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Statistical Methods For Whole Transcriptome Sequencing: From Bulk
Tissue To Single Cells

Abstract

RNA-Sequencing (RNA-Seq) has enabled detailed unbiased profiling of whole transcriptomes with
incredible throughput. Recent technological breakthroughs have pushed back the frontiers of RNA expression
measurement to single-cell level (scRNA-Seq). With both bulk and single-cell RNA-Seq analyses, modeling of
the noise structure embedded in the data is crucial for draw- ing correct inference. In this dissertation, I
developed a series of statistical methods to account for the technical variations specific in RNA-Seq
experiments in the context of isoform- or gene- level differential expression analyses. In the first part of my
dissertation, I developed MetaDiff (https://github.com/jiach/MetaDiff ), a random-effects meta-regression
model, that allows the incorporation of uncertainty in isoform expression estimation in isoform differential
expression anal- ysis. This framework was further extended to detect splicing quantitative trait loci with RNA-
Seq data. In the second part of my dissertation, I developed TASC (Toolkit for Analysis of Single-Cell data;
https://github.com/scrna-seq/TASC), a hierarchical mixture model, to explicitly adjust for cell-to-cell
technical differences in scRNA-Seq analysis using an empirical Bayes approach. This framework can be
adapted to perform differential gene expression analysis. In the third part of my dissertation, I developed,
TASC-B, a method extended from TASC to model transcriptional bursting- induced zero-inflation. This
model can identify and test for the difference in the level of transcrip- tional bursting. Compared to existing
methods, these new tools that I developed have been shown to better control the false discovery rate in
situations where technical noise cannot be ignored. They also display superior power in both our simulation
studies and real world applications.
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ABSTRACT

STATISTICAL METHODS FOR WHOLE TRANSCRIPTOME SEQUENCING:
FROM BULK TISSUE TO SINGLE CELLS

Cheng Jia

Mingyao Li

RNA-Sequencing (RNA-Seq) has enabled detailed unbiased profiling of whole transcriptomes with
incredible throughput. Recent technological breakthroughs have pushed back the frontiers of
RNA expression measurement to single-cell level (scRNA-Seq). With both bulk and single-cell
RNA-Seq analyses, modeling of the noise structure embedded in the data is crucial for draw-
ing correct inference. In this dissertation, | developed a series of statistical methods to account
for the technical variations specific in RNA-Seq experiments in the context of isoform- or gene-
level differential expression analyses. In the first part of my dissertation, | developed MetaDiff
(https://github.com/jiach/MetaDiff), a random-effects meta-regression model, that allows the
incorporation of uncertainty in isoform expression estimation in isoform differential expression anal-
ysis. This framework was further extended to detect splicing quantitative trait loci with RNA-Seq
data. In the second part of my dissertation, | developed TASC (Toolkit for Analysis of Single-Cell
data; https://github.com/scrna-seq/TASC), a hierarchical mixture model, to explicitly adjust for
cell-to-cell technical differences in scRNA-Seq analysis using an empirical Bayes approach. This
framework can be adapted to perform differential gene expression analysis. In the third part of my
dissertation, | developed, TASC-B, a method extended from TASC to model transcriptional bursting-
induced zero-inflation. This model can identify and test for the difference in the level of transcrip-
tional bursting. Compared to existing methods, these new tools that | developed have been shown
to better control the false discovery rate in situations where technical noise cannot be ignored. They

also display superior power in both our simulation studies and real world applications.
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CHAPTER 1

INTRODUCTION

1.1. RNA

The central dogma of biology describes the flow of genetic information from deoxyribonucleic acid
(DNA) to ribonucleic acid (RNA), and subsequently from RNA to protein. As a courier from genomic
DNA to cellular protein synthesis machinery (ribosomes), RNA ultimately affects the phenotypes of
all cellular organisms on planet earth.

Tremendous discrepancy in complexities and dynamic ranges of genome and protein exists. As an
example, human genome contains approximately 21,000 distinct protein-coding genes, much less
than previously estimated (Lander, P011), while a recent survey of the human proteome discovered
approximately 293,000 non-redundant peptides (Kim et al., P074). In addition, human genome is
generally diploid, with two copies of every gene present. The level of protein expression on the
other hand has a large dynamic range from the most prevalent such as hemoglobins in red blood
cells and insulin in pancreatic  cells, to the most rare (e.g., certain transcription factors of which
the expression needs to be carefully regulated to avoid malignant growth).

This discrepancy can be partly explained by RNA. Eukaryotic genes are organized on the genome
as links of protein coding regions (exons) interwoven with non-coding sequences (introns), which
are spliced out during post-transcriptional processing of pre-mRNA (Crick, T979). Alternative splic-
ing of pre-mRNA molecules can create an arbitrarily large number of isoforms coding for distinct
protein products, by including different subsets of exons or even different parts of an exon, in the
mature messenger RNA (mRNA), bridging the gap in structural complexities between DNA and
protein. Many copies of RNA can be produced from a single genetic locus through transcription,
and regulation of its speed directly affects the amount of mMRNA present in the cell, thus influenc-
ing the level of the particular protein encoded by this mRNA. A large portion of quantitative and
sequence complexity of human proteome is attributable to the transcription and alternative splicing
(AS) of RNA.

Due to the critical roles played by RNA in cellular processes, mis-regulation of mRNA transcription
or post-transcriptional modifications can be extremely detrimental. Therefore, identification of differ-

entially expressed mRNA is a standard part of analysis when comparing controls and cases for any



disease. In addition, mis-regulation of alternative splicing is cause for numerous known diseases,
such as B-thalassemia (Cao and Galanello, P010), spinal muscular atrophy (Cho and Dreyfuss,

2010), etc.
1.2. RNA-Sequencing

The quest for accurately measuring the amount of specific mMRNA molecules has witnessed several
leaps of technology which has gradually allowed the scientific community to investigate more num-
ber of genes simultaneously with greater details and accuracy. Early methods such as Northern
blot and real-time quantitative polymerase chain reaction (RT-gPCR) could only detect the expres-
sion of several candidate genes with known sequence at a time.

The advent of microarray technology enabled simultaneous quantification of thousands of putative
transcripts. This brought about new fields of transcriptomic studies such as non-coding RNA, single
nucleotide polymorphisms (SNPs) and alternative splicing events. Despite its popularity, microarray
suffers from the following shortcomings. First, it fails to discover novel transcripts that have yet to
be annotated. Second, it does not reveal the sequences of the molecules detected outside the
hybridization probes. These caveats were eventually addressed by RNA-sequencing technology.
Massive parallel sequencing was first applied to measure mRNA concentration in 2007 (Weber et
al., P007). While early adopters primarily employed pyrosequencing technology (Sugarbaker et al.,
2008; Torres et al., 2008; Weber et al., 2007), lllumina sequencing became immediately popular
after its introduction (Marioni et al., 2008), and several methods (e.g. Bloom et al., P009; Tang et al.,
2009; Wang et al., P010) were proposed to identify differentially expressed genes using the lllumina
platform. Currently, the lllumina platform dominates the market. We henceforth define RNA-Seq
(RNA Sequencing) as the technology to profile a cross-sectional snapshot of the presence and
quantities of mMRNAs in a specific transcriptome with massive parallel sequencing, including but not

limited to lllumina sequencing.

1.2.1. lllumina Sequencing

lllumina systems employ a sequencing-by-synthesis method. The basic procedure of an lllumina

sequencing experiment involves:



[1]

[il]

ii]

Library preparation.
DNA molecules, either from directly extracted genomic DNA (DNA-Seq) or from cDNA re-
verse transcribed from a pool of purified mMRNA (RNA-Seq), are fragmented and ligated with

adapters on both end of the molecule.

Cluster amplification. The prepared library is loaded onto a chip, and the fragments hybridize
to the surface of the chip through the adapters. Each bound fragment is then amplified into
a clonal cluster. This step is necessary because current CCD technology is not able to cap-
ture the emission from one single fluorescent molecule. A cluster of fragments with identical

sequences intensify the signal for it to be detectable by CCD.

Sequencing. Fluorescently labeled nucleotides are added on to the chip, and throughout the
last round of synthesis, the nucleotides are allowed to be incorporated one at a time. High-
sensitivity CCD is used to capture the wavelength of the emitted fluorescent signals after

incorporation of each base, revealing the underlying sequence of each cluster.

After sequencing, the raw reads obtained will serve as the starting material for downstream com-

putational analysis. Usually, the following steps are needed before any study of substance can be

performed on the raw reads (Conesa et al., P018).

(1]

[il]

Quality assessment of raw reads. This step mainly aims to determine the overall quality of
the sequencing protocol up to this point, by computing parameters such as sequence-specific
quality scores, GC content, N content, distribution of sequence length, duplication levels,
sequence over-representation and k-mer content, efc (Andrews, P010). Reads or samples
of lower quality should be excluded from downstream analyses to avoid biases introduced by

sequencing artifacts.

Read mapping/transcriptome assembly. Alignment of reads on a reference genome or tran-
scriptome must be completed before any other statistics can be computed. In the case of
RNA-seq, reference transcriptome can be assembled de novo, or be derived from an an-
notated reference genome. After this step, another QC step is usually performed to control
the quality of the assembled transcriptome, from parameters such as percentage of mapped

reads, percentage of uniquely mapped reads, coverage uniformity, etc.



RNA-seq has a number of advantages over microarray:

(1]

[il]

ii]

RNA-Seq is capable of sequencing the genes targeted to single-nucleotide resolution. This
has effectively eliminated the cross-hybridization of transcripts with similar sequences, suf-

fered by many array-based assays.

Microarray technology limits the researcher to detecting transcripts that have already been
annotated. RNA-seq is more suitable for exploratory experiments that aim to discover novel

transcripts and isoforms.

RNA-seq delivers higher dynamic range compared to microarray, and significant improvement

on signal-to-noise ratio.

1.2.2. Applications of RNA-Seq

The information acquired through RNA-seq can be analyzed to generate complicated insights of

the target transcriptomes, either by itself, or combined with corresponding genomic or proteomic

data (Han et al., 20715). Some of the basic applications of RNA-seq include:

(1]

[il]

Gene and transcript quantification. One of the most common applications of RNA-seq is
to characterize the expression profile of the entire transcriptome in a sample of interest, by
measuring the amount of all genes/transcripts in that sample. This process involves counting
the number of reads mapped to each gene or transcript. While gene-level quantification is
relatively straightforward, as genes are largely non-overlapping discrete genomic regions,
transcript-level quantification on the other hand requires probabilistic modeling, for one read
can be mapped to multiple transcripts from the same genetic locus. Tools used for transcript-
level gene quantification include Cufflinks (Trapnell et al., 2072) RSEM (Li and Dewey, 2017

and PennSeq (Hu et al., P013), etc.

Differential expression analysis. The power of RNA-seq can also be harnessed for comparing
the transcriptomes of samples from two or more different pharmacological treatments, bio-
logical tissues, developmental stages or other grouping factors. Due to over-dispersion intro-
duced in the sequencing protocol and non-canonical mean-variance curves, careful modeling
of read counts is required to control the false positive rates in the discovery of differentially

expressed genes using RNA-seq data. Many packages were developed in addressing this



issue, and a detailed review for these methods can be found in Eeciion 2-3.

[ii] Alternative splicing. RNA-seq provides the detailed sequences of the transcripts detected in
addition to their quantities. This has made possible the investigation of the structural differ-
ences in transcriptomes, such as exon skipping, intron retention, alternative 3'/5’ splice sites,
etc. A detailed review of available methods for studying alternative splicing using RNA-seq

data can be found in Eeclion 2°3.

1.2.3. Single-Cell RNA-Sequencing

Traditional bulk RNA-seq measures the average mRNA levels in the target cell populations, which
can be heavily influenced by a relatively small proportion of cells that exhibit extreme expression for
certain genes (Bengtsson et al., P005). With the detection threshold of RNA-seq being pushed
lower, profiling of entire transcriptomes on the single-cell level has been made possible, thus
paving the way to characterizing gene expression heterogeneity among individual cells (Bacher
and Kendziorski, ?2016; Eberwine et al., P014; Kolodziejczyk et al., P0T15; Sandberg, P014). Briefly,

the protocol for single-cell RNA-seq usually includes the following steps:

[i] Cell capture. The first step of any single-cell RNA-seq protocol invariably involves isolating
individual cells from the tissue or in vitro culture of interest. Several considerations need to

be addressed in order to acquire a suitable sample for downstream procedures:

(a) Cell viability. The isolated cells must be minimally disturbed and highly viable in the final

suspension.

(b) Sampling bias. The isolated cells must be a representative sample of the target tissue,

without significant bias for any specific subpopulations.

Disassociation can be performed by either enzymatic digestion or mechanical techniques
such as laser-capture micro-dissection(Emmert-Buck et al., T996). Due to the potential differ-
ence in disassociation kinetics between different sources of tissues and cell types, biochem-
ical digestion might introduce substantial sampling bias. Laser-capture micro-dissection on
the other hand suffers from its low throughput as well as compromised cell viability. After
disassociation, several approaches are available to further separate suspended cell clumps

into individual cells, including serial dilution (Ham, T965), micropipetting(Zong et al., P012),



microwell dilution (Gole et al., POT13), optical tweezers (Landry et al., P013) and FACS (Navin
et al., 20171). Recently, microfluidics-based systems have become mainstream due to their
commercial availability (White et al., 2Z011). Even higher throughput up to hundreds of thou-
sands of cells per assay can be achieved through droplet-based automanipulation methods

(Macosko et al., P0T15).

[ii] Reverse transcription and pre-amplification. Isolated cells are subsequently lysed with sur-
factant in their own individual containers. For experiments performed with microfluidics, cell
membranes are bursted with surfactant added to the integrated fluidic circuits (IFCs). For
droplet-based systems, the cells are lysed immediately after it is injected into a droplet,
which contains surfactant in the enclosed solution. Reverse transcription, bar-coding and
pre-amplification is then performed in situ. Reverse transcription produces complementary
DNA from the RNA released from lysed cells. Usually only a minute amount of cDNA can be
produced from a single cell, hence the fidelity and efficiency of pre-amplification is vital to the
quality of the RNA-seq data.

Many different protocols exist for the procedures following cell lysis, employing distinctive sets
of enzymes and varying choices of reaction parameters. These can be roughly categorized
into two classes according to their choice of pre-amplification method. SmartSeq, and its up-
dated version SmartSeqg2, STRT-seq, the Tang protocol, and SC3-seq use polymerase chain
reaction (PCR), which could result in nonlinear amplification. CEL-Seq and MARS-Seq on
the other hand choose IVT (in vitro transcription), which in theory linearly amplifies the cDNA,
however, IVT could lead to additional 3’-end coverage biases due to the extra reverse tran-
scription step involved.

Protocols like SMART-seq and SMART-seqg2 achieve relatively uniform coverage of the en-
tire transcript, which is ideal for discovering novel isoforms and studying structural variants in
the transcriptome. Protocols like CEL-seq and STRT-seq focus on tag-counting, generating
reads covering only a portion of the transcript. The latter is capable of incorporating bar codes
such as unique molecule identifiers (UMIs) to directly measure the number of RNA molecules

(Griin and Oudenaarden, P015).

[iii] Library preparation and sequencing. Amplified cDNA is then subject to fragmentation, sequencing-

specific barcoding, and other steps of library preparation. This step is identical to bulk RNA-



seq, except for the multiplexing of cells prior to library preparation in order to increase through-

put.

1.3. Transcriptional Bursting

Profiling the cell-to-cell heterogeneity in gene expression has enabled a plethora of new venues of
research for molecular biologists. One of the most classic, also the most important areas of study, is
the investigation of transcriptional dynamics in cellular systems, which is essential for understanding
how gene activity is regulated, thus answering the most fundamental question in molecular biology.
From bacteria and yeast to mammalian cells (Blake et al., P006; Chong et al., P0714; Fukaya, Lim,
and Levine, PO186; Suter et al., 2011, transcriptional bursting has been reported in a wide range of
organisms spanning the evolutionary tree.

There has been overwhelming evidence that gene transcription is discrete, occurring in bursts of
activity between intervals of inactivity. (Chubb et al., P006; Raj et al., P006). Two models arise from
the observed data to describe these transcriptional fluctuations, one-state and two-state models.
In the one-state model, transcription is a Poisson process with a constant mean. This produces a
somewhat uniform distribution of transcripts in the cell population (Zenklusen, Larson, and Singer,
2008). While in the two-state model, the cells randomly switch between the “on” and “off” states of
transcription for a specific gene. This produces a distribution of mMRNA counts with higher variance
and inflated zeros.

Characterizing this dynamic process relies on real-time accurate measurement of mRNA in vivo.
Prior to the popularization of scRNA-seq technology, one must rely upon microscopic imaging to
study transcriptional dynamics, using reporter assays (Fiering et al., T990) or fluorescence in situ
hybridization (FISH) (Femino et al., 7998). These technologies, while vital for directly observing the
transcriptional dynamics, also suffer from some serious disadvantages.

Reporter assays monitor the expression pattern of artificially constructed protein products with a
short half-life such as green fluorescent protein (GFP). Levels of transcription activity is indirectly
inferred from the level of enzymatic activity (or fluorescent intensity in the case of GFP) of the
reporter protein. This has enabled real-time observation of the transcriptional activity in vivo. How-

ever, several caveats of this method include:

e Reporter protein levels are affected by factors additional to rate of transcription, such as rate of



translation and protein folding, rate of protein degradation, threshold and sensitivity of imaging

etce.

e Some reporter protein such as GFP is shown to be toxic to certain cellular functions when
over-expressed (Ansari et al., P016), which could potentially alter the transcriptional activity

of the promoters or enhancers under observation.

e Reporter protein is different from the natural product of the targeted promoter or enhancer.
It may not perfectly recapitulate the dynamics of transcriptional activity due to the lack of

negative feedback from the natural product.

e It is infeasible to scale the reporter assay to tens of thousands of genomic sites simultane-

ously.

FISH directly observe the amount of transcripts by measuring the intensity of fluorescent signals
emitted by probes hybridized to specific target sequences (Raj et al., PO08). Live-cell imaging using
alternative methods of probe delivery and live-cell-compatible probes has also been made pos-
sible for continuously monitoring the dynamics of gene transcription (Martin and Ephrussi, P009;
Santangelo et al., 2009; Tyagi, 2009). Similar issues of throughput and scale also plague FISH
experiments.

Single-cell RNA-seq is a promising new technology to study transcriptional bursting. In 2013, Kim
and Marioni, P0T3 first investigated the possibility of inferring kinetic parameters of gene transcrip-
tion by fitting a Beta-Poisson model with a Gibbs sampler. However, this method failed to address
the technical noise intrinsic in scRNA-seq data. The authors also failed to incorporate any testing

procedures, in order to compare the differential bursting properties across biological conditions.



CHAPTER 2

COMPUTATIONAL TooLs FOR BULK RNA-SEQ

2.1. Differential Expression: Genes

Methods of detecting differential expression from bulk RNA-Seq data can be roughly classified into
the gene-centric and isoform-centric methods. In terms of statistical modeling, two major patterns of
approaches arose in the past seven years, count-based methods and read-based methods. Count-
based methods model the number of reads mapped to each feature, while read-based methods
consider the mapping ambiguity of each read by building a likelihood model that takes the raw

reads as input.
2.1.1. Naive Count-based Methods

Several methods proposed at the early stage of the RNA-Seq technology were naive count-based
methods reliant on certain stringent assumptions of the underlying distribution of the RNA-Seq
sampling process. For example, Bloom et al. applied Fisher's exact test on a 2 x 2 table whose
rows represent the experimental conditions, and whose columns correspond to the numbers of
reads that fall within and outside the open reading frame of the targeted gene (Bloom et al., 2009).
Marioni et al. modeled the number of reads from gene j, sample i and lane k as a Poisson random
variable with the rate parameter A5 (Marioni et al., P008), and exploited the LRTs for the standard

generalized linear models to test the hypotheses

Ho : )\ijk = )\j
Hi: Aijk = 7\JA, for Group A

Aijk = A}, for Group B

DEGSeq

Based on similar assumptions, DEGSeq took a slightly circuitous route, by deriving the conditional



distribution of M given A, defined as

M =log, C1 —log, C>

log, C1 +1log, C2
A= >

where C; is the number of reads that are mapped to a specific gene in sample i. Using 6—method
repeatedly, the conditional distribution of M given A can be approximated with a Normal distribu-
tion. A simple Z-test was proposed to test the differential expression of a specific gene by testing
the null hypothesis E(M|A) = 0. DEGSeq requires restrictive, often impractical assumptions, such
as the normality of the distribution of M|A. Moreover, DEGSeq failed to handle the over-dispersion
of the RNA-Seq data.

These early methods suffered from several caveats, the most prominent of which was the assump-
tions with regards to the distribution of the read counts. All of them assume that the RNA-Seq read
counts follow a binomial distribution or Hypergeometric distribution, which is subsequently approx-
imated by a Poisson distribution. These assumptions are rarely satisfied in real-life practice, and
ergo can potentially lead to Type | error inflation (Anders and Huber, 2010). Since then, much effort
has been invested in building powerful and flexible statistical models that fit the RNA-Seq data more

appropriately.
2.1.2. GLM Modeling of Counts

edgeR

GLMs (generalized linear models) incorporating over-dispersion parameters and additional linear
covariates are a natural extension to the naive count-based methods. Many methods were pro-
posed in the framework of negative-binomial modeling, such as edgeR, baySeq, DESeq, ShrinkSeq,
etc. In their method edgeR, Robinson and Smyth extended the Poisson model to a negative-
binomial model with a common dispersion factor across all genes (Robinson and Smyth, P008).

