., 

2000; Dean et al., 2001; Santos et al., 2002; Beaujean et al., 2004; Fulka et al., 

2004) and by bisulphite sequencing at specific loci (Oswald et al., 2000; Lane et 

al., 2003).   

Recently, a vital enzyme responsible for mediating active DNA 

demethylation during preimplantation development was discovered to be TET3 

(Iqbal et al., 2011; Gu et al., 2011; Wossidlo et al., 2011).  TET3 asymmetrically 

localizes to the paternal pronucleus and is absent from the female pronucleus 

potentially due to inhibition by PGC7/Stella binding to the H3K9me2 enriched 

maternal genome (Gu et al., 2011; Nakamura et al., 2012).  TET3 is part of the 

Ten-eleven translocation (TET) family of dioxygenases that includes TET1 and 
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TET2 (Ito et al., 2010, Thiliani et al., 2009).  TET3 mediates the oxidation of the 

paternal 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC), which are gradually lost during each successive 

reductive cleavage division along with the maternal 5mC (Inoue et al., 2011; 

Inoue and Zhang, 2011; Rougier et al., 1998).  Deletion of maternal TET3 leads 

to a retention of 5mC in the paternal pronucleus and reduced fecundity (Gu et al., 

2011).  It is unclear what role the demethylation process has on development of 

the embryo, but the erasure of the specialized germ cell epigenetic memory may 

be essential to generate a clean, baseline state on which to build upon to create 

a new DNA landscape for the viability of the embryo since perturbing one of the 

demehtylation mechanisms leads to a reduction of embryo viability. 

 

1.6 SIN3A-co-represssor complex and HDAC1/2-containing complexes 
 The SIN3A co-repressor complex, composed of SWI-independent-3 

homolog A (SIN3A), histone deacetylase 1/2 (HDAC1/2), suppressor of defective 

silencing protein 3 (SDS3), retinoblastoma binding protein 4/7 (RBBP4/7), 

SIN3A-associated protein 30/130/180 (SAP30/130/180), SIN3A associated 

protein 18 (SAP18), retinoblastoma-binding protein 1 (RBP1), inhibitor of growth 

family, member 1/2 (ING1/2), breast cancer metastasis suppressor 1 (BRMS1), 

family with sequence similarity 60, member A (FAM60A), PHD finger protein 12 

(PHF12), and mortality factor 4 like 1 (MORF4L1), interacts with transcription 

factors like TP53, SOX2, E2F4 and Krüppel-like factor 11 (KLF11) (Smith et al., 

2012; Kadamb et al., 2013; Bansal et al., 2015).  With no enzymatic or 

recognizable DNA-binding activity, the highly conserved SIN3A protein acts as a 

scaffold upon which a diverse set of proteins dock (Silverstein and Ekwall, 2005).  

This scaffolding role of SIN3A makes it an essential component of the multi-

subunit SIN3A co-repressor complex that has been described in many organisms 

from plants to humans (Hill et al., 2008; Hassig et al., 1997).  Due to its 

scaffolding function, SIN3A allows for transcription factors and various chromatin 

remodelers to be in close proximity of one another to target and reorganize the 
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chromatin.  The SIN3A co-repressor complex is recruited to promoters of several 

genes via transcription factors resulting in localized histone deacetylation and 

gene silencing (Ayer et al., 1995; Kadosh and Struhl, 1997; Knoepfler and 

Eisenman, 1999).  Although the SIN3A co-repressor complex can extend its 

enzymatic function by interacting with other enzymes such as the ESET histone 

methyltransferase (Yang et al., 2003), the complex is commonly referred to as a 

co-repressor complex primarily due to its HDAC activity that leads to 

transcriptional repression (Bansal et al., 2016). 

 Interestingly, SIN3A is now being appreciated as a dual regulator of 

transcription because SIN3A both activates and represses transcription.   For 

example, in mouse embryonic stem (ES) cells, Sin3a stimulates Nanog 

expression though SOX2 under proliferating conditions (Baltus et al., 2009a).  

However, at the same locus, when TP53 recruits SIN3A to the Nanog promoter 

during mouse ES cell differentiation, expression of Nanog is suppressed (Lin et 

al., 2005).  These studies suggest that the SIN3A-co-repressor complex may 

differentially regulate a common set of SIN3A target genes depending on the 

cellular state (i.e. a proliferative or differentiative state).  However, the molecular 

mechanisms explaining SIN3A mediated gene activation is so far unknown.  

Whether the mechanism is HDAC-dependent or independent is not known.  At 

the Nanog locus, there is evidence that activation of transcription may be HDAC-

dependent, but the target of the HDAC activity may not involve histones but 

rather the transcription factor SOX2.  Because the nuclear export and 

proteasomal degradation of SOX2 is mediated by acetylation in mouse ES cells 

(Baltus et al., 2009b), it is conceivable that the SIN3A-HDAC complex maintains 

SOX2 in the deacetylated state in order to retain SOX2 in the nucleus and 

sustain the expression of Nanog. 

 The SIN3A co-repressor complex is not the sole HDAC1/2-containing 

complex.  Several other HDAC1/2-containing complexes other than the SIN3A 

co-repressor have been characterized in mammals.  These include the 

nucleosome remodeling and deacetylase (NuRD) complex (Denslow and Wade, 



	 15	

2007), the ES cell specific NANOG and Oct4 (POU5F1) associated deacetylase 

(NODE) complex (Liang et al., 2008), the CoREST complex (You et al., 2001), 

and the SHIP1 containing complex, which is a testis-specific complex (Choi et al., 

2008).  HDAC1/2 are present in large multiprotein complexes mainly because 

HDAC1/2 do not bind DNA directly and are likely inactive when they not 

incorporated into a complex.  The necessity of HDAC1/2 to be integrated into a 

complex in order to function was shown for the NuRD complex.  In the absence 

of MTA2, an interacting member of the NuRD complex, the HDAC enzymatic 

activity of the complex was severely compromised (Zhang et al., 1999).  This 

finding suggests that MTA2 may promote the formation of the catalytic active 

histone deacetylase center of the NuRD complex.  

 With the involvement of HDACs in the establishment of the 

transcriptionally repressive state during early embryonic development and the 

existence of several HDAC-containing complexes, there is clearly an emerging 

question as to which HDAC-containing complex is mediating the development of 

the repressive state.  This question can be addressed, in part, by assessing each 

HDAC-containing complexes’ role in early development and the formation of the 

repressive state.   

The following work focuses on the SIN3A-co-repressor complex because 

SIN3A is essential for mouse development.  In this system, zygotic Sin3a 

deletion leads to embryonic lethality shortly after implantation (around Embryonic 

Day 6.5) (Cowley et al., 2005; Dannenberg et al., 2005).  Because crossing 

Sin3a heterozygous mice generated the Sin3a null embryos, the experimental 

design limited the scope of their observations to zygotic SIN3A and did not 

address the role of maternal SIN3A, specifically, the role of SIN3A in the 

development of the transcriptionally repressive state.   

To investigate the role of maternal SIN3A in the development of the 

repressive state during mouse preimplantation development, I utilized a 

combined morpholino/small interfering RNA (siRNA) approach to deplete 

embryos of maternal SIN3A.  This allowed me to assay the contributions of 
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maternal SIN3A in a live embryo, and to determine if maternal SIN3A is essential 

prior to Embryonic Day 6.5.  Because SIN3A has been strongly associated with 

the transcriptional regulation of several genes, specifically gene repression, I 

hypothesized that depleting mouse embryos of maternal SIN3A would result in a 

failure to form the transcriptional repressive state, thereby, affecting the fidelity of 

the reprogramming of gene expression during the two-cell stage of mouse 

embryonic development.  In Chapter 3, I describe our efforts to characterize the 

role of maternal SIN3A in the formation of the transcriptionally repressive state.  I 

show that maternal SIN3A is encoded by a dormant maternal mRNA that is 

translationally recruited during oocyte maturation and following fertilization.  I also 

describe the consequences of inhibiting the maturation-associated increase in 

SIN3A in mouse embryos.  
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CHAPTER 2: MATERIALS AND METHODS 
 
 

Oocyte and Embryo Collection, and Embryo Culture and Transfer 
Germinal vesicle (GV)-intact oocytes were collected from 6-week-old CF-1 

female mice that received an intraperitoneal (IP) injection of 5 IU pregnant mare 

serum gonadotropin (eCG, Sigma).  Following 44 h of eCG injection, the mice 

were killed by CO2 asphyxiation, the ovaries excised and placed in collection 

medium.  The collection medium used was minimal essential medium (Earle’s 

salts) containing gentamicin (10 ug/mL), polyvinylpyrrolidone (3 mg/mL), 

pyruvate (100 ug/mL), and 10 mM Hepes, pH 7.21 (MEM/PVP). 10 uM milrinone 

was present in the collection medium to maintain meiotic arrest (Tsafriri et al., 

1996).  After puncturing the ovaries with 30.5-gauge needles, large preovulatory 

follicles were released and collected.  The cumulus cells were gently stripped 

from cumulus-cell enclosed oocytes (CEOs) using a mouth-operated pipette 

(Schultz et al., 1983).  Metaphase I (MI) oocytes were collected 7 h after 

transferring full-grown oocytes to milrinone-free Chatot Ziomek Brinster (CZB) 

medium (Chatot et al., 1989).  In vivo metaphase II (MII) eggs were collected 

from eCG-primed 6-week old CF-1 female mice 13-16 h following hCG 

administration as previously described (Endo et al., 1987).  In brief, 

superovulated female mice were given an IP injection of 5 IU of eCG, followed 48 

h later by 5 IU human chorionic gonadotropin (hCG, Sigma).  The superovulated 

mice were killed by CO2 asphyxiation 13-16 h after hCG injection, the oviducts 

excised, and the eggs obtained by tearing the oviducts with 27.5-gauge needles 

in MEM/PVP containing 3 mg/mL hyaluronidase (Sigma).  As soon as the 

cumulus cells detach from the eggs, the eggs were washed in several drops of 

MEM/PVP.  In vitro MII eggs were also obtained following maturation in vitro for 

16-18 h after transferring full-grown oocytes to milrinone-free CZB medium.  Mid 

1-cell, late 1-cell, early 2-cell, mid 2-cell, 8-cell and blastocyst stage embryos 

were collected from eCG-primed 6-week old CF-1 female mice mated to 

B6D2F1/J males (Jackson Laboratory) by flushing either the oviduct or uterus 20-
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21, 30-32, 36, 44, 68, 94-96 h post hCG as previously described (Manejwala et 

al., 1986).  The superovulated females were placed overnight in a cage with a 

single male and examined for the presence of a vaginal plug the next morning. 

 For the mouse embryo transfer experiments, Gfp-/- virgin CF-1 female 

mice were mated to Gfp+/- males.  The resulting Gfp+/- embryos were collected 18 

h after fertilization, and embryos with two distinct pronuclei were microinjected at 

19–21 h after fertilization with T7 C-terminal-tagged Sin3a cRNA; controls were 

injected with buffer.  The embryos were cultured for 96 h (to E4.5) in KSOM 

medium as described above at which time the number of blastocysts was scored 

and GFP expression assessed.  To determine the incidence of implantation of 

Sin3a cRNA-injected embryos compared with control embryos, blastocyst stage 

embryos were transferred to pseudopregnant female mice on Postcoital Day 3.5 

using the Non-Surgical Embryo Transfer Device (Paratechs) according to the 

manufacturer’s protocol.  Each female received 8-10 embryos, half of which were 

injected with Sin3a (Gfp-/- or Gfp+/-) and the other half injected with buffer (Gfp+/- 

or Gfp-/-) to serve as controls.  Thus, each female received 4-5 GFP-positive (or 

negative) Sin3a cRNA-injected embryos and 4-5 GFP-negative (or positive) 

control embryos.  The females were killed by CO2 asphyxiation 7 days after 

embryo transfer (E10.5), and the presence of GFP expression in the implanted 

embryos was assessed. 

 All animal experiments were approved by the Institutional Animal Use and 

Care Committee and were consistent with the National Institutes of Health 

guidelines. 

