
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Improving Vaccine Design For Viral Diseases Using
Modified Antigens And Vectors
Michael John Hogan
University of Pennsylvania, mihogan@mail.med.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Virology Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2342
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Hogan, Michael John, "Improving Vaccine Design For Viral Diseases Using Modified Antigens And Vectors" (2017). Publicly Accessible
Penn Dissertations. 2342.
https://repository.upenn.edu/edissertations/2342

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/53?utm_source=repository.upenn.edu%2Fedissertations%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2342?utm_source=repository.upenn.edu%2Fedissertations%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2342
mailto:repository@pobox.upenn.edu


Improving Vaccine Design For Viral Diseases Using Modified Antigens
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Abstract
Two of the principal challenges facing vaccine design today are how to generate protective antibody responses
against viruses that have evolved sophisticated strategies to evade the humoral immune system and how to
more rapidly and effectively produce vaccines to address emerging epidemics. In this regard, we explored
multiple strategies to improve vaccine design for HIV-1 and Zika virus. In one approach, we derived
CD4-independent variants of HIV-1 envelope (Env) with the hypothesis that such Envs would expose
conserved epitopes that may be targets of protective, non-neutralizing antibodies. We characterized the
biological and structural properties of two CD4-independent Env clones and found that they exhibited
significantly greater exposure of a relatively conserved, linear epitope in the second variable loop (V2) that
had previously been associated with decreased risk of infection in a clinical HIV-1 vaccine trial. This epitope
was significantly more immunogenic in mice and nonhuman primates and, intriguingly, was associated with
more rapid development of antibody-dependent cell-mediated cytotoxicity. In another approach, we designed
mutations in the cytoplasmic tail of HIV-1 Env that were predicted to increase its cell surface expression and
thus its immunogenicity in a vaccinia prime-protein boost vaccine protocol. We found that the highest level of
surface expression was mediated by Envs with truncated cytoplasmic tails, and this was associated with higher
levels of binding and neutralizing antibodies after vaccinia primes and protein boosts, respectively. These two
studies revealed that modifications to HIV-1 Env immunogens are able to influence both the quality and
magnitude of desirable antibody responses. Finally, we used a newly developed vaccine platform based on
nucleoside-modified mRNA to design a vaccine against Zika virus. This vaccine, encoding the surface prM
and E proteins, was potently immunogenic and elicited high and sustained titers of neutralizing antibodies in
mice and nonhuman primates following a single intradermal immunization. We observed rapid and durable
protection from Zika virus infection in mice and a high level of protection in monkeys challenged five weeks
after vaccination. This vaccine thus represents a promising candidate for clinical use in controlling the spread
of Zika virus.
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ABSTRACT 

 

IMPROVING VACCINE DESIGN FOR VIRAL DISEASES USING 

MODIFIED ANTIGENS AND VECTORS 

 

Michael J. Hogan 

Drew Weissman, M.D., Ph.D. and James A. Hoxie, M.D. 

 

 Two of the principal challenges facing vaccine design today are how to 

generate protective antibody responses against viruses that have evolved 

sophisticated strategies to evade the humoral immune system and how to more 

rapidly and effectively produce vaccines to address emerging epidemics. In this 

regard, we explored multiple strategies to improve vaccine design for HIV-1 and Zika 

virus. In one approach, we derived CD4-independent variants of HIV-1 envelope 

(Env) with the hypothesis that such Envs would expose conserved epitopes that may 

be targets of protective, non-neutralizing antibodies. We characterized the biological 

and structural properties of two CD4-independent Env clones and found that they 

exhibited significantly greater exposure of a relatively conserved, linear epitope in 

the second variable loop (V2) that had previously been associated with decreased 

risk of infection in a clinical HIV-1 vaccine trial. This epitope was significantly more 

immunogenic in mice and nonhuman primates and, intriguingly, was associated with 

more rapid development of antibody-dependent cell-mediated cytotoxicity. In another 

approach, we designed mutations in the cytoplasmic tail of HIV-1 Env that were 

predicted to increase its cell surface expression and thus its immunogenicity in a 

vaccinia prime-protein boost vaccine protocol. We found that the highest level of 
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surface expression was mediated by Envs with truncated cytoplasmic tails, and this 

was associated with higher levels of binding and neutralizing antibodies after 

vaccinia primes and protein boosts, respectively. These two studies revealed that 

modifications to HIV-1 Env immunogens are able to influence both the quality and 

magnitude of desirable antibody responses. Finally, we used a newly developed 

vaccine platform based on nucleoside-modified mRNA to design a vaccine against 

Zika virus. This vaccine, encoding the surface prM and E proteins, was potently 

immunogenic and elicited high and sustained titers of neutralizing antibodies in mice 

and nonhuman primates following a single intradermal immunization. We observed 

rapid and durable protection from Zika virus infection in mice and a high level of 

protection in monkeys challenged five weeks after vaccination. This vaccine thus 

represents a promising candidate for clinical use in controlling the spread of Zika 

virus.   
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

1.1. Successes and Failures of Modern Vaccines 

 Vaccines are perhaps the most effective type of medical intervention ever 

introduced. Vaccines save over two million lives every year and have greatly 

reduced the incidence and severity of many infectious diseases [1–3]. Through mass 

vaccination campaigns, smallpox and rinderpest (the bovine ancestor of measles 

virus) have been completely eradicated from the Earth; and others, such as 

poliovirus, are nearly eliminated [4,5]. Beyond its life-saving capacity, vaccination 

has also been credited with substantial economic benefits and the potential to lessen 

health disparities between socioeconomic groups [6]. 

 While it is difficult to overstate the success of vaccines, current approaches 

have two major limitations. First, conventional vaccine designs have been largely 

ineffective against a class of pathogens that have evolved to successfully evade the 

adaptive immune response. And second, current approaches are inadequate to 

address rapidly emerging epidemics on an appropriate timescale. The following is a 

discussion of the sources of these problems and ways they can be addressed by 

new vaccine approaches. The scope of this overview is limited to viruses; bacteria 

and eukaryotic parasites present further hurdles to effective vaccine design and are 

reviewed in [7]. Sections 1.2–1.9 summarize the pitfalls and progress in vaccine 

design for the most challenging viral targets, while Sections 1.10–1.14 describe the 

landscape of vaccine development for new viral outbreaks.  



 2 

1.2. Challenging Viral Vaccine Targets  

 Many viruses for which effective vaccines have been developed have a 

natural history of acute infection that resolves with either complete clearance by the 

adaptive immune system or death caused by an overwhelming infection or 

immunopathology. In the case of successful clearance, the host typically enjoys life-

long protection against re-infection. Viruses susceptible to host immune control are 

usually also sensitive to vaccine-mediated immunity [8]. Such self-limiting infections 

that can be prevented using current vaccines include the measles, mumps, and 

rubella viruses, variola virus (smallpox), the flaviviruses, and others [9].  

 In contrast, viruses that establish chronic or repeated infections are by 

definition capable of evading the adaptive immune response, and these pathogens 

constitute a class of largely challenging vaccine targets [10]. Common immune 

evasion strategies include immune cell dysregulation, latency, antigenic variation, 

mutational escape, conformational masking of sensitive epitopes, and shielding of 

surface glycoproteins from neutralizing antibody (NAb) responses. These strategies 

are used in various combinations and degrees by the human immunodeficiency virus 

(HIV) (discussed in detail starting in Section 1.5), hepatitis C virus (HCV), respiratory 

syncytial virus (RSV), and several members of the herpes family to establish chronic 

or repeated infections in humans [11–16]. Most vaccine-related protection against 

viral infections correlates with NAb activity [8]. However, viral surface proteins are 

often rendered poor targets for the antibody response by extensive glycosylation, 

due to homology to self antigen and the occlusion of peptide epitopes [17]. Highly 

diverse surface antigens among circulating strains present another key obstacle to 

generating protective NAbs, since a vaccine must induce responses against all 

antigenic variants or against the most conserved epitopes. For viruses presenting 
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such challenges, the traditional vaccine approaches, including inactivated virus, live 

attenuated virus, and subunit vaccines, have in many cases failed to protect.  

 Still, there can be exceptions to this rule. Human papillomaviruses, for 

example, avoid triggering a robust antibody response in humans and can sometimes 

establish chronic infections [18]. However, they are susceptible to antibody-mediated 

neutralization, which is induced at high titers by current virus-like particle (VLP)-

based vaccines [19,20]. 

  

1.3. Shifting to More Rational Vaccine Design 

 What advances in vaccinology are needed to generate protection against 

challenging pathogens for which even natural immunity is insufficient? Many 

investigators observe that such progress is already underway, as recent advances in 

molecular biology, structural biology, and basic immunology contribute to a transition 

from empirical to “rational” vaccine designs [9,21–25]. Here, the empirical approach 

refers to traditional methods of vaccine production, including the isolation, growth, 

and attenuation or inactivation of viruses. This approach requires no detailed 

understanding of viral biology or host immunology; nevertheless, it has produced 

effective vaccines for many viruses, particularly those causing acute infections [9]. 

Rational vaccine design here refers to methods guided by knowledge of viral biology 

and structure that mainly became possible following the advent of PCR, DNA 

sequencing, and recombinant technology in the late 20th century. With these 

techniques and others, we have expanded our repertoire of vaccine formats, with 

notable examples including DNA plasmid and messenger RNA (mRNA) vectors, and 

gained a finer understanding of viral immune evasion strategies, immune cell 

populations, and antibody development. Importantly, we can now directly visualize 
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antibody-mediated neutralization of viral glycoproteins with atomic-level resolution, 

paving the way for structure-guided vaccine design [26,27].  

 

1.4. Structure-Guided Vaccine Design 

 Structure-guided vaccine design seeks to translate information about the 

structure of an antigen into a strategy to elicit protective antibodies. The utility of this 

strategy, and its potential applicability to an HIV vaccine, was recently highlighted 

when it was used to solve a long-standing problem in vaccine design for RSV. This 

member of the paramyxoviridae family causes an acute febrile respiratory illness in 

humans, with the first instance of infection typically occurring within the first year of 

life [28]. RSV is the primary cause of lower respiratory infections in children under 1 

year of age globally, resulting in over 200,000 deaths in 2010 [29,30]. RSV is 

unusual among acute viruses in that the natural immune response does not confer 

complete protection against reinfection [28]. Instead, primary infection generates low 

titers of NAbs that can limit subsequent infections to the upper airway, where 

disease is mitigated compared to the lower airway [28], and several infections are 

required to boost neutralizing titers to fully protective levels [31]. The mechanism of 

this incomplete immunity remained unresolved for decades. 

 In the 1960s, an RSV vaccine was produced by the conventional approach of 

growing the virus in a monkey cell line and inactivating it with formalin [32]. Children 

were vaccinated, but NAb responses were low and did not protect from infection. 

Worse, those who were immunized with formalin-inactivated virus experienced a 

higher incidence of severe lower respiratory disease [32]. Vaccine-enhanced 

disease was later reproduced in cotton rat and mouse models, in which Th2-biased 

CD4+ T cells were required for the effect [33,34]. Live attenuated and purified fusion 
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(F) protein RSV vaccines were similarly flawed, and the latter was tentatively 

associated with mild disease enhancement in rats [34–36]. Due to safety concerns 

and low efficacy, an RSV vaccine remained an elusive goal for many years. 

 Finally, in the 2010s, a series of structural insights changed the prospects for 

an RSV vaccine. McLellan and colleagues obtained a crystal structure of a soluble F 

protein trimer and discovered that the protein had adopted an elongated postfusion 

conformation [37,38]. The significance of this structural rearrangement for the 

antibody response was not clear until they obtained a crystal of the prefusion 

conformation, generated in part by stabilizing the structure with a monoclonal 

antibody (mAb), D25, which neutralized RSV with high potency compared to 

previously isolated mAbs. D25 binding to RSV-infected cells was competed by other 

potently neutralizing mAbs, and all mAbs of this specificity lacked binding to 

postfusion F protein. The prefusion crystal structure showed that this highly 

neutralization-sensitive quaternary epitope was formed solely on the prefusion 

structure. The authors proposed a structure-based model that explained all of the 

above phenomena: RSV F protein existed in a metastable prefusion conformation 

that is highly neutralization-sensitive but easily triggered to adopt the weakly 

neutralization-sensitive postfusion conformation. In support of this, virion-associated 

F protein was shown to quickly degrade towards the postfusion state when 

incubated at 37 °C, and solubilization of F protein or formalin-inactivation of RSV 

particles caused trimers to trigger [39]. Previous RSV immunogens, including wild-

type and attenuated viruses, likely displayed a large proportion of postfusion F and 

biased the antibody response toward weak neutralization epitopes. Based on this 

model, an effective RSV vaccine would have to display F protein trimers stabilized in 

the prefusion conformation. 
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Fig. 1.1. Structure-guided design of RSV prefusion F protein immunogen. 
Shown are monomers from the crystal structures of the prefusion (left) and 
postfusion (right) RSV F protein trimers. Red spheres indicate Ser155 and Ser290, 
both mutated to Cys in the prefusion-stabilized mutant DS-Cav1. These residues are 
separated by 4.4 Å in the prefusion structure and 124.2 Å apart in the postfusion 
state, which is prevented in part by the formation of a disulfide bridge. Green 
spheres indicate the hydrophobic cavity-filling mutations, S190F and V207L. Images 
were adapted in Pymol from the crystal structures PDB 4JHW and 3RRR [37,40]. 

 

In one of the first notable successes of structure-guided vaccine design, 

McLellan and colleagues rationally engineered a stabilized prefusion F protein 

immunogen. Their approach relied on the crystal structures of the F protein in its 

prefusion and postfusion conformations, and they identified mutations predicted to 

stabilize the prefusion state [41]. Mutants were screened for their physical and 

antigenic properties, including the binding of site Ø mAbs under harsh physico-

chemical conditions. One mutant with favorable properties, termed DS-Cav1, was 

stabilized by two bulky hydrophobic residues that filled hydrophobic cavities in the 

prefusion structure and two cysteines predicted to constrain the trimer in its 

prefusion state via a disulfide bridge (depicted in Fig. 1.1). DS-Cav1 was crystallized 

S155C

S290C
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S290C

V207L
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without D25 and indeed formed a compact prefusion structure. Mice and rhesus 

macaques that were immunized with DS-Cav1 trimers or other more stabilized 

iterations [42] developed up to 100-fold higher NAb titers than those that received 

postfusion F trimers. Cotton rats immunized with the prefusion F trimer showed a 

high level of protection from RSV challenge, with no detectable viral replication in the 

lung and no evidence of vaccine-enhanced disease [43]. The prefusion RSV F 

protein vaccine is currently being tested in a human clinical trial [44]. 

The success of the prefusion RSV vaccine in animal models has 

strengthened the case for a structure-guided vaccine approach for other challenging 

targets such as HIV. This proof of concept suggests that viral strategies of antibody 

evasion might be overcome by identifying the epitopes that are most susceptible to 

protective antibody responses and using structural information to enhance their 

exposure or stability. Structure-guided vaccine approaches are now being employed 

in the HIV vaccine field. Recent progress towards the generation of potent HIV-

specific NAbs was made when Sanders, Moore, and colleagues reported a method 

to generate stabilized, soluble HIV-1 Env trimers, termed SOSIPs, using a method 

similar to the prefusion RSV F vaccine [45,46] (discussed in Section 1.8). Alternative 

Env immunogens that are designed to elicit non-neutralizing antibodies, such as 

CD4-independent Envs (Chapter 2), may also be amenable to a structure-guided 

approach to increase the immunogenicity of epitopes of interest. 

 

1.5. The Human Immunodeficiency Virus 

 HIV is the etiologic agent of the acquired immune deficiency syndrome 

(AIDS). An estimated 37 million people are infected with HIV globally, including 1.2 

million in the United States [47,48]. HIV is a retrovirus of the lentivirus genus (lente-, 
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Latin for “slow”), and as such establishes a chronic, life-long infection in its host. HIV 

type 1 (HIV-1) group M (“major”) is the predominant taxon of HIV infecting humans. 

Group M is further classified into the clades or subtypes A-D, F-H, J, K and several 

circulating recombinant forms (CRFs) (reviewed in [49,50]).  

Like all primate lentiviruses, HIV-1 primarily infects CD4+ T helper cells using 

CD4 as a primary receptor and a seven-transmembrane spanning chemokine recep-

tor as a co-receptor to trigger membrane fusion with its envelope (Env) glycoprotein 

(reviewed in [51]). Transmitted-founder variants and other primary isolates of HIV-1 

most commonly use CCR5 as a co-receptor; CXCR4 tends to be used in cases of 

more advanced disease, though it is unclear whether its usage is a cause or effect of 

disease progression [52–55]. After fusion, the virion contents are delivered into the 

cytosol, where capsid uncoating and reverse transcription occur [56,57]. The viral 

genome is shuttled into the nucleus and is integrated into the host chromosome by 

the viral integrase [58]. Viral transcripts are produced from the long terminal repeat 

(LTR) promoter, which is enhanced by the binding of the transcriptional activator Tat 

[59]. Viral protein production begins from multiply spliced RNA transcripts encoding 

for Tat, Rev, and the accessory protein Nef. The nuclear export factor Rev then 

allows for translation of singly spliced and unspliced transcripts, producing the other 

accessory proteins (Vif, Vpr, and Vpu), Env, and finally Gag and Gag-Pol from full-

length genomic RNA [60]. Gag is a polyprotein that encodes multiple structural 

proteins required for the viral life cycle, including matrix, capsid, nucleocapsid, p6, 

and other peptides; Pol encodes the viral enzymes reverse transcriptase, integrase, 

and protease. Gag directs the budding of viral particles at the plasma membrane 

[61], and Env is incorporated into these virions in a process that is coordinated by 

the cytoplasmic tail and the matrix protein but remains poorly understood [62–65]. 
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Once virions bud from the cell surface, protease cleaves Gag and Gag-Pol into 

functional subunits, and the virus is able to mediate a new round of infection. 

HIV-1 infection results in an acute state of high viral replication, which 

partially contracts at the onset of the adaptive immune response, particularly 

cytotoxic T lymphocytes (CTLs) [66–68]. At this stage, viremia reaches a dynamic 

equilibrium called the set point, which is maintained throughout the clinically latent 

chronic phase of infection [69]. During this time, viral replication is ongoing and CD4+ 

T cells turn over rapidly [70,71] due to direct cytopathic effects, immune clearance, 

and bystander effects such as pyroptosis [72]. Infected individuals experience high 

levels of systemic inflammation and immune cell activation, which, along with CD4+ 

T cell count and plasma viral load, are predictors of disease progression [73]. In the 

absence of combination antiretroviral therapy (ART), infection can result in gradual 

fibrosis and degradation of the secondary lymphoid tissue architecture [74], a decline 

in peripheral CD4+ T cells, and the emergence of opportunistic infections and 

malignancies, the defining features of AIDS [75,76]. 

ART has had remarkable success as a life-saving treatment for people 

infected with HIV-1 and as a highly effective pre-exposure prophylactic (PrEP) 

against HIV-1 infection [77–79]. However, there remain substantial barriers to the 

accessibility and affordability of life-long ART treatment, especially in developing 

countries [80]. Even in the presence of effective ART, a population of latently 

infected cells with transcriptionally quiescent but replication-competent virus persists 

indefinitely [81]. The latent reservoir is considered the principal barrier to developing 

a cure for HIV-1 infection, and the establishment and clearance of this reservoir are 

topics of intense research (reviewed in [82,83]). Additionally, chronic immune 

activation is not always eliminated by ART and may, in some individuals, lead to 
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non-AIDS morbidity and mortality [84,85]. A vaccine that offers durable protection 

from HIV-1 infection would therefore be of significant benefit to global public health. 

 

1.6. Immune Evasion by HIV-1 

HIV-1 is well adapted to evade control by the human immune system. This 

fact presents significant challenges for the host immune response to HIV-1 and for 

the design of effective therapies and prophylactics. HIV-1 is able to dysregulate or 

evade the innate, humoral, and cell-mediated arms of the immune system. The 

innate immune pathways undermined by HIV-1 include the type I interferon response 

[86], host restriction factor activities [87], and early cytokine signals that regulate 

innate and adaptive immune control as well as pathogenesis [88–90].  

The cellular immune response is critical to maintain HIV-1 viremia at the set 

point but is also dampened by multiple mechanisms. The role of CD8+ T cells in 

limiting viral replication is evident both during the partial resolution of acute viremia 

[66] and throughout the chronic phase of infection. In chronically SIV-infected 

macaques, antibody-mediated depletion of CD8+ T cells results in a rapid increase in 

viral load, which returns to the set point once CD8+ T cells repopulate [91]. Several 

alleles of MHC class I are associated with enhanced viral control in humans [92,93], 

further supporting a role for CD8+ T cells in controlling viremia. Alleles B27 and 

especially B57 are enriched alleles among elite controllers, a small subset (<1%) of 

HIV-infected individuals who suppress viral replication beyond the limit of detection 

of commercial assays in the absence of ART [94–96]. These individuals have been 

shown to mount CD8+ T cells expressing a higher level of perforin and other 

combinations of effector molecules compared with non-controllers [97,98]. Although 

cell-mediated immunity is beneficial in limiting HIV-1 disease progression, it is 
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undermined by the virus in multiple ways. First, the viral replication and error rates 

are high, and many viral proteins are able to tolerate substantial antigenic variation. 

As a result, escape mutants readily emerge to evade cytotoxic T cell responses 

[99,100]. HIV-1 further evades surveillance by CD8+ T cells by down-regulating 

surface expression of the MHC class I proteins HLA-A and HLA-B via the Nef 

accessory protein [101–103] and HLA-C via the Vpu protein [104]. By infecting and 

eliminating CD4+ T cells, HIV-1 reduces their ability to provide helper functions to 

CD8+ T cells and B cells. In fact, HIV-1 has been shown to preferentially infect HIV-

specific CD4+ T cells and T follicular helper cells, two cell types that might contribute 

to immune control [105–107]. HIV-1 infection additionally results in a number of 

functional defects in uninfected CD4+ and CD8+ T cells, including anergy, 

exhaustion, and sensitivity to apoptosis [108–112].  

 The ability of HIV-1 to evade the humoral immune response is exceptional 

and is likely the most important immune evasion strategy with regard to vaccine 

protection from HIV-1 infection. Env is the only surface protein of HIV-1 and is thus 

the sole target of protective antibodies. Env is synthesized as a trimeric gp160 

precursor with a single membrane-spanning domain. The precursor is cleaved in the 

Golgi by furin-like proteases [113] into gp120 (surface) and gp41 (transmembrane) 

subunits, which remain associated in a metastable configuration until receptor 

interaction. The mature Env trimer is heavily glycosylated in the endoplasmic 

reticulum (median of 93 N-linked glycosylation sites per trimer) and develops a mix 

of complex glycans and densely packed, immature high-mannose glycans, 

accounting for over 50% of the mass of gp120 [114,115]. This extensive and 

constantly evolving array of glycans, termed the “glycan shield” [116], constitutes a 

major obstacle to mounting protective antibody responses to against Env. 
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Carbohydrates naturally decorate self proteins, and responses to them are largely 

deleted from the B cell repertoire by self-tolerance mechanisms [117]. On the native 

HIV-1 Env trimer, there are minimal protein surfaces accessible to antibody binding 

without simultaneous interaction with carbohydrates [17]. HIV-1 also employs more 

direct forms of host mimicry in order to evade antibody binding: the membrane-

proximal external region (MPER) of gp41 contains homology to two human proteins, 

kynureninase (KYNU) and splicing factor 3b subunit 3 (SF3B3), at epitopes 

recognized by the broadly neutralizing mAbs 2F5 and 4E10, respectively [118]. The 

host must therefore break self-tolerance to some degree in order to make NAbs 

against this sensitive epitope and others that include glycan moieties.  

Beyond glycosylation, the Env trimer is folded such that one of its most 

conserved and neutralization-sensitive surfaces, the CD4 receptor binding site 

(CD4bs), is recessed in a cavity surrounded by glycans [17]. Structural studies of 

Env interacting with CD4bs-specific antibodies have demonstrated that this 

geometry [119,120] places constraints on the angle of approach of NAbs that may 

hamper their production. Additional conserved epitopes, such as the co-receptor 

binding site and the C1 constant region, are not exposed to solvent at the surface of 

the native protein or are only induced upon CD4 binding, i.e. CD4-induced epitopes 

[121,122]. In some cases, CD4-induced epitopes can be exposed on the surface of 

infected cells, particularly when CD4 is present, where they are sensitive to antibody 

binding and Fc-mediated effector functions [123,124].  

HIV-1 further limits antibody responses to Env by maintaining a low level of 

Env expression on the surface of infected cells and on viral particles [125–127]. This 

is regulated in large part by the various endocytosis motifs and other intracellular 

trafficking signals present in the exceptionally long cytoplasmic tail of HIV-1 Env 
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(discussed in Chapters 3 and 5 and reviewed in [64,128]). HIV-1 viral particles 

incorporate a remarkably low number of Env trimers, only 7-14 per virion [125,126], 

thus reducing the probability of multivalent, high-avidity binding by Env-specific 

antibodies. This limits the efficiency of B cell receptor (BCR) cross-linking and may 

lead to poor activation of low-affinity naïve B cells [129]. Env expression is also 

maintained at low levels on the surface of infected cells and other Env-expressing 

cells, as in genetic and viral vector vaccines. As a result of low cell surface 

expression, Env-expressing cells are partially protected from antibody-dependent 

cell-mediated cytotoxicity (ADCC) and other Fc-mediated effector functions that can 

limit viral replication [130]. During ADCC, antigen expressed on the surface of 

infected cells is bound by IgG antibodies, which engage Fcγ receptor-bearing cells, 

particularly natural killer (NK) cells, activating them to release cytotoxic granules 

containing perforin and granzymes, similarly to CTLs [131,132].  

The glycan shield that covers the Env ectodomain and the underlying protein 

surface are subject to extensive and ongoing antigenic variation. The Env nucleotide 

sequence divergence is approximately 15-20% and 25-35% for strains within and 

between subtypes, respectively [133]. Devising a vaccine strategy that elicits 

antibodies capable of binding to all or most of these strains is a major challenge. 

Infected individuals are capable of generating NAbs that exert selective pressure on 

HIV-1; however, these responses are invariably associated with the emergence of 

escape mutants, and they are often limited in breadth [116,134–136]. Diverse HIV or 

SIV strains can have drastically different sensitivities to antibody-mediated 

neutralization [137]. Most primary and transmitted-founder viruses are relatively 

neutralization-resistant and are designated “Tier-2” viruses [137]. In contrast, lab-

adapted viral isolates tend to be highly neutralization-sensitive and are considered 
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“Tier-1.” For an antibody or serum to confer significant protection in a vaccine, it is 

believed it must be able to neutralize genetically diverse Tier-2 strains. HIV-1 

infection results in a spectrum of NAb breadth, which is directly correlated with viral 

load and CD4+ T cell depletion [136,138]. After 2 to 4 years of untreated infection, 

about 20% of HIV-1 infected individuals generate NAb responses with some breadth. 

A smaller fraction of these individuals (~2%) develop broadly neutralizing antibodies 

that have exceptional breadth and potency against diverse HIV-1 isolates [138].  

Broadly neutralizing antibodies (bNAbs) are a major goal of prophylactic HIV 

vaccines. In recent years, dozens of potent and broad NAbs have been isolated from 

HIV-1-infected individuals (reviewed in [139]). In numerous passive transfer 

experiments in nonhuman primates, bNAbs have conferred sterilizing immunity 

against chimeric HIV-1/SIV (SHIV) viruses bearing HIV-1 Env, demonstrating their 

likely efficacy in an HIV-1 vaccine [140–146]. However, bNAbs typically exhibit one 

or more highly unusual properties that make them a difficult vaccine goal: (i) Many 

contain a high degree of somatic hypermutation, i.e. genetic divergence from the 

germline-encoded immunoglobulin gene segments. The average nucleotide mutation 

frequency in the heavy chain of available HIV-1 bNAbs is over 20%, or even 30% for 

some CD4bs-specific bNAbs, while this figure is often 10% or less in antibodies 

induced by licensed vaccines and experimental HIV-1 vaccines [147–149]. (ii) Many 

have a long heavy chain complementarity-determining region 3 (HCDR3) of >30 

amino acids, compared to an average of ~15 amino acids [147,149]. In the case of 

bNAbs PG9 and PG16, which bind to glycan-dependent epitopes involving variable 

loops 1 and 2 (V1V2), the long HCDR3 forms a loop that protrudes out and contacts 

a small conserved area of protein surface in between two glycans [150,151]. (iii) 

Many are autoreactive and polyreactive with various self antigens [152]. This is true 
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for some MPER-specific bNAbs that interact in part with the cellular membrane and 

also for those that interact with glycans. This property suggests that some degree of 

tolerance bypass may be required for certain bNAb lineages. For all the above 

reasons, the generation of bNAbs represents a formidable challenge for HIV-1 

vaccines using conventional designs. As discussed in the following sections, 

however, there may be more feasible alternative viable paths to HIV-1 vaccine 

protection that are currently being pursued alongside the bNAb strategy. 

 

1.7. History of HIV-1 Vaccine Trials 

Numerous experimental HIV-1 vaccines have been tested in humans within 

the last few decades, mostly in small Phase I and II trials to establish safety and 

immunogenicity (reviewed in [153]). To date, six large efficacy trials have been 

completed, and one is ongoing (see details in Table 1.1). The traditional approaches 

of live attenuated or inactivated virus vaccines have unacceptable safety risks for 

HIV-1 due to the possible emergence of a pathogenic virus, so HIV-1 vaccines have 

made use of newer technologies such as recombinant protein, nucleic acid vectors, 

and non-HIV viral vectors. However, due to the poor performance of experimental 

HIV-1 vaccines in animal models and humans, including a complete inability to elicit 

bNAbs, HIV-1 vaccine trials have necessarily been guided by an empirical approach, 

often with little proof-of-concept data to support them. Though this has been 

criticized as futile or counterproductive, at least one such trial has provided some in 

the field with renewed hope that an effective vaccine for HIV-1 might be possible. 

HIV-1 vaccine efficacy trials have so far evaluated three vaccine formats: 

protein subunit, adenovirus vector with or without DNA priming, and poxvirus prime 

with protein subunit boost. The first two trials, Vax004 and Vax003, aimed to induce 
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protective antibodies using purified recombinant gp120 protein in alum adjuvant. 

Despite the absence of supporting preliminary data, two formulations of gp120 

based on different clades (AIDSVAX B/B’ or B/E) were evaluated in thousands of 

volunteers. Both trials elicited low, transient levels of NAbs with no Tier-2 activity and 

had no efficacy in preventing HIV-1 infection or reducing the viral set point [154,155]. 

 

 

Table 1.1. Completed and ongoing clinical efficacy trials of HIV-1 vaccines. 
Abbreviations: ALVAC = recombinant canarypox vector; HVTN = HIV Vaccine Trials 
Network; VRC = Vaccine Research Center at NIH; Ad5 = adenovirus serotype 5 
vector; MSM = men who have sex with men; vp = viral particles. 

 
After the disappointing conclusion of these antibody-based trials, interest 

intensified in eliciting T cell-based immunity that might control ongoing viral 

replication, if not prevent infection altogether. A promising report by Shiver and 

colleagues in 2002 showed that a replication-incompetent adenovirus serotype 5 

(Ad5) vector expressing SIVmac239 Gag elicited strong CD8+ T cell responses in 

rhesus macaques [156]. When the macaques were challenged with a high 

intravenous dose of pathogenic SHIV 89.6P, they became infected but showed 

reductions in viremia and AIDS-related disease. However, follow-up studies soon 

Study Phase Immunizations Start End Institutions Volun-
teers Population Vaccine 

efficacy Refs.

Vax004 3
AIDSVAX B/B': 600 µg gp120 with 
600 µg alum i.m. at mo. 0, 1, 6, 12, 
18, 24, 30

1998 2003 VaxGen 5,417
MSM, other high 
risk (N. America 
& Netherlands)

None [154]

Vax003 3
AIDSVAX B/E: 600 µg gp120 with 
600 µg alum i.m. at mo. 0, 1, 6, 12, 
18, 24, 36

1999 2003 VaxGen 2,546 Injection drug 
users (Thailand) None [155]

STEP/ HVTN 
502 2b Ad5 (gag, pol, nef), 1.5x1010 vp 

ea., at wk 0, 4, 26 2004 2007 Merck, HVTN 3,000
MSM, other high 
risk (Americas, 
Australia)

-28.6% 
(P=0.03) [161,164]

Phambili/ 
HVTN 503 2b Ad5 (gag, pol, nef), 3x1010 vp ea., 

at wk 0, 4, 26 2007 2010 Merck, HVTN 801
Sexually active 
adults (South 
Africa)

-77.8% 
(P=0.01) [162,164]

HVTN 505 2b
DNA (gag, pol, nef, envs), 4 mg i.d. 
at wk 0, 4, 8; Ad5 (gag-pol, envs), 
1010 vp i.m. at wk 24

2009 2013 VRC, HVTN 2,530
MSM, Ad5-neg., 
circumcized 
(U.S.)

None [178]

RV144 3
ALVAC (gag/pro/env) i.m. at wk 0, 
4, 12; ALVAC +AIDSVAX B/E' i.m. 
at wk 12, 24

2003 2009
Thai Ministry of 
Public Health, 
U.S. Army

16,402 Adults age 18-30  
(Thailand)

31.2% 
(P=0.04) [187]

HVTN 702 2b/3
ALVAC (gag/pro/env) i.m. at mo. 0, 
1; ALVAC+gp120/MF59 at mo. 3, 6, 
& 12

2016 2021 U.S. Army, 
HVTN ~5,400

Sexually active 
adults (South 
Africa)

n/a [214]
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showed that much of the protective effect could be attributed to the MHC class I 

allele Mamu-A*01 in vaccinated macaques [157–159]. Additionally, when Ad5-

vaccinated animals were challenged with wild-type SIVmac239 instead of SHIV 

89.P, they had little protection from viremia or disease progression [160], calling into 

question whether this vaccine approach would be successful in humans. 

Nonetheless, Ad5-based vaccine regimens have advanced to efficacy testing, 

beginning with the Merck STEP [161] and Phambili [162] clinical trials. Both trials 

immunized participants with Ad5 vectors encoding Gag, Pol, and Nef. While the 

vaccine elicited antigen-specific CD8+ T cells in the majority of individuals [163], no 

efficacy was observed in either study, either in preventing infection or reducing the 

viral set point. The STEP study was terminated three years into its operation when 

pre-specified conditions of futility were met. The Phambili study, just started, was 

also halted. Unexpectedly, the Merck Ad5 vaccine in both trials caused an increased 

risk of HIV-1 infection relative to placebo (combined hazard ratio of 1.4 as of 2014) 

[164]. The possible risk factors (e.g. Ad5 seropositivity, male circumcision status) 

and mechanisms of this increased rate of infection have been the topic of extensive 

research, although these questions still remain controversial [161,164–176]. 

 In 2009, the HVTN 505 efficacy trial was launched to test DNA plasmid 

primes followed by an Ad5 vector boost [177,178]. Both components encoded Gag, 

Pol, and Nef from clade B and Envs from clades A, B, and C. This regimen was 

developed to elicit broad T and B cell-based immunity and had showed a modest 

protective effect against heterologous SIV challenge in rhesus macaques [179]. In 

humans, the DNA/Ad5 vaccine induced moderate CD4+ and CD8+ T cell responses 

and low NAb responses. It did not generate any protection against acquisition of 

HIV-1 or subsequent viremia, and the trial was halted in 2013 due to futility.  
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 Collectively, the results of the three Ad5-based trials were disappointing for 

the prospects of eliciting protection against HIV-1 through conventional T cell 

responses. They additionally raised important questions about the usefulness of the 

SIV and SHIV challenge models for predicting vaccine efficacy in humans [180,181]. 