Define the number of counts mapped to a certain gene in condition i and sample j as Yi;, then this

10



random variable follows a negative-binomial distribution parametrized as

Hij = MijA
Yij ~ NB (1ij, ¢)
E(Yij) =y

Var (Yij) = pi (1 + pijd)

where my; denotes the library size of sample j, and A; denotes the true relative abundance of
reads mapped to the target gene. The dispersion parameter ¢ is estimated with conditional max-
imum likelihood, and testing for differential expression events is equivalent to testing the following

hypotheses:

Ho:)\1 :7\2

Hi: Ay # A2

McCarthy and Smyth later modified the original edgeR model with the common dispersion param-
eters, introducing an empirical Bayes shrinkage estimate using a weighted conditional maximum
log-likelihood method. This new approach shrinks the dispersion estimates towards a locally com-
mon prior instead of setting them to a common value (McCarthy, Chen, and Smyth, P0T2). Using

Cox-Reid adjusted profile likelihood (APL, which was later used in DESeq2),

N 1
APLg (d)g) =1 ((bg;YQ) Bg) - Zlogdetjg

Jg = XTWX
McCarthy and Smyth defined the APL of G genes, among which the dispersion parameter is shared.

1 G
APLs (¢) = = ) APLg ()
g=1

11



In order to shrink the entirely individual gene-wise dispersion parameter ¢, towards a local shared

dispersion parameter by maximizing the following weighted APL.
APLg (dg) + GoAPLsg (dg) (2.1)

The number Gy is a tuning parameter indicating the number of genes used to generate the prior,
i.e., the local shared dispersion parameter.

This trended-by-mean estimate of the dispersion parameter borrows information across a few genes
that have similar mean expression level. Later Zhou et al. from the same group robustified the
model by iteratively reweighting the Poisson residuals as well as the dispersion estimation by the
deviation of an observation from the current fit. The Pearson residuals of an observed count yg4;

from the NB GLM can be computed at the end of each iteration:

A

ygi - Hgi

Tgi =
\/ﬁgi (1 + a\)gﬁgi)

where {i4; is the fitted value calculated from B, and ¢ is the estimated dispersion parameter with the

above trended-by-mean method. The Pearson residuals are converted to weights using a Huber

function:

_k
‘rgi‘

for [rgil >k
Wgi =W (Tgi) =

1 for [rgil <k
The new [AS can be estimated with the above weights,

B = B 4 [XT (WeZg)X] ™ X Wyzg

. ]
APLY (hg) = Y~ wait ($:74, Bg) — 5 logdet [XT (WyZg)X]

And new $ can be estimated by maximizing the linearly weighted APL as in (EZ1) based on the
weighted APL;"’. This iterated weighting algorithm increases the robustness of the edgeR method
by down-weighting the observations greatly deviant from the fitted model, forfeiting some power to

control the false discovery rate in extreme cases.
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DESeq

The negative-binomial model was expanded by Anders and Huber in DESeq (Anders and Huber,
2010), by allowing the dispersion parameter to be a smooth function of the mean, effectively allow-
ing variation of the dispersion parameters for genes with different means in different experimental

groups.
Yij ~NB (Hij) (Yizj)

Fitting the above model without constraining the number of parameters will not result in meaningful
estimates, due to the usually small sample size of each group in RNA-Seq experiments. Conse-

quently, the following assumptions were proposed by Anders and Huber,
[i] The mean parameter is the product of a condition-dependent value q; ;) (where p(j) is the
condition of sample j), and the library size s;.
Hij = di,p(j)S)
This is the same as the assumption p;; = my;A; in Robinson and Smyth’s method.

[ii] The variance afj can be decomposed to the sum of two terms, a shot noise term (u;) and a
raw variance term (sivi o;))-

2 20, .
055 = Hij + 85 Vi,p(j)

[ii] The parameter in the raw variance term can be written in the form of a smooth function of
di,e(j)-

Vio(j) = Voldip())

Assumptions [ii] and [iii] have effectively reduced the parameters and enabled pooling of the

data from genes with similar expression strength for the variance estimation.

In order to eliminate the influence of a few highly expressed genes on the total number of reads,

Anders and Huber suggested a read depth estimator normalized by the geometric mean of the

13



numbers of reads across all genes,

. Kkij
§; = median | ————
i m ™
< H kiv>
v=1

qip for gene i and condition p is estimated by the average of the normalized counts from the

samples corresponding to condition p:

a 1 kij
ip = o
m Sj
?5pG)=p )

where m,, is the number of replicates under condition p.
To estimate the smooth function v, that links the g, to the raw variance sfv; ,(;), first find an

unbiased estimator of the raw variance parameter v;,,.

e} J—
Vip =Wip — Zip

1 Kij 2
W=y 2 |y

)

Zip =

Local regression with a generalized linear model of the gamma family on (§i,, wi,) was used to

smooth out the curve and obtain the smooth function w, (q)

0p (aip) = Wp(aip) — Zip

The local regression step combines the information across genes to estimate the smooth function,

Vo(q).

In order to test for the differential gene expression, define the joint distribution of Kia = 3 Ky
j:p(j)=A

and Kig = ) Ky as p(Kia = a,Kig = b). Denote their sum as Kis = Kia + K;ig, the author

j:p(j)=B
suggested the following p-value,

pla,b)
a+b=kis,p(a,b)<p(kia,kis)

> pla,b)

a+b=kjs

Py =

14



Note: The joint distribution p(a,b) is calculated as the product of two independent NB variables
Kia and K;g, whose probability distribution is in turn obtained by matching the moments (mean

and coefficient of variation),

o= Y 4

j:p(j)e{A,B}

flia = Z 8idio

JEA

g = Z §4io

jEB

67 =) §8i0 + 894 (Gio0)

jEA
2 A A2
O = Z $5Gi0 +87VB (qio)
jeB

The approach employed by DESeq has several limitations in practice:

[i] The number of experimental groups is limited, because the joint distribution of p(G1, Ga,..., Gy)
is required to calculate the p-values. With the number of groups increasing, the complexity of

estimating this joint distribution increases exponentially.

[ii] The model cannot incorporate continuous covariates. Estimates of qi, and certain other
parameters are performed in a group-wise fashion, which requires the size of each group be
larger than 1. Continuous variables need to be binned before they can be incorporated into

this model.

[iii] For genes with the same mean expression level, the variance estimated in DESeq is identical.
This assumption almost never holds in real-life practice. This problem was later rectified by an
update in DESeq, in which the greater value between the empirical gene-wise dispersion and
the mean-dependent fitted value was used as the final dispersion parameter. However, this
approach introduced bias towards larger variance estimate, and as a consequence rendered

DESeq too conservative (Love, Huber, and Anders, P014).

DESeq2
To rectify some of the issues faced by DESeq, in 2014 Anders and Huber published DESeq2,

which exploited an empirical Bayes method to estimate the dispersion parameters, and expanded

15



the original model using GLMs with a logarithmic link:

log, qij = ijrﬁir

DESeq2 abandoned the practice of estimating qi, in a group-wise fashion, instead computing the
qi; for every sample and every gene. Consequently, an assortment of covariates can be integrated
into this linear term, both discrete and continuous. In DESeq, the variance estimation is done in
three steps. First, calculate the residual raw variance term for every gene in each group; second,
for each group, fit a local regression with the raw variance w;, as the dependent variable and g,
as the independent variable; third, compute the raw variance of a gene in a certain group from
the above curve, and add it to the shot noise term (a variance term linearly dependent on the
mean value q;p) to obtain the final variance estimate. This arbitrary approach does not model the
stochasticity of the raw variance of each gene. In DESeq2, the above group-wise method is no
longer adaptable. Therefore, a curve is fitted with (qi, 9;), with §; and 9; denoting the naive MLE
estimates of the mean and variance of gene i respectively. The final variance estimate is obtained
by shrinking the naive estimates of the variance towards the fitted curve with an empirical Bayes

algorithm.

ocIiVIAP = arg max [ECR (cx;?ti.,zi.) + Aq (oc)}
— {log o« — log o (Kl)} ’

Ai (o) =
203

04 = max{s{ — mzp} ,0.25}

s;r = mad{log oc%w —log o (T13)}

gw [ = 2
of = arg max{cr |o; Wi..., Ki...
o

- 1
LR [cx; u, K] ={(x)— 2 log det [XTWX]

() =) logfae (Kj; j, )
j

_ aq
o () = — + o
o
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where {cr is the Cox-Reid adjusted profile likelihood, as used in updated edgeR (McCarthy, Chen,
and Smyth, 2012). Optimizing the sum of the logarithm of {cx and the prior log-likelihood (A;)
results in the Bayesian shrinkage of the dispersion parameter estimation to the prior.

Similar method is used to shrink the logarithmic fold change estimates:

Ei = arg max [Z log fnB [Kij; W (g> »Cxi] +A (E)
B j
Hj (§> = Sij exp lz Xjrﬁr]

2
p

A7) R

Compared to DESeq, DESeg2 is more focused on estimating the fold change between different
conditions rather than the presence or absence of said change. Empirical Bayes shrinkage is also
used to shrink the logarithmic fold change (LFC) associated with the given covariates. This results
in MAP LFCs that are biased towards zero, which effectively removes the inflated LFCs for genes
with low counts. The strength of the shrinkage depends on the mean count as well as the informa-
tion available for the LFC estimation. This approach offered a more reproducible estimator than the
naive MLEs.

DSS

The modeling of over-dispersion is at the core of construction of a GLM model for RNA-Seq data.
In addition to the approaches implemented in edgeR and DESeq, DSS (Wu, Wang, and Wu, P013)
provided a log-normal prior for dispersion parameter in the Gamma distribution of the Poisson-
Gamma mixture. Wu et al. noted that there was no conjugate prior that would facilitate the compu-
tation of the posterior distribution, and a log-normal distribution better approximated the estimated

¢4 in real RNA-Seq data.

Y4il0g4i ~ Poisson (04353 )
egi|¢gi ~ Gamma (ug,k(i)) (bg)

$g4 ~ log —normal (mo, )
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Wu et al. arrived at the posterior distribution of ¢4 given the data,

log [p (¢glYgi, Vai,i=T,...,m)l o> ¥ [dg" + Ygi] —np [y '] —dg' D log [l + vgidg]

+ ) Ygillog (vgidg) —log (1 + vgidg)]

. 2
_ [108(‘1’22 mo] —log (¢g) —log (7)

where ¥ [] is the log gamma function and n is the number of samples. An MAP estimator ¢4 can be

computed by maximizing the above posterior distribution with the Newton-Raphson method, after
Ygi
ikG)=k(i)
Mk (i)

replacing v4i with ig i) = , where k(i) indicates the experimental group of the ith
sample, and n, i indicates the number of samples in that group. The hyperparameters my and t

are estimated using an empirical Bayes method, from the MOM estimates of $g.

2
, = Yo Y
gt — 2
Si
2 zgi
bg=c=7— 1
2

1

o = median [log (‘39)}

<]

Individually estimated cT>g is crude for estimating the true ¢4, which is why it is only used in esti-
mating the hyperparameters my and t. The MAP estimator <T>g achieves shrinkage and sharing of
information across genes, by taking advantage of the estimated prior. After the model has been
fitted, Wald test was chosen to test the null hypothesis, p1g,1 = pg,2.

BBSeq

Other than negative binomial distribution, a similar beta-binomial distribution was used by Zhou et
al. in their BBSeq package (Zhou, Xia, and Wright, 2011). The linker function is a logit function

connecting the covariates with 6 in the binomial model.
logit [Eel] = XBl

And 0;; follows a (-distribution parametrized such that its variance is ¢;E (6;.) [1 — E (6;.)]. Zhou et

al. proposed two methods of estimating the dispersion parameters similar to edgeR and DESeq.
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One method is to estimate each dispersion parameter individually for each gene. The other is to
use a fitted curve to compute the dispersion parameter from the mean of the gene. BBSeq adopted

a polynomial relationship,

K 1 n k
P =logit () = > v l“ > XBil
k=0 i=1

In this curve fitting, Zhou et al. used the mean of the n sample XB; as input, and the logit-
transformed ¢ as output. This is similar to the treatment by DESeq, except that in DESeq the

dispersion parameter is estimated in a group-wise fashion, where XB is identical for each group.

2.1.3. Read-based method

Cuffdiff

The methods so far are count-based methods, which assume that read alignment is completed,
and the number of reads is fixed for all the regions under investigation. This assumption usually
does not hold, as many reads cannot be unambiguously mapped to a certain region. Read-based
method such as Cufflinks (Trapnell et al., 2010) took a different approach by building a likelihood
model that incorporates the uncertainty of read assignment. With the notations listed in Table 21,

the likelihood can be written as,

Lok =TT o [y 1]

TeERteT
where
ot — pel(t)
2 pul(t)
ueT

In order to decompose the likelihood into manageable components, define the following probabili-

ties:

19



Notation | Parameter

T All transcripts in a transcriptome
G A maximal partial of transcripts into loci
R Set of sequenced fragment from T
Pt Proportion of transcriptt € T
Og Proportion of transcripts in each locus og = > p¢
teg
Ty Proportion of each transcript in each locus T, = g—;
1(t) Length of transcript t ‘
> pil(t)
1(S) Length of a collection of transcripts S C T 1(S) = ‘“Z o
tes
F(-) PMF for the distribution of a fragment length. Y~ F(i) = 1. Assumed to be normal.
i=1
1(t)
(1) Adjusted length for transcript. 1(t Z —i+1]
. L T oel(t)
1(S) Adjusted length for a group of transcripts. [(S) = *3

> Pt

teSs

AR T M x |T| matrix with A(r,t) = 1if r is compatible with t, and 0 otherwise
I () If A(r,t) =1, I (r) is the length of fragment r implied by the map to t
¢ If A(r,t) =0, I(r) = oo and F(It(r)) = 0

Table 2.1: Notations and Parameters in Trapnell et al., P010

[i] The probability that a fragment originates from a transcript within a given locus g.

691(9)
> onl(h)

heag

Bg =

[ii] The probability of selecting a fragment from a single transcript t conditioned on selecting a

transcript from the locus g in which t is contained.

T (1)

Y l(w

ueg

Yt =

And by conditional probability, the above likelihood is rewritten as,

oo 10 [T 1 2ot

r—4,...

geG geG
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The testing of differential expression for a specific locus g under conditions C1 and C2 can then be

performed by testing whether the log-ratio of the MLE FPKM .

151961 10752962
83 | Tomer |/

(t)yMc2
is different from 0. The above test statistic can be approximated by a normal distribution, whose

variance is calculated with 5-method.

2.2. Differential Expression: Isoforms

Methods introduced above are focused on testing the differential expression on the gene level.
This approach is relatively straight forward as genes are generally non-overlapping and assigning a
read to a gene is usually more reliable than determining the source of a read from a specific isoform
of said gene. Therefore, methods of detecting DE on the isoform level is quite different from the
methods we’ve across so far.

EBSeq

Focused on testing the differential expression of an isoform, Leng et al. proposed an empirical
Bayes hierarchical model EBSeq, which correlated the dispersion of the NB distribution parameters

with the number of isoforms of the gene (Leng et al., 2Z013). Denote the number of reads mapped

C
gi,s?

to isoform i of gene g in sample s under condition C as X

X§i.srgi,0ls, g; ~ NB (rgi,0ls, dgic)

qgi‘o‘) Blg ~ Beta (O(, BIQ)

Denote the prior predictive probability under the hypothesis of equivalent expression as f(l)g(X),

which is a form of NB density with hyper-parameters.

s s
S /X 1 Beta (oc-|— > Tgis B+ X Xgi»s)

flg (XCJ,CZJ _ H gi,s T Tgis — s=1 s=1

0 gt Xgi,s Beta (&, Bls)

s=1

And denote the PPP under the hypothesis of differential expression as fig (X), which is equal to,
12 (XgH ) = fo* (X§!) fo? (X§7)

21



And let the latent Bernoulli variable z denotes the status of the isoform (EE vs DE), and let the prior

of z be
z ~ Bernoulli(p)

The authors claim that the posterior probability of the isoform being DE is

pfi? (X5!C2)
(1= p)fe® (XSC2) + pfy (X1 €2)

which can then be used to assess the significance of DE of an isoform. The means and variance
of the above functions are estimated individually with MOM estimators, while hyper-parameters, «,
Bls and p are estimated by maximizing the likelihood with EM algorithm.

One of the caveats of EBSeq is that it failed to incorporate estimation uncertainty for each gene/iso-
form in their model, despite the claims from the authors. The only parameter remotely related to
estimation uncertainty is the § parameter in the prior, which can take on three different values
depending on whether the target gene has 1, 2 or > 3 exons. This approach does not solve the
problem of estimation uncertainty, and methods that explicitly model this phenomenon perform
much better than EBSeq (Jia et al., P0T15).

MMDIFF

In addition to directly model the counts like what EBSeq did, one could also take a two step ap-
proach. First, estimate the abundance of isoforms with a software package such as Cufflinks,
MMSEQ, IsoEM, RSEM, etc. Second, perform the testing of isoform DE with the isoform expres-
sion known. One issue with this approach is that it requires the downstream model to account
for the estimation uncertainty of isoform expression. For this purpose, Turro et al. implemented
a Bayesian linear mixed effects model in their MMDIFF package (Turro, Astle, and Tavaré, P(014).
The idea is to introduce a random component in the linear mixed effects model to represent the
variation of the estimator for the mean expression of each isoform. MMDIFF takes the output of

MMSEQ and runs an MCMC algorithm for Bayesian model selection (Carlin and Chib, 1995) to
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select between the null and alternative model as well as estimate model parameters:

Unsaturated: y = «(®) + MB(©) 4+ P(Oy(0) 4 y(0) 4 (0

Saturated: y = o'" + M + P14 (1) 4 (1)

y denotes the log-transformed expression of a feature (gene, isoform, etc). M and {3 denotes
the design matrix and the model-invariant parameters for which all models are required to adjust
for, e.g. age, sex, etc. P and n denotes the design matrix and the model-dependent parameters.
For example, if we are to compare the two models with the null excluding the group parameter,
P(0) would be set to 0, while P(1) would be the group indicator. v is the parameter describing the
estimation uncertainty of y, which is proposed to follow a normal distribution with variance estimated
by MMSEQ. ¢ is the biological variance of y, which can be parametrized to be either common
across all samples, or common within experimental groups. In their simulations, the inclusion of the
estimation variance v improves both PPV and NPV, thus rendering the method more powerful with
better controlled Type | error.

However, MMDIFF has several caveats that make it difficult to use. First, the use of Bayesian
inference, while a statistically sound choice, complicates the comparison with other methods. In
real-life practice, it outputs the posterior probability of the alternative model, without explicit control
for the false discovery rate. Second, it only takes input from MMSEQ, therefore, the inference
made by MMDIFF is limited by the accuracy of the isoform estimation by MMSEQ, resulting in
failure to take advantage of more accurate estimation methods. Third, the use of MCMC severely
affects its computational performance. In our simulation studies, MMDIFF could take a day to run a

moderately sized sample.

2.3. Differential Alternative Splicing

Gene expression is not the whole story of the molecular regulation of a eukaryotic cell. It is known
that different subset of exons from the same genetic loci can be concatenated to form different
mRNAs (isoforms) from the same genomic loci, through a process named alternative splicing (AS).
This process is biologically relevant, as well as highly regulated in response to the inter- and intra-
cellular environment. Therefore, identification of differential alternative splicing (DAS) events was an

essential part of a complete molecular profile. Fortunately, it has been made massively accessible
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by the advent of RNA-Seq technology. RNA-Seq provides more detailed information regarding the
sequences of the RNA molecules, which allows it to distinguish the signals from different isoforms
of a gene.

The methods we’ve covered so far are mostly focused on whole-gene quantification, instead of
DAS detection. The statistical models for these two tasks are generally quite different despite using
the identical source of data. As noted in Shi and Jiang, P013, the testing of DAS of a gene is
mathematically a two-layer nested question. Assume the gene of interest has p isoforms, and
under condition C the expression for isoform i is u&, and the proportion of this isoform among all
transcripts is 0F = _ B The first layer is to test for the differential expression of all the isoforms

b [
Z Ky
i=1

of this gene.

Ho:uic‘ :uicz foralli=1,...;p

Hy:puS' #ul? foratleastonei=1,...,p

If the first test is rejected, i.e., there is at least one isoform in this gene that has shown patterns
of differential expression, then we invoke the second layer, to test for the differential alternative

splicing of this gene.

Ho:05" =0 2 foralli=1,...,p

Hy: 05" #6052 foratleastonei=1,...,p

If a gene is tested positive for DAS, then at least one of its isoforms must show DE, which is why
these two tests are nested. Due to this complexity of the problem, the mathematical strategies for
detecting DAS are much more diverse compared to DE analysis. Roughly, they can be categorized

into the following three classes:

[i] Testing of differential exon usage using a Bayesian hierarchical model, e.g. MISO (Katz et al.,

P?010) and MATS (Shen et al., P0712);

[ii] Direct modeling of the counts data with GLM, e.g. DEXSeq (Anders, Reyes, and Huber, 2012)
and rSeqgDiff (Shi and Jiang, POT3);

[iii] Other miscellaneous methods, e.g. DSGSeq (Wang et al., PZ013), SplicingCompass (Aschoff
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et al., 2013) and IUTA (Niu et al., P0T14).
2.3.1. Testing of differential exon usage

MISO

MISO (Katz et al., 2010) is the pioneering method in Bayesian hierarchical modeling for testing of
DAS events from RNA-Seq data. From the same framework, MISO devised two types of analy-
ses, exon-centric, which tests for the differential usage of one exon at a time, and isoform-centric,
which tests for changes of isoform proportions. Denote the relative abundance of a genes isoforms
as a vector V. Note that %‘Pk = 1, where ¥y denotes the relative abundance of isoform k. As-

suming uniform sampling of the RNA-Seq process, then the probability of a non-junction read being

sampled from isoform k can be written in terms ¥ weighted by the mappable length ¢, = 1x —RL+1,

Wi =

Denote the number of mappable positions of isoform Iy in an experiment with read length RL as

m(RL, Ix). The probability of read R,, being sampled from isoform k can be written as,

Ry

P(Rok,©@) = —m
(Rnlk, ©) m(RL, L)

where Rk denotes whether read R,, can be generated from isoform k. And the posterior distribution

can be evaluated as,

P(WIR1.N) o<P(Ry.N[W)P(W)

K K N
— Z Z HP(Rn|I1;N,@)P(I1:N‘W)P(W)

11:1 IN:1 n=1

The exon-centric analysis only contains two isoforms at a time. Using an uniform prior for ¥, and the
MAP (also the MLE) estimator for this analysis when single-ended reads are used can be derived.

