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Abstract
The use of short, synthetic DNA strands to mediate self-assembly of a collection of colloidal particles into
ordered structures is now quite well established experimentally. However, it is increasingly apparent that
DNA-linked colloidal assemblies (DLCA) are subject to many of the processing challenges relevant to atomic
materials, including kinetic barriers related to nucleation and growth, defect formation, and even diffusionless
transformations between different crystal symmetries. Understanding, and ultimately controlling, these
phenomena will be required to truly utilize this technology to make new materials.

Here, I describe a series of computational studies—based on a complementary suite of tools that includes
Brownian dynamics, free energy calculations, vibrational mode theory, and hydrodynamic drag analysis—that
address several issues related to the nucleation, growth, and stability of DNA-linked colloidal assemblies. The
primary focus is on understanding the nature of the apparently enormous number of diffusionless solid-solid
phase transformations that occur in crystallites assembled from DNA-functionalized colloidal particles. We
find that the ubiquitous nature of these transformations is largely due to the short-ranged nature of DNA
mediated interactions, which produces a panoply of zero-energy barrier pathways (or zero frequency
vibrational modes) in a number of crystalline configurations. Furthermore, it is shown that hydrodynamic
drag forces play a key role in biasing the transformations towards specific pathways, leading to unexpected
order in the final arrangements. Additional studies also highlight how heterogeneity in the surface density of
DNA strands grafted onto the particles may be used to improve nucleation and growth behavior, which is
generally difficult in systems near the ‘sticky-sphere’ limit in which the interaction range is short relative to the
particle size. In the final chapter of the thesis, a general and powerful technique is presented for extracting
particle-particle interactions directly from particle trajectory data.
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ABSTRACT 

NUCLEATION, GROWTH AND TRANSFORMATIONS IN DNA LINKED COLLOIDAL 

ASSEMBLIES  

Ian C. Jenkins 

Talid Sinno 

The use of short, synthetic DNA strands to mediate self-assembly of a collection 

of colloidal particles into ordered structures is now quite well established experimentally. 

However, it is increasingly apparent that DNA-linked colloidal assemblies (DLCA) are 

subject to many of the processing challenges relevant to atomic materials, including 

kinetic barriers related to nucleation and growth, defect formation, and even diffusionless 

transformations between different crystal symmetries. Understanding, and ultimately 

controlling, these phenomena will be required to truly utilize this technology to make new 

materials.  

Here, I describe a series of computational studies—based on a complementary 

suite of tools that includes Brownian dynamics, free energy calculations, vibrational 

mode theory, and hydrodynamic drag analysis—that address several issues related to 

the nucleation, growth, and stability of DNA-linked colloidal assemblies.  The primary 

focus is on understanding the nature of the apparently enormous number of diffusionless 

solid-solid phase transformations that occur in crystallites assembled from DNA-

functionalized colloidal particles. We find that the ubiquitous nature of these 

transformations is largely due to the short-ranged nature of DNA mediated interactions, 

which produces a panoply of zero-energy barrier pathways (or zero frequency vibrational 

modes) in a number of crystalline configurations. Furthermore, it is shown that 
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hydrodynamic drag forces play a key role in biasing the transformations towards specific 

pathways, leading to unexpected order in the final arrangements. Additional studies also 

highlight how heterogeneity in the surface density of DNA strands grafted onto the 

particles may be used to improve nucleation and growth behavior, which is generally 

difficult in systems near the ‘sticky-sphere’ limit in which the interaction range is short 

relative to the particle size.  In the final chapter of the thesis, a general and powerful 

technique is presented for extracting particle-particle interactions directly from particle 

trajectory data. 
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1. INTRODUCTION 

1.1 DNA Mediated Self-AssemblyEquation Section 1 

Self-assembly is any process in which a system of distinct components 

spontaneously self-organizes into a larger, more complex, ordered structure. Self-

assembly is found throughout nature, from ice crystals forming in water to the growth of 

nearly every living organism. The complexity of structures produced through such self-

assembly processes greatly surpasses what can be designed and built manually. In 

order to match the level of complexity present in nature we must learn to use its primary 

tool, self-assembly. 

The science of self-assembly has undergone significant development since its 

inception. A variety of approaches for producing component parts capable of both 

spontaneous and induced assembly have been developed, varying both with regard to 

the underlying mechanisms responsible for driving the assembly processes, such as 

electrostatics (1-3), magnetics (4-6), depletion effects (7), and even fluid flow (8), and 

the length-scale of the component particles, which range from the nano through the 

micro scale (9) and beyond (10). Through both experiment and simulation it has been 

demonstrated that human-designed self-assembling systems are capable of producing 

an enormous variety of structures and a significant amount of research has been done to 

optimize these systems both in regard to the robustness of the growth process and the 

accuracy of the final product structure (11-14). 

One particular interaction mechanism which has demonstrated promise in 

guiding self-assembly is DNA hybridization. DNA hybridization occurs when two single 
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strands of DNA with complementary nucleotide sequences come into contact. Once in 

contact each individual complementary nucleotide base pair forms a hydrogen bond, 

linking the strands together. The hybridization of single-stranded DNA has been 

employed in a variety of ways to induce self-assembly behavior in in systems comprised 

purely of DNA as well as in systems in which other objects are guided by DNA. In the 

former case a wide variety of structures have been assembled, including nanotubes(15, 

16), 2D crystals(17), 3D periodic arrays(18) as well as a variety of structures built from 

DNA bricks(19, 20) and origami(21-25). However, there are two significant drawbacks to 

using DNA in this manner. First, by relying entirely upon DNA as a construction material, 

you are limited to producing structures which exhibit the thermal, electrical and optical 

properties of DNA. Second, and more importantly, DNA is costly to produce, making 

large scale production of materials constructed entirely of DNA prohibitively expensive. It 

is possible to simultaneously avoid both of these issues by using a second, less 

expensive material, such as polystyrene, as the bulk material, while still relying on DNA 

to drive the self-assembly process. This second approach is the focus of my research.  

In pioneering work performed by Mirkin et al.(26) and Alivisatos(27) gold 

nanoparticles were functionalized with DNA by exposing single-stranded DNA capped 

with a thiol group to the gold nanoparticles, which ranged in size from 1 to 13nm. The 

thiol groups covalently bonded to the surface of the gold nanoparticles, covering them 

with freely dangling single-stranded DNA brushes. In these examples, two non-

complementary nucleotide sequences were used, with each gold nanoparticle exposed 

to only one of the two. Once prepared, the functionalized nanoparticles were exposed to 

free-floating DNA duplexes containing the two nucleotide sequences complementary to 
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those bonded to the nanoparticles. These duplexes were therefore designed to act as 

intermediates between the two particle species, allowing particles functionalized with 

different sequences to become connected by the DNA bridges.  Once a suspension had 

been populated with duplexes and both particle species, the temperature of the system 

was reduced in order to allow hybridization between surface and duplex DNA to occur. 

The overall process used by Mirkin et al. is illustrated below in Figure 1.1. While the 

nanoparticles produced using this approach have proven useful in various biodiagnostic 

tools (28, 29), intercellular probes (30) and gene regulators (31), attempts at assembling 

them into ordered structures were not successful and only amorphous aggregates were 

obtained. 
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Figure 1.1. Repurposed from Ref. (26). Illustration of the process used by Mirking to 

assemble DNA functionalized colloidal particles. 

 

The first successes in producing ordered crystallites of nanoparticles using DNA 

directed self-assembly came from the work of Nykypanchuk et al (32). and Park et al 

(33). In this work, flexible spacers made from non-complementary DNA oligomers were 

introduced between the gold-bonding thiol group and the duplex-complementary DNA 

sequences. These spacers increased the effective interaction range between the 
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particles, in turn allowing the self-assembly process to occur at much higher 

temperatures. At these higher temperatures DNA hybridization is reversible allowing the 

hybridized DNA to dynamically dissociate and reform. With the particles able to 

dynamically connect and disconnect, the growth of ordered crystallites becomes 

possible. Initially only two ordered crystal lattices were observed. The first, with face 

centered cubic (fcc) symmetry, occurred when only one species of single-stranded DNA 

was used to functionalize particles. In such a system, the freely floating duplexes are 

symmetric and interaction between all particles is identical. The second lattice, with body 

centered cubic (bcc) symmetry, was only observed in multi-component systems. Here, 

two particle-bound DNA species were employed, and each particle was functionalized 

with only a single type of DNA oligomer. In this particular binary system, the DNA 

sequences were chosen such that only particle pairs functionalized with different species 

of DNA were able to bond. The system used by Park et al is illustrated below in Figure 

1.2. 

 

Figure 1.2: Repurposed from Ref. (33). Illustration of both the binary and single 

component systems used by Park et al which produce bcc and fcc respectively. The 

sticky end (colored section) of Linker A is self-complementary, while the sticky ends of 

Linker X and Y are only complementary with each other. 
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Although the work of Nykypanchuk et al. and Park et al. only resulted in two 

distinct nanoparticle crystal lattices, their results demonstrated that it is possible to target 

specific assembly structures by intelligently designing the DNA sequence grafter onto 

functionalized particles. Since then, a very large body of work has been done in further 

improving upon this basic approach in order to explore what crystal structures can be 

produced with the assembly of nanoparticles (34-47). Macfarlane et al. (35) in particular 

have demonstrated the viability of a significant number of ordered lattices including AlB2, 

Cr3Si and Cs6C60. In this work, three key design parameters were identified that were 

proposed to fully characterize a given system: particle size, lattice parameters, which are 

closely linked to particle interaction range and crystallographic symmetry. They also 

introduced a set of six rules which qualitatively link these particle design parameters to a 

number of crystalline properties. For example, their first rule states that when all particles 

in a system are of the same size, the system will tend to spontaneously assemble into a 

crystal which maximizes particle-particle contacts. A cartoon representation of how these 

three design parameters can be used, as well as an overview of the various crystalline 

lattices assembled from DNA functionalized particles, is shown below in Figure 1.3.  
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Figure 1.3: Repurposed from Ref. (35). (A) Illustration of how the three design 

parameters in the Macfarlane system: Lattice Parameters, Crystallographic Symmetry 

and Particle Size can be used to predict the structure of the lattice produced through 

spontaneous self-assembly. Also shown are a number of crystalline lattices which have 

been observed in systems of DNA functionalized nanoparticles: (C) fcc (D) bcc (E) hcp 

(F) CsCl (G) AlB2 (H) Cr3Si (I) Cs6C60. 

 

There has also been parallel progress in extending DNA mediated self-assembly 

to micrometer scale particles (48-56). Generally speaking, the larger particle size to 
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interaction range ratio at these particle size scales makes ordered structures more 

difficult to grow, typically resulting in lower quality crystallites than are observed at the 

nanoscale. In large part this relative difficulty arises because micron-scale particles are 

closer to the ‘sticky-sphere’ limit (57) where entropic barriers act to slow down and inhibit 

assembly. On the other hand, micron-scale particles are of great interest for assembling 

ordered metamaterials (58) with interesting photonic and/or phononic properties. 

Although this goal has not yet been achieved, significant progress has been made in 

improving the crystallization behavior at this length-scale and identifying what crystal 

lattices are achievable. The work in this thesis is aimed precisely at elucidating the 

various mechanisms by which micron-scale particle assemblies nucleation, grow and 

transform. 

Some of the first evidence for the viability of DNA mediated self-assembly at the 

micron scale was demonstrated by Crocker et al (59, 60). Their system of interest, was a 

bidisperse system with particles at diameters of 1.87μm and 1.1μm, the design of the 

particle-DNA construct was roughly equivalent to that used in the nanoscale studies.  

Rather than make use of free floating DNA duplexes to act as linkers, the nucleotide 

sequences were chosen such that the surface DNA oligomers could hybridize directly. A 

schematic representation of the linker-less system is shown below in Figure 1.4. Much 

like early attempts at producing ordered crystals at the nanoscale however, they were 

initially only successful at producing disordered aggregates.  
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Figure 1.4: Adapted from Ref. (60). Schematic representation of direct hybridization 

between DNA on the surface of two micron-scale particles. 

 

Further refinement of this approach came from the identification of polyethylene 

glycol (PEG) as an ideal material for constructing spacers, along with the introduction of 

linker-DNA, as previously described. These changes finally allowed for the production of 

large high quality crystallites (53). This technique was then expanded upon by adopting 

an approach based on DNA mixing (49). In this approach each particle is functionalized 

with two single stranded DNA sequences. The DNA sequences are chosen such that 

they are complementary with each other but not with themselves. Two types of particles 

are then defined according to the dominant DNA type on each particle type, such that 

type A particles are predominantly covered in type A DNA. This approach allows the 

binding strength between like and unlike particle pairs to be tuned independently by not 

only changing the DNA sequence and surface density, but also the degree of mixing. A 

overview of this approach is shown below in Figure 1.5.     
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Figure 1.5: Adapted from Ref. (49). (A) Binary crystallite constructed from 400nm 

diameter particles. Interactions between particles are mediated by DNA hybridization, as 

shown in (B). (C) Cartoon representation of how binding strengths between unlike 

particle types can be controlled by modifying the density of complementary DNA on each 

particles surface. The α parameter is the mixing ratio, defined such that when α is 0 all 

DNA on the surface of type A particles is type A, and all DNA on the surface of type B 

particles is type B. At a mixing ratio of 0 particles of the same type have a binding 

strength of zero ( 0AB AA BBE E E   ). A mixing ratio of 0.5 indicates both particle types 

have an even mix of the two DNA types on their surface. At a mixing ratio of 0.5 all 

particle binding strengths are equal ( AB AA BBE E E  ). 
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1.2 Numerical Simulations of DNA Functionalized Particles 

Precisely and accurately constructing DNA functionalized particles at both the 

nano- and micro-scales is very challenging. Simulations offer a means to study these 

systems while avoiding this rather difficult assembly process. However, direct, explicit 

simulation of the various components of a system of DNA functionalized particles can be 

very computationally demanding. In order to successfully simulate such a system on a 

useful timescale, it is necessary to use a coarse grained model for the interactions 

between particles.  

One common approach is to simulate the DNA oligomers using a method based 

on bead-spring polymer models (61, 62). One of the first examples of this approach is 

the model developed by Starr and Sciortino (63) which was designed to simulate the 

system studied by Stewart and McLaughlin (64). In this nanoscale system the DNA 

duplexes often used to mediate interactions between DNA functionalized particles are 

excluded. Instead, the single-stranded DNA sequences are chosen such that they are 

directly complementary. Additionally, each particle in this system is functionalized with 

only four strands of DNA in a tetragonal configuration. In the model each pair of 

neighboring monomers in a DNA strand are connected through a finitely-extensible, non-

linear elastic anharmonic spring potential of the form 
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In addition to this two-body spring potential, a three body harmonic angular spring, 

dependent upon the angle between three sequential monomers of the form 
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   1 coslU k   ,                                               (1.2) 

is also included, limiting the flexibility of the strands.  Each monomer in the DNA strand 

is also assigned a “bonding site”. These bonding sites are each assigned a type: A, T, C 

or G and are connected to their associated monomer using the same anharmonic spring 

potential used to connect neighboring monomer sites. Interactions between binding sites 

are modeled using a truncated Lennard-Jones (LJ) potential. This potential is truncated 

differently depending upon the types of the interacting bonding sites. If the bonding sites 

are complementary, either A and T or C and G, the LJ potential is truncated at 2.5σ. 

However, if the bonding sites are non-complementary the LJ potential is truncated at 

1.12 σ, such that the interaction is purely repulsive. A snapshot from a simulation using 

this model, in which the coarse-graining resolution is visible, is shown below in Figure 

1.6. 
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Figure 1.6: Repurposed from Ref. (63). Snapshot of a simulation utilizing the model 

proposed by Starr and Sciortino. The core of each functionalized particle is shown in red, 

single stranded DNA are shown in blue and bonding sites are shown in light green.  

Another approach, developed by Knorowski, Burleigh, and Travesset(65) 

introduces “Flanker Beads” to the model of Star and Sciortino. These flanker beads 

sterically provide two improvements to the model. First, they prevent the simultaneous 

hybridization of three bases at a single site. Second, they provide directionality to the 

interaction between linker monomers, forcing hybridization between base pairs to occur 

perpendicular to the tangent of the single stranded DNA. In this model neighboring linker 

and spacer monomers are connected using a simple harmonic spring potential. Each 

linker monomer has an associated “central bead” (CT) to which it is also connected via a 



  14 

 

harmonic spring. These CT units play a similar role to the bonding sites used by Starr 

and Sciortino (63). The CT units in neighboring linker monomers interact through a 

harmonic angular spring, designed to limit the flexibility of the linkers. Two flanker beads 

(FL) are attached to each CT via harmonic springs, along with a harmonic angular spring 

which is dependent on the angle between the two flankers and the central bead. LJ 

potentials are used to simulate interactions between non-adjacent linkers. 

Complementary linkers experience full LJ potentials while non-complementary linkers 

experience only the repulsive term in the LJ potential. In both cases the LJ potential is 

truncated at 3σ. A schematic representation of this model is shown below in Figure 1.7. 
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Figure 1.7: Repurposed from Ref. (65). Schematic representation of the model proposed 

by Knorowski, Burleigh, and Travesset. Each strand consists of ns non-bonding spacer 

monomers and nl bonding linker monomers. Each linker monomer is modeled with two 

flanker beads (FL) and a central bead (CT). 

While these coarse grained models work well for nanoscale particles, where the 

number of DNA oligomers per particle is relatively small, they become numerically 

intractable at the microscale. As a result, many groups studying micron scale particles, 

as well as some studying nanoparticles with particularly dense DNA packing, make use 
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of more implicit, coarse grained models (65-79). One such model is used by Largo et al. 

(80) and Theodorakis et al. (81) in which Metropolis Monte Carlo (MMC) simulations of 

two DNA functionalized nanoparticles, simulated using the previously described 

approach developed by Starr and Sciortino (63), are used to generate statistical 

information about the relative orientation and center-to-center distance of pairs of  

particles. These statistics are then used to determine the probability of finding the 

system in any given configuration, where the configuration is assumed to be entirely 

described by the orientations of the two particles, ( 1 , 2 ) and their center-to-center 

distance. Here, i  is defined as the smallest angle between any DNA strand on particle 

i  and the center-center vector between particles.  This probability distribution, 

 1 2, ,p r   , is then used to calculate the effective potential between the two particles 

using the expression 
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where  r  is any distance beyond the maximum interaction range of the particles. 

An entirely different approach to generating a coarse grained model is used by 

Leunissen and Frenkel (69). In their model they approximate interactions between DNA 

functionalized particles using large flat plates. These plates are randomly populated with 

double jointed rigid rods. The inner section of the rod represents the DNA spacer and is 

non-interacting, and allowed to freely swivel around its tethering point on the plate. The 

outer section of the rod represents the sticky, complementary, end of the DNA strand. It 
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is allowed to freely swivel about its connection to the inner rod and interacts with other 

outer rods according a two state potential: bound or unbound, such that there is a 

constant energy associated with binding. A schematic representation of this system is 

shown in Figure 1.8. Once two plates have been populated with these rods they are 

placed a fixed distance apart and Monte Carlo moves are proposed for the rods. These 

moves are made by first randomly selecting a rod, i, from one of the two plates. The list 

of all rods, k, on the opposing plate which are within range of rod i is then generated. 