 

Microinjection 
 Full-grown GV-intact oocytes isolated from CEOs were microinjected with 

5 pl of a solution containing 5 µM short interfering RNA (siRNA) and 1 mM 

morpholino while being cultured in MEM supplemented with 10 uM milrinone and 

20% fetal bovine serum (Kurasawa et al., 1989).  The cRNA for Sin3a-T7 and 

GFP were injected at 580 ng/µl.  The Sin3a (s73784, Ambion) and control 
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Luciferase siRNA (D-001100-01-05, Dharmacon) were both injected at a 

concentration of 5 µM.  The concentration of the Sin3a (5’-

CCTGGTCATCCAAACGTCGCTTCAT-3’, Gene Tools) and standard control 

morpholinos (Gene Tools) was 1 mM. 

 

IVM and IVF 
For in vitro maturation (IVM) and in vitro fertilization (IVF), CEOs from 24-

day-old B6SJLF1/J females primed with eCG for 44 h before isolation were 

collected in MEM supplemented with 10 uM milrinone and 20% fetal bovine 

serum as previously described (Downs et al., 1986).  The cumulus cells were 

gently stripped from the CEOs using a mouth-operated pipette.  The medium 

used for oocyte maturation was MEM supplemented with 0.23 mM pyruvate and 

20% fetal bovine serum without milrinone and FSH.  The denuded oocytes were 

cultured in this medium under drops of mineral oil at 37 °C in 5% O2, 5% CO2 

and 90% N2 for 13 -14 h in the presence of 10-15 CEOs as previously described 

(Schroeder and Eppig, 1984).   

 Fertilization of eggs in vitro was performed as previously described 

(Hoppe & Pitts, 1973; Schroeder and Eppig, 1984).  Sperm suspensions were 

obtained from the cauda epididymis of B6SJL males that were at least 4 months 

old, and housed individually for at least 3 days.  The cauda epididymis were 

excised and minced into 0.9 mL of warm equilibrated TYH fertilization medium 

supplemented with 4 mg/mL of BSA (Toyoda et al., 1971; Tateno and Kamiguchi, 

2007) overlaid with mineral oil.  The sperm were allowed to disperse from the 

minced epididymis for 5-10 min.  The suspension was examined qualitatively for 

vigor, and a dilute sample was used to quantify the sperm concentration using a 

hemocytometer.  The in vitro MII eggs were washed in 4 drops of fertilization 

medium and placed into 50 µl drops overlaid with mineral oil.  The in vitro MII 

eggs were then inseminated using capacitated sperm (5 x 105 sperm/mL) 

capacitated for 1.5 h at 37 °C in 5% O2, 5% CO2 and 90% N2.  After 3 h of 

incubation, the sperm adhering to the eggs were removed using a fine-bore 
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mouth-operated pipette, and the inseminated eggs were then transferred to and 

cultured in KSOM medium (Erbach et al., 1994; Ho et al., 1995) under mineral oil 

at 37°C in 5% O2, 5% CO2 and 90% N2.  

 

Synchronization of 1-cell and 2-cell Embryos 

 One-cell embryos generated from IVF were cultured in KSOM medium 

and examined for the appearance of pronuclei at 1 h intervals starting at 3 h 

post-insemination or following the first cleavage at 2 h intervals starting at 19 h 

post-insemination.  Embryos that formed pronuclei or underwent the first 

cleavage within the previous hour were collected and cultured separately.  One-

cell embryos used for global histone modification immunofluorescence analysis 

were fixed 6 h after pronucleus formation.  One-cell or 2-cell embryos used for 

global transcriptional analysis were added to 2 mM 5-ethynyl uridine (EU) in 

KSOM medium from the time the first pronucleus formed until 17 h post-

insemination or 12 h post-cleavage for 1 h.  Two-cell embryos used for 

microarray analysis were collected and frozen 12 h post-cleavage.  
 

Immunofluorescence 
 Oocyte, MI, egg, or embryo samples were all collected and fixed in 2.5% 

paraformaldehyde for 20 min at room temperature within 2 days.  The samples 

were permeabilized for 15 min in PBS containing 0.1% Triton X-100, washed and 

blocked for 30 min with PBS containing 0.1% BSA, 0.01% Tween-20 at room 

temperature.  Then the cells were incubated with the SIN3A primary antibody 

(MBL International) at 1:100 in blocking buffer overnight at 4 °C, followed by 

three 15-min washes in blocking solution.  After the washes, the samples were 

incubated for 1 h with the anti-rabbit cy5-conjugated secondary antibody 

(Jackson ImmunoResearch) diluted 1:100 in blocking solution.   

 In some experiments, 1-cell embryos were first permeabilized for 15 min in 

PBS containing 0.1% Triton X-100, washed and then fixed in 2.5% 

paraformaldehyde for 20 min at room temperature. The samples were then 
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processed as described above. 

Polyclonal antibodies against histone H3 acetylated on K18 (39756, Active 

Motif, 1:100), histone H4 acetylated on K5 (06-759, Millipore, 1:50), histone H4 

acetylated on K8 (06-760, Millipore, 1:100), histone H4 acetylated on K12 (06-

761, Millipore, 1:100), histone H4 acetylated on K16 (06-762, Millipore, 1:100) 

were used to assess histone modifications.  Trichostatin A  (TSA, Sigma), a 

histone deacetylase inhibitor, was used to induce histone hyperacetylation of 

early 1-cell embryos by treating the cells with 50 nM TSA for 5 h.  Polyclonal 

antibody against NANOG (ab80892, Abcam, 1:200), and monoclonal antibodies 

against POU5F1/OCT4 (sc-5279, Santa Cruz Biotechnology, 1:100) and CDX2 

(MU392A-UC, BioGenex, 1:100) were used to assess these proteins in the 

blastocyst.  After three 15-min washes with blocking solution, the samples were 

incubated with 1 µM SYTOX Green (Molecular Probes) to stain DNA.  The cells 

were mounted under a coverslip in VECTASHIELD medium (Vector 

Laboratories).  A Leica TCS SP laser-scanning confocal microscope captured the 

images and detected the fluorescence intensity of the samples.  For each 

experiment, all samples were processed in parallel.  For SIN3A, the laser power 

was adjusted so that the signal intensity was below saturation for the 

developmental stage that showed the highest signal intensity and all images 

were then scanned at that laser power.  With all the images being scanned at the 

same laser power in a developmental series, the signal intensity for SIN3A can 

be compared to different developmental stages.  The images were processed 

and the fluorescence intensity was quantified using ImageJ software (National 

Institutes of Health). 

 

Immunoblot Analysis 
Protein samples from 40 oocyte, eggs or embryos were solubilized in 

Laemmli sample buffer (Laemmli and Quittner, 1974), resolved by SDS-PAGE 

(7.5% gel) and transferred to a PVDF membrane.  The membrane was blocked 

in 2% Amersham ECL prime blocking reagent (GE Healthcare Life Sciences) for 
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1 h and incubated at 4 °C overnight with the primary antibody in blocking 

solution.  The membrane was then washed four times with PBST (phosphate-

buffered saline with 0.1% Tween-20), incubated with a secondary antibody 

conjugated with horseradish peroxidase for 1 h in blocking solution and washed 

four times with PBST.  The signal was detected with the Amersham ECL Select 

Western blotting detection reagent (GE Healthcare Life Sciences) according to 

the manufacturer’s instructions.  The rabbit SIN3A primary antibody (BMP004, 

MBL International) was diluted 1:2,000 in blocking solution.  The TUBA primary 

antibody (T6074, Sigma) was diluted 1:5,000 in blocking solution.  The 

Amersham ECL secondary antibody (NA934V and NA931V, GE Healthcare Life 

Sciences) was diluted 1:75,000 in blocking solution. 

 

Proteasome Inhibition 
Mid 1-cell embryos were collected as described above and cultured in 

KSOM medium containing either 20 µM MG132 (Sigma), a reversible 

proteasome inhibitor (Palombella et al., 1994), or DMSO (Sigma) at 37 °C in 5% 

O2, 5% CO2 and 90% N2.  After 5 and 10 h of culture, 40 1-cell embryos were 

collected from the MG132 group and the DMSO control group at each of the two 

time points for immunoblot analysis. 

 
RNA Extraction, RT-PCR and Real-Time PCR 

Total RNA from 20 embryos was extracted using the Arcturus PicoPure 

RNA Isolation Kit (Life Technologies) according to the manufacturer’s 

instructions.  However, before the cell extract was added to the purification 

column, Gfp cRNA was added to the samples as an external standard.  Reverse 

transcription reactions were performed using Superscript II reverse transcriptase 

(Invitrogen) and random hexamers in a 20 ul reaction volume (Ma and Schultz, 

2008).  The cDNA was then quantified by quantitative real-time PCR (qRT-PCR) 

using the ABI Taqman Assay-on-demand probe/primer sets for Sin3a and GFP 

as previously described (Zeng et al., 2004).  For each qRT-PCR, one embryo 
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equivalent of cDNA was used with a minimum of three replicates as well as a 

minus RT and minus template control.  Quantification was normalized to GFP.   

 

DNA Replication Assay by BrdUTP Incorporation 

 Inseminated MII eggs were cultured in KSOM containing 10 µM BrdUTP 

either 3 h post-insemination or soon after the first cleavage.  One-cell embryos 

were fixed 19 h post-insemination and the 2-cell embryos were fixed 34 h post-

insemination.  The embryos were then processed using the immunofluorescence 

protocol described above with the addition of a denaturing step and neutralizing 

step after permeabilization.  The samples were denatured for 30 min in 2N HCl 

and neutralized for 20 min in 100 mM Tris-HCl, pH 8.5 at room temperature.   

The samples were incubated with the mouse monoclonal anti-BrdUTP antibody 

(11170376001, Roche) at 1:50 in blocking solution overnight at 4 °C.  The 

samples were incubated with the secondary FITC anti-mouse IgG1 antibody 

(1144-02, Southern Biotech) at 1:100 in blocking solution for 1 h.  The samples 

were mounted in VECTASHIELD medium (Vector Laboratories) containing 2 µM 

TO-PRO-3 (Life Technologies). 

 

Global Transcriptional Assay 
 Click-iT RNA Imaging kit (Invitrogen) was used to assay global 

transcription following the manufacturer’s instructions.  Briefly, synchronized 2-

cell embryos were cultured with 2 mM 5-ethynyl uridine (EU) in KSOM medium 

for 1 h before fixation in 2.5% paraformaldehyde for 20 min at room temperature.  

To assay global transcription in 1-cell embryos, the synchronized embryos were 

incubated in KSOM medium containing 2 mM EU from the time the first 

pronucleus formed until 17 h post-insemination.  After washing and membrane 

permeabilization, incorporated EU was detected using the Click-iT detection 

molecule.  The samples were mounted in VECTASHIELD medium (Vector 

Laboratories) containing 2 µM TO-PRO-3 (Life Technologies) to visualize the 

DNA. DNA and EU were visualized using a Leica TCS SP laser-scanning 
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confocal microscopy.  The intensity of the fluorescence was quantified using 

ImageJ software (National Institutes of Health) as previously described (Aoki et 

al., 1997).   
 

Plasmid DNA Constructs 
 To generate a T7 C-terminal-tagged Sin3a cRNA, mouse Sin3a coding 

sequence was amplified from mouse cDNA clone 6837144 (Thermo Scientific 

Open Biosystems) by PCR using the forward primer 5’- 

gaggGCATGCcATGAAGaGgaGacTGGAcGACCA -3’ and the reverse primer 5’- 

gcgGTCGACCCGGCCACGCGTAGGGGCTTTGAATACTGTGCCGTA -3’.  After 

enzymatic digestion by SphI and SalI-HF, the amplified Sin3a coding sequence 

was subcloned into the pIVT-T7 vector to generate pIVT-Sin3a-T7.   

 Firefly luciferase reporter constructs under the control of the Sin3a 3’ 

untranslated region (3’ UTR) were generated as previously described (Ma et al., 

2013).  Briefly, The entire 1-kb Sin3a 3’ UTR with a ploy(A) site was amplified 

using the forward primer 5’-GATATCTAGACTGCAGAGCCAGAGCAGGTAGC-3’ 

and reverse primer 5’-GCGCCGAATTCACTTATTTCCTTAAGAATCAAGCT-3’.  

Amplified Sin3a 3’ UTR were digested by XbaI and EcoRI and subcloned 

downstream of the coding sequence of the pIVT-Luc vector.  

 

In Vitro Transcription 
 The DNA sequence-verified pIVT-Sin3a-T7 construct was linearized by 

SfoI digestion.  Capped cRNAs were made using in vitro transcription with T7 

mMESSAGE mMachine (Ambion) according to the manufacturer’s instructions.  

