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Statistical Inference For High-Dimensional Linear Models

Abstract
High-dimensional linear models play an important role in the analysis of modern data sets. Although the
estimation problem has been well understood, there is still a paucity of methods and theories on the inference
problem for high-dimensional linear models. This thesis focuses on statistical inference for high-dimensional
linear models and consists of the following three parts.

1. The first part of the thesis considers confidence intervals for linear functionals in high-dimensional linear
regression. We first establish the convergence rates of the minimax expected length for confidence intervals.
Furthermore, we investigate the problem of adaptation to sparsity for the construction of confidence intervals
and identify the regimes in which it is possible to construct adaptive confidence intervals.

2. In the second part of the thesis, we consider point and interval estimation of the $\ell_q$ loss of a given
estimator in high-dimensional linear regression. For the class of rate-optimal estimators, we establish the
minimax rates for estimating their $\ell_{q}$ losses, the minimax expected length of confidence intervals for
their $\ell_{q}$ losses and the possibility of adaptivity of confidence intervals for their $\ell_q$ losses.

3. In the third part of the thesis, we consider the problem in the framework of high-dimensional instrumental
variable regression and construct confidence intervals for the treatment effect in the presence of possibly
invalid instrumental variables. We develop a novel selection procedure, Two-Stage Hard Thresholding
(TSHT) to select valid instrumental variables and construct honest confidence intervals for the treatment
effect using the selected instrumental variables.
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ABSTRACT

STATISTICAL INFERENCE FOR

HIGH-DIMENSIONAL LINEAR MODELS

Zijian Guo

T. Tony Cai

High-dimensional linear models play an important role in the analysis of modern

data sets. Although the estimation problem has been well understood, there is still a

paucity of methods and theories on the inference problem for high-dimensional linear

models. This thesis focuses on statistical inference for high-dimensional linear models

and consists of the following three parts.

• The first part of the thesis considers confidence intervals for linear functionals

in high-dimensional linear regression. We first establish the convergence rates

of the minimax expected length for confidence intervals. Furthermore, we inves-

tigate the problem of adaptation to sparsity for the construction of confidence

intervals and identify the regimes in which it is possible to construct adaptive

confidence intervals.

• In the second part of the thesis, we consider point and interval estimation of

the `q loss of a given estimator in high-dimensional linear regression. For the

class of rate-optimal estimators, we establish the minimax rates for estimating

vi



their `q losses, the minimax expected length of confidence intervals for their `q

losses and the possibility of adaptivity of confidence intervals for their `q losses.

• In the third part of the thesis, we consider the problem in the framework of high-

dimensional instrumental variable regression and construct confidence intervals

for the treatment effect in the presence of possibly invalid instrumental variables.

We develop a novel selection procedure, Two-Stage Hard Thresholding (TSHT)

to select valid instrumental variables and construct honest confidence intervals

for the treatment effect using the selected instrumental variables.
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1
Introduction

1.1 Literature review

Driven by a wide range of applications, the high-dimensional linear model, where the

dimension p can be much larger than the sample size n, has received significant recent

attention. The linear model is

y = Xβ + ε, ε ∼ N(0, σ2I), (1.1.1)

where y ∈ Rn, X ∈ Rn×p and β ∈ Rp. This high-dimensional linear model has been

well studied in the literature, where the main focus has been on estimation of β.

Several penalized/constrained `1 minimization methods, including Lasso (Tibshirani,

1996), Dantzig selector (Candès & Tao, 2007), scaled Lasso (Sun & Zhang, 2012)

and square-root Lasso (Belloni et al., 2011), have been proposed. These methods

have been shown to work well in applications and produce interpretable estimates

of β when β is assumed to be sparse. Theoretically, with a properly chosen tuning

parameter, these estimators achieve the optimal rate of convergence over collections

of sparse parameter spaces. See, for example, Candès & Tao (2007); Sun & Zhang

(2012); Belloni et al. (2011); Raskutti et al. (2011); Bickel et al. (2009); Bühlmann &
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van de Geer (2011); Verzelen (2012).

Confidence sets play a fundamental role in statistical inference. Recently, confi-

dence sets for high-dimensional linear models have been actively studied, where the

focus is on the construction of confidence intervals for individual coordinates (Javan-

mard & Montanari, 2014a; van de Geer et al., 2014) and the construction of confidence

balls for the whole high-dimension vector β (Nickl & van de Geer, 2013). In addition,

Gautier & Tsybakov (2011); Belloni et al. (2012); Fan & Liao (2014); Chernozhukov

et al. (2015a) provide honest confidence intervals for a treatment effect in the frame-

work of high-dimensional instrumental variable regression. However, compared to the

estimation problem, there is still a paucity of methods and fundamental theoretical

results on the inference problem for high-dimensional linear models. In this thesis,

we will focus on the statistical inference problem in high-dimensional linear models.

An outline of the thesis is presented in the next subsection.

1.2 Outline of the thesis

We consider the following three statistical inference problems in high-dimensional

linear models.

Confidence intervals for linear functionals

In Chapter 2, we consider confidence intervals for linear functionals in high-dimensional

linear regression with random design. We first establish the convergence rates of the

minimax expected length for confidence intervals in the oracle setting where the spar-

sity parameter is given. The focus is then on the problem of adaptation to sparsity

for the construction of confidence intervals. Ideally, an adaptive confidence interval

should have its length automatically adjusted to the sparsity of the unknown regres-

2



sion vector, while maintaining a pre-specified coverage probability. It is shown that

such a goal is in general not attainable, except when the sparsity parameter is re-

stricted to a small region over which the confidence intervals have the optimal length

of the usual parametric rate. It is further demonstrated that the lack of adaptivity

is not due to the conservativeness of the minimax framework, but is fundamentally

caused by the difficulty of learning the bias accurately.

This chapter is joint work with T. Tony Cai.

Accuracy assessment

In Chapter 3, we consider point and interval estimation of the `q loss of a given

estimator in high-dimensional linear regression with random design. We establish

the minimax rate for estimating the `q loss and the minimax expected length of

confidence intervals for the `q loss of rate-optimal estimators of the regression vector,

including commonly used estimators such as Lasso, scaled Lasso, square-root Lasso

and Dantzig Selector. Adaptivity of confidence intervals for the `q loss is also studied.

Both the setting of known identity design covariance matrix and known noise level

and the setting of unknown design covariance matrix and unknown noise level are

studied. The results reveal interesting and significant differences between estimating

the `2 loss and `q loss with 1 ≤ q < 2 as well as between the two settings. New

technical tools are developed to establish rate sharp lower bounds for the minimax

estimation error and the expected length of minimax and adaptive confidence intervals

for the `q loss. A significant difference between loss estimation and the traditional

parameter estimation is that for loss estimation the constraint is on the performance

of the estimator of the regression vector, but the lower bounds are on the difficulty

of estimating its `q loss. The technical tools developed in this paper can also be of

independent interest.

3



This chapter is joint work with T. Tony Cai.

Confidence intervals for treatment effects with invalid instru-

ments

In Chapter 4, we consider the statistical inference problem in the high-dimensional

instrumental variable framework with possibly invalid instruments. The instrumental

variable (IV) method is commonly used to estimate the causal effect of a treatment on

an outcome by using IVs that satisfy the assumptions of association with treatment,

no direct effect on the outcome and ignorability. A major challenge in IV analysis is to

find said IVs, but typically one is unsure of whether all of the putative IVs are in fact

valid (i.e. satisfy the assumptions). We propose a general inference procedure that

provides honest inference in the presence of invalid IVs, even after controlling for a

large number of covariates. The key step of our method is a novel selection procedure,

which we call Two-Stage Hard Thresholding (TSHT), where we use hard thresholding

to select the set of non-redundant instruments in the first stage and subsequently use

hard thresholding to select the set of valid instruments in the second stage among the

set of instruments selected from the first stage. TSHT allows us to not only select

valid IVs, but also provide honest confidence intervals of the treatment effect at
√
n

rate. We establish asymptotic properties of our procedure and demonstrate that our

procedure performs well in simulation studies compared to traditional IV methods,

especially when the instruments are invalid.

This chapter is joint work with Hyunseung Kang, T. Tony Cai and Dylan S. Small.
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2
Confidence Intervals for High-Dimensional Linear

Regression: Minimax Rates and Adaptivity

2.1 Introduction

Driven by a wide range of applications, high-dimensional linear regression, where the

dimension p can be much larger than the sample size n, has received significant recent

attention. The linear model is

y = Xβ + ε, ε ∼ N(0, σ2I), (2.1.1)

where y ∈ Rn, X ∈ Rn×p and β ∈ Rp. Several penalized/constrained `1 minimization

methods, including Lasso (Tibshirani, 1996), Dantzig Selector (Candès & Tao, 2007),

square-root Lasso (Belloni et al., 2011), and scaled Lasso (Sun & Zhang, 2012) have

been proposed and studied. Under regularity conditions on the design matrix X,

these methods with a suitable choice of the tuning parameter have been shown to

achieve the optimal rate of convergence k log p
n

under the squared error loss over the

set of k-sparse regression coefficient vectors with k ≤ c n
log p

where c > 0 is a constant.

5



That is, there exists some constant C > 0 such that

sup
‖β‖0≤k

P
(
‖β̂ − β‖2

2 > Ck
log p

n

)
= o(1), (2.1.2)

where ‖β‖0 denotes the number of the nonzero coordinates of a vector β ∈ Rp. See, for

example, Verzelen (2012); Bickel et al. (2009); Candès & Tao (2007); Sun & Zhang

(2012). A key feature of the estimation problem is that the optimal rate can be

achieved adaptively with respect to the sparsity parameter k.

Confidence sets play a fundamental role in statistical inference and confidence in-

tervals for high-dimensional linear regression have been actively studied recently with

a focus on inference for individual coordinates. But, compared to point estimation,

there is still a paucity of methods and fundamental theoretical results on confidence

intervals for high-dimensional regression. Zhang & Zhang (2014) was the first to in-

troduce the idea of de-biasing for constructing a valid confidence interval for a single

coordinate βi. The confidence interval is centered at a low-dimensional projection

estimator obtained through bias correction via score vector using the scaled Lasso as

the initial estimator. Javanmard & Montanari (2014a); van de Geer et al. (2014) also

used de-biasing for the construction of confidence intervals and van de Geer et al.

(2014) established asymptotic efficiency for the proposed estimator. All the afore-

mentioned papers, Zhang & Zhang (2014); Javanmard & Montanari (2014a); van de

Geer et al. (2014), have focused on the ultra-sparse case where the sparsity k �
√
n

log p

is assumed. Under such a sparsity condition, the expected length of the confidence

intervals constructed in Zhang & Zhang (2014); Javanmard & Montanari (2014a);

van de Geer et al. (2014) is at the parametric rate 1√
n

and the procedures do not

depend on the specific value of k.

Compared to point estimation where the sparsity condition k � n
log p

is sufficient

for estimation consistency (see equation (2.1.2)), the condition k �
√
n

log p
for valid

6



confidence intervals is much stronger. There are several natural questions: What

happens in the region where
√
n

log p
. k . n

log p
? Is it still possible to construct a

valid confidence interval for βi in this case? Can one construct an adaptive honest

confidence interval not depending on k?

The goal of the present paper is to address these and other related questions on

confidence intervals for high-dimensional linear regression with random design. More

specifically, we consider construction of confidence intervals for a linear functional

T (β) = ξᵀβ, where the loading vector ξ ∈ Rp is given and
maxi∈supp(ξ) |ξi|
mini∈supp(ξ) |ξi|

≤ c̄ with

c̄ ≥ 1 being a constant. Based on the sparsity of ξ, we focus on two specific regimes:

the sparse loading regime where ‖ξ‖0 ≤ Ck, with C > 0 being a constant; the dense

loading regime where ‖ξ‖0 satisfying (2.2.7) in Section 2.2. It will be seen later that

for confidence intervals, T (β) = βi is a prototypical case for the general functional

T (β) = ξᵀβ with a sparse loading ξ, and T (β) =
∑p

i=1 βi is a representative case for

T (β) = ξᵀβ with a dense loading ξ.

To illustrate the main idea, let us first focus on the two specific functionals T (β) =

βi and T (β) =
∑p

i=1 βi. We establish the convergence rate of the minimax expected

length for confidence intervals in the oracle setting where the sparsity parameter k is

given. It is shown that in this case the minimax expected length is of order 1√
n

+k log p
n

for confidence intervals of βi. An honest confidence interval, which depends on the

sparsity k, is constructed and is shown to be minimax rate optimal. To the best of our

knowledge, this is the first construction of confidence intervals in the moderate-sparse

region
√
n

log p
� k . n

log p
. If the sparsity k falls into the ultra-sparse region k .

√
n

log p
, the

constructed confidence interval is similar to the confidence intervals constructed in

Zhang & Zhang (2014); Javanmard & Montanari (2014a); van de Geer et al. (2014).

On the other hand, the convergence rate of the minimax expected length of honest

confidence intervals for
∑p

i=1 βi in the oracle setting is shown to be k
√

log p
n

. A rate-
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optimal confidence interval that also depends on k is constructed. It should be noted

that this confidence interval is not based on the de-biased estimator.

One drawback of the constructed confidence intervals mentioned above is that

they require a prior knowledge of the sparsity k. Such knowledge of sparsity is usually

unavailable in applications. A natural question is: Without knowing the sparsity k,

is it possible to construct a confidence interval as good as when the sparsity k is

known? This is a question about adaptive inference, which has been a major goal

in nonparametric and high-dimensional statistics. Ideally, an adaptive confidence

interval should have its length automatically adjusted to the true sparsity of the

unknown regression vector, while maintaining a prespecified coverage probability.

We show that, in marked contrast to point estimation, such a goal is in general not

attainable for confidence intervals. In the case of confidence intervals for βi, it is

impossible to adapt between different sparsity levels, except when the sparsity k is

restricted to the ultra-sparse region k .
√
n

log p
, over which the confidence intervals have

the optimal length of the parametric rate 1√
n
, which does not depend on k. In the

case of confidence intervals for
∑p

i=1 βi, it is shown that adaptation to the sparsity is

not possible at all, even in the ultra-sparse region k .
√
n

log p
.

Minimax theory is often criticized as being too conservative as it focuses on the

worst case performance over a large parameter space. For confidence intervals for

high dimensional linear regression, we establish strong non-adaptivity results which

demonstrate that the lack of adaptivity is not due to the conservativeness of the min-

imax framework. It shows that for any confidence interval with guaranteed coverage

probability over the set of k sparse vectors, its expected length at any given point

in a large subset of the parameter space must be at least of the same order as the

minimax expected length. So the confidence interval must be long at a large subset of

points in the parameter space, not just at a small number of “unlucky” points. This

8



leads directly to the impossibility of adaptation over different sparsity levels. Funda-

mentally, the lack of adaptivity is caused by the difficulty in accurately learning the

bias of any estimator for high-dimensional linear regression.

We now turn to confidence intervals for general linear functionals. For a linear

functional ξᵀβ in the sparse loading regime, the rate of the minimax expected length is

‖ξ‖2

(
1√
n

+ k log p
n

)
, where ‖ξ‖2 is the vector `2 norm of ξ. For a linear functional ξᵀβ

in the dense loading regime, the rate of the minimax expected length is ‖ξ‖∞k
√

log p
n

,

where ‖ξ‖∞ is the vector `∞ norm of ξ. Regarding adaptivity, the phenomena ob-

served in confidence intervals for the two special linear functionals T (β) = βi and

T (β) =
∑p

i=1 βi extend to the general linear functionals. The case of confidence in-

tervals for T (β) =
∑p

i=1 ξiβi with a sparse loading ξ is similar to that of confidence

intervals for βi in the sense that rate-optimal adaptation is impossible except when

the sparsity k is restricted to the ultra-sparse region k .
√
n

log p
. On the other hand,

the case for a dense loading ξ is similar to that of confidence intervals for
∑p

i=1 βi:

adaptation to the sparsity k is not possible at all, even in the ultra-sparse region

k .
√
n

log p
.

In addition to the more typical setting in practice where the covariance matrix

Σ of random design and the noise level σ of the linear model are unknown, we also

consider the case with the prior knowledge of Σ = I and σ = σ0. It turns out that

this case is strikingly different. The minimax rate for the expected length in the

sparse loading regime is reduced from ‖ξ‖2

(
1√
n

+ k log p
n

)
to ‖ξ‖2√

n
, and in particular it

does not depend on the sparsity k. Furthermore, in marked contrast to the case of

unknown Σ and σ, adaptation to sparsity is possible over the full range k . n
log p

. On

the other hand, for linear functionals ξᵀβ with a dense loading ξ, the minimax rates

and impossibility for adaptive confidence intervals do not change even with the prior

knowledge of Σ = I and σ = σ0. However, the cost of adaptation is reduced with the

9



prior knowledge.

The rest of the paper is organized as follows: After basic notation is introduced,

Section 2.2 presents a precise formulation for the adaptive confidence interval problem.

Section 2.3 establishes the minimaxity and adaptivity results for a general linear

functional ξᵀβ with a sparse loading ξ. Section 2.4 focuses on confidence intervals

for a general linear functional ξᵀβ with a dense loading ξ. Section 2.5 considers the

case when there is prior knowledge of covariance matrix of the random design and

the noise level of the linear model. Section 2.6 discusses connections to other work

and further research directions. The proofs of the main results are given in Section

2.7. More discussion and proofs are presented in Chapter A.

2.2 Formulation for adaptive confidence interval

problem

We present in this section the framework for studying the adaptivity of confidence

intervals. We begin with the notation that will be used throughout the paper.

2.2.1 Notation

For a matrix X ∈ Rn×p, Xi·, X·j, and Xi,j denote respectively the i-th row, j-th

column, and (i, j) entry of the matrix X, Xi,−j denotes the i-th row of X excluding

the j-th coordinate, and X−j denotes the submatrix of X excluding the j-th column.

Let [p] = {1, 2, · · · , p}. For a subset J ⊂ [p], XJ denotes the submatrix ofX consisting

of columns X·j with j ∈ J and for a vector x ∈ Rp, xJ is the subvector of x with

indices in J and x−J is the subvector with indices in J c. For a set S, |S| denotes the

cardinality of S. For a vector x ∈ Rp, supp(x) denotes the support of x and the `q

norm of x is defined as ‖x‖q = (
∑q

i=1 |xi|q)
1
q for q ≥ 0 with ‖x‖0 = |supp(x)| and
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‖x‖∞ = max1≤j≤p |xj|. We use ei to denote the i-th standard basis vector in Rp. For

a ∈ R, a+ = max {a, 0}. We use
∑
βi as a shorthand for

∑p
i=1 βi, max ‖X·j‖2 as a

shorthand for max1≤j≤p ‖X·j‖2 and min ‖X·j‖2 as a shorthand for min1≤j≤p ‖X·j‖2.

For a matrix A and 1 ≤ q ≤ ∞, ‖A‖q = sup‖x‖q=1 ‖Ax‖q is the matrix `q operator

norm. In particular, ‖A‖2 is the spectral norm. For a symmetric matrix A, λmin (A)

and λmax (A) denote respectively the smallest and largest eigenvalue of A. We use c

and C to denote generic positive constants that may vary from place to place. For

two positive sequences an and bn, an . bn means an ≤ Cbn for all n and an & bn if

bn . an and an � bn if an . bn and bn . an, and an � bn if lim supn→∞
an
bn

= 0 and

an � bn if bn � an.

2.2.2 Framework for adaptivity of confidence intervals

We shall focus in this paper on the high-dimensional linear model with the Gaussian

design,

yn×1 = Xn×pβp×1 + εn×1, ε ∼ Nn(0, σ2I), (2.2.1)

where the rows of X satisfy Xi·
i.i.d.∼ Np(0,Σ), i = 1, ..., n, and are independent of ε.

Both Σ and the noise level σ are unknown. Let Ω = Σ−1 denote the precision matrix.

The parameter θ = (β,Ω, σ) consists of the signal β, the precision matrix Ω for the

random design, and the noise level σ. The target of interest is the linear functional

of β, T (β) = ξᵀβ, where ξ ∈ Rp is a pre-specified loading vector. The data that we

observe is Z = (Z1, · · · , Zn)ᵀ , where Zi = (yi, Xi) ∈ Rp+1 for i = 1, · · · , n.

For 0 < α < 1 and a given parameter space Θ and the linear functional T (β),

denote by Iα (Θ,T) the set of all (1− α) level confidence intervals for T (β) over the
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parameter space Θ,

Iα (Θ,T) =

{
CIα (T, Z) = [l(Z), u(Z)] : inf

θ∈Θ
Pθ(l(Z) ≤ T(β) ≤ u(Z)) ≥ 1− α

}
.

(2.2.2)

For any confidence interval CIα (T, Z) ∈ Iα (Θ,T), the maximum expected length

over a parameter space Θ is defined as

L(CIα (T, Z),Θ,T) = sup
θ∈Θ

EθL (CIα (T, Z)) ,

where for confidence interval CIα (T, Z) = [l(Z), u(Z)], L(CIα (T, Z)) = u(Z)− l(Z)

denotes its length. For two parameter spaces Θ1 ⊆ Θ, we define the benchmark

L∗α(Θ1,Θ,T) as the infimum of the maximum expected length over Θ1 among all

(1− α)-level confidence intervals over Θ,

L∗α(Θ1,Θ,T) = inf
CIα(T,Z)∈Iα(Θ,T)

L(CIα (T, Z) ,Θ1,T). (2.2.3)

We will write L∗α(Θ,T) for L∗α(Θ,Θ,T), which is the minimax expected length of

confidence intervals over Θ.

We should emphasize that L∗α(Θ1,Θ,T) is an important quantity that measures

the degree of adaptivity over the nested spaces Θ1 ⊂ Θ. A confidence interval

CIα (T, Z) that is (rate-optimally) adaptive over Θ1 and Θ should have the optimal

expected length performance simultaneously over both Θ1 and Θ while maintaining

a given coverage probability over Θ, i.e., CIα (T, Z) ∈ Iα (Θ,T) such that

L(CIα (T, Z),Θ1,T) � L∗α(Θ1,T) and L(CIα (T, Z),Θ,T) � L∗α(Θ,T).

Note that in this case L(CIα (T, Z),Θ1,T) ≥ L∗α(Θ1,Θ,T). So for two parameter

spaces Θ1 ⊂ Θ, if L∗α(Θ1,Θ,T) � L∗α(Θ1,T), then rate-optimal adaptation between
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Θ1 and Θ is impossible to achieve.

We consider the following collection of parameter spaces,

Θ(k) =

{
θ = (β,Ω, σ) : ‖β‖0 ≤ k,

1

M1

≤ λmin(Ω) ≤ λmax(Ω) ≤M1, 0 < σ ≤M2

}
,

(2.2.4)

where M1 > 1 and M2 > 0 are positive constants. Basically, Θ(k) is the set of all

k-sparse regression vectors. 1
M1
≤ λmin(Ω) ≤ λmax(Ω) ≤M1 and 0 < σ ≤M2 are two

mild regularity conditions on the design and the noise level.

The main goal of this paper is to address the following two questions:

1. What is the minimax length L∗α(Θ(k),T) in the oracle setting where the sparsity

level k is known?

2. Is it possible to achieve rate-optimal adaptation over different sparsity levels?

More specifically, for k1 � k, is it possible to construct a confidence interval

CIα (T, Z) that is adaptive over Θ(k1) and Θ(k) in the sense that CIα (T, Z) ∈

Iα (Θ (k) ,T) and

L(CIα (T, Z),Θ(k1),T) � L∗α(Θ(k1),T),

L(CIα (T, Z),Θ(k),T) � L∗α(Θ(k),T)?

(2.2.5)

We will answer these questions by analyzing the two benchmark quantities L∗α(Θ(k),T)

and L∗α(Θ(k1),Θ(k),T). Both lower and upper bounds will be established. If (2.2.5)

can be achieved, it means that the confidence interval CIα (T, Z) can automatically

adjust its length to the sparsity level of the true regression vector β. On the other

hand, if L∗α(Θ(k1),Θ(k),T)� L∗α(Θ(k1),T), then such a goal is not attainable.

For ease of presentation, we calibrate the sparsity level

k � pγ for some 0 ≤ γ < 1
2
,
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and restrict the loading ξ to the set

ξ ∈ Ξ (q, c̄) =

{
ξ ∈ Rp : ‖ξ‖0 = q, ξ 6= 0 and

maxj∈supp(ξ) |ξj|
minj∈supp(ξ) |ξj|

≤ c̄

}
,

where c̄ ≥ 1 is a constant. The minimax rate and adaptivity of confidence intervals for

the general linear functional ξᵀβ also depends on the sparsity of ξ. We are particularly

interested in the following two regimes:

1. The sparse loading regime: ξ ∈ Ξ (q, c̄) with

q ≤ Ck. (2.2.6)

2. The dense loading regime: ξ ∈ Ξ (q, c̄) with

q = cpγq with 2γ < γq ≤ 1. (2.2.7)

The behavior of the problem is significantly different in these two regimes. We will

consider separately the sparse loading regime in Section 2.3 and the dense loading

regime in Section 2.4.

2.3 Minimax rate and adaptivity of confidence in-

tervals for sparse loading linear functionals

In this section, we establish the rates of convergence for the minimax expected length

of confidence intervals for ξᵀβ with a sparse loading ξ in the oracle setting where

the sparsity parameter k of the regression vector β is given. Both minimax upper

and lower bounds are given. Confidence intervals for ξᵀβ are constructed and shown
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to be minimax rate-optimal in the sparse loading regime. Finally, we establish the

possibility of adaptivity for the linear functional ξᵀβ with a sparse loading ξ.

2.3.1 Minimax length of confidence intervals for ξᵀβ in the

sparse loading regime

In this section, we focus on the sparse loading regime defined in (2.2.6). The following

theorem establishes the minimax rates for the expected length of confidence intervals

for ξᵀβ in the sparse loading regime.

Theorem 1. Suppose that 0 < α < 1
2

and k ≤ cmin{pγ, n
log p
} for some constants

c > 0 and 0 ≤ γ < 1
2
. If ξ belongs to the sparse loading regime (2.2.6), the minimax

expected length for (1− α) level confidence intervals of ξᵀβ over Θ (k) satisfies

L∗α (Θ (k) , ξᵀβ) � ‖ξ‖2

(
1√
n

+ k
log p

n

)
. (2.3.1)

Theorem 1 is established in two separate steps.

1. Minimax upper bound: we construct a confidence interval CISα (ξᵀβ, Z) such

that CISα (ξᵀβ, Z) ∈ Iα (Θ (k) , ξᵀβ) and for some constant C > 0

L
(
CISα (ξᵀβ, Z) ,Θ (k) , ξᵀβ

)
≤ C‖ξ‖2

(
1√
n

+ k
log p

n

)
. (2.3.2)

2. Minimax lower bound: we show that for some constant c > 0

L∗α (Θ (k) , ξᵀβ) ≥ c‖ξ‖2

(
1√
n

+ k
log p

n

)
. (2.3.3)

The minimax lower bound is implied by the adaptivity result given in Theorem 2.

We now detail the construction of a confidence interval CISα (ξᵀβ, Z) achieving the
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minimax rate (2.3.1) in the sparse loading regime. The interval CISα (ξᵀβ, Z) is cen-

tered at a de-biased scaled Lasso estimator, which generalizes the ideas used in Zhang

& Zhang (2014); Javanmard & Montanari (2014a); van de Geer et al. (2014). The

construction of the (random) length is different from the aforementioned papers as

the asymptotic normality result is not valid once k &
√
n

log p
.

Let {β̂, σ̂} be the scaled Lasso estimator with λ0 =
√

2.05 log p
n

,

{β̂, σ̂} = arg min
β∈Rp,σ∈R+

‖y −Xβ‖2
2

2nσ
+
σ

2
+ λ0

p∑
j=1

‖X·j‖2√
n
|βj|. (2.3.4)

Define

û = arg min
u∈Rp

{
uᵀΣ̂u : ‖Σ̂u− ξ‖∞ ≤ λn

}
, (2.3.5)

where Σ̂ = 1
n
XᵀX and λn = 12‖ξ‖2M

2
1

√
log p
n

. The confidence interval CISα (ξᵀβ, Z) is

centered at the following de-biased estimator

µ̃ = ξᵀβ̂ + ûᵀ
1

n
Xᵀ
(
y −Xβ̂

)
, (2.3.6)

where β̂ is the scaled Lasso estimator given in (2.3.4) and û is defined in (2.3.5). Before

specifying the length of the confidence interval, we review the following definition of

restricted eigenvalue introduced in Bickel et al. (2009),

κ(X, k, α0) = min
J0⊂{1,··· ,p},
|J0|≤k

min
δ 6=0,

‖δJc0‖1≤α0‖δJ0
‖1

‖Xδ‖2√
n‖δJ0‖2

. (2.3.7)

Define

ρ1 (k) = ‖ξ‖2σ̂min

1.01

√
ûᵀΣ̂û

n‖ξ‖2
2

zα/2 + C1 (X, k) k
log p

n
, log p(

1√
n

+
k log p

n
)

 ,

(2.3.8)
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where zα/2 is the α/2 upper quantile of the standard normal distribution and

C1 (X, k) = 7000M2
1

√
n

min ‖X·j‖2

max

1.25,
912 max ‖X·j‖2

2

nκ2
(
X, k, 405

(
max ‖X·j‖2
min ‖X·j‖2

))
 . (2.3.9)

Define the event

A = {σ̂ ≤ log p} . (2.3.10)

The confidence interval CISα (ξᵀβ, Z) for ξᵀβ is defined as

CISα (ξᵀβ, Z) =

 [µ̃− ρ1 (k) , µ̃+ ρ1 (k)] on A

{0} on Ac
(2.3.11)

It will be shown in Section 2.7 that the confidence interval CISα (ξᵀβ, Z) has the desired

coverage property and achieves the minimax length in (2.3.1).

Remark 1. In the special case of ξ = e1, the confidence interval defined in (2.3.11) is

similar to the ones based on the de-biased estimators introduced in Zhang & Zhang

(2014); Javanmard & Montanari (2014a); van de Geer et al. (2014). The second

term ûᵀ 1
n
Xᵀ
(
y −Xβ̂

)
in (2.3.6) is incorporated to reduce the bias of the scaled

Lasso estimator β̂. The constrained estimator û defined in (2.3.5) is a score vector u

such that the variance term uᵀΣ̂u is minimized and one component of the bias term

‖Σ̂u − ξ‖∞ is constrained by the tuning parameter λn. The tuning parameter λn is

chosen as 12‖ξ‖2M
2
1

√
log p
n

such that u = Ωξ lies in the constraint set ‖Σ̂u−ξ‖∞ ≤ λn

in (2.3.5) with overwhelming probability. For C1(X, k) defined in (2.3.9), it will be

shown that it is upper bounded by a constant with overwhelming probability.
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2.3.2 Adaptivity of confidence intervals for ξᵀβ in the sparse

loading regime

We have constructed a minimax rate-optimal confidence interval for ξᵀβ in the oracle

setting where the sparsity k is assumed to be known. A major drawback of the

construction is that it requires prior knowledge of k, which is typically unavailable

in practice. An interesting question is whether it is possible to construct adaptive

confidence intervals that have the guaranteed coverage and automatically adjust its

length to k.