For isoform-centric analysis, the following choices of distributions are used in this hierarchical
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model,

Y ~ Dirichlet(«) for every gene g
LY ~ Multinomial(1,V¥) for every read n mapped to gene g

Rn ~ P(R,|1, ®) uniform distribution

However, there is no analytic solution for the isoform-centric analysis, in which case a posterior
distribution of the vector V¥ is calculated with a hybrid MH-Gibbs sampling scheme. Bayes factors
derived from the posterior distributions of the null and alternative model are used to test for differ-
ential isoform expression.

MATS

Another method employing Bayesian theory of inference to test for differential exon usage is MATS
(Shen et al., P012), whose model is summarized below. Denote ¥ = ({1,12) as the exon inclusion
levels for an exon in two samples, I;. as the counts of the exon including isoform of exon i, and S;.

as the counts of the exon skipping isoform of exon i. The Gibbs sampler setup is as follows:

(W1,P2) ~ MultiVarUniform(0, 1, cor = )

p ~ Uniform(0, 1)
Li1[Wi1 ~ Binomial(n = Li + Si1,p = ¥i1)

Iizhpi2 ~ Binomial(n = Iiz + Siz, p = Vi2)

Shen et al. adopted a complicated sampling scheme for the calculation of p-values to test for the
DAS events. In summary, it involves four steps:

Step-1: Estimating constrained MLE under the null ([ — 3] < ¢);

Step-2: Using the constrained MLE to simulate M sets of new data, and perform the above MCMC
procedure for each set to obtain a posterior distribution of ({1,1V2) under the null;

Step-3: Compute a probability for each set of the newly simulated data the probability P(j; — 2| >
c), denoted as P§'™,j =1,..., M;

Step-4: Compare the posterior distribution to the observed probability of P([J; — V2| > ¢), denoted

as P°, to each P]?im, and compute the proportion of P]?im that is greater than P°*s as the empirical
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p-value for this test.

MATS suffers from a sleuth of caveats. In real-life practice, it's extremely slow due to the multi-
layer sampling scheme required for an unnecessarily convoluted statistical model. Most often than
not, its results cannot be replicated by confirmatory experiments, implying invalid assumptions and
incorrect modeling, e.g, there is no explicit modeling of over-dispersion. In addition, MATS does
not support biological replicates, instead, the software pools all the counts together from different
samples of the same group and treats them as one sample. This approach dramatically reduces
the information embedded in the replicates, and subsequently drastically affects its power. The
same group published an updated version of MATS, rMATS to rectify some of the caveats above
(Shen et al., 20714).

rMATS

The first improvement of rMATS over MATS is the support of replicates in each sample. Shen
et al. modeled the logit of the exon inclusion level of each sample to be generated from a normal
distribution, and given the exon inclusion level, in each sample, the read counts of the exon including
isoform were modeled like in MATS. For exoni (i=1,...,N), replicate jinsample 1 (j =1,...,My)

or replicate k in sample 2 (k =1,..., M;).

logit(Wi15) ~ Normal(u = logit(1;1), o = 0121)

logit(Wiak) ~ Normal(p = logit(iz), 0% = 0%)
Lindii; ) .
G=1,...,M
Lirbir + Lis(1 —irj) ) 1

Litbite >
k=1,....M
Lirbirk + Lis(1— k) )’ e

Li1jhbirj ~ Binom (ﬂ =Ty +Sujp =

Likhbirx ~ Binom (Tl = Lt + Si1i, P =

Parameters can be estimated by iteratively calculating the mean and variance of the exon inclusion
levels V\i1,1i2, and the latent variables denoting the individual exon inclusion levels in each sample.
The former is achieved by maximizing a Laplace-approximated marginal likelihood of the group-
level exon inclusion levels, using the latent variable estimates from the last iteration. And the latent
variables can be computed by maximizing the full likelihood, with the group-level parameters fixed.
Testing of DAS exons in unpaired experiments can thus be performed by LRT tests. The authors

presented a more conservative tests compared to the one used in MATS due to computational
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conveniences.

Ho: g —2| =c

Ho: W1 —2l>c

This LRT statistic follows a x? distribution with one degree of freedom.
Shen et al. also proposed an algorithm to test for DAS exons in paired experiments. The statistical
model of the paired experiments is similar to the unpaired setup, except for the distributions of .

logit(Wi1;) logit(i1) of Pi0i1 042
~Normal | u= , L=

logit(1i2;) logit(1;) Pi0i1012 0
Similar procedures were used to estimate the parameters in this paired model and test for DAS
exons.
Compared to MATS, rMATS has much more extended functionalities, but some of the caveats of the
original MATS remain. MATS and rMATS both assume a binomial distribution of the counts given 1,
completely ignoring the over-dispersion. Only two experimental conditions are allowed, multi-group
tests are not well-supported. Computing time is still quite hefty even with rMATS, which abandoned

the complicated sampling scheme.
2.3.2. NB-based methods

The differential alternative splicing of exons does not directly reflect the relative abundance of iso-
forms, which is of equal if not greater interests to researchers biologically. MATS only provides
DAS analysis on the exon level, but not on the isoform level. Methods based on direct modeling
of read counts with a negative-binomial distribution inspired by the methods identifying DE genes
could potentially solve this problem.

DEXSeq

In 2012, the team that developed DESeq authored a new package DEXSeq, that utilized NB-based
GLM to test isoform DAS events. They introduced ‘counting bins’, the biggest unit that is either
present or absent from all the isoforms. This concept was necessary, because many exons have
alternative 3’ or 5’ start site, which renders its boundary variable across different isoforms. It is

similar to the ‘mathematical exons’ used in DSGSeq (Wang et al., POT3).
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Denote ki1 as the number of reads overlapping counting bin 1 of gene i in sample j,j = 1,...,m.
Denote the expected value of the concentration of cDNA fragments contributing to counting bin 1 of

geneias Hiji-
E(Kij1) = sjuijn

where s; is the size factor for sample j. And the model can be written as a log-linear model with NB

distribution,

Kijt ~ NB(p = sj 1, 0% = i)

log wiju = BY + Bl + BY + Bipt

And covariates in the log-linear model are explained in Tahle—22. The dispersion parameters are

Covariate | Explanation

RS Logarithm of baseline gene expression
£ Logarithm of the fraction of reads mapped to bin 1 among reads mapped to gene i
iSé. Logarithm of the overall fold change of gene 1 in sample j

E

ol Effect of the condition p; on the fraction of reads mapped to bin 1 among reads mapped to gene i
)
Pj Condition of sample j

Table 2.2: Covariates and explanations for Anders, Reyes, and Huber, 2012

fitted for each counting bin using methods similar to Love, Huber, and Anders, 2014, using the
above model. And testing of differential usage of each counting bin 1’ can be achieved with LRT by

fitting the following two models,

Unsaturated: log uiji = B¢ + Bf + B

EC

Saturated: log wiji = B + Biy + BY + Biy, 10w

where 51 =1, if L =1, and &,y = 0 otherwise. The null hypothesis states that all conditions have
equal usage of the counting bin, and if one or more of the conditions violate this hypothesis the null
will be rejected. The model can be slightly changed to test if there is also an overall change of gene
expression among different conditions, by replacing the [Sfj with a term Bicpj, representing the effect
of conditions rather than samples on the overall gene expression.

rSeqDiff
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EBSeq is focused on testing for the differential expression of isoforms, which does not necessar-
ily lead to differential alternative splicing. Methods such as DEXSeq are focused on testing the
differential use of exons, which does not directly quantify the differences in relative abundances
of isoforms under different conditions. As mentioned above, Shi et al. proposed a nested testing
paradigm in their rSeqDiff method, which effectively illustrated the logical relationship between test-
ing for DE isoforms and DAS genes.

In their implementation, a linear Poisson model with the following parametrization is used for infer-

ence.

J
e N 0 .
fo. (Ny) :H kaij) < exp [—0xay;]

Ny !
j=1 kJ

where 0y is a vector of the isoform abundance values under k' condition, j indexes the sample,
and ay; denotes the vector of the sampling rates from all isoforms for read type j in condition k. A
matrix also doubles as a compatibility matrix where the elements are set to 0 if the read type cannot
be sampled from a specific isoform.

For testing purposes, three models with varying degrees of freedom for the parameter 6 are de-
vised. Index conditions by k.

Model-0 [No differential expression]: this model assumes a constant 0 across all k conditions.

£ (80INy) = ero Ny)

Model-1 [Differential expression without DAS]: this model assumes the 0y for all conditions to be

completely linearly dependent. Hence, denote the multiplicative factor for condition k as T, > 0.

£ (80, TNy ) = Hkaeo Ni)

Model-2 [DAS]: this model assumes a different 0y for each condition k.

K
£(01,...,0kNw) = ] ] fo. (Nk)
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MLEs of the above models are computed with an EM algorithm, and a hierarchical LRT is used
for model selection. Briefly, the first step include two tests that compare Model 0 vs Model 1 and
Model 0 vs Model 2, each at significance level «/2. If both tests fail to reject the null hypothesis,
then Model 0 is the correct model, and there is no DE or DAS with the target gene. If one of the
tests rejects the null, then the corresponding model is selected as correct. If both tests reject the
null, then proceed to the second step of testing, which compares Model 1 vs Model 2 at significance
level «. If the null is rejected then Model 2 is correct, otherwise Model 1 is correct.

The greatest contribution of rSeqDiff is that it elucidated the logical relationship between testing
for DE and DAS of isoforms. With a hierarchical likelihood approach, users can now distinguish
between the two types of differentiation of isoform usage. One caveat of rSeqgDiff is that it utilizes a
linear Poisson model, which is incapable of modeling over-dispersion. Subsequently, no treatment

of over-dispersion was implemented, and the method could potentially have inflated Type | error.
2.3.3. Other models

In addition to the methods above, some other interesting methods are available that do not fall
into any of the categories above. This is in no way implying that they are less impressive, rather,
some of them are hard to categorize simply because of their uniqueness and novelty. Most of these
methods are specialized in testing of DAS exons from two experimental groups with replicates.
DSGSeq

One of such methods is DSGSeq (Wang et al., P013) written by the developer of DEGSeq. If we
denote the abundance of transcripts from all the ‘mathematical exons’ (same as the ‘counting bins’
in DEXSeq) in the vector k, and the probability of a read falling into exon j as p;. Let p be the vector

whose elements are pj, then the following relationship holds,

1
p==-BLATk
where B, L are diagonal matrices representing sequencing preference of exons and exon length, =
is a normalization factor, and A is the exon-isoform compatibility matrix, in which ay; is a variable
indicating the presence or absence of exon j in isoform i. The authors of DSGSeq noted that a
one-to-one correspondence between p and k exists if A is of full row rank, i.e., no isoform can be a

linear combinations of other isoforms in this gene. This is an easily satisfied condition in the human
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genome, and it provides a shortcut for testing of differential alternative splicing of a target gene.

The most direct hypothesis of testing for DAS in genes is the following,

H02k1 :kz

Hi ki #ka

where k; and k;, represents the transcript abundance vectors under conditions 1 and 2. However,

due to the bijective relationship between k and p, we can instead test the following hypotheses:

Ho : p1 =p2

Hi :p1 #p2

The rationale for this change of variables is that p is much more readily estimable than k, which is
essentially a latent variable. Denote the number of samples as n, the reads mapped to exon j in
sample i as Yij, and the total number of reads mapped to the gene in sample i as M;. An unbiased

estimator for p; is simply the mean,

Sl=

N = Yy
P=nl M
i=1

In order to more accurately estimate p;, DSGSeq used a weighted mean and estimated the weights
using a variance-minimizing estimator, which is still very simple to compute.

After estimating the p; and Var [p;] for all exons, the authors use a NB-statistic to test for the

presence of a differentially used exons. Denote the number of exons as m,

NB — stat = 1 3 A(ﬁﬂ _ﬁiz\)z
m =7 Var [pj1] + Var [pj1]
And genes are ranked by the NB-statistic with the larger values being more significant for differential
alternative splicing. In addition, the NB-statistic for the gene can be easily decomposed into m
components, each corresponding to an exon in the gene. The method is interesting for its simplicity,
and great performance in real-life practice. One caveat of DSGSeq is that it does not provide a p-
value due to the lack of null distribution of the NB-statistic. Therefore, the cutoff for the significance

of the DAS events is somewhat ad hoc.
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IUTA
Another intuitive method for testing for DAS is to test for difference in the relative abundance vector
of isoforms. Denote {0,}X_; as the relative abundance for isoform k, and 6 = (01,...,0x). Testing

for DAS is equivalent to,

Ho:60:91

Hi: 00 # 04

The fact that 6 is compositional complicates the above tests. One major contribution of IUTA is
the proposal of using an isometric log-ratio (ilr) transformation to transform the compositional data
from the open simplex to the real space R*~" with Euclidean geometry. Now to test for the DAS

isoforms, one needs to test,

Ho : ih‘(eo) = ih‘(@])

H1 : ih’(eo) 75 ih’(@])

The transformed relative abundance follows a multivariate normal distribution,

ilr(@45) ~ N (ilr(04), Zi + Yy5)

where 0; denotes the shared relative abundance vector of a specific group, and the variance can be
decomposed into two factors using the hierarchical interpretation. To test the equality of mean with
different variance-covariance matrices, KY, SKK or CQ tests can be performed. The parameters 0
are estimated from a likelihood similar to the one employed by MISO using MLE method.

Instead of relying upon analysis of exon usage, IUTA directly tests for the differences in the compo-
sitional vector of isoform relative abundances. This approach is more appropriate for analyses of
genes with complicated isoform structure, compared to exon-centric methods.

SplicingCompass

Another unique approach to test for differential alternative splicing events is SplicingCompass
(Aschoff et al., POT3), which takes advantage of a measurement aptly named ‘splicing angle’, which
represents the geometric angle between two vectors of exon usage. For a specific gene from sam-

ple i, SplicingCompass computes a vector containing the reads mapped to each unique exon ;.
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For n samples, it then computes (%)) angles in all the pairs of samples.

Vi-V; | 180
T

®y; = arc cos [__
INAAHIAZA

Then a one-sided t-test is used to test whether angles of within-condition sample pairs are signifi-

cantly smaller than those of between-condition sample pairs.
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CHAPTER 3

COMPUTATIONAL TOOLS FOR SINGLE-CELL RNA-SEQ

Due to the complexities of single-cell RNA-seq protocols, a series of novel methods have been
developed specifically for this new platform. Briefly, these methods can be categorized into sev-
eral functional classes (Bacher and Kendziorski, PZ016): normalization, noise reduction, Identifying
highly variable genes, identification of subpopulation, pseudotemporal ordering, and differential ex-
pression analysis. In this dissertation, we focus on the methods for differential expression, and by

extension, normalization.

3.1. Normalization

The protocols of scRNA-seq are carried out in individual chambers or droplets after the cells are
isolated and separated. It is technologically infeasible to strictly control the environment of reaction
to absolute uniformity. Cell-to-cell heterogeneity can cause severe differences in the rate of reaction
and subsequently influence the read counts recovered from the assay. It is therefore critical to
carefully normalize the raw reads before any analysis is carried out using data from scRNA-seq

experiments. Several methods have since been developed.
3.1.1. SAMStrt

The first attempt at normalizing scRNA-seq data is from Katayama et al., POT3. The authors
adapted SAMseq (Li and Tibshirani, P0T3) which is a differential expression method designed
for bulk RNA-seq, with modified sequencing depth estimation by assuming equivalent spike-in-
molecules/cell in each experimental set. This method of normalization is later adopted by Lun,
Bach, and Marioni, P06, when the sample size of any biological condition fails to meet the mini-

mum requirement for their SCRAN algorithm.
3.1.2. GRM

A slightly less naive method was proposed in Ding et al., PZ015. In their work, spike-in ERCC (Baker
et al., P005) molecules are used to construct a gamma regression model. Briefly, log-transformed

concentration y = log(concentration) (log— C) and FPKM x = log(FPKM) (log — R) are modeled
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with a gamma distribution with a polynomial, to account for the non-linearity in the relationship

between x and y. The model is written as:

y ~Gamma(y; n(x), @) (3.1)
u(x) =) pixt (3.2)
i=0
_ 1 (ey? (_W)
=5 (i) =@ (- 5.9

The parameters ; and ¢ are determined with MLE. The degrees of u(x), n, is determined by
fitting four models with n = 1 to n = 4 and selecting the n that corresponds to the smallest average
technical noise of ERCCs. Once the model is fitted, the true expression of a gene can be estimated

from its FPKM as,

Ugene = E[Ygenel = (Xgene) =Y Bixhene (3.4)

i=0
GRM takes advantage of the fact that the concentration of ERCC spike-ins is known, and by linking
the read counts to the actual concentration, one can fit a model that maps the raw FPKM to the true
gene expression. The method is straightforward and intuitive to understand. Although the perfor-
mance can be more thoroughly assessed and benchmarked against other normalization methods,
including bulk RNA-seq tools, GRM is an interesting addition to the scRNA-seq computational tool-

box.
3.1.3. SCRAN

A robust method of normalization has been developed in Lun, Bach, and Marioni, 2016 by pooling
cells into carefully designed clusters. The idea involves estimating the true size factors of many
different pools (E [Rix]) of cells first across genes, and subsequently, solving for the cell-specific
size factors by fitting a series of over-represented linear systems.

The authors propose that E [Ri] = } 5, 0;, where 0; is the cell specific size factors for cell j in 8y,
which is a subset of the cells in the population of interest. Riy is the random variable representing
the true size factor of subset 8y for gene i, whose expectation is the true size factor for the whole
set 8x. Now E [Ri] can be robustly estimated by averaging ri, over i, and this will serve as the

response variable in the linear systems.
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Now E [Rix] can also be represented as the sum of the true size factors across the cells in the
selected pool. Therefore, by selecting multiple pools, a linear system can be constructed. Denote
the E [Rix] estimated by averaging across genes as A1, - - - , Ak, and the true size factor for each cell
ias 0;. Denote x;x as the design matrix indicating the present of a cell j in pool k. Then the linear

systems can be written as,

1T 11 -« 0 0 0] |6 M
o0 o0 --- 1T 11 0, A2
101 -~ 0 1 0| (03] =[A; (3.5)
T 1.0 -~ 0 1 1]]6 AK
Select enough pools of cells, and solve Equation 3.5, we will get a set of robust estimates for 6,

thus achieving the goal of normalization for the single-cell RNA-seq counts.
One caveat of the SCRAN method is that it requires large enough number of cells in every single
group compared, therefore, it is limited by the size of the smallest group. In our experience, if one

group contains 20-30 cells, the algorithm will fail, regardless of the sample size of the other group.
3.2. Differential Expression: Genes

3.2.1. SCDE

One of the very first papers on detecting gene-level differential expression was published by the
Kharchenko group at Harvard (Kharchenko, Silberstein, and Scadden, P014). Due to the blatant
abuse of notations and complete lack of statistical rigor in their manuscript, | have yet to achieve
the goal of understanding the mathematics in their model. But for the completeness of this disser-
tation, | will make an attempt at describing their work. The words in quotes are copied from their
paper (Kharchenko, Silberstein, and Scadden, P014) verbatim. | did not write or alter any of these
sentences.

The first step of their procedure is to fit individual error models, which | can only guess is on a
per-cell basis. “All pairs of individual cells belonging to a given subpopulation (for example, all MEF

cells) were analyzed with a three-component mixture model.” Now The following “components”
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were directly copied from their published manuscript.

r1 &~ Poisson(Ap) Dropout in ¢4

T1 ~ NB(r2) o
Amplified (3.6)

T, R NB(?])

T2 ~ Poisson(Ao) Dropout in c;

If one were to treat the above math as a set of statistical notations, then the following questions are

begging to be asked:

e What does it mean for a random variable to be approximately equal (=) to a distribution?

e What happens to the three-component mixture model? What are the three components in the

above brackets?

e What does r, = NB(r;) mean? Is r; a random variable or a parameter? Even if we consider
the possibility of Bayesian inference where both r; and r, are random variables, the definition

of the distribution of a parameter should involve nothing but hyper-parameters.

e Does the center “amplified” bracket count as one component? Is it a two-dimension ran-
dom variable? If so how does one mix two one-dimension random variables and one two-

dimension random variable?

The next step would be to fit an “individual error model Q¢”, Dr. Kharchenko and team suggest
that “The RPM level r. observed for a gene in cell ¢ was modeled as a mixture of a dropout and

amplified components, as a function of an expected expression magnitude e, as”

. ~ NB(e) Amplified
(3.7)

re &~ Poisson(Ap) Dropout

“with the mixing parameter m = log(e).”
Up till now, the use of statistical notations in this paper does not conform to the conventions by
which they are usually applied. Differential expression analysis is performed “with a Bayesian

approach”. They define “the posterior probability of a gene being expressed at an average level x
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in a subpopulation of cells S” according to

ps(x) =E |Ji[ P (x[re, Qc)] (3.8)

ceB

where B is a bootstrap sample of S. | would like to point out that the expectation of a probability
again is a blatant misuse of notation. They also define "p(x|r¢, Q.)” as “the posterior probability for

a given cell ¢”, according to

p(X‘Tcs—O-c) = pd(x)pPoisson(X) + (] _pd(x))pNB(th) (39)

“where p4 is the probability of observing a dropout event in cell ¢ for a gene expressed at an average
level x in S, ppoisson (x) and png (x[rc) are the probabilities of observing expression magnitude of r.
in case of a dropout (Poisson) or successful amplification (NB) of a gene expressed at level x in cell
¢, with the parameters of the distributions determined by the Q. fit. For the differential expression
analysis, the posterior probability that the gene shows a fold expression difference of f between

subpopulations S and G was evaluated as”

p(f) =) ps(x)pa(fy) (3.10)

xeX

“where x is the valid range of expression levels.” The authors further claimed that "the posterior
distributions were renormalized to unity, and an empirical P-value was determined to test for signifi-
cance of expression difference.” Terms such as “renormalized to unity” does not make much sense
in statistics without further clarification.

| cannot comment on the mathematical validity of this model, due to their unfortunately unintelligible
notations. Nor could | get the software to run properly without modifying their code, which misuses
the parallel computing functions so dangerously, that it quickly consumes the entire RAM of the
machine once it starts. | would caution whoever wishes to give it a try do so after fully auditing their

published code and consulting with an expert in R, which the original authors do not appear to be.
3.22. MAST

MAST (Finak et al., 2015) is a first statistically sensible attempt at directly model the bimodality

of the single-cell gene expression. In order to correct for the inflated zeros in scRNA-seq data,

39



Finak, McDavid, Yajim et al. proposed a Hurdle model with two parts, the rate of expression over
background (probability of non-zero), and the mean of the positive expression (mean of the non-
zero component). The authors use cellular detection rate (CDR), the proportion of genes detected
in each cell, account for cell-to-cell technical differences such as dropout, amplification efficiency,
cell size, cell cycle, efc, that affect the overall gene expression in individual cells. CDR is treated as
an additional covariate in the regression model, to control for the aforementioned biases.