Following in vitro transcription, template plasmid DNAs were digested by adding 

RNase-free DNase and the synthesized cRNA were purified by MEGAclear Kit 

(Ambion), precipitated and redissolved in RNase-free water.  

 The DNA sequence verified pIVT-firefly Luc/Sin3a 3’ UTR construct was 

linearized by EcoRI digestion.  The linearized product was then processed as 

described above.  For both constructs, a single cRNA band of the expected size 
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was observed for each cRNA sample following electrophoresis in an 1% 

formaldehyde denaturing agarose gel. Synthesized cRNA was aliquoted and 

stored at -80 °C.  For microinjection controls, polyadenylated Renilla luciferase 

cRNA was generated by using a NotI linearized Renilla luciferase based vector 

phRL-SV40 (Promega).  The lineralized vector was in vitro transcribed by T7, 

and then polyadenylated by Poly(A) Tailing Kit (Ambion) according to the 

manufacturer’s instructions.  After polyadenylation and electrophoresis on 1% 

formaldehyde denaturing agarose gel, it was estimated that approximately a 150 

bp poly(A) tail was added to the 3’ terminus of the Renilla Luc cRNA (Ma et al., 

2013). 
 
Luciferase Reporter Assay 
 Full-grown GV-intact oocytes were microinjected with 5 pl of a solution 

containing pIVT-firefly Luc/Sin3a 3’ UTR cRNA (0.365 ug/µl) and control Renilla 

Luc cRNA (0.075 ug/µl) (Ma et al., 2013).  Injected oocytes were transferred to 

milrinone-free CZB medium and matured in vitro for 18 h.  Injected GV oocytes 

cultured for 18 h in CZB supplemented with 10 uM milrinone served as controls.  

In addition to injecting GV full-grown oocytes, MII eggs were microinjected with 5 

pl of the same cRNA mixture.  Injected MII eggs were activated with 5 mM 

strontium chloride in modified CZB medium that is free of Ca2+ and Mg2+ for 6 h 

at 37 °C under an atmosphere of 5% CO2 in air.  Injected MII eggs cultured in 

Ca2+- and Mg2+ -free CZB medium without SrCl2 for 6 h served as controls.  

Luciferase activity was assayed by lysing oocytes/eggs/embryos in 1x passive 

lysis buffer and analyzed using a dual-luciferase reporter assay system 

(Promega) according to the manufacturer’s instructions.  For signal 

normalization, the background firefly/Renilla luciferase activity readout from 

noninjected oocytes/eggs was subtracted, and the firefly luciferase activity was 

normalized to that of the coinjected Renilla luciferase reporter.   
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Microarrays Analysis 
 Total RNA was extracted from 20 oocytes/synchronized 2-cell embryos as 

described above and amplified with the Ovation Pico WTA system V2 (NUGen).  

The product was then fragmented and labeled with the Encore Biotin Module V2 

(NuGen).  Four independent biological replicates were hybridized to GeneChip 

Mouse 2.0 ST microarrays (Affymetrix, Sata Clara, CA, USA).    

The microarray datasets from the MoGene-2_0-st (GPL16570) platform 

were processed using the Oligo package (Carvalho and Irizarry, 2010) from the 

Bioconductor framework (Gentleman et al., 2004).  Raw data was background 

corrected, normalized and summarized using the robust multi-array average 

procedure.  

Differential expression analysis was done using a robust linear model with 

empirical Bayes from the limma package (Ritchie et al., 2015).  We compared the 

following conditions: α-amanitin vs. control 2-cell embryo; Sin3a KD (knockdown) 

2- cell embryo vs. control 2-cell embryo; control 2-cell embryo vs. GV oocyte; and 

Sin3a KD 2-cell embryo vs. GV oocyte. The P-values were calculated using a 

moderate t-statistic.  The calculated P-values were adjusted for multiple testing 

using the false discovery rate procedure. Genes were marked as differentially 

expressed if they had a minimal absolute fold-change >1.5 and a calculated P-

value <0.05.  

 Platform annotations were downloaded from the Gene Expression 

Omnibus repository, and all genes that mapped to differentially expressed 

Affymetrix probesets (defined as false discovery rate <0.05 and absolute 

logarithmic fold-change >0.58, in any of the comparisons), were kept for further 

analysis. The 29,680 Affymetrix probesets, which could be annotated, were used 

for the differential expression analysis, and functional analysis of differentially 

expressed gene sets was done using the pantherdb database (Mi et al., 2013). 
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Statistical Analysis 
 One-way ANOVA were used to evaluate the differences between groups 

using GraphPad Prism 6 software (GraphPad Software).  A level of P-value < 

0.05 was considered to be significant. 
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CHAPTER 3: INHIBITING THE MATURATION-ASSOCIATED INCREASE IN 
MATERNAL SIN3A IMPAIRS THE REPORGRAMMING OF GENE 

EXPRESSION DURING MOUSE PREIMPLANTATION DEVELOPMENT 

 
 
Research presented in this chapter was carried out in collaboration with the 

laboratory of Monica Mainigi and Kristian Vlahoviček/Petr Svoboda.  Total RNA 

extraction, amplification, fragmentation and labeling for microarray analysis were 

performed by Jun Ma, a postdoctoral fellow in the Schultz laboratory.  Microarray 

analysis was performed by Vedran Franke, a doctoral student in the Kristian 

Vlahoviček laboratory. Olga Davydenko, a postdoctoral fellow in the Mainigi 

laboratory, performed the embryo transfer experiments. 

 

This work was originally published in Biology of Reproduction.  Richard Jimenez, 

Eduardo O. Melo, Olga Davydenko, Jun Ma, Monica Maingi, Vedran Franke, and 

Richard M. Schultz. Maternal SIN3A regulates reprogramming of gene 

expression during mouse preimplantation development.  Biology of 

Reproduction. 2015. 93(4): 89, 1-12.  
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3.1 Results 
 
3.1a Sin3a is a dormant maternal mRNA that is recruited for translation 
during oocyte maturation and following fertilization 

To gain a sense of when the Sin3a gene could be functioning, we 

analyzed the temporal pattern of Sin3a abundance by qRT-PCR using random 

hexamers in mouse oocytes and embryos.  The observed differences in relative 

abundance between the different stages of development will unlikely be 

attributed to changes in the length of the poly (A) tail of Sin3a because random 

hexamers were used for cDNA synthesis.  As with many maternal mRNAs that 

are degraded during oocyte maturation (Su et al., 2007), Sin3a was highly 

expressed in the full-grown GV intact-oocyte and was degraded upon oocyte 

maturation as evidenced by the decrease in relative abundance.  Sin3a 

abundance reached its lowest level by the 8-cell stage, and between the 8-cell 

and blastocyst stage,its abundance increased, presumably due to zygotic 

transcription (Fig. 3.1A).  Interestingly, immunoblot analysis of the SIN3A protein 

revealed a small amount of SIN3A protein present in the full-grown GV-intact 

oocyte, even though there was an abundant amount of Sin3a transcript present 

at this stage.  The amount of SIN3A protein dramatically increased between MI 

and MII and a further increase was observed following fertilization before a 

dramatic and rapid loss of SIN3A protein by the 2-cell stage (Fig. 3.1B).   The 

lowest relative abundance of SIN3A protein was observed at the 8-cell stage and 

then increased by the blastocyst stage, which is consistent with Sin3a mRNA 

relative abundance.  It is also noteworthy that this increase in the amount of 

Sin3a transcript and protein by the blastocyst stage nearly coincides with the 

stage at which Sin3a embryonic null embryos (born from Sin3a+/- intercrosses) 

perish.   

To better characterize the time course of maternal SIN3A protein loss 

during early embryonic development, 1-cell and 2-cell mouse embryos were 

collected for immunoblot analysis.  The results showed that the dramatic 
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reduction in the amount of SIN3A protein occurred as early as the late 1-cell 

stage (~63% SIN3A loss compared to the mid 1-cell), and continued to the early 

2-cell stage (~ 87% SIN3A loss compared to the late 1-cell) and late 2-cell stage, 

where SIN3A was faintly detected by immunoblot analysis (Fig. 3.2).   Exposure 

of the embryos to MG132, a proteasome inhibitor, significantly inhibited the 

reduction in the amount of SIN3A protein, suggesting that the loss of maternal 

SIN3A protein is potentially mediated by the proteasome (Fig. 3.3).   

Immunocytochemical detection of SIN3A protein revealed that the SIN3A 

protein was nuclear, present in both pronuclei at the 1-cell stage, present in the 

nuclei of both the TE and ICM cells at the blastocyst stage, and had a similar 

pattern of expression as revealed by immunoblot analysis (Fig. 3.4).  The 

localization of the SIN3A protein remained nuclear in the male and female 

pronuclei even after the 1-cell mouse embryos were permeabilized prior to 

fixation (Fig. 3.5), indicating that the SIN3A protein is likely associated with the 

chromatin in both pronuclei.   

The results described above indicate that Sin3a is a dormant maternal 

mRNA that is recruited for translation during oocyte maturation and following 

fertilization.  In mouse, recruitment of transcripts for translation during oocyte 

maturation is driven by sequences within the 3’ untranslated region (3’ UTR) of 

their respective transcripts, e.g., cytoplasmic polyadenlyation elements (CPEs) 

(Oh et al., 2000).  Given the increase in the relative abundance of SIN3A protein 

between the full-grown GV-intact oocyte and the MII egg and the presence of 

CPEs within the 3’ UTR of the Sin3a transcript, we measured the luciferase 

activity of lysed MII eggs following maturation of full-grown GV-intact oocyte 

microinjected with firefly luciferase reporter cRNA under the control of the Sin3a 

3’ UTR.  This experiment revealed a dramatic increase in luciferase activity 

following maturation of oocytes microinjected with the luciferase reporter cRNA 

(Fig. 3.6A).  An increase in luciferase activity following microinjection of the cRNA 

and later activation of MII eggs was also observed (Fig. 3.6B), which is 

consistent with the observed increase in the relative abundance of the SIN3A 
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protein following fertilization. 

 

3.1b Inhibiting the maturation-associated increase in SIN3A alters global H3 
and H4 histone acetylation in 1-cell embryos 

Because SIN3A is a part of the SIN3A-co-repressor complex and the 

results described above suggesting that the function of SIN3A is restricted mainly 

to the 1-cell stage, we wanted to assess whether the loss of maternally recruited 

SIN3A had an effect on histone acetylation at the 1-cell stage.  We utilized a 

combined morpholino/siRNA approach to inhibit the oocyte maturation-

associated increase in SIN3A.  Following oocyte maturation of full-grown GV-

intact oocytes microinjected with the morpholino/siRNA sample targeted against 

the Sin3a transcript, no increase in the amount of SIN3A protein was seen (Fig. 

3.7).  As a control, when a scramble siRNA and a standard morpholino were 

injected into the full-grown oocyte, a normal maturation-associated increase in 

SIN3A was observed (Fig. 3.7).  These results show that this approach can 

effectively inhibit the maturation-associated increase in SIN3A.   

Because the epigenetic modifications of the male and female genomes 

are distinct at fertilization and during the first cell cycle of early embryo 

development as described above (Santos et al., 2005; Erhardt et al., 2003; 

Lepikhov and Walter, 2004; Liu et al., 2004) and the results above suggest that 

SIN3A is chromatin-associated in both male and female pronuclei (Fig. 3.5), it is 

plausible that SIN3A may have differential effects on the chromatin of each 

pronuclei.  To determine if the inhibition of the maturation-associated increase in 

SIN3A affected global histone acetylation in 1-cell embryos and to determine if 

the effects were dependent on the parental origin of the chromatin, we performed 

immunocytochemistry analysis of 1-cell embryos generated by in vitro 

insemination of in vitro matured, microinjected oocytes rather than activation of 

the oocytes.  Also, because in vitro insemination results in asynchronous 1-cell 

embryo formation due to differences in the timing of fertilization and because the 

appearance of histone post-translation modifications during the 1-cell stage is 
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dependent on the stage of pronuclear development, highly synchronized 1-cell 

embryos were used for immunocytochemistry analysis to minimize cell-cycle 

differences. 