We now consider the adaptivity of the confidence intervals for ξᵀβ. In light of

the minimax expected length given in Theorem 1, the following theorem provides an

answer to the adaptivity question (2.2.5) for the confidence intervals for ξᵀβ in the

sparse loading regime.

Theorem 2. Suppose that 0 < α < 1
2

and k1 ≤ k ≤ cmin
{
pγ, n

log p

}
for some

constants c > 0 and 0 ≤ γ < 1
2
. If ξ belongs to the sparse loading regime (2.2.6), then

there is some constant c1 > 0 such that

L∗α(Θ(k1),Θ(k), ξᵀβ) ≥ c1‖ξ‖2

(
1√
n

+ k
log p

n

)
. (2.3.12)

Note that Theorem 2 implies the minimax lower bound in Theorem 1 by taking

k1 = k. Theorem 2 rules out the possibility of rate-optimal adaptive confidence

intervals beyond the ultra-sparse region. Consider the setting where k1 � k and
√
n

log p
� k . n

log p
. In this case,

L∗α(Θ(k1),Θ(k), ξᵀβ) � L∗α(Θ(k), ξᵀβ) � ‖ξ‖2k
log p

n
� L∗α(Θ(k1), ξᵀβ).

So it is impossible to construct a confidence interval that is adaptive simultaneously
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over Θ(k1) and Θ(k) when
√
n

log p
� k . n

log p
and k1 � k. For sparse loading with

q ≤ Ck1, the only possible region for adaptation is the ultra-sparse region k .
√
n

log p
,

over which the optimal expected length of confidence intervals is of order 1√
n

and in

particular does not depend on the specific sparsity level. These facts are illustrated

in Figure 2.1.

1
n

k log p

n

0 k n log p k n log p

Adaptive Not Adaptive

Figure 2.1: Illustration of adaptivity of confidence intervals for ξᵀβ with a sparse
loading ξ satisfying ‖ξ‖0 ≤ Ck1. For adaptation between Θ(k1) and Θ(k) with

k1 � k, rate-optimal adaptation is possible if k .
√
n

log p
and impossible otherwise.

So far the analysis is carried out within the minimax framework where the focus

is on the performance in the worst case over a large parameter space. The minimax

theory is often criticized as being too conservative. In the following, we establish

a stronger version of the non-adaptivity result which demonstrates that the lack of

adaptivity for confidence intervals is not due to the conservativeness of the minimax

framework. The result shows that for any confidence interval CIα (ξᵀβ, Z), under the

coverage constraint that CIα (ξᵀβ, Z) ∈ Iα (Θ (k) , ξᵀβ), its expected length at any

given θ∗ = (β∗, I, σ) ∈ Θ (k1) must be of order ‖ξ‖2

(
1√
n

+ k log p
n

)
. So the confidence

interval must be long at a large subset of points in the parameter space, not just at

a small number of “unlucky” points.

Theorem 3. Suppose that 0 < α < 1
2

and k ≤ cmin{pγ, n
log p
} for some constants

c > 0 and 0 ≤ γ < 1
2
. Let k1 ≤ (1− ζ0) k − 1 and q ≤ ζ0

4
k for some constant
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0 < ζ0 < 1. Then for any θ∗ = (β∗, I, σ) ∈ Θ (k1) and ξ ∈ Ξ (q, c̄), there is some

constant c1 > 0 such that

inf
CIα(ξᵀβ,Z)∈Iα(Θ(k),ξᵀβ)

Eθ∗L (CIα (ξᵀβ, Z)) ≥ c1‖ξ‖2

(
k

log p

n
+

1√
n

)
σ. (2.3.13)

Note that no supremum is taken over the parameter θ∗ in (2.3.13). Theorem 3

illustrates that if a confidence interval CIα (ξᵀβ, Z) is “superefficient” at any point

θ∗ = (β∗, I, σ) ∈ Θ(k1) in the sense that

Eθ∗L (CIα (ξᵀβ, Z))� ‖ξ‖2

(
1√
n

+ k
log p

n

)
σ,

then the confidence interval CIα (ξᵀβ, Z) can not have the guaranteed coverage over

the parameter space Θ(k).

2.3.3 Minimax rate and adaptivity of confidence intervals for

β1

We now turn to the special case T (β) = βi, which has been the focus of several

previous papers, Zhang & Zhang (2014); Javanmard & Montanari (2014b,a); van de

Geer et al. (2014). Without loss of generality, we consider β1, the first coordinate

of β, in the following discussion and the results for any other coordinate βi are the

same. The linear functional β1 is the special case of linear functional of sparse loading

regime with ξ = e1.

Theorem 1 implies that the minimax expected length for (1− α) level confidence

intervals of β1 over Θ (k) satisfies

L∗α (Θ (k) , β1) � 1√
n

+ k
log p

n
. (2.3.14)
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In the ultra-sparse region with k .
√
n

log p
, the minimax expected length is of order 1√

n
.

However, when k falls in the moderate-sparse region
√
n

log p
� k . n

log p
, the minimax

expected length is of order k log p
n

and in this case k log p
n
� 1√

n
. Hence the confidence

intervals constructed in Zhang & Zhang (2014); Javanmard & Montanari (2014b,a);

van de Geer et al. (2014), which are of parametric length 1√
n
, asymptotically have

coverage probability going to 0. The condition k .
√
n

log p
is thus necessary for the

parametric rate 1√
n
. van de Geer et al. (2014) established asymptotic normality

and asymptotic efficiency for a de-biased estimator under the sparsity assumption

k �
√
n

log p
. Similar results have also been given in Ren et al. (2013) for a related

problem of estimating a single entry of a p-dimensional precision matrix based on n

i.i.d. samples under the same sparsity condition k �
√
n

log p
. It was also shown that

k �
√
n

log p
is necessary for the asymptotic normality and asymptotic efficiency results.

The following corollary, as a special case of Theorem 3, illustrates the strong

non-adaptivity for confidence intervals of β1 when k �
√
n

log p
.

Corollary 1. Suppose that 0 < α < 1
2

and k ≤ cmin{pγ, n
log p
} for some constants

c > 0 and 0 ≤ γ < 1
2
. Let k1 ≤ (1− ζ0) k− 1 for some constant 0 < ζ0 < 1. Then for

any θ∗ = (β∗, I, σ) ∈ Θ (k1), there is some constant c1 > 0 such that

inf
CIα(β1,Z)∈Iα(Θ(k),β1)

Eθ∗L (CIα (β1, Z)) ≥ c1

(
1√
n

+ k
log p

n

)
σ. (2.3.15)

2.4 Minimax rate and adaptivity of confidence in-

tervals for dense loading linear functionals

We now turn to the setting where the loading ξ is dense in the sense of (2.2.7).

We will also briefly discuss the special case
∑p

i=1 βi and the computationally feasible

confidence intervals.
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2.4.1 Minimax length of confidence intervals for ξᵀβ in the

dense loading regime

The following theorem establishes the minimax length of confidence intervals of ξᵀβ

in the dense loading regime (2.2.7).

Theorem 4. Suppose that 0 < α < 1
2

and k ≤ cmin{pγ, n
log p
} for some constants

c > 0 and 0 ≤ γ < 1
2
. If ξ belongs to the dense loading regime (2.2.7), the minimax

expected length for (1− α) level confidence intervals of ξᵀβ over Θ (k) satisfies

L∗α (Θ (k) , ξᵀβ) � ‖ξ‖∞k
√

log p

n
. (2.4.1)

Note that the minimax rate in (2.4.1) is significantly different from the minimax

rate ‖ξ‖2( 1√
n

+k log p
n

) for the sparse loading case given in Theorem 1. In the following,

we construct a confidence interval CIDα (ξᵀβ, Z) achieving the minimax rate (2.4.1) in

the dense loading regime. Define

C2(X, k) = 822

√
n

min ‖X·j‖2

max

1.25,
912 max ‖X·j‖2

2

nκ2
(
X, k, 405

(
max ‖X·j‖2
min ‖X·j‖2

))
 . (2.4.2)

It will be shown that C2(X, k) is upper bounded by a constant with overwhelming

probability. The confidence interval CIDα (ξᵀβ, Z) is defined to be,

CIDα (ξᵀβ, Z) =


[
ξᵀβ̂ − ‖ξ‖∞ρ2 (k) , ξᵀβ̂ + ‖ξ‖∞ρ2 (k)

]
on A

{0} on Ac
(2.4.3)

where A is defined in (2.3.10) and β̂ is the scaled Lasso estimator defined in (2.3.4)

and

ρ2 (k) = min

{
C2 (X, k) k

√
log p

n
σ̂, log p

(
k

√
log p

n
σ̂

)}
. (2.4.4)
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The confidence interval constructed in (2.4.3) will be shown to have the desired cover-

age property and achieve the minimax length in (2.4.1). A major difference between

the construction of CIDα (ξᵀβ, Z) and that of CISα (ξᵀβ, Z) is that CIDα (ξᵀβ, Z) is not

centered at a de-biased estimator. If a de-biased estimator is used for the construction

of confidence intervals for ξᵀβ with a dense loading, its variance would be too large,

which leads to a confidence interval with length much larger than the optimal length

‖ξ‖∞k
√

log p
n

.

2.4.2 Adaptivity of confidence intervals for ξᵀβ in the dense

loading regime

In this section, we investigate the possibility of adaptive confidence intervals for ξᵀβ

in the dense loading regime. The following theorem leads directly to an answer to

the adaptivity question (2.2.5) for confidence intervals for ξᵀβ in the dense loading

regime.

Theorem 5. Suppose that 0 < α < 1
2

and k1 ≤ k ≤ cmin
{
pγ, n

log p

}
for some

constants c > 0 and 0 ≤ γ < 1
2
. If ξ belongs to the dense loading regime (2.2.7), then

there is some constant c1 > 0 such that

L∗α (Θ (k1) ,Θ (k) , ξᵀβ) ≥ c1‖ξ‖∞k
√

log p

n
. (2.4.5)

Theorem 5 implies the minimax lower bound in Theorem 4 by taking k1 = k. If

k1 � k, (2.4.5) implies

L∗α (Θ (k1) ,Θ (k) , ξᵀβ) ≥ c‖ξ‖∞k
√

log p

n
� L∗α (Θ (k1) , ξᵀβ) , (2.4.6)

which shows that rate-optimal adaptation over two different sparsity levels k1 and k
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is not possible at all for any k1 � k. In contrast, in the case of the sparse loading

regime, Theorem 2 shows that it is possible to construct an adaptive confidence

interval in the ultra-sparse region k .
√
n

log p
, although adaptation is not possible in the

moderate-sparse region
√
n

log p
� k . n

log p
.

Similarly to Theorem 3, the following theorem establishes the strong non-adaptivity

results for ξᵀβ in the dense loading regime.

Theorem 6. Suppose that 0 < α < 1
2

and k ≤ cmin{pγ, n
log p
} for some constants

c > 0 and 0 ≤ γ < 1
2
. Let q satisfy (2.2.7) and k1 ≤ (1− ζ0) k − 1 for some positive

constant 0 < ζ0 < 1. Then for any θ∗ = (β∗, I, σ) ∈ Θ (k1) and ξ ∈ Ξ (q, c̄), there is

some constant c1 > 0 such that

inf
CIα(ξᵀβ,Z)∈Iα(Θ(k),ξᵀβ)

Eθ∗L (CIα (ξᵀβ, Z)) ≥ c1‖ξ‖∞k
√

log p

n
σ. (2.4.7)

2.4.3 Minimax length and adaptivity of confidence intervals

for
∑p

i=1 βi

We now turn to to the special case of T(β) =
∑p

i=1 βi, the sum of all regression

coefficients. Theorem 4 implies that the minimax expected length for (1 − α) level

confidence intervals of
∑p

i=1 βi over Θ (k) satisfies

L∗α

(
Θ (k) ,

∑
βi

)
� k

√
log p

n
. (2.4.8)

The following impossibility of adaptivity result for confidence intervals for
∑p

i=1 βi is

a special case of Theorem 6.

Corollary 2. Suppose that 0 < α < 1
2

and k ≤ cmin{pγ, n
log p
} for some constants

c > 0 and 0 ≤ γ < 1
2
. Let k1 ≤ (1− ζ0) k− 1 for some constant 0 < ζ0 < 1. Then for
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any θ∗ = (β∗, I, σ) ∈ Θ (k1),

inf
CIα(

∑
βi,Z)∈Iα(Θ(k),

∑
βi)

Eθ∗L
(

CIα

(∑
βi, Z

))
≥ c1k

√
log p

n
σ, (2.4.9)

for some constant c1 > 0.

Remark 2. In the Gaussian sequence model, minimax estimation of the sum of

sparse means has been considered in Cai & Low (2004) and construction of confidence

intervals for the sum was studied in Cai & Low (2005). In particular, minimax

estimation rate and minimax expected length of confidence intervals are given in Cai

& Low (2004) and Cai & Low (2005), respectively. A more refined non-asymptotic

analysis for the minimax estimation of the sum of sparse means was given in a recent

paper Collier et al. (2015).

2.4.4 Computationally feasible confidence intervals

A major drawback of the minimax rate-optimal confidence intervals CISα (ξᵀβ, Z) given

in (2.3.11) and CIDα (ξᵀβ, Z) given in (2.4.3) is that they are not computationally fea-

sible as both depend on restricted eigenvalue κ(X, k, α0), which is difficult to evaluate.

In this section, we assume the prior knowledge of the sparsity k and discuss how to

construct a computationally feasible confidence interval.

The main idea is to replace the term involved with restricted eigenvalue by a

computationally feasible lower bound function ω (Ω, X, k) defined by

ω(Ω, X, k) =

 1

4
√
λmax (Ω)

−
9
(

1 + 405
max ‖X·j‖2
min ‖X·j‖2

)
√
λmin (Ω)

√
k

log p

n

2

+

. (2.4.10)

The lower bound relation is established by Lemma 13 in Chapter A, which is based on

the concentration inequality for Gaussian design in Raskutti et al. (2010). Except for
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λmin (Ω) and λmax (Ω), all terms in (2.4.10) are based on the data (X, y) and the prior

knowledge of k. To construct a data-dependent computationally feasible confidence

interval, we make the following assumption,

sup
Ω∈GΩ

PX
(

max
{∣∣∣ ˜λmin (Ω)− λmin (Ω)

∣∣∣ , ∣∣∣ ˜λmax (Ω)− λmax (Ω)
∣∣∣} ≥ Can,p

)
= o(1),

(2.4.11)

where lim sup an,p = 0 and GΩ is a pre-specified parameter space for Ω and PX denotes

the probability distribution with respect to X.

Remark 3. We assume GΩ is a subspace of the precision matrix defined in (2.2.4),{
Ω : 1

M1
≤ λmin (Ω) ≤ λmax (Ω) ≤M1

}
. By assuming GΩ is the set of precision ma-

trix of special structure, we can find estimators satisfying (2.4.11). For example,

if GΩ is assumed to be the set of sparse precision matrices, the precision matrix Ω

can be estimated by the CLIME estimator Ω̃ proposed in Cai et al. (2011). Un-

der a proper sparsity assumption on Ω, the plugin estimator
(

˜λmin (Ω), ˜λmax (Ω)
)

=(
λmin

(
Ω̃
)
, λmax

(
Ω̃
))

satisfies (2.4.11). Other special structures can also be as-

sumed, for example, the covariance matrix Σ is sparse. We can use the plugin es-

timator of the thresholding estimators proposed in Cai & Liu (2011); Cai & Zhou

(2012).

With ˜λmin (Ω) and ˜λmax (Ω), we define ω̃ (Ω, X, k) as

ω̃(Ω, X, k) =

 1

4

√
˜λmax (Ω)

−
9
(

1 + 405
max ‖X·j‖2
min ‖X·j‖2

)
√

˜λmin (Ω)

√
k

log p

n

2

+

.

and construct computationally feasible confidence intervals by replacing

κ2

(
X, k, 405

(
max ‖X·j‖2

min ‖X·j‖2

))
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in (2.3.11) and (2.4.3) with ω̃(Ω, X, k).

2.5 Confidence intervals for linear functionals with

prior knowledge Ω = I and σ = σ0

We have so far focused on the setting where both the precision matrix Ω and the noise

level σ are unknown, which is the case in most statistical applications. It is still of

theoretical interest to study the problem when Ω and σ are known. It is interesting

to contrast the results with the ones when Ω and σ are unknown. In this case, we

consider the setting where it is known a priori that Ω = I and σ = σ0 and specify the

parameter space as

Θ(k, I, σ0) = {θ = (β, I, σ0) : ‖β‖0 ≤ k}. (2.5.1)

We will discuss separately the minimax rates and adaptivity of confidence intervals

for the linear functionals in the sparse loading regime and dense loading regime over

the parameter space Θ(k, I, σ0).

2.5.1 Confidence intervals for linear functionals in the sparse

loading regime

The following theorem establishes the minimax rate of confidence intervals for linear

functionals in the sparse loading regime when there is prior knowledge that Ω = I

and σ = σ0.

Theorem 7. Suppose that 0 < α < 1
2

and k ≤ cmin{pγ, n
log p
} for some constants

c > 0 and 0 ≤ γ < 1
2
. If ξ belongs to the sparse loading regime (2.2.6), the minimax
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expected length for (1− α) level confidence intervals of ξᵀβ over Θ(k, I, σ0) satisfies

L∗α (Θ(k, I, σ0), ξᵀβ) � ‖ξ‖2√
n
. (2.5.2)

Compared with the minimax rate ‖ξ‖2√
n

+ ‖ξ‖2k
log p
n

for the unknown Ω and σ case

given in Theorem 1, the minimax rate in (2.5.2) is significantly different. With the

prior knowledge of Ω = I and σ = σ0, the above theorem shows that the minimax

expected length of confidence intervals for ξᵀβ is always of the parametric rate and

in particular does not depend on the sparsity parameter k. In this case, adaptive

confidence intervals for ξᵀβ is possible over the full range k ≤ c n
log p

. A similar result

for confidence intervals covering all βi was given in a recent paper Javanmard &

Montanari (2015). The focus of Javanmard & Montanari (2015) is on individual

coordinates, not general linear functionals.

The proof of Theorem 7 involves establishment of both minimax lower and upper

bounds. The lower bound follows from the same proof for the parametric lower

bound in Theorem 1. As both Ω and σ are known, the upper bound analysis is

easier than the unknown Ω and σ case and is similar to the one given in Javanmard

& Montanari (2015). For completeness, we detail the construction of a confidence

interval achieving the minimax length in (2.5.2) using the de-biasing method. We

first randomly split the samples (X, y) into two subsamples
(
X(1), y(1)

)
and

(
X(2), y(2)

)
with sample sizes n1 and n2, respectively. Without loss of generality, we assume that

n is even and n1 = n2 = n
2
. Let β̂ denote the Lasso estimator defined based on the

sample
(
X(1), y(1)

)
with the proper tuning parameter λ =

√
2.05 log p

n1
σ0,

β̂ = arg min
β∈Rp

‖y(1) −X(1)β‖2
2

2n1

+ λ

p∑
j=1

‖X(1)
·j ‖2√
n1

|βj|. (2.5.3)
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We define the following estimator of ξᵀβ,

µ̄ = ξᵀβ̂ +
1

n2

ξᵀ
(
X(2)

)ᵀ (
y(2) −X(2)β̂

)
. (2.5.4)

Based on the estimator, we construct the following confidence interval

CII
α (ξᵀβ, Z) =

[
µ̄− 1.01

‖ξ‖2√
n2

zα0/2σ0, µ̄+ 1.01
‖ξ‖2√
n2

zα0/2σ0

]
, (2.5.5)

where α0 = γ0α with 0 < γ0 < 1. It will be shown in Chapter A that the confidence

interval proposed in (2.5.5) has the nominal coverage probability asymptotically and

achieves the minimax length in (2.5.2).

2.5.2 Confidence intervals for linear functionals in the dense

loading regime

The following theorem establishes the adaptivity lower bound in the dense loading

regime.

Theorem 8. Suppose that 0 < α < 1
2

and k1 ≤ k ≤ cmin
{
pγ, n

log p

}
for some

constants c > 0 and 0 ≤ γ < 1
2
. If ξ belongs to the dense loading regime (2.2.7), then

there is some constant c1 > 0 such that

L∗α (Θ (k1, I, σ0) ,Θ (k, I, σ0) , ξᵀβ)

≥ c1‖ξ‖∞σ0 max

{√
kk1

√
log p

n
,min

{
k

√
log p

n
,

√
k

n
1
4

}}
. (2.5.6)

Remark 4. There are two parts in the lower bound given in (2.5.6), which are estab-

lished separately. The lower bound min

{
k
√

log p
n
,
√
k

n
1
4

}
is obtained using well known

techniques by testing a simple null against a composite alternative. The construction

of the least favorable set is quite standard. For example, such a construction of least
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favorable set has been used under the Gaussian sequence model in Baraud (2002) for

signal detection and in Cai & Low (2004, 2005) for estimation and confidence inter-

vals for linear functionals. The technique has also been used more recently in Ingster

et al. (2010); Nickl & van de Geer (2013) for detection and confidence ball in sparse

linear regression. On the other hand, the other lower bound,
√
kk1

√
log p
n

, cannot be

established using a similar argument and a novel comparison of two composite least

favorable spaces is introduced to establish this lower bound.

The lower bound given in (2.5.6) immediately yields the minimax lower bound for

the expected length of confidence intervals over Θ (k, I, σ0),

L∗α (Θ (k, I, σ0) , ξᵀβ) ≥ c1‖ξ‖∞k
√

log p

n
σ0,

by simply setting k1 = k in (2.5.6). Since this lower bound can be achieved by the

confidence interval constructed in (2.4.3), we have established the minimax conver-

gence rate L∗α (Θ (k1, I, σ0) , ξᵀβ) � ‖ξ‖∞k
√

log p
n
σ0, which is the same as the minimax

rate established in Theorem 4 for the case of unknown Ω and σ. Thus, in marked

contrast to the sparse loading regime, the prior knowledge of Ω = I and σ = σ0 does

not improve the minimax rate in the dense loading regime. Under the framework

(2.2.5), adaptive confidence intervals are still impossible, since for k1 � k,

L∗α (Θ (k1, I, σ0) ,Θ (k, I, σ0) , ξᵀβ)� L∗α (Θ (k1, I, σ0) , ξᵀβ) .

However, compared with Theorem 5, we observe that the cost of adaptation is reduced

with the prior knowledge of Ω = I and σ = σ0.
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2.6 Discussion

In the present paper we studied the minimaxity and adaptivity of confidence intervals

for general linear functionals ξᵀβ with a sparse or dense loading ξ for the setting where

Ω and σ are unknown as well as the setting with the prior knowledge of Ω = I and

σ = σ0. In the more typical case in practice where Ω and σ are unknown, the

adaptivity results are quite negative: With the exception of the ultra-sparse region

for confidence intervals for ξᵀβ with a sparse loading ξ, it is necessary to know the

true sparsity k in order to have guaranteed coverage probability and rate-optimal

expected length. In contrast to estimation, knowledge of the sparsity k is crucial to

constructing honest confidence intervals. In this sense, the problem of constructing

confidence intervals is much harder than the estimation problem.

The case of known Ω = I and σ = σ0 is strikingly different. The minimax expected

length in the sparse loading regime is of order ‖ξ‖2√
n

and in particular does not depend

on k and adaptivity can be achieved over the full range of sparsity k . n
log p

. So in

this case, the knowledge of Ω and σ is very useful. On the other hand, in the dense

loading regime the information on Ω and σ is of limited use. In this case, the minimax

rate and lack of adaptivity remain unchanged, compared with the unknown Ω and σ

case, although the cost of adaptation is reduced.

Regarding the construction of confidence intervals, there is a significant difference

between the sparse and dense loading regimes. The de-biasing method is useful in the

sparse loading regime since such a procedure reduces the bias but does not dramat-

ically increase the variance. However, the de-biasing construction is not applicable

to the dense loading regime since the cost of obtaining a near-unbiased estimator

is to significantly increase the variance which would lead to an unnecessarily long

confidence interval. An interesting open problem is the construction of a confidence

interval for ξᵀβ achieving the minimax length where the sparsity q of the loading ξ is
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in the middle regime with cpγ ≤ q ≤ cp2γ+ς for some 0 < ς < 1− 2γ.

In addition to constructing confidence intervals for linear functionals, another

interesting problem is constructing confidence balls for the whole vector β. Such has

been considered in Nickl & van de Geer (2013), where the impossibility of adaptive

confidence balls for sparse linear regression was established. These problems are

connected, but each has its own special features and the behaviors of the problems

are different from each other. The connections and differences in adaptivity among

various forms of confidence sets have also been observed in nonparametric function

estimation problems. See, for example, Cai & Low (2005) for adaptive confidence

intervals for linear functionals, Hoffmann & Nickl (2011); Cai et al. (2014) for adaptive

confidence bands, and Cai & Low (2006); Robins & van der Vaart (2006) for adaptive

confidence balls.

In the context of nonparametric function estimation, a general adaptation theory

for confidence intervals for an arbitrary linear functional was developed in Cai &

Low (2005) over a collection of convex parameter spaces. It was shown that the key

quantity that determines adaptivity is a geometric quantity called the between-class

modulus of continuity. The convexity assumption on the parameter space in Cai &

Low (2005) is crucial for the adaptation theory. In high-dimensional linear regression,

the parameter space is highly non-convex. The adaptation theory developed in Cai &

Low (2005) does not apply to the present setting of high-dimensional linear regression.

It would be of significant interest to develop a general adaptation theory for confidence

intervals in such a non-convex setting.

2.7 Proofs

In this section, we prove three main results, Theorem 1, Theorem 2 and Theorem 3.

For reasons of space, the proofs of Theorems 4-8 are given in Chapter A.
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A key technical tool for the proof of the lower bound results is the following

lemma which establishes the adaptivity over two nested parameter spaces. Such

a formulation has been considered in Cai & Low (2005) in the context of adaptive

confidence intervals over convex parameter spaces under the Gaussian sequence model.

However, the parameter space Θ(k) considered in the high dimension setting is highly

non-convex. The following lemma can be viewed as a generalization of Cai & Low

(2005) to the non-convex parameter space, where the lower bound argument requires

testing composite hypotheses.

Suppose that we observe a random variable Z which has a distribution Pθ where

the parameter θ belongs to the parameter space H. Let CIα (T, Z) be the confidence

interval for the linear functional T (θ) with the guaranteed coverage 1 − α over the

parameter space H. Let H0 and H1 be subsets of the parameter space H where

H = H0∪H1. Let πHi denote the prior distribution supported on the parameter space

Hi for i = 0, 1. Let fπHi (z) denote the density function of the marginal distribution of

Z with the prior πHi onHi for i = 0, 1. More specifically, fπHi (z) =
∫
fθ (z) πHi (θ) dθ,

for i = 0, 1.

Denote by PπHi the marginal distribution of Z with the prior πHi onHi for i = 0, 1.

For any function g, we write EπH0
(g (Z)) for the expectation of g (Z) with respect to

the marginal distribution of Z with the prior πH0 on H0. We define the χ2 distance

between two density functions f1 and f0 by

χ2(f1, f0) =

∫
(f1(z)− f0(z))2

f0(z)
dz =

∫
f 2

1 (z)

f0(z)
dz − 1 (2.7.1)

and the total variation distance by TV(f1, f0) =
∫
|f1(z)− f0(z)| dz. It is well known

that

TV(f1, f0) ≤
√
χ2(f1, f0). (2.7.2)
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Lemma 1. Assume T (θ) = µ0 for θ ∈ H0 and T (θ) = µ1 for θ ∈ H1 and H =

H0 ∪H1. For any CIα (T, Z) ∈ Iα (T,H),

L (CIα (T, Z) ,H) ≥ L (CIα (T, Z) ,H0) ≥ |µ1 − µ0|
(
1− 2α− TV

(
fπH1

, fπH0

))
+
.

(2.7.3)

2.7.1 Proof of Lemma 1

The supremum risk over H0 is lower bounded by the Bayesian risk with the prior πH0

on H0,

sup
θ∈H0

EθL (CIα (T, Z)) ≥
∫
θ

EθL (CIα (T, Z))πH0 (θ) dθ = EπH0
L (CIα (T, Z)) .

(2.7.4)

By the definition of CIα (T, Z) ∈ Iα (T,H) , we have

PπHi (µi ∈ CIα (T, Z)) =

∫
θ

Pθ (µi ∈ CIα (T, Z))πHi (θ) dθ ≥ 1− α, (2.7.5)

for i = 0, 1. By the following inequality

∣∣PπH1
(µ1 ∈ CIα (T, Z))− PπH0

(µ1 ∈ CIα (T, Z))
∣∣ ≤ TV

(
fπH1

, fπH0

)
,

then we have PπH0
(µ1 ∈ CIα (T, Z)) ≥ 1 − α − TV(fπH1

, fπH0
). This together with

(2.7.5) yields PπH0
(µ0, µ1 ∈ CIα (T, Z)) ≥ 1 − 2α − TV(fπH1

, fπH0
), which leads to

PπH0
(L (CIα (T, Z)) ≥ |µ1 − µ0|) ≥ 1−2α−TV(fπH1

, fπH0
).Hence, EπH0

L(CIα (T, Z)) ≥

|µ1 − µ0|(1 − 2α − TV(fπH1
, fπH0

))+. The lower bound (2.7.3) then follows from in-

equality (2.7.4).
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2.7.2 Proof of Theorem 3

The lower bound in (2.3.13) can divided into the following two lower bounds,

inf
CIα(ξᵀβ,Z)∈Iα(Θ(k),ξᵀβ)

Eθ∗L (CIα (ξᵀβ, Z)) ≥ c‖ξ‖2k
log p

n
σ, (2.7.6)

and

inf
CIα(ξᵀβ,Z)∈Iα(Θ(k),ξᵀβ)

Eθ∗L (CIα (ξᵀβ, Z)) ≥ c
‖ξ‖2√
n
σ, (2.7.7)

for some constant c > 0. We will establish the lower bounds (2.7.6) and (2.7.7)

separately.

Proof of (2.7.6) Without loss of generality, we assume supp(ξ) = {1, · · · , q}, where

q = ‖ξ‖0. We generate the orthogonal matrix M ∈ Rq×q such that its first row is

1
‖ξ‖2 ξsupp(ξ) and define the orthogonal matrix Q as Q =

M 0

0 I

. We transform both

the design matrix X and the regression vector β and view the linear model (3.2.1)

as y = V ψ + ε, where V = XQᵀ and ψ = Qβ. The transformed coefficient vector

ψ∗ = Qβ∗ =

Mβ∗supp(ξ)

β∗−supp(ξ)

 is of sparsity at most q + k1. The first coefficient ψ1 of ψ

is 1
‖ξ‖2 ξ

ᵀβ. The covariance matrix Ψ of V1· is QΣQᵀ and its corresponding precision

matrix is Γ = QΩQᵀ. To represent the transformed observed data and parameter, we

abuse the notation slightly and also use Zi = (yi, Vi·) and θ∗ = (ψ∗, I, σ). We define

the parameter space G (k) of (ψ,Γ, σ) as

G (k) = {(ψ,Γ, σ) : ψ = Qβ, Γ = QΩQᵀ for (β,Ω, σ) ∈ Θ (k)} . (2.7.8)

For a given Q, there exists a bijective mapping between Θ (k) and G (k). To

show that (ψ,Γ, σ) ∈ G (k), it is equivalent to show (Qᵀψ,QᵀΓQ, σ) ∈ Θ (k). Let

Iα (G (k) , ψ1) denote the set of confidence intervals for ψ1 = 1
‖ξ‖2 ξ

ᵀβ with guaran-
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teed coverage over G (k). If CIα (ψ1, Z) ∈ Iα (G (k) , ψ1), then ‖ξ‖2CIα (ψ1, Z) ∈

Iα (Θ (k) , ξᵀβ); If CIα (ξᵀβ, Z) ∈ Iα (Θ (k) , ξᵀβ), then 1
‖ξ‖2 CIα (ξᵀβ, Z) ∈ Iα (G (k) , ψ1).

