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Statistical Methods For Whole Transcriptome Sequencing: From Bulk
Tissue To Single Cells

Abstract
RNA-Sequencing (RNA-Seq) has enabled detailed unbiased profiling of whole transcriptomes with
incredible throughput. Recent technological breakthroughs have pushed back the frontiers of RNA expression
measurement to single-cell level (scRNA-Seq). With both bulk and single-cell RNA-Seq analyses, modeling of
the noise structure embedded in the data is crucial for draw- ing correct inference. In this dissertation, I
developed a series of statistical methods to account for the technical variations specific in RNA-Seq
experiments in the context of isoform- or gene- level differential expression analyses. In the first part of my
dissertation, I developed MetaDiff (https://github.com/jiach/MetaDiff), a random-effects meta-regression
model, that allows the incorporation of uncertainty in isoform expression estimation in isoform differential
expression anal- ysis. This framework was further extended to detect splicing quantitative trait loci with RNA-
Seq data. In the second part of my dissertation, I developed TASC (Toolkit for Analysis of Single-Cell data;
https://github.com/scrna-seq/TASC), a hierarchical mixture model, to explicitly adjust for cell-to-cell
technical differences in scRNA-Seq analysis using an empirical Bayes approach. This framework can be
adapted to perform differential gene expression analysis. In the third part of my dissertation, I developed,
TASC-B, a method extended from TASC to model transcriptional bursting- induced zero-inflation. This
model can identify and test for the difference in the level of transcrip- tional bursting. Compared to existing
methods, these new tools that I developed have been shown to better control the false discovery rate in
situations where technical noise cannot be ignored. They also display superior power in both our simulation
studies and real world applications.
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ABSTRACT

STATISTICAL METHODS FOR WHOLE TRANSCRIPTOME SEQUENCING:

FROM BULK TISSUE TO SINGLE CELLS

Cheng Jia

Mingyao Li

RNA-Sequencing (RNA-Seq) has enabled detailed unbiased profiling of whole transcriptomes with

incredible throughput. Recent technological breakthroughs have pushed back the frontiers of

RNA expression measurement to single-cell level (scRNA-Seq). With both bulk and single-cell

RNA-Seq analyses, modeling of the noise structure embedded in the data is crucial for draw-

ing correct inference. In this dissertation, I developed a series of statistical methods to account

for the technical variations specific in RNA-Seq experiments in the context of isoform- or gene-

level differential expression analyses. In the first part of my dissertation, I developed MetaDiff

(https://github.com/jiach/MetaDiff), a random-effects meta-regression model, that allows the

incorporation of uncertainty in isoform expression estimation in isoform differential expression anal-

ysis. This framework was further extended to detect splicing quantitative trait loci with RNA-Seq

data. In the second part of my dissertation, I developed TASC (Toolkit for Analysis of Single-Cell

data; https://github.com/scrna-seq/TASC), a hierarchical mixture model, to explicitly adjust for

cell-to-cell technical differences in scRNA-Seq analysis using an empirical Bayes approach. This

framework can be adapted to perform differential gene expression analysis. In the third part of my

dissertation, I developed, TASC-B, a method extended from TASC to model transcriptional bursting-

induced zero-inflation. This model can identify and test for the difference in the level of transcrip-

tional bursting. Compared to existing methods, these new tools that I developed have been shown

to better control the false discovery rate in situations where technical noise cannot be ignored. They

also display superior power in both our simulation studies and real world applications.
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CHAPTER 1

INTRODUCTION

1.1. RNA

The central dogma of biology describes the flow of genetic information from deoxyribonucleic acid

(DNA) to ribonucleic acid (RNA), and subsequently from RNA to protein. As a courier from genomic

DNA to cellular protein synthesis machinery (ribosomes), RNA ultimately affects the phenotypes of

all cellular organisms on planet earth.

Tremendous discrepancy in complexities and dynamic ranges of genome and protein exists. As an

example, human genome contains approximately 21,000 distinct protein-coding genes, much less

than previously estimated (Lander, 2011), while a recent survey of the human proteome discovered

approximately 293,000 non-redundant peptides (Kim et al., 2014). In addition, human genome is

generally diploid, with two copies of every gene present. The level of protein expression on the

other hand has a large dynamic range from the most prevalent such as hemoglobins in red blood

cells and insulin in pancreatic β cells, to the most rare (e.g., certain transcription factors of which

the expression needs to be carefully regulated to avoid malignant growth).

This discrepancy can be partly explained by RNA. Eukaryotic genes are organized on the genome

as links of protein coding regions (exons) interwoven with non-coding sequences (introns), which

are spliced out during post-transcriptional processing of pre-mRNA (Crick, 1979). Alternative splic-

ing of pre-mRNA molecules can create an arbitrarily large number of isoforms coding for distinct

protein products, by including different subsets of exons or even different parts of an exon, in the

mature messenger RNA (mRNA), bridging the gap in structural complexities between DNA and

protein. Many copies of RNA can be produced from a single genetic locus through transcription,

and regulation of its speed directly affects the amount of mRNA present in the cell, thus influenc-

ing the level of the particular protein encoded by this mRNA. A large portion of quantitative and

sequence complexity of human proteome is attributable to the transcription and alternative splicing

(AS) of RNA.

Due to the critical roles played by RNA in cellular processes, mis-regulation of mRNA transcription

or post-transcriptional modifications can be extremely detrimental. Therefore, identification of differ-

entially expressed mRNA is a standard part of analysis when comparing controls and cases for any
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disease. In addition, mis-regulation of alternative splicing is cause for numerous known diseases,

such as β-thalassemia (Cao and Galanello, 2010), spinal muscular atrophy (Cho and Dreyfuss,

2010), etc.

1.2. RNA-Sequencing

The quest for accurately measuring the amount of specific mRNA molecules has witnessed several

leaps of technology which has gradually allowed the scientific community to investigate more num-

ber of genes simultaneously with greater details and accuracy. Early methods such as Northern

blot and real-time quantitative polymerase chain reaction (RT-qPCR) could only detect the expres-

sion of several candidate genes with known sequence at a time.

The advent of microarray technology enabled simultaneous quantification of thousands of putative

transcripts. This brought about new fields of transcriptomic studies such as non-coding RNA, single

nucleotide polymorphisms (SNPs) and alternative splicing events. Despite its popularity, microarray

suffers from the following shortcomings. First, it fails to discover novel transcripts that have yet to

be annotated. Second, it does not reveal the sequences of the molecules detected outside the

hybridization probes. These caveats were eventually addressed by RNA-sequencing technology.

Massive parallel sequencing was first applied to measure mRNA concentration in 2007 (Weber et

al., 2007). While early adopters primarily employed pyrosequencing technology (Sugarbaker et al.,

2008; Torres et al., 2008; Weber et al., 2007), Illumina sequencing became immediately popular

after its introduction (Marioni et al., 2008), and several methods (e.g. Bloom et al., 2009; Tang et al.,

2009; Wang et al., 2010) were proposed to identify differentially expressed genes using the Illumina

platform. Currently, the Illumina platform dominates the market. We henceforth define RNA-Seq

(RNA Sequencing) as the technology to profile a cross-sectional snapshot of the presence and

quantities of mRNAs in a specific transcriptome with massive parallel sequencing, including but not

limited to Illumina sequencing.

1.2.1. Illumina Sequencing

Illumina systems employ a sequencing-by-synthesis method. The basic procedure of an Illumina

sequencing experiment involves:
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[i] Library preparation.

DNA molecules, either from directly extracted genomic DNA (DNA-Seq) or from cDNA re-

verse transcribed from a pool of purified mRNA (RNA-Seq), are fragmented and ligated with

adapters on both end of the molecule.

[ii] Cluster amplification. The prepared library is loaded onto a chip, and the fragments hybridize

to the surface of the chip through the adapters. Each bound fragment is then amplified into

a clonal cluster. This step is necessary because current CCD technology is not able to cap-

ture the emission from one single fluorescent molecule. A cluster of fragments with identical

sequences intensify the signal for it to be detectable by CCD.

[iii] Sequencing. Fluorescently labeled nucleotides are added on to the chip, and throughout the

last round of synthesis, the nucleotides are allowed to be incorporated one at a time. High-

sensitivity CCD is used to capture the wavelength of the emitted fluorescent signals after

incorporation of each base, revealing the underlying sequence of each cluster.

After sequencing, the raw reads obtained will serve as the starting material for downstream com-

putational analysis. Usually, the following steps are needed before any study of substance can be

performed on the raw reads (Conesa et al., 2016).

[i] Quality assessment of raw reads. This step mainly aims to determine the overall quality of

the sequencing protocol up to this point, by computing parameters such as sequence-specific

quality scores, GC content, N content, distribution of sequence length, duplication levels,

sequence over-representation and k -mer content, etc (Andrews, 2010). Reads or samples

of lower quality should be excluded from downstream analyses to avoid biases introduced by

sequencing artifacts.

[ii] Read mapping/transcriptome assembly. Alignment of reads on a reference genome or tran-

scriptome must be completed before any other statistics can be computed. In the case of

RNA-seq, reference transcriptome can be assembled de novo, or be derived from an an-

notated reference genome. After this step, another QC step is usually performed to control

the quality of the assembled transcriptome, from parameters such as percentage of mapped

reads, percentage of uniquely mapped reads, coverage uniformity, etc.
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RNA-seq has a number of advantages over microarray:

[i] RNA-Seq is capable of sequencing the genes targeted to single-nucleotide resolution. This

has effectively eliminated the cross-hybridization of transcripts with similar sequences, suf-

fered by many array-based assays.

[ii] Microarray technology limits the researcher to detecting transcripts that have already been

annotated. RNA-seq is more suitable for exploratory experiments that aim to discover novel

transcripts and isoforms.

[iii] RNA-seq delivers higher dynamic range compared to microarray, and significant improvement

on signal-to-noise ratio.

1.2.2. Applications of RNA-Seq

The information acquired through RNA-seq can be analyzed to generate complicated insights of

the target transcriptomes, either by itself, or combined with corresponding genomic or proteomic

data (Han et al., 2015). Some of the basic applications of RNA-seq include:

[i] Gene and transcript quantification. One of the most common applications of RNA-seq is

to characterize the expression profile of the entire transcriptome in a sample of interest, by

measuring the amount of all genes/transcripts in that sample. This process involves counting

the number of reads mapped to each gene or transcript. While gene-level quantification is

relatively straightforward, as genes are largely non-overlapping discrete genomic regions,

transcript-level quantification on the other hand requires probabilistic modeling, for one read

can be mapped to multiple transcripts from the same genetic locus. Tools used for transcript-

level gene quantification include Cufflinks (Trapnell et al., 2012) RSEM (Li and Dewey, 2011)

and PennSeq (Hu et al., 2013), etc.

[ii] Differential expression analysis. The power of RNA-seq can also be harnessed for comparing

the transcriptomes of samples from two or more different pharmacological treatments, bio-

logical tissues, developmental stages or other grouping factors. Due to over-dispersion intro-

duced in the sequencing protocol and non-canonical mean-variance curves, careful modeling

of read counts is required to control the false positive rates in the discovery of differentially

expressed genes using RNA-seq data. Many packages were developed in addressing this
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issue, and a detailed review for these methods can be found in section 2.3.

[iii] Alternative splicing. RNA-seq provides the detailed sequences of the transcripts detected in

addition to their quantities. This has made possible the investigation of the structural differ-

ences in transcriptomes, such as exon skipping, intron retention, alternative 3’/5’ splice sites,

etc. A detailed review of available methods for studying alternative splicing using RNA-seq

data can be found in section 2.3.

1.2.3. Single-Cell RNA-Sequencing

Traditional bulk RNA-seq measures the average mRNA levels in the target cell populations, which

can be heavily influenced by a relatively small proportion of cells that exhibit extreme expression for

certain genes (Bengtsson et al., 2005). With the detection threshold of RNA-seq being pushed

lower, profiling of entire transcriptomes on the single-cell level has been made possible, thus

paving the way to characterizing gene expression heterogeneity among individual cells (Bacher

and Kendziorski, 2016; Eberwine et al., 2014; Kolodziejczyk et al., 2015; Sandberg, 2014). Briefly,

the protocol for single-cell RNA-seq usually includes the following steps:

[i] Cell capture. The first step of any single-cell RNA-seq protocol invariably involves isolating

individual cells from the tissue or in vitro culture of interest. Several considerations need to

be addressed in order to acquire a suitable sample for downstream procedures:

(a) Cell viability. The isolated cells must be minimally disturbed and highly viable in the final

suspension.

(b) Sampling bias. The isolated cells must be a representative sample of the target tissue,

without significant bias for any specific subpopulations.

Disassociation can be performed by either enzymatic digestion or mechanical techniques

such as laser-capture micro-dissection(Emmert-Buck et al., 1996). Due to the potential differ-

ence in disassociation kinetics between different sources of tissues and cell types, biochem-

ical digestion might introduce substantial sampling bias. Laser-capture micro-dissection on

the other hand suffers from its low throughput as well as compromised cell viability. After

disassociation, several approaches are available to further separate suspended cell clumps

into individual cells, including serial dilution (Ham, 1965), micropipetting(Zong et al., 2012),
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microwell dilution (Gole et al., 2013), optical tweezers (Landry et al., 2013) and FACS (Navin

et al., 2011). Recently, microfluidics-based systems have become mainstream due to their

commercial availability (White et al., 2011). Even higher throughput up to hundreds of thou-

sands of cells per assay can be achieved through droplet-based automanipulation methods

(Macosko et al., 2015).

[ii] Reverse transcription and pre-amplification. Isolated cells are subsequently lysed with sur-

factant in their own individual containers. For experiments performed with microfluidics, cell

membranes are bursted with surfactant added to the integrated fluidic circuits (IFCs). For

droplet-based systems, the cells are lysed immediately after it is injected into a droplet,

which contains surfactant in the enclosed solution. Reverse transcription, bar-coding and

pre-amplification is then performed in situ. Reverse transcription produces complementary

DNA from the RNA released from lysed cells. Usually only a minute amount of cDNA can be

produced from a single cell, hence the fidelity and efficiency of pre-amplification is vital to the

quality of the RNA-seq data.

Many different protocols exist for the procedures following cell lysis, employing distinctive sets

of enzymes and varying choices of reaction parameters. These can be roughly categorized

into two classes according to their choice of pre-amplification method. SmartSeq, and its up-

dated version SmartSeq2, STRT-seq, the Tang protocol, and SC3-seq use polymerase chain

reaction (PCR), which could result in nonlinear amplification. CEL-Seq and MARS-Seq on

the other hand choose IVT (in vitro transcription), which in theory linearly amplifies the cDNA,

however, IVT could lead to additional 3’-end coverage biases due to the extra reverse tran-

scription step involved.

Protocols like SMART-seq and SMART-seq2 achieve relatively uniform coverage of the en-

tire transcript, which is ideal for discovering novel isoforms and studying structural variants in

the transcriptome. Protocols like CEL-seq and STRT-seq focus on tag-counting, generating

reads covering only a portion of the transcript. The latter is capable of incorporating bar codes

such as unique molecule identifiers (UMIs) to directly measure the number of RNA molecules

(Grün and Oudenaarden, 2015).

[iii] Library preparation and sequencing. Amplified cDNA is then subject to fragmentation, sequencing-

specific barcoding, and other steps of library preparation. This step is identical to bulk RNA-
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seq, except for the multiplexing of cells prior to library preparation in order to increase through-

put.

1.3. Transcriptional Bursting

Profiling the cell-to-cell heterogeneity in gene expression has enabled a plethora of new venues of

research for molecular biologists. One of the most classic, also the most important areas of study, is

the investigation of transcriptional dynamics in cellular systems, which is essential for understanding

how gene activity is regulated, thus answering the most fundamental question in molecular biology.

From bacteria and yeast to mammalian cells (Blake et al., 2006; Chong et al., 2014; Fukaya, Lim,

and Levine, 2016; Suter et al., 2011), transcriptional bursting has been reported in a wide range of

organisms spanning the evolutionary tree.

There has been overwhelming evidence that gene transcription is discrete, occurring in bursts of

activity between intervals of inactivity. (Chubb et al., 2006; Raj et al., 2006). Two models arise from

the observed data to describe these transcriptional fluctuations, one-state and two-state models.

In the one-state model, transcription is a Poisson process with a constant mean. This produces a

somewhat uniform distribution of transcripts in the cell population (Zenklusen, Larson, and Singer,

2008). While in the two-state model, the cells randomly switch between the “on” and “off” states of

transcription for a specific gene. This produces a distribution of mRNA counts with higher variance

and inflated zeros.

Characterizing this dynamic process relies on real-time accurate measurement of mRNA in vivo.

Prior to the popularization of scRNA-seq technology, one must rely upon microscopic imaging to

study transcriptional dynamics, using reporter assays (Fiering et al., 1990) or fluorescence in situ

hybridization (FISH) (Femino et al., 1998). These technologies, while vital for directly observing the

transcriptional dynamics, also suffer from some serious disadvantages.

Reporter assays monitor the expression pattern of artificially constructed protein products with a

short half-life such as green fluorescent protein (GFP). Levels of transcription activity is indirectly

inferred from the level of enzymatic activity (or fluorescent intensity in the case of GFP) of the

reporter protein. This has enabled real-time observation of the transcriptional activity in vivo. How-

ever, several caveats of this method include:

• Reporter protein levels are affected by factors additional to rate of transcription, such as rate of
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translation and protein folding, rate of protein degradation, threshold and sensitivity of imaging

etc.

• Some reporter protein such as GFP is shown to be toxic to certain cellular functions when

over-expressed (Ansari et al., 2016), which could potentially alter the transcriptional activity

of the promoters or enhancers under observation.

• Reporter protein is different from the natural product of the targeted promoter or enhancer.

It may not perfectly recapitulate the dynamics of transcriptional activity due to the lack of

negative feedback from the natural product.

• It is infeasible to scale the reporter assay to tens of thousands of genomic sites simultane-

ously.

FISH directly observe the amount of transcripts by measuring the intensity of fluorescent signals

emitted by probes hybridized to specific target sequences (Raj et al., 2006). Live-cell imaging using

alternative methods of probe delivery and live-cell-compatible probes has also been made pos-

sible for continuously monitoring the dynamics of gene transcription (Martin and Ephrussi, 2009;

Santangelo et al., 2009; Tyagi, 2009). Similar issues of throughput and scale also plague FISH

experiments.

Single-cell RNA-seq is a promising new technology to study transcriptional bursting. In 2013, Kim

and Marioni, 2013 first investigated the possibility of inferring kinetic parameters of gene transcrip-

tion by fitting a Beta-Poisson model with a Gibbs sampler. However, this method failed to address

the technical noise intrinsic in scRNA-seq data. The authors also failed to incorporate any testing

procedures, in order to compare the differential bursting properties across biological conditions.
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CHAPTER 2

COMPUTATIONAL TOOLS FOR BULK RNA-SEQ

2.1. Differential Expression: Genes

Methods of detecting differential expression from bulk RNA-Seq data can be roughly classified into

the gene-centric and isoform-centric methods. In terms of statistical modeling, two major patterns of

approaches arose in the past seven years, count-based methods and read-based methods. Count-

based methods model the number of reads mapped to each feature, while read-based methods

consider the mapping ambiguity of each read by building a likelihood model that takes the raw

reads as input.

2.1.1. Naı̈ve Count-based Methods

Several methods proposed at the early stage of the RNA-Seq technology were naı̈ve count-based

methods reliant on certain stringent assumptions of the underlying distribution of the RNA-Seq

sampling process. For example, Bloom et al. applied Fisher’s exact test on a 2 × 2 table whose

rows represent the experimental conditions, and whose columns correspond to the numbers of

reads that fall within and outside the open reading frame of the targeted gene (Bloom et al., 2009).

Marioni et al. modeled the number of reads from gene j, sample i and lane k as a Poisson random

variable with the rate parameter λijk (Marioni et al., 2008), and exploited the LRTs for the standard

generalized linear models to test the hypotheses

H0 : λijk = λj

H1 : λijk = λAj , for Group A

λijk = λBj , for Group B

DEGSeq

Based on similar assumptions, DEGSeq took a slightly circuitous route, by deriving the conditional
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distribution of M given A, defined as

M = log2 C1 − log2 C2

A =
log2 C1 + log2 C2

2

where Ci is the number of reads that are mapped to a specific gene in sample i. Using δ−method

repeatedly, the conditional distribution of M given A can be approximated with a Normal distribu-

tion. A simple Z-test was proposed to test the differential expression of a specific gene by testing

the null hypothesis E(M|A) = 0. DEGSeq requires restrictive, often impractical assumptions, such

as the normality of the distribution of M|A. Moreover, DEGSeq failed to handle the over-dispersion

of the RNA-Seq data.

These early methods suffered from several caveats, the most prominent of which was the assump-

tions with regards to the distribution of the read counts. All of them assume that the RNA-Seq read

counts follow a binomial distribution or Hypergeometric distribution, which is subsequently approx-

imated by a Poisson distribution. These assumptions are rarely satisfied in real-life practice, and

ergo can potentially lead to Type I error inflation (Anders and Huber, 2010). Since then, much effort

has been invested in building powerful and flexible statistical models that fit the RNA-Seq data more

appropriately.

2.1.2. GLM Modeling of Counts

edgeR

GLMs (generalized linear models) incorporating over-dispersion parameters and additional linear

covariates are a natural extension to the naı̈ve count-based methods. Many methods were pro-

posed in the framework of negative-binomial modeling, such as edgeR, baySeq, DESeq, ShrinkSeq,

etc. In their method edgeR, Robinson and Smyth extended the Poisson model to a negative-

binomial model with a common dispersion factor across all genes (Robinson and Smyth, 2008).

Define the number of counts mapped to a certain gene in condition i and sample j as Yij, then this
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random variable follows a negative-binomial distribution parametrized as

µij = mijλi

Yij ∼ NB (µij, ϕ)

E(Yij) = µij

Var (Yij) = µij(1+ µijϕ)

where mij denotes the library size of sample j, and λi denotes the true relative abundance of

reads mapped to the target gene. The dispersion parameter ϕ is estimated with conditional max-

imum likelihood, and testing for differential expression events is equivalent to testing the following

hypotheses:

H0 : λ1 = λ2

H1 : λ1 ̸= λ2

McCarthy and Smyth later modified the original edgeR model with the common dispersion param-

eters, introducing an empirical Bayes shrinkage estimate using a weighted conditional maximum

log-likelihood method. This new approach shrinks the dispersion estimates towards a locally com-

mon prior instead of setting them to a common value (McCarthy, Chen, and Smyth, 2012). Using

Cox-Reid adjusted profile likelihood (APL, which was later used in DESeq2),

APLg (ϕg) = ℓ
(
ϕg; yg, β̂g

)
−
1

2
log det Ig

Ig = XTWX

McCarthy and Smyth defined the APL ofG genes, among which the dispersion parameter is shared.

APLS (ϕ) =
1

G

G∑
g=1

APLg (ϕ)
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In order to shrink the entirely individual gene-wise dispersion parameter ϕg towards a local shared

dispersion parameter by maximizing the following weighted APL.

APLg (ϕg) +G0APLSg (ϕg) (2.1)

The number G0 is a tuning parameter indicating the number of genes used to generate the prior,

i.e., the local shared dispersion parameter.

This trended-by-mean estimate of the dispersion parameter borrows information across a few genes

that have similar mean expression level. Later Zhou et al. from the same group robustified the

model by iteratively reweighting the Poisson residuals as well as the dispersion estimation by the

deviation of an observation from the current fit. The Pearson residuals of an observed count ygi

from the NB GLM can be computed at the end of each iteration:

rgi =
ygi − µ̂gi√

µ̂gi

(
1+ ϕ̂gµ̂gi

)

where µ̂gi is the fitted value calculated from β̂, and ϕ̂ is the estimated dispersion parameter with the

above trended-by-mean method. The Pearson residuals are converted to weights using a Huber

function:

wgi = w (rgi) =


k

|rgi|
for |rgi| > k

1 for |rgi| ⩽ k

The new β̂ can be estimated with the above weights,

βnew
g = βold

g +
[
XT (WgΣg)X

]−1
XTWgzg

APLW
g (ϕg) =

∑
i

wgiℓ
(
ϕg; yg, β̂

old
g

)
−
1

2
log det

[
XT (WgΣg)X

]

And new ϕ̂ can be estimated by maximizing the linearly weighted APL as in (2.1) based on the

weighted APLW
g . This iterated weighting algorithm increases the robustness of the edgeR method

by down-weighting the observations greatly deviant from the fitted model, forfeiting some power to

control the false discovery rate in extreme cases.
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DESeq

The negative-binomial model was expanded by Anders and Huber in DESeq (Anders and Huber,

2010), by allowing the dispersion parameter to be a smooth function of the mean, effectively allow-

ing variation of the dispersion parameters for genes with different means in different experimental

groups.

Yij ∼ NB
(
µij, σ

2
ij

)
Fitting the above model without constraining the number of parameters will not result in meaningful

estimates, due to the usually small sample size of each group in RNA-Seq experiments. Conse-

quently, the following assumptions were proposed by Anders and Huber,

[i] The mean parameter is the product of a condition-dependent value qi,ρ(j) (where ρ(j) is the

condition of sample j), and the library size sj.

µij = qi,ρ(j)sj

This is the same as the assumption µij = mijλi in Robinson and Smyth’s method.

[ii] The variance σ2ij can be decomposed to the sum of two terms, a shot noise term (µij) and a

raw variance term (s2j vi,ρ(j)).

σ2ij = µij + s
2
j vi,ρ(j)

[iii] The parameter in the raw variance term can be written in the form of a smooth function of

qi,ρ(j).

vi,ρ(j) = vρ(qi,ρ(j))

Assumptions [ii] and [iii] have effectively reduced the parameters and enabled pooling of the

data from genes with similar expression strength for the variance estimation.

In order to eliminate the influence of a few highly expressed genes on the total number of reads,

Anders and Huber suggested a read depth estimator normalized by the geometric mean of the
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numbers of reads across all genes,

ŝj = median
i

 kij(
m∏

v=1

kiv

) 1
m


qiρ for gene i and condition ρ is estimated by the average of the normalized counts from the

samples corresponding to condition ρ:

q̂iρ =
1

mρ

∑
j:ρ(j)=ρ

kij

ŝj

where mρ is the number of replicates under condition ρ.

To estimate the smooth function vρ that links the qiρ to the raw variance s2j vi,ρ(j), first find an

unbiased estimator of the raw variance parameter viρ.

v̂iρ =wiρ − ziρ

wiρ =
1

mρ − 1

∑
j:ρ(j)=ρ

[
kij

ŝj
− q̂iρ

]2
ziρ =

q̂iρ

mρ

∑
j:ρ(j)=ρ

1

ŝj

Local regression with a generalized linear model of the gamma family on (q̂iρ, wiρ) was used to

smooth out the curve and obtain the smooth function wρ(q)

v̂ρ (q̂iρ) = wρ(q̂iρ) − ziρ

The local regression step combines the information across genes to estimate the smooth function,

v̂ρ(q).

In order to test for the differential gene expression, define the joint distribution of KiA =
∑

j:ρ(j)=A

Kij

and KiB =
∑

j:ρ(j)=B

Kij as p(KiA = a, KiB = b). Denote their sum as KiS = KiA + KiB, the author

suggested the following p-value,

Pi =

∑
a+b=kiS,p(a,b)⩽p(kiA,kiB)

p(a, b)∑
a+b=kiS

p(a, b)
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Note: The joint distribution p(a, b) is calculated as the product of two independent NB variables

KiA and KiB, whose probability distribution is in turn obtained by matching the moments (mean

and coefficient of variation),

q̂i0 =
∑

j:ρ(j)∈{A,B}

kij

ŝj

µ̂iA =
∑
j∈A

ŝjq̂i0

µ̂iB =
∑
j∈B

ŝjq̂i0

σ̂2iA =
∑
j∈A

ŝjq̂i0 + ŝ
2
j v̂A (q̂i0)

σ̂2iB =
∑
j∈B

ŝjq̂i0 + ŝ
2
j v̂B (q̂i0)

The approach employed by DESeq has several limitations in practice:

[i] The number of experimental groups is limited, because the joint distribution of p(G1, G2, . . . , Gn)

is required to calculate the p-values. With the number of groups increasing, the complexity of

estimating this joint distribution increases exponentially.

[ii] The model cannot incorporate continuous covariates. Estimates of qiρ and certain other

parameters are performed in a group-wise fashion, which requires the size of each group be

larger than 1. Continuous variables need to be binned before they can be incorporated into

this model.

[iii] For genes with the same mean expression level, the variance estimated in DESeq is identical.

This assumption almost never holds in real-life practice. This problem was later rectified by an

update in DESeq, in which the greater value between the empirical gene-wise dispersion and

the mean-dependent fitted value was used as the final dispersion parameter. However, this

approach introduced bias towards larger variance estimate, and as a consequence rendered

DESeq too conservative (Love, Huber, and Anders, 2014).

DESeq2

To rectify some of the issues faced by DESeq, in 2014 Anders and Huber published DESeq2,

which exploited an empirical Bayes method to estimate the dispersion parameters, and expanded
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the original model using GLMs with a logarithmic link:

log2 qij =
∑
r

xjrβir

DESeq2 abandoned the practice of estimating qiρ in a group-wise fashion, instead computing the

qij for every sample and every gene. Consequently, an assortment of covariates can be integrated

into this linear term, both discrete and continuous. In DESeq, the variance estimation is done in

three steps. First, calculate the residual raw variance term for every gene in each group; second,

for each group, fit a local regression with the raw variance wiρ as the dependent variable and qiρ

as the independent variable; third, compute the raw variance of a gene in a certain group from

the above curve, and add it to the shot noise term (a variance term linearly dependent on the

mean value qiρ) to obtain the final variance estimate. This arbitrary approach does not model the

stochasticity of the raw variance of each gene. In DESeq2, the above group-wise method is no

longer adaptable. Therefore, a curve is fitted with (q̂i, v̂i), with q̂i and v̂i denoting the naı̈ve MLE

estimates of the mean and variance of gene i respectively. The final variance estimate is obtained

by shrinking the naı̈ve estimates of the variance towards the fitted curve with an empirical Bayes

algorithm.

αMAP
i = arg max

α

[
ℓCR

(
α;

→
µi·,

→
Ki·

)
+Λi (α)

]

Λi (α) =
−
[
logα− logαtr

(→
µi·

)]2
2σ2d

σ2d = max{s2lr −ψ1

[
m− p

2

]
, 0.25}

slr = mad
i

{logαgw
i − logαtr (µi)}

α
gw
i = arg max

α

ℓCR

[
α;

→
µi···,

→
Ki···

]
ℓCR

[
α;

→
µ,

→
K

]
= ℓ (α) −

1

2
log det

[
XTWX

]
ℓ (α) =

∑
j

log fNB (Kj;µj, α)

αtr (µ) =
a1

µ
+ α0
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where ℓCR is the Cox-Reid adjusted profile likelihood, as used in updated edgeR (McCarthy, Chen,

and Smyth, 2012). Optimizing the sum of the logarithm of ℓCR and the prior log-likelihood (Λi)

results in the Bayesian shrinkage of the dispersion parameter estimation to the prior.