It is not clear which aspects of the macaque model failed to reflect HIV-1 acquisition 

in humans, but relevant factors may include the titer and route of viral inoculum, the 

pathogenicity and neutralization resistance of the challenge virus(es), the genetic 

diversity within the challenge stock, host genetic factors, and species-specific 

responses to vaccine vectors. Despite the drawbacks of Ad5, research has 

continued into alternative, rare, or non-human serotypes of adenovirus that would 

elicit T cell responses with greater breadth or functionality and that would not raise 

concerns about pre-existing immunity and enhanced HIV-1 infection [182–186]. 

In contrast to these disappointing vaccine trials, one Phase III vaccine trial did 

exhibit some degree of efficacy: the RV144 “Thai” trial, sponsored by the U.S. Army 

and conducted by the Thailand Ministry of Public Health from 2003 to 2006 [187]. 

The RV144 regimen consisted of four injections of replication-incompetent 

canarypox vector (ALVAC) expressing Gag, Env, and protease antigens and two 

injections of the AIDSVAX B/E gp120 in alum. This regimen combined two vaccine 

components that, individually, had shown little promise to confer protective immunity 

[154,155,188–190]. With RV144, it was speculated that the combination of two 

weakly immunogenic vaccines might generate a more protective immune response 

than either component alone. The decision to press ahead with the RV144 trial 

despite the lack of supporting data was heavily criticized [191]. Nonetheless, the trial 

proceeded as planned, and over 16,000 volunteers received vaccine or placebo. 

Surprisingly, the results of the trial revealed 31.2% vaccine efficacy (95% CI: 1.1-
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52.1%; P = 0.04) in preventing HIV-1 infection relative to placebo after 42 months of 

follow-up (Fig. 1.2). In a post-hoc analysis, vaccine efficacy appeared to be higher 

after 12 months of follow up, at 60.5% (95% CI: 22-80%), suggesting that there may 

have been substantial early protection that waned rapidly after one year. This result 

has reinvigorated the HIV vaccine field and has significantly influenced the course of 

vaccine discovery research, including the work presented here.  

 

 
Fig. 1.2. Probability of infection in the RV144 HIV vaccine trial in Thailand. 
Shown is the proportion of volunteers in placebo and vaccine groups diagnosed with 
HIV-1 infection over time, with vaccine efficacies indicated with arrows. Analysis is 
limited to the modified intention-to-treat group, who were not HIV-1-infected at the 
time of enrollment. The figure is reproduced with permission from Rerks-Ngarm et 
al., NEJM 2009 [187], copyright Massachusetts Medical Society. 

 

 An extensive analysis of the immune correlates of protection was conducted 

on samples from RV144 vaccinees [192]. In the absence of natural protective 

immunity to HIV-1 infection, such analyses contribute critical insights into which 

immune cell functions and antibody activities are protective in humans, and basic 

research can be directed to understand how to better elicit such activities. 

Interestingly, the level of NAbs in RV144 was lower than in the Vax003 trial using 
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gp120 only [193]. RV144 vaccinee plasma had no Tier-2 activity and only low and 

transient Tier-1 activity. Despite this, the vast majority of vaccinees made binding 

antibody responses against Env, and the strongest correlate of protection was IgG 

directed to V1V2, a domain at the apex of the Env trimer (odds ratio = 0.57 per S.D., 

P = 0.02) [192]. This binding activity was measured against a scaffold protein 

containing the V1V2 sequence genetically fused to a murine leukemia virus (MLV) 

gp70 protein. The other significant correlate was Env-specific plasma IgA, which 

directly correlated with infection (odds ratio = 1.54 per S.D., P = 0.03). An interaction 

analysis found that, within vaccinees with low Env-specific plasma IgA, multiple 

additional variables inversely correlated with infection, including Env-specific IgG 

avidity, NAbs, ADCC, and the Env-specific CD4+ T cell response.  

 The RV144 immune correlates study suggested that non-neutralizing 

antibodies might contribute to protection from HIV-1 infection in humans. This was 

an unexpected result: while Fc-dependent functions have been shown to augment 

the protective effect of passively transferred NAbs in nonhuman primates [145], they 

have not yet demonstrated protection in the absence of neutralizing activity 

[194,195]. This led to the hypothesis that the partial protection in RV144 was due to 

ADCC or other Fc-mediated effector functions, such as infectious virion capture, 

antibody-dependent cell-mediated phagocytosis or viral inhibition, or complement 

deposition. The ADCC theory was supported by a number of studies that followed. 

Bonsignori and colleagues found that up to 90% of RV144 vaccinees generated 

ADCC activity against cells coated with gp120 [196]. ADCC-mediating mAbs were 

isolated from RV144 vaccinees and bound predominantly to the epitope of A32, a 

C1-specific mAb that also mediates potent ADCC [196,197]. The A32 epitope and 

adjacent regions have been extensively characterized as sensitive targets of ADCC-
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mediating antibodies [198,199] and are typically exposed upon engagement with 

CD4 and/or on the surface of infected cells [123,124,200]. RV144 vaccinee plasma 

also contained IgA antibodies that bound to the A32 epitope and blocked ADCC 

mediated by purified IgG from vaccinees [201], offering a potential mechanism for 

the direct correlation of plasma IgA with infection risk. Another portion (~13%) of 

mAbs isolated from RV144 vaccinees bound to a relatively conserved linear peptide 

epitope in the V2 loop (residues 163-183 in HXB2 numbering). Two such mAbs, 

CH58 and CH59, recognized the V2 peptide folded into different secondary 

structures, but both were dependent on amino acids K169, H173, F176, and Y177 

[202]. Both bound to Env on the surface of infected cells but did not have broad or 

potent neutralizing activity. Importantly, these mAbs were shown to mediate potent 

ADCC and synergized with C1-directed antibodies in this activity [202,203]. The 

linear V2 peptide was shown to be a commonly targeted epitope in RV144 vaccinee 

plasma [202,204,205]. Finally, a genetic “sieve” analysis of viruses that established 

infection in RV144 participants demonstrated that there was significant selection 

against V2 residue K169 in vaccinees relative to placebo recipients [206,207]. This 

suggested a protective role of V2-specific antibodies by an orthogonal approach, 

although bona fide protection by passive transfer has yet to be established. 

 Recent data offer some clues as to why RV144 appeared to generate partial 

protection, while its two individual components had failed. After RV144, it was 

discovered that one of the AIDSVAX gp120s, from strain A244, exhibited increased 

antigenicity for antibodies binding to C1, V2, and V1V2 epitopes fortuitously as a 

result of an N-terminal deletion of 11 amino acids, which had facilitated purification of 

monomeric protein [208]. Another study comparing the antibody responses in RV144 

and Vax003 demonstrated that the ALVAC prime was crucial to suppress the 



 22 

generation of IgG4 subclass antibodies, which have poor Fc-mediated ADCC activity 

and may block the more effective subclasses, IgG1 and IgG3 [209].  

If the model of vaccine efficacy in RV144 is true and reproducible, it would 

suggest that an effective antibody-based vaccine for HIV-1 is feasible. Among a 

panel of C1 and V2-specific mAbs from RV144, the average somatic mutation 

frequency of the heavy chain was very low, at about 2.4% [196,202]. This has two 

important implications: (i) that non-neutralizing, antiviral antibodies that bind to C1 

and V2 do not require extensive somatic hypermutation and are therefore an 

achievable goal given the limitations of current vaccine technology, and (ii) that there 

is likely much room for improvement of the RV144 vaccine regimen through 

increasing affinity maturation and somatic hypermutation.  

Multiple clinical trials have been launched to validate the findings of RV144 

and expand its approach to other geographic areas where different clades of HIV-1 

circulate [210–214]. The RV305 and RV306 trials, started in 2012-2013, aim to 

characterize the immune response to additional booster immunizations other 

variations of the RV144 vaccine regimen [212,213]. In RV305, 176 people who 

participated in RV144 received two additional boosts with ALVAC canarypox and/or 

AIDSVAX gp120 6 to 8 years after the end of the initial trial. This intervention raised 

the titer of Tier-1 NAbs, increased the frequency of mutations in the variable heavy 

chain gene segment in gp120-specific mAbs from 3.1% to 6.9%, and significantly 

increased the proportion of gp120-specific mAbs with HCDR3 loops longer than 22 

amino acids [215]. Further investigation is needed to determine whether these 

antibodies are more protective. Several more trials are planned to optimize other 

aspects of the RV144 regimen, including the poxvirus vector, adjuvant, dosing 

schedule, and antigen sequence [216]. Notably, clade C versions of the ALVAC 
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vector and gp120 protein have been constructed for use in South Africa, and the 

alum adjuvant has been replaced with MF59. The initial evaluation of this vaccine in 

HTVN 100 showed excellent immunogenicity compared with RV144, including 

frequent V1V2-specific antibody responses [217]. However, caution has been urged 

by a recent study in an SIV/macaque model of the RV144 regimen showing that, 

while MF59 was more effective than alum in generating Env-specific IgG and 

multiple Fc-dependent activities, only alum was associated with protection from SIV 

infection [218]. Nonetheless, the MF59-adjuvanted vaccine is advancing into a large 

efficacy trial, HVTN 702, in Southern Africa, with results anticipated in 2021 [214]. 

 

1.8. The Future of Vaccine Design for HIV-1 

 In the wake of the multiple failed HIV-1 vaccine trials and the partially 

successful RV144, the HIV-1 vaccine field now appears to be taking three broad 

approaches. The first involves incrementally building on the success of RV144. 

Much of the optimization of the RV144 regimen is being conducted empirically in 

human clinical trials, as outlined in Section 1.7. Other insights can be gained by 

studying modifications to poxvirus prime-protein boost regimens in animal models, 

as in Chapters 2 and 3 of this dissertation. More targeted vaccine approaches 

attempt to elicit specific non-neutralizing antibody specificities or functions that were 

associated with protection in RV144, in particular binding to the V1V2 domain and 

V2 peptide epitope. For example, scaffolded V1V2 immunogens were recently 

shown in guinea pigs to efficiently elicit V1V2-specific IgG that mediated antibody-

dependent cell-mediated phagocytosis [219]. The work presented in Chapter 2 

regarding the immunogenicity of the V2 peptide in CD4-independent Envs is also 

directly relevant to this research interest. 
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 The second heavily pursued approach to an HIV-1 vaccine is based on the 

generation of bNAbs using a variety of rational design strategies (reviewed in [220]). 

One idea is to mimic the events that naturally lead to the development of bNAbs in 

HIV-1-infected individuals. Researchers are characterizing the co-evolution between 

virus and antibodies in these individuals [221–223] in order to generate a series of 

Env immunogens that could guide the development of bNAb specificities in a 

vaccine context [224,225]. Other bNAb-focused strategies include the engineering of 

Env immunogens to specifically activate the germline precursors of bNAbs, which 

frequently do not recognize wild-type Env trimers and thus are not expanded by 

conventional immunogens [226–232]. A related strategy aims to generate bNAbs 

that can accommodate glycans by first priming with Envs lacking glycosylation sites, 

and later boosting with the natively glycosylated Env [17]. Other approaches have 

attempted to generate bNAbs by perturbing the normal B cell processes of survival, 

activation, and tolerance checkpoints, with the rationale that bNAb lineages may be 

disfavored by normal tolerance mechanisms [233–235]. 

 Most notably among the bNAb strategies, stabilized soluble Env trimers have 

been constructed in much the same way as done for the RSV prefusion trimer 

vaccine. Real-time analysis of Env conformational dynamics suggests neutralization 

resistance is related to the proportion of time the trimer spends in a closed versus 

open conformation [236]. A model has emerged in which neutralization of Tier-2 

Envs occurs only when an antibody binds specifically to the compact, ground-state 

trimer with high affinity [237]. In this context, promising immunogens have been 

devised by engineering soluble HIV-1 Env trimers that are stabilized in their closed 

ground-state conformation. The first iteration of the stabilized soluble trimer is the 

SOSIP, named for the mutations I559P (IP), promoting trimerization, and A501C and 
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T605C, creating a disulfide bridge (SOS) between gp120 and gp41 [238] (depicted in 

Fig. 1.3). The SOSIP was also engineered to have a more efficient cleavage site in 

between gp120 and gp41 [239] and a premature stop codon before the MPER 

region, at position 664, to prevent aggregation [240]. A stable and compact SOSIP 

was first engineered from clade A Env BG505 and was shown to react specifically to 

HIV-1-specific NAbs but not non-NAbs [45]. This reagent permitted a series of 

breakthroughs in structure-guided vaccine design for HIV-1, including the first crystal 

structure of a trimeric HIV-1 Env [241–243]. Immunization of rabbits and macaques 

with SOSIPs generated strain-specific Tier-2 NAbs [46], an impressive accomplish-

ment, but alternative strategies are needed to generate broader neutralizing activity. 

 

 

Fig. 1.3. Structure of the stabilized Env trimer of BG505 SOSIP.644. At left, red 
spheres indicate the mutations A501C and T605C that form a stabilizing disulfide 
bridge, while only the general area of I559P is shown, as that residue was not 
ordered in the crystal structure. At right, the V2 peptide epitope (HXB2 a.a. 163-183) 
is shown as spheres. Images were adapted in Pymol from PDB 4TVP (Pancera et 
al., Nature 2014) [243]. 

 
It has been proposed that the Tier-2 NAb response generated against stable 

Env trimers are primarily directed at “glycan holes,” or patches of exposed peptide 

surface in between glycans [244]. Unfortunately, the glycan holes vary considerably 

90°

A501C
T605C

V2

I559P



 26 

strain to strain; consequently, such Tier-2 NAbs are not broadly neutralizing. A range 

of ongoing research efforts seek to improve the breadth of this response, including: 

(i) further increasing the stability of soluble trimers [245], (ii) generating stabilized 

trimers from multiple Env strains to be used in combination [246–248], (iii) deleting 

glycans to prime epitope-specific responses [17,249], (iv) increasing the multivalency 

of trimer presentation [250], and (v) investigating ways to enhance somatic 

hypermutation (discussed further below).  

 A third approach in HIV-1 vaccine design is to forego the generation of Env-

specific antibodies and elicit protection through cell-mediated immunity. Although 

conventional T cell-based vaccines have failed in clinical trials, Hansen, Picker, and 

colleagues have described a highly unusual type of CD8+ T cell response elicited by 

a rhesus cytomegalovirus vector that completely eliminates SIV infection after acute 

viremia in 50% of challenged macaques [251,252]. The CD8 response is of an 

effector phenotype, is extremely broad in terms of SIV proteomic coverage, and 

includes unusual MHC class II- and MHC class I E-restricted responses [253–255]. 

Plans are underway to test the applicability of this approach in humans [256]. 

 These alternative immunogen concepts and structure-guided vaccine designs 

have generated optimism for an effective HIV-1 vaccine. However, there remain 

important questions about the optimal way to display or deliver the immunogens in 

order to generate desirable antibody responses. These topics are a focus of 

Chapters 2–4 of this dissertation. One of the most fundamental of these questions is 

how to promote higher levels of antibody somatic hypermutation and affinity 

maturation. These processes are viewed as key to generating HIV-1 bNAbs, given 

their unusually high rate of somatic mutation and the likely requirement to develop 

high affinity for poorly immunogenic surfaces that include glycan moieties [257]. In 
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order to increase somatic hypermutation and affinity maturation, it will be necessary 

for future vaccines to potently activate the immune cells that execute and regulate 

this process: germinal center B cells and T follicular helper cells. 

 

1.9. The Germinal Center Reaction and T Follicular Helper Cells 

 The germinal center (GC) reaction occurs within the B cell follicles of 

secondary lymphoid tissue, when B cells proliferate and mutate in response to 

antigenic stimulation (reviewed in [258]). They are composed of a “dark zone” of 

rapidly proliferating B cells or centroblasts and a “light zone” of non-proliferating B 

cells or centrocytes. In the dark zone, centroblasts express activation-induced 

cytidine deaminase (AID), an enzyme required for class-switch recombination and 

somatic hypermutation. Class-switching refers to the B cell transition from secretion 

of the IgM antibody isotype to IgG, IgA, or IgE. Somatic hypermutation describes the 

accumulation of non-germline-encoded mutations within the variable immunoglobulin 

gene segments, which can result in increased or decreased affinity for antigen. 

When GC B cells cycle from dark zone to light zone, they bind and internalize 

antigen presented on follicular dendritic cells. Through a process of natural selection, 

only the highest-affinity B cells are able to capture a limiting amount of antigen. 

Captured antigen is proteolytically processed into peptide epitopes, which are 

presented on MHC class II to cognate CD4+ T helper cells in the follicle, termed T 

follicular helper (Tfh) cells (reviewed in [259,260]). Tfh cells provide survival and 

proliferation signals to GC B cells in the form of the peptide-MHC/T cell receptor 

interaction, CD40/CD40L interaction, and secretion of IL-21 and other cytokines. B 

cells that do not receive these signals due to low-affinity BCRs are eliminated by 

apoptosis. Those that are activated may undergo repeated cycling through the dark 
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and light zones, iteratively increasing the antibody affinity to nanomolar levels and 

driving differentiation of GC B cells into memory B cells and long-lived, antibody-

secreting plasma cells that reside in the bone marrow [261,262].  

 Tfh cells, first described in 2000, are a CD4+ T cell subset that localizes to the 

B cell follicle [263,264]. Tfh cells highly express CXCR5, which allows for homing to 

CXCL13 expressed in the follicles and serves as a distinguishing marker of Tfh cells 

along with high levels of PD-1 and the transcriptional regulator Bcl6. Tfh cells are the 

critical drivers of the GC processes of somatic hypermutation, affinity maturation, 

and long-lived plasma cell generation. However, the factors that contribute to Tfh 

differentiation are poorly understood. A few studies have begun to elucidate the 

factors that positively and negatively regulate Tfh cell development. Notably, Locci 

and colleagues took an unbiased approach and tested a panel of over 2,000 

secreted proteins for factors that inhibited or promoted differentiation of CD4+ T cells 

in vitro into Tfh-like cells expressing CXCR5 and PD-1 [265]. They identified activin 

A as the most potent promoter of Tfh marker expression, although the mechanism is 

unknown. In contrast, multiple type I interferons (IFNs) were among the most potent 

inhibitors, a finding in accordance with other studies [266,267]. 

Extensive hypermutation is a cardinal feature of HIV-1-specific bNAbs; 

therefore, HIV-1 represents an obvious target for efforts to specifically promote Tfh 

and GC B cell responses [149]. Indeed, the Tfh-dependent generation of high-affinity 

and long-lived antibody responses is relevant for protection against most viruses. 

For acute viruses that do not constitute difficult vaccine targets, strategies that 

enhance Tfh and GC B cell responses would likely serve to improve vaccine 

efficacy, decrease the required doses and the need for booster immunizations, and 

strengthen our ability to respond to rapidly emerging epidemics. 
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1.10. Vaccine Design for Emerging Acute Viruses 

 While the greatest challenges in vaccinology arguably derive from chronically 

infecting viruses like HIV-1 and HCV, there are also substantial hurdles to effective 

vaccine design for acute viral illnesses, especially those causing emerging 

epidemics. Current technology and regulation do not allow for rapid, large-scale 

deployment of new vaccines against rapidly emerging viruses. The 2014-2016 

outbreak of Ebola virus in West Africa offers an informative example. The first cases 

of Ebola were identified in March of 2014 [268]. Over the next 2 years, an estimated 

28,600 people became infected with Ebola and 11,300 died [269]. While the public 

health response to Ebola was rapid, vaccine development lagged far behind. During 

the final months of the epidemic, an experimental vaccine made with recombinant 

vesicular stomatitis virus expressing the surface glycoprotein of Ebola virus Zaire 

(rVSV-ZEBOV), first described in 2005 [270], was evaluated for safety, immuno-

genicity, and efficacy in humans. This trial concluded that the rVSV-ZEBOV vaccine 

had extremely high efficacy (100%, 95% C.I. 75-100%) [271], and stockpiles were 

ordered to combat future epidemics [272]; however, by this time in late 2015, the 

epidemic had already been contained. Thus, the slow pace of manufacturing and 

safety testing renders modern vaccine development impractical for rapidly emerging 

diseases. It is also worth noting that rVSV-ZEBOV vaccination was associated with 

moderate adverse reactions, such as fever and arthritis, suggesting that a safer 

vaccine would be more suitable for mass preventive vaccination efforts. The ideal 

vaccine platform to respond to similar outbreaks would have the following 

characteristics: (i) versatility for use with diverse pathogens, (ii) a consistent record 

of safety and potent immunogenicity, preferably after a single immunization, and (iii) 

amenability to rapid and large-scale manufacturing. The need for a more rapid 
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response to emerging viral infections was made apparent again during the recent 

explosive reemergence of Zika virus. 

 

1.11. The Origins and Reemergence of Zika Virus 

 Zika virus (ZIKV) is an enveloped, single-stranded, positive-sense RNA virus 

of the family flaviviridae. It is closely related to the dengue viruses (DENV), with 

~56% amino acid identity to each of the four DENV serotypes on the amino acid 

level [273]. The first isolation of ZIKV occurred in 1947, when Dick and colleagues 

installed sentinel rhesus macaques in cages in the canopy of the Zika Forest, 

Uganda [274]. Their objective was to monitor mosquito-borne infections and to 

collect new isolates of yellow fever virus, another flavivirus that was prevalent in the 

monkey population of the Zika Forest. Serum was collected from a sentinel monkey 

with an elevated body temperature and was injected intracerebrally into mice. A 

filterable, transmissible agent was isolated from the infected brain that caused 

weakness, paralysis, and death in mice and a mildly symptomatic infection in rhesus 

macaques [275]. The agent was not neutralized by convalescent sera from other 

known viral infections and was therefore deemed a new virus and named for the 

forest in which it was first isolated. Serological surveys of monkeys and humans in 

the 1950s–1980s suggest that ZIKV or a close relative was endemic to much of sub-

Saharan Africa and South and Southeast Asia, without any known association with 

significant disease symptoms (reviewed in [276]). The primary vector of ZIKV 

infection in humans is considered to be the Aedes aegypti or yellow fever mosquito, 

although sexual transmission has also been documented [277,278]. 

 In the 2000s, ZIKV reemerged in a series of outbreaks in naïve populations in 

the Pacific islands. Epidemics occurred first on Yap Island of Micronesia in 2007, 
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then in French Polynesia, New Caledonia, Cook Islands, and Easter Island in 2013 

and 2014 (reviewed in [276]). In 2015, the virus arrived in Brazil and initiated a major 

epidemic involving South America, Central America, and limited parts of the United 

States. By early 2017, an estimated half million to 1.5 million people in the western 

hemisphere were infected with ZIKV. Previous to this, ZIKV infection in humans was 

associated with asymptomatic, mild, or moderate illness, with common symptoms of 

fever, maculopapular rash, and conjunctivitis. More recently, it has become apparent 

that ZIKV infection can rarely (~2 in 10,000 infections) have severe neurological 

outcomes, such as Guillain-Barré syndrome [279], an autoimmune-mediated and 

potentially lethal paralytic disorder. Most alarmingly, the recent spread of ZIKV has 

been associated with a range of birth defects including microcephaly in infants born 

to women who were infected with ZIKV during pregnancy. Microcephaly is defined 

by head circumference below the third percentile for infants of the same height and 

weight, and it is characterized by a profound loss of cerebral cortex and other brain 

structures [280,281]. As a result, infants born with microcephaly suffer a range of 

profound neurological and cognitive impairments, including poor motor control, 

difficulty swallowing, developmental delays, hearing or vision loss, and seizures. The 

causal link between ZIKV and microcephaly was first suggested by a temporal 

association; then, ZIKV RNA was detected in the placenta and brain of 

microcephalic fetuses or neonates [282,283], and susceptible animal models 

recapitulated fetal ZIKV symptoms of central nervous system infection, intrauterine 

growth restriction, and abortion [284–287]. A longitudinal study of Brazilian pregnant 

women who presented to the clinic with a rash showed that 30% of the ZIKV RNA(+) 

women gave birth to children with congenital defects, and earlier infection during 

pregnancy was associated with more severe birth defects [288]. Between 2015 and 
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2016, an estimated 5,000 cases of microcephaly occurred throughout Latin America. 

While Brazil experienced about 40% of the outbreak’s ZIKV infections, it suffered 

80% of microcephaly cases [289]. The biological, social, and economic factors that 

contributed to this disparity are as yet unknown.  

 Given the severity and rapidity of the 2015-2016 ZIKV epidemic, the World 

Health Organization (WHO) declared it a global public health emergency from 

February until November of 2016. The epidemic was addressed with mosquito-

control measures and educational outreach, but a vaccine would have been the 

most effective way to prevent ZIKV infection and microcephaly, especially in some 

Brazilian communities where mosquito control is minimal and legal and religious 

norms discourage contraception and abortion. WHO and UNICEF issued a vaccine 

target product profile in July of 2016 specifying that the ideal vaccine for ZIKV would 

be a non-replicating vector that stimulates durable protective immunity with a single 

injection, with minimal adverse reactions [290].  

 

1.12. Vaccine Approaches for Zika Virus 

 Like other flaviviruses, ZIKV infection of humans results in the development of 

potent NAb titers and likely protective immunity [291]. Therefore, there is a great 

optimism for the feasibility of an effective vaccine. ZIKV virions are encapsulated in a 

shell of 180 copies of the envelope (E) protein paired with the membrane (M) 

protein, the proteolytically processed form of the pre-membrane precursor (prM) 

[292,293]. These proteins are arranged on the viral membrane in a herringbone 

pattern with icosahedral symmetry. The E protein covers most of the virion surface 

and is the major target of NAbs to ZIKV. E protein features only a single 

glycosylation site and is therefore a relatively simple target for neutralization. Most, if 
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not all, vaccine designs for ZIKV have aimed to elicit NAbs against the E protein 

(reviewed in [294]). The experimental ZIKV vaccine approaches published to date 

are listed in Table 1.2 and summarized below. 

 

 

Table 1.2. Preclinical ZIKV vaccine publications to date. Abbreviations: PIV = 
purified inactivated virus; RhAd52 = rhesus adenovirus serotype 52 vector; m1Ψ = 1-
methylpseudouridine (modified nucleoside); (pr)M-E = (pre)membrane-envelope pro-
tein; vp = viral particles; EP = electroporation; (m)MN = (modified) micro-neutraliza-
tion assay; RVP = reporter viral particle neutralization assay; PRNT/FRNT = plaque/ 
focus reduction neutralization test; LNP = lipid nanoparticle; IFU = infectious focus 
units; CMC-MNA = carboxymethyl cellulose microneedle array; ADE = antibody-
dependent enhancement. Asterisk indicates the report described in this dissertation. 

 

 One of the earliest experimental vaccines described for ZIKV was made using 

a DNA plasmid approach. In August 2016, Larocca, Barouch, and colleagues 

described a DNA vaccine encoding the M and E proteins from a Brazilian strain of 

Vaccine 
type(s) Immunizations Animals Peak NAb titers Protection from 

ZIKV challenge Year Reference

DNA, PIV 50 µg DNA (M-E) i.m. (x 1 or 2); 1 
µg PIV with alum i.m. or s.c. Mice MN ~1,000 

(DNA x 2)
Undectable viremia 
(DNA or PIV) 2016

Larocca, 
Abbink, et 
al. [295]

DNA, PIV, 
RhAd52

5 µg PIV with alum i.m. x 2; 5 mg 
DNA (M-E) i.m. x 2; RhAd52 1011 
vp i.m. x 1

Rhesus 
macaques

MN 5,000 (PIV), 
~200 (DNA and 
RhAd52)

Undectable viremia 
(DNA, PIV, RhAd52) 2016

Abbink, 
Larocca, et 
al. [297]

DNA 1 or 4 mg prM-E DNA x 1 or 2 with 
needle-free injector

Mice, 
Rhesus 
macaques

RVP ~8,000, 
MN ~1,300, & 
FRNT ~1,600

Undetectable viremia 
in 94% of macaques 
(2 doses DNA)

2016 Dowd, Ko, 
et al. [298]

E protein 
subunit, Ad5

E ectodomain+foldon: Ad5 1011 vp 
s.c. wk 0, i.n. wk 2; purified protein, 
20 µg i.d. in CMC-MNA wk 0, 2 i.d.

Mice PRNT ~1,000 
for Ad5

No disease in 
passively immunized  
7 day old pups 

2016 Kim et al. 
[300]

DNA + EP
prM-E DNA 25 µg i.m. x 3 in mice 
or 2 mg i.d. x 2 in macaques, with 
CELLECTRA electroporation

Mice, 
Rhesus 
macaques

PRNT ~500 in 
macaques

100% and 80% 
survival in active and 
passive immunization 
of IFN-deficient mice

2016 Muthumani 
et al. [299]

mRNA-LNP 
(m1Ψ, 
purified) *

prM-E m1Ψ-modified, HPLC-
purified mRNA-LNPs, 1x 30 µg i.d. 
in mice or 50-600 µg in macaques

Mice, 
Rhesus 
macaques

RVP 104-105, 
PRNT/FRNT 
400-1000

Undetectable viremia 
in mice; 99-100% 
reduced viremia in 
macaques

2017
Pardi, 
Hogan, et 
al. [307]

mRNA-LNP 
(m1Ψ)

prM-E m1Ψ-modified mRNA-LNP, 
10 µg i.m. x 1 or 2 Mice RVP 104-105

100% survival in IFN-
deficient mouse 
models (2 doses), 
reduced ADE

2017
Richner, 
Himansu et 
al. [306]

Live 
attenuated

Live ZIKV with 10 nt deletion in 3' 
UTR, 104 IFU s.c. x 1 Mice mMN 103-104 Undetectable viremia 

inIFN-deficient mice 2017 Shan et al. 
[301]
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ZIKV [295]. Two intramuscular (i.m.) injections of the plasmid into BALB/c mice 

generated high NAb titers and complete protection from challenges with homologous 

and heterologous ZIKV strains. Whereas genetic variation is a major obstacle for 

HIV-1 vaccines, ZIKV strains in the Americas and Asia are ~99% identical on the 

amino acid level [296], and all global ZIKV isolates form a single serotype [291]. 

Larocca et al. also described a vaccine made with purified inactivated virus (PIV) in 

alum adjuvant that elicited low but protective NAb titers in mice. A subsequent report 

by the same group showed that rhesus macaques immunized twice with either DNA 

or PIV, or a single time with a rhesus adenovirus serotype 52 (RhAd52) vector 

expressing prM and E, developed high NAb titers and were protected from ZIKV 

challenge [297]. This study also established that antibodies alone were capable of 

protecting macaques from ZIKV, and that protection was achieved by a NAb titer 

>100 (reciprocal dilution EC50) as measured by a microneutralization assay. 

 These were followed by other studies using similar vaccine designs. Dowd et 

al. developed two DNA plasmid vaccines encoding prM and E and showed that two 

i.m. injections of 1 to 4 mg of plasmid generated protective immune responses in 

rhesus macaques [298]. In this study, a NAb titer of 1,000, as measured by a 

reporter viral particle (RVP) neutralization assay, was associated with about a 70% 

reduction in ZIKV viremia in macaques. The RVP assay is highly sensitive to NAb 

activity, and ID50 values determined by the RVP assay tend to be roughly 1 log 

higher than those of the plaque reduction neutralization test (PRNT) and other assay 

formats based on infection of a cell monolayer [291]. 

Muthumani and colleagues described an additional DNA plasmid vaccine 

encoding prM-E, which they delivered to mice and rhesus macaques with in vivo 

electroporation to enhance delivery [299]. This study used a more stringent, highly 
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pathogenic mouse model of infection, type I IFN α/β receptor knockout (IFNAR-/-) 

mice, to show that two i.m. injections of 25 µg of the plasmid elicited an immune 

response that could protect against ZIKV-mediated brain pathology and death. 

Likewise, two intradermal injections of 2 mg of plasmid elicited a robust NAb 

response in rhesus macaques. When IFNAR-/- mice were passively immunized by 

infusion of macaque serum, they were 80% protected from a lethal ZIKV challenge.  

 These vaccine approaches and others [300,301] are promising for their ability 

to elicit protective NAb responses to ZIKV, and, in fact, many of them are already 

proceeding into clinical trials (reviewed in [294]). However, with the exception of the 

RhAd52 vector, which has no documented efficacy in humans, the strategies 

discussed above were not reported to elicit protective NAb titers after one 

immunization in primates. Additionally, several of the published ZIKV vaccine 

candidates are subject to limitations in the scalability of manufacturing. One 

promising vaccine platform that does not appear subject to these limitations is 

messenger RNA (mRNA). mRNA-based vaccines are synthesized enzymatically by 

in vitro transcription in a process that has the potential to be rapidly and massively 

scaled up [302,303]. Recent advances in the design and delivery of mRNA vaccines 

has led to the development of potent, single-dose vaccines for use against ZIKV and 

other pathogens [302,304–307]. 

 

1.13. Nucleoside-Modified Messenger RNA Vaccines 

 While mRNA was investigated as a therapeutic vector as early as the 1990s, 

its widespread use has been restricted by a number of technical challenges, 

including sensitivity to degradation by RNases, low translatability, and inefficient in 

vivo delivery. However, recent technological and conceptual advances have solved 
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these major problems facing mRNA therapeutics. Carrier molecules have been 

devised that shield RNA from degradation and allow uptake into the cytosol in vivo 

[308]. One highly effective carrier is lipid nanoparticles (LNPs) that comprise an 

ionizable cationic lipid, cholesterol, polyethylene glycol, and a phospholipid 

[306,307,309]. In vivo delivery of mRNA complexed to LNPs results in high and 

prolonged protein expression when delivered by a variety of routes [309]. A number 

of design features in the mRNA can improve its stability and translatability to various 

degrees, including enzymatic addition of a 5’ cap, efficient 5’ and 3’ untranslated 

regions (UTR) sequences, and codon optimization [310]. A major impediment to 

translation stems from the strong induction of type I interferons (IFN) by in vitro 

transcribed mRNA preparations, which contain aberrant double stranded RNA 

(dsRNA) species [311]. Type I IFN signaling leads to an increase in the dsRNA 

sensors PKR and OAS, which, when activated, result in the inhibition of translation 

elongation or the degradation of cellular mRNA and ribosomal RNA [312–315]. Two 

critical types of modifications have been described by our laboratory that remove 

detrimental innate immune signaling and dramatically increase the translation of 

mRNA in cultured dendritic cells (DCs) and in vivo. First, the enzymatic incorporation 

of naturally occurring, modified nucleosides during in vitro transcription abrogates 

the recognition of mRNA by toll-like receptors (TLR) 7 and 8 and other sensors. 

TLR7 and TLR8 bind to single-stranded RNA (ssRNA) in the endosome by distinct 

mechanisms that are each dependent in part on the presence of uridine [316,317]. 

Replacement of uridine with its isomer pseudouridine or the related 1-methyl-

pseudouridine blocks recognition by TLR7 and TLR8, prevents type I IFN production, 

and increases translation of mRNA [318–320]. The second modification is the purifi-

cation of in vitro transcribed mRNA to remove dsRNA contaminants, which serve as 
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ligands for the endosomal sensor TLR3 and various cytosolic RNA sensors including 

MDA5, RIG-I, OAS, and PKR (reviewed in [321]). This can be achieved by reverse-

phase liquid chromatography (specifically, fast protein liquid chromatography, or 

FPLC), and the resulting purity can be verified using a mAb that binds specifically to 

dsRNA [311,322]. As a result of these two combined mRNA modifications, type I IFN 

production can be prevented in vitro and in vivo and the level of protein translation 

can be increased by a remarkable 4 to 5 logs in DCs [311] (see Fig. 1.4).  