Next the probability of rod i binding to any particular rod, j, is calculated as 
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and the probability of forming no bond is 
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where ijG is the free energy associated with the hybridization between rod i and rod j. 

The value of ijG is calculated using the expression 
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where i , j  and ij  are measures of the configuration space accessible to rod i, rod j 

and the bound i-j pair, respectively and 0 is the number density of inner rods. The 

average free energy of the system is then calculated over many plate-plate separation 
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distances. The DNA interaction free energy as a function of separation distance can then 

be found using the expression 
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where 
, ,ik solution

bonds G h
n


is the number of pairs of hybridized DNA strands averaged over a 

specific value of ,ik solutionG and plate separation distance.  

 

Figure 1.8: Repurposed from Ref. (69). Schematic representation of the model proposed 

Leunissen and Frenkel. Each DNA strand consists of two, freely-swiveling, rigid rods. 

The inner rod acts as a DNA spacer and is non-interacting. The outer rod acts as the 

sticky, binding end to a DNA oligomer. Two different cases are shown: a) when opposing 

rods are tethered such that they are able to interact and b) when opposing rods are 
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unable to interact. i , i  and ij  are the configuration spaces accessible to rod i, rod j 

and the bound i-j pair. 

The coarse grained model I employ for all simulations reported in this thesis was 

developed and confirmed against experimental data by Rogers et al.(82). This coarse 

grained approach begins by proposing a model for describing two micron-scale DNA 

functionalized colloidal particles, separated by some fixed distance, h. While the most 

general calculation of the interaction potential between DNA-linked particles must 

include terms correcting for DNA polymer non-ideality and other terms in the partition 

function, (69, 70, 83), for the particular DNA configuration we use, an idealized model 

gives an acceptably accurate result (84, 85).  Additionally, while smaller particles, whose 

interactions may be non-pairwise additive, require explicit polymer simulations to 

compute the effective interaction potential(86-88), the micron-scale spheres in this study, 

are large enough that their interactions are demonstrably pair-wise additive and implicit 

polymer models can be used.   

 The colloidal particles themselves are treated as hard spheres, such that the 

energy associated with overlap between a DNA strand and a colloidal particle is infinite. 

The single stranded DNA is treated as a tethered flexible chain with a contour length of 

40nm, 8 times that of the Kuhn length of DNA (89). Upon initialization, the system 

contains no DNA, only the two hard spheres. Monte Carlo moves are then performed, in 

which a single move consists of eight randomly oriented steps starting from a random 

position on the surface of one of the hard sphere particles. This chain of 8 random walks 

represents a single configuration of a single DNA brush. The coordinate of the final 

segment in the DNA strand is recorded and binned spatially. With sufficient sampling this 
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binning process can be used to approximate the continuous number density of DNA in 

the region between the two particles. A schematic representation of this process is 

shown below in Figure 1.9. During this process it is necessary to record two other 

numbers: the number of proposed strands which do not intersect the anchor sphere, 

 h  and the number of these strands which do not intersect with the opposing 

sphere,  h .  Due to the reversible nature of DNA bridge formation, it is assumed that 

the equilibrium concentration of DNA bridges between two particles can be calculated 

using the chemical equilibrium expression 

 /

0

( ) ( )
( ) hyb BG k TA B

AB

C C
C e

C


r r
r ,                                        (1.8) 

along with the conservation equations 

 0 ( ) ( ) ( )A A ABC C C r r r                                               (1.9) 

and 

0 ( ) ( ) ( )B B ABC C C r r r ,                                           (1.10) 

where hybG  is the hybridization Gibbs free energy, ( )ABC r , ( )AC r and ( )BC r are the 

equilibrium concentrations of hybridized DNA, non-hybridized DNA from particle A and 

non-hybridized DNA from particle B, respectively, 0 ( )AC r  and 0 ( )BC r  are the values of 

( )AC r  and ( )BC r  when no hybridization has occurred and 0C is a reference 

concentration, set to 1M. Using the binned number densities gathered previously these 

equations can be solved to calculate ( )ABC r . Next, an expression relating the average 
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number of DNA bridges, bridgeN  to the attraction interaction energy between the 

particles is invoked (90-92)  

 a
bridge

B

E
N

k T


  .                                                 (1.11) 

The value of bridgeN , and therefore aE  can be calculated by integrating over the 

spatial bins using the expression 

  3
bridge Av ABN N d C   r r ,                                        (1.12) 

where AvN is Avagadro’s number. Finally, the energy associated with entropic repulsion 

due to brush compression (90) can be calculated using the expression  

 
   

 
lnr

B

E h h

k T h

  
     

.                                           (1.13) 

The sum of  aE h and  rE h then gives the interaction energy between a pair of 

DNA functionalized particles separated by a distance h. 
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Figure 1.9: Repurposed from Ref. (82). Schematic representation of the method used to 

calculate the average number density of DNA. Left: A random walk is used to propose 

the configuration of a DNA brush. Center: Multiple random walks with uniformly 

distributed tethering points. Right: The final, averaged, DNA density profile, only the final 

coordinate in the random walk is used in the averaging process. 

 

1.3 Thesis Outline 

In this thesis I present my work studying the behavior of DNA functionalized 

particles ranging from 100nm to 1000nm in size using a complementary set of 

computational tools. The specific particles I simulate are based closely on the particles  

used in collaborative experimental work performed in the laboratory of Prof. John 

Crocker (49, 50, 59, 82, 93-96). In all of the work I present here I use the coarse-grained 

model of Rogers et al.(82) to simulate the behavior of these particles. In Chapter 2 I 

present a study of phase transformations in the binary CsCl superlattice. This study was 

inspired by an experimental observation which indicated a diffusionless (Martensitic) 
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transformation between the CsCl and CuAu superlattices was possible. Simulations 

revealed that due to the very low degree of rigidity in the CsCl superlattice, many such 

transformations are possible and that the final transformation observed in experiment is 

guided  by hydrodynamic effects—which have largely been ignored in the literature. In 

Chapter 3 I demonstrate my work on the nucleation behavior of DNA functionalized 

colloidal particles. In particular, I focus on how their nucleation behavior can be improved 

by introducing a small amount of heterogeneity to the DNA surface density. This work is 

inspired by heretofore unexplained observations that certain chemistries for grafting 

DNA oligomers to particles have been more successful than others, even though the 

nominal DNA densities are similar. In Chapter 4 I expand upon the analysis of solid-solid 

phase transformations available to this self-assembly system and demonstrate how 

changing the relative size of particle types and particle-particle binding strengths enables 

additional diffusionless transformations which produce superlattices that are otherwise 

inaccessible by direct nucleation and growth. Finally, in Chapter 5, I will discuss a 

numerical approach for extracting particle-particle potential interaction profiles directly 

from non-equilibrium particle trajectory data. 
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2. A CASE STUDY: PHASE TRANSFORMATIONS IN CsCl 

SUPERLATTICES 

2.1 IntroductionEquation Section 2 

This study was inspired by a spontaneous bcc-to-fcc diffusionless (solid-solid) 

transformation experimentally observed by Casey et al. (49) in DNA-assembled, micron-

scale, binary colloidal superlattice crystals.  Although such transformations are well-

studied in atomic materials because of their considerable technological importance (e.g., 

Martensitic transformation in steel hardening (97) and shape memory alloys (98)), their 

analysis in DLPAs is essentially non-existent.  Understanding the nature of such 

transitions in colloidal assemblies may provide additional pathways for manipulating 

DLPAs to produce desired configurations that are otherwise difficult or impossible to 

access by direct nucleation.   

The experimental system in question (49) consisted of two sub-populations of 400 

nm diameter polystyrene particles, “A” and “B”, that were functionally differentiated by 

the composition of DNA oligomers grafted onto the particle surfaces.  The two 

populations interact with binding energies that obey ,AB AA BBE E E  and AA BBE E , 

thereby generally favouring the formation of binary superlattice crystals over phase-

separated single-component packings (32, 35, 49, 68, 99, 100).  
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Figure 2.1: Adapted from Ref. (49). (A) Binary crystallite constructed from 400nm 

diameter particles. Interactions between particles are mediated by DNA hybridization, as 

shown in (B). (C) Cartoon representation of how binding strengths between unlike 

particle types can be controlled by modifying the density of complementary DNA on each 

particles surface. The α parameter is the mixing ratio, defined such that when α is 0 all 

DNA on the surface of type A particles is type A, and all DNA on the surface of type B 

particles is type B. At a mixing ratio of 0 particles of the same type have a binding 

strength of zero ( 0AB AA BBE E E   ). A mixing ratio of 0.5 indicates both particle types 

have an even mix of the two DNA types on their surface. At a mixing ratio of 0.5 all 

particle binding strengths are equal ( AB AA BBE E E  ). 

 

Crystallization experiments were performed by placing an equal number of A and B 

particles into solution and gradually cooling the system.  Depending on the interaction 
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combination ( ,AB AAE E ), it was found that annealed samples either yielded mixtures of 

two different types of well-ordered binary superlattice crystals, CsCl (bcc lattice type) 

and CuAu-I (fcc lattice type), or randomly substituted solid-solution crystals having a 

face-centered-cubic (fcc) structure (fcc-SS). Several examples of these crystallites are 

shown below in Figure 2.2. 
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Figure 2.2: Adapted from Ref. (49). Sample crystallites observed in experiment. CsCl 

(A), CuAu-fcc (B) and fcc-SS (C) are shown. Scale bars indicate 2μm or 0.5 μm in 

insets. 
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The action of a displacive (or diffusionless), transformation was deduced based on 

two principal observations.  First, a small number of the crystallites were found to exhibit 

two distinct domains (CsCl and CuAu-I) separated by a sharp, coherent interface, similar 

to the Martensite-Austenite interfaces observed in steels (101) as shown below in Figure 

2.3.  A more indirect suggestion for the presence of a diffusionless transformation 

between CsCl and CuAu-I came from the observation that the vast majority of CuAu-I 

crystallites found in experiment were perfectly ordered, in contrast to previous modeling 

studies performed by Scarlett et al. (99) which indicate homogeneous nucleation and 

growth of close-packed phases in this system give rise to numerous compositional 

ordering defects.    

 

Figure 2.3: Adapted from Ref. (49). Two examples of DNA functionalized colloidal 

particle crystallites exhibiting the CsCl and CuAu superlattices simultaneously. Scale 

bars indicate a length of 2μm. 
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In the following, we first employ direct Langevin dynamics (LD) simulations and 

establish the feasibility of the transformation, although we find that the resulting close-

packed configurations are always more structurally diverse than the uniform CuAu-I 

observed in experiment.  We understand the source of this diversity by performing a 

vibrational mode analysis which enables us to identify all possible energetically 

degenerate transformation pathways that lead to different final (close-packed) 

configurations.  Finally, we consider the role of hydrodynamic correlations on the 

effective multi-particle diffusivity of the system configuration along different 

transformation pathways, and find that the anomalous configurations seen in experiment 

are precisely those that are strongly favored by hydrodynamics.  Furthermore, we 

conjecture that such hydrodynamic selection may play a role in other colloidal systems 

displaying collective particle dynamics, such as hard-sphere and attractive glasses. 

2.2 Langevin Dynamics Simulations 

We first performed LD simulations that consist of numerical integration of the 

Langevin equation for a system of particles that are subject to interparticle forces as well 

as forces due to the presence of an implicit solvent, i.e.,  

 

 ( ) 2 ( )Bm mk T t   r F r r R                                  (2.1) 

where r is the time-dependent vector of particle positions, ( )F r  represents the 

interparticle forces,   is the damping, or friction, coefficient ( /Bk T D  ), and ( )tR  is a 

random Brownian force modeled as a delta-correlated Gaussian process with zero mean 
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so that ( ) 0t R  and ( ) ( ) ( )t t t t  R R .  All LD simulations were performed using 

the LAMMPS software package (102), with particle interactions calculated using the 

coarse-grained inter-particle pair potential model developed by Rogers et al. (82) which 

is described in detail in Section 1.2. 

The LD simulations of CsClCuAu-I transformation were initialized by placing 

spherical CsCl crystallites in a colloidal fluid of randomly-placed particles corresponding 

to a particle volume fraction of 0.3.  An example of the initial system configuration is 

shown below in Figure 2.4. The colloidal fluid particles were used to stabilize the 

crystallite against dissolution.  In each run, the simulation was first allowed to reach 

equilibrium using interparticle interactions that favored the CsCl phase 

 6.0 , 0AB B AAE k T E   once equilibrium was reached the interactions were adjusted to 

favor CuAu-I and the simulation continued until the transformation (if present) was 

completed.  The final crystallite structure was analyzed using LAMMPS’ common 

neighbor analysis (CNA). 
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Figure 2.4: Example initial system configuration for a 1500 particle seed. Non-crystal 

particles are shown at 10% actual size for visualization purposes.  

 

Several parameters were varied in order to probe their possible influence on the 

transformation.  These include the crystallite size (220-8000 particles), the implicit fluid 

viscosity (0-5% of water), AB interaction strength (4 6 )B AB Bk T E k T  , and (AA/BB) 

interaction strength (1.0 2.5 )B AA Bk T E k T  .  Examples of transformed crystallite 

configurations are shown in Figure 2.5. In general, the transformed close-packed 
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crystallites are of rhcp character with randomly distributed hcp and fcc planes although 

most of the samples are biased towards hcp, a feature we return to later.  A few 

transformed crystals are highly defected and appear to exhibit multiple transformations 

nucleated along different directions leading to “locked” configurations.  For example, the 

configuration in Figure 2.5B shows a situation in which locking leads to a metastable, 

untransformed CsCl interior section (blue) that is surrounded by rhcp regions 

(red/green).  In Figure 2.5C, locking leads to regions of unidentifiable structure (grey) 

that presumably consist of partial cp and bcc character.  Generally, only larger crystals 

run at higher viscosities tended to exhibit such configurations, which may be explained 

by the fact that damping reduces the correlation length scale of nucleated 

transformations, allowing multiple independent transformations to nucleate 

simultaneously.  
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Figure 2.5: Examples of transformed crystallite configurations observed in LD simulations (see text).  Crystallites initially contain 5000 

(case A) or 8000 (cases B and C) particles, which are colored according to their structure as determined by CNA.  Red particles are 

identified as hcp, green particles as fcc, blue particles as bcc and grey as “unidentified”. 
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In order to better quantify the differences between the rhcp structures produced 

by Langevin simulations of the bcc-cp transformations and those seen in experiment, an 

order parameter,  , was defined as the ratio of close-packed planes in the crystallite 

which possess fcc structure to those that possess hcp structure.  A χ value of 1 would 

then indicate an equal distribution of fcc- and hcp-like crystallite planes.  A total of 4 

parameters were investigated: the crystallite size (220-8000 particles), the implicit fluid 

viscosity (0-500% of water), unlike interaction strength (4 6 )B AB Bk T E k T  , and like 

interaction strength (1.0 2.5 )B AA Bk T E k T  .  The range of viscosity was sufficient to 

span the transition from overdamped to inertial dynamics.  A system of interacting 

particles in a viscous medium is considered overdamped when (103) 

 1
2 mk


                                                      (2.2) 

where m is the particle mass, k is the effective spring constant experienced by a particle 

in the system and   is the drag coefficient.  The drag coefficient is given by 

 3 pd                                                        (2.3) 

where μ is the fluid medium viscosity and pd  is the particle diameter.  In the present 

calculations, the value of gamma for a system at 5% the viscosity of water, w , with 

400nm-diameter particles is 3.36x10-9 kg/s.  Furthermore, the value of mk  when the 

interaction potential is at maximum strength (highest spring constant) is 4.24x10-8 kg2/s2, 

which gives / 2 mk ~1.5.  In other words, the maximum viscosity considered here is 

sufficient to achieve fully overdamped conditions.  Shown in Figs. 2.6-2.9 are 
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representative samples of transformed crystallites obtained at various combinations of 

the above parameters 

 

Figure 2.6: Sample crystallites for like particle interaction strength (EAA) versus system 

viscosity.  System parameters are (all energies in units of kBT): A) 6ABE  , 2.5AAE  , 

0.01 w  , 5000n  ;  B) 6ABE  , 2.5AAE  , 0.05 w  , 5000n  ;  C) 6ABE  , 

1.5AAE  , 0  , 8000n  ;  D) 5ABE  , 1.5AAE  , 0.005 w  , 1500n  ;  E) 4ABE 

, 1.5AAE  , 0.05 w  , 220n  ;  F) 4ABE  , 1AAE  , 0  , 8000n  ;  G) 6ABE  , 

1AAE  , 0.005 w  , 220n  ;  H) 5ABE  , 1AAE  , 0.05 w  , 220n  . 
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Figure 2.7: Sample crystallites for crystallite size versus unlike particle interaction 

strength. System parameters are (all energies in units of kBT): A) 4ABE  , 1AAE  , 

0  , 8000n  ;  B) 6ABE  , 2.5AAE  , 0  , 8000n  ;  C) 5ABE  , 1.5AAE  , 

0.005 w  , 5000n  ;  D) 6ABE  , 1.5AAE  , 0  , 5000n  ;  E) 5ABE  , 

1.5AAE  , 0.005 w  , 1500n  ;  F) 6ABE  , 1.5AAE  , 0.005 w  , 1500n  ;  G) 

4ABE  , 1.5AAE  , 0.05 w  , 220n  ;  H) 5ABE  , 2.5AAE  , 0  , 220n  ;  I) 

6ABE  , 1.5AAE  , 0.05 w  , 220n  . 
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Figure 2.8: Sample crystallites for crystallite size versus viscosity.  System parameters 

are (all energies in units of kBT): A) 4ABE  , 1AAE  , 0  , 8000n  ;  B) 6ABE  , 

1.5AAE  , 0.01 w  , 8000n  ;  C) 6ABE  , 1.5AAE  , 0  , 5000n  ;  D) 6ABE  , 

1.5AAE  , 0.005 w  , 5000n  ;  E) 6ABE  , 2.5AAE  , 0.01 w  , 5000n  ;  F) 

5ABE  , 1.5AAE  , 0.005 w  , 1500n  ;  G) 6ABE  , 2.5AAE  , 0.05 w  ,

1500n  ;  H) 5ABE  , 2.5AAE  , 0  , 220n  ; I) 6ABE  , 1AAE  , 0.005 w  ,

220n  ;  J) 4ABE  , 1.5AAE  , 0.05 w  , 220n  . 
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Figure 2.9: Sample crystallites for unlike particle interaction strength versus like particle 

interaction strength. System parameters are (all energies in units of kBT): A) 6ABE  , 

1AAE  , 0.005 w  , 220n  ;  B) 6ABE  , 1.5AAE  , 0.005 w  , 1500n  ;  C) 

6ABE  , 2.5AAE  , 0  , 8000n  ;  D) 5ABE  , 1.5AAE  , 0.005 w  , 1500n  ;  

E) 5ABE  , 2.5AAE  , 0  , 220n  ;   F) 4ABE  , 1AAE  , 0  , 8000n   220n 

;  G) 4ABE  , 2.5AAE  , 0  , 220n  . 
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In Figure 2.10, plots of the fcc-hcp order parameter,  , are shown as a function 

of each of the 4 parameters.  The plots exhibit large amounts of scatter and do not 

reveal any significant correlation between the order parameter and any of the 4 

simulation parameters, although some weak effects may be apparent such as higher hcp 

fraction with increasing viscosity. Most importantly, there does not appear to be any 

parameter combination that leads to very high values of   (pure fcc), as observed in the 

experimental crystals. 
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Figure 2.10: fcc-to-hcp order parameter,   , as a function of each of the 4 simulation 

parameters: Unlike particle type binding strength ABE , like particle interaction strength 

AAE   fluid viscosity relative to water / w   and crystallite size N . 
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2.3 Vibrational Mode Analysis 

The persistent discrepancy between simulated and experimental transformed 

crystallites suggests the presence of multiple accessible transformation pathways.  In 

this section we seek to generate a basis for identifying all possible pathways and thus a 

mechanism that would explain the discrepancy.  We first performed a vibrational mode 

analysis of the CsCl (and CuAu-I) superlattice DLPAs.  Note that the experimental 

system is overdamped and the vibrational frequencies we describe below do not imply 

oscillatory behavior (104).  Vibrational mode analysis was carried out within the 

harmonic approximation (HA) about the perfect CsCl (or CuAu-I) configuration, i.e.,  

3
0

1
( )

2
TU U O    u H u u ,                                    (2.4) 

where 0U  is the reference potential energy, 3Nu  is the perturbation vector away from 

the reference, 0r , and 3 3N NH   is the dynamical (or Hessian) matrix given by 

2
,
,

i j

i j

U
H

r   

 
     

0r

,                                             (2.5) 

where i and j are atom indices, and    and    are direction indices.  The 3N 

eigenvalues, { }i , and corresponding eigenvectors,  3Nv  , of H are related to the 

vibrational frequencies and vibrational mode vectors, respectively, of the system about 

the reference configuration.   