Similar method is used to shrink the logarithmic fold change estimates:

→
βi = arg max

→
β

∑
j

log fNB

[
Kij;µj

(
→
β

)
, αi

]
+Λ

(
→
β

)
µj

(
→
β

)
= sij exp

[∑
r

xjrβr

]

Λ

(
→
β

)
=

∑
r

−
β2
r

2σ2r

Compared to DESeq, DESeq2 is more focused on estimating the fold change between different

conditions rather than the presence or absence of said change. Empirical Bayes shrinkage is also

used to shrink the logarithmic fold change (LFC) associated with the given covariates. This results

in MAP LFCs that are biased towards zero, which effectively removes the inflated LFCs for genes

with low counts. The strength of the shrinkage depends on the mean count as well as the informa-

tion available for the LFC estimation. This approach offered a more reproducible estimator than the

naı̈ve MLEs.

DSS

The modeling of over-dispersion is at the core of construction of a GLM model for RNA-Seq data.

In addition to the approaches implemented in edgeR and DESeq, DSS (Wu, Wang, and Wu, 2013)

provided a log-normal prior for dispersion parameter in the Gamma distribution of the Poisson-

Gamma mixture. Wu et al. noted that there was no conjugate prior that would facilitate the compu-

tation of the posterior distribution, and a log-normal distribution better approximated the estimated

ϕg in real RNA-Seq data.

Ygi|θgi ∼ Poisson (θgisi)

θgi|ϕgi ∼ Gamma
(
µg,k(i), ϕg

)
ϕg ∼ log − normal

(
m0, τ

2
)
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Wu et al. arrived at the posterior distribution of ϕg given the data,

log [p (ϕg|Ygi, νgi, i = 1, . . . , n)] ∝
∑
i

ψ
[
ϕ−1

g + Ygi
]
− nψ

[
ϕ−1

g

]
− ϕ−1

g

∑
i

log [1+ νgiϕg]

+
∑
i

Ygi [log (νgiϕg) − log (1+ νgiϕg)]

−
[log (ϕg) −m0]

2

2τ2
− log (ϕg) − log (τ)

where ψ [·] is the log gamma function and n is the number of samples. An MAP estimator ϕ̃g can be

computed by maximizing the above posterior distribution with the Newton-Raphson method, after

replacing νgi with µ̂g,k(i) =

∑
j:k(j)=k(i)

Ygj
sj

nk(i)
, where k(i) indicates the experimental group of the ith

sample, and nk(i) indicates the number of samples in that group. The hyperparameters m0 and τ

are estimated using an empirical Bayes method, from the MOM estimates of ϕ̂g.

zgi ≡
Y2gi − Ygi

s2i

ϕ̂g =

∑
i

zgi∑
i

µ̂2
g,k(i)

− 1

m̂0 = median
g

[
log

(
ϕ̂g

)]

Individually estimated ϕ̂g is crude for estimating the true ϕg, which is why it is only used in esti-

mating the hyperparameters m0 and τ. The MAP estimator ϕ̃g achieves shrinkage and sharing of

information across genes, by taking advantage of the estimated prior. After the model has been

fitted, Wald test was chosen to test the null hypothesis, µg,1 = µg,2.

BBSeq

Other than negative binomial distribution, a similar beta-binomial distribution was used by Zhou et

al. in their BBSeq package (Zhou, Xia, and Wright, 2011). The linker function is a logit function

connecting the covariates with θ in the binomial model.

logit [Eθi·] = Xβi

And θij follows a β-distribution parametrized such that its variance is ϕiE (θi·) [1− E (θi·)]. Zhou et

al. proposed two methods of estimating the dispersion parameters similar to edgeR and DESeq.
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One method is to estimate each dispersion parameter individually for each gene. The other is to

use a fitted curve to compute the dispersion parameter from the mean of the gene. BBSeq adopted

a polynomial relationship,

ψ = logit (ϕ) =
K∑

k=0

γk

[
1

n

n∑
i=1

XBi

]k

In this curve fitting, Zhou et al. used the mean of the n sample XBi as input, and the logit-

transformed ϕ as output. This is similar to the treatment by DESeq, except that in DESeq the

dispersion parameter is estimated in a group-wise fashion, where XB is identical for each group.

2.1.3. Read-based method

Cuffdiff

The methods so far are count-based methods, which assume that read alignment is completed,

and the number of reads is fixed for all the regions under investigation. This assumption usually

does not hold, as many reads cannot be unambiguously mapped to a certain region. Read-based

method such as Cufflinks (Trapnell et al., 2010) took a different approach by building a likelihood

model that incorporates the uncertainty of read assignment. With the notations listed in Table 2.1,

the likelihood can be written as,

L(ρ|R) =
∏
r∈R

∑
t∈T

αt

[
F(It(r))

l(t) − It(r) + 1

]

where

αt =
ρtl̃(t)∑

u∈T

ρul̃(t)

In order to decompose the likelihood into manageable components, define the following probabili-

ties:
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Notation Parameter
T All transcripts in a transcriptome
G A maximal partial of transcripts into loci
R Set of sequenced fragment from T
ρt Proportion of transcript t ∈ T
σg Proportion of transcripts in each locus σg =

∑
t∈g

ρt

τt Proportion of each transcript in each locus τt = ρt

σg

l(t) Length of transcript t

l(S) Length of a collection of transcripts S ⊂ T l(S) =
∑

t∈S

ρtl(t)∑
t∈S

ρt

F(·) PMF for the distribution of a fragment length.
∞∑
i=1

F(i) = 1. Assumed to be normal.

l̃(t) Adjusted length for transcript. l̃(t) =
l(t)∑
i=1

F(i) [l(t) − i+ 1]

l̃(S) Adjusted length for a group of transcripts. l̃(S) =

∑
t∈S

ρt l̃(t)∑
t∈S

ρt

AR,T M× |T | matrix with A(r, t) = 1 if r is compatible with t, and 0 otherwise

It(r)
If A(r, t) = 1, It(r) is the length of fragment r implied by the map to t
If A(r, t) = 0, It(r) = ∞ and F(It(r)) = 0

Table 2.1: Notations and Parameters in Trapnell et al., 2010

[i] The probability that a fragment originates from a transcript within a given locus g.

βg =
σgl̃(g)∑

h∈G

σhl̃(h)

[ii] The probability of selecting a fragment from a single transcript t conditioned on selecting a

transcript from the locus g in which t is contained.

γt =
τtl̃(t)∑

u∈g

τul̃(u)

And by conditional probability, the above likelihood is rewritten as,

L(ρ|R) =

∏
g∈G

β
Xg

g

∏
g∈G

 ∏
r∈R:r∈g

∑
t∈g

γt ·
F(It(r))

l(t) − It(r) + 1
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The testing of differential expression for a specific locus g under conditions C1 and C2 can then be

performed by testing whether the log-ratio of the MLE FPKM .

log

{[
109XC1

g γ̂C1
t

l̃(t)MC1

]
/

[
109XC2

g γ̂C2
t

l̃(t)MC2

]}

is different from 0. The above test statistic can be approximated by a normal distribution, whose

variance is calculated with δ-method.

2.2. Differential Expression: Isoforms

Methods introduced above are focused on testing the differential expression on the gene level.

This approach is relatively straight forward as genes are generally non-overlapping and assigning a

read to a gene is usually more reliable than determining the source of a read from a specific isoform

of said gene. Therefore, methods of detecting DE on the isoform level is quite different from the

methods we’ve across so far.

EBSeq

Focused on testing the differential expression of an isoform, Leng et al. proposed an empirical

Bayes hierarchical model EBSeq, which correlated the dispersion of the NB distribution parameters

with the number of isoforms of the gene (Leng et al., 2013). Denote the number of reads mapped

to isoform i of gene g in sample s under condition C as XC
gi,s,

XC
gi,s|rgi,0ls, q

C
gi ∼ NB

(
rgi,0ls, qgiC

)
qCgi|α,β

Ig ∼ Beta
(
α,βIg

)
Denote the prior predictive probability under the hypothesis of equivalent expression as fIg0 (X),

which is a form of NB density with hyper-parameters.

f
Ig
0 (XC1,C2

gi ) =

[
S∏

s=1

(
Xgi,s + rgi,s − 1

Xgi,s

)] Beta(α+
S∑

s=1

rgi,s, β
Ig +

S∑
s=1

Xgi,s

)
Beta (α,βIg)

And denote the PPP under the hypothesis of differential expression as fIg1 (X), which is equal to,

f
Ig
1 (XC1,C2

gi ) = f
Ig
0

(
XC1
gi

)
f
Ig
0

(
XC2
gi

)
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And let the latent Bernoulli variable z denotes the status of the isoform (EE vs DE), and let the prior

of z be

z ∼ Bernoulli(p)

The authors claim that the posterior probability of the isoform being DE is

pf
Ig
1 (XC1,C2

gi )

(1− p)f
Ig
0 (XC1,C2

gi ) + pf
Ig
1 (XC1,C2

gi )

which can then be used to assess the significance of DE of an isoform. The means and variance

of the above functions are estimated individually with MOM estimators, while hyper-parameters, α,

βIg and p are estimated by maximizing the likelihood with EM algorithm.

One of the caveats of EBSeq is that it failed to incorporate estimation uncertainty for each gene/iso-

form in their model, despite the claims from the authors. The only parameter remotely related to

estimation uncertainty is the β parameter in the prior, which can take on three different values

depending on whether the target gene has 1, 2 or ⩾ 3 exons. This approach does not solve the

problem of estimation uncertainty, and methods that explicitly model this phenomenon perform

much better than EBSeq (Jia et al., 2015).

MMDIFF

In addition to directly model the counts like what EBSeq did, one could also take a two step ap-

proach. First, estimate the abundance of isoforms with a software package such as Cufflinks,

MMSEQ, IsoEM, RSEM, etc. Second, perform the testing of isoform DE with the isoform expres-

sion known. One issue with this approach is that it requires the downstream model to account

for the estimation uncertainty of isoform expression. For this purpose, Turro et al. implemented

a Bayesian linear mixed effects model in their MMDIFF package (Turro, Astle, and Tavaré, 2014).

The idea is to introduce a random component in the linear mixed effects model to represent the

variation of the estimator for the mean expression of each isoform. MMDIFF takes the output of

MMSEQ and runs an MCMC algorithm for Bayesian model selection (Carlin and Chib, 1995) to
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select between the null and alternative model as well as estimate model parameters:

Unsaturated: y = α(0) + Mβ(0) + P(0)η(0) + ν(0) + ϵ(0)

Saturated: y = α(1) + Mβ(1) + P(1)η(1) + ν(1) + ϵ(1)

y denotes the log-transformed expression of a feature (gene, isoform, etc). M and β denotes

the design matrix and the model-invariant parameters for which all models are required to adjust

for, e.g. age, sex, etc. P and η denotes the design matrix and the model-dependent parameters.

For example, if we are to compare the two models with the null excluding the group parameter,

P(0) would be set to 0, while P(1) would be the group indicator. ν is the parameter describing the

estimation uncertainty of y, which is proposed to follow a normal distribution with variance estimated

by MMSEQ. ϵ is the biological variance of y, which can be parametrized to be either common

across all samples, or common within experimental groups. In their simulations, the inclusion of the

estimation variance ν improves both PPV and NPV, thus rendering the method more powerful with

better controlled Type I error.

However, MMDIFF has several caveats that make it difficult to use. First, the use of Bayesian

inference, while a statistically sound choice, complicates the comparison with other methods. In

real-life practice, it outputs the posterior probability of the alternative model, without explicit control

for the false discovery rate. Second, it only takes input from MMSEQ, therefore, the inference

made by MMDIFF is limited by the accuracy of the isoform estimation by MMSEQ, resulting in

failure to take advantage of more accurate estimation methods. Third, the use of MCMC severely

affects its computational performance. In our simulation studies, MMDIFF could take a day to run a

moderately sized sample.

2.3. Differential Alternative Splicing

Gene expression is not the whole story of the molecular regulation of a eukaryotic cell. It is known

that different subset of exons from the same genetic loci can be concatenated to form different

mRNAs (isoforms) from the same genomic loci, through a process named alternative splicing (AS).

This process is biologically relevant, as well as highly regulated in response to the inter- and intra-

cellular environment. Therefore, identification of differential alternative splicing (DAS) events was an

essential part of a complete molecular profile. Fortunately, it has been made massively accessible
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by the advent of RNA-Seq technology. RNA-Seq provides more detailed information regarding the

sequences of the RNA molecules, which allows it to distinguish the signals from different isoforms

of a gene.

The methods we’ve covered so far are mostly focused on whole-gene quantification, instead of

DAS detection. The statistical models for these two tasks are generally quite different despite using

the identical source of data. As noted in Shi and Jiang, 2013, the testing of DAS of a gene is

mathematically a two-layer nested question. Assume the gene of interest has p isoforms, and

under condition C the expression for isoform i is µCi , and the proportion of this isoform among all

transcripts is θCi =
µC

i
p∑

i=1

µC
i

. The first layer is to test for the differential expression of all the isoforms

of this gene.

H0 : µC1

i = µC2

i for all i = 1, . . . , p

H1 : µC1

i ̸= µC2

i for at least one i = 1, . . . , p

If the first test is rejected, i.e., there is at least one isoform in this gene that has shown patterns

of differential expression, then we invoke the second layer, to test for the differential alternative

splicing of this gene.

H0 : θC1

i = θC2

i for all i = 1, . . . , p

H1 : θC1

i ̸= θC2

i for at least one i = 1, . . . , p

If a gene is tested positive for DAS, then at least one of its isoforms must show DE, which is why

these two tests are nested. Due to this complexity of the problem, the mathematical strategies for

detecting DAS are much more diverse compared to DE analysis. Roughly, they can be categorized

into the following three classes:

[i] Testing of differential exon usage using a Bayesian hierarchical model, e.g. MISO (Katz et al.,

2010) and MATS (Shen et al., 2012);

[ii] Direct modeling of the counts data with GLM, e.g. DEXSeq (Anders, Reyes, and Huber, 2012)

and rSeqDiff (Shi and Jiang, 2013);

[iii] Other miscellaneous methods, e.g. DSGSeq (Wang et al., 2013), SplicingCompass (Aschoff
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et al., 2013) and IUTA (Niu et al., 2014).

2.3.1. Testing of differential exon usage

MISO

MISO (Katz et al., 2010) is the pioneering method in Bayesian hierarchical modeling for testing of

DAS events from RNA-Seq data. From the same framework, MISO devised two types of analy-

ses, exon-centric, which tests for the differential usage of one exon at a time, and isoform-centric,

which tests for changes of isoform proportions. Denote the relative abundance of a genes isoforms

as a vector Ψ. Note that
∑
k

Ψk = 1, where Ψk denotes the relative abundance of isoform k. As-

suming uniform sampling of the RNA-Seq process, then the probability of a non-junction read being

sampled from isoform k can be written in terms Ψ weighted by the mappable length ck = lk−RL+1,

Ψfk =
ckΨk∑
i

ciΨi

Denote the number of mappable positions of isoform Ik in an experiment with read length RL as

m(RL, Ik). The probability of read Rn being sampled from isoform k can be written as,

P (Rn|k,Θ) =
Rkn

m(RL, Ik)

where Rkn denotes whether read Rn can be generated from isoform k. And the posterior distribution

can be evaluated as,

P(Ψ|R1:N) ∝P(R1:N|Ψ)P(Ψ)

=

K∑
I1=1

· · ·
K∑

IN=1

N∏
n=1

P (Rn|I1:N, Θ)P (I1:N|Ψ)P(Ψ)

The exon-centric analysis only contains two isoforms at a time. Using an uniform prior for Ψ, and the

MAP (also the MLE) estimator for this analysis when single-ended reads are used can be derived.

For isoform-centric analysis, the following choices of distributions are used in this hierarchical
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model,

Ψ ∼ Dirichlet(α) for every gene g

In|Ψ ∼Multinomial(1, Ψ) for every read n mapped to gene g

Rn ∼ P(Rn|In, Θ) uniform distribution

However, there is no analytic solution for the isoform-centric analysis, in which case a posterior

distribution of the vector Ψ is calculated with a hybrid MH-Gibbs sampling scheme. Bayes factors

derived from the posterior distributions of the null and alternative model are used to test for differ-

ential isoform expression.

MATS

Another method employing Bayesian theory of inference to test for differential exon usage is MATS

(Shen et al., 2012), whose model is summarized below. Denote Ψ = (ψ1, ψ2) as the exon inclusion

levels for an exon in two samples, Ii· as the counts of the exon including isoform of exon i, and Si·

as the counts of the exon skipping isoform of exon i. The Gibbs sampler setup is as follows:

(ψ1, ψ2) ∼MultiVarUniform(0, 1, cor =

1 ρ

ρ 1

)
ρ ∼ Uniform(0, 1)

Ii1|ψi1 ∼ Binomial(n = Ii1 + Si1, p = ψi1)

Ii2|ψi2 ∼ Binomial(n = Ii2 + Si2, p = ψi2)

Shen et al. adopted a complicated sampling scheme for the calculation of p-values to test for the

DAS events. In summary, it involves four steps:

Step-1: Estimating constrained MLE under the null (|ψ1 −ψ2| < c);

Step-2: Using the constrained MLE to simulate M sets of new data, and perform the above MCMC

procedure for each set to obtain a posterior distribution of (ψ1, ψ2) under the null;

Step-3: Compute a probability for each set of the newly simulated data the probability P(|ψ1−ψ2| >

c), denoted as Psim
j , j = 1, . . . ,M;

Step-4: Compare the posterior distribution to the observed probability of P(|ψ1 −ψ2| > c), denoted

as Pobs, to each Psim
j , and compute the proportion of Psim

j that is greater than Pobs as the empirical
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p-value for this test.

MATS suffers from a sleuth of caveats. In real-life practice, it’s extremely slow due to the multi-

layer sampling scheme required for an unnecessarily convoluted statistical model. Most often than

not, its results cannot be replicated by confirmatory experiments, implying invalid assumptions and

incorrect modeling, e.g, there is no explicit modeling of over-dispersion. In addition, MATS does

not support biological replicates, instead, the software pools all the counts together from different

samples of the same group and treats them as one sample. This approach dramatically reduces

the information embedded in the replicates, and subsequently drastically affects its power. The

same group published an updated version of MATS, rMATS to rectify some of the caveats above

(Shen et al., 2014).

rMATS

The first improvement of rMATS over MATS is the support of replicates in each sample. Shen

et al. modeled the logit of the exon inclusion level of each sample to be generated from a normal

distribution, and given the exon inclusion level, in each sample, the read counts of the exon including

isoform were modeled like in MATS. For exon i (i = 1, . . . ,N), replicate j in sample 1 (j = 1, . . . ,M1)

or replicate k in sample 2 (k = 1, . . . ,M2).

logit(ψi1j) ∼ Normal(µ = logit(ψi1), σ
2 = σ2i1)

logit(ψi2k) ∼ Normal(µ = logit(ψi2), σ
2 = σ2i2)

Ii1j|ψi1j ∼ Binom

(
n = Ii1j + Si1j, p =

liIψi1j

liIψi1j + liS(1−ψi1j)

)
, j = 1, . . . ,M1

Ii1k|ψi1k ∼ Binom

(
n = Ii1k + Si1k, p =

liIψi1k

liIψi1k + liS(1−ψi1k)

)
, k = 1, . . . ,M2

Parameters can be estimated by iteratively calculating the mean and variance of the exon inclusion

levelsψi1, ψi2, and the latent variables denoting the individual exon inclusion levels in each sample.

The former is achieved by maximizing a Laplace-approximated marginal likelihood of the group-

level exon inclusion levels, using the latent variable estimates from the last iteration. And the latent

variables can be computed by maximizing the full likelihood, with the group-level parameters fixed.

Testing of DAS exons in unpaired experiments can thus be performed by LRT tests. The authors

presented a more conservative tests compared to the one used in MATS due to computational
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conveniences.

H0 : |ψ1 −ψ2| = c

H0 : |ψ1 −ψ2| > c

This LRT statistic follows a χ2 distribution with one degree of freedom.

Shen et al. also proposed an algorithm to test for DAS exons in paired experiments. The statistical

model of the paired experiments is similar to the unpaired setup, except for the distributions of ψ.

logit(ψi1j)

logit(ψi2j)

 ∼ Normal

µ =

logit(ψi1)

logit(ψi2)

 , Σ =

 σ2i1 ρiσi1σi2

ρiσi1σi2 σ2i2




Similar procedures were used to estimate the parameters in this paired model and test for DAS

exons.

Compared to MATS, rMATS has much more extended functionalities, but some of the caveats of the

original MATS remain. MATS and rMATS both assume a binomial distribution of the counts given ψ,

completely ignoring the over-dispersion. Only two experimental conditions are allowed, multi-group

tests are not well-supported. Computing time is still quite hefty even with rMATS, which abandoned

the complicated sampling scheme.

2.3.2. NB-based methods

The differential alternative splicing of exons does not directly reflect the relative abundance of iso-

forms, which is of equal if not greater interests to researchers biologically. MATS only provides

DAS analysis on the exon level, but not on the isoform level. Methods based on direct modeling

of read counts with a negative-binomial distribution inspired by the methods identifying DE genes

could potentially solve this problem.

DEXSeq

In 2012, the team that developed DESeq authored a new package DEXSeq, that utilized NB-based

GLM to test isoform DAS events. They introduced ‘counting bins’, the biggest unit that is either

present or absent from all the isoforms. This concept was necessary, because many exons have

alternative 3’ or 5’ start site, which renders its boundary variable across different isoforms. It is

similar to the ‘mathematical exons’ used in DSGSeq (Wang et al., 2013).
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Denote kijl as the number of reads overlapping counting bin l of gene i in sample j, j = 1, . . . ,m.

Denote the expected value of the concentration of cDNA fragments contributing to counting bin l of

gene i as µijl.

E(Kijl) = sjµijl

where sj is the size factor for sample j. And the model can be written as a log-linear model with NB

distribution,

Kijl ∼ NB(µ = sjµijl, σ
2 = αil)

logµijl = βG
i + βE

il + β
S
ij + β

EC
iρjl

And covariates in the log-linear model are explained in Table 2.2. The dispersion parameters are

Covariate Explanation
βG
i Logarithm of baseline gene expression
βE
il Logarithm of the fraction of reads mapped to bin l among reads mapped to gene i
βS
ij Logarithm of the overall fold change of gene i in sample j

βEC
iρjl

Effect of the condition ρj on the fraction of reads mapped to bin l among reads mapped to gene i
ρj Condition of sample j

Table 2.2: Covariates and explanations for Anders, Reyes, and Huber, 2012

fitted for each counting bin using methods similar to Love, Huber, and Anders, 2014, using the

above model. And testing of differential usage of each counting bin l′ can be achieved with LRT by

fitting the following two models,

Unsaturated: logµijl = βG
i + βE

il + β
S
ij

Saturated: logµijl = βG
i + βE

il + β
S
ij + β

EC
iρjl

δll′

where δll′ = 1, if l = l′, and δll′ = 0 otherwise. The null hypothesis states that all conditions have

equal usage of the counting bin, and if one or more of the conditions violate this hypothesis the null

will be rejected. The model can be slightly changed to test if there is also an overall change of gene

expression among different conditions, by replacing the βS
ij with a term βC

iρj
, representing the effect

of conditions rather than samples on the overall gene expression.

rSeqDiff
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EBSeq is focused on testing for the differential expression of isoforms, which does not necessar-

ily lead to differential alternative splicing. Methods such as DEXSeq are focused on testing the

differential use of exons, which does not directly quantify the differences in relative abundances

of isoforms under different conditions. As mentioned above, Shi et al. proposed a nested testing

paradigm in their rSeqDiff method, which effectively illustrated the logical relationship between test-

ing for DE isoforms and DAS genes.

In their implementation, a linear Poisson model with the following parametrization is used for infer-

ence.

fθk
(Nk) =

J∏
j=1

(θkakj)
nkj exp [−θkakj]

nkj!

where θk is a vector of the isoform abundance values under kth condition, j indexes the sample,

and akj denotes the vector of the sampling rates from all isoforms for read type j in condition k. A

matrix also doubles as a compatibility matrix where the elements are set to 0 if the read type cannot

be sampled from a specific isoform.

For testing purposes, three models with varying degrees of freedom for the parameter θ are de-

vised. Index conditions by k.

Model-0 [No differential expression]: this model assumes a constant θ across all k conditions.

L (θ0|Nk) =

K∏
k=1

fθ0
(Nk)

Model-1 [Differential expression without DAS]: this model assumes the θk for all conditions to be

completely linearly dependent. Hence, denote the multiplicative factor for condition k as τk > 0.

L (θ0, τ|Nk) =

K∏
k=1

fτkθ0
(Nk)

Model-2 [DAS]: this model assumes a different θk for each condition k.

L (θ1, . . . , θk|Nk) =

K∏
k=1

fθk
(Nk)
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MLEs of the above models are computed with an EM algorithm, and a hierarchical LRT is used

for model selection. Briefly, the first step include two tests that compare Model 0 vs Model 1 and

Model 0 vs Model 2, each at significance level α/2. If both tests fail to reject the null hypothesis,

then Model 0 is the correct model, and there is no DE or DAS with the target gene. If one of the

tests rejects the null, then the corresponding model is selected as correct. If both tests reject the

null, then proceed to the second step of testing, which compares Model 1 vs Model 2 at significance

level α. If the null is rejected then Model 2 is correct, otherwise Model 1 is correct.

The greatest contribution of rSeqDiff is that it elucidated the logical relationship between testing

for DE and DAS of isoforms. With a hierarchical likelihood approach, users can now distinguish

between the two types of differentiation of isoform usage. One caveat of rSeqDiff is that it utilizes a

linear Poisson model, which is incapable of modeling over-dispersion. Subsequently, no treatment

of over-dispersion was implemented, and the method could potentially have inflated Type I error.

2.3.3. Other models

In addition to the methods above, some other interesting methods are available that do not fall

into any of the categories above. This is in no way implying that they are less impressive, rather,

some of them are hard to categorize simply because of their uniqueness and novelty. Most of these

methods are specialized in testing of DAS exons from two experimental groups with replicates.

DSGSeq

One of such methods is DSGSeq (Wang et al., 2013) written by the developer of DEGSeq. If we

denote the abundance of transcripts from all the ‘mathematical exons’ (same as the ‘counting bins’

in DEXSeq) in the vector k, and the probability of a read falling into exon j as pj. Let p be the vector

whose elements are pj, then the following relationship holds,

p =
1

Ξ
BLATk

where B, L are diagonal matrices representing sequencing preference of exons and exon length, Ξ

is a normalization factor, and A is the exon-isoform compatibility matrix, in which aij is a variable

indicating the presence or absence of exon j in isoform i. The authors of DSGSeq noted that a

one-to-one correspondence between p and k exists if A is of full row rank, i.e., no isoform can be a

linear combinations of other isoforms in this gene. This is an easily satisfied condition in the human
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genome, and it provides a shortcut for testing of differential alternative splicing of a target gene.

The most direct hypothesis of testing for DAS in genes is the following,

H0 : k1 = k2

H1 : k1 ̸= k2

where k1 and k2 represents the transcript abundance vectors under conditions 1 and 2. However,

due to the bijective relationship between k and p, we can instead test the following hypotheses:

H0 : p1 = p2

H1 : p1 ̸= p2

The rationale for this change of variables is that p is much more readily estimable than k, which is

essentially a latent variable. Denote the number of samples as n, the reads mapped to exon j in

sample i as Yij, and the total number of reads mapped to the gene in sample i asMi. An unbiased

estimator for pj is simply the mean,

p̂j =
1

n

n∑
i=1

Yij

Mi

In order to more accurately estimate p̂j, DSGSeq used a weighted mean and estimated the weights

using a variance-minimizing estimator, which is still very simple to compute.

After estimating the p̂j and Var [p̂j] for all exons, the authors use a NB-statistic to test for the

presence of a differentially used exons. Denote the number of exons as m,

NB− stat =
1

m

m∑
i=1

(p̂j1 − p̂j2)
2

V̂ar [p̂j1] + V̂ar [p̂j1]

And genes are ranked by the NB-statistic with the larger values being more significant for differential

alternative splicing. In addition, the NB-statistic for the gene can be easily decomposed into m

components, each corresponding to an exon in the gene. The method is interesting for its simplicity,

and great performance in real-life practice. One caveat of DSGSeq is that it does not provide a p-

value due to the lack of null distribution of the NB-statistic. Therefore, the cutoff for the significance

of the DAS events is somewhat ad hoc.
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IUTA

Another intuitive method for testing for DAS is to test for difference in the relative abundance vector

of isoforms. Denote {θk}
K
k=1 as the relative abundance for isoform k, and θ = (θ1, . . . , θK). Testing

for DAS is equivalent to,

H0 : θ0 = θ1

H1 : θ0 ̸= θ1

The fact that θ is compositional complicates the above tests. One major contribution of IUTA is

the proposal of using an isometric log-ratio (ilr) transformation to transform the compositional data

from the open simplex to the real space RK−1 with Euclidean geometry. Now to test for the DAS

isoforms, one needs to test,

H0 : ilr(θ0) = ilr(θ1)

H1 : ilr(θ0) ̸= ilr(θ1)

The transformed relative abundance follows a multivariate normal distribution,

ilr(Θij) ∼ N (ilr(θi),Σi + Yij)

where θi denotes the shared relative abundance vector of a specific group, and the variance can be

decomposed into two factors using the hierarchical interpretation. To test the equality of mean with

different variance-covariance matrices, KY, SKK or CQ tests can be performed. The parameters θ

are estimated from a likelihood similar to the one employed by MISO using MLE method.

Instead of relying upon analysis of exon usage, IUTA directly tests for the differences in the compo-

sitional vector of isoform relative abundances. This approach is more appropriate for analyses of

genes with complicated isoform structure, compared to exon-centric methods.

SplicingCompass

Another unique approach to test for differential alternative splicing events is SplicingCompass

(Aschoff et al., 2013), which takes advantage of a measurement aptly named ‘splicing angle’, which

represents the geometric angle between two vectors of exon usage. For a specific gene from sam-

ple i, SplicingCompass computes a vector containing the reads mapped to each unique exon ν̄i.
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For n samples, it then computes
(
n
2

)
angles in all the pairs of samples.

Φij = arc cos
[
ν̄i · ν̄j

∥ν̄i∥∥ν̄j∥

]
· 180
π

Then a one-sided t-test is used to test whether angles of within-condition sample pairs are signifi-

cantly smaller than those of between-condition sample pairs.
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CHAPTER 3

COMPUTATIONAL TOOLS FOR SINGLE-CELL RNA-SEQ

Due to the complexities of single-cell RNA-seq protocols, a series of novel methods have been

developed specifically for this new platform. Briefly, these methods can be categorized into sev-

eral functional classes (Bacher and Kendziorski, 2016): normalization, noise reduction, Identifying

highly variable genes, identification of subpopulation, pseudotemporal ordering, and differential ex-

pression analysis. In this dissertation, we focus on the methods for differential expression, and by

extension, normalization.

3.1. Normalization

The protocols of scRNA-seq are carried out in individual chambers or droplets after the cells are

isolated and separated. It is technologically infeasible to strictly control the environment of reaction

to absolute uniformity. Cell-to-cell heterogeneity can cause severe differences in the rate of reaction

and subsequently influence the read counts recovered from the assay. It is therefore critical to

carefully normalize the raw reads before any analysis is carried out using data from scRNA-seq

experiments. Several methods have since been developed.

3.1.1. SAMStrt

The first attempt at normalizing scRNA-seq data is from Katayama et al., 2013. The authors

adapted SAMseq (Li and Tibshirani, 2013) which is a differential expression method designed

for bulk RNA-seq, with modified sequencing depth estimation by assuming equivalent spike-in-

molecules/cell in each experimental set. This method of normalization is later adopted by Lun,

Bach, and Marioni, 2016, when the sample size of any biological condition fails to meet the mini-

mum requirement for their SCRAN algorithm.