MAST models the variation in log, (TPM + 1) expression matrix instead of raw read counts, as a
two-part generalized linear regression model. Denote Z;4 as an indicator that gene g is expressed

in cell 1.

e CDR is modeled using logistic regression.

logit [P(Zig = 1)) = XiBg (3.11)

e the mean positive expression is modeled as a conditionally normal distribution given that

Zig =1, i.e.,gene gis expressed.

Pr [Yig :y|Zig =1]= N(X‘LBQC)O-é) (312)

Bayesian GLM was used to regularize the coefficients for the discrete regression in case of com-
plete separation, and additional regularization is performed on the variance parameter of the con-
tinuous model, in order to increase the robustness of the differential analysis when a gene is only

expressed in a small number of cells. MAST outputs three p-values:

e “disc”: the p-values generated with logistic regression described in Equation 3.11], testing for

significant correlation between levels of zero inflation and the given covariates.

e “cont”: the p-values generated with linear regression described in Equation 3.12, testing for

significant correlation between levels of positive mean expression and the given covariates.

e “hurdle”: the p-values generated by adding the x?-statistics computed for the above two tests,
and combining the degrees of freedom, testing for significant correlation in either of the two

scenarios.
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One of the advantages of MAST is its computational efficiency, due to their clever use of existing
models and software packages. The biggest caveat of MAST lies in the manner with which the
technical noises are incorporated. While CDR is an important summary statistic to use for normal-
izing cell-to-cell heterogeneity, it is hardly sufficient for the scRNA-seq data, as is shown in Jia et al.,
20717. Briefly, CDR is computed on a per-cell basis, which reflects the baseline differences of gene
detection rates. However, this probability is also related to the expression level of the gene, which
has not been accounted for in the discrete model. In addition, the relationship between the mean
positive component and the true expression of a gene can also be different due to varying factors
affecting efficiencies of reverse transcription and PCR reactions in individual chambers, such as
rates of dissolution, amount of reactants, enzymatic activity, etc. These technical differences are
not incorporated in any of the models. Lastly, the input for MAST is TPM, which is estimated from
read or fragment counts. Therefore, in order to apply MAST model efficiently, a preprocessing step
is required to compute the TPM values for each gene in each cell. This might not be accurate due
to the extremely low starting material of scRNA-seq, especially for technologies such as SMART-
seq, which is not designed specifically for tag counting for its lack of compatibility with UMIs. This
can significantly limit the use case of MAST, especially considering SMART-seq is a popular and

established scRNA-seq protocol.
3.2.3. scDD

Another attempt at modeling the multi-modality of RNA-seq data came from the Kendziorski group
at University of Wisconsin (Korthauer et al., 2Z016). The method is motivated by the observation that
the distribution of the log-transformed non-zero expression measurements of single-cell RNA-seq
data is usually multi-modal for a specific gene. Therefore, testing for the positive mean alone might
not disclose the existing differences. Therefore, a mixture model framework is employed to describe
the read counts of Y4 of a gene g from scRNA-seq. Specifically, assume Y, follows a conjugate

Dirichlet process mixture (DPM) of normals. A Bayes factor comparing two models
e “DD”: the data arises from two independent condition-specific models

e “ED”: the data arises from one overall model regardless of condition
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Let M denotes the model, the Bayes factor is computed as,

_ f(Y¢Mpp)

BF, — ~19"DD)
9 f(YgMep)

(3.13)

In order to fit the above model, the authors took a multi-step approach taking advantage of the

product partition model (PPM) formulation.

e estimate partition membership Z that maximizes the maximum a posteriori (MAP) by optimiz-
ing the Bayesian information criterion (BIC) of the marginal density f(Y|Z) using R package

Mclust.

e estimate the component-specific parameters with the closed form solutions obtained due to

conjugacy.
e estimate the MAP of the joint predictive distribution of data Y and partition Z.

e compute the bayes factor, and if needed, permute the condition labels to calculate an empiri-

cal p-value

The scDD method is theoretically sound, and has provided some novel insight on testing for distri-
butional differences of gene expression measurements in sScRNA-seq data. In addition to testing
for shifts of mean, it is capable of characterizing the distributional patterns of gene expression, and
testing for differences in these patterns between biological conditions. However, adjustment for ad-
ditional covariates is quite limited in scDD, and it is inadvisable to compare patterns between more
than 2 biological conditions. It would be very valuable if the model could be extended to incorpo-
rate a regression component, thus allowing scDD to account for confounding factors. And it would
be interesting to see the minimum sample size it requires to efficiently compare the differences in

patterns between 3 or more biological conditions.
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CHAPTER 4

GENERALIZED LINEAR MIXED-EFFECTS MODELS FOR DETECTING DE ISOFORMS

AND SPLICING QUANTITATIVE TRAIT LocI (SQTLS) FROM BULK RNA-SEQ DATA

4 1. MetaDiff

4.1.1. Motivation

So far we have reviewed more than two dozen methods for detecting gene differential expression,
isoform differential expression and differential alternative splicing using bulk RNA-seq. Despite the
sheer number of models available, there is still ample room for improvement. For example, in terms

of detecting isoform differential expression, ideally a method should satisfy the following criteria:
[i] Account for isoform expression estimation uncertainty.
[ii] Account for variation in the estimation uncertainty across features and biological replicates.
[iii] Flexibility to adjustment for covariates and confounding factors, discrete and continuous.

Methods such as DESeq, DESeqg2 and edgeR are not designed to model counts with estimation
uncertainty. Methods such as Cuffdiff, BitSeq and EBSeq do a terrible job accounting for it. More-
over, they cannot include covariates and other confounders in their model. MMDIFF in theory is
able to satisfy the above criteria, but their choice of Bayesian modeling makes it difficult to compare
its performance to other methods. More importantly, MMDIFF only works with results from MM-
SEQ. Since the result of isoform DE detection is highly reliant upon the accurate estimation of the
isoform expression, this severely limits the chance of MMDIFF improving its accuracy by switching
out the upstream method. MMDIFF outputs the posterior probability of the alternative model, with-
out inferential information on the included covariates, making it impossible for users to control for
a fixed threshold of false discovery rate. Lastly, the MCMC sampling scheme in MMDIFF method
makes the program computationally inefficient, without the chance of parallelizing the procedures.
This results in terrible run time, up to a day for a moderately sized group of samples.

As a result, we have developed MetaDiff, a meta-regression-based general framework for identify-

ing differentially expressed isoforms, accounting for estimation uncertainty of the upstream pack-
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ages. It can take input from any software packages as long as the variance (or confidence interval)
of the isoform expression estimate is included. This flexibility allows the user to choose any source
of estimation package they prefer, facilitating the improvement in inferential accuracy by upgrading
the upstream estimating software. It is a frequentist method which outputs raw and FDR-adjusted
p-values for each feature, which can then be used to control for a specific false discovery rate in
the identified samples. Due to the use of a very efficient R package metatest, the program can be
parallelized, utilizing the full capacity of a multi-core CPU. It is also extremely efficient, with run time

up to less than an hour for the same sample tested on MMDIFF.
4.1.2. Model and estimation

A random effects model was used to include the variance of the estimates of the isoform expression.

log [Yil = Bo + B1Xi + B2Zi + 1y + €

The interpretation of the components of the above model can be found in Table 411 In addition to

Parameter Interpretation

Yi Random variable, the estimated isoform expression

Bo Baseline log-expression

B1 Coefficients associated with the variables of interest

X Design matrix of the variables of interest

B2 Coefficients associated with the additional covariates and confounding factors
Z; Design matrix of the additional covariates and confounding factors

n Estimation uncertainty for log [Yi]. wi ~ N(0, Var [log [Y;]])

€; Random error. e; ~ N(0,12)

Table 4.1: Components and Interpretations in Jia et al., 2015

the assumptions listed in Iable 21, we also assume Cov(ui, €;) = 0, and the n observations are
statistically independent. Estimation of this model is performed with R package metatest, and the
the input of this method can be in the form of both raw FPKM (Trapnell et al., P0T0) or log-FPKM
(Turro, Astle, and Tavaré, 2014). Log-FPKMs can be directly fed into the program after parsing.
However, raw FPKMs need to be log-transformed. Assume the FPKM prior to transform follows a

normal distribution,

Yi ~ N(ii, 07)
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Using 6-method, log-FPKMs will follow a normal distribution with mean and variance,

o?
log [Yi] ~ N(log [wil, LTE)

i

Hence, the mean and variance of the transformed FPKMs can be approximated by,

Elog [Yi] = log [wi

o2
Var [log [Vi]] = —
My

4.1.3. Testing for DE isoforms

The null hypothesis of no differential expression between different groups (or other covariates of

interest) is equivalent to,

Ho:B]:O

Hy: 31 #0

Two types of tests are devised to test for these hypotheses: t-test and Bartlett corrected likelihood-

ratio test (BcLR). The classical t-test statistic for t-test is

Under the null hypothesis, this statistic follows a Student-t distribution with n — Dg, — Dg, — 1
degrees of freedom, where Dy, and Dy, denote the dimensions of the parameter vector 3; and
2 respectively.

Compared to Wald-test, Student-t distribution does not rely on the restrictive asymptotic assump-
tions, therefore, it is applicable when sample size is small, which is quite common in the case of
RNA-Seq experiments.

Alternatively, we can formulate this problem as a selection problem for nested linear models, and

use a likelihood ratio test corrected with Bartlett’s method for small sample inference. The BcLR
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test statistic is,

BcLR = BCF x 2(¢ — (o)

where BCF denotes the Bartlett correction factor (Huizenga, Visser, and Dolan, P01714d), ¢ denotes

the log-likelihood under the alternative, and £, denotes the log-likelihood under the null.
4.1.4. Simulation

16 cases and 16 controls were simulated with Flux Simulator (Griebel et al., P012) with the anno-
tated human genome hg19, each with a read depth uniformly distributed between 8 million to 10
million. In order to assess the performance of the method in the absence and presence of covari-
ates and confounding factors, three repetitions of simulations were performed with three different
transcriptomic profiles. These three scenarios are illustrated in Figure 4-1].
Scenario | is the basic scenario where there is no covariate to be adjusted for and no confounding.
In this case, 30% of the transcripts are DE between cases and control, half (15%) of which are
up-regulated by 1.25 fold in cases compared to controls, and the other half are down-regulated by
1.25 fold in cases compared to controls.
Scenario Il introduces a covariate by which the expression of some transcripts are influenced. 10%
of the transcripts are now influenced by the age of the subject. Age is a random variable that fol-
lows the same uniform distribution Uniform(18,60) in both cases and controls. The expression of
these transcripts increases by 1.35 fold with every one standard deviation increase in age, which is
equivalent to 2.5% increased expression for 1 year increase in age.

Scenario Il introduces confounding on top of Scenario Il. With the rest of the simulation setup
identical, we now allow the age variable to follow two different uniform distributions in cases and

controls. In cases, age follows Uniform(40,85), while in controls, age still follows Uniform(18, 60).
4.1.5. Results

[i] Empirical FDR
Packages designed for testing gene-level DE, e.g., DESeq, DESeq2 and edgeR, do not explic-
itly model the estimation uncertainty of the isoform expression. They tend to under-estimate

the variance of the expression when used for isoform DE detection, and subsequently render
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Scenario |

Scenario ll
Scenariollll
D Up-regulate 1.25 fold in D Down-regulate 1.25 fold in case
case
C} No DE b/w case and control D Influenced by age
C] Confounded by age D Not influenced by age

Figure 4.1: 3 Simulation Scenarios. Scenario |: 15% up-regulated in cases; 15% down-regulated
in cases; 70% non-DE. Scenario Il: 5% non-DE but influenced by age; 2.5% up-regulated in cases
and influenced by age; 2.5% down-regulated in cases and influenced by age; 12.5% up-regulated
in cases but not influenced by age; 12.5% down-regulated in cases but not influenced by age;
65% non-DE and not influenced by age. Scenario lll: same as Scenario Il, except that age follows
different distributions between cases and control.

the FDR uncontrolled. We want to know if this problem persists in our package, despite our
direct modeling of the estimation uncertainty. Empirical FDR, calculated as the fraction of
true non-DE features among those labeled as DE, was plotted against the nominal FDR, the
threshold given to the software package to label DE features. shows the curves for
all the methods under all 3 simulation scenarios.

When no covariate or confounding is present (Scenario 1), only DESeq and DESeq2 show
slightly inflated FDR when the sample size is small. This is consistent with the fact that DE-
Seq and DESeq2 tend to under-estimate the dispersion parameter when the sample size is
small, with the trended-by-mean estimate used by DESeq more severe than the empirical
Bayes shrinkage method used by DESeg2. When the sample is of sufficient size, this infla-
tion disappears. All the other methods have empirical FDR under control in this scenario.
When the expression of a portion of the features (10%) is influenced by a non-confounding
covariate (age, Scenario 1), methods that do not allow covariates (EBSeq) or do not allow true
continuous covariates (DESeq) start to have trouble keeping the empirical FDR under control.
When the sample size is 4+4 or 8+8, the empirical FDR for EBSeq is around 0.6 when the
nominal value is in fact 0.05, a more than 10-fold inflation is observed. Regardless of the

sample size, the empirical FDR of both EBSeq and DESeq are severely inflated. Despite the
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fact that the DESeq package accepts any type of covariates, it does not intrinsically support
continuous variables like age. In fact, they will be binned to form discrete groups prior to run-
ning the estimation algorithm. This partly explained why DESeq is showing severe inflation
when the continuous variable age is present. MetaDiff, edgeR and DESeq2 have properly
handled covariates, hence the empirical FDR is still lower than the nominal values. Surpris-
ingly, although Cuffdiff does not support covariates, its empirical FDR is also under control.
But later in Figure 4.4, we observe that Cuffdiff in general has lower power than methods
who have accounted for the age variable. This conservativeness might in part explain the
controlled FDR of Cuffdiff.

When confounding is present (Scenario lll), Cuffdiff, EBSeq, and DESeq have all yielded
severely inflated FDRs, due to their inability to treat confounding variables. While both tests
of MetaDiff (BcLR and Student-t test), DESeg2 and edgeR have FDRs well under control.
These results have shown that the MetaDiff does not suffer from the problem of inflated FDRs
other methods face when covariates or confounding factors are present. In addition, one of
the indispensable components of a model testing for gene/isoform differential expression is
the treatment for confounding factors, lack of which can lead to inferential mistakes such as

inflated FDR.

Performance under the null

The observation of inflated FDR could be due to a variety of causes, one of which is un-
controlled Type | error. In order to illustrate the performance of the models under the null
hypothesis, we generated quantile-quantile (Q-Q) plot for each method under all three sce-
narios. The raw p-values of true non-DE features are extracted from the exported result of
each method, log-transformed, sorted and plotted against a log-transformed expected value
of the same quantile from a Uniform(0, 1) distribution. A well-balanced method should have
p-values from the non-DE transcripts fall on the diagonal line of this plot.

In Scenario | where there is no covariate to be adjusted for and no confounding factors,
edgeR, DESeq and DESeq2 all have deviated from the diagonal line. This pattern is not
surprising for DESeq and DESeqg2 due to their inflated FDR. However, even with FDR under
control, edgeR has shown clear deviation from the diagonal line. This usually signals some
type of violation of the model assumption. One suspect is the lack of direct modeling of esti-

mation uncertainty in these models, which could lead to unusual behavior of the algorithm.
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Figure 4.2: Empirical FDR vs nominal FDR. Empirical FDR was computed as the fraction of the true
non-DE features among those declared to be DE by the specified software package. Nominal FDR
level was the FDR threshold given to the specified package to determine the set of DE features.
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Figure 4.3: Q-Q plot of log-transformed raw p-values of true non-DE transcripts under the null
hypothesis. The raw p-values exported by each method for transcripts that are not differen-
tially expressed in each scenario are log-transformed, and then plotted against a log-transformed
Uniform(0, 1) distribution.
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In Scenario Il where the expression of some genes are influenced by a non-confounding
variable, DESeq adn DESeq2 continue to deviate from the diagonal line, albeit in a less
pronounced manner. So does edgeR, but in a different direction compared to its pattern in
Scenario I. Inclusion of a covariate seems to dampen the level of deviation of the p-values
from the uniform distribution.

In Scenario Il where a confounding covariate is influencing the expression of a subset of
genes, DESeq, DESeq2 and edgeR maintain their deviation from the diagonal line, but on an
even lower scale. Cuffdiff shows severe deviation from the diagonal line, which is consistent
with its grossly inflated FDR in Figure 4.2. It's also apparent that the p-value plateaus below a
certain point for Cuffdiff, and this is due to the fact that the sampling scheme used by Cuffdiff
caps the smallest p-values at a fixed point, resulting in an accumulation of identical p-values
for the first few hundred most significant features.

In summary, the methods without treatment for estimation uncertainty all show some level of
deviation from the diagonal line of the Q-Q plot, indicating violation of model assumptions.
More importantly, both tests used by MetaDiff, BcLR and Student-t test are close to the diag-

onal line in all three scenarios, suggesting superior performance under the null hypothesis.

Power comparison

Results so far have shown that the tests used in MetaDiff have empirical FDR under con-
trol and are well-behaved under the null hypothesis. Next, we wish to compare the power
of these methods in detecting DE features with the usual FDR threshold levels. A range of
nominal FDR levels [0.01—0.1] are used to identify the DE features using the FDR-adjusted p-
values from all methods with three different sample size setting under all three scenarios. The
numbers of DE features are counted and divided by the total number of true DE transcripts
under their respective scenarios to arrive at the empirical power, which is subsequently plot-
ted against the nominal FDR level used in Figure 4.4. Between the BcLR test and Student-t
test used by MetaDiff, the former clearly has higher power when sample size is 4+4. The two
tests show almost identical power when sample size is 8+8 or 16+16.

In Scenario I, for medium- or large-sized experiments, BcLR clearly has the best power among
all methods compared. When the sample size is small, DESeq and DESeqg2 have better
power in comparison to BcLR. But their results should be taken with more caution since in

this setting, they also exhibit inflated FDR, as is shown in Figure 4.2.
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Figure 4.4: Power comparison. Power is calculated as the fraction of the correctly identified DE
features among all true DE features. FDR-adjusted p-values from each method are subject to
filtering with various nominal FDR thresholds, the features passing each threshold will be counted,
and divided by the total number of true DE features to arrive at the estimated power for this method
at this threshold. Estimated power is plotted against the nominal FDR threshold level for each
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method with three different sample size settings in all three scenarios.
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In Scenario Il, BcLR has the best power among all methods regardless of sample size.
Student-t test has almost identical power as BcLR in medium and large size settings, but
its power in small sample size experiments is limited. DESeq2 comes in second in compari-
son to BcLR overall, followed by edgeR and CuffDiff. It's interesting to notice that EBSeq and
DESeq have almost no power in Scenario Il. As a sanity check, the power of these two meth-
ods on genes that are not confounded by age is calculated, and they have similar power to
that observed in Scenario | on these genes. This implies that DESeq and EBSeq are simply
not robust to genes with expression influenced by a continuous covariate.

In Scenario lll, BcLR continues to have the best power of all methods except for CuffDiff.
CuffDiff seemingly performs better when the sample size is relatively small, however, it also
has severely inflated FDR in Scenario Ill. Combining these two facts, we postulate CuffDiff
cannot efficiently distinguish the true DE features from the non-DE ones, but simply label
the majority of them DE indiscriminately. DESeq2 comes after BcLR, followed by edgeR and

EBSeq. DESeq again has no power in this scenario.

Application in heart failure data

We apply MetaDiff and the other methods assessed above on an RNA-Seq dataset from a
study on human heart failure. It is a relatively small dataset with 3 controls and 4 cases. And
among these 7 subjects, 4 are male and 3 are female. In addition, the participants have a
wide range of age at the time of the study. Left ventricular free-wall tissue was harvested
from each heart and snap frozen until RNA-Seq sample preparation and sequencing, which
was performed at the High-Throughput Sequencing Facility of Penn Genome Frontiers Insti-
tute following standard protocols. On average, the sequencing yielded 43 million 2 x 101-bp
paired-end reads. The raw FASTQ data was mapped to hg19 human genome with TopHat,
and isoform expression was estimated with Cufflinks.

The results are summarized in Iable 4. Consistent with our simulation studies, when the
sample size is small, BcLR detects fewer DE isoforms compared to DESeq, DESeqg2 and EB-
Seq. It is mainly because in this scenario these three methods tend to have severely inflated
FDR for experiments with small sample size. Hence these results shall be taken with extreme
caution. Interestingly after adjustment by age and sex, BcLR test discovered significantly
more genes than the rest of the methods. This is also consistent with our simulation studies,

in which BcLR displayed the highest power for two of the three scenarios when sample size
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Figure 4.5: Zoomed in ROC curves.
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is 4+4. In addition, with experiments with small sample size, BcLR showed consistently con-
trolled FDR, which gave us confidence that the majority of the genes detected should be true
DE. Among the transcripts labeled as DE by BcLR, the majority (71/94) showed significant
covariates (pj0.05) associated with either age or sex, indicating that the expression of the

majority of these transcripts are in fact influenced by age or sex.

Unadjusted Age-sex-adjusted Overlap

BcLR 6 95 1
t-test 1 0 0
DESeq 106 77 56
DeSeq2 102 49 31
EdgeR 3 0 0
Cuffdiff 7 - -
EBSeq 256 - -

Table 4.2: Number of isoforms detected in heart failure data.