 

 
 

Fig. 1.4. Schematic of innate immune sensing of in vitro transcribed mRNA. In 
this model DC, a variety of sensors (pink) in the endosomes and cytoplasm detect 
dsRNA and unmodified exogenous ssRNA, resulting in the production of type I IFNs. 
IFN-stimulated genes inhibit translation of the antigen (red trimers) and may also 
inhibit the differentiation of Tfh cells and germinal center B cell responses.  

 

 Nucleoside-modified, purified mRNA complexed with LNPs (mRNA-LNPs) 

can be used to encode a protein immunogen and generate potent immune 

responses by vaccination. Preliminary data from our laboratory show that a single 
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intradermal injection of mice with influenza hemagglutinin-encoding mRNA, prepared 

as described above, results in strong polyfunctional CD4+ T cell responses and 

exceptionally high hemagglutination inhibition (HAI) titers (Chapter 4, Fig. 4.3). The 

HAI titers generated by this vaccine greatly exceeded those typically induced by a 

conventional inactivated influenza vaccine or even pathogenic influenza infection in 

mice ([323,324] and E. Willis, personal communication). We investigated the 

mechanism of this potent NAb response and discovered that the mRNA vaccine 

stimulated a high level of total and antigen-specific Tfh cells and GC B cells. Current 

experiments aim to investigate the Tfh response induced by mRNA-LNP vaccines in 

nonhuman primates, with promising results (discussed in Chapter 4). Overall, these 

preliminary studies indicate that the nucleoside-modified, purified mRNA-LNP 

vaccine platform offers a number of advantages over traditional vaccine approaches, 

including the capacity for rapid development, versatility, and potent immunogenicity 

characterized by robust Tfh and GC B cell responses.  

 

1.14. Goals of this Thesis 

 This dissertation seeks to address multiple outstanding questions in modern 

vaccine development, particularly for the challenging chronic infection caused by 

HIV-1 and the acute illness and birth defects resulting from ZIKV.  

In Chapter 2, I present a body of work detailing the biological, structural, and 

immunogenic properties of CD4-independent HIV-1 Env immunogens. CD4-

independent Envs tend to display an opened trimer conformation (detailed in Section 

2.1) and thus present conserved epitopes in an altered fashion compared to CD4-

dependent, wild-type Envs. This strategy represents a conceptual departure from 

SOSIPs and other attempts to generate bNAbs against closed-conformation trimers. 
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Instead, this approach offers the potential to generate broadly cross-reactive, non-

neutralizing antibodies that may potentially be protective based on the immune 

correlates analysis of RV144.  

 In Chapter 3, I investigate the importance of HIV-1 Env multivalency on the 

cell surface in the context of a prime-boost vaccine regimen. Many HIV-1 vaccine 

designs that encode Env on a viral or genetic vector use a mutant with a deleted 

cytoplasmic tail [325–327]. This approach has been shown to increase HIV-1 Env 

surface expression, albeit modestly. Few head-to-head comparisons between 

truncated and WT Env have been conducted, particularly in prime-boost regimens 

[328,329]. Attempts to further increase the cell surface display of Env are hampered 

by our poor understanding of Env intracellular trafficking signals. Here, I evaluate the 

impact of novel cytoplasmic tail mutations on the surface expression and 

immunogenicity of HIV-1 Env in a clinically relevant prime-boost vaccine protocol. 

 In Chapter 4 and in a recent publication [307], I report the implementation of 

the nucleoside-modified, purified mRNA-LNP vaccine platform to make an effective 

vaccine against ZIKV. I describe the design of the mRNA encoding prM and E from a 

2013 ZIKV strain, show translation of the mRNA in vitro, and characterize the 

immune response and protection from infection in mice and rhesus macaques. The 

ability of this platform to potently activate Tfh cells is also investigated. 

Finally, the implications of this work and a number of promising future 

directions are discussed in Chapter 5.  
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CHAPTER 2 

 

CD4-INDEPENDENT HIV-1 ENVELOPES INDUCE A V2-SPECIFIC ANTIVIRAL 

ANTIBODY RESPONSE IN VACCINIA PRIME-PROTEIN BOOST VACCINATION 
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2.1. ABSTRACT 

 

Neutralizing antibodies against the HIV-1 envelope (Env) glycoprotein have 

demonstrated the potential to protect from HIV-1 infection in animal models; 

however, these antibodies have proven extraordinarily difficult to elicit in vaccination. 

An alternative and perhaps more viable path towards vaccine protection from HIV-1 

is through non-neutralizing antibodies that mediate antiviral activities through Fc-

dependent interactions with effector cells. A protective role for these antibodies was 

recently suggested by the partially effective RV144 vaccine trial, in which decreased 

risk of infection correlated with non-neutralizing antibodies against Env variable 

loops 1 and 2 (V1V2) and antibody-dependent cell-mediated cytotoxicity (ADCC). 

However, the structural basis of eliciting such antibody specificities and functions is 

poorly understood. In this context, we investigated the immunologic impact of 

adapting HIV-1 Envs to mediate CD4-independent infection, a phenotype previously 

associated with striking structural perturbations. We demonstrate that two CD4-

independent Env clones derived from HIV-1 89.6 exhibit a number of antigenic 

changes, including increased exposure of a linear epitope in V2 that was a target of 

ADCC-mediating antibodies in RV144 vaccinees. Importantly, the immunogenicity of 

this epitope was markedly enhanced on CD4-independent Envs when mice and 

nonhuman primates were immunized using a vaccinia prime-protein boost protocol. 

Moreover, the ability of the vaccinia primes to generate ADCC-mediating antibodies 

was enhanced for one of the CD4-independent Envs. Therefore, CD4-independent 

Envs may represent a favorable class of immunogens to elicit potentially protective 

non-neutralizing antibody activities.  
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2.2. INTRODUCTION 

 

 The HIV-1 pandemic remains a major global health concern, as more than 2 

million people become infected with the virus each year and require life-long  

antiretroviral treatment [330]. Therefore, an effective vaccine is urgently needed. A 

principal goal of HIV-1 vaccine research is the generation of protective antibodies 

(Abs) against the HIV-1 envelope (Env) glycoprotein [25]. Passive Ab transfer 

experiments in nonhuman primate models have demonstrated the protective ability 

of Env-specific Abs, with contributions from both neutralizing activity and non-

neutralizing Fc-mediated effector functions [140–146]. 

Neutralizing and non-neutralizing Abs differ considerably in their modes of 

recognition of HIV-1 Env. Fusion-competent Env exists as a trimer of gp160 

protomers that are each cleaved into surface gp120 and transmembrane gp41 

subunits. In recent years, there has been substantial progress in understanding the 

structure of this trimer and its recognition by neutralizing antibodies (NAbs). Real-

time analysis of Env conformation by single-molecule fluorescence resonance 

energy transfer (smFRET) has revealed that the pre-fusion trimer samples multiple 

open and closed conformations in a dynamic equilibrium [236]. The closed state is 

the principal target of broadly neutralizing antibodies (bNAbs) that have been 

isolated from HIV-1-infected individuals [236,331], yet typically the Ab response 

against this structure is profoundly impeded by conformational masking, extensive 

glycosylation, and other mechanisms [118,119,129,244,332,333]. Structural 

resolution of the closed state has been revealed by X-ray crystallography 

[241,243,245] and cryo-electron microscopy [242,334] structures of a stabilized 

soluble Env trimer called SOSIP [45,335], which reveal a compact trimer stabilized at 
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its apex by packing of the V1V2 region atop the intraprotomeric V3 loop and by 

interprotomeric contacts between V1V2 and V3. SOSIPs and other stabilized trimers 

[245,247] have made it possible to test whether Abs raised solely against the closed 

trimer neutralize primary, neutralization-resistant (Tier-2) strains of HIV-1. 

Promisingly, immunization with SOSIP protein elicited Tier-2 NAbs against 

autologous virus in rabbits and monkeys [46,336]; however, this activity was 

restricted in breadth, and it may have been limited by a number of factors, including 

incomplete stability of the trimer under physiologic conditions [337], 

immunodominance of neo-epitopes at the trimer base [338], or insufficient germinal 

center B cell activation [339]. 

While the closed trimer conformation serves as the target of Tier-2 NAbs, Env 

adopts other conformations during infection that may be susceptible to other 

protective Ab responses. When Env binds to its primary receptor, CD4, the trimer 

undergoes a dramatic structural rearrangement and opening: gp120 subunits rotate 

45° away from the central 3-fold axis of symmetry and 15° around a perpendicular 

axis [340–343]; the V1V2 loops are reoriented away from the trimer apex to lateral 

positions; and the V3 loop becomes exposed and primed to interact with the co-

receptor, CCR5 or CXCR4 [344,345]. This CD4-induced, open conformation is 

bound by Abs that do not have potent Tier-2 neutralizing activity, but which can Fc-

mediated effector functions, including Ab-dependent cell-mediated cytotoxicity 

(ADCC), phagocytosis (ADCP), viral inhibition (ADCVI), and infectious virion capture 

[123,124,198,200,346,347].  

No HIV-1 vaccine trial to date has elicited significant levels of Tier-2 NAb or a 

high level of protection from HIV-1 infection in humans. A modest protective effect of 

31.2% was achieved in the RV144 vaccine trial at one year of follow-up [187], but 
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protection did not correlate significantly with NAb activity. Instead, non-neutralizing 

IgG against V1V2 correlated with decreased risk of infection, and Env-specific 

plasma IgA correlated with increased risk [192]. The impact of V1V2-specific Abs 

was corroborated by an analysis of breakthrough viruses showing selection against 

specific amino acid signatures in the V2 region [206]. A post-hoc analysis revealed 

that ADCC was one of several Ab activities that were associated with decreased risk 

of infection in the presence of low Env-specific plasma IgA [192]. In follow-up 

studies, ADCC-mediating monoclonal antibodies (mAbs) were isolated from RV144 

vaccinees that bound predominantly to the C1 region [196] or a linear V2 peptide 

[202] of Env, and Env-specific plasma IgA from vaccinees was found to block C1-

directed ADCC [348]. This set of studies has raised significant interest in the 

potential of non-neutralizing IgG to offer an alternative or more feasible path to HIV-1 

vaccine protection than bNAbs [349,350]. Despite this promise, little is known about 

how to specifically generate Abs with the desired epitope specificities (V2 and C1) or 

Fc-mediated effector functions. Therefore, characterization of Ab responses elicited 

by novel Env immunogen concepts and vaccination strategies is needed.  

CD4-independent Envs, which mediate infection using a co-receptor in the 

absence of CD4, represent a rare class of Envs with distinct biological and structural 

characteristics compared to CD4-dependent Envs (reviewed in [351]). CD4 tropism 

is a highly conserved feature of all primate lentiviruses [352,353]; however, CD4-

independent variants of HIV-1, HIV-2, and simian immunodeficiency viruses (SIV) 

have occasionally been described in vivo [354–367], especially in central nervous 

system infection or in severely CD4+ T cell-depleted hosts, and they can be readily 

derived in vitro [368–373]. CD4-independent Envs tend to be highly sensitive to Ab-

mediated neutralization, suggesting why they are selected against in vivo 
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[122,359,373–377]. These Envs characteristically exhibit an open trimer 

conformation that resembles the CD4-induced state, with laterally displaced V1V2 

loops and exposed co-receptor binding site [343,378]. Accordingly, CD4 

independence is often associated with a loss of quaternary epitopes in V1V2 at the 

trimer apex and greater exposure of highly conserved epitopes [122,375,379]. 

Depicted in Fig. 2.0 is a model of Env trimer opening, as determined by cryo-electron 

tomography with fitted densities from available gp120 crystal structures. 

 

 

 

Figure 2.0. Characteristic trimer opening and rotation of V1V2 domain in a 
CD4-independent SIV. Shown are cryo-electron tomography structures (blue) of 
viral membrane-associated Env trimers from CD4-dependent SIVmac239 (left) and 
CD4-independent SIV CP-MAC (right). Crystal structures of the HIV-1 gp120 (PDB: 
1GC1 [380]) were fitted into the tomography structures. Red spheres indicate the 
V1V2 domain, which is rotated from the apex (left) to lateral positions (right). Green 
residues show the base of the V3 loop, and yellow residues show the CD4 binding 
site. The figure was adapted with permission from White et al, Plos Path. 2010 [343]. 

 

CD4-independent Envs represent an intriguing concept for alternative 

immunogen design, as their structure is highly perturbed yet functionally intact; 

CD4-dependent CD4-independent
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however, little is known about how these structural changes affect the quality of the 

Ab response in vaccination. A few reports have examined the immunogenicity of 

HIV-1 Envs that mediated a single round of infection in the absence of CD4 

[367,372,381–383]. Two of these studies evaluated Envs with a deleted N-linked 

glycosylation site at residue N197, located immediately C-terminal to V2. This glycan 

participates in interprotomeric contacts with V3 and partially shields the CD4 binding 

site (CD4bs) [241,249]. Loss of N197 has been shown to contribute to CD4-

independent infectivity [372,382] and sensitivity to neutralization by mAbs directed 

against the CD4bs, CD4-induced epitopes, and V3 [384–386]. Interestingly, 

immunization of pig-tailed macaques with HIV-1 89.6 N197Q Env resulted in 

significantly higher levels of NAb compared to WT Env in a vaccinia prime-gp120 

boost regimen [382], and immunization of guinea pigs with soluble HIV-1 ADA Env-

gp140 trimers containing a similar N197S mutation induced greater levels of Tier-1 

NAb, C1-specific IgG, and ADCC [383]. However, a limitation of these studies is that 

the examined Envs were not shown to be fully CD4-independent in a spreading 

infection, and thus the immunologic outcomes of CD4 independence have not yet 

been rigorously investigated. 

The goal of the present study was to determine how CD4 independence 

impacts the humoral immune response to HIV-1 Env through structural perturbations 

and altered epitope exposure. We therefore characterized the structure and 

immunogenicity of two fully CD4-independent Env clones derived from the dual-

tropic clade B HIV-1 89.6 Env. These Envs were evaluated as immunogens in mice 

and pig-tailed macaques: in both species, CD4-independent Envs elicited a higher 

level of IgG to conserved epitopes in the V2 region, which was better exposed as a 

result of CD4 independence. Strikingly, immunization with one CD4-independent 
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clone was associated with more rapid generation of ADCC activity in macaques. 

CD4-independent Envs thus represent an alternative immunogen strategy that might 

be used to elicit potentially protective non-neutralizing Ab responses to HIV-1.  
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2.3. RESULTS 

 

Derivation of CD4-independent HIV-1 Envs 

 It was previously shown that HIV-1 89.6 N197Q (N7) Env mediated a single 

round of CD4-independent infectivity and elicited a higher and broader NAb 

response in a vaccinia prime-gp120 boost immunization of pig-tailed macaques 

[382]. To allow a more comprehensive investigation of the impact of CD4 

independence in this Env, 89.6 WT and N7 Envs were adapted to be fully CD4-

independent in a spreading infection. Viruses expressing these Envs were adapted 

to replicate in a CD4-negative T cell line (Fig. 2.1A), and Env clones were screened 

for CD4-independent fusion. Clones A2 and D4T, derived respectively from WT and 

N7 Envs, mediated cell-cell fusion using CCR5 and to a lesser extent CXCR4 in the 

absence of CD4 (Fig. 2.1B). A2 and D4T were cloned into replication-competent 

viruses, and both were found to mediate a robust spreading infection in CD4-

negative cells compared to WT and N7 (Fig. 2.1C). 

A variety of distinct mutational pathways have been shown to confer CD4 

independence to HIV-1 Envs during in vitro adaptation. The CD4-independent Envs 

A2 and D4T acquired mutations throughout gp120 and gp41 (Fig. 2.1D): A2 acquired 

21 amino acid changes relative to WT, and D4T acquired 16 changes relative to N7 

but retained the initial N197Q substitution. Several mutations occurred at sites 

predicted to participate in intrasubunit or intersubunit interactions based on a crystal 

structure of the HIV-1 Env trimer (Fig. 2.1E) [243]. Both Envs acquired a premature 

stop codon in the cytoplasmic tail and two identical mutations in gp41 (N656D and 

D758N); all other mutations were distinct. Interestingly, A2 acquired G367R and 
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D368N mutations that are predicted to ablate CD4 receptor binding [353,380], 

whereas D4T did not acquire any mutations at residues that directly contact CD4. 

 

CD4-independent Envs show altered exposure of V2, CD4-induced, and CD4 

binding site epitopes 

CD4-independent Envs are characterized by several structural features that 

may influence the Ab response, including an opened trimer conformation, exposure 

of CD4-induced epitopes, and loss of quaternary V1V2 epitopes [122,343,375]. The 

structural and antigenic changes in A2 and D4T were therefore characterized by 

multiple approaches. First, the WT, N7, A2, and D4T Envs were expressed on the 

surface of HEK 293T cells by recombinant vaccinia virus (rVV) and were assessed 

for reactivity to mAbs and CD4-based ligands by flow cytometry. Data are expressed 

as relative changes in mean fluorescence intensity (MFI) (Figs. 2.2A and B) or as 

representative histograms (Fig. 2.2C).  

Striking differences were noted in the binding of mAbs specific for linear and 

conformational epitopes in the V2 loop. To test exposure of a linear peptide epitope 

in V2, also known as the V2p epitope, spanning amino acids 163-183 (HXB2 

numbering), we used mAbs Ab8505 and Ab8488, which were isolated from 

vaccinees in the RV305 trial and bind to the V2 peptide (David Easterhoff, Barton 

Haynes, personal communication). Other V2 peptide-specific mAbs isolated from 

RV144 vaccinees, CH58 and CH59, are capable of potent ADCC activity [202] but 

do not bind to 89.6 gp120 (data not shown). Ab8505 bound to A2 and D4T gp120 

protein at levels 2 and 10 fold higher than to parental gp120s, as quantified by EC50 

values in ELISA (Fig. 2D). Ab8488 also reacted to a low level with D4T but not with 

any other gp120 (data not shown). As a control, 2G12 did not bind more strongly to 
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A2 or D4T than parental Envs. The notion that the V2 peptide is more exposed on 

the CD4-independent Envs, including monomeric gp120, was further supported by a 

hydrogen-deuterium exchange (HDX) assay, which directly probed the exposure of 

gp120 peptides to solvent. HDX analysis revealed that the V2 peptide was 

moderately more exposed on D4T and slightly more exposed on A2 relative to WT or 

N7 in the context of soluble gp120 proteins (Fig. 2.2E). In contrast, D4T exhibited the 

highest amount of order (reduced solvent exposure) in its core structure of all 

gp120s (Kelly Lee, personal communication). 

Compared to linear V2 peptide, we observed a distinct pattern of binding by 

antibodies specific for conformational epitopes in V2 [387–389]. The conformation-

dependent mAbs 697-30D and 2158 bound 2-fold better to A2 than WT, while they 

respectively bound >10-fold and 2-fold lower to D4T than N7. This suggests that the 

exposure of linear and conformational epitopes in V2 may be dissociable processes. 

The antigenicity of quaternary epitopes in V1V2 could not be assessed using 

available mAbs, since PG16, PGT145, and CH01 did not bind to WT 89.6 Env or any 

of the variants. Interestingly, PG9, which recognizes both quaternary and, to a lesser 

extent, non-quaternary epitopes in V1V2 [151,390], bound to surface-expressed D4T 

but did not bind to WT, N7, or A2 (Fig. 2.2C). This interaction was confirmed by 

immunoprecipitation (Supp. Fig. S2.1), which also showed that PG9 recognized the 

full-length trimeric Env but not the gp120 monomer. 

MAbs that recognize CD4-induced epitopes have been divided into clusters 

A, B, and C (shown in Fig. 2.2B) based on their specificity and ADCC potency, which 

tends to be higher in clusters A and B compared to C [198]. Binding of cell-

associated A2 and D4T Envs by all three clusters of CD4-induced mAbs was 

increased approximately 2-fold compared to WT and N7 (Fig. 2.2B). A2 and D4T 
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also gained reactivity to the CD4-induced mAb C11, which did not bind to WT or N7 

(data not shown). Binding kinetics to gp120 were measured using biolayer 

interferometry, and A2 and D4T exhibited modest increases in on-rate (~2-fold or 

less) of CD4-induced mAbs 17b, A32, 48d, and N5-i5 (Fig. 2.2F). Env antigenicity 

was also assessed by neutralization sensitivity, which reflects binding to functional 

Env trimers [391,392]. 17b neutralized WT relatively weakly but was several fold 

more potent against N7, A2, and D4T (Fig. 2.2G). When viruses were pre-incubated 

with a sub-neutralizing concentration of soluble CD4 (sCD4), they did not gain 

additional neutralization sensitivity to 17b. Together, these results suggest that 

multiple distinct CD4-induced epitopes are moderately more accessible on A2 and 

D4T compared to their parent Envs, in agreement with previous studies of CD4-

independent Envs [374,376]. 

Pronounced antigenic changes in A2 and D4T also occurred in the CD4 

binding site (CD4bs). As predicted based on the D368N mutation, A2 exhibited a 

disrupted CD4bs, with >10-fold reductions in cell-associated binding of mAbs b12 

and VRC03 compared to WT (Fig. 2.2A). Despite this, cell-associated A2 retained 

binding to VRC01 and a bivalent CD4-IgG fusion protein. As a gp120 monomer, A2 

showed 300-fold lower affinity for CD4-IgG, mostly attributable to an increased off-

rate, but only a 4-fold decrease in affinity for VRC01 (Fig. 2.2F). A2 also exhibited 

greatly increased neutralization resistance (1-2 log) to b12, sCD4, and CD4-IgG, but 

did not vary significantly in VRC01 neutralization (Fig. 2G). In contrast, cell-

associated D4T showed >3-fold increased binding to VRC01 (Fig. 2.2A), and D4T 

gp120 had several fold higher affinity for VRC01 and CD4-IgG (Fig. 2.2F). D4T was 

highly sensitive to neutralization by CD4bs ligands, similar to N7 (Fig. 2.2G), as 

previously reported [382]. Overall, these data indicate that the CD4bs epitope on A2 
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is disrupted, while not completely ablated, and that the same epitope on D4T is 

highly accessible to antibody binding and neutralization. 

 Antibody recognition of V3 on surface-expressed A2 and D4T was largely 

unchanged from the parent Envs (Fig. 2.2A), and no differences in solvent exposure 

of a V3 peptide were detected by HDX (Fig. 2.2E). However, A2 became several fold 

more sensitive to neutralization by V3 crown-specific mAb 447-52D, and D4T 

became >10-fold more resistant to V3- and high mannose glycan-specific mAbs 447-

52D, PGT121, PGT126, and 2G12. This was unexpected, since all of these mAbs 

bound well to cell-associated D4T (Figs. 2.2A and C). No changes in cell-associated 

Env binding or neutralization sensitivity were observed for epitopes in gp41 or the 

gp120-gp41 interface, including mAbs 2F5, 4E10, 35O22, and PGT151 (Fig. 2.2A). 

Finally, all Env variants exhibited sensitivity to neutralization by pooled patient 

plasma, but no increase was observed for A2 and D4T; unexpectedly, they were 

slightly more resistant than their parent Envs (Fig. 2.2G). 

 

CD4-independent Envs elicit a high-titer IgG response in mice 

The immunogenicity of CD4-independent Envs A2 and D4T was evaluated 

using recombinant vaccinia virus (rVV) immunization with or without gp120 protein 

boosts, as detailed in Fig. 2.3A and in the Methods. Mice were primed twice with rVV 

vectors encoding WT, N7, A2, or D4T gp160 and, if applicable, boosted twice with 

autologous gp120 protein with alum adjuvant. A control group received rVV 

expressing SIV Gag-Pol as the prime and WT gp120 as the boost. Immunizations 

were performed in both C57BL/6 mice and human CD4 transgenic (huCD4) mice, 

which lack murine CD4 and express human CD4 under normal developmental 

regulation [393]. Since HIV-1 Env binds to human but not murine CD4 and may thus 
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affect epitope accessibility or signaling to CD4+ T cells [109–112,394,395], the 

huCD4 mouse model was included to complement wild-type mice in evaluating CD4-

independent Env immunogens. The huCD4 mouse strain was previously shown to 

permit MHC class II-restricted CD4+ T cell activation and CD4+ T cell-dependent B 

cell responses [396]. 

The humoral immune response was monitored over time by gp120-specific 

IgG ELISA. Both CD4-independent Envs induced a significantly higher IgG response 

than either parent Env at every time point post-vaccination. After two primes in 

huCD4 mice, the IgG response was 36-fold and 16-fold greater for A2 and D4T, 

respectively, compared to their parent Envs (Fig. 2.3B). After two subsequent boosts 

in the same mouse strain, the responses to A2 and D4T were each ~5-fold higher 

than those induced by WT or N7. There was a similar effect in C57BL/6 mice primed 

with A2 and D4T (Supp. Fig. S2.2A). A majority of the enhancement in gp120-

specific IgG in huCD4 were attributable to the IgG1 subclass, while in C57BL/6 mice 

the contributions of the subclasses were more balanced (Fig. 2.3C and Supp. Fig. 

S2.2B). IgG3, IgM, and serum IgA were negligible at the examined time points (data 

not shown). To control for the effective dose of the rVV vectors, the IgG against total 

VV antigen was measured in huCD4 mice, and no significant differences were 

observed between groups (Supp. Fig. S2.2B). All immunogens elicited low Tier-1 

NAb titers, yet the response mounted to A2 was several fold greater than the 

response to WT, and D4T trended slightly higher than N7 as well (Fig. 2.3D).  

T cell responses were measured in the spleens collected after the second 

prime (Supp. Fig. S2.3A) or second boost (Supp. Fig S2.3B). At both time points, all 

rVV vectors stimulated equivalent T cell responses to VV peptides. As expected 

based on previous reports, the VV-specific CD4+ responses were low and VV-
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specific CD8+ responses were extremely high [397,398]. Env-specific T cell 

responses showed a high degree of variability, and there was no significant 

difference in the frequency of IFN-γ or TNF-secreting cells between A2 or D4T and 

either of the parent Envs. These data support the model that differences in the 

humoral response induced by A2 and D4T are determined at the level of B cell 

recognition rather than the T helper cell response.  

 

V3-specific IgG response to CD4-independent Env immunogens in mice 

 We hypothesized that the epitope specificities of the Ab response would be 

altered as a result of CD4 independence and associated structural changes. CD4-

bound Envs and a CD4-independent Env have been shown to expose the V3 loop 

by displacing V1V2 from its position apical to V3 and by rotating the base of V3 

towards the target cell membrane [340]. To determine whether V3 became more 

immunogenic on A2 and D4T in mice, the IgG response was measured against a 

linear V3 peptide at all available time points and against a V3 scaffold protein at 

terminal bleed time points (Supp. Fig. S2.3). Surprisingly, by both measures, D4T 

elicited a low V3-specific response that was equal to that of WT and N7. A2 induced 

a slightly increased response to linear V3 starting after the second prime, but this 

was highly variable and largely overlapped with WT. The response to V3 scaffold 

was equivalent for all Envs, and both measures of V3 response were similar 

between huCD4 and C57BL/6 mice.  

 

CD4-independent Envs elicit broadly cross-reactive IgG to V1V2-scaffold and 

linear V2 peptide in mice  
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 The antibody responses to A2 and D4T in mice were further characterized 

with respect to epitopes in V1V2, a domain that is dramatically reoriented and 

antigenically altered in CD4-bound and CD4-independent Envs [343,378]. V1V2 

reactivity was measured by ELISA using a protein scaffold of V1V2 from clade B 

HIV-1 92US715 fused to murine leukemia virus (MLV) gp70, following the approach 

of the RV144 correlates analysis [192]. V1V2 scaffolds display linear and 

conformational, but not quaternary, antigenic determinants [219]. A2 and D4T 

induced dramatically higher IgG to V1V2 scaffold compared to WT and N7 at post-

prime and available post-boost time points (Figs. 2.4A and B). Although large 

differences were observed in both strains of mice, the pattern of response differed 

markedly depending on the mouse strain. In huCD4 mice, 30% and 50% of animals 

immunized with A2 and D4T, respectively, made moderate V1V2-specific responses 

after the first rVV prime (Fig. 2.4A). With further priming and boosting, the proportion 

of responders grew to ~80%. A bimodal distribution of V1V2-specific responses was 

apparent for both A2 and D4T, and the average V1V2-specific IgG response to these 

Envs reached a level roughly 2 logs higher than WT and N7, which elicited little to no 

detectable IgG to the V1V2 scaffold. 

 In C57BL/6 mice, the V1V2 response was comparatively higher, more rapid, 

and, most strikingly, unimodal (Fig. 2.4B). The V1V2 response rate in C57BL/6 mice 

immunized with A2 or D4T was 80-90% after a single prime and 90-100% after two 

primes. After prime 2, the V1V2-specific IgG responses to these Envs was estimated 

to be 2 to 3 logs higher than WT and N7, which generated no detectable response. 

Interestingly, mice immunized with N7 did generate V1V2-specific IgG, but only after 

gp120 boosting and only in the C57BL/6 strain. This effect was not observed with the 

WT immunogen.  
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 The V1V2-specific antibodies induced by CD4-independent Envs were more 

finely mapped by conducting a multiplex binding assay, which measured IgG against 

a panel of V1V2 scaffolds and linear V2 peptides from diverse strains of HIV-1 (Figs. 

2.4C-F). V2 peptide-specific IgG agreed closely with V1V2 scaffold-specific IgG: the 

responses generated by A2 and D4T were consistently multiple orders of magnitude 

greater than the responses to WT and N7, which generally did not exceed 

background, with the exception of the post-boost 2 time point in C57BL/6 mice 

immunized with N7. Notably, the responses measured by the multiplex assay were 

characterized by the same bimodal and unimodal distributions noted above in 

huCD4 and C57BL/6 mice, respectively, for the A2 and D4T immunogens (Figs. 

2.4C and D). IgG responses to a consensus clade B V2 peptide and the 92US715 

V1V2 scaffold were plotted against each other and were strongly positively 

correlated (R2 = 0.84, p<0.0001) (Fig. 2.4E). Most importantly, the Abs generated by 

A2 and D4T against V1V2 scaffolds and linear V2 peptides had extraordinarily 

breadth, as they bound to epitopes from a wide variety of isolates across clades B, 

C, AE, and BC (Fig. 2.4F). The level of IgG to the consensus clade B V2 peptide 

was as a strong predictor of both the magnitude and the breadth of the response to 

V1V2 scaffolds and other V2 peptides. Therefore, we hypothesize that the V1V2 

scaffold-specific IgG generated by A2 and D4T immunizations is predominantly 

composed of antibodies that bind to the linear V2 peptide epitope.  

 

Immunogenicity of CD4-independent Envs pig-tailed macaques  

 In order to evaluate the immunogenicity of CD4-independent Envs in 

nonhuman primates, we used an immunization scheme similar to the one used in 

mice, and which corresponded to a previous study that had shown a relatively high 
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and broad NAb response against the 89.6 N7 Env [382]. In this protocol, pig-tailed 

macaques were given a series of two rVV primes, which co-delivered HIV-1 Env and 

SIV Gag-Pol immunogens, and three boosts, each consisting of separate injections 

of gp120 protein in alum and SIV Gag-expressing plasmid (Fig. 2.5A). Macaques 

were bled at multiple time points and the binding antibody response against diverse 

gp120 and gp140 antigens was monitored by a multiplex immunoassay. According 

to a magnitude-breadth statistical analysis, we observed a trend toward greater 

gp120- and gp140-specific IgG breadth in the D4T group compared to N7 at the 

post-prime 2 and post-boost 1 time points (Fig. 2.5B and C), although this was not 

statistically significant (linear mixed-effects model). This trend was not observed 

after boosts 2 and 3, when the magnitude-breadth curves of D4T and N7 overlapped 

(Supp. Fig. S2.5). In contrast, the gp120 and gp140 responses to A2 and WT were 

of similar magnitude and breadth after prime 2 and boost 1 time points, but at later 

time points A2 showed a significantly lower response than WT. These trends were 

also apparent in the responses to individual antigens, including 89.6 WT gp120 (Fig. 

2.5D) and a consensus group M gp120 (Fig. 2.5E). 

 The NAb response was measured in macaque immune sera against a panel 

of HIV-1 strains, and, as in mice, the response tended to be low and limited to Tier-1 

strains. D4T and N7 NAb titers were not significantly different, but the response to 

A2 was significantly lower than WT at the post-boost 3 time point for the 

neutralization-sensitive strains MN.3 and SF162.LS (Fig. 2.5F). Autologous 

responses to Tier-2 89.6 WT were low, and other responses to more neutralization-

resistant viruses were generally negligible (data not shown). 

 The CD4+ and CD8+ T cell responses against Env and Gag were measured in 

PMBC and axillary lymph nodes before the first immunization, after prime 2, and 
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after each boost. The frequency of antigen-specific CD4+ cells producing intracellular 

cytokines (IFN-γ, IL-2, IL-5, and IL-21) was generally low and was not significantly 

different between groups (Kathy Foulds, Rick Koup, personal communication). CD8+ 

T cell responses were generally negligible and did not differ between groups. 

Overall, slightly higher responses were observed after the first boost compared to 

after the second prime. 

 

CD4-independent Env clone D4T elicits a higher V1V2 scaffold- and V2 

peptide-specific IgG response in pig-tailed macaques 

 The multiplex immunoassay also measured IgG against a panel of V1V2-

scaffold and linear V2 peptide reagents (Fig. 2.6). To both sets of reagents, the 

response elicited by D4T was of a greater magnitude and breadth compared to its 

parent, N7, or to WT and A2. The enhanced response to D4T was observed after 

both rVV primes and was maintained after one or multiple protein boosts. In contrast, 

the response to A2 was generally comparable to WT at all time points. These trends 

were apparent both when examining the responses to individual V2 peptides (Figs. 

2.6A and B) and V1V2 scaffolds (Fig. 2.6C), and when considering the average 

V1V2-specific response (Fig. 2.6D) or magnitude-breadth scores for V1V2 binding 

(Supp. Fig. S2.5).  

 The V3-specific response was also measured using the same multiplex 

assay. No differences between groups were observed in the binding response to a 

clade B V3 scaffold (Supp. Fig. S2.6A). Notably, A2 elicited a significantly lower IgG 

response to linear V3 peptides from clade A and C, while D4T, N7, and WT all 

generated higher and similar responses (Supp. Figs. S2.6B and C). 
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CD4-independent Env clone D4T generates antibody-dependent cell-mediated 

cytotoxicity (ADCC) antibody activity after vaccinia priming 

 The ability of antibodies in CD4-independent Env immunization to mediate a 

non-neutralizing, antiviral activity was assessed by measuring the Fc-dependent 

function, ADCC. We used an assay involving primary human PBMCs as effector 

cells and 89.6 WT gp120-coated CEM.NKR-CCR5 cells as targets. ADCC activity 

was quantified based on the ability of macaque sera to stimulate transfer of active 

granzyme B from effector to target cells. Interestingly, D4T was the only Env that 

generated ADCC after the two rVV primes, and this was significantly elevated over 

all other groups. This was true when ADCC was expressed either as the peak 

granzyme B-positive frequency (Fig. 2.7A) or as an endpoint dilution titer (Fig. 2.7B). 