3.1.2. GRM

A slightly less naı̈ve method was proposed in Ding et al., 2015. In their work, spike-in ERCC (Baker

et al., 2005) molecules are used to construct a gamma regression model. Briefly, log-transformed

concentration y = log(concentration) (log−C) and FPKM x = log(FPKM) (log−R) are modeled
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with a gamma distribution with a polynomial, to account for the non-linearity in the relationship

between x and y. The model is written as:

y ∼Gamma(y;µ(x), φ) (3.1)

µ(x) =

n∑
i=0

βix
i (3.2)

f(y) =
1

yΓ(σ)

(
φy

µ(x)

)φ

exp
(
−
φy

µ(x)

)
(3.3)

The parameters βi and φ are determined with MLE. The degrees of µ(x), n, is determined by

fitting four models with n = 1 to n = 4 and selecting the n that corresponds to the smallest average

technical noise of ERCCs. Once the model is fitted, the true expression of a gene can be estimated

from its FPKM as,

ŷgene = E [ygene] = µ̂(xgene) =

n∑
i=0

β̂ix
i
gene (3.4)

GRM takes advantage of the fact that the concentration of ERCC spike-ins is known, and by linking

the read counts to the actual concentration, one can fit a model that maps the raw FPKM to the true

gene expression. The method is straightforward and intuitive to understand. Although the perfor-

mance can be more thoroughly assessed and benchmarked against other normalization methods,

including bulk RNA-seq tools, GRM is an interesting addition to the scRNA-seq computational tool-

box.

3.1.3. SCRAN

A robust method of normalization has been developed in Lun, Bach, and Marioni, 2016 by pooling

cells into carefully designed clusters. The idea involves estimating the true size factors of many

different pools (E [Rik]) of cells first across genes, and subsequently, solving for the cell-specific

size factors by fitting a series of over-represented linear systems.

The authors propose that E [Rik] =
∑

Sk
θj, where θj is the cell specific size factors for cell j in Sk,

which is a subset of the cells in the population of interest. Rik is the random variable representing

the true size factor of subset Sk for gene i, whose expectation is the true size factor for the whole

set Sk. Now E [Rik] can be robustly estimated by averaging rik over i, and this will serve as the

response variable in the linear systems.
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Now E [Rik] can also be represented as the sum of the true size factors across the cells in the

selected pool. Therefore, by selecting multiple pools, a linear system can be constructed. Denote

the E [Rik] estimated by averaging across genes as λ1, · · · , λK, and the true size factor for each cell

i as θi. Denote xjk as the design matrix indicating the present of a cell j in pool k. Then the linear

systems can be written as,



1 1 1 · · · 0 0 0

0 0 0 · · · 1 1 1

1 0 1 · · · 0 1 0

...

1 1 0 · · · 0 1 1





θ1

θ2

θ3

...

θJ


=



λ1

λ2

λ3

...

λK


(3.5)

Select enough pools of cells, and solve Equation 3.5, we will get a set of robust estimates for θj,

thus achieving the goal of normalization for the single-cell RNA-seq counts.

One caveat of the SCRAN method is that it requires large enough number of cells in every single

group compared, therefore, it is limited by the size of the smallest group. In our experience, if one

group contains 20-30 cells, the algorithm will fail, regardless of the sample size of the other group.

3.2. Differential Expression: Genes

3.2.1. SCDE

One of the very first papers on detecting gene-level differential expression was published by the

Kharchenko group at Harvard (Kharchenko, Silberstein, and Scadden, 2014). Due to the blatant

abuse of notations and complete lack of statistical rigor in their manuscript, I have yet to achieve

the goal of understanding the mathematics in their model. But for the completeness of this disser-

tation, I will make an attempt at describing their work. The words in quotes are copied from their

paper (Kharchenko, Silberstein, and Scadden, 2014) verbatim. I did not write or alter any of these

sentences.

The first step of their procedure is to fit individual error models, which I can only guess is on a

per-cell basis. “All pairs of individual cells belonging to a given subpopulation (for example, all MEF

cells) were analyzed with a three-component mixture model.” Now The following “components”

37



were directly copied from their published manuscript.



r1 ≈ Poisson(λ0) Dropout in c1
r1 ≈ NB(r2)

r2 ≈ NB(r1)
Amplified

r2 ≈ Poisson(λ0) Dropout in c2

(3.6)

If one were to treat the above math as a set of statistical notations, then the following questions are

begging to be asked:

• What does it mean for a random variable to be approximately equal (≈) to a distribution?

• What happens to the three-component mixture model? What are the three components in the

above brackets?

• What does r2 ≈ NB(r1) mean? Is r1 a random variable or a parameter? Even if we consider

the possibility of Bayesian inference where both r1 and r2 are random variables, the definition

of the distribution of a parameter should involve nothing but hyper-parameters.

• Does the center “amplified” bracket count as one component? Is it a two-dimension ran-

dom variable? If so how does one mix two one-dimension random variables and one two-

dimension random variable?

The next step would be to fit an “individual error model ΩC”, Dr. Kharchenko and team suggest

that “The RPM level rc observed for a gene in cell c was modeled as a mixture of a dropout and

amplified components, as a function of an expected expression magnitude e, as”


rc ≈ NB(e) Amplified

rc ≈ Poisson(λ0) Dropout

(3.7)

“with the mixing parameter m = log(e).”

Up till now, the use of statistical notations in this paper does not conform to the conventions by

which they are usually applied. Differential expression analysis is performed “with a Bayesian

approach”. They define “the posterior probability of a gene being expressed at an average level x
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in a subpopulation of cells S” according to

pS(x) = E

[∏
c∈B

p (x|rc,Ωc)

]
(3.8)

where B is a bootstrap sample of S. I would like to point out that the expectation of a probability

again is a blatant misuse of notation. They also define ”p(x|rc,Ωc)” as “the posterior probability for

a given cell c”, according to

p(x|rc,Ωc) = pd(x)pPoisson(x) + (1− pd(x))pNB(x|rc) (3.9)

“where pd is the probability of observing a dropout event in cell c for a gene expressed at an average

level x in S, pPoisson(x) and pNB(x|rc) are the probabilities of observing expression magnitude of rc

in case of a dropout (Poisson) or successful amplification (NB) of a gene expressed at level x in cell

c, with the parameters of the distributions determined by the Ωc fit. For the differential expression

analysis, the posterior probability that the gene shows a fold expression difference of f between

subpopulations S and G was evaluated as”

p(f) =
∑
x∈X

pS (x)pG(fx) (3.10)

“where x is the valid range of expression levels.” The authors further claimed that ”the posterior

distributions were renormalized to unity, and an empirical P-value was determined to test for signifi-

cance of expression difference.” Terms such as “renormalized to unity” does not make much sense

in statistics without further clarification.

I cannot comment on the mathematical validity of this model, due to their unfortunately unintelligible

notations. Nor could I get the software to run properly without modifying their code, which misuses

the parallel computing functions so dangerously, that it quickly consumes the entire RAM of the

machine once it starts. I would caution whoever wishes to give it a try do so after fully auditing their

published code and consulting with an expert in R, which the original authors do not appear to be.

3.2.2. MAST

MAST (Finak et al., 2015) is a first statistically sensible attempt at directly model the bimodality

of the single-cell gene expression. In order to correct for the inflated zeros in scRNA-seq data,
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Finak, McDavid, Yajim et al. proposed a Hurdle model with two parts, the rate of expression over

background (probability of non-zero), and the mean of the positive expression (mean of the non-

zero component). The authors use cellular detection rate (CDR), the proportion of genes detected

in each cell, account for cell-to-cell technical differences such as dropout, amplification efficiency,

cell size, cell cycle, etc, that affect the overall gene expression in individual cells. CDR is treated as

an additional covariate in the regression model, to control for the aforementioned biases.

MAST models the variation in log2(TPM + 1) expression matrix instead of raw read counts, as a

two-part generalized linear regression model. Denote Zig as an indicator that gene g is expressed

in cell i.

• CDR is modeled using logistic regression.

logit [P(Zig = 1)] = Xiβ
D
g (3.11)

• the mean positive expression is modeled as a conditionally normal distribution given that

Zig = 1, i.e., gene g is expressed.

Pr [Yig = y|Zig = 1] = N(Xiβ
C
g , σ

2
g) (3.12)

Bayesian GLM was used to regularize the coefficients for the discrete regression in case of com-

plete separation, and additional regularization is performed on the variance parameter of the con-

tinuous model, in order to increase the robustness of the differential analysis when a gene is only

expressed in a small number of cells. MAST outputs three p-values:

• “disc”: the p-values generated with logistic regression described in Equation 3.11, testing for

significant correlation between levels of zero inflation and the given covariates.

• “cont”: the p-values generated with linear regression described in Equation 3.12, testing for

significant correlation between levels of positive mean expression and the given covariates.

• “hurdle”: the p-values generated by adding the χ2-statistics computed for the above two tests,

and combining the degrees of freedom, testing for significant correlation in either of the two

scenarios.
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One of the advantages of MAST is its computational efficiency, due to their clever use of existing

models and software packages. The biggest caveat of MAST lies in the manner with which the

technical noises are incorporated. While CDR is an important summary statistic to use for normal-

izing cell-to-cell heterogeneity, it is hardly sufficient for the scRNA-seq data, as is shown in Jia et al.,

2017. Briefly, CDR is computed on a per-cell basis, which reflects the baseline differences of gene

detection rates. However, this probability is also related to the expression level of the gene, which

has not been accounted for in the discrete model. In addition, the relationship between the mean

positive component and the true expression of a gene can also be different due to varying factors

affecting efficiencies of reverse transcription and PCR reactions in individual chambers, such as

rates of dissolution, amount of reactants, enzymatic activity, etc. These technical differences are

not incorporated in any of the models. Lastly, the input for MAST is TPM, which is estimated from

read or fragment counts. Therefore, in order to apply MAST model efficiently, a preprocessing step

is required to compute the TPM values for each gene in each cell. This might not be accurate due

to the extremely low starting material of scRNA-seq, especially for technologies such as SMART-

seq, which is not designed specifically for tag counting for its lack of compatibility with UMIs. This

can significantly limit the use case of MAST, especially considering SMART-seq is a popular and

established scRNA-seq protocol.

3.2.3. scDD

Another attempt at modeling the multi-modality of RNA-seq data came from the Kendziorski group

at University of Wisconsin (Korthauer et al., 2016). The method is motivated by the observation that

the distribution of the log-transformed non-zero expression measurements of single-cell RNA-seq

data is usually multi-modal for a specific gene. Therefore, testing for the positive mean alone might

not disclose the existing differences. Therefore, a mixture model framework is employed to describe

the read counts of Yg of a gene g from scRNA-seq. Specifically, assume Yg follows a conjugate

Dirichlet process mixture (DPM) of normals. A Bayes factor comparing two models

• “DD”: the data arises from two independent condition-specific models

• “ED”: the data arises from one overall model regardless of condition
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Let M denotes the model, the Bayes factor is computed as,

BFg =
f(Yg|MDD)

f(Yg|MED)
(3.13)

In order to fit the above model, the authors took a multi-step approach taking advantage of the

product partition model (PPM) formulation.

• estimate partition membership Ẑ that maximizes the maximum a posteriori (MAP) by optimiz-

ing the Bayesian information criterion (BIC) of the marginal density f(Y|Z) using R package

Mclust.

• estimate the component-specific parameters with the closed form solutions obtained due to

conjugacy.

• estimate the MAP of the joint predictive distribution of data Y and partition Z.

• compute the bayes factor, and if needed, permute the condition labels to calculate an empiri-

cal p-value

The scDD method is theoretically sound, and has provided some novel insight on testing for distri-

butional differences of gene expression measurements in scRNA-seq data. In addition to testing

for shifts of mean, it is capable of characterizing the distributional patterns of gene expression, and

testing for differences in these patterns between biological conditions. However, adjustment for ad-

ditional covariates is quite limited in scDD, and it is inadvisable to compare patterns between more

than 2 biological conditions. It would be very valuable if the model could be extended to incorpo-

rate a regression component, thus allowing scDD to account for confounding factors. And it would

be interesting to see the minimum sample size it requires to efficiently compare the differences in

patterns between 3 or more biological conditions.
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CHAPTER 4

GENERALIZED LINEAR MIXED-EFFECTS MODELS FOR DETECTING DE ISOFORMS

AND SPLICING QUANTITATIVE TRAIT LOCI (SQTLS) FROM BULK RNA-SEQ DATA

4.1. MetaDiff

4.1.1. Motivation

So far we have reviewed more than two dozen methods for detecting gene differential expression,

isoform differential expression and differential alternative splicing using bulk RNA-seq. Despite the

sheer number of models available, there is still ample room for improvement. For example, in terms

of detecting isoform differential expression, ideally a method should satisfy the following criteria:

[i] Account for isoform expression estimation uncertainty.

[ii] Account for variation in the estimation uncertainty across features and biological replicates.

[iii] Flexibility to adjustment for covariates and confounding factors, discrete and continuous.

Methods such as DESeq, DESeq2 and edgeR are not designed to model counts with estimation

uncertainty. Methods such as Cuffdiff, BitSeq and EBSeq do a terrible job accounting for it. More-

over, they cannot include covariates and other confounders in their model. MMDIFF in theory is

able to satisfy the above criteria, but their choice of Bayesian modeling makes it difficult to compare

its performance to other methods. More importantly, MMDIFF only works with results from MM-

SEQ. Since the result of isoform DE detection is highly reliant upon the accurate estimation of the

isoform expression, this severely limits the chance of MMDIFF improving its accuracy by switching

out the upstream method. MMDIFF outputs the posterior probability of the alternative model, with-

out inferential information on the included covariates, making it impossible for users to control for

a fixed threshold of false discovery rate. Lastly, the MCMC sampling scheme in MMDIFF method

makes the program computationally inefficient, without the chance of parallelizing the procedures.

This results in terrible run time, up to a day for a moderately sized group of samples.

As a result, we have developed MetaDiff, a meta-regression-based general framework for identify-

ing differentially expressed isoforms, accounting for estimation uncertainty of the upstream pack-
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ages. It can take input from any software packages as long as the variance (or confidence interval)

of the isoform expression estimate is included. This flexibility allows the user to choose any source

of estimation package they prefer, facilitating the improvement in inferential accuracy by upgrading

the upstream estimating software. It is a frequentist method which outputs raw and FDR-adjusted

p-values for each feature, which can then be used to control for a specific false discovery rate in

the identified samples. Due to the use of a very efficient R package metatest, the program can be

parallelized, utilizing the full capacity of a multi-core CPU. It is also extremely efficient, with run time

up to less than an hour for the same sample tested on MMDIFF.

4.1.2. Model and estimation

A random effects model was used to include the variance of the estimates of the isoform expression.

log [Yi] = β0 + β1Xi + β2Zi + µi + ϵi

The interpretation of the components of the above model can be found in Table 4.1. In addition to

Parameter Interpretation
Yi Random variable, the estimated isoform expression
β0 Baseline log-expression
β1 Coefficients associated with the variables of interest
Xi Design matrix of the variables of interest
β2 Coefficients associated with the additional covariates and confounding factors
Zi Design matrix of the additional covariates and confounding factors
µi Estimation uncertainty for log [Yi]. µi ∼ N(0,Var [log [Yi]])
ϵi Random error. ϵi ∼ N(0, τ2)

Table 4.1: Components and Interpretations in Jia et al., 2015

the assumptions listed in Table 4.1, we also assume Cov(µi, ϵi) = 0, and the n observations are

statistically independent. Estimation of this model is performed with R package metatest, and the

the input of this method can be in the form of both raw FPKM (Trapnell et al., 2010) or log-FPKM

(Turro, Astle, and Tavaré, 2014). Log-FPKMs can be directly fed into the program after parsing.

However, raw FPKMs need to be log-transformed. Assume the FPKM prior to transform follows a

normal distribution,

Yi ∼ N(µi, σ
2
i )
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Using δ-method, log-FPKMs will follow a normal distribution with mean and variance,

log [Yi] ∼ N(log [µi] ,
σ2i
µ2i

)

Hence, the mean and variance of the transformed FPKMs can be approximated by,

E log [Yi] = log [µi]

Var [log [Yi]] =
σ2i
µ2i

4.1.3. Testing for DE isoforms

The null hypothesis of no differential expression between different groups (or other covariates of

interest) is equivalent to,

H0 : β1 = 0

H1 : β1 ̸= 0

Two types of tests are devised to test for these hypotheses: t-test and Bartlett corrected likelihood-

ratio test (BcLR). The classical t-test statistic for t-test is

T =
β̂1

ŜE
[
β̂1

]
Under the null hypothesis, this statistic follows a Student-t distribution with n − Dβ1

− Dβ2
− 1

degrees of freedom, where Dβ1
and Dβ2

denote the dimensions of the parameter vector β1 and

β2 respectively.

Compared to Wald-test, Student-t distribution does not rely on the restrictive asymptotic assump-

tions, therefore, it is applicable when sample size is small, which is quite common in the case of

RNA-Seq experiments.

Alternatively, we can formulate this problem as a selection problem for nested linear models, and

use a likelihood ratio test corrected with Bartlett’s method for small sample inference. The BcLR
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test statistic is,

BcLR = BCF × 2(ℓ− ℓ0)

where BCF denotes the Bartlett correction factor (Huizenga, Visser, and Dolan, 2011a), ℓ denotes

the log-likelihood under the alternative, and ℓ0 denotes the log-likelihood under the null.

4.1.4. Simulation

16 cases and 16 controls were simulated with Flux Simulator (Griebel et al., 2012) with the anno-

tated human genome hg19, each with a read depth uniformly distributed between 8 million to 10

million. In order to assess the performance of the method in the absence and presence of covari-

ates and confounding factors, three repetitions of simulations were performed with three different

transcriptomic profiles. These three scenarios are illustrated in Figure 4.1.

Scenario I is the basic scenario where there is no covariate to be adjusted for and no confounding.

In this case, 30% of the transcripts are DE between cases and control, half (15%) of which are

up-regulated by 1.25 fold in cases compared to controls, and the other half are down-regulated by

1.25 fold in cases compared to controls.

Scenario II introduces a covariate by which the expression of some transcripts are influenced. 10%

of the transcripts are now influenced by the age of the subject. Age is a random variable that fol-

lows the same uniform distribution Uniform(18, 60) in both cases and controls. The expression of

these transcripts increases by 1.35 fold with every one standard deviation increase in age, which is

equivalent to 2.5% increased expression for 1 year increase in age.

Scenario III introduces confounding on top of Scenario II. With the rest of the simulation setup

identical, we now allow the age variable to follow two different uniform distributions in cases and

controls. In cases, age follows Uniform(40, 85), while in controls, age still follows Uniform(18, 60).

4.1.5. Results

[i] Empirical FDR

Packages designed for testing gene-level DE, e.g., DESeq, DESeq2 and edgeR, do not explic-

itly model the estimation uncertainty of the isoform expression. They tend to under-estimate

the variance of the expression when used for isoform DE detection, and subsequently render
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Scenario I

Scenario II

Scenario III

Up-regulate 1.25 fold in 
case
No DE b/w case and control

Confounded by age

Down-regulate 1.25 fold in case

Influenced by age

Not influenced by age

Figure 4.1: 3 Simulation Scenarios. Scenario I: 15% up-regulated in cases; 15% down-regulated
in cases; 70% non-DE. Scenario II: 5% non-DE but influenced by age; 2.5% up-regulated in cases
and influenced by age; 2.5% down-regulated in cases and influenced by age; 12.5% up-regulated
in cases but not influenced by age; 12.5% down-regulated in cases but not influenced by age;
65% non-DE and not influenced by age. Scenario III: same as Scenario II, except that age follows
different distributions between cases and control.

the FDR uncontrolled. We want to know if this problem persists in our package, despite our

direct modeling of the estimation uncertainty. Empirical FDR, calculated as the fraction of

true non-DE features among those labeled as DE, was plotted against the nominal FDR, the

threshold given to the software package to label DE features. Figure 4.2 shows the curves for

all the methods under all 3 simulation scenarios.

When no covariate or confounding is present (Scenario I), only DESeq and DESeq2 show

slightly inflated FDR when the sample size is small. This is consistent with the fact that DE-

Seq and DESeq2 tend to under-estimate the dispersion parameter when the sample size is

small, with the trended-by-mean estimate used by DESeq more severe than the empirical

Bayes shrinkage method used by DESeq2. When the sample is of sufficient size, this infla-

tion disappears. All the other methods have empirical FDR under control in this scenario.

When the expression of a portion of the features (10%) is influenced by a non-confounding

covariate (age, Scenario II), methods that do not allow covariates (EBSeq) or do not allow true

continuous covariates (DESeq) start to have trouble keeping the empirical FDR under control.

When the sample size is 4+4 or 8+8, the empirical FDR for EBSeq is around 0.6 when the

nominal value is in fact 0.05, a more than 10-fold inflation is observed. Regardless of the

sample size, the empirical FDR of both EBSeq and DESeq are severely inflated. Despite the
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fact that the DESeq package accepts any type of covariates, it does not intrinsically support

continuous variables like age. In fact, they will be binned to form discrete groups prior to run-

ning the estimation algorithm. This partly explained why DESeq is showing severe inflation

when the continuous variable age is present. MetaDiff, edgeR and DESeq2 have properly

handled covariates, hence the empirical FDR is still lower than the nominal values. Surpris-

ingly, although Cuffdiff does not support covariates, its empirical FDR is also under control.

But later in Figure 4.4, we observe that Cuffdiff in general has lower power than methods

who have accounted for the age variable. This conservativeness might in part explain the

controlled FDR of Cuffdiff.

When confounding is present (Scenario III), Cuffdiff, EBSeq, and DESeq have all yielded

severely inflated FDRs, due to their inability to treat confounding variables. While both tests

of MetaDiff (BcLR and Student-t test), DESeq2 and edgeR have FDRs well under control.

These results have shown that the MetaDiff does not suffer from the problem of inflated FDRs

other methods face when covariates or confounding factors are present. In addition, one of

the indispensable components of a model testing for gene/isoform differential expression is

the treatment for confounding factors, lack of which can lead to inferential mistakes such as

inflated FDR.

[ii] Performance under the null

The observation of inflated FDR could be due to a variety of causes, one of which is un-

controlled Type I error. In order to illustrate the performance of the models under the null

hypothesis, we generated quantile-quantile (Q-Q) plot for each method under all three sce-

narios. The raw p-values of true non-DE features are extracted from the exported result of

each method, log-transformed, sorted and plotted against a log-transformed expected value

of the same quantile from a Uniform(0, 1) distribution. A well-balanced method should have

p-values from the non-DE transcripts fall on the diagonal line of this plot.

In Scenario I where there is no covariate to be adjusted for and no confounding factors,

edgeR, DESeq and DESeq2 all have deviated from the diagonal line. This pattern is not

surprising for DESeq and DESeq2 due to their inflated FDR. However, even with FDR under

control, edgeR has shown clear deviation from the diagonal line. This usually signals some

type of violation of the model assumption. One suspect is the lack of direct modeling of esti-

mation uncertainty in these models, which could lead to unusual behavior of the algorithm.
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Figure 4.2: Empirical FDR vs nominal FDR. Empirical FDR was computed as the fraction of the true
non-DE features among those declared to be DE by the specified software package. Nominal FDR
level was the FDR threshold given to the specified package to determine the set of DE features.
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Figure 4.3: Q-Q plot of log-transformed raw p-values of true non-DE transcripts under the null
hypothesis. The raw p-values exported by each method for transcripts that are not differen-
tially expressed in each scenario are log-transformed, and then plotted against a log-transformed
Uniform(0, 1) distribution.
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In Scenario II where the expression of some genes are influenced by a non-confounding

variable, DESeq adn DESeq2 continue to deviate from the diagonal line, albeit in a less

pronounced manner. So does edgeR, but in a different direction compared to its pattern in

Scenario I. Inclusion of a covariate seems to dampen the level of deviation of the p-values

from the uniform distribution.

In Scenario III where a confounding covariate is influencing the expression of a subset of

genes, DESeq, DESeq2 and edgeR maintain their deviation from the diagonal line, but on an

even lower scale. Cuffdiff shows severe deviation from the diagonal line, which is consistent

with its grossly inflated FDR in Figure 4.2. It’s also apparent that the p-value plateaus below a

certain point for Cuffdiff, and this is due to the fact that the sampling scheme used by Cuffdiff

caps the smallest p-values at a fixed point, resulting in an accumulation of identical p-values

for the first few hundred most significant features.

In summary, the methods without treatment for estimation uncertainty all show some level of

deviation from the diagonal line of the Q-Q plot, indicating violation of model assumptions.

More importantly, both tests used by MetaDiff, BcLR and Student-t test are close to the diag-

onal line in all three scenarios, suggesting superior performance under the null hypothesis.

[iii] Power comparison

Results so far have shown that the tests used in MetaDiff have empirical FDR under con-

trol and are well-behaved under the null hypothesis. Next, we wish to compare the power

of these methods in detecting DE features with the usual FDR threshold levels. A range of

nominal FDR levels [0.01−0.1] are used to identify the DE features using the FDR-adjusted p-

values from all methods with three different sample size setting under all three scenarios. The

numbers of DE features are counted and divided by the total number of true DE transcripts

under their respective scenarios to arrive at the empirical power, which is subsequently plot-

ted against the nominal FDR level used in Figure 4.4. Between the BcLR test and Student-t

test used by MetaDiff, the former clearly has higher power when sample size is 4+4. The two

tests show almost identical power when sample size is 8+8 or 16+16.

In Scenario I, for medium- or large-sized experiments, BcLR clearly has the best power among

all methods compared. When the sample size is small, DESeq and DESeq2 have better

power in comparison to BcLR. But their results should be taken with more caution since in

this setting, they also exhibit inflated FDR, as is shown in Figure 4.2.
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Figure 4.4: Power comparison. Power is calculated as the fraction of the correctly identified DE
features among all true DE features. FDR-adjusted p-values from each method are subject to
filtering with various nominal FDR thresholds, the features passing each threshold will be counted,
and divided by the total number of true DE features to arrive at the estimated power for this method
at this threshold. Estimated power is plotted against the nominal FDR threshold level for each
method with three different sample size settings in all three scenarios.
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In Scenario II, BcLR has the best power among all methods regardless of sample size.

Student-t test has almost identical power as BcLR in medium and large size settings, but

its power in small sample size experiments is limited. DESeq2 comes in second in compari-

son to BcLR overall, followed by edgeR and CuffDiff. It’s interesting to notice that EBSeq and

DESeq have almost no power in Scenario II. As a sanity check, the power of these two meth-

ods on genes that are not confounded by age is calculated, and they have similar power to

that observed in Scenario I on these genes. This implies that DESeq and EBSeq are simply

not robust to genes with expression influenced by a continuous covariate.

In Scenario III, BcLR continues to have the best power of all methods except for CuffDiff.

CuffDiff seemingly performs better when the sample size is relatively small, however, it also

has severely inflated FDR in Scenario III. Combining these two facts, we postulate CuffDiff

cannot efficiently distinguish the true DE features from the non-DE ones, but simply label

the majority of them DE indiscriminately. DESeq2 comes after BcLR, followed by edgeR and

EBSeq. DESeq again has no power in this scenario.

[iv] Application in heart failure data

We apply MetaDiff and the other methods assessed above on an RNA-Seq dataset from a

study on human heart failure. It is a relatively small dataset with 3 controls and 4 cases. And

among these 7 subjects, 4 are male and 3 are female. In addition, the participants have a

wide range of age at the time of the study. Left ventricular free-wall tissue was harvested

from each heart and snap frozen until RNA-Seq sample preparation and sequencing, which

was performed at the High-Throughput Sequencing Facility of Penn Genome Frontiers Insti-

tute following standard protocols. On average, the sequencing yielded 43 million 2 × 101-bp

paired-end reads. The raw FASTQ data was mapped to hg19 human genome with TopHat,

and isoform expression was estimated with Cufflinks.

The results are summarized in Table 4.2. Consistent with our simulation studies, when the

sample size is small, BcLR detects fewer DE isoforms compared to DESeq, DESeq2 and EB-

Seq. It is mainly because in this scenario these three methods tend to have severely inflated

FDR for experiments with small sample size. Hence these results shall be taken with extreme

caution. Interestingly after adjustment by age and sex, BcLR test discovered significantly

more genes than the rest of the methods. This is also consistent with our simulation studies,

in which BcLR displayed the highest power for two of the three scenarios when sample size
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Figure 4.5: Zoomed in ROC curves.
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is 4+4. In addition, with experiments with small sample size, BcLR showed consistently con-

trolled FDR, which gave us confidence that the majority of the genes detected should be true

DE. Among the transcripts labeled as DE by BcLR, the majority (71/94) showed significant

covariates (p¡0.05) associated with either age or sex, indicating that the expression of the

majority of these transcripts are in fact influenced by age or sex.

Unadjusted Age-sex-adjusted Overlap

BcLR 6 95 1
t-test 1 0 0

DESeq 106 77 56
DeSeq2 102 49 31

EdgeR 3 0 0
Cuffdiff 7 - -
EBSeq 256 - -

Table 4.2: Number of isoforms detected in heart failure data.

4.2. Splicing QTL

Misregulation of alternative splicing could potentially trigger the onset of a variety of diseases, such

as β-thalassemia (Treisman, Orkinl, and Maniatis, 1983; Treisman et al., 1982), spinal muscular

dystrophy (Cartegni and Krainer, 2002; Kashima and Manley, 2003), amyotrophic lateral sclerosis

(Kim et al., 2013) and cancer (Hahn and Scott, 2012; Imielinski et al., 2012). Therefore, identifying

regulatory elements of alternative splicing is pivotal in illustrating the mechanisms of a large number

of diseases.

The regulation of alternative splicing is primarily mediated by cis-regulatory elements or trans-

acting factors. Cis-regulatory elements reside in close proximity to the ORF of the gene, and

regulate gene expression through direct promoter activation or silencing. On the other hand, trans-

acting factors need not be located in the vicinity of the gene. Coupled with genotyping microarrays,

RNA-Seq technology has provided an unprecedented opportunity to identify the single nucleotide

polymorphisms (SNPs) to which the alternative splicing of certain genes is associated, i.e., splicing

quantitative trait loci (sQTL).

Pioneering studies to identify sQTLs used simple linear regressions with the percentage of exon

read counts over total gene read counts as the dependent variables, and the SNP genotypes as

the covariates (Montgomery et al., 2010; Pickrell et al., 2010). These methods failed to include a
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large portion of relevant information in the RNA-Seq studies, most importantly, the variability of the

read counts from RNA-Seq data, which leads to inflated Type I errors and false positive results.

To overcome these difficulties, Zhao et al. developed GLiMMPS, a generalized linear model for

identifying sQTLs that accounts for the variability of the exon-specific and overall read counts (Zhao

et al., 2013). Denote the number of the junction reads corresponding to the exon-including isoform

as y = IJ, and that of those corresponding to the exon-skipping isoform as SJ. The number of

junction reads representing the total expression of these two isoforms is n = SJ + IJ
2

. The model

computes the estimated exon inclusion level ψ̂ as,

ψ̂ =
y

n
=

IJ
2

SJ+ IJ
2

Given n, the exon-including junction read count follows a binomial distribution,

y|n ∼ Binom(n,ψ)

As in the case of detecting DE genes and isoforms, a simple binomial model is insufficient to de-

scribe the over-dispersion of the read counts from the RNA-Seq data. To model the extra variability,

one could use a beta-binomial model, a negative binomial model, or simply add a multiplicative

scale factor to the variance of the response. Zhao et al. instead chose the method developed by

Browne et al. (Browne et al., 2005), which added a normally distributed random effect to each

individual logit(ψij). The variance of this error term is different for each SNP.

