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Efficient Baseline Utilization In Crossover Clinical Trials Through Linear
Combinations Of Baselines: Parametric, Nonparametric, And Model
Selection Approaches

Abstract
In a crossover clinical trial, including period-specific baselines as covariates in a regression model is known to
increase the precision of the estimated treatment effect. The potential efficiency gain depends, in part, on the
true model, the distribution and covariance matrix of the vector of baselines and outcomes, and the model
chosen for analysis. We examine improvements in power that can be achieved by incorporating optimal linear
combination of baselines (LCB). For a known distribution, the optimal LCB minimizes the conditional
variance corresponding to a treatment effect. The use of a single metric to capture the information in the
baseline measurements is appealing for crossover designs. Because of their efficiency, crossover designs tend
to have small sample sizes and thus the number of covariates in a model can significantly impact the degrees of
freedom in the analysis. We start by examining optimal LCB models under a normality assumption for
uniform and incomplete block designs. For uniform designs, such as the AB/BA design, estimation is entirely
through within-subject contrasts (and thus ordinary least squares [OLS]) and the optimal LCB minimizes the
conditional variance corresponding to the treatment effect. However, since the optimal LCB is a function of
the unknown covariance matrix, we propose an adaptive method that uses the LCB covariate corresponding
to the most plausible covariance structure guided by the data. For incomplete block designs, data are
commonly analyzed using a mixed effects model. Treatment effect estimates from this analysis are complex
functions of both within-subject and between-subject treatment contrasts. To improve efficiency, we propose
incorporating period-specific optimal LCBs which minimize the conditional variance of the period-specific
outcomes. A simpler fixed effects analysis of covariance involving only within-subject contrasts is also
described for small sample situations. In the latter, hypothesis tests based on the mixed effects analyses exhibit
inflated type I error rates even when using a Kenward and Rogers approach to adjust the degrees of freedom.
Lastly, we extend this work to the more general setting where the optimal LCB depends on the distribution of
the response vector. In practice, the distribution is unknown and the optimal LCB is estimated under some
loss function. To handle both normal and non-normal response data, OLS and a rank-based nonparametric
regression model (R-estimation), are considered. A data-driven approach is then proposed which adaptively
chooses the best fitting model among a set of models which work well under a range of conditions. Relative to
commonly used methods, such as change from baseline analyses without use of covariates, our methods using
functions of baselines as period-specific or period-invariant covariates consistently demonstrate improved
power across a number of crossover designs, covariance structures, and response distributions.
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ABSTRACT

EFFICIENT BASELINE UTILIZATION IN CROSSOVER CLINICAL TRIALS THROUGH LINEAR 

COMBINATIONS OF BASELINES: PARAMETRIC, NONPARAMETRIC, AND MODEL 

SELECTION APPROACHES

Thomas O. Jemielita

Mary E. Putt

Devan V. Mehrotra

In a crossover clinical trial, including period-specific baselines as covariates in a regression model 

is known to increase the precision of the estimated treatment effect. The potential efficiency gain 

depends, in part, on the true model, the distribution and covariance matrix of the vector of baselines 

and outcomes, and the model chosen for analysis. We examine improvements in power that can be 

achieved by incorporating optimal linear combination of baselines (LCB). For a known distribution, 

the optimal LCB minimizes the conditional variance corresponding to a treatment effect. The use of 

a single metric to capture the information in the baseline measurements is appealing for crossover 

designs. Because of their efficiency, crossover designs tend to have small sample sizes and thus 

the number of covariates in a model can significantly impact the degrees of f reedom i n the anal-

ysis. We start by examining optimal LCB models under a normality assumption for uniform and 

incomplete block designs. For uniform designs, such as the AB/BA design, estimation is entirely 

through within-subject contrasts (and thus ordinary least squares [OLS]) and the optimal LCB min-

imizes the conditional variance corresponding to the treatment effect. However, since the optimal 

LCB is a function of the unknown covariance matrix, we propose an adaptive method that uses the 

LCB covariate corresponding to the most plausible covariance structure guided by the data. For 

incomplete block designs, data are commonly analyzed using a mixed effects model. Treatment ef-

fect estimates from this analysis are complex functions of both within-subject and between-subject 

treatment contrasts. To improve efficiency, we propose incorporating period-specific optimal LCBs 

which minimize the conditional variance of the period-specific o utcomes. A  s impler fi xed effects 

analysis of covariance involving only within-subject contrasts is also described for small sample 

situations. In the latter, hypothesis tests based on the mixed effects analyses exhibit inflated type
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I error rates even when using a Kenward and Rogers approach to adjust the degrees of freedom.

Lastly, we extend this work to the more general setting where the optimal LCB depends on the

distribution of the response vector. In practice, the distribution is unknown and the optimal LCB is

estimated under some loss function. To handle both normal and non-normal response data, OLS

and a rank-based nonparametric regression model (R-estimation), are considered. A data-driven

approach is then proposed which adaptively chooses the best fitting model among a set of mod-

els which work well under a range of conditions. Relative to commonly used methods, such as

change from baseline analyses without use of covariates, our methods using functions of baselines

as period-specific or period-invariant covariates consistently demonstrate improved power across

a number of crossover designs, covariance structures, and response distributions.
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CHAPTER 1

INTRODUCTION

A crossover trial is a repeated measures design in which patients receive sequences of treatments

administered over some number of pre-specified periods. In contrast to a parallel group trial where

patients are randomized to specific treatment arms, crossover designs randomize subjects by se-

quence. One advantage of this design is that the estimate of a treatment effect is obtained wholly

or mostly through within-subject contrasts. Relative to a parallel group trial, this leads to large

efficiency gains and thus fewer enrolled subjects are required.

The crossover design is defined by the chosen sequences of treatments. A sequence depends on

the number of periods and the ordering of the considered treatments. For example, in the AB/BA or

2 × 2 (2-treatment, 2-period) design, subjects are randomized to either sequence AB or sequence

BA. In sequence AB, subjects receive treatment A followed by treatment B. The order is reversed for

subjects in sequence BA. The primary disadvantage of a crossover design is the possibility that a

treatment effect can linger into the following period. This is called carryover and can complicate the

estimation of treatment effects (Jones and Kenward, 2003). A washout period is typically included

between periods to minimize the risk of carryover. In a pharmaceutical setting, pharmacokinetics

can be used to determine an appropriate length for the washout, such that any carrover is mitigated.

For the purposes of this dissertation, carryover is assumed to be null, or where the washout periods

are sufficient.

For a design with a continuous outcome of interest (e.g. blood pressure), the outcome is typically

measured prior to the period-specific treatment administration. These measurements are called

period-specific baselines, or just baselines. For the AB/BA design, each subject has two baseline

measurements and two post-treatment or outcome measurements. Often, the baseline and post-

treatment measurements are at least moderately correlated (Kenward and Roger, 2010; Mehrotra,

2014). Thus, including the baselines as covariates in a regression model has the potential to reduce

the standard error of a treatment estimate and increase the overall power to detect a treatment

effect. The overall goal of this research is to efficiently incorporate baselines into the analysis of a

general crossover design.
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There has been considerable work in baseline utilization in crossover designs, primarily for the

AB/BA design. Our work expands on this previous research and builds a general framework for

efficient baseline utilization for a variety of designs and regression models. Specifically, we ex-

amine improvements in power that can be achieved by incorporating optimal linear combinations

of baselines (LCB). For a known distribution, the optimal LCB minimizes the conditional variance

corresponding to a treatment effect. Further, given that crosover designs typically have small sam-

ple sizes, the number of covariates in a regression model can significantly impact the degrees of

freedom and consequently the efficiency of a hypothesis test. Thus, the optimal LCB preserves

the limited number of degrees of freedom while explicitly reducing the variance of a treatment ef-

fect estimate. Overall, this can greatly increase the efficiency of a hypothesis test. Compared to

standard baseline models such as the change from baseline model, our proposed LCB baseline

models yield substantial efficiency gains.

Chapters 2-3 respectively discuss efficient baseline utilization under a normality assumption for uni-

form and incomplete block designs. For the uniform design, estimation of a treatment effect comes

entirely from within-subject contrasts and the optimal LCB minimizes the conditional variance re-

lated to the contrasts. For the incomplete block design, estimation of a treatment effect does not

necessarily need to come from only within-subject contrasts. Consequently, baseline utilization is

explored in the framework of both mixed models, where estimation is a weighted summation of

within-subject and between-subject information, and also models which only use within-subject in-

formation. Chapter 4 extends this work to a more general setting where the optimal LCB depends

on some known distribution. A framework is developed for efficient baseline utilization under a

general regression model. This naturally extends the research in Chapters 2-3 to non-normal dis-

tributions. For practical implementation, data-driven adaptive methods are proposed in all cases.

Lastly, Chapter 5 summarizes the overall findings and main points. A summary of most notations,

acronyms, and methods for this paper can be found in Appendix A.

2



CHAPTER 2

UNIFORM DESIGNS

2.1. Motivation and Literature Review

The research in this Chapter appears in Statistics in Medicine (Jemielita, Putt, and Mehrotra, 2016).

One of the most commonly used crossover designs is the uniform design. A uniform design is both

uniform within sequence, each treatment appears the same number of times within each sequence,

and uniform within period, each treatment appears the same number of times within each period.

For example, the AB/BA design is considered uniform since each treatment appears once in each

sequence and once in each period. In general, designs that are both uniform within sequence

and uniform within period and thus uniform are efficient under commonly used models since all

estimation is through within-subject constrasts.

Over the years, a number of publications have considered incorporating baseline measurements

into the analysis of crossover designs. One of the recurring themes in this literature involves the

importance of the underlying covariance structure in determining how incorporating baselines into

the analysis can improve the precision of the treatment estimate. Hills and Armitage first noted

that the correlation between the baselines and outcomes was a driving factor in deciding whether

or not to use baselines (Armitage and Hills, 1982; Hills and Armitage, 1979). Kenward and Jones

explored different estimation techniques when incorporating baselines, including least squares and

generalized least squares (GLS) (Kenward and Jones, 1987). Building on earlier work, Kenward

and Roger established a clear theoretical framework to illustrate how the underlying covariance

structure of the baselines and outcomes influence bias and efficiency when the baselines are in-

corporated into the analysis using several different methods (Kenward and Roger, 2010). Metcalfe

explored using baselines as covariates in the AB/BA design through analysis of covariance (AN-

COVA) using the difference between the baselines at period 1 and period 2 as a covariate (Metcalfe,

2010). Metcalfe empirically showed that this covariate yielded improved efficiency across a num-

ber of covariance structures, relative to using change scores (post-treatment minus the baselines)

or using post-treatment measurements only. Chen, Meng and Zhang examined joint modeling of

the baseline and post-treatment outcomes as a way to utilize baseline data to increase efficiency

3



(Chen, Meng, and Zhang, 2012). This work, through theoretical arguments and empirical simu-

lations, illustrated that including baselines in the analysis could improve the efficiency of a treat-

ment effect estimate. Most recently, Mehrotra in agreement with previous authors, showed that the

potential efficiency gained by using baselines as covariates is highly influenced by the covariance

structure of the baselines and post-treatment outcomes (Mehrotra, 2014). Using theory and simula-

tions, Mehrotra examined ten different baseline utilization methods for the AB/BA crossover design

across a number of underlying baseline and outcome covariance structures and sample sizes. His

final recommendation was to use the difference between baselines at period 1 and period 2 as a

covariate in ANCOVA.

Our review of the literature thus suggests that the potential gains in efficiency that result from

incorporating baselines into an analysis demonstrate a strong model-dependence, both in terms

of the structure of the fixed effects model and the covariance structure. In the research reported

here we use the simplest possible model for the carryover, and assume that carryover is eliminated

by the washout. This is especially reasonable in a pharmaceutical setting, since pharmacokinetics

can be used to determine an appropriate length for the washout period. The current work builds on

previous findings by Mehrotra and Metcalfe (Mehrotra, 2014; Metcalfe, 2010). For the AB/BA under

a model with no carryover and a number of difference covariance structures, these authors showed

that using the using the difference in period-specific baselines as a covariate offered increased

precision for the estimate of the treatment effect.

The use of a single linear combination to capture the information in the baseline measurements

is appealing for crossover designs. Because of their efficiency, crossover studies often use small

sample sizes, and thus the number of covariates in the model can significantly impact the degrees

of freedom in the analysis. We begin by developing a theoretical framework to determine an optimal

linear combination of baselines for uniform designs, first under an unstructured covariance assump-

tion, and then using several different plausible assumptions for the covariance structure. Because

the covariance structure in a data analysis is unknown, we develop a data-based ’adaptive’ method

to choose the optimal covariate. We then apply this work to the AB/BA design and to the three

and four-period uniform designs, where the commonly used compound symmetry assumption is

increasingly unlikely to realistically represent the covariance structure of data obtained in practice.

Overall, we will show that, relative to commonly used methods, using linear combinations of base-

4



lines can lead to significant efficiency gains.

The model and notation for a general uniform crossover design are defined in Section 2.2. In Sec-

tion 2.3, we describe the proposed method for choosing a baseline covariate. Section 2.4 covers

estimation for the proposed method. Section 2.5 covers the application of the proposed methods

for 2×2, 3×3, and 4×4 crossover designs and explores various plausible covariance structures for

the post-treatment measurements and baselines. Additionally, we describe the optimal baseline co-

variates under each covariance structure and crossover design and illustrate how to implement our

approach using a data driven ’adaptive’ method. In Section 2.6, we evaluate our proposed methods

on real data sets. In section 2.7, our proposed methods are evaluated through simulations for 2×2,

3× 3, and 4× 4 crossover designs. Lastly, in section 2.8, we summarize the overall findings.

2.2. Model and Notation

Assume a uniform crossover design. Let:

Xik = (XiAk, ..., XiZk)T

Yik = (YiAk, ..., YiZk)T (2.1)

be distinct Z-vectors of baseline and outcome measurements respectively, where i = 1, .., s indexes

sequence, d = A, ..., Z indexes treatment, and j = 1, ..., p indexes the period. For this Chapter, we

focus on uniform crosssover designs where the number of periods equals the number of treatments

(p = Z). Lastly, k = 1, ..., ni indexes subject k in sequence i, where subjects are assumed to be

independent of each other. Initially, we consider a ’sequence-invariant’ approach where we order

the outcomes and baselines within each sequence by treatment. Later, as well as in Chapters 3-4,

we generalize our approach to the case where each subject retains the vector of outcomes in the

order in which they are received. We then assume multivariate normality such that:

Xik

Yik

 ∼ N(
E(Xik)

E(Yik)

 ,

ΣXX ΣXY

ΣTXY ΣY Y

) (2.2)

The elements of E(Y ik) are defined by a saturated cell means model (Chinchilli and Esinhart,

1996; Vonesh and Chinchilli, 1997), while placing no restrictions on E(Xik). The expectations
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under a null carryover assumption are:

E(Yidk) = µ+ τd + γid (2.3)

E(Xidk) = ζid (2.4)

where µ is the overall mean, τd is the effect of treatment d with
∑
d τd = 0, γid is a fixed effect

for treatment d within sequence i with
∑s
i γid = 0 for all d, and ζid is fixed effect for the mean of

the baseline at sequence i with treatment d. γid is a nuisance parameter, but ultimately represents

sequence by period interactions nested within treatment (Chinchilli and Esinhart, 1996; Vonesh and

Chinchilli, 1997). Note that the expectations of the baselines (2.4) could depend on the period and

sequence in which treatment d was administered in. This allows for the possibility of period effects.

When V ((Xik,Y ik)T ) and its sub-matrices are assumed to be sequence invariant, the general

form of the covariance matrix for either the baselines (ΣXX ) or the outcomes (ΣY Y ) is written:

Σ∗ =



σ2
A ρABσAσB ... ... ρAZσAσZ

σ2
B ρBCσBσC ... ρBZσBσZ

... ... ...

σ2
Z


(2.5)

where Σ∗ = ΣXX or Σ∗ = ΣY Y . Within this general framework, the variance components of the

baselines and outcomes are denoted as (σXd )2 and (σYd )2 and the correlation coefficients by ρXdd′

and ρYdd′ . Here the superscripts denote baseline or outcome and the subscripts denote treatment.

The covariance matrix between baselines and outcomes, is again sequence invariant, i.e.,

ΣXY =



ρXYAA σ
X
A σ

Y
A ρXYAB σ

X
A σ

Y
B . . . ρXYAZ σ

X
A σ

Y
Z

ρXYBAσ
X
B σ

Y
A ρXYBBσ

X
B σ

Y
B

...
. . .

...

ρXYZZ σ
X
Z σ

Y
Z


(2.6)

The correlations coefficients in (2.6) denote either the correlation between a baseline and an out-

come for the same treatment i.e., ρXYdd or the baseline and outcome for different treatments i.e.,

ρXYdd′ . While we later consider a single linear combination, we begin by considering up to Z? linear
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combinations of baselines (LCB). In the most general form, where there are potentially q = 1, ..., Z∗

LCBs per sequence (Z∗ ≤ Z); let the Z∗ × Z matrix of coefficients be:

A =


aT1
...

aTZ∗

 where aTq =

(
aq1 ... aqZ

)

Initially, A is constant for all sequences. Later we generalize this to allow different Ai’s for different

sequences. It follows that AXik is a Z?-length vector, with each element representing a unique

LCB. For example, if we consider the 2× 2 crossover design, with q = 2:

AXik =

 aT1Xik

aT2Xik

 =

 a11XiAk + a12XiBk

a21XiAk + a22XiBk


This example would then yield different baseline covariates. Next, given (2.2), the distribution of the

outcomes conditional on the vector of LCBs is:

Yik|AXik ∼ N
(
E(Yik)− ΣTXY AT (AΣXXAT )−1(AE(Xik)−AXik), (2.7)

ΣY Y − ΣTXY AT (AΣXXAT )−1AΣXY

)

Notably, this general framework also allows for additional pre-treatment or baseline covariates to be

considered. For example, say we wanted to include a covariate for age in the analysis. Xik would

then include the pre-treatment baselines and age, while A would be be a Z? × (Z + 1) matrix of

coefficients. Moreover, while a covariate for age is likely constant across the study, time-varying

covariates could also be considered in this framework. For example, there could be additional lab

tests done prior to treatment administration in each period. Lastly, make the simplification that

q = 1, and condition on a single LCB for each sequence so that A = aT = (a1, ..., aZ). We choose

aT such that the inclusion of aTXik as a covariate in a regression model minimizes the variance

of the estimate of a pair-wise treatment difference.
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2.3. Choosing the Optimal Linear Combination of Baselines (LCB)

2.3.1. Treatment-Ordered Approach

Define b as a Z-length vector such that bY ik yields a contrast of interest. In general, we could

consider any linear contrast of interest. Here we focus on the pairwise differences such that b =

(1,−1, 0, ...0) and bY ik = YiAk−YiBk. For a uniform crossover design, in the absence of baselines,

the unbiased estimate of the treatment difference ( ̂τA − τB), is simply the mean of the within-subject

contrasts. For example, given (2.3):

E( ̂τA − τB) = E
(1

s

s∑
i=1

1

ni

ni∑
k=1

(YiAk − YiBk)
)

= τA − τB

We now condition on an LCB, aTXik. To show that the estimate remains unbiased after condition-

ing on aTXik, note that from (2.7) withA = aT and letting β = (βA, ..., βZ)T = ΣTXY a(aTΣXXa)−1,

it follows that the conditional means within the ith sequence are:

E(Yidk|aTXik) = µ+ τd + γid + βd(a
TXik − E(aTXik))

E(YiAk − YiBk|aTXik) = τA − τB + γiA − γiB + (βA − βB)(aTXik − E(aTXik))

Thus, the unconditional expectation is:

EX

(
E
(1

s

s∑
i=1

1

ni

ni∑
k=1

(YiAk − YiBk|aTXik)
))

= τA − τB (2.8)

Next, given (2.7), the general form of the variance of the some linear contrast conditional on an

LCB is:

V (bY ik|aTXik) = V (bY ik)− (bΣTXY a)2

aTΣXXa
(2.9)

Then for our specific pairwise treatment contrast of interest:

V (YiAk − YiBk|aTXik) = V (YiAk − YiBk)− cov(YiAk − YiBk,aXik)2

aTΣXXa
(2.10)
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The second terms in (2.9) and (2.10) are non-negative; thus the variance of the treatment effect

will never be increased by conditioning on an LCB. The magnitude of any reduction in variance will

depend on the structure of the covariance matrices as well as the linear combination (aT ). Notably,

(2.8-2.10) hold true even if there are additional baseline covariates inXik (ex: age). We now chose

the linear combination, aT? , to minimize (2.10). To do this, we solve:

aT? = (a?1, ..., a
?
Z) = Argmin

aT
V (YiAk − YiBk|aTXik) (2.11)

When the variance and covariance terms are known, we solve (2.11) either analytically using the

partial derivatives of (2.10) with respect to aT , or iteratively using an optimization algorithm. The

LCB chosen in this fashion is optimized for a specific design and covariance structure.

2.3.2. Period-Ordered Approach

Up until now, the methodology was developed using outcomes and baselines ordered by treat-

ment. While this simplifies the notation, it is natural to think of the baselines/outcomes in terms

of a temporal ordering defined by the periods in which the treatments are administered. Ordering

by periods also allows us to consider an autoregressive (AR) covariance structure and explicitly

model a decay in the correlation between successive measurements over time. Because we use

a saturated model, the transition to a period-ordered model simply involves a re-parameterization

of the fixed effects, and the interpretation of the fixed effects remains the same. Despite this, for

sequences with more than two periods, the period-ordered model also yields sequence-specific

LCBs, and from this perspective is somewhat more complicated.

LetXik = (Xi1k, ..., Xijk, ..., Xipk)T be the period ordered baselines, Yik = (Yi1k, ..., Yijk, ..., Yipk)T

be the period-ordered outcomes, and W ik = (Xi1k, Yi1k, ..., Xijk, Yijk, ..., Xipk, Yipk)T be the tem-

porally ordered baseline-outcome pairs. We continue to use saturated models for the outcomes

and baselines but with slightly different notation to match the period ordering:

E(Yijk) = µ+ τd[i,j] + γid[i,j] (2.12)

E(Xijk) = ζij

Under a period ordering, the treatment effect, τd[i,j] is defined with respect to sequence i and period
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j. Further, E(Yijk) still depends on treatment and sequence, as in (2.3). Similarly, the expectation

of the baselines is now defined with respect to sequence i and period j, allowing for period effects.

Lastly, we again define the variance of the outcomes/baselines in terms of block matrices as in (2.5)

and (2.6), but with the treatment designations (A through Z) replaced with period designations (1

through p).

In general, define bi as a p-length vector such that biY ik denotes the within-subject contrast for

a pair of treatments in sequence i. With outcomes ordered by period, bi depends on sequence

i. For example, if we were comparing treatments A and B in an AB/BA design, in sequence AB,

biY ik = (1,−1)(Yi1k, Yi2k)T = Yi1k − Yi2k, and in sequence BA, biY ik = (−1, 1)(Yi1k, Yi2k)T =

Yi2k − Yi1k. Next, since the within-subject contrast (biY ik) varies by sequence, the LCB may also

vary by sequence. Consequently, let aTi = (ai1, ..., aip)
T . Then, by replacing A with aTi in (2.7), it

is then straightforward to show that:

V (biY ik|aTi Xik) = V (biY ik)− (biΣ
T
XY ai)

2

aTi ΣXXai
(2.13)

As before, choose an LCB, aTi?, such that:

aTi? = (a?i1, ..., a
?
ip) = Argmin

aTi

V (biY ik|aTi Xik) (2.14)

2.4. Estimation

Under the treatment-ordered approach (Section 2.3.1), re-defining β = ΣTXY a?(a
T
? ΣXXa?)

−1, we

fit the following linear mixed model:

Yidk = µ? + τd + γid + βda
T
?Xik + ε?idk (2.15)

where ε?idk corresponds to the appropriate covariance term from (2.7) with A = aT? and µ? is the

intercept for the conditional model. This linear mixed model can be estimated using generalized

least squares where the variance parameters are estimated through restricted maximum likelihood.

Alternatively, we could simply fit an ordinary least squares (OLS) model where the outcomes are
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the appropriate within-subject contrasts. With the goal of estimating τA − τB , the OLS model is:

YiAk − YiBK = (τA − τB) + (γiA − γiB) + (βA − βB)aT?Xik + (ε?iAk − ε?iBk) (2.16)

In this formulation, each subject has a single derived outcome. Furthermore, (2.15) and (2.16) will

yield equivalent inference for ̂τA − τB if we assume that the conditional outcomes in (2.15) have

an unstructured covariance structure. Under this assumption, the test for a pairwise treatment

difference in the mixed model is exact under the assumption of normality (Chinchilli and Esinhart,

1996). Given the equivalent inference on ̂τA − τB between the mixed model and the OLS model, it

follows that the OLS model also makes no assumptions about the underlying covariance structure.

Furthermore, because misspecifying the covariance structure of the regression model can cause

type I error inflation (Gurka, Edwards, and Muller, 2011), we assume an unstructured covariance

structure as a robust approach.

Under the period-ordered approach (Section 2.3.2), there may be sequence-specific optimal LCBs

(2.14) and by implication, sequence-specific optimal LCBs as covariates. However, for any two

sequences with treatment A and B in the same two periods, the solution to (2.14) is sequence

invariant. Additionally, the solution to (2.14) is not unique. For example, if ai? is a solution to (2.14),

it is also true that −ai? is a solution to (2.14). Regardless, it may be inefficient to condition on

multiple LCBs at small sample sizes. We thus assumed a common regression coefficient for all

of the LCBs. This simplification yields unbiased estimates as long as we condition at the overall

mean of the LCBs, or E(
∑s
i a

T
i?Xik). Moreover, from simulation results (Section 2.7), assuming a

common regression coefficient still results in efficiency gains. In other words, using the framework

from the OLS model in (2.16), we model:

biY ik = (τA − τB) + (γiA − γiB) + (βA − βB)aTi?Xik + (ε?iAk − ε?iBk) (2.17)

The hypotheses of interest are:

H0 : τA − τB = 0

HA : τA − τB 6= 0
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Depending on the LCB covariate decided on, we fit (2.16) or (2.17) to obtain OLS point estimates,

θ̂ = ( ̂τA − τB , ̂γ1A − γ1B , ..., ̂γsA − γsB , β̂)T , along with the corresponding estimated covariance

matrix V̂ (θ̂). Next, assume that the LCB covariate is centered at 0. Then, lettingLT = (1, 1
s , ...,

1
s , 0),

it follows that:

E(LT θ̂) = τA − τB

The test statistic is then:

t =
LT θ̂√
LTV (θ̂)L

which we compare to a t-distribution with (
∑s
i=1 ni) − s − 1 degrees of freedom (DF) for a model

that includes a covariate and (
∑s
i=1 ni) − s DF for a model without a covariate. We note that in

particular for small samples, any gain in efficiency due to including the covariate may be offset by

the loss of a degree of freedom. For SAS users, we provide the OLS code below where ydiff AB

refers to YiAk − YiBk, seq refers to the parameters γiA − γiB , and LCB refers to an LCB covariate

(centered at zero). Note that while the LCB is chosen to reflect an assumption about the covariance

structure of the baseline and outcome measurements, the model fit and hypothesis test assumes

an unstructured covariance structure that is identical for each individual.

PROC MIXED DATA=example_data;

CLASSES seq;

MODEL ydiff_AB = seq LCB;

ESTIMATE ’tau_A-tau_B’ intercept 1 LCB 0 /CL;

RUN;

2.5. Application to Uniform Crossover Designs

2.5.1. Description of Designs

The specific designs of interest are:

• The 2× 2 crossover design with sequences: AB, BA

• The 3× 3 crossover design with sequences: ABC, BAC, CAB, CBA, ACB, BCA
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• The 4× 4 crossover design with sequences: ABCD, BDAC, CADB, DCBA

Note that each sequence, for any design, defines the ordering of the treatments. For example,

sequence ABC, indicates that treatment A is administered in period 1, treatment B is administered

in period 2, and treatment C is administered in period 3. For the 2 × 2 and 3 × 3 design, all

possible treatment orderings occur. However, for a four treatment design, there are a maximum

of 24 sequences. To simplify, we use the commonly used Williams Design with only 4 sequences.

Notably, while these uniform designs have the same number of periods as the number of treatments,

and hence are complete, our models still pertain to designs where p 6= Z. For example, our methods

could be applied to the crossover design ABAB/BABA. However, for this design, it is unclear whether

a period-ordered or treatment-ordered approach would be more efficient. Finally, we now apply our

methods to each of these designs under several plausible covariance structures.

2.5.2. Plausible Covariance Structures

We consider four plausible covariance structures: Compound Symmetry (CS), Double Compound

Symmetry (DCS), Equipredictability (EP), and Autoregressive(1) (AR(1)), as described in Table

2.1. CS, discussed by a variety of authors (Mehrotra, 2014; Metcalfe, 2010; Yan, 2012), is the most

restrictive, assuming a single variance parameter for all measurements and a common correlation

between all measurements. DCS was used in the work of Chen, Meng, and Zhang (Chen, Meng,

and Zhang, 2012); it is similar to CS, but allows each baseline and outcome with the same treatment

(or same period) to have a separate correlation. EP goes one step beyond DCS allowing each

baseline and outcome with different treatments (different periods) to have a different correlation.

EP, considered by (Mehrotra, 2014), is a simplified version of a six-parameter covariance structure

described by Kenward and Roger (Kenward and Roger, 2010). In Table 2.1, CS, DCS, and EP are

defined with respect to a treatment ordering, but these structures could be equivalently defined with

respect to a period ordering. Indeed, for the CS, DCS, and EP covariance structures, the treatment-

ordered and period-ordered approaches yield identical covariance structures (and identical optimal

LCBs). This point is illustrated in Table 2.1. AR(1), used by Mehrotra and Metcalfe (Mehrotra,

2014; Metcalfe, 2010), is only used with temporally ordered baselines and outcomes (W ik). This

assumes a common variance and a single correlation parameter. Note that in Table 2.1, W ik[t]

refers to the tth element of the temporally ordered baselines and outcomes. Additionally, while our

setup was for an unstructured (UN) covariance matrix, we do not consider optimal LCBs under
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an UN covariance. This is because at small sample sizes, the variance components needed to

estimate the optimal LCB are unstable. This resulting uncertainty will typically lead to type I error

inflation.

Table 2.1: Covariance Structure Assumptions: CS, DCS, EP, and AR(1)

Assumption
Structure σ2

d ρ?dd′ ρXYdd ρXYdd′ Parameters Comments
ΣCS σ2 ρ ρ ρ 2 Common variance and common correlation for

all pairwise measurements.
ΣDCS σ2 ρ2 ρ1 ρ2 3 Similar to CS, but allows baselines & outcomes

within treatments (or periods) to have different
correlations than between treatments (periods).

ΣEP σ2 ρ2 ρ1 ρ3 4 Similar to DCS, but allows baselines & out-
comes between treatments (periods) to have
different correlations.

ΣAR - - - - 2 cov(W ik[t],W ik[t′]) = σ2ρ|t−t
′| ; Auto-regressive

(1), two parameters.

Notes: ρ?
dd′ refers to either ρXX

dd′ (corr(Xd, Xd′ )) or ρY Y
dd′ ((corr(Yd, Yd′ ))); ρXYdd′ = corr(Xd, Y

′
d). CS, DCS,

and EP can be equivalently defined with respect to period ordering by substituing the d subscript (treatment-ordered
covariance) with a j subscript (period-ordered covariance). W ik[t] refers to the tth element of the temporally ordered
baselines/outcomes (X1, Y1, ..., Xp, Yp). CS = Compound Symmetry; DCS = Double Compound Symmetry; EP =
Equipredictability; AR = Auto-regressive (1).

Next, Table 2.2 shows the optimal LCBs under these four considered structures. Derivation of

the optimal LCBs can be found in Appendix B.1. Note that sequence and subject subscripts are

dropped. Additionally, Table 2.2 shows the within-subject contrast that corresponds to the expected

treatment effect, τA−τB . When the baselines and outcomes are ordered by treatment, this contrast

is always YA − YB ; when the baselines and outcomes are ordered by period, the contrast will differ

by sequence.

Compound Symmetry (CS) Covariance Structure

As previously shown for the 2 × 2 design (Mehrotra, 2014), the variance conditional on the LCB

(2.10) is

V (YiAk − YiBk|aTXik,ΣCS) = 2σ2(1− ρ)

for each considered uniform design. This is simply the variance of YiAk − YiBk and thus there is no

LCB that improves the efficiency of the treatment estimate. If an LCB were included in the model, a

hypothesis test or confidence interval would require an additional degree of freedom, thus reducing
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the efficiency of the inferential procedure. This effect would be most pronounced in small samples, a

frequent characteristic of crossover trials in practice. In general, when cov(YiAk−YiBk,aTXik) = 0

for all aT , there is no LCB that improves the efficiency of the treatment estimate.

Double Compound Symmetry (DCS)/ Equipredictability (EP) Covariance Structure

For any of the considered designs, the conditional variances (2.10) under DCS and EP are:

V (YiAk − YiBk|aTXik,ΣDCS) = 2σ2(1− ρ2)− σ4(a1 − a2)2(ρ1 − ρ2)2

V (aTXik)

V (YiAk − YiBk|aTXik,ΣEP ) = 2σ2(1− ρ2)− σ4(a1 − a2)2(ρ1 − ρ3)2

V (aTXik)

Notably, while V (aTXik) depends on the specific design, aT? = (1,−1, 0, ...0) minimizes the condi-

tional variance in each case. Thus, aT?Xik = XiAk −XiBk is the optimal LCB when the underlying

covariance structure is DCS or EP. This result is also valid if we assume separate variances for the

baselines and outcomes (i.e. V (Xidk) = σ2
X , V (Yidk) = σ2

Y , for all d). Next, to obtain an unbiased

estimate of τA − τB (Section 2.4), we either need to condition at the sample mean of the LCB,

1
n

∑s
i (XiAk −XiBk), or shift XiAk −XiBk by the sample mean and condition at zero. For simplicity,

we refer to this LCB as XA −XB .