When one or two boosts were administered, all groups of macaques exhibited ADCC 

activity, and the response to D4T was not significantly increased over N7. At post-

boost time points, the A2 group showed a significantly lower ADCC response.  
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Figure 2.1. Derivation of CD4-independent Env variants from HIV-1 89.6. (A) 
Env clones A2 and D4T were derived from 89.6 WT and N7 Envs, respectively, by 
adaptation to replicate in a CD4-negative, SupT1-based cell line as SHIVs. (B) The 
cell-cell fusion activity of each Env was tested with the indicated receptors or GFP 
control in quail QT6 cells (n=3). A2 and D4T were compared to their respective 
parent Envs by one-way ANOVA with Sidak correction on log-transformed data. 
Asterisk: p<0.05. ns: p>0.05. (C) Viral growth was quantified in SupT1 cells 
expressing (left) or lacking (right) CD4. A representative experiment is shown (n=3). 
(D) Table of mutations acquired during adaptation of A2 and D4T. (E) The locations 
of mutated residues, where possible, were indicated on the HIV-1 BG505 
SOSIP.644 crystal structure (PDB 4TVP) from [243]. Error bars represent the s.e.m.  
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Figure 2.2. Structural characterization of CD4-independent HIV-1 89.6 Env 
variants. (A-C) Antigenicity of antibody epitopes was probed by flow cytometry and 
expressed as (A,B) the fold changes in MFI after normalizing to the 2G12 MFI in 
each experiment (n≥3) or as (C) histograms with median fluorescence intensity 
indicated. (D) ELISA binding of the indicated mAbs to each gp120. A Zika virus-
specific mAb served as a negative control. (E) Percent hydrogen-deuterium 
exchange over time for amino acids 164-176 of V2, as measured by mass 
spectrometry. Note: B1 is an Env clone not included in this study. (F) Binding 
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parameters for indicated mAbs to monomeric gp120 proteins, measured by biolayer 
interferometry (n=3). (G) Neutralization sensitivity of SHIVs expressing indicated 
Envs to a panel of mAbs and CD4bs reagents, expressed as IC50 in µg/mL or ID50 as 
a reciprocal dilution. Error bars: s.e.m. 
 
 
 

 

 

Figure 2.3. Immunogenicity of CD4-independent Envs in vaccinia prime-gp120 
boost vaccination of mice. (A) Schematic of prime-only and prime-boost 
immunization regimens, for which data were pooled as applicable. (B-D) Antibody 
data are shown here for huCD4 mice, and corresponding data for C57BL/6 mice are 
shown in Supp. Fig. S2.2. (B) Binding of serum IgG to 89.6 WT gp120 by ELISA 
after each immunization. (C) Subclass-specific IgG, measured by multiplex 
immunoassay using 1:100 post-boost 2 serum. (D) Neutralizing antibodies against 
the Tier-1 virus MN.3, measured in TZM-bl cells, and quantified as the reciprocal 
dilution resulting in 50% inhibition of infection (ID50). Data points represent individual 
mice, horizontal bars represent the mean and error bars show s.e.m. Statistical 
comparisons were made between WT vs. A2 and N7 vs. D4T using the Kruskal-
Wallis test with Dunn’s correction. Asterisk: p<0.05; ns: p>0.05.  
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Figure 2.4. Enhanced antibody responses against V1V2 domain and linear V2 
peptide generated by CD4-independent Env immunization of mice. (A,B) 
Binding IgG against scaffolded V1V2, from clade B HIV-1 92US715, fused to MLV 
gp70 in (A) huCD4 mice and (B) C57BL/6 mice by ELISA. (C,D) Binding IgG to a 
linear V2 peptide, amino acids 163-183, with a consensus clade B sequence, 
measured by a multiplex immunoassay, in (C) huCD4 and (D) C57BL/6 mice. (E) 
Correlation of V1V2 scaffold- and V2 peptide-specific IgG shown in panels A-D. (F) 
Average binding IgG to multiple V2 peptide and V1V2 scaffold antigens, from the 
indicated HIV-1 strains, measured by multiplex immunoassay using 1:200 serum. 
Responses are color-coded by magnitude of MFI. A2 and D4T were compared with 
WT and N7, respectively, by Kruskal-Wallis test with Dunn’s correction. Asterisk: 
p<0.05. ns: p>0.05. Horizontal bars: mean. Error bars: s.e.m.  
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Figure 2.5. Immunogenicity of CD4-independent Envs in vaccinia prime-gp120 
boost vaccination of pig-tailed macaques. (A) Schematic of pig-tailed macaque 
immunization timeline. (B-E) IgG responses measured by a multiplex immunoassay 
using the indicated plasma dilutions. The linear range in B and C extends from 100 
to 23,000. Shown are magnitude-breadth scores against (B) a panel of 17 gp120 
reagents and (C) 12 gp140 reagents representing diverse HIV-1 strains, and binding 
to (C) 89.6 WT gp120 or (D) a consensus group M gp140 protein. (F) Neutralizing 
antibody (NAb) titers (ID50) against Tier-1 strains (MN.3, SF162.LS) and the 
autologous Tier-2 strain 89.6. Horizontal bars represent the median in panels B, C, 
and F and the mean in D and E. A2 and D4T responses were compared to WT and 
N7, respectively, by one-way (prime) or two-way (boosts) ANOVA with Sidak 
correction. Asterisk: p<0.05. 
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Figure 2.6. Enhanced antibody responses against V1V2 domain and linear V2 
peptide by CD4-independent Env D4T immunization of pig-tailed macaques. A 
multiplex immunoassay was used to quantify binding IgG responses against (A) a 
consensus clade B V2 peptide, (B) a consensus clade C V2 peptide, (C) the clade B 
CaseA V1V2 scaffold, and (D) a panel of 16 V1V2 scaffolds representing diverse 
clades of HIV-1, yielding a composite breadth score. In A-C, the linear range extends 
from an MFI of 100 to 23,000. Horizontal bars: mean in A-C, median in D. A2 and 
D4T responses were compared to WT and N7, respectively, by one-way (prime) or 
two-way (boosts) ANOVA with Sidak correction. Asterisk: p<0.05. 
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Figure 2.7. Enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) 
response generated by vaccinia prime with CD4-independent Env D4T. ADCC 
was measured using HIV-seronegative human PBMCs as effector cells and 
CEM.NKR-CCR5 cells coated with 89.6 WT gp120 as target cells. Monkey plasma 
were tested at serial dilutions starting at 1:100, and the frequency of target cells 
positive for granzyme B (GzB) activity was measured by flow cytometry using a 
fluorogenic substrate for GzB. Data are expressed as (A) the highest percentage of 
GzB+ target cells among the dilution series (peak activity) and as (B) the highest 
reciprocal plasma dilution yielding a positive signal of ≥8% GzB+ (endpoint titer). 
Responses to A2 and D4T were compared to WT and N7, respectively, by Fisher’s 
Exact Test for response rates (Prime 2 only) and peak activity and endpoint titers 
(Boosts 1 and 2). Significant differences relative to the parent Env (p<0.05) are 
shown by asterisks (response rate statistical analysis show in graph A). 
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2.4. DISCUSSION  

 

Here we have described the structural and immunologic outcomes of 

biologically selecting for CD4 independence in two variants of HIV-1 89.6 Env, 

termed A2 and D4T. Although there were unique features in each adapted variant, 

both showed increased exposure of CD4-induced epitopes and a linear segment of 

V2—two antibody specificities that were linked with ADCC activity, and, in the latter 

case, reduced risk of infection in the RV144 human vaccine trial. Importantly, V2 

peptide exposure was greatest on D4T gp120, and this Env generated a significantly 

increased V2 peptide-specific IgG response in both mice and pig-tailed macaques. 

We thus observed a clear association between the biological phenotype, structural 

alterations, and immunogenicity in vivo. 

This characterization of CD4-independent Envs has prompted a variety of 

questions and future directions, several of which are already underway. First, it will 

be critical to determine whether the linear V2 epitope is better exposed in the context 

of trimeric CD4-independent Envs, in addition to the monomeric gp120 analysis 

conducted here. Since priming with rVV expressing D4T Env generated significantly 

greater V2 peptide-specific IgG in macaques, and both A2 and D4T generated an 

increase in this specificity in mice, it is probable that the trimeric forms of these Envs, 

in particular D4T, will exhibit greater reactivity to Ab8505 and other V2 peptide-

specific mAbs. It will be interesting to determine whether this epitope is most 

exposed on D4T trimers, in agreement with its greater immunogenicity in macaques. 

Another question under active investigation is what antibody specificity or 

specificities are responsible for the more effective ADCC response to D4T during 

vaccinia priming in macaques. This will be addressed by testing which mAbs, 
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including those specific for C1 and V2 peptide, block the ADCC activity in macaque 

immune serum. In addition, it will be useful to determine if CD4-independent Envs 

elicit high levels of other non-neutralizing, Fc-mediated effector functions besides 

ADCC, such as antibody-dependent cell-mediated phagocytosis (ADCP) and 

infectious virion capture. As in this study, ADCP analysis will be focused on 

macaque serum, as mouse serum has shown issues of high background and low 

reproducibility in Fc-dependent functional assays.  

One important area of uncertainty regards the nature of the structural 

differences between A2 and D4T and the basis of their differing immunogenicity. In 

mice, D4T induced modestly higher responses than A2 to scaffolded V1V2 and 

linear V2 peptide from multiple isolates (Fig. 2.4F). In macaques, D4T elicited a 

significantly higher and broader V1V2 response than all other Envs (Fig. 2.5 and 

Supp. Fig. S2.5). The consistently high immunogenicity of V2 in D4T could be 

explained by the fact that a linear V2-specific mAb bound 4-15 fold better to D4T 

gp120 than to any other gp120. In agreement with this finding, a portion of the V2 

peptide was found to be most exposed to solvent on D4T (Fig. 2.2E). Interestingly, 

D4T was the only Env recognized by the V1V2-specific bNAb PG9 (Fig. 2.2C); it is 

unclear whether this reflects a unique conformation or orientation of V1V2 in D4T 

compared to the other Envs. Overall, these data demonstrate that the linear V2 

peptide, and perhaps other parts of the V1V2 domain, may be better exposed or 

more stably presented on D4T than the other Envs, including A2, leading to greater 

antibody recognition and immunogenicity. The determinants of the V3 response, 

including differences between species, are less well understood. A2 generated a 

slightly higher V3 peptide-specific response in mice, but a significantly lower 

response in macaques. The basis of this difference is unclear, as A2 was highly 
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sensitive to neutralization by V3-specific mAbs, whereas D4T was highly resistant to 

these mAbs. Further structural characterization of the A2 and D4T trimers may offer 

potential explanations for this pattern of response. 

Despite the abundant antigenic data gathered on A2 and D4T, little is known 

about the extent of openness of these Envs in their trimeric form. This is an 

important consideration, since the Env trimer has been shown capable of adopting 

conformations with multiple degrees of openness [236,245], and it is possible that 

these conformations exhibit distinct immunogenic properties. Conventionally, open 

vs. closed Env trimers can be distinguished based on the binding of mAbs to 

quaternary V1V2 epitopes, which are intact in the closed conformation only. 

Unfortunately, this approach was not feasible for 89.6 Env and its derivatives, which 

lack an N-linked glycosylation site at position 160. This glycan is important for the 

binding of most quaternary V1V2-specific bNAbs, including PG9, PG16, PGT141-

145, CH01-04, PGDM1400-1412, and others [151,399–402]. Alternatively, the 

overall structure of A2 and D4T trimers could be elucidated using cryo-electron 

microscopy [343], and the differences in sampling of open and closed trimer 

conformations could be monitored in real time using smFRET [236]. As indirect 

evidence of openness, A2 and D4T trimers exhibit increased reactivity to mAbs at 

multiple CD4-induced epitopes with distinct antigenic footprints (Fig. 2.2B), indicating 

the exposure of a wide surface area encompassing the co-receptor binding site and 

the gp41-interactive face of gp120 [198]. However, the increase in exposure of these 

epitopes was modest (~2-fold). Further analysis of A2 and D4T revealed that neither 

Env became globally neutralization-sensitive, as has been reported for some other 

CD4-independent Envs [122,373,375]. On the contrary, both Envs became slightly 

more resistant to pooled patient plasma. This might be explained by a previous 
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observation by Kolchinsky and colleagues that some CD4-independent Envs only 

showed high neutralization sensitivity on target cells that lacked CD4, but not on 

those that expressed CD4, as in our assay [374]. Another unexpected result was 

that D4T and N7 were equally sensitive to 17b, while A2 was moderately (7-fold) 

more sensitive than WT. Previously derived CD4-independent HIV-1 Envs have 

demonstrated various levels of increased sensitivity to 17b, ranging from 7 to >3000-

fold [122,375]. It is also interesting that these CD4-independent Envs did not exhibit 

increased antigenicity of the V3 loop, and D4T in particular did not show any 

indications of having an exposed V3 loop, in contrast to the prevailing view of a CD4-

independent trimer [374,375]. These data suggest that D4T might not be stabilized in 

a completely opened conformation; the exposure of V2 and apparent occlusion of V3 

suggest that the dynamic equilibrium of D4T could instead favor a partially opened 

state or a prefusion intermediate bound to one CD4 molecule, as proposed by Kwon 

and colleagues [245]. If true, there may be significant heterogeneity among CD4-

independent Envs in trimer conformation, antigenicity, and possibly immunogenicity. 

 It is not yet known whether the pattern of antibody response described in this 

study, in particular the high V2-specific IgG, is representative of all CD4-independent 

Envs, or whether it is an unusual phenotype for A2 and D4T. In a recent report, a 

soluble gp140 protein from the CD4-independent Env ADA N197S exhibited several 

of the same structural properties as A2 and D4T [374,383] and elicited a significantly 

higher ADCC response in guinea pigs, suggesting that there may be commonalities 

across diverse CD4-independent Envs. Conversely, it is apparent from the current 

investigation that even A2 and D4T do not elicit identical responses, at least in pig-

tailed macaques, supporting the notion that structurally divergent CD4-independent 

Envs likely induce different antibody specificities and functions. Future studies will be 
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able to clarify whether there are any generalizable features of the humoral immune 

response elicited by CD4-independent Envs. 

 An interesting feature of the antibody response to A2 and D4T was the 

distribution of V1V2-specific IgG responses in huCD4 mice compared to C57BL/6 

mice and macaques. The mechanism of the bimodal, or partially inhibited, V1V2 

response in huCD4 mice is not yet known. It does not appear to be attributable to an 

inhibitory effect of CD4 binding, since A2 and D4T elicited similar distributions of 

V1V2 responses in mice despite drastically different affinities for CD4. This 

explanation would also not be consistent with the observation that pig-tailed 

macaque CD4 interacts relatively poorly with HIV-1 Env [403,404]. Another 

possibility is that the B cell response in huCD4 mice is impaired as a result of the 

transgenic nature of CD4 expression, although it is unclear how such a defect would 

result in a bimodal response to only one epitope specificity. It is also possible that 

huCD4 and C57BL/6 mice have genetic differences besides CD4, since the 

transgenic strain was derived from C57BL/6/SJL mice back-crossed with C57BL/6. 

 Our work suggests several future directions to further define the utility and 

efficacy of CD4-independent Env immunogens. First, it should be determined 

whether CD4-independent Env vaccination can prevent or delay infection in a 

clinically relevant challenge model, such as repeated low-dose mucosal inoculation 

of macaques with a chimeric HIV-1/SIV (SHIV) encoding a transmitter-founder HIV-1 

Env with affinity for macaque CD4 [405]. A limitation of the current study is that such 

a challenge was not possible. If any level protection were observed in a challenge, 

then the correlates of protection would provide useful insights into the protective 

mechanisms of non-neutralizing antibodies. Such information could guide the design 

of future immunogens, including alternative CD4-independent Envs. 
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 Although the vaccinia prime-gp120 boost regimen described here was able to 

generate a favorable antibody response with CD4-independent Envs, both prime and 

boost might be improved using newly developed vaccine approaches. For example, 

nucleoside-modified mRNA is emerging as an extremely potent and versatile 

vaccine platform that generates high levels of NAb against HIV-1 Env and other 

pathogens ([305–307] and unpublished observations). Compared to vaccinia, an 

mRNA vaccine encoding a CD4-independent Env may elicit a more potent antibody 

response to the same epitopes, leading to higher levels of ADCC or other activities. 

In addition, a CD4-independent Env prime may be boosted with an immunogen 

specifically designed to elicit NAbs, such as a SOSIP trimer [46]. In this way, non-

neutralizing V1V2-specific antibodies might theoretically be matured to develop into 

Tier-2 NAbs with specificity similar to PG9. 

 HIV-1 has developed a host of strategies to evade the humoral immune 

response, in particular NAbs, and is therefore an exceptionally challenging vaccine 

target. The present study suggests that CD4-independent Env immunogens may 

represent a viable path to eliciting non-neutralizing antibodies with broad reactivity, 

antiviral activity, and epitope specificities that have previously been associated with 

clinical vaccine protection from HIV-1 infection.  
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2.5. METHODS 

 

Ethics statement 

 The investigators faithfully adhered to the “Guide for the Care and Use of 

Laboratory Animals” by the Committee on Care of Laboratory Animal Resources 

Commission on Life Sciences, National Research Council. Mouse studies were 

conducted at University of Pennsylvania facilities that are accredited by the 

American Association for Accreditation of Laboratory Animal Care (AAALAC) under 

protocols approved by the University of Pennsylvania Institutional Animal Care and 

Use Committee (IACUC). Pig-tailed macaques (Macaca nemestrina) were housed at 

the Washington National Primate Research Center (WaNPRC). WaNPRC is 

accredited by the Association for the Assessment and Accreditation of Laboratory 

Animal Care (AAALAC) International and registered as a USDA Class R research 

facility. WaNPRC is certified by the NIH Office of Laboratory Animal Welfare (OLAW 

A3464-01). All animal-related experiments were performed under protocol 2370–23, 

approved by the University of Washington IACUC. This study was carried out in strict 

accordance with the recommendations in the Guide for the Care and Use of 

Laboratory Animals of the NIH (The Guide). All animals were housed by the 

WaNPRC and included in standard monitoring procedures, including at least twice-

daily observation by animal technicians for basic husbandry parameters (e.g., food 

intake, activity, stool consistency, overall appearance) as well as daily observation 

by a veterinary technician and/or veterinarian. All efforts were made to minimize 

animal pain and suffering, in accordance with the recommendations. Analgesics, 

anesthetics, and/or tranquilizers were used to limit the discomfort, distress, or pain 

associated with experimental procedures. 
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Mice 

 C57BL/6 mice were purchased from NCI. HuCD4 mice, which lack murine 

CD4 and express human CD4 (human CD4-/-, murine CD4-/-) [393], were derived 

from doubly heterozygous mice (human CD4+/-, murine CD4+/-) obtained from 

MMRRC (strain 000222-UNC). All mice were housed in a BSL2 containment facility. 

Female mice were used for immunizations and were approximately 6 weeks of age 

at the first injection. 

 

Pig-tailed macaques 

 The 24 naïve male pig-tailed macaques used on this study were bred in 

captivity and originated from the WaNPRC breeding colony (WaNPRC at SNBL 

USA-SRC, Alice TX). Immunizations started when macaque ages were 1.7-3.5 years 

and weights were 2.5 kg-5.7 kg. Animals were fed daily of a commercial monkey 

chow, which was supplemented with fresh fruits and vegetables, given access to 

water, and fasted prior to sedation. Environmental enrichment included grouping in 

compound, large activity, or run-through connected cages, perches, toys, food 

treats, and foraging activities. No genotyping was done. 

 

Cells 

 The SupT1/CCR5 cell line (CD4+ CCR5+ CXCR4+) was generated from 

human CD4+ T lymphoblastoid SupT1 cells by expressing human CCR5 via lentiviral 

transduction. The BC7/CCR5 (CD4- CCR5+ CXCR4+) cell line was similarly 

generated by lentivirally expressing human CCR5 in BC7 cells, a spontaneous CD4-

negative clone of SupT1 cells [368]. Both cell lines were grown in RPMI 1640 

supplemented with 10% FBS, 2 mM L-glutamine, and penicillin-streptomycin 
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(Invitrogen). Human embryonic kidney (HEK) 293T cells were obtained from ATCC 

and were grown in DMEM with 10% FBS, 2 mM L-glutamine, and penicillin-

streptomycin (complete DMEM). The Japanese quail fibrosarcoma QT6 cells, 

BSC40 cells, and TZM-bl cells (a CD4+ CCR5+ CXCR4+ modified HeLa cell line) 

(NIH AIDS Reagent Program) were grown in DMEM with 10% FBS.  

 

Derivation of CD4-independent HIV-1 Envs 

 CD4-independent Envs were cloned into a SHIV/89.6 proviral plasmid 

encoding the either 89.6 WT Env or 89.6 N197Q (N7) Env in an SIVmac239 

background. Plasmids containing the 5’ and 3’ halves of the viral genome 

(hemigenomes) were linearized, ligated, and electroporated into SupT1/CCR5 cells 

to start viral growth. Viral stocks were prepared by propagating virus in SupT1/CCR5 

or BC7/CCR5 cells. Equal amounts of virus (50 ng p27) were added to a 1:9 mixed 

culture of CD4+ SupT1/CCR5 cells and CD4- BC7/CCR5 cells. Cell-free virus was 

serially passaged on mixed cultures and infection was monitored by a Gag-specific 

immunofluorescence assay (IFA). When >50% of cells were Gag+ by IFA (after 54 

passages), virus was propagated in a pure culture of BC7/CCR5 cells for 8-9 more 

passages and Env sequences were amplified from genomic cellular DNA and cloned 

into the expression vectors pCR2.1 (Thermo) and pCIneo (Promega), into an 

unmutated SHIV/89.6 3’ hemigenome plasmid, and into a vaccinia shuttle vector. 

 

Cell-cell fusion assay 

 Env fusogenicity was measured quantitatively by a cell-cell fusion assay as 

previously described [406]. Briefly, QT6 effector cells were transfected with Env 

expression vectors and transduced with rVV encoding T7 polymerase, and QT6 
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target cells were transfected with a T7-driven luciferase reporter plasmid plus 

various combinations of the human receptors CD4, CCR5, and CXCR4, or GFP as a 

control. Target cells were incubated overnight at 37°C and effector cells were 

incubated overnight at 32°C in the presence of rifampicin. The cells were then mixed 

and incubated at 37°C, and luciferase activity was read 8 hr later.  

 

Viral growth curves 

 Replication-competent SHIV/89.6 viral stocks were produced in SupT1/CCR5 

(WT and N7) or BC7/CCR5 cells (A2 and D4T), and viral titers were quantified by 

p27-Gag ELISA (Advanced Bioscience Laboratories). Equal amounts of virus (50 ng 

of p27-Gag) were used to inoculate 1 million SupT1/CCR5 or BC7/CCR5 cells by 

spinoculation [407]. After 24 hr, cells were washed once and supplied with fresh 

growth medium. Medium was added as needed to maintain cell densities under ~2 

million/mL. Viral replication was monitored over time by measuring reverse 

transcriptase activity in the supernatant by a standard [3H]thymidine incorporation 

assay. 

 

Recombinant vaccinia viruses 

 Recombinant vaccinia virus (rVV) vectors expressing HIV-1 Envs or SIV Gag-

Pol under a synthetic early-late promoter were made by homologous recombination 

between a shuttle vector and the thymidine kinase (TK) gene of v-NY, a replication-

competent vaccinia virus that was plaque purified from the New York City Board of 

Health strain. Recombinant viruses were grown under negative selection in TK− 

143B cells with 25 µg/mL 5-bromodeoxyuridine for two rounds of plaque purification, 

followed by a third round in BSC40 cells without selection pressure. Plaques were 
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screened for transgene by PCR using a primer set specific for TK and the transgene. 

Recombinant viruses were expanded in BSC40 cells and sequence verified by PCR. 

Purified viral stocks were prepared as follows: rVV-infected BSC40 cell 

pellets were homogenized in 10 mM Tris buffer (pH=9) with a Dounce homogenizer 

on ice; the material was centrifuged for 5 min at 1360 RPM at 4°C, and supernatant 

was collected. Cold Tris buffer was added and the material was re-centrifuged. 

Supernatants from both spins were pooled and sonicated in a 550 Sonic 

Dismembrator at an amplitude setting of 8 for three 1-min intervals. The material was 

layered onto 36% sucrose in Tris buffer and ultra-centrifuged at 15,800 rpm in an 

SW28 rotor for 80 min at 4°C.  The supernatant was discarded and the virus pellet 

was resuspended in cold 1 mM Tris (pH=9.0) and sonicated as above before being 

stored at -80°C. Crude viral stocks were prepared similarly as above, but without 

ultra-centrifugation over sucrose. 

 

Antigenicity assay of surface-expressed Envs 

 Env antigenicity was assessed by measuring the binding of mAbs and ligands 

to surface-expressed Env on HEK 293T cells. 293T cells were infected with crude 

stocks of rVV vectors expressing 89.6 WT, N7, A2, and D4T Envs at a multiplicity of 

infection (MOI) of 3. Virus was absorbed onto cells at 37°C for 1 hr in 0.5 mL PBS 

with 10 mM MgCl2 and 0.01% BSA, and then replaced with 2 mL of DMEM with 10% 

FBS. After 16 hr of incubation, cells were harvested and stained without 

permeabilization using the following reagents: 2G12, VRC01, VRC03, b12, CD4-IgG, 

697-30D, 2158, 447-52D, PGT121, PGT126, PG9, PG16, 35O22, PGT151, 2F5 

(NIH AIDS Reagent Program), A32, N5-i5, 2.2c, N12-i3, N26-i1, E51, 17b, N12-i2, 

N12-i18, N10-i3.1 (kindly provided by Dr. George Lewis). Antibody binding was 
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detected using 1:100 goat anti-human IgG Alexa Fluor 647 conjugate (Invitrogen, A-

21445). VV A33 protein was simultaneously stained using 1:300 rabbit anti-A33 

serum (kindly provided by Dr. Stuart Isaacs) and 7.5 µg/mL goat anti-rabbit IgG FITC 

conjugate (BD Biosciences 552420). Each stain was performed for 30 min on ice. 

Samples were fixed with paraformaldehyde after staining and fluorescence was 

measured using a FACSCalibur flow cytometer. Ten thousand events were collected 

and live, A33+ cells were gated to determine the mean fluorescence intensity (MFI). 

Analysis was performed using FlowJo software (Tree Star). MFI values were 

normalized to the corresponding 2G12 signal to account for differences in surface 

expression, and these values are expressed as fold changes relative to parental 

Envs. 

 

Immunoprecipitation and Western blot 

 Cell lysates of BSC40 cells producing HIV-1 Env gp160- or gp120-expressing 

rVV were subjected to immunoprecipitation analysis. Briefly, 50 µL of protein G 

Dynabeads (Invitrogen) were added to an Eppendorf tube, washed twice with PBS, 

and resuspended in 500 µL of PBS. 1 µg of antibody (PG9, PG16, b12) was added 

to the tubes. The mixture was rotated for 10 min at room temperature and then 

washed three times with PBST (0.02% Tween-20). 100 µL of cell lysates were added 

to the tubes containing the antibody and protein G Dynabeads. The mixture was 

rotated for 30 min at room temperature, and then washed three times with PBST. 

The protein G-antibody-antigen complex was then resuspended in 50 µL of SDS-

PAGE loading buffer. The protein complexes were resolved on 4-12% Bis-Tris 

NuPAGE Protein Gel (Invitrogen) and followed by western blot [408], using an 
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alkaline phosphatase (AP)-conjugated anti-human IgG antibody (Sigma) according 

to the manufacturer's instructions. 

 

Neutralization assays 

 HIV-1-neutralizing activity in the serum of immunized animals and 

neutralization sensitivity of SHIVs expressing 89.6 WT, N7, A2, and D4T Envs was 

measured in a luciferase reporter assay using TZM-bl cells, similarly to previously 

described [409]. Antibodies (listed in Fig. 2.2) were obtained from the NIH AIDS 

Reagent Program, and pooled patient plasma was obtained commercially from 

NABI. Briefly, 150-200 TCID50 of virus was incubated with serial three-fold dilutions 

of antibody or serum/plasma in duplicate in a volume of 50 µL for 1.5 h at 37°C 

before addition to 10,000 TZM-bl cells in 100 uL of growth medium containing 

DEAE-dextran. Virus control wells received only virus and cells, and background 

control wells received only cells. After 48 h of incubation, luciferase activity was 

quantified as relative light units (RLU) using BrightGlo substrate solution (Promega). 

Neutralization activity was expressed as the concentration of antibody or ligand 

(expressed as IC50) or reciprocal serum dilution (expressed as ID50) that resulted in 

50% reduction in RLU.  

 

Preparation of gp120 protein 

 89.6 WT, N7, A2, and D4T gp120 proteins were purified from the supernatant 

of BSC40 cells infected with rVV as described previously [410]. Briefly, BSC40 cells 

were infected with rVV at an MOI of 3 and supernatant was harvested at 48 h post 

infection. Monomeric gp120 was purified by a three-step process using lectin affinity 

(Galanthus nivalis lectin-coupled agarose), ion exchange (DEAE-dextran), and size 
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exclusion chromatography (HighLoad 26/600 Superdex 200). The monomeric nature 

of the gp120 was verified by native PAGE, and purity was determined by SDS-PAGE 

with Coomassie stain.  

 

Preparation of gp70-V1V2 scaffold protein 

 The V1V2 region of HIV-1 clade B strain 92US715 [411] was PCR-amplified 

from its env clone using paired primers (forward primer 5’-

TCAACTGGTACCGTGAAGCTGACCCCCCTGTG-3’ and reverse primer 5’-

TCAACTGGATCCCTATTAGGCCTGGGTGATCACGCTGG-3’). The V1V2 DNA 

fragment was cloned into a mammalian expression vector pJW4303 with the MLV 

gp70 backbone [412] using KpnI and BamHI cloning sites. V1V2 was fused at the C-

terminus of the gp70 protein, with a 6xHis tag at the N-terminus of the fusion protein. 

The constructed was sequenced-verified and used to transfect HEK 293T cells. 

Supernatant was harvested at 72 hours and V1V2 scaffold was purified by nickel 

column affinity chromatography. The scaffold protein was verified by Western-blot 

analysis using rabbit anti-V1V2 polyclonal antibody.   

 

Hydrogen-deuterium exchange with mass spectrometry (HDX) 

Samples for HDX were prepared essentially as described previously [413] by 

adding 8 µL of gp120 at 1.25 mg/mL with 0.5 µg/mL Pro-Pro-Pro-Ile peptide as an 

internal standard [414] to 93 µL of D2O (Cambridge Isotopes) supplemented with 11 

mM sodium phosphate, 160 mM sodium chloride, and 0.02% sodium azide at pH 

7.4. Exchange reactions were carried out in this 88% deuterium buffer at 22oC for 3 

sec, 1 min, 30 min, and 20 hours prior to the addition of 90 µL cold quench solution 

consisting of 0.2% formic acid, and 200 mM Tris carboxy-ethane-phosphate (TCEP), 
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titrated with 10 M NaOH to a pH of 2.5. Quenched samples were digested with 10 µL 

of 2 mg/mL pepsin for 5 min on ice prior to flash freezing in liquid nitrogen and 

storage at -80oC. Samples were prepared in triplicate, in parallel with controls: 

undeuterated (H2O-based buffer), “zero exchange” (pre-mixed deuterium and 

quench solutions), and fully deuterated (gp120 proteins were denatured in 2 M 

guanidine HCl with 40 mM dithiothreitol (DTT) at 60oC for 30 min prior to the addition 

of deuterated buffer and incubation at 37oC for 4 hours prior to the addition of 

quench solution). Peptides and glycopeptides generated by pepsin digestion were 

identified by manually sequencing tandem mass spectrometry data collected on 

natively glycosylated and PNGaseF-treated gp120 peptides using a Waters Acquity 

UPLC system integrated with a Synapt HDMS Q-TOF mass spectrometer. The 

deuterium uptake of sequenced peptides, identified by exact mass and elution time, 

was measured in duplicate for each gp120 construct on the same LC-MS system as 

previously described [413]. Data were analyzed using HX-Express 2 [415,416]. 

 

Kinetic analysis by biolayer interferometry 

 A FortéBio Octet Red instrument (Menlo Park, CA) was used to study kinetics 

of 89.6 WT, N7, A2, and D4T gp120s binding to CD4-IgG2, VRC01, b12, NIH45-46, 

17b, A32, 48d, and N5i5. The kinetic assays were performed at 25°C. Antibodies (10 

µg/ml) in Octet running buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, and 

0.05% Tween-20, pH 7.4, with 0.01% BSA and 0.02% azide) were loaded on the 

surface of pre-hydrated Anti-Human IgG Fc Capture (AHC) biosensors for 7 min, 

followed by a 3 min washing step in running buffer to reach a stable baseline. The 

analysis of gp120 association was conducted by dipping the antibody-AHC 

biosensors into gp120 samples serially diluted in running buffer. For most antibody-
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gp120 interactions, gp120 concentration ranged from 1 µM to 15.6 nM in a two-fold 

dilution series, but the gp120 concentrations were adjusted within a relevant range in 

accordance with the observed binding affinities for each antibody. Dissociation was 

monitored by returning biosensors to running buffer. The interval times for 

association and dissociation were optimized for each antibody in order to achieve 

sufficient curvature for fitting. Biosensors were regenerated after dissociation by 

incubation in 10 mM glycine pH 1.5 for 30 sec. Data analysis and curve fitting were 

processed using Octet software version 7.0. Prior to data processing, the averaged 

reference measurements were subtracted. Experimental data were fitted with a 1:1 

binding model. The ensemble dissociation constants (KD = ka/kd) were calculated by 

the obtained association rate (ka) and dissociation rate (kd) rate constants. Each 

experiment was repeated at least twice with similar results.  

 

Mouse immunizations 

 Mouse immunizations were conducted in two separate experiments. The first 

was a prime-boost experiment that included injections at weeks 0 and 4 of 108 

plaque-forming units (PFU) of rVV expressing SIV Gag-Pol (n=4) or 89.6 WT, N7, 

A2, or D4T Envs (n=6/group). Purified rVV vectors were injected i.p. in a volume of 

100 µL in sterile Dulbecco’s phosphate-buffered saline without magnesium or 

calcium (DPBS). All five rVV vectors were administered to female huCD4 mice, and 

WT and N7 vectors were also administered to female C57BL/6 mice. All groups of 

mice received protein boosts at weeks 8 and 12 consisting of 5 µg of purified gp120 

in 1% alum (Alhydrogel, Invivogen) in DPBS. Protein boosts were administered by 

injection of 25 µL into each quadricep. Env-primed mice were boosted with the same 

gp120 sequences used in the rVV prime, and Gag-Pol-primed mice were boosted 
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with WT 89.6 gp120. In a second prime-only experiment, huCD4 mice were similarly 

primed at weeks 0 and 4 with 108 PFU of rVV expressing SIV Gag-Pol (n=5) or WT, 

A2, or D4T Envs (n=8-9/group), and C57BL/6 mice were primed with WT, A2, and 

D4T Envs (n=8-9/group), and no boosts were administered. In both experiments, 

serum was collected prior to each injection and at the time of euthanasia and 

splenectomy, which were conducted 10 days following the second prime or 14 days 

following the second boost. Data from the two experiments were graphically 

combined for mice of the same strain and injection history. 

 

Pig-tailed macaque immunizations 

 Pig-tailed macaques (Macaca nemestrina) were immunized in a vaccinia 

prime-protein boost regimen (n=6/group). Each prime consisted of a mixture of 108 

rVV expressing SIV Gag-Pol and 108 rVV expressing full-length HIV-1 Env (WT, N7, 

A2, or D4T) administered at 0 and 8 weeks via skin scarification. Each boost 

consisted of (i) 100 µg of autologous gp120 in 1% alum (Alhydrogel, Invivogen) in 

0.4 mL, delivered intramuscularly, split between left and right arms, and, separately, 

(ii) 5 mg of DNA encoding SIVmac239 Gag on the pV1R plasmid [417] (prepared by 

Aldevron) in 2.2 mL, delivered intramuscularly, split between two arms. Boosts were 

administered at weeks 26, 42 and 58. Blood samples were collected at weeks 0, 2, 4, 

8, 10, 12, 16, 20, 26, 28, 30, 34, 38, 42, 44, 46, 51, 58, 60, 62. 