Because of such one to one correspondence, we have

inf
CIα(ξᵀβ,Z)∈Iα(Θ(k),ξᵀβ)

Eθ∗L (CIα (ξᵀβ, Z)) = ‖ξ‖2 inf
CIα(ψ1,Z)∈Iα(G(k),ψ1)

Eθ∗L (CIα (ψ1, Z)) .

(2.7.9)

By (2.7.6) and (2.7.9), we reduce the problem to

inf
CIα(ψ1,Z)∈Iα(G(k),ψ1)

Eθ∗L (CIα (ψ1, Z)) ≥ ck
log p

n
σ. (2.7.10)

Under the Gaussian random design model, Zi = (yi, Vi·) ∈ Rp+1 follows a joint Gaus-

sian distribution with mean 0. Let Σz denotes the covariance matrix of Zi. Decompose

Σz into blocks

Σz
yy

(
Σz
vy

)ᵀ
Σz
vy Σz

vv

 , where Σz
yy, Σz

vv and Σz
vy denote the variance of y,

the variance of V and the covariance of y and V , respectively. We define the function

h : Σz → (ψ,Γ, σ) as h(Σz) =
(
(Σz

vv)
−1 Σz

vy, (Σ
z
vv)
−1 ,Σz

yy −
(
Σz
vy

)ᵀ
(Σz

vv)
−1 Σz

vy

)
. The

function h is bijective and its inverse mapping h−1 : (ψ,Γ, σ)→ Σz is

h−1 ((ψ,Γ, σ)) =

ψᵀΓ−1ψ + σ2 ψᵀΓ−1

Γ−1ψ Γ−1

 .

The null space is taken as H0 = {(ψ∗, I, σ)} and πH0 denotes the point mass prior

at this point. The proof is divided into three steps:

1. Construct H1 and show that H1 ⊂ G (k);

2. Control the distribution distance TV
(
fπH1

, fπH0

)
;

3. Calculate the distance µ1− µ0 where µ0 = ψ∗1 and µ1 = ψ1 with (ψ,Γ, σ) ∈ H1.

We show that µ1 = ψ1 is a fixed constant for all (ψ,Γ, σ) ∈ H1 and then apply
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Lemma 1.

Step 1. We construct the alternative hypothesis parameter space H1. Let Σz
0 denote

the covariance matrix of Zi corresponding to (ψ∗, I, σ) ∈ H0. Let S1 = supp (ψ∗)∪{1}

and S = S1\{1}. Let k∗ denote the size of S and p1 denote the size of Sc1 and we have

k∗ ≤ k1+q and p1 ≥ p−k∗−1 ≥ cp. Without loss of generality, let S = {2, · · · , k∗+1}.

We have the following expression for the covariance matrix of Zi under the null,

Σz
0 =



‖ψ∗‖2
2 + σ2 ψ∗1 (ψ∗S)ᵀ 01×p1

ψ∗1 1 01×k∗ 01×p1

ψ∗S 0k∗×1 Ik∗×k∗ 0k∗×p1

0p1×1 0p1×1 0p1×k∗ Ip1×p1


. (2.7.11)

To construct H1, we define the following set,

`

(
p1,

ζ0

2
k, ρ

)
=

{
δ : δ ∈ Rp1 , ‖δ‖0 =

ζ0

2
k, δi ∈ {0, ρ} for 1 ≤ i ≤ p1

}
. (2.7.12)

Define the parameter space F for Σz by F =
{

Σz
δ : δ ∈ `

(
p1,

ζ0
2
k, ρ
)}

, where

Σz
δ =



‖ψ∗‖2
2 + σ2 ψ∗1 (ψ∗S)ᵀ ρ0δ

ᵀ

ψ∗1 1 01×k∗ δᵀ

ψ∗S 0k∗×1 Ik∗×k∗ 0k∗×p1

ρ0δ δ 0p1×k∗ Ip1×p1


. (2.7.13)

Then we construct the alternative hypothesis space H1 for (ψ,Γ, σ), which is induced

by the mapping h and the parameter space F ,

H1 = {(ψ,Γ, σ) : (ψ,Γ, σ) = h (Σz) for Σz ∈ F} . (2.7.14)
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In the following, we show thatH1 ⊂ G (k). It is necessary to identify (ψ,Γ, σ) = h (Σz)

for Σz ∈ F and show (Qᵀψ,QᵀΓQ, σ) ∈ Θ (k). Firstly, we identify the expression

E (yi | Vi,·) under the alternative joint distribution (2.7.13). Assuming yi = Vi1ψ1 +

Vi,SψS + Vi,Sc1ψSc1 + ε′i, we have

ψ1 =
−‖δ‖2

2ρ0 + ψ∗1
1− ‖δ‖2

2

, ψS = ψ∗S, ψSc1 = (ρ0 − ψ1) δ, (2.7.15)

and

Var (ε′i) = σ2 − ‖δ‖
2
2 (ρ0 − ψ∗1)2

1− ‖δ‖2
2

≤ σ2 ≤M2. (2.7.16)

Based on (2.7.15), the sparsity of ψ in the alternative hypothesis space is upper

bounded by 1 + |supp (ψ∗S) | + |supp (δ) | ≤
(
1− ζ0

4

)
k, and hence the sparsity of the

corresponding β = Qᵀψ is controlled by

‖β‖0 ≤
(

1− ζ0

4

)
k + q ≤ k. (2.7.17)

Secondly, we show that Ω = QᵀΓQ satisfies the condition 1
M1
≤ λmin (Ω) ≤ λmax (Ω) ≤

M1. The covariance matrix Ψ of Vi,· in the alternative hypothesis parameter space is

expressed as

Ψ =


1 01×k∗ 0k∗×p1

0k∗×1 Ik∗×k∗ 0k∗×p1

0p1×1 0p1×k∗ Ip1×p1

+


0 01×k∗ δᵀ

0k∗×1 0k∗×k∗ 0k∗×p1

δ 0p1×k∗ 0p1×p1

 . (2.7.18)

Since the second matrix on the above equation is of spectral norm ‖δ‖2, Weyl’s

inequality leads to max {|λmin (Ψ)− 1| , |λmax (Ψ)− 1|} ≤ ‖δ‖2. When ‖δ‖2 is chosen

such that ‖δ‖2 ≤ min
{

1− 1
M1
,M1 − 1

}
, then we have 1

M1
≤ λmin (Ψ) ≤ λmax (Ψ) ≤

M1. Since Ω and Γ = QΩQᵀ have the same eigenvalues, we have 1
M1
≤ λmin (Ω) ≤
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λmax (Ω) ≤M1. Combined with (2.7.16) and (2.7.17), we show that H1 ⊂ G (k).

Step 2. To control TV
(
fπH1

, fπH0

)
, it is sufficient to control χ2

(
fπH1

, fπH0

)
and

apply (2.7.2). Let π denote the uniform prior on δ over `
(
p1,

ζ0
2
k, ρ
)
. Note that this

uniform prior π induces a prior distribution πH1 over the parameter spaceH1. Let Eδ,δ̃

denote the expectation with respect to the independent random variables δ, δ̃ with

uniform prior π over the parameter space `
(
p1,

ζ0
2
k, ρ
)
. The following lemma controls

the χ2 distance between the null and the mixture over the alternative distribution.

Lemma 2. Let f1 =
(
σ2 + (ψ∗1)2 − ρ0ψ

∗
1

)
. Then

χ2
(
fπH1

, fπH0

)
+ 1 = Eδ,δ̃

(
1− 1

σ2
(ρ0 (ρ0 − ψ∗1) + f1) δᵀδ̃

)−n
. (2.7.19)

The following lemma is useful in controlling the right hand side of (2.7.19).

Lemma 3. Let J be a Hypergeometric (p, k, k) variable with P (J = j) =
(kj)(

p−k
k−j)

(pk)
,

then

E exp (tJ) ≤ e
k2

p−k

(
1− k

p
+
k

p
exp (t)

)k
. (2.7.20)

Taking ρ0 = ψ∗1 + σ, we have 1
σ2 (ρ0 (ρ0 − ψ∗1) + f1) = 2 and by Lemma 2,

χ2
(
fπH1

, fπH0

)
+ 1 = Eδ,δ̃

(
1− 2δᵀδ̃

)−n
.

By the inequality 1
1−x ≤ exp(2x) for x ∈

[
0, log 2

2

]
, if δᵀδ̃ ≤ ζ0

2
kρ2 < log 2

4
, then(

1− 2δᵀδ̃
)−n
≤ exp

(
4nδᵀδ̃

)
. By Lemma 3, we further have

Eδ,δ̃ exp
(

4nδᵀδ̃
)

= E exp
(
4Jnρ2

)
≤ e

ζ20k
2

4p1−2ζ0k

(
1− ζ0k

2p1

+
ζ0k

2p1

exp
(
4nρ2

)) ζ0
2
k

≤ e
ζ20k

2

4p1−2ζ0k

(
1− ζ0k

2p1

+
ζ0k

2p1

√
4p1

ζ2
0k

2

) ζ0
2
k

≤ e
c2ζ20p

2γ

4p1−2cζ0p
γ

(
1 +

1
√
p1

) cζ0
2
pγ

,
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where the second inequality follows by plugging in ρ =

√
log

4p1
ζ20k

2

8n
and the last inequal-

ity follows by k ≤ cpγ. If k ≤ c
{

n
log p

, pγ
}

, where 0 ≤ γ < 1
2

and c is a sufficient small

positive constant, then kρ2 < min

{
log 2
2ζ0

,
(

1− 1
M1

)2

, 1

}
and hence

χ2
(
fπH1

, fπH0

)
≤
(

1

2
− α

)2

and TV
(
fπH1

, fπH0

)
≤ 1

2
− α. (2.7.21)

Step 3. We calculate the distance between µ1 and µ0. Under H0, µ0 = ψ∗1. Under

H1, µ1 = ψ1 =
−‖δ‖22ρ0+ψ∗1

1−‖δ‖22
. For δ ∈ `

(
p1,

ζ0
2
k, ρ
)
, ‖δ‖2

2 = ζ0
2
kρ2 and µ1 = ψ1 =

− ζ0
2
kρ2(ψ∗1+σ)+ψ∗1

1− ζ0
2
kρ2

. Since ρ is selected as fixed, µ1 = ψ1 is a fixed constant for (ψ,Γ, σ) ∈

H1. Note that µ1−µ0 =
‖δ‖22(ψ∗1−ρ0)

1−‖δ‖22
=
−σ‖δ‖22
1−‖δ‖22

, and it follows that |µ1−µ0| = σ
‖δ‖22

1−‖δ‖22
≥

ck
log

4p1
ζ20k

2

n
σ. Combined with (2.7.2) and (2.7.21), Lemma 1 leads to (2.7.10). By (2.7.9),

we establish (2.3.13).

Proof of (2.7.7) Similar to the proof of (2.7.6), the proof is divided into three steps.

The first step. We construct alternative hypothesis parameter space H1. For a given

ξ, β∗ and a small positive constant ε̄, we select β such that

β−supp(ξ) = β∗−supp(ξ), ‖βsupp(ξ) − β∗supp(ξ)‖2 = σ
ε̄√
n
. (2.7.22)

and

ξᵀ (β − β∗) =
∑

i∈supp(ξ)

ξi (βi − β∗i ) = ‖ξ‖2‖β − β∗‖2. (2.7.23)

The sparsity of β is controlled by ‖β‖0 ≤ ‖β∗‖0+‖ξ‖0 ≤ k, and hence (β, I, σ) ∈ Θ (k) .

We consider the parameter spaces H0 = {θ∗ = (β∗, I, σ)} and H1 = {(β, I, σ)}.

The second step. Let πH0 denote the point mass prior on the point (β∗, I, σ) and

πH1 denote the point mass prior on the point (β, I, σ). Let fπH0
(y | X) denote the

conditional density function of the marginal distribution of y given X with the pa-
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rameter πHi on Hi for i = 0, 1. The χ2 distance between the conditional distributions

fπH1
(y | X) and fπH0

(y | X) is

χ2
(
fπH1

(y | X) , fπH0
(y | X)

)
+ 1 = exp

(
1

σ2
‖X (β − β∗) ‖2

2

)
. (2.7.24)

Let EX denote the expectation with respect to X, where Xi·
i.i.d.∼ Np(0, I), i = 1, ..., n,

then we have

χ2
(
fπH1

(y,X) , fπH0
(y,X)

)
= EX

(
χ2
(
fπH1

(y | X) , fπH0
(y | X)

))
= EX exp

(
1

σ2
‖X (β − β∗) ‖2

2

)
− 1.

If
2‖β∗−β‖22

σ2 < log 2
2

, we have

χ2
(
fπH1

(y,X) , fπH0
(y,X)

)
=

(
1− 2‖β∗ − β‖2

2

σ2

)−n
2

− 1 ≤ exp

(
2n‖β∗ − β‖2

2

σ2

)
− 1,

(2.7.25)

where the first equality follows from the moment generating function of χ2 distribution

and the second inequality follows from the inequality 1
1−x ≤ exp(2x) for x ∈

[
0, log 2

2

]
.

The third step. We calculate the distance between µ1 = Tβ and µ0 = Tβ∗. Note

that µ0 and µ1 are fixed constants under the simple null and alternative hypothesis.

By Lemma 1, the construction (2.7.22) and (2.7.23) and the control of χ2 distance

(2.7.25) lead to

Eθ∗ (L(CIα (ξᵀβ, Z))) ≥ σ
ε̄√
n

(
1− 2α−

√
exp (2ε̄2)− 1

)
.

2.7.3 Proof of Theorem 2

Theorem 2 follows from Theorem 3. Given 0 < ζ0 < 1, we define k∗1 = min{k1, (1 −

ζ0)k−1} and q∗ = min{ ζ0
4
k, ‖ξ‖0}. Let J denote the subset of {1, · · · , p} correspond-
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ing to the q∗ largest in absolute value coordinates of ξ. Define the parameter space

Θξ(k) = {θ ∈ Θ(k) : βsupp(ξ)\J = 0}, which is a subspace of Θ(k) setting β to be zero

on the set supp(ξ)\J . Define the vector ξ̄ such that ξ̄j = ξj for j ∈ J and ξ̄j = 0 for

j 6∈ J . By the fact that ξᵀβ = ξ̄ᵀβ for β ∈ Θξ(k), we have

inf
CIα(ξᵀβ,Z)∈Iα(Θξ(k),ξᵀβ)

Eθ∗L (CIα(ξᵀβ, Z)) = inf
CIα(ξ̄ᵀβ,Z)∈Iα(Θξ(k),ξ̄ᵀβ)

Eθ∗L
(
CIα(ξ̄ᵀβ, Z)

)
.

It then follows from the same argument as the proof of Theorem 3 that

inf
CIα(ξ̄ᵀβ,Z)∈Iα(Θξ(k),ξ̄ᵀβ)

Eθ∗L
(
CIα(ξ̄ᵀβ, Z)

)
≥ c‖ξ̄‖2(

1√
n

+
k log p

n
).

By taking θ∗ ∈ Θξ(k
∗
1), we have

L∗α(Θξ(k
∗
1),Θξ(k), ξᵀβ) ≥ inf

CIα(ξᵀβ,Z)∈Iα(Θξ(k),ξᵀβ)
Eθ∗L (CIα (ξᵀβ, Z)) .

Since Θξ(k
∗
1) ⊂ Θ(k1), Θξ(k) ⊂ Θ(k) and ‖ξ̄‖2 ≥ c‖ξ‖2, we have established Theorem

2.

2.7.4 Proof of Theorem 1

The lower bound of Theorem 1 follows from Theorem 2 by taking k1 = k. The

minimax upper bound follows from the following proposition, which establishes the

coverage property and the expected length of the confidence interval constructed in

(2.3.11). Such a confidence interval achieves the minimax length in (2.3.1).

Proposition 1. Suppose that k ≤ c∗
n

log p
, where c∗ is a small positive constant, then

lim inf
n,p→∞

inf
θ∈Θ(k)

Pθ
(
ξᵀβ ∈ CISα (ξᵀβ, Z)

)
≥ 1− α, (2.7.26)

42



and

L
(
CISα (ξᵀβ, Z) ,Θ (k)

)
≤ C‖ξ‖2

(
k

log p

n
+

1√
n

)
, (2.7.27)

for some constant C > 0.

In the following, we are going to prove Proposition 1. By normalizing the columns

of X and the true sparse vector β, the linear regression model can be expressed as

y = Wd+ ε, with W = XD, d = D−1β and ε ∼ N(0, σ2I), (2.7.28)

where

D = diag

( √
n

‖X·j‖2

)
j∈[p]

(2.7.29)

denotes the p×p diagonal matrix with (j, j) entry to be
√
n

‖X·j‖2 . Take δ0 = 1.0048 and

η0 = 0.01, and we have λ0 = (1 + η0)
√

2δ0 log p
n

. Take ε0 = 2.01
η0

+ 1 = 202, ν0 = 0.01,

C1 = 2.25, c0 = 1
6

and C0 = 3. Rather than use the constants directly in the following

discussion, we use δ0, η0, ε0, ν0, C1, C0 and c0 to represent the above fixed constants in

the following discussion. We also assume that log p
n
≤ 1

25
and δ0 log p > 2. Define the

l1 cone invertibility factor (CIF1) as follows,

CIF1 (α0, K,W ) = inf

{
|K|‖W ᵀW

n
u‖∞

‖uK‖1

: ‖uKc‖1 ≤ α0‖uK‖1, u 6= 0

}
, (2.7.30)

where K is an index set. Define σora = 1√
n
‖y −Xβ‖2 = 1√

n
‖y −Wd‖2,

T = {k : |dk| ≥ λ0σ
ora}, τ = (1 + ε0)λ0 max

{
4

σora
‖dT c‖1,

8|T |
CIF1 (2ε0 + 1, T,W )

}
.

(2.7.31)

To facilitate the proof, we define the following events for the random design X and
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the error ε,

G1 =

{
2

5

1√
M1

<
‖X·j‖2√

n
<

7

5

√
M1 for 1 ≤ j ≤ p

}
,

G2 =

{∣∣∣∣∣(σora)2

σ2
− 1

∣∣∣∣∣ ≤ 2

√
log p

n
+ 2

log p

n

}
,

G3 =

{
max

{∣∣∣∣∣ξᵀΣ̂ξξᵀΣξ
− 1

∣∣∣∣∣ ,
∣∣∣∣∣uᵀΣ̂uξᵀΩξ

− 1

∣∣∣∣∣
}
≤ 2

√
log p

n
+ 2

log p

n

}
, where u = Ωξ,

G4 =

{
κ(X, k, α) ≥ 1

4
√
λmax (Ω)

− 9√
λmin (Ω)

(1 + α)

√
k

log p

n

}
,

G5 =

{
‖W ᵀε‖∞

n
≤ σ

√
2δ0 log p

n

}
,

S1 =

{
‖W ᵀε‖∞

n
≤ σoraλ0

ε0 − 1

ε0 + 1
(1− τ)

}
,

S2 = {(1− ν0) σ̂ ≤ σ ≤ (1 + ν0)σ̂} ,

B1 =
{
‖ξᵀΩΣ̂− ξᵀ‖∞ ≤ λn

}
, where λn = 4C0M

2
1‖ξ‖2

√
log p

n
.

Define G = ∩5
i=1Gi and S = ∩2

i=1Si. The following lemmas control the probability

of events G, S and B1. The detailed proofs of Lemma 4, 5 and 6 are in the supplement.

Lemma 4.

Pθ (G) ≥ 1− 6

p
− 2p1−C1 − 1

2
√
πδ0 log p

p1−δ0 − c′ exp (−cn) , (2.7.32)

and

Pθ (B1) ≥ 1− 2p1−c0C2
0 , (2.7.33)

where c and c′ are universal positive constants. If k ≤ c∗
n

log p
, then

Pθ (G ∩ S) ≥ Pθ (G)− 2 exp

(
−
(
g0 + 1−

√
2g0 + 1

2

)
n

)
− c′′ 1√

log p
p1−δ0 , (2.7.34)
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where c∗ and c′′ are universal positive constants and g0 = ν0

2+3ν0
.

The following lemma establishes a data-dependent upper bound for the term ‖β̂−

β‖1.

Lemma 5. On the event G ∩ S,

‖β̂ − β‖1 ≤ (2 + 2ε0)

√
n

min ‖X·j‖2

l (Z, k) , (2.7.35)

where

l (Z, k) = max

kλ0σ
ora,

(2 + 2ε0) max ‖X·j‖2
2

(
σ
√

2δ0 log p
n

+ λ0σ̂

)
k

nκ2
(
X, k, (1 + 2ε0)

(
max ‖X·j‖2
min ‖X·j‖2

))
 . (2.7.36)

The following lemma controls the radius of the confidence interval.

Lemma 6. On the event G ∩ S ∩B1, there exists p0 such that if p ≥ p0,

ρ1 (k) ≤ C‖ξ‖2

(
1√
n

+
k log p

n

)
σ ≤ ‖ξ‖2 log p

(
1√
n

+
k log p

n

)
σ̂, (2.7.37)

ρ2 (k) ≤ Ck

√
log p

n
σ ≤ log p

(
k

√
log p

n
σ̂

)
. (2.7.38)

In the following, we establish the coverage property of the proposed confidence

interval. By the definition of µ̃ in (2.3.6), we have

µ̃− ξᵀβ =
1

n
ûᵀXᵀε+

(
ξᵀ − ûᵀΣ̂

)(
β̂ − β

)
. (2.7.39)

We now construct a confidence interval for the variance term 1
n
ûᵀXᵀε by normal dis-

tribution and a high probability upper bound for the bias term
(
ξᵀ − ûᵀΣ̂

)(
β̂ − β

)
.
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Since ε is independent of X and û and Σ̂ is a function of X, we have 1
n
ûᵀXᵀε | X ∼

N
(

0, σ2 ûᵀΣ̂û
n

)
, and

Pε|X

 1

n
ûᵀXᵀε ∈

−
√
ûᵀΣ̂û

n
σzα/2,

√
ûᵀΣ̂û

n
σzα/2

∣∣∣∣∣∣X
 = 1− α.

By (2.7.39), we have Pε|X (ξᵀβ ∈ CI0 (Z, k)|X) = 1− α, where

CI0(Z, k) =

[
µ̃−

(
ξᵀ − ûᵀΣ̂

)(
β̂ − β

)
−

√
ûᵀΣ̂û

n
σzα/2,

µ̃−
(
ξᵀ − ûᵀΣ̂

)(
β̂ − β

)
+

√
ûᵀΣ̂û

n
σzα/2

]
.

Integrating with respect to X, we have

Pθ (ξᵀβ ∈ CI0 (Z, k)) =

∫
Pε|x (ξᵀβ ∈ CI0 (Z, k)|x) f(x)dx = 1− α. (2.7.40)

Since
∣∣∣(ξᵀ − ûᵀΣ̂)(β̂ − β)∣∣∣ ≤ ‖ξᵀ − ûᵀΣ̂‖∞‖β̂ − β‖1, on the event S ∩G, Lemma 5

and the constraint in (2.3.5) lead to

‖ξᵀ − ûᵀΣ̂‖∞‖β̂ − β‖1 ≤ λn (2 + 2ε0)

√
n

min ‖X·j‖2

l (Z, k) , (2.7.41)

where l (Z, k) is defined in (2.7.36). On the event G ∩ S, we also have σ ≤ (1 + ν0) σ̂

and σora ≤ (1 + ν0)

√
1 + 2

√
log p
n

+ 2 log p
n
σ̂. We define the following confidence inter-

val to facilitate the discussion, CI1 (Z, k) = (µ̃− lk, µ̃+ lk) , where

lk = (1 + ν0)

√
ûᵀΣ̂û

n
zα/2σ̂ + C1 (X, k) ‖ξ‖2k

log p

n
σ̂.

On the event G ∩ S, we have

CI0 (Z, k) ⊂ CI1 (Z, k) . (2.7.42)
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On the event S2, if p ≥ exp (2M2), then σ̂ ≤ 1
1−ν0

σ ≤ 1
1−ν0

M2 < log p. Hence, the

event A holds and CISα (ξᵀβ, Z) = [µ̃− ρ1(k), µ̃+ ρ1(k)]. By Lemma 6, on the event

G ∩ S ∩B1, if p ≥ max {p0, exp (2M2)}, we have ρ1 (k) = lk, and hence

CI1 (Z, k) = CISα (ξᵀβ, Z) . (2.7.43)

We have the following bound on the coverage probability,

Pθ
({
ξᵀβ ∈ CISα (ξᵀβ, Z)

})
≥ Pθ ({ξᵀβ ∈ CI0 (Z, k)} ∩ S ∩G ∩B1)

≥Pθ ({ξᵀβ ∈ CI0 (Z, k)})− Pθ ((S ∩G ∩B1)c) = 1− α− Pθ ((S ∩G ∩B1)c)

=Pθ (S ∩G ∩B1)− α,

where the first inequality follows from (2.7.42) and (2.7.43) and the first equality

follows from (2.7.40). Combined with Lemma 4, we establish (2.7.26). We control

the expected length as follows,

EθL
(
CISα (ξᵀβ, Z)

)
= EθL

(
CISα (ξᵀβ, Z)

)
1A

=EθL
(
CISα (ξᵀβ, Z)

)
1A∩(S∩G∩B1) + EθL

(
CISα (ξᵀβ, Z)

)
1A∩(S∩G∩B1)c

≤C‖ξ‖2

(
k

log p

n
+

1√
n

)
σ + ‖ξ‖2 (log p)2

(
1√
n

+
k log p

n

)
Pθ ((S ∩G ∩B1)c)

≤C‖ξ‖2

(
k

log p

n
+

1√
n

)(
σ + C

(
p1−min{δ0,C1,c0C2

0} + c′ exp (−cn)
)

(log p)2
)
,

(2.7.44)

where the first inequality follows from (2.7.37) and second inequality follows from

Lemma 4. If log p
n
≤ c, then

(
p1−min{δ0,C1,c0C2

0} + c′ exp (−cn)
)

(log p)2 → 0, and

hence EθL
(
CISα (ξᵀβ, Z)

)
≤ C‖ξ‖2

(
k log p

n
+ 1√

n

)
M2.
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3
Accuracy Assessment for High-dimensional Linear

Regression

3.1 Introduction

In many applications, the goal of statistical inference is not only to construct a good

estimator, but also to provide a measure of accuracy for this estimator. In classical

statistics, when the parameter of interest is one-dimensional, this is achieved in the

form of a standard error or a confidence interval. A prototypical example is the

inference for a binomial proportion, where often not only an estimate of the proportion

but also its margin of error are given. Accuracy measures of an estimation procedure

have also been used as a tool for the empirical selection of tuning parameters. A

well known example is Stein’s Unbiased Risk Estimate (SURE), which has been an

effective tool for the construction of data-driven adaptive estimators in normal means

estimation, nonparametric signal recovery, covariance matrix estimation, and other

problems. See, for instance, Stein (1981); Li (1985); Donoho & Johnstone (1995); Cai

& Zhou (2009); Yi & Zou (2013). The commonly used cross-validation methods can

also be viewed as a useful tool based on the idea of empirical assessment of accuracy.

In this paper, we consider the problem of estimating the loss of a given estimator

in the setting of high-dimensional linear regression, where one observes (X, y) with
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X ∈ Rn×p and y ∈ Rn, and for 1 ≤ i ≤ n,

yi = Xi·β + εi.

Here β ∈ Rp is the regression vector, Xi·
iid∼ Np(0,Σ) are the rows of X, and the

errors εi
iid∼ N(0, σ2) are independent of X. This high-dimensional linear model has

been well studied in the literature, where the main focus has been on estimation of β.

Several penalized/constrained `1 minimization methods, including Lasso (Tibshirani,

1996), Dantzig selector (Candès & Tao, 2007), scaled Lasso (Sun & Zhang, 2012)

and square-root Lasso (Belloni et al., 2011), have been proposed. These methods

have been shown to work well in applications and produce interpretable estimates

of β when β is assumed to be sparse. Theoretically, with a properly chosen tuning

parameter, these estimators achieve the optimal rate of convergence over collections

of sparse parameter spaces. See, for example, Candès & Tao (2007); Sun & Zhang

(2012); Belloni et al. (2011); Raskutti et al. (2011); Bickel et al. (2009); Bühlmann &

van de Geer (2011); Verzelen (2012).

For a given estimator β̂, the `q loss ‖β̂ − β‖2
q with 1 ≤ q ≤ 2 is commonly used as

a metric of accuracy for β̂. We consider in the present paper both point and interval

estimation of the `q loss ‖β̂ − β‖2
q for a given β̂. Note that the loss ‖β̂ − β‖2

q is

a random quantity, depending on both the estimator β̂ and the parameter β. For

such a random quantity, prediction and prediction interval are ususally used for point

and interval estimation, respectively. However, we slightly abuse the terminologies

in the present paper by using estimation and confidence interval to represent the

point and interval estimators of the loss ‖β̂ − β‖2
q. Since the `q loss depends on

the estimator β̂, it is necessary to specify the estimator in the discussion of loss

estimation. Throughout this paper, we restrict our attention to a broad collection of

estimators β̂ that perform well at least at one interior point or a small subset of the
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parameter space. This collection of estimators includes most state-of-art estimators

such as Lasso, Dantzig selector, scaled Lasso and square-root Lasso.

High-dimensional linear regression has been well studied in two settings. One is

the setting with known design covariance matrix Σ = I, known noise level σ = σ0

and sparse β. See for example, Donoho et al. (2011); Bayati & Montanari (2012);

Nickl & van de Geer (2013); Verzelen (2012); Thrampoulidis et al. (2015); Cai &

Guo (2016b); Arias-Castro et al. (2011); Ingster et al. (2010). Another commonly

considered setting is sparse β with unknown Σ and σ. We study point and interval

estimation of the `q loss ‖β̂ − β‖2
q in both settings. Specifically, we consider the

parameter space Θ0(k) introduced in (3.2.3), which consists of k-sparse signals β

with known design covariance matrix Σ = I and known noise level σ = σ0, and Θ(k)

defined in (3.2.4), which consists of k-sparse signals with unknown Σ and σ.