Autoregressive(1) [AR(1)] Covariance Structure

The AR(1) structure is only sensible for a period-ordered model. In this setting, we assume that the

baselines/outcomes are ordered temporally and thus the within-subject contrast of interest differs

by sequence. Table 2.2 shows the LCBs that minimize the conditional variance of the treatment

effect for each sequence, under an AR(1) assumption. These optimal LCBs will simply be referred

to as the AR(1) covariate. For the 2× 2 and 3× 3 designs, the optimal LCBs in pairs of sequences

are just negatives of each other. The AR(1) covariate also depends on the AR(1) correlation, ρ. In

practice, ρ will need to be estimated to use the AR(1) covariate. In Section 2.5.3, we provide an

approach to estimate ρ. Finally, to obtain an unbiased estimate of the treatment effect, we either

condition at the sample mean of the AR(1) covariate, or shift the AR(1) covariate by the sample

mean and condition at zero.
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Table 2.2: Uniform Design: Optimal LCB by Design and Covariance Structure

Crossover Design Σ Sequence Contrast Baseline Covariate (aTi?X)

All ΣCS All YA − YB No Baselines

All ΣDCS All YA − YB XA −XB
All ΣEP All YA − YB XA −XB

2x2 ΣAR AB Y1 − Y2 ρ−2X1 −X2

BA Y2 − Y1 −(ρ−2X1 −X2)

3x3 ΣAR ABC Y1 − Y2 X1 −X3

BAC Y2 − Y1 −(X1 −X3)

CAB Y2 − Y3 ρ−2X2 −X3

CBA Y3 − Y2 −(ρ−2X2 −X3)

ACB Y1 − Y3 X1 +X2 − cX3

BCA Y3 − Y1 −(X1 +X2 − cX3)

4x4 ΣAR ABCD Y1 − Y2 X1 −X3

BDAC Y3 − Y1 −(X1 +X2 −X3 −X4)

CADB Y2 − Y4 X2 +X3 − (1 + ρ2)X4

DCBA Y3 − Y4 −(X3 − ρ−2X4)

Notes: c =
(1+ρ2+ρ4)+

√
(1+ρ2+ρ4)2+4ρ2(1+ρ2)2

2(1+ρ2)
. CS = Compound Symmetry; DCS = Double

Compound Symmetry; EP = Equipredictability; AR = Auto-regressive (1).

2.5.3. Adaptive Data-Based Approach

While the optimal LCB depends on the covariance structure, in practice the covariance structure is

unknown. This motivates a data-based adaptive approach that chooses an analytic strategy based

on the most likely covariance structure. Our adaptive approach, which is similar to Mehrotra’s

Method X (Mehrotra, 2014), is as follows:

1. For the given data set, fit four models of the treatment ordered baselines and measurements

where Σ = V (Zik) is assumed to be CS, EP, DCS, or UN (unstructured) and one model

where the temporally ordered baselines/outcomes are assumed to follow an AR(1) covariance

structure. All models use a saturated means model for the combined vector of baselines and

outcomes

2. Obtain the corrected Akaike Information Criterion (AICC) for each model. AICC is a small

sample correction of AIC (Hurvich and Tsai, 1989).

3. Use XA − XB as the LCB except when (1) the AICC is smallest under CS; in this case use

no baselines, or (2) the AICC is smallest under AR(1); in this case use the AR(1) covariate
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(Table 2.2)

4. Fit the appropriate regression model based on the covariate choice from Step 3. If the AR(1)

covariate is chosen, then estimate ρ based on the AR(1) model from Step 1.

We did not derive an LCB for UN, since this result rapidly becomes complex with increasing number

of periods. However, given (2.9) and (2.13), reductions in the conditional variance can be obtained

by including XA − XB as a covariate. In Chapter 3 we derive the optimal LCB under an UN

covariance for a 2-period design.

2.6. Application to Data Analysis

In this section, we apply the methods to two real data sets, one each from a 2 × 2 and 3 × 3

crossover design. For each data example, we consider the results obtained using each of the

variance-minimizing LCBs described in Table 2.2, using no baselines, the adaptive method, and

where change from baseline (CFB) scores are used as the outcome (and no baselines are included

as covariates in the model). CFB is widely used in practice and is a natural benchmark for com-

parison of our proposed methods. As is typically done (Jones and Kenward, 2003), our CFB model

includes random subject effects and fixed effects for period and treatment. Note that by assuming

random subject effects, the underlying covariance structure of the CFB outcomes is assumed to be

CS. Table 2.3 (2 × 2 design) and Table 2.4 (3 × 3 design) show the estimated unstructured covari-

ance matrix of the treatment ordered baselines and outcomes, the adaptive AICC results, and the

treatment effect estimates, standard errors, and p-values for all considered methods.

2.6.1. Real Data Example I: 2× 2 Crossover Design

In this example (previously published as Example 2 from Mehrotra, 2014), a biomarker associated

with renal function was measured for each of 20 subjects at baseline and after treatment in a 2× 2

(AB/BA) crossover trial. The estimated treatment-ordered UN covariance matrix appears in Table

2.3; the upper left-hand corner corresponds to the estimates of ΣXX , the lower right to ΣY Y and

the upper right to ΣXY . For this example, the AICC favored the AR(1) structure. Notably, the CS

structure had the largest AICC relative to DCS, EP, and AR(1). This result suggests that using an

LCB should improve the efficiency of the estimate, and indeed, the SEs and the p-values using

either XA − XB or the AR(1) covariate are reduced relative to no baselines. In this case, the

17



adaptive method uses the AR(1) covariate. However, while the adaptive method chooses the AR(1)

covariate over XA − XB , the two LCB’s yielded very similar results. Lastly, we note that the CFB

approach, relative to the AR(1) covariate and XA −XB , yielded a larger estimated effect and SE,

but a similar p-value.

Table 2.3: Uniform Design Baseline Models: 2× 2 Real Data Example I (N=20)

Σ̂UN =

XA XB YA YB


0.31 0.12 0.19 0.15
[0.62] 0.13 0.12 0.14
[0.77] [0.59] 0.21 0.14
[0.59] [0.86] [0.70] 0.20

Σ AICC
ΣCS 73.5

ΣDCS 69.9
ΣEP 72.1

ΣAR(1) 66.4
ΣUN 76.1

Method Outcome LCB Estimate SE p-value
No Baselines Yidk None 0.155 0.079 0.065

CFB Yijk −Xijk None 0.235 0.092 0.0201
XA −XB Yidk XiAk −XiBk 0.186 0.073 0.0212

AR(1) Yijk AR(1) Covariate 0.190 0.075 0.0216
Adaptive Depends on AICC Depends on AICC 0.190 0.075 0.0216

Notes: Σ̂UN is the estimated unstructured covariance matrix of the treatment ordered responses. [] refer to correlation es-
timates. AICC values for the joint vector of responses under the various covariance structures are displayed. CFB=Change
from Baseline. Method AR(1) refers to the covariates derived in Table 2.2 under AR(1). The adaptive method, based on
the AICC values, chooses between methods No Baselines, XiAk −XiBk, and Method AR(1). CS = Compound Symmetry;
DCS = Double Compound Symmetry; EP = Equipredictability; AR = Auto-regressive (1); UN=Unstructured.

2.6.2. Real Data Example II: 3× 3 Crossover Design

The following example is available online at http://www.stat.ufl.edu/CourseINFO/STA6167/

crossoverSFLM.pdf. This example contains data from a study which compared the effects on

heart rate of three treatments: a test drug, a standard drug, and a placebo. These treatments were

assigned to the six possible sequences, with four subjects in each sequence (N=24 total). For each

of the three visits and for each subject, heart rate was measured one hour following administration

of treatment. We illustrate the standard treatment compared to the placebo, but other pairwise

comparisons show similar results.

The estimated covariance matrix under UN appears in Table 2.4. We note that for this example, cor-

relations between different baselines and outcomes designated by the same treatment (or period)

tend to have higher correlations than those from different treatments (or periods). In this example,

the AICC favors the DCS structure and additionally, the CS structure had the largest AICC com-
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pared to DCS, EP, and AR(1). This suggests that using an LCB should improve the efficiency of the

estimate. Indeed, relative to no baselines, the SEs and p-values using either XA−XB or the AR(1)

covariate are reduced. Here the adaptive approach would choose XA −XA as the LCB covariate.

Lastly, XA −XB has a noticeably lower SE and p-value than CFB, but has a slightly higher SE and

p-value than the AR(1) covariate.

Table 2.4: Uniform Design Baseline Models: 3× 3 Real Data Example (N=24)

Σ̂UN =

XA XB XC YA YB YC


124.5 15.3 30.7 48.7 41.2 26.7
[0.12] 121.9 72.1 48.2 101.9 92.4
[0.22] [0.53] 150.3 23.1 85.9 85.4
[0.42] [0.42] [0.18] 106.1 60.5 56.3
[0.34] [0.85] [0.65] [0.54] 117.9 83.8
[0.19] [0.67] [0.56] [0.44] [0.62] 156.7

Σ AICC
ΣCS 853.4

ΣDCS 850.2
ΣEP 852.3

ΣAR(1) 852.8
ΣUN 872.7

Method Outcome LCB Estimate SE p-value
No Baselines Yidk None 5.17 2.07 0.023

CFB Yijk −Xijk None 5.67 2.77 0.175
XA −XB Yidk XiAk −XiBk 5.31 1.95 0.014

AR(1) Yijk AR(1) covariate 5.70 1.75 0.005
Adaptive Depends on AICC Depends on AICC 5.31 1.95 0.014

Note: Σ̂UN is the estimated unstructured covariance matrix of the treatment ordered responses. [] refer to correlation esti-
mates. AICC values for the joint vector of responses under the various covariance structures are displayed. CFB=Change
from Baseline. Method AR(1) refers to the covariates derived in Table 2.2 under AR(1). The adaptive method, based on
the AICC values, chooses between methods No Baselines, XiAk −XiBk, and Method AR(1). CS = Compound Symmetry;
DCS = Double Compound Symmetry; EP = Equipredictability; AR = Auto-regressive (1); UN=Unstructured.

2.7. Simulations

The simulation study was designed to answer the following questions: (1) Is the Type I error rate

maintained, both for the two benchmarks (no baselines and CFB), for each of the LCB’s under the

correct covariance structure and when the covariance structure is misspecified, and for the adaptive

method; (2) When the LCB is optimal for the underlying covariance structure, does including the

optimal LCB offer an increase in power over the benchmarks; (3) Does the adaptive method capture

any power gains seen by using the optimal LCB under the correct covariance structure; and (4) Is

there any overall recommendation that can be made for practioners?

We simulated 20,000 trials for a variety of scenarios. The number of simulated data sets is rather

large, but we wanted to know with high accuracy where our adaptive method suffers from type I error
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inflation. The simulation scenarios were defined by the hypotheses (null, τA − τB = 0; alternative,

τA − τB 6= 0), Σ (CS, DCS, EP, AR(1), UN), average pairwise correlation (ρ̄), and sample sizes.

Hypothesis tests were used with a nominal type I error rate of 0.05. Response vectors for each

subject within each simulated trial were generated from a multivariate normal with a sequence-

invariant Σ; either CS, DCS, EP, or AR(1) as described in Table 2.1, or UN under a treatment

ordering (Equations 2.5,2.6). Throughout we assumed a common variance σ2 = 1 and ρ̄ ≈ 0.60.

For all designs: under CS, ρ = 0.6; under EP, ρ2 = 0.60, ρ1 = 0.70, ρ3 = 0.50. DCS, AR(1), and UN

correlations vary by design (see Appendix B.2).

Under CS, DCS, EP, and UN, the response vector was generated under a treatment ordering,

based on the mean models in (2.3, 2.4) with γid = 0 for all d. For 2 × 2, we set µ = 6.5 and

E(Xidk) = ζid = 0.5 such that E[(XA, XB , YA, YB)T ] = (0.5, 0.5, 6.5 + τA, 6.5 + τB)T ; for 3 × 3,

µ = 7 and E(Xidk) = 1 such that E[(XA, XB , XC , YA, YB , YC)T ] = (1, 1, 1, 7 + τA, 7 + τB , 7 + τC)T ;

for 4 × 4, µ = 7.38 and E(Xidk) = 1.375 such that E[(XA, XB , XC , XD, YA, YB , YC , YD)T ] =

(1.375, 1.375, 1.375, 1.375, 7.38 + τA, 7.38 + τB , 7.38 + τC , 7.38 + τD)T . Under AR(1), the response

vector is defined based on the period ordered mean models (2.12). See the Appendix for the

specific parameter values. For 2 × 2, E[(X1, Y1, X2, Y2)T ] = (0, 6 + τd[i,1], 1, 7 + τd[i,2])
T ; for 3 ×

3, E[X1, Y1, X2, Y2, X3, Y3)T ] = (0, 6 + τd[i,1], 1, 7 + τd[i,2], 2, 8 + τd[i,3])
T ; for the 4 × 4 design,

E[(X1, Y1, X2, Y2, X3, Y3, X4, Y4)T ] = (0, 6 + τd[i,1], 1, 7 + τd[i,2], 2, 8 + τd[i,3], 2.5, 8.5 + τd[i,4])
T . Under

the null, τA = τB = 0 (and τC = τD = 0 as appropriate), while under the alternative, for each sce-

nario, τA − τB was fixed such that using the no baselines model yielded 80% power (see Appendix

B.2). For the 3 × 3 and 4 × 4 design, τC − τB and τD − τB (4 × 4 only) were set equal to τA − τB .

As expected, estimates of τA− τB were approximately unbiased for all methods under all scenarios

(results not shown). Power results are shown for the 2 × 2 (Table 2.5), 3 × 3 (Table 2.6), and 4 × 4

designs (Table 2.7), with indications of where type I error inflation occurs, while type I error results

for all designs can be found in Appendix B.3. Lastly, while our CFB model used random subject

effects (and thus assumed a CS structure), power results were comparable to when we used a CFB

model with an unstructured covariance structure.

2.7.1. 2× 2 Crossover Design: Simulation Results

The type I error was maintained across all simulations when baselines were excluded from the

analysis. However, the CFB approach yielded type I error inflation for smaller sample sizes (<
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28), particularly under AR(1). This is most likely due to how the CFB method assumes that the

CFB outcomes follow a CS covariance structure. As we pointed out earlier, misspecifying the

covariance structure in a mixed model can lead to type I error inflation, regardless of sample size

(Gurka, Edwards, and Muller, 2011). Type I error inflation was rare when XA − XB was included

as the LCB, but including the optimal LCB under AR(1) yielded type I error inflation at smaller

sample sizes. Lastly, the adaptive method exhibited type I error inflation at the lower sample sizes,

especially under DCS, EP, and AR(1). As to why the adaptive method inflates the type I error,

the adaptive method’s success rate, or how often the AICC correctly picks the ”right” covariance

structure gives us some insight. For the 2 × 2 design, especially at small sample sizes, there

is insufficient information to accurately choose the correct structure and the AICC criterion has

difficulty picking the ”correct” covariance structure (and thus the optimal LCB). Further, from our

simulations, we found that when the incorrect covariance structure was chosen, the standard error

of the treatment effect estimate was often deflated, leading to the inflated type I error.

Compared to the benchmarks (no baselines or CFB), including the optimal LCB increased power

for both DCS and EP. Similarly, using no baselines under a CS structure yielded the most power

and largely outperformed CFB. Under an AR(1) structure, the optimal LCB increased power at

sample sizes greater than 20, but could not be evaluated at smaller sample sizes due to type I error

inflation. In general, the adaptive method captured the power gains seen by using the optimal LCB,

and it also matched the highest power observed using XA − XB under an unstructured matrix.

However, as mentioned above, at smaller sample sizes, the adaptive method often suffers from

type I error inflation. Despite this, for N≥ 28, we see that the adaptive method does not suffer

from any type I error inflation, suggesting that this method could be used for larger sample sizes.

Overall, given that the adaptive method does not maintain the type I error in a variety of scenarios,

our recommendation for a 2× 2 design is to use XA−XB as a covariate. This method consistently

outperformed CFB and uniformly did well across all the covariance structures.

2.7.2. 3× 3 Crossover Design: Simulation Results

With the exception of the adaptive method at N=18 under AR(1) and CFB under UN, all methods

maintained the type I error. The lack of type I error inflation for the adaptive method can be attributed

to the high success rate of the AICC criterion in the 3× 3 design. For example, at N=18 under EP,

the adaptive method correctly picks the optimal LCB (XA − XB) 83% of the time (out of 20,000
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Table 2.5: 2× 2 Simulations: Under the Alternative Hypothesis, Power

Truth Method N=12 N=16 N=20 N=24 N=28 N=32
ΣCS No Baselines 79.4 80.2 79.6 80.1 80.4 79.6
ΣCS CFB [50.6] 50.6 50.8 51.2 51.1 51.1
ΣCS XA −XB 74.4 76.5 77.0 78.5 78.5 78.4
ΣCS AR(1) 74.0 76.2 76.9 78.0 78.4 78.0
ΣCS Adaptive [[78.6]] [79.6] 79.4 [80.1] 80.4 [79.7]
ΣDCS No Baselines 79.4 80.0 79.7 80.5 80.3 79.6
ΣDCS CFB 86.9 88.0 87.5 88.1 88.3 87.8
ΣDCS XA −XB 89.7 91.6 91.9 92.8 93.0 92.9
ΣDCS AR(1) 84.9 87.3 88.0 88.9 89.1 88.9
ΣDCS Adaptive [[89.6]] 91.5 [[91.8]] 92.7 92.9 92.8
ΣEP No Baselines 79.8 79.9 79.8 80.4 80.4 79.5
ΣEP CFB 79.7 79.9 [79.7] 80.2 80.1 79.9
ΣEP XAk −XB 85.4 87.1 87.5 88.6 88.9 88.6
ΣEP AR(1) 80.4 82.3 83.0 84.2 84.5 84.0
ΣEP Adaptive [[85.6]] [[86.8]] [[86.9]] [[88.1]] 88.6 88.2
ΣAR No Baselines 79.6 79.7 79.6 80.1 80.0 80.0
ΣAR CFB [69.8] [69.7] [70.3] 70.2 70.0 69.8
ΣAR XA −XB [79.8] 81.8 82.7 83.1 83.8 84.2
ΣAR AR(1) [[81.7]] [[83.5]] [84.3] 85.1 85.5 85.7
ΣAR Adaptive [[82.4]] [[83.9]] [[84.4]] 85.1 85.5 85.7
ΣUN No Baselines 79.6 80.2 79.8 79.6 80.0 79.9
ΣUN CFB 64.6 65.5 65.6 65.1 64.9 64.6
ΣUN XA −XB 80.1 82.1 82.6 82.9 83.6 83.6
ΣUN AR(1) 78.4 80.8 81.4 81.7 82.5 82.6
ΣUN Adaptive [80.4] 82.3 82.6 82.9 83.6 83.6

Notes: Values (Power %) are shown in bold if method yields the highest or second highest power in that sample
size/covariance structure combination without type I error inflation. Entries are in brackets/double brackets if under
the same scenario, but under the null hypothesis, the type I error is two/three SE’s above 5% (> 5.31%,> 5.46%)
based on 20,000 simulations. CFB=Change from Baseline. Method AR(1) refers to the covariates derived in
Table 2.2 under AR(1). The adaptive method, based on AICC values, chooses between methods No Base-
lines, XA − XB , and Method AR(1). CS = Compound Symmetry; DCS = Double Compound Symmetry; EP =
Equipredictability; AR = Auto-regressive (1); UN=Unstructured.

simulations).Next, compared to the benchmarks (no baselines and CFB), the optimal LCBs led to

increased power under all scenarios. Furthermore, the adaptive method captured these power

gains (superior to the benchmarks) by using the optimal LCBs and also matched the highest power

observed using XA −XB under UN. Coupled with the fact that the adaptive method did not suffer

from type I error inflation, the adaptive method could be used for 3× 3 crossover design.

2.7.3. 4× 4 Crossover Design: Simulations

All methods maintained the type I error, except for CFB under UN. Like in the 2× 2 design, the type

I error inflation seen for CFB under UN is likely caused by the misspecification of the underlying
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Table 2.6: 3× 3 Simulations: Under the Alternative Hypothesis, Power

Truth Assume N=18 N=24 N=30 N=36 N=42 N=48
ΣCS No Baselines 79.2 79.9 80.4 80.0 80.5 80.4
ΣCS CFB 54.5 53.4 53.4 52.3 52.2 52.0
ΣCS XA −XB 75.0 77.3 78.5 78.5 79.5 79.4
ΣCS AR(1) 74.7 77.1 78.5 78.3 79.1 79.4
ΣCS Adaptive 78.8 79.6 80.2 79.9 80.3 80.2
ΣDCS No Baselines 79.9 79.7 80.5 80.2 79.7 79.8
ΣDCS CFB 80.2 77.9 78.5 77.8 76.9 76.4
ΣDCS XA −XB 84.2 85.1 86.6 87.0 86.8 86.8
ΣDCS AR(1) 79.6 81.0 82.6 83.0 82.4 82.9
ΣDCS Adaptive 84.4 85.2 86.7 87.0 86.8 86.8
ΣEP No Baselines 79.5 80.1 79.7 79.9 79.6 80.3
ΣEP CFB 83.6 82.5 81.5 81.0 80.7 81.2
ΣEP XA −XB 85.8 87.7 88.1 88.5 88.8 89.2
ΣEP AR(1) 79.3 81.8 82.1 83.0 82.6 83.7
ΣEP Adaptive 85.9 87.8 88.1 88.5 88.7 89.2
ΣAR No Baselines 79.8 80.4 79.9 80.0 79.6 79.8
ΣAR CFB 84.6 83.6 81.9 81.4 80.8 81.5
ΣAR XA −XB 86.9 88.4 88.5 88.8 88.9 89.2
ΣAR AR(1) 91.2 92.8 92.8 93.3 93.3 93.6
ΣAR Adaptive [91.2] 92.8 92.8 93.3 93.3 93.6
ΣUN No Baselines 80.1 80.0 79.9 80.5 79.6 79.5
ΣUN CFB 67.3 65.6 64.8 65.0 63.5 63.2
ΣUN XA −XB 82.9 84.1 84.6 85.9 84.9 85.2
ΣUN AR(1) 79.8 81.2 81.9 82.9 81.9 82.0
ΣUN Adaptive 82.9 84.1 84.6 85.9 84.9 85.2

Notes: Values (Power %) are shown in bold if method yields the highest or second highest power in that
sample size/covariance structure combination without type I error inflation. Entries are in brackets/double
brackets if under the same scenario, but under the null hypothesis, the type I error is two/three SE’s above
5% (> 5.31%,> 5.46%) based on 20,000 simulations. CFB=Change from Baseline. Method AR(1) refers
to the covariates derived in Table 2.2 under AR(1). The adaptive method, based on AICC values, chooses
between methods No Baselines, XA−XB , and Method AR(1). CS = Compound Symmetry; DCS = Double
Compound Symmetry; EP = Equipredictability; AR = Auto-regressive (1); UN=Unstructured.

covariance structure. Importantly, the type I error was maintained for the adaptive method in all

scenarios. Like in the 3× 3 design, the optimal LCBs outperformed both benchmarks (CFB and no

baselines) under all scenarios. Additionally, the adaptive method did approximately as well as the

optimal LCBs (and also beat out the benchmarks), while also matching the highest power observed

using XA −XB under UN. Given this, along with the fact that the adaptive method does not suffer

from type I error inflation, the adaptive method could be used in the 4×4 crossover design, but with

more potential for efficiency gain (relative to the 3× 3 design).
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Table 2.7: 4× 4 Simulations: Under the Alternative Hypothesis, Power

Truth Method N=16 N=20 N=24 N=28 N=32 N=36
ΣCS No Baselines 80.0 80.0 80.2 80.2 80.2 80.1
ΣCS CFB 55.9 54.7 54.4 53.7 53.0 52.7
ΣCS XA −XB 75.5 77.0 78.0 78.4 78.6 78.6
ΣCS AR(1) 75.7 77.0 78.0 78.3 78.5 78.8
ΣCS Adaptive 79.4 79.7 80.0 80.0 79.9 79.9
ΣDCS No Baselines 79.0 78.0 79.8 80.1 80.3 80.7
ΣDCS CFB 88.6 87.3 87.9 87.2 86.8 86.1
ΣDCS XA −XB 88.8 89.2 90.9 91.7 91.0 91.3
ΣDCS AR(1) 82.5 81.7 84.9 85.2 85.3 85.2
ΣDCS Adaptive 88.9 89.1 90.9 91.7 90.9 91.3
ΣEP No Baselines 80.1 80.0 79.8 79.9 79.9 79.9
ΣEP CFB 85.5 84.2 83.3 82.8 82.3 81.8
ΣEP XA −XB 86.6 87.8 88.4 88.5 88.5 88.9
ΣEP AR(1) 80.6 82.0 82.7 82.8 83.4 83.5
ΣEP Adaptive 86.6 87.8 88.4 88.6 88.5 88.9
ΣAR No Baselines 80.0 79.8 80.1 80.0 80.1 79.9
ΣAR CFB 89.8 88.5 87.9 87.6 87.2 86.7
ΣAR XA −XB 89.8 90.6 91.1 91.6 91.6 91.6
ΣAR AR(1) 95.6 96.2 96.6 96.7 96.8 96.8
ΣAR Adaptive 95.6 96.2 96.6 96.7 96.8 96.8
ΣUN No Baselines 80.2 80.1 80.1 80.1 80.1 79.9
ΣUN CFB [[74.9]] [[73.9]] [[73.1]] [[72.1]] [[71.7]] [[71.2]]
ΣUN XA −XB 83.4 84.9 85.0 85.5 85.6 85.8
ΣUN AR(1) 79.8 81.2 81.9 82.2 82.1 82.6
ΣUN Adaptive 83.4 84.9 85.0 85.5 85.6 85.8

Note: Values (Power %) are shown in bold if method yields the highest or second highest power in that sample
size/covariance structure combination without type I error inflation. Entries are in brackets/double brackets if under
the same scenario, but under the null hypothesis, the type I error is two/three SE’s above 5% (> 5.31%,> 5.46%)
based on 20,000 simulations. CFB=Change from Baseline. Method AR(1) refers to the covariates derived in
Table 2.2 under AR(1). The adaptive method, based on AICC values, chooses between methods No Base-
lines, XA − XB , and Method AR(1). CS = Compound Symmetry; DCS = Double Compound Symmetry; EP =
Equipredictability; AR = Auto-regressive (1); UN=Unstructured.

2.7.4. Simulation Results Summary

Overall, the simulations verify the theoretical arguments made with regards to baseline utilization.

For example, if the underlying covariance structure is truly AR(1), then using the optimal LCB (AR(1)

covariate (Table 2.2, ΣAR) will best leverage the covariance structure, resulting in a large gain in

efficiency relative to other methods. For the 2 × 2 crossover design, given the type I error inflation

seen in the adaptive method, we recommend using XA−XB as the analytical method, which is the

same as previous recommendations (Mehrotra, 2014; Metcalfe, 2010). XA−XB uniformly did well

across all scenarios and also outperformed CFB in all cases.
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For the 3× 3 and 4× 4 crossover designs, the adaptive method did as well as the best performing

method in terms of power (optimal LCB), while controlling the nominal type I error rate. This is due

to the AICC criteria better differentiating between covariance structures as the number of treatments

(or periods) increases. The adaptive method also significantly outperformed the benchmark CFB.

Given the simulation results for the 3 × 3 and 4 × 4 crossover design, we recommend using the

adaptive method.

2.8. Discussion

By incorporating LCBs as covariates, we have developed an approach that uses the information

in the underlying covariance structure of the baselines and outcomes to yield a more precise es-

timate of a desired treatment effect. Importantly, our proposed approach is less restrictive than

most models (e.g., CFB with random subject effects), given that we make no assumptions about

the covariance structure of the outcomes in the estimation of τA − τB . This approach is easily im-

plemented, as one must simply add the LCB as a covariate in the regression model. Furthermore,

while we derived optimal LCBs under CS, EP, DCS, and AR(1), this approach could be extended

to any covariance structure one may deem plausible. The trick is simply deriving the appropriate

conditional variance of a treatment effect, then determining the optimal LCB that minimizes this

variance. In some cases, there may be an analytic solution, in other cases one may need to use

an optimization algorithm. From our experience, using an optimization algorithm to determine the

optimal LCB yielded similar if not identical results compared to using an analytically derived optimal

LCB.

This work does confirm previous results showing limited gains in efficiency for the AB/BA design.

Under a CS covariance structure, each pair of measurements has the same covariance, irrespec-

tive of the temporal separation between the measurements, or the treatment administered. Under

a CS assumption, Yan showed that using baselines has a minimal effect on the variance of the

treatment estimate for the AB/BA design (Yan, 2012). Mehrotra confirmed this finding, but also

showed several data examples where CS appeared to be an oversimplification of the underlying

structure (Mehrotra, 2014). Kenward and Roger similarly present a number of examples where a

more flexible covariance structure appears better suited to the data (Kenward and Roger, 2010).

Importantly our proposed methods outperform commonly used models, specifically CFB or omitting
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the baselines from the analysis. CFB is both intuitive and widespread, but is known to underper-

form, even compared to omitting the baselines altogether (Kenward and Roger, 2010; Mehrotra,

2014). Kenward and Roger recommend against the CFB approach and instead advocated condi-

tioning on baselines as covariates. In fact, one example given showed an efficiency gain equivalent

to a 40% decrease in sample size by using baselines as covariates (Kenward and Roger, 2010).

It may also be tempting to apply these methods to a joint model framework, for example using

((YiAk − YiBk,a
T
?Xik)T ) as the outcome, as in Chen, Meng, and Zhang, 2012. However in a

joint model, the test statistic is obtained using a linear mixed model, and the restricted maximum

likelihood results are exact only asymptotically. One solution to this is to use the Kenward-Roger

degrees of freedom (DDFM=KR in SAS PROC MIXED) which adjusts the standard error of the

treatment effect estimate by accounting for the uncertainty in the estimate of the covariance struc-

ture. This has been shown to deliver a more accurate t-test in small samples (Kenward and Roger,

1997). However, even with this adjustment, Mehrotra illustrated through simulations that the type

I error rate for testing a treatment effect could still be inflated (Mehrotra, 2014). Given all this, we

recommend using an OLS based approach.

The adaptive method relies on the use of AICC criterion to determine what LCB to include in the

analysis. From our simulations, the adaptive method’s success rate (how often the AICC criterion

chose the correct covariance structure) depended on the design. For 2 × 2 crossover trials, the

adaptive method visibily exhibited type I error inflation. This was largely due to the AICC crite-

rion having difficultly discerning between different covariance structures, especially at the smaller

sample sizes. This was not an issue for the 3× 3 and 4× 4 crossover designs, where the adaptive

method showed promising properties. In general, it is easier to differentiate between the covariance

structures considered as the number of treatments/periods increases.

An attractive alternative to the adaptive method is a fully robust method of choosing the LCB.

The idea here would be to minimize the conditional variance (2.11) while assuming an unstruc-

tured covariance matrix. This makes no assumptions about the covariance matrix of the base-

lines/outcomes which means there is no ”choosing” between baseline utilization methods (which

the adaptive method does). However, at low sample sizes, the variance component estimates nec-

essary to determine the optimal LCB are unstable. Additionally, this approach requires some type

of resampling method (i.e. bootstrap, permutation test) to maintain the nominal type I error rate.
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This idea is pursued further in Chapter 3 and 4.

Overall, given the underlying covariance structure of the baselines and outcomes, we can con-

struct LCBs that minimize the conditional variance of the within-subject contrasts corresponding to

a desired treatment effect. Inclusion of these LCBs into a regression model can increase the effi-

ciency of a treatment effect estimate. Compared to standard methods, such as CFB, using LCBs

as covariates can yield large gains in power in 2× 2, 3× 3, and 4× 4 crossover designs.
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CHAPTER 3

INCOMPLETE BLOCK DESIGNS

3.1. Motivation and Literature Review

In an incomplete block design, the number of treatments exceeds the number of periods, meaning

that this design is not uniform within sequence (UWS) and thus not uniform. As a consequence,

estimation of a treatment effect is not necessarily obtained entirely through within-subject contrasts

(Chi, 1991). Recall that in the Chapter 2 (uniform designs), all estimation was through within-

subject contrasts. Given this, relative to a uniform design with the same number of treatments,

an incomplete block design will yield a less efficient estimate of a treatment effect. Despite this,

an incomplete block design can be appealing, given that each subject in the study receives fewer

treatments, reducing the risk of incomplete data. (Jones and Kenward, 2003). For example, if the

goal was to compare three treatments (A, B, or C), a uniform design could include all six possible

sequences of the treatments (ABC, BAC, CAB, CBA, ACB, BCA), requiring each subject to receive

three treatments administered across three periods. An analagous 3-treatment 2-period (3 × 2)

incomplete block design would also have six sequences (AB, BA, BC, CB, AC, CA). But for this

design, each subject would receive two out of the three treatments administered across two periods.

As the number of treatments increases, a uniform design can become too arduous for a subject to

complete. Thus, an incomplete block design may have the advantage of maintaining a high level of

completion among subjects.

In Chapter 2, we showed that for a general uniform crossover design, an optimal linear combination

of baselines (LCB) could be used as a covariate to efficiently incorporate all available baselines.