We assessed global H3K18ac, H4K5ac, H4K8ac, H4K12ac and H4K16ac 

in highly synchronized 1-cell embryos because many of these marks are affected 

in mouse embryos when HDAC function is perturbed (Ma and Schultz, 2008) and 

because these histone modifications represent three distinct regions of genes; 

H3K18ac is enriched in the region surrounding the transcriptional start site, 

whereas the others are enriched in the promoter and transcribed regions of 

active genes (Wang et al., 2008).  Interestingly, the enrichment of H4K12ac in 

transcribed regions is associated with transcriptional elongation (Cho et al., 

1998).  Although a moderate hyperactylation of all these marks globally was 

observed when 1-cell embryos were incubated in the presence of Trichostatin A, 

an HDAC inhibitor, such was not the case when the maturation-associated 

increase in SIN3A was inhibited (Fig. 3.8).  Surprisingly, we observed a modest 

hypoacetylation for global H3K18ac, H4K8ac and H4K12ac. 

 

3.1c Inhibiting the maturation-associated increase in SIN3A impairs 
development beyond the 2-cell stage 

Next, we assessed the effect of inhibiting the maturation-associated 

increase in SIN3A on preimplantation development.  After blocking the 

maturation associated-increase in SIN3A, the embryos depleted of maternally 

recruited SIN3A developed poorly beyond the 2-cell stage when compared to the 

control-injected embryos (Fig. 3.9).  The deleterious effects on development of 

subjecting denuded, microinjected oocytes to in vitro maturation and 

insemination is the likely explanation for the low incidence of development in the 

control group.  The arrest at the 1-cell and 2-cell stages in the experimental 

group is unlikely due to a failure to undergo DNA replication because essentially 

all of the experimental and control embryos at both the 1-cell and 2-cell stages 

incorporated BrdU, and based on comparable signal intensities of BrdU 
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incorporation, each group replicated their DNA to a similar extent (Fig. 3.10). 

 In mice, impairment of ZGA and a reduction in transcription by at least 

70% by α-amanitin leads to developmental arrest at the 2-cell stage (Flach et al., 

1982; Bolton et al., 1984; Schultz, 1993; Ma et al., 2001).  To determine whether 

the developmental arrest observed was due to inhibiting transcription at a global 

level, we assessed global transcription by EU incorporation after inhibiting the 

maturation-associated increase in SIN3A in highly synchronized 2-cell embryos.  

We observed that transcription was reduced by 50% in the experimental 2-cell 

embryos when compared to the control 2-cell embryos (Fig. 3.11).  It is unlikely 

that the developmental arrest at the 2-cell stage was due to inhibiting global 

transcription because a 50% reduction in transcription is not sufficient to lead to a 

developmental arrest at the 2-cell stage. 

Because transcription in 1-cell embryos is required for development 

beyond the 2-cell stage but is dispensable for cleavage to the 2-cell stage (Abe 

et al., 2015), we assessed global transcription by EU incorporation in 1-cell 

embryos.  No effect on transcription in either the maternal or paternal pronucleus 

of 1-cell embryos was observed after blocking the maturation-associated 

increase in SIN3A (Fig. 3.12). 

 

3.1d Impairment of gene expression reprogramming in maternal SIN3A-
depleted embryos 
 In mice, a dramatic reprogramming of gene expression accompanies ZGA 

during the 2-cell stage and failure to successfully reprogramming the genome is 

associated with a developmental arrest at the 2-cell stage (Bultman et al., 2006).  

To examine whether the reprogramming of gene expression was affected, we 

carried out genome-wide expression profiling of control full-grown GV-intact 

oocytes, highly synchronized control and maternal SIN3A-depleted 2-cell 

embryos cultured with or without the transcriptional inhibitor α-amanitin.  

Because SIN3A regulates expression of its target genes, we expected that a 

subset of zygotically activated genes would be affected in 2-cell embryos.  The 
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zygotically activated genes are genes whose expression is inhibited by α-

amanitin.   

 As expected, hierarchical cluster analysis did not reveal significant 

differences between the transcriptomes of the full-grown GV intact-oocytes and 

2-cell embryos treated with α-amanitin (Fig. 3.13).  However, the transcriptomes 

of both these groups differed significantly from the transcriptomes of the control 

and experimental 2-cell embryos.  Importantly, the transcriptomes of the control 

and maternal SIN3A-depleted 2-cell embryos differed significantly from each 

other, which is consistent with the prediction that a subset of zygotically activated 

genes would be impaired when maternal SIN3A is depleted from the embryo. 

 Because formation of a histone hyperacetylation responsive 

transcriptionally repressive state may decrease expression of inappropriately 

activated genes and because SIN3A may have a role in formation of the 

repressive state, we identified zygotically activated genes whose expression was 

higher in maternal SIN3A-depleted embryos.  We found 145 zygotically 

expressed genes whose expression was at least 1.5-fold higher in 2-cell embryos 

derived from eggs in which the maturation-associated increase in SIN3A was 

inhibited (Table 3.1).  Not only were protein-coding genes included in the list of 

145 genes, but ribosomal genes, small nuclear RNAs, and noncoding RNAs 

were also present. 

 Because formation of a transcriptionally repressive state may also 

terminate expression of inappropriately activated genes in mouse 2-cell embryos, 

it is likely that genes, which were not normally zygotically activated in 2-cell 

embryos, were now inappropriately expressed in 2-cell embryos depleted of 

maternal SIN3A.  These genes would show no difference in expression between 

control and α-amanitin-treated 2-cell embryos, but would show an increased 

expression in maternal SIN3A-depleted embryos when compared to control 

embryos.  We found 98 genes that were not zygotically activated in 2-cell 

embryos, but whose expression was increased in maternal SIN3A-depleted 2-cell 

embryos (Table 3.2).  These genes included protein coding genes, ribosomal 
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genes, small nuclear RNAs, noncoding RNAs, small nucleolar RNAs, and 

microRNAs.  The qRT-PCR on four transcripts from each class whose 

expression was increased by inhibiting the maturation-associated increase in 

SIN3A revealed changes in relative transcript abundance similar to that observed 

from the microarray data for all of them except for one (Table 3.3).  These results 

afford confidence that differences observed in the microarray data analysis 

reflect changes in relative transcript abundance. 

To determine if the dysregulated genes identified in the 2-cell embryos 

depleted of maternal SIN3A form gene clusters, the genes whose expression 

was increased in maternal SIN3A-depleted embryos were mapped to 

chromosomes.  As expected, the misexpressed genes mapped within 

chromosomal gene clusters, with enrichment of these genes on some 

chromosomes (e.g., chromosome 11 and 12) (Fig. 3.14).  

 

3.1e Exogenously expressing SIN3A beyond the 1-cell stage does not 
impair preimplantation development 

The restricted presence of maternal SIN3A protein mainly to the 1-cell 

stage is unique because other maternal proteins that are encoded by dormant 

maternal mRNAs are present for much longer periods of time.  It is likely that 

restricting the function of maternal SIN3A mainly to the 1-cell stage and the 

precipitous reduction in the amount of SIN3A protein are required for 

development beyond the 2-cell stage.  Accordingly, we assessed the effect of 

maintaining the presence of SIN3A beyond the 1-cell stage.  After microinjecting 

cRNA encoding Sin3a into 1-cell mouse embryos at different concentrations, we 

identified the conditions that allowed for an increase in the amount of SIN3A 

protein in 2-cell embryos to an amount that is comparable to that observed 

following oocyte maturation and fertilization (Fig. 3.15A).   

Because SIN3A protein is not stable during mouse preimplantation 

development, we decided to use 1-cell embryos microinjected with a buffer as 

the control group because a typical control would involve microinjecting a cRNA 
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encoding some protein that is usually stable, which SIN3A is not.  Furthermore, 

we observed that the developmental incidence to the blastocyst stage depended 

on what control cRNA was microinjected (Fig. 3.15C).  Results from these 

experiments showed that development to the blastocyst stage was not affected 

by maintaining the presence of SIN3A protein beyond the time when it has 

normally decreased to undetectable levels (Fig. 3.15B).  In addition, total cell 

numbers and their types (epiblast, ICM, trophectoderm) in blastocysts were not 

affected (Fig. 3.16).   Furthermore, the blastocysts from microinjected 1-cell 

embryos that maintained elevated levels of SIN3A protein beyond the 1-cell 

stage had a similar incidence of implantation and resorption as the control groups 

when embryo transfer experiments were performed (Fig. 3.17). 
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Figure 3.1. Developmental expression profile of Sin3a/SIN3A. 
(A) Sin3a mRNA levels were measured by quantitative RT-PCR at the indicated 

stages.  Data were normalized against the detected levels of exogenously added 

GFP and expressed relative to the value obtained for mid 1-cell embryos.  The 

experiment was conducted three times and the data are expressed as mean ± 

SEM. GV, full-grown GV-intact oocytes; MII, metaphase II-arrested egg; 1C, 2C, 

and 8C refer to 1-cell, 2-cell, and 8-cell stages, respectively; BL, blastocyst.  (B) 

The relative amount of SIN3A was measured by immunoblot analysis.  MII in 

vitro, oocytes were matured in vitro to MII; MII in vivo, MII eggs were collected 

following maturation in vivo.  The TUBA signal was used to normalize total 

protein loading.  The experiment was performed three times and similar results 

were obtained in each case.  A representative example is shown. 
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Figure 3.2. Time course for SIN3A protein loss.   
(A) Immunoblot analysis for SIN3A was conducted at the indicated 

developmental stages.  The TUBA signal was used to normalize total protein 

loading.  The experiment was performed three times and similar results were 

obtained in each case; shown is a representative example. (B) Quantification of 

the data shown in A.  The data are expressed as the mean ± SEM and the 

SIN3A signal is relative to the mid 1-cell embryo. 
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 Figure 3.3. SIN3A protein loss is proteasome-dependent 
(A) Mid 1-cell embryos were isolated and cultured in vitro in the presence of the 

proteasome inhibitor MG132 or DMSO, the vehicle.  SIN3A protein abundance 

was measured by immunoblot analysis at the indicated times. The TUBA protein 

signal was used to normalize total protein loading.  The experiment was 

performed three times and a representative example is shown.  (B) 

Quantification of the data shown in A.  The data are expressed as the mean ± 

SEM and the SIN3A signal is relative to the mid 1-cell embryo.  The times refer to 

the number of hours post-hCG injection.  * P < 0.05. 
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Figure 3.4. Developmental expression profile of SIN3A protein by 
immunocytochemistry. 
Immunocytochemical analysis of SIN3A expression during preimplantation 

development.  The experiment was conducted two times, and at least 15 

oocytes/embryos were analyzed for each experiment. 
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Figure 3.5. Similiar amount of chromatin-associated SIN3A protein between 
male and female pronuclei. 
Immunocytochemical detection of chromatin-associated SIN3A was performed 

by permeabilizing and then fixing 1-cell embryos and the signal was then 

compared to the signal obtained when the 1-cell embryos were fixed and then 

permeablized.  Shown are representative images in which there is no obvious 

difference for the two different protocols.  
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Figure 3.6. Sin3a 3’UTR contains elements that drive translational 
recruitment during oocyte maturation and following activation. 
Full-grown oocytes (A) or MII eggs (B) were microinjected with the luciferase 

reporter cRNAs.  Firefly luciferase reporter activities were normalized to the co-

injected Renilla luciferase.  The data are expressed as mean ± SEM, and at least 

10 oocytes/embryos were analyzed for each group. 
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Figure 3.7. Combined Sin3a morpholino and siRNA inhibit maturation-
associated increase in the amount of SIN3A protein. 
(A) Full-grown oocytes microinjected with control or Sin3a morpholino (MO) and 

siRNA were cultured for 1 h in medium containing 2.5 µM milrinone and then 

cultured in inhibitor-free medium for maturation.  MII eggs were collected 16 h 

after maturation and used for immunoblot analysis to detect SIN3A protein levels. 