µij ∼ N(0, σ2uj)

logit(ψij) = β0 + βjgij + µij

The random error term µij is a combination of two different sources of variation, the overall read-

depth variability as well as variation of the exon inclusion level for the same SNP. Laplace approx-

imation was used to estimate the parameters and a likelihood ratio test was used to compute the

p-values for the fixed effect βj for each SNP j.

Despite the significant improvement of GLiMMPS over the simple linear regression methods, it still

bears several caveats.

56



[i] GLiMMPS only used the junction reads, discarding all the information contained in the reads

mapped to the body of the exons. This reduces the accuracy of the estimation for the exon

inclusion levels, thus affecting the power of the test.

[ii] GLiMMPS cannot utilize the extra information contained in paired-end data. As paired-end

RNA-Seq experiments become increasingly accessible and popular, the capability of including

paired-end experiments in the method design is highly desirable.

[iii] GLiMMPS treats the variation in the estimated exon inclusion level from the same genotype

group as a random effect. This effectively forces sharing of a common variation parameter

across exon inclusion levels from different samples, while in actuality this assumption might

not hold due to variable library sequencing depths and coverage of the specific genomic area.

[iv] GLiMMPS assumes uniform sampling along the transcripts. Several studies have shown that

this does not hold for RNA-Seq experiments, and the ignorance of the non-uniformity leads to

biased estimation of isoform expression (Hu et al., 2014).

Our approach involves a two-step procedure, the first step is to estimate the exon-inclusion levels

with PennSeq (Hu et al., 2014), a recently developed read-based method corrected for non-uniform

RNA-Seq sampling. The PennSeq algorithm considers all reads mapped to a given exon trio,

including junction and non-junction reads. It intrinsically supports paired-read sequencing data,

and allows unique non-uniform distributions for each isoform. Using an expectation-maximization

(EM) algorithm, PennSeq outputs the estimated mean and variance of the relative abundance of the

exon-including isoform, which can then be fed into downstream models as the response variable.

4.2.1. Random effects meta-regression

Several choices arose when searching for a suitable downstream models to compute the associa-

tions between the genotype of a SNP and the exon inclusion level of a specific exon trio. In order

to account for estimation uncertainty of the isoform expression, a random effects meta-regression

model is considered with the following model setup. Denote the estimated isoform relative abun-

dance as Yi and its standard deviation σ1i. The random effects meta-regression model can be
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written as,

logit(Yi) = β0 + β1Gi + µi + ϵi

µi ∼ N(0, σ21i)

ϵi ∼ N(0, σ2e)

Assume µi and ϵi are uncorrelated, and n observations are independent, this model can be esti-

mated with standard meta-regression packages such as metafor in R.

4.2.2. Beta regression

Since the exon inclusion levels are random variables in the range (0, 1), β-distribution is an intuitive

choice for modeling this variable. Unlike meta-regression, beta regression allows for direct usage of

the exon inclusion levels as the dependent variable without transformation (Ferrari and Cribari-Neto,

2004). Beta regression is based on an alternative parametrization of the β-distribution.

Yi ∼ B [µ,ϕ]

E(Yi) = µ

Var(Yi) =
µ(1− µ)

1+ ϕ

f(Yi;µ,ϕ) =
Γ(ϕ)

Γ(µϕ)Γ [(1− µ)ϕ]
Y
µϕ−1
i (1− Yi)

(1−µ)ϕ−1

where µ ∈ (0, 1) and ϕ > 0. Now the beta regression model can be written down,

logit(µi) = β0 + β1Gi

Fitting of the beta-regression model is performed with betareg package in R. For identifying signifi-

cant sQTLs, Wald tests are performed to test the null hypothesis H0 : β1 = 0.

4.2.3. Generalized linear mixed effects model

Inspired by GLiMMPS, a generalized linear mixed effects model was fitted with the estimated exon

inclusion levels as the response variables. Since we used a much more accurate approach to

estimate the exon-inclusion levels, We expect our GLMM method to have greater power than
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GLiMMPS. For sample i, denote the total number of reads mapped to an exon trio as Mi, and

the exon inclusion level as Yi. Then the estimated number of reads from a certain exon Ri =MiYi,

where Ri ∼ Binom(Mi, Yi). With this setup, the GLMM can be written as,

logit [E(Yi)] = β0 + β1Gi + ϵi

ϵi ∼ N(0, τ2)

Similar to GLiMMPS, we also use the lme4 package in R to fit this mixed-effects model.

4.2.4. Data simulation

In order to assess the performance of the above three methods as well as the GLiMMPS, we

simulated paired-end RNA-Seq data with Flux Simulator (Griebel et al., 2012) from the annotated

human genome version 19. RefSeq genes were filtered to select those non-overlapping with at

least two isoforms and three exons. For each gene, we chose the longest isoform and generated a

shorter isoform by randomly removing one of the interior exons, resulting in 4,710 exon trios in the

final list. The SNP genotypes were assumed to follow the Hardy-Weinberg equilibrium with a minor

allele frequency (MAF) of 0.4. The exon inclusion levels are determined by,

Yi = expit(−0.35+ β1Gi + ϵi)

ϵi ∼ N(0, 0.052)

β1 was set to log(1.2) for half of the exon trios (true sQTL), and 0 for the other half (true non-sQTL).

We simulated the raw reads of 120 individuals in FASTQ format with 10 million 76 bp paired-end

reads per sample. Each simulated data set is aligned to the hg19 genome with TopHat, and exon

inclusion levels were estimated with the PennSeq algorithm. Testing of sQTLs were done with

GLiMMPS, meta-regression (PSMeta), generalized linear mixed effect model (PSGLMM) and beta

regression (PSBeta).

4.2.5. Results

[i] Comparison of exon inclusion level estimates.

GLiMMPS and PennSeq use different methods in estimating the exon inclusion levels, which
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Figure 4.6: FDR and Power of PSMeta, PSGLMM, PSBeta and GLiMMPS. 60 and 90 subjects
were randomly chosen from the pool of 120 subjects to form the experiment groups with smaller
sample size. From each experiment, PSMeta, PSGLMM, PSBeta and GLiMMPS were used to
test for significant association between the given genotype and the exon inclusion level estimates.
P-values exported by these methods are FDR-adjusted using the BenjaminiHochberg procedure.
Genes with FDR smaller than the threshold level 0.05 are labeled as significant. FDR is computed
as the fraction of the true non-significant genes among genes labeled “significant” by each method.
Power is computed as the fraction of the genes labeled “significant” by each method among all the
true significant genes. Power improvement is computed as the percent improvement for the power
of the specified method over the that of GLiMMPS.
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can be pivotal in determining the final power of the sQTL testing. We computed the Pearson’s

correlation coefficients for the genes with β1 = log(1.2) between the estimated exon inclusion

levels and true value. PennSeq yielded significantly more accurate estimate than GLiMMPS.

Out of 120 subjects, 102 (85%) showed higher correlation between PennSeq estimates and

the true value than that between GLiMMPS estimates and the true value.

[ii] Comparison of false discovery rate and power

For our simulation studies, the FDR of all the methods are less than the nominal threshold

(Figure 4.6A). Therefore, at level 0.05, all methods have their false discovery rate under con-

trol. We also note that GLiMMPS is overly conservative on this metric, with its FDR generally

under 1%, which is less than 1/5 of the nominal FDR. This conservativeness in turn affects

the power of GLiMMPS in identifying true sQTLs. As is shown in Figure 4.6B, all the rest of the

methods have superior power in comparison to GLiMMPS at the nominal FDR 0.05. When

sample size is small at n = 60, PSBeta has the higest power, followed closely by PSGLMM

and PSMeta. All of these methods had at least 12% improvement in power over GLiMMPS.

When sample size increases, PSGLMM outperformed PSBeta. When n = 90, both PSGLMM

and PSBeta achieved 8% improvement in power over GLiMMPS. When n = 120, the power

improvement reduces to 5%. This is intuitive due to the fact that as the number of sample

increases, more information is available for GLiMMPS to estimate the exon inclusion levels

with, while the relative benefit of utilizing constitutive reads in the flanking exons dwindles.

Interestingly, our methods have similar power with 90 samples to GLiMMPS with 120 sam-

ples. This effectively saves significant time and resources for users, as 33% less samples are

needed with our methods to achieve the same power.

[iii] Impact of non-uniformity

PennSeq accounts for the non-uniformity of the sampling process of RNA-Seq, while GLiMMPS

assumes simple uniform sampling. This will potentially cause reduced power for GLiMMPS

when used on transcripts experiencing severe non-uniformity. To test this hypothesis, we

took advantage of the simulation metric, fraction of coverage, defined as the fraction of the

transcript covered by reads. Using this metric internally calculated by Flux, we picked the

genes ranked at the bottom 1/3 in terms of mean fraction of coverage across samples in our

simulation study to recompute the FDR and power of all the methods. These genes tend to
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Figure 4.7: FDR and Power of PSMeta, PSGLMM, PSBeta and GLiMMPS for low-coverage genes.
60 and 90 subjects were randomly chosen from the pool of 120 subjects to form the experiment
groups with smaller sample size. Only genes ranked at the bottom third in terms of sequencing
coverage are included. From each experiment, PSMeta, PSGLMM, PSBeta and GLiMMPS were
used to test for significant association between the given genotype and the exon inclusion level
estimates. P-values exported by these methods are FDR-adjusted using the BenjaminiHochberg
procedure. Genes with FDR smaller than the threshold level 0.05 are labeled as significant. FDR
is computed as the fraction of the true non-significant genes among genes labeled “significant” by
each method. Power is computed as the fraction of the genes labeled “significant” by each method
among all the true significant genes. Power improvement is computed as the percent improvement
for the power of the specified method over the that of GLiMMPS.
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have (1) less coverage, i.e., less information to infer the isoform expression and (2) severe

non-uniformity due to the limited coverage and the stochasticity of the sampling process. The

results have corroborated our hypothesis, as is shown in Figure 4.7. Unsurprisingly, the differ-

ence between our methods and GLiMMPS is more pronounced when we focus on the genes

more deviated from the uniform sampling assumption. We notice that PSGLMM and PSBeta

have slightly inflated false discovery rate when the sample size is relatively large. But the

FDR of PSMeta is under control for all sample sizes. All methods had their power reduced to

a certain extent, with GLiMMPS affected more severely than others. Compared to the power

obtained from all simulated exon-trios, PSMeta, PSBeta, and PSGLMM experienced a power

loss between 34-38%, whereas GLiMMPS experienced a power loss of 44%. In addition, the

power improvement of our methods over GLiMMPS is more significant, especially when the

sample size is small. For example, when n = 60, PSMeta achieves a 23% improvement in

power over GLiMMPS, which is twice of the improvement with all genes considered. This

analysis implies that sampling non-uniformity can cause serious power loss for GLiMMPS,

especially when sample size is small. And this loss of power can be effectively rescued by

using PSMeta.

[iv] Real data application.

We tested the performance of our methods on a real RNA-Seq data of 91 lymphoblas-

toid B cell lines from the CEU population (Utah residents with ancestry from northern and

western Europe) generated by Lappalainen et al. (Lappalainen et al., 2013) for the Inter-

national HapMap Project. Each sequenced sample contains approximately 10 million 75 bp

paired-end reads, mapped to the hg19 reference genome using the JIP pipeline. The Phase

1 genotyping dataset contains only 79 CEU samples, which reduces the number of samples

with both RNA-Seq and DNA genotype data available to 78.

We focused our search on cis-sQTLs on chromosome 22, due to the limited sample size. The

search for sQTLs of a specific exon trio is restricted to the genomic area from 200kb upstream

of the trio to 200kb downstream. Only SNPs with Hardy-Weinberg p-value ¿ 0.0001 and MAF

¿ 0.1 were included. The final list contains 132 exon trios in 72 genes, 29,878 SNPs, and

80,074 exon-trio-SNP pairs. Benjamini-Hochberg procedure was used to adjust for multiple

testing, and a exon-trio-SNP pair was declared significant if the FDR-adjusted p-value was

smaller than 0.05. If we assume the majority of the exon-trio-SNP pairs were null, i.e., there

63



Figure 4.8: Quantile-quantile (Q-Q) plot for the negative log10 transformed raw p-values of each
method. The raw p-values generated from the CEU population were transformed with a negative
log function with base 10. The transformed p-values were sorted and plotted against the negative
log10 transformed expected value of the same quantile from a Uniform(0, 1) distribution.
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is no significant association between the exon inclusion level of the trio and the genotype of

the SNP, we can use this real data to gauge the performance of the methods under the null. In

Figure 4.8, we plotted the quantile-quantile (Q-Q) plot of the negative log10 transformed raw

p-values from each method. PSBeta shows early deviation from the diagonal line, implying

violation of its model assumption. We suspect it’s due to the fact that the exon inclusion levels

might not be distributed according to a β-distribution, and its function form could be potentially

overly restrictive, causing inflated FDRs and early deviation from the null. GLiMMPS also dis-

played early deviation from the null, while PSMeta and PSGLMM had most of its points fall on

the diagonal line, with deviation occurring when the p-values are extremely small. This result

is consistent with the previous analyses of the behavior under the null for these methods, and

with real RNA-Seq data, we have shown that the two best methods among the four tested are

PSMeta and PSGLMM.
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CHAPTER 5

ACCOUNTING FOR TECHNICAL NOISE IN SINGLE-CELL RNA SEQUENCING

ANALYSIS

5.1. Motivation

As we have reviewed above, current scRNA-seq protocols are complex, often introducing technical

biases that vary across cells (Hicks, Teng, and Irizarry, 2015), which, if not properly removed,

can lead to severe type I error inflation in differential expression analysis. Compared to bulk RNA

sequencing, in scRNA-seq the reverse transcription and preamplification steps lead to dropout

events and amplification bias, the former describing the scenario in which a transcript expressed

in the cell is lost during library preparation and is thus undetectable at any sequencing depth.

In particular, due to the high prevalence of dropout events in scRNA-seq, it is crucial to account

for them in data analysis, especially if conclusions involving low to moderately expressed genes

are being drawn Pierson and Yau, 2015. In handling dropout events, existing studies take varying

approaches: some ignore dropouts by focusing only on highly expressed genes (Shalek et al., 2013,

2014), some model dropouts in a cell-specific manner (Finak et al., 2015; Kharchenko, Silberstein,

and Scadden, 2014; Kim et al., 2015; Vallejos, Marioni, and Richardson, 2015), while others use a

global zero-inflation parameter to account for dropouts Pierson and Yau, 2015. Since each cell is

processed individually within its own compartment during the key initial steps of library preparation,

technical parameters that describe amplification bias and dropout rates should be cell-specific in

order to adjust for the possible presence of systematic differences across cells. One way to quantify

these biases, adopted by existing noise models (Finak et al., 2015; Kharchenko, Silberstein, and

Scadden, 2014; Kim et al., 2015; Vallejos, Marioni, and Richardson, 2015), is to make use of spike-

in molecules that comprise a set of external RNA sequences such as the commonly used external

RNA Controls Consortium (ERCC) spike-ins (Baker et al., 2005), which are added to the cell lysis

buffer at known concentrations (Bacher and Kendziorski, 2016; Stegle, Teichmann, and Marioni,

2015).

In the review above, we have looked at existing methods in great detail. To reiterate, an ideal

method for modeling technical noise in scRNA-seq should
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• model the inflated zeros in a cell-specific fashion;

• model the probability of zero inflation with consideration of the gene expression level

• model the amplification bias in a cell-specific manner

• allow incorporation of information from ERCC controls

• allow adjustment for additional covariates

Existing methods fail in at least one of the above criteria. Therefore, in this dissertation, we pro-

pose a new statistical framework that allows a more robust utilization of spike-ins to account for

cell-specific technical noise. To obtain reliable estimates of cell-specific dropout parameters, we

develop an empirical Bayes procedure that borrows information across cells. This is motivated by

the observation that, although each cell has its own set of parameters for characterizing its techni-

cal noise, these parameters share a common distribution across cells which can be used to make

the cell-specific estimates more stable. We demonstrate an application of this general framework

by a likelihood-based test for differential expression. An advantage of the proposed framework over

the existing approaches is that it can flexibly and efficiently adjust for cell-specific covariates, such

as cell cycle stage or cell size, which may confound differential expression analysis.

5.2. Generative model of single-cell RNA sequencing

In scRNA-seq data, we have observed that the relationship between the mapped read count for

a gene and its true expression level in a cell can be characterized using two functions, shown in

Figure 5.1. Figure 5.1 shows examples of the relationships depicted in Equations-5.1 and -5.2 in

the Zeisel et al. data (Zeisel et al., 2015). This scRNA-seq dataset is from murine brain cells ac-

quired from Zeisel et al (Zeisel et al., 2015). It contains counts of 19,972 endogenous genes and 57

ERCC spike-ins of 3,005 cells from various regions of mouse brain, counted with UMIs. The cells

are categorized into nine level-1 classes and 48 level-2 classes, with the level-2 classes considered

relatively homogenous. In this paper, we focus our analyses on two level-2 classes, CA1Pyr1 and

CA1Pyr2, which respectively contain 447 and 380 cells. The counts are preprocessed by selecting

the top 25% of genes in total read account across the 827 cells, resulting in 6,405 genes in real
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Figure 5.1: Proportion of cells with non-zero read count (in a) and mean across cells of log read
count (in b) versus log true molecule count for ERCC spike-ins in Zeisel et al. data. Included in the
plot are the best logistic curve fit (in a) and the best linear fit (in b).

data two-group comparison analysis. For studies involving class CA1Pyr2 only, selection of the top

25% of genes in the 447 cells yield 5,018 genes in the data set.

These relationships in Figure 5.1 have also been seen in other studies (Kharchenko, Silberstein,

and Scadden, 2014; Kim et al., 2015). Note that the intercept αc is negative, indicating incom-

plete capture efficiency of reverse transcription, and that the slope, βc, when deviating from 1,

reflects what is often called amplification bias. In experiments that use unique molecular identifiers

(UMIs) (Islam et al., 2014), Ycg is the molecule count, and βc should be approximately 1. Together,

Equations-5.1 and -5.2 characterize the technical noise specific to each cell.

5.2.1. Modelling spike-ins

In greater detail, let Ycg be the observed number of reads or transcripts (if UMI is used) for the

spiked-in molecule g in cell c. Let µg be the true number of molecules of g added to each cell

lysate. Given the cell-specific technical parameters (αc, βc, κc, τc), the distribution of Ycg can be

modelled with the following steps:

Step.a Let Zcg be the indicator that dropout does not occur, i.e. the gene is captured in the library.

The probability of Zcg = 1 (πcg) depends on the amount of added spike-in g, µg. A logistic

model can be used to describe this relationship.

πcg = expit [κc + τc logµg] (5.1)

Zcg ∼Bernoulli (πcg)
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Step.b Let λcg be the expected value for the read count of spike-in g in cell c.

log λcg = αc + βc logµg. (5.2)

Step.c Given the status of Zcg, the observed count for spike-in g in cell c Ycg can be modelled as,

Ycg|Zcg ∼


Poisson(λcg), if Zcg = 1

0, if Zcg = 0

. (5.3)

The conditional probability density function of Ycg given Zcg is,

Pr [Ycg|Zcg = 0] =


1, if Ycg = 0

0, if Ycg > 0
(5.4)

Pr [Ycg|Zcg = 1] =
λ
Ycg

cg e
−λcg

ycg!
. (5.5)

Step.d We can arrive at the marginal likelihood of Ycg by summing over the support of Zcg,

Pr [Ycg] =
∑
Zcg

Pr [Ycg, Zcg]

=
∑
Zcg

Pr [Ycg|Zcg]Pr [Zcg]

=Pr [Ycg|Zcg = 0]Pr [Zcg = 0] + Pr [Ycg|Zcg = 1]Pr [Zcg = 1]

=


1 · (1− πcg) + e−λcgπcg, if Ycg = 0

0 · (1− πcg) +
λ
Ycg

cg e
−λcg

ycg!
πcg, if Ycg > 0

=


1+ πcg

(
e−λcg − 1

)
, if Ycg = 0

πcgλ
Ycg

cg e
−λcg

ycg!
, if Ycg = 1

. (5.6)

Step.e Plug (5.1) and (5.2) into (5.6), the full likelihood of the spike-in RNA molecules can be

expressed using the technical parameters (αc, βc, κc, τc) and the amount of spike-in for
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g, µg,

Pr [Ycg] =


1+ expit (κc + τc logµg)

(
e−eαc+βc logµg

− 1
)
, if Ycg = 0

expit (κc + τc logµg)
[
eαc+βc logµg

]Ycg
e−eαc+βc logµg

ycg!
, if Ycg = 1

, (5.7)

where

expit [x] =
1

1+ exp [−x]
. (5.8)

5.2.2. Modelling biological genes

The above observations have motivated the model shown in Figure 5.2, where the true but un-

observed absolute expression level µcg follows distribution Fg, the specification of which depends

on the analysis objective. For example, for the common task of detecting differentially expressed

(DE) genes between groups, we assume µcg follows a log-Normal distribution with mean θgj and

variance σgj, where j is the group identifier. The log-Normal distribution has been demonstrated

previously to be a useful model for single cell gene expression (Bengtsson et al., 2005), and lends

computational simplicity to the estimation procedure. The technical noise in the cell is captured by

the intermediate variables Zcg, characterized by Equation 5.10, and λcg, characterized by Equa-

tion 5.11. Given Zcg and λcg, the distribution of Ycg is shown in Equation 5.12. Assuming Fg is in

the form of log-normal distribution, the count of reads or transcripts for a biological gene g in cell c

can be modeled with the following steps:

Step.a Given the cell-specific technical parameters, we assume the actual expression of gene g

in cell c follows (Bengtsson et al., 2005),

µcg ∼ LogNormal
(
θg, σ

2
g

)
(5.9)

where θg and σg are the gene-specific parameters characterizing the mean and standard

deviation of the log-normal distribution.

Step.b Let Zcg be the indicator that dropout does not occur. The probability of Zcg = 1 (πcg)

depends on the gene’s true absolute expression in the cell, µcg. A logistic model can be
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Figure 5.2: Schematic of TASC model for a single gene g across n cells, with µcg being true
absolute expression, Ycg being observed read count, and Zcg, λcg being intermediate variables
that model dropout and amplification, capture, and sequencing biases.

used to describe this relationship.

πcg = expit [κc + τc logµcg] (5.10)

Zcg|µcg ∼Bernoulli (πcg)

Step.c Given the cell-specific technical parameters (αc, βc, κc, τc), let λcg be the expected value

for the read count of spike-in g in cell c.

log λcg = αc + βc logµcg (5.11)

Step.d Similar to the case of spike-in molecules, given the status of Zcg, the observed count for

gene g in cell c, Ycg, can be modeled as,

Ycg|Zcg, µcg =


Poisson(λcg), if Zcg = 1

0, if Zcg = 0

(5.12)
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And the conditional probability density function is,

Pr [Ycg|Zcg = 0, µcg] =


1, if Ycg = 0

0, if Ycg > 0

Pr [Ycg|Zcg = 1, µcg] =
λ
Ycg

cg e
−λcg

ycg!

=

[
eαc+βc logµcg

]Ycg
e−eαc+βc logµcg

ycg!
.

Step.e The joint probability of Ycg, Zcg and µcg can be subsequently expressed as,

Pr [Ycg, Zcg, µcg] =Pr [Ycg|Zcg, µcg]Pr [Zcg, µcg]

=Pr [Ycg|Zcg, µcg]Pr [Zcg|µcg]Pr [µcg] .

The marginal likelihood of Ycg, µcg can be computed by summing over the support of Zcg,

Pr [Ycg, µcg]

=Pr [Ycg, µcg, Zcg = 0] + Pr [Ycg, µcg, Zcg = 1]

=Pr [Ycg|Zcg = 0, µcg]Pr [Zcg = 0|µcg]Pr [µcg]

+ Pr [Ycg|Zcg = 1, µcg]Pr [Zcg = 1|µcg]Pr [µcg]

=


(1− πcg)fLN

(
µcg|θg, σ

2
g

)
+ e−eαc+βc logµcg

πcgfLN
(
µcg|θg, σ

2
g

)
, if Ycg = 0[

eαc+βc logµcg
]Ycg

e−eαc+βc logµcg

ycg!
πcgfLN

(
µcg|θg, σ

2
g

)
, if Ycg > 0

,

(5.13)

where

fLN
(
µcg|θg, σ

2
g

)
=

1

µcgσg
√
2π
e
−

(lnµcg−θg)
2

2σ2
g . (5.14)

Therefore, the marginal likelihood for Ycg can be computed by integrating out µcg,

Pr [Ycg] =

∫
µcg

Pr [Ycg, µcg]dµcg.
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Assuming independence between cells, then the marginal distribution of

Yg = (Y1g, · · · , Ycg, · · · , YNg) can be expressed as,

Pr [Yg] =

N∏
c=1

∫
µcg

Pr [Ycg, µcg]dµcg. (5.15)

The parameters θg and σ2g can therefore be estimated by maximizing the above marginal

likelihood.

5.2.3. Empirical Bayes estimation of cell-specific technical parameters

Cell-specific technical parameters include

• αc and βc, characterizing capture and amplification efficiencies for any gene in cell c.

• κc and τc, characterizing the probability of any gene to be detected, i.e. not undetected due

to technical dropout, in cell c.

They are estimated using ERCC spike-ins. From the generative model, we have arrived at the

full marginal likelihood for Ycg given the technical parameters Ψc = (αc, βc, κc, τc). Maximum

likelihood estimates (MLEs) can be obtained by optimizing the complete likelihood over the support

of Ψc for cell c. However, in our simulations, naı̈ve MLEs suffer from numerical instability and lack of

convergence for κc and τc (Figure 5.3), which prompts us to derive a better strategy for estimating

κc and τc.
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Figure 5.3: Comparing the maximum likelihood estimators of cell-specific technical parameters Ψc

with their true values. Left panel: scatter plot comparing αc (upper) and βc (lower) estimated
with maximum likelihood methods (y axis) to their true values (x axis). Middle panel: scatter plot
comparing κc (upper) and τc (lower) estimated with maximum likelihood methods (y axis) to their
true values (x axis). Right panel: scatter plot comparing κc (upper) and τc (lower) estimated with
maximum likelihood methods (y axis) to their true values (x axis), zoomed in view. Identity line
(dotted) is plotted for ease of comparison.

Upon further investigation, we have pinpointed the issues with likelihood estimators:

• due to the limitations of ERCC spike-ins, each cell contains little information w.r.t the drop-out

probabilities due to paucity of spike-ins with low concentrations, thus necessitating borrowing

information across cells if we wish to estimate the dropout-related parameters with better

stability;

• we have observed that the κc and τc are negatively correlated, and similar relationships are

observed for αc and βc as well (Figure 5.4). The estimating procedure can take advantage of

this knowledge to model the correlation among the parameters.
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Figure 5.4: Scatter plot describing the correlation between αc and βc, and κc and τc. Left panel:
α̃c (y axis) compared to β̃c (x axis); both estimated from linear regressions. Right panel: κ̃c (y axis)
compared to τ̃c (x axis); both estimated from logistic regressions.

Taking the above observations into consideration, we propose an empirical Bayesian approach in

which we assume the vector Ψc = (αc, βc, κc, τc) follows a multivariate normal distribution with

mean ψ and covariance matrix ΣΨ

Ψc ∼ N (ψ,ΣΨ) . (5.16)

Denote the observed read counts for the spike-in molecules as Yc = {Ycg, g = 1, · · · , G}, with G

being the number of synthetic mRNA molecules added to the cell lysates. Assuming independence

Yc1g ⊥⊥ Yc2g for c1 ̸= c2, the full likelihood for the observed Ycg across cells can be written as,

L [ψ,ΣΨ|Y] =
∏
c

Pr [Yc|ψ,ΣΨ]

=
∏
c

∫
Pr [Yc|Ψc]Pr [Ψc|ψ,ΣΨ]dΨc. (5.17)

Conditional on Ψc, the probability density function of Yc is just the likelihood in (5.7), and Pr [Ψc|ψ,ΣΨ]

is the bivariate normal density function per our assumptions. To estimate the expected values of

Ψc in the above models, we need to first compute the hyper-parameters (ψ,ΣΨ) by maximizing the

above likelihood. Due to the lack of closed form solutions, this calls for the numerical maximization

of a numerically integrated function. The integration would be evaluated over 4 variables, and the

maximization over 14 (4 for the mean and 10 for the covariance matrix) with a positive-definite re-
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straint on ΣΨ. This numerical problem has turned out to be unsolvable for the current computational

infrastructure accessible by the majority of our users.

We propose a computationally efficient approach to estimate the required parameters Ψc for all

cells. We recognize that constraints on the covariance structure ΣΨ are necessary to reduce the

dimensionality of our optimization. We assume ΣΨ is a diagonal block matrix by imposing indepen-

dence between the vectors (αc, βc) and (κc, τc). Then we estimate these two vectors separately.

(αc, βc) can be estimated efficiently by fitting the linear regression with log [Ycg] as the response

variable and the amount of spiked-in ERCC molecules as the predictor variable, using only genes

that are detected ({g, s.t. Ycg > 0}),

logE [Ycg] = αc + βc logµg. (5.18)

We recognize that this estimator is biased as a result of the data missing not at random (MNAR).

However, in our simulation studies, this estimator does not show any discernible bias when com-

pared to the truth (Figure 5.5), indicating the bias incurred by MNAR is under control.

On the other hand, the alternative estimators for (κc, τc) have proven to be a bit more elusive since

the indicator of dropout is latent, i.e. we do not directly observe which zeros in our read counts

are caused by technical dropouts versus Poisson sampling during sequencing. One approach is to

assume all zeros are technical dropouts, and use logistic regression to estimate (κc, τc),

logit (Pr [Ycg > 0|µg]) = κc + τc logµg. (5.19)

However, this has two drawbacks. First, this estimator is highly biased, since not all zeros are ef-

fects of technical dropout, and some of these zeros are due to the low expression of gene g in cell

c. Second, since those genes with lower expression have a higher probability of dropping out, naı̈ve

logistic regressions could fail from complete or quasi-complete separation. Complete and quasi-

complete separation happens when the outcome variable (in this case the event of being observed)

separates a predictor (in this case logµcg) completely (complete) or very well to a certain extent

(quasi-complete). In both cases, the coefficients associated with the affected covariates cannot be

estimated. Our model requires that all of the cell-specific technical parameters be known for the
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downstream computations, failure to estimate (κc, τc) will result in cell c being removed from the

sample pool, thus causing unnecessary loss of data. The root of this issue is identical to that of the

simple MLEs (Figure 5.3), therefore similarly some form of shrinkage is the key to stably estimating

these two dropout-related parameters.

We propose the following steps to compute the cell-specific dropout parameters (κc, τc). Let

δc = (κc, τc).

Step.a perform logistic regression of (5.19) and obtain δ̂c for cells that do not exhibit complete or

quasi-complete separations.

Step.b estimate prior of δc by fitting a bivariate normal distribution using the estimated δ̂c to

compute the mean E [δc] and covariance matrix Σδc
.