 

ELISAs for antigen-specific IgG  

 HIV-1 gp120-specific IgG in mouse serum was quantified by ELISA using a 

gp120-specific murine mAb, 3B3, as a standard. Immulon 4HBX 96-well plates were 

coated with 100 uL of 1 µg/mL 89.6 WT gp120 in PBS overnight at 4°C. Plates were 
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washed once with wash buffer (0.05% Tween-20 in PBS) and blocked with blocking 

buffer (2% BSA in PBS) for 1 hr, followed by three washes. Dilutions of sera and 

standard were made in blocking buffer and incubated on the plates for 1.5 hr. 

Samples were removed and plates were washed four times. Goat anti-mouse IgG 

HRP conjugate (Sigma-Aldrich A8924) at 1:10,000 in blocking buffer was incubated 

for 1 hr. After four washes, TMB substrate mixture (KPL) was added for 20 min. 2 N 

sulfuric acid (50 µL/well) was used to stop the reaction, and the optical density (OD) 

was read at 450 nm on a Dynex MRX Revelation microplate reader. 

 VV-, V3-, and V1V2-specific IgG ELISAs were performed similarly to gp120-

specific IgG ELISA, with the following modifications. For VV, the coating antigen was 

Western Reserve VV lysed in RIPA buffer, diluted 1:200 in PBS (kindly provided by 

Dr. Stuart Isaacs). For V3, the coating antigen was synthetic 89.6 Env V3 peptide 

(GenScript) at 5 µg/mL in PBS. For V1V2, the coating antigen was a scaffold protein 

containing HIV-1/92US715 V1V2 fused to MLV gp70 at 1 µg/mL in PBS. 

 

Murine IgG subclass assay 

 Mouse sera was diluted 1:100 in PBS, and relative titers of antigen-specific 

antibody titers of total IgG, IgG1, IgG2a, IgG2b, IgG2c, IgG3, IgM, and IgA were 

determined by multiplexed bead assay, as described in [418]. Specifically, antigens 

(89.6 gp120, SF162 gp120, CaseA2 gp70 V1/V2, V3, gp70, influenza HA, and Ebola 

GP) were coupled to microspheres (Luminex) using EDC/Sulfo NHS carbodiimide 

crosslinking chemistry. Diluted sera were incubated with antigen-coupled beads 

(2500 total beads/well) overnight at 4C with shaking. Beads were washed three 

times with PBS containing 0.05% Tween 20, and incubated with the following PE-

conjugated secondary antibodies for 2 hours at room temperature: anti-mouse IgG, 
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anti-mouse IgG1, anti-mouse IgG2a, anti-mouse IgG2b, anti-mouse IgG2c, anti-

mouse IgG3, anti-mouse IgM, and anti-mouse IgA (Southern Biotech). Beads were 

washed three times with PBS containing 0.05% Tween 20, and resuspended in 

BioPlex Sheath Fluid (Bio-Rad) prior to acquisition on BioPlex 3D Suspension array 

system (Bio-Rad). A minimum of 50 beads/region for all bead regions was collected, 

and the data are reported as mean fluorescent intensity (MFI). 

 

 Murine splenocyte stimulation and intracellular cytokine staining  

 To quantify Env- and VV-specific T cell responses in mice, splenocytes (2 x 

106) were incubated with four separate SHIV/89.6P Env peptide pools (NIH AIDS 

Reagent Program) or one immunodominant VV peptide pool (NR-4058, BEI 

Resources) at 37°C and 5% CO2. All peptides were used at 1 mg/mL, and DMSO 

was used as a control for background.  After 1 hr, GolgiPlug (brefeldin A), GolgiStop 

(monensin), and anti-CD107a-FITC (BD Biosciences) were added and cells were 

incubated for an additional 5 hrs. Cells were washed in PBS and resuspended in 

live/dead Aqua Blue stain (Invitrogen) for 10 min at room temperature. A mixture of 

anti-CD44-PE/Cy5, anti-CD27-PE (BD Biosciences), anti-CD8-Pacific Blue, and anti-

CXCR5-Brilliant Violet 605 (BioLegend) antibodies was added and incubated for 30 

min at room temperature. Cells were washed in FACS buffer (PBS, 1% FBS), 

resuspended in FIX & PERM (BD Biosciences), and incubated for 20 min at room 

temperature. Cells were washed with Perm/Wash (BD Biosciences), then 

resuspended in a mixture of anti-TNFα-PE/Cy7, anti-IFNγ-Alexa Fluor 700, anti-IL2-

APC, and anti-CD3-APC/Cy7 antibodies (BD Biosciences) and incubated at room 

temperature for 1 hr. Cells were washed, resuspended in 1% paraformaldehyde in 

PBS, and analyzed for fluorescence using an LSRII (BD Biosciences). Analysis was 
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performed using FlowJo software (Tree Star). Events were gated on live (Aqua Blue-

) cells. CD4+ cells were identified as CD3+/CD8- cells. Background-subtracted 

percentages of cytokine-positive cells for each Env peptide pool were added 

together to yield the Env-specific CD4+ or CD8+ T cell response.  

 

Binding antibody multiplex binding assay (BAMA) 

 HIV-1 specific IgG antibodies to gp120/gp140 proteins, Env peptides and 

V1/V2 scaffolds were measured by an HIV-1 binding antibody multiplex assay as 

previously described [192,419], and the detecting antibody was an anti-macaque IgG 

or goat anti-mouse IgG, Human ads-PE (Southern Biotech), as applicable. All 

assays were run under GCLP compliant conditions, including tracking of positive 

controls by Levy-Jennings charts using 21CFR Part 11 compliant software. Positive 

controls included a HIVIG and CH58 mAb IgG titration. Negative controls included in 

every assay were blank (uncoupled) and MulVgp70_His6 (empty gp70 scaffold) 

coupled beads, a blank well on each assay plate, as well as HIV-1 negative sera. To 

control for antigen performance, we used the preset criteria that the positive control 

titer (HIVIG) included on each assay (and for assays with V1V2 antigens, CH58 mAb 

[209]), had to be within 3 standard deviations of the mean for each antigen 

(tracked with a Levy-Jennings plot with preset acceptance of titer and calculated with 

a four-parameter logistic equation, SigmaPlot, Systat Software). Antibody 

measurements were acquired on a Bio-Plex instrument (Bio-Rad, Hercules, CA) 

using 21CFR Part 11 compliant software and the readout is in MFI. Area under MFI-

plasma dilution curve (AUC) was calculated using the Trapezoidal Curve Fit method 

[420]. Positivity of plasma binding response was determined with the following 

positivity criteria: 1) MFI > antigen-specific cutoff (which is 95th percentile MFI of all 
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baseline plasma samples, and 100 minimum); 2) MFI > 3-fold MFI of the matched 

baseline sample. 

 

Antibody-dependent cell-mediated cytotoxicity (ADCC) 

 The ADCC assay was conducted using the GranToxiLux method as 

previously described [421]. Briefly, primary human PBMCs from HIV-seronegative 

donors served as effector cells and CEM.NKR-CCR5 cells served as targets. Target 

cells were coated with 89.6 WT gp120 and mixed 1:30 (target:effector) with PBMCs 

in the presence of six 4-fold serial dilutions of macaque plasma, starting at 1:100. 

Cells were treated with a fluorogenic granzyme B substrate (OncoImmunin), and a 

flow cytometric assay was used to quantify the frequency of target cells (identified by 

a pre-loaded dye, TFL4) that contained active granzyme B. The cut-off for positive 

ADCC values was set at 8%, and endpoint titers were calculated as the highest 

reciprocal dilution of plasma producing a %granzyme B-positive value greater than 

or equal to the cut-off. 

 

Statistical analysis 

 Statistical tests were performed using GraphPad Prism software unless 

otherwise noted. Log transformations were performed for data that were expressed 

as ratio; parametric or non-parametric tests were chosen for each analysis based on 

whether the data were normally distributed; and corrections for multiple comparisons 

were made as noted in each figure legend.  
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2.6. SUPPLEMENTARY DATA 

 

 

 

 

 

Supp. Fig. S2.1. Co-immunoprecipitation of D4T Env by bNAb PG9. BSC40 cells 
were infected with rVV expressing D4T Env (A) gp120 or (B) gp160 and were lysed 
and then incubated with antibody-coated magnetic beads. The beads were washed 
three times and prepared for SDS-PAGE and Western blot analysis, using a rabbit 
anti-gp120 polyclonal antibody. 
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Supp. Fig. S2.2. CD4-independent Envs generate higher gp120-specific IgG in 
mice. (A) ELISA binding IgG to 89.6 WT gp120 was quantified by ELISA using 
mouse mAb 3B3 as a standard, and data is shown here for C57BL/6 mice (refer to 
Fig. 2.3 for similar responses in huCD4 mice). (B) IgG subclasses were measured 
using a multiplex immunoassay, and MFIs were determined using 1:100 sera. (C) 
The vector-specific antibody response was measured by ELISA using vaccinia 
(VACV) lysate as the coating antigen and 1:41,000 mouse sera. Data are shown for 
huCD4 mice. Horizontal bars indicate the mean. A2 and D4T were compared to WT 
and N7, respectively, by the Kruskal-Wallis test with Dunn’s correction. Asterisks: 
p<0.05. ns: P>0.05. 
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Supp. Fig. S2.3. CD4-independent Env A2 elicits a moderate increase in V3 
peptide-specific IgG. (A) ELISA binding to a synthetic V3 peptide with HIV-1 89.6 
WT sequence in huCD4 (left) and C57BL/6 (right) mice. (B) IgG binding to a clade B 
MN V3 scaffolded onto MLV gp70 was measured by a multiplex immunoassay using 
1:200 sera from huCD4 and C57BL/6 mice after prime 2 (left) or boost 2 (right). A2 
and D4T responses were compared to WT and N7, respectively, by Kruskal-Wallis 
with Dunn’s correction. Horizontal bars: mean. Error bars: s.e.m. Asterisk: p<0.05. P-
values were non-significant where indicated (ns) and in all comparisons in panel B.  
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Supp. Fig. S2.4. CD4-independent and parental Envs elicit Env- and vaccinia-
specific T cell responses of similar magnitude in mice. Mice were sacrificed after 
two rVV primes in C57BL/6 and huCD4 mice (A) or after two primes and two boosts 
in huCD4 mice (B) and splenocytes were stained for antigen-specific intracellular 
cytokine production in CD4+ or CD8+ T cells, as indicated. Splenocytes were 
stimulated with either immunodominant peptides from vaccinia virus or with four 
peptide pools from SHIV 89.6P Env (combined responses are shown). Frequencies 
have been background-subtracted. Horizontal bars indicate the mean and points 
represent individual mice.   
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Supp. Fig. S2.5. CD4-independent Env D4T elicits a higher and broader 
response against V1V2-gp70 scaffold reagents compared to A2 or CD4-
dependent Envs. Shown are magnitude-curves of binding to 17 gp120 proteins, 12 
gp140 proteins, and 16 V1V2-gp70 scaffold proteins by pig-tailed macaque immune 
sera. Curves for individual animals are shown in dashed lines, and the combined 
response curves are shown as solid lines. The x-axis represents the magnitude of 
the response, derived from an MFI measurement from a single dilution for post-
prime 2 and from an area under the curve for multiple dilutions for post-boost time 
points, and the y-axis represents the proportion of antigens bound at that magnitude.   
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Supp. Fig. S2.6. V3-specific IgG response in pig-tailed macaques immunized 
with CD4-independent Envs. Shown are MFI values from a multiplex immunoassay 
for IgG binding to (A) gp70 scaffold containing V3 from clade B HIV-1 MN, (B) linear 
V3 peptide of a consensus clade A sequence, or (B) linear V3 peptide of a 
consensus clade C sequence. Plasma samples were tested at the indicated 
dilutions. A2 and D4T responses were compared to WT and N7, respectively by two-
way ANOVA with Tukey’s correction. Horizontal lines indicate the median and 
asterisks indicate p<0.05.     
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CHAPTER 3 

 

INCREASED SURFACE EXPRESSION OF HIV-1 ENVELOPE IS ASSOCIATED 

WITH IMPROVED ANTIBODY RESPONSE IN VACCINIA PRIME–PROTEIN 

BOOST IMMUNIZATION 
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3.1. ABSTRACT  

 

 HIV-1 envelope (Env)-based vaccines have so far largely failed to achieve 

their goal of inducing antibodies that can prevent HIV-1 infection. Among these 

vaccine approaches are viral and genetic vectors that express native Env protein on 

the cell surface. Multiple factors have been hypothesized to limit the immunogenicity 

of cell-associated Env; one is its typically low level of expression on the cell surface, 

which could restrict its accessibility for immune responses. In this study, using a 

vaccinia prime-protein boost vaccine protocol, we explored the effects on 

immunogenicity of mutations in the Env cytoplasmic tail (CT) that increased Env 

surface expression, including a partial truncation and ablation of a known tyrosine-

dependent endocytosis motif. Using two HIV-1 Env isolates, we show that these 

mutations markedly increased humoral immune responses relative to Envs with a 

wild-type CT. After two vaccinia vector primes, CT-modified Envs elicited up to a 7-

fold increase in gp120-specific IgG. In addition, after two subsequent gp120 protein 

boosts, CT-modified Envs induced up to 16-fold greater Tier-1 HIV-1 neutralizing 

antibody titers, although results were variable between isolates. These data indicate 

that the immunogenicity of an HIV-1 Env in a prime-boost vaccine regimen can be 

enhanced by CT mutations that increase Env surface expression and highlight the 

key role of the priming step in this effect. 
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3.2. INTRODUCTION 

 

The HIV-1 pandemic remains a major threat to global public health, with 2.6 

million new infections annually, and a safe and effective vaccine is urgently needed 

[330,422]. Passive immunity experiments have demonstrated that anti-HIV-1 

neutralizing antibodies (NAbs) can confer protection from infection in nonhuman 

primate models [140–142,423–425]; as a result, such antibodies are a major target 

of ongoing vaccine efforts [426]. The sole target of neutralizing or other protective 

antibodies on HIV-1 is the envelope glycoprotein (Env), which assembles as a trimer 

of heterodimers composed of surface gp120 and transmembrane gp41 subunits. 

The HIV-1 Env has evolved a variety of mechanisms to evade host antibody 

responses, including its ability to tolerate escape mutations in immunogenic epitopes 

[116,135], extensive glycosylation [17,114,244,332], conformational masking [119], 

mimicry of host proteins [118], and low expression of Env on virus-producing cells 

and on virions [125,126]. Together, these features create substantial barriers to the 

design of an effective Env-based vaccine. 

Despite extensive pre-clinical studies and six efficacy trials of HIV-1 vaccines 

[154,155,161,162,178,187], only one, the RV144 trial, has shown any efficacy, with 

31.2% protection in humans at 42 months post vaccination [187]. The RV144 

vaccine regimen included four intramuscular inoculations of replication-incompetent 

canarypox vector expressing HIV-1 Gag, protease (Pro), and Env antigens and two 

injections of purified gp120 protein in alum. The primary correlates of protection were 

non-neutralizing IgG antibodies in plasma that bound to variable loops 1 and 2 

(V1/V2) of gp120 and low levels of anti-Env IgA [192]. Secondary correlates from a 

post-hoc analysis included NAb activity and the ability of antibodies to mediate 
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antibody-dependent cellular cytotoxicity (ADCC) on HIV-1-infected target cells 

[192,347]. These results have generated renewed interest in the potential 

advantages of poxvirus prime-protein boost vaccine approaches, as well as possibly 

protective functions of non-neutralizing antibodies [350,427–429]. 

Studies have since attempted to improve the antibody responses elicited by 

poxvirus prime-protein boost vaccines by investigating different species of poxvirus 

vectors for the prime [430], adjuvants for the boost [211,214,218], and varied dose 

schedules [215]. In addition, there is considerable biological diversity among Envs 

that can be used in the prime or boost, including differences conformational 

dynamics [236], neutralization sensitivity [137], glycan organization [114], and their 

level of expression on cells or virions [343,431,432]. Overall, the contribution of 

these attributes to immunogenicity and vaccine efficacy are poorly understood. One 

study in nonhuman primates using a vaccinia prime-gp120 boost regimen, which 

evaluated the immunogenicity of Envs containing deletions of selected N-linked 

glycosylation sites, found that removal of a single glycan at position 197 [384] from 

the HIV-1 89.6 Env markedly increased the NAb responses [382]. However, the 

extent to which this enhancement is applicable to other viral isolates or other animal 

species is unclear, since a follow-up study in rabbits using an Env from a different 

HIV-1 isolate from which the same glycan had been deleted, did not show any 

improvement in NAb responses [433]. 

 The low expression of HIV-1 Env on the cell surface has long been 

hypothesized to impede an effective antibody response to membrane-associated 

Env, including Env expressed using viral vector or nucleic acid vaccines [434]. This 

reduced expression has been attributed at least in part to the presence of multiple 

endocytosis motifs within the long cytoplasmic tail (CT) of Env [127,435–440]. The 
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CT regulates a variety of processes, including multiple intracellular trafficking 

pathways (reviewed in [128]), incorporation of Env into virions [62,441–445], and 

many more. It comprises over 150 amino acids and contains a variety of trafficking 

signals as well as three amphipathic helical regions that putatively interact with the 

inner leaflet of the plasma membrane: lytic lentiviral peptides (LLP) 1, 2, and 3, so 

named due to the ability of these peptides in synthetic form to disrupt the cell 

membrane [446,447] (see Fig. 3.0).  

 

 
 

Figure 3.0. Schematic of the cytoplasmic tails of multiple primate lentiviruses. 
Shown are aligned sequences from HIV-1 group M subtypes A (92UG037), B 
(HXB2), C (ETH2220), D (SE365), F1 (93BR020), G (175), H (90CF056), 
CRF02_AG (93TH065); group O (ANT70), group N (YBF106); HIV-2 (UC2); SIVcpz 
(Ptt_04CAM155); and SIVsmm (H635). Numbering corresponds to the HXB2 
sequence. Highlighted elements include the lentiviral lytic peptide (LLP) regions, 
Kennedy epitope, conserved YxxФ motifs (orange), and conserved dileucine motifs 
(green). The figure was adapted with permission from Santos da Silva, Retrovirology 
2013 [128], BioMed Central Ltd. 
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Another CT region of interest is the Kennedy epitope, which, controversially, has 

been proposed to be a target of neutralizing antibodies [448,449], though the 

implications of this for the topology of the CT remain unclear. Multiple sequences in 

the CT have been associated with endocytosis and/or other forms of intracellular 

trafficking. These include, among others, a diaromatic motif (YW802-803) associated 

with endosome to trans-Golgi network (TGN) trafficking [450], palmitoylated 

cysteine(s) that have been variably associated with lipid raft targeting and Env 

incorporation [451,452], and a C-terminal dileucine motif implicated in both 

endocytosis and TGN-endosome shuttling [435,439].  

 One well-described signal in the CT is the membrane-proximal tyrosine (Tyr)-

dependent endocytosis motif formed by the consensus amino acids GYxxΦ, where x 

is any amino acid and Φ is a bulky hydrophobic residue. This highly conserved motif 

binds to cellular adaptor protein complex 2 (AP-2) and recruits Env that is not 

incorporated into virions into clathrin-coated pits, thereby mediating internalization 

and clearance from the cell surface [436,438]. GYxxΦ has also been shown to bind 

adaptor protein complex 1 (AP-1), mediate directional budding of virus in polarized 

cell types [65,453] and to contribute importantly to pathogenesis in simian 

immunodeficiency virus (SIV) infection of pig-tailed macaques [454–456]. Additional 

but less well characterized internalization signals are present in the more distal CT 

[435,439], consistent with the view that a low steady-state expression of Env on 

infected cells is an important and conserved viral property.  

 Surface expression of HIV-1 and SIV Envs can be increased by mutations in 

the CT that ablate endocytosis signals. Our lab has previously described a variant of 

SIVmac251 termed CP-MAC that exhibited a marked increase (~25-fold) in surface 

expression on infected cells. This increase was shown to be the result of a 
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substitution of Tyr in the GYxxΦ motif and a premature stop codon immediately prior 

to the overlapping second exons of tat and rev [457–459]—a truncation that arises 

commonly when SIVs are propagated in human cells [460]. It is unknown whether 

comparable mutations in the HIV-1 Env CT would confer a similar increase in 

surface expression, thereby making a potentially useful immunogen. At least two 

studies have evaluated the immunogenicity of HIV-1 Env CT mutants with increased 

surface expression compared directly to WT Envs [328,329], and both noted 

improvements in gp120-binding IgG titers. However, the impact of increased surface 

expression on binding IgG and NAb responses in the context of a prime-boost 

vaccine regimen has not been well defined.  

 In the present study, we used a vaccinia prime-gp120 protein boost regimen 

to evaluate the impact of mutations in the HIV-1 Env CT that ablate its endocytosis 

signals and increase expression on the cell surface. We hypothesized that the 

magnitude and quality of the antibody response induced by an Env-expressing 

vaccinia vector would correlate with Env cell surface expression and thus the 

amount of native Env antigen available for interactions with B cells. Additionally, 

since the protein boost can be expected to expand pre-existing antibody lineages 

[461], we hypothesized that antibody activities elicited by the prime would be 

expanded by the protein boost.  
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3.3. RESULTS 

 

Cytoplasmic tail (CT) mutations can increase HIV-1 Env surface expression in 

transfected HEK 293T cells. 

We introduced several mutations into the cytoplasmic tail of the clade B HIV-1 

R3A Env [462] that were designed to alter cell surface expression. Fig. 3.1A shows 

the organization of the HIV-1 CT and Fig. 3.1B shows mutations that were 

introduced, including combinations of: (1) a premature stop codon that removed the 

distal 147 of 151 predicted amino acids (a.a.) in the CT, removing all known 

trafficking motifs (denoted as ∆147) [463]; (2) a premature stop codon that removed 

139 a.a., leaving intact the membrane-proximal endocytosis signal, 711GYSPL715 

(denoted as Δ139); and (3) a point mutation, Y712I, that ablated this motif. In addition, 

we noted that some truncated SIV Env CT mutants with high surface expression, 

including CP-MAC, contain 6 a.a. (SSPPSY) prior to the start of the second exons of 

tat and rev that have no homolog in HIV-1 [128,458,460,464]. Considering the 

possibility that these could contribute to a trafficking motif regulating Env surface 

expression, we introduced a 13-a.a. segment from this region of the SIV Env CT into 

HIV-1 (denoted +SIV). On this background, we then introduced Y712I, ∆139, or both 

changes together. For simplicity, the latter construct is referred to as TM1. A similar 

set of mutations was also made in the HIV-1 89.6 and JRFL Envs. 

The effects of CT mutations on surface expression were first evaluated in the 

context of HIV-1 R3A Env. Plasmids encoding R3A Env variants were transfected 

into HEK 293T cells, and surface and total expression were measured by flow 

cytometry (Fig. 3.2A). Three Env mutants exhibited ≥2-fold increases in surface 

expression relative to wild-type (WT): Y712I Δ139 (2-fold, p=0.09), Δ147 (3-fold, 
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p=0.02), and TM1 (4-fold, p=0.04). All Envs exhibited similar total cellular expression 

levels when assays were performed on permeabilized cells. 

 We next extended this evaluation to assess the effects of analogous 

mutations on clade B 89.6 and JRFL Envs (Fig. 3.2B-D). On 89.6, Env CT mutations 

with highest surface expression were similarly Y712I Δ139, Δ147, and TM1 (6-7 fold, 

p<0.01). The Δ147 and TM1 mutations also generated significant increases (3-4 fold, 

p<0.01) in surface expression of 89.6 N7 Env, which contains a deletion of a single 

glycan (N197Q) and was previously shown to elicit a higher and broader NAb 

response in nonhuman primates [382]. A similar increase in surface Env was also 

observed for a JRFL Env containing the TM1 mutation (3 fold, p=0.04). Thus, across 

several HIV-1 Envs, CT mutations conferred an increase in surface expression, 

particularly constructs with the TM1 modifications (i.e. the +SIV segment, Y712I, and 

∆139), and this variant was selected for further study as an immunogen using a 

vaccinia expression protocol. 

 

CT mutations increase Env surface expression in a vaccinia virus expression 

system  

89.6, 89.6 N7, and JRFL Envs with unmutated or TM1-modified CTs were 

inserted into vaccinia virus (VACV) vectors derived from the replication-competent v-

NY strain [465,466]. We infected HEK 293T cells with parental VACV and 

recombinant viruses expressing 89.6 or JRFL Envs with or without the TM1 

mutations. Surface and total Env expression were assessed by flow cytometry using 

antibodies 2G12 and 2F5, which bind to gp120 and gp41, respectively (Fig. 3.3). 

TM1-modified 89.6, 89.6 N7, and JRFL Envs exhibited a roughly 2-fold increase in 

surface 2G12 stain and a 3-fold increase in surface 2F5 stain (all p<0.05), but no 



 104 

differences in total Env. To control for transduction efficiency, VACV A33 protein 

expression was also assessed, and no significant differences were detected. Thus, 

similar to their expression from plasmid in HEK 293T cells, HIV-1 Envs containing 

the TM1 mutations also exhibited increased cell surface expression using a VACV 

expression system, making them amenable to evaluation of their immunogenicity in 

a VACV prime-protein boost vaccine regimen. 

 

Envs containing CT mutations for high surface expression mediate fusion and 

maintain epitopes for broadly neutralizing antibodies 

We also sought to determine whether the TM1 CT mutations altered Env 

function or the exposure of epitopes to which broadly neutralizing antibodies are 

directed. For HIV-1, CT truncations have previously been shown to affect HIV-1 Env 

fusion efficiency and antigenicity of the ectodomain [463,467–469]. In a cell-cell 

fusion assay, VACV-expressed TM1 Envs induced syncytium formation similarly to 

parental 89.6, 89.6 N7, and JRFL Envs, indicating that TM1-modified Envs maintain 

fusogenic function (Fig. 3.4A). Next, Envs with or without the TM1 mutations were 

expressed in HEK 293T cells and analyzed by flow cytometry for the relative 

expression of antibody epitopes including the CD4 binding site (VRC01, b12, CD4-

IgG), co-receptor binding site (17b), V3 loop crown (447-52D), and the membrane-

proximal external region (MPER) in gp41 (2F5, 4E10, 10E8) (Figs. 3.4B and C). No 

significant differences in antibody/ligand binding were observed between WT and 

TM1 Envs, suggesting that TM1 modification did not result in major antigenic 

changes within the epitopes for several groups of broadly neutralizing antibodies. 

 



 105 

Immunization with CT-modified Envs in a vaccinia prime-protein boost 

protocol generated higher levels of gp120-specific IgG 

The immunogenicity of Envs containing the TM1 mutations was evaluated 

using a poxvirus prime-protein boost strategy, similar to a regimen that showed 

partial protective efficacy in humans [187]. Our regimen used Env-expressing 

recombinant VACV vectors for the primes followed by purified gp120 protein for the 

boosts. We hypothesized that the level of Env surface expression driven by the 

priming vectors would correlate with the magnitude and quality of the Env-specific 

antibody responses after the primes and/or the boosts.  

C57BL/6 mice (n=8-10/group) were injected intraperitoneally (i.p.) at weeks 0 

and 4 with 108 pfu of VACV encoding 89.6 N7 and JRFL Envs with WT or TM1-

modified CTs (Fig. 3.5A). A VACV vector encoding SIV Gag-Pol and lacking Env 

was used as a control. All groups of mice were boosted at weeks 8 and 12 with 

intramuscular (i.m.) injections of 5 µg of autologous gp120 protein in 1% alum (Fig. 

3.5B).  

To determine if mice received comparable effective doses of vector, VACV-

specific antibody responses were measured by ELISA. In both immunization series, 

there were no significant differences between groups in VACV lysate-specific IgG 

measured 4 weeks after the second VACV prime (Figs. 3.5C and D). Consistent with 

this result, we also observed statistically equivalent VACV-specific CD8+ T cell (Fig. 

S3.1A) and Env-specific CD4+ T cell responses (Fig. S3.1B) elicited by vectors 

expressing 89.6 N7 Env with or without the TM1 mutations at the time of euthanasia, 

2 weeks after the second boost. The VACV-specific CD4+ T cell and Env-specific 

CD8+ T cell responses were negligible with the peptide pools used (data not shown). 
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Gp120-specific IgG responses were measured by ELISA after each 

immunization as outlined in Fig. 3.5A. Mice that were primed with 89.6 N7 TM1 Env 

generated significantly higher gp120-binding IgG than those primed with 89.6 N7 

(Fig. 3.5E), with a 3-fold increase after the first prime and a 7-fold increase after the 

second prime. A similar effect was noted in the JRFL immunization, although to a 

lesser extent: mice primed with JRFL TM1 Env developed 2-fold higher gp120-

specific IgG after one or two primes compared to JRFL WT (Fig. 3.5F). In both 

immunization series, gp120-specific IgG levels increased after the protein boosts, 

but differences between Envs with WT and mutated CTs were lost after the second 

boost. 

 

Prime-boost immunizations with CT-modified Envs generated higher HIV-1 

NAb titers  

We next determined whether increased surface expression of Env could 

impact the development of anti-HIV-1 neutralizing antibodies. Using a TZM-bl 

pseudovirus reporter assay, we found that mice primed with 89.6 N7 Env containing 

the TM1 mutations generated markedly higher NAb titers compared to mice primed 

with parental 89.6 N7 (Fig. 3.6A). Neutralization of the Tier-1 (neutralization-

sensitive) strain MN.3 was increased 11-fold after the second prime, 10-fold after the 

first boost, and 16-fold after second boost (p=0.0007). These findings were striking, 

given that there was no significant difference in gp120-specific binding IgG between 

89.6 N7 and 89.6 N7 TM1 vaccinations after protein boosts (Fig. 3.5E).  

In contrast to findings observed for the 89.6 N7 Envs, mice vaccinated with 

JRFL Envs with or without the TM1 mutations generated low NAb titers to Tier-1 

MN.3 and SF162.LS strains after two VACV primes. After two protein boosts, mice 
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immunized with JRFL TM1 Env exhibited a 2-fold higher NAb titer against these 

strains, although this difference was not statistically significant (Fig. 3.6B). In both 

JRFL and 89.6 N7 immunizations, no significant NAb activity was observed against 

more neutralization-resistant viruses, including autologous JRFL and 89.6 (data not 

shown).  

Thus, we observed similar trends for 89.6 N7 and JRFL Env immunizations, 

with Envs modified for increased surface expression generating improved antibody 

responses. These effects were greatest with 89.6 N7 TM1 Env, where increases in 

anti-gp120 IgG and NAb were seen after VACV primes and even greater increases 

in NAbs were seen after gp120 boosts.  

 

CT modification did not change the immunogenicity of variable loops 1/2 and 3 

 Neutralizing antibody responses to Tier-1 HIV-1 isolates have been attributed 

to antibodies binding to hypervariable loops on gp120, particularly the V3 loop 

[470,471]. We investigated this possibility by evaluating sera from mice immunized 

with 89.6 N7 and 89.6 N7 TM1 Envs for binding to a V3 peptide from the 89.6 

sequence. As shown in Figure S3.2A, no differences were observed. In addition, 

epitopes within the V1/V2 loops have been shown to be highly immunogenic and a 

target for neutralizing and non-neutralizing antibodies in various vaccine regimens 

[192,202,206]. However, when sera from mice immunized with 89.6 Envs were 

assessed for IgG to V1/V2 presented on a murine leukemia virus gp70 scaffold 

[192,472], only ~50% of mice made detectable V1/V2-specific IgG responses, and 

there was no difference between mice receiving parental or TM1-modified 89.6 N7 

Envs (Fig. S3.2B). Thus, although immunodominant in several vaccine protocols, 
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antibody responses to V3 and V1/V2 loops were unaffected by differences in cell 

surface expression between these Envs in a vaccinia prime-gp120 boost protocol.   
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Figure 3.1. Schematic of HIV-1 Env cytoplasmic tail mutants. (A) Partial amino 
acid sequences of HIV-1 R3A and SIVmac239 Envs are shown, including part of the 
membrane-spanning domain and the highly conserved Tyr-dependent endocytosis 
motif (GYxxΦ). For both viruses, the positions overlapping the second exons of Tat 
and Rev in alternative reading frames are shown. The indicated segment from 
SIVmac (+SIV) was substituted into the HIV-1 CT to create Env constructs shown in 
Panel B. (B) HIV-1 Env CT mutants created to evaluate effects on Env surface 
expression. Substitutions (in blue) included a Y712I substitution (HXB2 numbering) 
and/or a premature termination codon (*). Mutations were made in the same 
positions in the Envs of HIV-1 89.6 and JRFL. Dashes (-) are used to facilitate 
alignment and highlight SIV residues with no homology in the HIV-1 CT (SSPPSY). 
The sequence of SIV CP-MAC, which exhibits high levels of Env surface expression 
[457–459], is shown for reference.   
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Figure 3.2. CT mutations increase surface expression of Envs in plasmid-
transfected HEK 293T cells. The indicated CT mutations were made in four HIV-1 
Envs: (A) R3A, (B) JRFL, (C) 89.6 WT, and (D) 89.6 N7 (N197Q). HEK 293T cells 
were co-transfected with plasmids encoding GFP and Env and at 18 hrs were 
stained for Env using mAb 2G12 under non-permeabilizing (surface stain) and 
permeabilizing (total stain) conditions. Data represent the average fold change in 
Env-specific mean fluorescence intensity (MFI) of GFP+ cells relative to parental Env 
in each experiment, with n=3 (A, B, D) or n=4 (C) replicates. Asterisks indicate Env 
variants that showed a significant fold difference (p<0.05) in surface expression from 
the parent Env (normalized to 1) by one-sample t test on log-transformed data with 
Bonferroni correction. 
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Figure 3.3. CT mutations increase surface expression of Envs in recombinant 
VACV-infected cells. HEK 293T cells were infected (MOI=3) with the indicated Env-
expressing recombinant VACV or parental VACV (empty). After 16 hrs, cells were 
stained for Env using (A) 2G12, an anti-gp120 mAb, or (B) 2F5, an anti-gp41 mAb 
under permeabilizing (total) or non-permeabilizing (surface) conditions (n=3). In each 
experiment, VACV A33 protein staining was performed under permeabilizing 
conditions to control for transduction efficiency. The MFI of Env and A33 stains are 
shown relative to parental Envs, with comparison groups separated by dotted lines. 
Asterisks indicate a significant fold difference (p<0.05) in Env expression by one-
sample t test on log-transformed data with Bonferroni correction.  
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Figure 3.4. TM1 modified Env is functional and does not exhibit major 
antigenic changes. (A) A cell-cell fusion assay was performed by infecting (MOI=1) 
HIV-permissive TZM-bl cells with recombinant VACV vectors encoding HIV-1 Envs 
with WT or TM1 mutated CTs or a control VACV encoding no recombinant gene. 
Cells were fixed at 18 hrs and syncytia were visualized by Giemsa stain. (B) HEK 
293T cells were transduced with recombinant VACV vectors encoding Envs with WT 
or TM1 mutated CTs, and cells were stained (n=3) under non-permeabilizing 
conditions with the indicated mAbs or a CD4-IgG fusion protein. Fold changes in MFI 
were normalized to 2G12 stain and are expressed relative to the parental Env with 
WT CT. No significant fold differences (p>0.05) relative to parental Env (dashed line) 
were noted using one-sample t test on log-transformed data with Bonferroni 
correction.  
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Figure 3.5. Increased gp120-specific IgG responses in mice primed with TM1 
modified Envs. (A) Immunogens and doses used in two prime-boost immunization 
series. (B) Timeline of immunizations and sample collection. (C,D) VACV lysate-
specific IgG was measured by ELISA using serum from mice primed twice with 
VACV vectors encoding the indicated (C) 89.6 N7 and (D) JRFL Envs or Gag-Pol. 
Data represent the mean OD using serum diluted (C) 1:20,000 and (D) 1:30,000. (E) 
89.6 N7 gp120-specific IgG and (F) JRFL gp120-specific IgG were measured by 
ELISA in mice primed with the indicated VACV vectors and boosted with (E) 89.6 N7 
gp120 or (F) JRFL gp120. Time points correspond to bleeds collected after the 
indicated immunizations. N=8-10 mice per immunized group. Separate unimmunized 
mice (n=4) were used as negative controls in (D) and (F). Error bars indicate the 
SEM, and asterisks denote a significant difference (p<0.05) between WT CT and 
TM1 groups by one-way ANOVA with Tukey’s test.  
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Figure 3.6. Increase in HIV-1 NAb responses in mice primed with TM1 modified 
Envs. NAb titers against HIV-1 MN.3 and SF162.LS pseudoviruses at the indicated 
time points were measured using TZM-bl reporter cells. The mean ID50 titers are 
shown for (A) 89.6 N7 and (B) JRFL Env immunization series. N=8-10 mice per 
immunized group. Background activity against MLV Env pseudovirus is subtracted 
from all data except the naive time point in (A), for which serum volume was limited. 
Error bars indicate the SEM, and asterisks denote a significant difference (p<0.05) in 
NAb titer between WT and TM1 CT groups by Kruskal-Wallis test with Dunn’s 
correction. 
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3.4. DISCUSSION 

 

 HIV and SIV Env CTs contain a membrane-proximal Tyr-dependent 

endocytosis signal that serves to reduce the steady state expression of Env on 

infected cells [127,436–438]. The finding that this motif is absolutely conserved 

among the majority of primate and non-primate lentiviruses [128] and that there are 

additional but less well characterized endocytic motifs in more distal regions of these 

tails [437–439] has suggested that endocytic trafficking of Env could play an 

important role in pathogenesis, possibly by protecting virus-producing cells from 

humoral immune responses such as ADCC [473]. Indeed, for the pathogenic SIV 

molecular clone, SIVmac239, ablation of the membrane-proximal endocytosis signal 

(GYRPV) by deletion of GY721-722 results in a virus that is highly replication-

competent in vivo but is susceptible to host immune control in pig-tailed macaques 

[454–456]. The aim of the current study was to determine if mutations in the HIV-1 

Env CT that ablated endocytosis motifs and, as a result, increased cell surface 

expression could impact Env immunogenicity in a vaccinia prime-protein boost 

vaccine regimen. Given recent findings in the RV144 vaccine trial that a poxvirus 

prime-protein boost protocol could confer partial protection from HIV infection and 

that this effect correlated with antibody responses to gp120 [192,347], we reasoned 

that modifications to Env that increased its expression on the cell surface could be a 

useful adjunct to improve the efficacy of this approach, particularly with regard to the 

poxvirus prime in which Env is expressed as a membrane-associated trimer on 

antigen-presenting cells.  