3.1.1 Our contributions

The present paper studies the minimax and adaptive estimation of the loss ‖β̂ −

β‖2
q for a given estimator β̂ and the minimax expected length and adaptivity of

confidence intervals for the loss. A major step in our analysis is to establish rate

sharp lower bounds for the minimax estimation error and the minimax expected

length of confidence intervals for the `q loss over Θ0(k) and Θ(k) for a broad class

of estimators of β, which contains the subclass of rate-optimal estimators. We then

focus on the estimation of the loss of rate-optimal estimators and take the Lasso

and scaled Lasso estimators as generic examples. For these rate-optimal estimators,

we propose procedures for point estimation as well as confidence intervals for their

`q losses. It is shown that the proposed procedures achieve the corresponding lower

bounds up to a constant factor. These results together establish the minimax rates for

estimating the `q loss of rate-optimal estimators over Θ0(k) and Θ(k). The analysis
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shows interesting and significant differences between estimating the `2 loss and `q loss

with 1 ≤ q < 2 as well as between the two parameter spaces Θ(k) and Θ0(k).

• The minimax rate for estimating ‖β̂ − β‖2
2 over Θ0(k) is min

{
1√
n
, k log p

n

}
and

over Θ(k) is k log p
n

. So loss estimation is much easier with the prior information

Σ = I and σ = σ0 when
√
n

log p
� k . n

log p
.

• The minimax rate for estimating ‖β̂ − β‖2
q with 1 ≤ q < 2 over both Θ0(k) and

Θ(k) is k
2
q log p

n
.

In the regime
√
n

log p
� k . n

log p
, a practical loss estimator is proposed for estimating

the `2 loss and shown to achieve the optimal convergence rate 1√
n

adaptively over

Θ0(k). We say estimation of loss is impossible if the minimax rate can be achieved

by the trivial estimator 0, which means that the estimation accuracy of the loss is at

least of the same order as the loss itself. In all other considered cases, estimation of

loss is shown to be impossible. These results indicate that loss estimation is difficult.

We then turn to the construction of confidence intervals for the `q loss. A confi-

dence interval for the loss is useful even when it is “impossible” to estimate the loss,

as a confidence interval can provide non-trivial upper and lower bounds for the loss.

In terms of convergence rate over Θ0(k) or Θ(k), the minimax rate of the expected

length of confidence intervals for the `q loss, ‖β̂ − β‖2
q, of any rate-optimal estimator

β̂ coincides with the minimax estimation rate. We also consider the adaptivity of

confidence intervals for the `q loss of any rate-optimal estimator β̂. (The framework

for adaptive confidence intervals is discussed in detail in Section 3.3.1.) Regarding

confidence intervals for the `2 loss in the case of known Σ = I and σ = σ0, a procedure

is proposed and is shown to achieve the optimal length 1√
n

adaptively over Θ0(k) for
√
n

log p
. k . n

log p
. Furthermore, it is shown that this is the only regime where adaptive

confidence intervals exist, even over two given parameter spaces. For example, when

k1 �
√
n

log p
and k1 � k2, it is impossible to construct a confidence interval for the `2
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loss with guaranteed coverage probability over Θ0(k2) (consequently also over Θ0(k1))

and with the expected length automatically adjusted to the sparsity. Similarly, for

the `q loss with 1 ≤ q < 2, construction of adaptive confidence intervals is impossible

over Θ0(k1) and Θ0(k2) for k1 � k2 . n
log p

. Regarding confidence intervals for the `q

loss with 1 ≤ q ≤ 2 in the case of unknown Σ and σ, the impossibility of adaptivity

also holds over Θ(k1) and Θ(k2) for k1 � k2 . n
log p

.

Establishing rate-optimal lower bounds requires the development of new technical

tools. One main difference between loss estimation and the traditional parameter

estimation is that for loss estimation the constraint is on the performance of the

estimator β̂ of the regression vector β, but the lower bound is on the difficulty of

estimating its loss ‖β̂−β‖2
q. We introduce useful new lower bound techniques for the

minimax estimation error and the expected length of adaptive confidence intervals for

the loss ‖β̂ − β‖2
q. In several important cases, it is necessary to test a composite null

against a composite alternative in order to establish rate sharp lower bounds. The

technical tools developed in this paper can also be of independent interest.

In addition to Θ0(k) and Θ(k), we also study an intermediate parameter space

where the noise level σ is known and the design covariance matrix Σ is unknown

but of certain structure. Lower bounds for the expected length of minimax and

adaptive confidence intervals for ‖β̂ − β‖2
q over this parameter space are established

for a broad collection of estimators β̂ and are shown to be rate sharp for the class of

rate-optimal estimators. Furthermore, the lower bounds developed in this paper have

wider implications. In particular, it is shown that they lead immediately to minimax

lower bounds for estimating ‖β‖2
q and the expected length of confidence intervals for

‖β‖2
q with 1 ≤ q ≤ 2.
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3.1.2 Comparison with other works

Statistical inference on the loss of specific estimators of β has been considered in

the recent literature. The papers Donoho et al. (2011); Bayati & Montanari (2012)

established, in the setting Σ = I and n/p → δ ∈ (0,∞), the limit of the normalized

loss 1
p
‖β̂(λ) − β‖2

2 where β̂(λ) is the Lasso estimator with a pre-specified tuning

parameter λ. Although Donoho et al. (2011); Bayati & Montanari (2012) provided

an exact asymptotic expression of the normalized loss, the limit itself depends on the

unknown β. In a similar setting, the paper Thrampoulidis et al. (2015) established

the limit of a normalized `2 loss of the square-root Lasso estimator. These limits of

the normalized losses help understand the properties of the corresponding estimators

of β, but they do not lead to an estimate of the loss. Our results imply that although

these normalized losses have a limit under certain regularity conditions, such losses

cannot be estimated well in most settings.

A recent paper, Janson et al. (2015), constructed a confidence interval for ‖β̂−β‖2
2

in the case of known Σ = I, unknown noise level σ, and moderate dimension where

n/p→ ξ ∈ (0, 1) and no sparsity is assumed on β. While no sparsity assumption on

β is imposed, their method requires the assumption of Σ = I and n/p → ξ ∈ (0, 1).

In contrast, in this paper, we consider both unknown Σ and known Σ = I settings,

while allowing p� n and assuming sparse β.

Honest adaptive inference has been studied in the nonparametric function esti-

mation literature, including Cai & Low (2005) for adaptive confidence intervals for

linear functionals, Hoffmann & Nickl (2011); Cai et al. (2014) for adaptive confidence

bands, and Cai & Low (2006); Robins & van der Vaart (2006) for adaptive confi-

dence balls, and in the high-dimensional linear regression literature, including Nickl

& van de Geer (2013) for adaptive confidence set and Cai & Guo (2016b) for adaptive

confidence interval for linear functionals. In this paper, we develop new lower bound
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tools, Theorems 16 and 17, to establish the possibility of adaptive confidence intervals

for ‖β̂−β‖2
q. The connection between `2 loss considered in the current paper and the

work Nickl & van de Geer (2013) is discussed in more detail in Section 3.3.2.

3.1.3 Organization

Section 3.2 establishes the minimax lower bounds of estimating the loss ‖β̂−β‖2
q with

1 ≤ q ≤ 2 over both Θ0(k) and Θ(k) and shows that these bounds are rate sharp

for the Lasso and scaled Lasso estimators, respectively. We then turn to interval

estimation of ‖β̂ − β‖2
q. Sections 3.3 and 3.4 present the minimax and adaptive

minimax lower bounds for the expected length of confidence intervals for ‖β̂ − β‖2
q

over Θ0(k) and Θ(k). For Lasso and scaled Lasso estimators, we show that the

lower bounds can be achieved and investigate the possibility of adaptivity. Section

3.5 considers the rate-optimal estimators and establishes the minimax convergence

rate of estimating their `q losses. Section 3.6 presents new minimax lower bound

techniques for estimating the loss ‖β̂ − β‖2
q. Section 3.7 discusses the minimaxity

and adaptivity in another setting, where the noise level σ is known and the design

covariance matrix Σ is unknown but of certain structure. Section 3.8 applies the

newly developed lower bounds to establish lower bounds for a related problem, that

of estimating ‖β‖2
q. Section 3.9 proves the main results and additional proofs are

given in Chapter B.

3.1.4 Notation

For a matrix X ∈ Rn×p, Xi·, X·j, and Xi,j denote respectively the i-th row, j-th

column, and (i, j) entry of the matrix X. For a subset J ⊂ {1, 2, · · · , p}, |J | denotes

the cardinality of J , J c denotes the complement {1, 2, · · · , p}\J , XJ denotes the

submatrix of X consisting of columns X·j with j ∈ J and for a vector x ∈ Rp, xJ
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is the subvector of x with indices in J . For a vector x ∈ Rp, supp(x) denotes the

support of x and the `q norm of x is defined as ‖x‖q = (
∑p

i=1 |xi|q)
1
q for q ≥ 0

with ‖x‖0 = |supp(x)| and ‖x‖∞ = max1≤j≤p |xj|. For a ∈ R, a+ = max {a, 0}. We

use max ‖X·j‖2 as a shorthand for max1≤j≤p ‖X·j‖2 and min ‖X·j‖2 as a shorthand for

min1≤j≤p ‖X·j‖2. For a matrix A, we define the spectral norm ‖A‖2 = sup‖x‖2=1 ‖Ax‖2

and the matrix `1 norm ‖A‖L1 = sup1≤j≤p
∑p

i=1 |Aij|; For a symmetric matrix A,

λmin (A) and λmax (A) denote respectively the smallest and largest eigenvalue of A.

We use c and C to denote generic positive constants that may vary from place to place.

For two positive sequences an and bn, an . bn means an ≤ Cbn for all n and an & bn

if bn . an and an � bn if an . bn and bn . an, and an � bn if lim supn→∞
an
bn

= 0 and

an � bn if bn � an.

3.2 Minimax estimation of the `q loss

We begin by presenting the minimax framework for estimating the `q loss, ‖β̂−β‖2
q, of

a given estimator β̂, and then establish the minimax lower bounds for the estimation

error for a broad collection of estimators β̂. We also show that such minimax lower

bounds can be achieved for the Lasso and scaled Lasso estimators.

3.2.1 Problem formulation

Recall the high-dimensional linear model,

yn×1 = Xn×pβp×1 + εn×1, ε ∼ Nn(0, σ2I). (3.2.1)

We focus on the random design with Xi·
iid∼ N (0,Σ) and Xi· and εi are independent.

Let Z = (X, y) denote the observed data and β̂ be a given estimator of β. Denoting

by L̂q(Z) any estimator of the loss ‖β̂ − β‖2
q, the minimax rate of convergence for
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estimating ‖β̂ − β‖2
q over a parameter space Θ is defined as the largest quantity

γβ̂,`q(Θ) such that

inf
L̂q

sup
θ∈Θ

Pθ
(
|L̂q(Z)− ‖β̂ − β‖2

q| ≥ γβ̂,`q(Θ)
)
≥ δ, (3.2.2)

for some constant δ > 0 not depending on n or p. We shall write L̂q for L̂q(Z) when

there is no confusion.

We denote the parameter by θ = (β,Σ, σ), which consists of the signal β, the

design covariance matrix Σ and the noise level σ. For a given θ = (β,Σ, σ), we

use β(θ) to denote the corresponding β. Two settings are considered: The first is

known design covariance matrix Σ = I and known noise level σ = σ0 and the other

is unknown Σ and σ. In the first setting, we consider the following parameter space

that consists of k-sparse signals,

Θ0(k) = {(β, I, σ0) : ‖β‖0 ≤ k} , (3.2.3)

and in the second setting, we consider

Θ(k) =

{
(β,Σ, σ) : ‖β‖0 ≤ k,

1

M1

≤ λmin (Σ) ≤ λmax (Σ) ≤M1, 0 < σ ≤M2

}
,

(3.2.4)

where M1 ≥ 1 and M2 > 0 are constants. The parameter space Θ0(k) is a subset of

Θ(k), which consists of k-sparse signals with unknown Σ and σ.

The minimax rate γβ̂,`q(Θ) for estimating ‖β̂− β‖2
q also depends on the estimator

β̂. Different estimators β̂ could lead to different losses ‖β̂ − β‖2
q and in general the

difficulty of estimating the loss ‖β̂ − β‖2
q varies with β̂. We first recall the properties

of some state-of-art estimators and then specify the collection of estimators on which

we focus in this paper. As shown in Candès & Tao (2007); Bickel et al. (2009);
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Belloni et al. (2011); Sun & Zhang (2012), Lasso, Dantzig Selector, scaled Lasso and

square-root Lasso satisfy the following property if the tuning parameter is properly

chosen,

sup
θ∈Θ(k)

Pθ
(
‖β̂ − β‖2

q ≥ Ck
2
q

log p

n

)
→ 0, (3.2.5)

where C > 0 is a constant. The minimax lower bounds established in Verzelen (2012);

Raskutti et al. (2011); Ye & Zhang (2010) imply that k
2
q log p

n
is the optimal rate for

estimating β over the parameter space Θ(k). It should be stressed that all of these

algorithms do not require knowledge of the sparsity k and are thus adaptive to the

sparsity provided k . n
log p

. We consider a broad collection of estimators β̂ satisfying

one of the following two assumptions.

(A1) The estimator β̂ satisfies, for some θ0 = (β∗, I, σ0),

Pθ0
(
‖β̂ − β∗‖2

q ≥ C∗‖β∗‖
2
q

0

log p

n
σ2

0

)
≤ α0, (3.2.6)

where 0 ≤ α0 <
1
4

and C∗ > 0 are constants.

(A2) The estimator β̂ satisfies

sup
{θ=(β∗,I,σ):σ≤2σ0}

Pθ
(
‖β̂ − β∗‖2

q ≥ C∗‖β∗‖
2
q

0

log p

n
σ2

)
≤ α0, (3.2.7)

where 0 ≤ α0 <
1
4

and C∗ > 0 are constants and σ0 > 0 is given.

In view of the minimax rate given in (3.2.5), Assumption (A1) requires β̂ to be

a good estimator of β at at least one point θ0 ∈ Θ0(k). Assumption (A2) is slightly

stronger than (A1) and requires β̂ to estimate β well for a single β∗ but over a range

of noise levels σ ≤ 2σ0 while Σ = I. Of course, any estimator β̂ satisfying (3.2.5)

satisfies both (A1) and (A2). In addition to Assumptions (A1) and (A2), we also

introduce the following sparsity assumptions that will be used in various theorems.
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(B1) Let c0 be the constant defined in (3.9.14). The sparsity levels k and k0 satisfy

k ≤ c0 min{pγ, n
log p
} for some constant 0 ≤ γ < 1

2
and k0 ≤ c0 min{k,

√
n

log p
}.

(B2) The sparsity levels k1, k2 and k0 satisfy k1 ≤ k2 ≤ c0 min{pγ, n
log p
} for some

constant 0 ≤ γ < 1
2

and c0 > 0 and k0 ≤ c0 min{k1,
√
n

log p
}.

3.2.2 Minimax estimation of the `q loss over Θ0(k)

The following theorem establishes the minimax lower bounds for estimating the loss

‖β̂ − β‖2
q over the parameter space Θ0 (k).

Theorem 9. Suppose that the sparsity levels k and k0 satisfy Assumption (B1). For

any estimator β̂ satisfying Assumption (A1) with ‖β∗‖0 ≤ k0,

inf
L̂2

sup
θ∈Θ0(k)

Pθ
(
|L̂2 − ‖β̂ − β‖2

2| ≥ cmin

{
k

log p

n
,

1√
n

}
σ2

0

)
≥ δ. (3.2.8)

For any estimator β̂ satisfying Assumption (A2) with ‖β∗‖0 ≤ k0,

inf
L̂q

sup
θ∈Θ0(k)

Pθ
(
|L̂q − ‖β̂ − β‖2

q| ≥ ck
2
q

log p

n
σ2

0

)
≥ δ, for 1 ≤ q < 2, (3.2.9)

where δ > 0 and c > 0 are constants.

Remark 5. Assumption (A1) restricts our focus to estimators that can perform well

at at least one point (β∗, I, σ0) ∈ Θ0(k). This weak condition makes the established

lower bounds widely applicable as the benchmark for evaluating estimators of the `q

loss of any β̂ that performs well at a proper subset, or even a single point of the whole

parameter space.

In this paper, we focus on estimating the loss ‖β̂ − β‖2
q with 1 ≤ q ≤ 2. Similar

results can be established for the loss in the form of ‖β̂ − β‖qq with 1 ≤ q ≤ 2; Under

the same assumptions as those in Theorem 9, the lower bounds for estimating the loss
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‖β̂−β‖qq hold with replacing the convergence rates with their q
2

power; that is, (3.2.8)

remains the same while the convergence rate k
2
q (
√

log p/nσ0)2 in (3.2.9) is replaced

by k(
√

log p/nσ0)q. Similarly, all the results established in the rest of the paper for

‖β̂ − β‖2
q hold for ‖β̂ − β‖qq with corresponding convergence rates replaced by their q

2

power.

Theorem 9 establishes the minimax lower bounds for estimating the `2 loss ‖β̂−β‖2
2

of any estimator β̂ satisfying Assumption (A1) and the `q loss ‖β̂−β‖2
q with 1 ≤ q < 2

of any estimator β̂ satisfying Assumption (A2). We will take the Lasso estimator as an

example and demonstrate the implications of the above theorem. We randomly split

Z = (y,X) into subsamples Z(1) =
(
y(1), X(1)

)
and Z(2) =

(
y(2), X(2)

)
with sample

sizes n1 and n2, respectively. The Lasso estimator β̂L based on the first subsample

Z(1) =
(
y(1), X(1)

)
is defined as

β̂L = arg min
β∈Rp

‖y(1) −X(1)β‖2
2

n1

+ λ

p∑
j=1

‖X(1)
·j ‖2√
n1

|βj|, (3.2.10)

where λ = A
√

log p/n1σ0 with A >
√

2 being a pre-specified constant. With-

out loss of generality, we assume n1 � n2. For the case 1 ≤ q < 2, (3.2.5) and

(3.2.9) together imply that the estimation of the `q loss ‖β̂L− β‖2
q is impossible since

the lower bound can be achieved by the trivial estimator of the loss, 0. That is,

supθ∈Θ0(k) Pθ
(
|0− ‖β̂L − β‖2

q| ≥ Ck
2
q log p

n

)
→ 0.

For the case q = 2, in the regime k �
√
n

log p
, the lower bound k log p

n
in (3.2.8) can be

achieved by the zero estimator and hence estimation of the loss ‖β̂L−β‖2
2 is impossible.

However, the interesting case is when
√
n

log p
. k . n

log p
, the loss estimator L̃2 proposed

in (3.2.11) achieves the minimax lower bound 1√
n

in (3.2.8), which cannot be achieved

by the zero estimator. We now detail the construction of the loss estimator L̃2. Based
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on the second half sample Z(2) =
(
y(2), X(2)

)
, we propose the following estimator,

L̃2 =

(
1

n2

∥∥∥y(2) −X(2)β̂L
∥∥∥2

2
− σ2

0

)
+

. (3.2.11)

Note that the first subsample Z(1) =
(
y(1), X(1)

)
is used to produce the Lasso estima-

tor β̂L in (3.2.10) and the second subsample Z(2) =
(
y(2), X(2)

)
is retained to evaluate

the loss ‖β̂L− β‖2
2. Such sample splitting technique is similar to cross-validation and

has been used in Nickl & van de Geer (2013) for constructing confidence sets for β

and in Janson et al. (2015) for confidence intervals for the `2 loss.

The following proposition establishes that the estimator L̃2 achieves the minimax

lower bound of (3.2.8) over the regime
√
n

log p
. k . n

log p
.

Proposition 2. Suppose that k . n
log p

and β̂L is the Lasso estimator defined in

(3.2.10) with A >
√

2, then the estimator of loss proposed in (3.2.11) satisfies, for

any sequence δn,p →∞,

lim sup
n,p→∞

sup
θ∈Θ0(k)

Pθ
(∣∣∣L̃2 − ‖β̂L − β‖2

2

∣∣∣ ≥ δn,p
1√
n

)
= 0. (3.2.12)

3.2.3 Minimax estimation of the `q loss over Θ(k)

We now turn to the case of unknown Σ and σ and establish the minimax lower bound

for estimating the `q loss over the parameter space Θ(k).

Theorem 10. Suppose that the sparsity levels k and k0 satisfy Assumption (B1). For

any estimator β̂ satisfying Assumption (A1) with ‖β∗‖0 ≤ k0,

inf
L̂q

sup
θ∈Θ(k)

Pθ
(
|L̂q − ‖β̂ − β‖2

q| ≥ ck
2
q

log p

n

)
≥ δ, 1 ≤ q ≤ 2, (3.2.13)

where δ > 0 and c > 0 are constants.
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Theorem 10 provides a minimax lower bound for estimating the `q loss of any

estimator β̂ satisfying Assumption (A1), including the scaled Lasso estimator defined

as

{β̂SL, σ̂} = arg min
β∈Rp,σ∈R+

‖y −Xβ‖2
2

2nσ
+
σ

2
+ λ0

p∑
j=1

‖X·j‖2√
n
|βj|, (3.2.14)

where λ0 = A
√

log p/n with A >
√

2. Note that for the scaled Lasso estimator,

the lower bound in (3.2.13) can be achieved by the trivial loss estimator 0, in the

sense, supθ∈Θ(k) Pθ
(
|0− ‖β̂SL − β‖2

q| ≥ Ck
2
q log p

n

)
→ 0, and hence estimation of loss

is impossible in this case.

3.3 Minimaxity and adaptivity of confidence inter-

vals over Θ0(k)

We focused in the last section on point estimation of the `q loss and showed the

impossibility of loss estimation except for one regime. The results naturally lead to

another question: Is it possible to construct “useful” confidence intervals for ‖β̂−β‖2
q

that can provide non-trivial upper and lower bounds for the loss? In this section, after

introducing the framework for minimaxity and adaptivity of confidence intervals, we

consider the case of known Σ = I and σ = σ0 and establish the minimaxity and

adaptivity lower bounds for the expected length of confidence intervals for the `q loss

of a broad collection of estimators over the parameter space Θ0(k). We also show

that such minimax lower bounds can be achieved for the Lasso estimator and then

discuss the possibility of adaptivity using the Lasso estimator as an example. The

case of unknown Σ and σ will be the focus of the next section.
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3.3.1 Framework for minimaxity and adaptivity of confidence

intervals

In this section, we introduce the following decision theoretical framework for confi-

dence intervals of the loss ‖β̂ − β‖2
q. Given 0 < α < 1 and the parameter space Θ

and the loss ‖β̂ − β‖2
q, denote by Iα

(
Θ, β̂, `q

)
the set of all (1− α) level confidence

intervals for ‖β̂ − β‖2
q over Θ,

Iα
(

Θ, β̂, `q

)
=

{
CIα

(
β̂, `q, Z

)
= [l (Z) , u (Z)] : inf

θ∈Θ
Pθ
(
‖β̂ − β(θ)‖2q ∈ CIα

(
β̂, `q, Z

))
≥ 1− α

}
.

(3.3.1)

We will write CIα for CIα

(
β̂, `q, Z

)
when there is no confusion. For any confidence

interval CIα

(
β̂, `q, Z

)
= [l (Z) , u (Z)], its length is denoted by R

(
CIα

(
β̂, `q, Z

))
=

u (Z)− l (Z) and the maximum expected length over a parameter space Θ1 is defined

as

R
(

CIα

(
β̂, `q, Z

)
,Θ1

)
= sup

θ∈Θ1

EθR
(

CIα

(
β̂, `q, Z

))
. (3.3.2)

For two nested parameter spaces Θ1 ⊆ Θ2, we define the benchmark R∗α

(
Θ1,Θ2, β̂, `q

)
,

measuring the degree of adaptivity over the nested spaces Θ1 ⊂ Θ2,

R∗α

(
Θ1,Θ2, β̂, `q

)
= inf

CIα(β̂,`q ,Z)∈Iα(Θ2,β̂,`q)
sup
θ∈Θ1

EθR
(

CIα

(
β̂, `q, Z

))
. (3.3.3)

We will write R∗α

(
Θ1, β̂, `q

)
for R∗α

(
Θ1,Θ1, β̂, `q

)
, which is the minimax expected

length of confidence intervals for ‖β̂−β‖2
q over Θ1. The benchmark R∗α

(
Θ1,Θ2, β̂, `q

)
is the infimum of the maximum expected length over Θ1 among all (1 − α)-level

confidence intervals over Θ2. In contrast, R∗α

(
Θ1, β̂, `q

)
is considering all (1−α)-level

confidence intervals over Θ1. In words, if there is prior information that the parameter

lies in the smaller parameter space Θ1, R∗α

(
Θ1, β̂, `q

)
measures the benchmark length

of confidence intervals over the parameter space Θ1, which is illustrated in the left
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of Figure 3.1; however, if there is only prior information that the parameter lies in

the larger parameter space Θ2, R∗α

(
Θ1,Θ2, β̂, `q

)
measures the benchmark length of

confidence intervals over the parameter space Θ1, which is illustrated in the right of

Figure 3.1.

ΩΘଵ

Θଶ

𝐋ఈ∗ (Θଵ, Θଶ, መ𝛽, ℓ𝓁௤)

Θଵ

𝐋ఈ∗ (Θଵ, መ𝛽, ℓ𝓁௤)

Figure 3.1: The plot demonstrates definitions of R∗α

(
Θ1, β̂, `q

)
and

R∗α

(
Θ1,Θ2, β̂, `q

)
.

Rigorously, we define a confidence interval CI∗ to be simultaneously adaptive over

Θ1 and Θ2 if CI∗ ∈ Iα
(

Θ2, β̂, `q

)
,

R (CI∗,Θ1) � R∗α

(
Θ1, β̂, `q

)
, and R (CI∗,Θ2) � R∗α

(
Θ2, β̂, `q

)
. (3.3.4)

The condition (3.3.4) means that the confidence interval CI∗, which has coverage over

the larger parameter space Θ2, achieves the minimax rate over both Θ1 and Θ2. Note

that R (CI∗,Θ1) ≥ R∗α

(
Θ1,Θ2, β̂, `q

)
. If R∗α

(
Θ1,Θ2, β̂, `q

)
� R∗α

(
Θ1, β̂, `q

)
, then

the rate-optimal adaptation (3.3.4) is impossible to achieve for Θ1 ⊂ Θ2. Otherwise,

it is possible to construct confidence intervals simultaneously adaptive over parame-

ter spaces Θ1 and Θ2. The possibility of adaptation over parameter spaces Θ1 and

Θ2 can thus be answered by investigating the benchmark quantities R∗α

(
Θ1, β̂, `q

)
and R∗α

(
Θ1,Θ2, β̂, `q

)
. Such framework has already been introduced in Cai & Guo

(2016b), which studies the minimaxity and adaptivity of confidence intervals for linear

functionals in high-dimensional linear regression.

We will adopt the minimax and adaptation framework discussed above and es-
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tablish the minimax expected length R∗α

(
Θ0(k), β̂, `q

)
and the adaptation bench-

mark R∗α

(
Θ0(k1),Θ0(k2), β̂, `q

)
. In terms of the minimax expected length and the

adaptivity behavior, there exist fundamental differences between the case q = 2 and

1 ≤ q < 2. We will discuss them separately in the following two subsections.

3.3.2 Confidence intervals for the `2 loss over Θ0(k)

The following theorem establishes the minimax lower bound for the expected length

of confidence intervals of ‖β̂ − β‖2
2 over the parameter space Θ0(k).

Theorem 11. Suppose that 0 < α < 1
4

and the sparsity levels k and k0 satisfy

Assumption (B1). For any estimator β̂ satisfying Assumption (A1) with ‖β∗‖0 ≤ k0,

then there is some constant c > 0 such that

R∗α

(
Θ0(k), β̂, `2

)
≥ cmin

{
k log p

n
,

1√
n

}
σ2

0. (3.3.5)

In particular, if β̂L is the Lasso estimator defined in (3.2.10) with A >
√

2, then the

minimax expected length for (1− α) level confidence intervals of ‖β̂L−β‖2
2 over Θ0(k)

is

R∗α

(
Θ0(k), β̂L, `2

)
� min

{
k log p

n
,

1√
n

}
σ2

0. (3.3.6)

We now consider adaptivity of confidence intervals for the `2 loss. The following

theorem gives the lower bound for the benchmark R∗α

(
Θ0(k1),Θ0(k2), β̂, `2

)
. We will

then discuss Theorems 11 and 12 together.

Theorem 12. Suppose that 0 < α < 1
4

and the sparsity levels k1, k2 and k0 satisfy

Assumption (B2). For any estimator β̂ satisfying Assumption (A1) with ‖β∗‖0 ≤ k0,

then there is some constant c > 0 such that

R∗α

(
Θ0(k1),Θ0(k2), β̂, `2

)
≥ cmin

{
k2 log p

n
,

1√
n

}
σ2

0. (3.3.7)
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In particular, if β̂L is the Lasso estimator defined in (3.2.10) with A >
√

2, the above

lower bound can be achieved.

The lower bound established in Theorem 12 implies that of Theorem 11 and both

lower bounds hold for a general class of estimators satisfying Assumption (A1). There

is a phase transition for the lower bound of the benchmark R∗α

(
Θ0(k1),Θ0(k2), β̂, `2

)
.

In the regime k2 �
√
n

log p
, the lower bound in (3.3.7) is k2 log p

n
σ2

0; when
√
n

log p
. k2 . n

log p
,

the lower bound in (3.3.7) is 1√
n
σ2

0. For the Lasso estimator β̂L defined in (3.2.10),

the lower bound k log p
n
σ2

0 in (3.3.5) and k2 log p
n

σ2
0 in (3.3.7) can be achieved by the

confidence intervals CI0
α (Z, k, 2) and CI0

α (Z, k2, 2) defined in (3.3.15), respectively.

Applying a similar idea to (3.2.11), we show that the minimax lower bound 1√
n
σ2

0 in

(3.3.6) and (3.3.7) can be achieved by the following confidence interval,

CI1
α (Z) =

((
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0

)
+

,

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

)
+

)
, (3.3.8)

where χ2
1−α

2
(n2) and χ2

α
2

(n2) are the 1 − α
2

and α
2

quantiles of χ2 random variable

with n2 degrees of freedom, respectively, and

ψ (Z) = min

{
1

n2

∥∥∥y(2) −X(2)β̂L
∥∥∥2

2
, σ2

0 log p

}
. (3.3.9)

Note that the two-sided confidence interval (3.3.8) is simply based on the observed

data Z, not depending on any prior knowledge of the sparsity k. Furthermore, it is

a two-sided confidence interval, which tells not only just an upper bound, but also a

lower bound for the loss. The coverage property and the expected length of CI1
α (Z)

are established in the following proposition.

Proposition 3. Suppose k . n
log p

and β̂L is the estimator defined in (3.2.10) with
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A >
√

2. Then CI1
α (Z) defined in (3.3.8) satisfies,

lim inf
n,p→∞

inf
θ∈Θ0(k)

Pθ
(
‖β̂L − β‖2

2 ∈ CI1
α (Z)

)
≥ 1− α, (3.3.10)

and

R
(
CI1

α (Z) ,Θ0 (k)
)
.