Step.c use the estimated mean and covariance matrix of δc to compute the posterior mean of κc

and τc. The complete probability density function for δc and Yc is

Pr [δc,Yc] =Pr [Yc|δc]Pr [δc]

=Pr [δc]
∏
g

Pr [Ycg|δc]

=fN(δc|E [δc] , Σδc
) ·

∏
g

Pr [Ycg|δc] . (5.20)

The posterior distribution of δc is

Pr [δc|Yc] =
Pr [δc,Yc]

Pr [Yc]

=
Pr [δc,Yc]∫
Pr [δc,Yc]dδc

, (5.21)

with fN being the PDF of a bivariate normal density and Pr [Ycg|δc] is equal to (5.7) in

form. The posterior mean of δc can then be computed by integrating the PDF over the
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support of bivariate random variable δc, i.e. R2.

E [κc|Yc] =

∫
κcPr [δc|Yc]dδc

=

∫
κcPr [δc,Yc]∫
Pr [δc,Yc]dδc

dδc

=

∫
κcPr [δc,Yc]dδc∫
Pr [δc,Yc]dδc

(5.22)

E [τc|Yc] =

∫
τcPr [δc,Yc]dδc∫
Pr [δc,Yc]dδc

(5.23)
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Figure 5.5: Comparing the estimated α̂c, β̂c to the true values of αc and βc. Left panel: α̂ estimated
from linear regressions (y axis) compared to their true values (x axis). Right panel: β̂ estimated
from linear regressions (y axis) compared to their true values (x axis). Both panels: dotted lines
represent the unit lines with intercept equal to 0, and slope equal to 1.

We have performed a series of simulation studies to assess the performance of the aforemen-

tioned estimators of αc, βc, κc and τc. Using the largest level 2 class in the Zeisel data (Zeisel

et al., 2015), we have estimated the cell-specific parameters (αc, βc) and (κc, τc) using the method

described above. Denote ζc = (αc, βc). Two bivariate normal distributions are fitted to the esti-

mated parameters ζ̂c and δ̂c to get the mean and covariance matrices of these two vectors, E [ζc],

Σζ, E [δc], and Σδ. New technical parameters are then sampled from the bivariate normal distribu-

tions N (E [ζc] , Σζ) and N (E [δc] , Σδ). From these new technical parameters, counts of 57 ERCC

spike-ins present in the Zeisel data (Zeisel et al., 2015) in 200 cells are generated according to the

hierarchical model described above. The simulation is repeated 100 times to get a more compre-
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hensive picture of the performance of these estimators.

Despite being biased, the linear estimator for ζc has performed fairly well showing high concor-

dance with the truth (Figure 5.5). As expected, estimated βc is slightly lower than true βc, and

estimated αc is slightly lower than true αc. However, in general the true value can be efficiently

recovered even in the presence of this minor yet discernible bias.

The empirical Bayesian estimator for δc has also displayed decent concordance with the truth

(Figure 5.6). More importantly, when compared to the naı̈ve logistic regressions, our empirical

Bayesian estimators show dramatic improvement in terms of accuracy. Estimates from naı̈ve logis-

tic regressions show a much larger spread, and this is after we have filtered out a significant portion

of the cells showing complete or quasi-complete separation, in which case the estimates cannot be

obtained at all. These samples would need to be discarded in downstream analyses if no shrinkage

is implemented.
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(a) κ̂c (left panel) and κ̂c (right panel) estimated using the empirical Bayes

approach compared to their true values.
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(b) κ̂c (left panel) and κ̂c (right panel) estimated using simple logistic

regressions compared to their true values.

Figure 5.6: Comparing the estimated κ̂c, τ̂c to the true values of κc and τc. Dotted line represents
the unit line with intercept being 0, and slope equal to 1.

Figure 5.7 shows the distribution of estimated (α̂c, β̂c) and (κ̂c, τ̂c) across cells for the Zeisel data

(Zeisel et al., 2015). The mean function, determined by (α̂c, β̂c), and the non-dropout rate function,

determined by (α̂c, β̂c), are shown for four cells chosen to represent the middle and extremes of

these distributions.

5.2.4. Differential expression analysis

Previous studies have shown that cells vary in size, with larger cells having more RNA molecules

to attain similar concentration levels to smaller cells (Padovan-Merhar et al., 2015). This indicates

that to detect DE genes, it is more appropriate to test for concentration difference between groups.

To allow this, we include cell size, which can be estimated by the ratio of reads from endogenous

RNA to reads from spike-in sequences, as a covariate. Other potential covariates, such as cell
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Figure 5.7: Distributions of empirically estimated values of (α̂c, β̂c) and (κ̂c, τ̂c) across all cells in
Zeisel data. Four cells are selected from each plot to represent the distribution, and the line (in
a) and logistic curve (in b) corresponding to the technical parameters estimated for these cells are
shown in matching colors.
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cycle stage, can also be included in the model to avoid spurious association. For cell cycle, we add

as covariate the expression of a curated set of marker genes, such as the set from (Tirosh et al.,

2016), or a latent factor representing cell cycle, as in (Buettner et al., 2015). A likelihood-ratio test

is developed to detect DE genes.

Based on the hierarchical model, testing for differentially expressed (DE) genes is straightforward.

In our model, for cells within the same group, the true expression level of gene g, µcg follows a

log-normal distribution with mean θg and variance σ2g. Testing for differential expression involves

comparing the means from different groups on a gene-by-gene basis. We propose a likelihood ratio

test for this purpose. Let θg be expressed as a linear combination of the covariates for which one

wishes to test or adjust, θg = XΓg, Γg = (γ1, · · · , γi, · · · , γp) with γi denoting the coefficient for

predictor xi in the design matrix X = (x1, · · · , xi, · · · , xp). Testing for each covariate involves fitting

a full model θg = XΓg and a reduced model with target covariate xi removed from the design matrix

X. Denote the reduced design matrix and coefficient vector to be X̃ and Γ̃g respectively. Denote the

biological variance of the full and reduced model as σ2g and σ̃2g. Formally the question of whether xi

is significantly associated with the gene expression can be formulated as the following hypothesis

test,

H0 : γi = 0

H1 : γi ̸= 0.

The likelihood ratio test statistic for this above test, Ti can be constructed as,

Tig = 2
[
log

(
L̂1

)
− log

(
L̂0

)]
,

where L̂1 and L̂0 are the likelihoods maximized under H1 and H0, respectively. Asymptotically,

Tigi follows a χ2-distribution with 1 degree of freedom under the null hypothesis (γi=0). Raw p-

values can subsequently be adjusted for multiple comparisons with false discovery rate controlling

procedures such as the Benjamini-Hochberg procedure or the Holm-Bonferroni procedure.

5.2.5. Expectation-Maximization algorithm

When the number of covariates is small, the parameters can be estimated using the Simplex al-

gorithm, which does not involve the calculation of derivatives. However, the Simplex algorithm is
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not suitable when the number of covariates is large. To circumvent this problem, we have also

developed an expectation-maximization (EM) algorithm to estimate the biological mean (θg) and

variance σ2g. Briefly, the log likelihood for gene g can be written as,

ℓ
[
Yg,µg|θg, σ

2
g

]
=
∑
c

ℓ
[
Ycg, µcg|θg, σ

2
g

]
=
∑
c

{
ℓ
[
Ycg|µcg, θg, σ

2
g

]
+ ℓ

[
µcg|θg, σ

2
g

]}
=
∑
c

{
ℓ [Ycg|µcg] + ℓ

[
µcg|θg, σ

2
g

]}
=
∑
c

ℓ [Ycg|µcg] +
∑
c

ℓ
[
µcg|θg, σ

2
g

]
.

E-step:

E
[
ℓ
[
Yg,µg

∣∣ θg, σ2g] |θ̂(t)g , σ̂(t)g ,Yg

]
=
∑
c

E
[
ℓ [Ycg|µcg]| θ̂

(t)
g , σ̂(t)g ,Yg

]
+
∑
c

E
[
ℓ
[
µcg|θg, σ

2
g

]∣∣ θ̂(t)g , σ̂(t)g ,Yg

]
=C(θ̂(t)g , σ̂(t)g ) +

∑
c

E
[
ℓ
[
µcg|θg, σ

2
g

]∣∣ θ̂(t)g , σ̂(t)g ,Yg

]

The first term is ignorable since it is a constant function of θ̂(t)g , σ̂
(t)
g , over which the maximization

is to be performed. So in order to evaluate this expectation in the E-step, we only need to compute

E
[
ℓ
[
µcg|θg, σ

2
g

]∣∣ θ̂(t)g , σ̂
(t)
g ,Yg

]
. Due to the assumptions we have made for the functional form of

Fg, it follows a log normal distribution.

E
[
ℓ
[
µcg|θg, σ

2
g

]
|θ̂(t)g , σ̂(t)g ,Yg

]
=E

{[
−
[log (µcg) − θg]

2

2σ2g
−
1

2
log

(
2πσ2g

)]∣∣∣∣∣ θ̂(t)g , σ̂(t)g ,Yg

}

=E

{[
−

log (µcg)
2 − 2θg log (µcg) + θ

2
g

2σ2g
−
1

2
log

(
2πσ2g

)]∣∣∣∣∣ θ̂(t)g , σ̂(t)g ,Yg

}

=−
E
[
log (µcg)

2
|θ̂

(t)
g , σ̂

(t)
g ,Yg

]
− 2θ̂

(t)
g E

[
log (µcg) |θ̂

(t)
g , σ̂

(t)
g ,Yg

]
+
(
θ̂
(t)
t

)2

2
(
σ̂
(t)
g

)2
−
1

2
log

(
2π

(
σ̂(t)g

)2
)
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Two expectations need to be evaluated in order to compute the above value. Briefly,

E
[
log (µcg)

2
|θ̂(t)g , σ̂(t)g ,Yg

]
=

∞∫
0

log [µcg]
2
Pr [Ycg|µcg]Pr

[
µcg|θ̂

(t)
g , σ̂

(t)
g

]
dµcg

∞∫
0

Pr [Ycg|µcg]Pr
[
µcg|θ̂

(t)
g , σ̂

(t)
g

]
dµcg

E
[
log (µcg) |θ̂

(t)
g , σ̂(t)g ,Yg

]
=

∞∫
0

log [µcg]Pr [Ycg|µcg]Pr
[
µcg|θ̂

(t)
g , σ̂

(t)
g

]
dµcg

∞∫
0

Pr [Ycg|µcg]Pr
[
µcg|θ̂

(t)
g , σ̂

(t)
g

]
dµcg

M-step:

The M-step involves maximizing the above expected log-likelihood w.r.t the parameters θ̂(t)g and

σ̂
(t)
g , in the case of simple quantification,

θ̂(t+1)
g =

1

N

N∑
c=1

E
[
log (µcg) |θ̂

(t)
g , σ̂(t)g ,Yg

](t)

σ̂g =

√√√√ 1

N

N∑
c=1

E
[
log (µcg)

2
|θ̂

(t)
g , σ̂

(t)
g ,Yg

]
− 2θ̂

(t+1)
g E

[
log (µcg) |θ̂

(t)
g , σ̂

(t)
g ,Yg

]
+
(
θ̂
(t+1)
t

)2

.

In the case of θg = XΓg, the above E-step is the same, after substituting θ̂(t)g = XΓ̂
(t)
g . The M-step for

Γ̂
(t+1)
g is replaced by a linear regression with E

[
log (µcg) |θ̂

(t)
g , σ̂

(t)
g ,Yg

]
as the response variable,

and X as the predictor. The M-step for σ̂(t+1)
g is unchanged, after substituting θ̂(t+1)

g = XΓ̂
(t+1)
g .

5.2.6. Estimation of cell size factor

Single-cell RNA-seq requires normalization on cell size because larger cells tend to have more

RNA molecules. To estimate the cell size Sc (c = 1, · · · , N, N being the number of cells), we

take advantage of the spike-ins as well. Denote the read count for biological gene b in cell c as

ξcb, b = 1, · · · , B, where B is the total number of biological genes after filtering. Also denote the

counts of the spike-in molecule e as ξce, e = 1, · · · , E, where E is the total number of spike-in

molecules. The cell size factor can be computed as,

Sc =

B∑
b=1

ξcb

E∑
e=1

ξce

.
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In our software implementation, this cell size factor is computed and automatically used as a co-

variate to adjust for any possible confounding incurred due to different cell sizes unless the users

explicitly disable it. In order to compare the detected DE genes with and without adjustment for

the cell size factors, we have looked at the genes called significantly differentially expressed when

comparing the two level-2 classes CA1Pyr1 and CA1Pyr2. 1604 genes are uniquely detected with

adjustment for the cell size factors, while 663 genes are uniquely detected without. 3346 genes are

differentially expressed regardless of the adjustment. Considering the fact that this dataset contains

cells of relatively homogeneous sizes (Figure 5.33), it is highly possible that the difference will be

more pronounced in samples of more heterogeneous sizes.

1 604 6633346

CS-Corrected
Uncorrected

Figure 5.8: Venn diagram showing the overlapping of genes detected to be differentially expressed
between comparisons with and without cell size adjustment.

5.3. Evaluation of Performance and Comparison with Other Methods

In this section, we evaluate the performance of TASC on both simulated and two real scRNA-seq

data sets and compare it with four existing methods, including SCDE (Kharchenko, Silberstein, and

Scadden, 2014), MAST (Finak et al., 2015), and DESeq2 (Love, Huber, and Anders, 2014), and

SCRAN (Lun, Bach, and Marioni, 2016). As SCRAN only provides normalized read counts, we

perform differential expression analysis using DESeq2 with SCRAN normalized read counts. We

include two versions of SCRAN in our evaluation, the original SCRAN, and SCRAN.SP that utilizes

ERCC spike-ins in normalization. These methods are rated in terms of type I error rate and power

in detecting DE genes, and their results on a real data set with genuine gene expression difference.
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5.3.1. Type I error rates in the absence of batch effects

To assess the accuracy of type I error control of TASC and other existing methods, 447 cells from

the level-2 class CA1Pyr2 from the Zeisel et al. data (Zeisel et al., 2015), which is the largest level-

2 class, are randomly split into two groups of roughly equal size. Therefore, no gene should be

differentially expressed when one group is compared with the other. Differential expression analy-

ses are performed with TASC, SCDE, MAST, DESeq2, SCRAN and SCRAN.SP. Raw p-values are

extracted from each method, and the performance of each method is assessed by histograms and

quantile-quantile plots of the corresponding p-values, shown in Figure 5.9. Our results show that

TASC, DESeq2, SCRAN and SCRAN.SP have p-values that are uniformly distributed as expected

under the null, whereas SCDE is overly conservative with enrichment of p-values near one, and

MAST is severely anti-conservative with enrichment of p-values near zero.

5.3.2. Type I error rates in the presence of batch effects

Batch effects are common in scRNA-seq data (Hicks, Teng, and Irizarry, 2015). As we have dis-

cussed above, four technical parameters dictate the relationship between the true expression of

a gene and the observed counts in a specific cell in scRNA-seq experiments. In our framework,

these four parameters are modeled in groups of two. The first two parameters are αc and βc,

which represent the efficiency of capture and amplification, relating the log mean of the Poisson

distribution to the true log expression of the gene in cell c. The last two parameters are κc and τc,

which are influenced by the propensity of a gene being observed in the final sequencing, i.e. not a

dropout. Both of these parameters vary across cells, and directly affect our estimates for the true

expression of the gene g in cell c. Therefore, it is of great interest to see whether adjustment for

these cell-specific technical parameters or failure to do so has an effect on the specificity for calling

significant differentially expressed genes from scRNA-seq data.

To evaluate effectiveness in type I error control in the presence of batch effects, we have generated

a data set that contains batch effects as characterized by systematic differences in the technical

parameters (αc, βc, κc, τc) between groups. To introduce batch differences between the two groups

under comparison, cell-specific technical parameters (αc, βc) and (κc, τc), are estimated from the

cells in CA1Pyr2 class and a bivariate normal distribution is fit separately to (αc, βc) and (κc, τc).

One group in the simulated data draws its cell-specific technical parameters from these empiri-
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Figure 5.9: Distribution of achieved p-values (in a) and the corresponding quantile-quantile plots (in
b) for four methods applied to CA1Pyr2 cells from Zeisel et al. data, split randomly into two groups,
thus emulating a case where all p-values should be uniformly sampled from [0, 1].
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cal distributions, and the other group draws its technical parameters from distributions where the

mean(s) of combinations of technical parameters are shifted by amounts shown on the axes of the

heatmaps in Figure 5.10. The magnitude of the shift represents the severity of batch effect differ-

ence between the two groups. The rest of the parameters controlling the expression of genes are

the same for the two groups and are derived from estimates from the CA1Pyr2 class. Simulations

are performed to generate the counts of 5,018 genes in 100 cells (50 in each group). Differential

expression analyses are performed and the raw p-values are used to estimate the false positive rate

(FPR). The deviation of the estimated FPR from the expected value is plotted on heatmaps to reflect

the type I error rates under varying severity of batch effects. Figure 5.10 shows that TASC has well

controlled type I error rates across a wide range of batch effect severity, whereas SCDE appears

to be conservative overall, and MAST, DESeq2, SCRAN and SCRAN.SP are anti-conservative and

susceptible to batch effects.

The detailed steps of data simulation are as follows:

• Cell-specific parameters, Ψc, as well as gene-specific parameters, the biological mean (θg)

and variance (σ2g) are estimated from the “CA1Pyr2” class in the Zeisel data(Zeisel et al.,

2015) using our model.

• Two bivariate normal distributions for δc = (κc, τc) and ζc = (αc, βc) are fitted with the

estimated parameters.

• The sample is randomly divided into two groups of roughly equal sizes. A difference is then

added to the mean of δc for cells from one of the groups, resulting in two sets of cells whose

δc can be characterized as:

E [κc]2 =E [κc]1 + ∆E [κc]

E [τc]2 =E [τc]1 + ∆E [τc]

The magnitudes of ∆E [κc] and ∆E [τc] determine the degree of batch effects. We have gen-

erated combinations of ∆E [κc] and ∆E [τc], with both values ranging from −0.4 to 0.8.

• The generative model is used to simulate the counts with δc sampled from the corresponding

bivariate normal distribution. For each combination of ∆E [κc] and ∆E [τc], approximately 4000
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Figure 5.10: Accuracy of false positive rate control under mild to severe batch effects for TASC,
SCDE, MAST, and DESeq2. The batch effect severity takes the form of between-group difference
in the expected values of the technical parameters, denoted by ∆E [κ] and ∆E [τ] (in a), and ∆E [α]
and ∆E [β] (in b) in the axes of the heatmaps. The color scale of the heatmaps reflects deviation of
achieved false positive rate from the target value of 0.05 used in the tests.

89



genes are generated, and p-values are calculated by running differential expression analyses

with each tested method.

• The p-values are subsequently used to compute the false positive rates (FPRs), i.e. the pro-

portion of DE genes called (p < 0.05) among all genes tested (since all of them are not

differentially expressed). The FPR is then compared with the desired significance level (0.05)

and a heat map is generated by plotting log10(FPR/0.05) with varying colours on a grid repre-

senting the combinations of ∆E [κc] and ∆E [τc].

• Similar simulations are performed for αc and βc, with the only change being the range of

∆E [αc] ([−1, 1]) and ∆E [βc] ([−0.1, 0.1]).

5.3.3. Power

In addition to controlling type I error, an ideal statistical method should also be sensitive, i.e. ex-

hibiting extraordinary power when compared to existing algorithms. To investigate the power of the

methods under realistic scenarios, we continue to utilize the 5,018 genes from the CA1Pyr2 class

in Zeisel et al. data set. Among them, 4,018 genes are designated as true non-DE, whose counts

are directly extracted from the Zeisel et al. data set after group membership randomization. The

remaining 1,000 are designated as true DE, whose counts are simulated from parameters esti-

mated with real data, with an induced between-group fold change that is randomly sampled from

a distribution that generates more genes with weak to moderate expression difference than strong

difference. The detailed steps as as follows:

• The simulation scenario is the classic two-group comparison. Let the true expression of gene

g from group 1 follow a log-normal distribution µcg ∼ LogNormal
(
θg1, σ

2
g

)
, and the same

gene from group 2 follow a log-normal distribution with a different mean µcg ∼ LogNormal
(
θg2, σ

2
g

)
.

For simplicity, in this simulation we assume g display similar biological variance across groups.

This assumption is purely for simplicity, and our model can easily handle situations where this

is not true. In our current iteration of implementation, the biological variance of the two groups

is assumed to be identical.

• From cells in the level 2 class “CA1Pyr2” in Zeisel data set(Zeisel et al., 2015), we estimate

the technical parameters Ψc for each cell c, the mean (θg) and standard deviation (σg) of log
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gene expression for reach gene g using TASC. Genes with extremely low total read counts

are removed, leaving a total of 5018 genes in the final pool.

• 1000 genes are randomly picked to be differentially expressed. The effect size, i.e. fold change

between the two groups, ηg = exp (|θg1 − θg2|) ranges from 1.05 to 2.5, and is assigned so

that the majority of DE genes only exhibit mild difference in expression (Figure 5.12). This dis-

tribution of ηg dovetails with the overall experience from two-group comparison experiments.

• Counts of the 1000 DE genes are sampled from our generative model using the technical

parameters Ψc and σ2g estimated in previous steps. More specifically, θg1 is directly from the

mean estimated in previous steps, and θg2 = θg1 ± logηg, where ηg is the fold change for

gene g. The sign of logηg is randomly assigned.

• Counts of the 4018 non-DE genes are equal to the Zeisel data(Zeisel et al., 2015). Since

our group membership is randomly assigned, none of these genes should be differentially

expressed.

• The above steps are repeated 100 times and each dataset consists of 5018 genes (1000 DE

genes and 4018 non-DE genes). The 447 cells are then down-sampled into various sample

sizes for 5 different simulations, 20 vs 20 (20 cells in group 1 and 20 cells in group 2, same

hereinafter), 50 vs 50, 100 vs 100, 150 vs 150 and 200 vs 200.

• In each simulation, TASC, MAST(Finak et al., 2015) and DESeq2(Love, Huber, and Anders,

2014) are used to call DE genes. For each DE gene, the power can be estimated by dividing

the number of datasets in which it is called significant (p is less than or equal to the pre-set

significant level) by the total number of simulations (100).

The scheme of simulation is illustrated in Figure 5.11.
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dataset no. 2

�
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dataset no. 100

Gene

1000 DE genes
+

4018 non-DE 
genes

Figure 5.11: The scheme of simulation for power comparisons. Simulations differ by their sample
sizes, i.e. the number of cells in each group. This is achieved by downsampling each group to
the desired number of cells from the complete data (447 cells in total). One simulation contains
100 datasets, generated by repeating the sampling process from the same parameters. Each
dataset contains the counts of 5018 genes in specified number of cells. 1000 genes are differentially
expressed while the rest are not.
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Figure 5.12: Distribution of ηg in the simulation study.

We have made sure that our simulated datasets are visually indistinguishable when counts from a

random pair of cells are compared. In Figure 5.13, 9 pairs of cells from the 447 cells are randomly

selected and plotted. In a specific pair, each dot represents a gene with its count in one cell

plotted on the x axis and that in the other cell on the y axis. These plots closely resemble similar

plots reported before generated from various scRNA-seq experiments, which suggests that our

simulation scheme can largely recapitulate the between cell variability in scRNA-seq data.

5.3.4. Overall Power Performance

The average power curves in Figure 5.14a are obtained by smoothing the estimated power across

genes with similar fold change. Our results demonstrate that TASC has the highest power, followed

by SCRAN.SP, SCRAN, DESeq2, MAST, and SCDE. Figure 5.14b shows that the higher sensitivity

of TASC is more pronounced when fold change is moderate; for example, when fold change is
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Figure 5.13: Scatter plots for 9 randomly picked pairs of cells in simulated data. For each panel,
two cells are randomly chosen from the a total of 447. With two cells indexed as i and j, log(Yig+1)
is plotted against log(Yjg + 1).
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Figure 5.14: a. Achieved power of TASC, SCDE, MAST, DESeq2, SCRAN, and SCRAN.SP for
detecting varying fold changes in mean in the simulated data set within 100 cells in each group.
Results both with (SCRAN.SP) and without (SCRAN) the use of ERCC are included for SCRAN. b.
Power differences between TASC and the other methods in the simulated data set.

1.75, at the 0.0001 significance level, the average power of TASC is 8%, 20%, 25%, 37%, and

428% higher than SCRAN.SP, SCRAN, DESeq2, MAST, and SCDE, respectively.

Power and effect size

Since we have simulated 1000 DE genes with varying effect size, it is straightforward to investigate

how the ηg influences the power of our method. In Figure 5.15, estimated power (ωg = nSg/nTg,
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where nSg is the number of datasets in which the p-value of TASC is less than or equal to the

specified significance level, and nTg = 100 is the total number of datasets in each simulation) is

plotted against ηg. Due to the differences in other parameters such as θg1, θg2 and σg, genes

with similar ηg can be detected with dramatically different power. This leads to a spread in our

power-effect size curve. For example, when we pick the significance level to be 10−4, genes that

display approximately 2-fold change between the two groups can be detected from less than 40%

of the time to over 80% depending on specific properties of the gene. This closely resembles the

actual analyses and speaks to the importance of simulating data based on real data. Figure 5.15

is plotted from the simulation with 100 cells in each group.
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Figure 5.15: Relationship between the estimated power and the effect size. Each DE gene is plotted
with the x axis indicating their ηg. Y axis represents the proportion of datasets in which TASC
has called this gene significantly differentially expressed (p is less than or equal to the specified
significance level). The sample size of this simulation is 100 vs 100.

SCDE performs quite conservatively in our studies on the type I error. Unsurprisingly, when com-

pared to TASC, has dramatically attenuated power. Figure 5.16 and Figure 5.17 illustrate the rela-

tionship between the power of and the effect size of gene. With significance levels set at all values

(10−6 to 0.05) TASC overpowers by a considerable margin. The difference is particularly prominent

when the significance level is set below 10−4, which is the common in scRNA-seq analyses due to

the preference of controlling for false positives. When the significance level is set to be 10−4, genes

with ηg ≈ 1.75 can be detected over 75% of the time by TASC, but less than 25% of the time by
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SCDE. This is translated into a difference of power between 40% to 80%, a 4-fold improvement in

most cases.
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Figure 5.16: Power comparison between TASC and with various effect sizes. Each panel contains
the power curve of TASC and under the specified significance level. This plot is generated from the
simulation 100 vs 100 (Figure 5.11).
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Figure 5.17: Power improvement of TASC over with various effect sizes. Each panel contains the
power improvement curve of TASC and under the specified significance level. Y axis represents the
difference in absolute not relative values in estimated power between TASC and , i.e. ωTASC

g −ωg.
This plot is generated from the simulation 100 vs 100 (Figure 5.11).

Another method specifically designed for scRNA-seq is MAST(Finak et al., 2015), which shows

inflated type I error in our studies based on real data even in the absence of batch effects (Fig-

ure 5.9). Among all four methods tested, MAST(Finak et al., 2015) has the most difficult controlling

the type I error rate when batch effects are present in the dataset (Figure 5.10). In terms of power,

MAST(Finak et al., 2015) has also performed poorly compared to TASC (Figure 5.18 and Fig-

ure 5.19). Using genes with ηg ≈ 1.75 as an example, the power difference between TASC and

MAST(Finak et al., 2015) is 10% to over 30%. This suggests that MAST(Finak et al., 2015) has
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a tendency to mislabel non-DE genes as DE and DE genes as non-DE, and the results produced

by MAST(Finak et al., 2015) should be validated by other methods to reduce the number of false

positives.
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Figure 5.18: Compare power between TASC and MAST(Finak et al., 2015) with various effect sizes.
Each panel contains the power curve of TASC and MAST(Finak et al., 2015) under the specified
significance level. This plot is generated from the simulation 100 vs 100 (Figure 5.11).
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Figure 5.19: Power improvement of TASC over MAST(Finak et al., 2015) with various effect sizes.
Each panel contains the power improvement curve of TASC and MAST(Finak et al., 2015) under
the specified significance level. Y axis represents the difference in absolute not relative values in
estimated power between TASC and MAST(Finak et al., 2015), i.e. ωTASC

g −ωMAST
g . This plot is

generated from the simulation 100 vs 100 (Figure 5.11).

DESeq2(Love, Huber, and Anders, 2014) is a popular method for differential expression analysis.

Although developed for bulk RNA-seq data, our simulation study suggests that DESeq2 has decent

overall performances such as type I error rate in the absence of batch effects (Figure 5.9). In terms

of power, however, DESeq2 is outperformed by TASC just like the other methods. Using genes

with a fold change near 1.75 as an example, TASC represents a difference of 10% to 30% on the

absolute not relative scale over DESeq2. A more troubling issue is that DESeq2(Love, Huber, and

Anders, 2014) lacks the ability to adjust for batch effects and can display serious type I inflation in
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the presence of batch effects (Figure 5.10).
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Figure 5.20: Compare power between TASC and DESeq2(Love, Huber, and Anders, 2014) with
various effect sizes. Each panel contains the power curve of TASC and MAST(Finak et al., 2015)
under the specified significance level. This plot is generated from the simulation 100 vs 100 (Fig-
ure 5.11).
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Figure 5.21: Power improvement of TASC over DESeq2(Love, Huber, and Anders, 2014) with
various effect sizes. Each panel contains the power improvement curve of TASC and DESeq2(Love,
Huber, and Anders, 2014) under the specified significance level. Y axis represents the difference
in absolute not relative values in estimated power between TASC and DESeq2(Love, Huber, and
Anders, 2014), i.e. ωTASC

g − ωDESeq2
g . This plot is generated from the simulation 100 vs 100

(Figure 5.11).

SCRAN(Lun, Bach, and Marioni, 2016) is a recently developed method for normalizing scRNA-seq

data using cell-specific deconvolved pool-based size factors. As a normalization scheme, its perfor-

mance is highly dependent on the downstream method of analysis. We have tested SCRAN in the

scenario of two-group comparison coupled with DESeq2 and it has shown improved performance

over using DESeq2 alone. Since the SCRAN package can also take advantage of the counts for

spike-ins to derive the normalization factors, we have looked at both naı̈ve SCRAN (without spike-
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ins) and SCRAN.SP (SCRAN run with spike-ins). In some cases, due to the limitations of the

sample size available, only results from SCRAN.SP are presented.

In terms of power, naı̈ve SCRAN coupled with DESeq2 shows performance similar to DESeq2.

In all significance levels tested, TASC overpowers SCRAN+DESeq2 by up to 30%, especially for

moderately differentially expressed genes with fold change around 1.75.
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Figure 5.22: Compare power between TASC and SCRAN(Lun, Bach, and Marioni, 2016) with
various effect sizes. Each panel contains the power curve of TASC and SCRAN(Lun, Bach, and
Marioni, 2016) under the specified significance level. This plot is generated from the simulation 100
vs 100 (Figure 5.11).
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Figure 5.23: Power improvement of TASC over SCRAN(Lun, Bach, and Marioni, 2016) with various
effect sizes. Each panel contains the power improvement curve of TASC and SCRAN(Lun, Bach,
and Marioni, 2016) under the specified significance level. Y axis represents the difference in ab-
solute not relative values in estimated power between TASC and SCRAN(Lun, Bach, and Marioni,
2016), i.e. ωTASC

g −ωSCRAN
g . This plot is generated from the simulation 100 vs 100 (Figure 5.11).