Shown in Figure 2.11 are the vibrational density-of-states (V-DOS) for spherical 

CsCl and CuAu-I crystallites containing 1000 particles with interactions 6AB BE k T  and 
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, 0.6AA BB BE E k T  (CsCl) or , 6AA BB BE E k T  (CuAu-I).   Both V-DOS distributions exhibit 

broad ranges of vibrational mode frequencies but CsCl also shows a large number of 

zero-frequency modes, { 0v }: while there are 6 such eigenvectors for CuAu-I, there are 

77 for the CsCl crystallite.  The 6 zero-frequency CuAu-I modes correspond to 3 

crystallite translation modes and 3 rotation modes that are always present for any finite 

particle assembly.  The additional CsCl zero frequency, or “floppy”, modes, suggest that 

displacive transformations in colloidal DLPAs may have a different character than in 

atomic systems where (in general) no zero-frequency modes exist due to the long-range 

and multi-body nature of atomic interactions.  Nonetheless, transformations in both types 

of materials are expected to proceed along the lowest energy pathways – for the 

particular colloidal DPLAs we consider here these pathways are apparently barrier-less. 
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Figure 2.11: Vibrational density-of-states for spherical crystallites.  Frequencies 

correspond to the square-root of the Hessian eigenvalues.  Blue – 1000-particle CuAu-I 

crystallite  6AA AB BE E k T  ; red – 1000-particle CsCl crystallite  6 , 0AB B AAE k T E 

.  

 The existence of a flat energy sub-space (corresponding to the kernel or null-

space of the Hessian matrix) that is spanned by a large number of zero-frequency 

eigenvectors makes difficult the identification of specific bcccp transformation 
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pathways.  Shown in Figure 2.12A is a randomly selected floppy eigenvector for the 

CsCl superlattice (200-particle cubic crystallite).  This eigenvector is an arbitrary linear 

combination of all zero-frequency modes and does not provide insight into the different 

transformation pathways.  In ref. (105), Holmes-Cerfon et al. elegantly demonstrated 

how the floppy sub-space can be geometrically analyzed and mapped for small clusters 

in the limit of infinitely short-ranged interactions, i.e., the so-called “sticky sphere” limit.  

Here, we take a different approach that relaxes the sticky-sphere and small cluster limits 

imposed in ref. (105). Starting with a perfect CsCl crystallite, we sequentially assign 

harmonic springs to random particles that tether them to their equilibrium positions.  

Each time an additional particle is tethered, the vibrational mode spectrum is 

recalculated.  The effect of incremental tethering is to systematically reduce the 

dimensionality of the floppy sub-space by eliminating zero-frequency modes (increasing 

rigidity).  The process is repeated until a single zero-frequency mode remains.  If the 

number of floppy modes reaches zero before reaching one, the tethers are removed and 

the process reinitiated.  Shown in Figure 2.12B is an example single floppy mode that 

remains following the tethering procedure.  Unlike the random vector shown in Figure 

2.12A, this mode denotes a well-defined in-plane motion of particles lying in a single 

(110) plane of the CsCl superlattice.  
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Figure 2.12: (A) (100) plan view of an arbitrary zero-frequency eigenvector for the ideal CsCl configuration of a cubic crystallite with 

200 particles. (B) (100) plan view of the center-plane “modelet” eigenvector showing center-plane particles moving along the (110) 

direction while all other particles are stationary. 
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We refer to the eigenvector depicted in Figure 2.12B as a “modelet”; a crystal-

wide displacive transformation, Tv , that evolves the crystallite from CsCl to CuAu-I (or 

something else) is comprised of a linear combination of P  modelets so that  

1

P

T i i
i




v m  (2.6) 

where P is the number of (110) planes in the crystallite and i  are coefficients.  Note 

that modelets corresponding to different particle planes along (110) are mutually 

orthogonal ( 0i j m m ) because each initially only involves motion within a single 

plane.  Similar arguments may be made for the symmetrically equivalent sets of 

transformations along the (1 10) , (101) , (10 1) ,  011  and (01 1)  planes.  Although the 

orthogonality property does not generally hold between modelets with different 

orientations, e.g., (110) (101) 0i j m m , they are still always (pairwise) linearly independent.  

Consequently, the modelet basis identified by our tethering procedure is expected to at 

most span a linear vector space with dimension P.  In fact, the precise value is P-4 

because some modelet combinations are not linearly independent.  Importantly, P-4 is 

found to always be exactly equal to the total number of zero eigenvalues in a CsCl 

crystallite, demonstrating that the modelet basis can be used to systematically define all 

possible barrier-less bcc-cp transformations. 

In order to demonstrate why there are precisely P-4 independent modelets we 

must first express a basis for the zero-frequency subspace in terms of the P pair-wise 
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linearly independent modelets However, we show here that this “naïve” P-dimensional 

basis includes several linear dependencies so that 

 q P d  ,                                                    (2.7) 

where d is the number of linear dependencies.  

Next, we consider the modelet combinations that produce rigid body translation 

(RBT) and rotation (RBR).  Along each of the six (110) orientations ((110), (1-10), (101), 

etc…), a rigid body translation can be generated by combining modelets such that all ip  

atomic planes are translated by equal amounts. However, only three such rigid body 

translations are linearly independent implying three linear dependencies.  We can also 

test RBR for similar dependencies.  RBRs can be constructed as the sum of shear 

modes along orthogonal pairs of (110) planes, e.g., for (110) and (1-10) 

  001 (110) (1 10)
RBR Shear Shear v v v .                                            (2.8) 

Since there exist only three such combinations, no additional linear dependencies arise 

from RBR. 

 It is tempting to assume that d=3.  However, one additional linear dependence is 

present in the naïve modelet basis.  Consider a two-dimensional tetragonal deformation 

mode, 
[100],[010]
Dv , defined as consisting of an expansion in the [100] direction and a 

contraction in the [010] direction.  This tetragonal deformation can be constructed by the 

addition of two shear (zero-frequency) modes, i.e., 

 [100],[010] (110) (110)
D Shear Shear v v v ,                                      (2.9) 
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where the shear modes are constructed by sums over modelets, e.g.,  

 
(110)

(110) (110)

1

p

Shear i
i

i


 v m .                                           (2.10) 

Now we consider the well-known three-dimensional tetragonal Bain transformation 

mode, which can be expressed as a sum over three distinct two-dimensional distortions:   

      100 [100], 010 [100],[001] [010],[001]1
1

2Bain D D Da a a
      
 

v v v v .                 (2.11) 

Here, the single unconstrained parameter, a, directly implies that it is possible to 

construct identical Bain modes with different linear combinations of deformation modes 

and indicates the presence of one additional degree of linear dependence among the P 

modelets so that d=4 and 

 4q P  .                                                      (2.12) 

The completeness of the P-4 dimensional basis was verified by calculating the number 

of zero-frequency modes for three differently-sized spherical CsCl crystallites containing 

P=51, 63, and 75 (110) planes, respectively.  For the three crystallites, the number of 

floppy modes was 47, 59, and 71 (P-4).   

We tracked several transformation pathways constructed with different modelet 

combinations.  The crystal-wide combinations were constructed using eq. (2.6) after 

normalizing the modelets so that the planar velocity has a value of unity.  The 

coefficients, i , were then selected so that a constant relative velocity between adjacent 

planes was imposed.  For example, if the first coefficient is unity, the second is given by 

either +c or –c, where c>1, thereby creating a relative velocity between the first two 
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modelets/particle planes.  The next modelet/particle plane is then displaced at a velocity 

of either +c or –c relative to the second modelet, and so on until every plane has been 

assigned a velocity.  According to this scheme, the total number of crystal-wide modes 

along a given (110) orientation is 12 ip   where ip  is the number of crystal planes along 

orientation i.    

Mode tracking was performed by evolving the particle positions numerically along 

a given transformation vector, i.e. 

   ( )new old T r r v r ,                                        (2.13) 

where   represents the step size.  An important aspect of this procedure is the fact that 

as the crystallite configuration transforms, each modelet evolves from a single plane 

vector to a more complex one that involves the translation of additional, out-of-plane 

particles.  As a result, the zero-frequency sub-space changes and a new Hessian kernel, 

K, must be computed repeatedly about the current configuration, newr .  One 

consequence of this evolution is that the orthogonality properties of modelets computed 

at the ideal CsCl configuration do not necessarily hold as the crystal is deformed 

(although linear independence is maintained).  Attempting to reconstruct a new modelet 

basis each time a new kernel is obtained, e.g., with the tethering procedure described 

above, would be prohibitively difficult.  Instead, we use the least squares approximation 

to find the mode contained within the new kernel that is closest to the current mode, 

such that 

    1new T T old
T T

    
v K K K K v                                  (2.14) 
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where    1T T old
T


K K K v produces a vector containing the magnitude of the contribution 

to the new mode from each component of the kernel.  The process in eqs. (2.13)-(2.14) 

is repeated until the dimensionality of the kernel decreases to a value of six, at which 

point the system is no longer floppy and a boundary of the zero-frequency sub-space is 

located.  At this location, a local (downhill) energy minimization is performed using the 

Fast Inertial Relaxation Mechanism (FIRE) method (106) and the configuration tested for 

evidence of a transformation.   

We considered three specific combinations of modelets, the first two being 

constructed along a single [110] direction: (1) the magnitudes of all modelets are shifted 

by +c relative to their neighbors, and (2) the shift alternates between +c and –c across 

the entire crystallite.  The first case corresponds to a uniform shear along the (110) 

direction (Figure 2.13A), while the second case corresponds to a “zig-zag” displacement 

field along (110) as shown in Figure 2.13B.  The third case (Figure 2.13C) is the well-

known Bain strain (107).. 



51 

 

 

Figure 2.13: (100) plan views of different transformation modes constructed using linear combinations of modelets. (A) Shear, (B) 

“zig-zag”, and (C) Bain.  



52 

 

 

Evolving the (initially CsCl) crystallite along each of these modes we find that 

once the flat energy sub-space is reached (i.e., once the energy begins to change), 

further evolution along the mode vector corresponds to a negative energy change.  Local 

energy minimizations initiated at these locations then rapidly lead to the final cp states. 

Shown below in Figure 2.14 are sample configuration states along the transformation 

pathway of a CsCl crystallite into hcp via the so-called zig-zag mode.  The top row 

shows the transformation looking down along the z-axis onto a (100) surface, while the 

lower row shows the same configurations looking down the y-axis onto the (010) 

surface.  The zig-zag transformation initially proceeds via the motion of atomic planes 

along (110) as shown in A and D.  The configuration shown in B and E represent the 

point at which the zero-frequency eigenvector disappears and corresponds to a location 

at the boundary of the flat energy manifold.  A downhill energy minimization performed at 

this location produces the configuration shown in C and F. 
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Figure 2.14: Visualization of the various stages experienced by a transforming crystallite 

during the zig-zag mode transformation. Arrows indicate the deformations occurring 

during each stage of the transformation. A and D are the (100) (z) and (010) (y) views of 

the original CsCl lattice. B and E show the (100) and (010) views of the partially 

transformed system, after the zero frequency evolution process has been completed. C 

and F show the (100) and (010) views of the system once the energy minimization has 

terminated. 
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For the uniform shear and Bain strain cases, the resulting crystallite is CuAu-I 

(Figure 2.15A), while the zig-zag displacement leads to an ordered hcp superlattice as 

shown in Figure 2.15B.  Additional calculations using combinations of shear and zig-zag 

displacements lead to rhcp (Figure 2.15C).  Note that the CuAu-I, hcp, and rhcp 

superlattices are all compositionally (and energetically) equivalent, i.e., in each case 

every particle is subject to 8 unlike (AB) contacts and 4 like (AA/BB) contacts.  
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Figure 2.15: Compositionally ordered CuAu-I (A), hcp (B) and rhcp (C) superlattice structures.  Each cp structure exhibits 8 like 

contacts and 4 unlike contacts for every particle. 
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It is worth emphasizing that, by contrast, downhill energy minimizations initiated 

at edges of the zero-frequency manifold found using arbitrary zero-frequency 

eigenvectors (e.g., Figure 2.12A) never lead to bcc-cp transformations: only properly 

constructed eigenvectors find paths to a cp configuration.  This observation suggests 

that the topology of the zero-frequency manifold is of “hub-and-spoke” type with the ideal 

CsCl configuration at the center of the “hub”.  While most excursions from CsCl quickly 

become blocked at the hub boundary, narrow openings (the spokes) lead to the various 

cp states.  Taken together, these results provide a simple entropic explanation for why 

LD simulations initiated at the ideal CsCl configuration generally lead to rhcp 

transformed crystals rather than fcc CuAu-I (or pure hcp): there are far more modelet 

combinations that correspond to rhcp  16(2 4)P  than either pure hcp (6) or fcc (9).  In 

the case of the 1000-particle crystallite considered previously, this amounts to 36,867 

rhcp states, each with its own microscopically distinct transformation pathway.   

It is possible that subtle details of the zero-frequency manifold structure, such as 

funnels, or differences in the “spoke” hyper-geometries could cause a bias in the end-

state distribution and thus explain the CuAu-I selection observed experimentally.  

However, as mentioned earlier, the only apparent bias appears to favor transformation to 

hcp rather than fcc.  The observed hcp bias can be qualitatively explained by 

considering the difference in the way the fcc- and hcp-producing transformations occur 

on a local scale: while relative motion between two adjacent (110) planes immediately 
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leads to a locally hcp configuration, creation of an fcc plane requires the concerted 

motion of three adjacent planes in the parent CsCl crystal.  

2.4 Hydrodynamic Correlation and Anisotropic Diffusion  

 The preceding vibrational mode analysis appears to fully explain the structural 

diversity observed in the LD simulations – but provides no clues regarding the 

discrepancy with respect to the experimental structures.  Here, we consider the 

possibility of biasing induced by hydrodynamic correlations between the particles.  

Hydrodynamic forces are known to be important in driven (non-equilibrium) systems, 

e.g., when a shearing force is applied externally (108), but they are usually neglected 

when considering particle assembly in quiescent solvents, particularly when only the 

final configuration (rather than the kinetics) is of interest. 

We introduce hydrodynamic correlations in incompressible fluids by modifying 

eq. (2.1) to include the hydrodynamic force, HF , which is given by  

,
1

( )
n

ij
H i j

j B
j i

k T





 
D

F F r ,
                                            (2.15) 

 

where D  is the mobility tensor.  The hydrodynamic force on particle i represents viscous 

drag created by flow induced via the motion of other particles.  In the full Stokesian 

dynamics approach (109), a further modification of eq. (2.1) is required in which the 

single-particle random Brownian force, ( )tR , is replaced by a new random force, ( )tR , 

that accounts for correlations between Brownian forces acting upon different particles so 

that ( ) ( ) 2i j ijt t dt  R R D .  However, this modification greatly increases the 
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computational cost of the simulation and is not directly relevant for the present analysis.  

Instead, we consider the non-Brownian (fluctuation-free) limit and further assume that 

the particles are inertia-less for simplicity.  We also consider particle rotation so that the 

coupled force and torque balance equations are given by  

1 tt tr

rt rrBk T

    
     

    

D Dr F

D Dθ τ


 ,                                    (2.16) 

where the mobility tensor is comprised of 4 sub-tensors, D , that describe the 

influence of hydrodynamic correlations on particle translation (“t”) and rotation (“r”).  The 

terms of the mobility matrix, D , are approximated using asymptotic expansions as 

described in ref. (110).  In particular, we employ expansions up to 12th order in the 

center-to-center distance between pairs of particles.  The single particle contributions to 

the mobility matrix are 

   1

04tt S
ii Bk T A


D Ι ,                                          (2.17) 

   1

18rr T
ii Bk T A


D Ι ,                                         (2.18) 

where 
tt
iiD  is the translational mobility for a single sphere, 

rr
iiD  is the rotational mobility 

for a single sphere, and 0
SA  and 1

TA  are scattering coefficients. The two-particle 

interaction terms are given by 

        , , , , ,
ˆ ˆ ˆ ˆtt tt tt

ij ij B ij ij ij ij ij ij ijD k T R R R R R R         R                (2.19) 

     , ,
ˆtr tr

ij ij B ij ij ijD k T R R R ε                                      (2.20) 
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        , , , , ,
ˆ ˆ ˆ ˆrr rr rr

ij ij B ij ij ij ij ij ij ij ijD k T R R R R R R         R  ,          (2.21) 

where ijR is the center-to-center distance vector between a pair of particles ij i j R r r ,

,
ˆ

ijR  is a normalized directional component of ijR such that , ,
ˆ

ij ij ijR R R  , ε  is the 

completely antisymmetric Levi-Civita tensor. Values for the various   and   

parameters are given by 
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        (2.26) 

 

where the notation [i ]j  indicates that the preceding terms should be 

repeated once with all i and j indices swapped.  Once again, the various A and B terms 

are scattering coefficients and are provided in ref. (111).In order to compute the overall 

mobility along a particular mode direction, particles arranged in a perfect CsCl crystallite 

with lattice parameter determined by the minimum potential energy are assigned 

velocities that correspond to that mode and eq. (2.6) is used to calculate the 

corresponding particle drag forces, iF .  For the time being, we assume that particles are 

freely rotating, i.e., that they are torque-free and τ 0 .  The applied velocity vector is 

always scaled so that the total drag force exerted by an equivalent system of isolated 
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particles is the same for all modes.  A normalized overall effective mobility along a given 

velocity vector is then defined as 

2 2 2

2 2 2

/

/
D   0

0

r F F

r F F




,                                          (2.27) 

where 0F  is the vector of drag forces in the system of isolated particles. 