4.2. Splicing QTL

Misregulation of alternative splicing could potentially trigger the onset of a variety of diseases, such
as B-thalassemia (Treisman, Orkinl, and Maniatis, 1983; Treisman et al., 1982), spinal muscular
dystrophy (Cartegni and Krainer, 2002; Kashima and Manley, P003), amyotrophic lateral sclerosis
(Kim et al., 2013) and cancer (Hahn and Scott, 2012; Imielinski et al., 2Z012). Therefore, identifying
regulatory elements of alternative splicing is pivotal in illustrating the mechanisms of a large number
of diseases.

The regulation of alternative splicing is primarily mediated by cis-regulatory elements or trans-
acting factors. Cis-regulatory elements reside in close proximity to the ORF of the gene, and
regulate gene expression through direct promoter activation or silencing. On the other hand, trans-
acting factors need not be located in the vicinity of the gene. Coupled with genotyping microarrays,
RNA-Seq technology has provided an unprecedented opportunity to identify the single nucleotide
polymorphisms (SNPs) to which the alternative splicing of certain genes is associated, i.e., splicing
quantitative trait loci (sQTL).

Pioneering studies to identify sQTLs used simple linear regressions with the percentage of exon
read counts over total gene read counts as the dependent variables, and the SNP genotypes as

the covariates (Montgomery et al., P010; Pickrell et al., P010). These methods failed to include a
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large portion of relevant information in the RNA-Seq studies, most importantly, the variability of the
read counts from RNA-Seq data, which leads to inflated Type | errors and false positive results.

To overcome these difficulties, Zhao et al. developed GLIMMPS, a generalized linear model for
identifying sQTLs that accounts for the variability of the exon-specific and overall read counts (Zhao
et al., P0T3). Denote the number of the junction reads corresponding to the exon-including isoform
as y = [J, and that of those corresponding to the exon-skipping isoform as SJ. The number of
junction reads representing the total expression of these two isoforms is n = SJ + % The model

computes the estimated exon inclusion level {) as,

1
$-y__1
n 3

S+

Given n, the exon-including junction read count follows a binomial distribution,
yln ~ Binom(n, V)

As in the case of detecting DE genes and isoforms, a simple binomial model is insufficient to de-
scribe the over-dispersion of the read counts from the RNA-Seq data. To model the extra variability,
one could use a beta-binomial model, a negative binomial model, or simply add a multiplicative
scale factor to the variance of the response. Zhao et al. instead chose the method developed by
Browne et al. (Browne et al., PZ005), which added a normally distributed random effect to each
individual logit(1p;). The variance of this error term is different for each SNP.

wij ~ N(0, 05;)

logit(Wij) = Bo + Bjgij + Wij

The random error term p;; is a combination of two different sources of variation, the overall read-
depth variability as well as variation of the exon inclusion level for the same SNP. Laplace approx-
imation was used to estimate the parameters and a likelihood ratio test was used to compute the
p-values for the fixed effect (3; for each SNP j.

Despite the significant improvement of GLIMMPS over the simple linear regression methods, it still

bears several caveats.
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[i] GLIMMPS only used the junction reads, discarding all the information contained in the reads
mapped to the body of the exons. This reduces the accuracy of the estimation for the exon

inclusion levels, thus affecting the power of the test.

[ii] GLIMMPS cannot utilize the extra information contained in paired-end data. As paired-end
RNA-Seq experiments become increasingly accessible and popular, the capability of including

paired-end experiments in the method design is highly desirable.

[ii] GLIMMPS treats the variation in the estimated exon inclusion level from the same genotype
group as a random effect. This effectively forces sharing of a common variation parameter
across exon inclusion levels from different samples, while in actuality this assumption might

not hold due to variable library sequencing depths and coverage of the specific genomic area.

[iv] GLIMMPS assumes uniform sampling along the transcripts. Several studies have shown that
this does not hold for RNA-Seq experiments, and the ignorance of the non-uniformity leads to

biased estimation of isoform expression (Hu et al., P0714).

Our approach involves a two-step procedure, the first step is to estimate the exon-inclusion levels
with PennSeq (Hu et al., P014)), a recently developed read-based method corrected for non-uniform
RNA-Seq sampling. The PennSeq algorithm considers all reads mapped to a given exon trio,
including junction and non-junction reads. It intrinsically supports paired-read sequencing data,
and allows unique non-uniform distributions for each isoform. Using an expectation-maximization
(EM) algorithm, PennSeq outputs the estimated mean and variance of the relative abundance of the

exon-including isoform, which can then be fed into downstream models as the response variable.
4.2.1. Random effects meta-regression

Several choices arose when searching for a suitable downstream models to compute the associa-
tions between the genotype of a SNP and the exon inclusion level of a specific exon trio. In order
to account for estimation uncertainty of the isoform expression, a random effects meta-regression
model is considered with the following model setup. Denote the estimated isoform relative abun-

dance as Y; and its standard deviation o¢;. The random effects meta-regression model can be
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written as,

logit(Yi) = Bo+ P1Gi + i + €4
ki~ N(0, 07;)

ei ~ N(0,02)

Assume p; and e; are uncorrelated, and n observations are independent, this model can be esti-

mated with standard meta-regression packages such as metafor in R.
4.2.2. Beta regression

Since the exon inclusion levels are random variables in the range (0, 1), B-distribution is an intuitive
choice for modeling this variable. Unlike meta-regression, beta regression allows for direct usage of
the exon inclusion levels as the dependent variable without transformation (Ferrari and Cribari-Neto,

2004). Beta regression is based on an alternative parametrization of the 3-distribution.

Yi *3[%43]

E(Yi)=p

_u -y
T+¢

f(Yi; Had)) = r r(d))

$d—1 V. (1—uw)p—1
GO — e ¢ 0TV

where p € (0,1) and ¢ > 0. Now the beta regression model can be written down,

logit(ui) = Bo + B1Gy

Fitting of the beta-regression model is performed with betareg package in R. For identifying signifi-

cant sQTLs, Wald tests are performed to test the null hypothesis Hy : 7 =0.
4.2.3. Generalized linear mixed effects model

Inspired by GLIMMPS, a generalized linear mixed effects model was fitted with the estimated exon
inclusion levels as the response variables. Since we used a much more accurate approach to

estimate the exon-inclusion levels, We expect our GLMM method to have greater power than
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GLIMMPS. For sample i, denote the total number of reads mapped to an exon trio as M;, and
the exon inclusion level as Y;. Then the estimated number of reads from a certain exon R; = M, Yj,

where R; ~ Binom(Myi, Y;). With this setup, the GLMM can be written as,

logit [E(Yi)] = Bo + B1Gi + €

€i ~ N(O,Tz)

Similar to GLIMMPS, we also use the Ime4 package in R to fit this mixed-effects model.
4.2.4. Data simulation

In order to assess the performance of the above three methods as well as the GLIMMPS, we
simulated paired-end RNA-Seq data with Flux Simulator (Griebel et al., P012) from the annotated
human genome version 19. RefSeq genes were filtered to select those non-overlapping with at
least two isoforms and three exons. For each gene, we chose the longest isoform and generated a
shorter isoform by randomly removing one of the interior exons, resulting in 4,710 exon trios in the
final list. The SNP genotypes were assumed to follow the Hardy-Weinberg equilibrium with a minor

allele frequency (MAF) of 0.4. The exon inclusion levels are determined by,

Y; = expit(—0.35 + B1Gi + €1)

i ~ N(0,0.05%)

31 was set to log(1.2) for half of the exon trios (true sQTL), and 0 for the other half (true non-sQTL).
We simulated the raw reads of 120 individuals in FASTQ format with 10 million 76 bp paired-end
reads per sample. Each simulated data set is aligned to the hg19 genome with TopHat, and exon
inclusion levels were estimated with the PennSeq algorithm. Testing of sQTLs were done with
GLIMMPS, meta-regression (PSMeta), generalized linear mixed effect model (PSGLMM) and beta

regression (PSBeta).
4.2.5. Results

[i] Comparison of exon inclusion level estimates.

GLiIMMPS and PennSeq use different methods in estimating the exon inclusion levels, which
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Figure 4.6: FDR and Power of PSMeta, PSGLMM, PSBeta and GLIMMPS. 60 and 90 subjects
were randomly chosen from the pool of 120 subjects to form the experiment groups with smaller
sample size. From each experiment, PSMeta, PSGLMM, PSBeta and GLIMMPS were used to
test for significant association between the given genotype and the exon inclusion level estimates.
P-values exported by these methods are FDR-adjusted using the BenjaminiHochberg procedure.
Genes with FDR smaller than the threshold level 0.05 are labeled as significant. FDR is computed
as the fraction of the true non-significant genes among genes labeled “significant” by each method.
Power is computed as the fraction of the genes labeled “significant” by each method among all the
true significant genes. Power improvement is computed as the percent improvement for the power
of the specified method over the that of GLIMMPS.
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can be pivotal in determining the final power of the sQTL testing. We computed the Pearson’s
correlation coefficients for the genes with 3; = log(1.2) between the estimated exon inclusion
levels and true value. PennSeq yielded significantly more accurate estimate than GLIMMPS.
Out of 120 subjects, 102 (85%) showed higher correlation between PennSeq estimates and

the true value than that between GLIMMPS estimates and the true value.

[ii] Comparison of false discovery rate and power
For our simulation studies, the FDR of all the methods are less than the nominal threshold
(Figure 4.6A). Therefore, at level 0.05, all methods have their false discovery rate under con-
trol. We also note that GLIMMPS is overly conservative on this metric, with its FDR generally
under 1%, which is less than 1/5 of the nominal FDR. This conservativeness in turn affects
the power of GLIMMPS in identifying true sQTLs. As is shown in Figure 4.6B, all the rest of the
methods have superior power in comparison to GLIMMPS at the nominal FDR 0.05. When
sample size is small at n = 60, PSBeta has the higest power, followed closely by PSGLMM
and PSMeta. All of these methods had at least 12% improvement in power over GLIMMPS.
When sample size increases, PSGLMM outperformed PSBeta. When n = 90, both PSGLMM
and PSBeta achieved 8% improvement in power over GLIMMPS. When n = 120, the power
improvement reduces to 5%. This is intuitive due to the fact that as the number of sample
increases, more information is available for GLIMMPS to estimate the exon inclusion levels
with, while the relative benefit of utilizing constitutive reads in the flanking exons dwindles.
Interestingly, our methods have similar power with 90 samples to GLIMMPS with 120 sam-
ples. This effectively saves significant time and resources for users, as 33% less samples are

needed with our methods to achieve the same power.

[ii] Impact of non-uniformity
PennSeq accounts for the non-uniformity of the sampling process of RNA-Seq, while GLIMMPS
assumes simple uniform sampling. This will potentially cause reduced power for GLIMMPS
when used on transcripts experiencing severe non-uniformity. To test this hypothesis, we
took advantage of the simulation metric, fraction of coverage, defined as the fraction of the
transcript covered by reads. Using this metric internally calculated by Flux, we picked the
genes ranked at the bottom 1/3 in terms of mean fraction of coverage across samples in our

simulation study to recompute the FDR and power of all the methods. These genes tend to
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Figure 4.7: FDR and Power of PSMeta, PSGLMM, PSBeta and GLIMMPS for low-coverage genes.
60 and 90 subjects were randomly chosen from the pool of 120 subjects to form the experiment
groups with smaller sample size. Only genes ranked at the bottom third in terms of sequencing
coverage are included. From each experiment, PSMeta, PSGLMM, PSBeta and GLIMMPS were
used to test for significant association between the given genotype and the exon inclusion level
estimates. P-values exported by these methods are FDR-adjusted using the BenjaminiHochberg
procedure. Genes with FDR smaller than the threshold level 0.05 are labeled as significant. FDR
is computed as the fraction of the true non-significant genes among genes labeled “significant” by
each method. Power is computed as the fraction of the genes labeled “significant” by each method
among all the true significant genes. Power improvement is computed as the percent improvement
for the power of the specified method over the that of GLIMMPS.
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[iv]

have (1) less coverage, i.e., less information to infer the isoform expression and (2) severe
non-uniformity due to the limited coverage and the stochasticity of the sampling process. The
results have corroborated our hypothesis, as is shown in Figure 4.7. Unsurprisingly, the differ-
ence between our methods and GLIMMPS is more pronounced when we focus on the genes
more deviated from the uniform sampling assumption. We notice that PSGLMM and PSBeta
have slightly inflated false discovery rate when the sample size is relatively large. But the
FDR of PSMeta is under control for all sample sizes. All methods had their power reduced to
a certain extent, with GLIMMPS affected more severely than others. Compared to the power
obtained from all simulated exon-trios, PSMeta, PSBeta, and PSGLMM experienced a power
loss between 34-38%, whereas GLIMMPS experienced a power loss of 44%. In addition, the
power improvement of our methods over GLIMMPS is more significant, especially when the
sample size is small. For example, when n = 60, PSMeta achieves a 23% improvement in
power over GLIMMPS, which is twice of the improvement with all genes considered. This
analysis implies that sampling non-uniformity can cause serious power loss for GLIMMPS,
especially when sample size is small. And this loss of power can be effectively rescued by

using PSMeta.

Real data application.

We tested the performance of our methods on a real RNA-Seq data of 91 lymphoblas-
toid B cell lines from the CEU population (Utah residents with ancestry from northern and
western Europe) generated by Lappalainen et al. (Lappalainen et al., 2013) for the Inter-
national HapMap Project. Each sequenced sample contains approximately 10 million 75 bp
paired-end reads, mapped to the hg19 reference genome using the JIP pipeline. The Phase
1 genotyping dataset contains only 79 CEU samples, which reduces the number of samples
with both RNA-Seq and DNA genotype data available to 78.

We focused our search on cis-sQTLs on chromosome 22, due to the limited sample size. The
search for sQTLs of a specific exon trio is restricted to the genomic area from 200kb upstream
of the trio to 200kb downstream. Only SNPs with Hardy-Weinberg p-value ¢ 0.0001 and MAF
¢, 0.1 were included. The final list contains 132 exon trios in 72 genes, 29,878 SNPs, and
80,074 exon-trio-SNP pairs. Benjamini-Hochberg procedure was used to adjust for multiple
testing, and a exon-trio-SNP pair was declared significant if the FDR-adjusted p-value was

smaller than 0.05. If we assume the majority of the exon-trio-SNP pairs were null, i.e., there
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Figure 4.8: Quantile-quantile (Q-Q) plot for the negative log10 transformed raw p-values of each
method. The raw p-values generated from the CEU population were transformed with a negative
log function with base 10. The transformed p-values were sorted and plotted against the negative
log10 transformed expected value of the same quantile from a Uniform(0, 1) distribution.
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is no significant association between the exon inclusion level of the trio and the genotype of
the SNP, we can use this real data to gauge the performance of the methods under the null. In
Figure 4.8, we plotted the quantile-quantile (Q-Q) plot of the negative log10 transformed raw
p-values from each method. PSBeta shows early deviation from the diagonal line, implying
violation of its model assumption. We suspect it's due to the fact that the exon inclusion levels
might not be distributed according to a 3-distribution, and its function form could be potentially
overly restrictive, causing inflated FDRs and early deviation from the null. GLIMMPS also dis-
played early deviation from the null, while PSMeta and PSGLMM had most of its points fall on
the diagonal line, with deviation occurring when the p-values are extremely small. This result
is consistent with the previous analyses of the behavior under the null for these methods, and
with real RNA-Seq data, we have shown that the two best methods among the four tested are

PSMeta and PSGLMM.
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CHAPTER 5

ACCOUNTING FOR TECHNICAL NOISE IN SINGLE-CELL RNA SEQUENCING

ANALYSIS

5.1. Motivation

As we have reviewed above, current sScRNA-seq protocols are complex, often introducing technical
biases that vary across cells (Hicks, Teng, and Irizarry, 2015), which, if not properly removed,
can lead to severe type | error inflation in differential expression analysis. Compared to bulk RNA
sequencing, in scRNA-seq the reverse transcription and preamplification steps lead to dropout
events and amplification bias, the former describing the scenario in which a transcript expressed
in the cell is lost during library preparation and is thus undetectable at any sequencing depth.
In particular, due to the high prevalence of dropout events in scRNA-seq, it is crucial to account
for them in data analysis, especially if conclusions involving low to moderately expressed genes
are being drawn Pierson and Yau, P075. In handling dropout events, existing studies take varying
approaches: some ignore dropouts by focusing only on highly expressed genes (Shalek et al., 2013,
2014), some model dropouts in a cell-specific manner (Finak et al., 2015; Kharchenko, Silberstein,
and Scadden, P014; Kim et al., 2015; Vallejos, Marioni, and Richardson, P015), while others use a
global zero-inflation parameter to account for dropouts Pierson and Yau, POTH. Since each cell is
processed individually within its own compartment during the key initial steps of library preparation,
technical parameters that describe amplification bias and dropout rates should be cell-specific in
order to adjust for the possible presence of systematic differences across cells. One way to quantify
these biases, adopted by existing noise models (Finak et al., 2015; Kharchenko, Silberstein, and
Scadden, P014; Kim et al., P015; Vallejos, Marioni, and Richardson, 2015), is to make use of spike-
in molecules that comprise a set of external RNA sequences such as the commonly used external
RNA Controls Consortium (ERCC) spike-ins (Baker et al., P005), which are added to the cell lysis
buffer at known concentrations (Bacher and Kendziorski, P016; Stegle, Teichmann, and Marioni,
2015).

In the review above, we have looked at existing methods in great detail. To reiterate, an ideal

method for modeling technical noise in scRNA-seq should
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model the inflated zeros in a cell-specific fashion;

model the probability of zero inflation with consideration of the gene expression level

model the amplification bias in a cell-specific manner

allow incorporation of information from ERCC controls

allow adjustment for additional covariates

Existing methods fail in at least one of the above criteria. Therefore, in this dissertation, we pro-
pose a new statistical framework that allows a more robust utilization of spike-ins to account for
cell-specific technical noise. To obtain reliable estimates of cell-specific dropout parameters, we
develop an empirical Bayes procedure that borrows information across cells. This is motivated by
the observation that, although each cell has its own set of parameters for characterizing its techni-
cal noise, these parameters share a common distribution across cells which can be used to make
the cell-specific estimates more stable. We demonstrate an application of this general framework
by a likelihood-based test for differential expression. An advantage of the proposed framework over
the existing approaches is that it can flexibly and efficiently adjust for cell-specific covariates, such

as cell cycle stage or cell size, which may confound differential expression analysis.

5.2. Generative model of single-cell RNA sequencing

In scRNA-seq data, we have observed that the relationship between the mapped read count for

a gene and its true expression level in a cell can be characterized using two functions, shown in

Figure 5.1. Figure 5.1 shows examples of the relationships depicted in Equations-51 and -2 in

the Zeisel et al. data (Zeisel et al., P015). This scRNA-seq dataset is from murine brain cells ac-
quired from Zeisel et al (Zeisel et al., P015). It contains counts of 19,972 endogenous genes and 57
ERCC spike-ins of 3,005 cells from various regions of mouse brain, counted with UMIs. The cells
are categorized into nine level-1 classes and 48 level-2 classes, with the level-2 classes considered
relatively homogenous. In this paper, we focus our analyses on two level-2 classes, CA1Pyr1 and
CA1Pyr2, which respectively contain 447 and 380 cells. The counts are preprocessed by selecting

the top 25% of genes in total read account across the 827 cells, resulting in 6,405 genes in real
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Figure 5.1: Proportion of cells with non-zero read count (in @) and mean across cells of log read
count (in b) versus log true molecule count for ERCC spike-ins in Zeisel et al. data. Included in the
plot are the best logistic curve fit (in a) and the best linear fit (in b).

data two-group comparison analysis. For studies involving class CA1Pyr2 only, selection of the top
25% of genes in the 447 cells yield 5,018 genes in the data set.

These relationships in have also been seen in other studies (Kharchenko, Silberstein,
and Scadden, P014; Kim et al., P015). Note that the intercept «. is negative, indicating incom-
plete capture efficiency of reverse transcription, and that the slope, ., when deviating from 1,
reflects what is often called amplification bias. In experiments that use unique molecular identifiers
(UMls) (Islam et al., P074), Y. is the molecule count, and 3. should be approximately 1. Together,

Equations-B1 and -B2 characterize the technical noise specific to each cell.
5.2.1. Modelling spike-ins

In greater detail, let Y.4 be the observed number of reads or transcripts (if UMI is used) for the
spiked-in molecule g in cell c. Let uy be the true number of molecules of g added to each cell
lysate. Given the cell-specific technical parameters (x., ¢, k¢, Tc), the distribution of Y., can be

modelled with the following steps:

Step.a Let Z.4 be the indicator that dropout does not occur, i.e. the gene is captured in the library.
The probability of Z.4 = 1 (7. 4) depends on the amount of added spike-in g, ug. A logistic

model can be used to describe this relationship.