TUBA was used to normalize total protein loading.  The experiment was 

performed three times and a representative example is shown.  (B) 

Quantification of the relative amount of SIN3A shown in panel A.  The data are 

expressed as mean ± SEM. 
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Figure 3.8. Effect of inhibiting the maturation-associated increase in SIN3A 
on histone acetylation in 1-cell embryos.   
(A) The indicated histone were assayed by immunocytochemistry for their 

acetylation status using maternal-SIN3A depleted 1-cell embryos, control 1-cell 

embryos, and 1-cell embryos that were incubated with Trichostatin A (an HDAC 

inhibitor) to generate the maximum increase in histone acetylation.  The 

experiment was performed two times and at least a total of 10 embryos were 

analyzed for each sample group.  (B) Quantification of the data shown in panel 

A.  The data are expressed relative to the control 1-cell embryos and are 

expressed as mean ± SEM.  *, p < 0.05.  
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Figure 3.9. Inhibiting the maturation-associated increase in SIN3A protein 
leads to a developmental arrest at the 2-cell stage. 
After inhibiting the maturation-associated increase in SIN3A protein, the 

maternal-SIN3A depleted and control MII eggs were in vitro fertilized (IVF) and 

embryo development was assessed at 24, 48 and 72 h after fertilization.  The 

experiment was performed three times and the data pooled.  A total of 56 

experimental and 43 control embryos were analyzed.  hpf, hours post-

fertilization. 
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Figure 3.10. DNA replication is not inhibited in 1- and 2-cell embryos when 
the maturation-associated increase in SIN3A protein is inhibited. 
After inhibiting the maturation-associated increase in SIN3A protein, the 

maternal-SIN3A depleted and control MII eggs were in vitro fertilized (IVF) and 

placed in medium containing BrdU, a deoxyribonucleotide analog incorporated 

into DNA.  Controls were injected with control siRNA and morpholino. BrdU 

incorporation was assayed by immunocytochemistry in 1-cell and 2-cell embryos. 

The experiment was conducted two times, and at least 10 embryos were 

analyzed for each experiment. 
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Figure 3.11. Transcription is reduced in 2-cell embryos depleted of 
maternal-SIN3A. 
(A) After inhibiting the maturation-associated increase in SIN3A protein, the 

maternal-SIN3A depleted and control MII eggs were in vitro fertilized (IVF) and 

placed in medium containing EU, a ribonucleotide is incorporated into nacent 

RNA.  Controls were injected with control siRNA and morpholino. EU 

incorporation was assayed by immunocytochemistry in 2-cell embryos.  The 

experiment was performed 4 times and shown are representative images.  At 

least 10 embryos were analyzed for each treatment group.  (B) Quantification of 

the images shown in panel A.  The data are expressed as mean ± SEM.  * p < 

0.05. 
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Figure 3.12. No change in global transcription at the 1-cell stage when the 
maturation-associated increase in maternal SIN3A is inhibited. 
(A) Immunocytochemical detection of EU incoportation in maternal-SIN3A 

depleted and control 1-cell embryos. Shown are representative images.  The 

experiment was conducted two times, and at least 10 embryos were analyzed for 

each experiment. (B) Quantification of the data shown in panel A.  The data are 

expressed as mean ± SEM. 
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Figure 3.13. Heat map of all samples from different treatment groups 
constructed using hierarchical clustering. 
Replicate sample numbers are indicated at the bottom of the figure.  GV, full-

grown GV-intact oocytes; a-am, 1-cell embryos incubated in α-amanitin to the 2-

cell stage; 2C, 2-cell embryos derived from oocytes injected with control siRNA 

and morpholino matured and fertilized in vitro; KD, 2-cell embryos derived from 

oocytes injected with Sin3a siRNA and morpholino matured and fertilized in vitro.  

Colors correspond to relative RNA abundance (on the log2 scale) for the 

detected genes each of which is represented by one horizontal bar.  The 

numbers correspond to each replicate within each group. 

	GV 1     2       3      4  a-am 1    2    3      4    2C 1     2      3      4    KD 1    2      3      4  
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Figure 3.14 Karyogram of genes whose expression was elevated in 2-cell 
embryos depleted of maternal SIN3A (left panel) and density of genes (right 
panel). 
The comparison showed that most of the SIN3A sensitive genes emanated from 

gene dense regions. 
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Figure 3.15. Over-expressing SIN3A does not affect pre-implantation 
development. 
(A) One-cell embryos were microinjected with cRNA encoding Sin3a and were 

cultured to the 2-cell stage and used for immunoblot analysis to detect SIN3A 

protein levels. Control embryos were injected with buffer.  TUBB was used to 

normalize total protein loading.  The experiment was performed three times and 

a representative example is shown. (B) Effect of over-expressing SIN3A on 

development to the blastocyst stage.  Control embryos were injected with buffer.  

The experiment was conducted 7 times and at least 261 embryos were analyzed 

in each group.  The data are expressed as mean ± SEM.  (C) One-cell embryos 

were microinjected with either a cRNA encoding Sin3a, a cRNA encoding 

SIN3A 
	
	
TUBB 

 1C       2C     2C 
 

 SIN3A       
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mCherry, Gfp, or Luc, or buffer. The incidence of development to the blastocyst 

was then assessed. The experiment was performed 4 times using the mCherry 

control with at least 85 embryos examined for each treatment group, 15 times 

using the GFP control with at least 292 embryos examined for each treatment 

group, 2 times using the Luciferase control (ctrl) with at least 76 embryos 

examined for each treatment group, and 7 times using the buffer control with at 

least 261 embryos examined for each treatment group. The data are expressed 

as mean ± SEM. *P <0.05; **P < 0.01.  
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Figure 3.16. Over-expressing SIN3A does not affect cell numbers in 
blastocysts.  
(A) Effect of over-expressing SIN3A on cell numbers in blastocysts.  The 

experiment was conducted 4 times and at least 32 embryos were analyzed in 

each group.  The data are expressed as mean ± SEM. (B) Immunocytochemical 

detection of lineage markers in blastocysts derived from embryos over-

expressing SIN3A. 
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Figure 3.17. Over-expressing SIN3A does not affect pre-implantation 
development. 
One-cell embryos were microinjected with cRNA encoding Sin3a or buffer and 

were cultured to the blastocyst stage.  The incidence of post-implantation 

development following blastocyst transfer of control and SIN3A-over-expressing 

embryos was then assessed.  The experiment was conducted 6 times. 
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Table 3.1. Zygotically expressed genes whose expression is up-regulated 

following inhibition of the maturation-associated increase in SIN3A. 

 
Annotation 

ID SPOT ID Gene name Biotype 

17446058 
chr5(-):23674289-
23674381 5S_rRNA rRNA 

17397331 
chr3(+):40992693-
40992850 U1 snRNA 

17481770 
chr7(+):110627661-
110629819 Adm protein_coding 

17276375 
chr12(+):74284276-
74295950 1700086L19Rik protein_coding 

17344122 
chr17(-):34952013-
34952075 1110038B12Rik processed_transcript 

17520624 
chr9(+):98422961-
98446551 Rbp1 protein_coding 

17249036 
chr11(+):49794155-
49838620 Gfpt2 protein_coding 

17517416 
chr9(+):54764748-
54773110 Crabp1 protein_coding 

17327030 
chr16(+):91225550-
91228677 Olig2 protein_coding 

17415345 
chr4(+):88799575-
88801130 Gm13285 protein_coding 

17517097 
chr9(+):50494525-
50505639 1600029D21Rik protein_coding 

17278767 
chr12(+):109643748-
109643818 SNORD113 snoRNA 

17375880 
chr2(+):127363208-
127367221 Adra2b protein_coding 

17218889 
chr1(+):164249046-
164265385 Slc19a2 protein_coding 

17355443 
chr18(-):74939322-
74961263 Lipg protein_coding 

17410974 
chr3(-):145646971-
145649985 Cyr61 protein_coding 

17212313 
chr1(+):42697146-
42700210 Pou3f3 protein_coding 

17510563 
chr8(-):72477995-
72492614 Slc35e1 protein_coding 

17491396 
chr7(-):49631499-
49636849 Dbx1 protein_coding 

17511130 
chr8(-):84661331-
84662852 Ier2 protein_coding 

17375409 
chr2(+):122298900-
122302885 Duoxa1 protein_coding 

17362121 chr19(-):6922426-6925380 1700019N12Rik protein_coding 
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17302483 
chr14(+):103070216-
103077630 Cln5 protein_coding 

17279509 
chr12(+):113152012-
113153879 Crip1 protein_coding 

17312829 
chr15(+):78926725-
78930465 Lgals1 protein_coding 

17497847 
chr7(-):141278331-
141279133 Sct protein_coding 

17418154 
chr4(+):123116248-
123118000 Oxct2b protein_coding 

17263511 
chr11(-):59963181-
59964944 Rasd1 protein_coding 

17322125 
chr15(-):102028228-
102029513 Krt18 protein_coding 

17237186 
chr10(+):110745439-
110787384 E2f7 protein_coding 

17292011 
chr13(-):40715675-
40733823 Tcfap2a protein_coding 

17239664 
chr10(-):21124930-
21160984 Myb protein_coding 

17308939 
chr14(-):79766772-
79771312 Pcdh8 protein_coding 

17386477 
chr2(-):72971548-
72986716 Gm11084 protein_coding 

17395373 
chr2(-):177197202-
177200415 Gm14391 protein_coding 

17397523 
chr3(+):53463666-
53481755 2810046L04Rik protein_coding 

17406363 
chr3(-):84442196-
84480439 Fhdc1 protein_coding 

17288898 
chr13(+):81657806-
81671899 Lysmd3 protein_coding 

17394175 
chr2(-):164424247-
164443887 Sdc4 protein_coding 

17411961 
chr4(+):15265820-
15286753 Tmem64 protein_coding 

17345293 
chr17(-):46016993-
46032377 Vegfa protein_coding 

17218321 
chr1(+):153740349-
153745468 Rgs16 protein_coding 

17289372 
chr13(+):97241105-
97253040 Enc1 protein_coding 

17368171 
chr2(+):25706879-
25707721 A230005M16Rik processed_transcript 

17270053 
chr11(-):102106676-
102107832 Pyy protein_coding 

17310982 
chr15(+):35296098-
35303305 Osr2 protein_coding 

17470060 
chr6(-):116633008-
116673836 Rassf4 protein_coding 

17394153 
chr2(-):164354070-
164389095 Slpi protein_coding 
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17261542 
chr11(-):33117430-
33147400 Fgf18 protein_coding 

17468018 
chr6(-):82725025-
82774454 Hk2 protein_coding 

17393764 
chr2(-):157562361-
157562447 Nnat protein_coding 

17291525 
chr13(-):28948919-
28953713 Sox4 protein_coding 

17317313 
chr15(-):58890153-
58933730 Tatdn1 protein_coding 

17544469 
chrX(-):134460116-
134476490 Taf7l protein_coding 

17399986 
chr3(+):93442330-
93449077 Tchh protein_coding 

17265470 
chr11(-):71031941-
71033617 6330403K07Rik processed_transcript 

17240077 
chr10(-):30832359-
30842801 Hey2 protein_coding 

17544816 
chrX(-):137115397-
137122083 Esx1 protein_coding 

17315245 
chr15(+):102028216-
102032026 Krt18 protein_coding 

17455936 chr6(+):6863334-6868568 Dlx6 protein_coding 

17500068 
chr8(+):23411502-
23449632 Sfrp1 protein_coding 

17515617 
chr9(+):27299228-
27334763 Igsf9b protein_coding 

17348400 
chr18(+):11052510-
11085635 Gata6 protein_coding 

17415319 
chr4(+):88782131-
88783592 Ifnz protein_coding 

17312032 
chr15(+):66929607-
66931107 Ndrg1 protein_coding 

17535535 
chrX(+):73342620-
73359080 Zfp275 protein_coding 

17305709 
chr14(-):46383520-
46390669 Bmp4 protein_coding 

17480620 
chr7(+):100006404-
100034728 Chrdl2 protein_coding 

17303496 
chr14(-):12341892-
12345865 Fezf2 protein_coding 

17260474 chr11(-):7206086-7213923 Igfbp3 protein_coding 

17438419 
chr5(+):76928368-
76947758 2310040G07Rik processed_transcript 

17534051 
chrX(+):36112110-
36171262 Il13ra1 protein_coding 

17510136 
chr8(-):70762773-
70767151 Ifi30 protein_coding 

17367856 
chr2(+):25208623-
25208727 U6 snRNA 

17437049 
chr5(+):37820564-
37822751 Msx1 protein_coding 
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17439942 
chr5(+):105876565-
105915885 Zfp326 protein_coding 