 Shown in Figure 2.15A are the scaled mobilities as a function of (spherical) 

crystallite size for the three different transformation pathways, computed at the initial 

CsCl configuration.  These results correspond to a particle diameter, dp, of 400 nm, and 

particle center-to-center distance, dc, of 420 nm as dictated by the location of the energy 

minimum of the potential function ( 6.0AB BE k T ), i.e., / ~ 0.95r p cd d d .  Overall, the 

fcc-producing shear mode is found to have the highest effective mobility, while the hcp-

producing zig-zag mode has the lowest.  Random zero-frequency modes that do not 

correspond to transformation pathways exhibit mobilities that lie in between the simple 

shear and zig-zag limits (Figure 2.15A inset).  Interestingly, the zig-zag mode and most 

of the random eigenvectors, are hindered by hydrodynamic correlation (scaled mobilities 

below unity), while the shear and Bain modes are enhanced because of ‘slip-streaming’.  

The mobility anisotropy increases with increasing crystallite size – extrapolating the 

results in Figure 2.16A to the crystallite sizes in the experiment, >1000 particles, 

suggests a ratio of diffusive mobilities of order 50 and greater.  Although we have 

insufficient statistical evidence to unambiguously support this prediction experimentally, 

we have anecdotally found that the few large CuAu-I crystallites do not contain any 

stacking faults.  
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Figure 2.16: (A) Scaled mobility of zero-frequency eigenmodes as a function of spherical CsCl crystallite size for shear – green, Bain 

– blue, and zig-zag – red.  Scaled mobilities are reported relative to mobilities for isolated particles (see eq. 2.7). Inset: Distribution of 

scaled mobilities for 100 randomly selected zero-frequency eigenvectors for the 54-particle crystallite.  (B) Scaled mobilities for 432-

particle crystallite as a function of particle size relative to separation, 1( / )r p cd d d  , for: shear – green, Bain –  blue, zig-zag – red. 
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While hydrodynamic forces clearly influence displacive transformation pathway 

selection, other non-equilibrium selection mechanisms, such as particle rolling or sliding, 

may also be operative or even dominant.  The impact of assuming freely-rotating, 

torque-free particles was probed by repeating the mobility calculations for rotationally 

fixed particles, i.e., θ 0 . The comparison between the two cases is shown below in 

Figure 2.17 and demonstrates that the difference is small and that the overall 

conclusions are unaffected by particle rotation. 
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Figure 2.17: Scaled mobilities of zero-frequency eigenmodes for 432-particle CsCl 

crystallite as a function of particle size relative to separation ( rd ) for shear (green), Bain 

(blue), and zig-zag (red) modes: Squares – rotation-free, circles – torque-free.   

 

 This initially surprising discovery regarding the negligible impact of particle 

rotation on overall mode mobility can be explained by noting that significant particle 

rotation is not present during the various displacive transformations considered here 
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because of rotational frustration arising from multiple simultaneous particle-particle 

interactions.  This observation has an important implication, namely that particles must 

be sliding past each other, rather than rolling over each other, during the 

transformations.  Equally crucially, the total extent of sliding during each of the different 

transformation pathways is essentially equal.  As a result, any sliding friction due to DNA 

brush interactions or DNA bridge breakage and/or formation kinetics is not likely to be an 

important factor in the selection between the different transformation pathways, even if it 

alters the overall kinetics of the transformation process(es).  Taken together, these 

observations leave hydrodynamic correlations as the likely dominant mechanism for 

transformation pathway biasing and structure selection. 

In summary, our results indicate that hydrodynamic coupling between particles 

leads to highly anisotropic diffusion within the zero-frequency manifold in configuration 

space.  The biasing mechanism may be interpreted in the context of a reaction network 

in which the “reactant” (CsCl) can transform into a number of energetically degenerate 

“products” (the various cp configurations).  First, note that the energetic degeneracy of 

all products implies that, at equilibrium, the product distribution should correspond to the 

statistical distribution of the mode distribution identified by vibrational analysis – most of 

the crystallites should be rhcp.  In the language of reaction kinetics, this is equivalent to 

stating that the equilibrium constant (the ratio of the forward and backwards rates) for 

every pathway is the same but since there are many more reactions that produce 

various rhcp states, this type of product will dominate.   

The anisotropic diffusion created by the hydrodynamic correlations alters the 

forward and backward rates of each the various pathways, but does so in a way that 
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preserves the equilibrium constant of each pathway (and therefore the overall 

equilibrium state).  The apparent persistence of the non-equilibrium distribution in the 

experiments can be reconciled by considering that at some point during the transition 

from bcc to cp, two new like bonds are formed for every particle, significantly lowering 

the crystallite energy.  In other words, the forward rates are much higher than the 

backward rates and the equilibrium constants are very large.  As a result, the non-

equilibrium distribution is expected to persist for very long times – for like interactions of 

O(kBT), and crystals containing O(103) particles, the transformations are practically 

irreversible and the anisotropic diffusivity dictates the observed distribution.  

2.5 Conclusions 

The notion that pre-programmed DNA-grafted particles can be used to 

deterministically produce equilibrium assemblies is overly simplistic.  Several studies 

have already demonstrated that the processing history to which a population of DNA-

grafted particles is subjected can strongly influence the final structure.  Most obviously, 

rapid quenching can trap a system into a high energy, disordered non-crystalline state.  

However, the influence of kinetic factors also can be much more subtle, acting to select 

between multiple possible crystalline configurations, either during the crystallization 

process or, as was shown in our recent experiments, after crystallization via an 

unexpected displacive transformation.    

In this chapter, we uncover yet another source of kinetic influence, namely the 

solvent in which the particle assembly forms.  While externally applied flows have been 

used previously to influence assembly in a variety of systems, we believe this is the first 

evidence for an autogenous mechanism in which self-induced hydrodynamic drag forces 
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in an otherwise quiescent solvent lead to non-equilibrium structure selection.  In 

particular, we provide strong evidence that hydrodynamic correlation between particles 

establishes a dynamic anisotropy that results in bias towards certain configurations over 

others during a CsClCuAu-I displacive transformation of binary superlattice 

crystallites.  The extent of the anisotropy appears to be closely tied to the ratio of particle 

size and DNA oligomer length, possibly obfuscating otherwise simple size scaling laws.  

We emphasize that the outcome of this study is not simply that DLPA processing is 

complicated: the ability to intentionally direct DLPAs towards non-equilibrium (and 

useful) configurations greatly increases the versatility of these materials, provided that 

such effects are well understood.  

Finally, while this study was focused on the specific action of anisotropic diffusion 

during displacive transformations of DNA-linked particle assemblies, we hypothesize that 

similar effects may occur in a variety of colloidal model systems.  The principal defining 

feature of the system we consider in this chapter is structural transformation involving 

the cooperative motion of large numbers of colloidal particles, corresponding to the 

system moving along narrow pathways on flat energy subspaces in configuration space.  

The same description would apply equally well to glasses and super-cooled fluids of 

hard-sphere colloids, which display highly cooperative rearrangements termed 

dynamical heterogeneity (112, 113).  Moreover, our CsCl parent crystals are held 

together by short-range reversible interactions, in insufficient numbers to give rise 

mechanical rigidity, reminiscent of so-called attractive glass colloidal systems (114).  

Thus, we hypothesize that hydrodynamic selection/biasing can play a role in multiple 

systems of considerable current interest, in which the details of microscopic 
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rearrangements often remain poorly understood and experimental results frequently do 

not resemble those from matched simulations. 
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3. EXPLORING ZERO-ENERGY PHASE TRANSFORMATIONS IN 

ASYMMETRIC BINARY SYSTEMS 

3.1 IntroductionEquation Section 3 

As shown in Chapter 2, CsCl crystallites constructed from micron-sized DNA-

functionalized colloidal particles are capable of multiple solid-solid phase 

transformations. This is due to both the short interaction range relative to the particle 

size and the relatively low bonding coordination between particles in the CsCl 

superlattice, both of which lead to a non-rigid structure exhibiting a large number of zero-

frequency vibrational modes. In principle, this lack of rigidity allows CsCl crystallites to 

undergo four unique transformations: the (1) Bain and (2) shear transformations, which 

both produce the face-centered cubic CuAu (CuAu-fcc) superlattice, the (3) zig-zag 

transformation which produces the hexagonal close-packed CuAu superlattice (CuAu-

hcp) and (4) a random combination of the zig-zag and shear transformations, which 

produces a random hexagonal close-packed (rhcp) superlattice. As discussed in the 

previous Chapter, hydrodynamic biasing leads to a preponderance of CuAu-fcc in 

systems with equally-sized particles, which is presumably formed by the low-drag shear 

deformation pathway. 

Recent experiments in the Crocker lab have produced results which appear to 

contradict the observations and conclusions described in Chapter 2. Here, CuAu-hcp 

crystallites were observed, suggesting that the apparently high hydrodynamic resistance 

zig-zag transformation mode was operational. . An example of such a crystallite is 

shown below in Figure 3.1. This result is at odds with the theoretical picture presented in 
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Chapter 2, and also raises the question of why CuAu-hcp was not observed in earlier 

experiments.  

The apparent discrepancy may be resolved by noting that the new experiments 

differ from the ones in Chapter 2 in an important way: the binding strength between 

particles of the same type was not kept constant across particle types, that is AA BBE E , 

unlike the symmetric conditions employed in the prior experiments. On the other hand, 

this difference in the particle interaction matrix should have no impact on the 

hydrodynamic biases preventing the production of CuAu-hcp. In order to explain this 

explain this unexpected phenomenon we return to the mode tracking methods 

developed in Chapter 2, and apply them to determine how the interaction asymmetry 

leads to such a significant qualitative difference.   

 

Figure 3.1: Example hcp crystallite observed in the Crocker Lab. This crystallite was 

observed when interactions between particles of type A (shown in red) were disabled, 

such that A particles only interact with B particles (shown in green) while B particles can 
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also interact with other B particles. Interactions between pairs of type A particles are 

purely repulsive.  

 

In the following analysis, we employ the same Langevin dynamics simulations 

and vibrational analysis methods developed in Chapter 2 in order to understand the 

existence of these experimentally observed CuAu-hcp lattices. Additionally, we expand 

the approach to understand how the CsCl system behaves when the two  particle 

species are unequal in size. Finally, we briefly examine how our approach may be used 

to model phase transformations unrelated to the CsCl superlattice. 

 

3.2 Asymmetric Interaction Matrices 

 In an attempt to replicate in simulation the experimentally observed CsCl to 

CuAu-hcp transformation, a series of Langevin Dynamics simulations were performed 

using the LAMMPS software package (102). These simulations were initialized with CsCl 

crystallites containing 1837 particles each 400nm in diameter, with the viscosity of the 

implicit fluid set to 1% that of water. Note again that the viscosity does not appear to play 

a role in the establishing the hierarchy of transformation pathways—the 1% value was 

used solely to accelerate the simulations. In order to replicate experimental conditions, 

the binding strength between unlike particles were set to 6kBT, the binding strength 

between A particles was varied from 0 to 2kBT, and the binding strength between B 

particles was varied from 0.5 kBT to 2kBT. Each simulation was allowed to evolve until 

the potential energy had reached some equilibrium value. 
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For simulations where the binding strength between A particles was less than 

1kBT, the presence of a previously unobserved structure, which we refer to as Pseudo 

Close-Packed (pcp), was discovered; see Figure 3.2. The unit cell of the pcp lattice is 

orthorhombic with relative edge lengths of 1.0, 1.1, and 9.3. There are 16 particles per 

unit cell with type A particles located at (1/4-0.01, 1/4, 0.269), (1/4-0.01, 3/4, 0.269),  

(3/4-0.01, 1/4, 0.774), (3/4-0.01, 3/4, 0.774), (3/4+0.01, 1/4, 0.269), (3/4+0.01, 3/4, 

0.269),  (1/4+0.01, 1/4, 0.774), (1/4+0.01, 3/4, 0.774) and B particles are located at (1/2, 

0, 0.0323), (1/2, 0, 0.505), (1/2, 1/2, 0.323), (1/2, 1/2, 0.505), (0, 0, 0.011), (0, 0, 0.538), 

(0, 1/2, 0.011), (0, 1/2, 0.538). Each particle exhibits 8 unlike particle contacts, B 

particles have one like particle contact, while A particles have zero like particle contacts. 
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Figure 3.2: Example of the pcp structure observed in LD simulation. This structure was 

produced by performing an LD simulation on a CsCl crystallite seed containing 1837 

particles. Binding strengths between A particles (shown in red) were set to 0kBT, 

between B particles were (shown in green) set to 1kBT and between particles of unlike 

type were set to 6kBT. The CsCl crystallite rapidly transformed into the structure shown. 

  

The pcp structure remains stable as long as the binding strength between A 

particles is ~1kBT lower than the binding strength between B particles, and the binding 

strength between B particles is below ~2kBT. However, increasing either of these binding 

strengths beyond these limits will cause the crystallite to rapidly transform a second 
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time, producing rhcp. An overview of the two observed transformations is shown below 

in Figure 3.3.  

 

Figure 3.3: Overview of the CsCl to pcp and pcp to RHCP transformations observed in 

LD simulations. The initial configuration, shown on the left, is a CsCl crystallite 

containing 1837 particles. Performing an LD simulation with this CsCl crystallite as the 

seed structure, with binding strengths between A particles (shown in red) set to 0kBT, 

between B particles (shown in green) set to 1kBT and between particles of unlike type 

set to 6kBT, results in rapid transformation into the pcp crystallite shown in the center. 

Upon increasing binding strengths between A particles to 1kBT, the crystallite transforms 

a second time, producing the rhcp crystallite shown on the right. 

 

It is not immediately obvious how to model this transformation using the zero-

frequency mode analysis method presented in Section 2.3. However, close examination 

of the transformation makes it clear that previous analysis of the transformation 

pathways available to the CsCl superlattice had been unnecessarily constrained. In all 

prior transformations we had assumed that every adjacent (110) modelet must move 

relative to one another in order for the crystallite to transform. However, after the pcp 
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producing transformation has occurred, every other pair of adjacent (110) planes has 

experienced little to no relative motion. With this in mind, it becomes clear that in order to 

replicate the pcp producing transformation using the zero-frequency mode evolution 

method we must require that each modelet only moves relative to one of its two 

neighboring modelets.  

Before describing the specifics of the transformation, it is worth noting that 

similarly to the CP producing transformations, which can produce CuAu-fcc, CuAu-hcp, 

or CuAu-rhcp, this transformation type has two variants, which produce either pcp or 

random psuedo close-packed (rpcp). The pcp producing transformation, which we refer 

to as the “half-step” transformation requires that every other pair, and only every other 

pair, of adjacent modelets move relative to one another, in a single direction, which must 

be consistent across the entirety of the crystallite. Using the notation introduced in 

Section 2.4, an example of a valid pathway described as the relative motion between 

sequential adjacent modelets would be: +c, 0, +c, 0, where c is an arbitrary measure of 

the relative velocity between (110) modelets. The pcp producing transformation is shown 

below in Figure 3.4 along with the corresponding CsCl modelets. The rpcp producing 

transformation differs from the pcp producing transformation only in that it does not 

necessitate that all motion between adjacent modelets be in a single direction across the 

crystallite. 
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Figure 3.4: (001) view of the pcp producing transformation. The initial transformation 

pathway is shown on the left, superimposed on a CsCl crystallite. The resulting pcp 

crystallite is shown on the right. The pcp lattice was produced by evolving a CsCl 

crystallite seed containing 200 particles each with a diameter of 400nm along the pcp 

transformation pathway using the method described in Section 2.3. A particles are 

shown in red, B particles are shown in green. 

  

While the pcp and rpcp lattices are both mechanically stable, we can also 

observe them “completing” their transformation into a close-packed lattice. Although the 

stationary modelet pairs associated with the pcp transformation are no longer fully non-

rigid, their rigidity is very weak, allowing us to continue to employ the zero-frequency 

evolution method in the same manner as previously used for zero-frequency modelets 

by treating any vibrational mode with a frequency eight orders of magnitude smaller than 

that of a single particle pair as if it had a frequency of zero. The transformation pathway 

itself, which we refer to as either “psuedo-shear”, if it produces CuAu-fcc, or “psuedo-zig-
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zag”, if it produces CuAu-hcp, is simply the “complement” of the pathway taken to 

produce the pcp lattice. For example, given that the shear pathway to directly transform 

a CsCl lattice into CuAu-fcc is: +c, +c, +c, +c and that the pcp lattice can be produced 

via the pathway:+c, 0, +c, 0, transforming the pcp lattice into CuAu-fcc requires the 

pathway:0, +c, 0, +c. Examples of pcp to CuAu-hcp and CuAu- fcc transformations are 

shown below in Fig 3.5. 
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Figure 3.5: (001) view of the pcp to CuAu-fcc (A) and CuAu-hcp (B) producing 

transformations. The initial transformation vector is shown on the left, superimposed on 

a pcp crystallite. The crystallites resulting from these transformations are shown on the 

right.  The transformations were performed by evolving a pcp crystallite seed containing 

200 particles with a diameter of 400nm along the “psuedo-shear” and “psuedo-zig-zag” 

transformation pathways using the zero-frequency mode evolution method described in 

Section 2.3. A particles are shown in green, B particles are shown in red. 
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The most interesting aspect of the two-step transformation, CsCl PCP CP  , 

is that it allows for a hydrodynamically favorable pathway from CsCl to CuAu-hcp. If one 

considers only direct CsCl CP transformations, no CuAu-hcp producing 

transformation is available, as the only CuAu-hcp producing pathway: c, , c,c c     

requires alternating modelet pairs to move in opposite directions, which is 

hydrodynamically unfavorable, as detailed in Section 2.4. However, with an already 

transformed pcp lattice produced via the pathway ,0, ,0c c  , it is clear that this lattice 

can transform into either CuAu-hcp via the pathway 0, ,0,c c  or CuAu-fcc, using 

0, ,0,c c  . These transformations are hydrodynamically equivalent. In both cases, all 

movement during a single step of the transformation is in the same direction, and so 

both transformations experience the same total drag force. Thus, if at any point during 

the crystallite growth process, system conditions change from favoring pcp to cp, one 

would expect to see a roughly 50/50 split between perfect CuAu-hcp and CuAu-fcc 

crystallites. This explains the experimental presence of CuAu-hcp as discussed in 

Section 3.1. An overview of the full transformation network connecting CsCl, CuAu-hcp, 

CuAu-fcc, and pcp is shown below in Figure 3.6.  
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Figure 3.6: Complete diagram illustrating the transformations available to the CsCl superlattice. A particles are colored red,  B 

particles are colored green. Bonds connecting neighboring particles indicate only that they are within interaction range of one 

another. The CsCl lattice is shown from its (100) orientation, and all other lattices show the same face after it has been transformed. 