Tleg =expit [ke + T¢ log 1] (5.1)

Z.g ~Bernoulli (¢ q)
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Step.b Let A4 be the expected value for the read count of spike-in g in cell c.

logAcg = ¢ + Belogg. (5.2)

Step.c Given the status of Z., the observed count for spike-in g in cell ¢ Y4 can be modelled as,

Poisson(Acg), ifZcg=1

YeglZeg ~ . (5.3)
0, ifZeg=0
The conditional probability density function of Y., given Z is,
1, ifYeg=0
Pr [ch|zcg =0l = (5.4)
0, ifYeyy>0
)\ch —Acyg
Pr[VeglZeg = 11 =295 (5.5)
Yeg'
Step.d We can arrive at the marginal likelihood of Y.4 by summing over the support of Z.,
Pr [ch] = Z Pr [ch) ch]
Zeg
= Z Pr [ch|zcg} Pr [ch]
Zeg
=Pr [ch‘zcg = 0] Pr [ch =0]+Pr [chlzcg =1]Pr [ch =1]
T-(1—Tteg) + e Meameg, if Yeg =0
= )\zcg —)\Cg .
0-(1—7ieg) + "5 ey, if Yeg >0
Yeg-
14 7eq (e Moo — 1), if Yeg =0
= ch )\(.g . (5-6)
T[cg)\cg e ) if ch -1
ch'

Step.e Plug (B) and (B2) into (&H), the full likelihood of the spike-in RNA molecules can be

expressed using the technical parameters (o, B¢, Kc, Tc) and the amount of spike-in for
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g, Uy,

1+ expit (ke + Tc log 1g) (e*e“ﬁﬁcl(’g“g - 1) , if Yeg =0
Pr [ch] = explt (KC + /'['C log ug) I:e“c+|gclog Hg]YCg efe“CJf[SClOg”g . y (5.7)

y  ifYeg =1

Yeg!
where
expit [x] = S (5.8)
PR =TT exp [—x]’ '
5.2.2. Modelling biological genes

The above observations have motivated the model shown in Figure 5.2, where the true but un-

observed absolute expression level .4 follows distribution Fg, the specification of which depends
on the analysis objective. For example, for the common task of detecting differentially expressed
(DE) genes between groups, we assume .4 follows a log-Normal distribution with mean 64; and
variance o4, where j is the group identifier. The log-Normal distribution has been demonstrated
previously to be a useful model for single cell gene expression (Bengtsson et al., P005), and lends

computational simplicity to the estimation procedure. The technical noise in the cell is captured by

the intermediate variables Z., characterized by Equation 5.70, and A.4, characterized by
on 511, Given Z.4 and Aq, the distribution of Y. is shown in Equation 5.72. Assuming Fg is in

the form of log-normal distribution, the count of reads or transcripts for a biological gene g in cell ¢

can be modeled with the following steps:

Step.a Given the cell-specific technical parameters, we assume the actual expression of gene g

in cell ¢ follows (Bengtsson et al., PO05),
keg ~ LogNormal (84, 07) (5.9)

where 04 and o4 are the gene-specific parameters characterizing the mean and standard

deviation of the log-normal distribution.

Step.b Let Z.4 be the indicator that dropout does not occur. The probability of Z.y = 1 (7cgq)

depends on the gene’s true absolute expression in the cell, 4. A logistic model can be
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gene expression levels of the cells
follow a common distribution F4

Figure 5.2: Schematic of TASC model for a single gene g across n cells, with p.4 being true
absolute expression, Y.4 being observed read count, and Z.4,A.4 being intermediate variables
that model dropout and amplification, capture, and sequencing biases.

used to describe this relationship.

Tleg =expit [Ke + Tc 1og gl (5.10)

Zeglucg ~Bernoulli (7eq)

Step.c Given the cell-specific technical parameters (., B¢, k¢, Tc), let A4 be the expected value

for the read count of spike-in g in cell c.

logAcg = ¢ + Belog peg (5.11)

Step.d Similar to the case of spike-in molecules, given the status of Z.4, the observed count for

gene gincell ¢, Y4, can be modeled as,

Poisson(Acg), ifZcg=1
ch|ch> Heg = (5.12)

0, if Zeg =0
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And the conditional probability density function is,

1, ifYeg =0
Pr [ch‘zcg =0, P'cg] =

0, ifYeg>0

Y
Abg? e Mes
Pr [ch‘zcg = ]) ucg] =9

Yeg!
[ecxc+[3c log ucg} Yeg e—exctPelarcy

Yeg!
Step.e The joint probability of Y.4, Z.4 and p.4 can be subsequently expressed as,

Pr [cha ch) u'cg] =Pr [ch|zcga Hcg} Pr [ch» ch]

=Pr [ch|zcg) ucg} Pr [ch“lcg] Pr [ucg] .
The marginal likelihood of Y., 1.4 can be computed by summing over the support of Z,

Pr[Yeg, Hegl
=Pr [Yeg, Hegy Zeg =01+ Pr[Yeg, Hegy Zeg = 1]
=Pr[YeglZeg = 0, legl PT[Zcg = Olitcg] Prlpegl
+PrYeglZeg = 1, Hegl PT1Zcg = Tliteg) Pr[peg)

_exc+Bclogucg

(1 _T[cg)fLN (Hcg|eg» O.é) +e TlegTIN (Hcg|eg» 0-52;) , Yeg =0

[ecxcHSclog ucg]ch e—e“cﬂ*c““gwg )
ycg! 7TcgfLN (ucg‘eg) O'é) ) if ch >0
(5.13)
where
(e 02) = — L & (
fin (Hegl0g, 05) = ———=e 25 . 5.14)
coTe e WUegOg V2T

Therefore, the marginal likelihood for Y.4 can be computed by integrating out pg,

Pr [ch} = J Pr [ch>ucg] diteg-

Hecg
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Assuming independence between cells, then the marginal distribution of

Yg = (Yigy--+,Yeq, -+, Yng) Can be expressed as,
N
Privel =] J Pr [Yeg, ool dicg. (5.15)
c=1
Hecg

The parameters 84 and Ué can therefore be estimated by maximizing the above marginal

likelihood.
5.2.3. Empirical Bayes estimation of cell-specific technical parameters
Cell-specific technical parameters include
e «. and 3., characterizing capture and amplification efficiencies for any gene in cell c.

e k. and t., characterizing the probability of any gene to be detected, i.e. not undetected due

to technical dropout, in cell c.

They are estimated using ERCC spike-ins. From the generative model, we have arrived at the
full marginal likelihood for Y.4 given the technical parameters W, = («, B¢, Kc,Tc). Maximum
likelihood estimates (MLEs) can be obtained by optimizing the complete likelihood over the support
of W, for cell c. However, in our simulations, naive MLEs suffer from numerical instability and lack of
convergence for k. and t. (Figure 5.3), which prompts us to derive a better strategy for estimating

K. and T..
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Figure 5.3: Comparing the maximum likelihood estimators of cell-specific technical parameters ¥,
with their true values. Left panel: scatter plot comparing . (upper) and B. (lower) estimated
with maximum likelihood methods (y axis) to their true values (x axis). Middle panel: scatter plot
comparing k. (upper) and t. (lower) estimated with maximum likelihood methods (y axis) to their
true values (x axis). Right panel: scatter plot comparing k. (upper) and t. (lower) estimated with
maximum likelihood methods (y axis) to their true values (x axis), zoomed in view. Identity line
(dotted) is plotted for ease of comparison.

Upon further investigation, we have pinpointed the issues with likelihood estimators:

e due to the limitations of ERCC spike-ins, each cell contains little information w.r.t the drop-out
probabilities due to paucity of spike-ins with low concentrations, thus necessitating borrowing
information across cells if we wish to estimate the dropout-related parameters with better

stability;

e we have observed that the k. and t. are negatively correlated, and similar relationships are
observed for o, and 3. as well (Figure 5.4)). The estimating procedure can take advantage of

this knowledge to model the correlation among the parameters.
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Figure 5.4: Scatter plot gescribing the correlation between «. and ., and k. and t.. Left panel:
& (y axis) compared to 3. (x axis); both estimated from linear regressions. Right panel: &. (y axis)
compared to . (x axis); both estimated from logistic regressions.

Taking the above observations into consideration, we propose an empirical Bayesian approach in
which we assume the vector ¥. = («¢, B¢, Kc, Tc) follows a multivariate normal distribution with

mean 1 and covariance matrix Ly
Y ~N(, Ly). (5.16)

Denote the observed read counts for the spike-in molecules as Y. = {Y.q,9=1,---,G}, with G
being the number of synthetic mMRNA molecules added to the cell lysates. Assuming independence

Ye,g AL Ye, g for ¢y # c2, the full likelihood for the observed Y., across cells can be written as,

£ 1, ZylY) = ] PriXehb, Zv]

— [T | Privaie pritep, Zu) av.. (5.17)

Conditional on ¥, the probability density function of Y. is just the likelihood in (8=2), and Pr [W |, Zy]
is the bivariate normal density function per our assumptions. To estimate the expected values of
Y. in the above models, we need to first compute the hyper-parameters (1, Xy ) by maximizing the
above likelihood. Due to the lack of closed form solutions, this calls for the numerical maximization
of a numerically integrated function. The integration would be evaluated over 4 variables, and the

maximization over 14 (4 for the mean and 10 for the covariance matrix) with a positive-definite re-
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straint on Zy. This numerical problem has turned out to be unsolvable for the current computational
infrastructure accessible by the majority of our users.

We propose a computationally efficient approach to estimate the required parameters ¥, for all
cells. We recognize that constraints on the covariance structure Zy are necessary to reduce the
dimensionality of our optimization. We assume Xy is a diagonal block matrix by imposing indepen-

dence between the vectors (., B.) and (k¢, t.). Then we estimate these two vectors separately.

(xe, Bc) can be estimated efficiently by fitting the linear regression with log [Y.4] as the response
variable and the amount of spiked-in ERCC molecules as the predictor variable, using only genes

that are detected ({g, s.t. Y¢gq > 0}),

log E [Yegl = & + B log pg. (5.18)

We recognize that this estimator is biased as a result of the data missing not at random (MNAR).
However, in our simulation studies, this estimator does not show any discernible bias when com-

pared to the truth (Figure 5.5), indicating the bias incurred by MNAR is under control.

On the other hand, the alternative estimators for (., t.) have proven to be a bit more elusive since
the indicator of dropout is latent, i.e. we do not directly observe which zeros in our read counts
are caused by technical dropouts versus Poisson sampling during sequencing. One approach is to

assume all zeros are technical dropouts, and use logistic regression to estimate (x., t.),

logit (Pr [Yeg > Olugl) = ke + T log pg. (5.19)

However, this has two drawbacks. First, this estimator is highly biased, since not all zeros are ef-
fects of technical dropout, and some of these zeros are due to the low expression of gene g in cell
c. Second, since those genes with lower expression have a higher probability of dropping out, naive
logistic regressions could fail from complete or quasi-complete separation. Complete and quasi-
complete separation happens when the outcome variable (in this case the event of being observed)
separates a predictor (in this case log 1.4) completely (complete) or very well to a certain extent
(quasi-complete). In both cases, the coefficients associated with the affected covariates cannot be

estimated. Our model requires that all of the cell-specific technical parameters be known for the
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downstream computations, failure to estimate (k,t.) will result in cell ¢ being removed from the
sample pool, thus causing unnecessary loss of data. The root of this issue is identical to that of the
simple MLEs (Figure 5.3), therefore similarly some form of shrinkage is the key to stably estimating

these two dropout-related parameters.

We propose the following steps to compute the cell-specific dropout parameters (k.,t.). Let

¢ = (KeyTe).

Step.a perform logistic regression of (519) and obtain 3. for cells that do not exhibit complete or

quasi-complete separations.

Step.b estimate prior of &, by fitting a bivariate normal distribution using the estimated 8. to

compute the mean E [§.] and covariance matrix Zs_.

Step.c use the estimated mean and covariance matrix of §. to compute the posterior mean of k.

and t.. The complete probability density function for 6. and Y. is

Pr [éc» Yc] =Pr [Yc|5c] Pr [Sc]

=Pr [éc] H Pr [ch|6(:]
¢]

=fn(8c[E[8c],Zs,) - [ [ Pr[Veql8el. (5.20)
9
The posterior distribution of o is
_Pr (8¢, Y]
Pr[8.[Yc] —W
Pr [SC)YC] (521)

~[Prise, Yol s,

with fn being the PDF of a bivariate normal density and Pr[Y.4|8.] is equal to (B7) in

form. The posterior mean of §. can then be computed by integrating the PDF over the
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support of bivariate random variable &, i.e. R?.

E [kelYc] :J K Pr[8c]Yc] dSe

KcPr [SC)YC]
_J JPrise, Yl dscd‘SC
IKCPT [8c,Yc]dde
= .22
IPT (8¢, Y] dde (522)
Pride, Ye c
E frolYe] =17l 8 Yel d8 (5.23)

N J.PT [60) Y.]dé,

o -
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Figure 5.5: Comparing the estimated &, BC to the true values of «. and .. Left panel: & estimated
from linear regressions (y axis) compared to their true values (x axis). Right panel: B estimated
from linear regressions (y axis) compared to their true values (x axis). Both panels: dotted lines
represent the unit lines with intercept equal to 0, and slope equal to 1.

We have performed a series of simulation studies to assess the performance of the aforemen-
tioned estimators of o, B¢, k. and t.. Using the largest level 2 class in the Zeisel data (Zeisel
et al., P015), we have estimated the cell-specific parameters («., 3.) and (k,T¢) using the method
described above. Denote (. = (x,Bc). Two bivariate normal distributions are fitted to the esti-
mated parameters ¢, and 8. to get the mean and covariance matrices of these two vectors, E [¢.],
Yz, E[8.], and Xs. New technical parameters are then sampled from the bivariate normal distribu-
tions N (E [¢.],Z¢) and N (E[8.],%s). From these new technical parameters, counts of 57 ERCC
spike-ins present in the Zeisel data (Zeisel et al., 2Z015) in 200 cells are generated according to the

hierarchical model described above. The simulation is repeated 100 times to get a more compre-
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hensive picture of the performance of these estimators.

Despite being biased, the linear estimator for ¢. has performed fairly well showing high concor-
dance with the truth (Figure 5.5). As expected, estimated f. is slightly lower than true 3., and
estimated «. is slightly lower than true «.. However, in general the true value can be efficiently

recovered even in the presence of this minor yet discernible bias.

The empirical Bayesian estimator for §. has also displayed decent concordance with the truth
(Fig B). More importantly, when compared to the naive logistic regressions, our empirical
Bayesian estimators show dramatic improvement in terms of accuracy. Estimates from naive logis-
tic regressions show a much larger spread, and this is after we have filtered out a significant portion
of the cells showing complete or quasi-complete separation, in which case the estimates cannot be
obtained at all. These samples would need to be discarded in downstream analyses if no shrinkage

is implemented.
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(a) Rc (left panel) and R, (right panel) estimated using the empirical Bayes

approach compared to their true values.
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(b) Rc (left panel) and R, (right panel) estimated using simple logistic

regressions compared to their true values.

Figure 5.6: Comparing the estimated k., 7. to the true values of k. and t.. Dotted line represents
the unit line with intercept being 0, and slope equal to 1.

shows the distribution of estimated (&, ) and (Rc, %) across cells for the Zeisel data
(Zeisel et al., 2015). The mean function, determined by (&, BC), and the non-dropout rate function,
determined by (&, B.), are shown for four cells chosen to represent the middle and extremes of

these distributions.
5.2.4. Differential expression analysis

Previous studies have shown that cells vary in size, with larger cells having more RNA molecules
to attain similar concentration levels to smaller cells (Padovan-Merhar et al., PZ0715). This indicates
that to detect DE genes, it is more appropriate to test for concentration difference between groups.
To allow this, we include cell size, which can be estimated by the ratio of reads from endogenous

RNA to reads from spike-in sequences, as a covariate. Other potential covariates, such as cell
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a) and logistic curve (in b) corresponding to the technical parameters estimated for these cells are
shown in matching colors.
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cycle stage, can also be included in the model to avoid spurious association. For cell cycle, we add
as covariate the expression of a curated set of marker genes, such as the set from (Tirosh et al.,
20186), or a latent factor representing cell cycle, as in (Buettner et al., 2015). A likelihood-ratio test
is developed to detect DE genes.

Based on the hierarchical model, testing for differentially expressed (DE) genes is straightforward.
In our model, for cells within the same group, the true expression level of gene g, .4 follows a
log-normal distribution with mean 64 and variance oé. Testing for differential expression involves
comparing the means from different groups on a gene-by-gene basis. We propose a likelihood ratio
test for this purpose. Let 64 be expressed as a linear combination of the covariates for which one
wishes to test or adjust, 0, = XTIy, Tg = (v1, - ,Vi, -+ ,Yp) With v; denoting the coefficient for
predictor x; in the design matrix X = (x1,---,xi,--- ,Xp). Testing for each covariate involves fitting
a full model 04 = XTIy and a reduced model with target covariate x; removed from the design matrix
X. Denote the reduced design matrix and coefficient vector to be X and f“g respectively. Denote the
biological variance of the full and reduced model as cré and 6@. Formally the question of whether x;
is significantly associated with the gene expression can be formulated as the following hypothesis

test,

Ho:yi=0

H] IY{#O.

The likelihood ratio test statistic for this above test, T; can be constructed as,

Ty =2 [iog (1) ~1og (20)].

where £; and £, are the likelihoods maximized under H; and H,, respectively. Asymptotically,
Tigi follows a x2-distribution with 1 degree of freedom under the null hypothesis (y;=0). Raw p-
values can subsequently be adjusted for multiple comparisons with false discovery rate controlling

procedures such as the Benjamini-Hochberg procedure or the Holm-Bonferroni procedure.
5.2.5. Expectation-Maximization algorithm

When the number of covariates is small, the parameters can be estimated using the Simplex al-

gorithm, which does not involve the calculation of derivatives. However, the Simplex algorithm is
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not suitable when the number of covariates is large. To circumvent this problem, we have also
developed an expectation-maximization (EM) algorithm to estimate the biological mean (64) and

variance cg. Briefly, the log likelihood for gene g can be written as,

{ [Yg) u9|69, G?J :Ze [YCQ’ }’LCQ|69’ O-é]
c
:Z {f [ch‘Pchyeg) O_é] +¢ [p'09|99) O_é]}
:Z {13 [Yegltcgl 4 ¢ [Hcg|eg> Gé”

c
:Ze[ch”ch] + ZR [Hcg|eg» O-é] .
c c

E-step:
Y
:Z E |:€ [ch‘ucg” é\g’t), 6‘5")’Y9} -+ Z E {e [Hcg|eg, Gé] | é\gt)) 6gt),Yg
c

The first term is ignorable since it is a constant function of 8, 6", over which the maximization
is to be performed. So in order to evaluate this expectation in the E-step, we only need to compute

E € [1eql0g, 02 @m,ﬁm,Y . Due to the assumptions we have made for the functional form of
glYg,0g||Yg ,0g , Xg p

Fq, it follows a log normal distribution.

9

log (1eg) —04)° 1
_E{ |i 8 HZ?% g —Elog (Znog)]

log (1teg)? — 204 10g (eg) + 02 1 >
=E { [ 352 g — 3 log (2707%)

E [¢ [ucql0g, 02 104, 641, Y, |

E [log (1eg)” 184, 04, Yo | — 205 E [log (1eg) 195,84, Y, | + (8

2
2 (65;])
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Two expectations need to be evaluated in order to compute the above value. Briefly,

flOg [Hcg]z PT[ cg“’LCg} Pr |:HC9|69 ’09 :| duCQ
_ 0

o AD)
j Pr [ch“lcg] Pr [ucg‘e y 0-g :| ducg

flOg U-cg] PrlY cg“"«:g] Pr {ucg‘eg )Gg ] ducg
E [log (1eg) 104,81, Y| = &
J.PT’ [ch“/tcg] Pr {Hcg|eg )69 ] dp'cg
0

M-step:
The M-step involves maximizing the above expected log-likelihood w.r.t the parameters @g” and
65‘), in the case of simple quantification,

§t+1 7]

I\/]z

(t
{log Heg | t) E;t))Yg}

c:]

1

~ 2 [log (1eg)* 185", 8", Yo | — 205 VE [log (ueg) 05,8, ¥ | + (8") .

D
@

‘M=

Inthe case of 64 = XTIy, the above E-step is the same, after substituting @ét) = Xﬁgt). The M-step for
IA“ (t+1) is replaced by a linear regression with E [log (Heg) |§ét), E}Ef),Yg] as the response variable,

and X as the predictor. The M-step for 8 Vis unchanged, after substituting 9 (1) = Xfé””.

5.2.6. Estimation of cell size factor

Single-cell RNA-seq requires normalization on cell size because larger cells tend to have more
RNA molecules. To estimate the cell size S. (c = 1,---,N, N being the number of cells), we
take advantage of the spike-ins as well. Denote the read count for biological gene b in cell ¢ as
&ev,b = 1,--- B, where B is the total number of biological genes after filtering. Also denote the
counts of the spike-in molecule e as &..,e = 1,--- ,E, where E is the total number of spike-in

molecules. The cell size factor can be computed as,
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In our software implementation, this cell size factor is computed and automatically used as a co-
variate to adjust for any possible confounding incurred due to different cell sizes unless the users
explicitly disable it. In order to compare the detected DE genes with and without adjustment for
the cell size factors, we have looked at the genes called significantly differentially expressed when
comparing the two level-2 classes CA1Pyr1 and CA1Pyr2. 1604 genes are uniquely detected with
adjustment for the cell size factors, while 663 genes are uniquely detected without. 3346 genes are
differentially expressed regardless of the adjustment. Considering the fact that this dataset contains
cells of relatively homogeneous sizes (Figure 5.33), it is highly possible that the difference will be

more pronounced in samples of more heterogeneous sizes.

Uncorrected

Figure 5.8: Venn diagram showing the overlapping of genes detected to be differentially expressed
between comparisons with and without cell size adjustment.

5.3. Evaluation of Performance and Comparison with Other Methods

In this section, we evaluate the performance of TASC on both simulated and two real scRNA-seq
data sets and compare it with four existing methods, including SCDE (Kharchenko, Silberstein, and
Scadden, P014), MAST (Finak et al., P015), and DESeq2 (Love, Huber, and Anders, P014), and
SCRAN (Lun, Bach, and Marioni, 2016). As SCRAN only provides normalized read counts, we
perform differential expression analysis using DESeqg2 with SCRAN normalized read counts. We
include two versions of SCRAN in our evaluation, the original SCRAN, and SCRAN.SP that utilizes
ERCC spike-ins in normalization. These methods are rated in terms of type | error rate and power

in detecting DE genes, and their results on a real data set with genuine gene expression difference.
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5.3.1. Type Il error rates in the absence of batch effects

To assess the accuracy of type | error control of TASC and other existing methods, 447 cells from
the level-2 class CA1Pyr2 from the Zeisel et al. data (Zeisel et al., P0T5), which is the largest level-
2 class, are randomly split into two groups of roughly equal size. Therefore, no gene should be
differentially expressed when one group is compared with the other. Differential expression analy-
ses are performed with TASC, SCDE, MAST, DESeg2, SCRAN and SCRAN.SP. Raw p-values are
extracted from each method, and the performance of each method is assessed by histograms and
quantile-quantile plots of the corresponding p-values, shown in Figure 5.9. Our results show that
TASC, DESeqg2, SCRAN and SCRAN.SP have p-values that are uniformly distributed as expected
under the null, whereas SCDE is overly conservative with enrichment of p-values near one, and

MAST is severely anti-conservative with enrichment of p-values near zero.