The optimal LCB minimizes the conditional variance of a treatment effect contrast, leveraging the

underlying joint covariance structure of the outcomes and baselines. Furthermore, by using a

single metric to incorporate all the available baselines, only one degree of freedom is sacrificed in a

hypothesis test. For small sample sizes, this can greatly increase the power of the hypothesis test.

To our knowledge, there are no specific publications related to the use of baselines in an incomplete

block crossover design. Notably, the work in Chapter 2 rested on the premise that all estimation

was done through within-subject contrasts (Jemielita, Putt, and Mehrotra, 2016). However, for an
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incomplete block design, estimation may also include between-subject contrasts.

For an incomplete block design, Chi illustrated that the overall estimate of a treatment effect is a

weighted combination of within-subject and between-subject information (Chi, 1991). Moreover,

the overall estimate of a treatment effect can be obtained through generalized least squares (GLS),

efficiently combining the within-subject and the between-subject information (Chi, 1991). Kenward

and Jones also pointed this out, noting that an approximate estimate of the overall treatment effect

could be obtaining through inverse variance weighting of the between-subject estimate of the treat-

ment effect and the within-subject estimate of the treatment effect (Jones and Kenward, 2003). To

illustrate, consider the 3 × 2 crossover design, with sequences AB, BA, BC, CB, AC, CA. With the

goal of estimating the treatment effect comparing A and B, note that the within-subject estimate is

obtained through taking appropriate within-subject contrasts in sequences AB and BA. Effectively,

these two sequences could be viewed together as a 2 × 2 or AB/BA design. The between-subject

estimate of the treatment effect is obtained through a summation of period-specific outcomes in

the remaining sequences. The overall estimate of the treatment effect is then calculated by using

inverse variance weights on the within-subject and between-subject portions.

While this approximate estimate is conceptually insightful, in practice the overall estimate of a treat-

ment effect is usually obtained by fitting a mixed effects model, where estimation is done through

GLS and restricted maximum likelihood (REML). To account for the uncertainty of the estimated

covariance structure, a Kenward-Roger degrees of freedom adjustment should be used. Especially

at small sample sizes, this delivers more accurate inference (Kenward and Roger, 1997). This is

particularly salient for crossover designs where sample sizes are small. However, even with this

adjustment, problems may persist for small sample sizes. For a repeated measures design with

small sample sizes and a complex covariance structure, Schaalje et al showed that hypothesis

tests with a KR adjustment still resulted in inflated type I error (Schaalje, Mcbride, and Fellingham,

2002). Additionally, Mehrotra showed that REML based models for a 2× 2 crossover design did not

maintain the nominal type I error rate at small sample sizes (Mehrotra, 2014).

In this Chapter, potential LCB models are explored for incomplete block designs, with an emphasis

on the 3× 2 design. Importantly, we explore baseline utilization in the framework of a mixed model,

where the overall treatment estimate is a weighted combination of the between-subject and within-

subject information, and also in the framework of an OLS model, where the treatment effect is
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estimated using only within-subject contrasts. Under either case, we explicitly incorporate LCBs into

the analysis such that the precison of the treatment effect estimate is increased. We hypothesize

that the OLS method might be particularly useful for small sample sizes.

Setup and notation for an incomplete block crossover design are defined in Section 3.2. In Section

3.3, we describe various baseline models for the incomplete block design. These models are de-

veloped under a mixed effects model framework and an OLS framework. Section covers estimation

for the proposed methods. In Section 3.2, the baseline models are evaluated on a real 3 × 2 data

set. In Section 3.6, all models are compared through simulations for the 3 × 2 design. Lastly, in

section 3.7, the overall findings are summarized.

3.2. Setup and Notation

Consider an incomplete block crossover design. Briefly, it is more convenient for incomplete block

designs to consider the baselines and outcomes ordered by period (as in Section 2.3.2). Accord-

ingly, let:

Xik = (Xi1k, ..., Xijk, ..., Xipk)T

Yik = (Yi1k, ..., Yijk, ..., Yipk)T (3.1)

be the vectors of baseline and outcome measurements respectively, where i = 1, ..., s indexes

sequence, j = 1, ..., p indexes period, and k = 1, ..., ni indexes subject k in sequence i where

subjects are assumed to be independent of each other. We then assume that:

Xik

Yik

 ∼ N(
E(Xik)

E(Yik)

 ,

ΣXX ΣXY

ΣTXY ΣY Y

) (3.2)

Note that the covariance matrices are sequence-invariant. The expectations under a no carryover

assumption are defined by their individual elements:

E(Yijk) = µ+ πj + τd[i,j] (3.3)

E(Xijk) = ζj (3.4)
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where µ is the overall mean, πj is the effect of period j with
∑
j πj = 0, τd[i,j] is the effect of treatment

d = A,B, .., Z (defined by the period j and sequence i) with
∑
d τd = 0, and ζj represents the mean

of a baseline in period j. For an incomplete block design, the number of treatments exceeds the

number of periods such that Z > p. Note that (3.4) is sequence-invariant, but allows for period-

effects. In the absence of carryover, it may be reasonable to assume that µ+πj = ζj which implies

that E(Yijk −Xijk) = τd[i,j]. However, this restriction is not necessary for our methods.

Our methods largely revolve around using the underlying joint covariance of the baselines and

outcomes. While Equation (3.2) shows the joint covariance of the Xs and Ys in block matrices, it

is more natural to think of the joint covariance structure in terms of the baselines and outcomes

ordered temporally, or in the order in which they are measured. Let the baselines and outcomes

ordered temporally be denoted as Wik = (Xi1k, Yi1k, ..., Xijk, Yijk, ..., Xipk, Yipk)T . Then, from

(3.2), it follows that:

Wik ∼ N
(
E(Wik), V (Wik)

)
(3.5)

where V (Wik) is just a re-ordering of the elements in the sub-matrices defined by (3.2), while

E(Wik) is defined by (3.3) and (3.4).

Next, while our baseline models are developed under an unstructured (UN) covariance assumption,

for simulations and comparison of variance formulas, three plausible covariance structures are con-

sidered: Compound symmetry (CS), Equipredictability (EP), and Autoregressive (1) (AR(1)). These

structures were discussed in detail in Section 2.5.2 for a general uniform crossover design, but can

apply to any setting in which there are repeated measurements (Jemielita, Putt, and Mehrotra,

2016). Notably, while CS and EP were described under a treatment ordered setting in Section

2.5.2, these structures are easily described in the setting where baselines and outcomes are or-

dered temporally. Compound Symmetry assumes a common variance and common correlation

for all measurements; V (Yj) = V (Xj) = σ, corr(Yj , Yj′) = corr(Xj , Xj′) = corr(Yj , Xj′) = ρ

for all j, j′. Equipredictability extends Compound Symmetry, allowing baselines and outcomes

between and within periods to have a separate correlations; corr(Yj , Xj) = ρ1 for all j = j,

corr(Yj , Yj′) = corr(Xj , Xj′) = corr(Yj , Xj′) = ρ2 for all j, j′, and corr(Yj , Xj′) = ρ3 for all j 6=

j′. Autoregressive(1) is a two-parameter covariance structure, in which measurements that more
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distant temporally are less correlated. For the 3 × 2 design under these covariance structures,

V (Wik) = V ((Xi1k, Yi1k, Xi2k, Yi2k)T ) is written as:

ΣCS = σ



1 ρ ρ ρ

1 ρ ρ

1 ρ

1


ΣAR(1) = σ



1 ρ ρ2 ρ3

1 ρ ρ2

1 ρ

1


(3.6)

ΣEP = σ



1 ρ1 ρ2 ρ3

1 ρ3 ρ2

1 ρ1

1


ΣUN =



σ1 σ12 σ13 σ14

σ2 σ23 σ24

σ3 σ34

σ4



We examine the performance of our methods under these covariance structures through 3 × 2

crossover design simulations in Section 6.

Lastly, let aT = (a1, ..., ap) be a p-length vector of constants. Then aTXik =
∑p
j ajXijk is a

linear combination of baselines (LCB). Furthermore, an LCB could also be sequence-specific (aTi ),

discussed in Section 2.3.2, or period-specific (aTj ). Period-specific LCBs are discussed in Section

3.3.1. Regardless, given (3.2), the following conditional distribution is of interest:

Yik|aTXik ∼ N
(
E(Yik)− ΣTXY a(aTΣXXa)−1(aTE(Xik)− aTXik), (3.7)

ΣY Y − ΣTXY a(aTΣXXa)−1aTΣXY

)

In general, LCBs are chosen based on a minimization criteria that is related to the conditional

variance of a desired treatment effect.

3.3. Baseline Models

As discussed in the introduction, two modeling frameworks for baseline utilization are explored. The

first modeling option is a mixed effects model. Under this option, the overall estimate of a treatment

effect is a weighted combination of the within-subject information and the between-subject infor-

mation (Chi, 1991). GLS, with REML to estimate the necessary variance components, is used to

efficiently combine the within-subject and between-subject information. Further, a Kenward-Roger
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degrees of freedom adjustment should be used to obtain valid inference. The second modeling

option for estimation only includes within-subject contrasts and thus OLS can be used. Under each

modeling framework, various baseline strategies are developed. The primary goal is to identify a

baseline utilization method that consistently outperforms common analysis methods, specifically

the change from baseline (CFB) model (3.9).

3.3.1. Mixed Models: Baseline Utilization

1. Mixed Model: No Baselines, Y

Yijk = µ+ τd[i,j] + πj + εijk (3.8)

In this model, no baseline covariate is included and the outcome is the dependent variable.

Notably, the overall estimate of some treatment effect obtained from a mixed effects model

(and thus GLS) can be viewed as a weighted summation of period-specific outcomes. This is

the case for any of the proposed mixed models and is illustrated in Appendix C.1 for the 3× 2

design.

2. Mixed Model: Change from Baseline (CFB), Y −X

(Yijk −Xijk) = µ+ τd[i,j] + πj + εijk (3.9)

The CFB model is frequently used in crossover designs. While it remains a popular and

intuitive model, there is no guarantee that this model will outperform the simpler model without

baselines (Kenward and Roger, 2010; Mehrotra, 2014).

3. Mixed Model: Y|X,X

Yijk = µ+ τd[i,j] + πj + βjXijk + γ(

p∑
j

Xijk) + εijk (3.10)

In this model, period-specific baselines are regresssed against the corresponding period-

specific outcome. The baseline regression parameters (βj ,γ) depend on the joint covariance

of the baselines and outcomes. See Appendix for details and the exact formulas for βj , γ. The

term (
∑p
j Xijk) is added to remove any bias in the estimate of a pairwise treatment effect.
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Kenward and Roger showed that under designs where the overall estimate of a treatment ef-

fect is a combination of between-subject and within-subject information (i.e. incomplete block

designs), fitting a mixed model with period-specific covariates can add bias to the treatment

effect estimates (Kenward and Roger, 2010). For example, consider the 3 × 2 design and

say we fit a model using only within-subject information (sequences AB,BA) and a model

using only between-subject information (sequences BC,CB,AC,CA). In this case, there is

no guarantee that the two model’s baseline regression coefficients are equal and fitting (3.10)

without the summation term implicitly assumes that the between-subject and within-subject

regression coefficients are equivalent. Specifically, fitting (3.10) without the summation term

yields unbiased estimates only when the between-subject and within-subject regression co-

efficients of Xijk are equivalent. By adding the summation term, the between-subject and

within-subject baseline regression coefficients are allowed to differ, thus removing the poten-

tial bias.

4. Mixed Model: Y|Xa?,Xa?

Yijk = µ+ τd[i,j] + πj + βja
T
j?Xik + γ(

p∑
j

aTj?Xik) + εijk (3.11)

where βj and γ depend on the covariance of the outcomes and baselines (Appendix) and:

aTj? = (a?j1, ..., a
?
jp)

T = Argmin
aT

V (Yijk|aTXik) (3.12)

Given (3.7), it follows that:

V (Yijk|aTXik) = V (Yijk)− cov(Yijk,a
TXik)2

V (aTXik)
(3.13)

In general, (3.12) can be solved using an optimization algorithm such a Newton-Raphson

(proc NLP in SAS or optim in R). For the 3× 2 design, the solutions to (3.12) for j = 1, 2, have

analytical solutions under an unstructured covariance structure (3.6):

aT1? =
{
a?11 = σ3σ12 − σ23σ13; a?12 = σ1σ23 − σ13σ12

}
(3.14)

aT2? =
{
a?21 = σ3σ14 − σ13σ34; a?22 = σ1σ34 − σ13σ14

}
(3.15)
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Importantly, regardless of the design, certain covariance parameters must be estimated to

estimate the period-specific LCBs. The intuition behind this model comes from the observa-

tion that the overall estimate of any pairwise treatment difference is a weighted combination of

period-specific outcomes. Thus, the idea here is to reduce the overall variance of some treat-

ment effect estimate by reducing the variance of each individual period-specific conditional

outcome. As in (3.10), the term (
∑p
j aTj?Xik) is added to remove any bias in an estimate of a

pairwise treatment effect.

3.3.2. Within-Subject Contrast Models: Baseline Utilization

The previous subsection dealt with baseline utilization in mixed models. Under a mixed model

framework, the estimate of a treatment effect can be viewed as a weighted summation of period-

specific outcomes. This motivated using period-specific LCBs as covariates. On the other hand,

the within-subject (WS) contrast model approach turns the longitudinal model into a cross-sectional

model where each subject effectively has a single derived outcome. Under this setting, incorporat-

ing baselines in an efficient way is similar to the approach taken in Chapter 2.

For a general incomplete block design, the first step is to find a set of p-length vectors b =

{b1, ...,bi, ...,bs} such that for some constant K:

1

K
E

(
s∑
i

1

ni

ni∑
k

biYik

)
= τA − τB (3.16)

For example, if p = 2 and bi = (1,−1), then biYik = Yi1k−Yi2k. Notably, based on the expectation

of the outcomes (4.2), the contrasts biYik are chosen to eliminate period-effect parameters (πj).

This is straightforward for an incomplete block design that is uniform within period, like the 3 × 2

design. For an incomplete block design that is not uniform within period, the WS contrast model may

not be appropriate. For this work, these designs are not considered. Regardless, to incorporate

baselines, consider an approach which incorporates optimal LCBs (aTi?Xik) for each sequence.

Thus:

aTi? = (a?i1, ..., a
?
ip)

T = Argmin
aT

V (biYik|aTXik) (3.17)

In general, this can be solved through numerical optimization. For the 3× 2 design, there are exact
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analytical solutions. Further, the optimal LCB is the same for sequences with the same within-

subject contrasts. Next, while (3.16) and (3.17) show the fundamental strategy of a WS model, we

illustrate how to implement this approach for the 3× 2 design.

• 3 × 2 Design, WS Model: Given the expectations from (4.2), an estimate of τA − τB can be

wholly obtained through within-subject contrasts. Note that:

E(YAB,1 − YAB,2) = (π1 − π2) + (τA − τB)

E(YBA,1 − YBA,2) = (π1 − π2)− (τA − τB)

E(YBC,1 − YBC,2) = (π1 − π2) + (τB − τC)

E(YCB,1 − YCB,2) = (π1 − π2)− (τB − τC)

E(YAC,1 − YAC,2) = (π1 − π2) + (τA − τC)

E(YCA,1 − YCA,2) = (π1 − π2)− (τA − τC)

Relating this back to our general WS model formulation (3.16), it follows that:

1

4
E

(
s∑
i

1

ni

ni∑
k

biYik

)
=

1

4
E

AB,CB,AC∑
i

1

ni

ni∑
k

(1,−1)Yik −
BA,BC,CA∑

i

1

ni

ni∑
k

(1,−1)Yik


=

1

4
(3(π1 − π2) + 2(τA − τB) + 2(τC − τB) + 2(τA − τC) + 3(π2 − π1)) = τA − τB

Note that only Yi1k − Yi2k contrasts are used, meaning there is a single optimal LCB for all

sequences. Given this, consider the following WS regression model:

Yi1k − Yi2k = (π1 − π2) + τAB ∗ S1,i + τBC ∗ S2,i + τAC ∗ S3,i + βaTXik + εik (3.18)

where τAB = τA − τB , S1,i = 1,−1 for i = AB,BA and zero otherwise, τBC = τB − τC ,

S2,i = 1,−1 for i = BC,CB and zero otherwise, τAC = τA − τC , and S3,i = 1,−1 for

i = AC,CA and zero otherwise. To incorporate the full data to compare treatment A to

treatment B, it follows that: τA − τB = 1
2 (τAB + τAC − τBC). Next, this model can be further

improved by noting that τBC = τAC − τAB . Given this constraint, our model can be re-

parameterized as:

Yi1k − Yi2k = (π1 − π2) + τAB ∗ S1,i + (τAC − τAB) ∗ S2,i + τAC ∗ S3,i + βaTXik + εik

= (π1 − π2) + τAB ∗ (S1,i − S2,i) + τAC ∗ (S2,i + S3,i) + βaTXik + εik (3.19)
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This modification reduces the number of regression parameters and degrees of freedom by

one, thus increasing the overall efficiency of a hypothesis test. SAS code for this model is

given at the end of the Section 3.4. An optimal LCB (aT? Xik) can be found by solving:

aT? = (a?1, a
?
2)T = Argmin

aT
V (Yi1k − Yi2k|aTXik) (3.20)

V (Yi1k − Yi2k|aTXik) = V (Yi1k − Yi2k)− cov(Yi1k − Yi2k,aTXik)2

V (aTXik)
(3.21)

. Equation (3.21) follows directly from (3.7). The analytical solution to (3.20) under an un-

structured covariance (3.6) is:

aT? =
{
a?1 = σ3(σ12 − σ14)− σ13(σ23 − σ34); a?2 = σ1(σ23 − σ34)− σ13(σ12 − σ14)

}

• WS Baseline Models

The WS regression model estimates a pairwise treatment effect using only within-subject con-

trasts. Here, each subject has a single outcome and OLS can be used for estimation. Thus,

efficient baseline utilization is identical to the uniform design (Jemielita, Putt, and Mehrotra,

2016). Recall that biYik refers to the within-subject contrast used in sequence i. Consider

the following baseline models:

1. WS Model: No Baselines; This model does not include a baseline covariate (aT? Xik =

0). Under a WS framework, this model is optimal under CS (Jemielita, Putt, and Mehro-

tra, 2016).

2. WS Model: biXik; Let aT? Xik = biXik such that the LCB used corresponds to the within-

subject contrast. For the 3 × 2 design, since the outcome contrasts are between period

1 and period 2, aT? Xik = Xi1k − Xi2k. This follows the recommendation of previous

research to use the difference between the baselines at period 1 and period 2 as a

covariate for a 2 × 2 crossover design (Jemielita, Putt, and Mehrotra, 2016; Mehrotra,

2014; Metcalfe, 2010).

3. WS Model: LCB; Estimate sequence specific optimal LCBs (aTi?Xik) where aTi? (3.17)

is solved under an unstructured covariance structure. For the 3 × 2 design, there is
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a single optimal LCB (aT? Xik). We previously found little improvement in efficiency in

2-period designs by estimating the optimal LCB (Jemielita, Putt, and Mehrotra, 2016).

Our simulations confirmed this observation for the 3 × 2 design and this model is not

considered further.

• WS Model: Adaptive

Under the WS model framework, there are certain conditions where it is not efficient to

include baselines (or LCBs) as covariates. In general, it is inefficient to include LCBs if

cov(biYik,aTi Xik) = 0 for all i and aTi . For the 3 × 2 design, if cov(Yi1k − Yi2k,aTXik) = 0

for all aT , then including an LCB will not decrease the variance of a treatment effect estimate

(3.21). As an example, this occurs when the underlying covariance structure is CS. This

was discussed by Mehrotra and Yan for the 2 × 2 design (Mehrotra, 2014; Yan, 2012) and in

Section 2.5.2 for the general uniform design. Indeed, when the WS model includes an LCB

covariate and the true covariance is CS, the variance is not reduced and the hypothesis test

for a treatment effect uses up an extra unnecessary degree of freedom. For small sample

sizes, compared to a model without a baseline covariate, this results in reduced power. Sub-

sequently, as in Section 2.5.3, information criteria are used to guide an adaptive procedure.

Our procedure is as follows:

1. Fit four joint models of the temporally ordered baselines and outcomes (Xi1k, Yi1k,...,

Xipk, Yipk)T , where the assumed underlying covariance structure is ΣCS , ΣEP , ΣAR,

or ΣUN (3.6). All models use a saturated means model for the combined vector of

temporally ordered measurements.

2. For each model, estimate the AICC, a small-sample corrected version of the AIC (Hur-

vich and Tsai, 1989).

3. If the AICC favors ΣCS , do not include a baseline covariate in the WS Model (aTXik = 0).

Else, use WS Model: biXik (X1 −X2 in the 3× 2 design).

All considered methods are summarized below in Table 3.1. Since our real data example and

simulations are for the 3 × 2 design, the methods summary table is specifically for the 3 × 2 de-

sign. Additional insights on the estimation are also included, which are described in Section 3.4.
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Importantly, for the mixed model with period-specific LCBs (Y|Xa?,Xa?), unstructured covariance

estimates obtained from Step (1) in the adaptive procedure are used to construct our period-specific

LCBs.

Table 3.1: Baseline Utilization Methods: Incomplete Block Design
Framework Method Covariate(s) Estimation Covariance

Mixed No Baselines None GLS, REML, KR DF ΣUN
Mixed CFB None GLS, REML, KR DF ΣUN
Mixed Y|X,X Period-specific: Xijk,

∑
j Xijk GLS, REML, KR DF ΣUN

Mixed Y|Xa?,Xa? Period-Specific LCBs: aTj?Xik,
∑
j a

T
j?Xik GLS, REML, KR DF ΣUN

WS No Baselines None OLS, exact test Common σ2

WS X1 −X2 Single LCB: Xi1k −Xi2k OLS, exact test Common σ2

WS Adaptive IF AICC favors CS, No Baselines. OLS, exact test Common σ2

Else X1 −X2.

Notes: WS: Within-Subject. See Section 3.3 for detailed explanation on models. Estimation refers to
estimation methods used (see Section 3.4). KR DF=Kenward Roger Degrees of freedom; Covariance
refers to what is the assumed covariance structure during estimation.

3.3.3. 3× 2 Design: Comparison of Models

Briefly, variance formulas for the treatment effect estimate are compared for the proposed models

(Table 3.1). Derivations of these variance formulas can be found in the Appendix C. For a balanced

design (n = ni for all i), the variance of the estimated treatment effect for any of the mixed models

can be placed in the following form:

V ( ̂τA − τB)M =
1

n

V (Y ?i1k)V (Y ?i2k)− cov(Y ?i1k, Y
?
i2k)2

V (Y ?i1k) + V (Y ?i2k) + cov(Y ?i1k, Y
?
i2k)

(3.22)

where Y ?ijk depends on the chosen mixed model. For the No Baselines mixed model, Y ?ijk = Yijk; for

CFB, Y ?ijk = Yijk −Xijk; for the period-specific LCB model, Y ?ijk = Yijk − βj(aj?Xik)− γ(a1?Xik +

a2?Xik). Note that Y|X,X is corresponds to a period-specific LCB model with a1? = (1, 0) and

a2? = (0, 1). For any of the WS models, the variance of interest is:

V ( ̂τA − τB)WS =
1

3n

(
V (Yi1k − Yi2k)− cov(Yi1k − Yi2k,aTXik)2

V (aTXik)

)
(3.23)

For the WS No Baselines Model, aTXik = 0 and the variance reduces to 1
3nV (Yi1k − Vi2k). For the

WS X1−X2 model, substitute aTXik = Xi1k−Xi2k. Note that the variance of WS X1−X2 is never

lower than the variance of WS No Baselines.

Under the plausible covariance structures CS, EP, and AR(1), these variance formulas can more
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readily be compared. See the Appendix for the exact formulas and details. Under CS, the No

Baselines mixed model always has a smaller variance than CFB or any of the WS models. Further,

if the CS correlation (ρ) is greater than zero, which is a reasonable assumption, Y|X,X has a

smaller variance than the No Baselines Mixed model. Under AR(1), the models can be directly

compared by calculating ratios of variances for a range of AR(1) correlation values (ρ). Again,

assume that ρ > 0. Here, the No Baselines Mixed model only has smaller variance than CFB

for roughly ρ ≤ 0.73 and a smaller variance than the WS X1 − X2 model for roughly ρ ≤ 0.67.

Further, Y|X,X consistently has a smaller variance than the No Baselines/CFB mixed models and

WS X1 − X2. Under EP, directly comparing all models is more difficult given that there are three

different correlation parameters. However, a simple grid search across all positive values (0.01 to

0.99 by 0.01) of the EP correlation parameters (ρ1, ρ2, ρ3) gives us some insight. Across the range

of parameters, Y|X,X had a smaller variance than CFB about 90% of the time and a smaller

variance than the No Baselines mixed model or the WS X1 −X2 model about 83% of the time.

Lastly, the two mixed models with baseline covariates are compared. In practice, the period-specific

LCB coefficients (aj?) must be estimated using certain covariance parameters (3.14). Under CS,

a1? = {σ2(ρ−ρ2), σ2(ρ−ρ2)} = {σ2(ρ−ρ2), σ2(ρ−ρ2)} = a2?, meaning all optimal LCB coefficients

are equal. A period-specific optimal LCB is then Xi1k + Xi2k. This actually suggests using Xi1k +

Xi2k as an overall covariate (Equation (3.10) without βjXijk). For a CS structure, since βj = 0 for

Y|X,X (See Appendix C), these models are equivalent. Under EP, a1? = {σ2(ρ2 − ρ1ρ3), σ2(ρ3 −

ρ1ρ2)} and a2? = {σ2(ρ3 − ρ1ρ2), σ2(ρ2 − ρ1ρ3)}. However, based on a grid search across all EP

correlation parameters, Y|X,X performs similarly to Y|Xa?,Xa?. Under AR(1), a1? = {σ2(ρ −

ρ3), σ2(ρ − ρ3)} and a2? = {0, σ2(ρ − ρ5)}. In this case, Y|Xa?,Xa? offers additional gains in

efficiency relative to Y|X,X. This is similar to Chapter 2 (uniform designs), which suggested that

LCBs were especially effective in AR(1) type structures. Simulation results further back up these

overall comments on model efficiency.
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3.4. Estimation

The hypotheses of interest are:

H0 : τA − τB = 0

HA : τA − τB 6= 0

For both the mixed models and WS contrast models, assume that the LCBs are centered at zero.

In practice, this is done by subtracting the sample mean out of the LCB(s).

3.4.1. Mixed Models

For any of the mixed models, estimation is done through generalized least squares (GLS) and

restricted maximum likelihood (REML). For estimation, we allow the outcomes or conditional out-

comes to have an unstructured covariance structure. This is a robust choice given that misspec-

ification of a covariance structure can lead to type I error inflation, regardless of the sample size

(Gurka, Edwards, and Muller, 2011). Next, denote the point estimates for τA and τB as η̂ = (τ̂A, τ̂B)

with an estimated covariance matrix V (η̂). Next, let LT1 = (1,−1) such that E(LT1 η̂) = τA− τB . Our

test statistic is:

t1 =
LT1 η̂√

LT1 V (η̂)L1

Notably, by using GLS where the variance components are estimated by REML, this test statistic

only approximately follows a t-distribution (Mehrotra, 2014). Thus, the corresponding t-test is only

exact asymptotically and the degrees of freedom for a hypothesis test must be approximated. The

usual t-test degrees of freedom (N − p − 1) is not recommended. For small sample sizes, it is

better to use the Kenward-Roger (KR) degrees of freedom adjustment (DDFM=KR in SAS PROC

MIXED). This approach adjusts the standard error of the treatment effect estimate by capturing the

uncertainty in the estimated covariance structure. Kenward and Roger showed that this delivers

a more accurate t-test in small samples (Kenward and Roger, 1997). Finally, we illustrate how

to model (3.11), or the period-specific LCB model. Note that LCBprd refers to the period-specific

LCBs, while LCBsum refers to the sum of the period-specific LCBs. Data is assumed to be in long

format with a row for each period-specific outcome.
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PROC MIXED DATA=long;

CLASSES seq prd trt subjid;

MODEL y = trt prd LCBprd LCBprd*prd LCBsum / ddfm=KR;

REPEATED prd/SUBJECT=subjid(seq) TYPE=UN;

ESTIMATE ’Trt A vs Trt B’ trt 1 -1 0 LCBprd 0 LCBsum 0; RUN;

3.4.2. WS Models

For the WS baseline models, estimation is done through OLS. For ease of notation, consider the

3 × 2 design. Using the re-parameterized WS model (3.19), denote the estimated treatment effect

as ̂τA − τB with a corresponding estimated variance of V̂ ( ̂τA − τB). Then, our test statistic is:

t2 =
̂τA − τB√

V̂ ( ̂τA − τB)

This test statistic is compared to a t-distribution with (
∑s
i=1 ni) − 4 DF for a model that includes

a baseline covariate and (
∑s
i=1 ni) − 3 DF for a model without a baseline covariate. This test is

exact under the assumption of normality. This approach is valid for the general incomplete block

design, although the number of nuisance parameters and re-parameterized treatment parameters

will vary by design. Lastly, we show how to fit a WS Baseline Model (3.19) for the 3 × 2 design,

where LCB refers to the baseline covariate. Data is assumed to be in wide format with one outcome

(Yi1k − Yi2k) per subject.

/*** Generate Variables based on Re-Parameterized WS Baseline Model: Data in Wide Format***/

data wide; set wide;

if seq IN (’ab’,’cb’) then G1mG2=1; else if seq IN (’ba’,’bc’) then G1mG2=-1; else G1mG2=0;

if seq IN (’bc’,’ac’) then G2pG3=0; else if seq IN (’cb’,’ca’) then G2pG3=-1; else G2pG3=0;

run;

proc mixed data=wide;

class subjid;

MODEL ydiff12 = G1mG2 G2pG3 LCB;

ESTIMATE ’A vs B’ G1mG2 1 / CL; run;
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3.5. Application to a Clinical Trial

In this section, we apply our methods to a real 3 × 2 data set. The baselines and outcomes are

measures of a cardiac safety biomarker. Three treatments were compared: Drug 1 (A), Drug 2 (B),

and a placebo (C). These treatments were assigned to the six possible sequences (AB, BA, CA,

CB, AC, BC) with five subjects per sequence (N=30 total). The main comparison of interest was A

v C. A between-treatment mean difference of 4 units or higher is deemed clinically interesting for

this biomarker.

Table 3.2 below shows the treatment effect estimates, standard errors, and p-values for all con-

sidered methods (Table 3.1). For this data set, the AICC was lowest under the DCS covariance

structure. Thus, the WS adaptive method uses X1 − X2 as a covariate. Notably, the mixed mod-

els with baseline covariates (Y|X,X; Y|Xa?,Xa?) performed similarly to WS X1 − X2. Further,

these baseline models all noticeably outperformed CFB. Overall, the mixed models with baseline

covariates and WS X1 −X2 yielded the smallest standard errors and p-values.

Table 3.2: Real Data Example: 3× 2 Crossover Design

Framework Method Estimate SE p-value
Mixed No Baselines 4.51 2.14 0.045
Mixed CFB 4.85 2.88 0.100
Mixed Y|X,X 4.67 1.92 0.021
Mixed Y|Xa?,Xa? 4.69 1.92 0.021
WS No Baselines 4.53 2.13 0.043
WS X1 −X2 4.80 1.91 0.019
WS Adaptive 4.80 1.91 0.019

Notes: The AICC did not favor Compound Symmetry and WS Adaptive uses WS X1 −X2. All methods are
described in detail in Section 3.3 and in Table 3.1.

3.6. Simulations

A 3× 2 design simulation study was implemented to compare the proposed baseline methods. For

this study, we are particularly interested in: (1) Is the Type I error rate maintained at the nominal

level for the proposed methods?; (2) How do the baseline mixed models perform with and without

a Kenward-Roger degrees of freedom adjustment? (3) Do the WS models maintain the type I error

at small sample sizes? (4) How well do the proposed methods perform against the standard CFB

model (Table 3.1)?; (5) Is there an overall best method?
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We simulated 20,000 trials for a variety of scenarios. The scenarios were defined by the hypotheses

(null, τA − τB = 0; alternative τA − τB 6= 0), the underlying covariance structure Σ, and sample

sizes. Sample sizes are balanced across the sequences. For the hypothesis tests, the nominal

type I error rate was set at 5%. The temporally ordered baseline and outcome response vector for

each subject within each simulated crossover trial were generated from a multivariate normal with

a sequence invariant covariance. Covariances CS, EP, and AR(1) (3.6) were explored, where a

common variance of σ = 1 was assumed for all structures. Under CS, ρ1 = 0.6; under EP, ρ1 = 0.6,

ρ2 = 0.7, ρ3 = 0.5; under AR(1), ρ = 0.73. These are the same covariance settings as the 2 × 2

design simulations (Section 2.7).

The response vector (X1, Y1, X2, Y2) was generated with mean (0, 6, 1, 7) under the null. Under the

alternative, the response vector was generated with mean (0, 6 + τd[i,1], 1, 7 + τd[i,2]). For example,

for sequence AC, the mean vector was (0, 6 + τA, 1, 7 + τC). Furthermore, for each scenario,

τA− τB = τC − τB was chosen such that the mixed model with no baselines approach yielded 80%

power (see Appendix B.2). For all methods explored, the estimates of τA − τB were approximately

unbiased (results not shown). Of particular interest was the power and type I error rate for the

proposed baseline methods. Type I error results and Powerresults are shown in Tables 3.3 and 3.4

respectively. Lastly, all mixed models use a KR DF adjustment unless otherwise stated.