The dotted line directly connecting CsCl to hcp indicates that while the transformation is physically possible, it is not experimentally 

observed due to a negative hydrodynamic bias.  .
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3.3 Asymmetry in Size and Interaction 

Additional experiments have recently been performed using particles of different 

sizes. Here, four distinct crystalline superlattices are observed: CsCl, CuAu-fcc, and two 

variants of the IrV superlattice, which we refer to as the “Basketweave” (BIrV) and 

“Herringbone” (HIrV) variants. Two factors immediately suggest that solid-solid phase 

transformations may play a role in this new system: first, the CsCl superlattice has 

retained its non-rigid properties at this size ratio and second, the CuAu-fcc superlattice is 

still observed. This suggests that at least one of the two CsCl to CuAu-fcc 

transformations may still exist. In order to determine if any transformations indeed exist 

in this system we will analyze it using the methods developed in Section 2. 

First, in order to determine if the IrV lattices are in fact connected to the CsCl 

superlattice through some transformation, a series of LD simulations were performed 

under conditions chosen to match the experiments as closely as possible. These 

simulations were initialized with CsCl crystallites containing 1500 to 4285 particles, with 

the large (B) particles set to a diameter of 500nm and the small (A) particles set to a 

diameter of 425nm. Binding strengths between unlike particles were set to 6kBT, like 

particle binding strengths between Type A and Type B particles were independently 

varied from 0 to 4kBT. The viscosity of the fluid was again set to 1% that of water. Each 

simulation was allowed to evolve until the potential energy had equilibrated. For runs 

where the binding strength between B particles was at least 1 kBT, the crystallite was 

observed to transform into a random mixture of HIrV and BIrV superlattice structures, 
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which we henceforth refer to as RIrV. An overview of this transformation is shown below 

in Figure 3.7.  

 

 

Figure 3.7: Overview of the CsCl to RIrV transformation process observed in LD 

simulations. The initial configuration, shown on the left is a CsCl crystallite containing 

4285 particles. Performing an LD simulation with this CsCl superlattice as the seed 

structure, with binding strengths between A particles (shown in red) set to 0kBT, between 

B particles (shown in green) set to 1kBT and between particles of unlike type set to 6kBT, 

results in a RIrV crystallite, shown on the left. The RIrV lattice is a random combination 

of the HIrV and BIrV lattices. 

 

 The behavior observed in these LD simulations is very similar to what was 

observed in the simulations performed on same-size binary systems described in 

Section 2.2, with both sets of simulations producing random mixtures of two superlattice 
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configurations. This equivalence suggests that the transformation occurring at the 0.85 

size ratio may be similar to the random combination of shear and zig-zag 

transformations observed at the 1.0 size ratio. In order to determine if there is in fact 

such a connection, both the shear and zig-zag transformation pathways were used to 

evolve a 0.85 size ratio CsCl crystallite using the zero-frequency mode evolution method 

described in section 2.3. These simulations were found to be only partially successful. 

While it was possible to produce both HIrV and BIrV by transforming along a path which 

is initially identical to the zig-zag and shear modes, the paths were found to change 

abruptly partway through the transformation when some of the larger particles came into 

contact. At this point in the transformation, the number of zero frequency modes was 

found to be reduced dramatically by up to ~95%, depending on the shape and size of 

the crystallite, forcing the system to change direction and find a new pathway to continue 

the transformation. Using small crystallites containing fewer than ~30 particles it was 

possible to reduce the remaining zero frequency modes to one, allowing for easy 

isolation of the final transformation vector. The resulting “two-step” transformation 

pathways which produce HIrV and BIrV are illustrated below in Figure 3.8. 
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Figure 3.8: Overview of the transformation pathways between the CsCl superlattice and 

the BIrV (A) and HIrV (B) superlattices. Arrows indicate the displacement direction at the 

start of the transformation. The initial CsCl crystallite is shown on the left. The middle 

crystallites indicate the structure once the initial transformation direction no longer exists. 

The crystallites shown on the right indicate the final IrV structure resulting from the 

transformation, and are generated by following the transformation pathways indicated on 

the middle crystallite. Transformation pathways were generated and followed using the 

method described in Section 2.3. The 500nm type B particles are shown as green and 

the 425nm type A particles are shown as red. 

 

While these transformations do explain some of the experimental results, two 

outstanding issues remain unresolved. First, the shear mode, which produced CuAu-fcc 

in the 1.0 size ratio CsCl crystallites, produces BIrV in the 0.85 size ratio system, as 
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shown in Figure 3.8. However, CuAu-fcc is still observed experimentally at this size ratio. 

Secondly, the HIrV-producing transformation utilizes the same zig-zag pathway which 

was previously demonstrated to be hydrodynamically unfavorable in Section 2.4. Below 

we show that both of these apparently unresolved discrepancies may be resolved 

straightforwardly. 

 Regarding the first issue, while it is true the shear transformation is no longer 

capable of producing CuAu-fcc, the Bain transformation, which is still operational at the 

0.85 size ratio, may be invoked. The 0.85 size ratio CuAu-fcc Bain transformation is 

demonstrated below in Figure 3.9. While the Bain transformation is not hydrodynamically 

favored against the shear transformation, the frequency with which CuAu is observed 

experimentally is much lower in the 0.85 size ratio system, with fewer than 5% of 

crystallites exhibiting CuAu-fcc characteristics, as opposed to nearly 100% of 

transformed crystallites in the 1.0 size ratio system. This frequency appears to be 

reasonable given the lower hydrodynamic favorability of the only CuAu-fcc producing 

transformation.  

The hydrodynamic bias against the zig-zag transformation can be explained by 

invoking the pcp lattice. Here, the pcp lattice acts as an intermediate structure between 

the CsCl and HIrV at a size ratio of 0.85 in much the same way as it did between the 

CsCl and CuAu-hcp lattices at a size ratio of 1.0. The CsCl to pcp to HIrV transformation 

is demonstrated below in figure 3.10. 
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Figure 3.9: Overview of the Bain transformation pathway between the CsCl superlattice 

and the CuAu-fcc superlattice at a size ratio 0.85. Arrows indicate the displacement 

direction at the start of the transformation. The initial CsCl crystallite is shown on the left, 

and the fully transformed CuAu-fcc crystallite is shown on the right. The transformation 

pathway was generated and followed using the method described in Section 2.3. 500nm 

B particles are shown as green and 425nm A particles are shown as red. 
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Figure 3.10: Overview of the CsCl to HIrV transformation using the pcp phase as an 

intermediate. Arrows indicate the displacement direction at the start of the 

transformation. The transformation proceeds clockwise starting from the initial CsCl 

crystallite shown in the upper left. The second crystallite has a pcp structure, the third 

structure is an intermediate between CsCl and HIrV and the fourth structure is HIrV. The 

500nm B particles are shown as green and the 425nm A particles are shown as red. 

 



  88 

 

 Ultimately, the full network of transformations available to the CsCl superlattice at 

a size ratio of 0.85 closely mirrors that of the 1.0 size ratio system. The 0.85 size ratio 

IrV producing transformations are very similar to the 1.0 size ratio cp producing 

transformations, with both having two potential variants: Herringbone and Basketweave, 

in the case of IrV, and CuAu-hcp and CuAu-fcc in the case of cp. Beyond the cp to IrV 

comparison the only real difference is that, while the Bain transformation produces 

CuAu-fcc at both size ratios, the shear transformation does not. The overall 

transformation network for the 0.85 size ratio CsCl system is summarized below in 

Figure 3.11. 
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Figure 3.11: Complete diagram illustrating the transformations available to the CsCl superlattice at a size ratio of 0.85. A particles are 

colored red, B particles are colored green. Bonds connecting neighboring particles indicate are within interaction range. The CsCl 

lattice is shown from its (100) orientation, and all other lattices show the same face after it has been transformed. The dotted line 

directly connecting CsCl to HIrV indicates that while the transformation is physically possible, it is not experimentally observed due to 

hydrodynamic biases. 
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3.4 Phase Transformations Beyond the CsCl Superlattice Family 

 

The CsCl superlattice is not alone in exhibiting zero frequency deformation modes. 

The NaCl superlattice is observed experimentally to be the stable morphology for binary 

systems with a size ratio between 0.41, where its structure is rigid and 0.565. An 

overview of the size ratios accessible to the CsCl and NaCl superlattices is shown below 

in Figure 3.12. At any size ratio above its minimum value of 0.41, this structure exhibits 

zero frequency vibrational modes. In fact, at size ratios where the NaCl superlattice is 

non-rigid, it exhibits far more of these modes than the CsCl system, and cannot be fully 

described using the (110) modelet basis. Depending on shape, a NaCl crystallite 110 

particles in size will have approximately 80 zero-frequency modes while a CsCl 

crystallite of the same size will have only approximately 30. 

 

 

Figure 3.12: Parent structures of DNA linked colloidal assemblies and their associated 

size ratio ranges. Example CsCl and NaCl crystallites are shown at size ratios of 0.85 
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and 0.565, respectively. In the range between 0.565 and 0.73, no crystallites have been 

observed experimentally. 

 

The “pinning” technique, used to identify (110) modes as the fundamental modelet of 

the CsCl superlattice in Section 2.3, was also used here to determine the fundamental 

modelet of the NaCl system. The fundamental NaCl modelet was found to be a single 

column of particles aligned along a (100) vector moving in the same direction as that 

(100) vector. An example of such a modelet is shown below in Figure 3.13.   

 

 

Figure 3.13:  Example of a single (100) NaCl superlattice modelet. Only a single column 

of particles in the (100) direction are associated with this modelet. Particles are shown at 
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a size ratio of 0.565. Type A particles are colored red and have a radius of 158nm, type 

B particles are colored green and have a radius of 280nm. 

 

 While the highly flexible nature of the NaCl superlattice suggests access to a 

significant number of transformations, only one transformation has been observed 

experimentally, a crystal-wide shear of the (001) facing planes in the (110) direction at a 

particle size ratio of 0.565. In order to identify the transformation vector associated with 

this deformation, we begin with the assumption that the direction of the initial 

transformation vector for each individual particle is close to the total displacement vector 

over the full transformation, which we refer to as totalΔx . With this assumption in mind, 

we are able to determine an initial set of transformation modelets using eq (2.14) from 

Section 2.3, shown again below.  

    1new T T old
T T

    
v K K K K v                                             (3.1) 

  This expression is used to project the previous step in a zero-frequency mode 

evolution, old
Tv , onto the current kernel of the Hessian matrix, K , in order to determine 

the next step in the system evolution, new
Tv . Here we replace old

Tv   with our previously 

described guess at the initial (110) shear transformation vector, totalΔx . Solving the 

resulting expression for new
Tv  provides us with the zero-frequency pathway in the NaCl 

crystallite which is closest to totalΔx . This approach has proven to be successful, and the 

initial transformation pathway calculated using this approach and fully transformed 

structure are shown below in Figure 3.14.  
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Figure 3.14:  (-110) (A) and (001) (B) perspective of the (110) shear in the NaCl 

superlattice. The initial transformation pathway is shown on the left, the final product 

structure is shown on the right. A crystallite containing 110 particles at a size ratio of 

0.565 was used. A particles are colored red and have a radius of 158nm, B particles are 

colored green and have a radius of 280nm. 
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3.5 Conclusions  

 Previous work on the 1.0 size ratio CsCl superlattice had indicated that there 

were four competing solid-solid phase transformations: two producing CuAu-fcc, one 

producing CuAu-hcp and one producing CuAu-rhcp. However, these studies were 

constrained to systems in which both like-particle binding strengths were equal, that is 

AA BBE E . Upon discarding this constraint, the presence of the pcp phase and its 

“partial” phase transformation from CsCl was revealed. While this is noteworthy by itself, 

the pcp lattice is also capable of transforming further, producing either CuAu-fcc or 

CuAu-hcp. Furthermore, the two step nature of this transformation allows the CuAu-hcp 

producing transformation to occur without experiencing the enhanced hydrodynamic 

drag effect previously thought to prevent the formation of the CuAu-hcp lattice in 

experiment. As a result, this two-step transformation pathway provides the only known 

mechanism for producing high quality CuAu-hcp from systems of DNA functionalized 

colloidal particles. 

 Study of CsCl crystallites constructed of particles at a size ratio of 0.85 revealed 

that the set of transformations available is qualitatively similar to those available at a size 

ratio of 1.0. The zig-zag and shear transformations still exist, but now follow slightly 

altered pathways and produce BIrV and HIrV, in place of CuAu-hcp and CuAU-fcc, 

respectively. Additionally, the pcp lattice can still be used to bypass the hydrodynamic 

bias against the zig-zag transformation, as seen at a size ratio of 1.0. Finally, study of 

the NaCl superlattice constructed from size ratio 0.565 particles reveals that phase 

transformations in systems of DNA functionalized colloidal particles exist outside the 

CsCl superlattice system. The zero-frequency mode spectrum of the NaCl superlattice 
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can be described using (100) modelets in the same manner the CsCl superlattice can be 

described using (110) modelets. While the NaCl superlattice is significantly less rigid 

than the CsCl superlattice, it has only been observed to undergo one transformation in 

experiments to date, namely a simple (110) shear of the (100) facing planes, which is 

easily replicated using the zero-frequency mode evolution method. 

Both the prevalence and complexity of solid-solid phase transformations in 

crystallites constructed from DNA-functionalized colloidal particles is significantly greater 

than previously thought. Transformations pathways previously believed to be 

inaccessible due to hydrodynamic biases can now be bypassed entirely by making use 

of a newly identified intermediate phase: pcp. Additionally, it has been determined that  

solid-solid phase transformations exist at both size ratios outside of 1.0 and even in 

lattices completely unrelated to CsCl, such as NaCl. 
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4. THE SUPRISING ROLE OF INTERACTION HETEROGENEITY IN 

COLLOIDAL CRYSTALLIZATION 

4.1 IntroductionEquation Section 4 

The ability to arbitrarily design DNA oligonucleotide sequences for use in DNA 

functionalized self-assembly allows for the creation of a large library of distinct 

interactions among a collection of particles (33, 115-117). Numerous modeling and 

simulation efforts, based on accurate descriptions of the inter-particle interactions (40, 

69, 82, 84, 96), have identified thermodynamic (42, 87, 118) and kinetic (9, 68, 99, 119-

121) bottlenecks for successful crystallization. Perhaps most fundamental of these is the 

need for moderate inter-particle binding strengths—too weak and the nucleation rate of 

crystallites is slow or fails to occur altogether, too strong and the system is trapped 

irreversibly in a disordered state (119, 122-126). The width of this crystallization window, 

which in DNA-mediated assembly typically corresponds to a narrow temperature range 

for crystal formation, appears crucial. Micron-scale DNA colloids, in particular, are 

characterized by very narrow crystallization windows due to the short-ranged attraction 

relative to the particle size, being in the so-called ‘sticky-sphere’ limit (123, 125-127) 

made worse by the sharpness of the DNA melting transition. Consequently, several 

approaches for engineering the crystallization window have been proposed, including 

temperature cycling (120), introducing mobile DNA strands on particle surfaces (128, 

129), and via intra-particle interactions to modify the phase behavior (49, 70, 130, 131). 

Despite these advances, it remains the case that while some particle formulations 

crystallize readily, other formulations with seemingly similar physical parameters (e.g., 

DNA density) do not crystallize at all (53) for reasons that remain poorly understood. 
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More generally, other sticky sphere systems (such as micellar depletion attraction 

between micron-scale colloids) are observed to crystallize under some conditions (132-

135) while theoretically gelation is expected and more typically observed (125). 

Here, we propose, based on a computational analysis, that the currently 

unexplained variability of the crystallization of DNA-grafted microspheres (and other 

types of sticky-sphere colloids) is attributable to a previously unrecognized factor—

interaction heterogeneity. Specifically we show that population heterogeneity in the 

grafted DNA oligonucleotide density across particles (distinct from single-particle 

heterogeneity in the spatial distribution of strands on one particle), which produces a 

distribution of interaction strengths, also leads to increased crystallization robustness by 

(1) lowering the mean binding energy needed for crystallization, and (2) increasing the 

width of the crystallization window. This is unexpected given that heterogeneity of any 

type is conventionally regarded as being detrimental to crystallization, e.g., particle size 

polydispersity greater than 6% tends to inhibit crystallization in hard-sphere systems 

(136). There is anecdotal support of our finding in the literature: Casey (137) has 

reported that one DNA-colloid formulation approach that led to better crystallization also 

led to a wider dispersion in the DNA density among individual particles. More generally, 

we suggest a practical route for engineering more robust nucleation and crystallization 

behavior, through the intentional control of interaction heterogeneity. 

4.2 Method 

We consider a single-component system of 1 micron-diameter spherical particles 

that interact via the coarse-grained model of Rogers et al.(82). For this system, the 

close-packed rhcp crystal is the ground state configuration that forms upon 
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crystallization. Inter-particle interaction heterogeneity was modeled by randomly 

assigning each particle, i , a binding multiplier, ib , where the value of ib  is generated 

from a Gaussian distribution with unit mean and standard deviation p. The interaction 

potential energy between two particles, i and j, is given by  

 ( ) ( )ij i j DNAU r b b U r ,                                                 (4.1) 

where ( )DNAU r  represents the base DNA potential energy as a function of inter-particle 

separation.  One possible physical origin of such heterogeneity would be if different 

particles contained differing, fixed amounts of grafted DNA, which would lead to a 

multiplicative effect approximately as in eq. (4.1). For example, the experiments by 

Casey (137) reported a heterogeneity of p = 0.15 was favorable for crystallization.   