Due to the incorporation of spike-in information, SCRAN.SP coupled with DESeq2 shows profound

improvement of power over DESeq2. When compared to TASC, SCRAN.SP is only moderately

disadvantaged by up to about 10-20%, the best performer among all methods tested.
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Figure 5.24: Compare power between TASC and SCRAN(Lun, Bach, and Marioni, 2016) with
various effect sizes. Each panel contains the power curve of TASC and SCRAN(Lun, Bach, and
Marioni, 2016) under the specified significance level. This plot is generated from the simulation 100
vs 100 (Figure 5.11).
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Figure 5.25: Power improvement of TASC over SCRAN(Lun, Bach, and Marioni, 2016) with various
effect sizes. Each panel contains the power improvement curve of TASC and SCRAN(Lun, Bach,
and Marioni, 2016) under the specified significance level. Y axis represents the difference in ab-
solute not relative values in estimated power between TASC and SCRAN(Lun, Bach, and Marioni,
2016), i.e. ωTASC

g −ωSCRAN
g . This plot is generated from the simulation 100 vs 100 (Figure 5.11).

Power and sample size

To investigate the relationship between power achieved by a method and the sample size re-

quired, we have down-sampled the complete dataset into varying sizes in different simulations

(Figure 5.11). This has allowed us to look into the behaviour of TASC under different sample size

with greater detail.

106



As the sample size increases, TASC becomes more powerful in detecting small changes in gene

expression (Figure 5.26). When the sample size is only 20 vs 20, TASC has virtually no power

except for genes that are highly differentially expressed (ηg ⩾ 2.5). These genes however can be

detected by TASC with almost 100% power when the sample size is equal to or greater than 50 vs

50. For moderately differentially expressed genes (1.5 < ηg < 2), TASC would require at least 100

vs 100 to achieve considerable power. For genes with small changes in its expression (ηg < 1.3),

TASC shows no power when the sample size is smaller than or equal to 200 vs 200. However, it is

extremely difficult to detect these with significant power without sacrificing the false positive rate.
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Figure 5.26: Power curves for TASC from simulations with different sample sizes. In each panel, the
estimated powerωg of each gene for TASC is plotted against the effect size (fold change) assigned
for this gene simulated at the specified sample size.
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In order to assess the average power for genes of specific effect size, we have used the generalized

additive model (GAM) to smooth out the power curve. Briefly, the relationship between estimated

power of a gene (ωg) is regressed onto the fold change assigned to this gene (ηg) using GAM with

smooth terms df = 4 and spar = 1 for the spline. Resulting smoothed curves are then plotted for

each method under various sample sizes for comparison (Figure 5.14a and 5.27).
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Figure 5.27: Power curves for TASC, SCDE, MAST, DESeq2, SCRAN and SCRAN.SP for sample
sizes of 50 vs 50 and above. In each panel the smoothed power curves for all methods from
specified sample size are plotted. X axis indicates the fold change ηg for each gene. Y axis
represents the average power for each method after smoothing with GAM as described.

From all simulations of varying sample sizes, TASC has the best power among the four methods

tested. TASC is particularly powerful when the genes are only moderately differentially expressed

(η ≈ 1.75). This improvement is more dramatic when the sample size is relatively modest (50

vs 50). As the sample size goes up, almost all methods can reliably detect the highly DE genes

(η > 2) with 100% power, which suggests the importance of decently large sample size in single-cell
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experiments.

5.3.5. Differential Expression analysis on real data

Zeisel et al. data

To gauge the performance of our method in real use case scenarios, we have performed differential

gene expression analyses using the two largest level 2 classes of the Zeisel data (“CA1Pyr2” and

“CA1Pyr1”). Since these two level-2 classes represent different cell type groups, we expect genuine

gene expression differences between them. To evaluate the impact of sample size, the two groups

are subsampled to
1

2
,
1

4
,
1

8
,
1

16
,
1

32
of their original size, as shown in Table 5.1, and differential

expression analyses are performed on each subsampled data set. The raw p-values are used

to detect DE genes at the 0.0001 significance level, and the number of detected DE genes is

plotted against the sample size for each method. The numbers of detected DE genes are shown

in Table 5.1. Consistent with our simulations, SCDE finds the least number of DE genes, followed

by MAST, whereas SCRAN.SP detects the most number of DE genes when is greater than 100.

TASC, SCRAN, and DESeq2 detect similar number of DE genes across most sample sizes.

CA1Pyr2 CA1Pyr1 Numerical Label Text Label

380 380 380 S32

190 190 190 S16

95 95 95 S8

48 48 48 S4

24 24 24 S2

12 12 12 S1

Table 5.1: Sample sizes of the sub-sampled Zeisel data(Zeisel et al., 2015) sets for two group
comparison. Numerical labels are used to approximate the sample sizes in plotting. Text labels are
used to distinguish analyses during discussion.

In order to assess the biological relevance of the differentially expressed genes discovered by

each method, a gene ontology study has been performed, with results summarized in Tables

5.2,5.3,5.4,5.5,5.6,5.7. All genes used are called by each method with p-values smaller than 10−8.

This significance level was chosen in order to find the strongest DE genes, while preserving enough
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et al. data at the 0.0001 significance level, under varying sample sizes.
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genes for meaningful ontology analysis.

SCAP-T data

In order to test the performance of our model using noisier non-UMI data, we have taken advantage

of the SCAP-T dataset, which is an scRNA-seq data from murine brain cells acquired from the

SCAP-T study (dbGaP Study Accession phs000835.v4.p1). This data set, which does not have

UMIs, contains counts of 46,422 endogenous genes and 87 ERCC spike-ins of 198 neurons and

26 astrocytes from mouse brain. The counts are preprocessed by two filtering procedures: Filter 1

keeps the top 25% of genes in total read account across all the cells. Filter 2 keeps all the genes

with non-zero counts in 5 cells or more. Since neurons and astrocytes are processed on different

days, this allows us to evaluate whether our model is able to capture and control batch effect. Unlike

the Zeisel et al data, SCAP-T data is much noisier, and the cells are much more heterogeneous.

In Figure 5.29, a wide range of values for the parameters (α,β, κ, τ) can be observed for these

samples, and some significant difference exists within the same tissue type as well.
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Figure 5.29: Scatter plots describing the distribution of Ψc of the SCAP-T data.

Before we can use ERCC spike-ins in the SCAP-T data to model the technical noise, necessary

pre-processing is required to tease out the cells that are of low quality. One can achieve this by

looking at the R2 values from the linear regression with the log counts as the response variable, and

the log true concentration of the ERCC as the input covariate. SCAP-T data obviously has much

wider range of R2 (Figure 5.30) compared to Zeisel et al. data (Figure 5.33), suggesting some

trimming might be necessary to remove those cells with really low R2 if TASC is to be used.
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Figure 5.30: Histograms for R2 computed from SCAP-T data.

R
2

D
e

n
si

ty

0.6 0.7 0.8 0.9

0
1

2
3

4
5

6
7

Figure 5.31: Histograms for R2 computed from Zeisel et al. data.

Another characteristic of the SCAP-T data is the more varied sample size. We have plotted the

normalized cell size factors computed from SCAP-T (Figure 5.32) and Zeisel et al. (Figure 5.33)

data. It is obvious that the former has much wider range of cell size factors, which indicate that

some of the cells in this data set might contain too many or too few reads coming from the biological

genes, both of which will affect the accuracy of TASC.
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Figure 5.33: Histograms for normalized cell size factors computed from Zeisel et al. data.

To compare the methods with regards to their type I error rate under a real data scenario, we

analyzed the SCAP-T data, which includes astrocytes and neurons that were processed on different

days. This data set provides a perfect example to illustrate the impact of batch effect. To assess

whether type I error is controlled under the null scenario, it is necessary to compare two groups of

cells that are of the same type. To perform this assessment, we have derived a null comparison

following these steps.

Step.a Estimate the technical parameters (α,β, κ, τ) for 26 astrocytes and 198 neurons.

Step.b Among the 198 neurons, find 26 with the technical parameters closest in Euclidean dis-
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tance to that of each astrocyte, and label these neurons as group 1. If multiple astrocytes

share one closest neuron, then multiple neurons are selected for these astrocytes.

Step.c Label the unchosen 172 neurons as group 2.

Differential gene expression analyses have been performed on these two groups with all five meth-

ods (naı̈ve SCRAN is not available due to the small sample size in group 1). The methods TASC,

SCDE, MAST, DESeq2, SCRAN, and SCRAN.SP are then applied to these two groups, and the

proportion of genes reported to be DE is reported in Table 5.8. Raw p-values are plotted using

histograms (Figure 5.34). Negative logarithm of the raw p-values with base 10 are plotted with Q-Q

plots (Figure 5.35).

We see that TASC has well controlled type I error rates at all assessed significance levels, whereas

all other methods (SCDE, MAST, DESeq2, SCRAN, and SCRAN.SP) have severely inflated type

I error rates, especially when the p-value threshold is reduced to 0.001 and 0.0001. For exam-

ple, consider DESeq2, which, according to our simulations, has well-controlled type I error when

there are no batch effects. At significance level of 0.001, DESeq2 has false positive rate of 1.7%,

a 17-fold inflation, and at significance level of 0.0001, DESeq2 has false positive rate of 0.76%,

corresponding to a 76-fold inflation. Even SCDE, which tends to be conservative when there are

no batch effects, suffer from type I inflation in this real data scenario that contains a possible batch

effect. The patterns are similar when we consider all genes in the evaluations.
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Figure 5.34: Histograms describing the distributions of raw p-values from various methods in the
null comparison with SCAP-T data.
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Figure 5.35: Q-Q plots describing the distributions of raw p-values from various methods in the null
comparison with SCAP-T data.

5.4. Computational Details

TASC is implemented in an open-source program https://github.com/scrna-seq/TASC, with

multithreading acceleration by openMP. For example, a data set of 104 cells and 6,405 genes

takes 45MB of memory and 18.6 minutes using 20 cores (Intel(R) Xeon(R) CPU E5-2660 v3 @

2.60GHz) with Laplacian approximation using the binary we provided. Better performance can be

achieved when using binaries compiled on the users hardware. We believe that TASC will provide

a robust platform for researchers to leverage the power of scRNA-seq.

5.4.1. Laplace Approximation

In order to speed up the evaluation of integral, we have adopted Laplace’s method to approximate

the value and reduce the required computational resources. Briefly, the marginal likelihood of one

cell in Equation 5.15 can be approximated with the
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log

 ∫
µcg

Pr [Ycg, µcg]dµcg

 ≈ 1

2
[log(2π) − log (h [µ̂cg])] (5.24)

where µ̂cg is the maximizer of Pr [Ycg, µcg] over µcgand h [µcg] is the second derivative of Pr [Ycg, µcg]

over µcg.

In order to assess the performance of the Laplace’s method, we have compared the β̂1, the es-

timated coefficient associated with the group indicator in the two group comparison settings in

the Zeisel et al. data using Laplace’s method (Laplace) and adaptive quadrature (Integration) in

Figure 5.36. The estimates are highly correlated, indicating Laplace’s method can give accurate

estimates for the parameters of interests, under a wide range of sample sizes.
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Figure 5.36: Comparison of Laplacian approximation and Adaptive Integration

Using Laplace’s method can greatly reduce the CPU time required, as is show in Figure 5.37.

125



0

2

4

6

0 50 100 150 200 250

Sample Size
R

u
n

 T
im

e
 [

h
o

u
rs
]

Method

Adaptive Integration

Laplace Approximation

Figure 5.37: Comparison of run time of Laplacian approximation and Adaptive Integration, using 24
cores.
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CHAPTER 6

MODELING TRANSCRIPTIONAL BURSTING WITH SCRNA-SEQ DATA

6.1. Motivation

As we have reviewed above, scRNA-seq is a promising technology for studying transcriptional

bursting, due to its accurate profiling of transcriptome on a single-cell resolution, as well as its

high throughput, the capability of monitoring tens of thousands of genes simultaneously. Previous

studies (Kim and Marioni, 2013) attempted to infer the kinetic parameters by fitting a Beta-Poisson

model with a Gibbs sampler. However, this study failed to address the intrinsic technical noise such

as amplification bias and technical dropout. In addition, Kim and Marioni did not provide any testing

procedures for comparing the parameters across experimental conditions. The TASC model can

naturally adjust for technical biases present in scRNA-seq data. However, it is incapable of inferring

bursting probabilities or testing for differential bursting. This has motivated us to develop TASC-B,

an extension to TASC model incorporating additional parameters to characterize probabilities of

genes being turned “on” and “off” in a homogeneous population of cells. Moreover, as a likelihood

model, we have developed a series of likelihood-ratio tests to draw inference on the significance of

differential bursting between groups.

6.2. Generative Model Incorporating Transcriptional Bursting

6.2.1. Extension to TASC model

According to the two-state model of transcriptional bursting, for certain genes, transcription ran-

domly switches between “on” and “off” states. We propose that scRNA-seq data can be used to

characterize transcriptional bursting provided that the following assumptions are satisfied.

• Homogeneity of cells sequenced, i.e., all cells in the population of interest follow the same

stochastic process of state-switching, with the same switching probabilities. This essentially

requires that for a particular gene in consideration, the kinetic parameters of the two-state

model are identical across all cells.

• Ergodicity: the population of cells have the same behavior averaged over time as averaged
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Figure 6.1: Illustration of sources of zeros in scRNA-seq data.

over the space of all the states of the entire population.

This will ensure that we get a sample of cells whose transcriptional status represents that of one

individual cell at multiple random time points. Without bursting, this sample can be perfectly de-

scribed with the TASC model 5.2. With bursting, however, excessive zeros will be observed in the

recovered reads Ycg due to some cells being in the “off” state. Intuitively, the zeros in Ycg can be

attributed to three distinctive sources, as illustrated in Figure 6.1.

The inflated zeros are primarily sourced from three contributing factors:

• Poisson sampling of sequencing. When the gene is constitutively on, the transcription follows

a Poisson process. In some cells, the number of transcripts is 0 simply by stochasticity,

especially when the mean expression of the gene is low. The probability of zeros decreases

dramatically as the mean expression increases.

• Biological heterogeneity. In genes with significant bursting, excessive zeros that cannot be

accounted for by the Poisson sampling alone can be observed in cells that are in the “off”

state. Testing for the significant presence of this portion of zeros can provide evidence for the

presence of transcriptional bursting.

• Technical drop-out. Due to the complexity of the scRNA-seq protocols, many steps can con-

tribute to the loss of a particular transcript even when it is expressed in the cell sequenced.

For example, even the most reverse transcriptase cannot capture 100% of the transcripts

in one reaction. Losses due to PCR, sequencing and mapping can also cause zeros when
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original cell did have the transcript expressed.

In TASC, we have accounted for the Poissonian zeros and the technical drop-out. To test for the

presence of excessive zeros caused by transcriptional bursting, we can extend the TASC model to

incorporate a parameter describing the probability of a cell being in the “on” state as follows. For

purpose of simplicity, we lose the gene index g.

Step.a Let ZB
c be the indicator representing the status of the bursting state in cell c. If ZB

c = 1, cell

c is “on”, otherwise when ZB
c = 0, cell c is “off”.

Step.b ZB
c ∼ Bernoulli(pB), where pB is a parameter of interest describing the overall propensity

of a cell in this population to be in the “on” state.

Step.c

µc =


0, if ZB

c = 0

logNormal(θg, σg), if ZB
c = 1

(6.1)

Step.d Follow identical steps from Step.b in subsection 5.2.2.

Following steps of algebra similar to that in subsection 5.2.2, the marginal likelihood of Ycg, µcg can

be written as,

Pr [Ycg, µcg]

=

1∑
Zcg=0

1∑
ZB

cg=0

Pr
[
Ycg, µcg, Zcg, Z

B
cg

]

=

1∑
Zcg=0

1∑
ZB

cg=0

Pr
[
Ycg|Zcg, µcg, Z

B
cg

]
Pr

[
Zcg|µcg, Z

B
cg

]
Pr

[
µcg|Z

B
cg

]
Pr

[
ZB
cg

]
(6.2)

When ZB
cg = 0, µcg = 0, therefore, πcg = expit [κc + τc log(µcg)] = 0. Subsequently, Zcg con-

verges to 0. Therefore, Pr
[
Zcg = 1|µcg, Z

B
cg = 0

]
= 0. Therefore, only three components remain in
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the above summation.

Pr [Ycg, µcg]

=Pr
[
Ycg|Zcg = 0, µcg, Z

B
cg = 0

]
Pr

[
Zcg = 0|µcg, Z

B
cg = 0

]
Pr

[
µcg|Z

B
cg = 0

]
Pr

[
ZB
cg = 0

]
+Pr

[
Ycg|Zcg = 0, µcg, Z

B
cg = 1

]
Pr

[
Zcg = 0|µcg, Z

B
cg = 1

]
Pr

[
µcg|Z

B
cg = 1

]
Pr

[
ZB
cg = 1

]
+Pr

[
Ycg|Zcg = 1, µcg, Z

B
cg = 1

]
Pr

[
Zcg = 1|µcg, Z

B
cg = 1

]
Pr

[
µcg|Z

B
cg = 1

]
Pr

[
ZB
cg = 1

]
(6.3)

When Ycg > 0, µcg > 0, the above three components can be further reduced to one, as the first

two components are equal to 0, because Pr
[
Ycg > 0|Zcg = 0, µcg, Z

B
cg = 0

]
= 0. Therefore, in this

case,

Pr [Ycg, µcg] =

[
eαc+βc logµcg

]Ycg
e−eαc+βc logµcg

ycg!
πcgfLN

(
µcg|θg, σ

2
g

)
pBg (6.4)

When Ycg > 0, µcg = 0, the above three components are all equal to 0. Because λcg = exp [αc + βc logµcg] =

exp [−∞] = 0, and Pr [Ycg|λcg] = fPoisson(Ycg > 0|λcg = 0) = 0. Therefore, Pr
[
Ycg > 0|µcg = 0, Zcg, Z

B
cg

]
=

0, which means when Ycg > 0, µcg = 0,

Pr [Ycg, µcg] = 0 (6.5)

When Ycg = 0, µcg = 0, the last two components in Equation 6.3 are equal to 0. Because when

ZB
c = 1, µcg ∼ LogNormal(θg, σ

2
g), whose probability density function is equal to 0 when µcg = 0.

Therefore, when Ycg = 0, µcg = 0,

Pr [Ycg, µcg]

=Pr
[
Ycg = 0|µcg = 0, Zcg = 0, ZB

cg = 0
]

Pr
[
Zcg = 0|µcg = 0, ZB

cg = 0
]
Pr

[
µcg = 0|ZB

cg = 0
]
Pr

[
ZB
cg = 0

]
=1× 1× 1× (1− pBg )

=1− pBg (6.6)
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When Ycg = 0, µcg > 0, the first component in Equation 6.3 is equal to 0, therefore, in this case,

Pr [Ycg, µcg]

=(1− πcg)fLN
(
µcg|θg, σ

2
g

)
pBg + e−eαc+βc logµcg

πcgfLN
(
µcg|θg, σ

2
g

)
pBg

=
[
(1− πcg) + e

−eαc+βc logµcg

πcg

]
fLN

(
µcg|θg, σ

2
g

)
pBg (6.7)

Therefore, the marginal distribution of (Ycg, µcg) can be written as,

Pr [Ycg, µcg]

=



[
eαc+βc logµcg

]Ycg
e−eαc+βc logµcg

ycg!
πcgfLN

(
µcg|θg, σ

2
g

)
pBg , if Ycg > 0, µcg > 0

0, if Ycg > 0, µcg = 0[
(1− πcg) + e

−eαc+βc logµcg
πcg

]
fLN

(
µcg|θg, σ

2
g

)
pBg , if Ycg = 0, µcg > 0

1− pBg , if Ycg = 0, µcg = 0

(6.8)

It’s straightforward to compute the marginal distribution of Ycg from this joint distribution in Equa-

tion 6.8.

Pr [Ycg] =


pBg

∫ [[eαc+βc logµcg
]Ycg

e−eαc+βc logµcg

ycg!
πcgfLN

(
µcg|θg, σ

2
g

)
pBg

]
dµcg, if Ycg > 0

1− pBg + pBg
∫ [[

(1− πcg) + e
−eαc+βc logµcg

πcg

]
fLN

(
µcg|θg, σ

2
g

)
pBg

]
dµcg, if Ycg = 0

(6.9)

6.2.2. Technical Parameters from ERCC

ERCC spike-ins are added after cell lysis, therefore, they do not exhibit the expression hetero-

geneity of a biological gene. The model for ERCC spike-ins is unchanged in this extension, and

therefore, all technical parameters can still be estimated using methods developed for TASC, as

described in subsection 5.2.1.
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6.2.3. Testing for Presence of Transcriptional Bursting

One advantage of a likelihood model is the theoretic and applied simplicity in testing for the sig-

nificance of certain parameters using likelihood ratio tests. The incorporation of the parameter pBg

allows us to directly test whether there is significant transcriptional bursting in a specific gene, with

the following test (Test #1).


H0 : pBg = 1

H1 : pBg < 1

(6.10)

And the naı̈ve likelihood ratio test is to optimize the full model under the null hypothesis (i.e. the

TASC model, L̂0) and the alternative hypothesis (0 < pBg < 1, L̂1). The likelihood ratio test can then

be computed as

T̂ = −2
[
log(L̂1) − log(L̂0)

]
(6.11)

Comparing T̂ to a χ2-distribution, with 1 degree of freedom, gives us the raw p-value for this test.

p = Pr
[
χ21 < T̂

]
(6.12)

Notice that the asymptotic distribution of T̂ might not follow a χ2-distribution, as pGg in the null hy-

pothesis rests on the boundary of the parameter space. Volumes have been devoted to this specific

topic in the statistical literature (Bartholomew, 1961; Kudo, 1963; Self and Liang, 1987). In our ex-

perience, the naı̈ve implementation in this specific case does not severely affect its performance.

However, further work needs to be done, incorporating methods such as Bartholomew’s χ̄2-tests

(Kudo, 1963), or the modified χ2-test from Edward Susko (Susko, 2013).

6.2.4. Testing for Differential Levels of Transcriptional Bursting

While it is important to interrogate the presence of transcriptional bursting in a homogeneous pop-

ulation of cells, most of the scRNA-seq experiments actually contain multiple groups or biological

conditions. Significant insight on the regulatory mechanisms of transcription can be provided by

testing the different levels of bursting between two groups, i.e., testing the following hypothesis
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(Test #2):


H0 : pBg1 = pBg2 = pBg

H1 : pBg1 ̸= pBg2
(6.13)

A simple likelihood ratio test with the marginal likelihood optimized with one common pBg for the two

conditions (L̂0), or two distinctive probability parameters (pBg1 and pBg2, L̂1). The LRT statistic,

T̂ = −2
[
log(L̂1) − log(L̂0)

]
(6.14)

Comparing T̂ to a χ2-distribution, with 1 degree of freedom, gives us the raw p-value for this test.

p = Pr
[
χ21 < T̂

]
(6.15)

6.2.5. Testing of Differential Expression With Adjustment for Transcriptional Bursting

With methods that simply model the true expression of the genes using Poisson distribution, testing

for differential expression (DE) can be confounded by differential bursting (DB). In our method, it

is possible to disentangle the former from the latter, testing for the differential levels of expression

when the genes are in the “on” state only. A simple LRT can be derived to test for the following

hypothesis (Test #3):


H0 : θg1 = θg2 = θg

H1 : θg1 ̸= θg2
(6.16)

The LRT statistic can be computed by optimizing the marginal likelihood with one common θg for the

two conditions (L̂0), or two distinctive probability parameters (θg1 and θg2, L̂1). The LRT statistic,

T̂ = −2
[
log(L̂1) − log(L̂0)

]
(6.17)
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Comparing T̂ to a χ2-distribution, with 1 degree of freedom, gives us the raw p-value for this test.

p = Pr
[
χ21 < T̂

]
(6.18)

6.2.6. Simultaneous Testing for Differential Levels of Expression and Bursting

In scenarios described in both subsection 6.2.4 and subsection 6.2.5, when testing for one param-

eter in pBg and θg, the other is allowed full degrees of freedom. As a great screening measure, one

may want to test for the change in changes in either pBg or θg (Test #4). This can be achieved by

testing:


H0 : θg1 = θg2 = θg and p

B
g1 = pBg2 = pBg

H1 : θg1 ̸= θg2 or pBg1 ̸= pBg2
(6.19)

The LRT statistic can be computed by optimizing the marginal likelihood with one common θg and

pBg for the two conditions (L̂0), or two distinctive probability parameters (θg1 and θg2, pBg1 and pBg2,

L̂1). The LRT statistic,

T̂ = −2
[
log(L̂1) − log(L̂0)

]
(6.20)

Comparing T̂ to a χ2-distribution, with 2 degree of freedom, gives us the raw p-value for this test.

p = Pr
[
χ22 < T̂

]
(6.21)

6.3. Evaluation of Performance and Comparison with Other Methods

6.3.1. Validation of Algorithms

We have implemented the above algorithm using Cython and openMPI in Python (details in sec-

tion 6.5). To validate our implementation, we have performed a series of simulation studies, where

a range of values in pBg and θg are used to generate the read counts. The technical parameters are
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fixed at,



α = 0.635308628209573

β = 1.01020809346668

κ = −4.39815121122278

τ = 1.2364362618758

σ = 2.5

(6.22)

All combinations of three different pBg (0.25, 0.5, 0.75) and three different θg (2.5, 5, 7.5) are used to

generate the counts from the TASC-B model. 100 simulations are done for each combination of

(θg, p
B
g ). Each simulation contains the read counts of 600 cells. Two algorithms, original TASC, and

TASC-B are used to fit the simulated data, in order to compare the performance of TASC-B against

the more simplified TASC model. The bias and spread of the estimates are satisfactory considering

the moderate sample size and the difficulties in accurately extrapolating the zero proportions from

the non-zero counts, with details shown in Table 6.1. Some scenarios have proved to be more

difficult than others for our algorithm. For example, when pBg = 0.25 and θg = 2.5, i.e., the gene is

only turned on in a quarter of the cells, and the expression is relatively low, our algorithm displays

the most severe bias, and highest estimation error, compared to other scenarios. We suspect it is

due to the limited information there is to estimate the positive mean, as presumably only a handful

of cells contain non-zero counts for these genes. With a poorly estimated θg, extrapolating pBg

would be much more difficult, as is shown in the high variability in the estimate for pBg in Table 6.1.

Interestingly, even when pBg is sufficiently large, if the mean expression of the gene is low enough

(θg = 2.5), the estimation error is still significant for both parameters. The spread of p̂Bg is consider-

ably tighter when θg = 5 and θg = 7.5 compared to θg = 2.5 6.2b. The θ̂g is estimated much more

accurately as θg increases 6.2a.

Excluding pBg , as in TASC, estimates of θg can be confounded by pBg , as shown in Figure 6.3. TASC

estimates of θ̂g decrease as pBg decreases, regardless of the true value of θg, while estimates of θ̂g

by TASC-B are not confounded by pBg , centered around the true mean of θg in all simulated scenar-

ios. Similar confounding is also observed for σ̂g (Figure 6.4). TASC estimates of σ̂g increases as

pBg decreases, for it attributes the additional zeros produced by transcriptional bursting to σg. Under
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(a) Scatter plots shown the estimated values of θg against its true values grouped by the true pB
g

(b) Scatter plots shown the estimated values of pB
g against its true values grouped by the true θg

Figure 6.2: Scatter plots illustrating the relationship between the estimated values and the true
values of θg and pBg . The dotted line is the unit line with slope equal 1, and intercept equal to 0.
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Figure 6.3: Histograms of estimated θ̂g using TASC and TASC-B. Different rows represent simula-
tions with various pGg , and different columns represent simulations with various θg. In each panel,
two histograms are plotted with distinct colors, representing the distribution of estimated θ̂g from
TASC (blue) and TASC-B (red). The vertical dotted lines indicate the true values of θg.
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the majority of the simulated scenarios, especially when pBg is relatively small, estimates of σg from

TASC does not even overlap with the true value. The value of θg also confounds the estimation of

σg for TASC. Larger θg increases the estimates of σg. In all simulated scenarios, estimates of σ̂g

by TASC-B are not confounded by pBg , as it correctly attributes the excessive zeros to bursting.

Figure 6.4: Histograms of estimated σ̂g using TASC and TASC-B. Different rows represent simula-
tions with various pGg , and different columns represent simulations with various σg. In each panel,
two histograms are plotted with distinct colors, representing the distribution of estimated σ̂g from
TASC (blue) and TASC-B (red). The vertical dotted lines indicate the true values of σg.

6.3.2. Performance Under the Null Hypothesis

In order to investigate the propensity for false positives of our method, we have simulated 16 com-

binatory scenarios with θg ∈ {2, 3, 4, 5}, and pBg ∈ {0.2, 0.4, 0.6, 0.8} from our generative model, using
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Significance Level
pBg θg 0.1 0.05 0.01 0.005 0.001
0.2 2 0.1022 0.0484 0.009 0.0044 0.001
0.2 3 0.0944 0.0456 0.0064 0.003 0.001
0.2 4 0.103 0.051 0.0094 0.0052 0.0012
0.2 5 0.0992 0.0486 0.0084 0.0036 0.0016
0.4 2 0.0978 0.0508 0.0108 0.0046 0.0014
0.4 3 0.101 0.0502 0.0092 0.0044 0.0002
0.4 4 0.0938 0.0486 0.0084 0.0036 0.001
0.4 5 0.0924 0.0458 0.008 0.0048 0.0006
0.6 2 0.095 0.049 0.0094 0.0042 0.0008
0.6 3 0.0936 0.0476 0.0092 0.0042 0.0006
0.6 4 0.1014 0.0522 0.0086 0.0026 0.0002
0.6 5 0.1 0.0534 0.0112 0.0058 0.0012
0.8 2 0.08 0.039 0.0096 0.0054 0.0012
0.8 3 0.09 0.0432 0.008 0.004 0.0002
0.8 4 0.0968 0.0444 0.0096 0.0048 0.0014
0.8 5 0.1052 0.0556 0.0122 0.0068 0.003

Table 6.2: Estimated false positive rates from the null simulation with TASC-B Test #2. For each
simulated scenario, the fraction of genes with raw p-value smaller than or equal to a specific signifi-
cance level among all 5000 genes is computed. The estimated FPR using five different significance
levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.

technical parameters listed in Equation 6.22. Each scenario contains the counts of 5000 artificial

genes in 600 cells (300 cells in each condition). The parameters are identical across biological

conditions, therefore, for a method with well-controlled type I error, the p-values should be dis-

tributed uniformly on (0, 1). Test #2 (subsection 6.2.4) is implemented with Python and Cython.