3.6.1. Simulation Results

A number of methods exhibit type I error inflation (Table 3.3). In particular, for all sample sizes

and covariance structures, hypothesis tests that did not use a KR DF adjustment showed type I

error inflation. In addition, at N=18, the smallest sample size considered, even with the KR adjust-

ment the mixed models all had inflated type I error. The mixed model with period-specific LCBs

(Y|Xa?,Xa?, Table 1) also exhibited type I error inflation at larger sample sizes. As expected, the

WS No Baselines and X1 −X2 models maintained the nominal type I error rate. The WS Adaptive

method, which chooses between including X1−X2 as a covariate or not adjusting for any baseline

covariate, showed signs of type I error inflation at N=18 under CS and at N=18,24 under EP.

Table 3.4 evaluates the power of each considered method. Compared to the benchmark CFB mixed

model, the mixed models with baseline covariates (Y|X,X; Y|Xa?,Xa?) and the WS baseline

models were consistently more powerful. Overall, purely in terms of power, the best performers
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were the mixed models with baselines (Y|X,X; Y|Xa?,Xa?). While these two methods yielded

similar power under CS and EP, Y|Xa?,Xa? does slightly better under AR(1), validating theoretical

findings in Section 3.3.3. The WS X1 −X2 model uniformly exhibited better power than CFB and

WS No Baselines across all scenarios and did especially well under the EP covariance structure.

Under CS, the WS No Baselines model offers additional gains relative to WS X1−X2. WS Adaptive

captures this added efficiency under CS while performing approximately as well as WS X1 − X2

under the other covariance structures.

3.6.2. Simulation Results Summary

Overall, the uniformly best method was the simple Y|X,X mixed model. This method was con-

sistently the most powerful while maintaining the type I error rate for N > 18. The more complex

period-specific LCB mixed model (Y|Xa?,Xa?) suffered from type I error inflation for most of the

considered sample sizes. However, at larger sample sizes, the period-specific LCB mixed model

maintained the nominal type I error rate and was approximately as powerful as the simpler Y|X,X

mixed model. Under AR(1), the period-specific LCB mixed model was slightly more powerful than

Y|X,X. For larger sample size incomplete block designs, the period-specific LCB model is an

attractive data-driven option.

These simulations clearly showed the importance of a KR DF adjustment for mixed models. In

all considered scenarios, mixed models without a KR DF adjustment demonstrated signs of type I

error inflation. This was true even at N=60 (10 subjects per sequence). Further, all mixed models

with a KR adjustment still had type I error inflation at N=18. On the other hand, the WS models

had valid type I error rates. This is because estimation is through OLS and there is no need to

estimate a covariance matrix. In particular, the WS X1 −X2 model never had type I error inflation

and consistently was more powerful than the benchmark CFB. In a small sample size setting, the

WS X1 −X2 model appears to be more appropriate than the baseline mixed models. Further, if a

KR DF adjustment is not available due to software limitations, a mixed model approach should be

avoided. In this case, the WS X1 −X2 model is preferred.
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Table 3.3: 3× 2 Simulations: Under the Null Hypothesis, Type I Error

Truth Estimation Method N=18 N=24 N=30 N=36 N=60
ΣCS Mixed No Baselines [5.38] 5.23 4.90 4.91 4.67
ΣCS Mixed, No KR No Baselines [[7.14]] [[6.51]] [[5.98]] [[5.79]] 5.04
ΣCS Mixed CFB [[5.77]] 5.28 5.26 5.17 5.08
ΣCS Mixed, No KR CFB [[7.85]] [[6.57]] [[6.21]] [[6.03]] [5.46]
ΣCS Mixed Y|X,X [[5.80]] 5.27 5.12 5.11 4.96
ΣCS Mixed, No KR Y|X,X [[8.32]] [[6.85]] [[6.27]] [[6.06]] [[5.50]]
ΣCS Mixed Y|Xa?,Xa? [[6.32]] [5.43] [5.36] 5.24 5.08
ΣCS Mixed, No KR Y|Xa?,Xa? [[8.61]] [[6.97]] [[6.54]] [[6.22]] [[5.51]]
ΣCS WS No Baselines 5.05 4.80 4.73 4.88 4.80
ΣCS WS X1 −X2 5.09 4.88 4.76 4.84 4.79
ΣCS WS Adaptive [5.39] 5.09 4.99 5.00 4.88
ΣEP Mixed No Baselines [5.46] 5.26 5.13 5.07 5.08
ΣEP Mixed, No KR No Baselines [[7.26]] [[6.42]] [[6.16]] [[5.88]] [[5.49]]
ΣEP Mixed CFB [[5.58]] 5.11 5.03 5.14 5.01
ΣEP Mixed, No KR CFB [[7.37]] [[6.50]] [[6.09]] [[5.97]] [[5.51]]
ΣEP Mixed Y|X,X [[5.88]] 5.30 5.11 5.21 5.00
ΣEP Mixed, No KR Y|X,X [[8.07]] [[6.62]] [[6.21]] [[6.09]] [5.41]
ΣEP Mixed Y|Xa?,Xa? [[6.28]] [5.41] 5.27 [5.33] 5.01
ΣEP Mixed, No KR Y|Xa?,Xa? [[8.47]] [[6.83]] [[6.36]] [[6.18]] [[5.46]]
ΣEP WS No Baselines 4.86 4.85 4.87 5.03 5.07
ΣEP WS X1 −X2 4.99 4.93 4.77 4.83 4.80
ΣEP WS Adaptive [[5.71]] [5.36] 5.05 5.04 4.83
ΣAR Mixed No Baselines [[5.61]] 5.22 5.25 5.07 5.20
ΣAR Mixed, No KR No Baselines [[7.34]] [[6.37]] [[6.11]] [[5.75]] [[5.62]]
ΣAR Mixed CFB [[5.88]] 5.13 5.21 5.22 5.01
ΣAR Mixed, No KR CFB [[7.88]] [[6.58]] [[6.32]] [[5.97]] [[5.58]]
ΣAR Mixed Y|X,X [[5.82]] 5.23 5.04 4.96 4.91
ΣAR Mixed, No KR Y|X,X [[8.66]] [[7.19]] [[6.52]] [[6.08]] [[5.58]]
ΣAR Mixed Y|Xa?,Xa? [[6.66]] [[5.74]] [5.38] 5.25 5.23
ΣAR Mixed, No KR Y|Xa?,Xa? [[9.00]] [[7.21]] [[6.83]] [[6.08]] [[5.68]]
ΣAR WS No Baselines 4.83 4.91 4.76 5.01 5.16
ΣAR WS X1 −X2 4.95 4.90 4.73 5.09 4.98
ΣAR WS Adaptive 5.11 5.00 4.79 5.12 4.97

Notes: Values (type I error %) are shown. Entries are in brackets/double brackets if the type I error is two/three
SE’s above 5% (> 5.31%,> 5.46%) based on 20,000 simulations. No Baselines (Mixed or WS) uses no baseline
covariate; CFB uses change scores with no baseline covariate; Y|X,X and Y|Xa? respectively use period-specific
baselines and period-specific LCBs as covariates; WS X1 −X2 includes X1 −X2 as a covariate in a mixed model.
WS Adaptive chooses between WS No Baselines and WS X1 − X2 based on AICC. All methods are summarized
in Table 3.1. CS = Compound Symmetry; EP = Equipredictability; AR = Auto-regressive(1). N refers to total sample
size.

3.7. Discussion

For the incomplete block crossover design, we explored a number of approaches for using outcome

and baseline measurements in hypothesis testing of the main treatment effect. Baseline utilization
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Table 3.4: 3× 2 Simulations: Under the Alternative Hypothesis, Power

Truth Estimation Method N=18 N=24 N=30 N=36 N=60
ΣCS Mixed No Baselines [80.1] 80.4 80.2 79.9 79.9
ΣCS Mixed CFB [[59.9]] 59.7 59.6 58.7 58.9
ΣCS Mixed Y|X,X [[78.2]] 80.5 81.5 81.4 82.3
ΣCS Mixed Y|Xa?,Xa? [[78.3]] [80.5] [81.4] 81.3 82.3
ΣCS WS No Baselines 79.3 78.8 78.5 77.6 77.5
ΣCS WS X1 −X2 76 76.6 76.9 76.3 76.7
ΣCS WS Adaptive [78.8] 78.4 78.3 77.5 77.4
ΣEP Mixed No Baselines [80.1] 80.3 80.4 79.8 80
ΣEP Mixed CFB [[83.1]] 83.8 83.5 82.6 82.9
ΣEP Mixed Y|X,X [[86.9]] 88.6 89.7 89.5 90.4
ΣEP Mixed Y|Xa?,Xa? [[86.9]] [88.7] 89.6 [89.6] 90.5
ΣEP WS No Baselines 79.5 79 78.9 77.8 77.6
ΣEP WS X1 −X2 86.9 87.4 87.8 87.2 87.5
ΣEP WS Adaptive [[86.3]] [86.8] 87.4 86.8 87.5
ΣAR Mixed No Baselines [[80.3]] 80.1 80.3 80.1 79.7
ΣAR Mixed CFB [[80.5]] 80.3 80.8 80.4 80
ΣAR Mixed Y|X,X [[86.8]] 88.5 89.9 90 90.4
ΣAR Mixed Y|Xa?,Xa? [[89.8]] [[91.3]] [92] 92.1 92.3
ΣAR WS No Baselines 78.9 77.9 77.9 77.4 76.4
ΣAR WS X1 −X2 81.2 81.4 81.7 81.7 81.5
ΣAR WS Adaptive 81.4 81.4 81.8 81.7 81.5

Note: Values (Power %) are shown in bold if method yields the highest or second highest power in that sample
size/covariance structure combination without type I error inflation. Entries are in brackets/double brackets if under
the same scenario, but under the null hypothesis, the type I error is two/three SE’s above 5% (> 5.31%,> 5.46%)
based on 20,000 simulations. No Baselines (Mixed or WS) uses no baseline covariate; CFB uses change scores with
no baseline covariate; Y|X,X and Y|Xa? respectively use period-specific baselines and period-specific LCBs as
covariates; WS X1 −X2 includes X1 −X2 as a covariate in a mixed model. WS Adaptive chooses between WS No
Baselines and WS X1 −X2 based on AICC. All methods are summarized in Table 3.1. CS = Compound Symmetry;
EP = Equipredictability; AR = Auto-regressive(1). N refers to total sample size.

was examined for mixed effects models and for within-subject (WS) contrast only fixed effects mod-

els. In a mixed model, the overall estimate of a treatment effect is obtained from a weighted sum

of within-subject and between-subject information. In the within-subject contrast models, the mixed

model is re-parameterized and only within-subject information is used. Consequently, the form

of a treatment effect estimate differs between the two modeling frameworks. Thus, our baseline

utilization methods also differed depending on the underlying modeling approach.

For both frameworks, data-driven models were developed that took advantage of the joint covari-

ance structure of the baselines and outcomes. For the mixed model framework, we developed a

period-specific LCB model. The overall estimate of a treatment effect in a mixed model is a summa-

tion of period-specific outcomes. Consequently, the period-specific LCBs minimized the conditional
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variance of the period-specific outcomes. Based on simulation results, this period-specific LCB

model yielded similar power to the simpler Y|X,X mixed model but with increased type I error

inflation. However, the period-specific LCB model did perform as well or better than the Y|X,X

mixed model at large sample sizes. In particular, the period-specific LCB model did better under an

AR(1) structure, reflecting the fact that estimated LCBs are especially useful for temporally related

covariance structures (Jemielita, Putt, and Mehrotra, 2016).

For the WS models, two data-driven methods were discussed. Although not shown in the data

example or simulations, the WS LCB model finds the LCB that minimizes the conditional variance

corresponding to the WS model treatment effect estimate. While theoretically appealing, this ap-

proach offers little for a 2-period design and is not recommended. On the other hand, the WS

Adaptive method used information criteria to guide the choice of baseline covariates. While this

method did as well or better than the WS X1 − X2 model, the nominal type I error rate was not

always maintained.

The mixed model with estimated period-specific LCBs failed to consistently maintain the nominal

type I error rate across a number of sample sizes and covariance structures. This is primarily due to

the fact that our LCB is estimated and then included in a regression model as if it is a fixed covariate.

Essentially, the estimation of the LCB is not accounted for during inference. This typically resulted

in a deflated standard error. One way to obtain valid inference is to use permutation or bootstrap

resampling. However, at least for the 3 × 2 design, this isn’t worth the effort as simpler methods

yielded similar power gains but without the inflated type I error.

A large focus of this paper was comparing the mixed model and the within-subject (WS) model.

While the mixed models with baseline covariates were more efficient than the WS baseline models,

there are some theoretical advantages to using the WS model. First, while this point is minor, an

OLS model yields exact estimates. The mixed model, fit with GLS and REML, yields approximate

estimates since numerical optimization is required. Second, under a mixed model, hypothesis

tests are only exact asymptotically, even if the data was truly normal. In contrast, the hypothesis

tests for the WS models are exact under the assumption of normality. Moreover, for randomized

clinical trials, Judkins and Porter showed that under the null hypothesis and a wide range of non-

normal distributions, OLS models provide valid inference and control the type I error (Judkins and

Porter, 2015). Lastly, given that the hypothesis tests are only exact asymptotically for the mixed
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models, a Kenward-Roger degree of freedom adjustment is required (Kenward and Roger, 1997).

This inflates the standard error of a treatment effect estimate to account for the uncertainty in the

estimated covariance structure. This in itself reduces the efficiency of the treatment effect estimate.

For the WS models, no such adjustment is needed.

The WS baseline models can be practical alternatives to the mixed models. First, WS baseline

models may be preferable for small sample sizes. In our simulations, the mixed models with a KR

DF adjustment all suffered type I error inflation at the smallest sample size (N=18, 3 per sequence).

Notably, this result matches up to previous research. Specifically, Chen and Wei showed that for

the 3 × 3 and 4× design, a no baselines mixed model with a KR DF adjustment exhibited type I

error for roughly N < 24 (Chen and Wei, 2003). In contrast, the WS X1 − X2 model consistently

maintained the nominal type I error rate. Second, WS baseline models should be used if a KR

DF adjustment is not available. Without a KR DF adjustment, the mixed models exhibited type I

error inflation across all simulation scenarios. Overall, the WS X1 − X2 model should be used in

place of the baseline mixed models if sample size is a concern or if a KR DF adjustment cannot be

implemented.

Overall, we have examined and proposed a number of baseline utilization methods for an inom-

plete block crossover design. While various data driven approaches were explored for the 3 × 2

design, the mixed model where period-specific outcomes are regressed against their respective

period-specific baselines (Y|X,X) proved to be the uniformly best method. This method largely

outperformed the commonly used change from baseline mixed models. At larger sample sizes, the

more complex period-specific LCB mixed model could instead be used. For smaller sample sizes,

a mixed model approach may not be appropriate. Even with a Kenward-Roger degrees of freedom

adjustment, a mixed model approach will likely inflate the type I error. Additionally, if a Kenward-

Roger degrees of freedom adjustment is not available, a WS model should also be used. In either

case, the WS X1 −X2 model is an attractive and easy to implement alternative.
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CHAPTER 4

EFFICIENT BASELINE UTILIZATION IN CROSSOVER DESIGNS USING BOTH

PARAMETRIC AND NON-PARAMETRIC REGRESSIONS

4.1. Motivation and Literature Review

For normally distributed data, including baseline measurements in an OLS model can substantially

improve the efficiency of the estimated treatment effect. However, departures from normality can

affect both the validity and the efficiency of OLS (Hettmansperger and Mckean, 2010; Huber, 1973).

Since OLS models minimize a quadratic function, OLS estimates can be overly sensitive to extreme

values. In this setting, OLS may not be the most efficient modeling approach and a robust or

nonparametric alternative may be preferred. Thus, a primary aim of this paper is to develop the

framework for efficient baseline utilization under a robust or nonparametric setting.

For crossover designs and particularly the AB/BA design, a variety of rank-based nonparametric

models without baseline adjustment have been discussed in the literature. For a two-treatment

design, Koch developed the framework for tests of treatment effects, period effects, and carryover

effects based on the Wilcoxon rank sum test (Koch, 1972). Under the null hypothesis, the dis-

tribution of the Wilcoxon rank sum test is distribution-free or nonparametric (Hettmansperger and

Mckean, 2010). For designs with more than two treatments, such as the 3 × 3 design, Ohrvik pro-

posed a rank-based statistic based on aligned outcomes (Ohrvik, 1998). Aligned outcomes are

obtained by substracting period effect estimates from each period-specific outcome. This approach

is equivalent to the Wilcoxon rank sum test for the 2 × 2 design and is powerful across a range of

distributions (Ohrvik, 1998; Putt and Chinchilli, 2004). For the 3 × 3 design, Bellavance and Tardif

proposed a rank-based statistic based on transforming the analysis of the 3×3 design into one of a

randomized block design (Bellavance and Tardif, 1995). This was also shown to be efficient across

a range of distributions. Relative to the Ohvrik’s method, this approach was shown to be especially

powerful in situations where carryover was present, although less powerful for small carryover ef-

fects or no carryover (Correa and Bellavance, 2001). Relative to OLS based estimation, asymptotic

theory indicates that rank-based tests show slight losses in efficiency under a normal distribution

but are more efficient for non-normal distributions (Bellavance and Tardif, 1995; Hettmansperger
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and Mckean, 2010; Ohrvik, 1998; Putt and Chinchilli, 2004).

There has been limited work on the use of baseline measurements with rank-based approaches.

Baseline utilization through rank-based statistics has also been discussed for the 2 × 2 design. In

their overview of nonparametric estimation for crossover designs, Tudor and Koch mention sev-

eral approaches for baseline adjustment (Tudor and Koch, 1994). For this work, the focus was on

baseline methods for hypothesis tests related to carryover effects. With the goal of increasing effi-

ciency, Tudor and Koch suggested either using change scores (outcome-baseline differences) in a

Wilcoxon rank sum test or using nonparametric covariance adjustment. Nonparametric covariance

adjustment first regresses the outcomes against the baselines while ignoring sequence assign-

ment. The estimated residuals are then used in a rank-based statistic, such as the Wilcoxon rank

sum test. This approach depends both on the initial regression model as well as the chosen base-

line covariate(s). While Tudor and Koch did not explicitly recommend a specific baseline covariate,

they suggested obtaining the residuals by regressing the ranks of outcomes against the ranks of

the baseline covariate (Tudor and Koch, 1994). This is a robust option and is called Rank analysis

of covariance (ANCOVA) (Lavange and Koch, 2006; Quade, 1967). Similarly, Tsai and Patel pro-

posed estimating the residuals by regressing each outcome against their respective period-specific

baseline in a robust regression model (Tsai and Patel, 1996). In general, previous work focused on

the 2 × 2 design and generally involves a two-step approach where the variability of the outcomes

is reduced, either by regression or substracting the baseline, and then the adjusted outcomes are

used in a Wilcoxon rank sum test.

Our earlier work suggests these methods might be improved in two ways. First, using mixed ef-

fects models or OLS, we observed that using linear combinations of baselines (LCBs) can be a

powerful strategy in both uniform and incomplete block designs. We propose using R-estimation

to directly estimate treatment effects while simultaneously adjusting for baselines. R-estimation

is a robust nonparametric regression approach in which regression parameters are estimated by

minimizing the Jaeckel dispersion function (Hettmansperger and Mckean, 2010). This function is

based on ranks and some standardized score function (Jaeckel, 1972; Jureckova, 1971). Impor-

tantly, the score function can be adjusted to better fit certain distributions of data. Relative to OLS

estimation, choosing the Wilcoxon score function yields minor losses in efficiency under normality

but increased efficiency for other distributions (Hettmansperger and Mckean, 2010). Wilcoxon rank
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sum tests, which are utilized in the two-step nonparametric baseline adjustment approaches (Tsai

and Patel, 1996; Tudor and Koch, 1994), have similar properties. Efficient baseline utilization is

straightforward in R-estimation. As we will show, treatment effects and the optimal LCB can be es-

timated simultaneously within the context of a regression model or loss function. For the two-step

approaches, it is less clear as how to efficiently incorporate LCBs. Finally, while previous non-

parametric baseline research focused on the AB/BA design, R-estimation models offer a unified

nonparametric baseline framework for a general crossover designs.

The primary aim of this chapter is to efficiently incorporate linear combinations of baselines (LCBs)

into the analysis of crossover designs under a general regression model or loss function. While this

is framed for a general loss function, only OLS and R-estimation are considered. An adaptive model

selection based procedure is also proposed. In general, among a set of OLS and R-estimation

baseline models, the adaptive procedure selects the best fitting model. This is an extension of pre-

vious research which selected among a set of OLS baseline models (Jemielita, Putt, and Mehrotra,

2016). Overall, this work will show the advantage of R-estimation baseline models relative to pre-

viously recommended nonparametric baseline adjusted and unadjusted models. Further, we will

demonstrate that a data-driven procedure which selects among a set of baseline models fit under

OLS and R-estimation yields sizable gains in efficiency under a variety of covariance structures and

distributions.

The model and notation for a general crossover design is defined in Section 4.2. Efficient baseline

utilization under a general loss function is then discussed. Section 4.3 covers estimation under OLS

and R-Estimation. Section 4.4 discusses optimal utilization of certain LCB covariate in a general

setting. Section 4.5 discusses the adaptive model selection procedure and how to obtain valid

inference through nonparametric bootstrap resampling. Section 4.6 covers the application of the

proposed methods for a general crossover design, with emphasis on the 2 × 2 and 3 × 3 designs.

In Section 4.7, the proposed methods are evaluated through simulations for the 2 × 2 and 3 × 3

design. For the 2×2 design, we additionally examine the accuracy of optimal LCB estimates based

on either OLS or R-estimation. In section 4.8, the analysis of real data sets for the 2× 2 and 3× 3

designs are examined. Lastly, section 4.9 summarizes the overall findings.
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4.2. Models and Notation

Consider a general crossover design. Let:

Xik = (Xi1k, ..., Xijk, ..., Xipk)T

Yik = (Yi1k, ..., Yijk, ..., Yipk)T (4.1)

be the vectors of baseline and outcome measurements respectively, where i = 1, ..., s indexes se-

quence, j = 1, ..., p indexes period, d = A,B, ..., Z denotes treatment, and k = 1, ..., ni indexes

subject k in sequence i, where subjects are assumed to be independent of each other. Next, as-

sume that (Xik,Yik)T follows some unknown distribution with some sequence invariant covariance

matrix Σ. The expectations are defined by their individual elements:

E(Yijk) = µ+ πj + τd[i,j] (4.2)

E(Xijk) = ζj (4.3)

where µ is the overall mean, πj is the effect of period j with
∑
j πj = 0, τd[i,j] is the effect of

treatment d (defined by the period j and sequence i) with
∑
d τd = 0, and ζj represents the mean of

a baseline in period j. Note that a null carryover is assumed for both the baselines and outcomes.

Briefly, as in Chapters 2-3, consider the Compound Symmetry (CS), Equipredictability (EP), and

AR(1) covariance structures. CS assumes a common variance and correlation. EP is a four

parameter structure that assumes a common variance with ρ1 = corr(Yj , Xj) for j = j, ρ2 =

corr(Xj , Xj′) = corr(Yj , Yj′) for j 6= j′, and ρ3 = corr(Yj , Xj′) for j 6= j′. Essentially, the corre-

lation between baselines and outcomes is allowed to vary depending on whether pairs of mea-

surements are within or between periods. AR(1) is the familiar two-parameter covariance structure

where the correlation between pairs of measurements decreases over time. For the 2 × 2 design,

V ((X1, Y1, X2, Y2)T ) under these covariance structures can be written as:

ΣCS = σ

X1 Y1 X2 Y2


1 ρ ρ ρ

1 ρ ρ

1 ρ

1

ΣEP = σ

X1 Y1 X2 Y2


1 ρ1 ρ2 ρ3

1 ρ3 ρ2

1 ρ1

1

ΣAR(1) = σ

X1 Y1 X2 Y2


1 ρ ρ2 ρ3

1 ρ ρ2

1 ρ

1

(4.4)
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The goal is to efficiently incorporate baselines in the estimation of a treatment effect under a general

loss function. Let b = [b1, ...,bs] be a set of p-length vectors of constants such that Y ?ik = biYik is a

within-subject contrast. Within-subject contrasts are chosen to target a specific pairwise treatment

effect. For example, in the AB/BA design, bi = [1,−1] for i = 1, 2 such that 1
2E[b1Y1 − b2Y2] =

1
2E[(Y11−Y12)−(Y21−Y22)] = τA−τB . For any crossover design, a linear combination of baselines

(LCB) model can then be written as:

Y ?ik = Wikγ + βaTXik + εik (4.5)

where Wik is a vector of relevant contrasts related to nuisance, intercept, and treatment parameters

(γ), a = (a1, ..., ap)
T is a p-vector of constants such that our LCB is aTXik =

∑p
j=1 ajXik, β is the

regression coefficient corresponding to the LCB, and εik is the error. Next, for some loss function

L, the parameters and the optimal LCB aT?Xik are estimated by solving:

(γ̂, β̂,a?) = Argmin
γ,β,a

s∑
i=1

ni∑
k=1

L(Y ?ik −Wikγ − βaTXik) (4.6)

Generally, (4.6) can be solved numerically. This is accomplished for any loss function by finding the

partial derivatives for the various parameters and using Newton optimization.

Under ordinary least squares (OLS), the estimated model parameters minimize the sum of squared

residuals:

(γ̂, β̂,a?) = Argmin

s∑
i=1

ni∑
k=1

ε2ik = Argmin
γ,β,a

s∑
i=1

ni∑
k=1

(Y ?ik −Wikγ − βaTXik)2 (4.7)

OLS is equivalent to the maximum likelihood estimator under the assumption of normality. Further,

the optimal LCB (aT?Xik) under a squared-loss function is equivalent to finding the optimal LCB

under a normality assumption (See Appendix D.1).

R-estimation extends rank-based methods to a regression setting where estimated model parame-

ters minimize the Jaeckel dispersion function (Jaeckel, 1972; Jureckova, 1971):

(γ̂, β̂,a?) = ArgminDϕ(γ, β,a) = Argmin
γ,β,a

s∑
i=1

ni∑
k=1

a(R(Y ?ik −Wikγ − βaTXik))(Y ?ik −Wikγ − βaTXik)

(4.8)
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where R(.) denotes the rank, and a(i) = ϕ(i/(n+ 1)) for some non-decreasing standardized score

function ϕ(u). Model fit and estimation efficiency can be enhanced by choosing a score function

that best fits the shape of the observed data (Hettmansperger and Mckean, 2010). For example,

Kloke discusses specific score functions that are geared towards increased efficiency for skewed

data (Kloke and McKean, 2012). Our work focuses on the Wilcoxon score function. This function

is efficient across a range of distributions (Hettmansperger and Mckean, 2010; Kloke and McKean,

2012), a property that is especially true for symmetric distributions. This score yields:

a(i) =

√
12

n+ 1
(R(Y ?ik −Wikγ − βaTXik)− 0.5)

Relative to OLS, the Wilcoxon score function is 95% efficient under normality (Hettmansperger

and Mckean, 2010). As in OLS, R-estimation yields point estimates, standard errors, p-values,

and model fit statistics. The primary difference is that R-estimation uses a rank-based metric for

estimation.

Lastly, for convex loss functions, including squared-loss (OLS) and the Jaeckel dispersion function

(R-Estimation), a unique minimum exists for Equation (4.6). Of note, if the LCB or baseline covariate

is fixed or pre-specified, Equation (4.6) is now solved with respect to γ and β. Section 4.6 illustrates

this general LCB model for the 2× 2 and 3× 3 design.

4.3. Estimation and Hypothesis Testing

The two loss functions considered for our general LCB model (Equation 4.6) are squared-loss

(OLS) and the Jaeckel dispersion function (R-Estimation). OLS is optimal if the joint distribution of

the measurements is normal. R-Estimation is a robust nonparametric alternative that uses a rank-

based loss function to estimate the desired regression parameters. For a heavy-tailed or mixture

distributions, R-estimation is more efficient than OLS (Hettmansperger and Mckean, 2010).

Given our general LCB regression model (Equation 4.5) with a fixed LCB, for example aTXik =

Xi1k − Xi2k, assume that γ = (µ,γ1,γ2) is a t-length vector where µ is the intercept and γ1 is

q-length vector with t ≥ q. Let Z = [1,W1,W2,Xa] be the overall design matrix with corresponding

regression parameters (µ,γ1,γ2, β) and let Y? be the stacked vector of within-subject contrasts
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(Y ?ik). Hypothesis tests are of estimated parameters:

H0 : γ1 = 0

HA : γ1 6= 0

This formulation is useful for comparing nested models and forms the basis of a specific R-estimation

test statistic. Hypothesis tests based on linear combinations of regression parameters can also be

constructed for OLS and R-estimation through Wald type tests.

4.3.1. Ordinary Least Squares

Using OLS, parameter estimates and the covariance of parameter estimates have closed form

solutions:

(µ̂, γ̂1, γ̂2, β̂)T = (ZTZ)−1Z′Y?

V ((µ̂, γ̂1, γ̂2, β̂)T ) = σ2(ZTZ)−1

where σ2 is estimated with s2 = ε̂T ε̂/((
∑s
i ni) − (t − 1)) and ε̂ is the stacked vector of estimated

residuals based on the OLS parameter estimates. Hypothesis testing typically proceeds through

a Wald test, although a likelihood ratio test is another approach. Under normality, the tests are

algebraically equivalent (Hettsmansperger and Mckean, 1983). Using the Wald test framework, our

test statistic is:

FOLS =
γ̂T1 (V̂ (γ̂1))−1γ̂1

q

where V̂ (γ̂1) corresponds to the [2:(q+1), 2:(q+1)] elements of s2(ZTZ)−1. Irrespective of the

distribution, asymptotically this statistic has a F distribution with q and n− t− 1 degrees of freedom

under the null hypothesis. This test is exact if the true distribution of the conditional outcomes

(Y ?ik|aTXik) is normal.

4.3.2. R-Estimation

Using R-estimation, parameter estimates are determined numerically through Newton optimiza-

tion. Let Z? = [W1,W2,Xa] be the design matrix corresponding to the non-intercept parameters,
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(γ1,γ2, β). Under certain regularity conditions, the non-intercept and intercept estimates are inde-

pendent (Hettmansperger and Mckean, 2010 pg 166). A key condition, called the Huber condition,

is that (
∑s
i ni)

−1ZT? Z? converges to a positive definite matrix as
∑s
i n goes to infinity. Asymptoti-

cally:

(γ̂1, γ̂2, β̂)T ∼ N
(
(γ1,γ2, β)T , τ2

ϕ(Z′?Z?)
−1
)

(4.9)

where τϕ is the R-estimation scale parameter (Hettmansperger and Mckean, 2010 pg 147). The

scale parameter is estimated through a density-type estimator based on the residuals (Koul, Siev-

ers, and Mckean, 1987). As in OLS, Wald type tests can be utilized for inference. Alternatively, the

dispersion test, the likelihood ratio test analagoue for R-estimation, can be used. The dispersion

test is as follows:

1. Fit the full model and calculate the dispersion D(γ̂, β̂,a?)ϕ. Estimate the scale parameter τϕ.

2. Fit the reduced model where we do not include the variables corresponding to γ1. Use the

reduced model parameters and calculate the reduced dispersion D((0, γ̂2, β̂,a?)R)ϕ.

3. Evaluate:

F =
D((0, γ̂2, β̂,a?)R)ϕ −D(γ̂, β̂,a?)ϕ

qτ̂ϕ/2

Under the null hypothesis, this statistic has an approximate χ2 distribution with q degrees of

freedom. Mckean and Sheather showed in small-sample studies that it is best to compare

the test statistic to an F distribution with q and n − t − 1 degrees of freedom Mckean and

Sheather, 1991. This modification better maintained the nominal type I error rate over a range

of designs, sample sizes, and distributions (Hettmansperger and Mckean, 2010; Mckean and

Sheather, 1991).

At small sample sizes, Mckean and Sheather showed that Wald tests are less efficient than the

dispersion test (Mckean and Sheather, 1991). While this was shown for a parallel group trial,

our own empirical simulations verify this observation for crossover designs. For R-estimation, Wald

tests and dispersion tests are only asymptotically equivalent (Hettsmansperger and Mckean, 1983).

While dispersion tests are preferred for hypothesis testing, this procedure does not readily yield
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confidence intervals. Based on the asymptotic distribution of the ’R’-estimates (Equation 4.9), Wald

type confidence intervals can instead be constructed. R-estimation models can be fit through the

”Rfit” package in R (Kloke and McKean, 2012). Code examples are given in Section 4.6.

Lastly, if the LCB is estimated directly within Equation 4.6, the described OLS and R-estimation

inferential procedures will have inflated type I error at small sample sizes. This is because our

model includes an estimated covariate but the inferential procedure assumes that all covariates are

fixed. We address this using nonparametric bootstrap resampling (Section 4.5).