Nucleation free energy profiles for crystallites as a function of size were 

computed using an approach based on a recently-introduced, computationally efficient, 

variant of umbrella sampling (138). To demonstrate this approach we begin by 

considering the probability of observing a crystallite of a particular size, n


 , in a system 

under the influence of some bias energy, BU , such that 

  ( ) ( ( ))1
( ) ( , )BH U n

B
B

P n e n n d
Z

    r r r
 

,                                     (4.2) 

where BZ  is the partition function of the biased system and ( )H r is the Hamiltonian of 

the unbiased system for a (3N-dimensional) particle configuration, r. Separating out the 

biased contribution to the system energy gives the expression 

 ( ) ( ( ))1
( ) ( , )BU n H

B
B

Z
P n e e n n d

Z Z
     r r

 
,                               (4.3) 
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where Z is the partition function of the unbiased system. This expression may be 

restated as 

 ( )( ) ( )BU n
B

B

Z
P n e P n

Z
 ,                                              (4.4) 

where the ‘hat’ designation has been dropped. Taking the natural logarithm and defining 

the free energy of all microstates corresponding to crystallite size n as ( ) ln ( )A n P n    

eq. (4.4) becomes 

 ( ) ( ) ( ) lnB B
B

Z
A n A n U n

Z
  

 
    

 
.                                     (4.5) 

Next we take the derivative of this expression with respect to n  to obtain  

 
( ) ( )( )

lnB B

B

A n U nA n Z

n n n n Z

   
         

.                                   (4.6) 

Note that two simplifications may be made to this expression. First, the value of the term 

ln
B

Z

n Z

 
   

, is always zero, because the partition functions are integrated over all 

particle configurations and are thus independent of the instantaneous configuration. 

Second, at equilibrium in the biased ensemble
( )BA n

n




 is also zero. Finally, assuming 

that the equilibrium value of n  is close to its ensemble average, 
k

n ,  and choosing a 

bias energy of the form 

2( )
2B T

k
U n n  ,                                                        (4.7) 
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where k is the bias strength (0.125 kBT for all simulations)  and Tn is the target crystallite 

size gives 

  B
Tk

k k

dUA
k n n

n dn


    


.                                     (4.8) 

Performing biased simulations over a range of target crystallite sizes then allows for the 

calculation of a free energy profile as a function of crystallite size using a finite difference 

approximation for eq. (4.8), i.e., 

 
       
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1

1

1 1

2 2

i i

i ik k

T Ti i k k

k k

A n A n
k n n k n n

n n







    


,                 (4.9) 

where the superscript i represents the ith biased simulation. The free energy is defined to 

be zero in the limit of zero crystallite size. The nucleation free energy barrier height is 

then simply the highest point on the free energy profile. 

The umbrella sampling simulations were each initiated by placing a roughly 

spherical rhcp crystallite of a desired size in an equilibrated colloidal fluid at a volume 

fraction of 10%. This was carried out by first equilibrating the bulk fluid and then 

removing particles from a spherical region and replacing them with the crystallite. The 

size of the crystallite was estimated using an approach based on the Steinhardt bond-

orientational parameter  (139-141). The first step of this approach is to generate a list of 

nearest neighbors for each particle in the system. For this purpose, a pair of particles are 

considered neighbors if they are within 1.1 times their equilibrium (rhcp) separation 

distance. For each particle we calculate the term  
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  
( )

6 6
1

1
ˆ( )

( )

bN i

m m ij
jb

q i Y
N i 

  r ,                                             (4.10) 

for values of m  ranging from -6 to 6, where the summation is performed over the ( )bN i  

neighbors of particle i , 6
ˆ( )m ijY r  is a spherical harmonic and îjr  is the normalized center 

to center vector between particles i  and j . Once  6mq i  has been calculated, we 

consider every pair of neighbor particles and evaluate the expression  

        
6

*
6 6 6 6

6
m m

m

i j q i q j


  q q ,                                          (4.11) 

where  *
6mq j  is the complex conjugate of  6mq j . If the value of    6 6i jq q  is found 

to be greater than 0.5 for a pair of neighbor particles, they are considered connected. If 

any particle is connected to more than four neighbors it is considered to be crystalline. If 

two connected particles are found to be crystalline, they are considered members of the 

same cluster. Following this rule allows for all clusters in a system to be distinctly 

identified.  

Simulations were executed by generating sequences of 1000 MMC sweeps over 

all particles using the usual Metropolis criterion to accept and reject each particle 

displacement attempt (142). Each 1000-sweep sequence was then accepted or rejected 

according to an additional Metropolis test based on the change in the bias potential, 

BU  across the trajectory. A simulation was terminated once the average crystallite 

size, 
B

n , was converged (typically ~106 sweeps). 
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In addition to the calculation of nucleation free energy barriers, direct simulations 

of colloidal crystallite nucleation and growth also were carried out with either Brownian 

dynamics (BD) simulations or NVT-ensemble Metropolis Monte Carlo (MMC). In each of 

these simulations a periodic system of 2000 particles at a volume fraction of 10% was 

first equilibrated in the fluid phase by artificially lowering the interaction strength. The 

interaction strength and heterogeneity were then increased to the desired levels and the 

system allowed to evolve without constraint until crystallization was observed or a 

certain amount of time had elapsed. The appropriate use of MMC for non-equilibrium 

growth simulations has been discussed in detail in previous work (68, 143), where the 

equivalence of BD and MMC for generating overdamped Langevin dynamics trajectories 

has been demonstrated. 

4.3 Results 

The nucleation free energy barriers, maxG , for several average binding 

energies, 3.0 4.0U  , as a function of interaction heterogeneity, p, are shown in 

Figure 4.1(a). Note that the quantity, U  , here refers to the average value of the 

maximum attractive energy (scaled by kBT), or potential ‘well-depth’, between a pair of 

particles. The free energy barriers represent the peaks of the nucleation free energy 

curves that were computed with umbrella sampling across a range of crystallite sizes—

examples of these curves are shown in Figure 4.1(b). The impact of interaction 

heterogeneity on the nucleation barrier is profound, particularly for weak average 

binding. For binding energy 3.2U   (blue), the addition of just 15% heterogeneity (p 

= 0.15) causes the barrier to drop from 75 kBT (no heterogeneity) to only 5 kBT! For a 
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slightly weaker binding energy, 3.0U  , the barrier for the heterogeneity-free system 

is effectively infinite because the fluid phase is the ground state—again, for p = 0.15, the 

barrier drops below 10 kBT. For typical diffusion coefficients exhibited by micron-scale 

particles in water, these differences imply that a uniform system with average binding 

strength in the range 3.0 3.2U   would not be expected to exhibit any 

crystallization, while the heterogeneous ones would crystallize rapidly in minutes to 

hours. Unsurprisingly, the impact of heterogeneity is more limited for higher binding 

strengths where the nucleation barrier is already small.  



 104 

 

 

Figure 4.1: Interaction heterogeneity reduces nucleation barrier height and critical 

nucleus size, particularly at weaker average binding. (a) Barrier height as a function of 

heterogeneity: purple – 3.0U  , blue – 3.2U  , green – 3.4U  , orange – 

3.8U  , red – 4.0U  . (b) Free energy profiles as a function of cluster size for 

3.2U  : blue – 0p  , green – 0.05p  , red – 0.10p  . 
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The origin of this nucleation facilitation can be understood qualitatively as being 

due to particle fractionation: the subset of the most strongly interacting particles reduce 

the overall nucleation barrier by assembling into nuclei that are more stable than ones 

formed from ‘average’ particles, and which subsequently seed the growth of clusters 

from weaker binding particles. Evidence for this mechanism is provided in Figure 4.2, 

which shows the radial distribution of normalized binding energies in clusters that were 

spontaneously nucleated at three combinations of average binding strength and 

population heterogeneity. At low average binding energy and high heterogeneity (blue, 

3.0U  , 0.39p ), the binding energy at the cluster cores is significantly higher than 

the mean value, decreasing rapidly towards the mean with increasing radius. As the 

average binding strength increases, the impact of heterogeneity becomes less important 

because larger fractions of the population participate in spontaneous nucleation events, 

resulting in more uniform spatial distributions of binding energy in each cluster—no 

measurable fractionation is observed for 5.4U  , 0.05p  (black). The insets in 

Figure 4.2 show examples of mid-plane slices through crystallites at each of the three 

conditions, with the binding strength of each particle indicated by the sphere color.  
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Figure 4.2: Radial fractionation of binding strengths in clusters: blue – 3.0U  ,

0.39p , red – 3.4U  , 0.25p , and black – 5.5U  , 0.05p . Insets: mid-plane 

slices through crystallites showing binding strength distribution; green is the mean value 

(b = 1), yellow/red is higher, cyan/blue is lower. 

 

The effect of population heterogeneity on nucleation barrier height, and therefore 

the nucleation rate, of colloidal crystals may be significant but is not obviously of 

practical importance—increases in the nucleation rate also may be readily achieved by 

simply increasing the average binding energy. Closer inspection, however, reveals a 

further mechanism by which population heterogeneity facilitates practical crystal growth: 

by inhibiting competing processes that lead to less ordered assemblies. A large number 

of direct, non-equilibrium crystallization simulations at various combinations of 
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population heterogeneity and average binding strength were performed using the 

protocol described above. In each simulation, the crystallite size distribution was 

monitored in time and the maximum crystallite number density recorded. Only crystallites 

larger than 10 particles were used in the count, although the results were insensitive to 

this threshold in the range 3-15. Examples of the temporal evolution of the crystallite 

number density are shown in Figure 4.3(a) for three situations. In the first case (black 

diamonds, 5U  , 0p  ), the nucleation rate is slow and only a few large crystallites 

are able to grow. By contrast, the high nucleation rate case (green squares, 5.4U  ,

0p  ) shows a large number of crystallites forming rapidly, followed by a decrease in 

the count due to crystallite coalescence. Finally, an intermediate case is shown in which 

the nucleation rate is increased by the presence of a small amount of heterogeneity 

(blue circles, 4.8U  , 0.05p ).  

Samples of the final particle configurations (typically after about 106 MMC 

sweeps) for various cases are shown in Figure 4.3(b)-(g). The top row exhibits 

configurations that result without interaction heterogeneity across a binding energy 

interval 4.8 5.8U  , in which the system transitions sensitively from exhibiting no 

nucleation, to showing a few isolated, highly crystalline clusters, to gelation in which a 

connected network of elongated clusters is formed across the entire domain. The latter 

configuration is very reminiscent of the gelled states observed experimentally by Lu et al. 

(125) in a depletion-driven micron-scale system. The remarkable impact of population 

heterogeneity is demonstrated in the bottom row, which shows configurations that result 

with 0.15p  over an average binding energy interval 3.6 4.6U  . Two features in 
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particular may be noted. First, the relevant binding energy has been shifted to lower 

mean values. Second, and much more significantly, the configurations now exhibit a 

gradual increase in the nucleation rate—remaining crystalline and exhibiting a collection 

of isolated, nearly spherical crystallites across the binding energy interval. 

 

Figure 4.3: Interaction heterogeneity strongly influences the dynamical evolution and 

final configurations of colloidal crystallites by lowering and widening the crystallization 

window. (a) Evolution of the crystallite count for different combinations of average 
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binding strength and population heterogeneity: black diamonds – 5U  , 0p  ; blue 

circles – 4.8U  , 0.05p ; green squares – 5.4U  , 0p  . (b-g) Final 

configurations as a function of interaction strength for p = 0 [top row, U   4.8 (b), 5.2 

(c), and 5.8 (d)] and p = 0.15 [bottom row, U   3.6 (e), 4.0 (f), and 4.6 (g)]. Particle 

color represents binding strength: green is the mean value, red is higher, blue is lower. 

 

These observations are summarized into a more comprehensive view in Figure 

4.4, which shows a field map of the maximum cluster number density (, reported in 

units of clusters per cm3) as a function of average binding strength and population 

heterogeneity. The crystallite number density is used here as a proxy for distinguishing 

between crystallization and gelation outcomes. The blue region in the lower left 

8( 2 10    cm-3 )  corresponds to situations in which no crystallites are observed over 

the length of our simulations, while the white region in the upper right of the figure 

9( 2.5 10    cm-3 )  generally corresponds to gelation outcomes with large numbers of 

aggregates forming a connected and arrested network; see Ref. (125). In between these 

limits exists a bounded region that, roughly speaking, is the target zone for practical 

crystallization. Superposed on the color field are isolines of nucleation barrier that are 

broadly aligned with the overall morphological outcome: the nucleation barriers increase 

as the plot is traversed diagonally from top-right to bottom-left. The impact of population 

heterogeneity now becomes clearly visible—it widens the crystallization window 

(denoted by the solid horizontal lines for p = 0.15 and p = 0) to include lower nucleation 
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barriers that in a heterogeneity-free system would have led to gelation. Moreover, since 

the strength of DNA interactions is typically an exponential function of temperature, the 

translation of the crystallization window to weaker interactions means the temperature 

window for crystallization shows an even greater widening than indicated here. The 

reasons for this stabilization effect may be attributed to the ‘buffering’ action of 

interaction heterogeneity—strong binders that locally drive nucleation of crystallites are 

dispersed among weaker binders that interfere with the onset of the system-wide 

spinodal decomposition associated with gelation that was described in Ref. (125).  

 

Figure 4.4: Interaction heterogeneity lowers and widens the window for crystallization. 

Color field denotes the maximum cluster number density, , as a function of average 

binding strength and heterogeneity. Thin lines represent isolines of nucleation barrier 

height, maxG , with values (upper left to lower right): 1, 2, 3, 5, 30, and 90 kBT. Dashed 
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lines schematically denote crystallization window. Diamond symbols show locations of 

corresponding to the configurations snapshots shown in Figure 4.3. 

 

Finally, we emphasize that our findings are not specific to DNA-mediated 

interactions. In fact, it is worth noting that the coarse-grained potential we employed in 

this work does not explicitly resolve individual DNA strand hybridization events and 

therefore does not capture the kinetics of particle-on-particle rolling or sliding. Depending 

on the nature of the DNA strand design, the thermal annealing program, and the particle 

size, rolling and sliding may become limiting factors for structural relaxation of a 

metastable, disordered aggregate into its ground-state, crystalline configuration (127). 

This pathway to system-wide disorder is distinct from the gelation process considered 

here and in Ref. (125) (which is driven by depletion-mediated entropic forces). That said, 

for suitably high DNA strand densities on micron-scale particles, kinetic limitations to 

rolling and sliding are not generally relevant, i.e., the timescale for DNA binding and 

unbinding is fast relative to the translational diffusivity of the particle (96). It is less clear 

what would cause interaction heterogeneity in depletion systems (132-135) but one 

possibility would be slight zeta-potential variations between different particles altering the 

excluded volume associated with charged depletant species. 

4.4 Conclusions 

In summary, our results suggest a facile avenue for optimizing crystallization 

behavior in systems where the interactions may be tuned across a population of 

particles, such as the DNA-driven one we consider here. This pathway for engineering 
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crystallization is likely to be particularly useful for micron-scale particles, where the 

crystallization window is intrinsically narrow unless other design routes are taken to 

increase it (49, 70, 120, 129, 130). Going forward, one may imagine that the normal 

distribution of binding energies we considered here, which was motivated by the 

emergent heterogeneity in experimental systems, could be simplified into an easily 

realized mixture of two or more populations having discrete and different binding 

strengths. With such an approach, designed heterogeneity could become a powerful 

tunable property for optimization of an assembling system.  
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5. EXTRACTING POTENTIALS FROM PARTICLE TRAJECTORIES 

5.1 IntroductionEquation Section 5 

The ensemble of trajectories for a system of interacting particles contains, at 

least in principle, detailed information about particle-particle, particle-boundary, and 

particle-external field interactions.  Extracting useful information from this very high 

dimensional dataset – three times the number of particles in the most general case – is a 

fundamental ‘big-data’ challenge.  The forward problem, which comprises the mapping 

of high-dimensional particle trajectories onto macroscopically meaningful, low-

dimensional properties such as diffusion coefficients, density distribution functions, or 

thermodynamic properties, is well established within the realm of statistical mechanics.  

In this case, a suitable average over a portion of the degrees-of-freedom directly 

produces the desired property.  While some quantities are more difficult to compute, 

e.g., free energies, the procedure is nonetheless quite straightforward.  

By contrast, the inverse problem associated with determining the inter-particle 

interaction potential of a given system from measures of its structural and 

thermodynamic properties is far more challenging (144-147).  For atomic and molecular 

systems, the canonical approach is to postulate a functional form for the potential based 

on an understanding of the interaction physics and then apply a database of properties 

(e.g., cluster energies, cohesive energies, elastic constants, phase stability ordering, 

defect energies, etc.), obtained by experimental measurements and/or electronic 

structure calculations (145, 148-152), to fit multiple adjustable parameters.  The potential 

may be expressed analytically in closed-form based on some physical arguments (150, 

153), or by sets of interpolating functions or tables (154-156), or some combination of 
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both.  This overall strategy for atomic/molecular potential development has led to the 

development of a vast array of highly successful empirical and semi-empirical potentials 

for an immense number of material systems. 

For disordered atomic systems like vapors, liquids, and glasses, the ability to 

measure experimentally, e.g., with x-ray or neutron diffraction, the structure factor, S(q), 

and therefore its real-space equivalent, the pair distribution function, offers a more 

‘direct’ approach for potential construction (157-161).  In this regard, a large number of 

methods have been proposed to iteratively compute an interaction (usually pairwise) 

potential by comparing a simulated pair distribution function to the target one.  Many 

variations on this general theme have been proposed, which differ in the initially 

assumed form of the potential, the nature of additional information input in the form of 

constraints, and the particular details of the iterative strategy used to converge to a final 

pair potential (144, 162-164). Overall, these approaches have been successful in 

generating pair potentials that reproduce both structural and thermodynamic measures 

of the target system.  However, they also are generally quite computationally demanding 

because the pair distribution function, by its very nature, requires extensive 

configurational sampling, and therefore long simulations, to determine accurately as the 

trial potential is being refined.  Moreover, uncertainties in the input pair distribution 

function also pose a problem as good potential extraction requires that the target pair 

distribution function be known well across the interaction range (161, 165).  It should 

also be noted that the satisfactory (implicit) capture of many-body interactions with 

effective pair-potentials generated from pair distributions is far from guaranteed, and in 

any case requires input that may be difficult to obtain experimentally or by other means.   
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At the colloidal scale, inter-particle interactions have classically been inferred 

from experiments on analogous macroscopic surfaces in a surface force apparatus 

(166).  More recently, the interactions of multi-micron sized particles (with each other or 

with flat walls) have been measured directly using an AFM cantilever (167), or using 

thermal fluctuations with total internal reflection microscopy (TIRM) (168-172).  Colloidal 

interactions also can be inferred from optical tracking of pairs of micron-sized particles in 

optical tweezers (173);  specifically from their equilibrium separation distributions in line 

optical tweezers (174-178) or from their non-equilibrium motion in blinking optical 

tweezers (179, 180).  These methods come with technical challenges:  the AFM or 

optical instrumentation required to make these measurements is often rather complex 

compared to a simple imaging system, many interesting particles have sizes, shapes or 

compositions that are not amenable to optical manipulation or have interactions that are 

too strong or weak to be readily measured with one or more of the above methods.  

Finally, analogous to the methods for disordered atomic systems, colloidal interactions 

also may be inferred from equilibrium distributions of ensembles of particles (181-183). 