5.3.2. Type | error rates in the presence of batch effects

Batch effects are common in scRNA-seq data (Hicks, Teng, and Irizarry, P015). As we have dis-
cussed above, four technical parameters dictate the relationship between the true expression of
a gene and the observed counts in a specific cell in scRNA-seq experiments. In our framework,
these four parameters are modeled in groups of two. The first two parameters are x. and (.,
which represent the efficiency of capture and ampilification, relating the log mean of the Poisson
distribution to the true log expression of the gene in cell c. The last two parameters are k. and T,
which are influenced by the propensity of a gene being observed in the final sequencing, i.e. not a
dropout. Both of these parameters vary across cells, and directly affect our estimates for the true
expression of the gene g in cell c. Therefore, it is of great interest to see whether adjustment for
these cell-specific technical parameters or failure to do so has an effect on the specificity for calling
significant differentially expressed genes from scRNA-seq data.

To evaluate effectiveness in type | error control in the presence of batch effects, we have generated
a data set that contains batch effects as characterized by systematic differences in the technical
parameters («., B¢, Kc, Tc ) between groups. To introduce batch differences between the two groups
under comparison, cell-specific technical parameters (x., 3.) and (k¢,t.), are estimated from the
cells in CA1Pyr2 class and a bivariate normal distribution is fit separately to (., f.) and (k¢, T¢).

One group in the simulated data draws its cell-specific technical parameters from these empiri-

86



o

0.00 0.25 0.50 0.75 1.00
b P-Value
TASC MAST SCRAN
- 5 =
—~ 3 —~ ~ 3
o o o
2 2 =
2 g g
o ? o 52
o o2 o
= = =
o1 L2 o1
0 0 0
0 1 2 3 0 1 2 3 4 5 0 1 2 3
expected value expected value expected value
SCDE DESeq?2 SCRAN.SP
~ 3 —~ 3 ~ 3
o o o
= 2 2
2 2 2
&’ & &t
o o o
S S 1
0 0 0
0 1 2 3 0 1 2 3 0 1 2 3
expected value expected value expected value

Figure 5.9: Distribution of achieved p-values (in a) and the corresponding quantile-quantile plots (in
b) for four methods applied to CA1Pyr2 cells from Zeisel et al. data, split randomly into two groups,
thus emulating a case where all p-values should be uniformly sampled from [0, 1].
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cal distributions, and the other group draws its technical parameters from distributions where the
mean(s) of combinations of technical parameters are shifted by amounts shown on the axes of the
heatmaps in Figure 5.10. The magnitude of the shift represents the severity of batch effect differ-
ence between the two groups. The rest of the parameters controlling the expression of genes are
the same for the two groups and are derived from estimates from the CA1Pyr2 class. Simulations
are performed to generate the counts of 5,018 genes in 100 cells (50 in each group). Differential
expression analyses are performed and the raw p-values are used to estimate the false positive rate
(FPR). The deviation of the estimated FPR from the expected value is plotted on heatmaps to reflect
the type | error rates under varying severity of batch effects. shows that TASC has well
controlled type | error rates across a wide range of batch effect severity, whereas SCDE appears
to be conservative overall, and MAST, DESeqg2, SCRAN and SCRAN.SP are anti-conservative and
susceptible to batch effects.

The detailed steps of data simulation are as follows:

o Cell-specific parameters, ¥, as well as gene-specific parameters, the biological mean (6)
and variance (cé) are estimated from the “CA1Pyr2” class in the Zeisel data(Zeisel et al.,

P015) using our model.

e Two bivariate normal distributions for 6. = (k¢,tc) and (. = (o, Bc) are fitted with the

estimated parameters.

e The sample is randomly divided into two groups of roughly equal sizes. A difference is then
added to the mean of 4. for cells from one of the groups, resulting in two sets of cells whose

5. can be characterized as:

E [Kc]z =t [Kc]1 + AE [k¢]

E [Tc]z =E [Tc]1 + AE [t]

The magnitudes of AE [k.] and AE [t.] determine the degree of batch effects. We have gen-

erated combinations of AE [k.] and AE [t.], with both values ranging from —0.4 to 0.8.

e The generative model is used to simulate the counts with §. sampled from the corresponding

bivariate normal distribution. For each combination of AE [k.] and AE [t.], approximately 4000
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Figure 5.10: Accuracy of false positive rate control under mild to severe batch effects for TASC,
SCDE, MAST, and DESeqg2. The batch effect severity takes the form of between-group difference
in the expected values of the technical parameters, denoted by AE [k] and AE [1] (in @), and AE [«]
and AE [B] (in b) in the axes of the heatmaps. The color scale of the heatmaps reflects deviation of
achieved false positive rate from the target value of 0.05 used in the tests.
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genes are generated, and p-values are calculated by running differential expression analyses

with each tested method.

e The p-values are subsequently used to compute the false positive rates (FPRs), i.e. the pro-
portion of DE genes called (p < 0.05) among all genes tested (since all of them are not
differentially expressed). The FPR is then compared with the desired significance level (0.05)
and a heat map is generated by plotting log, ,(FPR/0.05) with varying colours on a grid repre-

senting the combinations of AE [k.] and AE [t.].

e Similar simulations are performed for «. and ., with the only change being the range of

AE [eec] ([=1,1]) and AE [B] ([-0.1,0.1]).
5.3.3. Power

In addition to controlling type | error, an ideal statistical method should also be sensitive, i.e. ex-
hibiting extraordinary power when compared to existing algorithms. To investigate the power of the
methods under realistic scenarios, we continue to utilize the 5,018 genes from the CA1Pyr2 class
in Zeisel et al. data set. Among them, 4,018 genes are designated as true non-DE, whose counts
are directly extracted from the Zeisel et al. data set after group membership randomization. The
remaining 1,000 are designated as true DE, whose counts are simulated from parameters esti-
mated with real data, with an induced between-group fold change that is randomly sampled from
a distribution that generates more genes with weak to moderate expression difference than strong

difference. The detailed steps as as follows:

e The simulation scenario is the classic two-group comparison. Let the true expression of gene
g from group 1 follow a log-normal distribution .4 ~ LogNormal (641,03), and the same
gene from group 2 follow a log-normal distribution with a different mean .4 ~ LogNormal (642, 0%).
For simplicity, in this simulation we assume g display similar biological variance across groups.
This assumption is purely for simplicity, and our model can easily handle situations where this
is not true. In our current iteration of implementation, the biological variance of the two groups

is assumed to be identical.

e From cells in the level 2 class “CA1Pyr2” in Zeisel data set(Zeisel et al., P015), we estimate

the technical parameters W, for each cell c, the mean (84) and standard deviation (o) of log
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gene expression for reach gene g using TASC. Genes with extremely low total read counts

are removed, leaving a total of 5018 genes in the final pool.

e 1000 genes are randomly picked to be differentially expressed. The effect size, i.e. fold change
between the two groups, ng = exp (1841 — 6421) ranges from 1.05 to 2.5, and is assigned so
that the majority of DE genes only exhibit mild difference in expression (Figure 5.12). This dis-

tribution of n4 dovetails with the overall experience from two-group comparison experiments.

e Counts of the 1000 DE genes are sampled from our generative model using the technical
parameters ¥, and cré estimated in previous steps. More specifically, 647 is directly from the
mean estimated in previous steps, and 64, = 041 £ logng, Where ng4 is the fold change for

gene g. The sign of logn, is randomly assigned.

e Counts of the 4018 non-DE genes are equal to the Zeisel data(Zeisel et al., P015). Since
our group membership is randomly assigned, none of these genes should be differentially

expressed.

e The above steps are repeated 100 times and each dataset consists of 5018 genes (1000 DE
genes and 4018 non-DE genes). The 447 cells are then down-sampled into various sample
sizes for 5 different simulations, 20 vs 20 (20 cells in group 1 and 20 cells in group 2, same

hereinafter), 50 vs 50, 100 vs 100, 150 vs 150 and 200 vs 200.

e In each simulation, TASC, MAST(Finak et al., 2Z015) and DESeg2(Love, Huber, and Anders,
P014) are used to call DE genes. For each DE gene, the power can be estimated by dividing
the number of datasets in which it is called significant (p is less than or equal to the pre-set

significant level) by the total number of simulations (100).

The scheme of simulation is illustrated in Figure 5.71.
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Figure 5.11: The scheme of simulation for power comparisons. Simulations differ by their sample
sizes, i.e. the number of cells in each group. This is achieved by downsampling each group to
the desired number of cells from the complete data (447 cells in total). One simulation contains
100 datasets, generated by repeating the sampling process from the same parameters. Each
dataset contains the counts of 5018 genes in specified number of cells. 1000 genes are differentially
expressed while the rest are not.
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Figure 5.12: Distribution of n4 in the simulation study.

We have made sure that our simulated datasets are visually indistinguishable when counts from a
random pair of cells are compared. In Figure 5.T3, 9 pairs of cells from the 447 cells are randomly
selected and plotted. In a specific pair, each dot represents a gene with its count in one cell
plotted on the x axis and that in the other cell on the y axis. These plots closely resemble similar
plots reported before generated from various scRNA-seq experiments, which suggests that our

simulation scheme can largely recapitulate the between cell variability in scRNA-seq data.
5.3.4. Overall Power Performance

The average power curves in Figure 5.14a are obtained by smoothing the estimated power across
genes with similar fold change. Our results demonstrate that TASC has the highest power, followed
by SCRAN.SP, SCRAN, DESeqg2, MAST, and SCDE. Figure 5.74b shows that the higher sensitivity

of TASC is more pronounced when fold change is moderate; for example, when fold change is
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Figure 5.13: Scatter plots for 9 randomly picked pairs of cells in simulated data. For each panel,
two cells are randomly chosen from the a total of 447. With two cells indexed as i and j, log(Yiq+1)
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Figure 5.14: a. Achieved power of TASC, SCDE, MAST, DESeq2, SCRAN, and SCRAN.SP for
detecting varying fold changes in mean in the simulated data set within 100 cells in each group.
Results both with (SCRAN.SP) and without (SCRAN) the use of ERCC are included for SCRAN. b.
Power differences between TASC and the other methods in the simulated data set.

1.75, at the 0.0001 significance level, the average power of TASC is 8%, 20%, 25%, 37%, and
428% higher than SCRAN.SP, SCRAN, DESeqg2, MAST, and SCDE, respectively.

Power and effect size

Since we have simulated 1000 DE genes with varying effect size, it is straightforward to investigate

how the n4 influences the power of our method. In Figure 5.75, estimated power (wy = nsg/nrg,
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where nsg is the number of datasets in which the p-value of TASC is less than or equal to the
specified significance level, and nt4 = 100 is the total number of datasets in each simulation) is
plotted against n,. Due to the differences in other parameters such as 041, 64, and oy, genes
with similar ng can be detected with dramatically different power. This leads to a spread in our
power-effect size curve. For example, when we pick the significance level to be 10~*, genes that
display approximately 2-fold change between the two groups can be detected from less than 40%
of the time to over 80% depending on specific properties of the gene. This closely resembles the
actual analyses and speaks to the importance of simulating data based on real data.

is plotted from the simulation with 100 cells in each group.
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Figure 5.15: Relationship between the estimated power and the effect size. Each DE gene is plotted
with the x axis indicating their ng. Y axis represents the proportion of datasets in which TASC
has called this gene significantly differentially expressed (p is less than or equal to the specified
significance level). The sample size of this simulation is 100 vs 100.

SCDE performs quite conservatively in our studies on the type | error. Unsurprisingly, when com-

pared to TASC, has dramatically attenuated power. Figure 5.16 and Figure 5.1/ illustrate the rela-

tionship between the power of and the effect size of gene. With significance levels set at all values
(10~° to 0.05) TASC overpowers by a considerable margin. The difference is particularly prominent
when the significance level is set below 10~#, which is the common in scRNA-seq analyses due to
the preference of controlling for false positives. When the significance level is set to be 10~%, genes

with ng ~ 1.75 can be detected over 75% of the time by TASC, but less than 25% of the time by
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most cases.
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SCDE. This is translated into a difference of power between 40% to 80%, a 4-fold improvement in
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Figure 5.16: Power comparison between TASC and with various effect sizes. Each panel contains
the power curve of TASC and under the specified significance level. This plot is generated from the
simulation 100 vs 100 (Figure 5.71]).
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Figure 5.17: Power improvement of TASC over with various effect sizes. Each panel contains the
power improvement curve of TASC and under the specified significance level. Y axis represents the
difference in absolute not relative values in estimated power between TASC and , i.e. w3 —w,.
This plot is generated from the simulation 100 vs 100 (Figure 5.17)).

Another method specifically designed for scRNA-seq is MAST(Finak et al., 2015), which shows
inflated type | error in our studies based on real data even in the absence of batch effects (Fig]

re59). Among all four methods tested, MAST(Finak et al., P015) has the most difficult controlling

the type | error rate when batch effects are present in the dataset (Figure 5.10). In terms of power,
MAST(Finak et al., P015) has also performed poorly compared to TASC (Figure 5.1 and Fig]

Ore 519). Using genes with ng ~ 1.75 as an example, the power difference between TASC and
MAST(Finak et al., POT5) is 10% to over 30%. This suggests that MAST(Finak et al., POT5) has
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a tendency to mislabel non-DE genes as DE and DE genes as non-DE, and the results produced
by MAST(Finak et al., 2015) should be validated by other methods to reduce the number of false

positives.
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Figure 5.18: Compare power between TASC and MAST (Finak et al., 2Z015) with various effect sizes.

Each panel contains the power curve of TASC and MAST(Finak et al., P0T8) under the specified
significance level. This plot is generated from the simulation 100 vs 100 (Figure 5.17)).
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Figure 5.19: Power improvement of TASC over MAST (Finak et al., P0T5H) with various effect sizes.
Each panel contains the power improvement curve of TASC and MAST(Finak et al., P015) under
the specified significance level. Y axis represents the difference in absolute not relative values in
estimated power between TASC and MAST(Finak et al., 2015), i.e. w!*3C — wMAST. This plot is
generated from the simulation 100 vs 100 (Figure 5.T7)).

DESeqg2(Love, Huber, and Anders, 2014) is a popular method for differential expression analysis.
Although developed for bulk RNA-seq data, our simulation study suggests that DESeqg2 has decent
overall performances such as type | error rate in the absence of batch effects (Figure 5.9). In terms
of power, however, DESeq2 is outperformed by TASC just like the other methods. Using genes
with a fold change near 1.75 as an example, TASC represents a difference of 10% to 30% on the
absolute not relative scale over DESeqg2. A more troubling issue is that DESeqg2(Love, Huber, and

Anders, 20714)) lacks the ability to adjust for batch effects and can display serious type | inflation in

100



the presence of batch effects (Figure 5.10).
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Figure 5.20: Compare power between TASC and DESeqg2(Love, Huber, and Anders, P014) with
various effect sizes. Each panel contains the power curve of TASC and MAST(Finak et al., 2015)
under the specified significance level. This plot is generated from the simulation 100 vs 100 (Fig]

e 5.TT).
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Figure 5.21: Power improvement of TASC over DESeg2(Love, Huber, and Anders, P014) with
various effect sizes. Each panel contains the power improvement curve of TASC and DESeqg2(Love,
Huber, and Anders, 2074) under the specified significance level. Y axis represents the difference
in absolute not relative values in estimated power between TASC and DESeqg2(Love, Huber, and
Anders, P0T4), ie. wlASC — wgt5¢9%. This plot is generated from the simulation 100 vs 100

(Figure 5.71)).

SCRAN(Lun, Bach, and Marioni, P018) is a recently developed method for normalizing scRNA-seq
data using cell-specific deconvolved pool-based size factors. As a normalization scheme, its perfor-
mance is highly dependent on the downstream method of analysis. We have tested SCRAN in the
scenario of two-group comparison coupled with DESeq2 and it has shown improved performance
over using DESeqg2 alone. Since the SCRAN package can also take advantage of the counts for

spike-ins to derive the normalization factors, we have looked at both naive SCRAN (without spike-
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ins) and SCRAN.SP (SCRAN run with spike-ins). In some cases, due to the limitations of the
sample size available, only results from SCRAN.SP are presented.

In terms of power, naive SCRAN coupled with DESeq2 shows performance similar to DESeq2.
In all significance levels tested, TASC overpowers SCRAN+DESeq2 by up to 30%, especially for

moderately differentially expressed genes with fold change around 1.75.
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Figure 5.22: Compare power between TASC and SCRAN(Lun, Bach, and Marioni, P016) with
various effect sizes. Each panel contains the power curve of TASC and SCRAN(Lun, Bach, and
Marioni, P018) under the specified significance level. This plot is generated from the simulation 100

vs 100 (Figure 5.TT)).
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Figure 5.23: Power improvement of TASC over SCRAN(Lun, Bach, and Marioni, P016) with various
effect sizes. Each panel contains the power improvement curve of TASC and SCRAN(Lun, Bach,
and Marioni, POT6) under the specified significance level. Y axis represents the difference in ab-
solute not relative values in estimated power between TASC and SCRAN(Lun, Bach, and Marioni,
2018), i.e. wiAC — w3 RAN. This plot is generated from the simulation 100 vs 100 (Figure 5.11).

Due to the incorporation of spike-in information, SCRAN.SP coupled with DESeqg2 shows profound
improvement of power over DESeq2. When compared to TASC, SCRAN.SP is only moderately

disadvantaged by up to about 10-20%, the best performer among all methods tested.

104



Significance Level. 0.05 Significance Level. 0.01

1.00

0.7

21;3 ]
050 H
a a
025
0.00
10 15 2.0 25 10 15 20 25
Fold Change Fold Change
Significance Level. 0.001 Significance Level. 1e-04

Power
Power

10 15 2.0 25 . x
Fold Change Fold Change
Significance Level. 1e-05 Significance Level. 1e-06

100 Method o 2y

o TASC o .,}L- 2

0.7

0.50

Power
Power

0.25

Fold Change Fold Change

Figure 5.24: Compare power between TASC and SCRAN(Lun, Bach, and Marioni, POT8) with
various effect sizes. Each panel contains the power curve of TASC and SCRAN(Lun, Bach, and
Marioni, P0T6) under the specified significance level. This plot is generated from the simulation 100

vs 100 (Fiqure’s.TT)).
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Figure 5.25: Power improvement of TASC over SCRAN(Lun, Bach, and Marioni, P016) with various
effect sizes. Each panel contains the power improvement curve of TASC and SCRAN(Lun, Bach,
and Marioni, POT6) under the specified significance level. Y axis represents the difference in ab-
solute not relative values in estimated power between TASC and SCRAN(Lun, Bach, and Marioni,
2018), i.e. wiAC — w3 RAN. This plot is generated from the simulation 100 vs 100 (Figure 5.11).

Power and sample size

To investigate the relationship between power achieved by a method and the sample size re-
quired, we have down-sampled the complete dataset into varying sizes in different simulations
(Figure 5.71)). This has allowed us to look into the behaviour of TASC under different sample size

with greater detail.
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As the sample size increases, TASC becomes more powerful in detecting small changes in gene
expression (Fig B). When the sample size is only 20 vs 20, TASC has virtually no power
except for genes that are highly differentially expressed (ny > 2.5). These genes however can be
detected by TASC with almost 100% power when the sample size is equal to or greater than 50 vs
50. For moderately differentially expressed genes (1.5 < n4 < 2), TASC would require at least 100
vs 100 to achieve considerable power. For genes with small changes in its expression (ng < 1.3),
TASC shows no power when the sample size is smaller than or equal to 200 vs 200. However, it is

extremely difficult to detect these with significant power without sacrificing the false positive rate.

20 vs 20 50 vs 50
L]
L]

o Y

.. (]
[ ]

0.3 e
] % .
2
& 02 ot :k..,,.

e o e

o1 S .

L 0 ° o

0.0 Se .

1.0 1.5 2.0 2.5
Fold Change

100 vs 100

1.0 1.6 2.0 2.5 1.0 1.5 2.0 25
Fold Change Fold Change
200 vs 200

1.0 1.6 2.0 2.5
Fold Change

Figure 5.26: Power curves for TASC from simulations with different sample sizes. In each panel, the
estimated power w4 of each gene for TASC is plotted against the effect size (fold change) assigned
for this gene simulated at the specified sample size.
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In order to assess the average power for genes of specific effect size, we have used the generalized
additive model (GAM) to smooth out the power curve. Briefly, the relationship between estimated
power of a gene (wy) is regressed onto the fold change assigned to this gene (n4) using GAM with
smooth terms df = 4 and spar = 1 for the spline. Resulting smoothed curves are then plotted for

each method under various sample sizes for comparison (Figure 5.T4a and 527).
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Figure 5.27: Power curves for TASC, SCDE, MAST, DESeq2, SCRAN and SCRAN.SP for sample
sizes of 50 vs 50 and above. In each panel the smoothed power curves for all methods from
specified sample size are plotted. X axis indicates the fold change ng for each gene. Y axis
represents the average power for each method after smoothing with GAM as described.

From all simulations of varying sample sizes, TASC has the best power among the four methods
tested. TASC is particularly powerful when the genes are only moderately differentially expressed
(n ~ 1.75). This improvement is more dramatic when the sample size is relatively modest (50
vs 50). As the sample size goes up, almost all methods can reliably detect the highly DE genes

(n > 2) with 100% power, which suggests the importance of decently large sample size in single-cell
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experiments.
5.3.5. Differential Expression analysis on real data

Zeisel et al. data

To gauge the performance of our method in real use case scenarios, we have performed differential
gene expression analyses using the two largest level 2 classes of the Zeisel data (“CA1Pyr2” and
“CA1Pyr1”). Since these two level-2 classes represent different cell type groups, we expect genuine
gene expression differences between them. To evaluate the impact of sample size, the two groups

111 1 1 S . : . .
are subsampled to -, —, -, —, == of their original size, as shown in [able 51, and differential

NI IETR,
expression analyseszar4e f)er]fgrriid on each subsampled data set. The raw p-values are used
to detect DE genes at the 0.0001 significance level, and the number of detected DE genes is
plotted against the sample size for each method. The numbers of detected DE genes are shown
in Mable 1. Consistent with our simulations, SCDE finds the least number of DE genes, followed
by MAST, whereas SCRAN.SP detects the most number of DE genes when is greater than 100.