4.4. Selecting the LCB

For normally distributed data, we previously showed that the optimal LCB (aT? Xik) can be found

by minimizing the conditional variance of the desired treatment effect estimate (Jemielita, Putt, and

Mehrotra, 2016). In a more general setting for some known distribution, the optimal LCB (aT? Xik)

minimizes the total conditional variance of the treatment effect estimate:

aT? = Argmin
aT

(
s∑
i

V (Y ?ik|aTXik)

)
(4.10)

For normally distributed data:

V (Y ?ik|aTXik)N = V (Y ?ik)− cov(Y ?ik,a
TXik)2

V (aTXik)

While we could use results for normally distributed data, we explored analytically how these results

might generalize to the T-distribution, a heavy tailed symmetric distribution often used to explore

the properties of robust and nonparametric estimators. Asymptotically, for a multivariate normal

distribution and a multivariate T-distribution with the same covariance matrix Σ, the optimal LCB

is identical. Assume that the baselines and outcomes follow a multivariate T-distribution with v

degrees of freedom. Then, the distribution of the outcomes conditional on the baselines also follows

a T-distribution (Ding, 2016). In this case:

V (Y ?ik|aTXik)T =
v + (aXik − E(aTXik))2V (aTXik)−1

v + 1

(
V (Y ?ik)− cov(Y ?ik,a

TXik)2

V (aTXik)

)

In general, as long as (aXik − E(aTXik))2 p→ V (aTXik), V (Y ?ik|aTXik)T
p→ V (Y ?ik|aTXik)N and
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the optimal LCB under both distributions is the same. Notably, this result requires that v > 2 else

variances are undefined for the multivariate T-distribution. See the Appendix D.2 for details.

In practice, the distribution of the data is unknown and the optimal LCB can be estimated within

the context of a loss function or regression model. However, there are certain plausible covariance

scenarios in which certain LCB models are optimal. Consider the following covariance expression

for a variation of the LCB baseline model where we allow the LCB regression parameter (β) to vary

by sequence:

cov(Y ?ik,a
TXik) = cov(Wikγ,a

TXik) + βicov(aTXik,a
TXik) + cov(εik,a

TXik) (4.11)

Given that subjects are randomized, the crossover design parameters (γ) and the baseline mea-

surements are independent, thus cov(Wikγ,a
TXik) = 0. Under standard linear model assump-

tions, we also assume that cov(εik,a
TXik) = 0. It then follows that:

βi =
cov(Y ?ik,a

TXik)

V (aTXik)
(4.12)

Let us consider these results for three general covariance scenarios which correspond to previously

discussed covariance structures: Compound Symmetry (CS), Equipredictability (EP), and AR(1).

Recall that Y ?ik = biYik. First, if cov(Y ?ik,a
TXik) = 0 for all aT , then βi = 0 and the inclusion of any

LCB will not add any information but will add an extra degree of freedom to a hypothesis test. Thus,

the optimal LCB uses no baseline covariate. This is the case when the underlying covariance of the

baselines and outcomes is Compound Symmetry (CS). This result was previously shown under a

normality assumption (Jemielita, Putt, and Mehrotra, 2016). Second, assume that cov(Xijk, Yijk) =

σ2
1ρ
?
1 for j = j and cov(Xijk, Yij′k) = σ2

2ρ
?
2 for j 6= j′. This plausible covariance assumption

corresponds to the Equipredictability (EP) covariance, as well as the six-parameter covariance

structure discussed by Kenward and Roger (Kenward and Roger, 2010). In this case, β = βi for

all i and the optimal LCB is biXik or XDIFF. A proof of this appears in Appendix D.3. For the

2× 2 design, XDIFF = Xi1k−Xi2k. This result was previously shown under a normality assumption

(Jemielita, Putt, and Mehrotra, 2016). Lastly, for other covariances, such as Unstructured or AR(1),

there may be potential efficiency gains by estimating the optimal LCB directly from Equation 4.6.

Overall, these three scenarios cover a broad range of potential covariance structures. Further, this
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illustrates the importance of the joint covariance of the baselines and outcomes in determining the

optimal LCB for a linear model. Notably, in this section the LCB regression parameter was allowed

to vary by sequence, thus accounting for the fact that cov(Y ?ik,a
TXik) may vary by sequence. In

practice, a common regression parameter is used to reduce the number of model parameters and

increase efficiency. For 2-period designs, since Yi1k − Yi2k is the only contrast used for estimation,

the LCB regression parameter is constant across all sequences. These LCB models are summa-

rized in Table 4.1 with the additional point that OLS should be used for normal data and R-estimation

should be used for other symmetric distributions.

Table 4.1: Crossover Design Optimal Modeling Strategies

Baseline Covariate

Distribution Estimation cov(Y ?ik,a
TXik) = 0 UN/AR(1) Otherwise

Normal OLS No Baselines aT?Xik XDIFF (aTXik = biXik)

Non-Normal R-Estimation No Baselines aT?Xik XDIFF (aTXik = biXik)

Notes: Y ?ik = biYik, or the chosen within-subject contrast. XDIFF uses the same contrast corresponding to the
outcomes. XDIFF is the optimal LCB under an Equipredictability (EP) covariance. Ex: Yi1k − Yi3k uses Xi1k −Xi3k.
aT?Xik is estimated directly through Equation 4.6.

4.5. Model Selection and Inference: A Bootstrap Approach

For the general LCB model (Equations 4.5, 4.6), the optimal LCB largely depends on the joint co-

variance of the baselines and outcomes. Further, certain loss functions should be used for different

distributions of data. For example, if the joint distribution of the measurements is normal with a CS

covariance structure, OLS should be used without including any baseline covariate (Jemielita, Putt,

and Mehrotra, 2016; Mehrotra, 2014). However, the joint distribution is unknown and we can never

know the true best approach. We search for an approach to adaptively choose the best fitting model

among a set of models which are efficient under a range of conditions. With the aim of increasing

the efficiency of a treatment effect estimate, our approach picks the model which yields the lowest

p-value for the desired treatment effect estimate. A naive approach would be then to use the origi-

nal SE and p-value from the chosen model for inference. However, this does not account for model

selection and inference through the original p-value or confidence interval (CI) is not valid (Efron,

2014; Hurvich and Tsai, 1990). Here we use bootstrapping to account for the model selection and

and obtain valid SEs, CIs, and p-values (Efron, 1979, 1987, 2014; Hesterberg, 2015).
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Our ’Min-P’ approach first fits a number of different baseline models, for example XDIFF (OLS) and

XDIFF (R-est) from Table 4.1. Under the null hypothesis of no treatment effect, the model with

the smallest p-value and the associated treatment effect estimate is chosen. The data are then

resampled through nonparametric bootstrapping and within each resampled data set, the Min-P

procedure is repeated. The bootstrap Min-P estimates are then used to obtain bootstrap SEs, CIs,

and p-values. Bootstrap resamples are generated by resampling subjects with replacement within

each sequence group. The study design determines the sequence groups (Section 4.6).

For the original sample, define the Min-P estimate and p-value as θ̂ and p0. For each bootstrap

resample b = 1, ..., B, calculate the Min-P estimate θ̂b. The bootstrap SE and bootstrap CI are

constructed based on the empirical distribution of the bootstrap Min-P estimates. The smoothed or

bagged bootstrap estimate and bootstrap SE are defined respectively as:

θ̂S =
1

B

B∑
1

θ̂b (4.13)

SE(θ̂)B =

√√√√ 1

B − 1

B∑
b=1

(θ̂b − θ̂S)2 (4.14)

Define the nonparametric cumulative distribution function as Ĝ(s) = #{θ̂b < s}/B. Then the

bootstrap percentile CI is defined as:

CIpct = [Ĝ−1(α/2), Ĝ−1(1− α/2)] (4.15)

Note that for the bootstrap percentile CI, Ĝ−1(α/2) is simply the (α/2)-quantile, for example 2.5%,

of the empirical bootstrap distribution of θ̂b. To obtain a bootstrap p-value, resampling must be

done under the null hypothesis. For each bootstrap resample, the null hypothesis is generated by

randomly shuffling the treatment assignment. The treatment assignment varies by design (Section

4.6). In each null simulated bootstrap resample, calculate the Min-P p-value p?b . The bootstrap

p-value is then calculated as:

p? =
1 + (#p?b ≤ p0)

1 +B
(4.16)

This formula reflects the fact that the original data set is a possible bootstrap resample and the
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original p-value satisfies p0 ≤ p0. Further, the addition of one on the numerator and denominator

prevents reporting a p-value of zero.

Improvements can be made to this standard bootstrap approach. First, bootstrap standard errors

can be improved by using the standard error of the smoothed bootstrap estimator, SE(θ̂S). Efron

showed analytically that SE(θ̂S) is more efficient than SE(θ̂)B (Efron, 2014). Generally, using a

smoothed or bagged estimate reduces the variability (Friedman and Hall, 2007). Second, Bias-

Corrected and Accelerated (BCa) bootstrap CIs are a better option than the simple percentile CI.

The BCa improves on the percentile approach by correcting for potential parameter bias and ac-

celeration (Diciccio and Tibshirani, 1987; Efron, 1987). The acceleration describes how much the

standard error of a parameter estimate changes with respect to changes in the parameter esti-

mate. The BCa CI is second order accurate, meaning that coverage probabilities differ from the

nominal values by O(n−1) (Diciccio and Tibshirani, 1987). The percentile method is first order ac-

curate, O(n−1/2). Thus, the BCa CI will converge to the nominal coverage faster than the percentile

method. Third, for small sample sizes, bootstrap CIs tend to be too narrow (Hesterberg, 2015). To

correct this, Hesterberg proposed the Expanded Interval, which adjusts the critical value α. Further

details on these improvements can be found in the Appendix D.4.

Overall, bootstrapping allows us to obtain valid inference under a model selection procedure. One

minor point is that inference obtained through CIs and bootstrap p-values will not have an exact 1-1

correspondence. This is because the bootstrap p-values require resampling under the null hypoth-

esis while bootstrap CIs do not. However, our empirical simulation results showed an approximate

1-1 correspondence between inference through p-values versus CIs.

4.6. Application of Methods

Table 4.1 illustrates that there are six general scenarios with different preferred analytic approaches.

In practice, we are ignorant of the distribution as well as the covariance structure and thus cannot

know the best analytic approach. The Min-P method offers a solution. Based on Table 4.1, three

versions of the Min-P method are considered:

1. Min-P1: Use XDIFF as the LCB and choose between OLS and R-estimation; 2 models

2. Min-P2: Choose between No Baselines and XDIFF (R-Est, OLS); 4 models
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3. Min-P3: Choose between No Baselines, XDIFF, and aT?Xik (R-Est, OLS); 6 models

Min-P1, Min-P2, and Min-P3 are designed to be efficient under both normal and non-normally

distributed data with bootstrap resampling to obtain valid inference.

We benchmark our methods to previously proposed nonparametric methods, both with and without

baseline adjustment. For unadjusted nonparametric methods, both the Wilcoxon rank sum test and

Ohrvik’s aligned rank test are considered. The Wilcoxon rank sum test is used for the 2× 2 design

and involves ranking the within-subject contrasts between period 1 and period 2 (R(Yi1k − Yi2k))

(Koch, 1972; Putt and Chinchilli, 2004). Ohrvik’s aligned rank test involves first removing period

effects from the outcomes and then ranking the within-subject contrasts corresponding to a desired

treatment effect (Ohrvik, 1998; Putt and Chinchilli, 2004). While a few nonparametric baseline

models have been discussed in the literature, we illustrate Rank ANCOVA (Lavange and Koch,

2006; Quade, 1967) with XDIFF as a covariate. This approach regresses the ranks of relevant

within-subject contrasts (R(biYik)) against the ranks of XDIFF (R(biXik)). The residuals are then

used in a Wilcoxon rank sum test. Of note, Rank ANCOVA does not produce treatment estimates

or standard errors and is purely used for hypothesis testing. While Tsai and Patel suggested using

robust regression models, for example M-estimation (Huber, 1964), to estimate the residuals, this

approach performed similarly to Rank ANCOVA based on empirical simulations. Further, compared

to simply using the unadjusted outcomes, using change scores in a Wilcoxon rank sum test yielded

similar or worse efficiency. This approach is not presented in the data examples or simulations.

The methods considered here are described in Table 4.2. Note that the LCB model, where the

baseline covariate (aT? Xik) is estimated, requires bootstrap resampling for valid inference. An-

other benchmark, Change from Baseline (CFB), is also described. CFB models the change scores

Yijk−Xijk in a mixed model framework. Generalized least squares (GLS) and restricted maximum

likelihood (REML) are used to estimate treatment parameters. A Kenward Roger degree of freedom

adjustment is used to properly account for the estimation of the covariance (Kenward and Roger,

1997). This is a commonly used model for crossover designs. Finally, our methods are detailed for

the 2× 2 and 3× 3 designs. The hypotheses of interest are:

H0 : τA − τB = 0

HA : τA − τB 6= 0
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Table 4.2: Parametric and Nonparametric Crossover Models

Method Outcomes Covariate(s) Estimation

Wilcoxon Test R(Yi1k − Yi2k) None Rank-Based: 2× 2 design

Rank ANCOVA R(biYik) R(biXik) Wilcoxon test on residuals

Ohrvik Aligned Outcomes None Rank-Based: Higher order designs

CFB Yijk −Xijk None GLS, REML, KR DF

No Baselines biYik None OLS or R-Est

XDIFF biYik aTXik = biXik OLS or R-Est

LCB biYik Estimate aT?Xik OLS or R-Est; Bootstrap

Min-P1 biYik aTXik = biXik Data-Driven: OLS vs R-Est; Bootstrap

Min-P2 biYik (1) aTXik = biXik or (2) None Data-Driven: OLS vs R-Est; Bootstrap

Min-P3 biYik (1) aTXik = biXik or (2) None or (3) aT?Xik Data-Driven: OLS vs R-Est; Bootstrap

Notes: R(u)=ranks. biYik are the chosen within-subject contrasts. Estimation refers to estimation methods used (See Section 4.3).
Section 4.4 discusses when certain LCB models are optimal. Section 4.5 discusses the Min-P methods. Section 4.6 details these
crossover models for the 2 × 2 and 3 × 3 designs. KR DF=Kenward Roger Degrees of freedom. Bootstrap indicates that resampling is
needed for valid inference.

4.6.1. 2× 2 Design

The 2 × 2 design is a two-period two-treatment design with two sequences such that j = 1, 2,

d = A,B, and i = AB,BA. The LCB regression model from (4.5) can be written as:

Yi1k − Yi2k = µ+ δWi + βaTXik + εik (4.17)

where Wi = 1 for sequence AB and 0 for sequence BA. Then 1
2δ = τA − τB , our desired treatment

effect estimate. Since all outcomes are Yi1k − Yi2k, XDIFF = Xi1k −Xi2k. For this 2-period design,

there little to be gained by estimating aT? Xik (Jemielita, Putt, and Mehrotra, 2016). Given this,

the LCB models and Min-P3 are not considered for the 2 × 2 design. For Min-P1 and Min-P2,

bootstrap resampling is done separately within sequences AB and BA. For bootstrap p-values, the

null hypothesis is simulated by randomly shuffling the sequence group assignment (Wi).

4.6.2. 3× 3 Design

The 3 × 3 design is a three-period three-treatment design with six sequences such that j = 1, 2, 3,

d = A,B,C and i = ABC,BAC,CAB,CBA,ACB,BCA. For this design, it is advantageous to

first ”align” the within-subject contrasts such that period effects are eliminated. This was motivated
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by the Orhvik’s aligned rank test, which was shown to be quite powerful under the 3 × 3 design

(Ohrvik, 1998; Putt and Chinchilli, 2004). Accordingly, with the goal of estimating τA − τB , the

within-subject contrasts and ”aligned” within-subject contrasts, along with XDIFF, are as follows:

Sequence WS Contrast Aligned WS Contrast XDIFF

ABC E(Y1 − Y2) = τA − τB + (π1 − π2) Y1 − Y2 − π̂1 − π2 X1 −X2

BAC E(Y1 − Y2) = τB − τA + (π1 − π2) Y1 − Y2 − π̂1 − π2 X1 −X2

CAB E(Y2 − Y3) = τA − τB + (π2 − π3) Y2 − Y3 − π̂2 − π3 X2 −X3

CBA E(Y2 − Y3) = τB − τA + (π2 − π3) Y2 − Y3 − π̂2 − π3 X2 −X3

ACB E(Y1 − Y3) = τA − τB + (π1 − π3) Y1 − Y3 − π̂1 − π3 X1 −X3

BCA E(Y1 − Y3) = τB − τA + (π1 − π3) Y1 − Y3 − π̂1 − π3 X1 −X3

where 1
6

∑s
i

1
ni

∑ni
k (Yijk − Yij′k) = ̂πj − πj′ . Using these aligned contrasts (Z?ik), our regression

model becomes:

Z?ik = µ+ δWi + βaTXik + εik (4.18)

where Wi = 1 for sequences ABC/CAB/ACB (A is before B) and 0 otherwise (B is before A). Again,

1
2δ = τA − τB . For this higher order design, estimating aT? Xik can lead to power gains and the

LCB models (OLS, R-est) along with Min-P1, Min-P2, and Min-P3 are all considered. Bootstrap

resampling is done separately within sequences ABC/CAB/ACB and sequences BAC/CBA/BCA

after the contrasts have been aligned. This group resampling avoids resampling within each se-

quence, which could be unfeasible for low sample sizes. Further, this simplification is only possible

with the aligned model since this alignment guarantees equal mean models within each group

(ABC/CAB/ACB vs BAC/CBA/BCA). For bootstrap p-values, the null hypothesis is generated by

shuffling the sequence group assignment (Wi). While this has not been proposed in the literature,

we use Rank ANCOVA with aligned within-subject contrasts and XDIFF as the covariate. Finally,

we illustrate R-estimation code applicable for the 2 × 2 and 3 × 3 design. Note that YDIFF refers

to the within-subject contrasts, Yi1k − Yi2k for the 2 × 2 or the aligned contrasts for the 3 × 3, delta

corresponds to δ in (4.17) or (4.18), and LCB refers to aXik. The data is assumed to be in wide

format with one row per subject. For a dispersion test, it is recommended to use the fitted data from

the reduced model as an initial fit for the full model.
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#### R-estimation Linear Model: Treatment A vs B #####

reduced = rfit(YDIFF~delta+LCB, data=wide) ## Fit reduced model (for dispersion test)

full = rfit(YDIFF~delta+LCB, data=wide, yhat0=reduced$fitted) ##Fit full model

trtAB_est = 0.5*full$coefficients[2] ## Treatment estimate

trtAB_SE = sqrt(0.5^2 * vcov(full)[2,2] ) ## Asymptotic Standard Error

trtAB_pval = drop.test(full,red)$p.value ## Dispersion test p-value

4.7. Simulations

Simulation studies for the 2× 2 and 3× 3 were designed to answer the following questions: (1) Do

the optimal LCBs estimated under OLS and R-estimation behave as expected? (2) How do the R-

estimation baseline models compare to previously recommended baseline adjusted or unadjusted

nonparametric methods? (3) How do the various baseline models (Table 4.1), fit by either OLS or

R-estimation, perform for different distributions? (4) How efficient are the model selection based

Min-P methods?

For both the 2 × 2 and 3 × 3 designs, we simulated 5,000 trials for a variety of scenarios. The

simulation scenarios were defined by the hypotheses (null, τA − τB = 0; alternative, τA − τB 6= 0),

the distribution (Normal or T), Σ (CS, EP, AR(1)), and sample sizes. Hypothesis tests were used

with a nominal type I error rate of 0.05. Response vectors for each subject within each simulated

trial were generated from either a multivariate normal or a multivariate T-distribution with 3 degrees

of freedom, which simulates a heavy tailed distribution. In either case, covariance structures CS,

EP, and AR(1) were considered. Throughout, we assumed a common variance σ = 1. For all

designs and distributions: under CS, ρ = 0.6; under EP, ρ1 = 0.70, ρ2 = 0.60, ρ3 = 0.50. Under

AR(1), ρ = 0.739 for the 2 × 2 design while ρ = 0.789 for the 3 × 3 design. These are the same

covariance settings as before (Section 2.7).

For the 2 × 2 and 3 × 3 design, response vectors were generated with respect to the previously

defined mean models (4.2,4.3). For the 2 × 2 design, setting ζ1 = π1 = 0, ζ2 = π2 = 1, and µ = 6,

the response vector was generated such that E[(X1, Y1, X2, Y2)T ] = (0, 6 + τd[i,1], 1, 7 + τd[i,2])
T .

For 3 × 3, setting ζ1 = π1 = 0, ζ2 = π2 = 1, ζ3 = π3 = 2 and µ = 6, the response vector was

generated such that E[(X1, Y1, X2, Y2, X3, Y3)T ] = (0, 6 + τd[i,1], 1, 7 + τd[i,2], 2, 8 + τd[i,3])
T . Under

the null, τA = τB = 0 (and τC = τA = 0 for the 3 × 3 design), while under the alternative, for
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each scenario, τA − τB was fixed such that using the No Baselines OLS model yielded 80% power

under the normal distribution (see Appendix B.2). For the 3× 3, τC − τB was set equal to τA − τB .

Estimates of τA − τB were approximately unbiased for all methods under all scenarios (results not

shown).

To evaluate the theoretical arguments from Section 4.4, the optimal LCB was estimated under both

OLS and R-estimation under EP and AR(1) for both the normal distribution and T-distribution. For

the 2 × 2 design, the absolute value of the median and interquartile range estimates for the ratio

of the estimated LCB coefficients (a?1/a?2) can found in Table 4.3. Of particular interest was the

power and type I error of each method. Power and type I error results for the Min-P methods, which

use 1000 bootstrap resamples, are through bootstrap p-values. Inference through bootstrap CIs

(percentile or BCa) yielded similar results. For the 2× 2 design, Figure 4.1 compares XDIFF (OLS,

R-est), the Wilcoxon Rank Sum Test, and Rank ANCOVA (XDIFF as a covariate) while Figure 4.2

compares XDIFF (OLS,R-est) to Min-P1 and Min-P2. For the 3 × 3 design, Figure 4.3 compares

XDIFF (OLS, R-est), Ohrvik’s Aligned Rank Test, and Rank ANCOVA (XDIFF as a covariate) while

Figure 4.4 compares XDIFF (OLS,R-est) to Min-P1, Min-P2, and Min-P3. With the exception of

the No Baseline models, power and type I error results for all considered models (Table 4.2) and

designs can be found in Appendix D.5. While optimal under CS, the No Baseline models are only

included through Min-P2 and Min-P3. The LCB models and Min-P3 are not considered for the 2×2

design.

4.7.1. 2× 2 Crossover Design: Estimated Optimal LCBs

Table 4.3 illustrates the absolute value of the estimated median of the ratio of estimated LCB coeffi-

cients, a?1/a?2. The median was used since ratio estimates in the simulations can have very extreme

values. For EP, the optimal LCB is Xi1k −Xi2k and thus a?1/a?2 = −1. For AR(1), the optimal LCB

under normality is ρ−2Xi1k − Xi2k and thus a?1/a?2 = −ρ−2 = −1.86; under the T-distribution, the

optimal LCB converges to the optimal LCB under normality. In general, OLS and R-estimation both

better estimated the optimal LCB as the sample size increased. Under normality, results between

OLS and R-estimation were similar. Under the T-distribution, the R-estimation LCB estimates were

slightly more precise. Further, we can see that as the sample size increases, the estimated optimal

LCB converges to the optimal LCB under a normality assumption for an AR(1) covariance.
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Table 4.3: 2× 2 Simulations: Estimated LCBs

OLS R-estimation
Distribution Sample Size EP AR(1) EP AR(1)

Normal 32 0.99 1.62 0.99 1.60

[0.80, 1.26] [1.08, 2.54] [0.79, 1.26] [1.05, 2.52]

Normal 100 1.00 1.85 1.00 1.85

[0.89, 1.13] [1.49, 2.44] [0.89, 1.13] [1.48, 2.46]

Normal 200 1.00 1.87 1.00 1.87

[0.92, 1.09] [1.61, 2.26] [0.92, 1.09] [1.60, 2.27]

T-Dist 32 0.96 1.28 0.98 1.36

[0.66, 1.34] [0.56, 2.30] [0.70, 1.33] [0.69, 2.38]

T-Dist 100 1.00 1.61 1.00 1.76

[0.78, 1.25] [1.05, 2.50] [0.83, 1.19] [1.27, 2.55]

T-Dist 200 1.00 1.73 1.00 1.86

[0.84, 1.19] [1.27, 2.53] [0.88, 1.14] [1.47, 2.46]

Notes: For each scenario, Entries show the absolute value of the median [IQR] estimated ratio of a?1/a
?
2 based

on 5000 simulated data sets. The optimal LCB under EP is X1 −X2 such a?1/a
?
2 = −1. The optimal LCB under

AR(1) is ρ−2X1 −X2 such for ρ = 0.73, a?1/a
?
2 = −ρ−2 = −1.86. OLS/R-estimation columns indicate how the

coefficients of optimal LCB were estimated.

4.7.2. 2× 2 Crossover Design: Simulation Results

Power and type I error rates for all considered methods can be found in Tables D.1, D.2 in the Ap-

pendix while the primary comparisons of interest can be found in Figures 4.1, 4.2. Type I error rates

were well controlled under all scenarios. Next, ours and work by others have previously found that

change from baseline (CFB) can be highly inefficient (Jemielita, Putt, and Mehrotra, 2016; Kenward

and Roger, 2010; Mehrotra, 2014). The simulation results for both distributions confirm this result.

Under normality, previous results with OLS suggest (1) ignoring baseline information under CS, (2)

that XDIFF is the optimal LCB under EP, and that (3) XDIFF performs reasonably well under AR(1).

Indeed, the XDIFF OLS model was our previous recommendation and is our benchmark for the

2× 2 design. As expected, we observed a reduction in power when using XDIFF with R estimation

versus OLS for the normal, and an increase in power when using XDIFF with R estimation versus

OLS for the T-distribution. For the T-distribution, we found that including a baseline covariate in

the rank-based method (R-est with XDIFF) improved the power of the hypothesis test for EP and

AR(1) compared to a rank-based approach without a covariate, here the Wilcoxon rank sum. For

the T-distribution under CS, where we might expect a decrease in efficiency when using a base-
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line covariate, we found little difference in the efficiency of rank-based tests with (R-est, XDIFF)

and without (Wilcoxon Rank Sum) the covariate for N=20,32. Interestingly, at N=12, XDIFF (R-est)

performed better than the Wilcoxon rank sum test. However, this is likely due to the fact that the

Wilcoxon rank sum used an exact test. For the normal distribution under EP and AR(1), XDIFF (R-

est) consistently yielded better performance than the Wilcoxon Rank sum. Further, we found that

Rank ANCOVA with XDIFF as a covariate consistently yielded lower power than XDIFF (R-est).

Lastly, as hoped, the Min-P approaches yielded no type I error inflation and offered intermediate

power to the optimal approach for each scenario.

Figure 4.1: 2x2 Simulations: Benchmark Comparisons

T−Distribution, CS T−Distribution, EP T−Distribution, AR(1)
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Notes: XDIFF (OLS) is the most powerful under normality while XDIFF (R-est) is the most powerful under the T-distribution. CS=Compound

Symmetry, EP=Equipredictability, AR(1)=Autoregressive(1). Wilcoxon refers to the Wilcoxon rank sum test with no baseline adjustment.

Rank ANCOVA regresses the ranks of the outcomes against the ranks of XDIFF and then uses the residuals in a Wilcoxon rank sum test.

XDIFF (OLS) uses XDIFF as a covariate in an OLS model. XDIFF (R-est) uses XDIFF as a covariate in a R-estimation model. See Section

4.6 and Table 4.2 for details.
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Figure 4.2: 2x2 Simulations: Min-P Comparisons
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Notes: Under normality, Min-P1 and Min-P2 capture additional power relative to XDIFF (R-est). Under the T-distribution, Min-P1 and Min-P2

are approximately as powerful as XDIFF (R-est). CS=Compound Symmetry, EP=Equipredictability, AR(1)=Autoregressive(1). XDIFF (OLS)

uses XDIFF as a covariate in an OLS model. XDIFF (R-est) uses XDIFF as a covariate in a R-estimation model. Min-P1 chooses between

XDIFF (OLS, R-est) models. Min-P2 chooses between No Baseline and XDIFF (OLS, R-est) models. See Section 4.6 and Table 4.2 for

details.

4.7.3. 3× 3 Crossover Design: Simulation Results

Power and type I error rates for all considered methods can be found in Tables D.3, D.4 in the

Appendix while the primary comparisons of interest can be found in Figures 4.3, 4.4. For the

normal distribution under CS, we observed slight type I error inflation for the XDIFF covariate (both

OLS and R-estimation at N=18) and for R-estimation at N=30. The LCB under OLS also yielded

some Type I error inflation at N=18,30. Next, the simulation results for both the normal and the

T-distribution indicate generally poor performance for the CFB. Consistent with the 2 × 2 design,

we observed a reduction in power when using XDIFF with R estimation versus OLS for the normal,

and an increase in power when using XDIFF with R estimation versus OLS for the T-distribution.
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For the T-distribution, we found that including a baseline covariate in the rank-based method (R-est

with XDiff) increased the power of the hypothesis test for EP and AR(1) compared to a rank-based

approach without a covariate, here the aligned rank test described by Ohrvik (Ohrvik, 1998). For

the T-distribution under CS, Ohrvik’s aligned rank test showed an increase in efficiency related to

XDIFF (R-est). For the normal distribution, XDIFF (R-est) again yielded better performance than

Ohrvik’s aligned rank test and yielded only slightly lower power to XDIFF (OLS). For the 3x3 design,

we found that Rank-based ANCOVA yielded similar or slightly less power than XDIFF (R-est) for the

T-distribution. For the normal distribution, Rank-based ANCOVA consistently yielded lower power

than XDIFF (R-est). As in the 2 × 2 design, the Min-P approaches yielded no type I error inflation

and offered intermediate power to the optimal approach for each scenario.

Figure 4.3: 3x3 Simulations: Benchmark Comparisons
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Notes: XDIFF (OLS) is uniformly the most powerful under normality while XDIFF (R-est) is uniformly the most powerful under the

T-distribution.CS=Compound Symmetry, EP=Equipredictability, AR(1)=Autoregressive(1). Ohrvik refers to Ohrvik’s aligned rank test with no

baseline adjustment. Rank ANCOVA regresses the ranks of the aligned outcomes against the ranks of XDIFF and then uses the residuals

in a Wilcoxon rank sum test. XDIFF (OLS) uses XDIFF as a covariate in an OLS model. XDIFF (R-est) uses XDIFF as a covariate in a

R-estimation model. See Section 4.6 and Table 4.2 for details.
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Figure 4.4: 3x3 Simulations: Min-P Comparisons
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Notes: Under normality, Min-P1 and Min-P2 capture additional power relative to XDIFF (R-est). Under the T-distribution, Min-P1 and

Min-P2 are approximately as powerful as XDIFF (R-est). CS=Compound Symmetry, EP=Equipredictability, AR(1)=Autoregressive(1). XDIFF

(OLS) uses XDIFF as a covariate in an OLS model. XDIFF (R-est) uses XDIFF as a covariate in a R-estimation model. Min-P1 chooses

between XDIFF (OLS, R-est) models. Min-P2 chooses between No Baselines and XDIFF (OLS, R-est) models. Min-P3 chooses between No

Baselines, XDIFF, and LCB (OLS, R-est) models. See Section 4.6 and Table 4.2 for details.

4.7.4. Simulation Results Summary

Overall, these simulations give credence to previous theoretical findings. Using either OLS or

R-estimation, the optimal LCB is well represented by the estimated LCB. Under a normal or T-

distribution with identical covariance matrices, the optimal LCB is the same in large samples.

For normal data, OLS and R-estimation estimated the optimal LCB with similar accuracy. For

T-distributed data, R-estimation estimated the optimal LCB with slightly more precision.

Previously recommended nonparametric methods for the 2 × 2 and 3 × 3 were compared to R-

estimation baseline models. For the 2 × 2 design, XDIFF (R-est) consistently outperformed the
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Wilcoxon rank-sum test and Rank ANCOVA. For the 3 × 3 design, XDIFF (R-est) was generally

more efficient than Ohrvik’s aligned rank test and Rank ANCOVA. Ohrvik’s aligned rank test was

especially powerful under a CS covariance assumption.

Min-P methods were also considered for both designs. For the 2 × 2 design, Min-P1 and Min-P2

did similarly, although Min-P2 demonstrated increased efficiency gains under CS. For the 3 × 3

design, Min-P1 seemed to be the best adaptive method. In contrast to the 2 × 2 design, Min-P2,

which incorporates the no baseline models, showed little efficiency gains under CS. Min-P3, which

incorporates six different baseline models, proved to inefficient under CS and EP but slightly more

efficient under AR(1). Overall, the proposed data-driven Min-P methods were efficient for a variety

of distributions and covariance structures. In both designs, Min-P1 and Min-P2 performed similarly

to XDIFF (OLS) under normality and similarly to XDIFF (R-est) under a T-distribution. These data-

driven methods also outperformed CFB and previously recommended nonparametric methods.

4.8. Real Data Analysis

For each data set, estimates, standard errors, and p-values are provided for the methods described

in Table 4.2. Normal Q-Q plots of the relevant within-subject contrasts, Yi1k − Yi2k for the 2 × 2

and the aligned contrasts for the 3 × 3, are shown in Figure 4.5. The LCB models and Min-P

methods, based on 5000 bootstrap resamples, show smoothed bootstrap standard errors along

with bootstrap p-values. Additionally, previous research recommended the XDIFF OLS model for

the 2 × 2 design (Jemielita, Putt, and Mehrotra, 2016; Mehrotra, 2014; Metcalfe, 2010) and an

information criteria based adaptive approach for the 3 × 3 design (Jemielita, Putt, and Mehrotra,

2016). This information criteria approach, which selects an LCB to include as a covariate in an

OLS model based on AICC, a small sample correction of AIC (Hurvich and Tsai, 1989), is provided

for the 3× 3 data set for comparison.