1√
n
σ2

0. (3.3.11)

ΩΘ0 𝑘1

Θ0 𝑘2

𝑘1log 𝑝

𝑛

𝑘2log 𝑝

𝑛

Θ0 𝑘1

ΩΘ0 𝑘1

Θ0 𝑘2

𝑘1log 𝑝

𝑛

1

𝑛

Θ0 𝑘1

ΩΘ0 𝑘1

Θ0 𝑘2

1

𝑛

1

𝑛

Θ0 𝑘1

Figure 3.2: Illustration of R∗α

(
Θ0(k1), β̂L, `2

)
(top) and

R∗α

(
Θ0(k1),Θ0(k2), β̂L, `2

)
(bottom) over regimes k1 ≤ k2 .

√
n

log p
(leftmost),

k1 .
√
n

log p
. k2 . n

log p
(middle) and

√
n

log p
. k1 ≤ k2 . n

log p
(rightmost).

Regarding the Lasso estimator β̂L defined in (3.2.10), we will discuss the possi-

bility of adaptivity of confidence intervals for ‖β̂L − β‖2
2. The adaptivity behavior

of confidence intervals for ‖β̂L − β‖2
2 is demonstrated in Figure 3.2. As illustrated

in the rightmost plot of Figure 3.2, in the regime
√
n

log p
. k1 ≤ k2 . n

log p
, we obtain

R∗α

(
Θ0(k1),Θ0(k2), β̂L, `2

)
� R∗α

(
Θ0(k1), β̂L, `2

)
� 1√

n
, which implies that adapta-

tion is possible over this regime. As shown in Proposition 3, the confidence interval

CI1
α (Z) defined in (3.3.8) is fully adaptive over the regime

√
n

log p
. k . n

log p
in the

sense of (3.3.4).

Illustrated in the leftmost and middle plots of Figure 3.2, it is impossible to

construct an adaptive confidence interval for ‖β̂L − β‖2
2 over regimes k1 ≤ k2 .

√
n

log p

and k1 �
√
n

log p
. k2 . n

log p
since R∗α

(
Θ0(k1),Θ0(k2), β̂L, `2

)
� R∗α

(
Θ0(k1), β̂L, `2

)
if k1 �

√
n

log p
and k1 � k2. To sum up, adaptive confidence intervals for ‖β̂L − β‖2

2 is
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only possible over the regime
√
n

log p
. k . n

log p
.

Comparison with confidence balls

We should note that the problem of constructing confidence intervals for ‖β̂−β‖2
2 is re-

lated to but different from that of constructing confidence sets for β itself. Confidence

balls constructed in Nickl & van de Geer (2013) are of form
{
β : ‖β − β̂‖2

2 ≤ un (Z)
}

,

where β̂ can be the Lasso estimator and un (Z) is a data dependent squared radius.

See Nickl & van de Geer (2013) for further details. A naive application of this confi-

dence ball leads to a one-sided confidence interval for the loss ‖β̂ − β‖2
2,

CIinduced
α (Z) =

{
‖β̂ − β‖2

2 : ‖β̂ − β‖2
2 ≤ un (Z)

}
. (3.3.12)

Due to the reason that confidence sets for β were sought for in Theorem 1 in Nickl &

van de Geer (2013), confidence sets in the form
{
β : ‖β − β̂‖2

2 ≤ un (Z)
}

will suffice

to achieve the optimal length. However, since our goal is to characterize ‖β̂ − β‖2
2,

we apply the unbiased risk estimation discussed in Theorem 1 of Nickl & van de Geer

(2013) and construct the two-sided confidence interval in (3.3.8). Such a two-sided

confidence interval is more informative than the one-sided confidence interval (3.3.12)

since the one-sided confidence interval does not contain the information whether the

loss is close to zero or not. Furthermore, as shown in Nickl & van de Geer (2013),

the length of confidence interval CIinduced
α (Z) over the parameter space Θ0(k) is of

order 1√
n

+ k log p
n

. The two-sided confidence interval CI1
α (Z) constructed in (3.3.8) is

of expected length 1√
n
, which is much shorter than 1√

n
+ k log p

n
in the regime k �

√
n

log p
.

That is, the two-sided confidence interval (3.3.8) provides a more accurate interval

estimator of the `2 loss. This is illustrated in Figure 3.3.

The lower bound technique developed in the literature of adaptive confidence sets

Nickl & van de Geer (2013) can also be used to establish some of the lower bound
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Figure 3.3: Comparison of the two-sided confidence interval CI1
α (Z) with the one-

sided confidence interval CIinduced
α (Z).

results for the case q = 2 given in the present paper. However, new techniques are

needed in order to establish the rate sharp lower bounds for the minimax estimation

error (3.2.9) in the region
√
n

log p
≤ k . n

log p
and for the expected length of the confidence

intervals (3.3.18) and (3.7.3) in the region
√
n

log p
. k1 ≤ k2 . n

log p
, where it is necessary

to test a composite null against a composite alternative in order to establish rate

sharp lower bounds.

3.3.3 Confidence intervals for the `q loss with 1 ≤ q < 2 over

Θ0(k)

We now consider the case 1 ≤ q < 2 and investigate the minimax expected length

and adaptivity of confidence intervals for ‖β̂ − β‖2
q over the parameter space Θ0(k).

The following theorem characterizes the minimax convergence rate for the expected

length of confidence intervals.

Theorem 13. Suppose that 0 < α < 1
4
, 1 ≤ q < 2 and the sparsity levels k and

k0 satisfy Assumption (B1). For any estimator β̂ satisfying Assumption (A2) with

‖β∗‖0 ≤ k0, then there is some constant c > 0 such that

R∗α

(
Θ0(k), β̂, `q

)
≥ ck

2
q

log p

n
σ2

0. (3.3.13)

In particular, if β̂L is the Lasso estimator defined in (3.2.10) with A > 4
√

2, then

the minimax expected length for (1 − α) level confidence intervals of ‖β̂L − β‖2
q over
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Θ0(k) is

R∗α

(
Θ0(k), β̂L, `q

)
� k

2
q

log p

n
σ2

0. (3.3.14)

We now construct the confidence interval achieving the minimax convergence rate

in (3.3.14),

CI0
α (Z, k, q) =

(
0, C∗(A, k)k

2
q

log p

n

)
, (3.3.15)

where C∗(A, k) = max

{
(22Aσ0)2(

1
4
−42

√
2k log p
n1

)4 ,

(
3η0
η0+1

Aσ0

)2

(
1
4
−(9+11η0)

√
2k log p
n1

)4

}
with η0 = 1.01

√
A+
√

2√
A−
√

2
.

The following proposition establishes the coverage property and the expected length

of CI0
α (Z, k, q).

Proposition 4. Suppose k . n
log p

and β̂L is the estimator defined in (3.2.10) with

A > 4
√

2. For 1 ≤ q ≤ 2, the confidence interval CI0
α (Z, k, q) defined in (3.3.15)

satisfies

lim inf
n,p→∞

inf
θ∈Θ0(k)

Pθ
(
‖β̂ − β‖2

q ∈ CI0
α (Z, k, q)

)
= 1, (3.3.16)

and

R
(
CI0

α (Z, k, q) ,Θ0 (k)
)
. k

2
q

log p

n
σ2

0. (3.3.17)

In particular, for the case q = 2, (3.3.16) and (3.3.17) also hold for the estimator β̂L

defined in (3.2.10) with A >
√

2.

This result shows that the confidence interval CI0
α (Z, k, q) achieves the minimax

rate given in (3.3.14). In contrast to the `2 loss where the two-sided confidence interval

(3.3.8) is significantly shorter than the one-sided interval and achieves the optimal

rate over the regime
√
n

log p
. k . n

log p
, for the `q loss with 1 ≤ q < 2, the one-sided

confidence interval achieves the optimal rate given in (3.3.14).

We now consider adaptivity of confidence intervals. The following theorem estab-

lishes the lower bounds for R∗α

(
Θ0(k1),Θ0(k2), β̂, `q

)
with 1 ≤ q < 2.
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Theorem 14. Suppose 0 < α < 1
4
, 1 ≤ q < 2 and the sparsity levels k1, k2 and

k0 satisfy Assumption (B2). For any estimator β̂ satisfying Assumption (A2) with

‖β∗‖0 ≤ k0, then there is some constant c > 0 such that

R∗α

(
Θ0(k1),Θ0(k2), β̂, `q

)
≥



ck
2
q

2
log p
n
σ2

0 if k1 ≤ k2 .
√
n

log p
;

ck
2
q
−1

2
1√
n
σ2

0 if k1 .
√
n

log p
. k2 . n

log p
;

ck
2
q
−1

2 k1
log p
n
σ2

0 if
√
n

log p
. k1 ≤ k2 . n

log p
.

(3.3.18)

In particular, if p ≥ n and β̂L is the Lasso estimator defined in (3.2.10) with A > 4
√

2,

the above lower bounds can be achieved.

The lower bounds of Theorem 14 imply that of Theorem 13 and both lower bounds

hold for a general class of estimators satisfying Assumption (A2). However, the lower

bound (3.3.18) in Theorem 14 has a significantly different meaning from (3.3.13) in

Theorem 13 where (3.3.18) quantifies the cost of adaptation without knowing the

sparsity level. For the Lasso estimator β̂L defined in (3.2.10), by comparing Theorem

13 and Theorem 14, we obtain R∗α

(
Θ0(k1),Θ0(k2), β̂L, `q

)
� R∗α

(
Θ0(k1), β̂L, `q

)
if

k1 � k2, which implies the impossibility of constructing adaptive confidence intervals

for the case 1 ≤ q < 2. There exists marked difference between the case 1 ≤ q < 2

and the case q = 2, where it is possible to construct adaptive confidence intervals

over the regime
√
n

log p
. k . n

log p
.

For the Lasso estimator β̂L defined in (3.2.10), it is shown in Proposition 4 that the

confidence interval CI0
α (Z, k2, q) defined in (3.3.15) achieves the lower bound k

2
q

2
log p
n
σ2

0

of (3.3.18). The lower bounds k
2
q
−1

2 k1
log p
n
σ2

0 and k
2
q
−1

2
1√
n
σ2

0 of (3.3.18) can be achieved
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by the following proposed confidence interval,

CI2
α (Z, k2, q) =

((
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0

)
+

, (16k2)
2
q
−1

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

)
+

)
,

(3.3.19)

where ψ (Z) is given in (3.3.9). The above claim is verified in Proposition 5. Note

that the confidence interval CI1
α (Z) defined in (3.3.8) is a special case of CI2

α (Z, k2, q)

with q = 2.

Proposition 5. Suppose p ≥ n, k1 ≤ k2 . n
log p

and β̂L is defined in (3.2.10) with

A > 4
√

2. Then CI2
α (Z, k2, q) defined in (3.3.19) satisfies,

lim inf
n,p→∞

inf
θ∈Θ0(k2)

Pθ
(
‖β̂ − β‖2

q ∈ CI2
α (Z, k2, q)

)
≥ 1− α, (3.3.20)

and

R
(
CI2

α (Z, k2, q) ,Θ0 (k1)
)
. k

2
q
−1

2

(
k1

log p

n
+

1√
n

)
σ2

0. (3.3.21)

3.4 Minimaxity and adaptivity of confidence inter-

vals over Θ(k)

In this section, we focus on the case of unknown Σ and σ and establish the minimax

expected length of confidence intervals for ‖β̂−β‖2
q with 1 ≤ q ≤ 2 over Θ(k) defined

in (3.2.4). We also study the possibility of adaptivity of confidence intervals for

‖β̂ − β‖2
q. The following theorem establishes the lower bounds for the benchmark

quantities R∗α

(
Θ (ki) , β̂, `q

)
with i = 1, 2 and R∗α

(
Θ (k1) ,Θ (k2) , β̂, `q

)
.

Theorem 15. Suppose that 0 < α < 1
4
, 1 ≤ q ≤ 2 and the sparsity levels k1, k2

and k0 satisfy Assumption (B2). For any estimator β̂ satisfying Assumption (A1) at
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θ0 = (β∗, I, σ0) with ‖β∗‖0 ≤ k0, there is a constant c > 0 such that

R∗α

(
Θ (ki) , β̂, `q

)
≥ ck

2
q

i

log p

n
, for i = 1, 2; (3.4.1)

R∗α

(
{θ0} ,Θ (k2) , β̂, `q

)
≥ ck

2
q

2

log p

n
. (3.4.2)

In particular, if β̂SL is the scaled Lasso estimator defined in (3.2.14) with A > 2
√

2,

then the above lower bounds can be achieved.

The lower bounds (3.4.1) and (3.4.2) hold for any β̂ satisfying Assumption (A1)

at an interior point θ0 = (β∗, I, σ0), including the scaled Lasso estimator as a spe-

cial case. We demonstrate the impossibility of adaptivity of confidence intervals for

the `q loss of the scaled Lasso estimator β̂SL. Since R∗α

(
Θ (k1) ,Θ (k2) , β̂SL, `q

)
≥

R∗α

(
{θ0} ,Θ (k2) , β̂SL, `q

)
, by (3.4.2), we have

R∗α

(
Θ (k1) ,Θ (k2) , β̂SL, `q

)
� R∗α

(
Θ (k1) , β̂SL, `q

)
if k1 � k2.

The comparison of R∗α

(
Θ (k1) , β̂SL, `q

)
and R∗α

(
Θ (k1) ,Θ (k2) , β̂SL, `q

)
is illustrated

in Figure 3.4. Referring to the adaptivity defined in (3.3.4), it is impossible to con-

struct adaptive confidence intervals for ‖β̂SL − β‖2
q.

ΩΘ 𝑘ଵ

Θ 𝑘ଶ
𝑘ଵ
ଶ
௤log 𝑝
𝑛

𝑘ଶ
ଶ
௤log 𝑝
𝑛

Θ 𝑘ଵ

Figure 3.4: Illustration of R∗α

(
Θ (k1) , β̂SL, `q

)
(left) and R∗α

(
Θ (k1) ,Θ (k2) , β̂SL, `q

)
(right).

Theorem 15 shows that for any confidence interval CIα

(
β̂, `q, Z

)
for the loss of

any given estimator β̂ satisfying Assumption (A1), under the coverage constraint that
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CIα

(
β̂, `q, Z

)
∈ Iα

(
Θ (k2) , β̂, `q

)
, its expected length at any given θ0 = (β∗, I, σ) ∈

Θ (k0) must be of order k
2
q

2
log p
n
. In contrast to Theorem 12 and 14, Theorem 15

demonstrates that confidence intervals must be long at a large subset of points in

the parameter space, not just at a small number of “unlucky” points. Therefore, the

lack of adaptivity for confidence intervals is not due to the conservativeness of the

minimax framework.

In the following, we detail the construction of confidence intervals for ‖β̂SL −

β‖2
q. The construction of confidence intervals is based on the following definition of

restricted eigenvalue, which is introduced in Bickel et al. (2009),

κ(X, k, s, α0) = min
J0⊂{1,··· ,p},
|J0|≤k

min
δ 6=0,

‖δJc0‖1≤α0‖δJ0
‖1

‖Xδ‖2√
n‖δJ01‖2

, (3.4.3)

where J1 denotes the subset corresponding to the s largest in absolute value coordi-

nates of δ outside of J0 and J01 = J0 ∪ J1. Define the event B = {σ̂ ≤ log p} . The

confidence interval for ‖β̂SL − β‖2
q is defined as

CIα (Z, k, q) =

 [0, ϕ (Z, k, q)] on B

{0} on Bc,
(3.4.4)

where

ϕ (Z, k, q) = min


 16Amax ‖X·j‖2

2σ̂

nκ2
(
X, k, k, 3

(
max ‖X·j‖2
min ‖X·j‖2

))
2

k
2
q

log p

n
,

(
k

2
q

log p

n
log p

)
σ̂2

 .

Remark 6. The restricted eigenvalue κ2
(
X, k, k, 3

(
max ‖X·j‖2
min ‖X·j‖2

))
is computationally

infeasible. For design covariance matrix Σ of special structures, the restricted eigen-

value can be replaced by its lower bound and a computationally feasible confidence

interval can be constructed. See Section 4.4 in Cai & Guo (2016b) for more details.

Properties of CIα (Z, k, q) are established as follows.
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Proposition 6. Suppose k . n
log p

and β̂SL is the estimator defined in (3.2.14) with

A > 2
√

2. For 1 ≤ q ≤ 2, then CIα (Z, k, q) defined in (3.4.4) satisfies the following

properties,

lim inf
n,p→∞

inf
θ∈Θ(k)

Pθ
(
‖β̂ − β‖2

q ∈ CIα (Z, k, q)
)

= 1, (3.4.5)

R (CIα (Z, k, q) ,Θ (k)) . k
2
q

log p

n
. (3.4.6)

Proposition 6 shows that the confidence interval CIα (Z, ki, q) defined in (3.4.4)

achieves the lower bound in (3.4.1), for i = 1, 2, and the confidence interval CIα (Z, k2, q)

defined in (3.4.4) achieves the lower bound in (3.4.2).

3.5 Estimation of the `q loss of rate-optimal esti-

mators

We have established minimax lower bounds for the estimation accuracy of the loss of

a broad class of estimators β̂ satisfying (A1) or (A2) and also demonstrated that such

minimax lower bounds are sharp for the Lasso and scaled Lasso estimators. We now

show that the minimax lower bounds are sharp for the class of rate-optimal estimators

satisfying the following Assumption (A).

(A) The estimator β̂ satisfies,

sup
θ∈Θ(k)

Pθ
(
‖β̂ − β‖2

q ≥ C∗‖β‖
2
q

0

log p

n

)
≤ Cp−δ, (3.5.1)

for all k � n
log p

, where δ > 0, C∗ > 0 and C > 0 are constants not depending

on k, n, or p.

We say an estimator β̂ is rate-optimal if it satisfies Assumption (A). As shown in

Candès & Tao (2007); Bickel et al. (2009); Belloni et al. (2011); Sun & Zhang (2012),
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Lasso, Dantzig Selector, scaled Lasso and square-root Lasso are rate-optimal when

the tuning parameter is chosen properly. We shall stress that Assumption (A) implies

Assumptions (A1) and (A2). Assumption (A) requires the estimator β̂ to perform well

over the whole parameter space Θ(k) while Assumptions (A1) and (A2) only require

β̂ to perform well at a single point or over a proper subset. The following proposition

shows that the minimax lower bounds established in Theorem 9 to Theorem 15 can

be achieved for the class of rate-optimal estimators.

Proposition 7. Let β̂ be an estimator satisfying Assumption (A).

1. There exist (point or interval) estimators of the loss ‖β̂ − β‖2
q with 1 ≤ q < 2

achieving, up to a constant factor, the minimax lower bounds (3.2.9) in Theorem

9 and (3.3.13) in Theorem 13 and estimators of loss ‖β̂ − β‖2
q with 1 ≤ q ≤

2 achieving, up to a constant factor, the minimax lower bounds (3.2.13) in

Theorem 10 and (3.4.1) and (3.4.2) in Theorem 15.

2. Suppose that the estimator β̂ is constructed based on the subsample Z(1) =(
y(1), X(1)

)
, then there exist estimators of the loss ‖β̂ − β‖2

2 achieving, up to

a constant factor, the minimax lower bounds (3.2.8) in Theorem 9, (3.3.5) in

Theorem 11 and (3.3.7) in Theorem 12.

3. Suppose the estimator β̂ is constructed based on the subsample Z(1) =
(
y(1), X(1)

)
and it satisfies Assumption (A) with δ > 2 and

sup
θ∈Θ(k)

Pθ
(
‖(β̂ − β)Sc‖1 ≥ c∗‖(β̂ − β)S‖1 where S = supp(β)

)
≤ Cp−δ, (3.5.2)

for all k � n
log p

. Then for p ≥ n there exist estimators of the loss ‖β̂−β‖2
q with

1 ≤ q < 2 achieving the lower bounds given in (3.3.18) in Theorem 14.

For reasons of space, we do not discuss the detailed construction for the point
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and interval estimators achieving these minimax lower bounds here and postpone the

construction to the proof of Proposition 7.

Remark 7. Sample splitting has been widely used in the literature. For example,

the condition that β̂ is constructed based on the subsample Z(1) =
(
y(1), X(1)

)
has

been introduced in Nickl & van de Geer (2013) for constructing confidence sets for β

and in Janson et al. (2015) for constructing confidence intervals for the `2 loss. Such

a condition is imposed purely for technical reasons to create independence between

the estimator β̂ and the subsample Z(2) =
(
y(2), X(2)

)
, which is useful to evaluate the

`q loss of the estimator β̂. As shown in Bickel et al. (2009), the assumption (3.5.2) is

satisfied for Lasso and Dantzig Selector. This technical assumption is imposed such

that ‖β̂ − β‖2
1 can be tightly controlled by ‖β̂ − β‖2

2.

3.6 General tools for minimax lower bounds

A major step in our analysis is to establish rate sharp lower bounds for the estimation

error and the expected length of confidence intervals for the `q loss. We introduce in

this section new technical tools that are needed to establish these lower bounds.

A significant distinction of the lower bound results given in the previous sections

from those for the traditional parameter estimation problems is that the constraint

is on the performance of the estimator β̂ of the regression vector β, but the lower

bounds are on the difficulty of estimating its loss ‖β̂−β‖2
q. It is necessary to develop

new lower bound techniques to establish rate-optimal lower bounds for the estimation

error and the expected length of confidence intervals for the loss ‖β̂ − β‖2
q. These

technical tools may also be of independent interest.

We begin with notation. Let Z denote a random variable whose distribution

is indexed by some parameter θ ∈ Θ and let π denote a prior on the parameter
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space Θ. We will use fθ(z) to denote the density of Z given θ and fπ (z) to de-

note the marginal density of Z under the prior π. Let Pπ denote the distribution

of Z corresponding to fπ (z), i.e., Pπ (A) =
∫

1z∈Afπ (z) dz, where 1z∈A is the in-

dicator function. For a function g, we write Eπ (g(Z)) for the expectation under

fπ. More specifically, fπ (z) =
∫
fθ (z) π (θ) dθ and Eπ (g(Z)) =

∫
g (z) fπ (z) dz. The

L1 distance between two probability distributions with densities f0 and f1 is given

by TV(f1, f0) =
∫
|f1(z)− f0(z)| dz. The following theorem establishes the minimax

lower bounds for the estimation error and the expected length of confidence intervals

for the `q loss, under the constraint that β̂ is a good estimator at at least one interior

point.

Theorem 16. Suppose 0 < α, α0 < 1
4
, 1 ≤ q ≤ 2, Σ0 is positive definite, θ0 =

(β∗,Σ0, σ0) ∈ Θ, and F ⊂ Θ. Define d = minθ∈F ‖β (θ)− β∗‖q. Let π denote a prior

over the parameter space F . If an estimator β̂ satisfies

Pθ0
(
‖β̂ − β∗‖2

q ≤
1

16
d2

)
≥ 1− α0, (3.6.1)

then

inf
L̂q

sup
θ∈{θ0}∪F

Pθ
(
|L̂q − ‖β̂ − β‖2

q| ≥
1

4
d2

)
≥ c̄1, (3.6.2)

and

R∗α

(
{θ0} ,Θ, β̂, `q

)
= inf

CIα(β̂,`q ,Z)∈Iα(Θ,β̂,`q)
Eθ0R

(
CIα

(
β̂, `q, Z

))
≥ c∗2d

2, (3.6.3)

where c̄1 = min
{

1
10
,
(

9
10
− α0 − TV (fπ, fθ0)

)
+

}
and c∗2 = 1

2
(1− 2α− α0 − 2TV (fπ, fθ0))+ .

Remark 8. The minimax lower bound (3.6.2) for the estimation error and (3.6.3) for

the expected length of confidence intervals hold as long as the estimator β̂ estimates β

well at an interior point θ0. Besides Condition (3.6.1), another key ingredient for the
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lower bounds (3.6.2) and (3.6.3) is to construct the least favorable space F with the

prior π such that the marginal distributions fπ and fθ0 are non-distinguishable. For

the estimation lower bound (3.6.2), constraining that ‖β̂−β∗‖2
q can be well estimated

at θ0, due to the non-distinguishability between fπ and fθ0 , we can establish that

the loss ‖β̂ − β‖2
q cannot be estimated well over F . For the lower bound (3.6.3), by

Condition (3.6.1) and the non-distinguishability between fπ and fθ0 , we will show

that ‖β̂ − β‖2
q over F is much larger than ‖β̂ − β∗‖2

q and hence the honest confidence

intervals must be sufficiently long.

Theorem 16 is used to establish the minimax lower bounds for both the estimation

error and the expected length of confidence intervals of the `q loss over Θ(k). By

taking θ0 ∈ Θ(k0) and Θ = Θ(k), Theorem 10 follows from (3.6.2) with a properly

constructed subset F ⊂ Θ(k). By taking θ0 ∈ Θ(k0) and Θ = Θ(k2), the lower bound

(3.4.2) in Theorem 15 follows from (3.6.3) with a properly constructed F ⊂ Θ(k2).

In both cases, Assumption (A1) implies Condition (3.6.1).

Several minimax lower bounds over Θ0(k) can also be implied by Theorem 16. For

the estimation error, the minimax lower bounds (3.2.8) and (3.2.9) over the regime

k .
√
n

log p
in Theorem 9 follow from (3.6.2). For the expected length of confidence

intervals, the minimax lower bounds (3.3.7) in Theorem 12 and (3.3.18) in the regions

k1 ≤ k2 .
√
n

log p
and k1 .

√
n

log p
. k2 . n

log p
in Theorem 14 follow from (3.6.3).

In these cases, Assumption (A1) or (A2) can guarantee that Condition (3.6.1) is

satisfied. However, the minimax lower bounds for estimation error (3.2.9) in the

region
√
n

log p
≤ k . n

log p
and for the expected length of confidence intervals (3.3.18)

in the region
√
n

log p
. k1 ≤ k2 . n

log p
cannot be established using the above theorem.

The following theorem, which requires testing a composite null against a composite

alternative, establishes the refined minimax lower bounds over Θ0(k).

Theorem 17. Let 0 < α, α0 <
1
4
, 1 ≤ q ≤ 2, and θ0 = (β∗,Σ0, σ0) where Σ0 is a
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positive definite matrix. Let k1 and k2 be two sparsity levels. Assume that for i = 1, 2

there exist parameter spaces Fi ⊂ {(β,Σ0, σ0) : ‖β‖0 ≤ ki} such that for given disti

and di

√
(β (θ)− β∗)ᵀΣ0(β (θ)− β∗) = disti and ‖β (θ)− β∗‖q = di, for all θ ∈ Fi.

Let πi denote a prior over the parameter space Fi for i = 1, 2. Suppose that for

θ1 =
(
β∗,Σ0, σ

2
0 + dist2

1

)
and θ2 =

(
β∗,Σ0, σ

2
0 + dist2

2

)
, there exist constants c1, c2 > 0

such that

Pθi
(
‖β̂ − β∗‖2

q ≤ c2
i d

2
i

)
≥ 1− α0, for i = 1, 2. (3.6.4)

Then we have

inf
L̂q

sup
θ∈F1∪F2

Pθ
(
|L̂q − ‖β̂ − β‖2

q| ≥ c∗3d
2
2

)
≥ c̄3, (3.6.5)

and

R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
≥ c∗4

(
(1− c2)2 d2

2 − (1 + c1)2 d2
1

)
+
, (3.6.6)

where

c∗3 = min

{
1

4
,

(
(1− c2)2 − 1

4
− (1 + c1)2d

2
1

d2
2

)
+

}
,

c∗4 =

(
1− 2α0 − 2α−

2∑
i=1

TV (fπi , fθi)− 2TV (fπ2 , fπ1)

)
+

,

c̄3 = min

{
1

10
,

(
9

10
− 2α0 −

2∑
i=1

TV (fπi , fθi)− 2TV (fπ2 , fπ1)

)
+

}
.

Remark 9. As long as the estimator β̂ performs well at two points, θ1 and θ2, the

minimax lower bounds (3.6.5) for the estimation error and (3.6.6) for the expected

length of confidence intervals hold. Note that θi in the above theorem does not be-

long to the parameter space {(β,Σ0, σ0) : ‖β‖0 ≤ ki}, for i = 1, 2. In contrast to
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Theorem 16, Theorem 17 compares composite hypotheses F1 and F2, which will lead

to a sharper lower bound than comparing the simple null {θ0} with the composite

alternative F . For simplicity, we construct least favorable parameter spaces Fi such

that the points in Fi is of fixed (generalized) `2 distance and fixed `q distance to β∗,

for i = 1, 2, respectively. More importantly, we construct F1 with the prior π1 and

F2 with the prior π2 such that fπ1 and fπ2 are not distinguishable, where θ1 and θ2

are introduced to facilitate the comparison. By Condition (3.6.4) and the construc-

tion of F1 and F2, we establish that the `q loss cannot be simultaneously estimated

well over F1 and F2. For the lower bound (3.6.6), under the same conditions, it is

shown that the `q loss over F1 and F2 are far apart and any confidence interval with

guaranteed coverage probability over F1 ∪ F2 must be sufficiently long. Due to the

prior information Σ = I and σ = σ0, the lower bound construction over Θ0(k) is more

involved than that over Θ(k). We shall stress that the construction of F1 and F2 and

the comparison between composite hypotheses are of independent interest.

The minimax lower bound (3.2.9) in the region
√
n

log p
. k . n

log p
follows from

(3.6.5) and the minimax lower bound (3.3.18) in the region
√
n

log p
. k1 ≤ k2 . n

log p
for

the expected length of confidence intervals follows from (3.6.6). In these cases, Σ0 is

taken as I and Assumption (A2) implies Condition (3.6.4).

3.7 An intermediate setting with known σ = σ0 and

unknown Σ

The results given in Sections 3.3 and 3.4 show the significant difference between

Θ0(k) and Θ(k) in terms of minimaxity and adaptivity of confidence intervals for

‖β̂ − β‖2
q. Θ0(k) is for the simple setting with known design covariance matrix Σ = I

and known noise level σ = σ0, and Θ(k) is for unknown Σ and σ. In this section, we
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further consider minimaxity and adaptivity of confidence intervals for ‖β̂− β‖2
q in an

intermediate setting where the noise level σ = σ0 is known and Σ is unknown but of

certain structure. Specifically, we consider the following parameter space,

Θσ0(k, s) =

(β,Σ, σ0) :

‖β‖0 ≤ k,
1

M1

≤ λmin (Σ) ≤ λmax (Σ) ≤M1

‖Σ−1‖L1 ≤M, max
1≤i≤p

‖
(
Σ−1

)
i· ‖0 ≤ s

 , (3.7.1)

for some constants M1 ≥ 1 and M > 0. Θσ0(k, s) basically assumes known noise

level σ and imposes sparsity conditions on the precision matrix of the random de-

sign. This parameter space is similar to those used in the literature of sparse lin-

ear regression with random design van de Geer et al. (2014); Chernozhukov et al.