TASC, SCRAN, and DESeq2 detect similar number of DE genes across most sample sizes.

CA1Pyr2 | CA1Pyr1 | Numerical Label | Text Label
380 380 380 S32
190 190 190 S16

95 95 95 S8
48 48 48 S4
24 24 24 S2
12 12 12 S1

Table 5.1: Sample sizes of the sub-sampled Zeisel data(Zeisel et al., P015) sets for two group
comparison. Numerical labels are used to approximate the sample sizes in plotting. Text labels are
used to distinguish analyses during discussion.

In order to assess the biological relevance of the differentially expressed genes discovered by
each method, a gene ontology study has been performed, with results summarized in Tables
B263 6246568672 All genes used are called by each method with p-values smaller than 10~3.

This significance level was chosen in order to find the strongest DE genes, while preserving enough
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genes for meaningful ontology analysis.

SCAP-T data

In order to test the performance of our model using noisier non-UMI data, we have taken advantage
of the SCAP-T dataset, which is an scRNA-seq data from murine brain cells acquired from the
SCAP-T study (dbGaP Study Accession phs000835.v4.p1). This data set, which does not have
UMIs, contains counts of 46,422 endogenous genes and 87 ERCC spike-ins of 198 neurons and
26 astrocytes from mouse brain. The counts are preprocessed by two filtering procedures: Filter 1
keeps the top 25% of genes in total read account across all the cells. Filter 2 keeps all the genes
with non-zero counts in 5 cells or more. Since neurons and astrocytes are processed on different
days, this allows us to evaluate whether our model is able to capture and control batch effect. Unlike
the Zeisel et al data, SCAP-T data is much noisier, and the cells are much more heterogeneous.
In Figure 5.29, a wide range of values for the parameters («, 3, k,T) can be observed for these

samples, and some significant difference exists within the same tissue type as well.
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Figure 5.29: Scatter plots describing the distribution of ¥, of the SCAP-T data.

Before we can use ERCC spike-ins in the SCAP-T data to model the technical noise, necessary
pre-processing is required to tease out the cells that are of low quality. One can achieve this by
looking at the R? values from the linear regression with the log counts as the response variable, and
the log true concentration of the ERCC as the input covariate. SCAP-T data obviously has much
wider range of R? (Figure 5.30) compared to Zeisel et al. data (Figure 5.39), suggesting some

trimming might be necessary to remove those cells with really low R? if TASC is to be used.
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Figure 5.31: Histograms for R* computed from Zeisel et al. data.

Another characteristic of the SCAP-T data is the more varied sample size. We have plotted the
normalized cell size factors computed from SCAP-T (Figure 5.34) and Zeisel et al. (Figure 5.33)
data. It is obvious that the former has much wider range of cell size factors, which indicate that
some of the cells in this data set might contain too many or too few reads coming from the biological

genes, both of which will affect the accuracy of TASC.
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Figure 5.33: Histograms for normalized cell size factors computed from Zeisel et al. data.

To compare the methods with regards to their type | error rate under a real data scenario, we
analyzed the SCAP-T data, which includes astrocytes and neurons that were processed on different
days. This data set provides a perfect example to illustrate the impact of batch effect. To assess
whether type | error is controlled under the null scenario, it is necessary to compare two groups of

cells that are of the same type. To perform this assessment, we have derived a null comparison

following these steps.
Step.a Estimate the technical parameters («, 3, k, T) for 26 astrocytes and 198 neurons.

Step.b Among the 198 neurons, find 26 with the technical parameters closest in Euclidean dis-
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tance to that of each astrocyte, and label these neurons as group 1. If multiple astrocytes

share one closest neuron, then multiple neurons are selected for these astrocytes.
Step.c Label the unchosen 172 neurons as group 2.

Differential gene expression analyses have been performed on these two groups with all five meth-
ods (naive SCRAN is not available due to the small sample size in group 1). The methods TASC,
SCDE, MAST, DESeqg2, SCRAN, and SCRAN.SP are then applied to these two groups, and the

proportion of genes reported to be DE is reported in Table 5 8. Raw p-values are plotted using

histograms (Figure 5.34). Negative logarithm of the raw p-values with base 10 are plotted with Q-Q
plots (Figure 5.35).

We see that TASC has well controlled type | error rates at all assessed significance levels, whereas
all other methods (SCDE, MAST, DESeqg2, SCRAN, and SCRAN.SP) have severely inflated type
| error rates, especially when the p-value threshold is reduced to 0.001 and 0.0001. For exam-
ple, consider DESeqg2, which, according to our simulations, has well-controlled type | error when
there are no batch effects. At significance level of 0.001, DESeq2 has false positive rate of 1.7%,
a 17-fold inflation, and at significance level of 0.0001, DESeqg2 has false positive rate of 0.76%,
corresponding to a 76-fold inflation. Even SCDE, which tends to be conservative when there are
no batch effects, suffer from type | inflation in this real data scenario that contains a possible batch

effect. The patterns are similar when we consider all genes in the evaluations.
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5.4. Computational Details

TASC is implemented in an open-source program https://github.com/scrna-seq/TASC, with
multithreading acceleration by openMP. For example, a data set of 104 cells and 6,405 genes
takes 45MB of memory and 18.6 minutes using 20 cores (Intel(R) Xeon(R) CPU E5-2660 v3 @
2.60GHz) with Laplacian approximation using the binary we provided. Better performance can be
achieved when using binaries compiled on the users hardware. We believe that TASC will provide

a robust platform for researchers to leverage the power of scRNA-seq.

5.4.1. Laplace Approximation

In order to speed up the evaluation of integral, we have adopted Laplace’s method to approximate
the value and reduce the required computational resources. Briefly, the marginal likelihood of one

cell in can be approximated with the
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log J Pr [ch) Hcg] ducg

Heg

1

~ 5 (5.24)

UOg(ZW) - log (h [ﬁcg]n

where {i.q is the maximizer of Pr[Y g, 1cql Over ucgand h [ 4] is the second derivative of Pr [Y.g, Heg]

OVer ficg.

In order to assess the performance of the Laplace’s method, we have compared the B1, the es-

timated coefficient associated with the group indicator in the two group comparison settings in

the Zeisel et al. data using Laplace’s method (Laplace) and adaptive quadrature (Integration) in

Figure 5.36. The estimates are highly correlated, indicating Laplace’s method can give accurate

estimates for the parameters of interests, under

Zeisel, 266 vs 266

1 R? = 0.9774649

Integration

Laplace

Zeisel, 64 vs 64

R® = 0.9686546

Integration

20 15 -0 -06 00 05 10 15

Laplace

a wide range of sample sizes.

Zeisel, 128 vs 128

. .
el g

R? = 0.9690474

Integration

Laplace

Zeisel, 16 vs 16

R? = 0.9226262

Integration

Laplace

Figure 5.36: Comparison of Laplacian approximation and Adaptive Integration

Using Laplace’s method can greatly reduce the CPU time required, as is show in Figure 5.37.
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Figure 5.37: Comparison of run time of Laplacian approximation and Adaptive Integration, using 24
cores.
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CHAPTER 6

MODELING TRANSCRIPTIONAL BURSTING WITH SCRNA-SEQ DATA

6.1. Motivation

As we have reviewed above, scRNA-seq is a promising technology for studying transcriptional
bursting, due to its accurate profiling of transcriptome on a single-cell resolution, as well as its
high throughput, the capability of monitoring tens of thousands of genes simultaneously. Previous
studies (Kim and Marioni, P013) attempted to infer the kinetic parameters by fitting a Beta-Poisson
model with a Gibbs sampler. However, this study failed to address the intrinsic technical noise such
as amplification bias and technical dropout. In addition, Kim and Marioni did not provide any testing
procedures for comparing the parameters across experimental conditions. The TASC model can
naturally adjust for technical biases present in scRNA-seq data. However, it is incapable of inferring
bursting probabilities or testing for differential bursting. This has motivated us to develop TASC-B,
an extension to TASC model incorporating additional parameters to characterize probabilities of
genes being turned “on” and “off” in a homogeneous population of cells. Moreover, as a likelihood
model, we have developed a series of likelihood-ratio tests to draw inference on the significance of

differential bursting between groups.

6.2. Generative Model Incorporating Transcriptional Bursting

6.2.1. Extension to TASC model

According to the two-state model of transcriptional bursting, for certain genes, transcription ran-
domly switches between “on” and “off” states. We propose that scRNA-seq data can be used to

characterize transcriptional bursting provided that the following assumptions are satisfied.

e Homogeneity of cells sequenced, i.e., all cells in the population of interest follow the same
stochastic process of state-switching, with the same switching probabilities. This essentially
requires that for a particular gene in consideration, the kinetic parameters of the two-state

model are identical across all cells.

e Ergodicity: the population of cells have the same behavior averaged over time as averaged
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Y=0 Y>0

Figure 6.1: lllustration of sources of zeros in scRNA-seq data.

over the space of all the states of the entire population.

This will ensure that we get a sample of cells whose transcriptional status represents that of one
individual cell at multiple random time points. Without bursting, this sample can be perfectly de-
scribed with the TASC model B2. With bursting, however, excessive zeros will be observed in the
recovered reads Y., due to some cells being in the “off” state. Intuitively, the zeros in Y., can be

attributed to three distinctive sources, as illustrated in Figure 6.1].
The inflated zeros are primarily sourced from three contributing factors:

¢ Poisson sampling of sequencing. When the gene is constitutively on, the transcription follows
a Poisson process. In some cells, the number of transcripts is 0 simply by stochasticity,
especially when the mean expression of the gene is low. The probability of zeros decreases

dramatically as the mean expression increases.

e Biological heterogeneity. In genes with significant bursting, excessive zeros that cannot be
accounted for by the Poisson sampling alone can be observed in cells that are in the “off”
state. Testing for the significant presence of this portion of zeros can provide evidence for the

presence of transcriptional bursting.

e Technical drop-out. Due to the complexity of the scRNA-seq protocols, many steps can con-
tribute to the loss of a particular transcript even when it is expressed in the cell sequenced.
For example, even the most reverse transcriptase cannot capture 100% of the transcripts

in one reaction. Losses due to PCR, sequencing and mapping can also cause zeros when
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original cell did have the transcript expressed.

In TASC, we have accounted for the Poissonian zeros and the technical drop-out. To test for the
presence of excessive zeros caused by transcriptional bursting, we can extend the TASC model to
incorporate a parameter describing the probability of a cell being in the “on” state as follows. For

purpose of simplicity, we lose the gene index g.

Step.a Let ZB be the indicator representing the status of the bursting state in cell c. If ZB =1, cell

c is “on”, otherwise when Z2 = 0, cell ¢ is “off”.

Step.b ZB ~ Bernoulli(p®), where p® is a parameter of interest describing the overall propensity

of a cell in this population to be in the “on” state.

Step.c

0, if ZB — 0
e = (6.1)
logNormal(0g4,04), if ZE =1

Step.d Follow identical steps from Step.b in Bubseciion 5 22,

Following steps of algebra similar to that in ELIbseciion 5 22, the marginal likelihood of Y.g, pcg4 can

be written as,

Pr [ch) ucg]

1 1
Z Z Pr [ch)Fch>ch>ZcBg]

ch:O Z?g =0
1 1

= Z Z Pr [ch|zcg) Hegy ZcBg] Pr [ch“tcg) ZEQ] Pr [Hcg‘zgg] Pr [ZcBg] (6.2)
Zeg=028,~0

When ZCBg =0, ueg = 0, therefore, .y = expit [kc + Tclog(ucg)l = 0. Subsequently, Z.4 con-

verges to 0. Therefore, Pr [Z.y = Tlucg, Z8, = 0] = 0. Therefore, only three components remain in

129



the above summation.

Pr[Yeg, Hegl
=Pr [YeglZeg =0, tegy ZEy = 0] Pr[Zcg = Olpcg, Zgy = 0] Pr [ueglZg, = 0] Pr (28, = 0]
+Pr [YeglZeg =0, Hcg’ZcBg =1]Pr(Zeg = 0|Hcg’chg =1]Pr [“cg|ZcBg =1]Pr [ZcBg =1]
P [YeglZeg =T, tegy Zeg = 1] Pr[Zeg = Nieg, Zey = 1] Pr [ueglZe, =1] Pr (28, =1]  (6.3)

When Y.4 > 0, g > 0, the above three components can be further reduced to one, as the first
two components are equal to 0, because Pr [ch > 0|Zcg =0, ucg,ZcBg = O] = 0. Therefore, in this

case,

[eocc+f5c10gucQ]ch e Belogreg

Pr [ch»P'cg] = TlegfiN (Hcg|ega0-é>pg (6.4)

Yeg!

When Y4 > 0, ueg = 0, the above three components are all equal to 0. Because Ay = exp [« + Bc log pcgl =
exp [—oo] = 0,and Pr [YegAcgl = froisson (Yeg > OAcq = 0) = 0. Therefore, Pr [Yeg > Olueg = 0, Zcg, 28] =

0, which means when Y4 > 0, peg =0,
Pr[YegyHegl =0 (6.5)

When Y4 = 0,ucq = 0, the last two components in are equal to 0. Because when
Z2 =1, peg ~ LogNormal(8y, cg), whose probability density function is equal to 0 when p.4 = 0.

Therefore, when Y. g =0, ueg =0,

Pr[Yeg, tegl
=Pr [Yeg =Olpeg = 0,Z¢g = 0,28, =0]

Pr(Zeg = Olpeg = O?ZEQ = 0] Pr [peg = O‘ZcBg =0] Pr [ZCBQ =0]
:1><1><1><(1—pg’)

—1—pB (6.6)
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When Y4 = 0, ucg > 0, the first component in is equal to 0, therefore, in this case,

Pr {ch) Hcg]

_exc+Bclogreg 2 B

=(1— 7tcg)fl_N (Hcg|eg> 0—3) Pg +e TegfLN (chg|eg» Ug) Pg

ﬂcg} fin (Hcg|eg»0-é)pg (6.7)

—exct+Bclogucg

= [(1 —Tleg) + €
Therefore, the marginal distribution of (Y4, Lcg) can be written as,

Pr [Yeg, Hegl

[eo‘c+6c10gucg]YC9 efe“c‘*ﬁcl“g“cg
ycg! 7TcgfLN (ucg‘eg)oé)pg) if ch > O> ucg >0
0 if Yeqg >0 =0
_Jo cg = BHteg (6.8)
|:(.I 77_[‘:9) + efeaCJrﬁCloguchng] fLN (ucgleg,o-é) pg’ if ch = O) Heg >0
1-pk, if Yeg = Oy peg = 0

It's straightforward to compute the marginal distribution of Y.4 from this joint distribution in
fion638.

[eocc+(3clog l-lcg:IYCQ g—ec TPelsrcy

TegfLN (Hcg\eg,UZ)PB ducg, i Yeg > 0
Yeg! 99

P'SJ"[

1—p3—|—p§’f“(1 —Teg) + €

Pr [ch} =
—exc+Bclogucg

7Tcg} fin (ucg‘eg) Of;) PS} ducg» if ch =0
6.9)

6.2.2. Technical Parameters from ERCC

ERCC spike-ins are added after cell lysis, therefore, they do not exhibit the expression hetero-
geneity of a biological gene. The model for ERCC spike-ins is unchanged in this extension, and

therefore, all technical parameters can still be estimated using methods developed for TASC, as

described in Enbsecfion 52771
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6.2.3. Testing for Presence of Transcriptional Bursting

One advantage of a likelihood model is the theoretic and applied simplicity in testing for the sig-
nificance of certain parameters using likelihood ratio tests. The incorporation of the parameter pg
allows us to directly test whether there is significant transcriptional bursting in a specific gene, with

the following test (Test #1).

(6.10)
Hy: pg <1

And the naive likelihood ratio test is to optimize the full model under the null hypothesis (i.e. the
TASC model, ﬁo) and the alternative hypothesis (0 < pg <1, f:1). The likelihood ratio test can then

be computed as
T=-2 [1og(21 ) —log(Zo) (6.11)
Comparing T to a x2-distribution, with 1 degree of freedom, gives us the raw p-value for this test.
p=Pr|xi<T] (6.12)

Notice that the asymptotic distribution of T might not follow a x2-distribution, as pg in the null hy-
pothesis rests on the boundary of the parameter space. Volumes have been devoted to this specific
topic in the statistical literature (Bartholomew, T961); Kudo, 1963; Self and Liang, 7987). In our ex-
perience, the naive implementation in this specific case does not severely affect its performance.
However, further work needs to be done, incorporating methods such as Bartholomew’s x?-tests

(Kudo, T963), or the modified x2-test from Edward Susko (Susko, POT3).
6.2.4. Testing for Differential Levels of Transcriptional Bursting

While it is important to interrogate the presence of transcriptional bursting in a homogeneous pop-
ulation of cells, most of the scRNA-seq experiments actually contain multiple groups or biological
conditions. Significant insight on the regulatory mechanisms of transcription can be provided by

testing the different levels of bursting between two groups, i.e., testing the following hypothesis
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(Test #2):

Ho: ply = ply =l

Hi: pgy #Pga

(6.13)

A simple likelihood ratio test with the marginal likelihood optimized with one common pg for the two

conditions (ﬁo), or two distinctive probability parameters (pSl and pg‘z, Z, ). The LRT statistic,
T=2 [1og(21 ) —log(Zo) (6.14)
Comparing T to a x2-distribution, with 1 degree of freedom, gives us the raw p-value for this test.

p=Pr [x% < ﬂ (6.15)

6.2.5. Testing of Differential Expression With Adjustment for Transcriptional Bursting

With methods that simply model the true expression of the genes using Poisson distribution, testing
for differential expression (DE) can be confounded by differential bursting (DB). In our method, it
is possible to disentangle the former from the latter, testing for the differential levels of expression
when the genes are in the “on” state only. A simple LRT can be derived to test for the following

hypothesis (Test #3):

Ho: 991 :692:69 (616)

Hi : eg] 7&992

The LRT statistic can be computed by optimizing the marginal likelihood with one common 04 for the

two conditions (ﬁo), or two distinctive probability parameters (841 and 0., Z, ). The LRT statistic,

T=2 [1og(31) —log(ZLo) (6.17)
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Comparing T to a x2-distribution, with 1 degree of freedom, gives us the raw p-value for this test.

p=Pr [x% < T} (6.18)

6.2.6. Simultaneous Testing for Differential Levels of Expression and Bursting

In scenarios described in both Blbsecfion 6 774 and Elbseciion 6 7 5, when testing for one param-
eter in pg and 04, the other is allowed full degrees of freedom. As a great screening measure, one
may want to test for the change in changes in either pr or 04 (Test #4). This can be achieved by

testing:

Ho: 841 =042 =64 CmdDS] :szng (6.19)

Hi: 041 #0642 01 p‘31 ;épgz

The LRT statistic can be computed by optimizing the marginal likelihood with one common 64 and
pg for the two conditions (ﬁo), or two distinctive probability parameters (847 and 64;, p}} and pgz,

Z4). The LRT statistic,
T-_2 [1og(21 ) —log(Zo) (6.20)
Comparing T to a x2-distribution, with 2 degree of freedom, gives us the raw p-value for this test.

p=Pr [xﬁ < ﬂ (6.21)

6.3. Evaluation of Performance and Comparison with Other Methods

6.3.1. Validation of Algorithms

We have implemented the above algorithm using Cython and openMPI in Python (details in
fion6H). To validate our implementation, we have performed a series of simulation studies, where

arange of values in pg and 04 are used to generate the read counts. The technical parameters are
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fixed at,

x = 0.635308628209573

B = 1.01020809346668

k= —4.39815121122278 (6.22)
T=1.2364362618758

o= 25

All combinations of three different pr (0.25,0.5,0.75) and three different 64 (2.5,5,7.5) are used to
generate the counts from the TASC-B model. 100 simulations are done for each combination of
(eg,pg ). Each simulation contains the read counts of 600 cells. Two algorithms, original TASC, and
TASC-B are used to fit the simulated data, in order to compare the performance of TASC-B against
the more simplified TASC model. The bias and spread of the estimates are satisfactory considering
the moderate sample size and the difficulties in accurately extrapolating the zero proportions from
the non-zero counts, with details shown in Table 51. Some scenarios have proved to be more
difficult than others for our algorithm. For example, when pg =0.25and 04 = 2.5, i.e., the gene is
only turned on in a quarter of the cells, and the expression is relatively low, our algorithm displays
the most severe bias, and highest estimation error, compared to other scenarios. We suspect it is
due to the limited information there is to estimate the positive mean, as presumably only a handful
of cells contain non-zero counts for these genes. With a poorly estimated 04, extrapolating pg
would be much more difficult, as is shown in the high variability in the estimate for pg in Table 611
Interestingly, even when pg’ is sufficiently large, if the mean expression of the gene is low enough
(84 = 2.5), the estimation error is still significant for both parameters. The spread of ﬁg’ is consider-
ably tighter when 84 =5 and 64 = 7.5 compared to 64 = 2.5 BEZ0. The @Q is estimated much more

accurately as 04 increases E7a.

Excluding pg, as in TASC, estimates of 8, can be confounded by pg, as shown in Figure 6.3. TASC
estimates of 8, decrease as pg decreases, regardless of the true value of 64, while estimates of 8,
by TASC-B are not confounded by pr, centered around the true mean of 04 in all simulated scenar-
ios. Similar confounding is also observed for 64 (Figure 6.4). TASC estimates of 64 increases as

pg decreases, for it attributes the additional zeros produced by transcriptional bursting to o4. Under
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(a) Scatter plots shown the estimated values of 84 against its true values grouped by the true pg
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(b) Scatter plots shown the estimated values of pg against its true values grouped by the true 64

Figure 6.2: Scatter plots illustrating the relationship between the estimated values and the true
values of 84 and ‘pg. The dotted line is the unit line with slope equal 1, and intercept equal to 0.
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