4.8.1. 2× 2 Real Data Example I

This is the same example presented in Section 2.6.1. In this example, a biomarker associated with

renal function was determined for each of 20 subjects at baseline and after treatment. AICC results

indicated that the AR(1) covariance structure was the most likely covariance. This suggests that

XDIFF should be used as the baseline covariate. Estimate results are shown in Table 4.4. A Normal
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Figure 4.5: Normal Q-Q Plots: Crossover Design Real Data Examples
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Notes: Normal Q-Q Plots compare observed sample quantiles to theoretical quantiles under the assumption of normality; departures from

the straight line indicate departures from normality. For the 2 × 2 examples, sample quantiles are of outcomes Yi1k − Yi2k. For the 3 × 3

example, sample quantiles are of aligned within-subject contrasts.

Q-Q plot of the outcomes (Yi1k − Yi2k) is shown in the top left corner of Figure 4.5.

Based on Figure 4.5, there does appear to be deviations from normality and nonparametric or

robust models may be preferable. This observation holds true, as the R-estimation models do quite

well relative to their respective OLS models. Both R-estimation models yield similar results to the

Wilcoxon rank sum test and Rank ANCOVA. Min-P1 and Min-P2 both pick the XDIFF (R-est) model

and have the smallest standard errors among all considered models. Lastly, Min-P1 and Min-P2

greatly outperform CFB and are competitive with the previously recommended XDIFF OLS model.
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Table 4.4: Parametric and Nonparametric Comparisons: 2× 2 Real Data Example I (N=20)

Method LCB Estimate SE p-value

CFB None 0.235 0.092 0.0201

Wilcoxon Rank Sum None 0.193 - 0.0376

Rank ANCOVA R(Xi1k −Xi2k) - - 0.0126

No Baselines (OLS) None 0.155 0.079 0.0650

XDIFF (OLS) Xi1k −Xi2k 0.186 0.073 0.0212

No Baselines (R-est) None 0.195 0.072 0.0171

XDIFF (R-est) Xi1k −Xi2k 0.202 0.073 0.0160

Min-P1 Xi1k −Xi2k 0.202 0.064a 0.0248b

Min-P2 Data Driven 0.202 0.064a 0.0338b

Notes: P-values are based on Wald tests for OLS, dispersion tests for R-est, and Wilcoxon rank sum exact tests for Rank ANCOVA.
R-est standard errors are based on Equation 4.9. a: Bootstrap Smoothed SE. b: Bootstrap p-values. Rank ANCOVA is used for
hypothesis testing.

4.8.2. 2× 2 Real Data Example II

In this second 2×2 example, 24-hour mean arterial blood pressure, assessed via ambulatory blood

pressure monitoring, was obtained for each of 26 subjects at baseline and after a fixed duration of

receiving the assigned treatment for the given period (Example 1, Mehrotra 2014) (Mehrotra, 2014).

AICC results indicated that the EP covariance was the most likely covariance. This suggests that

XDIFF should be used as the baseline covariate. Results are shown in Table 4.5. A Normal Q-Q

plot of the outcomes (Yi1k − Yi2k) is shown in the top right corner of Figure 4.5.

In this example, while there appears to be a single extreme value, the outcomes do not seem to

deviate strongly from normality. This indicates that while OLS may be reasonable, the extreme

value is likely to have an adverse impact on efficiency. In term of standard errors, the best model is

No Baselines (R-est). Inference based on the Wiloxon Rank Sum and Rank ANCOVA are similar to

the OLS models. Min-P1 picks XDIFF (OLS) while Min-P2 picks No Baselines (R-est). In this case,

Min-P2 has a smaller SE than Min-P1, illustrating the fact that a no baseline model is sometimes

desirable. Again, in terms of standard errors, Min-P1 and Min-P2 outperform the benchmark CFB

and the previously recommended XDIFF (OLS) model.

4.8.3. 3× 3 Real Data Example

The 3 × 3 example is the same as in Section 2.6.2. This study compared effects on heart rate of

three treatments; a test drug, a standard drug, and a placebo. Treatments were assigned in the six
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Table 4.5: Parametric and Nonparametric Comparisons: 2× 2 Real Data Example II (N=24)

Method LCB Estimate SE p-value

CFB None -2.04 0.96 0.045

Wilcoxon Rank Sum None -2.00 - 0.045

Rank ANCOVA R(Xi1k −Xi2k) - - 0.038

No Baselines (OLS) None -1.94 0.95 0.053

XDIFF (OLS) Xi1k −Xi2k -1.86 0.87 0.043

No Baselines (R-Est) None -2.00 0.81 0.029

XDIFF (R-est) Xi1k −Xi2k -1.57 0.82 0.080

Min-P1 Xi1k −Xi2k -1.86 0.82a 0.051b

Min-P2 Data Driven -2.00 0.75a 0.048b

Notes: P-values are based on Wald tests for OLS, dispersion tests for R-est, and Wilcoxon rank sum exact tests for Rank
ANCOVA. R-est standard errors are based on Equation (4.9). a: Bootstrap Smoothed SE. b: Bootstrap p-values. Rank ANCOVA
is used for hypothesis testing.

possible sequences to four patients each. We compare standard to placebo. AICC results indicate

that the most likely covariance structure is EP. This suggests that XDIFF is a good covariate choice.

Model results are given in Table 4.6. A Normal Q-Q plot of the aligned outcomes is shown in the

bottom left corner of Figure 4.5.

Simply looking at the Normal Q-Q plot of the aligned outcomes (Figure 4.5), there appears to be

considerable deviation from normality. In agreement with the AICC results, the XDIFF models yield

smaller standard errors than the No Baseline models. Relative to the other non-adaptive methods,

the LCB models yielded smaller standard errors. Min-P1 and Min-P2 both pick the XDIFF (OLS)

model while Min-P3 picks the LCB (OLS) model. Overall, with the exception of the LCB (OLS)

model, the Min-P methods yielded the smallest standard errors.
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Table 4.6: Parametric and Nonparametric Comparisons: 3× 3 Real Data Example (N=24)

Method LCB Estimate SE p-value

CFB None 5.67 2.77 0.047

Ohrvik Q None 4.68 - 0.0347

RANK ANCOVA R(biXik) - - 0.068

No Baselines (OLS) None 5.12 2.07 0.023

XDIFF (OLS) XDIFF 5.31 1.95 0.014

LCB (OLS) aT? Xik 6.64 1.71a 0.002b

No Baselines (R-Est) None 4.73 2.71a 0.086

Xdiff (R-est) XDIFF 4.47 1.89a 0.024

LCB (R-est) aT? Xik 6.77 2.23a 0.014b

Min-P1 XDIFF 5.31 1.85a 0.010b

Min-P2 Data Driven 5.31 1.86a 0.015b

Min-P3 Data Driven 6.64 1.73a 0.003b

Notes: AICC favors EP covariance and the information based adaptive method uses OLS with the XDIFF covariate. P-values
are based on Wald tests for OLS, dispersion tests for R-est, and Wilcoxon rank sum exact tests for Rank ANCOVA. R-est
standard errors are based on Equation (4.9). a: Bootstrap Smoothed SE. b: Bootstrap p-values. Rank ANCOVA is used for
hypothesis testing.

4.9. Discussion

By incorporating linear combinations of baselines (LCB) in a general loss function, efficient baseline

models can be constructed for varying regression models. This allows the use of nonparametric or

robust regression models, which may be preferable depending on the underlying distribution of the

measurements. In particular, we proposed various baseline models for both OLS and R-estimation

regression models. R-estimation is a rank-based regression approach which is robust across a

range of distributions. Further, as far as we are aware, this study is the first to directly show that

including baseline measurements in a robust analysis of a crossover trial offers improved efficiency

over not including baselines. Based on a range of simulation studies and real data examples,

R-estimation baseline models were more efficient than previously recommended nonparametric

baseline adjusted or unadjusted models.

For baseline utilization in crossover designs, R-estimation models have a number of advantages.

First, relative to OLS, R-estimation models yields 95% efficiency under normality (Hettmansperger

and Mckean, 2010). Notably, this property is shared among other nonparametric alternatives, such

as the Wilcoxon rank sum. Second, R-estimation has good small sample properties (Mckean and

Sheather, 1991). As a frame of reference, M-estimation is another popular robust regression model
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with similar advantages as R-estimation (Huber, 1964). Despite this, for small sample sizes, vari-

ance estimates tend to be unreliable (Fox and Weisberg, 2011). This can lead to inflated type I

error. Our own empirical studies in crossover designs confirm this observation (results not shown).

Third, R-estimation allows both estimation and hypothesis testing. In contrast, most nonparametric

alternatives do not easily give SEs, although CIs can be constructed, for example by inverting the

hypothesis test. For Rank ANCOVA, estimation procedures are not readily available. Lastly, the

R-estimation score function could be chosen to best fit the underlying data. For symmetric data,

the Wilcoxon rank sum is recommended (Hettmansperger and Mckean, 2010). Our methods could

easily be adapted for use with skewed data where different score functions would better fit the data

(Kloke and McKean, 2012).

A Min-P model selection based procedure was also considered. This approach first fits a number

of OLS and R-estimation baseline models. The model with the smallest treatment effect p-value

is then chosen. To account for the model selection, nonparametric bootstrap is used for inference.

While computationally slow, inference through bootstrap p-values and confidence intervals is dis-

tribution free. In contrast, test statistics for OLS or R-estimation baseline models usually assume

asymptotic normality. Overall, inference through a nonparametric framework is preferable, as this

is robust to distributional assumptions and less sensitive to small sample sizes.

The fact that the Min-P method can adaptively pick among different baseline models is quite ad-

vantageous. Many have pointed out that potential efficiency gains from including baselines as co-

variates ultimately depends on the underlying covariance structure of the baselines and outcomes

(Jemielita, Putt, and Mehrotra, 2016; Kenward and Roger, 2010; Mehrotra, 2014). Similarly, Tudor

and Koch noted that the magnitude of correlation between the baselines and outcomes play an

important role in potential efficiency gains for baseline adjustment in nonparametric models (Tu-

dor and Koch, 1994). This was also illustrated in Section 4.4 for the general LCB linear model.

However, this covariance structure is never known and thus the best baseline covariate to include

is unknown. For higher order designs, we previously used information criteria to pick the base-

line covariate and obtain efficient treatment effect estimates (Jemielita, Putt, and Mehrotra, 2016).

The newly proposed Min-P method offers several advantages to our original approach. First, the

information criteria based approach assumed that the joint measurements of the baselines and out-

comes follows a normal distribution. This is inefficient if the distribution is not normal. Second, the
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information criteria based approach makes no adjustment for the model selection. In contrast, the

Min-P method makes no distributional assumptions and explicitly accounts for the model selection.

Our methods revolved around regression models where the outcomes were within-subject contrasts

chosen to target a specific treatment effect. While this was developed for the general crossover de-

sign, there may be better approaches for incomplete block designs. Our work with incomplete block

design research (Chapter 3) suggests that a mixed model approach, where within-subject and

between-subject information is combined, is more effective than a corresponding within-subject

model approach. Analagous to a mixed model, Kloke, Mckean, and Rashid extended R-estimation

to a linear model with a dependent error structure (Kloke, Mckean, and Rashid, 2009). This ap-

proach could be a possible robust alternative to mixed models. Regardless, our developed methods

are quite efficient for uniform designs, such as the 2× 2 or 3× 3 design.

Overall, given a general loss function, an optimal linear combination of baselines can be found.

This allows us to consider robust nonparametric regression models in conjunction with efficient

baseline utilization. Moreover, by using a Min-P model selection procedure, we are not restricted to

pre-specifying a specific model. More importantly, our proposed data-driven methods yield efficient

estimates of treatment effect under a variety of covariances and distributions. Further, inference

is nonparametric and yields valid inference in small samples. For data that are not normally dis-

tributed, R-estimation baseline models are an attractive alternative to previously recommended

nonparametric baseline adjusted or unadjusted models. For pratical use, the Min-P models can be

utilized. Compared to standard methods, such as CFB or the simple XDIFF OLS model, the Min-P

aproach can yield substantial gains in power across a range of covariances and distributions.
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CHAPTER 5

CONCLUSION

The goal of this research was to efficiently incorporate baselines into the analysis of a crossover

design. While there has been a variety of proposed baseline models in the literature, our methods

are the first to explicitly leverage the relationship between the baselines and outcomes to deliver a

more efficient treatment effect estimate. Specifically, linear combinations of baselines (LCBs) are

incorporated in a regression model such that the efficiency of a pairwise treatment effect estimate

is increased. Given the typically small sample sizes of crossover designs, combining all available

baseline information into a single metric is especially advantageous since the number of covariates

in a regression model can significantly impact the degrees of freedom in the analysis.

Chapter 2 discussed baseline utilization for uniform designs under an assumption of normality.

Uniform designs are highly efficient and all estimation of a treatment effect estimate can come

from within-subject contrasts. Exploiting this, the optimal LCB minimizes the conditional variance

corresponding to the within-subject contrasts related to some pairwise treatment effect estimate.

In this setting, we showed that the optimal LCB depends on the joint covariance structure of the

baselines and outcomes. In practice, the covariance is unknown and thus an information criteria

based adaptive approach was proposed. This adaptive approach selected the LCB baseline model

corresponding to the most likely underlying covariance structure. Based on simulation studies and

real data examples, this adaptive method proved especially effective in higher order designs, such

as the 3 × 3 and 4 × 4 design. For the 2 × 2 design, there was little efficiency gain by adaptively

picking the most likely LCB model and the simple XDIFF (OLS) (or XA −XB) baseline model was

efficient across a range of scenarios.

In Chapter 3, under the assumption of normality, various baseline methods are proposed and evalu-

ated for incomplete block crossover designs. For mixed effects models, in which the treatment effect

estimate is a weighted function of within-subject and between-subject information, period-specific

LCB models were proposed. Relative to commonly used models, such as change from baseline,

these proposed models proved highly efficient across a range of covariance structures. Since

mixed effects models require estimation of a covariance matrix, we further stressed the importance
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of using a Kenward-Roger degrees of freedom adjustment. This adjustment is necessary to main-

tain the nominal type I error rate and yield valid inference. However, even with this adjustment,

the type I error rate is inflated at small sample sizes. To handle this, we proposed a simpler fixed

effects analysis involving only within-subject contrasts. In this setting, efficient baseline utilization

is identical to the uniform design.

Chapter 4 describes the more general setting where the optimal LCB depends on some known dis-

tribution. In a practical setting, the distribution is unknown and the optimal LCB is estimated under

some regression model or loss function. For non-normal data, we proposed using R-estimation,

a rank-based nonparametric regression model. Relative to previously suggested nonparametric

models, such as unadjusted rank-based statistics (Koch, 1972; Ohrvik, 1998) and two-step non-

parametric covariance adjustment (Tudor and Koch, 1994), R-estimation baseline models proved

efficient across a range of scenarios. As far as we are aware, this was the first study to explicitly

demonstrate the advantage of adjusting for baseline covariates in nonparametric models. A data-

driven Min-P model selection procedure was also proposed. This approach chooses the best fitting

model among a set of OLS and R-estimation baseline models with nonparametric bootstrapping

to obtain valid inference. Relative to using only OLS or only R-estimation, this Min-P approach

uniformly increased power across a range of distributions.

Overall, we have proposed a wide range of efficient baseline models for crossover designs. A key

point has been that efficient baseline utilization requires knowledge of the underlying joint distri-

bution of the baselines and outcomes. In practice, the joint distribution is unknown and we can

never know a-priori the best analytical approach. To deal with this, information criteria and Min-P

data-driven approaches were developed. The advantage here is that the estimation of a treatment

effect is not dependent on some pre-specified individual model, which may be inefficient. Rela-

tive to commonly used baseline models, such as change from baseline, our methods consistently

demonstrated improved power across a range of crossover designs, covariance structures, and

distributions.
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APPENDIX A

NOTATION

Table A.1: Notation
Notation Description
bYik = YiAk − YiBk Treatment-Ordered Contrast (A vs B)
aTXik = {

∑
adXidk OR

∑
ajXijk } Linear Combination of Baselines (LCB), by period or by treatment

aT?Xik Optimal LCB; sequence invariant
aTi?Xik Sequence specific Optimal LCB
aTj?Xik Period specific Optimal LCB
W ik = (Xi1k, Yi1k, ..., Xipk, Yipk)T Temporally ordered measurements
biY ik Period ordered within-subject contrast of interest
Acronyms
LCB Linear Combination of Baselines
AICC Akaike Information Criterion corrected; small sample correction
AR(1) (ΣAR) Autoregressive(1) covariance structure
CS (ΣCS) Compound Symmetry covariance structure
DCS (ΣDCS) Double Compound Symmetry covariance structure
EP (ΣEP ) Equipredictability covariance structure
UN (ΣUN ) Unstructured covariance structure
OLS Ordinary Least Squares
GLS Generalized Least Squares
ANCOVA Analysis of Covariance
REML Restricted Maximum Likelihood
KR DF Kenward Roger Degrees of Freedom
XDIFF biXik; Same contrast as chosen within-subject contrasts (biY ik)
Chapter 2 Methods
No Baselines OLS model 2.16 with no LCB
Change from Baseline (CFB) Mixed Model with change scores (Yijk −Xijk); Equation 3.9, no LCB
XA −XB Fits Equation 2.16 with XiAk −XiBk as the LCB
AR(1) covariate Fits Equation 2.17 with the LCBs in Table 2.2 under AR(1)
Adaptive Information Criteria Based Method (Section 2.5.3)
Chapter 3 Methods
No Baselines Mixed Model with no LCB; Eqn 3.8
Change from Baseline (CFB) Mixed Model with change scores (Yijk −Xijk); Equation 3.9, no LCB
Y|X, X̄ Regress outcomes against baselines in mixed model; Equation 3.10
Y|Xa?,Xa? Regress outcomes against LCBs in mixed model; Equation 3.11
WS No Baselines Fits WS contrast model (3.18) with no LCB
WS X1 −X2 Fits WS contrast model (3.18) with X1 −X2 as covariate
WS Adaptive WS Model information criteria based approach (Section 3.3.2)
Chapter 4 Methods
No Baselines (OLS, R-est) Equation 4.5 with no LCB; OLS or R-estimation
XDIFF (OLS, R-est) Equation 4.5 with XDIFF covariate; OLS or R-estimation
LCB (OLS, R-est) Estimate the optimal LCB 4.6; OLS or R-estimation
Min-P1 Choose between XDIFF (OLS, R-est) models
Min-P2 Choose between No Baselines and XDIFF (OLS, R-est) models
Min-P3 Choose between No Baselines, XDIFF, and LCB (OLS, R-est) models
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APPENDIX B

CHAPTER 2, UNIFORM DESIGNS

B.1. Optimal LCBs under CS, DCS, EP, and AR(1)

Here we solve for the various optimal LCBs under CS, DCS, EP, and AR(1) for the 2× 2, 3× 3, and

4× 4 designs. Under CS, EP, and DCS, the optimal LCB (aT? Xik) can be conveniently solved under

the treatment ordering. Here:

aT? = (a?1, ..., a
?
Z) = Argmin

aT
V (YiAk − YiBk|aTXik)

Under CS, it follows that V (YiAk − YiBk|aTXik) = V (YiAk − YiBk) for all aT and all designs. Thus,

no LCB can reduce the variance of the desired treatment effect and the optimal LCB under CS

for all designs is to use no baseline covariate. Under a temporally related covariance structure,

such as AR(1), a period-ordering of the measurements needs to be considered. Consequently,

within-subject contrasts differ by sequence/design and so do the optimal LCBs. In general, we

solve:

aTi? = (a?i1, ..., a
?
ip) = Argmin

aTi

V (bTi Y ik|aTi Xik)

B.1.1. 2× 2 Design

For the 2×2 design, analytical solutions for the optimal LCB can be found under an unstructured co-

variance. We can then apply these solutions to the various covariance structures. For convenience,

let the measurements be ordered temporally and define V ((X1, Y1, X2, Y2)T ) under an unstructured

covariance:

ΣUN =



σ1 σ12 σ13 σ14

σ2 σ23 σ24

σ3 σ34

σ4


(B.1)

83



The conditional variance of interest is:

V (Y1 − Y2|aTX) = V (Y1 − Y2)− (a1(σ12 − σ14) + a2(σ23 − σ34))2

V (aTX)

Note that the right term is always non-negative and 0 < V (Y1 − Y2|aTX) ≤ V (Y1 − Y2). Next, take
partial derivatives with respect to a1 and a2. Accordingly:

∂V (Y1 − Y2|a
TX)

∂a1

= −
2(a1(σ12 − σ14) + a2(σ23 − σ34))(σ12 − σ14)V (aTX) − (a1(σ12 − σ14) + a2(σ23 − σ34))2(2a1σ1 + 2a2σ13)

V (aTX)2

∂V (Y1 − Y2|a
TX)

∂a2

= −
2(a1(σ12 − σ14) + a2(σ23 − σ34))(σ23 − σ34)V (aTX) − (a1(σ12 − σ14) + a2(σ23 − σ34))2(2a2σ3 + 2a1σ13)

V (aTX)2

Let K = −2(a1(σ12 − σ14) + a2(σ23 − σ34))/V (aTX)2. Then:

∂V (Y1 − Y2|aTX)

∂a1
= K

(
(σ12 − σ14)V (aTX)− (a1(σ12 − σ14) + a2(σ23 − σ34))(a1σ1 + a2σ13)

)
= K

(
(σ12 − σ14)(a22σ3 + a1a2σ13)− a2(σ23 − σ34)(a1σ1 + a2σ13)

)
= Ka2 (a1(σ13(σ12 − σ14)− σ1(σ23 − σ34)) + a2(σ3(σ12 − σ14)− σ13(σ23 − σ34)))

∂V (Y1 − Y2|aTX)

∂a2
= K

(
(σ23 − σ34)V (aTX)− (a1(σ12 − σ14) + a2(σ23 − σ34))(a2σ3 + a1σ13)

)
= K

(
(σ23 − σ34)(a21σ1 + a1a2σ13)− a1(σ12 − σ14)(a2σ3 + a1σ13)

)
= Ka1 (a1(σ1(σ23 − σ34)− σ13(σ12 − σ14)) + a2(σ13(σ23 − σ34)− σ3(σ12 − σ14)))

Critical values correspond to the values of aT = (a1, a2) such that both partial derivatives equals

zero. Note that both partials equal 0 when K = 0. If K = 0, then a1 = −(σ23 − σ34) and a2 = σ12 −

σ14 and consequently V (Y1−Y2|aTX) = V (Y1−Y2). Thus, aT = {a1 = −(σ23−σ34), a2 = σ12−σ14}

maximizes the conditional variance. However, both partials also equal zero for:

{
a?1 = σ3(σ12 − σ14)− σ13(σ23 − σ34); a?2 = σ1(σ23 − σ34)− σ13(σ12 − σ14)

}
{
a?1 = V (X2)(cov(X1, Y1)− cov(X1, Y2))− cov(X1, X2)(cov(X2, Y1)− cov(X2, Y2));

a?2 = V (X1)(cov(X2, Y1)− cov(X2, Y2))− cov(X1, X2)(cov(X1, Y1)− cov(X1, Y2))
}

(B.2)

To verify that the above critical values correspond to the minimum of the conditional variance

with respect to aT , second partial derivatives typically need to be taken. However, we know that

V (Y1−Y2|aTX) > 0 and know that the other critical value, aT = {a1 = −(σ23−σ34), a2 = σ12−σ14},

corresponds to the maximum. Accordingly, (B.2) must correspond to the minimum and the optimal
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LCB under a period-ordering setting is aT? X = a?1X1 + a?2X2. While this derivation was under a

period-ordering, the optimal LCB under a treatment ordering is found simply by letting the unstruc-

tured covariance (B.1) correspond to V ((XA, YA, XB , YB)T ). This yields:

{
a?1 = V (XB)(cov(XA, YA)− cov(XA, YB))− cov(XA, XB)(cov(XB , YA)− cov(XB , YB));

a?2 = V (XA)(cov(XB , YA)− cov(XB , YB))− cov(XA, XB)(cov(XA, YA)− cov(XA, YB))
}

• Under EP: Here, V (YA) = V (YB) = V (XA) = V (XB) = σ2, corr(YA, YB) = cov(XA, XB) =

ρ2, cov(YA, XA) = cov(XB , XB) = ρ1, and cov(XB , YA) = cov(XA, YB) = ρ3. Accordingly:

{
a?1 = σ4(ρ1 − ρ3)− σ4ρ2(ρ3 − ρ1); a?2 = −σ4(ρ1 − ρ3) + σ4ρ2(ρ3 − ρ1)

}

Thus, a?1 = −a?2 and an optimal LCB is XA −XB .

• Under DCS: Here, V (YA) = V (YB) = V (XA) = V (XB) = σ2, cov(YA, YB) = cov(XA, XB) =

cov(XB , YA) = cov(XA, YB) = ρ2, and cov(YA, XA) = cov(XB , XB) = ρ1. Accordingly:

{
a?1 = σ4(ρ1 − ρ2)− σ4ρ2(ρ2 − ρ1); a?2 = −σ4(ρ1 − ρ2) + σ4ρ2(ρ2 − ρ1)

}

Thus, a?1 = −a?2 and an optimal LCB is XA −XB .

• AR(1): Here, V (Y1) = V (Y2) = V (X1) = V (X2) = σ2, cov(X1, Y1) = cov(X2, Y1) =

cov(X2, Y2) = ρσ2, cov(X1, X2) = cov(Y1, Y2) = ρ2σ2, and cov(X1, Y2) = ρ3σ2. Thus:

{
a?1 = σ4(ρ− ρ3); a?2 = −σ4ρ2(ρ− ρ3)

}

Thus, a?1/a?2 = −1
ρ2 corresponds to the optimal LCB. Subsequently, ρ−2X1 −X2 is an optimal

LCB under AR(1).

B.1.2. 3× 3 Design

• EP: The conditional variance of interest under EP is

V (YA − YB |aTX,ΣEP ) = σ2(1− ρ1)− σ4(a1 − a2)2(ρ1 − ρ3)2

V (aTX)
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Next, we take partial derivatives of this conditional variance with respect to aT = (a1, a2, a3).

∂V (YA − YB |aTX,ΣEP )

∂a1
=
−2σ6(ρ1 − ρ3)2(a1 − a2)

V (aTX)2
[a3(a3 + 3ρ2a2 + ρ1a3) + a2(1 + ρ2)(a1 + a2)]

∂V (YA − YB |aTX,ΣEP )

∂a2
=

2σ6(ρ1 − ρ3)2(a1 − a2)

V (aTX)2
[a3(a3 + ρ2a2 + 3ρ1a3) + a1(1 + ρ2)(a1 + a2)]

∂V (YA − YB |aTX,ΣEP )

∂a3
=

2σ6(ρ1 − ρ3)2

V (aTX)2
[(a1 − a2)2(a3 + ρ2(a1 + a2))]

Note that there are two critical values that result in each partial equaling zero. The maximum

is when a1 = a2, a3 = a3 since this reduces V (YA − YB |aTX,ΣEP ) to V (YA − YB |ΣEP ). The

second critical point is when a1 = −a2, a3 = 0. Using similar logic as in the 2× 2 design, this

means that an optimal LCB under EP for a 3× 3 design is aT? X = (1,−1, 0) ∗X = XA −XB .

• DCS: The conditional variance of interest under DCS is

V (YA − YB |aTX,ΣEP ) = σ2(1− ρ1)− σ4(a1 − a2)2(ρ1 − ρ2)2

V (aTX)

This conditional variance and the corresponding partial derivatives are almost identical to the

EP case. Consequently, the optimal LCB is XA −XB .

• AR(1): The following conditional variances are of interest

V (Y1 − Y2|aTX,ΣAR) = 2σ2(1− ρ2)− σ4(a1 − a3)2(ρ− ρ3)2

V (aTX)

V (Y2 − Y3|aTX,ΣAR) = 2σ2(1− ρ2)− σ4(a1ρ
2 + a2)2(ρ− ρ3)2

V (aTX)

V (Y1 − Y3|aTX,ΣAR) = 2σ2(1− ρ4)− σ4(ρ− ρ3)2(a1(1 + ρ2) + a2 − a3)2

V (aTX)

– V (Y1−Y2|aTX,ΣAR) corresponds to sequences ABC/BAC. The corresponding partials

with respect to aT are:

∂V (Y1 − Y2|aTX,ΣAR)

∂a1
=

−2σ6(ρ− ρ3)2(a1 − a3)

V (aTX)2
[a2(a2 + a1ρ

2 + 3a3ρ
2) + a3(1 + ρ4)(a1 + a3)]

∂V (Y1 − Y2|aTX,ΣAR)

∂a2
=

−2σ6(ρ− ρ3)2

V (aTX)2
[(a1 − a3)2(a2 + ρ2(a1 + a3)]

∂V (Y1 − Y2|aTX,ΣAR)

∂a3
=

−2σ6(ρ− ρ3)2(a1 − a3)

V (aTX)2
[a2(a2 + 3a1ρ

2 + a3ρ
2) + a1(1 + ρ4)(a1 + a3)]

All three partials equal zero for (1) a1 = a3, a2 = a2 and (2) a1 = −a3, a2 = 0. The

maximum is at aT = (a1 = a3, a2 = a2) since this reduces the conditional variance to
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V (Y1 − Y2|ΣAR). The minimum is achieved at a1 = −a3, a2 = 0. Thus, an optimal LCB

for sequences ABC/BAC is X1 −X3.

– V (Y2−Y3|aTX,ΣAR) corresponds to sequences CAB/CBA. The corresponding partials

with respect to aT are:

∂V (Y2 − Y3|aTX,ΣAR)

∂a1
=

−2σ6(ρ− ρ3)2(a1ρ2 + a2)

V (aTX)2
[a1(a2ρ

4 − a3ρ6 − a2) + a3ρ
2(a3 + a2ρ

2)]

∂V (Y2 − Y3|aTX,ΣAR)

∂a2
=

−2σ6(ρ− ρ3)2(a1ρ2 + a2)

V (aTX)2
[a1(a1 + a3ρ

4 − a1ρ4) + a3(a3 + a2ρ
2)]

∂V (Y2 − Y3|aTX,ΣAR)

∂a3
=

2σ6(ρ− ρ3)2(a1ρ2 + a2)2

V (aTX)2
[a1ρ

4 + a3 + a2ρ
2]

All three partials equal zero for (1) a1ρ
2 = −a2, a3 = a3 and (2) a3 = −a2ρ

2, a1 = 0. The

first corresponds to the maximum (yields V (Y2−Y3|ΣAR)) while the second corresponds

to the minimum. Thus, an optimal LCB for sequences CAB/CBA is ρ−2X2 −X3.

– V (Y1 − Y3|aTX,ΣAR) corresponds to sequences ACB/BCA. Let:

K =
−2σ6(ρ− ρ3)2(a1(1 + ρ2) + a2 − a3)

V (aTX)2

Then the corresponding partials with respect to aT are:

∂V (Y1 − Y3|aTX,ΣAR)

∂a1

= K[a
2
3(1 + ρ

2
+ ρ

4
) + a2(a2 + 3a3ρ

2
+ a3ρ

4
) + a1(a2ρ

2
+ a3ρ

2
+ a3ρ

6 − a2 + a3)]

∂V (Y1 − Y3|aTX,ΣAR)

∂a2

= K[a
2
1(1− ρ2 − ρ4

) + a
2
3(1 + ρ

2
) + a1a3ρ

4
+ a2(a3ρ

2 − a1 + a3)]

∂V (Y1 − Y3|aTX,ΣAR)

∂a3

= K[a
2
1(1 + ρ

4
+ ρ

6
) + (1 + ρ

2
)(a

2
2 + a2a3) + a1a2(3ρ

2
+ 2ρ

4
) + a1a3(1 + ρ

2
+ ρ

4
)]

Unlike the previous cases, it is not explicitly clear what values of aT = (a1, a2, a3) cor-

respond to the minimum of the conditional variance. Using numerical methods (such as

PROC NLP or optim), there was a suggestion that a1 = a2 corresponds to the minimum

critical values. Following this idea, set a = b = 1 for simplicity. Then, plugging this into
∂V (Y1−Y3|aTX,ΣAR)

∂a2
, we get:

a3 =
−(1 + ρ2 + ρ4)−

√
(1 + ρ2 + ρ4)2 + 4ρ2(1 + ρ2)2

2(1 + ρ2)

These values do in fact set the other partials to zero. Further, these values are identical

to the values that minimize the conditional variance under numerical methods, giving

strong evidence that these values of aT = (a1, a2, a3) minimize the conditional variance.
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Overall, the optimal LCBs under an AR(1) structure are (1) X1−X3 for sequences ABC/BAC;

(2) ρ−2X2 −X3 for sequenes CAB/CBA; (3) X1 +X2 +
−(1+ρ2+ρ4)−

√
(1+ρ2+ρ4)2+4ρ2(1+ρ2)2

2(1+ρ2) X3

for sequences ACB/BCA.

B.1.3. 4× 4 Design

• EP: The conditional variance of interest under EP is

V (YA − YB |aTX,ΣEP ) = σ2(1− ρ1)− σ4(a1 − a2)2(ρ1 − ρ3)2

V (aTX)

Next, we take partial derivatives of this conditional variance with respect to aT = (a1, a2, a3, a4).

∂V (YA − YB |aTX,ΣEP )

∂a1

=
−2σ6(ρ1 − ρ3)2(a1 − a2)

V (aTX)2
∗

(a3(a3 + a1ρ2 + 3a2ρ2 + 2a4ρ2) + a4(a4 + a1ρ2 + 3a2ρ2) + a2(1 + ρ2)(a1 + a2))

∂V (YA − YB |aTX,ΣEP )

∂a2

=
2σ2(ρ1 − ρ3)2(a1 − a2)

V (aTX)2
∗

(a3(a3 + 3a1ρ2 + a2ρ2 + 2a4ρ2) + a4(a4 + 3a1ρ2 + a2ρ2) + a1(1 + ρ2)(a1 + a2))

∂V (YA − YB |aTX,ΣEP )

∂a3

=
2σ6(ρ1 − ρ3)2(a1 − a2)2

V (aTX)2
(a3 + a4ρ2 + ρ2(a1 + a2))

∂V (YA − YB |aTX,ΣEP )

∂a4

=
2σ6(ρ1 − ρ3)2(a1 − a2)2

V (aTX)2
(a4 + a3ρ2 + ρ2(a1 + a2))

All partials equal zero for (1) a1 = a2, a3 = a3, a4 = a4 and (2) a1 = −a2, a3 = a4 = 0. The

maximum corresponds to aT = (a1 = a2, a3 = a3, a4 = a4), as this reduces the conditional

variance to V (YA − YB |ΣEP ). The minimum is obtained at aT = (a1 = −a2, a3 = a4 = 0).