17460634 
chr6(+):88193891-
88207032 Gata2 protein_coding 

17227259 
chr1(-):135150666-
135150766 5S_rRNA rRNA 

17259235 
chr11(+):119942763-
120006782 Baiap2 protein_coding 

17484601 
chr7(+):140835018-
140837968 1190003J15Rik protein_coding 

17488458 
chr7(-):28376784-
28379255 Zfp36 protein_coding 

17287361 
chr13(+):51846675-
51848475 Gadd45g protein_coding 

17360216 
chr19(+):47854970-
47864790 Gsto1 protein_coding 

17529307 
chr9(-):83778692-
83806305 Elovl4 protein_coding 

17323192 
chr16(+):14705852-
14709395 Snai2 protein_coding 

17295130 
chr13(-):95601789-
95618459 F2r protein_coding 

17489399 
chr7(-):31032722-
31042481 Fxyd5 protein_coding 

17335467 
chr17(+):29090979-
29100722 Cdkn1a protein_coding 

17273447 
chr11(-):121053423-
121063569 Sectm1b protein_coding 

17410809 
chr3(-):144188530-
144205255 Lmo4 protein_coding 

17482095 
chr7(+):116504374-
116540588 Nucb2 protein_coding 

17479834 
chr7(+):82867333-
82871576 Mex3b protein_coding 

17483258 
chr7(+):127244526-
127254803 Zfp771 protein_coding 

17255352 
chr11(+):95120089-
95125296 Dlx3 protein_coding 

17417622 
chr4(+):117096075-
117115383 Ptch2 protein_coding 

17286231 
chr13(+):28943048-
28951671 Sox4 protein_coding 

17402144 
chr3(+):120683970-
120693602 Usp12 protein_coding 

17388353 
chr2(-):92365046-
92371057 Gyltl1b protein_coding 

17544919 
chrX(-):140006805-
140062712 Nup62cl protein_coding 

17344114 
chr17(-):34950235-
34952471 1110038B12Rik processed_transcript 

17505260 
chr8(+):107293470-
107379907 Nfat5 protein_coding 
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17321307 
chr15(-):98663421-
98677461 Rnd1 protein_coding 

17473985 
chr7(+):15692101-
15693156 NA NA 

17376541 
chr2(+):131909928-
131938431 Prnd protein_coding 

17544786 
chrX(-):136954988-
136976874 Tmsb15b1 protein_coding 

17464706 chr6(-):6877805-6882085 Dlx5 protein_coding 

17491378 
chr7(-):48866429-
48881596 E2f8 protein_coding 

17400250 
chr3(+):95160457-
95174024 Sema6c protein_coding 

17522876 
chr9(+):118478189-
118486132 Eomes protein_coding 

17322113 
chr15(-):101996711-
102004342 Krt8 protein_coding 

17297750 
chr14(+):25694170-
25700468 Ppif protein_coding 

17537895 
chrX(+):136270253-
136271978 Ngfrap1 protein_coding 

17319607 
chr15(-):82329532-
82338826 Naga protein_coding 

17484454 
chr7(+):139943789-
139945112 Utf1 protein_coding 

17535353 
chrX(+):71663667-
71669257 Gpr50 protein_coding 

17536969 
chrX(+):103414467-
103424583 Tsx protein_coding 

17447610 
chr5(-):37820485-
37824585 Msx1 protein_coding 

17380766 
chr2(+):180456245-
180474867 Slco4a1 protein_coding 

17396492 
chr3(+):28781311-
28798846 Eif5a2 protein_coding 

17359088 
chr19(+):37697808-
37701536 Cyp26a1 protein_coding 

17544689 
chrX(-):135844275-
135844731 Gprasp2 protein_coding 

17251500 
chr11(+):69059775-
69061576 9330160F10Rik protein_coding 

17458592 
chr6(+):52156902-
52162289 Gm15051 processed_transcript 

17330905 
chr16(-):50719297-
50732773 5330426P16Rik protein_coding 

17448712 
chr5(-):72755718-
72868459 Tec protein_coding 

17512086 
chr8(-):95756950-
95757084 SNORA76 snoRNA 

17456131 
chr6(+):17065149-
17105828 Tes protein_coding 

17321474 
chr15(-):98949841-
98953551 Tuba1a protein_coding 
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17536428 
chrX(+):97072596-
97082104 Pgr15l protein_coding 

17231694 
chr10(+):13090691-
13131694 Plagl1 protein_coding 

17232912 
chr10(+):41810574-
41908436 Sesn1 protein_coding 

17427312 
chr4(-):95049034-
95052222 Jun protein_coding 

17276814 
chr12(+):80108034-
80113000 Zfp36l1 protein_coding 

17315718 chr15(-):5206661-5244187 Ptger4 protein_coding 

17537839 
chrX(+):135834109-
135844731 Gprasp2 protein_coding 

17536848 
chrX(+):101794592-
101798644 8030474K03Rik protein_coding 

17432488 
chr4(-):143894237-
143900380 Pramef6 protein_coding 

17389456 
chr2(-):113500679-
113504034 Gm13964 processed_transcript 

17340609 chr17(-):6738041-6782784 Ezr protein_coding 

17437558 
chr5(+):57718021-
58132240 Pcdh7 protein_coding 

17429954 
chr4(-):126150602-
126163491 1700029G01Rik protein_coding 

17415323 
chr4(+):88784963-
88786518 Gm13276 pseudogene 

17451816 
chr5(-):116408491-
116422864 Hspb8 protein_coding 

17415333 
chr4(+):88790805-
88792360 Gm13276 pseudogene 

17379224 
chr2(+):163122606-
163144267 Gm11454 processed_transcript 
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Table 3.2. Genes not zygotically activated, but whose expression is up-regulated 

following inhibition of the maturation-associated increase in SIN3A. 
 

Annotation 
ID             SPOT ID            Gene name   Biotype 

17270727 
chr11(-):106126336-
106127351 Gm11672 processed transcript 

17297591 
chr14(+):21263624-
21263859 7SK misc_RNA 

17318403 
chr15(-):76214101-
76214205 U6 snRNA 

17231033 
chr1(-):191170296-
191183340 Atf3 protein_coding 

17240606 
chr10(-):43583783-
43584264 Cd24a protein_coding 

17400000 
chr3(+):93555080-
93564645 S100a10 protein_coding 

17335788 
chr17(+):31059604-
31059731 5S_rRNA rRNA 

17312278 
chr15(+):75759859-
75759989 SNORA17 snoRNA 

17250517 
chr11(+):60804578-
60804703 SNORA25 snoRNA 

17287245 
chr13(+):49714119-
49714240 SNORA24 snoRNA 

17249962 
chr11(+):58126068-
58128512 Gm12246 processed transcript 

17356427 
chr19(+):5447698-
5455945 Fosl1 protein_coding 

17270999 
chr11(-):106783171-
106783271 Ddx5 protein_coding 

17374792 
chr2(+):119325784-
119335962 Dll4 protein_coding 

17458514 
chr6(+):49822710-
49829507 Npy protein_coding 

17431478 
chr4(-):135541888-
135573630 Grhl3 protein_coding 

17253832 
chr11(+):79704630-
79705420 Gm11205 processed transcript 

17275015 
chr12(+):35992907-
36004087 Agr2 protein_coding 

17327038 
chr16(+):91372783-
91405589 NA NA 

17506697 
chr8(+):123653929-
123663884 Rhou protein_coding 

17282776 
chr12(-):86880703-
86884814 6430527G18Rik protein_coding 

17500535 
chr8(+):34807297-
34819894 Dusp4 protein_coding 

17391233 
chr2(-):127138769-
127143457 Itpripl1 protein_coding 
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17276139 
chr12(+):71309884-
71320107 Dact1 protein_coding      

17366812 
chr2(+):10489410-
10489533 AL772216.12 miRNA 

17366848 
chr2(+):10496791-
10496914 AL772216.12 miRNA 

17333121 
chr17(+):8434423-
8442496 T protein_coding 

17336494 
chr17(+):34263209-
34269418 H2-Ab1 protein_coding 

17439511 
chr5(+):98180869-
98187448 Prdm8 protein_coding 

17335818 
chr17(+):31295483-
31350709 Slc37a1 protein_coding 

17225191 
chr1(-):86666291-
86670573 Nppc protein_coding 

17439184 
chr5(+):93267257-
93276231 Ccng2 protein_coding 

17274184 
chr12(+):14494561-
14495157 Gm9847 protein_coding 

17366788 
chr2(+):10484490-
10484613 AL772216.36 miRNA 

17366824 
chr2(+):10491860-
10491983 AL772216.36 miRNA 

17402181 
chr3(+):121723537-
121735052 F3 protein_coding 

17464549 
chr6(-):3685677-
3764713 Calcr protein_coding 

17250322 
chr11(+):59921499-
59921889 1810063I02Rik processed transcript 

17292507 
chr13(-):49976258-
49976488 Gm17611 protein_coding 

17274959 
chr12(+):33957671-
33959831 Twist1 protein_coding 

17223848 
chr1(-):65100389-
65103373 Cryga protein_coding 

17415310 
chr4(+):88776176-
88777731 Gm13276 pseudogene 

17540374 
chrX(-):15896663-
15896769 U6 snRNA 

17216402 
chr1(+):106861173-
106883348 Serpinb5 protein_coding 

17233357 
chr10(+):57486385-
57513143 Hsf2 protein_coding 

17286703 
chr13(+):40727808-
40735145 Gm16989 lincRNA 

17225224 
chr1(-):87147655-
87156521 Ecel1 protein_coding 

17366644 
chr2(+):9877256-
9878869 Gm13256 processed transcript 

17364521 
chr19(-):40550257-
40588463 Aldh18a1 protein_coding 
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17272857 
chr11(-):119077571-
119086237 Cbx4 protein_coding 

17415305 
chr4(+):88773248-
88774803 Gm13276 pseudogene 

17281885 
chr12(-):73100259-
73113414 Six4 protein_coding 

17422443 
chr4(+):154960923-
154962371 Hes5 protein_coding 

17282216 
chr12(-):80107760-
80113013 Zfp36l1 protein_coding 

17253133 
chr11(+):76179671-
76214827 Fam57a protein_coding 

17395499 
chr2(-):180099465-
180104488 Gm17180 processed transcript 

17286295 
chr13(+):30749226-
30766927 Irf4 protein_coding 

17366790 
chr2(+):10485051-
10485176 AL772216.29 miRNA 

17233920 
chr10(+):63382443-
63408840 Dnajc12 protein_coding 

17296896 
chr14(+):4860406-
5021482 Gm3242 pseudogene 

17268137 
chr11(-):95044474-
95076801 Itga3 protein_coding 

17454995 
chr5(-):144735915-
144761649 Tmem130 protein_coding 

17464718 
chr6(-):7675169-
7693254 Asns protein_coding 

17500097 
chr8(+):25017211-
25023260 Tm2d2 protein_coding 

17288836 
chr13(+):77676821-
77676951 SNORA17 snoRNA 

17487422 
chr7(-):19756131-
19771016 Bcam protein_coding 

17407903 
chr3(-):95796699-
95796884 U1 snRNA 

17379887 
chr2(+):167248317-
167248578 Gm17544 protein_coding 

17279011 
chr12(+):110841029-
110843804 4921507G05Rik lincRNA 

17525578 
chr9(-):37229149-
37255738 Slc37a2 protein_coding 

17281337 
chr12(-):57540631-
57546121 Foxa1 protein_coding 

17519967 
chr9(+):85842380-
85847055 Tpbg protein_coding 

17373943 
chr2(+):105668896-
105703160 Pax6 protein_coding 

17366687 
chr2(+):10370451-
10595253 Sfmbt2 protein_coding 

17504293 
chr8(+):95352268-
95374293 Mmp15 protein_coding 
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17288057 
chr13(+):62136762-
62136831 SNORA32 snoRNA 

17293515 
chr13(-):62543434-
62543503 SNORA32 snoRNA 

17356383 
chr19(+):5298331-
5308739 Gal3st3 protein_coding 

17308881 
chr14(-):79288749-
79301635 1190002H23Rik protein_coding 

17541383 
chrX(-):48171969-
48208878 Zdhhc9 protein_coding 

17336921 
chr17(+):35065388-
35070050 Ly6g6c protein_coding 

17515436 
chr9(+):22411577-
22444681 9530077C05Rik protein_coding 

17409154 
chr3(-):108012250-
108017973 Gstm1 protein_coding 

17232853 
chr10(+):41476314-
41487032 Mical1 protein_coding 

17217440 
chr1(+):134405781-
134411740 Cyb5r1 protein_coding 

17375503 
chr2(+):122636986-
122641191 AA467197 protein_coding 

17520315 
chr9(+):92250057-
92272561 Plscr1 protein_coding 

17445236 
chr5(+):150708044-
150708149 U6 snRNA 

17450366 
chr5(-):103989762-
104021919 Hsd17b11 protein_coding 

17489905 
chr7(-):38220654-
38227994 Plekhf1 protein_coding 

17351485 
chr18(+):67641599-
67654162 Psmg2 protein_coding 

17344124 
chr17(-):34952240-
34952309 1110038B12Rik processed transcript 

17277622 
chr12(+):87332488-
87335655 Gm17256 lincRNA 

17374738 
chr2(+):119167773-
119172390 Gchfr protein_coding 

17302598 
chr14(+):110970788-
110971471 Gm6280 protein_coding 

17483565 
chr7(+):127983079-
127985701 B230325K18Rik protein_coding 

17231855 
chr10(+):19356539-
19358606 Olig3 protein_coding 

17257937 
chr11(+):111066164-
111076825 Kcnj2 protein_coding 
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Table 3.3. qRT- PCR confirmation of four transcripts from each class whose 

expression was increased following inhibition of the maturation-associated 

increase in SIN3A. 