 We evaluated several HIV-1 Env CT modifications that were informed by our 

prior studies of CP-MAC, an in vitro derived variant of SIVmac251 that exhibited a 
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marked increase in Env surface expression on infected cells [457,458]. We showed 

previously that this phenotype resulted from the combined effects of a premature 

stop codon in the CT and the loss of the membrane-proximal, Tyr-dependent 

endocytosis motif, GYxxΦ. In the current study, we evaluated similar mutations in 

the HIV-1 Env CT and, based on differences in the organization of the SIV and HIV-1 

CTs, created a set of novel HIV-1 Env chimeras containing a segment (+SIV) from 

the SIVmac CT spanning from the GYxxΦ motif (GYRPV) to the site of the stop 

codon in CP-MAC (Fig. 1). Analogous to CP-MAC, these chimeras were created with 

and without a Y712I mutation and the premature stop codon. The chimera containing 

both of these additional changes, termed TM1, exhibited marked increases in Env 

surface expression compared to WT Env, ranging from 3-8 fold. For R3A and JRFL 

Envs, this effect was greater compared to HIV-1 Envs that contained similar 

mutations but lacking the +SIV segment, or when the CT was completely deleted 

(i.e. ∆147). When HIV-1 89.6 Envs containing the TM1 set of mutations, with or 

without the N197Q glycan deletion [382], were expressed from a VACV vector 

commonly used in poxvirus prime-protein boost vaccination protocols [465,466], an 

increase was also seen to levels 2-3 fold greater than WT Env (Fig. 3). In addition, 

both 89.6 and 89.6 N7 Envs bearing the TM1 mutations exhibited no change in 

reactivity with anti-Env mAbs, including several broadly neutralizing antibodies, 

indicating that Envs altered to enhance surface expression maintained epitopes in 

the Env ectodomain that are of interest to the vaccine field. 

 When the immunogenicity of 89.6 N7 Envs with wild-type CT or the TM1 

modification were compared in mice using a VACV prime-gp120 boost protocol, the 

TM1 Env elicited significantly higher gp120-specific binding IgG and NAb to a Tier-1 

HIV-1 isolate. After two gp120 boosts, the difference in binding IgG was diminished, 
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but the difference in HIV-1 NAb titers was maintained and markedly enhanced, with 

a ~16 fold increase in ID50 after the second protein boost. Strikingly, although mice 

primed with 89.6 N7 Env with an unmutated CT generated high levels of binding IgG, 

these mice exhibited poor NAb titers even after the second boost, indicating that 

there were significant qualitative differences in antibody responses resulting from CT 

modification. Importantly, the improvement in NAb response after the second boost 

was attributable solely to differences in the VACV primes, suggesting the importance 

of the priming immunogens in determining the overall efficacy of this prime-boost 

regimen. This finding is consistent with clinical studies of poxvirus prime-boost 

vaccine regimens that have observed prime-dependent effects on the antibody 

specificity, subclass, and neutralizing and non-neutralizing functions measured after 

the protein boosts [209,347,474]. Although differences in immunogenicity were not 

as striking when JRFL Envs with or without the TM1 mutations were compared, 

these data suggest that, in some cases, high surface expression of Env could 

modulate the quality and the magnitude of antibody responses and possibly improve 

efficacy of prime-boost vaccine protocols.  

We hypothesize that an increase in surface Env on antigen-presenting cells 

could enhance the ability of these cells to cross-link B cell receptors (BCR) and 

activate cognate B cells, resulting in increased Env-specific antibody responses. The 

multivalency of antigen/BCR cross-linking has a well documented effect on the 

efficiency of B cell activation, particularly for low affinity interactions 

[228,231,250,475]. This strategy has the potential to elicit antibodies directed 

towards epitopes expressed on functional Env trimers presented by the prime that 

could be further improved by appropriate protein boosts. Indeed, it has been 

suggested that high-affinity binding to the functional Env trimer is both necessary 
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and sufficient for an antibody to neutralize HIV-1 [391,392,476]. It is also possible 

that the CT mutations we introduced could have contributed to immunogenicity 

through alternative mechanisms. The SIV sequence that was inserted in the TM1 

mutation contains part of a motif that has been shown to activate NF-κB [477], which 

can potently modulate host immune responses [478–480]. However, in preliminary 

results, we did not observe any difference in NF-κB signaling mediated by the TM1 

modification in the context of a full-length Env or a fusion of the CD8 ectodomain and 

HIV-1 Env CT (data not shown), as previously described [477]. It is also well 

recognized that truncations in the HIV-1 CT can affect epitope exposure in the Env 

ectodomain, as well as neutralization sensitivity and fusion kinetics [467,468,481–

484]. In particular, we note that quaternary epitopes in the V1/V2 domain could not 

be probed here using the available broad neutralizing antibodies (e.g. PG16, 

PGT145), as these do not bind to WT 89.6 or JRFL. Therefore, it is possible that 

antigenic differences not tested here could have affected the immunogenicity of TM1 

mutants. 

Our findings build on previous studies that demonstrated the ability of 

mutations in the Env CT to alter its immunogenicity [328,485] and demonstrate that 

CT mutations rationally designed to increase Env expression on the cell surface are 

associated with enhanced antibody responses in the context of a poxvirus prime-

protein boost vaccine regimen in mice. Although these findings will require validation 

in larger animal models, this encouraging result supports the idea that low surface 

expression of Env functions as a immune evasion strategy for HIV-1 and that 

immunogenicity of Env-based vaccines can be improved when Envs are modified for 

high surface expression. An important aspect of this finding is that these 

modifications can be combined with other approaches that modify the Env 
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ectodomain to enhance the quality of antibody responses, including those that affect 

Env trimer stability and/or epitope exposure [208,249,382]. Env modifications that 

enhance efficacy of the prime can also be paired with improved boosting 

immunogens, such as stabilized SOSIP trimers [45,46,244,335], which have been 

shown to elicit NAb to neutralization-resistant, Tier-2 HIV-1 isolates [46,244]. Further 

studies will determine whether CT modifications that increase surface expression 

have the same effect on immunogenicity in nonhuman primates and for other viral 

vectors or nucleic acid-based vaccines.  
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3.5. METHODS 

 

Ethics statement 

 The investigators faithfully adhered to the “Guide for the Care and Use of 

Laboratory Animals” by the Committee on Care of Laboratory Animal Resources 

Commission on Life Sciences, National Research Council.  The animal facilities at 

the University of Pennsylvania are fully accredited by the American Association for 

Accreditation of Laboratory Animal Care (AAALAC). All studies were conducted 

under protocols approved by University of Pennsylvania IACUCs. 

 

Generation of cytoplasmic tail (CT)-modified HIV-1 Env constructs 

 Mutant Env constructs were generated on HIV-1 R3A Env [462] in the 

pHSPG plasmid, HIV-1 89.6 Env [486] in the pCIneo plasmid (Promega), or JRFL 

Env [487] in the pSVIII plasmid. The 89.6 N7 (N197Q) mutant was generated from 

89.6 WT as previously described [382]. Env CT mutant TM1 was generated in each 

Env isolate using a three-step process with QuikChange II XL reagents (Agilent) and 

the following primers:  

1.) 5’-CAGAGTGCGGCAGGGCATCCGGCCAGTGAGCTTCTAGACACTGCTG-3’;  

2.) 5’- GGCATCCGGCCAGTGTTCAGCTACTTCTAGACACTGCTG-3’;  

3.) 5’- CGGCCAGTGTTCAGCAGCCCCCCCAGCTACTTCTAGACACTGCTG-3’. 

Amino acid sequences of all mutants are shown in Table 1. 

 

Env expression analysis in plasmid-transfected HEK 293T cells 

 To measure the surface expression of CT-modified HIV-1 Envs, each Env 

mutant or wild-type/parental Env was co-transfected with 9 µL of Fugene 6 
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(Promega) into HEK 293T cells with GFP plasmid in a 12-well plate. For 89.6 Envs in 

pCIneo, 1.5 µg Env plasmid and 0.3 µg pmax-GFP (Lonza) was used. For JRFL 

Envs in the lower-expressing pSVIII vector, a higher Env:GFP plasmid ratio was 

used: 1.5 µg Env and 0.1 µg GFP. The pHSPG vector expressing R3A Envs 

expresses GFP, so no additional GFP plasmid was added in these experiments. 

After 18 hrs post-transfection, cells were harvested and stained for Env gp120 

expression using 7.5 µg/mL 2G12 (NIH AIDS Reagent Program) and 1:300 

secondary goat anti-human IgG Alexa Fluor 647 (Life Technologies). Cells were 

fixed with 4% paraformaldehyde and fluorescence was measured on a FACSCalibur 

(BD Biosciences). Analysis was performed using FlowJo software (Tree Star). 

Events were gated on GFP+ cells and median fluorescence intensity (MFI) was 

recorded and expressed relative to wild-type or parental Env.  

 

Recombinant vaccinia viruses 

 HIV-1 Env-expressing recombinant vaccinia virus (VACV) vectors were made 

for this study by cloning each Env into a VACV virus shuttle vector, pGS20, under 

the control of the synthetic VACV virus early/late promoter, and then inserting it into 

the thymidine kinase gene of the v-NY strain of VACV virus (a replication-competent 

virus that was plaque purified from the New York City Board of Health strain) 

[465,466] by homologous recombination. The negative control VACV for 

immunization studies was made similarly and encodes an irrelevant antigen, 

SIVmac239 Gag-Pol, instead of Env. The empty VACV virus used in vitro is the 

parental v-NY virus with an intact TK gene. 

Purified stocks, used for immunization studies, were prepared as follows: first, 

VACV-infected BSC40 cell pellets (~1 billion cells) were resuspended in 14 mL cold 
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10 mM Tris, pH=9.0, transferred to a 40 mL glass Dounce homogenizer, and 

homogenized with 40 strokes of a tight pestle on ice. The material was centrifuged 

for 5 min at 1360 RPM at 4°C, and supernatant was collected. 3 mL of cold 10 mM 

Tris was added and the material was centrifuged a second time. Supernatants from 

both spins were pooled and then sonicated in a 550 Sonic Dismembrator at an 

amplitude setting of 8. The material was sonicated at 1-min intervals three times in 

ice water with 1-3 min resting periods on ice. The material was gently layered onto 

36% sucrose (10 mM Tris, pH=9.0) and spun at 15,800 rpm in a Beckman Coulter 

SW 28 rotor for 80 min at 4°C.  The supernatant was aspirated and the virus pellet 

was resuspended in cold 1 mM Tris, pH=9.0, and sonicated as above before being 

stored at -80°C. 

For in vitro Env expression studies, VACV crude lysates were prepared 

similarly as described above, but without sucrose gradient ultracentrifugation. 

 

In vitro VACV infection and Env expression analysis 

 For analyses of Env expressed by VACV vectors, 1.6 × 106 HEK 293T cells 

were infected with VACV crude lysates at a multiplicity of infection (MOI) of 3. Virus 

was absorbed onto cells at 37°C for 1 hr in 0.5 mL DPBS with 10 mM MgCl2 and 

0.01% BSA, and then replaced with 2 mL of DMEM with 10% FBS. The infection 

was allowed to proceed for 16 hr post-absorption. Harvested cells were stained for 

HIV-1 Env with human mAbs 2G12 or 2F5 (NIH AIDS Reagent Program) at 7.5 

µg/mL and 10 µg/mL, respectively, and 1:100 secondary goat anti-human IgG Alexa 

Fluor 647 conjugate (Invitrogen, A-21445). VACV A33 protein was stained using 

1:300 rabbit anti-A33 serum (kindly provided by Dr. Stuart Isaacs) and 7.5 µg/mL 

goat anti-rabbit IgG FITC conjugate (BD Biosciences 552420). Each antibody was 
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incubated on cells for 30 min on ice, and each sample was stained with and without 

permeabilization with 0.1% saponin to allow total cellular stain. All samples were 

fixed with paraformaldehyde after staining and fluorescence was measured using a 

FACSCalibur flow cytometer. Ten thousand events were collected and live, A33+ 

cells were gated to determine the mean fluorescence intensity (MFI) of Env and A33 

staining. 

For antigenicity analysis, HEK 293T cells were infected as above and stained 

without permeabilization using 1:300 rabbit anti-A33 serum and the Env-specific 

mAbs 2G12, VRC01, b12, CD4-IgG, 17b, 447-52D, PG9, PG16, 2F5, 4E10, 10E8 

(NIH AIDS Reagent Program), which bind to different antigenic determinants. Goat 

anti-rabbit IgG FITC and goat anti-human IgG Alexa Fluor 647 conjugates were used 

as secondary antibodies. Transduced cells were gated on using the A33 stain, and 

the MFI for each Env-specific mAb was normalized to the 2G12 signal to account for 

any differences in surface expression. These values were expressed as fold 

changes for CT-modified Envs relative to the parental Env. 

 

Cell-cell fusion assay 

 The functionality of CT-modified Envs was qualitatively assessed using a cell-

cell fusion assay as used previously [488]. TZM-bl cells (NIH AIDS Reagent 

Program) were infected with crude lysates of recombinant VACV vectors at an MOI 

of 1.0. After 18 hours of infection, cells were fixed in a solution of 95% ethanol and 

5% acetic acid and stained with Giemsa to visualize syncytia.  

 

gp120 expression and purification 
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 89.6 N7 gp120 and JRFL WT gp120 were expressed in BSC40 cells by 

recombinant VACV infection and purified by a three-step procedure using lectin 

affinity, diethylaminoethanol (DEAE) anion exchange, and size exclusion 

chromatography, as previously described [410]. 

 

Mice 

 Female C57BL/6 (BL/6) mice were purchased from NCI and housed in a 

BSL2 containment facility. All mice were 6 weeks of age at the initiation of 

immunization studies.  

 

Immunizations 

 Mice were immunized intraperitoneally with 1 x 108 PFU of recombinant 

VACV (v-NY strain) encoding HIV-1 Env variants or SIV Gag-Pol at weeks 0 and 4.  

At weeks 8 and 12, mice were immunized intramuscularly with 5 µg gp120 in PBS in 

1% Alhydrogel alum adjuvant (Invivogen). Serum samples were collected 

immediately prior to the first immunization and each subsequent prime or boost. 

Splenectomies and final serum collection were performed two weeks after the 

second gp120 boost (week 14).  

 

Enzyme-linked immunosorbent assays (ELISAs) 

 HIV-1 gp120-specific IgG in mouse serum was quantified by ELISA using a 

murine mAb against gp120 (3B3, NIH AIDS Reagent Program) as a standard. 

Immulon 4 HBX high-binding plates were coated with purified HIV-1 89.6 N7 gp120 

or JRFL WT gp120 at a final concentration of 1 µg/mL in PBS overnight at 4°C. 

Incubation steps were performed at room temperature in 100 uL volumes. The plates 
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were washed once with wash buffer (0.05% Tween-20 in PBS) and blocked with 

blocking buffer (2% BSA in PBS) for 1 hr, followed by three more washes. Dilutions 

of sera and standard were made in blocking buffer and incubated on the plate for 1.5 

hr. Sera and standard were removed and the plate was washed four times with wash 

buffer. Goat anti-mouse IgG HRP conjugate (Sigma-Aldrich A8924) at 1:10,000 in 

blocking buffer was incubated for 1 hr. After four washes, TMB substrate mixture 

(KPL) was added at 100 µL/well for 20 minutes. 2 N sulfuric acid (50 µL/well) was 

used to stop the reaction, and the optical density (OD) was read at 450 nm on a 

Dynex MRX Revelation microplate reader. 

 VACV-, V3-, and V1/V2-specific IgG ELISAs were performed similarly to 

gp120-specific IgG ELISA, with the following modifications. For VACV, the coating 

antigen was Western Reserve VACV lysed in RIPA buffer, diluted 1:200 in PBS 

(kindly provided by Dr. Stuart Isaacs). For V3, the coating antigen was synthetic 89.6 

Env V3 peptide (GenScript) at 5 µg/mL in PBS. For V1/V2, the coating antigen was a 

scaffold protein containing HIV-1 92US715 V1/V2 fused to MLV gp70 (kindly 

provided by Dr. Shan Lu) at 1 µg/mL in PBS. 

 

Splenocyte stimulation and intracellular cytokine staining  

 To perform Env-specific and VACV-specific T cell analyses, splenocytes (2 x 

106) were incubated with four separate SHIV 89.6P Env peptide pools (NIH AIDS 

Reagent Program) and one immunodominant VACV peptide pool (NR-4058, BEI 

Resources) at 37°C and 5% CO2. All peptides were used at 1 mg/mL, and DMSO 

was used as a control for background.  After 1 hr, GolgiPlug (brefeldin A), GolgiStop 

(monensin), and anti-CD107a-FITC (BD Biosciences) were added and cells were 

incubated for an additional 5 hrs. Cells were washed in PBS and resuspended in 
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LIVE/DEAD Aqua Blue stain (Invitrogen) for 10 min at room temperature. A mixture 

of anti-CD44-PE/Cy5, anti-CD27-PE (BD Biosciences), anti-CD8-Pacific Blue, and 

anti-CXCR5-Brilliant Violet 605 (BioLegend) surface marker antibodies was added 

and incubated for 30 min at room temperature. Cells were washed in FACS buffer 

(PBS, 1% FBS), resuspended in FIX & PERM (BD Biosciences), and incubated for 

20 min at room temperature. Cells were washed with Perm/Wash (BD Biosciences), 

then resuspended in a mixture of anti-TNFα-PE/Cy7, anti-IFNγ-Alexa Fluor 700, anti-

IL2-APC, and anti-CD3-APC/Cy7 antibodies (BD Biosciences) and incubated at 

room temperature for 1 hr. Cells were washed, resuspended in 1% 

paraformaldehyde in PBS, and analyzed for fluorescence using an LSRII (BD 

Biosciences). Analysis was performed using FlowJo software (Tree Star). Events 

were gated on live (Aqua Blue-negative) cells. CD4+ cells were identified as 

CD3+/CD8- cells. Background-subtracted percentages of cytokine-positive cells in 

each of four Env peptide pools were added together to yield the Env-specific CD4+ T 

cell response.  

 

Neutralization assays 

 Pseudotype virus neutralization assays were performed in TZM-bl reporter 

cells as previously described [409] using pre-immune and post-immune mouse sera. 

Samples were assayed for neutralization of pseudoviruses expressing multiple HIV-1 

Envs or murine leukemia virus (MLV) Env to measure nonspecific neutralization and 

cytotoxicity. Values were background-corrected and reported as the reciprocal of the 

serum dilution at which 50% reduction of luciferase activity is observed (ID50).  

 

Statistical analysis 
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 Statistical tests were performed using GraphPad Prism software. Env-specific 

IgG concentrations, distributed on a log scale, were log transformed before analysis. 

Parametric or non-parametric tests were chosen for each analysis based on whether 

the data were normally distributed.   
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3.6. SUPPLEMENTARY DATA 

 

 
 

Supp. Fig. S3.1. No significant difference in vector-specific CD8+ or Env-
specific CD4+ T cell responses resulting from TM1 CT modification. 
Splenocytes from mice immunized with 89.6 N7 Envs with WT or TM1 CT were 
stimulated with peptide pools from (A) VACV or (B) SHIV 89.6P Env and were 
stained for intracellular cytokine expression. Data represent mean frequencies of 
IFNγ+ and TNFα+ cells, as a percentage of total CD8+ or CD4+ T cells, and error bars 
are the SEM; n.s. = not significant (p>0.05) by Mann-Whitney test.   
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Supp. Fig. S3.2. No difference in V3 and V1/V2 epitope-specific IgG responses 
from TM1 modification. (A) V3-specific and (B) V1/V2-specific IgG responses were 
assayed by ELISA using synthetic V3 peptide and gp70-scaffolded V1/V2, 
respectively, as the coating antigens and post-boost two serum diluted (A) 1:2,000 or 
(B) 1:200. Points represent OD values for individual mice and horizontal lines 
indicate the mean. Groups were not statistically different (p>0.05) by Kruskal-Wallis 
test with Dunn’s correction. 
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CHAPTER 4 

 

ZIKA VIRUS PROTECTION BY A SINGLE LOW-DOSE NUCLEOSIDE MODIFIED 

MESSENGER RNA VACCINATION 
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4.1. ABSTRACT 

 

Zika virus (ZIKV) has recently emerged as an explosive pandemic associated 

with severe neuropathology in newborns and adults. There are no ZIKV-specific 

treatments or preventatives; thus, development of a safe and effective vaccine is a 

high priority. Messenger RNA (mRNA) has emerged as a versatile and highly 

effective platform to deliver vaccine antigens and therapeutic proteins. Here, we 

demonstrate that a single low-dose intradermal immunization with lipid nanoparticle-

encapsulated nucleoside-modified mRNA (mRNA-LNP) encoding the pre-membrane 

and envelope (prM-E) glycoproteins of a 2013 ZIKV outbreak strain elicited potent 

and durable neutralizing antibody responses in mice and non-human primates. 

Immunization with 30 µg of nucleoside-modified ZIKV mRNA-LNPs protected mice 

from ZIKV challenges at 2 weeks or 5 months post-vaccination, and a single dose of 

50 µg was sufficient to protect non-human primates from a challenge at 5 weeks 

post-vaccination. These data demonstrate that nucleoside-modified mRNA-LNPs 

elicit rapid and durable protective immunity and thus represent a new and promising 

vaccine candidate for the global fight against ZIKV. 
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4.2. INTRODUCTION 

 

ZIKV, first identified in 1947 [274,275], is a mosquito-borne and sexually 

transmitted flavivirus that has recently been associated with microcephaly and other 

birth defects in newborns and Guillain-Barré syndrome in adults [280,288,489–491]. 

Effective vaccines have been approved for other closely related flaviviruses [492–

494], but vaccine candidates for ZIKV have only recently been developed [295,297–

301,306,495]. Multiple vaccine formats have been shown to protect mice or non-

human primates (NHPs) from ZIKV infection, including plasmid DNA [295,297–299], 

purified inactivated virus  [295,297], live attenuated virus [301], protein subunit [300], 

adenovirus vectors [297,300], and mRNA, as described in our recent publication 

[307] and two subsequent reports [306,495]. 

 The ideal vaccine for ZIKV would be safe and induce protective immunity 

after a single immunization, regardless of prior serologic history. Of the candidate 

Zika vaccines described prior to publication of these data, only a rhesus adenovirus 

platform (RhAd52) has been shown to confer protection after a single immunization 

in NHPs; however, the efficacy of the RhAd52 vector in humans is currently 

undefined. Additionally, pre-existing immunity to adenovirus serotypes can limit the 

efficacy of such vectors [496,497], and low neutralizing titers to rhesus 

adenoviruses, including RhAd52, have been detected in humans [498]. 

mRNA has emerged as a promising new vaccine modality that can elicit 

potent immune responses (reviewed in [303,499]), while avoiding the safety risks 

and anti-vector immunity associated with some live virus vaccines (reviewed in 

[500]). Vaccination with mRNA offers several advantages over other vaccine 

platforms: (i) it is a non-integrating, non-infectious gene vector that can be readily 
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designed to express any protein with high efficiency, (ii) it has the potential for cost-

effective and highly scalable manufacturing, and (iii) small doses are sufficient to 

induce protective immune responses. mRNA therefore represents a promising 

method to generate an effective and widely distributable vaccine for ZIKV. 
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4.3. RESULTS 

  

 To design a ZIKV vaccine that would generate protective immunity after a 

single vaccination, we used a recently developed vaccine platform consisting of 

purified [311], in vitro transcribed mRNA containing the modified nucleoside 1-

methylpseudouridine (m1Ψ), which prevents innate immune sensing and increases 

mRNA translation in vivo [320]. The nucleoside-modified mRNA was formulated for 

vaccination in lipid nanoparticles (LNPs), which have been shown to mediate 

efficient and prolonged protein expression by mRNA in vivo [309]. We first showed 

that this is a highly effective vaccine platform using influenza hemagglutinin (HA) as 

a target antigen. Mice were immunized a single time intradermally (i.d.) with 30 µg of 

m1Ψ-modified HA mRNA-LNPs or luciferase-encoding mRNA-LNPs as a control. 

The hemagglutination inhibition (HAI) titers in HA mRNA-immunized mice rose 

rapidly to >4,000 and were maintained above ~2,000 for 13 months (Fig. 4.1A). After 

this time, immunized and control mice were challenged with a lethal dose of 

influenza PR8. All control mice died while HA mRNA-immunized mice survived (Fig. 

4.1B) with no weight loss.  

To determine the mechanism of the potent antibody response, we evaluated 

total T follicular helper (Tfh) and germinal center (GC) B cell responses in the spleen 

and found that the absolute counts of both of these cell types were highly elevated 

during vaccination with m1Ψ-containing HA mRNA-LNPs compared to control mice 

that received luciferase mRNA-LNPs or a conventional inactivated influenza virus 

vaccine (Figs. 4.1D and E). In contrast, we found that uridine-containing HA mRNA-

LNPs did not stimulate Tfh and GC B cell responses above background levels, and 

accordingly the HAI titers were low and comparable to inactivated virus (Fig. 4.1C). 
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Similar results were obtained when antigen-specific Tfh cells in the spleen were 

quantified based on Bcl6 and IFN-γ expression in response to HA peptide 

stimulation (data not shown). Thus, nucleoside modification appears necessary for 

the ability of this vaccine platform to stimulate potent germinal center reactions and 

NAb responses following a single immunization.  

We used the above method to design a novel, potent anti-ZIKV vaccine in 

which the prM-E glycoproteins of ZIKV H/PF/2013 [501] were encoded by purified, 

m1Ψ-containning mRNA (Supp. Fig. S4.1A). Studies of ZIKV and other flaviviruses 

have demonstrated that co-expression of prM and E proteins is sufficient to 

assemble and secrete subviral particles [298,502]. ZIKV prM-E-encoding mRNA was 

first characterized by transfecting HEK 293T cells and human and murine dendritic 

cells (DCs). ZIKV E protein was produced by all cell types and was secreted into the 

supernatant of 293T cells (Supp. Fig. S4.1B). We hypothesize that DCs also secrete 

E protein and that it is rapidly endocytosed, as has been proposed for HIV Gag 

[503]. E protein in supernatant was pelleted by ultracentrifugation when incubated 

with PBS, but not with 0.5% Triton X-100, consistent with subviral particle production 

from prM-E mRNA [502] (Supp. Fig. S4.1C).  

 The immune response induced by the nucleoside-modified ZIKV prM-E 

mRNA-LNP vaccine was first evaluated in C57BL/6 mice. Animals were immunized 

i.d. with 30 µg of ZIKV prM-E mRNA-LNPs or poly(C) RNA-LNPs (negative control). 

No inflammation or other adverse events were observed at the sites of injection. 

Polyfunctional E protein-specific CD4+ T cell responses were detected based on 

intracellular IFN-γ, TNF-α, and IL-2 production by ZIKV E protein-stimulated 

splenocytes at week 2 post-vaccination (Fig. 4.2A and Supp. Fig. S4.2). ZIKV E-

specific serum IgG developed quickly in vaccinated mice and stabilized at an 



 137 

endpoint titer of 180,000 (~90 µg/ml) at weeks 8 to 12 (Fig. 4.2B and Supp. Fig. 

4.3A). Anti-ZIKV neutralizing antibodies (NAb) were measured using two 

independent assays: a standard plaque reduction neutralization test (PRNT) and a 

ZIKV reporter viral particle (RVP) assay [298]. The mean PRNT50 titer against ZIKV 

MR-766 peaked at ~1,300 at week 8 (Fig. 4.2C) and was relatively stable until week 

12. The mean RVP NAb titer (EC50) against ZIKV H/PF/2013 reached ~105 at weeks 

8 and 12 (Fig. 4.2D). The detection of higher NAb titers in the RVP assay compared 

to other assay formats similar to PRNT has been previously reported [298]. In 

addition, we noted that the ratio of RVP to PRNT titers was not fixed and varies with 

the animal model and viral isolate. 

 Immunogenicity of the nucleoside-modified ZIKV prM-E mRNA-LNP vaccine 

was next evaluated in BALB/c mice. E-specific serum IgG peaked at week 8 and 

remained stable between weeks 8 and 20 (endpoint titers ~200,000; 90-130 µg/ml) 

(Fig. 4.2E and Supp. Fig. S4.3B). PRNT50 NAb increased to a maximum of ~1,100 at 

week 16 and remained stable until week 20 (Fig. 4.2F). The RVP NAb titer rose to 

50,000 at week 8 and remained above 20,000 until week 20 (Fig. 4.2G).  

 A challenge study was conducted in BALB/c mice immunized i.d. with 30 µg 

of nucleoside-modified ZIKV prM-E mRNA-LNPs or poly(C) RNA-LNPs. Mice were 

intravenously (i.v.) challenged at week 2 (short-term) or week 20 (long-term) post-

immunization with 200 plaque-forming units (PFU) of ZIKV PRVABC59. In the short-

term protection study, 8 of 9 control mice developed viremia by day 3, with a median 

peak of ~14,000 copies/ml. All ZIKV mRNA-immunized mice (n=9) were protected 

from detectable viremia (Fig. 4.3A). In the long-term study, all control mice (n=5) 

showed viremia on day 3, with a median peak of 1,200 copies/ml, while none of the 

ZIKV mRNA-immunized mice (n=10) had detectable viremia at days 3 or 7 (Fig. 
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4.3B). These data demonstrate that a single immunization with nucleoside-modified 

ZIKV prM-E mRNA-LNPs rapidly elicits durable protection from detectable viremia 

with a heterologous ZIKV strain in mice. 

We next evaluated the efficacy of the nucleoside-modified ZIKV mRNA-LNP 

vaccine in rhesus macaques (Macaca mulatta), a non-human primate species that 

recapitulates several features of ZIKV infection in humans [504]. Macaques were 

immunized i.d. with doses of 600 µg, 200 µg or 50 µg of nucleoside-modified ZIKV 

prM-E mRNA-LNPs. As in mice, no inflammation or other adverse events were 

observed. E-specific binding IgG and NAb were efficiently induced by all three 

vaccine doses, with no statistically significant differences between groups. Endpoint 

IgG titers rose to >300,000 in all groups at week 4 and were maintained at ≥100,000 

until week 12 (Fig. 4.4A). PRNT50 NAb titers against MR-766 peaked at ~400 at 

week 2 (Supp. Fig. S4.4A). To facilitate comparison of NAb titers across 

laboratories, the neutralization curve is shown for a human ZIKV-neutralizing mAb, 

A3594, in the PRNT assay (Supp. Fig. S4.5). NAb titers obtained with a focus 

reduction neutralization test (FRNT), which has a format similar to PRNT, were 

stable around 400 against ZIKV MEX I-44 at weeks 2 through 12 (Fig. 4.4B). The 

RVP assay revealed NAb titers against H/PF/2013 of ~10,000 at week 2 and 

~17,000 at week 4 (Fig. 4.4C), and a titer of ~3,000 against MR-766 at week 4 

(Supp. Fig. S4.4B). The neutralization of both Asian- and African-lineage viruses is 

consistent with a prior report demonstrating the existence of only one serotype of 

ZIKV [291]. The absence of a significant dose-dependent effect on the antibody 

response in any assay (Kruskal-Wallis test, p>0.05) suggests that a low dose of 50 

µg (approximately 0.02 mg/kg) was sufficient, or possibly more than sufficient, to 

induce robust anti-ZIKV immunity in macaques. 
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 Rhesus macaques were challenged at week 5 by subcutaneously (s.c.) 

injecting 104 TCID50 of ZIKV PRVABC59 into five vaccinated animals and six control 

animals (Supp. Table S4.1). All control animals became infected with median peak 

plasma viremia of 7,000 ZIKV RNA copies/ml (Fig. 4.5). In contrast, vaccinated 

macaques were highly protected from ZIKV infection. Four of five animals — 

including three that received the lowest dose of 50 µg and one that received the 

medium dose of 200 µg — had no detectable viremia (<50 copies/ml) at all time 

points. We detected a low and transient viral blip of 100 copies/ml at day 3 post-

challenge in one animal that received the highest dose of 600 µg of ZIKV prM-E 

mRNA-LNPs, representing a ~99% reduction in peak viremia compared to the 

control animals. This animal exhibited among the lowest NAb titers in multiple 

assays at week 4 post-vaccination: PRNT50 of 36 to MR-766, FRNT50 of 226 to MEX 

I-44, and RVP titers of 986 to MR-766 and 5,812 to H/PF/2013 (Fig. 4.4 and Supp. 