Thus, an optimal LCB is XA −XB .

• DCS: The conditional variance of interest under DCS is

V (YA − YB |aTX,ΣEP ) = σ2(1− ρ1)− σ4(a1 − a2)2(ρ1 − ρ2)2

V (aTX)

Given the almost identical variance formulas, as in the 3 × 3 design, the optimal LCB under

DCS is the same as under EP. Consequently, the optimal LCB is XA −XB .
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• AR(1): The following conditional variances are of interest

V (Y1 − Y2|aTX,ΣAR(1)) = 2σ(1− ρ2)− σ4(ρ− ρ3)2(a1 − a3 − ρ2a4)2

V (aTX)

V (Y1 − Y3|aTX,ΣAR(1)) = 2σ(1− ρ4)− σ4((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))2

V (aTX)

V (Y2 − Y4|aTX,ΣAR(1)) = 2σ(1− ρ4)− σ4((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))2

V (aTX)

V (Y3 − Y4|aTX,ΣAR(1)) = 2σ(1− ρ2)− σ4(ρ− ρ3)2(ρ4a1 + ρ2a2 + a3)2

V (aTX)

– V (Y1−Y2|aTX,ΣAR) corresponds to sequences ABCD. The corresponding partials with
respect to aT are:

∂V (Y1 − Y2|a
TX,ΣAR(1))

∂a1

=
−2σ6(ρ − ρ3)2(a1 − a3 − ρ

2a4)

V (aTX)2
∗

(a2(a2 + a1ρ
2

+ 3a3ρ
2

+ 3a4ρ
4
) + a4(a4 + a1ρ

6
+ 2a3ρ

2 − a3ρ
6 − a1ρ

2 − a3ρ
6 − a4ρ

8
) +

a3(1 + ρ
4
)(a1 + a3))

∂V (Y1 − Y2|a
TX,ΣAR(1))

∂a2

=
2σ6(ρ − ρ3)2(a1 − a3 − ρ

2a4)

V (aTX)2
(ρ

2
(a1 + a3) + a2 + a4ρ

4
)

∂V (Y1 − Y2|a
TX,ΣAR(1))

∂a3

=
2σ6(ρ − ρ3)2(a1 − a3 − ρ

2a4)

V (aTX)2
∗

(a2(a2 + 3a1ρ
2

+ a3ρ
2

+ a4ρ
4
) + a4(a4 + a1ρ

6
+ a3ρ

2
+ a3ρ

2
+ a1ρ

2 − a3(ρ
2

+ ρ
4
)) +

a1(1 + ρ
4
)(a1 + a3))

∂V (Y1 − Y2|a
TX,ΣAR(1))

∂a4

=
2σ6(ρ − ρ3)2(a1 − a3 − ρ

2a4)

V (aTX)2
∗

(a2(a2ρ
2

+ 3a1ρ
4

+ a3ρ
4

+ a4ρ
6
) + a4(a1ρ

8
+ a3ρ

4
+ a1 − a3) + a1ρ

2
(1 + ρ

4
)(a1 + a3))

There are two critical values: (1) aT = (a1−a3−ρ2a4 = 0) and (2) aT = (a1 = −a3, a2 =

a4 = 0). The first is the maximum by inpection meaning that aT = (a1 = −a3, a2 = a4 =

0) minimizes the conditional variance. Thus, an optimal LCB for sequence ABCD is

X1 −X3.
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– V (Y1−Y3|aTX,ΣAR) corresponds to sequences BDAC. The corresponding partials are:

∂V (Y1 − Y3|aTX,ΣAR)

∂a1
=

−2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ5)(V (aTX)− (a1 − a4)(a1 + a2ρ
2 + a3ρ

4 + a4ρ
6))−

(ρ− ρ3)(a2 − a3)(a1 + a2ρ
2 + a3ρ

4 + a4ρ
6)]

∂V (Y1 − Y3|aTX,ΣAR)

∂a2
=

−2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ3)(V (aTX)− (a2 − a3)(a2 + a1ρ
2 + a3ρ

2 + a4ρ
4))−

(ρ− ρ5)(a1 − a4)(a2 + a1ρ
2 + a3ρ

2 + a4ρ
4)]

∂V (Y1 − Y3|aTX,ΣAR)

∂a3
=

2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ3)(V (aTX) + (a2 − a3)(a3 + a1ρ
4 + a2ρ

2 + a4ρ
2)) +

(ρ− ρ5)(a1 − a4)(a3 + a1ρ
4 + a3ρ

2 + a4ρ
2)]

∂V (Y1 − Y3|aTX,ΣAR)

∂a4
=

2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ5)(V (aTX) + (a1 − a4)(a4 + a1ρ
6 + a2ρ

4 + a3ρ
2)) +

(ρ− ρ3)(a2 − a3)(a4 + a1ρ
6 + a2ρ

4 + a3ρ
2)]

The maximum occurs at aT = (a1 = a2 = a3 = a4). From these formulas, it is unclear
where the minimum occurs. However, through numerical integration (Newton-Raphson),
there is evidence that aT = (a1 = a2 = −a3 = −a4) minimizes the conditional variance.
WLOG, let a1 = a2 = 1, a3 = a4 = −1. After some algebra:

∂V (Y1 − Y3|aTX,ΣAR)

∂a1

=
−2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

(2(ρ− ρ5
)(1− ρ4

)− 2(ρ− ρ3
)(1 + ρ

2 − ρ− ρ6
))

=
−2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
(2(ρ− 2ρ

5
+ ρ

9 − (ρ− 2ρ
5

+ ρ
9
)))

= 0

∂V (Y1 − Y3|aTX,ΣAR)

∂a2

=
−2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

(2(ρ− ρ3
)(1 + ρ

2 − ρ4 − ρ6
)− 2(ρ− ρ5

)(1− ρ4
))

= 0

∂V (Y1 − Y3|aTX,ΣAR)

∂a3

=
2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

(2(ρ− ρ3
)(1 + ρ

2 − ρ4 − ρ6
) + 2(ρ− ρ5

)(ρ
4 − 1))

= 0

∂V (Y1 − Y3|aTX,ΣAR)

∂a4

=
2σ6((a1 − a4)(ρ− ρ5) + (a2 − a3)(ρ− ρ3))

V (aTX)2
∗

(2(ρ− ρ5
)(1− ρ4

) + 2(ρ− ρ3
)(−1 + ρ

6
+ ρ

4 − ρ2
))

= 0

Thus, for sequence BDAC, an optimal LCB is X1 +X2 −X3 −X4.
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– V (Y2 − Y4|aTX,ΣAR) corresponds to sequences CADB. The corresponding partials

are:

∂V (Y2 − Y4|aTX,ΣAR)

∂a1
=

−2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ5)(ρ2V (aTX)− (ρ2a1 + a2)(a1 + a2ρ
2 + a3ρ

4 + a4ρ
6))−

(ρ− ρ3)(a3 − a4)(a1 + a2ρ
2 + a3ρ

4 + a4ρ
6)]

∂V (Y2 − Y4|aTX,ΣAR)

∂a2
=

−2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ5)(V (aTX)− (ρ2a1 + a2)(a2 + a1ρ
2 + a3ρ

2 + a4ρ
4))−

(ρ− ρ3)(a3 − a4)(a2 + a1ρ
2 + a3ρ

2 + a4ρ
4)]

∂V (Y2 − Y4|aTX,ΣAR)

∂a3
=

−2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ3)(V (aTX)− (a3 − a4)(a3 + a1ρ
4 + a2ρ

2 + a4ρ
2))−

(ρ− ρ5)(ρ2a1 + a2)(a3 + a1ρ
4 + a2ρ

2 + a4ρ
2)]

∂V (Y2 − Y4|aTX,ΣAR)

∂a4
=

2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

[(ρ− ρ3)(V (aTX) + (a3 − a4)(a4 + a1ρ
6 + a2ρ

4 + a3ρ
2)) +

(ρ− ρ3)(ρ2a1 + a2)(a4 + a1ρ
6 + a2ρ

4 + a3ρ
2)]

Each partial equals zero aT = (ρ2a1 + a2 = 0, a3 = a4). This corresponds to the max-

imum. Again, it’s unclear where the minimum occurs. However, numerical integration

(Newton-Raphson) indicates that the minimum occurs at aT = (a1 = 0, a2 = a3, a4 =

−(1 + ρ2)a3). WLOG, let a2 = a3 = 1, a4 = −(1 + ρ2). After some algebra:

∂V (Y2 − Y4|aTX,ΣAR)

∂a1
=

−2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

((ρ− ρ5)(2ρ2 + ρ4 − 2ρ6 − ρ8)− (ρ− ρ3)(2ρ2 + 3ρ4 − ρ6 − 3ρ8 − ρ10))

= 0

∂V (Y2 − Y4|aTX,ΣAR)

∂a2
=

−2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

((ρ− ρ5)(2 + ρ2 − 2ρ4 − ρ6)− (ρ− ρ3)(2 + 3ρ2 − ρ4 − 3ρ6 − ρ8))

= 0

∂V (Y2 − Y4|aTX,ΣAR)

∂a3
=

−2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

((ρ− ρ3)(1 + ρ2 − ρ4 − ρ6)− (ρ− ρ5)(1− ρ4))

= 0

∂V (Y2 − Y4|aTX,ΣAR)

∂a4
=

2σ6((ρ2a1 + a2)(ρ− ρ5) + (a3 − a4)(ρ− ρ3))

V (aTX)2
∗

((ρ− ρ3)(1 + ρ2 − ρ4 − ρ6) + (ρ− ρ5)(ρ4 − 1))

= 0

Thus, for sequence BDAC, an optimal LCB is X2 +X3 − (1 + ρ2)X4.
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– V (Y3 − Y4|aTX,ΣAR) corresponds to sequences DCBA. The corresponding partials
are:

∂V (Y3 − Y4|a
TX,ΣAR)

∂a1

=
−2σ(ρ − ρ3)2(a1ρ

4 + a3ρ
2 + a3)

V (aTX)2
∗

(a2(a1ρ
6

+ a3ρ
6

+ a4ρ
8

+ a1ρ
2

+ a3ρ
2
) + a1(a3ρ

8
+ a4ρ

1
0 + a3) + a4ρ

4
(a4 + a3ρ

2
))

∂V (Y3 − Y4|a
TX,ΣAR)

∂a2

=
−2σ(ρ − ρ3)2(a1ρ

4 + a3ρ
2 + a3)

V (aTX)2
∗

(a1(a1(ρ
2 − ρ6) + a2ρ

4
+ a3ρ

6
+ a4ρ

8 − a3ρ
2
) + a2(a3ρ

4
+ a4ρ

6 − a3) + a4ρ
2
(a4 + a3ρ

2
))

∂V (Y3 − Y4|a
TX,ΣAR)

∂a3

=
−2σ(ρ − ρ3)2(a1ρ

4 + a3ρ
2 + a3)

V (aTX)2
∗

(a1(a1 + a2ρ
2

+ a4ρ
6 − a1ρ

8 − 2a2ρ
6
) + a2(a2 + a4ρ

4 − ρ4a2) + a4(a4 + a3ρ
2
))

∂V (Y3 − Y4|a
TX,ΣAR)

∂a4

=
2σ(ρ − ρ3)2(a1ρ

4 + a3ρ
2 + a3)

V (aTX)2
(a1ρ

6
+ a2ρ

4
+ a3ρ

2
+ a4)

Each partial equals zero for (1) a1ρ
4 + a3ρ

2 + a3 = 0 and (2) a1 = a2 = 0, a4 =

−ρ2a3. The first corresponds to the maximum and reduces the conditional variance to

V (Y3−Y4|aTX). The later, aT = (a1 = a2 = 0, a4 = −ρ2a3) corresponds to the minimum.

Thus, for sequence DCBA, an optimal LCB is X3 − ρ−2X4.

B.2. Simulation Information: Treatment Effect Sizes and Covariances

Table B.1: Treatment Effect Sizes: 2× 2, 3× 3 and 4× 4 Design

2× 2 Design ΣCS ΣDCS ΣEP ΣAR ΣUN
N=12 0.80 0.89 0.80 0.87 0.89
N=16 0.67 0.75 0.67 0.73 0.75
N=20 0.59 0.66 0.59 0.64 0.66
N=24 0.54 0.60 0.54 0.58 0.60
N=28 0.49 0.55 0.49 0.53 0.55
N=32 0.46 0.51 0.46 0.49 0.51
3× 3 Design ΣCS ΣDCS ΣEP ΣAR ΣUN
N=18 0.64 0.68 0.64 0.69 0.67
N=24 0.54 0.57 0.54 0.58 0.56
N=30 0.48 0.51 0.48 0.51 0.50
N=36 0.43 0.46 0.43 0.46 0.45
N=42 0.40 0.42 0.40 0.42 0.41
N=48 0.37 0.39 0.37 0.40 0.38
4× 4 Design ΣCS ΣDCS ΣEP ΣAR ΣUN
N=16 0.68 0.73 0.69 0.70 0.69
N=20 0.60 0.63 0.60 0.61 0.60
N=24 0.54 0.58 0.54 0.55 0.54
N=28 0.50 0.53 0.50 0.51 0.50
N=32 0.46 0.49 0.46 0.47 0.46
N=36 0.43 0.46 0.43 0.44 0.43

Note: Treatment effect sizes refer to the true value of: τA − τB , τC − τB ,
τD − τB as appropriate.

Simulations: Response Vector Parameters under AR(1)
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– 2× 2 Design: µ = 6, γid[i,1] = 0, γid[i,2] = 1, ζi1 = 0, ζi2 = 1.

– 3× 3 Design: µ = 6, γid[i,1] = 0, γid[i,2] = 1, γid[i,3] = 2, ζi1 = 0, ζi2 = 1, ζi3 = 2.

– 4 × 4 Design: µ = 6, γid[i,1] = 0, γid[i,2] = 1, γid[i,3] = 2, γid[i,4] = 2.5, ζi1 = 0, ζi2 = 1,

ζi3 = 2, ζi4 = 2.5.

Simulations: Covariance Parameters

– 2 × 2 Design: Under CS, ρ = 0.6; Under EP, ρ1 = 0.60, ρ2 = 0.70, ρ3 = 0.50; Under

DCS, ρ1 = 0.55, ρ2 = 0.80; under AR(1), ρ = 0.73; under UN, ρXXAB = 0.40, ρY YAB = 0.50,

ρXYAA = 0.82, ρXYAB = 0.60, ρXYBA = 0.55, ρXYBB = 0.72.

– 3× 3 Design: Under CS, ρ = 0.6; Under EP, ρ1 = 0.60, ρ2 = 0.70, ρ3 = 0.50; Under DCS,

ρ1 = 0.55, ρ2 = 0.75; under AR(1), ρ = 0.789; and under UN, ρXXAB = 0.43, ρXXAC = 0.45,

ρXXBC = 0.47, ρY YAB = 0.57,ρY YAC = 0.55,ρY YBC = 0.52, ρXYAA = 0.85, ρXYAB = 0.65, ρXYAC = 0.61.

ρXYBA = 0.55, ρXYBB = 0.75, ρXYBC = 0.64, ρXYCA = 0.63, ρXYCB = 0.53, ρXYCC = 0.72.

– 4× 4 Design: Under CS, ρ = 0.6; Under EP, ρ1 = 0.60, ρ2 = 0.70, ρ3 = 0.50; Under DCS,

ρ1 = 0.55, ρ2 = 0.80; under AR(1), ρ = 0.83; and under UN, ρXXAB = 0.46, ρXXAC = 0.45,

ρXXAD = 0.42, ρXXBC = 0.50, ρXXBD = 0.48, ρXXCD = 0.55, ρY YAB = 0.60, ρY YAC = 0.54, ρY YAD = 0.52,

ρY YBC = 0.56, ρY YBD = 0.52, ρY YCD = 0.55, ρXYAA = 0.80, ρXYAB = 0.60, ρXYAC = 0.55, ρXYAD = 0.62,

ρXYBA = 0.61, ρXYBB = 0.80, ρXYBC = 0.63, ρXYBD = 0.55, ρXYCA = 0.50, ρXYCB = 0.55, ρXYCC = 0.82,

ρXYCD = 0.60, ρXYDA = 0.55, ρXYDB = 0.52, ρXYDC = 0.50, ρXYDD = 0.77.
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B.3. Uniform Design Type I Error Results

Table B.2: 2× 2 Simulations: Under the Null Hypothesis, Type I Error

Truth Method N=12 N=16 N=20 N=24 N=28 N=32
ΣCS No Baselines 5.17 5.00 4.88 5.00 4.79 5.08
ΣCS CFB [5.44] 5.05 4.94 4.94 4.67 4.73
ΣCS XA −XB 5.14 5.01 4.79 4.94 4.84 5.05
ΣCS AR(1) 5.18 4.95 4.80 5.12 4.92 5.08
ΣCS Adaptive [[5.96]] [5.42] 5.26 [5.33] 5.08 [5.36]
ΣDCS No Baselines 4.95 4.75 5.20 4.88 4.84 4.81
ΣDCS CFB 4.98 4.72 [5.37] 5.04 4.92 5.01
ΣDCS XA −XB 5.03 4.72 5.16 5.07 5.04 4.73
ΣDCS AR(1) 5.20 5.04 5.27 5.01 5.03 4.75
ΣDCS Adaptive [[5.92]] 5.20 [[5.48]] 5.21 5.12 4.75
ΣEP No Baselines 4.98 4.87 4.96 5.00 4.86 4.99
ΣEP CFB 5.01 4.79 5.24 4.97 4.90 4.97
ΣEP XA −XB 5.07 4.84 5.21 4.96 4.90 4.83
ΣEP AR(1) 5.09 4.92 5.02 5.08 4.87 4.67
ΣEP Adaptive [[6.36]] [[5.62]] [[5.78]] [[5.55]] 5.21 5.09
ΣAR No Baselines 5.19 5.31 5.20 5.06 4.83 4.89
ΣAR CFB [5.53] [5.35] [5.38] 5.09 4.97 4.88
ΣAR XA −XB [5.43] 5.25 5.21 4.83 4.91 4.99
ΣAR AR(1) [[5.54]] [[5.51]] [5.32] 5.05 5.03 4.93
ΣAR Adaptive [[6.04]] [[5.86]] [[5.48]] 5.16 5.16 5.04
ΣUN No Baselines 5.28 4.94 4.96 4.83 5.01 4.75
ΣUN CFB 4.94 4.65 5.21 4.98 4.97 5.01
ΣUN XA −XB 5.10 4.79 5.09 4.97 5.05 4.72
ΣUN AR(1) 5.04 4.99 5.08 5.01 5.00 4.79
ΣUN Adaptive [5.41] 5.00 5.22 5.02 5.08 4.75

Notes: Type I error (%) shown. Entries are in brackets/double brackets if the type I error is two/three SE’s above 5%
(> 5.31%,> 5.46%) based on 20,000 simulations. Method AR(1) refers to the covariates derived in Table 2.2 under
AR(1). The adaptive method, based on AICC values, chooses between methods No Baselines, XA −XB , and Method
AR(1). CS = Compound Symmetry; DCS = Double Compound Symmetry; EP = Equipredictability; AR = Auto-regressive
(1); UN=Unstructured.
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Table B.3: 3× 3 Simulations: Under the Null Hypothesis, Type I Error

Truth Method N=18 N=24 N=30 N=36 N=42 N=48
ΣCS No Baselines 4.84 4.84 4.87 5.24 5.05 5.07
ΣCS CFB 5.00 5.27 5.07 4.88 4.93 4.99
ΣCS XA −XB 4.90 4.96 4.79 5.04 4.93 5.07
ΣCS AR(1) 4.84 4.88 4.93 5.17 4.91 5.11
ΣCS Adaptive 5.23 5.09 5.00 5.27 5.16 5.18
ΣDCS No Baselines 4.92 4.82 4.83 5.04 5.21 5.07
ΣDCS CFB 5.17 5.00 5.16 4.91 4.79 4.92
ΣDCS XA −XB 4.83 4.90 4.84 5.08 4.92 5.09
ΣDCS AR(1) 5.00 4.85 4.89 5.08 5.08 5.12
ΣDCS Adaptive 5.30 5.04 4.96 5.13 4.95 5.11
ΣEP No Baselines 4.71 4.88 4.82 5.17 5.25 5.09
ΣEP CFB 4.82 5.13 4.99 4.90 4.74 5.00
ΣEP XA −XB 4.91 4.97 4.82 5.01 4.94 5.13
ΣEP AR(1) 4.76 4.87 4.83 5.08 4.96 5.11
ΣEP Adaptive 5.25 5.08 4.86 5.01 4.94 5.13
ΣAR No Baselines 5.01 4.99 4.96 5.29 5.16 5.08
ΣAR CFB 4.96 4.68 5.03 5.18 5.25 4.81
ΣAR XA −XB 5.05 4.79 4.94 5.18 5.30 5.05
ΣAR AR(1) 5.16 4.86 5.30 5.21 5.21 5.00
ΣAR Adaptive [5.34] 4.89 5.30 5.22 5.21 5.01
ΣUN No Baselines 5.07 4.96 4.75 5.09 5.21 5.06
ΣUN CFB 4.11 4.14 4.21 3.99 3.81 3.83
ΣUN XA −XB 5.26 4.92 4.92 4.99 4.95 4.94
ΣUN AR(1) 5.08 4.79 4.84 5.01 5.17 4.95
ΣUN Adaptive 5.26 4.92 4.92 4.99 4.95 4.94

Notes: Type I error (%) shown. Entries are in brackets/double brackets if the type I error is two/three SE’s above 5%
(> 5.31%,> 5.46%) based on 20,000 simulations. Method AR(1) refers to the covariates derived in Table 2.2 under
AR(1). The adaptive method, based on AICC values, chooses between methods No Baselines, XA −XB , and Method
AR(1). CS = Compound Symmetry; DCS = Double Compound Symmetry; EP = Equipredictability; AR = Auto-regressive
(1); UN=Unstructured.
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Table B.4: 4× 4 Simulations: Under the Null Hypothesis, Type I Error

Truth Method N=16 N=20 N=24 N=28 N=32 N=36
ΣCS No Baselines 5.08 5.22 5.03 4.91 4.86 4.95
ΣCS CFB 4.88 5.03 5.02 5.01 4.77 5.00
ΣCS XA −XB 5.00 5.02 5.00 4.88 4.90 4.95
ΣCS AR(1) 5.01 5.13 5.16 4.97 4.93 5.05
ΣCS Adaptive 5.24 5.28 5.10 4.90 4.88 4.98
ΣDCS No Baselines 4.93 4.89 5.09 4.93 5.22 4.97
ΣDCS CFB 5.12 5.01 5.04 4.94 4.83 4.92
ΣDCS XA −XB 5.04 4.98 5.02 4.94 4.99 4.90
ΣDCS AR(1) 5.07 5.10 5.22 4.91 5.25 4.92
ΣDCS Adaptive 5.20 5.04 5.03 4.96 5.00 4.90
ΣEP No Baselines 5.04 4.90 5.10 4.92 5.26 5.04
ΣEP CFB 4.96 5.04 4.92 4.96 4.81 4.89
ΣEP XA −XB 5.00 5.17 5.13 4.82 4.84 5.03
ΣEP AR(1) 5.04 5.12 5.11 5.04 5.30 4.79
ΣEP Adaptive 5.08 5.19 5.16 4.82 4.84 5.03
ΣAR No Baselines 4.95 5.21 5.09 5.14 5.09 5.28
ΣAR CFB 4.92 5.07 4.88 5.17 5.16 5.25
ΣAR XA −XB 4.89 5.01 5.00 5.14 5.17 5.16
ΣAR AR(1) 5.11 5.05 5.04 5.10 5.08 5.22
ΣAR Adaptive 5.16 5.06 5.04 5.09 5.08 5.22
ΣUN No Baselines 5.04 4.98 5.03 5.05 5.01 4.86
ΣUN CFB [[6.02]] [[6.00]] [[5.91]] [[5.89]] [[5.79]] [[5.96]]
ΣUN XA −XB 5.01 5.11 5.08 4.92 5.00 4.93
ΣUN AR(1) 5.18 5.05 5.07 4.99 5.11 4.84
ΣUN Adaptive 5.04 5.12 5.08 4.92 5.00 4.93

Notes: Type I error (%) shown. Entries are in brackets/double brackets if the type I error is two/three SE’s above 5%
(> 5.31%,> 5.46%) based on 20,000 simulations. Method AR(1) refers to the covariates derived in Table 2.2 under
AR(1). The adaptive method, based on AICC values, chooses between methods No Baselines, XA −XB , and Method
AR(1). CS = Compound Symmetry; DCS = Double Compound Symmetry; EP = Equipredictability; AR = Auto-regressive
(1); UN=Unstructured.
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APPENDIX C

CHAPTER 3, INCOMPLETE BLOCK DESIGNS

C.1. Mixed Effects Models: Variance Formulas

For the 3 × 2 design, closed form solutions are derived for ̂τA − τB and V ( ̂τA − τB). Consider the

following mean model:

Y ?ijk = µ+ τd[i,j] + πj + εijk

where Y ?ijk depends on the chosen baseline model. In the No Baselines Model, Y ?ijk = Yijk. For the

baseline mixed models, such as Y|X, X̄, the regressed outcome is used, Y ?ijk = Yijk − βjXijk −

γ(Xi1k + Xi2k). Denote the vector of crossover design parameters as η = (µ, π1, τA, τB)T . In this

formulation, π2 and τC are treated as reference paramters. For ease of notation, let i = 1, 2, 3, 4, 5, 6

correspond to sequences AB,BA,BC,CB,AC,CA. Sequence specific design matrices corre-

sponding to η are then:

X1 =

1 1 1 0

1 0 0 1

 ,X2 =

1 1 0 1

1 0 1 0

 ,X3 =

1 1 0 1

1 0 0 0


X4 =

1 1 0 0

1 0 0 1

 ,X5 =

1 1 1 0

1 0 0 0

 ,X6 =

1 1 0 0

1 0 1 0


Next, let Σ? = V ((Y ?i1k, Y

?
i2k)T ). The inverse of this variance is written as:

Σ−1
? =

1

V (Y ?i1k)V (Y ?i2k)− cov(Y ?i1k, Y
?
i2k)2

V (Y ?i2k) −cov(Y ?i1k, Y
?
i2k)

V (Y ?i1k)

 =

a c

c b

 (C.1)

Then, the GLS estimate of η and V (η) are:

η̂ = (

s∑
i=1

ni∑
k=1

XT
i Σ−1

? Xi)
−1(

s∑
i=1

ni∑
k=1

XT
i Σ−1

? Yik)

V (η̂) = (

s∑
i=1

ni∑
k=1

XT
i Σ−1

? Xi)
−1
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Next, after some algebra, V (η̂)−1 equals:



∑s
i=1 ni(a+ b+ 2c)

∑s
i=1 ni(a+ c) (n1 + n5)(a+ c) + (n2 + n6)(b+ c) (n2 + n3)(a+ c) + (n1 + n4)(b+ c)∑s

i=1 nia (n1 + n5)a+ (n2 + n6)c (n2 + n3)a+ (n1 + n4)c

(n1 + n5)a+ (n2 + n6)b (n1 + n2)c

(n2 + n3)a+ (n1 + n4)b



−1

For a balanced design, such that ni = n for all i, this simplifies to:

V (η̂) = n−1



6(a+ b+ 2c) 6(a+ c) 2(a+ b+ 2c) 2(a+ b+ 2c)

6a 2(a+ c) 2(a+ c)

2(a+ b) 2c

2(a+ b)



−1

= n−1

A B

C D

−1

Note that the A,B, C, and D represent block matrices of V (η̂)−1. To solve for ̂τA − τB and
V ( ̂τA − τB), we need to solve for D−1 and C−1. Using block inversion, we know that D−1 =
(D − CA−1B)−1Then:

D − CA−1
B = 2

2(a + b) 2c

2c 2(a + b)

 −
2(a + b + 2c) 2(a + c)

2(a + b + 2c) 2(a + c)

 1

36(ab − c2)

 6a −6(a + c)

−6(a + c) 6(a + b + 2c)


2(a + b + 2c) 2(a + b + 2c)

2(a + c) 2(a + c)



=

2(a + b) 2c

2c 2(a + b)

 − 1

3

1 0

1 0


2(a + b + 2c) 2(a + b + 2c)

2(a + c) 2(a + c)



=

2(a + b) 2c

2c 2(a + b)

 − 2

3

a + b + 2c a + b + 2c

a + b + 2c a + b + 2c



=

 4/3(a + b − c) −2/3(a + b − c)

−2/3(a + b − c) 4/3(a + b − c)



D
−1

= (D − CA−1
B)
−1

=
1

16/9(a + b − c)2 − 4/9(a + b − c)2

4/3(a + b − c) 2/3(a + b − c)

2/3(a + b − c) 4/3(a + b − c)



=
1

a + b − c

 1 0.5

0.5 1



Thus:

V ( ̂τA − τB) = V (τ̂A) + V (τ̂B)− 2cov(τ̂A, τ̂B) =
1

n(a+ b− c) =
1

n

V (Y ?i1k)V (Y ?i2k)− cov(Y ?i1k, Y
?
i2k)2

V (Y ?i1k) + V (Y ?i2k) + cov(Y ?i1k, Y
?
i2k)

(C.2)
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Now that the variance parameters associated with τA and τB are known, the closed form for the

̂τA − τB can be found. After some work:

̂τA − τB =
( n1∑

k=1

((a− c)Y ?11k − (b− c)Y ?12k) +

n2∑
k=1

((b− c)Y ?22k − (a− c)Y ?21k)

−
n3∑
k=1

(aY ?31k + cY ?32k)−
n4∑
k=1

(cY ?41k + bY ?42k)

+

n5∑
k=1

(aY ?51k + cY ?52k) +

n6∑
k=1

(cY ?61k + bY ?62k)
) 1

2n(a+ b− c)
(C.3)

Overall, these results show the closed form for the treatment estimate (C.3) and it’s corresponding

variance (C.2) for any given mixed model. Note that these closed forms largely depend on Σ? =

V ((Y ?i1k, Y
?
i2k)T ), which ultimately depends on the chosen mixed model.

C.1.1. Mixed Model: No Baselines

This model uses the unadjusted outcomes, Y ?ijk = Yijk. Under an unstructured covariance as-

sumption (3.6), V (Yi1k) = σ2, V (Yi2k) = σ4, and cov(Yi1k, Yi2k) = σ24. The estimate of τA − τB is

found by substituting Y ?ijk = Yijk, a = σ4

σ2σ4−σ2
24

, b = σ2

σ2σ4−σ2
24

, and c = −σ24

σ2σ4−σ2
24

. The variance of

̂τA − τB is:

V ( ̂τA − τB) =
1

n

σ2σ4 − σ2
24

σ4 + σ2 + σ24
(C.4)

C.1.2. Mixed Model: Change from Baselines (CFB)

For the CFB model, Y ?ijk = Yijk − Xijk with V (Yi1k − Xi2k) = σ1 + σ2 − 2σ12, V (Yi2k − Xi2k) =

σ3 + σ4 − 2σ34, and cov(Yi1k −Xi1k, Yi2k −Xi2k) = σ24 − σ23 − σ14 + σ13. The estimate of τA − τB
and it’s variance can be calculated by substituting in these variance quantities as appropriate. The

variance is:

V ( ̂τA − τB) =
1

n

(σ1 + σ2 − 2σ12)(σ3 + σ4 − 2σ34)− (σ24 − σ23 − σ14 + σ13)2

(σ1 + σ2 − 2σ12) + (σ3 + σ4 − 2σ34) + (σ24 − σ23 − σ14 + σ13)
(C.5)
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C.1.3. Mixed Models: Baseline Adjustment

Here we examine closed form solutions for the baseline mixed models, Y|X,X and Y|Xa?,Xa?.