 

Probe Sample CT1 CT2 Mean CT DCT DDCT Fold 
change  

                

Atf3 control 34.13 34.06 34.10 10.09 0.00 1.00 
  Sin3a KD 32.00 32.16 32.08 8.04 -2.05 4.13 

                
Calcr control 36.00 36.27 36.14 12.13 0.00 1.00 

  Sin3a KD 37.39 36.88 37.14 13.10 0.97 0.51 

                
Cd24a control 35.00 34.93 34.97 10.96 0.00 1.00 

  Sin3a KD 34.93 34.54 34.74 10.70 -0.26 1.20 

                
Crabp1 control 33.00 32.52 31.24 7.23 0.00 1.00 

  Sin3a KD 30.82 30.79 30.81 6.77 -0.47 1.38 

                
Hsd17b11 control 36.85 37.42 37.14 13.13 0.00 1.00 

  Sin3a KD 36.00 36.05 36.03 11.99 -1.14 2.20 

                
Krt18 control 33.57 33.62 33.60 9.59 0.00 1.00 

  Sin3a KD 32.23 32.00 32.12 8.08 -1.51 2.85 

                
Osr2 control 35.00 35.22 35.11 11.10 0.00 1.00 

  Sin3a KD 32.90 33.27 33.09 9.05 -2.06 4.16 

                
Rgs16 control 33.23 33.00 33.12 9.11 0.00 1.00 

  Sin3a KD 31.93 31.64 31.79 7.75 -1.36 2.57 

                

H2a control 24.02 24.00 24.01       
  Sin3a KD 24.10 23.98 24.04       
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3.2 Discussion 
 

 During early mouse development, a highly differentiated female germ cell, 

the oocyte, transforms into a zygote, which is the source of the undifferentiated 

totipotent blastomeres.  Surprisingly, this biological switch occurs during a 

transcriptionally inactive period; therefore, this transformation must rely on the 

transcripts bestowed to the zygote by the mother (the oocyte) until the zygotic 

genome is activated.  During this transition from maternal to zygotic control of 

cellular functions, the major ZGA promotes a dramatic change of global gene 

expression (Hamatani et al., 2004) that is essential for continued development 

beyond the 2-cell stage.  Superimposed on ZGA and reprogramming is the 

formation of a chromatin-mediated transcriptionally repressive state that 

promotes the repression of endogenous genes during the 2-cell stage 

(Wiekowski et al., 1991; Majumder et al., 1993; Davis et al., 1996).  This 

transcriptionally repressive state is relieved when global histone hyperacetylation 

is induced (Wiekowski et al., 1991; Davis et al., 1996).  Although the genes that 

are reprogrammed have been identified, a major unresolved problem is how this 

reprogramming of global gene expression occurs through the utilization of a 

maternally-derived transcription machinery. 

 Several modes of regulation may be responsible for ZGA and the 

subsequent reprogramming of global gene expression with a maternally-derived 

transcription machinery in early mouse development.  One locus of regulation 

may be at the level of RNA polymerase II, particularly the post-translational 

changes affecting this enzyme.  Phosphorylation of RPB1, most likely by MAP 

kinase, occurs in mouse oocytes; the phosphorylation may destabilize the 

holoenzyme and be responsible for the global transcriptional silencing observed 

in these cells, which is continued into the 1-cell stage of mouse preimplantation 

development (Wei et al., 2015; Abe et al., 2010).  Because the amount of the 

hyperphosphorylated form of RPB1 decreases rapidly following fertilization when 

the enzyme responsible for the enzyme’s phosphorylation is inactive in Xenopus 
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(Bellier et al., 1997), CTD phosphatases may counteract the action of MAP 

kinase, leading to dephosphorylation of the hyperphosphorylated form of RPB1 in 

mouse 1-cell embryos and activation of zygotic transcription.   

 Changing the composition of the chromatin such as the elimination of 

maternal histone variants associated with transcriptional repression may be 

responsible for the global transcriptional activation and subsequent 

reprogramming of gene expression in mouse embryos.  Several histone variants 

associated with transcriptional repression are lost following fertilization.  For 

example, the maternal histone variant macroH2A, which is a core histone related 

to canonical histone H2A (Pehrson and Fried, 1992), is generally involved with 

transcriptionally repression due to its association with condensed chromatin such 

as inactive genes and the inactive X chromosome (Buschbeck et al., 2009; 

Costanzi and Pehrson, 1998).  During ES cell differetiation and in development, 

macroH2A is deposited at pluripotency genes and can act as an epigenetic 

barrier during the process of somatic cell reprogramming (Gaspar-Maia et al., 

2013).  Interestingly, in developing and maturing mouse oocytes, macroH2A is 

associated with chromosomes and is lost from the embryo following fertilization, 

specifically by the late 2 pronuclei stage (Chang et al., 2005).  MarcroH2A does 

not reappear until after the 8-cell stage, and its expression persists in the morula 

and blastocysts, which is the stage at which the first cellular differentiation event 

occurs during development. 

 Another elegant, but simple solution to promote the success of 

reprogramming gene expression is the translational recruitment of dormant 

maternal mRNAs that encode for chromatin-modifying-related factors during 

oocyte maturation and following fertilization in the mouse.  These critical factors 

will rearrange the chromatin structure of the early embryo, and subsequently alter 

RNA polymerase II promoter accessibility to elicit transcription and the 

subsequent reprogramming of global gene expression.  By utilizing the 

recruitment of dormant maternal mRNAs for translation during oocyte maturation, 

the oocyte is able to utilize a mechanism to synthesize a new functional protein 
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product at the appropriate developmental time without new transcription.   

 The mechanism for the translational recruitment of dormant maternal 

mRNAs is well understood in oocytes (Groppo and Richter, 2009).  In general, 

many dormant but stable mRNAs that have a relatively short poly (A) tail in the 

oocyte are inhibited from translation by sequence-specific RNA binding proteins 

such as Maskin, which affects translational initiation.  In particular, Maskin, which 

interacts with CPE-containing mRNAs that are bound by CPEB, weakly interacts 

with eukaryotic translation initiation factor 4E (eIF4E) and prevents its interaction 

with eIF4G and leads to translational repression (Stebbins-Boaz et al., 

1999).  When the oocyte resumes meiosis, the bound CPEB stimulates the 

elongation of the poly (A) tail, which then binds poly(A) binding protein 

(PABP).  PABP then associates with eIF4G and helps disrupt the Maskin-eIF4E 

interaction to allow for the translational activation of the CPE-containing mRNAs 

(Richter and Sonenberg, 2005).  The dissociation of Maskin from eIF4E and 

translational activation is also mediated by several CDK1 driven phosphorylation 

events of Maskin (Barnard et al., 2005). 

 Previously, the identification of the dormant maternal mRNAs that undergo 

translational recruitment following oocyte maturation was serendipitous.  For 

example, c-mos, a MAPK pathway activator, was serendipitously identified as a 

dormant maternal transcript that is recruited for translation during oocyte 

maturation.  The translational recruitment of this transcript is needed to maintain 

cellular arrest at metaphase II (Colledge et al., 1994; Sheets et al. 1995; Sagata, 

1997).  However, these dormant maternal mRNAs are now being identified on a 

global scale by using previously generated data from microarray experiments in 

which oligo(dT) primers were used to generate cDNA from mouse oocytes and 

embryos (Zeng et al., 2004).  The elongation of the poly (A) tail that is associated 

with translational activation provides for a more efficient oligo(dT) priming of RNA 

isolated from the mouse oocytes and embryos.  The increased priming efficiency 

associated with oligo(dT) primers results in an increase in the relative abundance 

of the transcript in 1-cell embryos when compared to full-grown GV-intact 
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oocytes. 

 After analyzing the microarray data, many transcripts displayed an 

increase in relative abundance between the full-grown GV-intact oocyte and 1-

cell stage, and some of these potential dormant maternal transcripts that are 

recruited for translation during oocyte maturation and/or following fertilization 

encode for chromatin-modifying-related factors (Zeng et al., 2004).  A few such 

transcripts were Sin3a, a chromatin remodeler (Bansal et al., 2016), Rbbp7, a 

core histone biding protein (Verreault et al., 1998), and Ezh2, a histone H3K27 

methyltransferase (Cao and Zhang, 2004).  A prominent characteristic of these 

potentially translationally recruited transcripts is their raw score for their relative 

abundance is high when compared to the value of the normalized chip.  This high 

abundance of the translationally recruited maternal transcript provides a strategy 

for the oocyte to synthesize a large amount of protein during a short period of 

time before the function of the protein is needed.  The following work focuses on 

Sin3a because SIN3A is essential for mouse development (Cowley et al., 2005; 

Dannenberg et al., 2005) and present in a HDAC-containing complex (Bansal et 

al., 2016), which have a role in the formation of the transcriptionally repressive 

state that develops during ZGA and the reprogramming of gene expression (Ma 

and Schultz, 2008).  

 During oocyte maturation and following fertilization, elements in the 3’ 

UTR, such as the cytoplasmic polyadenylation element (CPE, U4-5A1-2U), 

polyuridine stretch and polyadenylation signal sequence (AAUAAA), control the 

translation of certain maternal mRNAs by elongating the poly (A) tail (Fox et al., 

1990; Oh et al., 2000).  After searching the 3’ UTR of Sin3a transcript for these 

elements, a potential CPE (U5AU) and a polyuridine stretch (U13) are present 

within ~210 nucleotides and directly preceding the polyadenylation signal 

sequence.  These elements may contribute to the increase in the amount of 

SIN3A protein observed during oocyte maturation and following fertilization by 

directing the polyadenylation of the Sin3a transcript that will lead to the 

translational activation of the transcript.  Examination of microarray data of oligo 
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(dT) primed mouse oocyte and 1-cell embryo cDNA reveal an elevation in the 

relative abundance of Sin3a transcript between the full-grown GV-intact oocytes 

and 1-cell stages (Zeng et al., 2004).  The elevation in the relative abundance of 

the Sin3a transcript likely reflects the polyadenylation of the transcript during 

oocyte maturation that leads to an increased priming efficiency of the oligo (dT) 

primer during reverse transcription since essentially no new transcription occurs 

between the two stages.  These results are consistent with Sin3a mRNA being a 

dormant maternal mRNA that is recruited for translation during oocyte maturation 

and following fertilization.  It would be interesting to mutate the CPE located 

within the 3’ UTR of Sin3a mRNA to determine if it attenuates the maturation-

associated increase in SIN3A, and the polyuridine stretch (U13) to determine if 

the increase in maternal SIN3A following fertilization is impaired.   

 A more recent genome-wide profiling of polysome mRNA identified an 

enrichment of a motif for the RNA-binding protein deleted in azoospermia-like 

(DAZL) along with the CPE motif within the 3’ UTR of mRNAs recruited to the 

polysomes during mouse oocyte maturation (Chen et al., 2011).  Although DAZL 

has been proposed to function as a translational activator, there is evidence 

supporting it as a translation repressor in full-grown GV-intact oocytes.  

Interestingly, the 3’ UTR of Sin3a mRNA contains several putative DAZL 

elements within 200 nucleotides of the polyadenylation signal sequence.  It would 

be interesting to determine if these motifs have a role in the translational 

recruitment of the Sin3a transcript to the polysomes during oocyte maturation 

and/or the translational repression of the Sin3a transcript in mouse oocytes. 