However, these approaches are limited to thermal energy scale potentials, require 

careful treatment of liquid structure effects, and exhibit demanding constraints on 

statistical sampling. 

Following this long line of methodological developments, here we describe a new 

approach for extracting interaction potentials from particle trajectory data alone (184).  In 

essence, particle trajectories are used to compute numerical estimates of positional 

derivatives, i.e., velocities and/or accelerations, which are then used to infer forces as a 

function of inter-particle separation.  The method does not place a constraint on the 
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number of interacting particles being observed, nor on whether the trajectories represent 

equilibrium or non-equilibrium conditions, and only requires that the particle positions be 

recorded as a function of time with sufficient fidelity.  As we will demonstrate throughout 

this chapter, the current approach is flexible enough to enable the consideration of 

various dynamical situations, as long as some information regarding the nature of the 

dynamics is available.   

The approach described here shares some important aspects with, and differs in 

key ways from, the force-matching (FM) technique or  iginally proposed by Ercolessi and 

Adams (185) for the parametrization of empirical potentials using ab initio data, and later 

generalized into a powerful coarse-graining framework by Voth and coworkers (186-188) 

and others (189-192).  Essentially, both the present approach and the numerous FM 

variants seek to fit a pairwise force field using information obtained from some reference 

system.  However, while the FM technique uses forces computed from configurations 

obtained from simulations performed with a reference (known) force-field to fit a simpler 

one, the present approach numerically estimates forces from trajectories of particles that 

are subject to some unknown interparticle interaction force-field.  Moreover, here we 

consider the possibility that the particle trajectories used to approximate forces maybe 

additionally be impacted by thermal fluctuations, measurement uncertainty, and 

hydrodynamic effects.    

The remainder of this chapter is structured as follows. The general 

methodological details are presented in Section 5.2.  In Section 5.3, we first consider the 

case of noiseless trajectories in both the fully inertial and overdamped limits.  In Section 

5.4, the impact of noise on particle trajectories is considered.  We first discuss noise 
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produced by thermal fluctuations (5.4.A) and then consider noise introduced by 

positional measurement uncertainty (5.4.B).  In Section 5.5, we address the impact of 

hydrodynamic coupling between particle trajectories.  Finally, conclusions are presented 

in Section 5.6. 

 

5.2 Method 

Consider a system of two particles, i and j, with known trajectories, interacting 

through a pairwise potential, ( )ijU r , where ijr   is the particle center-to-center separation.  

If these particles are otherwise isolated, this pairwise interaction is entirely responsible 

for the net force, ,if  , that each particle, i, experiences along each coordinate direction, 

 .  For this simple two-particle system, the force profile as a function of interparticle 

separation distance is given by 

 ,
, j,

( ) ij
ij i

ij i

rU
F r f

r r r
 


  

 
,                              (5.1) 

where ( )ijF r  is the force along the center-to-center direction and ,ir   is the  -

coordinate of particle i.  Repeating this calculation for many separation distances and 

binning ( )ijF r  over discrete values of ,ir  produces an approximation to the complete 

force profile.  As shown in eq. (5.1), the interaction potential energy function then may be 

generated by integrating over the discretized force profile. 

Now consider a system of three or more particles, again with known trajectories, 

where the total force acting on each particle is attributed to multiple interactions. To 
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extract a pairwise force profile from such a system we first rewrite eq. (5.1) for a particle 

experiencing an arbitrary number of interactions, i.e., 

 , ,
,

1

( )
n

i j
i ij

j ij
j i

r r
f F r

r
 






  ,                                   (5.2) 

which may be restated as the system of linear equations,   

  f C F .                                              (5.3) 

Here, 
n

 f   represents the forces acting on all n particles along a single Cartesian 

direction  , ( 1)n nF  is the vector of pairwise forces between each particle pair, and 

( 1)n n n


 C   is a matrix with coefficients 
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i j

iji jk

r r
k i

rC

k i

 



 

 

.                                      (5.4) 

In principle, the system of equations (3) may be written and solved for F  

independently along each direction,  , or as a combined system along all 3 directions 

simultaneously, i.e., 

 f CF .                                                 (5.5) 

However, while the number of constraints (rows in C ) increases linearly with particle 

count, the number of unknowns (columns) scales as the number of particle pairs.  

Consequently, eq. (5.3) is, in general, singular for n>3.  As described in the force 
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matching literature (185), the problem may be recast so that the unknowns are the 

coefficients, gm, of a discretized approximate function, ( )ijF r , where     

    
1

M

ij m m ij
m

F r g r


 ,                                       (5.6) 

and  m ijr  are a set of M basis functions used to construct the approximation.  The 

choice of basis for ( )ijF r  has been discussed in some detail in Ref. (189).  Here, we 

consider, for simplicity, a “square wave” basis in which the basis functions are constant 

over each interval between adjacent discretization points, i.e.,  

 ( ) 1sq
m r  ,                                               (5.7) 

as well as a linear basis (defined on the unit interval [-1,1]), 
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Equation (2) now becomes  

  , ,
,

1 1

n M
i j

i m m ij
j mij
j i

r r
f g r

r
 

 
 


 
  

  
  ,                               (5.9) 

or 

 *f C G ,                                           (5.10) 
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where 3Nf  , MG  and * 3N MC  .   The system of equations (10) is over-

constrained for M<3N so that G may be obtained using the least-squares approximation, 

i.e., 

   1* * *T T
G C C C f .                                     (5.11) 

In the case where the force vector, f , is obtained from simulation configurations 

using a known interaction potential, eq. (5.11) corresponds to the well-established 

technique of force matching(186-192), which is usually applied to match a coarse-

grained pair force model, ( )ijF r , to forces generated by a more detailed interaction 

model.  Here, however, we consider a fundamentally different application for eq. (5.11): 

can one robustly and accurately calculate a pairwise force model from an experimentally 

measured set of particle trajectories subject to unknown interparticle interactions?  

Consider first the general case of a system of particles that are subject to Langevin 

dynamics dictated by a combination of interparticle forces as well as forces due to the 

presence of an implicit solvent, i.e., 

  2B
B

k T
m mk T

D
  r f r R  ,                             (5.12) 

where r is the time-dependent vector of particle positions, f  represents interparticle 

forces, D  is the single particle diffusivity,  /Bk T D is the damping, or friction, coefficient 

( /Bk T D  ) and ( )tR  is a random Brownian force modeled as a delta-correlated 

Gaussian process with zero mean so that ( ) 0t R  and ( ) ( ) ( )t t t t  R R .   
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Assuming, for example, that the dynamics are noise-free and fully inertial, so that 

0R  and / 0Bk T D  , particle forces therefore are dictated by Newton’s Second Law 

of Motion, mf r .  Substitution into eq. (5.11) then gives 

    
1* ' *T T m


G C C C r ,                                    (5.13) 

in which the vector of particle accelerations, r  , may  be estimated from three sequential 

snapshots of the trajectories using a second-order central difference approximation,  

    , , , 2
, 1 2

( ) 2 ( ) ( )
( ) ~ i i i

i

r t t r t r t t
r t r t O t

t
  



     
 


                 (5.14) 

where , ( )ir t  is the position of particle i in direction   at time t, and t is the time 

interval between sequential snapshots.  In practice, the minimum appropriate time 

interval between trajectory observations is dictated by trajectory fluctuations due to 

measurement error and/or Brownian motion; the impact of trajectory noise is discussed 

in Chapter 4.  Once r  has been calculated, eq. (13) is solved for the pairwise force 

profile and interaction potential.  Equation (5.11) may be similarly applied to overdamped 

systems where 0R  and 0r , so that f r .  Once again, substitution of the 

equation of motion into eq. (11) gives a system of equations that may be used to extract 

the force and interaction potential profiles, i.e.,  

    
1* * *T T 


G C C C r ,                                  (5.15) 

Note that only two snapshots are required to compute the velocity, r  in eq. (5.15), in 

contrast to the three snapshots needed for calculation of the acceleration.    
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5.3 Noiseless Dynamics 

In order to demonstrate the application of Eqs. (5.13) and (5.15) for noiseless 

trajectories, we consider a periodic system containing 64 Lennard-Jones (LJ) particles at 

reduced particle density, 
3* 0.04   , and reduced temperature, * / 1BT k T   ; 

these conditions correspond to a homogeneous fluid phase.  The LJ potential function is 

truncated at 4.0 , and a cubic polynomial function is used to smoothly zero the 

potential at 4.5 .  Newtonian and overdamped dynamics were simulated in the NVE 

(constant density and Energy) and NVT (constant density and Temperature) ensembles, 

respectively.  Particle configuration snapshots were stored at 20.001 /t m    

intervals (particle mass, m, and the potential parameters,   and  , are all set to unity 

throughout).  The impact of the time step is discussed in the context of other 

experimental constraints in Section 5.4.C.  The pairwise force profile and associated 

interaction potential function were computed with eq. (5.13) for inertial dynamics and eq. 

(15) for overdamped dynamics with 1  ).  The basis function set was chosen to be a 

series of 60 square waves over the interval 0 4.5r   , each with width 0.075 . The 

profiles were smoothed by repeating the force evaluation over 500 sets of sequential 

snapshots, each time shifting the trajectory observations by t .  The extracted profiles 

for both the inertial and overdamped cases are shown in Figure 5.1 (symbols), along 

with the corresponding input profiles (lines); the agreement generally is excellent across 

the range of the interaction.  
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Figure 5.1: Pair interaction potentials (blue lines and squares) and force profiles (red lines and circles) extracted from observing a 

system of 64 Lennard-Jones particles evolving via (a) inertial dynamics and (b) overdamped dynamics.  Extracted profiles, which are 

generated using 60 0.075 -width square wave basis functions, are shown by symbols; input profiles are denoted by the solid lines. 

500 force evaluations were used to construct the profiles in each case.   
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The numerical error associated with extracting a force profile from a noiseless 

trajectory (i.e., without Brownian fluctuations or any measurement uncertainties) is 

dependent on two primary factors: (1) the type and number of basis functions used to 

discretize the force profile, and (2) the number of force evaluations over which the 

extracted force profile is averaged.  The latter factor is relevant because as the number 

of samples increases, the average particle pair separation sampled in each discrete 

interval converges to the interval center.  The dependence of the numerical error in the 

force profile as a function of these factors is shown in Figure 5.2.  As expected, the error 

decreases as the number of force evaluations increases.  However, as with any spatial 

discretization technique, the minimum (systematic) error achieved depends on the 

number (and type) of basis functions used.  Indeed, as the number of intervals is 

increased from 5 to 60, the residual numerical error decreases from ~1 to 0.03.  Also 

shown in Figure 5.2, given an identical number of basis functions and force evaluations, 

the linear basis set always produces a more accurate force profile then the square wave 

basis set.  Importantly, the linear basis set error also converges to its minimum value 

with approximately an order-of-magnitude fewer force evaluations than the square wave 

case.  Interestingly, the number of particles considered in the system does not appear to 

significantly impact the statistical quality of the extracted profiles, presumably because 

additional particles (beyond the 64 considered here) do not sample distinct 

configurations.  We emphasize again that the errors shown in Figure 5.2 are intrinsic to 

the numerical procedure used to extract the force profile from exact, noiseless particle 
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trajectories; additional errors due to experimental measurement uncertainties and 

thermal trajectory fluctuations are addressed in detail below. 
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Figure 5.2: Error as a function of total trajectory data points for a system of 64 Lennard-

Jones particles evolving via inertial dynamics.  Error is calculated as *

2
MF F , 

where *F  contains the force calculated from eq. (5.13) at the midpoint of each basis 

function, F is the actual force at each of these points, and M is the number of 

comparison points (bins).  Error is computed over the range 1.2 4.5r   , which is 

sampled by all trajectories.  Four square wave discretization levels were considered: 60 

basis functions (red squares), 20 basis functions (orange circles), 10 basis functions 
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(green diamonds) and 5 basis functions (blue triangles) over the interval 0 4.5r   . 

Also shown is the error for the 60 line-segment basis function set (gold crosses).  

 

5.4 Trajectory Noise  

5.4.A. Thermal Fluctuations 

In many cases (e.g., nanoparticles in solution), particle trajectories are subject to 

solvent-induced thermal fluctuations.  Returning to the Langevin equation [eq. (5.12)], 

we now consider the same system used to generate the dynamics for Figure 5.1, but 

with non-zero Brownian fluctuations and with friction coefficient 1  , so that the 

governing Brownian dynamics are given by  f r R .  Shown in Figure 5.3 are the 

force profile and potential function extracted from a set of BD trajectory data.  The quality 

of agreement between the input and output force and interaction potentials is very 

similar to what is seen in the noiseless overdamped case.  Note that we do not consider 

here the case of correlated Brownian fluctuations (i.e., Stokesian dynamics(109)), where 

systematic impacts on the extracted profiles may be present.  The inset of Figure 5.3 

shows the (subtractive) difference in the error between the noiseless, overdamped and 

the BD cases, which represents the scatter in the extracted profiles due entirely to the 

thermal fluctuations in the particle trajectories.  For small force evaluation counts (<50), 

the presence of thermal fluctuations in the trajectories does lead to higher statistical 

errors, but the same residual (numerical) error as in the noiseless case can be achieved 

once O(102) force evaluations are used.  Further discussion of the errors associated with 
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thermal fluctuations is provided along with the discussion of measurement uncertainties 

in the following sections. 
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Figure 5.3: Potential function (blue line and squares) and force profile (red line and 

circles) extracted from a system of 64 Lennard-Jones particles evolving via Brownian 

dynamics.  Extracted profiles, which are generated using 60 0.075 -wide square wave 

basis functions, are shown by symbols; input profiles are denoted by solid lines.  500 

force evaluations were used to construct the profiles.  Inset: Error difference in the force 

profiles extracted from overdamped (fluctuation free) and Brownian dynamics 

trajectories. 
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5.4.B. Measurement Uncertainty 

The practical application of the present method to experimental observations of 

particle trajectories in a wide variety of settings depends crucially on its robustness with 

respect to measurement uncertainty.  The difference between measurement uncertainty 

and thermal fluctuations is qualitatively apparent by considering that thermal fluctuations 

act cumulatively over time to progressively alter particle trajectories, while measurement 

uncertainty is reset every snapshot.  Here, we consider a situation in which each 

snapshot of particle positions is subjected to artificial ‘measurement uncertainty’ by 

displacing each particle a different random vector with an average magnitude of 3%, 

30%, and 150% of the average particle displacement between sequential snapshots.   

Shown in Figure 5.4 are force profiles, extracted from inertial, thermal fluctuation-

free dynamics trajectories (all system parameters remain as given previously) for each of 

the three ‘measurement uncertainty’ amplitudes, extracted using either 500 or 10,000 

force evaluations.  Two important features are apparent.  First, as expected, the scatter 

in the extracted profiles grows as the trajectory uncertainty grows – it becomes difficult to 

even discern any type of force profile with 500 evaluations for the 150% uncertainty 

case.  However, as the number of evaluations is increased to 10,000, a high-quality 

force profile is once again obtained.   

Interestingly, as the measurement uncertainty magnitude increases, it becomes 

evident that the extracted force profile does not converge to the input profile and 

becomes increasingly distorted, exhibiting a deeper attraction well (dashed blue lines).  

In fact, the converged force profiles are empirically found to correspond to LJ force 



 131 

 

profiles multiplied, or magnified, by a constant larger than unity that depends on the 

magnitude of trajectory uncertainty (see Figure 5.5).  The source of the force profile 

magnification may be qualitatively understood by considering that particle forces are 

calculated from observed particle displacements between trajectory snapshots.  When 

particle coordinates are perturbed randomly, which is the case for measurement error, 

the average distance a particle is observed to travel between snapshots increases on 

average.  Put another way, although the random perturbation averages to zero at a 

given time instant, the net perturbation across a time interval does not.  This effect 

causes the apparent acceleration and velocity of the particle to increase, which is in turn 

reflected by the magnification of the extracted force profile. 
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Figure 5.4: Force profiles extracted from inertial trajectories free of thermal fluctuations 

but subject to measurement uncertainty using 500 (left column) or 10000 (right column) 

force evaluations.  Measurement uncertainty magnitude is 0.03 (top row), 0.3 (middle 

row), and 1.5 (lower row) of the mean particle displacement between two successive 
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observations.  In each panel, the input force profile is shown as a solid red line.  The 

dashed blue line represents the best-fit LJ force profile using a single scalar multiplier.  

All extracted profiles are generated using 60 square wave basis functions of width 0.075

 . 

 

A key question now arises: how do we extract the undistorted force profile in the 

(usual) situation for which the measurement uncertainty is not a priori known?  We 

define   as the multiplicative factor (>1) that the actual force profile needs to be 

multiplied by in order to correspond the extracted force.  As shown in Figure 5.5, the 

reduced force magnification factor, * 1   , scales as the square of the noise 

amplitude, so that 

 
* 2,a                                            (5.16) 

where   is the average effective particle displacement due to measurement error 

relative to mean particle displacements magnitude between sequential snapshots.   
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Figure 5.5: Reduced magnification factor as a function of noise intensity amplitude; black 

line shows quadratic fit (see text for details).  
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Now consider a sequence of particle positions measured at regular time intervals 

along some trajectory that are used to compute two force profiles – one in which the 

data at every interval is used and a second in which only every other observation is 

used, effectively doubling the time between snapshots.  It then follows that   in the 

second case will be reduced by a factor of two, i.e., 2 10.5  , assuming that the particle 

velocity is constant across the time step interval.  The validity of this assumption is 

subject to constraints on the time step size (or the imaging framerate; see Section 5.4.C) 

and the rate of velocity change or acceleration, i.e., / / 1a t v v v     .  The relative 

magnification effect between the two extracted profiles (which is known) is then given by  

 
 2*

12
* 2
1 1

1 21

1 1r

a

a


 


 

 
.                                   (5.17) 

Rearranging for the reduced magnification factor for the first profile then gives 

 * 2
1 1

1
1

1
4

r

r

a
 




  


.                                      (5.18) 

Equation (18) was tested by considering a relative noise intensity of 0.525 

(corresponding to a reduced magnification factor of 0.58) applied to the inertial dynamics 

situation considered in Figure 5.4.  Shown in Figure 5.6 are force profiles extracted with 

(squares) and without (circles) correcting for measurement uncertainty using eq. (5.18).  

It is readily apparent that the magnification correction provided by eq. (5.18) robustly 

accounts for the distortion, although some scatter remains in the extracted profile – this 

is addressed next.  