These solutions will be examined under the period-specific LCB model as the simpler Y|X,X is

really just a special case of Y|Xa?,Xa?. Consider the period-specific LCB model with pre-specified

LCBs, a1Xik and a2Xik. The outcomes of interest are then:

Y ?i1k = Yi1k − β1(aT1 Xik)− γ(aT1 Xik + aT2 Xik)

Y ?i2k = Yi2k − β2(aT2 Xik)− γ(aT1 Xik + aT2 Xik)

The goal is to find the covariance of these regressed outcomes. This first requires solving for β1,

β2, and γ. For simplicity and easier derivations, we can assume that E(Yijk) = E(aTj Xik) = 0. Let

the baselines design matrix for sequence i be denoted as:

Bi =

a1Xik 0 (a1Xik + a2Xik)

0 a2Xik (a1Xik + a2Xik)


The GLS estimate of ζ = (β1, β2, γ)T is then:

ζ̂ = (

s∑
i=1

ni∑
k=1

BT
i Σ−1

B Bi)
−1(

s∑
i=1

ni∑
k=1

BT
i Σ−1

B Yik)

In this setting, ΣB is the covariance for the conditional outcomes, Yik|a1Xik,a2Xik. This actually

equals the covariance for the simpler conditional outcomes, Yik|Xi1k, Xi2k. To see this, note that

Yik|a1Xik,a2Xik implies the following regression model:

Yijk = λ1a1Xik + λ2a2Xik = (λ1a11 + λ2a21)Xi1k + (λ1a12 + λ2a22)Xi2k = λ?1Xi1k + λ?2Xi2k

Next, using standard normal theory and the block matrices from (3.2), it follows that:

Σ−1
B =

(
ΣY Y − ΣY XΣ−1

XXΣXY
)−1

=

d e

e f
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Given this, it follows that:

s∑
i=1

ni∑
k=1

B
T
i Σ
−1
B

Bi =


d
∑s
i
∑ni
k

(a1Xik)2 e
∑s
i
∑ni
k

(a1Xik)(a2Xik) (d + e)
∑s
i
∑ni
k

(
(a1Xik)2 + (a1Xik)(a2Xik)

)
f
∑s
i
∑ni
k

(a2Xik)2 (f + e)
∑s
i
∑ni
k

(
(a2Xik)2 + (a1Xik)(a2Xik)

)
(d + f + 2e)

∑s
i
∑ni
k

(
(a1Xik)2 + (a2Xik)2 + 2(a1Xik)(a2Xik)

)


Additionally:

(

s∑
i=1

ni∑
k=1

BTi Σ−1
B Yik) =


d
∑s
i

∑ni
k ((a1Xik)Yi1k) + e

∑s
i

∑ni
k ((a1Xik)Yi2k)

f
∑s
i

∑ni
k ((a2Xik)Yi2k) + e

∑s
i

∑ni
k ((a2Xik)Yi1k)

(d+ e)
∑s
i

∑ni
k ((a1Xik)Yi1k + (a2Xik)Yi1k) + (f + e)

∑s
i

∑ni
k ((a1Xik)Yi2k + (a2Xik)Yi2k)


Putting this all together, we note that:

ζ̂
p→


(d)V (a1Xik) (e)cov(a1Xik, a2Xik) (d+ e)(V (a1Xik) + cov(a1Xik, a2Xik))

(f)V (a2Xik) (f + e)(V (a2Xik) + cov(a1Xik, a2Xik))

(d+ f + 2e) (V (a1Xik) + V (a2Xik) + 2cov(a1Xik, a2Xik))


−1

∗


(d)cov(Yi1k, a1Xik) + (e)cov(Yi2k, a1Xik)

(f)cov(Yi2k, a2Xik) + (e)cov(Yi2k, a2Xik)

(d+ e) (cov(Yi1k, a1Xik) + cov(Yi1k, a2Xik)) + (f + e) (cov(Yi2k, a1Xik) + cov(Yi2k, a2Xik))

 = (β1, β2, γ)
T

Thus, (β1, β2, γ) can be determined directly through the joint covariance of the baselines and

outcomes (3.2). The variance of the regressed outcomes can now be determined. Note that:

V (Y ?ijk) = V (Yijk − βj(ajXik)− γ(a1Xik + a2Xik))

= V (Yijk) + β2
j V (ajXik) + γ2V (a1Xik + a2Xik)

− 2βjcov(Yijk,ajXik)− 2γcov(Yijk,ajXik) + 2βjγ(V (ajXik) + cov(a1Xik,a2Xik))

cov(Y ?i1k, Y
?
i2k) = cov(Yi1k − β1a1Xik − γ(a1Xik + a2Xik), Yi2k − β2a2Xik − γ(a1Xik + a2Xik)

= cov(Yi1k, Yi2k)− β2cov(Yi1k,a2Xik)− γcov(Yi1k,a1Xik + a2Xik)− β1cov(Yi2k,a1Xik)

+ β1β2cov(a1Xik,a2Xik) + β1γ(V (a1Xik) + cov(a1Xik,a2Xik))− γcov(Yi2k,a1Xik + a2Xik)

+ β2γ(V (a2Xik) + cov(a1Xik,a2Xik)) + γV (a1Xik + a2Xik)

Based on this, we now have Σ? = V ((Y ?i1k, Y
?
i2k)T ) and can now estimate τA − τB (C.3) and it’s

variance (C.2). Notably, this is in a very general form and rather complex. Without any further

assumptions, it is difficult to directly compare the variances of the various mixed models.
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C.2. WS Model: Variance Formula

Estimation is mode straightforward in the WS Model since it proceeds through standard OLS. For

n = ni, after some algebra, it can be shown that:

V ( ̂τA − τB)WS =
1

3n

(
V (Yi1k − Yi2k)− cov(Yi1k − Yi2k,aTXik)2

V (aTXik)

)
(C.6)

For WS No baselines, set a1 = a2 = 0. For WS X1 −X2, set a1 = 1 and a2 = −1.

C.3. Comparison of Variances under CS, EP, AR(1)

Variance formulas under CS, EP, and AR(1) are now considered for all models, except for the

period-specific LCB model. Even under these constrained covariance structures, the variance for-

mula for the period-specific LCB model is too complex and doesn’t simplify down to any nice form.

For the model Y|X,X:

• Under CS, β1 = β2 = 0 and γ = ρ/(ρ + 1). This result simplifies the baseline model to using

a single period-invariant covariate, Xi1k +Xi2k. After some algebra, it follows that:

V ( ̂τA − τB) =
1

n

σ(1 + 2ρ− 3ρ2)

5ρ+ 2

• Under EP, β1 = β2 = −(ρ2 − ρ3)/(ρ1 − 1) and γ = −(ρ3 − ρ1ρ2)/(ρ2
1 − 1). Although not as

concise as the CS case, the variance of interest equals:

V ( ̂τA − τB) =
1

n

−σ(−ρ4
1 + 2ρ2

1ρ
2
2 + 2ρ2

1ρ
2
3 + 2ρ2

1 − 8ρ1ρ2ρ3 − ρ4
2 + 2ρ2

2ρ
2
3 + 2ρ2

2 − ρ4
3 + 2ρ2

3 − 1)

−ρ3
1 − 2ρ2

1 + ρ1ρ2
2 + 4ρ1ρ2ρ3 + ρ1ρ2

3 + ρ1 − 2ρ2
2 − 2ρ2ρ3 − 2ρ2

3 + 2

• Under AR(1), β1 = β2 = γ = ρ/(ρ2 + 2) such that:

V ( ̂τA − τB) =
1

n

σ(ρ10 − 3ρ8 − 11ρ6 − 11ρ4 + 8ρ2 + 16)

(ρ2 + 2)2(3ρ4 + 6ρ2 + 8)

For the No Baselines/CFB mixed models and WS Baseline models, the variance formulas are much

simpler. After some algebra we get:
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Method ΣCS ΣEP ΣAR

Mixed Model, No Baselines σ (1−ρ)(1+ρ)
2+ρ σ 1−ρ2

2+ρ2

σ(1−ρ2)
2+ρ4

Mixed Model, CFB σ(1− ρ) 2σ (1−ρ1)2−(ρ2−ρ3)2

2(1−ρ1)+(ρ2−ρ3) σ 4(1−ρ)2−(2ρ2−ρ−ρ3)2

4(1−ρ)+(2ρ2−ρ−ρ3)

WS X1 −X2
2
3σ(1− ρ) 2

3σ
(

(1− ρ1)− (ρ2−ρ3)2

1−ρ1

)
2
3σ
(
(1− ρ2)− 1

2ρ
2(1− ρ2)

)
WS No Baselines 2

3σ(1− ρ) 2
3σ(1− ρ1) 2

3σ
(
(1− ρ2)− 1

2ρ
2(1− ρ2)

)

The ratio of variances between the No Baselines mixed model and CFB mixed model is:

σ
(1− ρ)(1 + ρ)

2 + ρ

1

σ(1− ρ)
=

1 + p

2 + p

This ratio is always less than one and thus the No Baselines mixed model is more efficient than

CFB. Similarly, the No Baselines mixed model is always more efficient than either of the WS models.

Next, the ratio of variances between the No Baselines mixed model and Y|X,X is:

σ
(1− ρ)(1 + ρ)

2 + ρ

5ρ+ 2

σ(1 + 2ρ− 3ρ2)
=

5ρ2 + 7ρ+ 2

3ρ2 + 7ρ+ 2

Based this, it is clear that for a positive ρ, the above ratio is greater than 1 and thus Y|X,X is more

efficient than the No Baselines mixed model.
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APPENDIX D

CHAPTER 4, ROBUST AND NONPARAMETRIC ESTIMATION

D.1. Optimal LCB under OLS

As in Section 4.4, let the LCB regression parameter vary by sequence. Under a squared-loss, the

goal is to solve:

(γ̂, β̂,a?) = Argmin

s∑
i

ni∑
k

ε2ik = Argmin
γ,β,a

s∑
i

ni∑
k

(Y ?ik −Wikγ + βia
TXik)2

Expanding out the formula we get:

s∑
i

ni∑
k

ε2ik =

s∑
i

ni∑
k

(
(Y ?ik −Wikγ)2 − 2βia

TXik(Y ?ik −Wikγ) + β2
i a

TXikX
T
ika
)

(D.1)

Next, assume that E(aTXik) = 0. This done for convenience and in data analysis is achieved by

centering the covariate by the sample mean. Then, noting E(Y ?ik) = Wikγ, it follows that:

E

(
s∑
i

ni∑
k

ε2ik

)
=

s∑
i

ni∑
k

E(ε2ik) =

s∑
i

ni∑
k

(
V (Y ?ik)− 2βicov(Y ?ik,a

TXik) + V (aTXik)
)

Next, given our linear regression model, it follows that:

cov(Y ?ik,a
TXik) = cov(Wikγ,a

TXik) + βicov(aTXik,a
TXik) + cov(εik,a

TXik)

As discussed in Section 4.4, it follows that βi =
cov(Y ?ik,a

TXik)
V (aTXik)

. Putting this all together:

E

(
s∑
i

ni∑
k

ε2ik

)
=

s∑
i

ni∑
k

(
V (Y ?ik)− 2

cov(Y ?ik,a
TXik)2

V (aTXik)
+

cov(Y ?ik,a
TXik)2

V (aTXik)2
V (aTXik)

)

=

s∑
i

ni∑
k

(
V (Y ?ik)− cov(Y ?ik,a

TXik)2

V (aTXik)

)

Under normality, V (Y ?ik|aTXik) = V (Y ?ik) − cov(Y ?ik,a
TXik)2

V (aTXik)
. As expected, the optimal LCB through

OLS is the same as under normality.

104



D.2. Optimal LCB: Asymptotic Equivalence between Normality and the T-Distribution

Without loss of generality, let n = ni for all i. For n→∞, by the weak law of large numbers (WLLN)

note first that:

1

n

s∑
i

ni∑
k=1

(aXik − E(aTXik))2 p→ E
(
(aXik − E(aTXik))2

)
= V (aXik)

Notably, the WLLN requires that V (aXik) exists. For a multivariate T-distribution with v degrees of

freedom, V (aXik) exists for v > 2. Consider the sample mean for the conditional variance under a

multivariate T-distribution with v > 2 degrees of freedom.

1

n

s∑
i

ni∑
k=1

V (Y ?ik|aTXik)T =
1

n

s∑
i

ni∑
k=1

v + (aXik − E(aTXik))2V (aTXik)−1

v + 1

(
V (Y ?ik)− cov(Y ?ik,a

TXik)2

V (aTXik)

)

Note that v, cov(Y ?ik,a
TXik), V (aTXik), and V (Y ?ik) are constants. Next, the continuous mapping

theorem, or Mann-Wald mapping theorem, states that for Xn
p→ µ, g(Xn)

p→ g(µ) for some continu-

ous function g. Specifically, g : R → R′ is a Borel function who set of D discontinuities is such that

{w : X(w) ∈ D} ∈ F and P (X ∈ D) = 0 where F refers to the sample space. In other words, if a

sequence of random variables (Xn) converge in probability to some mean µ, then the transformed

sequence of random variables (g(Xn)) converges in probability to g(µ). Thus, it follows that:

1

n

s∑
i

ni∑
k=1

V (Y ?ik|aTXik)T
p→ 1

n

s∑
i

ni∑
k=1

v + V (aTXik)V (aTXik)−1

v + 1

(
V (Y ?ik)− cov(Y ?ik,a

TXik)2

V (aTXik)

)

=
1

n

s∑
i

ni∑
k=1

(
V (Y ?ik)− cov(Y ?ik,a

TXik)2

V (aTXik)

)

Thus, the conditional variances for normality and a T-distribution are asymptotically equivalent and

the optimal LCBs for both distributions are asymptotically identical.

D.3. Optimal LCB under EP

Here we find the optimal LCB under the general covariance assumption of cov(Xijk, Yijk) = σ2
1ρ
?
1

for j = j and cov(Xijk, Yij′k) = σ2
2ρ
?
2 for j 6= j′. One example of this is the EP covariance structure.
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Without loss of generality, assume that Y ?ik = Yi1k − Yi2k. Then:

βi =
cov(Yi1k − Yi2k,aTXik)

V (aTXik)
=

∑p
j ajcov(Yi1k, Xijk)−

∑p
j ajcov(Yi2k, Xijk)

V (aTXik)
(D.2)

=
a1σ

2
1ρ
?
1 + a2σ

2
2ρ
?
2 − a1σ

2
2ρ
?
2 − a2σ

2
1ρ
?
1

V (aTXik)
(D.3)

=
cov(Yi1k − Yi2k, a1Xi1k + a2Xi2k)

V (aTXik)
=

(a1 − a2)(σ2
1ρ
?
1 − σ2

2ρ
?
2)

V (aTXik)

(D.4)

First, since cov(Yi1k − Yi2k,a
TXik) = cov(Yi1k − Yi2k, a1Xi1k + a2Xi2k), only the baselines cor-

responding to the within-subject contrast contribute information. Second, this general covariance

scenario means that βi = β for all i. Third, |cov(Yi1k − Yi2k,aTXik)| is maximized at a1 = −a2.

This indicates that the LCB Xi1k − Xi2k offers the most information. Overall, this means that for

some within subject contrast Y ?ik = biYik, the optimal LCB is biXik, or XDIFF. In the case where

biYik = Yi1k − Yi2k, the optimal LCB is Xi1k −Xi2k.

D.4. Model Selection and Bootstrapping

Here we describe further details on bootstrapping for our Min-P model selection procedure. For a

set of m = 1, ...,M models, obtain a set of estimates {τ̂1, ..., τ̂M} with estimated standard errors

{SE(τ̂1), ..., SE(τ̂M}). Under the null hypothesis of H0 : τm = 0, obtain p-values {p(τ̂1), ..., p(τ̂M )}.

The model and corresponding estimate with the smallest p-value is then chosen. Formally, the

Min-P estimate is defined as:

θ̂ = {τ̂m : p(τ̂m) = min{p(τ̂1), ..., p(τ̂M )}} (D.5)

For crossover designs, bootstrap resampling is done within sequence groups and at the subject

level. For example, in the 2×2 design, subjects are resampled with replacement within sequence AB

and BA separately. This is similar to the two-group bootstrap resampling described by Hesterberg

(Hesterberg, 2015). Specific details on the resampling for the 2× 2 and the 3× 3 designs are given

in Section 4.6.

For the remainder of this section, bootstrap resampling is done within sequence groups and b =

1, ..., B bootstrap resamples are generated. Define θ̂b as the Min-P estimate (θ̂) for bootstrap re-
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sample b. The bagged or smoothed estimator of the Min-P estimate is:

θ̂S =
1

B

B∑
1

θ̂b

Bootstrap Standard Errors

The standard error of the Min-P estimate can be estimated using two different variants of bootstrap

resampling. First, the standard bootstrap approach:

SE(θ̂)B =

√√√√ 1

B − 1

B∑
b=1

(θ̂b − θ̂S)2 (D.6)

Alternatively, as Efron showed, we can work directly with the smoothed estimator θ̂S (Efron, 2014).

Efron used the nonparametric delta method approximation to estimate the standard error of the

smoothed estimate, SE(θ̂S). Generally, using a smoothed or bagged estimate reduces the variabil-

ity (Friedman and Hall, 2007). Indeed, Efron showed analytically that SE(θ̂)S is more efficient than

SE(θ̂S) (Efron, 2014).

Bootstrap Confidence Intervals

There are a number of methods for obtaining confidence intervals under bootstrap resampling.

Hesterberg and Efron separately give a good overview for various methods (Efron, 1987; Hester-

berg, 2015). Assume the goal is to estimate a two-sided CI of the Min-P estimate θ̂ at the (1 − α)

level. Let the nonparametric bootstrap cumulative distribution function be defined as:

Ĝ(s) = #{θ̂b < s}/B (D.7)

The bootstrap percentile CI is then defined as::

CIpct = [Ĝ−1(α/2), Ĝ−1(1− α/2)] (D.8)

Note that Ĝ−1(α/2) is simply the (α/2)-quantile, for example 2.5%, of the empirical bootstrap dis-

tribution of θ̂b. The Bias-Corrected and Accelerated (BCa) CI improves on the percentile approach

by correcting for potential bias in the parameter estimate (θ̂) and acceleration. The acceleration
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describes how much the standard error of a parameter estimate changes with respect to changes

in the parameter estimate. Explicitly:

CIBCa = [Ĝ−1(Φ(z(α/2))), Ĝ−1(Φ(z(1− α/2)))] (D.9)

where z[α/2] = z0 +(z0 +zα/2)/(1+a(z0 +zα/2)). z0 = Φ−1(Ĝ(θ̂)) is the bias, a is the acceleration,

and zα = Φ−1(α). Note that for a = z0 = 0 (no bias, no acceleration), the BCa CI is identical to

the percentile CI. Acceleration is approximated by a measure of skewness (Efron, 1979). Further,

standard software, such as the boot package in R, can be used to construct BCa intervals. More

recently, Efron proposed a BCa interval based on the smoothed bootstrap estimate (Efron, 2014).

The BCa CI has various advantages. First, for bias z0 and acceleration a, the BCa CI is based on

the general assumption that for some monotone function g (Diciccio and Tibshirani, 1987):

g(θ̂)− g(θ) ≈ N(−z0(1 + ag(θ)), (1 + ag(θ))2)

In contrast, a typical CI is based on the more restrictive assumption that (θ̂ − θ)/SE(θ̂) ≈ N(0, 1).

Further, while the BCa CI is rooted in this general transformation assumption, the interval can be

constructed without knowing the transformation g (Diciccio and Tibshirani, 1987). Second, the BCa

CI is second order accurate, meaning that coverage probabilities differ from the nominal values by

O(n−1). The percentile method is first order accurate, O(n−1/2). This means that the BCa CI will

converge to correct coverage faster than the percentile method.

Lastly, for small sample sizes, bootstrap confidence intervals tend to be too narrow (Hesterberg,

2015). To correct this, Hesterberg proposed the Expanded Interval where the critical value α is

adjusted. If the bootstrap distribution of θ̂ is normal, then:

G−1(α/2) = θ̂ − zα/2σ̂

where σ̂2 = 1
B

∑B
i (θ̂B − θ̂S)2. Next, find an adjusted α′ such that:

G−1(α′/2) ≈ θ̂ − zα′/2σ̂

= θ̂ − tα/2,n−1s
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where s2 = 1
B−1

∑B
i (θ̂B − θ̂S)2. Then, since s

σ̂ =
√
n/(n− 1), we get:

α′/2 = Φ(−
√
n/(n− 1)tα/2,n−1)

These adjusted critical values are then used to construct percentile and BCa intervals. For small

sample sizes, this provides better coverage under normal populations and other distributions by

avoiding CIs that are too narrow Hesterberg, 2015.

D.5. Parametric and Nonparametric Comparisons: 2× 2 and 3× 3 Simulations

Table D.1: Parametric and Nonparametric Comparisons, 2× 2 Simulations: Type I Error
Normal T-Dist

Truth Method N=12 N=20 N=32 N=12 N=20 N=32
ΣCS XDIFF (OLS) 5.08 4.26 4.82 4.60 4.10 4.64
ΣCS XDIFF (R-est) 5.26 4.48 4.70 4.46 4.38 4.16
ΣCS Wilcoxon: Ys 4.24 4.92 4.16 3.98 4.82 4.22
ΣCS Rank ANCOVA: XDIFF 4.30 4.76 4.44 4.28 4.76 4.26
ΣCS CFB 5.00 4.45 4.70 3.65 3.95 4.50
ΣCS Min-P1 4.78 4.10 4.80 4.30 4.24 4.74
ΣCS Min-P2 4.18 3.84 4.40 4.12 3.90 4.28
ΣEP XDIFF (OLS) 5.30 4.56 5.00 4.46 4.06 4.62
ΣEP XDIFF (R-est) 5.46 4.48 4.82 4.48 4.00 4.36
ΣEP Wilcoxon: Ys 4.70 4.72 4.50 4.50 4.96 4.36
ΣEP Rank ANCOVA: XDIFF 4.40 4.52 4.38 4.10 4.58 4.32
ΣEP CFB 5.00 4.45 4.70 3.65 3.95 4.50
ΣEP Min-P1 4.92 4.36 4.78 4.20 4.26 4.74
ΣEP Min-P2 4.58 4.20 4.66 4.28 4.06 4.66
ΣAR XDIFF (OLS) 4.90 4.84 4.88 4.38 4.04 4.28
ΣAR XDIFF (R-est) 5.42 4.98 4.94 4.36 4.68 5.04
ΣAR Wilcoxon: Ys 4.16 4.86 4.70 3.76 5.02 4.38
ΣAR Rank ANCOVA: XDIFF 4.12 4.90 4.52 3.94 5.04 4.56
ΣAR CFB 4.90 4.95 5.30 4.25 3.95 4.50
ΣAR Min-P1 4.60 4.84 4.98 4.52 4.58 5.08
ΣAR Min-P2 4.26 4.54 4.92 4.22 4.10 4.62

Notes: Entries are in brackets if the type I error is two SEs above 5% (> 5.61%) based on 5,000 simulations. Wilcoxon
refers to the Wilcoxon rank sum test with no baseline adjustment. Rank ANCOVA regresses the ranks of the outcomes
against the ranks of XDIFF and then uses the residuals in a Wilcoxon rank sum test. XDIFF (OLS, R-est) uses XDIFF
as a covariate in the given regression model. CFB uses change scores with no baseline covariate. Min-P1 chooses
between XDIFF (OLS, R-est). Min-P2 chooses between No Baselines and XDIFF (OLS, R-est). All methods are
discussed in Section 4.6 and Table 4.2. CS = Compound Symmetry; EP = Equipredictability; AR = Auto-regressive(1).
N refers to total sample size.
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Table D.2: Parametric and Nonparametric Comparisons, 2× 2 Simulations: Power
Normal T-Dist

Truth Method N=12 N=20 N=32 N=12 N=20 N=32
ΣCS XDIFF (OLS) 75.2 77.7 78.5 85.8 86.4 86.0
ΣCS XDIFF (R-est) 70.4 74.3 76.3 88.3 92.4 94.9
ΣCS Wilcoxon: Ys 74.1 78.9 77.3 83.3 92.7 94.7
ΣCS Rank ANCOVA: XDIFF 68.1 75.5 75.5 79.6 91.5 94.2
ΣCS CFB 50.8 50.7 50.6 65.5 63.1 61.5
ΣCS Min-P1 70.8 75.6 77.6 87.3 92.0 94.3
ΣCS Min-P2 73.1 76.7 78.0 89.0 93.2 94.9
ΣEP XDIFF (OLS) 85.3 88.5 88.6 91.4 92.6 92.7
ΣEP XDIFF (R-est) 81.7 85.8 86.7 93.9 96.8 98.2
ΣEP Wilcoxon: Ys 74.3 79.1 77.6 82.6 92.7 94.7
ΣEP Rank ANCOVA: XDIFF 75.6 84.0 84.0 83.8 95.3 97.7
ΣEP CFB 80.1 80.0 79.8 85.7 85.3 83.8
ΣEP Min-P1 82.3 87.0 88.1 92.5 96.3 97.7
ΣEP Min-P2 82.1 85.6 87.1 93.3 96.6 97.6
ΣAR XDIFF (OLS) 80.8 83.6 84.3 89.2 89.5 89.4
ΣAR XDIFF (R-est) 76.4 80.5 82.1 91.2 94.8 96.3
ΣAR Wilcoxon: Ys 74.9 78.6 77.2 82.7 92.5 94.0
ΣAR Rank ANCOVA: XDIFF 70.6 79.6 80.2 80.3 93.3 96.1
ΣAR CFB 70.9 70.8 71.2 78.8 78.5 77.8
ΣAR Min-P1 77.6 81.8 83.7 89.9 94.2 95.8
ΣAR Min-P2 78.0 81.5 82.9 91.1 94.8 96.1

Note: Values (Power %) are shown in bold if method yields the highest or second highest power in that sample
size/covariance structure combination without type I error inflation. Entries are in brackets if under the same scenario,
but under the null hypothesis, the type I error is two SEs above 5% (> 5.61%) based on 5,000 simulations. Wilcoxon
refers to the Wilcoxon rank sum test with no baseline adjustment. Rank ANCOVA regresses the ranks of the outcomes
against the ranks of XDIFF and then uses the residuals in a Wilcoxon rank sum test. XDIFF (OLS, R-est) uses XDIFF
as a covariate in the given regression model. CFB uses change scores with no baseline covariate. Min-P1 chooses
between XDIFF (OLS, R-est). Min-P2 chooses between No Baselines and XDIFF (OLS, R-est). All methods are
discussed in Section 4.6 and Table 4.2. CS = Compound Symmetry; EP = Equipredictability; AR = Auto-regressive(1).
N refers to total sample size.
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Table D.3: Parametric and Nonparametric Comparisons, 3× 3 Simulations: Type I Error
Normal T-Dist

Truth Method N=18 N=24 N=30 N=18 N=24 N=30
ΣCS XDIFF (OLS) 5.56 5.38 5.40 4.56 4.58 4.70
ΣCS XDIFF (R-est) [5.82] 5.22 [5.72] 4.74 4.82 4.84
ΣCS LCB (OLS) [5.78] 5.00 [5.66] 5.52 4.68 5.36
ΣCS LCB (R-est) 5.14 4.54 5.22 4.68 3.82 5.18
ΣCS Ohrvik’s Aligned Rank 5.50 5.30 5.30 5.12 4.96 5.52
ΣCS Rank ANCOVA: XDIFF 5.40 5.60 5.36 5.50 5.46 5.48
ΣCS CFB 5.46 5.26 4.52 5.32 4.90 4.76
ΣCS Min-P1 [5.80] 4.92 5.60 5.58 4.70 5.04
ΣCS Min-P2 5.28 4.74 5.20 4.98 4.32 4.50
ΣCS Min-P3 4.98 4.26 4.78 4.32 3.54 4.40
ΣEP XDIFF (OLS) 4.54 4.70 4.82 3.72 3.76 3.84
ΣEP XDIFF (R-est) 5.34 4.66 4.94 4.40 4.16 4.28
ΣEP LCB (OLS) [5.90] 5.10 5.52 5.40 4.66 5.28
ΣEP LCB (R-est) 4.86 4.68 5.40 5.00 4.44 5.08
ΣEP Ohrvik’s Aligned Rank 5.34 5.24 5.22 5.54 5.04 5.06
ΣEP Rank ANCOVA: XDIFF 5.24 5.12 4.96 5.04 5.04 4.96
ΣEP CFB 5.30 5.22 4.90 5.52 5.32 4.74
ΣEP Min-P1 5.34 4.44 4.74 4.56 3.92 4.18
ΣEP Min-P2 5.18 4.34 4.74 4.50 3.80 4.20
ΣEP Min-P3 4.88 4.00 4.70 4.54 3.82 4.22
ΣAR XDIFF (OLS) 4.62 4.54 4.68 3.92 3.52 3.90
ΣAR XDIFF (R-est) 5.18 4.68 4.56 4.48 3.76 4.34
ΣAR LCB (OLS) [6.20] 5.40 [5.62] 5.60 5.08 5.34
ΣAR LCB (R-est) 5.50 4.74 5.44 4.90 4.14 5.46
ΣAR Ohrvik’s Aligned Rank 5.54 5.22 5.20 5.30 4.68 5.30
ΣAR Rank ANCOVA: XDIFF 5.34 4.98 4.62 4.94 4.82 4.68
ΣAR CFB [6.06] 5.14 5.06 5.68 5.48 5.34
ΣAR Min-P1 5.08 4.46 4.62 4.44 3.48 4.14
ΣAR Min-P2 4.94 4.20 4.50 4.52 3.46 4.06
ΣAR Min-P3 5.10 3.92 4.84 4.52 3.36 4.28

Note: Entries are in brackets if the type I error is two SEs above 5% (> 5.61%) based on 5,000 simulations. Ohrvik
refers to the Ohrvik aligned rank test with no baseline adjustment. Rank ANCOVA regresses the ranks of the aligned
outcomes against the ranks of XDIFF and then uses the residuals in a Wilcoxon rank sum test. XDIFF (OLS, R-est)
uses XDIFF as a covariate in the given regression model. LCB (OLS, R-est) estimates the optimal LCB in the given
regression model. CFB uses change scores with no baseline covariate. Min-P1 chooses between XDIFF (OLS, R-
est). Min-P2 chooses between No Baselines and XDIFF (OLS, R-est). Min-P3 chooses between No Baselines, XDIFF,
and LCB (OLS, R-est). All methods are discussed in Section 4.6 and Table 4.2. CS = Compound Symmetry; EP =
Equipredictability; AR = Auto-regressive(1). N refers to total sample size.
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Table D.4: Parametric and Nonparametric Comparisons, 3× 3 Simulations: Power
Normal T-Dist

Truth Method N=18 N=24 N=30 N=18 N=24 N=30
ΣCS XDIFF (OLS) 80.3 79.3 79.4 87.4 85.8 87.1
ΣCS XDIFF (R-est) [77.1] 76.8 [77.4] 92.4 92.9 94.9
ΣCS LCB (OLS) [74.1] 73.9 [75.9] 87.6 86.3 87.2
ΣCS LCB (R-est) 67.0 68.3 72.1 87.6 88.6 91.9
ΣCS Ohrvik’s Aligned Rank 82.1 80.3 79.9 95.1 94.9 95.6
ΣCS Rank ANCOVA: XDIFF 78.7 78.0 77.8 91.8 93.0 94.8
ΣCS CFB 50.6 51.0 51.4 68.2 65.6 64.9
ΣCS Min-P1 [79.8] 77.1 78.2 92.2 91.9 94.0
ΣCS Min-P2 79.9 76.7 78.4 92.8 92.2 94.0
ΣCS Min-P3 72.7 72.3 74.9 91.0 90.6 93.2
ΣEP XDIFF (OLS) 88.0 87.5 87.3 91.6 90.9 92.0
ΣEP XDIFF (R-est) 84.8 85.3 85.1 95.0 96.0 97.2
ΣEP LCB (OLS) [78.9] 79.0 80.2 90.5 90.0 90.9
ΣEP LCB (R-est) 72.7 73.9 76.8 90.0 91.8 94.5
ΣEP Ohrvik’s Aligned Rank 82.1 80.1 79.9 95.1 95.3 95.7
ΣEP Rank ANCOVA: XDIFF 83.6 83.8 84.1 94.3 95.3 96.8
ΣEP CFB 80.2 79.3 78.9 89.6 88.8 88.1
ΣEP Min-P1 86.9 85.7 86.2 95.1 95.2 96.8
ΣEP Min-P2 85.6 83.5 84.6 95.1 95.0 96.5
ΣEP Min-P3 80.1 79.4 81.9 93.6 94.3 95.9
ΣAR XDIFF (OLS) 89.0 88.0 87.5 92.3 91.7 92.2
ΣAR XDIFF (R-est) 86.4 85.7 85.5 96.1 96.4 97.3
ΣAR LCB (OLS) [88.0] 87.9 [88.2] 95.1 94.6 95.3
ΣAR LCB (R-est) 82.8 83.6 85.9 95.0 96.3 97.4
ΣAR Ohrvik’s Aligned Rank 83.3 81.8 80.6 95.6 96.2 95.9
ΣAR Rank ANCOVA: XDIFF 85.1 84.6 84.4 94.9 96.2 97.1
ΣAR CFB [80.4] 80.6 79.2 90.6 89.1 89.0
ΣAR Min-P1 88.7 86.6 86.2 95.9 95.9 97.0
ΣAR Min-P2 86.9 84.8 84.9 95.9 95.8 96.5
ΣAR Min-P3 86.9 86.1 86.9 96.8 97.1 97.9

Note: Values (Power %) are shown in bold if method yields the highest or second highest power in that sample
size/covariance structure combination without type I error inflation. Entries are in brackets if under the same scenario,
but under the null hypothesis, the type I error is two SEs above 5% (> 5.61%) based on 5,000 simulations. Ohrvik
refers to the Ohrvik aligned rank test with no baseline adjustment. Rank ANCOVA regresses the ranks of the aligned
outcomes against the ranks of XDIFF and then uses the residuals in a Wilcoxon rank sum test. XDIFF (OLS, R-est)
uses XDIFF as a covariate in the given regression model. LCB (OLS, R-est) estimates the optimal LCB in the given
regression model. CFB uses change scores with no baseline covariate. Min-P1 chooses between XDIFF (OLS, R-
est). Min-P2 chooses between No Baselines and XDIFF (OLS, R-est). Min-P3 chooses between No Baselines, XDIFF,
and LCB (OLS, R-est). All methods are discussed in Section 4.6 and Table 4.2. CS = Compound Symmetry; EP =
Equipredictability; AR = Auto-regressive(1). N refers to total sample size.
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APPENDIX E

SOFTWARE

In addition to the code examples throughout the dissertation, code for all simulations and methods

can be found in the following GITHUB page:

https://github.com/thomasjemielita/Crossover-Research
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