(2015a,b). Θσ0(k, s) has two sparsity parameters where k represents the sparsity of β

and s represents the maximum row sparsity of the precision matrix Σ−1. Note that

Θ0(k) ⊂ Θσ0(k, s) ⊂ Θ(k) and Θ0(k) is a special case of Θσ0(k, s) with M1 = 1.

Under the assumption s �
√
n/ log p, the minimaxity and adaptivity lower

bounds for the expected length of confidence intervals for ‖β̂ − β‖2
q with 1 ≤ q < 2

over Θσ0(k, s) are the same as those over Θ0(k). That is, Theorems 13 and 14 hold

with Θ0(k1), Θ0(k2), and Θ0(k) replaced by Θσ0(k1, s), Θσ0(k2, s), and Θσ0(k, s), re-

spectively. For the case q = 2, the following theorem establishes the minimaxity and

adaptivity lower bounds for the expected length of confidence intervals for ‖β̂ − β‖2
2

over Θσ0(k, s).

Theorem 18. Suppose 0 < α, α0 < 1/4, M1 > 1, s �
√
n/log p and the sparsity

levels k1, k2 and k0 satisfy Assumption (B2) with the constant c0 replaced by c∗0 defined

in (3.9.14). For any estimator β̂ satisfying

sup
θ∈Θ(k0)

Pθ
(
‖β̂ − β∗‖2

q ≥ C∗‖β∗‖
2
q

0

log p

n
σ2

)
≤ α0, (3.7.2)
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with a constant C∗ > 0, then there is some constant c > 0 such that

R∗α

(
Θσ0(k1, s),Θσ0(k2, s), β̂, `2

)
≥ cmin

{
k2

log p

n
,max

{
k1

log p

n
,

1√
n

}}
σ2

0 (3.7.3)

and

R∗α

(
Θσ0(ki, s), β̂, `2

)
≥ c

ki log p

n
σ2

0 and i = 1, 2. (3.7.4)

In particular, if p ≥ n and β̂ is constructed based on the subsample Z(1) =
(
y(1), X(1)

)
and satisfies Assumption (A) with δ > 2, the above lower bounds can be attained.

In contrast to Theorems 11 and 12, the lower bounds for the case q = 2 change

in the absence of the prior knowledge Σ = I but the possibility of adaptivity of

confidence intervals over Θσ0(k, s) is similar to that over Θ0(k). Since the Lasso

estimator β̂L defined in (3.2.10) with A > 4
√

2 satisfies Assumption (A) with δ >

2, by Theorem 18, the minimax lower bounds (3.7.3) and (3.7.4) can be attained

for β̂L. For β̂L, only when
√
n

log p
. k1 ≤ k2 . n

log p
, R∗α

(
Θσ0(k1, s), β̂

L, `2

)
�

R∗α

(
Θσ0(k1, s),Θσ0(k2, s), β̂, `2

)
� k1 log p

n
and adaptation between Θσ0(k1, s) and

Θσ0(k2, s) is possible. In other regimes, if k1 � k2, then R∗α

(
Θσ0(k1, s), β̂

L, `2

)
�

R∗α

(
Θσ0(k1, s),Θσ0(k2, s), β̂, `2

)
and adaptation between Θσ0(k1, s) and Θσ0(k2, s) is

impossible. For reasons of space, more discussion on Θσ0(k, s), including the con-

struction of adaptive confidence intervals over the regime
√
n

log p
. k1 ≤ k2 . n

log p
, is

postponed to Chapter B.

3.8 Minimax lower bounds for estimating ‖β‖2
q with

1 ≤ q ≤ 2

The lower bounds developed in this paper have broader implications. In particular,

the established results imply the minimax lower bounds for estimating ‖β‖2
q and the
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expected length of confidence intervals for ‖β‖2
q with 1 ≤ q ≤ 2. To build the con-

nection, it is sufficient to note that the trivial estimator β̂ = 0 satisfies Assumptions

(A1) and (A2) with β∗ = 0. Then we can apply the lower bounds (3.2.8), (3.2.9) and

(3.2.13) to the estimator β̂ = 0 and establish the minimax lower bounds of estimating

‖β‖2
q,

inf
L̂2

sup
θ∈Θ0(k)

Pθ
(
|L̂2 − ‖β‖2

2| ≥ cmin

{
k

log p

n
,

1√
n

}
σ2

0

)
≥ δ; (3.8.1)

inf
L̂q

sup
θ∈Θ0(k)

Pθ
(
|L̂q − ‖β‖2

q| ≥ ck
2
q

log p

n
σ2

0

)
≥ δ, for 1 ≤ q < 2, (3.8.2)

inf
L̂q

sup
θ∈Θ(k)

Pθ
(
|L̂q − ‖β‖2

q| ≥ ck
2
q

log p

n

)
≥ δ, for 1 ≤ q ≤ 2, (3.8.3)

for some constants δ > 0 and c > 0. Similarly, all the lower bounds for the expected

length of confidence intervals for ‖β̂ − β‖2
q established in Theorem 11 to Theorem 15

imply corresponding lower bounds for ‖β‖2
q. The lower bound min{k log p

n
, 1√

n
}σ2

0 in

(3.8.1) is the same as the detection boundary in the sparse linear regression for the

case Σ = I and σ = 1; See Ingster et al. (2010) and Arias-Castro et al. (2011) for more

details. Estimation of ‖β‖2
2 in high-dimensional linear regression has been considered

in Guo et al. (2016) under the general setting where Σ and σ are unknown and the

lower bound (3.8.3) with q = 2 leads to one key component of the lower bound ck log p
n

for estimating ‖β‖2
2.

3.9 Proofs

This section presents the proofs of the lower bound results. We first establish the

general lower bound result, Theorem 16, in Section 3.9.1. By applying Theorems

16 and 17, we prove Theorems 12 and 14 in Section 3.9.2. For reasons of space, the

proofs of other main results, Theorems 9, 10, 11, 13, 15, 17, 18 as well as Propositions

2, 3, 4, 5, 6, 7 and the proofs of technical lemmas are postponed to Chapter B.
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We define the χ2 distance between two density functions f1 and f0 by χ2(f1, f0) =∫ (f1(z)−f0(z))2

f0(z)
dz =

∫ f2
1 (z)

f0(z)
dz − 1, and it is well known that

TV(f1, f0) ≤
√
χ2(f1, f0). (3.9.1)

We follow the same notation used in Section 3.6. Let PZ,θ∼π be the joint probability

of Z and θ with the joint density function f(θ, z) = fθ (z) π (θ) . The following lemma,

which is proved in Chapter B, is needed in the proofs of Theorem 16 and Theorem

17.

Lemma 7. For any event A, we have

Pπ (Z ∈ A) = PZ,θ∼π (Z ∈ A) , (3.9.2)

|Pπ1 (Z ∈ A)− Pπ2 (Z ∈ A)| ≤ TV (fπ2 , fπ1) . (3.9.3)

We will write Pπ(A) and PZ,θ∼π(A) for Pπ(Z ∈ A) and PZ,θ∼π(Z ∈ A) respectively.

Recall that L̂q(Z) denotes a data-dependent loss estimator and β(θ) denotes the

corresponding β of the parameter θ.

3.9.1 Proof of Theorem 16

We set c0 = 1
4

and α1 = 1
10

.

Proof of (3.6.2)

We assume

Pθ0
(∣∣∣L̂q(Z)− ‖β̂(Z)− β∗‖2

q

∣∣∣ ≤ 1

4
d2

)
≥ 1− α1. (3.9.4)

Otherwise, we have

Pθ0
(∣∣∣L̂q(Z)− ‖β̂(Z)− β∗‖2

q

∣∣∣ ≥ 1

4
d2

)
≥ α1, (3.9.5)
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and hence (3.6.2) follows. Define the event

A0 =

{
z : ‖β̂(z)− β∗‖2

q ≤ c2
0d

2 ,
∣∣∣L̂q(z)− ‖β̂(z)− β∗‖2

q

∣∣∣ ≤ 1

4
d2

}
. (3.9.6)

By (3.6.1) and (3.9.4), we have Pθ0 (A0) ≥ 1− α0 − α1. By (3.9.3), we obtain

Pπ (A0) ≥ 1− α0 − α1 −
∫
|fθ0 (z)− fπ (z)| dz. (3.9.7)

For z ∈ A0 and θ ∈ F , by triangle inequality,

‖β̂(z)− β(θ)‖q ≥
∣∣∣‖β(θ)− β∗‖q − ‖β̂(z)− β∗‖q

∣∣∣ ≥ (1− c0) d. (3.9.8)

For z ∈ A0 and θ ∈ F , then

∣∣∣L̂q (z)− ‖β̂(z)− β (θ) ‖2
q

∣∣∣
≥
∣∣∣‖β̂(z)− β (θ) ‖2

q − ‖β̂(z)− β∗‖2
q

∣∣∣− ∣∣∣L̂q (z)− ‖β̂(z)− β∗‖2
q

∣∣∣
≥ (1− 2c0 −

1

4
)d2,

where the first inequality follows from triangle inequality and the last inequality

follows from (3.9.6) and (3.9.8). Hence, for z ∈ A0, we obtain

inf
θ∈F

∣∣∣L̂q (z)− ‖β̂(z)− β (θ) ‖2
q

∣∣∣ ≥ (1− 2c0 −
1

4
)d2. (3.9.9)

Note that supθ∈F Pθ
(∣∣∣L̂q (Z)− ‖β̂(Z)− β (θ) ‖2

q

∣∣∣ ≥ (1− 2c0 − 1
4
)d2
)
≥

supθ∈F Pθ
(

infθ∈F

∣∣∣L̂q (Z)− ‖β̂(Z)− β (θ) ‖2
q

∣∣∣ ≥ (1− 2c0 − 1
4
)d2
)
. Since the max risk

is lower bounded by the Bayesian risk, we can further lower bound the last term by

Pπ
(

infθ∈F

∣∣∣L̂q (Z)− ‖β̂(Z)− β (θ) ‖2
q

∣∣∣ ≥ (1− 2c0 − 1
4
)d2
)
. Combined with (3.9.9), we
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establish

sup
θ∈F

Pθ
(∣∣∣L̂q (Z)− ‖β̂(Z)− β (θ) ‖2

q

∣∣∣ ≥ (1− 2c0 −
1

4
)d2

)
≥ Pπ(A0). (3.9.10)

Combining (3.9.5), (3.9.7) and (3.9.10), we establish (3.6.2).

Proof of (3.6.3)

For CIα

(
β̂, `q, Z

)
∈ Iα

(
Θ, β̂, `q

)
, we have

inf
θ∈Θ

Pθ
(
‖β̂(Z)− β (θ) ‖2

q ∈ CIα

(
β̂, `q, Z

))
≥ 1− α. (3.9.11)

Define the event A =
{
z : ‖β̂(z)− β∗‖q < c0d, ‖β̂(z)− β∗‖2

q ∈ CIα

(
β̂, L, z

)}
. By

(3.6.1) and (3.9.11), we have Pθ0 (A) ≥ 1− α− α0. (3.9.2) and (3.9.3) imply

PZ,θ∼π (A) = Pπ (A) ≥ 1− α− α0 − TV (fπ, fθ0) . (3.9.12)

Define the event Bθ =
{
z : ‖β̂(z)− β (θ) ‖2

q ∈ CIα

(
β̂, `q, z

)}
and M = ∪θ∈FBθ. By

(3.9.11), we have

PZ,θ∼π (M) =

∫ (∫
1z∈Mfθ(z)dz

)
π (θ) dθ ≥

∫ (∫
1z∈Bθfθ(z)dz

)
π (θ) dθ ≥ 1−α.

Combined with (3.9.12), we have PZ,θ∼π (A ∩M) ≥ 1 − 2α − α0 − TV (fπ, fθ0) .

For z ∈ M, there exists θ̄ ∈ F such that ‖β̂(z) − β(θ̄)‖2
q ∈ CIα

(
β̂, `q, z

)
; For

z ∈ A, we have ‖β̂(z) − β∗‖2
q ∈ CIα

(
β̂, `q, z

)
and ‖β̂(z) − β∗‖q < c0d. Hence, for

z ∈ A∩M, we have ‖β̂(z)−β(θ̄)‖2
q, ‖β̂(z)−β∗‖2

q ∈ CIα

(
β̂, `q, z

)
and ‖β̂(z)−β(θ̄)‖q ≥

‖β(θ̄)− β∗‖q − ‖β̂(z)− β∗‖q ≥ (1− c0) d and hence

R
(

CIα

(
β̂, `q, z

))
≥ (1− 2c0) d2. (3.9.13)
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Define the event C =
{
z : R

(
CIα

(
β̂, `q, z

))
≥ (1− 2c0) d2

}
. By (3.9.13), we have

Pπ (C) = PZ,θ∼π (C) ≥ PZ,θ∼π (A ∩M) ≥ 1 − 2α − α0 − TV (fπ, fθ0) . By (3.9.3), we

establish Pθ0 (C) ≥ 1− 2α− α0 − 2TV (fπ, fθ0) and hence (3.6.3).

3.9.2 Proof of Theorems 12 and 14

We first specify some constants used in the proof. Let C∗ be given in (3.2.6). Define

ε1 = 1−2α−2α0

12
and

c0 = min

{
1

2
, 32 log

(
1 + ε21

)
,

2

3

√
log(1 + ε21),

1− 2γ

16C∗
,

(
1− 2γ

16C∗

)2
}
, c∗0 = min

{
c0,

√
M1 − 1

C∗M1 +
√
M1 − 1

}
.

(3.9.14)

Theorems 12 and 14 follow from Theorem 19 below.

Theorem 19. Suppose 0 < α < 1
4
, 1 ≤ q ≤ 2 and the sparsity levels k1, k2 and k0

satisfy Assumption (B2). Suppose that β̂ satisfies Assumption (A2) with ‖β∗‖0 ≤ k0.

1. If k2 .
√
n

log p
, then there is some constant c > 0 such that

R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
≥ ck

2
q

2

log p

n
σ2

0. (3.9.15)

2. If
√
n

log p
. k2 . n

log p
, then there is some constant c > 0 such that

R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
≥ cmax


(

(1− c2)2k
2
q
−1

2 k1
log p

n
− (1 + c1)2k

2
q

1

log p

n

)
+

,
k

2
q
−1

2√
n

σ2
0,

(3.9.16)

where c1 =
C∗k

1
q
0

(k1−k0)
1
q

and c2 =
C∗k

1
q
0

(k2−k0)
1
q−

1
2 (k1−k0)

1
2

.

In particular, the minimax lower bound (3.9.15) and the term
k

2
q−1

2√
n
σ2

0 in (3.9.16) can

be established under the weaker assumption (A1) with ‖β∗‖0 ≤ k0.
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By Theorem 19, we establish (3.3.7) in Theorem 12 and (3.3.18) in Theorem

14. In the regime k2 .
√
n

log p
, the lower bound (3.3.7) for q = 2 and (3.3.18) for

1 ≤ q < 2 follow from (3.9.15). For the case q = 2, in the regime
√
n

log p
. k2 . n

log p
, the

first term of the right hand side of (3.9.16) is 0 while the second term is 1√
n
σ2

0,

which leads to (3.3.7). For 1 ≤ q < 2, let k∗1 = min{k1, ζ0k2} for some con-

stant 0 < ζ0 < 1, an application of (3.9.16) leads to R∗α

(
Θ0 (k∗1) ,Θ0 (k2) , β̂, `q

)
≥

cmax

{
k

2
q
−1

2 k∗1
log p
n
,
k

2
q−1

2√
n

}
σ2

0. By this result, if k1 ≤ ζ0k2, then k∗1 = k1 and the

lower bounds (3.3.18) in the regions k1 .
√
n

log p
. k2 . n

log p
and

√
n

log p
. k1 ≤

k2 . n
log p

follow; if ζ0k2 < k1 ≤ k2, then k∗1 = ζ0k2 ≥ ζ0k1. By the fact that

R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
≥ R∗α

(
Θ0 (k∗1) ,Θ0 (k2) , β̂, `q

)
, the lower bounds (3.3.18)

over the regions k1 .
√
n

log p
. k2 . n

log p
and

√
n

log p
. k1 ≤ k2 . n

log p
follow. The following

lemma shows that (3.3.7) holds for β̂L defined in (3.2.10) with A >
√

2 by verifying

Assumption (A1) and (3.3.18) holds for β̂L defined in (3.2.10) with A > 4
√

2 by

verifying Assumption (A2). Its proof can be found in Chapter B.

Lemma 8. If A > 4
√

2, then we have

sup
{θ=(β∗,I,σ):σ≤2σ0}

Pθ
(
‖β̂L − β∗‖2

q ≥ C‖β∗‖
2
q

0

log p

n
σ2

)
≤ c exp (−c′n) + p−c.

In particular, the above result holds for q = 2 under the assumption A >
√

2.
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4
Confidence Interval for Causal Effects with Invalid

Instruments using Two-Stage Hard Thresholding

4.1 Introduction

4.1.1 Motivation: invalid instruments even after controlling

for (potentially many) confounders

Instrumental variables (IV) analysis is a popular method to deduce causal effects in

the presence of unmeasured confounding. An IV analysis requires variables called

instruments that (A1) are related to the exposure (A2) have no direct pathway to the

outcome and (A3) are not related to unmeasured variables that affect the exposure

and the outcome (see Section 4.2.2 for details). Variables that satisfy these assump-

tions are referred to as valid instruments. A major challenge in IV analysis is to find

valid instruments.

In practice, it is often the case that potential candidate instruments become more

plausible as valid instruments after controlling for some, possibly high dimensional,

covariates (see Hernán & Robins (2006) and Baiocchi et al. (2014) for discussion on

control for covariates for an instrument to be valid). For example, a long-standing

interest in economics is the causal effect of education on earnings and often, IV anal-
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ysis is used to deduce the effect (Angrist & Krueger, 1991; Card, 1993, 1999). A

popular instrument in this analysis is a person’s proximity to a college when growing

up (Card, 1999, 1993). However, proximity to a college may be related to a person’s

socioeconomic status, characteristics of a person’s high school and other covariates

that may affect a person’s earnings. Thus, these covariates need to be controlled for

in order for proximity to college to be a valid IV and with the growing trend toward

collecting large data sets with many variables, this approach of finding instrumen-

tal variables that are valid after conditioning on covariates has increasing promise

(Hernán & Robins, 2006; Swanson & Hernán, 2013; Baiocchi et al., 2014; Varian,

2014; Imbens, 2014).

Yet, despite the promise that large data sets may bring in terms of finding valid

instruments by conditioning on potentially many covariates, some IVs may still turn

out to be invalid and subsequent analysis assuming that all the IVs are valid after

conditioning can be misleading (Murray, 2006). For example, suppose for studying

the causal effect of education on earnings, we used proximity as an IV and to make

sure the IV satisfies (A3), we control for confounders like high school test scores

of the student, high school size, individual’s genetic makeup, family education, and

family’s socioeconomic status. But, if living close to college had other benefits beyond

getting more education, say by being exposed to many programs available to high

school students for job preparation and employers who come to the area to discuss

employment opportunities for college students, then the IV, proximity to college, can

directly affect individual’s earning potential and violate (A2) (Card, 1999). This

problem is also widely prevalent in other applications of instrumental variables, most

notably in Mendelian randomization (Davey Smith & Ebrahim, 2003, 2004) where

the instruments are genetic in nature and some instruments are likely to be invalid

due to having pleiotropic effects (Lawlor et al., 2008; Burgess et al., 2015).
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This paper tackles the problem of constructing confidence intervals for causal

effects that are robust to invalid instruments even after controlling for possibly high

dimensional covariates.

4.1.2 Prior work

In non-IV settings with many high dimensional covariates, Zhang & Zhang (2014);

Javanmard & Montanari (2014a); van de Geer et al. (2014); Belloni et al. (2014) and

Cai & Guo (2016b) provide honest confidence intervals for a treatment effect. In

IV settings with high dimensional covariates (or IVs), Gautier & Tsybakov (2011);

Belloni et al. (2012); Fan & Liao (2014) and Chernozhukov et al. (2015a) provide

honest confidence intervals for a treatment effect, under the assumption that all the

IVs are valid after controlling for said covariates. In invalid IV settings, Kolesár

et al. (2015) and Bowden et al. (2015) provide inferential methods for treatment

effects. However, the method requires that the effects of the IVs on the treatment be

orthogonal to their direct effects on the outcome, a stringent assumption. Bowden

et al. (2016); Burgess et al. (2016); Kang et al. (2016b) and Windmeijer et al. (2016)

also work on the invalid IV setting, but without making the stringent orthogonality

assumption. Unfortunately, all these papers focuses on the low dimensional setting

and some only work in the case where the IVs are completely uncorrelated/orthogonal

to each other unless modifications are made (Bowden et al., 2015; Burgess et al.,

2016). Furthermore, all the previous work only provides a consistent estimator of the

treatment effect without any theoretical guarantees on inference; in fact, one of the

simplest consistent estimators in this setting, the median estimator (Bowden et al.,

2016; Burgess et al., 2016; Windmeijer et al., 2016) has been shown to be consistent,

but not
√
n consistent (Windmeijer et al., 2016).

There are two major challenges in obtaining valid confidence intervals in our prob-
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lem: (i) potentially high-dimensional covariates and (ii) the invalid IVs. The problem

related with high-dimensional covariates can be dealt with by applying recent debias-

ing methods developed in Zhang & Zhang (2014); Javanmard & Montanari (2014a);

van de Geer et al. (2014); Cai & Guo (2016b). However, the general idea behind

debiasing does not inherently resolve the invalid IV problem as even a single IV

that is improperly assumed as valid while it is truly invalid can make these debiased

estimates useless. To put it another way, debiasing as a method is only meant to

asymptotically remove the bias of regression coefficients from `1 shrinkage estimators

and to conduct proper inference on these de-biased coefficients. This methodological

goal is different than in the invalid IV problem where the goal is to properly estimate

a set of valid IVs, as even a single error of declaring an IV that is invalid as valid

can lead to dishonest inference. In fact, the methodological challenge is not only to

correctly select IVs, but also once selected, to do robust inference using the selected

IVs.

4.1.3 Our contributions

Although there are existing methods for estimating the treatment effect in the pres-

ence of possibly invalid IVs, there is a paucity of procedures for selecting the set

of valid instruments and forming confidence intervals for the treatment effects with

theoretical coverage guarantees. In this paper, we propose a novel two-stage hard

thresholding (TSHT) procedure to estimate the set of valid instruments and form

confidence intervals with theoretical coverage guarantee. As the name suggests, a

key component of TSHT is the two sequential steps of hard-thresholding procedures

common in high dimensional inference (Donoho & Johnstone, 1994; Donoho, 1995) to

simultaneously allow for invalid IVs and endogeneity of the treatment. Specifically,

in the first thresholding stage, we select non-redundant IVs (see Definition 2 for de-
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tails) and in the second thresholding stage, we use the thresholded estimates from

the first thresholding step as pilot estimates to guide the selection of the set of valid

instruments; see Section 4.3.3 for details. Using our two-stage variant of thresholding

properly accounts for the selection of IVs and leads to 1/
√
n rate confidence intervals

with desired coverage in both low and high dimensional settings where invalid IVs are

present and without knowing a priori which of these IVs are invalid. Also, for the low

dimensional covariate setting, our procedure is the first to have theoretical guarantees

that it performs as well asymptotically as the oracle procedure that knows which in-

struments are valid. For the high dimensional covariate setting, our procedure is the

first available procedure for forming confidence intervals with desired coverage when

there may be invalid IVs.

The outline of the paper is as follows. After describing the model setup in Section

4.2, we formulate our TSHT procedure in Section 4.3. In Section 4.4, we develop the

theoretical properties of our procedure. In Section 4.5, we investigate the performance

of our procedure in a large simulation study and find that our confidence interval

performs very similarly with respect to the oracle even if some of the underlying

theoretical assumptions made in Section 4.4 are violated (see Sections 4.4 and 4.5 for

details). In Section 4.6, we present an empirical study where we revisit the question

of the causal effect of years of schooling on income using data from the Wisconsin

Longitudinal Study. We provide conclusions and discussion in Section 4.7.

4.2 Model

4.2.1 Notation

To define causal effects, the potential outcome approach (Neyman, 1923; Rubin, 1974)

for instruments laid out in Holland (1988) is used. For each individual i ∈ {1, . . . , n},
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let Y
(d,z)
i ∈ R be the potential outcome if the individual were to have exposure d ∈ R

and instruments z ∈ Rpz . Let D
(z)
i ∈ R be the potential exposure if the individual had

instruments z ∈ Rpz . For each individual, only one possible realization of Y
(d,z)
i and

D
(z)
i is observed, denoted as Yi and Di, respectively, based on his observed instrument

values Zi. ∈ Rpz and exposure Di. We also denote pre-instrument covariates for each

individual i as Xi. ∈ Rpx . In total, n sets of outcome, exposure, and instruments,

denoted as (Yi, Di,Zi.,Xi.), are observed in an i.i.d. fashion.

We denote Y = (Y1, . . . , Yn) to be an n-dimensional vector of observed outcomes,

D = (D1, . . . , Dn) to be an n-dimensional vector of observed exposures/treatment,

Z to be a n by pz matrix of instruments where row i consists of Zi., and X to be

an n by px matrix of covariates where row i consists of Xi.. Let W be an n by

p = pz + px matrix where W is a result of concatenating the matrices Z and X

and Σ∗ = E (Wi·W
ᵀ
i·) is positive definite. For any vector v ∈ Rp, let vj denote

the jth element of v. Let ‖v‖1, ‖v‖2, and ‖v‖∞ denote the usual 1, 2 and ∞-

norms, respectively. Let ‖v‖0 denote the number of non-zero elements in v and

supp(v) ⊆ {1, . . . , p}, is defined as {j : vj 6= 0}.

For any n by p matrix M ∈ Rn×p, we denote the (i, j) element of matrix M as

Mij, the ith row as Mi., and the jth column as M.j. Let Mᵀ be the transpose of M

and ‖M‖∞ represent the element-wise matrix sup norm of matrix M. For a sequence

of random variables Xn, we use Xn
p→ X and Xn

d→ X to represent that Xn converges

to X in probability and in distribution, respectively. Finally, for any two sequences

an and bn, we will write an � bn if lim sup bn
an

= 0 and write an � bn if bn � an.

Also, for a set J , |J | denotes its cardinality.
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4.2.2 Model and instrumental variables assumptions

We consider the Additive LInear, Constant Effects (ALICE) model of Holland (1988)

and extend it to allow for multiple valid and possibly invalid instruments as in Small

(2007) and Kang et al. (2016b). For two possible values of the exposure d′, d and

instruments z′, z, we assume the following potential outcomes model

Y
(d′,z′)
i −Y (d,z)

i = (z′−z)ᵀκ∗+(d′−d)β∗, E(Y
(0,0)
i | Zi.,Xi.) = Zᵀ

i.η
∗+Xᵀ

i.φ
∗ (4.2.1)

where κ∗, β∗,η∗, and φ∗ are unknown parameters. The parameter β∗ represents the

causal parameter of interest, the causal effect (divided by d′ − d) of changing the

exposure from d′ to d on the outcome. The parameter φ∗ represents the impact of

covariates on the baseline potential outcome Y
(0,0)
i . The parameter κ∗ represents vio-

lation of (A2), the direct effect of the instruments on the outcome. If (A2) holds, then

κ∗ = 0. The parameter η∗ represents violation of (A3), the presence of unmeasured

confounding between the instrument and the outcome. If (A3) holds, then η∗ = 0.

Let π∗ = κ∗+η∗ and εi1 = Y
(0,0)
i −E(Y

(0,0)
i | Zi.,Xi.). When we combine equation

(4.2.1) along with the definition of εi1, the observed data model becomes

Yi = Zᵀ
i.π
∗ +Diβ

∗ + Xᵀ
i.φ
∗ + εi1, E(εi1 | Zi.,Xi.) = 0 (4.2.2)

and we denote σ2 = Var(εi1|Zi.,Xi.). The observed model is also known as the

under-identified single-equation linear model in econometrics (page 83 of Wooldridge

(2010)). This model is not a usual regression model because Di might be correlated

with εi1. In particular, the parameter β∗ measures the causal effect of changing D

on Y rather than an association. Also, the parameter π∗ in model (4.2.2) combines

both the violation of (A2), represented by κ∗, and the violation of (A3), represented

by η∗. If both (A2) and (A3) are satisfied for IVs, typically referred to as valid IVs
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(Murray, 2006), then κ∗ = η∗ = 0 and π∗ = 0. Hence, π∗ captures invalid IVs,

i..e the violations of (A2) and (A3). We formalize this notion with the following

definition.

Definition 1. Suppose we have pz candidate instruments along with the models

(4.2.1)–(4.2.2). We say that instrument j = 1, . . . , pz is valid, i.e. satisfies (A2)

and (A3), if π∗j = 0.

We also assume a linear association/observational model between the endogenous

variable Di, the instruments Zi., and the covariates Xi.,

Di = Zᵀ
i.γ
∗ + Xᵀ

i.ψ
∗ + εi2, E(εi2|Zi.,Xi.) = 0. (4.2.3)

Each element γ∗j is the partial correlation between the jth instrument and D. The pa-

rameter ψ∗ represents the association between the covariates and Di. Also, unlike the

models (4.2.1)-(4.2.2), we do not need a causal model between Di, Zi., and Xi.; only

the association model (4.2.3) is sufficient for our method. Finally, for notation, we let

sz2 = ‖π∗‖0, sx2 = ‖φ∗‖0, sz1 = ‖γ∗‖0, sx1 = ‖ψ∗‖0 and s = max{sz2, sx2, sz1, sx1}.

Finally, in both models, the instruments and the covariates are exogenous to the error

terms; see Wooldridge (2010) for textbook discussion on exogeneity.

Based on model (4.2.3), we can define a set of instruments that satisfy (A1), or

sometimes referred to as non-redundant instruments in the econometrics literature

(Cheng & Liao, 2015).

Definition 2. Suppose we have pz candidate instruments along with the model (4.2.3).

We say that instrument j = 1, . . . , pz satisfies (A1), or is a non-redundant IV, if

γ∗j 6= 0 and denote S∗ to be the set of these instruments.

Typically, satisfying (A1) has been defined in a global sense where (A1) is satisfied

if γ∗ 6= 0 (Wooldridge, 2010). However, this global definition can be misleading in the
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presence of multiple candidate instruments. For example, it is possible that γ∗1 � 0

while γ∗j = 0 for all j 6= 1 so that only the first instrument has an effect on the

exposure while the rest do not. Using the global definition would imply that all the

pz instruments satisfy (A1) while Definition 2 makes it explicit and, perhaps less

ambiguous, that it is only the first instrument j = 1 that satisfies (A1). Nevertheless,

both the traditional global definition and Definition 2 are equivalent if γ∗j 6= 0 for all

j, that is where we only include relevant instruments, which is typically the case in

practice and is the scenario studied by Kang et al. (2016b). Finally, when there is

only one candidate instrument so that pz = 1, both definitions are equivalent to the

definition presented in Holland (1988) and both become a special case of the definition

presented in Angrist et al. (1996) under an additive, linear, constant effects model.

In short, Definition 2 agrees with most definitions of satisfying (A1) in the literature.

Combining Definitions 1 and 2, we can formally define the usual three core con-

ditions, i.e. (A1)-(A3), that define instruments.