 The restricted presence of the maturation-associated increase in SIN3A 

protein mainly to the 1-cell stage likely constrains its function to this short window 

of mouse preimplantation development.  Because there was a relatively 

significant amount of Sin3a transcript present at the 2-cell stage and maternal 

SIN3A degradation was substantially inhibited by a proteasome inhibitor, the 

dramatic reduction of maternal SIN3A to nearly undetectable levels by the 2-cell 

stage suggest that the protein loss is likely a result of proteasome-mediated 
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degradation rather than the decrease in the relative abundance of Sin3a mRNA 

between the MII and 2-cell stages.  The low SIN3A protein levels can also result 

from a decrease in protein synthesis of SIN3A.  If the loss in the increase in 

maternal SIN3A protein is mainly due to degradation, it leads to an emerging 

question as to which pathway is involved in the degradation of maternal SIN3A 

protein: ubiquitin-dependent or ubiquitin-independent proteasomal degradation.  

If maternal SIN3A undergoes clearance via the ubiquitin-independent 

proteasomal degradation pathway, it would be interesting to determine what 

mechanism is in place to protect maternal SIN3A from degradation to allow 

proper protein accumulation between the MII and 1-cell stages.  It may be that 

assembly of SIN3A into the SIN3A-co-repressor complex protects SIN3A from 

20S proteasomal degradation, as seen when CDK inhibitor p21 (WAF1/CIP1) 

binds directly to cyclin D1 (Touitou et al., 2001; Coleman et al., 2003).  It is 

possible that a post-translational modification occurs following ZGA that 

dissociates SIN3A from the complex, and allows for it to be degraded by the 

proteasome. 

 Because the function of maternal SIN3A may be limited to a short window 

of mouse preimplantation development and the epigenetic modifications of the 

paternal and maternal genomes are distinct at fertilization and during the 1-cell 

stage (Santos et al., 2005; Erhardt et al., 2003; Lepikhov and Walter, 2004; Liu et 

al., 2004), I focused my analysis mostly on determining the effects of depleting 

maternal SIN3A in 1-cell embryos that were derived from MII eggs fertilized in 

vitro.  Although maternal SIN3A appears equally distributed to both pronuclei in 

the 1-cell mouse embryo, differences in chromatin-association of nuclear proteins 

at this stage is know to exist.  For example, PGC7/STELLA appears in both 

pronuclei at the 1-cell stage, but has a weak association to the paternal genome 

(Nakamura et al., 2012).  However, no difference in the chromatin-association of 

maternal SIN3A was observed between the maternal and paternal pronuclei 

when 1-cell embryos were permeabilized prior to fixation.  Any difference in 

localized gene occupancy between the maternal and paternal remains unknown 
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and can only be addressed once chromatin immunoprecipitation assays allow for 

small cell numbers to be analyzed.  

 The HDAC inhibitor TSA led to histone hyperacetylation, whereas blocking 

the maturation-associated increase in maternal SIN3A surprisingly results in no 

histone hyperacetylation.  Rather, histone hypoacetylation is seen in the 1-cell 

embryos depleted of maternal SIN3A.   Although a decrease in nuclear HDAC2 

was seen in Sin3a null oocytes, the amount of nuclear HDAC1 remained 

unchanged (Ma et al., 2015).  Because removal of HDAC1, but not HDAC2 in 

preimplantation embryos leads to global histone hyperacetylation (Ma et al., 

2008), a likely decrease in nuclear HDAC2 when the maturation-associated 

increase in maternal SIN3A is inhibited will not likely effect the global histone 

acetylation state of 1-cell mouse embryos.  However, as seen with oocytes, the 

amount of nuclear HDAC1 likely remains unchanged in 1-cell embryos depleted 

of maternal SIN3A, and therefore would still be present and able to function in 1-

cell embryos.  Because the SIN3A-co-repressor complex is a major HDAC1 and 

HDAC2 containing complex and SIN3A is an essential component of the multi-

subunit complex, depleting maternal SIN3A may likely allow HDAC1 and the 

decreased nuclear amount of HDAC2 to associate with other HDAC1/2-

containing complexes.  If the other HDAC1/2-containing complexes have greater 

enzymatic activity than the SIN3A-co-repressor complex, then the observed 

histone hypoacetylation could likely occur. 

 The observed histone hypoacetylation and depletion of maternal SIN3A in 

mouse 1-cell embryos had no effect on global transcription in the zygote, 

however, the histone hypoacetylation could account for the 50% reduction in 

global transcription observed in the 2-cell embryos depleted of maternal SIN3A 

because of the known links between transcription and the histone modifications 

that are affected in these embryos.  For example, the enrichment of H4K12ac in 

transcribed regions, which was globally decreased in the maternal SIN3A-

depleted embryos, is associated with transcriptional elongation (Cho et al., 1998) 

and could contribute to the reduced global transcription at the 2-cell stage.  
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Furthermore, the hypoacetylation of H4K8ac, which is enriched in the promoter 

and body of transcribed genes and linked to transcriptional activation (Wang et 

al., 2008), and H3K18ac, which is enriched around the transcription start site and 

may be important for recruiting Pol II to target genes to initiate transcription (Jin 

et al., 2011), could also contribute to the decreased global transcription. 

 Blocking the maturation-associated increase in maternal SIN3A led to a 

developmental arrest at the 2-cell stage.  The function of only a few other genes 

(Mater, mHR6A, Trim24, and Brg1) has been identified as being required for 

embryonic development beyond the 2-cell stage as Sin3a (Tong et al., 2000; 

Roest et al., 2004; Torres-Padilla and Zernicka-Goetz, 2006; Bultman et al., 

2006).  Failure to activate the zygotic genome or successfully reprogram the 

pattern of gene expression that accompanies ZGA is a source for the 

developmental arrest.  The expression of a restricted subset of genes that are 

normally and not normally activated during ZGA and reprogramming of gene 

expression in maternally depleted SIN3A 2-cell embryos likely underlines the 

observed 2-cell arrest.  The observation that only a restricted subset of genes 

that are normally activated during ZGA are misexpressed is consistent with 

SIN3A co-repressor complex being one of several HDAC1/2-containing 

complexes that may have a role in the repression of genes during the formation 

of the global transcriptionally repressive state that develops during ZGA.   

 Analysis of the misexpressed genes in maternal SIN3A-depleted embryos 

was uninformative in providing a framework for understanding the mechanistic 

relationship between the depletion of maternally derived SIN3A co-repressor 

complex and relief of repression of a restricted subset of genes.  Mapping of the 

misexpressed genes to chromosomes did not reveal unexpected gene clusters, 

and the misexpressed genes represented multiple classes of genes and did not 

solely represent one gene class (e.g., noncoding RNAs).  However, the analysis 

of the misexpressed genes revealed that a bivalent promoter, which carry both 

H3K4me3 an H3K27me3 in mouse embryonic stem cells, marked about 40 

genes whose expression was increased in SIN3A maternally depleted 2-cell 
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embryos.  It would be interesting to determine whether the bivalent chromatin 

mark is present at the promoters of these genes in 2-cell mouse embryos and 

observe how they change over the course of preimplantation development.  

Investigating whether one or both of these histone modifications are needed for 

the recruitment of the SIN3A-co-repression complex to these genes should 

facilitate the development of a working model outlining the linkage between the 

maternal SIN3A-co-repression complex and the reprogramming of gene 

expression.  However, these questions could only be addressed once chromatin 

immunoprecipitation assays allow for small cell numbers because of the 

excessive amount of time and effort needed to generate the biological samples 

that were used in this study.  

 The experiment where elevated levels of maternal SIN3A was maintained 

beyond the time when it normally decreases to undetectable levels yields insights 

beyond what I was expecting to discover.  Analysis of the control embryos 

suggest that development to the blastocyst stage depends on the control cRNA 

that is injected and highlights the need to be cautious about choosing a proper 

control in the experiment.  We observed that mCherry cRNA is detrimental to 

blastocyst developmental while Luc cRNA and buffer had no effect.  The 

overexpression experiment was unsuccessful because of the rapid loss of the 

exogenously expressed SIN3A, a finding consistent with the endogenous 

maternal SIN3A.  In order to assess whether the rapid loss of maternal SIN3A is 

essential for mouse preimplantation development, identifying and then mutating 

the amino acid sequences responsible for the rapid turnover of (e.g., of 

destruction box) (Glotzer et al., 1991) SIN3A may allow for such a study to be 

conducted. 

 In summary, the presented data provide a role for SIN3A co-repressor 

complex, an HDAC-containing complex, in the development of the 

transcriptionally repressive state during mouse preimplantation development.  In 

this model, SIN3A is encoded by a dormant maternal mRNA that is recruited for 

translation during oocyte maturation and following fertilization.  Blocking the 
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recruitment of maternal Sin3a mRNA impairs the expression of a subset of 

zygotically and non-zygotically activated genes during the establishment of the 

transcriptionally repressive state that is superimposed on ZGA.  These results 

provide a unique approach with which to study the reprogramming of gene 

expression during preimplantation development and leads to a number of 

additional questions requiring further research.  It would certainly be interesting 

to determine the precise mechanism between the loss of maternal SIN3A and 

relief of repression of the genes misexpressed in maternal SIN3A-depleted 

embryos.  Overall, the data implicate the role for the translational recruitment of 

dormant maternal mRNAs encoding chromatin remodelers like SIN3A as a post-

transcriptional mechanism for how reprogramming of gene expression occurs 

utilizing a maternally-derived transcription machinery.  Interestingly, what 

emerges from the analysis of the microarray data of oligo (dT) primed mouse 

oocyte and 1-cell embryo cDNAs is that the transcripts that show a relative 

increase in abundance between the full-grown GV-intact oocyte and 1-cell stage 

encode for proteins which are central to cellular processes that should either not 

function or function minimally in the oocyte but then are required by the 1-cell 

stage of development.  For example, mRNAs are relatively stable during oocyte 

growth due to the RNA binding protein MSY2 (Yu et al., 2004).  The mRNA 

degradation machinery during this period is minimally functional and the 

resumption of meiosis triggers a transition from maternal mRNA stability to 

instability, in which MSY2 becomes phosphorylated by CDC2A.  This 

phosphorylation event makes maternal mRNAs more susceptible to the oocyte’s 

RNA degradation machinery (Medvedev et al., 2008).  DCP1A and DCP2, 

proteins responsible for decapping mRNA, are encoded by dormant maternal 

mRNAs that are recruited for translation during oocyte maturation.  The increase 

in both these proteins ensures that the maternal mRNAs are stable in the oocyte 

but are unstable and degraded following oocyte maturation (Ma et al., 2013).  

Oocytes should not have the capacity to undergo a round of DNA replication, but 

need to replicate their DNA following fertilization.  ORC6L and CDC6, critical 
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factors for assembly of a functional origin of replication complex, are encoded by 

dormant maternal mRNAs that are recruited for translation during oocyte 

maturation (Murai et al., 2010; Anger et al., 2005).  The recruitment of these 

transcripts during oocyte maturation ensures that DNA replication does not occur 

in the oocyte but that the 1-cell embryos are capable of undergoing a round of 

DNA replication.   The active DNA demethylation event occurring solely on the 

paternal genome during the 1-cell stage of mouse development is mediated by 

TET3 (Iqbal et al., 2011; Gu et al., 2011; Wossidlo et al., 2011).  Oocyte 

maturation and fertilization is accompanied by an increase in the protein 

synthesis of TET3 that results in loss of the paternal 5mC, and appearance of 

hydroxymethylcytosine (5hmC) (Inoue and Zhang, 2011).  Inhibiting the increase 

in maternal TET3 using a siRNA approach results in the inhibition of the oxidation 

of 5mC to 5hmC, and surprisingly, the loss of maternal TET3 had no effect on 

ZGA or transponsable element activation (Inoue et al., 2012).  The increase in 

TET3 ensures the 1-cell embryo, but not the oocyte, undergoes active DNA 

demethylation following fertilization. 

 A similar conclusion emerged when a different approach was undertaken 

to determine, at a global scale, which maternal mRNAs are recruited for 

translation during oocyte maturation.  Results from genome-wide analysis of 

transcripts that were recruited to polysomes during mouse oocyte maturation 

revealed that these transcripts encode for well-established regulators of the cell 

cycle, like components of the spindle assembly checkpoint (Mad2 and Bub1b) 

and the anaphase-promoting complex (Apc1, Apc10) (Chen et al., 2011).  

Interestingly, the processes that are encoded for by the transcripts recruited to 

the polysomes are not limited to regulators of cell cycle, but include chromatin 

remodelers and transcription regulators, which is consistent with my findings from 

the microarray data.  The coordinated translational recruitment of specific 

maternal mRNAs during oocyte maturation and following fertilization is a 

mechanism the oocyte utilizes and is likely essential for the critical events that 

take place during the initial stages of embryo development until transcription is 
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activated and the embryo assumes control of development.  
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