 136 

 

 

 

Figure 5.6: Force profiles extracted from observing a system of 64 Lennard-Jones 

particles evolving via inertial dynamics subject to measurement uncertainty of amplitude 

0.525.  Extracted profiles are shown by symbols (uncorrected force – circles, corrected 

force – diamonds), the input force profile is denoted by the solid red line.  The dashed 

blue line shows the best-fit LJ force profile for the uncorrected force assuming that the 

input force is scaled by a single multiplier of 1.58.  Both extracted profiles are generated 

using a set of 60 square wave basis functions of width 0.075 .   
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 The residual impact of measurement uncertainty on the error in the extracted 

force may be assessed by computing the difference in the force profile error obtained for 

noisy (Figure 5.4) and exact (Figure 5.1(a)) inertial dynamics trajectories.  Figure 5.7 

shows the subtractive error difference between these two cases as a function of 

evaluation count for several noise amplitudes.  As in the case for thermal fluctuations 

(see inset of Figure 5.3), measurement uncertainty or trajectory noise leads to additional 

scatter in the extracted profiles that may be systematically reduced with additional force 

evaluations. 
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Figure 5.7: Difference in the force profile error extracted from noisy and exact inertial 

dynamics trajectories as a function of the force evaluation count calculated for several 

measurement uncertainty amplitudes (relative to average particle displacement): orange 

circles –described in the text (which has been corrected for using eq. (5.18)). 
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5.4.C. Error Analysis in the Context of Experiment 

 The preceding analyses demonstrate that both thermal fluctuations and trajectory 

measurement noise increase scatter in the extracted force profiles, but which may be 

reduced by increasing the number of force evaluations used to construct the profile.  The 

impact of such scatter in the context of realistic experimental constraints is the subject of 

this section.  We begin by considering the trajectory impact of Brownian diffusion and 

measurement uncertainty, relative to that of interparticle interactions (the signal).  In this 

context, two noise-to-signal ratios may be defined, 

 
Df

v
  ,                                            (5.19) 

and 

 Me f

v
  ,                                             (5.20) 

 where f is the framerate at which images may be recorded, Me  is the trajectory 

displacement due to measurement error, D is Brownian diffusivity, and v is the signal, or 

drift, velocity, i.e., the velocity due to interparticle interactions. Consequently, α 

represents the ratio of apparent diffusion velocity (over a time interval dictated by the 

framerate) and the drift velocity which may represent either overdamped or inertial 

particle dynamics.  Similarly, β represents the ratio of an effective velocity due 

measurement uncertainty relative to the signal velocity, v. 

 For reference, consider a system of 1 μm beads suspended in water at 300K 

being video imaged at a framerate of 50 Hz.  For such a system, a typical measurement 
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uncertainty of 0.01μm is expected (~1% of the particle size), along with a Brownian 

diffusivity of ~0.5 μm2/s.  Consequently, for a single force evaluation the conditions α, β 

<<1 require that v>>1 μm/s, i.e., the interparticle force must be many kBT in magnitude 

to be captured accurately.  However, as evidenced by the convergence of the profiles in 

Figures 4, even if α and/or β are not small, the associated error may be systematically 

reduced by increasing the number of force evaluations.  The 150% uncertainty case in 

Figure 7, for example, corresponds to α =0, β =1.5, and shows clearly that the force 

profile may be recovered well beyond the O(1) error expected from eq. (5.20), as long as 

a sufficient number of force evaluations are used.  The convergence of force profiles 

extracted from noisy trajectories with respect to the number of evaluations is readily 

understood by considering Eqs. (19) and (20) – the averages of both D and Me  tend to 0 

as the number of samples increases. 

The expressions in Eqs. (19) and (20) suggest that α and β also may be 

arbitrarily reduced by simply lowering the imaging framerate.  In fact, this is not the case 

– the distance a particle travels between sequential snapshots (either by drift or by 

diffusion) also must be small relative to the length scale of the potential function, L, 

otherwise the extracted potential will be blurred.  Two additional constraints for 

extracting accurate force profiles may therefore be identified as  

 1
v

Lf
   ,                                             (5.21) 

 
1

1
D

L f
   .                                           (5.22) 
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Here, γ and δ represent ratios of the drift and diffusion distances, respectively, relative to 

the interparticle potential length scale, L.  For v~1 μm/s, D~1 μm2/s, and a potential 

function of order the particle size (1 �m), the lower bound on the framerate due to drift 

and diffusion is f~1 s-1.  However, as the potential becomes shorter ranged, this lower 

bound becomes more severe: for example, a DNA-mediated interaction potential is 

characterized by L~10 nm, necessitating a minimum framerate of ~100 s-1. 

The impact of framerate on the error was investigated using the exact, noiseless 

(inertial) trajectories considered in Figure 5.1(a).  Shown in Figure 5.8 is the error, as 

defined in Figure 5.2, as a function of the time interval size; recall that all preceding 

analysis was performed with a time step, 20.001 /t m   , which corresponds to a 

(dimensionless) framerate of 1000.  For time interval sizes less than ~0.05-0.1, the error 

is insensitive to the time step size and corresponds to the minimum error attainable with 

the discretization level and basis function choices.  Above this time step size, the error 

increases rapidly to O(1), where the force profile details are essentially lost. 
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Figure 5.8: Error as a function of time step size for a system of 64 Lennard-Jones 

particles evolving via exact, noiseless, inertial dynamics.  Extracted force profiles, are 

generated using 60 0.075 -wide line segment basis functions.  Error is calculated as 

*

2
MF F , where *F  contains the force calculated from eq. (5.13) at the midpoint 

of each basis function, F is the actual force at each of these points, and M is the number 

of comparison points (bins).   
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5.5 Hydrodynamic Correlations 

Colloidal particle trajectories are unavoidably measured in some liquid medium, 

typically water.  As each particle moves through the fluid, it perturbs it and creates a flow 

field that in turn impacts surrounding particles’ trajectories (110, 111, 193).  Collectively, 

these hydrodynamic couplings lead to an effectively many-body interaction between the 

particles (or between particles and a wall), and must be accounted for if the intrinsic 

inter-particle interactions are to be isolated.  Our aim here is not to extract a many-body 

interaction potential that mimics the hydrodynamic forces on each particle, although 

even this may be, in principle, possible.  Instead, we seek to demonstrate that the 

hydrodynamic coupling can be effectively removed from the trajectory observations, 

allowing for the intrinsic pair-interaction (i.e., the LJ potential) to be recovered from the 

particle trajectories.  Hydrodynamic correlations in incompressible fluids may be included 

in eq. (5.12) by replacing the single particle diffusivity, D, with the full mobility tensor, D .  

The individual components of the mobility tensor used here are summarized in Section 

6.6. 

Consider an overdamped system subject to hydrodynamic correlations and with 

no Brownian fluctuations such that the dynamics are given by 
1

Bk T f D r . Substitution 

into eq. (5.11) then results in the following system of equations which may be solved to 

extract a force profile from a hydrodynamically correlated system.  

    1* * * 1 .T T
Bk T

 G C C C D r                             (5.23) 

Note that the mobility tensor must be recalculated for every particle configuration, as it is 

dependent on particle coordinates.  An example of a profile extracted using eq. (5.23) is 
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shown in Figure 5.9 for the case where the viscosity of the ambient fluid,  , is 0.07

2 m   and the particle radius is 0.45 .  These parameters were chosen such that   

is unchanged relative to the case shown in Figure 5.1(b), while introducing a sufficiently 

large particle radius to ensure significant hydrodynamic correlations between the 

particles.  All other parameters were set to be the same as those used in Figure 5.1(b).  

As shown in Figure 5.9(a), ignoring the hydrodynamic correlations, i.e., using eq. (5.15) 

instead of eq. (5.23) when extracting the force profile, leads to large errors.  Although not 

shown, these errors are configuration-dependent and in general cannot be removed 

once the force profile has been extracted from the particle trajectories.  In Figure 5.9(b), 

the correct force and potential function are obtained by accounting for hydrodynamic 

correlations using eq. (5.23).  Statistical and systematic errors are similar to the cases in 

which hydrodynamic correlations are not present. 

It should be noted that, as formulated, our method requires the mobility tensor, 

D , as input in order to separate out the influence of hydrodynamics from the intrinsic 

inter-particle interactions.  While this is straightforward for simple, unbounded 

geometries, it becomes more challenging for situations in which the medium is 

constrained by interfaces or walls.  In such cases, complementary approaches such as 

the methods in refs. (180, 183) may be employed to determine the relevant mobility 

tensor.  In these studies, a Smoluchowski equation is fit to equilibrium distributions of 

particle-wall or particle-particle separations in order to simultaneously extract the 

interaction potentials and hydrodynamic mobilities.   



145 

 

 

Figure 5.9: Pair potential functions and force profiles extracted from a system of 64 Lennard-Jones particles evolving via overdamped 

dynamics with hydrodynamic correlations. The profiles shown on the left were extracted assuming simple overdamped dynamics with 

no hydrodynamic correlations ( , 0i j iD   ). The profiles shown on the right were calculated while including hydrodynamic corrections.  

Extracted profiles are shown by symbols (force – circles, potential energy – squares), input profiles are denoted by solid lines.  A total 

of 500 trajectory snapshots were used to extract the profiles. Both extracted profiles are generated using a set of 60 square wave 

basis functions of width 0.075 . 

rij/

F
o

rc
e

(k
B
T

/
)

P
o

t.
E

(k
B
T

)

1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

4

-1

0

1

2

3

rij/

F
o

rc
e

(k
B
T

/
)

P
o

t.
E

(k
B
T

)

1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

4

-1

0

1

2

3



146 

 

 

5.6 Conclusions 

In this chapter we have presented a computationally efficient and robust method 

for reliably extracting pair potential functions from arbitrary sets of multiple particle 

trajectories with no special constraints on particle configuration or system equilibration.  

We expect that this flexibility will greatly increase the scope of the systems that are 

amenable to interparticle interaction analysis, especially in situations where equilibration 

is difficult to confirm or achieve.  Our approach relies on some knowledge of the 

equations of motion that govern the particle trajectories but otherwise places no 

assumptions on the nature of the (pairwise) inter-particle interactions.  Importantly, the 

same mathematical approach can be applied to systems having different fundamental 

equations of motion, i.e. underdamped, overdamped, with hydrodynamic interactions, or 

without.  It is shown to be robust with respect to particle tracking error and the presence 

of Brownian motion.  The latter can be mitigated by simply averaging over additional 

uncorrelated trajectory data, while the former, which is shown to introduce systematic 

errors, can be eliminated using a simple procedure without any a priori knowledge of the 

tracking error.   

Further developments will be required to address additional relevant situations 

including particle anisotropy (194), many-body interactions (175), particle polydispersity 

(195), and hydrodynamic effects in more general situations (180).  One notable limitation 

with regards to hydrodynamic correlations is that our approach requires that the motion 

be a function only of the particle positions and its derivative—this will not be the case for 

particles in viscoelastic fluids, for instance.  In the context of the first two issues, we note 



 147 

 

that the method does not formally require a pairwise target potential, and can be readily 

generalized for use on more complex, anisotropic or multi-body potential functions, with 

no fundamental methodological changes necessary.  That said, increasing the 

dimensionality of the variable space upon which the potential function is dependent (e.g. 

orientation for anisotropic potentials) will place increased demands on the tracking data. 
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6. CONCLUSIONS 

 

6.1 A Case Study: Phase Transformations in CsCl Superlattices 

We have uncovered a previously unknown source of kinetic influence on solid-

solid phase transformations in colloidal systems, namely the solvent in which the particle 

assembly forms.  While externally applied flows have been used previously to influence 

assembly in a variety of systems, we believe this is the first evidence for an autogenous 

mechanism in which self-induced hydrodynamic drag forces in an otherwise quiescent 

solvent lead to non-equilibrium structure selection.  In particular, we provide strong 

evidence that hydrodynamic correlation between particles establishes a dynamic 

anisotropy that results in bias towards certain configurations over others during a 

CsClCuAu-I displacive transformation of binary superlattice crystallites.  The extent of 

the anisotropy appears to be closely tied to the ratio of particle size and DNA oligomer 

length, possibly obfuscating otherwise simple size scaling laws.  We emphasize that the 

outcome of this study is not simply that DLPA processing is complicated: the ability to 

intentionally direct DLPAs towards non-equilibrium (and useful) configurations greatly 

increases the versatility of these materials, provided that such effects are well 

understood.  

Finally, while this study was focused on the specific action of anisotropic diffusion 

during displacive transformations of DNA-linked particle assemblies, we hypothesize that 

similar effects may occur in a variety of colloidal model systems.  The principal defining 

feature of the system we consider in this chapter is structural transformation involving 

the cooperative motion of large numbers of colloidal particles, corresponding to the 
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system moving along narrow pathways on flat energy subspaces in configuration space.  

The same description would apply equally well to glasses and super-cooled fluids of 

hard-sphere colloids, which display highly cooperative rearrangements termed 

dynamical heterogeneity (112, 113).  Moreover, our CsCl parent crystals are held 

together by short-range reversible interactions, in insufficient numbers to give rise 

mechanical rigidity, reminiscent of so-called attractive glass colloidal systems (114).  

Thus, we hypothesize that hydrodynamic selection/biasing can play a role in multiple 

systems of considerable current interest, in which the details of microscopic 

rearrangements often remain poorly understood and experimental results frequently do 

not resemble those from matched simulations. 

6.2 Exploring Zero-Energy Phase Transformations in Asymmetric Binary 

Systems 

Previous study of the CsCl superlattice assembled from DNA functionalized 

colloidal particles had indicated that the lattice was capable of undergoing four distinct 

solid-solid phase transformations: two producing CuAu-fcc, one producing CuAu-hcp 

and one producing rhcp. However, these studies were constrained to systems in which 

both like-particle binding strengths were equal, that is AA BBU U . Upon discarding this 

constraint the presence of the pcp phase and its “partial” phase transformation from 

CsCl was revealed. While this is noteworthy by itself, the pcp lattice is also capable of 

transforming further, producing either CuAu-fcc or CuAu-hcp. Furthermore, the two step 

nature of this transformation allows the CuAu-hcp producing transformation to occur 

without experiencing the enhanced drag effect previously thought to prevent the 

formation of the CuAu-hcp lattice in experiment. As a result, this two-step transformation 
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pathway provides the only known mechanism for producing high quality CuAu-hcp from 

systems of DNA functionalized colloidal particles. 

 Study of CsCl crystallites constructed of particles at a size ratio of 0.85 revealed 

that the set of transformations available is qualitatively similar to those available at a size 

ratio of 1.0. The zig-zag and shear transformations still exist, but now follow slightly 

altered pathways and produce BIrV and HIrV, in place of CuAu-hcp and CuAU-fcc, 

respectively. Additionally, the pcp lattice can still be used to bypass the hydrodynamic 

bias against the zig-zag transformation, as seen at a size ratio of 1.0. Finally, study of 

the NaCl superlattice constructed from size ratio 0.565 particles reveals that phase 

transformations in systems of DNA functionalized colloidal particles exist outside the 

CsCl superlattice system. The zero-frequency mode spectrum of the NaCl superlattice 

can be described using (100) modelets in the same manner the CsCl superlattice can be 

described using (110) modelets. While the NaCl superlattice is significantly less rigid 

than the CsCl superlattice, it unfortunately has only been observed to undergo one 

transformation in experiment, a simple (110) shear of the (100) facing planes, which is 

easily replicated using the zero-frequency mode evolution method. 

Both the prevalence and complexity of solid-solid phase transformations in 

crystallites constructed from DNA-Functionalized Colloidal Particles is significantly 

greater than previously thought. Transformations pathways previously believed to be 

inaccessible due to hydrodynamic biases can now be bypassed entirely by making use 

of a newly identified intermediate phase: pcp. Additionally, it has been determined that  

solid-solid phase transformations exist at both size ratios outside of 1.0 and even in 

lattices completely unrelated to CsCl, such as NaCl. 
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6.3 The Surprising Role of Interaction Heterogeneity in Colloidal 

Crystallization 

While the particular design challenges associated with any given self-assembly 

route may be unique, the conventional wisdom is that particle heterogeneity of any 

nature is an undesirable feature. This is likely to be always true for particle size. 

However, our results suggest that this is not the case for inter-particle interactions: under 

some conditions, it may in fact be beneficial to purposefully introduce small amounts of 

interaction heterogeneity. The mechanism responsible for the favorable effects arises 

from a combination of thermodynamic and kinetic processes. At a given mean binding 

strength, a broader distribution of particle interaction strengths introduces a sub-

population of ‘strong binders’ that stabilizes small, sub-critical nuclei and dramatically 

increases the nucleation rate (by lowering the nucleation free energy barrier). In one 

sense, these anomalously strongly bound nuclei may be considered as heterogeneous 

nucleation sites. Equally importantly, the presence of relatively weak binders serves to 

temper the kinetics of the overall aggregation process, providing a buffer between 

crystallites and preventing a system-wide gelation process.  

 These mechanisms are not obviously restricted to DNA-mediated interactions, or 

to the particular volume fraction, particle size, and heterogeneity distributions considered 

here. We expect qualitatively similar findings for more complex systems containing 

multiple particle species, although further study will be required to assess the impact of 

interaction heterogeneity across different systems. On the other hand, the DNA-
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mediated assembly system does offer a particularly convenient route for introducing 

interaction heterogeneity, which is not necessarily true for other interaction sources, e.g., 

electrostatics or depletion. It is in fact quite likely that some amount of DNA grafting 

density variation across a population of particles is unavoidable, and it may very well be 

that this ‘quality control’ issue is a beneficial feature of the system. 

 

6.4 Extracting Potentials from Particle Trajectories 

We have presented a computationally efficient and robust method for reliably 

extracting pair potential functions from arbitrary sets of multiple particle trajectories with 

no special constraints on particle configuration or system equilibration.  We expect that 

this flexibility will greatly increase the scope of the systems that are amenable to 

interparticle interaction analysis, especially in situations where equilibration is difficult to 

confirm or achieve.  Our approach relies on some knowledge of the equations of motion 

that govern the particle trajectories but otherwise places no assumptions on the nature 

of the (pairwise) inter-particle interactions.  Importantly, the same mathematical 

approach can be applied to systems having different fundamental equations of motion, 

i.e. underdamped, overdamped, with hydrodynamic interactions, or without.  It is shown 

to be robust with respect to particle tracking error and the presence of Brownian motion.  

The latter can be mitigated by simply averaging over additional uncorrelated trajectory 

data, while the former, which is shown to introduce systematic errors, can be eliminated 

using a simple procedure without any a priori knowledge of the tracking error.   
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Further developments will be required to address additional relevant situations 

including particle anisotropy (194), many-body interactions (175), particle polydispersity 

(195), and hydrodynamic effects in more general situations (180).  One notable limitation 

with regards to hydrodynamic correlations is that our approach requires that the motion 

be a function only of the particle positions and its derivative—this will not be the case for 

particles in viscoelastic fluids, for instance.  In the context of the first two issues, we note 

that the method does not formally require a pairwise target potential, and can be readily 

generalized for use on more complex, anisotropic or multi-body potential functions, with 

no fundamental methodological changes necessary.  That said, increasing the 

dimensionality of the variable space upon which the potential function is dependent (e.g. 

orientation for anisotropic potentials) will place increased demands on the tracking data. 
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