Definition 3. Suppose we have pz candidate instruments along with the models

(4.2.1)–(4.2.3). We say that the Z.j, j = 1, . . . , pz, is an instrument if (A1) − (A3)

are satisfied, i.e. if π∗j = 0 and γ∗j 6= 0. Let V∗ be the set of instruments.

When there is only one instrument, pz = 1, Definition 3 of an instrument is

identical to the definition of an instrument in Holland (1988). Specifically, Definition

2 satisfies assumption (A1) that the instrument is related to the exposure. Also,

assumption (A2), the exclusion restriction, which means Y
(d,z)
i = Y

(d,z′)
i for all d, z, z′,

is equivalent to κ∗ = 0 and assumption (A3), no unmeasured confounding, which

means Y
(d,z)
i and D

(z)
i are independent of Zi. for all d and z, is equivalent to η∗ = 0,

implying π∗ = κ∗ + η∗ = 0. Definition 3 is also a special case of the definition of

an instrument in Angrist et al. (1996) where here we assume the model is additive,

linear, and has a constant treatment effect β∗. Hence, when multiple instruments,
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pz > 1, are present, our models (4.2.1)–(4.2.3) and Definition 3 can be viewed as a

generalization of the definition of instruments in Holland (1988).

Note that the models presented above are commonly used in applications of IVs

in econometrics (Wooldridge, 2010) and applications of IVs in genetic epidemiology

and Mendelian randomization (Didelez & Sheehan, 2007). However, we generalize

these widely used models in two important ways: (i) the model in (4.2.2) allows for

possibly invalid instruments and (ii) we allow the number of covariates px (and even

the number of instruments pz) to be larger than the sample size n.

4.3 Confidence interval estimation via Two-Stage

Hard Thresholding

4.3.1 General approach

The construction of our confidence interval can be broken down into two parts. The

first part, detailed in Section 4.3.2, is estimating ITT effects based on the models

(4.2.2) and (4.2.3). As we will see, the first part primarily deals with the problem

posed by potentially high dimensional covariates, specifically the bias that comes

from penalized estimators for high dimensional regression. The second part, which

is elaborated in Section 4.3.3, tackles the heart of the problem in this paper, the

presence of invalid IVs even after conditioning on high dimensional controls. Here,

we take a novel two-stage hard thresholding approach to correctly select the valid

IVs. Specifically, in the first step, we estimate the set of IVs that satisfy (A1) and

in the second step, we use these IVs as initial guides to find IVs that satisfy (A2)

and (A3) using the estimated set in the first step. Combining the two parts gives our

confidence interval estimation procedure and is summarized in Procedure 1.

Procedure 1 provides a general recipe to construct confidence intervals in the pres-
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Procedure 1 Two-Stage Hard Thresholding (TSHT) for Confidence Interval for β∗

under Invalid IVs with High-Dimensional Covariates

Input: Outcome Y, treatment D, instrument Z, covariates X, significance level α
STEP 1: Estimate ITT effects (i.e. Γ̃, γ̃) via debiased scaled Lasso in (4.3.3)-(4.3.6)

STEP 2: Select valid IVs (i.e. Ṽ ) via two-stage hard thresholding

STEP 2a: Estimate IVs satisfying (A1) (i.e. S̃) via hard thresholding γ̃ in (4.3.7)

STEP 2b: For each IV satisfying (A1) (i.e. j ∈ S̃), estimate IVs satisfying (A2)
and (A3) via hard-thresholding π̃[j] in (4.3.8)-(4.3.9)

STEP 3: Combine STEP 1 and STEP 2 via (4.3.10)-(4.3.12) to obtain confidence
interval

Output: 1− α Confidence interval for β∗

ence of invalid IVs and high dimensional covariates. The key step in the procedure is

STEP 2, where we utilize two-stage hard thresholding, to deal with the problem posed

by invalid IVs; as such, we call our procedure TSHT procedure, akin to the acronym

for two-stage least squares (TSLS) procedure in IV, arguably the most popular IV

estimator in the literature. We also note that the Procedure 1 as stated can handle

(i) low dimensional covariates, (ii) high dimensional covariates, and (iii) settings with

all IVs having no direct effect and no unmeasured confounding, which is unrealistic

in practice, and can still obtain valid confidence intervals. However, depending on

particular data sets one may have, the procedure can be modified for simplicity and,

in some cases, efficiency; Sections 4.3.5 and 4.3.6 discusses these cases in detail.

4.3.2 Estimating lTT effects

The first part of the confidence interval procedure involves estimation of ITT effects.

Specifically, given the observed models (4.2.2) and (4.2.3), we can write reduced-forms

models where both models are only functions of Zi. and Xi.,

Yi = Zᵀ
i.Γ
∗ + Xᵀ

i.Ψ
∗ + ei1, (4.3.1)

Di = Zᵀ
i.γ
∗ + Xᵀ

i.ψ
∗ + εi2. (4.3.2)
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Here, Γ∗ = β∗γ∗ + π∗ and Ψ∗ = φ∗ + β∗ψ∗ are the parameters of the reduced-

form model with Γ∗ representing the ITT effect of the instruments on the outcome

and γ∗ representing the ITT effect of the instruments on the exposure. The term

ei1 = β∗εi2 + εi1 is the reduced-form error term in (4.3.1). The errors have the

property that E(ei1|Zi.,Xi.) = 0 and E(εi2|Zi.,Xi.) = 0 with the variances Θ∗11 =

Var(ei1|Zi.,Xi.), Θ∗22 = Var(εi2|Zi.,Xi.), and Θ∗12 = Cov(ei1, εi2|Zi.,Xi.). Thus, each

equation in the reduced-form model is a usual (high dimensional) regression model

with (high dimensional) covariates Zi. and Xi. and outcomes Yi and Di, respectively.

There are many methods in the literature to estimate the parameters of high

dimensional regression models like the reduced-form models in (4.3.1) and (4.3.2).

One approach is the scaled Lasso estimator proposed by Sun & Zhang (2012),

{Γ̂, Ψ̂, Θ̂11}

= argmin
Γ∈Rpz ,Ψ∈Rpx ,Θ11∈R+

‖Y − ZΓ−XΨ‖22
2n
√

Θ11

+

√
Θ11

2
+

λ0√
n

 pz∑
j=1

‖Z.j‖2|Γj |+
px∑
j=1

‖X.j‖2|Ψj |


(4.3.3)

for the reduced model in (4.3.1) and

{γ̂, ψ̂, Θ̂22}

= argmin
Γ∈Rpz ,Ψ∈Rpx ,Θ22∈R+

‖D− Zγ −Xψ‖22
2n
√

Θ22

+

√
Θ22

2
+

λ0√
n

 pz∑
j=1

‖Z.j‖2|γj |+
px∑
j=1

‖X.j‖2|ψj |


(4.3.4)

for the reduced model in (4.3.2). The term λ0 in both estimation problems (4.3.3)

and (4.3.4) represents the penalty term in the scaled Lasso estimator and we choose

λ0 =
√
a0 log p/n for some constant a0 > 2; in practice, we find that setting a0 = 2

or 2.05 works well. Also, we can estimate Θ∗12 from the estimation problems (4.3.3)

and (4.3.4) by Θ̂12 = 1/n
(
Y − ZΓ̂−XΨ̂

)ᵀ (
D− Zγ̂ −Xψ̂

)
.

Unfortunately, most penalized estimators for high dimensional regression problems

are biased and the scaled Lasso estimators are no exception. In our case, using the

estimates, say Γ̂ and γ̂, are biased for the parameters that they estimate Γ∗ and
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γ∗. Thankfully, recent works by Zhang & Zhang (2014); Javanmard & Montanari

(2014a); van de Geer et al. (2014) and Cai & Guo (2016b) allow us to debias these

biased estimates. Specifically, let W be the concatenated matrix of the instruments Z

and the covariates X. Suppose we solve pz optimization problems where the solution

to each pz optimization problem, denoted as û[j] ∈ Rp, j = 1, . . . , pz, is

û[j] = argmin
u∈Rp

1

n
‖Wu‖2

2 s.t. ‖ 1

n
WᵀWu− I.j‖∞ ≤ λn, (4.3.5)

with I.j denoting the j-th column of the identity matrix I. The tuning parameter

λn is chosen to be 12M2
1

√
log p/n with M1 defined as the largest eigenvalue of Σ∗.

Let Û denote the concatenation of the pz solutions to the optimization problem, i.e.

Û = (û[1], . . . , û[pz ])ᵀ. Then, the debiased estimates of Γ̂ and γ̂, denoted as Γ̃ and γ̃,

are

Γ̃ = Γ̂ +
1

n
ÛWᵀ

(
Y − ZΓ̂−XΨ̂

)
, γ̃ = γ̂ +

1

n
ÛWᵀ

(
D− Zγ̂ −Xψ̂

)
. (4.3.6)

In short, we used scaled Lasso along with de-biasing methods on the reduced-form

models to obtain de-biased estimates Γ̃ and γ̃ of the intent-to-treat effects of the

instruments on the outcome and the exposure, respectively.

4.3.3 Two-Stage Hard Thresholding

The second part of the confidence interval procedure deals with the problem posed

by invalid IVs. Specifically, we need to select valid IVs among pz candidate IVs that

satisfy all (A1)-(A3) assumptions, that is the set V∗ in Definition 3. As discussed

before, we do this by first, finding IVs that satisfy (A1), that is the set S∗ in Definition
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2 consisting of js where γ∗j 6= 0, by thresholding the de-biased estimate γ̃

S̃ =

j : |γ̃j| ≥

√
Θ̂22‖Wû[j]‖2√

n

√
a0 log pz

n

 , (4.3.7)

where S̃ denotes an estimate of S∗. The threshold is based on the noise level of

γ̃j in (4.3.6) (represented by

√
Θ̂22‖Wû[j]‖2/n), adjusted by dimensionality of the

instrument size (represented by
√
a0 log pz).

The second thresholding step involves selecting IVs that satisfy (A2) and (A3).

Specifically, by Definition 1, the set of instruments that satisfy (A2) and (A3) are

those js where π∗j = 0. Consequently, to estimate π∗, we take each instrument j in S̃

that satisfy (A1) and we define β̂[j] to be a “pilot” estimate of β∗ by using this IV and

dividing the reduced-form estimates, i.e. β̂[j] = Γ̃j/γ̃j, and π̂[j] to be the estimate of

π∗ using this jth instrument’s estimate of β∗, i.e. π̂[j] = Γ̃− β̂[j]γ̃; we also construct

corresponding pilot estimates of σ2, i.e. σ̂2
[j]

= Θ̂11 + (β̂[j])2Θ̂22 − 2β̂[j]Θ̂12. Then,

for each π̂[j] in j ∈ S̃, we threshold each element of π̂[j] to create the thresholded

estimate π̃[j],

π̃
[j]
k = π̂

[j]
k 1

(
k ∈ S̃ ∩ |π̂[j]

k | ≥ a0

√
σ̂2

[j]‖W(û[k] − γ̃k
γ̃j

û[j])‖2
√
n

√
log pz

n

)
(4.3.8)

for all 1 ≤ k ≤ pz. Each thresholded estimate π̃[j] is obtained by looking at the

elements of the un-thresholded estimate, π̂[j], and examining whether each element

of it exceeds the noise threshold, denoted by the term

√
σ̂2

[j]
‖W(û[k] − γ̃k

γ̃j
û[j])‖2/n,

adjusting for the multiplicity of the selection procedure by the term a0

√
log pz. Among

the |S̃| candidate estimates of π∗ based on each instrument in S̃, i.e. π̃[j], and

we choose π̃[j] with most valid instruments, or equivalently choose j∗ ∈ S̃ where

j∗ = argmin ‖π̃[j]‖0; if there is a non-unique solution, we choose π̃[j] with the smallest
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`1 norm, the closest convex norm of `0.

Intuitively, the second-stage thresholding selects the invalid IVs and valid IVs as

follows. Among the |S̃| pilot estimates π̃[j], the best estimate of π∗ is the one that

uses a valid IV from the set S̃. In particular, if the jth pilot estimate is actually

based on a valid IV, then all the invalid IVs will be included in the support of the

thresholded estimate π̃[j] because their π∗ will be away from zero and all the valid

instruments will be excluded from the support because their π∗ are zero. On the other

hand, if the jth pilot estimate is based on an invalid IV, the pilot estimate π̃[j] will be

biased in the sense that the valid IVs will no longer have π̃[j] that will be thresholded

to zero and most of the elements of π̃[j] will be away from zero. Consequently, many

IVs will be declared invalid based on π̃[j] and when we minimize with respect to the

number of non-zero elements of the vector, i.e. min ‖π̃[j]‖0 among all pilot estimates,

we should be able to select the best estimate of π∗. We remark that the latter `0

minimization is reminiscent of Theorem 1 in Kang et al. (2016b) where a necessary

and sufficient condition for identification of β∗ under invalid instruments is by looking

at the largest subset of valid instruments that converge on a unique (i.e. identified)

value; the search for the largest subset of valid IVs is essentially a minimization of `0

norm, which counts the number of invalid IVs, and hence, there is some sense that

our procedure is both sufficient and necessary way to estimate β∗.

Finally, we note that it is crucial to construct pilot estimates of π∗ from the IVs

in the first thresholding step, that is S̃, as each of these IVs represent strong IVs and

have non-zero effects on the exposure; using IVs that are not in S̃ may lead to poor

estimates of the direct effect on the outcome since a redundant instrument j, whose

true γ∗j is zero, can lead to a large, unstable value of |γ̃k/γ̃j| and the threshold value

in (4.3.8), which will make it difficult to distinguish truly invalid IVs from noise.
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4.3.4 Confidence Interval Estimation

After the two thresholding steps, we estimate the set of valid instruments Ṽ ⊆

{1, . . . , pz} as those elements of π̃[j∗] that are zero,

Ṽ = S̃ \ supp
(
π̃[j∗]

)
(4.3.9)

Then, using the estimated Ṽ , we obtain our estimate of β∗

β̂ =

∑
j∈Ṽ γ̃jΓ̃j∑
j∈Ṽ γ̃

2
j

, (4.3.10)

along with an estimate of its standard error

V̂ =

∥∥∥∑j∈Ṽ γ̃j
1√
n
Wû[j]

∥∥∥2

2(∑
j∈Ṽ γ̃

2
j

)2 σ̂2 and σ̂2 = Θ̂11 + β̂2Θ̂22 − 2β̂Θ̂12, (4.3.11)

and the usual form for the confidence interval for β∗,

(
β̂ − z1−α/2

√
V̂/n, β̂ + z1−α/2

√
V̂/n

)
, (4.3.12)

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

In the equations for β̂ and the standard error V̂, we see some familiar expressions

from the traditional IV literature. First, β̂ has the “correct” form in that if, by chance,

we correctly estimated the set of valid instruments V∗ and our debiased estimates of

the reduced-form parameters, Γ̃ and γ̃, are perfect estimates of the reduced-form

parameters, our estimate of β∗ in (4.3.10) would become β̂ =
∑

j∈Ṽ γ̃jΓ̃j/
∑

j∈Ṽ γ̃
2
j =∑

j∈V∗ γ
∗
j

2β∗/
∑

j∈V∗ γ
∗
j

2 = β∗. Hence, our estimator in (4.3.10) would identify β∗.

Clearly, we would never have a perfect estimate of the set V∗ or of the reduced-form

parameters in finite sample and Section 4.4 describes the properties of our estimate
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β̂ under these uncertainties. Second, in the standard error formula in (4.3.11), the

Θ̂11 + β̂2Θ̂22 − 2β̂Θ̂12 is of the similar form to the usual IV estimator of σ2, variance

of the error term in our original model (4.2.2). But, our standard error estimator is

scaled by terms that depend on the estimated set of valid instruments Ṽ .

4.3.5 Special case of procedure 1: valid IVs after controlling

for high dimensional covariates

To better understand the components of our inference procedure 1, it is instructive

to go through some specific cases of estimating β∗ that is common in the literature

as these special cases can greatly simplify the procedure and remove unnecessary

components. The first case is when the instruments are assumed to be valid (i.e.

no direct effect and no unmeasured confounding) after conditioning on high dimen-

sional covariates. This setup was considered in Gautier & Tsybakov (2011); Belloni

et al. (2012); Fan & Liao (2014); Chernozhukov et al. (2015a). Under this case, our

procedure doesn’t have to go through STEP 2b, the estimation of π∗, illustrated in

Section 4.3.3. Instead, we can simply replace STEP 2b with Ṽ = S̃ and the resulting

estimator for β∗ is

β̂H =

∑
j∈S̃ γ̃jΓ̃j∑
j∈S̃ γ̃

2
j

. (4.3.13)

The corresponding confidence interval for β∗ would be

(
β̂H − z1−α/2

√
V̂H/n, β̂H + z1−α/2

√
V̂H/n

)
. (4.3.14)

Here, V̂H is V̂ in (4.3.11) except we replace Ṽ = S̃ and β̂ with β̂H .
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4.3.6 Special case of procedure 1: invalid instruments after

controlling for low dimensional covariates

The second special case worth examining is the problem of invalid instruments after

controlling for low dimensional covariates. While the plausibility of candidate IVs

adherence to assumptions (A1)-(A3), especially (A3), is higher with many covariates,

the low dimensional setting has recently received much attention and is discussed in

Bowden et al. (2015, 2016); Burgess et al. (2016); Kang et al. (2016a), and Windmeijer

et al. (2016). As we will see below, our procedure simplifies greatly and with a minor

modification, our estimator, unlike the estimators proposed in said prior literature,

achieves optimal performance.

Specifically, under the low-dimensional scenario, there is no need to use the debi-

ased scaled lasso in STEP 1 of Procedure 1. Instead, we can replace STEP 1 with

the simple ordinary least square (OLS) estimates of the reduced-forms, (Γ̃, Ψ̃)ᵀ =

(WᵀW)−1WᵀY and (γ̃, ψ̃)ᵀ = (WᵀW)−1WᵀD, and of the covariance terms

Θ̂11 =
∥∥∥Y − ZΓ̂−XΨ̂

∥∥∥2

2
/n, Θ̂22 =

∥∥∥D− Zγ̂ −Xψ̂
∥∥∥2

2
/n,

and

Θ̂12 =
(
Y − ZΓ̂−XΨ̂

)ᵀ (
D− Zγ̂ −Xψ̂

)
/n.

As a result of using OLS in STEP 1, we need to replace û[j] from (4.3.5) with û[j] =

(Σ̂)−1
.j , Σ̂ = WᵀW/n, and replace the log terms in our thresholds in (4.3.7) and

(4.3.8) from
√

log pz to
√

log n.

We can then proceed to use the estimator defined in (4.3.10). Alternatively, we

can use a modified version of β̂, denoted as β̂E, using the weighting matrix A =
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Σ̂Ṽ,Ṽ − Σ̂Ṽ,Ṽc
(
Σ̂Ṽc,Ṽc

)−1

Σ̂Ṽc,Ṽ

β̂E =
γ̃ᵀ

Ṽ
AΓ̃Ṽ

γ̃ᵀ

Ṽ
Aγ̃Ṽ

(4.3.15)

along with the estimated standard error V̂E = σ̂2/γ̃ᵀ

Ṽ
Aγ̃Ṽ where σ̂2 = Θ̂11 + β̂2

EΘ̂22−

2β̂EΘ̂12 and confidence interval

(
β̂E − z1−α/2

√
V̂E/n, β̂E + z1−α/2

√
V̂E/n

)
. (4.3.16)

Note that β̂E in (4.3.15) is reduced to β̂ in (4.3.10) by setting A = I. As we will see in

Section 4.4.1, our estimator β̂E, compared to other estimators in prior work, achieves

optimal performance in the sense that our performance is asymptotically identical to

the TSLS estimator for β∗ that knows which IVs are valid a priori, i.e. the set V∗.

4.4 Theoretical results

In this section, we investigate the properties of the confidence interval proposed in

Procedure 1. We first consider in Section 4.4.1 the coverage property in the case of

invalid IVs with low dimensional covariates where px and pz are fixed. In Section

4.4.2, we establish the coverage property for the general case, invalid IVs even after

controlling for many covariates.

4.4.1 Invalid IVs after controlling for low dimensional covari-

ates

We state the following mild assumption commonly used in the invalid IV literature

(IN1) (50% Rule) The number of valid IVs is more than half of the number of non-

redundant IVs, that is |V∗| > 1
2
|S∗|.
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We denote the assumption as “IN” since the assumption is specific to the case of

invalid IVs. Assumption (IN1) is the generalization of the 50% rule in Kang et al.

(2016b) and Han (2008) in the presence of possibly redundant IVs. In a nutshell,

(IN1) states that if the number of invalid instruments is not too large, then we can

detect the invalid IVs from valid IVs, without knowing a priori which IVs are valid or

invalid; see Kang et al. (2016b) for a detailed discussion of this assumption and how

this type of proportion-based assumption is a necessary component for identification

of model parameters under invalid instruments.

Under the 50% assumption alone, Theorem 20 states that we can show that our

procedure produces confidence intervals with desired coverage and optimal length in

low dimensional settings where px and pz are fixed.

Theorem 20. Suppose that the assumption (IN1) holds. Then the following property

holds for the estimator β̂E defined in (4.3.15),

√
n
(
β̂E − β∗

)
d→ N

0,
σ2

γ∗ᵀV∗
(
Σ∗V∗V∗ −Σ∗V∗(V∗)CΣ∗−1

(V∗)C(V∗)CΣ∗
(V∗)CV∗

)
γ∗V∗

 . (4.4.1)

Consequently, the confidence interval given in (4.3.16) has asymptotically coverage

probability 1− α, i.e.,

P

{
β ∈

(
β̂E − z1−α/2

√
V̂E/n, β̂E + z1−α/2

√
V̂E/n

)}
→ 1− α. (4.4.2)

We note that the proposed estimator β̂E has the same asymptotic variance as the

oracle TSLS estimator with the prior knowledge of V∗, which is shown to be efficient

under the homoskedastic variance assumption (Theorem 5.2 in Wooldridge (2010));

consequently, our confidence interval asymptotically performs like the oracle TSLS

confidence interval and is of optimal length. But, unlike TSLS, we achieve this oracle
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performance without prior knowledge of V∗. We also note the estimators proposed

in prior work, Bowden et al. (2015, 2016); Burgess et al. (2016); Kang et al. (2016a);

Windmeijer et al. (2016), do not achieve oracle performance and TSLS-like efficiency.

4.4.2 Invalid IVs after controlling for high dimensional co-

variates

We now consider the coverage property for the general case, invalid IVs even after

controlling for many confounders. We first introduce the usual regularity assumptions

used in high-dimensional statistical inference (Bickel et al., 2009; Bühlmann & van de

Geer, 2011; Cai & Guo, 2016b).

(R1) (Coherence): The matrix Σ∗ satisfies 1/M1 ≤ λmin (Σ∗) ≤ λmax (Σ∗) ≤ M1 for

some constant M1 > 1 and has bounded sub-Gaussian norm.

(R2) (Normality): The error terms in (4.3.1) and (4.3.2) follow a bivariate normal

distribution.

(R3) (Global IV Strength): The IVs are globally strong with ‖γ∗V∗‖2 =
√∑

j∈V∗ γ
2
j ≥

δ � sz1 log p/
√
n, where V∗ is the set of valid IVs defined in Definition 3.

Assumption (R1) places a condition on the spectrum of the design matrix W and

the tail distribution of Wi,·, which is related to the restricted eigenvalue condition in

Bickel et al. (2009). For simplicity, we also assume that the sub-Gaussian norm of Wi·

is upper bounded by M1, that is, supv∈Sp−1 supq≥1 (E|vᵀWi·|q/q)
1
q ≤ M1 where Sp−1

is the unit sphere in Rp; see Vershynin (2012) for details on sub-Gaussian random

variables and bounds. Assumption (R2) states that the errors (ei1, εi2) are bivariate

normal. Here, we make the normality assumption out of simplicity, similar to the

work on inference in weak IV literature where error terms are typically assumed to be

normal (e.g. Section 2 of Moreira (2003) and Section 2.2.1 of Andrews et al. (2007)).
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Finally, Assumption (R3) states that the global strength of instruments, measured

by the `2 norm of γ∗ among valid IVs V∗, is bounded away from zero. This type of

global strength assumption is commonly made in the IV literature under the guise

as a concentration parameter, which is a measure of strength of the instrument (see

Section 4.5 for details) and is the weighted `2 norm of γ∗V∗ , and is often referred to

as “traditional/strong” asymptotics (Stock et al., 2002; Wooldridge, 2010). Recent

works by Belloni et al. (2012) and Chernozhukov et al. (2015a), which considered the

setting where all IVs were valid after conditioning on high dimensional covariates,

also make this type of assumption, specifically condition SM in Belloni et al. (2012)

and condition RF in the supplementary materials of Chernozhukov et al. (2015a).

Essentially, both these works require ‖γ∗‖2 to be bounded away from zero by a

constant and are actually stronger than our (R3). In practice, (R3) is satisfied so

long as there is at least one IV that has a constant non-zero effect on the treatment,

or a non-zero effect that doesn’t diminish with sample size. However, if the IVs are

arbitrary weak in the sense of Staiger & Stock (1997), then (R3), let alone the said

assumptions in high dimensional valid IV literature (Belloni et al., 2012), do not

hold, and we leave this as a future topic of research to deal with arbitrary weak IVs

in invalid IV settings.

Section C.1 in Chapter C shows that if the IVs are valid after conditioning on

many covariates, then Asumptions (R1)-(R3) are sufficient for the confidence interval

proposed in (4.3.14) to have correct coverage. However, when IVs are invalid after

conditioning on said controls, we need to make two additional assumptions that are

not in the usual high dimensional inference or instrumental variables literature and

may be of theoretical interest in future work.

(IN2) (Individual IV Strength) For IVs in S∗, minj∈S∗
∣∣γ∗j ∣∣ ≥ δmin �

√
log p/n.
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(IN3) (Strong violation) Among IVs in the set S∗ \ V∗, we have

min
j∈S∗\V∗

∣∣∣∣π∗jγ∗j
∣∣∣∣ ≥ 12(1 + |β∗|)

δmin

√
M1 log pz

λmin(Θ∗)n
. (4.4.3)

Assumption (IN2) requires individual IV strength to be bounded away from zero

so that all IVs in selected S̃ are strong. This assumption is needed primarily for

cleaner technical exposition and our simulation studies in Section 4.5 demonstrates

that (IN2) is largely unnecessary for our confidence interval to guarantee coverage.

In the literature, (IN2) is similar to the “beta-min” condition assumption in high

dimensional linear regression without IVs, with the exception that this condition is

not imposed on our inferential quantity of interest, β∗. Also, (IN2) is different from

Assumption (R3), where (R3) only requires the global IV strength to be bounded

away from zero. Next, Assumption (IN3) requires the ratios π∗j/γ
∗
j for invalid IVs

to be large and this assumption is needed to correctly identify IVs that violate (A2)

and (A3). Specifically, for any IV with |π∗j/γ∗j | being non-zero but small, it’s difficult

to distinguish such a weakly invalid IV from valid IVs where π∗j/γ
∗
j = 0. If a weakly

invalid IV is mistakenly declared as valid, the bias from this mistake is of the order√
log pz/n, which has consequences, not for consistency of the point estimate, but for

a
√
n confidence interval; see Theorem 21 and Section 4.7 for more discussions.

With (R1)-(R3) and (IN1)-(IN3), our general Procedure 1 produces a consistent

and asymptotic normal estimate of β∗ even if IVs are invalid after conditioning on

high dimensional controls.

Theorem 21. Suppose the assumptions (R1) − (R3) and (IN1) − (IN2) hold. As

√
sz1s log p/

√
n→ 0, with probability larger than 1− c (p−c + exp (−cn)),

∣∣∣β̂ − β∗∣∣∣ ≤ C
1

δmin

√
log pz

n
, (4.4.4)
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where c, C > 0 are constants independent of n and p. In addition, if (IN3) holds, we

have
√
n
(
β̂ − β∗

)
= T β

∗
+ ∆β∗ (4.4.5)

where T β
∗ | W ∼ N (0,V), V = σ2/

(∑
j∈V∗(γ

∗
j )2
)2∥∥∥∑j∈V∗ γ

∗
j Wû[j]/

√
n
∥∥∥2

2
, and

∆β∗/
√

V
p→ 0 as

√
sz1s log p/

√
n→ 0. Consequently, the confidence interval given in

(4.3.12) has asymptotically coverage probability 1− α, i.e.,

P

{
β∗ ∈

(
β̂ − z1−α/2

√
V̂/n, β̂ + z1−α/2

√
V̂/n

)}
→ 1− α. (4.4.6)

In Theorem 21, the consistency of our estimator in (4.4.4) is established without

(IN3) because the bias term
√

log pz/n discussed above is still going to zero. However,

for
√
n asymptotic normality, Theorem 21 requires Assumption (IN3) to eliminate said

bias so that our confidence interval (4.3.12) has correct coverage even with invalid

IVs and high dimensional controls.

4.5 Simulation

4.5.1 Setup

In addition to the theoretical analysis of our method in Section 4.4, we also conduct

a simulation study to investigate (i) the performance of our method and other com-

parators and (ii) sensitivity of our method to violations of the regularity assumptions

mentioned above, most notably (IN2) and (IN3). The data generating process for

the simulation follows the models (4.2.2) and (4.2.3) in Section 4.2.2 with pz = 100

instruments and px = 150 covariates where Wi. is a multivariate normal with mean

zero and covariance Σ∗ij = 0.5|i−j| for 1 ≤ i, j ≤ 250. The parameters for the models

are: β∗ = 1, φ∗ = (0.6, 0.7, 0.8, · · · , 1.5, 0, 0, · · · , 0) ∈ R150 so that sx1 = 10, ψ∗ =
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(1.1, 1.2, 1.3, · · · , 2.0, 0, 0, · · · , 0) ∈ R150 so that sx2 = 10, and variance-covariance of

the error terms are Var(εi1) = Var(εi2) = 1.5, and Cov(εi1, εi2) = 0.75. Instruments

that satisfy Assumption (A1) are S∗ = {1, . . . , 7} and instruments that satisfy all

three IV assumptions (A1)-(A3) are V∗ = {1, 2, 3, 4, 5}; thus instruments 6 and 7

only satisfy (A1), but do not satisfy (A2) and (A3). We fix these values throughout

the entire simulation study.

The parameters we vary in the simulation study are: the sample size n, the

strength of IVs via γ∗, and violations of (A2) and (A3) via π∗. For sample size,

we let n = (100, 200, 300, 1000, 3000). For IV strength, we set γ∗V∗ = K (1, 1, 1, 1, ρ1)

and γ∗S∗\V∗ = K (1, 1) and γ(S∗)C = 0, where we vary K (to be discussed later) and

ρ1 = (0, 0.1, 0.2) across simulations. The value K controls the global strength of

instruments, with higher |K| indicating strong instruments in a global sense. The

value ρ1 controls the relative individual strength of instruments, specifically between

the first four instruments in V∗ and the fifth instrument. For example, ρ1 = 0.2 implies

that the fifth IV’s individual strength is only 20% of the other four valid instruments,

i.e IVs 1 to 4. Also, varying ρ1 would simulate the adherence of regularity assumption

(IN2).