Fig. S4.4). The significance of a low-level viral blip in one animal, including 

implications for a correlate of protection, are as yet uncertain and warrant further 

study with a greater number of animals.   
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Figure 4.1. Nucleoside-modified mRNA-LNP vaccination generates robust T 
follicular helper (Tfh) cell and germinal center (GC) B cell responses. The 
potency of the nucleoside-modified mRNA-LNP platform was first investigated using 
influenza hemagglutinin (HA) as a target antigen. (A) BALB/c mice were immunized 
i.d. with 30 µg of FPLC-purified, 1-methylpseudouridine (m1Ψ)-containing mRNA 
encoding HA or luciferase (Luc) in LNPs, and serum HAI titers were measured for 13 
months. (B) After 13 months, mice were challenged with a lethal dose of influenza 
PR8 and monitored for survival. (C-E) Mice were immunized i.d. with 30 µg of HA-
encoding m1Ψ- or uridine (U)-containing mRNA-LNPs, Luc-encoding m1Ψ-mRNA-
LNPs, or inactivated influenza vaccine, and then sacrificed after 10 days. (C) HAI 
titers were measured. Splenocytes were analyzed for the frequency of (D) Tfh cells 
(TCRβ+, CD19-, CD4+, CD62L-, CXCR5+, PD-1+) and (E) GC B cells (IgM-, IgD-, 
B220+, CD19+, CD138-, CD38low, PNAhigh. Tfh and GC B cell experiments were 
repeated at least twice to achieve sufficient numbers of values for mice in each 
group (n=5-8 mice/group). Error bars are s.e.m. Statistical analysis: one-way 
ANOVA with Bonferroni correction, *p<0.05. 
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Figure 4.2. Nucleoside-modified ZIKV mRNA-LNP immunization elicits ZIKV-
specific T helper and neutralizing antibody responses. a-d, C57BL/6 mice were 
immunized i.d. with 30 µg of nucleoside-modified ZIKV prM-E mRNA-LNPs (n=8) or 
control poly(C) RNA-LNPs (n=4). (a) At week 2, splenic antigen-specific CD4+ T cells 
were detected by intracellular cytokine staining. The antibody response was 
monitored by (b) ELISA, (c) PRNT using ZIKV MR-766, and (d) RVP using ZIKV 
H/PF/2013. e-g, BALB/c mice were immunized similarly with ZIKV mRNA-LNPs 
(n=10) or poly(C) RNA-LNPs (n=5) and monitored by (e) ELISA, (f) PRNT using MR-
766, and (g) RVP using H/PF/2013. Points represent individual mice; horizontal lines 
show the mean; shaded area indicates values below the limit of detection. The 
controls in d and g are from the week 8 time point. Asterisk indicates p<0.05 in 
unpaired t-test; antibody responses in vaccine and control groups were compared at 
each time point by Mann-Whitney test: p<0.01 for all comparisons. 
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Figure 4.3. A single immunization of nucleoside-modified ZIKV prM-E mRNA-
LNPs provides rapid and durable protection from ZIKV challenge in mice. 
BALB/c mice immunized i.d. with 30 µg of ZIKV prM-E mRNA-LNPs or control 
poly(C) RNA-LNPs were challenged i.v. with 200 PFU ZIKV PRVABC59 at (a) 2 
weeks (n=9 per group) or (b) 20 weeks (n=5 control mice; n=10 ZIKV mRNA-LNP 
mice) post-vaccination, and plasma viral loads were measured by qRT-PCR for ZIKV 
capsid RNA. ‡ symbol indicates two overlapping curves. Shaded area indicates 
values below the limit of detection (200 copies/ml), with undetectable curves 
staggered to show individual mice. Day 3 viremia in vaccine and control groups was 
compared by Mann-Whitney test: p<0.001 for both challenges.  
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Figure 4.4 Nucleoside-modified ZIKV mRNA-LNP immunization elicits potent 
ZIKV-specific neutralizing antibody responses in non-human primates. Rhesus 
macaques were immunized with 600 µg (n=4), 200 µg (n=3), or 50 µg (n=3) of ZIKV 
prM-E mRNA-LNPs, and the antibody response was quantified by (a) ELISA, (b) 
FRNT using ZIKV MEX I-44, and (c) RVP using ZIKV H/PF/2013. Pre-challenge 
(weeks 0 to 4) and unchallenged animal data are shown. Points represent individual 
monkeys; shaded area indicates values below the limit of detection; horizontal lines 
indicate the mean. Immune responses in dose groups were compared by Kruskal-
Wallis test: p>0.05 for all comparisons. 
 

0 2 4 9 12
103

104

105

106
En

dp
oi

nt
 d

ilu
tio

n 
tit

er

Weeks after immunization

E protein-specific IgGa b

0 2 4 9 12
100

101

102

103

104

EC
50

 ti
te

r

Weeks after immunization

FRNT NAbb

0 2 4
101

102

103

104

105

EC
50

 ti
te

r

Weeks after immunization

RVP NAb

ZIKV prM-E 
mRNA-LNP

600 μg
200 μg
50 μg

c



 144 

 

 

Figure 4.5. A single immunization of nucleoside-modified ZIKV prM-E mRNA-
LNPs protects rhesus macaques from ZIKV challenge at 5 weeks post-
immunization. Six unvaccinated control macaques and five vaccinated macaques 
that received 50 µg (n=3), 200 µg (n=1), or 600 µg (n=1) of ZIKV mRNA-LNPs at 
week 0 were challenged s.c. with 104 TCID50 of ZIKV PRVABC59 at week 5. Viral 
loads were measured in plasma by qRT-PCR for ZIKV capsid RNA. Shaded area 
indicates values below the limit of detection (50 copies/ml), and undetectable values 
were staggered to show individual animals. Day 3 and 5 viremia in vaccine and 
control groups was compared by Mann-Whitney test: p<0.001. 
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4.4. DISCUSSION 

 

In this report, we demonstrate that a single, low-dose i.d. immunization with 

nucleoside-modified ZIKV prM-E mRNA-LNPs is protective in both mice and rhesus 

macaques and elicits higher NAb responses than a single immunization of multiple 

recently reported ZIKV vaccine candidates, including purified inactivated virus (PIV) 

and plasmid DNA vaccines encoding prM-E or M-E [295,297,298]. In mice, PRNT50 

NAb increased steadily over several months, rising to levels 50-100 times higher 

than those induced by a single immunization with PIV or DNA vaccines [295,298]. 

The ZIKV mRNA-LNP vaccine conferred complete, rapid, and durable protection in 

mice that was maintained for at least 5 months, and likely much longer, since NAb 

titers were stable. The mouse challenge studies also revealed that ZIKV PRVABC59 

replicated more efficiently (p=0.02, Mann-Whitney test) in 8 week-old BALB/c mice 

compared to 25 week-old mice, when two identical aliquots and doses of challenge 

virus stock were used. A prior report has shown that ZIKV-related mortality in 

immune-competent mice decreases between 1 and 4 weeks of age [505], but ZIKV 

replication in adult mice has not yet been well described.  

In rhesus macaques, a single immunization with 50 µg ZIKV prM-E mRNA-

LNPs induced RVP NAb titers that were 50 times higher than those induced by one 

immunization of 1 mg DNA vaccine and over 2 times higher than those induced by 

two immunizations of DNA [298], as measured by the same assay in the same 

laboratory. ZIKV mRNA-LNP NAb titers may overlap with those elicited by one 

injection of PIV or RhAd52 ZIKV vaccines in macaques, although differing assay 

formats prevent a precise comparison. The FRNT NAb titers elicited by ZIKV mRNA-
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LNP in macaques were maintained at a stable level until 12 weeks post-

immunization, suggesting that protection may be durable.  

Although Tfh and GC B cells were not measured in ZIKV-immunized animals, 

the data obtained with influenza HA and the potency of the anti-ZIKV NAbs both 

imply that Tfh and GC B cells were robustly induced by the ZIKV prM-E vaccine in 

mice and macaques. The influenza data also suggest that nucleoside modification 

was likely an important contributor to the ability of this vaccine to generate potent 

and durable NAbs with only a single immunization. Future studies will quantify the 

Tfh and GC B cell responses in mice and macaques immunized with ZIKV mRNA-

LNPs and determine whether nucleoside modification and/or purification of the 

mRNA were required for potent NAb responses. 

In other future directions, the nucleoside-modified ZIKV mRNA-LNP will be 

investigated in multiple models of fetal infection to test the applicability of this 

vaccine in preventing birth defects, including microcephaly. In one line of 

investigation, immune competent female CD-1 mice will be immunized normally with 

the ZIKV mRNA-LNP vaccine, and 1-2 weeks later will be bred. When pregnant, the 

mice will be challenged with live ZIKV by an intrauterine inoculation at embryonic 

day 10, as described previously [287]. This is performed by making a small incision 

in the abdomen and directly injecting the virus into the myometrium. This infection 

method has been shown to generate a high level of viral replication in fetal tissues 

including the placenta and brain, leading to thinning of the cerebral cortex and in 

some cases fetal death. This is a useful model for vaccine protection from fetal 

protection, as the immune system of the mother is still intact to allow a full vaccine 

response. Concurrently, we will pursue another line of investigation in 

immunocompromised Ifnar1-/- mice [284]. Although the immune response in these 
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mice may be perturbed, they are highly susceptible to infection in both adult mice 

and in the fetus following physiologic, subcutaneous inoculation. This model may 

also be combined with a passive transfer of serum from immune competent, 

vaccinated mice. Together these studies will reveal whether the level of immunity 

provided by the ZIKV mRNA-LNP is sufficient to protect a fetus from pathogenic 

ZIKV infection. Additional future studies will investigate the impact of a vaccine boost 

on NAb titers and fetal protection, and the consequences of ZIKV mRNA-LNP 

immunization for infection with heterologous flaviviruses, a subject discussed further 

in Chapter 5.  
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4.5. METHODS 

 

Ethics statement 

Animals: The investigators faithfully adhered to the “Guide for the Care and 

Use of Laboratory Animals” by the Committee on Care of Laboratory Animal 

Resources Commission on Life Sciences, National Research Council. Mouse 

studies were conducted under protocols approved by the University of Pennsylvania 

(UPenn) IACUCs. Rhesus macaques (Macaca mulatta) were housed at BIOQUAL Inc. 

(Rockville, MD). Macaque experiments were reviewed and approved by BIOQUAL and 

UPenn Animal Care and Use Committees. All animals were housed and cared for 

according to local, state and federal policies in an Association for Assessment and 

Accreditation of Laboratory Animal Care International (AAALAC)-accredited facility. 

Human cells: Research involving human cells complied with the Declaration 

of Helsinki. De-identified leukapheresis cells were obtained from the UPenn 

Immunology Core under their Institutional Review Board (IRB) approved protocol, 

and were deemed exempt by the UPenn IRB. 

 

Antibody reagents 

The pan-flavivirus murine monoclonal antibody 4G2, clone D1-4G2-4-15 

(EMD Millipore MAB10216) was used to detect ZIKV E protein by Western blot. The 

following antibodies were used for flow cytometry: anti-CD4 PerCP/Cy5.5 (Clone 

GK1.5, Biolegend), anti-CD3 APC-Cy7 (Clone 145-2C11, BD Biosciences), anti-

CD27 PE (Clone LG.3A10, BD Biosciences), anti-TNF-α PE-Cy7 (Clone MP6-XT22, 

BD Biosciences), anti-IFN-γ AF700 (Clone XMG1.2, BD Biosciences), anti-IL-2 APC 

(Clone JES6-5H4, BD Biosciences), anti-Bcl6 PE (Clone K112-91, BD Biosciences), 
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anti-CXCR5 BV605 (Clone L138D7, Biolegend), anti-CXCR5 PE-Cy7 (Streptavidin, 

BD Biosciences), anti-PD-1 BV785 (Clone 29F.1A12, Biolegend), anti-PD-1 BV421 

(Clone EH12.2H7, Biolegend). LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Life 

Technologies) was used to discriminate dead cells and debris. The following 

antibodies were used for ELISA assays: goat anti-mouse IgG HRP (Sigma 4416), 

goat anti-monkey IgG HRP (Sigma 2054), and ZIKV E protein-binding mAb NR-4747 

clone E19 (BEI Resources). ZIKV-neutralizing human monoclonal antibody Ab3594 

was provided by the Duke University, Duke-NUS Graduate Medical School, National 

University of Singapore team of Charles McGee, Gregory D. Sempowski, Robert 

Parks, Eng Eong Ooi, Barton F. Haynes, M. Anthony Moody, Shee-Mei Lok, and 

Hua-Xin Liao. 

 

Protein reagents 

Purified recombinant ZIKV E protein (Aalto Bioreagents AZ 6312) was used in 

ELISAs to detect E protein-specific IgG, in Western blots as a positive control and in 

mouse splenocyte stimulation.  

 

mRNA production 

mRNA was produced as previously described [506] using T7 RNA 

polymerase on linearized plasmid (pTEV-ZIKVprM-E-A101) encoding codon-

optimized [507] ZIKV strain H/PF/2013 (Asian lineage, French Polynesia, 2013, 

GenBank: KJ776791) prM-E glycoproteins. mRNA was transcribed to contain 101 

nucleotide-long poly(A) tails. 1-methylpseudouridine-5’-triphosphate (TriLink) instead 

of UTP was used to generate modified nucleoside-containing mRNA. mRNA was 

capped using the m7G capping kit with 2’-O-methyltransferase to obtain cap1 and 
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was purified by a fast protein liquid chromatography (FPLC) method, as described 

[322]. mRNA was analyzed by agarose gel electrophoresis and stored frozen at -

20°C.  

 

Cell culture 

Human embryonic kidney (HEK) 293T cells (ATCC) were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 2 mM L–glutamine 

(Life Technologies) and 10% fetal calf serum (FCS) (HyClone) (complete medium). 

The 293T cell line was tested for mycoplasma contamination after receipt from 

ATCC and before expansion and cryopreservation. Human dendritic cells (huDCs) 

were generated from monocytes, as described [318], and grown in RPMI 1640 

medium containing 2 mM L–glutamine (Life Technologies) and 10% fetal calf serum 

(FCS) (HyClone) (complete medium) supplemented with 50 µg/ml recombinant 

human GM-CSF and 100 µg/ml recombinant human IL-4 (R&D systems). Cells were 

maintained by adding fresh medium containing IL-4 and GM-CSF every 3 days and 

used on day 7. Murine dendritic cells (muDCs) were generated from bone marrow 

cells obtained from the femurs of animals and grown in complete medium 

supplemented with 50 µg/ml murine GM-CSF (R&D systems). Cells were maintained 

by adding fresh medium containing murine GM-CSF every 3 days and used on day 

7.  

 

mRNA transfection 

Transfection of human and murine DCs and HEK 293T cells was performed 

with TransIT-mRNA (Mirus Bio) according to the manufacturer instructions: mRNA 

(0.3 µg) was combined with TransIT-mRNA Reagent (0.34 µl) and Boost Reagent 
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(0.22 µl) in 17 µl of serum free medium, and the complex was added to 2 × 105 cells 

in 183 µl complete medium. Supernatant was collected and cells were lysed for 1 hr 

on ice in RIPA buffer (Sigma) at 18 hr post-transfection.  

 

Western blot analysis of E protein expression 

Whole cell lysates and supernatants from ZIKV prM-E transfected cells were 

assayed for ZIKV E protein by non-denaturing SDS-PAGE Western blot. Samples 

were combined with 4x Laemmli buffer (Bio-Rad) and separated on a 4-15% precast 

polyacrylamide Criterion TGX gel (Bio-Rad) for 45 min at 200 V. Transfer to PVDF 

membrane was performed using a semi-dry apparatus (Ellard Instrumentation, Ltd.) 

at 10 V for 1 hr. The membrane was blocked with 5% non-fat dry milk in TBS buffer 

containing 0.5% Tween-20. E protein was detected using 1:10,000 4G2 ascites for 1 

hr, followed by secondary goat anti-mouse IgG HRP 1:10,000 for 1 hr. Antibody 

incubations were performed at room temperature in blocking buffer. Blots were 

developed using Luminata Forte substrate (Millipore) and a Kodak X-OMAT 1000A 

processor.  

 

Characterization of E protein in supernatant 

Supernatant from HEK 293T cells transfected with ZIKV prM-E mRNA was 

tested for whether E protein could be pelleted and disrupted with detergent, 

consistent with subviral particles. Supernatant was incubated in PBS alone or PBS 

with 0.5% Triton X-100 for 1 hr on ice. Samples were then spun at 42,000 rpm for 

2.5 hr in a Beckman TLA-55 rotor. The supernatant was then removed from the 

pellet, which was resuspended in 50 µl of PBS. Equal volumes of the input, pellet, 
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and post-centrifugation supernatant fractions were then analyzed by Western blot, 

as described above.  

 

Lipid nanoparticle (LNP) formulation of the mRNA  

FPLC-purified mRNAs and polycytidylic acid (poly(C) RNA) (Sigma) were 

encapsulated in LNPs using a self-assembly process in which an aqueous solution 

of mRNA at pH 4.0 is rapidly mixed with a solution of lipids dissolved in ethanol 

[508]. LNPs used in this study were similar in composition to those described 

previously [508,509], which an contain ionizable cationic lipid (proprietary to 

Acuitas), phosphatidylcholine, cholesterol, and PEG-lipid (50:10:38.5:1.5 mol/mol) 

and were encapsulated at an RNA to total lipid ratio of ~0.05 (wt/wt). They had a 

diameter of ~80 nm as measured by dynamic light scattering using a Zetasizer Nano 

ZS instrument (Malvern Instruments Ltd, Malvern, UK). RNA-LNP formulations were 

stored at -80°C at a concentration of RNA of ~1 µg/µl.    

 

Administration of LNPs to mice and rhesus monkeys 

Mice: Female BALB/c and C57BL/6 mice aged 8 weeks were purchased from 

Charles River Laboratories. mRNA-LNPs were diluted in PBS and injected into 

animals intradermally with a 3/10cc 29½G insulin syringe (BD Biosciences). Four 

sites of injection (30 µl each) over the lower back were used.  

Monkeys: Ketamine anesthetized animals were shaved on their back and 

injected with mRNA-LNPs diluted in PBS. Ten sites of injection (60 µl each) were 

used. Animals of similar age and weight were randomly designated to dose groups. 

 

Blood collection from mice and rhesus macaques 
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Mice: Blood was collected from the orbital sinus under isoflurane anesthesia. 

Blood was centrifuged for 10 min at 13,000 rpm and the serum was stored at -20°C 

and used for ELISA and virus neutralization assays. EDTA-plasma was collected to 

isolate RNA for qRT-PCR analysis.  

Monkeys: Blood was collected by femoral venipuncture under ketamine 

anesthesia, and serum and EDTA-plasma were collected and stored at -80°C for 

ELISA, neutralization analysis, and to isolate RNA for qRT-PCR. 

 

Stimulation and staining of splenocytes 

Single cell suspensions from spleens were made in complete medium. For T 

cell analysis, splenocytes were washed once in PBS and resuspended in complete 

medium at 2 × 107 cells/ml. 2 × 106 cells (100 µl) per sample were stimulated for 6 hr 

at 37°C using 2 µg/ml of purified recombinant ZIKV E protein or two pools of 

influenza A/Puerto Rico/8/34 HA peptides (BEI NR-18973). Golgi Plug (brefeldin A, 

BD Biosciences) and Golgi Stop (monensin, BD Biosciences) were diluted 1:100 and 

1:143 in complete medium, respectively, and 20 µl from both diluted reagents were 

added to each sample to inhibit the secretion of intracellular cytokines after 1 h. An 

unstimulated sample for each animal was included. PMA (10 ng/ml)-ionomycin (250 

ng/ml) (Sigma) stimulated samples were used as positive controls.  

After stimulation, cells were washed in PBS and stained using the 

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Life Technologies) and then surface 

stained for CD4 and CD27, or, in the Tfh analysis, CD4, CXCR5, and PD-1. 

Antibodies were incubated with cells for 30 min at RT. Following surface staining, 

cells were washed in FACS buffer and fixed using the Cytofix/Cytoperm kit (BD 

Biosciences) according to the manufacturer`s instructions. Following fixation, the 
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cells were washed in the appropriate perm buffer and incubated with antibodies 

against CD3, TNF-α, IFN-γ, IL-2, and Bcl6 (Tfh stain only) for 1 hr at RT. Following 

staining, the cells were washed with the appropriate perm buffer, fixed (PBS 

containing 1% paraformaldehyde) and stored at 4°C until analysis. 

For B cell subsets, enumeration of splenocytes prior to RBC-lysis was 

performed using a Vi-Cell (BD).  After RBC-lysis (Lonza) for 30 sec, cells were 

stained with Zombie L/D Aqua (BioLegend) according to manufacturer’s instructions, 

and stained for IgD, CD4, CD8, Gr-1, F4/80, B220, CD138, CD19, IgM, CD38 and 

PNA for 30 min in PBS with 0.5% BSA. Cells were filtered and subjected to flow 

analysis immediately. GC B cells were determined by gating for IgD-, DUMP- (CD4-, 

CD8-, Gr-1-, F4/80-), B220+, CD138-, CD19+, IgM-, CD38-, PNA+ cells. Memory B 

cells were determined by gating for IgD-, DUMP-, B220+, CD138-, CD19+, IgM-, 

CD38+, PNA- cells. Plasma cells were determined by gating for IgD-, DUMP-, CD138+ 

cells. Specific population counts were determined by multiplying percentage of live 

cells according to FACS with total live cell counts. 

 

Flow cytometry 

Splenocytes were analyzed on a modified LSR II flow cytometer (BD 

Biosciences). One hundred thousand events were collected per specimen. After the 

gates for each function were created, the Boolean gate platform was used to create 

the full array of possible combinations, equating to seven response patterns when 

testing three functions. Data were expressed by subtracting the percentages from 

the unstimulated stained cells from the E protein stimulated stained cells.  

 

Enzyme-linked immunosorbent assays (ELISA) for ZIKV E-specific IgG 



 155 

Immulon 4HXB ELISA plates were coated with 6 µg/ml purified recombinant 

ZIKV E protein in 0.1 M sodium bicarbonate buffer overnight at 4°C. The plate was 

blocked with 2% BSA in PBS for 1 hr, and washed three times with wash buffer 

(PBS with 0.05% Tween-20). Mouse or rhesus macaque sera were diluted in 

blocking buffer and incubated on the plate for 1 hr at room temperature, followed by 

four washes. Secondary antibody HRP conjugate was diluted 1:10,000 in blocking 

buffer and incubated on the plate for 1 hr, followed by four washes. TMB substrate 

(KPL) was applied to the plate and the reaction was stopped with 2 N sulfuric acid. 

The absorbance was measured at 450 nm using an MRX Revelation microplate 

reader. ZIKV E-specific IgG was expressed in two ways: as an endpoint dilution titer, 

defined as the highest reciprocal dilution of serum to give an OD greater than the 

sum of the background OD plus 0.01 units; and as an estimate of the absolute IgG 

concentration, which was based on the murine mAb NR-4747 as a standard 

(applicable only to mouse samples). All samples were run at least in technical 

duplicates. 

 

ZIKV MR-766 plaque reduction neutralization tests (PRNT) 

ZIKV strain MR-766 (African lineage, Uganda, 1947, GenBank: AY632535) 

(UTMB Arbovirus Reference Collection) was produced in Vero cells (ATCC CCL-81) 

and 50 plaque forming units were incubated with increasing dilutions of heat-

inactivated sera in serum-free DMEM (Corning) medium for 1 hr at 37°C. The 

virus/serum mixture (200 µl) was added to a confluent monolayer of Vero cells in 6-

well format and incubated for 1.5 hr at 37°C with intermittent rocking. Then, 3 ml of 

overlay, containing a final concentration of 0.5% methylcellulose (4,000 centipoise) 

(Sigma), 1X DMEM (Gibco), 16 mM HEPES, 0.56% sodium bicarbonate, 1.6X 
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GlutaMAX (Gibco), 1X penicillin/streptomycin (Corning), and 4 µg/ml amphotericin B 

(Gibco), was added to each well, and plates were incubated for 5 days at 37°C in 5% 

CO2. The overlay was aspirated and cells were fixed and stained with 0.5% crystal 

violet (Sigma) in 25% methanol, 75% deionized water. Wells were rinsed with 

deionized water to visualize plaques. Neutralization titers (EC50) were determined by 

plotting a line through the linear portion of the curve that crossed 50% inhibition and 

calculating the reciprocal dilution of sera required for 50% neutralization of infection. 

EC50 titers below the limit of detection are reported as half of the limit of detection. 

 

ZIKV MEX I-44 focus reduction neutralization tests (FRNT) 

ZIKV MEX I-44 (Asian lineage, Mexico, 2016, GenBank: KX856011) stocks 

were generated via propagation in Vero 76 cells (ATCC CRL-1587) and harvested 

as clarified cell culture lysate/supernatant. Stock titers were quantified via standard 

focus forming assay. FRNT was performed by combining a standard dose of ZIKV 

with two-fold serial dilutions of heat-inactivated serum for one hour at 37˚C. Virus-

serum mixtures (100 µl) were then inoculated onto Vero 76 monolayers, incubated at 

37˚C for 1 hr and overlayed with an Avicel (FMC Biopolymer)-containing growth 

medium. After 3 days of incubation, plates were formalin-fixed, permeabilized, 

blocked, and stained via sequential incubation with biotin-conjugated 4G2 mAb 

(ATCC HB-112), streptavidin-HRP (BD Biosciences) and TrueBlue Peroxidase 

Substrate (KPL). Virus input was verified in parallel (acceptable range: 20-60 foci). 

FRNT50 (EC50 titers) are reported as the highest reciprocal dilution giving a focus 

count ≤ the 50% neutralization cutoff, and the geometric mean was computed for 

technical duplicates. 
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Reporter virus particle (RVP) production  

Pseudo-infectious RVPs were produced by complementation of a GFP-

expressing WNV sub-genomic replicon [291,510] with a plasmid encoding the viral 

structural proteins (capsid-prM-E). Briefly, ZIKV MR-766 and ZIKV H/PF/2013 RVPs 

were produced via co-transfection of HEK-293T cells with the structural gene and 

replicon plasmids (3:1 ratio by mass) using Lipofectamine 3000 per the 

manufacturer’s protocol (Invitrogen). Transfected cells were incubated at 30°C and 

RVP-containing supernatants harvested on days 3-6. Stocks were passed through a 

0.2 µm filter and aliquots stored at -80°C until use. Stock titers were determined by 

infecting Raji-DCSIGNR cells with serial dilutions of filtered RVP supernatants. GFP-

positive cells were assessed by flow cytometry at 48 hr post-infection and RVP titers 

calculated. 

 

RVP neutralization assay  

Previously titered RVPs were diluted to ensure antibody excess at informative 

points on the dose-response curves and incubated with serial dilutions of mouse or 

macaque sera for 1 hr at 37°C to allow for steady-state binding. Raji-DCSIGNR cells 

were then infected with antibody-RVP complexes in duplicate technical replicates. 

Infections were carried out at 37°C and GFP-positive infected cells detected by flow 

cytometry 24-48 hr later. Neutralization results were analyzed by non-linear 

regression to estimate the reciprocal dilution of sera required for half-maximal 

neutralization of infection (EC50 titer) (Prism 6, GraphPad). The initial dilution of sera 

(based on the final volume of RVPs, cells, and sera) was set as the limit of 

confidence of the assay. Titers for which non-linear regression was predicted to be 
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below this threshold were reported as a titer half the limit of confidence. Individual 

EC50 titers are reported as the geometric mean of technical replicates. 

 

Preparation of challenge ZIKV virus 

Mice: Challenge ZIKV strain PRVABC59 (Asian lineage, Puerto Rico, 2015, 

GenBank: KU501215) (BEI Resources NR-50240) was grown in Vero CCL81 cells. 

A T175 flask of cells at 75-90% confluency was inoculated with an MOI of 0.01 ZIKV 

in 10 ml of serum-free DMEM medium. The flask was incubated at 37°C, 5% CO2 for 

1.5 hr with intermittent gentle rocking, then warmed media was added to a final 

concentration of 1.5% FBS, 1X GlutaMAX (Gibco) and 1X penicillin/streptomycin 

(Corning) in a final volume of 25 ml. The flask was incubated for 4 days or until 

cytopathic effects were visible. Then supernatant was collected and ultra-centrifuged 

at 20,000 rpm for 1 hr at 4°C in a Sorvall SureSpin 630 rotor. The supernatant was 

removed and the pellet was resuspended in 1 ml of serum-free DMEM, aliquoted, 

and stored at -80°C. Before challenge, virus was thawed and diluted in PBS to 2,000 

PFU/ml. 

Monkeys: Challenge ZIKV strain PRVABC59 was grown in Vero 76 CRL-

1587 cells. T150 flasks of cells at 80-85% confluency were used for propagation. 

Infection was performed with 100 µl stock virus diluted in 4 ml of fresh L-15 media 

(Gibco) supplemented with 10% fetal bovine serum (Gibco), 10% tryptose phosphate 

broth (Sigma Aldrich), 1X penicillin/streptomycin (Gibco) and L-glutamine (Gibco) 

and adsorbed for 1 hr at room temperature with gentle agitation every 15 min. Each 

flask received 7 ml of fresh L-15 media after adsorption and was incubated for 4 

days at 37°C. Cellular debris was removed by centrifugation at 1,200 rpm for 5 min 
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at 4°C in an Eppendorf A-4-62 rotor.  Virus stocks were aliquoted and stored at -

80°C. 

 

Zika virus challenge in mice and rhesus macaques 

Mice: Two or 20 weeks after vaccination, mice were bled and then challenged 

intravenously with 200 PFU of ZIKV-PR (PRVABC59) in 100 µl of PBS. Blood was 

collected 3 and 7 days post-challenge to determine viral loads (ZIKV RNA copies/ml) 

in plasma.  

 Monkeys: Macaques were anesthetized with ketamine and injected 

subcutaneously in the hind thigh with 104 TCID50 of ZIKV-PR in a volume of 1 ml in 

PBS. Blood was collected 1, 3, 5, and 7 days post-challenge to determine viral loads 

(ZIKV RNA copies/ml) in plasma. 

 

Viral load quantification (qRT-PCR) 

Using blinded samples, RNA was isolated from 200 µl (macaque) or 50 µl 

(mouse) plasma using the QIAamp MinElute Virus spin kit (Qiagen). Extracted RNA 

was used for amplification using the SensiFAST Probe Lo-ROX One-Step Kit (Bioline 

BIO-78005) on a 7500 Real-Time PCR system (Applied Biosystems). Primers and 

probe were designed to amplify a conserved region of the capsid gene from ZIKV 

BeH815744, as follows:  

Fwd: 5’GGAAAAAAGAGGCTATGGAAATAATAAAG;  

Rev: 5’CTCCTTCCTAGCATTGATTATTCTCA;  

probe: 5’AGTTCAAGAAAGATCTGGCTG. 

Primers and probe were used at a final concentration of 2 µM, and the following 

program was run: 48°C for 30 min, 95°C for 10 min, followed by 40 cycles of 95°C for 
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15 sec and 1 min at 60°C. Assay sensitivity was 50 copies/ml for macaque and 200 

copies/ml for mouse samples.  

 

Statistical analysis 

GraphPad Prism 5.0f was used to perform Mann-Whitney and Kruskal-Wallis 

(with Dunn’s correction) tests to compare immune responses in vaccinated and 

control mice and in different dose groups of macaques, respectively. SPICE 5.35 

and Microsoft Excel software was used to perform Student’s t tests to compare T cell 

responses in vaccinated and control mice. 
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4.6. SUPPLEMENTARY DATA 

 

 

 

Supp. Fig. S4.1. Design and characterization of ZIKV prM-E mRNA. (a) The ZIKV 
mRNA encodes the signal peptide (SP) from MHC class II and prM and E 
glycoproteins from ZIKV H/PF/2013. (b) mRNA was transfected into 293T cells 
(n=3), human DC (n=3), or murine DC (n=2). E protein expression in cell lysate and 
supernatant was probed by Western blot, using firefly luciferase-encoding mRNA-
transfected cells as a negative control. (c) ZIKV mRNA supernatant from transfected 
293T cells was characterized by ultracentrifugation in the presence and absence of 
0.5% Triton X-100, followed by Western blot of input (IN), pellet (P), and final 
supernatant (S) fractions (n=3).  
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Supp. Fig. S4.2. Nucleoside-modified ZIKV mRNA-LNP immunization elicits 
polyfunctional ZIKV E-specific CD4+ T cell responses. C57BL/6 mice were 
immunized with 30 µg of nucleoside-modified ZIKV prM-E mRNA-LNPs (n=8) or 
control poly(C) RNA-LNPs (n=4).  At week 2, antigen-specific CD4+ T cells were 
detected by intracellular cytokine staining. Bar graph shows mean frequencies of 
combinations of cytokines produced by CD4+ T cells. Error bars indicate the SEM, 
and asterisk indicates a significant difference (p<0.05) by Student’s t-test.   
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Supp. Fig. S4.3. ZIKV E-specific IgG concentration in mice. Sera from (a) 
C57BL/6 mice (n=4 control; n=8 ZIKV mRNA-LNP) or (b) BALB/c mice (n=5 control; 
n=10 ZIKV mRNA-LNP) were assayed by ELISA, and estimates of ZIKV E-specific 
IgG concentrations were calculated using murine mAb NR-4747 as a standard. 
Points represent individual mice; horizontal lines indicate the mean. Responses in 
vaccine and control groups were compared at each time point by Mann-Whitney test: 
p<0.01 for all comparisons. 
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Supp. Fig. S4.4. Neutralizing antibody responses against ZIKV MR-766 in 
macaques immunized with ZIKV prM-E mRNA-LNPs. Sera from immunized 
macaques were evaluated for neutralization of ZIKV MR-766 using (a) the PRNT 
assay or (b) the RVP assay at the indicated time points. Horizontal bars indicate the 
mean, and values below the dotted line are below the limit of detection. Immune 
responses in dose groups were compared by Kruskal-Wallis test: p>0.05 for all 
comparisons. 
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Supp. Fig. S4.5. Neutralization curve for a human anti-ZIKV neutralizing mAb. 
ZIKV MR-766 was neutralized by Ab3594, a human ZIKV-neutralizing monoclonal 
antibody, as a positive control in the PRNT assay. Shown is a representative curve 
(n=4). Mean EC50 = 0.026 µg/ml, SD=5.4.  
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Supp. Table S4.1. Characteristics of rhesus macaques in vaccination and 
challenge experiments. Asterisk indicates the animals that were challenged with 
ZIKV. 
  

Immunization Group ID Weight (kg) Sex DOB

6858 3.3 M 5/19/14

150250 3.05 F 3/22/15

150793 2.55 M 4/1/15

150796 * 2.75 F 4/13/15

150251 2.95 M 3/22/15

150795 2.55 M 4/12/15

150798 * 2.35 F 4/26/15

6857 * 3.15 F 6/6/14

150252 * 2.15 F 3/25/15

150794 * 2.75 M 4/5/15

6143 * 7.85 F 7/3/09

6154 * 8.95 F 4/6/10

6076 * 7.6 M 10/20/11

6150 * 11.55 M 1/26/10

6211 * 8.65 M 5/2/10

6157 * 10.15 F 4/3/10

Challenge control group (unimmunized) 4

ZIKV prM-E mRNA-LNP, 600 μg 1

ZIKV prM-E mRNA-LNP, 200 μg 2

ZIKV prM-E mRNA-LNP, 50 μg 3
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1. Overview 

 Modern vaccinology faces two principal challenges: (i) how to design effective 

vaccines against pathogens that have evolved to successfully evade the adaptive 

immune system, and (ii) how to produce safe and effective vaccines on a timescale 

appropriate to respond to emerging epidemics. In this dissertation, and with the help 

of many colleagues, I have addressed the first question in the context of HIV-1, a 

virus that is adept at avoiding humoral immune responses; and I have addressed the 

second question by using the newly developed nucleoside-modified mRNA-LNP 

platform to design a potent, single-dose vaccine against ZIKV. 

Chapter 2 of this dissertation detailed structural perturbations resulting from 

CD4 independence and how these changes related to immunogenicity in mice and 

rhesus macaques. To our knowledge, this is the first description of enhanced 

antigenicity and immunogenicity of the V2 peptide epitope in CD4-independent Envs, 

or possibly any Env mutant specifically in the context of a functional, cell-associated 

trimer. The immunogens described here, particularly the D4T Env, have the potential 

to be useful in vaccines designed to elicit non-neutralizing antibodies against HIV-1 

that mediate ADCC against infected cells. 