Raw p-values are extracted from the 5000 genes for each scenario and − log10(p) is compared

with the expected percentile drawn from a uniform distribution. From Figure 6.5, under all sce-

narios simulated, TASC-B has well-controlled type I error, with the distribution of the raw p-values

closely resembling a uniformly distributed random variable. To quantitatively illustrate the behavior

of TASC-B under the null conditions, we estimated the type I error rate by computing the fraction of

genes that are smaller than a specified significance level (α ∈ (0.1, 0.05, 0.01, 0.005, 0.001)) among

all 5000 genes in a given scenario. The numbers are summarized in Table 6.2. Under all the

scenarios simulated, estimated type I error from TASC-B dovetails perfectly with the nominal sig-

nificance level, indicating well-controlled false positive rates under all scenarios. While Figure 6.5

and Table 6.2 focus on the lower range of the p-values, Figure 6.6 shows that p-values from TASC-

B are uniformly distributed in the mid and upper regions as well. Overall, TASC-B Test #2 has

well-controlled type I error rate, and is well-behaved under the null.
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Figure 6.5: Q-Q plots of −log10(p) comparing the p-values extracted from Test #2 (subsec-
tion 6.2.4) performed with TASC-B model, and the expected quantile drawn from a uniform dis-
tribution on (0, 1). Dotted line indicates the unit line, with intercept equal to 0, and slope equal to 1.
Methods with well-controlled type I error should generate a line overlapping the unit line. θg and pBg
used to simulate the scenario is labeled on the right and top side of the graph, with rows differing
in θg and columns pBg .
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Figure 6.6: Histograms of raw p-values extracted from TASC-B Test #2 results (subsection 6.2.4).
With 5000 genes in 50 bins, each bin is expected to have a density of 50/5000 = 1%, which is
indicated with the dotted line. Methods with well-controlled type I error should generate a histogram
that evenly distributed between (0, 1). θg and pBg used to simulate the scenario is labeled on the
right and top side of the graph, with rows differing in θg and columns pBg .
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Significance Level
pBg θg 0.1 0.05 0.01 0.005 0.001
0.2 2 0.1098 0.058 0.0126 0.0058 0.001
0.2 3 0.1068 0.0496 0.012 0.007 0.0008
0.2 4 0.1088 0.0558 0.0114 0.0056 0.0008
0.2 5 0.1044 0.056 0.01 0.0052 0.0006
0.4 2 0.1054 0.0562 0.0086 0.0052 0.0018
0.4 3 0.103 0.0514 0.0098 0.0052 0.0006
0.4 4 0.1082 0.0558 0.0122 0.0062 0.001
0.4 5 0.1038 0.0502 0.008 0.0044 0.0004
0.6 2 0.0982 0.0522 0.0098 0.005 0.0014
0.6 3 0.1012 0.0502 0.0088 0.0034 0.0004
0.6 4 0.0958 0.048 0.0098 0.005 0.0012
0.6 5 0.1018 0.0508 0.0112 0.0054 0.0008
0.8 2 0.0936 0.0462 0.008 0.0044 0.0014
0.8 3 0.0942 0.0492 0.0082 0.005 0.0008
0.8 4 0.1012 0.0532 0.0074 0.003 0.0008
0.8 5 0.1134 0.0532 0.0114 0.0054 0.0012

Table 6.3: Estimated false positive rates from the null simulation with TASC-B Test #3 subsec-
tion 6.2.5. For each simulated scenario, the fraction of genes with raw p-value smaller than or
equal to a specific significance level among all 5000 genes is computed. The estimated FPR using
five different significance levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.

Using the simulated data described at the beginning of subsection 6.3.2, we also tested the per-

formance of TASC-B Test #3 under the null. From Figure 6.7, under all scenarios simulated, Test

#3 has well-controlled type I error, with the distribution of raw p-values closely resembling a uni-

formly distributed random variable. To quantitatively illustrate the behavior of Test #3 under the null

conditions, we estimated the type I error rate by computing the fraction of genes that are smaller

than a specified significance level (α ∈ (0.1, 0.05, 0.01, 0.005, 0.001)) among all 5000 genes in a

given scenario. The numbers are summarized in Table 6.3. Under all the scenarios simulated, es-

timated type I error from TASC-B dovetails perfectly with the nominal significance level, indicating

well-controlled false positive rates under all scenarios. In addition, Figure 6.8 shows that p-values

from Test #3 are uniformly distributed in the mid and upper regions as well. Overall, TASC-B Test

#3 has well-controlled type I error rate, and is well-behaved under the null.

The same simulated null dataset (subsection 6.3.2) is also used to benchmark Test #4 (subsec-

tion 6.2.6) under the null. From Figure 6.9, under all scenarios simulated, Test #4 has well-

controlled type I error, with the distribution of raw p-values closely resembling a uniformly distributed

random variable. To quantitatively illustrate the behavior of Test #3 under the null conditions, we

estimated the type I error rate by computing the fraction of genes that are smaller than a specified
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Figure 6.7: Q-Q plots of −log10(p) comparing the p-values extracted from Test #3 (subsec-
tion 6.2.5) performed with TASC-B model, and the expected quantile drawn from a uniform dis-
tribution on (0, 1). Dotted line indicates the unit line, with intercept equal to 0, and slope equal to 1.
Methods with well-controlled type I error should generate a line overlapping the unit line. θg and pBg
used to simulate the scenario is labeled on the right and top side of the graph, with rows differing
in θg and columns pBg .
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Figure 6.8: Histograms of raw p-values extracted from TASC-B Test #3 results (subsection 6.2.4).
With 5000 genes in 50 bins, each bin is expected to have a density of 50/5000 = 1%, which is
indicated with the dotted line. Methods with well-controlled type I error should generate a histogram
that evenly distributed between (0, 1). θg and pBg used to simulate the scenario is labeled on the
right and top side of the graph, with rows differing in θg and columns pBg .
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Figure 6.9: Q-Q plots of −log10(p) comparing the p-values extracted from Test #4 (subsec-
tion 6.2.5) performed with TASC-B model, and the expected quantile drawn from a uniform dis-
tribution on (0, 1). Dotted line indicates the unit line, with intercept equal to 0, and slope equal to 1.
Methods with well-controlled type I error should generate a line overlapping the unit line. θg and pBg
used to simulate the scenario is labeled on the right and top side of the graph, with rows differing
in θg and columns pBg .

significance level (α ∈ (0.1, 0.05, 0.01, 0.005, 0.001)) among all 5000 genes in a given scenario. The

numbers are summarized in Table 6.4. Under all the scenarios simulated, estimated type I error

from TASC-B dovetails perfectly with the nominal significance level, indicating well-controlled false

positive rates under all scenarios. In addition, Figure 6.10 shows that p-values from Test #4 are uni-

formly distributed in the mid and upper regions as well. Overall, TASC-B Test #4 has well-controlled

type I error rate, and is well-behaved under the null.
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Figure 6.10: Histograms of raw p-values extracted from TASC-B Test #4 results (subsection 6.2.4).
With 5000 genes in 50 bins, each bin is expected to have a density of 50/5000 = 1%, which is
indicated with the dotted line. Methods with well-controlled type I error should generate a histogram
that evenly distributed between (0, 1). θg and pBg used to simulate the scenario is labeled on the
right and top side of the graph, with rows differing in θg and columns pBg .
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Significance Level
pBg θg 0.1 0.05 0.01 0.005 0.001
0.2 2 0.1068 0.058 0.0114 0.0052 0.0014
0.2 3 0.0998 0.0498 0.0102 0.0058 0.0014
0.2 4 0.1104 0.0586 0.0112 0.0052 0.0014
0.2 5 0.1048 0.0546 0.0092 0.0054 0.0014
0.4 2 0.1078 0.0542 0.0126 0.0066 0.0016
0.4 3 0.0992 0.046 0.0078 0.004 0.0008
0.4 4 0.1022 0.051 0.0106 0.0048 0.0012
0.4 5 0.1004 0.049 0.008 0.0046 0.0006
0.6 2 0.1048 0.0506 0.01 0.0038 0.0008
0.6 3 0.1006 0.0504 0.0092 0.0036 0.0008
0.6 4 0.101 0.0508 0.0098 0.0048 0.0016
0.6 5 0.104 0.0532 0.0122 0.0056 0.0014
0.8 2 0.0904 0.045 0.0114 0.0048 0.0006
0.8 3 0.0896 0.0424 0.009 0.0046 0.001
0.8 4 0.0992 0.0498 0.0074 0.0044 0.0006
0.8 5 0.1042 0.0548 0.0106 0.005 0.0002

Table 6.4: Estimated false positive rates from the null simulation with TASC-B Test #4 subsec-
tion 6.2.6. For each simulated scenario, the fraction of genes with raw p-value smaller than or
equal to a specific significance level among all 5000 genes is computed. The estimated FPR using
five different significance levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.

6.3.3. Existing Methods Perform Unfavorably Compared to TASC-B Under the Null

SCRAN with DESeq2 As we have reviewed, DESeq2 (Love, Huber, and Anders, 2014) uses an

empirical Bayes approach for estimating gene-specific variance, by fitting a curve with the naı̈ve

estimates of mean and variance of all the genes, and shrinking the variance estimates to the curve

with a Bayesian prior. When used with single-cell data, this approach cannot take into consideration

the cell-to-cell variations of technical noises. In order to compensate for this, SCRAN (Lun, Bach,

and Marioni, 2016) is designed to normalize the read counts adjusting for specific noises that only

occur in scRNA-seq. We have combined these two methods as a benchmark for popular analysis

pipeline.

SCRAN with DESeq2 displays severe type I inflation under the null (Figure 6.11, Figure 6.12, Ta-

ble 6.5). In Figure 6.11, SCRAN with DESeq2 produces smaller p-values than expected from a

uniform distribution under the null. The severity of deviation increases as θg or pBg increases, with

significant inflation in the scenario with pBg = 0.8 and θg = 5. Similar trend can be spotted in the

table of estimated false positive rates (Table 6.5) as well. With pBg = 0.2 and θg = 2, estimated false

positive rate is 0.07 at significance level α = 0.1, which is conservative. With θg = 2 and pBg = 0.2,

the estimated false positive rate becomes 0.171 at α = 0.1, and with θg = 2 and pBg = 0.8, the
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Figure 6.11: Q-Q plots of −log10(p) comparing the p-values extracted from SCRAN coupled with
DESeq2, and the expected quantile drawn from a uniform distribution on (0, 1). Dotted line indicates
the unit line, with intercept equal to 0, and slope equal to 1. Methods with well-controlled type I error
should generate a line overlapping the unit line. θg and pBg used to simulate the scenario is labeled
on the right and top side of the graph, with rows differing in θg and columns pBg .

estimated FPR is 0.1376, both of which are seriously anti-conservative. This trend happens in all

significance levels we have tested.

Type I inflation is observed in the histograms of the raw p-values as well (Figure 6.12). As θg and

pBg increase, the density concentrates on the lower bound of (0, 1), indicating more p-values smaller

than the expected value under the null.

MAST is a method for detecting DE genes, with considerations for inflated zeros in scRNA-seq
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Figure 6.12: Histograms of raw p-values extracted from SCRAN coupled with DESeq2. With 5000
genes in 50 bins, each bin is expected to have a density of 50/5000 = 1%, which is indicated with
the dotted line. Methods with well-controlled type I error should generate a histogram that evenly
distributed between (0, 1). θg and pBg used to simulate the scenario is labeled on the right and top
side of the graph, with rows differing in θg and columns pBg .
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Significance Level
pBg θg 0.1 0.05 0.01 0.005 0.001
0.2 2 0.07 0.0358 0.0054 0.0034 0.001
0.2 3 0.1056 0.0572 0.0132 0.0072 0.0028
0.2 4 0.1452 0.0834 0.0218 0.0136 0.0042
0.2 5 0.171 0.1002 0.0336 0.0184 0.0062
0.4 2 0.0976 0.0496 0.0112 0.0072 0.0024
0.4 3 0.1304 0.0726 0.0204 0.0112 0.0054
0.4 4 0.1828 0.1122 0.0394 0.0254 0.0078
0.4 5 0.219 0.1408 0.0516 0.0338 0.0126
0.6 2 0.109 0.0572 0.012 0.0074 0.0028
0.6 3 0.1636 0.0974 0.031 0.0204 0.0058
0.6 4 0.207 0.1318 0.05 0.0374 0.0138
0.6 5 0.2402 0.1652 0.0668 0.049 0.0246
0.8 2 0.1376 0.0782 0.0236 0.0148 0.0044
0.8 3 0.1822 0.1146 0.0372 0.0222 0.0088
0.8 4 0.2306 0.1554 0.0656 0.0452 0.0228
0.8 5 0.2852 0.2096 0.098 0.0732 0.0378

Table 6.5: Estimated false positive rates from the null simulation with SCRAN coupled with DE-
Seq2. For each simulated scenario, the fraction of genes with raw p-value smaller than or equal
to a specific significance level among all 5000 genes is computed. The estimated FPR using five
different significance levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.

data. It tests for the differences in proportions of zero between different groups using Bayesian

regularized logistic regression (discrete), tests for difference in mean positive expression using

generalized linear regression with a conditional normal distribution (continuous), and combine the

χ2-statistics from the above two tests to test for changes in either (hurdle). It does not consider

the technical noises intrinsic in the dataset, but rather rely on a priori normalization methods like

SCRAN. This not only renders MAST susceptible for mistakes from normalization, but also limits the

power of this method due to this two-step approach. This is suggested in the null simulation where

all three tests of MAST is significantly conservative compared to TASC-B (Figure 6.13, Figure 6.15,

Figure 6.17,Figure 6.14,Figure 6.16,Figure 6.18).
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Figure 6.13: Q-Q plots of −log10(p) comparing the p-values extracted from MAST Continuous Test,
and the expected quantile drawn from a uniform distribution on (0, 1). Dotted line indicates the unit
line, with intercept equal to 0, and slope equal to 1. Methods with well-controlled type I error should
generate a line overlapping the unit line. θg and pBg used to simulate the scenario is labeled on the
right and top side of the graph, with rows differing in θg and columns pBg .

152



Significance Level

pBg θg 0.1 0.05 0.01 0.005 0.001

0.2 2 0.0568 0.0208 0.0018 0.0012 0

0.2 3 0.0684 0.0198 0.002 0.0006 0.0002

0.2 4 0.0718 0.0212 0.002 0.0006 0

0.2 5 0.0728 0.0228 0.0012 0.0004 0

0.4 2 0.0728 0.0222 0.0016 0.001 0.0002

0.4 3 0.0726 0.0248 0.0006 0 0

0.4 4 0.0718 0.0256 0.0012 0.0004 0

0.4 5 0.0688 0.0244 0.001 0.0004 0

0.6 2 0.0668 0.0224 0.001 0.0006 0

0.6 3 0.0756 0.0256 0.0022 0.0008 0

0.6 4 0.0722 0.0252 0.0022 0.0006 0

0.6 5 0.0708 0.0238 0.0018 0 0

0.8 2 0.0716 0.0214 0.0012 0.0002 0

0.8 3 0.0742 0.0276 0.001 0.0006 0

0.8 4 0.0708 0.0236 0.0018 0.0006 0.0002

0.8 5 0.0766 0.0282 0.0012 0 0

Table 6.6: Estimated false positive rates from the null simulation with MAST Continuous Test. For
each simulated scenario, the fraction of genes with raw p-value smaller than or equal to a spe-
cific significance level among all 5000 genes is computed. The estimated FPR using five different
significance levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.
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Figure 6.14: Histograms of raw p-values extracted from MAST Continuous Test. With 5000 genes in
50 bins, each bin is expected to have a density of 50/5000 = 1%, which is indicated with the dotted
line. Methods with well-controlled type I error should generate a histogram that evenly distributed
between (0, 1). θg and pBg used to simulate the scenario is labeled on the right and top side of the
graph, with rows differing in θg and columns pBg .

The continuous test of MAST consistently over-estimates the p-values under the null in our sim-

ulations (Figure 6.13), with p-value density more concentrated around 0.25 (Figure 6.14). This

happens consistently across all simulated scenarios, suggesting a systemic under-reporting of sig-

nificant. With α = 0.1, in all simulated scenarios, the estimated false positive rates range from

0.0568 to 0.0756, at least a quarter lower than the significance level.

154



Figure 6.15: Q-Q plots of −log10(p) comparing the p-values extracted from MAST Discrete Test,
and the expected quantile drawn from a uniform distribution on (0, 1). Dotted line indicates the unit
line, with intercept equal to 0, and slope equal to 1. Methods with well-controlled type I error should
generate a line overlapping the unit line. θg and pBg used to simulate the scenario is labeled on the
right and top side of the graph, with rows differing in θg and columns pBg .
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Significance Level

pBg θg 0.1 0.05 0.01 0.005 0.001

0.2 2 0.0992 0.0488 0.0072 0.003 0.0006

0.2 3 0.0974 0.047 0.0108 0.0052 0.0008

0.2 4 0.1058 0.0546 0.0104 0.0058 0.0012

0.2 5 0.1014 0.0492 0.0098 0.0032 0.0008

0.4 2 0.1024 0.0546 0.0124 0.0074 0.0016

0.4 3 0.0938 0.0472 0.0084 0.0034 0.0002

0.4 4 0.0974 0.0482 0.0094 0.004 0.0008

0.4 5 0.0988 0.0506 0.0094 0.005 0.001

0.6 2 0.1042 0.0526 0.0116 0.0048 0.0004

0.6 3 0.1032 0.0524 0.0104 0.0054 0.0006

0.6 4 0.1004 0.0572 0.0104 0.0066 0.0012

0.6 5 0.1078 0.0572 0.0132 0.0058 0.0012

0.8 2 0.1018 0.0454 0.0108 0.0054 0.001

0.8 3 0.0906 0.048 0.0092 0.0048 0.0014

0.8 4 0.1126 0.0544 0.0106 0.0052 0.0012

0.8 5 0.1012 0.0516 0.011 0.005 0.0006

Table 6.7: Estimated false positive rates from the null simulation with MAST Discrete Test. For each
simulated scenario, the fraction of genes with raw p-value smaller than or equal to a specific signifi-
cance level among all 5000 genes is computed. The estimated FPR using five different significance
levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.
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Figure 6.16: Histograms of raw p-values extracted from MAST Discrete Test. With 5000 genes in
50 bins, each bin is expected to have a density of 50/5000 = 1%, which is indicated with the dotted
line. Methods with well-controlled type I error should generate a histogram that evenly distributed
between (0, 1). θg and pBg used to simulate the scenario is labeled on the right and top side of the
graph, with rows differing in θg and columns pBg .

This tendency to be conservative does not extend to the discrete test. P-values from this test are

consistent with a uniform distribution after − log10 transformation (Figure 6.15). A closer look at the

histograms (Figure 6.16), however, reveals that the distribution of these p-values are not completely

uniform on (0, 1), but rather concentrated on certain values, forming spikes on the histograms. We

suspect this is due to the Bayesian shrinkage used for regularization. For the discrete test, p-values

follow the nominal significance level quite closely, at least in levels we have tested (Table 6.7).
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Figure 6.17: Q-Q plots of −log10(p) comparing the p-values extracted from MAST Hurdle Test, and
the expected quantile drawn from a uniform distribution on (0, 1). Dotted line indicates the unit line,
with intercept equal to 0, and slope equal to 1. Methods with well-controlled type I error should
generate a line overlapping the unit line. θg and pBg used to simulate the scenario is labeled on the
right and top side of the graph, with rows differing in θg and columns pBg .

158



Significance Level

pBg θg 0.1 0.05 0.01 0.005 0.001

0.2 2 0.0768 0.033 0.0042 0.0024 0.0004

0.2 3 0.0756 0.0356 0.0046 0.0022 0.0004

0.2 4 0.0828 0.0418 0.0074 0.0032 0.0008

0.2 5 0.08 0.036 0.0042 0.0014 0.0006

0.4 2 0.0836 0.0414 0.008 0.0046 0.0006

0.4 3 0.0792 0.033 0.0044 0.0022 0.0002

0.4 4 0.083 0.0346 0.0038 0.0018 0.0004

0.4 5 0.083 0.0342 0.0064 0.0026 0.0004

0.6 2 0.0816 0.0358 0.0054 0.002 0

0.6 3 0.0824 0.0388 0.0054 0.0022 0.0004

0.6 4 0.0882 0.039 0.0072 0.0038 0.0006

0.6 5 0.087 0.039 0.0066 0.0036 0.0008

0.8 2 0.0782 0.0374 0.0058 0.0026 0.0004

0.8 3 0.0756 0.0322 0.0062 0.003 0.001

0.8 4 0.0878 0.037 0.0048 0.0026 0.0006

0.8 5 0.0846 0.0398 0.0064 0.002 0

Table 6.8: Estimated false positive rates from the null simulation with MAST Hurdle Test. For each
simulated scenario, the fraction of genes with raw p-value smaller than or equal to a specific signifi-
cance level among all 5000 genes is computed. The estimated FPR using five different significance
levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.
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Figure 6.18: Histograms of raw p-values extracted from MAST Hurdle Test. With 5000 genes in 50
bins, each bin is expected to have a density of 50/5000 = 1%, which is indicated with the dotted
line. Methods with well-controlled type I error should generate a histogram that evenly distributed
between (0, 1). θg and pBg used to simulate the scenario is labeled on the right and top side of the
graph, with rows differing in θg and columns pBg .

Combining the discrete and continuous tests, MAST can generate one unified p-value for testing

whether there is any change in either the proportions of zero or the positive mean expression

between groups. Since this hurdle test simply combines the value and degrees of freedom of the

two χ2 statistics, it inherits the tendency to be conservative from the continuous test (Figure 6.17),

but smooths out the spikes from the discrete test (Figure 6.18). The end result is a still conservative

test with slightly improved empirical FPR (Table 6.8).
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Figure 6.19: Q-Q plots of −log10(p) comparing the p-values extracted from the original TASC
package, and the expected quantile drawn from a uniform distribution on (0, 1). Dotted line indicates
the unit line, with intercept equal to 0, and slope equal to 1. Methods with well-controlled type I error
should generate a line overlapping the unit line. θg and pBg used to simulate the scenario is labeled
on the right and top side of the graph, with rows differing in θg and columns pBg .
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Significance Level

pBg θg 0.1 0.05 0.01 0.005 0.001

0.2 2 0.0994 0.0472 0.0096 0.0038 0.0006

0.2 3 0.0958 0.0498 0.0104 0.0048 0.0012

0.2 4 0.1074 0.053 0.0118 0.0056 0.0008

0.2 5 0.1004 0.049 0.0102 0.0036 0.0008

0.4 2 0.1036 0.0526 0.0126 0.0076 0.002

0.4 3 0.0964 0.048 0.0076 0.0038 0.0006

0.4 4 0.1044 0.0494 0.0106 0.0046 0.001

0.4 5 0.102 0.052 0.0084 0.0042 0.0008

0.6 2 0.1104 0.0538 0.008 0.0036 0.0002

0.6 3 0.0978 0.0504 0.0096 0.0042 0.0008

0.6 4 0.1024 0.0506 0.0116 0.0048 0.002

0.6 5 0.1064 0.054 0.0112 0.0068 0.0014

0.8 2 0.1028 0.0526 0.0104 0.006 0.001

0.8 3 0.098 0.0474 0.0092 0.0056 0.0018

0.8 4 0.1034 0.0518 0.0112 0.0054 0.0004

0.8 5 0.1004 0.0518 0.0122 0.005 0.0008

Table 6.9: Estimated false positive rates from the null simulation with the original TASC package.
For each simulated scenario, the fraction of genes with raw p-value smaller than or equal to a spe-
cific significance level among all 5000 genes is computed. The estimated FPR using five different
significance levels (0.1, 0.05, 0.01, 0.005, 0.001) are listed.
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Figure 6.20: Histograms of raw p-values extracted from the original TASC package. With 5000
genes in 50 bins, each bin is expected to have a density of 50/5000 = 1%, which is indicated with
the dotted line. Methods with well-controlled type I error should generate a histogram that evenly
distributed between (0, 1). θg and pBg used to simulate the scenario is labeled on the right and top
side of the graph, with rows differing in θg and columns pBg .

The original TASC does not consider pBg . Fortunately this does not cause any inflation in any sim-

ulated scenarios, even when significant proportions of cells are biologically zero i.e., pBg = 0.2 (Fig-

ure 6.19). The overall distribution of the p-values from TASC resembles that of the uniform(0, 1)

(Figure 6.20). Upon closer look at the numbers, we have found slight evidence of anti-conservativeness

in certain scenarios. For example, when pBg = 0.2 and θg = 4 (Table 6.9), empirical FPR is 7.4%

higher than the nominal significance level (α = 0.1). This could easily due to the estimation er-
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ror of the simulation. Overall, the original TASC package will not experience type I inflation in the

presence of significant bursting, as long as there is no difference in bursting levels between groups.

6.3.4. Performance Under the Alternative Hypothesis

To assess the sensitivity of the likelihood ratio tests implemented in TASC-B, data simulated un-

der a variety of alternative hypotheses are fitted with TASC-B and other methods for comparison.

All combinatorial scenarios with ∆pBg = pBg1 − pBg0 ∈ {0, 0.1, 0.2, 0.3, 0.4} and θg = θg1 − θg0 ∈

{−3,−2,−1, 0, 1, 2, 3}, except for the combinations (∆pBg , ∆θg) ∈ {(0,−3), (0,−2), (0,−1)}, as these

conditions are identical to (0, 3), (0, 2), (0, 1) respectively. Other parameters are identical to the nulls

simulation (subsection 6.3.2). Two groups of 300 cells each are simulated, compared using three

LRTs (TASC-B Test2 #2, 3 and 4).
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Figure 6.21: Q-Q plots of −log10(p) comparing the p-values extracted from TASC-B Test #2, and
the expected quantile drawn from a uniform distribution on (0, 1) under a series of alternative hy-
potheses. Dotted line indicates the unit line, with intercept equal to 0, and slope equal to 1. Methods
with well-controlled type I error should generate a line overlapping the unit line. ∆θg and ∆pBg used
to simulate the scenario is labeled on the right and top side of the graph, with rows differing in θg
and columns pBg .
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Figure 6.22: Heat maps illustrating the estimated power of the TASC-B Test #2 under various
simulated scenarios. Empirical power is represented by the fraction of the genes with LRT p-values
smaller than the specified significance levels (α ∈ {0.1, 0.05, 0.01, 0.005, 0.001}) among all genes
simulated. Darker color represents higher power. Scenarios that are omitted from the simulation
are filled with grey. ∆θg and ∆pBg used to simulate the scenario is labeled on the left and bottom
side of the graph, with rows differing in θg and columns pBg .
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TASC-B Test #2 is testing for differences in bursting probability pBg between conditions. This test in

our simulation successfully picks up the differences in pBg , and the power is highly dependent on the

difference of bursting levels between the two groups (Figure 6.21). As ∆pBg increases, the Q-Q plot

deviates more severely from the unit line, suggesting that p-values are increasingly smaller than

expected from a random uniform distribution. The empirical power at different significance levels,

when plotted against the difference in pBg and θg on a heat map, corroborates the above claim

(Figure 6.22). Interestingly, Test #2 has the most power when ∆θg is not extreme. For example,

when ∆pBg − 0.3, significant power loss is observed when ∆θg = 3 or ∆θg = −3, with the former

causing more power loss than the latter. Overall, the power curve of Test #2 is a function not only

of the effect size ∆pBg , but is also influenced by the positive mean difference ∆θg. This is primarily

caused by the difficulties of attributing zeros to bursting, when ∆θg can also explain the difference

in proportions of zero, i.e., causing it to fluctuate in the same direction.

Moreover, TASC-B Test #2 behaves quite well when ∆θg ̸= 0 while ∆pBg = 0. In this scenario, no

type I inflation is observed, indicating resistance to confounding by ∆θg with this test.
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Figure 6.23: Q-Q plots of −log10(p) comparing the p-values extracted from TASC-B Test #3, and
the expected quantile drawn from a uniform distribution on (0, 1) under a series of alternative hy-
potheses. Dotted line indicates the unit line, with intercept equal to 0, and slope equal to 1. Methods
with well-controlled type I error should generate a line overlapping the unit line. ∆θg and ∆pBg used
to simulate the scenario is labeled on the right and top side of the graph, with rows differing in θg
and columns pBg .
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Figure 6.24: Heat maps illustrating the estimated power of the TASC-B Test #3 under various
simulated scenarios. Empirical power is represented by the fraction of the genes with LRT p-values
smaller than the specified significance levels (α ∈ {0.1, 0.05, 0.01, 0.005, 0.001}) among all genes
simulated. Darker color represents higher power. Scenarios that are omitted from the simulation
are filled with grey. ∆θg and ∆pBg used to simulate the scenario is labeled on the left and bottom
side of the graph, with rows differing in θg and columns pBg .
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TASC-B Test #3 tests for the difference in the biological mean after taking into consideration pos-

sible differences in the bursting probabilities between groups. This test behaves very well under

our simulation, a modest change of 2 on the log scale can be detected with sufficient power (Fig-

ure 6.23). The power of Test #3 is primarily influenced by the effect size (Figure 6.24). Levels of

∆pBg does not affect the empirical power at any significance level. It is an overall powerful method at

modest effect size. For example, at α = 0.05, a difference of |∆θg| = 2 can be detected with almost

100% power.

Similar to Test #2, Test #3 is not confounded by changes in ∆pBg . When ∆θg = 0 and ∆pBg ̸= 0, no

type I inflation is observed.
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Figure 6.25: Q-Q plots of −log10(p) comparing the p-values extracted from TASC-B Test #4, and
the expected quantile drawn from a uniform distribution on (0, 1) under a series of alternative hy-
potheses. Dotted line indicates the unit line, with intercept equal to 0, and slope equal to 1. Methods
with well-controlled type I error should generate a line overlapping the unit line. ∆θg and ∆pBg used
to simulate the scenario is labeled on the right and top side of the graph, with rows differing in θg
and columns pBg .
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Figure 6.26: Heat maps illustrating the estimated power of the TASC-B Test #4 under various
simulated scenarios. Empirical power is represented by the fraction of genes with LRT p-values
smaller than the specified significance levels (α ∈ {0.1, 0.05, 0.01, 0.005, 0.001}) among all genes
simulated. Darker color represents higher power. Scenarios that are omitted from the simulation
are filled with grey. ∆θg and ∆pBg used to simulate the scenario is labeled on the left and bottom
side of the graph, with rows differing in θg and columns pBg .
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Test #4 tests for changes in either pBg or θg between the two groups. It does not simply combine the

two χ2 statistics and their degrees of freedom like MAST, but computes a separate LRT by relaxing

the constraints on the two parameters compared to the null hypothesis. It is highly sensitive to any

changes in the vector (pBg , θg). Due to the stricter constraint on the null hypothesis, it is usually more

powerful than Test #2 or #3, even when only 1 parameters is different between groups (Figure 6.25).

For example, when ∆θg = 0, Test #4 is overall more powerful than Test #2, because it can achieve

a higher level of confidence that at least one parameter has changed.

Except for a few difficult scenarios with only slight changes in pBg and θg, Test # can achieve almost

100% power at low significance level such as α = 0.05 (Figure 6.26). It will be a great tool for

screening any changes in either pBg or θg prior to running Tests #2 or #3 for more detailed testing.

6.3.5. Comparison to Other Methods Under Alternative Hypotheses

The same simulated groups are also compared with existing methods such as SCRAN coupled

with DESeq2, MAST and the original TASC package. Similar graphs to those in subsection 6.3.4

are produced for all methods. For the interest of concision, two summary graphs are shown here,

depicting the empirical power at significance levels α = 0.05 for all methods under all simulated

scenarios.

SCRAN with DESeq2

SCRAN coupled with DESeq2 suffers from severe type I inflation in our null simulations. It tends

to be anti-conservative, especially when pBg and θg gets larger. This trend continues in situations

where only one parameter is unchanged (∆pBg = 0 or ∆θg = 0). For example, when ∆θg = 0

and ∆pBg = 0.4, SCRAN with DESeq2 is reporting 40% of the genes are differentially expressed,

while in reality none of them are. This tendency to be anti-conservative may cause serious trouble

with genes that are constitutively expressed, which account for the majority of the transcriptome in

certain cell types, as we will see in Figure 6.28.