Chapter 3 addressed the impact of cytoplasmic tail (CT) mutations that 

increased the expression of HIV-1 Env immunogens on the cell surface in a 

recombinant vaccinia vector immunization with gp120 boost. Although many groups 

have truncated most or all of the CT to increase surface expression, few have 
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directly compared these immunogens to the wild-type version or have sought to 

optimize surface expression through targeted manipulations of trafficking signals 

within the functionally complex CT. Our data suggest that increasing surface 

expression of Env leads to an incremental improvement in the antibody response, 

and, importantly, that the immune response generated by the priming immunogen 

has an outsize impact on the antibody response after subsequent protein boosts. 

Chapter 4 presents the design and preclinical efficacy of a ZIKV vaccine 

using prM-E-encoding mRNA containing the modified nucleoside 1-methylpseudo-

uridine (m1Ψ), purified by FPLC, and delivered in lipid nanoparticles (LNPs). We 

show that mice immunized with the ZIKV mRNA-LNP vaccine generated extremely 

high NAb titers after a single immunization—an exceptional level of immunogenicity 

for a non-replicating vector, which is likely driven by a strong Tfh response. Immune-

competent mice were completely protected from short- and long-term challenges 

with a ZIKV strain from Puerto Rico. Rhesus macaques immunized with various 

doses of the vaccine also showed high and sustained levels of NAbs after a single 

vaccination and experienced a 99-100% reduction in viremia when challenged, 

compared to control animals. Importantly, as little as 50 µg of mRNA (0.02 mg/kg 

body weight) was sufficient for protection in this primate species, suggesting that 

mRNA-based vaccines may be well suited for urgent mass vaccination campaigns. 

The following is a discussion of some of the broader implications and 

important future directions of the work presented above. 

 

5.2. Towards Structure-Guided Vaccine Design with CD4-independent Envs 

Many of the immediate future directions of the CD4-independent Env study 

are already ongoing, as outlined in Section 2.4. Most important will be the 
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characterization of V2 peptide exposure on trimeric forms of CD4-independent Envs 

and extension of this analysis to include additional human mAbs against the V2 

peptide. Additionally, it will be interesting to map the exact specificities that are 

responsible for the enhanced ADCC activity in D4T-primed macaques at time points 

prior to the boosts. This could be achieved by blocking ADCC activity in macaque 

serum using available mAbs, or, more comprehensively, by isolating mAbs from 

immunized macaques. This would permit mutational studies that would reveal the 

specific residues important for recognition by ADCC-mediating antibodies, and may 

suggest ways to further boost this response. 

While the data presented here raise the hypothesis that CD4-independent 

Envs elicit antibody specificities and functions that could provide protection in a 

vaccine, effective utilization of this approach will likely require further investigation 

into the relationship between biological phenotype, structure, and immunogenicity. 

Several important questions regarding this relationship remain unanswered, namely: 

(i) What is the nature of the V2 peptide exposure on CD4-independent Envs? (ii) 

Given the disparate V2-specific responses to A2 and D4T in macaques, do these 

Envs display the V2 loop with distinct secondary structures, spatial orientations, 

and/or levels of steric occlusion? (iii) Are the levels of trimer openness or the 

exposure of key epitopes in V2, V3, and C1 different on these versus other CD4-

independent Envs [373–376] that are more globally sensitive to antibody-mediated 

neutralization? These questions and others will be best addressed in the future using 

techniques that allow atomic-level resolution of the epitopes of interest. X-ray 

crystallography and cryo-EM structures of CD4-independent Env trimers and/or 

gp120 monomers will provide the clearest information about the exposure, 

orientation, and secondary structure of critical epitopes. Crystal structures of 
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antibody-Env complexes have previously shown that the angle of antibody approach 

was associated with its ADCC potency [511]. Likewise, these structural methods 

may provide useful information about the specific modes of recognition of CD4-

independent Envs by antiviral antibodies. Such high-resolution structural data would 

allow for the same kind of structure-guided rational vaccine design used to optimize 

the prefusion RSV [41] and HIV-1 Env SOSIP [512] immunogens. For example, if 

atomic-resolution structures of CD4-independent Envs reveal an exposed V2 

peptide, it might be possible to predict mutations, such as hydrophobic cavity-filling 

amino acids, that could further stabilize its exposure or alter its angle of display. This 

approach could elevate HIV-1 vaccine efforts focusing on non-neutralizing antibodies 

from a predominantly empirical pursuit to a more rational and efficient process. 

Indeed, this method is relevant not only to CD4-independent Envs but to any Env 

immunogens designed to elicit a particular antibody specificity. 

 To complement these high-resolution studies, traditional structure/function 

analysis should be performed on A2 and D4T to determine which residues are 

required for CD4-independent replication and which are required for V2 antigenicity 

and immunogenicity. It has previously been shown that CD4 independence is 

dissociable from global neutralization sensitivity [373], and it is likely that it is also 

dissociable from V2 peptide antigenicity. CD4-independent variants have been 

derived from a number of other HIV-1 Envs in our lab (e.g. clade B JRFL and YU2, 

clade A QA255 and BG505, and clade C 1086.C and CH505), and in some cases 

only a few mutations were required for CD4-independent growth. Due to their 

simplicity relative to the heavily mutated A2 and D4T, these other Envs may serve as 

a useful system in which to probe the relationship between specific residue changes, 

CD4 independence, and antigenicity or immunogenicity. Compared to vaccinia, the 
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mRNA vaccine platform would be an expedient method to test the immunogenicity of 

multiple Env mutants in parallel, and would likely also enhance the affinity and 

quality of the V2-specific antibody response.  

 An alternative application for CD4-independent HIV-1 Envs is to use them to 

elucidate mechanisms of pathogenesis and correlates of immune protection or elite 

control. Data from our laboratory indicate that a CD4-independent, non-CD4-tropic 

variant of SIVmac239, called iMac239ΔD385, replicates well in rhesus macaques 

but is effectively controlled by the adaptive immune response [513], likely due in 

large part to its high neutralization sensitivity [373]. This virus shows a distinct 

pattern of infection in lymph nodes and favors cells in the medulla rather than the 

cortex or B cell follicles, suggesting that Tfh cells are not specifically targeted. 

Remarkably, the animals infected with this virus developed robust germinal center 

reactions compared to animals infected with pathogenic SIVmac239 (Constantinos 

Petrovas, personal communication). When iMac239ΔD385-infected animals were 

challenged with heterologous, pathogenic SIVsmE660, they showed delayed 

acquisition of infection and over the course of several months developed antibodies 

that neutralized a Tier-2 stain of SIV up to 100% inhibition of infection (Vmax)—an 

effect that had not been previously observed in the SIV model [513]. These data 

generated the hypothesis that the CD4-independent infection primed animals to 

mount a qualitatively different humoral immune response, and provided a proof of 

concept that Tier-2 NAb activity can be effectively generated in settings where the 

germinal center reaction is promoted. Our lab has an interest in continuing this work 

by deriving CD4-independent and non-CD4-tropic SHIVs. In fact, the CD4-

independent Envs A2 and D4T were derived in the context of SHIV 89.6 and are 

already well positioned for analysis in vivo. Several of the other CD4-independent 
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Envs derived in our lab, including BG505 and CH505, were also derived in a SHIV 

background. These two SHIVs were designed to take advantage of a recently 

reported strategy that allows Envs from primary and transmitted-founder strains of 

HIV-1 to be incorporated into SHIVs that replicate well in vivo [405]. This is 

accomplished by substitution of the Ser375 residue in Env, which abuts the CD4bs 

and increases HIV-1 Env affinity for rhesus macaque CD4; and by replacement of 33 

amino acids from the distal CT of HIV-1 Env with 58 amino acids from the 

corresponding region of SIV. Introducing CD4-independent and non-CD4-tropic Envs 

into nonhuman primates in the form of SHIVs may provide useful information 

regarding the types of humoral immune responses that can prevent infection when 

conserved epitopes are exposed on Env and germinal centers are unimpeded by 

viral infection of Tfh cells.  

 

5.3. Elucidating the Functions of the HIV-1 Env Cytoplasmic Tail  

 The results presented in Chapter 3 indicate that CT modifications (i.e. the 

TM1 mutations) that alter Env surface expression can have a marked effect on 

immunogenicity in a vaccinia prime-gp120 boost vaccine protocol. While the NAb 

activity elicited by TM1 Envs was restricted to Tier-1 strains in this experiment, we 

believe that the data may demonstrate a generalizable principle: that Env surface 

expression in the prime is critical for the overall immunogenicity of prime-boost 

vaccination. As a corollary, we hypothesize that alternative, more potent vaccine 

strategies might be improved in much the same way. For example, we found that 

two immunizations of mice with nucleoside-modified mRNA encoding an HIV-1 Env 

resulted in a low level of NAbs against a Tier-2 strain, X2278 (N. Pardi, unpublished 

data) [514]. It is possible that such potent immune responses could be enhanced if 
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the surface expression level of Env were further increased. Additionally, since Env-

encoding mRNA has demonstrated the potential to generate potent NAb responses, 

we propose that a stabilized Env trimer, such as the SOSIP, would be an appropriate 

boosting reagent for this vaccine platform and may specifically drive the affinity 

maturation of antibody precursors that target the closed state of the Env trimer.   

 Another important implication of the work in Chapter 3 is that the trafficking 

signals in HIV-1 Env remain poorly understood. Our strategy was designed to take 

advantage of previous observations about CT mutations that dramatically increased 

Env surface expression in the SIV clone CP-MAC. However, it became clear that 

HIV-1 Env did not respond similarly to SIV when the CT was truncated and the 

membrane-proximal endocytosis motif was ablated, with a much more modest effect 

on surface expression, at least in human cells. The basis of this difference and how 

Env maintains low surface expression even in the absence of known endocytosis 

motifs requires further investigation. Preliminary data from our laboratory illustrate 

that this problem is even more pronounced in dendritic cells (DCs) than in cell lines. 

In DCs, Env surface expression could not be increased by the TM1 modification or 

even complete truncation of the CT (Δ147) when expressed by plasmid 

nucleofection (M. Hogan and A. Conde-Motter, unpublished data). For all Env 

variants tested, the level of Env detectable on the surface of unpermeabilized DCs 

represented a small fraction of the Env detectable in permeabilized cells, indicating 

that the majority of Env was intracellular at steady-state. In contrast, other proteins 

such as CD2 and CD20 could be highly expressed on the surface of DCs by the 

same nucleofection method, suggesting that the restriction of surface expression 

was specific to Env. When Envs were expressed in DCs by vaccinia vector, the 

effect of the TM1 modification was variable, but at most this resulted in only a 
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modest increase in surface expression (M. Hogan, A. Conde-Motter, unpublished 

data). Overall, these data suggest that there could be mechanisms independent of 

the CT that restrict HIV-1 Env surface expression, especially in DCs. Future work in 

this area should begin by mapping this effect to specific regions of Env, which might 

be accomplished in part by constructing HIV-SIV chimeric Env proteins, beginning 

with the membrane-spanning domain. The cellular mechanisms of this restriction 

could be identified by inhibiting pathways of endocytosis and knocking out proteins 

known to interact with Env on the cell surface, such as entry and attachment factors, 

which might contribute to internalization. A more detailed understanding of Env 

internalization could potentially be exploited in future viral or gene-based vaccines to 

greatly increase surface expression on DCs and more potently activate Env-specific 

B cells. 

 A related research interest in our laboratory that may similarly inform 

immunogen design is the role of the CT in coordinating Env incorporation into viral 

particles. This aspect of HIV-1 biology also remains poorly understood after decades 

of research, and deciphering it may allow for the design of particulate immunogens 

containing dense arrays of Env protein—an optimal mode of displaying antigen in 

order to maximally activate B cells [515]. There are at least four proposed 

mechanisms of Env incorporation, which are not mutually exclusive and may vary 

depending on the cell type, CT length, and other factors [516]. Two related theories 

state that Env is actively recruited into sites of viral budding by either a (i) direct or 

(ii) indirect (protein intermediate) interaction between the Env CT and Gag, or 

specifically matrix [517–520]. The other models hold that (iii) Env is passively or 

randomly incorporated into particles [62], or that (iv) Env and Gag are co-targeted to 

sites of budding through membrane microdomain interactions or other mechanisms 
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of intracellular trafficking [445,521–523]. Some of the available data on direct or 

indirect interactions have been either refuted [518,519] or never reproduced [520]; 

nevertheless, this model has been repeatedly suggested by mutation 

complementation experiments. For example, Freed and Martin showed that certain 

point mutations in matrix (L12E and L30E) blocked incorporation of wild-type but not 

cytoplasmically truncated Env [442,444]. And investigators later showed that a 5-

amino acid deletion in the amphipathic helix LLP-3 of the CT resulted in defects in 

Env incorporation and viral growth but was rescued by V34I or Q62R point mutations 

in matrix [441,443]. In addition, recent reports suggest that matrix oligomerization 

may be important for Env incorporation into virions, possibly by promoting 

multivalent interactions with the Env CT [524,525]. Overall, the data are suggestive 

that the long CT must be engaged by viral and/or cellular factors to recruit Env into 

assembling particles through an active process, though CT truncation may shift Env 

incorporation to a passive process in certain cell types. 

 In this complicated landscape of Env incorporation, our laboratory has made 

some relevant new observations. During serial passage of HIV-1, we noted the 

acquisition of a premature stop codon at position 810 in the Env CT, which was 

predicted to abrogate Env incorporation into virions, localization to detergent-

resistant membranes, and replication fitness [442,523]. We discovered that this virus 

was able to incorporate Env and remain infectious as a result of a previously 

described point mutation in matrix, V35I, or V34I in the numbering used by Freed. 

Intriguingly, we found that matrix V35I can rescue Env incorporation to wild-type or 

greater levels when combined with otherwise deleterious premature stop codons in 

the distal CT (positions 810 or 831) but not in the middle CT (positions 773 and 793) 

(M. Hogan, unpublished data). Truncations in the membrane-proximal CT did not 
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result in Env incorporation defects in HEK 293T cells and were unaffected by matrix 

V35I. Surface expression was not affected by the truncation at position 810, 

suggesting that this phenotype is result of a specific block in Env incorporation. 

Taken together with the previous observations by Freed and colleagues and the 

view that the CT is largely composed of membrane-interactive amphipathic alpha 

helices, these data seem to support a model of Env and Gag co-targeting to specific 

membrane microdomains, such as detergent-resistant membranes or lipid rafts. If a 

large surface area of interaction between the CT and the lipid membrane is required 

for proper Env trafficking and incorporation, this could explain why multiple different 

deletions within the Env CT could impose similar defects in Env incorporation. 

Although the mechanism by which V35I rescues these CT mutants is unknown, an 

available crystal structure of matrix shows that the hydrophobic side chain of Val35 

projects up into the lipid membrane, again suggesting that membrane interaction 

may be involved. Future directions for this project should determine whether V35I 

influences the targeting of wild-type and truncated Envs to detergent-resistant 

membranes or other membrane microdomains, whether it has an effect on matrix 

oligomerization, and whether it promotes a protein-protein interaction between matrix 

and the CT. This investigation is likely to shed light not only on the mechanism(s) of 

Env incorporation, but also on the complex functions of the CT in general, and will be 

informative for any vaccine design in which the CT might be manipulated to increase 

immunogenicity. 

 

5.4. The Path Forward for Zika Virus mRNA Vaccines  

 The ZIKV vaccine described here conferred a high degree of protection in 

mice and nonhuman primates with a single low-dose immunization of a non-
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infectious vector. These properties fulfill the specifications submitted by WHO for an 

ideal ZIKV vaccine [290], and therefore further tests are warranted to translate this 

vaccine to the clinic. To achieve this goal, several requirements must be fulfilled, 

including the development of Good Manufacturing Practice (GMP) production 

methods, toxicology studies, and resolution of intellectual property concerns.  

Encouragingly for the prospects of an mRNA-based ZIKV vaccine, Moderna 

Therapeutics has initiated a Phase 1/2 clinical trial [526] to test the safety and 

immunogenicity of a similarly designed vaccine [306], reported by Richner, Diamond, 

and colleagues shortly after the publication described in Chapter 4 [307]. In this 

vaccine, the ZIKV prM-E proteins were similarly encoded by 1-methylpseudouridine-

containing mRNA, which was delivered with comparable lipid nanoparticles (LNPs). 

The principal difference between our vaccine designs was that Richner et al. did not 

report any purification step to remove dsRNA contaminants from the preparation. 

One intramuscular injection of this vaccine generated NAb titers that were roughly 5-

fold lower than the vaccine reported here using a dose that was 3-fold lower; 

consequently, it is difficult to ascertain whether the lower immunogenicity was due to 

the low dose, the presence of inhibitory dsRNA contaminants, or both. In any case, 

the authors administered a booster injection of the mRNA vaccine and subsequently 

obtained NAb titers comparable to ours. They performed a stringent challenge 

experiment in which mice lacking the receptors for IFN-α/β and IFN-γ were 

immunized and then injected subcutaneously with live ZIKV. All of the control mice 

died, while all mice immunized twice survived the infection. A similar result was 

obtained in immune-competent C57BL/6 and BALB/c mice that were infused with an 

IFN α/β receptor (IFNAR)-blocking antibody. In these cases, the vaccinated animals 

survived the challenge, and viremia was prevented in animals that were immunized 
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with a version of their vaccine that was optimized for high expression. No 

immunizations were performed in nonhuman primates. 

 While the data described above produced similar findings to our report, 

Richner and colleagues went on to describe a novel modification they made to their 

vaccine to address an important problem inherent to ZIKV and DENV vaccines. 

Epidemiological data show that infection with one of the four DENV serotypes 

generates type-specific (homotypic) protection from reinfection but later increases 

the risk of more severe of disease caused by secondary heterotypic DENV infection 

[527]. A related observation is that infants become predisposed to more severe 

DENV infections as maternal antibodies wane to sub-neutralizing levels [528]. The 

severe manifestations of dengue hemorrhagic fever and dengue shock syndrome 

are characterized by thrombocytopenia, hemorrhage, activated complement, and 

vascular leakage, which can lead to shock and death [529,530]. Enhanced disease 

is typically thought to be caused by cross-reactive, non-neutralizing antibodies that 

can bind to prM or E protein on the surface of DENV virions and facilitate their 

uptake into Fcγ receptor-expressing cells [531]. Low concentrations of such 

antibodies can increase infection efficiency by >100-fold in myeloid cell lines that are 

normally poorly permissive to infection [532]. This phenomenon has been dubbed 

antibody-dependent enhancement, or ADE. In vitro ADE activity of serum antibodies 

has correlated with enhanced viral replication and disease in animal models of 

DENV infection [533,534]. However, due to the lack of a well-validated animal 

model, the causes of enhanced disease in humans are not well established, and 

multiple alternative mechanisms have been proposed, including: (i) the ability of 

antibodies to engage activating versus inhibitory Fcγ-receptors (i.e. IgG1/IgG2 ratio, 

afucosylation of IgG1) [535], (ii) direct toxicity of the secreted viral nonstructural 
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protein 1 (NS1) [529], (iii) cross-reactivity of antibodies between NS1 and platelets, 

causing thrombocytopenia [535], and (iv) T cell-mediated effects [536,537]. 

It has now been shown that antibodies raised against ZIKV can mediate ADE 

of DENV infection, both in vitro [538] and in IFN-α/β/γ receptor-deficient mice 

[306,539]. Conversely, antibodies raised against DENV or even West Nile virus can 

enhance ZIKV infection in vitro [540] and in Stat2-/- mice, which are also deficient in 

type I IFN signaling [541]. This is not surprising given the high amount of sequence 

and structural homology between the E proteins of these viruses [540]. Because 

DENV and ZIKV are spread by the same Aedes aegypti mosquito and co-circulate in 

DENV-endemic areas, ADE is a major concern for any candidate ZIKV vaccine. It 

has even been speculated that ZIKV/DENV cross-reactivity has contributed to the 

severe outcomes of ZIKV infection observed in the Americas, particularly Brazil, 

although direct evidence for this is currently lacking.  

 It is essential that any ZIKV vaccine used in humans do not cause enhanced 

DENV disease, which is potentially fatal. Promisingly, there are strategies being 

developed to mitigate the potential for ADE in ZIKV vaccines. In their recent report 

[306], Richner and colleagues noted that a large portion of ADE activity could be 

attributed to a single epitope in the immunodominant fusion loop of the flaviviral E 

protein. This epitope is highly conserved across flaviviruses [542], likely due to its 

role in mediating fusion, and therefore it is a significant source of cross-reactive 

antibodies. However, because it is only exposed on the postfusion form [543], the 

fusion loop is a poor epitope for neutralization compared to other regions of the E 

protein and instead contributes significantly to ADE [544,545]. Richner and 

coworkers demonstrated that serum from mice immunized with wild-type ZIKV prM-

E-encoding mRNA produced significant ADE of DENV-1 in vitro (>200-fold enhanced 
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infection). When the serum was passively transferred into IFN-α/β/γ receptor-

deficient mice, it significantly increased the lethality of infection by DENV-2. To 

address this, Richner and coworkers created a version of their mRNA vaccine in 

which they introduced four amino acid substitutions into the ZIKV E protein fusion 

loop that had been shown to abrogate the binding of cross-reactive, poorly 

neutralizing antibodies [542,546]. Immunization with this construct decreased the 

potency (EC50) of in vitro ADE by multiple logs and resulted in less morbidity and 

mortality in DENV-2 infection of mice. However, results were mixed, because the 

introduction of fusion loop mutations was also associated with ~1 log lower NAb 

titers to ZIKV and considerably reduced protection from ZIKV viremia during a 

challenge. Nonetheless, this study provides a proof of concept that mutations in 

cross-reactive epitopes can modulate the generation of ADE-mediating antibodies. 

Future work by their group and ours should identify mutations in the E protein that 

can reduce ADE while maintaining potent neutralization of ZIKV. 

Another approach that may address the ADE issue is to vaccinate against all 

four DENV serotypes and ZIKV simultaneously. This is a favored approach in our 

laboratory, as it has the potential to solve two problems at once: mitigating ADE and 

providing a much needed vaccine to protect against DENV. DENV is estimated to 

cause tens to hundreds of millions of human infections per year and up to a half 

million cases of severe disease each year [547]. As a tropical disease, the people 

affected by DENV live disproportionately in resource-limited settings, exacerbating 

the health-related and economic burden. A safe and effective vaccine is therefore an 

urgent need for DENV, but its development has been plagued by issues of low 

efficacy and the fear of ADE [548]. In order to minimize the risk of ADE, a DENV 

vaccine is typically held to the standard of demonstrating a high level of protection 
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against all four serotypes of DENV, but in practice immunogenicity has been highly 

variable between serotypes and in different populations [549]. In 2016, the WHO 

announced its recommendation for the use of a three-dose, live-attenuated 

combination vaccine against all four DENV serotypes (CYD-TDV, or Dengvaxia) 

[550]. In two phase 3 clinical trials, the vaccine had partial efficacy, reducing 

confirmed symptomatic cases of DENV infection by roughly 60% (type-specific 

efficacy ranging from 43-77%) and severe DENV disease by almost 80% [551]. But 

based on estimated risks and benefits, it is currently only recommended for use in 

areas where there is a high burden of disease and in people aged 9 years or older 

[550,552]. Therefore, there is an unmet need for a DENV vaccine that provides 

potent immunity against all four serotypes, ideally with a single immunization, without 

adverse events. Due to its characteristic potency, the nucleoside-modified, purified 

mRNA-LNP platform may be well suited to fulfill such a need. Plans are underway to 

prepare mRNAs encoding the prM-E proteins of the four DENV serotypes and to 

immunize mice with a pentavalent, pan-DENV/ZIKV vaccine. The efficacy readouts 

will include NAbs against the five viruses and the potency of ADE compared to 

monovalent vaccines, measured in vitro and in available animal models [533,534]. 

Although we hypothesize that potent type-specific NAbs will be generated against all 

components of the vaccine, mitigating any ADE activity, it is also possible that a 

pentavalent vaccine would focus the antibody response on non-neutralizing, ADE-

associated epitopes. Therefore, protection will have to be determined empirically. 

 

5.5. The Promise of Nucleoside-Modified mRNA Vaccines  

 Just over a decade ago, there were few and modest prospects for the use of 

mRNA as a vaccine platform. This pessimism was due to the significant challenges 
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of stabilizing and expressing synthetic mRNA in vivo. But as of 2017, the work of 

Karikó and others has demonstrated that in vivo translation of mRNA can be 

dramatically increased through the suppression of innate immune sensing [311,318–

320]. Incorporation of naturally occurring modified nucleosides, such as 

pseudouridine or 1-methylpseudouridine, in combination with dsRNA removal, has 

improved synthetic mRNA expression by several orders of magnitude, particularly in 

DCs, which are critical drivers of T and B cell responses [311]. Encapsulation of 

mRNA in ionizable LNPs has allowed efficient uptake of mRNA in vivo, with a much 

higher magnitude and longer half-life of expression compared to previous delivery 

methods [309]. In light of these advances, our laboratory has developed mRNA-

based vaccines for a number of important viral pathogens. In the case of the ZIKV 

and influenza vaccines, the NAb responses are noteworthy in that they approximate 

or exceed the titers elicited during pathogenic infection. To our knowledge, this is the 

first non-replicating vaccine platform described that is capable of eliciting such robust 

NAb responses after only a single administration.  

Since any protein antigen can be encoded by mRNA, the potential future 

applications for mRNA-based vaccines are almost without limit. Experimental plans 

to determine the extent of heterologous protection generated by the mRNA-based 

influenza vaccine are already ongoing. Projects are also planned to develop mRNA-

based vaccines against a variety of other viral targets, including chikungunya virus, 

filoviruses, coronaviruses, and HCV. Like HIV-1, HCV is antigenically diverse and 

adept at evading humoral immune responses [12,553]. The preliminary data 

obtained with our HIV-1 mRNA vaccine reveal that, even in this uniquely potent 

vaccine platform, HIV-1 Env is still a poorly immunogenic target for NAb responses, 
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so it is possible that other strategies of antigen display will be required for protective 

humoral responses against pathogens like HIV-1 and HCV. 

One strategy that has been proposed to generate potent antibodies against 

HIV-1 is to immunize with a sequence of Envs that represent the evolving virus in 

infected individuals who have naturally generated bNAbs [225]. The principle behind 

this approach is that early Envs in the lineage should be able to activate naïve or 

precursor B cells that can be matured into bNAbs by later Envs in the lineage. In 

collaboration with other investigators, we plan to deliver such sequential Env 

immunogens to rhesus macaques using the mRNA-LNP platform. This immunization 

series has the potential to potently stimulate germinal center reactions over a 

prolonged time period with a gradually evolving antigen, thereby reflecting the 

natural development of bNAbs. Thus, the mRNA platform is a well-suited vehicle to 

test the effectiveness of the sequential immunization approach. 

In another future direction, our laboratory plans to immunize animals with 

mRNAs encoding stabilized SOSIP protein, in either secreted or membrane-

associated form. Encouragingly, preliminary data suggest that the Env-encoding 

mRNA-LNP elicits significantly higher Tfh cell responses than SOSIP protein plus 

adjuvant (N. Pardi, Derek Cain, unpublished data). The main disadvantage of using 

mRNA to deliver SOSIPs is that it is impossible to purify the SOSIP trimers based on 

desired antigenic properties. For example, previous immunizations with SOSIPs 

have selected for closed-state trimers using various chromatographic methods. In 

mRNA delivery, there would likely be a mix of closed-state trimers and non-native 

forms of Env that may serve as more immunogenic decoys for the antibody 

response. To address this concern, we are planning to compare SOSIP 

immunizations using mRNA alone versus mRNA primes with protein boosts, as well 
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as the simultaneous injection of mRNA and protein. Such approaches may 

theoretically combine the benefits of potent Tfh cell and germinal center responses 

induced by the mRNA with the ability of purified SOSIP protein to focus the antibody 

response against poorly immunogenic, glycan-containing bNAb epitopes on the 

closed-state trimer.  

The most fundamental future directions for mRNA vaccines regard basic 

biology (outlined in Fig. 5.1): First, what cells take up and express nucleoside-

modified mRNA in vivo when delivered by LNPs? This question could be addressed 

by intradermally injecting reporter gene-encoding mRNAs into mice, and then 

identifying the cell types using immunoassays and histology. A related question is 

which cell types are most critical for the generation of potent NAbs. This could be 

addressed by vaccinating genetically modified mouse strains that lack specific 

immune cell types in the skin, such as Langerhans cells [554–556] and multiple 

populations of myeloid dermal DCs [557–561]. Another basic question is what 

molecule(s) provide the adjuvant activity driving DC maturation and migration to 

lymph nodes. Nucleoside-modified, purified mRNA contains no known pathogen-

associated molecular patterns (PAMPs) and does not stimulate type I IFNs in DCs in 

vitro, nor does it result in measurable systemic IFN-α when injected into mice 

complexed with LNPs (N. Pardi, H. Ni, unpublished data). It is unclear, then, how 

such potent immune responses can be induced without a known adjuvant. One 

possibility is that the mRNA itself contains an additional, novel PAMP that induces 

DC maturation and migration. A perhaps likelier possibility was suggested by a 

report showing that various forms of virus-like particles and fusogenic liposomes 

were sensed by DCs in a STING-dependent manner and resulted in the upregulation 

of transcripts for IFN-β, CXCL10, and other chemokines and interferon-stimulated 
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genes [562]. These gene products have yet not been specifically tested in the 

context of our mRNA-LNP platform. A plausible scenario is that mRNA-LNP delivery 

results in local production of chemokines that recruit DCs, which take up and 

translate the mRNA. Then, DCs are matured by IFN-β and migrate to the draining 

lymph node to initiate CD4+ and CD8+ T cell responses. These possibilities will be 

relatively straightforward to test: first by assaying for the upregulation of these 

chemokines and cytokines during mRNA-LNP delivery in vitro and in vivo, and then 

by antagonizing or adding in each of them during vaccination. In addition, it may be 

possible to use LNPs as an adjuvant for protein subunit immunization, in the 

absence of or in combination with antigen-encoding mRNA. 

 

 

 
Figure 5.1. Future directions in mRNA vaccine biology. Represented is a 
schematic of intradermal mRNA-LNP vaccination with likely cellular milieu. Indicated 
are important questions on topics that likely impact the efficacy of mRNA vaccines, 
regarding 1) in vivo expression, 2) DC maturation and adjuvant activity, and 3) 
activation of potent Tfh and GC B cell responses. EC, extracellular; MΦ, 
macrophage; PAMP, pathogen-associated molecular pattern. 
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An exciting area of research that is just beginning in our laboratory is defining 

the mechanism of the potent Tfh and germinal center (GC) B cell responses induced 

by the mRNA-LNP platform. We were surprised by the finding in Fig. 4.1 that 

nucleoside modification was strictly necessary for the generation of Tfh and GC B 

cell responses and potent HAI antibody titers. To explain this result, we considered 

the fact unmodified HA-encoding mRNA-LNP, when injected intravenously into mice, 

provokes a massive systemic IFN-α response (>40 ng/mL), while nucleoside-

modified mRNA produces no detectable IFN-α (N. Pardi, unpublished data). As type 

I IFNs have been identified as potent inhibitors of the differentiation of Tfh-like cells 

[265], we hypothesized that nucleoside modification prevented the inhibition of Tfh 

responses by type I IFNs. To test this idea, we conducted immunizations in mice that 

lacked type I IFN signaling due to a genetic deficiency or an infusion of an IFNAR1-

antagonizing antibody. In fact, type I IFN signaling was required for a potent Tfh 

response (N. Pardi, Arpita Myles, M. Hogan, unpublished data). This supports a role 

for local IFN production in providing adjuvant activity to DCs, but it creates an 

apparent paradox for the role of type I IFNs in the Tfh response. Disentangling the 

contributions of IFN-α, IFN-β, and other cytokines and chemokines in the potent Tfh 

induction by nucleoside-modified mRNA is a critical future direction that will pave the 

way for more effective vaccine designs. 

A final consideration for mRNA-based vaccines that could contribute to potent 

Tfh and GC B cell responses is the endogenous nature of the antigen production 

and presentation on MHC class II. The classical model of MHC class II presentation 

states that CD4+ T cells are typically activated by peptides derived from “exogenous” 

or extracellular antigens that are phagocytosed, degraded in the endocytic pathway, 

loaded onto MHC class II in late endosomes, and then transported to the cell surface 
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[563]. However, there is increasing evidence that alternative pathways of MHC class 

II presentation may be prevalent, or even predominant, in the immune response to 

viral infections [564,565]. Recent work by Miller, Eisenlohr, and colleagues 

demonstrated that the CD4+ T cell response to influenza infection in mice consisted 

mainly of endogenously presented epitopes, that is, peptides synthesized within 

infected antigen-presenting cells [323]. Notably, this CD4+ T cell response was 

significantly broader and higher in magnitude than that induced by inactivated 

influenza virus, which necessarily uses the exogenous pathway, and it was also 

associated with a significantly more potent HAI antibody response. These data 

suggest that the quality and magnitude of the immune response can be influenced 

by the pathway of MHC class II presentation. A possible mechanism for this effect is 

enhanced signal strength and duration of T cell receptor activation, which have been 

associated with CD4+ T cell activation efficiency [566–568]. It is plausible that 

endogenous epitopes are presented at a greater level or for a greater length of time 

by virtue of the fact that they derive from a continuously synthesized pool of antigen. 

One way to determine whether this pathway contributes to the efficacy of mRNA 

vaccines would be to design an extracellular or transmembrane antigen that contains 

no CD4+ T cell epitopes restricted by the single MHC class II allele of C57BL/6 mice, 

and then encode this antigen on an mRNA together with a validated CD4+ T cell 

epitope for which the pathway is known. In this scenario, the entire CD4+ T cell 

response should be directed to one epitope, and thus the pathway can be varied to 

determine its effect on the antibody response. If the pathway of MHC class II 

presentation influences the generation of Tfh cells, CD4+ in general, or GC B cells, 

these results would be significant for the design of future vaccines.  
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5.6. Epilogue 

 In the course of this dissertation, I have described the approaches taken by 

my laboratory and myself to address some of the major issues confronted by 

vaccinologists today. As illustrated in Fig. 5.2, these challenges can be largely 

categorized into the areas of 1) the quality of the immune response and 2) the speed 

of vaccine development and immune protection. Most viral vaccine targets can be 

segregated into one area or the other; but certain targets such as influenza virus 

present challenges in both areas, leaving much room for technological progress.  

 

 

Figure 5.2. Challenges of modern vaccine design. Viruses that successfully 
evade the adaptive immune system, such as HIV and HCV, require vaccine designs 
that can generate the appropriate quality of immune response (left), while acute 
viruses that emerge in new epidemics, such as Ebola and Zika viruses, require 
vaccine development to occur on a more rapid timescale (right). 
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prime (Chapter 3), and using mRNA vaccines to induce strong Tfh cell and germinal 

center reactions (Chapter 4). Although the path to an effective HIV-1 vaccine is as 

yet uncertain, immunogen design strategies such as these will be likely critical for 

the development of effective immune responses against HIV-1 and other pathogens 

that evade the adaptive immune system. 

In the case of rapidly emerging viral epidemics such as Zika virus, modern 

vaccine design is also limited by the slow speed at which new vaccines are 

developed, manufactured, approved, and implemented in the clinic. As demon-

strated in Chapter 4, the mRNA platform offers advantages in this area that distin-

guish it from other vaccine modalities. New mRNA-based vaccines can be designed 

and produced using standardized methods on an extremely rapid timescale (weeks) 

and can generate potent immune responses with only a single administration. Given 

these features, it is possible that mRNA-based vaccines may have a significant 

impact on the effectiveness of future epidemic control.  
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