MAST The three tests of MAST (discrete, continuous and hurdle) vaguely overlap with TASC-B

Tests #2, #3 and #4. However, their tests do not naturally translate to biologically interpretable

concepts. When ∆pBg = 0, the MAST discrete test, which simply compares the proportion of zeros,

without considerations of technical dropout or Poisson sampling, is severely confounded by the
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change in mean expression θg, while their continuous tests are notably underpowered in the same

situations. In our previous studies, we have shown that under the null, MAST continuous tests are

overly conservative in all simulated scenarios. This has affected the power of this test in this new

simulation. In all scenarios simulated, TASC-B Test #3 overpowers the MAST continuous tests by a

significant percentage. In scenarios where ∆pBg = 0.4 and ∆θg = 3, MAST continuous almost has

no power, while the power of TASC-B is almost 100% under these circumstances.

TASC The original TASC model, due to its lack of consideration for true biological zeros, suffer in

some of the simulated scenarios. For example, when ∆pBg and ∆θg influences the mean expression

in opposite directions (e.g., ∆pBg = 0.4, ∆θg = −3), thus canceling each other out, TASC is not

immune to this type of confounding when testing for the difference in mean, while TASC-B can

easily achieve a power of 100% in these cases. Moreover, this confounding can also cause TASC

to report false positive results when ∆θg = 0 but ∆pBg ̸= 0.

6.4. Application to Real World Dataset

We have explored the performance of our TASC-B model, especially Test #2, as our package is

one of the first methods capable of detecting the differences in levels of bursting probability to our

knowledge. We have looked at all the level-1 classes from the Zeisel et al. dataset using Test #1

and #2 of TASC-B.

6.4.1. Test #1 on Zeisel et al. Data

Surprisingly, the majority of genes we have investigated are constitutively expressed (Figure 6.28),

with some level-1 classes (e.g., microglia and endothelial mural) containing more genes with sig-

nificant bursting than others. Interestingly, distribution is bimodal, with the mode closer to zero

representing genes that are turned off in a significant portion of cells. The other mode around

logit
[
pBg

]
= 15 represent those genes that are constitutively “on”, i.e., pBg ≈ 1.

Looking closer, we have plotted the distribution of log read counts from the most significant genes

that display the pattern of transcriptional bursting from all seven level-1 classes (only two are shown

in Figure 6.29 and Figure 6.30). Notice that the distributions of the log read counts from the signifi-

cantly bursting genes show severe zero inflation with an additional mode distant from 0. This visual

confirmation gives us confidence that the model is picking up actual bursty genes rather than ran-
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Figure 6.27: Bar plots illustrating the estimated power of the TASC-B tests (Tests #2, 3 and 4), and
existing methods (SCRAN coupled with DESeq2, MAST and the original TASC package) under
various simulated scenarios. Empirical power is represented by the fraction of genes with p-values
smaller than the specified significance level (α = 0.05) among all genes simulated. ∆θg and ∆pBg
used to simulate the scenario is labeled on the right and top side of the graph, with rows differing
in θg and columns pBg .
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Figure 6.28: Histograms illustrating the distribution of logit-transformed probability of bursting in all
seven level-1 classes from the Zeisel et al. data.
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Figure 6.29: Histograms illustrating the distribution of log read counts (log(Ycg + 1)) of the most
significantly bursty genes in interneurons of the Zeisel et al. data.

dom noise in the signal. Judging from the FDR-adjusted p-values, our method is quite conservative

in calling significantly bursting genes. For example, the gene LAMP5 displays an obvious bimodal

pattern in interneurons, however, the false discovery rate is only 0.206. Test #1 is ideal for stringent

screening of the whole genome for bursting genes.

Interestingly, one gene in particular, “Xist” has been discovered repeatedly by TASC-B to be consis-

tently bursty in all the level-1 classes. This fact has never been reported before, and since Xist is a

major effector in the process of X-chromosome inactivation, suggesting that transcriptional bursting

might be related to these downstream epigenetic effects.

6.4.2. Test #2 on Zeisel et al. Data

We have also compared the difference in levels of bursting in the selected genes from any two of

the level-1 classes in the Zeisel et al. data, using Tests #2, #3 and #4. 21 comparisons have been

made, but only one is shown here (Figure 6.31) as an example.

We are able to visually inspect that the distributions of log read counts from the two groups un-

der comparison (interneurons vs endothelial mural) are distinctively different, confirming that the

method is picking up genes that are indeed with differential levels of bursting probability. Take the
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Figure 6.30: Histograms illustrating the distribution of log read counts (log(Ycg + 1)) of the most
significantly bursty genes in endothelial mural of the Zeisel et al. data.

Figure 6.31: Histograms illustrating the distribution of log read counts (log(Ycg + 1)) of the most
significantly differentially bursting genes called by Test #2 in endothelial mural compared to in-
terneurons of the Zeisel et al. data.
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gene “Miat” for example, in interneurons, the pattern of expression (red) closely resembles a con-

stitutively expressed gene. The majority of interneurons express this gene, and the inflated zeros

can be attributed to technical dropouts as well as Poisson sampling. The majority of endothelial

mural cells do not express Miat. For those that do, the expression is on average similar to that

in interneurons, which suggests a scenario of modulation by transcriptional bursting. By turning

off the expression of this gene in some cells, while leaving the rest in the “on” state, the tissue is

able to lower the average expression (including the zeros) of Miat in the tissue, without changing

the expression level in each single cell. The situation with the gene “Insr” is different. The overall

proportion of zeros is somewhat similar between the endothelial mural cells and the interneurons.

However, in interneurons, Insr is in a state of lowly constitutive expression. In endothelial murals,

the mean positive expression of Insr’ is increased compared to that in interneurons. The reduction

of zeros from Poisson sampling is compensated by an increase of zeros from Insr being turned off

in some of the endothelial cells. Although the proportion of zeros is unchanged between groups,

there is evidence that changes in transcriptional bursting happens due to the different polarity in the

expression pattern.

Overall, Test #2 has discovered evidence of DB in all comparisons from the Zeisel et al. data, sug-

gesting the pervasive presence of regulation by transcriptional bursting.
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Figure 6.32: Histograms illustrating the distribution of the FDR-adjusted p-values from Test #2
comparing cell types from the Zeisel et al. data. Names of the two groups compared are labeled to
the left (group 0) and top (group 1) of the panel.

Overall in Zeisel et al. data, DB varies depending on the groups being compared (Figure 6.32,

Table 6.10). In some comparisons, significant portion of genes display DB behaviors, for example,

the majority of genes tested that are co-expressed in pyramidal CA1 and cells from one of the

following tissues: microglia, astrocytes ependymal, or endothelial mural, show distinctive patterns

of bursting (Figure 6.32). However, when comparing pyramidal CA1 to pyramidal SS, interneurons

or oligodendrocytes, no significant DB is observed. Bursting patterns essentially delineates the

seven level-1 classes into two categories:

• pyramidal CA1, pyramidal SS, interneurons(neuron-like cells)

• astrocytes ependymal, endothelial mural, microglia (non-neuron-like cells)

The above classes essentially recapitulate the original classification, Figure 1C from Zeisel et al.,

2015, in which the two groups form the two major clusters. Genes from oligodendrocytes display

moderate amount of DB when compared to both types. In the original paper, it is reported as a
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member of non-neuron-like cell clusters, although this could be an artifact of the clustering tech-

nique used in the paper. In our opinion, oligodendrocytes should be a transitional type between the

neuron-like and non-neuron-like cells, and should belong to a separate category, judging from the

bursting probability data alone.

Figure 6.33: Histograms illustrating the distribution of the difference in level of transcriptional burst-
ing (∆pBg = pBg1 − p

B
g0) in any two cell types from the Zeisel et al. data. The difference is computed

with fitted values from Test #2. Names of the two groups compared are labeled to the left (group 0)
and top (group 1) of the panel. The dotted lines indicate zero.

Generally, the genes are more constitutively “on” in neuron-like cells, i.e., less likely to be bursty

compared to non-neuron-like cells (Figure 6.33). The difference in bursting probabilities can be as

drastic as over 40%.

This suggests that transcriptional bursting, especially bursting probabilities, might be more indica-

tive of the underlying cellular functions than we previously thought. Further investigations might

be needed to see if bursting probabilities can be used to cluster cellular functions ad hoc in novel

tissues.
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6.4.3. Test #3 on Zeisel et al. Data

Test #3 aims to detect genes whose expression is changed between the two groups compared,

after accounting for technical noise as well as bursting discrepancies. This is equivalent to testing

the difference in the mean positive expression of a gene provided that it is in the “on” state. From

the histograms of read counts of the most significant genes called by Test #3 (Figure 6.34), one

can observe an obvious shift of the histograms. This visual inspection confirms the validity of our

results.

Figure 6.34: Histograms illustrating the distribution of log read counts (log(Ycg + 1)) of the most
significantly DB genes called by Test #3 in endothelial mural compared to interneurons of the Zeisel
et al. data.

Interestingly, the number of significant genes detected from Test #3 shows a slightly different pat-

terns than Test #2 (Figure 6.35, Table 6.11). The neuron-like cells (pyramidal CA1, pyramidal SS

and interneurons) still cluster together by containing only a moderate number of genes that are sig-

nificantly DE. Within-group difference in the non-neuron-like cells including astrocytes ependymal,

endothelial mural and microglia is also mild, consistent with the patterns from bursting probabilities.

Oligodendrocytes in the case of DE, cluster closer to the non-neuron-like group, with a majority of
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the genes DE when compared to the neuron-like cell types. This is actually consistent with the

classification from the original paper (Zeisel et al., 2015).

Another exception is genes in microglia. While displaying severe DB, they do not tend to be DE

when compared to neuron-like cells such as pyramidal CA1, pyramidal SS, oligodendrocytes or

interneurons. Genes in endothelial mural, however, show significance difference in both bursting

and expression patterns from the neuron-like cells.

Figure 6.35: Histograms illustrating the distribution of the FDR-adjusted p-values from Test #3
comparing cell types from the Zeisel et al. data. Names of the two groups compared are labeled to
the left (group 0) and top (group 1) of the panel.

Within neuron-like cells, the mean difference between two cells types is close to 0 (Figure 6.36).

Similar situation is observed within the non-neuron-like cells, albeit with a slightly larger spread

(Figure 6.36). When comparing across groups, however, gene expression is overall lower in non-

neuron-like cells, such as astrocytes ependymal, endothelial mural, and microglia, compared to

neuron-like cells such as pyramidal CA1, pyramidal SS and interneurons (Figure 6.36). Again

consistent with the original report, the expression pattern of oligodendrocytes are closer to non-
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neuron-like cells.

Figure 6.36: Histograms illustrating the distribution of the difference in positive mean expression
(∆θg = θg1 − θg0) in any two cell types from the Zeisel et al. data. The difference is computed with
fitted values from Test #3. Names of the two groups compared are labeled to the left (group 0) and
top (group 1) of the panel. The dotted lines indicate zero.

In general, there is a slight decoupling of DE and DB, despite their close relationship with each

other. Further investigation is needed on whether independent mechanisms are responsible for

this decoupling, and if there is any biological relevance behind this phenomenon.

6.4.4. Test #4 on Zeisel et al. Data

Co-testing of significance of DB and DE (Test #4) is primarily intended as a pre-screening procedure

for downstream testing for DB or DE separately with Tests #2 and #3. As testing procedures are

computationally expensive.
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Figure 6.37: Histograms illustrating the distribution of log read counts (log(Ycg + 1)) of the most
significantly DB genes called by Test #4 in endothelial mural compared to interneurons of the Zeisel
et al. data.

A visual inspection of the distribution of read counts from genes discovered by Test #4 shows a

great separation of histograms, indicating high confidence in either DB or DE (Figure 6.37).
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Figure 6.38: Histograms illustrating the distribution of the FDR-adjusted p-values from Test #4
comparing cell types from the Zeisel et al. data. Names of the two groups compared are labeled to
the left (group 0) and top (group 1) of the panel.

Overall, the patterns resemble that of Tests #2 and #3, with clear clusters of two groups (neuron-

like and non-neuron-like). Oligodendrocytes cluster closer with the non-neuron-like group just like

in Test #3 (Figure 6.38), which is consistent with the fact that Test #4 is essentially a combination of

the Tests #2 and #3. In addition, the proportion of genes significant for Test #4 is higher than Test

#2 or #3 alone (Table 6.12).
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Figure 6.39: Histograms illustrating the distribution of the difference in level of transcriptional burst-
ing (∆pBg = pBg1 − p

B
g0) in any two cell types from the Zeisel et al. data. The difference is computed

with fitted values from Test #4. Names of the two groups compared are labeled to the left (group 0)
and top (group 1) of the panel. The dotted lines indicate zero.
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Figure 6.40: Histograms illustrating the distribution of the difference in positive mean expression
(∆θg = θg1 − θg0) in any two cell types from the Zeisel et al. data. The difference is computed with
fitted values from Test #4. Names of the two groups compared are labeled to the left (group 0) and
top (group 1) of the panel. The dotted lines indicate zero.

Histograms of ∆pBg and ∆θg are also very close to the results from previous tests (Figure 6.39 and

Figure 6.40).

In general, Test #4 is extremely sensitive in detecting the difference in the vector
(
pBg , θg

)
. It will

be a potentially useful test for pre-screening for genes that are different in at least on parameter

between groups.

6.5. Computational Details

TASC-B is implemented in Python 2.7.12 and Cython 0.25.2. Other dependencies include numpy,

scipy, mpi4py. Optimization is performed with the L-BFGS-B algorithm in scipy. Random restarts

are implemented to avoid local optima. Taking advantage of the openMPI interface mpi4py, TASC-B

can utilize hundreds of cores for speeding up the computation. The source code can be found on
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github repo https://github.com/scrna-seq/TASC-B.
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CHAPTER 7

DISCUSSION AND CONCLUDING REMARKS

RNA-seq has empowered a new generation of molecular biologists in their study of transcriptional

regulation, by providing better tools for analysis of differentially expressed genes, transcripts. How-

ever, due to the intrinsic noise in the data collection process, it is of utmost importance that one

properly adjusts for these technical biases. This dissertation has proposed several frameworks for

analyzing RNA-seq data, from bulk to single-cell, accounting for the technical variations, which has

greatly improved the statistical performance of the testing procedures.

7.1. MetaDiff

A major application of bulk RNA-seq is to detect differential isoform expression across experimental

conditions. In this case, it is vital to account for the estimation error, due to the fact that isoform

expression levels are estimated rather than observed, that they are estimated with various precision

across samples, and that covariates and confounding factors may play a role to influence gene ex-

pression. To do so, we have proposed a flexible regression framework, utilizing the well-established

random-effects meta-regression approach. Through computer simulations and the analysis of a

real RNA-Seq dataset on human heart failure, we demonstrated that the proposed method can im-

prove the power of isoform differential analysis while controlling for false positives due to the effect

of covariates or confounding variables. The meta-regression approach we used is computationally

efficient and widely available in existing statistical software packages. We have provided a tool and

instructions on how to use meta-regression for isoform differential expression analysis with RNA-

Seq data.

We have compared the performance of our method and other commonly used methods for differen-

tial expression analysis, including Cuffdiff, DESeq, DESeq2, EdgeR, and EBSeq. Both Cuffdiff and

EBSeq take into account the estimation uncertainty for isoform expression levels, although EBSeq

does not explicitly model the degree of uncertainty. In our simulated data, when no covariate and

confounder influenced isoform expression (Scenario I), Cuffdiff had lower power than our method

when m = 8 or 16, but better power when sample size was small (m = 4). In contrast, EBSeq had

conservative FDR among non-DE transcripts and correspondingly lower power for detecting true
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DE transcripts. When a covariate or confounder was present, these two methods showed either

lower statistical power (in Scenario II) or inflated FDR (in Scenario III) as they are unable to adjust

for covariates.

In our simulations, although EdgeR could control FDR in the presence of a confounder, it was con-

servative in all three scenarios. It also had lower power to detect true DE transcripts compared to

our method and Cuffdiff in Scenario I. In contrast, DESeq showed inflated FDR for non-DE tran-

scripts regardless the presence of confounder, especially when sample size was small. When a

covariate or a confounder was present, DESeq had little power to detect DE transcripts that were

correlated with the covariate. DESeq2 showed better performance than DESeq, however, its overall

performance was not as satisfactory as BcLR and Student’s t-test. We note that EdgeR, DESeq,

and DESeq2 cannot take into account the uncertainty in isoform expression estimation, which may

lead to biased testing results.

The uncertainty in an isoform FPKM estimate can be quantified as a standard error, which can be

calculated in Cufflinks (Trapnell et al., 2010). In differential expression analysis, the FPKM value

is usually log-transformed, and we approximate the variance of log(FPKM) using the delta method,

which is also used in Cuffdiff 1.0 (Trapnell et al., 2010). However, this approximation can be poor

and lead to false positive results when the variance of FPKM value is large compared to its mag-

nitude. Hence we filtered out transcripts with large CVs in meta-regression. To avoid using delta

method to approximate the variance of log(FPKM), one could use MMSEQ estimated isoform ex-

pression because MMSEQ directly gives the variance estimate of log(FPKM).

We note that meta-regression only requires estimates of isoform expression and the corresponding

estimation uncertainty, but it is not tied to any particular estimation method.

we explained the equivalence between a random-effects model that accounts for estimation uncer-

tainty in differential expression analysis and the random-effects metaregression. Meta-regression

has been well studied in statistics and epidemiology literatures (Berkey et al., 1995; Greenwood

et al., 1999; Higgins and Thompson, 2004) and is easy to implement using standard software. Both

RNA-Seq analysis and metaanalysis face the same problem of small sample size. The BcLR test

uses a correction factor to modify the standard LR test for small sample sizes. Huizenga, Visser,

and Dolan, 2011b compared several testing procedures for meta-regression and showed that the

BcLR test and t-test are the two best options. In our simulation study, we found that the BcLR test

outperformed t-test with less conservative FDR and more power to detect DE transcripts.
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7.2. sQTL

In sQTL analysis using RNA-Seq data, it is important to account for exon-inclusion level estimation

uncertainty within a sample, directly model variation in the precision of exon-inclusion level esti-

mates between samples, and allow for non-uniform read distribution.

We evaluated three statistical methods, including random effects meta regression, beta regression,

and generalized linear mixed model, for the analysis of sQTLs. In contrast to GLiMMPS, which

uses junction reads only to quantify exon inclusion levels, we used PennSeq (Hu et al., 2013), a

statistical method that utilizes all available reads and allows non-uniform read distribution. Using

both simulated and real RNA-Seq datasets, we demonstrated that all three methods outperformed

GLiMMPS, and identified sQTLs at low false discovery rates but higher power.

The main reason for power improvement over GLiMMPS is due to the efficient use of additional

information in exon-inclusion level estimation. Closer examination of the simulated data showed

that the exon-inclusion levels using junction reads only were less well estimated as compared to

PennSeq, which uses all available reads including those from flanking constitutive exons. Another

reason is that GLiMMPS cannot model paired-end data structure, but PennSeq can effectively uti-

lize paired-end read information in its modeling. In paired-end RNA-Seq data with tight distribution

of insert size, reads mapped to flanking constitutive exons can provide useful information about

the exon inclusion level. By using the generalized linear mixed model with estimates obtained from

PennSeq, we confirmed that the power loss of GLiMMPS was due to the use of less accurate esti-

mate of exon-inclusion levels.

We also examined the impact of non-uniformity on the performance of different methods. Not sur-

prisingly, the power of all methods decreased for exon trios that demonstrate severe non-uniformity.

Among the four methods we evaluated, PSGLMM and PSBeta had slightly inflated FDRs. The

FDRs of both PSMeta and GLiMMPS were under control, but PSMeta had greater power. Over-

all, PSMeta appeared to be the most reliable yet powerful method for sQTL analysis. This further

corroborates the importance of modeling non-uniform read distribution in exon-inclusion level esti-

mation.

We only focused on exon-skipping events, but the framework we presented here can be easily

generalized to examine other types of alternative splicing, including alternative 5’ splice site, alter-

native 3’ splice site, and mutually exclusive exons. In our analysis, we estimated the exon-inclusion
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levels first and then identified sQTLs using regression based methods. This two-stage approach

might be less powerful than identifying sQTLs using a one-stage approach, which avoids estimat-

ing exon-inclusion levels directly. We are currently pursuing extensions in this direction. Another

possible direction of future research is to consider the overall splicing pattern of a gene instead of

considering one exon-trio at a time. We anticipate that this approach will lead to more meaningful

results.

7.3. TASC

Single-cell RNA-seq technology has enabled the exploration of between-cell heterogeneity in single-

cell resolution. However, due to the limitations of current technology, scRNA-seq data are often

noisy. Failure to account for technical noise can lead to biased downstream analyses and mislead-

ing results. To take full advantage of scRNA-seq, it is crucial to account for technical noise so as to

better quantify biological variation. Here we have described a statistical framework, TASC, that ac-

curately estimates cell-specific technical biases, adjusts for them in differential expression analysis,

and consequently produces results that are more robust to batch effects that exhibit as systematic

differences between cells.

TASC utilizes information in spike-ins to account for technical noise in a cell-specific manner. Com-

pared to the traditional bulk RNA sequencing, in scRNA-seq the reverse transcription and preampli-

fication steps can lead to pervasive dropout events and amplification bias. While amplification bias

can be alleviated by the use of UMIs, dropout events are harder to control. To reliably estimate cell-

specific dropout parameters under the paucity of reliable spike-ins at low concentrations, we have

developed an empirical Bayes procedure that borrows information across cells. The accuracy of

this empirical Bayes procedure has been examined in simulations based on real scRNA-seq data.

Our evaluations show that TASC is always slightly conservative. However, we are willing to accept

this slight conservativeness, since the data used in our evaluations are generated under an ideal

null distribution, and we believe it is more meaningful to examine each methods performance in

noisier data where strong deviations from the null can be observed. This is the motivation for our

analysis of the data set from SCAP-T involving the comparisons of two groups of neurons with

batch effects. Our results show that TASC achieves accurate type I error control under this noisy

setting, whereas other methods have substantially inflated type I errors.

An important feature of TASC is the ability to adjust for covariates such as cell size and cell cycle. If
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the goal is to find genes that differ in concentration between two cell types, then one should adjust

for cell size. If one doesnt adjust for cell size, then most genes would be significant, since the ex-

pression of most genes scale with cell size, and thus, the genes that are markers for real pathway

differences between cell-types would be hard to detect. Ultimately, whether to adjust for cell size is

a decision for the user, and our goal through TASC is to provide the flexibility.

The hierarchical mixture model underlying TASC allows for flexible modeling of the true biological

variation of gene expression across cells, and thus can be adapted to tackle many interesting bio-

logical questions. For example, ranking the estimated values of σ2g allows us to identify biologically

variable genes. The posterior expectation of µcg also gives us the inferred true expression value

given the observed read counts. To illustrate the importance of accurate adjustment for cell-specific

technical noise, we have benchmarked TASC against existing methods for differential expression

analysis.

TASC incorporates the estimated technical parameters, which reflect cell-to-cell differences that

may lead to batch effects, into a hierarchical mixture model to estimate the biological variance of

a gene and to detect DE genes. The EM algorithm implemented in TASC offers a flexible and ef-

ficient approach to adjust for additional covariates to further eliminate confounding originated from

cell size and cell cycle differences. In our evaluations, TASC appears to be robust in the detection

of DE genes when batch effects are present.

TASC is implemented in an open-source program (https://github.com/scrna-seq/TASC), with

multithreading acceleration by openMP. For example, a data set of 104 cells and 6,405 genes takes

45MB of memory and 18.6 minutes using 20 cores (Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz)

with Laplacian approximation using the binary we provided. Better performance can be achieved

when using binaries compiled on the users hardware. We believe that TASC will provide a robust

platform for researchers to leverage the power of scRNA-seq.

7.4. TASC-B

The original implementation of TASC assumes that the true expression levels of a gene follow a

logNormal distribution in cells. We recognize that logNormal does not entirely reflect the true distri-

bution as transcriptional bursting could lead to zeros in the expression. A more realistic distribution

is zero-inflated logNormal, which accounts for true zeros in gene expression. This has motivated us

to develop TASC-B, an extension from TASC, incorporating an additional parameter pBg to describe
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the probability of a gene being in the “on” state in the cell population of interest.

We have shown with simulation studies that the maximum likelihood estimators are consistent,

showing little bias at moderately sized samples (n = 300). In typical scRNA-seq experiments, one

batch usually contains up to hundreds, if not thousands of cells, using the Fluidigm system. Exper-

iments performed with the new droplet-based scRNA-seq technologies, can further increase the

sample size to one or two magnitudes larger. This suggests that in actual experimental conditions,

the bias of our estimators is negligible, across a wide range of values for both parameters. We note

that difficulties arise when the expression of the gene is relatively low, or the gene is turned off in a

large fraction of the cells. But this mainly affects the estimation uncertainty without causing serious

bias.

Single-cell RNA-seq data can also be used to compare bursting probabilities across distinct popu-

lations of cells. We have devised additional LRTs specifically for testing the differences in bursting

probabilities (TASC-B Test #2), levels of constitutive expression (TASC-B Test #3), or both (TASC-B

Test #4). Due to the proper adjustment for the technical noise, as well as careful avoidance of local

maxima in our optimization procedures, all of the above tests have well-controlled type I error rates.

We also note that currently no method exists to test for the exact changes we aim to test with TASC-

B. The three tests proposed by MAST may sound similar to our component-wise testing schemes,

however, the former fails to account for technical noises and their tests are not naturally relatable to

biological concepts. Tests proposed by TASC-B on the other hand, have clear biological relevance.

When testing for changes in gene expression, it is important to avoid confounding by transcriptional

bursting and cell-specific technical dropout. We have shown that without explicitly modeling these

variations, tests can produce false positive results, or be greatly reduced in power.

Due to technological limitations, studies on transcriptional bursting rarely cover the entire transcrip-

tome, which makes scRNA-seq the only available method capable of screening for transcriptionally

bursty genes in a high-throughput fashion. We have shown using a likelihood-ratio test (TASC-B

Test #1) from the Zeisel et al. data that different cell types have varied proportions of genes ex-

pressed in a bursty manner. Most genes in neuron-like cells, such as pyramidal CA1, pyramidal

SS and interneurons, exhibit patterns of constitutive expression. More genes in non-neuron-like

cells, such as microglia, astrocytes ependymal and endothelial mural, are turned off in a signif-

icant proportion of cells, demonstrating a pattern of bursty transcription. One gene in particular

“Xist” is turned off in a majority of cells in most of the tissues we have looked at. Further investi-

198



gation is needed to explain the potential correlation between the bursty expression and its role in

X-chromosome inactivation.

Screening for differentially bursting genes has produced a generous list of genes that demonstrate

significantly distinctive patterns of bursting and expression between cell types from the Zeisel et

al. data. These genes have produced a great starting point for functional annotations and gene

ontology enrichment studies.

7.5. Concluding Remarks

In this dissertation, we have proposed MetaDiff, a flexible regression framework for isoform dif-

ferential expression analysis that can take into account isoform expression estimation uncertainty

and variation across biological replicates, and allow for covariate adjustment. Our method can ef-

fectively control for false positives due to confounding and increase the power to detect true DE

transcripts.

We have also evaluated three statistical methods for the analysis of sQTLs in RNA-Seq. As shown

by both simulations and the analysis of real data, the most robust method is PSMeta, a random

effects meta regression based approach. An appealing feature of PSMeta is that it can be easily

implemented using existing software packages. Results from this study will be instructive for re-

searchers in selecting the appropriate statistical methods for sQTL analysis.

We have proposed a new statistical framework TASC, that allows a more robust utilization of spike-

ins to account for cell-specific technical noise. To obtain reliable estimates of cell-specific dropout

parameters, we have developed an empirical Bayes procedure that borrows information across

cells. We have demonstrated an application of this general framework by a likelihood-based test for

differential expression. TASC can flexibly and efficiently adjust for cell-specific covariates, such as

cell cycle stage or cell size, which may confound differential expression analysis. We believe that

TASC will provide a robust platform for researchers to leverage the power of scRNA-seq.

We have finally extended the TASC model to TASC-B, incorporating additional parameters to char-

acterize the bursting probabilities in a cell population. We have developed MLEs to infer the values

of the bursting parameters. In addition, likelihood ratio tests have been developed to test for dif-

ferences in bursting parameters between groups. TASC-B is advantageous for it is immune to the

confounding of transcriptional bursting when testing for changes in mean expression. We have dis-

covered Xist as a potential gene that is generally bursting in all neuronal cells we have investigated.
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TASC-B can be a valuable tool in studying transcriptional bursting using scRNA-seq data.
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APPENDIX

SOFTWARE

The software mentioned in this dissertation can be found at:

• MetaDiff: https://github.com/jiach/MetaDiff

• TASC: https://github.com/scrna-seq/TASC

• TASC: https://github.com/scrna-seq/TASC-B
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Katayama, S, Töhönen, V, Linnarsson, S, and Kere, J (2013). SAMstrt: statistical test for differential
expression in single-cell transcriptome with spike-in normalization. Bioinformatics 29.22, 2943–
2945.

Katz, Y, Wang, ET, Airoldi, EM, and Burge, CB (2010). Analysis and design of RNA sequencing
experiments for identifying isoform regulation. Nature methods 7.12, 1009–1015.

Kharchenko, PV, Silberstein, L, and Scadden, DT (2014). Bayesian approach to single-cell differ-
ential expression analysis. Nature methods 11.7, 740–742.

Kim, HJ, Kim, NC, Wang, Y-D, Scarborough, EA, Moore, J, Diaz, Z, MacLea, KS, Freibaum, B, Li,
S, Molliex, A, et al. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause
multisystem proteinopathy and ALS. Nature 495.7442, 467–473.

Kim, JK and Marioni, JC (2013). Inferring the kinetics of stochastic gene expression from single-cell
RNA-sequencing data. Genome biology 14.1, R7.

Kim, JK, Kolodziejczyk, AA, Illicic, T, Teichmann, SA, and Marioni, JC (2015). Characterizing noise
structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expres-
sion. Nature communications 6.

Kim, M-S, Pinto, SM, Getnet, D, Nirujogi, RS, Manda, SS, Chaerkady, R, Madugundu, AK, Kelkar,
DS, Isserlin, R, Jain, S, et al. (2014). A draft map of the human proteome. Nature 509.7502,
575–581.

Kolodziejczyk, AA, Kim, JK, Svensson, V, Marioni, JC, and Teichmann, SA (2015). The technology
and biology of single-cell RNA sequencing. Molecular cell 58.4, 610–620.

Korthauer, KD, Chu, L-F, Newton, MA, Li, Y, Thomson, J, Stewart, R, and Kendziorski, C (2016). A
statistical approach for identifying differential distributions in single-cell RNA-seq experiments.
Genome Biology 17.1, 222.

Kudo, A (1963). A multivariate analogue of the one-sided test. Biometrika 50.3/4, 403–418.

Lander, ES (2011). Initial impact of the sequencing of the human genome. Nature 470.7333, 187–
197.

Landry, ZC, Giovanonni, SJ, Quake, SR, and Blainey, PC (2013). Optofluidic cell selection from
complex microbial communities for single-genome analysis. Methods in enzymology 531.

205



Lappalainen, T, Sammeth, M, Friedländer, MR, ACt Hoen, P, Monlong, J, Rivas, MA, Gonzàlez-
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