To specify K across simulations, we introduce a quantity we call the oracle con-

centration parameter (OCP) denoted as C (γ∗,V∗, n)

C (γ∗,V∗, n) = n
γ∗ᵀV∗

(
Σ∗V∗V∗ −Σ∗V∗(V∗)CΣ∗−1

(V∗)C(V∗)CΣ∗(V∗)CV∗
)
γ∗V∗

|V∗|Θ∗22

, (4.5.1)

where Σ∗IJ denotes the submatrix containing Σ∗ij for i ∈ I and j ∈ J and γ∗V∗ denotes

the subvector containing γ∗j for j ∈ V∗. We define the OCP because the usual concen-

tration parameter can be misleading when there are unknown redundant and invalid

instruments and the OCP serves as a proxy for the usual concentration parameter.
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Having defined the OCP, we can specify K as a function of n and C (γ∗,V∗, n).

Specifically, if n is set at a baseline of 100 and the simulation parameters V∗, ρ1, Σ∗

and Θ∗22 are specified as above, we can find K for a particular value of the expected

oracle concentration parameter C (γ∗,V∗, 100). Thus, by varying C (γ∗,V∗, 100) =

(50, 100, 150, 200, 250, 500, 1000), we vary K.

Finally, we vary π∗, which controls the validity of the IVs by defining π∗j = ρ2γ
∗
j

for j = 6, 7 and π∗j = 0 for all other j so that ρ2 controls the magnitude of the

violation of IV assumptions (A2) and (A3) from the 6th and 7th instruments. In the

ideal case, we would have ρ2 = 0 so that S∗ = V∗ = {1, 2, 3, 4, 5, 6, 7}. But, ρ2 6= 0

implies that the last two instruments do not satisfy (A2) and (A3). As such, we

vary π∗ by varying ρ2 = (0, 1, 2). Also, varying ρ2 would simulate the adherence of

regularity assumption (IN3).

In summary, we vary n, the strength of IVs via γ∗, and violations of (A2) and (A3)

via π∗ in our simulation study, with ρ1 and ρ2 simulating the adherence to the new

regularity assumptions in the paper, (IN2), and (IN3), respectively. For the setting

n ≤ p, we compare our procedure to β̂H , which assumes IVs are valid. For the setting

n ≥ p, we add two additional comparators, the two-stage least squares (TSLS) and

OLS. TSLS is the most popular IV method where one regresses D on Z and X, and

uses the predicted value of D in the regression of Y on X and D. Note that the

way we implement TSLS mimics most practitioners’ use of TSLS by simply assuming

all the instruments Z are valid. OLS is defined as where one regresses Y on D and

X. OLS will be biased because of confounding on D. Finally, for both low and high

dimensional settings, we have the oracle TSLS where an oracle provides us with the

true set of valid IVs, which will not occur in practice. Our simulations are repeated

500 times.
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4.5.2 Results

We present the most representative results from our simulation study. First, Figure

4.1 considers the high dimensional setting with n = 200 and three comparators, our

procedure β̂ that is robust to invalid IVs, our procedure β̂H that assumes all valid

IVs, and the oracle TSLS. Columns “Weak” and “Strong” in the figure represent

cases where ρ1 = 0.2 and ρ1 = 0, respectively. Columns “Valid” and “Invalid”

represent cases where ρ2 = 0 and ρ2 = 2, respectively. The row “MAE” in the

figure represents the median absolute error of the estimators, which measures the

performance of the point estimators. The row “Coverage” represents the coverage

performance of the confidence intervals. Finally, the row “Length” represents the

average length of confidence intervals across simulations.

Both estimators β̂ and β̂H perform well in terms of estimation accuracy, coverage

and length of confidence intervals and have similar performance to the benchmark,

β̂oracle, when all the instruments are valid (i.e. first and second columns of Figure

4.1). For example, in the MAE and length plots, the solid lines, which represent our

estimator, the dashed lines, which represent our estimator assuming all valid IVs after

conditioning on covariates, and the dotted lines, which represent the oracle, overlap

with each other. However, if the instruments are invalid (i.e. the third and fourth

columns of Figure 4.1), β̂H is not consistent and loses coverage, which makes sense

since β̂H assumes all the IVs are valid after conditioning. However, our proposed

estimator β̂ allows for possibly invalid instruments and performs as well as the oracle

in terms of estimation accuracy and coverage. The average length of our robust

confidence interval is only slightly larger than that of the oracle.

Figure 4.2 represents the same setting as Figure 4.1 except we now consider a

larger sample size n = 1000. Even though n is larger than p, we still consider this to

be in the many controls/high dimensional setting because the ratio of p to n is away
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from zero at 1/4. As expected, the estimators β̂ and β̂H along with the traditional

TSLS estimator perform similarly to the oracle benchmark in terms of estimation

accuracy, coverage and the length of confidence intervals when all the instruments

are actually valid. For example, in the MAE plot of Figure 4.2, the solid, dashed,

green and dotted lines, representing β̂, β̂H , TSLS and the oracle, respectively, overlap

with each other. Note that OLS cannot deal with confounding and hence, produces

a biased estimate. However, when the instruments are invalid, the traditional TSLS

estimator and β̂H are biased and fail to have the correct coverage. In contrast, the

proposed estimator β̂ performs as well as the oracle estimator in terms of estimation

accuracy and coverage, with the length of the proposed estimator being slightly longer

than that for the oracle.

Finally, Figure 4.3 represents the setting where invalid instruments are present

after conditioning on low dimensional covariates where pz = 9 and px = 10 so that

no coefficients for φ∗ and ψ∗ are zero and the sample size is n = 1000. If we use the

estimator β̂E defined in (4.3.15) and the confidence interval (4.3.16), the proposed

procedure performs almost the same as the oracle in terms of accuracy, coverage

property and length, which supports the theory established in Theorem 20. Note

that the performance of our procedure under the low dimensional setting with invalid

IVs does not rely on assumptions (R1)-(R3) and, more importantly, (IN2)-(IN3).

4.6 Application: causal effect of years of education

on annual earnings

To demonstrate our procedure 1 in real settings, we analyze the causal effect of years

of education on yearly earnings, which has been studied extensively in economics

using IV methods (Angrist & Krueger, 1991; Card, 1993, 1999). The data comes
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Figure 4.1: Comparison of different methods when pz = 100, px = 150 and n = 200.
The x-axis represents the concentration parameter. On the y-axis, MAE represents Median
Absolute Error of the estimators, Coverage represents coverage of the confidence intervals
and Length represents the average length of confidence intervals. Proposed is our method
allowing for invalid IVs and is represented by the solid line. Proposed.valid is our method
that assumes all the IVs are valid and is represented by the dashed line. Oracle is the
method that knows exactly which instruments are valid and is represented by the dotted
line. The column labeled with Valid & Weak represents the case ρ1 = 0.2 and ρ2 = 0. The
column labeled with Valid &Strong represents the case ρ1 = 0 and ρ2 = 0. The column
labeled with Invalid &Weak represents the case ρ1 = 0.2 and ρ2 = 2. Finally, the column
labeled with Invalid & Strong represents the case ρ1 = 0 and ρ2 = 2.
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Figure 4.2: Comparison of different methods when pz = 100, px = 150 and n = 1000.
The x-axis represents the concentration parameter. On the y-axis, MAE represents Median
Absolute Error of the estimators, Coverage represents coverage of confidence intervals and
Length represents the average length of confidence intervals. Proposed is our method allow-
ing for invalid IVs and is represented by the solid line. Proposed.valid is our method that
assumes all the IVs are valid and is represented by the dashed line. Oracle is the method
that knows exactly which instruments are valid and is represented by the dotted line. The
column labeled with Valid & Weak represents the case ρ1 = 0.2 and ρ2 = 0. The column
labeled with Valid &Strong represents the case ρ1 = 0 and ρ2 = 0. The column labeled
with Invalid &Weak represents the case ρ1 = 0.2 and ρ2 = 2. Finally, the column labeled
with Invalid & Strong represents the case ρ1 = 0 and ρ2 = 2.
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Figure 4.3: Comparison of different methods when pz = 9, px = 10 and n = 1000. The
x-axis represents the concentration parameter. On the y-axis, MAE represents Median
Absolute Error of the estimators, Coverage represents coverage of confidence intervals and
Length represents the average length of confidence intervals. Proposed is our method allow-
ing for invalid IVs and is represented by the solid line. Proposed.valid is our method that
assumes all the IVs are valid and is represented by the dashed line. Oracle is the method
that knows exactly which instruments are valid and is represented by the dotted line. The
column labeled with Valid & Weak represents the case ρ1 = 0.2 and ρ2 = 0. The column
labeled with Valid &Strong represents the case ρ1 = 0 and ρ2 = 0. The column labeled
with Invalid &Weak represents the case ρ1 = 0.2 and ρ2 = 2. Finally, the column labeled
with Invalid & Strong represents the case ρ1 = 0 and ρ2 = 2.
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from the Wisconsin Longitudinal Study (WLS), a longitudinal study that has kept

track of American high school graduates from Wisconsin since 1957, and we examine

the relationship between graduates’ earnings and education from the 1974 survey

(Hauser, 2005), roughly 20 years after they graduated from high school. Our analysis

includes N = 3772 individuals, 1784 males and 1988 females. For our outcome, we

use imputed log total yearly earnings prepared by WLS (see WLS documentation and

Hauser (2005) for details) and for the treatment, we use the total years of education,

all from the 1974 survey. The median total earnings is $9, 200 with a 25% quartile

of $1, 000 and a 75% quartile of $15, 320 in 1974 dollars. The mean years of total

education is 13.7 years with a standard deviation of 2.3 years.

We incorporate many covariates, including sex, graduate’s hometown population,

educational attainment of graduates’ parents, graduates’ family income, relative in-

come in graduates’ hometown, graduates’ high school denomination, high school class

size, all measured in 1957 when the participants were high school seniors. We also

include 81 genetic covariates, specifically single nucleotide polymorphisms (SNPs),

that were part of WLS to further control for potential variations between gradu-

ates. In summary, our data analysis includes 7 non-genetic covariates and 81 genetic

covariates.

We used five instruments in our analysis, all derived from past studies of education

on earnings (Card, 1993; Blundell et al., 2005; Gary-Bobo et al., 2006). They are (i)

total number of sisters, (ii) total number of brothers, (iii) individual’s birth order

in the family, all from Gary-Bobo et al. (2006), (iv) proximity to college from Card

(1993), and (v) teacher’s interest in individual’s college education from Blundell et al.

(2005), all measured in 1957. Although all these IVs have been suggested to be valid

with varying explanations as to why they satisfy (A2) and (A3) after controlling for

the aforementioned covariates, in practice, we are always uncertain due to the lack of
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complete socioeconomic knowledge about the effect of these IVs. Our method should

provide some protection against this uncertainty compared to traditional methods

where they simply assume that all five IVs are valid. Also, the first-stage F-test

produces an F-statistic of 90.3 with a p-value less than 10−16, which indicates very

strong set of instruments.

Table 4.1 summarizes the results of our data analysis. OLS refers to running a

regression of the treatment and the covariates on the outcome and looking at the

slope coefficient of the treatment variable. TSLS refers to running two-stage least

squares as described in Section 4.5 under the operating assumption that all the five

instruments are valid; this is the usual and most popular analysis in the IV literature.

Finally, we run the Pocedure 1.

Method Point Estimate 95% Confidence Interval

OLS 0.097 (0.051, 0.143)

TSLS 0.169 (0.029, 0.301)

TSHT 0.062 (0.046, 0.077)

Table 4.1: Estimates of the Effect of Years of Education on Log Earnings. OLS is
ordinary least squares, TSLS is two-stage least squares, and TSHT is Procedure 1.

The OLS estimate suggests a positive association between education and earnings,

with statistically significant result at α = 0.05 level. This agrees with previous liter-

ature which suggests a statistically significant positive association between years of

education and log earnings (Card, 1999). However, OLS does not completely control

for confounding even after controlling for covariates. TSLS provides an alternative

method of controlling for confounding by using instruments so long as all the in-

struments satisfy the three core assumptions and the inclusion of covariates helps

make these assumptions more plausible. Unfortunately, we notice that the TSLS es-

timate in Table 4.1 is inconsistent with previous studies’ estimates among individuals
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from the U.S. between 1950s to 1970s, which range from 0.06 to 0.13 (see Table 4 in

Card (1999)). Our method, which addresses the concern for invalid instruments with

TSLS, provides an estimate of 0.062, which is more consistent with previous studies’

estimates of the effect of years of education on earnings.

The data analysis suggests that our method can be a useful tool in IV analysis

when there is concern for invalid instruments, even after attempting to mitigate this

problem via covariates. Our method provides much more accurate estimates of the

returns on education than TSLS, which naively assumes all the instruments are valid.

4.7 Conclusion and discussion

We present a method to estimate the effect of the treatment on the outcome using

instrumental variables where we do not make the assumption that all the instruments

are valid. Our approach is based on the novel TSHT procedure, which is shown to

succeed in selecting valid IVs in the presence of possibly invalid IVs. Our approach

provides robust confidence intervals in the presence of invalid IVs even after con-

trolling for many covariates. In simulation and in real data settings, our approach

provides a more robust analysis than the traditional IV approaches, most notably

TSLS, by providing some protection against possibly invalid instruments.

As discussed in Section 4.4.2, our theoretical analysis for the case of invalid IVs

even after controlling for high-dimensional covariates require Assumptions (IN2) and

(IN3). While (IN2) is not crucial in practice as our simulation study demonstrates and

is made for a cleaner technical exposition, we believe (IN3) is most likely necessary

for invalid IV problems and this is echoed in the model selection literature by Leeb &

Pötscher (2005) who pointed out that “in general no model selector can be uniformly

consistent for the most parsimonious true model” and hence the post-model-selection

inference is generally non-uniform. Consequently, the set of competing models has to
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be “well separated” such that we can consistently select a correct model and Assump-

tion (IN3) serves as this “well separated” condition in our invalid IV problem. While

some recent work in high dimensional inference (Zhang & Zhang, 2014; Javanmard &

Montanari, 2014a; van de Geer et al., 2014; Chernozhukov et al., 2015a; Cai & Guo,

2016b) do not make this “well separated” assumption, as we stressed before, our in-

valid IV problem is of different nature than the prior work because a single invalid

IV declared as valid can ruin inference while said prior works assume covariates are

exogenous and moments are known perfectly.

Finally, in practice, we believe that violation of (IN3) in high dimensions will not

drastically harm inference and our CI will still have coverage around 1 − α, which

is much better than TSLS and prior work assuming valid IVs after conditioning on

many covariates, which have no coverage. In particular, our empirical investigations

generally show that the under-coverage is no more than 5% and we think this is partly

due to the fact that (i) our procedure will still pick up the strongly invalid IVs and

(ii) if the instruments are weakly invalid, the bias from them via π∗ will be relatively

small. It is certainly possible that advanced methods can weaken (IN3) and we leave

this as a direction for further research.
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A
Supplement for Chapter 2

A.1 Proofs of Theorems

In this section, we provide detailed proofs of Theorem 4, Theorem 5, Theorem 6,

Theorem 7 and Theorem 8.

A.1.1 Proof of Theorem 6

The proof is divided into three steps.

The first step. We construct the alternative hypothesis parameter space H1. Let

H0 = {θ∗ = (β∗, I, σ)} ⊂ Θ (k1) , S2 = supp (β∗) and S3 = supp (ξ) \S2. Let k∗

denote the size of S2 and p2 denote the size of Sc2 and p3 denote the size of S3.

We have S3 ⊂ Sc2, k∗ ≤ k1 and p3 ≥ q − k1. We have the following expression

for the covariance matrix Σz
0 of (y1, X1·) corresponding to the null parameter space

H0 = {θ∗ = (β∗, I, σ)},

Σz
0 =


‖β∗‖2

2 + σ2
(
β∗S2

)ᵀ
01×p2

β∗S2
Ik∗×k∗ 0k∗×p2

0p2×1 0p2×k∗ Ip2×p2

 . (A.1.1)
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Let ξ∗ = mini∈S3 |ξi| > 0 and we define the following set,

`1 (p2, ζ0k, ρ) =

{
δ : δ ∈ Rp2 , supp (δ) ⊂ S3, ‖δ‖0 = ζ0k, δi

ξi
ξ∗
∈ {0, ρ} for i ∈ S3

}
,

(A.1.2)

and then construct a parameter space F1 for Σz, F1 = {Σz
δ : δ ∈ `1 (p2, ζ0k, ρ)} with

Σz
δ =


‖β∗‖2

2 + σ2
(
β∗S2

)ᵀ
δᵀ

β∗S2
Ik∗×k∗ 0k∗×p2

δ 0p2×k∗ Ip2×p2

 . (A.1.3)

We construct the alternative hypothesis space H1 for (β,Ω, σ), which is induced by

the mapping h and the parameter space F1,

H1 = {(β,Ω, σ) : (β,Ω, σ) = h (Σz) for Σz ∈ F1} . (A.1.4)

Under the alternative joint distribution (A.1.3), for the linear model expression yi =

Xi,S2βS2 +Xi,Sc2
βSc2 + ε′i, we have

βS2 = β∗S2
, βSc2 = δ, and Var (ε′i) = σ2 − ‖δ‖2

2 ≤M2. (A.1.5)

Based on (A.1.5), the sparsity of β under the alternative is upper bounded by

|supp (β∗) | + |supp (δ) | ≤ (1− ζ0) k + ζ0k = k. Since we do not perturb the co-

variance matrix for X1,·, the precision matrix for X1,· in the alternative hypothesis

space satisfies the conditions in Θ (k). Hence, we show that H1 ⊂ Θ (k).

The second step Let π denote the uniform prior on δ over `1 (p2, ζ0k, ρ). Note that

this uniform prior π induces a prior distribution πH1 over the parameter space H1.

The following lemma controls the χ2 distance between the null and the alternative.
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Lemma 9.

χ2
(
fπH1

, fπH0

)
+ 1 = Eδ,δ̃

(
1− 1

σ2
δᵀδ̃

)−n
.

By the inequality 1
1−x ≤ exp(2x) for x ∈

[
0, log 2

2

]
, for 1

σ2δ
ᵀδ̃ ≤ 1

σ2 ζ0kρ
2 < log 2

2
,

then we have
(

1− 1
σ2δ

ᵀδ̃
)−n
≤ exp

(
2
σ2nδ

ᵀδ̃
)
. By Lemma 3 in Chapter 2 , we further

have

E exp

(
2

σ2
nδᵀδ̃

)
= E exp

(
1

σ2
2Jnρ2

)
≤ e

ζ20k
2

p3−ζ0k

(
1− ζ0k

p3

+
ζ0k

p3

exp

(
1

σ2
2nρ2

))ζ0k
≤ e

ζ20k
2

p3−ζ0k

(
1− ζ0k

p3

+
ζ0k

p3

√
p3

ζ2
0k

2

)ζ0k
≤ e

c2ζ20p
2γ

p3−cζ0pγ

(
1 +

1
√
p3

)cζ0pγ
,

(A.1.6)

where the second inequality follows by plugging ρ =

√
log

p3
ζ20k

2

4n
σ. If k ≤ cmin

{
n

log p
, pγ
}

for a sufficiently small positive constant c, we have kρ2 < log 2
2ζ0

σ2. Since p3 ≥ q− k1 ≥

cp2γ+ς − k1 with 0 < ς < 1 − 2γ, we have χ2
(
fπH1

, fπH0

)
≤
(

1
2
− α

)2
and hence

TV
(
fπH1

, fπH0

)
≤ 1

2
− α.

The third step. We calculate the distance between µ1 and µ0. Under H0, µ0 = ξᵀS2
β∗S2

.

Under H1, we have µ1 = ξᵀS2
β∗S2

+ ξᵀSc2δ. Note that for δ ∈ `1 (p2, ζ0k, ρ), we have

µ1 = ξᵀS2
β∗S2

+ ξ∗ζ0kρ. Hence, µ1 is a fixed constant for a given ρ. For ξ ∈ Ξ (q, c̄) ,

|µ1 − µ0| = ξ∗ζ0kρ ≥ c‖ξ‖∞ζ0k

√
log p3

ζ2
0k

2

n
σ ≥ c‖ξ‖∞k

√
log p

n
σ,

where the last inequality follows from p3 ≥ q− k1 ≥ cp2γ+ς − k1 with 0 < ς < 1− 2γ.

By (2.7.3) of Lemma 1 in Chapter 2, we establish (2.4.7) in the main paper.
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A.1.2 Proof of Theorem 5

Theorem 5 follows from Theorem 6. Given 0 < ζ0 < 1, we define k∗1 = min{k1, (1 −

ζ0)k − 1}. By taking θ∗ ∈ Θ(k∗1), we have

L∗α(Θ(k∗1),Θ(k), ξᵀβ) ≥ inf
CIα(ξᵀβ,Z)∈Iα(Θ(k),ξᵀβ)

Eθ∗L (CIα (ξᵀβ, Z))

and hence Theorem 5 follows from the fact that L∗α(Θ(k1),Θ(k), ξᵀβ) ≥ L∗α(Θ(k∗1),Θ(k), ξᵀβ).

A.1.3 Proof of Theorem 4

The minimax lower bound of Theorem 4 follows from Theorem 5 with taking k1 = k.

The following proposition establishes the minimax upper bound of Theorem 4.

Proposition 8. Suppose that k ≤ c∗
n

log p
, where c∗ is a small positive constant, then

lim inf
n,p→∞

inf
θ∈Θ(k)

Pθ
(
ξᵀβ ∈ CIDξᵀβ (Z, k)

)
= 1, (A.1.7)

and

L
(
CIDξᵀβ (Z, k) ,Θ (k)

)
≤ C‖ξ‖∞k

√
log p

n
, (A.1.8)

for some constant C > 0.

In the following, we will establish Proposition 8. On the event S ∩G, we have

∣∣∣ξᵀβ̂ − ξᵀβ∣∣∣ ≤ ‖ξ‖∞ ∥∥∥β̂ − β∥∥∥
1
≤ ‖ξ‖∞ (2 + 2ε0)

√
n

min ‖X·j‖2

l (Z, k) , (A.1.9)

where l (Z, k) is defined in (2.7.36) in Chapter 2. On event S2, if p ≥ exp (2M2), then

σ̂ < log p. Hence, the event A holds and

CIDα (ξᵀβ, Z) =
[
ξᵀβ̂ − ‖ξ‖∞ρ2(k), ξᵀβ̂ + ‖ξ‖∞ρ2(k)

]
.
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By (2.7.38) in Chapter 2, on the event G∩S, if p ≥ p0, ‖ξ‖∞ρ2 (k) is equal to the right

hand side of (A.1.9), and hence ξᵀβ ∈ CIDα (ξᵀβ, Z) . We have the following inequality

about the coverage probability, Pθ
(
ξᵀβ ∈ CIDα (ξᵀβ, Z)

)
≥ Pθ (S ∩G) . By Lemma 4,

we establish (A.1.7). We control the expected length as follows,

EθL
(
CIDα (ξᵀβ, Z)

)
= EθL

(
CIDα (ξᵀβ, Z)

)
1A

=EθL
(
CIDα (ξᵀβ, Z)

)
1A∩S∩G + EθL

(
CIDα (ξᵀβ, Z)

)
1A∩(S∩G)c

≤C‖ξ‖∞

(
k

√
log p

n
σ + (log p)2 k

√
log p

n
Pθ ((S ∩G)c)

)

≤C‖ξ‖∞k
√

log p

n

(
σ + C

(
p1−min{δ0,C1,c0C2

0} + c′ exp (−cn)
)

(log p)2
)
,

(A.1.10)

where the first inequality follows from (2.7.38) in Chapter 2 and second inequality

follows from Lemma 4. If log p
n
≤ c, then EθL

(
CIDα (ξᵀβ, Z)

)
≤ C‖ξ‖∞k

√
log p
n
M2.

A.1.4 Proof of Theorem 7

The following proposition shows that the confidence interval proposed in (2.5.5) in

Chapter 2 has the desired coverage property and achieves the minimax lower bound

of Theorem 7.

Proposition 9. Suppose k ≤ c∗
n

log p
, where c∗ is a small positive constant, then

lim inf
n,p→∞

inf
θ∈Θ(k,I,σ0)

Pθ
(
ξᵀβ ∈ CII

α (ξᵀβ, Z)
)
≥ 1− α, (A.1.11)

and

L
(
CII

α (ξᵀβ, Z) ,Θ (k, I, σ0)
)
≤ C
‖ξ‖2√
n
. (A.1.12)

for some constant C > 0.

The control of the expected length (A.1.12) follows from the construction (2.5.5).
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In the following, we control the coverage property (A.1.11). Let Σ̂(2) = 1
n2

(
X(2)

)ᵀ
X(2).

We have the following decomposition,

µ̄− ξᵀβ = ξᵀ
(

I− Σ̂(2)
)(

β̂ − β
)

+
1

n2

ξᵀ
(
X(2)

)ᵀ
ε(2). (A.1.13)

with 1
n2
ξᵀ
(
X(2)

)ᵀ
ε | X ∼ N

(
0, σ2

0
ξᵀΣ̂(2)ξ
n2

)
. Before controlling the terms in the right

hand side of (A.1.13), we introduce the following definitions. We state the definition

of κ(X, k, s, α0), which was introduced in Bickel et al. (2009),

κ(X, k, s, α0) = min
J0⊂{1,··· ,p},
|J0|≤k

min
δ 6=0,

‖δJc0‖1≤α0‖δJ0
‖1

‖Xδ‖2√
n‖δJ01‖2

, (A.1.14)

where J1 denotes the subset corresponding to the s largest in absolute value coordi-

nates of δ outside of J0 and J01 = J0 ∪ J1. Let W
(1)
·j = X

(1)
·j

√
n1

‖X(1)
·j ‖2

for j = 1, · · · , p.

Define the following events

Ḡ1 =

{
2

5

1√
M1

<
‖X(1)

j· ‖2√
n1

<
7

5

√
M1 for 1 ≤ j ≤ p

}
,

Ḡ2 =

{
κ(X(1), k, k, α) ≥ 1

4
√
λmax (Ω)

− 9√
λmin (Ω)

(1 + α)

√
2k

log p

n1

}
,

Ḡ3 =

{
‖
(
W (1)

)ᵀ
ε(1)‖∞

n1

≤ σ0

√
2δ0 log p

n1

}
,

Ḡ4 =

{∣∣∣∣∣ξᵀΣ̂(2)ξ

ξᵀξ
− 1

∣∣∣∣∣ ≤ 2

√
log p

n2

+ 2
log p

n2

}
,

Ḡ5 =

{∣∣∣ξᵀ (I− Σ̂(2)
)(

β̂ − β
)∣∣∣ ≤ 8

√
6 log

2

(1− γ0)α
‖ξ‖2‖β̂ − β‖2

1
√
n2

M1

}
.

The following lemma controls the probability of the events Ḡi with 1 ≤ i ≤ 5,
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Lemma 10. If k ≤ c n
log p

, then

min
{
Pθ
(
Ḡ1 ∩ Ḡ2 ∩ Ḡ3

)
,Pθ

(
Ḡ4

)}
≥ 1− c exp (−c′n)− cp−c′′ , (A.1.15)

where c, c′ and c′′ are positive constants. We also have

Pθ
(
Ḡ5

)
≥ 1− (1− γ0)α (A.1.16)

By the proof of Theorem 7.2 in Bickel et al. (2009) and Theorem 3 in Ye &

Zhang (2010), on the event Ḡ1 ∩ Ḡ2 ∩ Ḡ3, ‖β̂ − β‖2 ≤ C
√

k log p
n
σ0. On the event

Ḡ1 ∩ Ḡ2 ∩ Ḡ3 ∩ Ḡ5, we have

∣∣∣ξᵀ (I− Σ̂(2)
)(

β̂ − β
)∣∣∣ ≤ C‖ξ‖2

√
k log p

n2

σ0 ≤ 0.005
‖ξ‖2√
n2

zα0/2σ0,

where the last inequality follows from the assumption that k ≤ c n
log p

. On the

event Ḡ4, we have σ2
0
ξᵀΣ̂(2)ξ
n2

≤ 1.001
‖ξ‖22
n2
σ2

0. To sum up, if k ≤ c n
log p

, we have

Pθ
(
ξᵀβ ∈ CII

α (ξᵀβ, Z)
)
≥ Pθ

(
∩5
i=1Ḡi

)
≥ 1− α− c exp (−c′n)− cp−c′′ .

A.1.5 Proof of Theorem 8

It is sufficient to establish the following lower bounds,

L∗α (Θ (k1, I, σ0) ,Θ (k, I, σ0) , ξᵀβ) ≥ c1‖ξ‖∞σ0

√
kk1

√
log p

n
; (A.1.17)

and

L∗α (Θ (k1, I, σ0) ,Θ (k, I, σ0) , ξᵀβ) ≥ c1‖ξ‖∞σ0 min

{
k

√
log p

n
,

√
k

n
1
4

}
. (A.1.18)
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Proof of (A.1.17)

It is sufficient to establish (A.1.17) for k1 ≤ (1 − ζ0)k − 1 with 0 < ζ0 < 1 being a

constant. Set k∗1 = min{k1, (1− ζ0)k − 1}. If k∗1 ≤ k1 ≤ k, we can establish (A.1.17)

by the following observation,

L∗α (Θ (k1, I, σ0) ,Θ (k, I, σ0) , ξᵀβ) ≥ L∗α (Θ (k∗1, I, σ0) ,Θ (k, I, σ0) , ξᵀβ)

≥ c1‖ξ‖∞σ0

√
kk∗1

√
log p

n
≥ c1‖ξ‖∞σ0

√
kk1

√
log p

n
,

where the first inequality follows from k∗1 ≤ k1, the second inequality follows from the

assumption that (A.1.17) holds for k∗1 ≤ (1− ζ0)k − 1 and the last inequality follows

from k∗1 ≥ (1− ζ0)k1 − 1.

In the following, we will establish (A.1.17) for k1 ≤ (1 − ζ0)k − 1 with 0 < ζ0 < 1

being a constant. The proof of (A.1.17) is more complicated than the previous lower

bound argument since we need to compare two composite hypothesis.

The first step. Let ξ∗ = mini∈supp(ξ) |ξi| > 0 and we define the following set,

`2 (p, k, ρ) =

{
δ : δ ∈ Rp, ‖δ‖0 = k, δi

ξi
ξ∗
∈ {0, ρ} for i ∈ supp(ξ)

}
. (A.1.19)

We construct the following two parameter spaces for Σz,

F0 = {Σz
ν : ν ∈ `2 (p, k1, ρ)} , where Σz

ν =

 ‖ν‖2
2 + σ2

0 νᵀ

ν Ip×p

 . (A.1.20)

and

F1 =

{
Σz
δ : δ ∈ `2

(
p, k,

√
k1

k
ρ

)}
, where Σz

δ =

 ‖δ‖2
2 + σ2

0 δᵀ

δ Ip×p

 .

(A.1.21)
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Then we construct the parameter spaces Hi, which is induced by the mapping h and

the parameter space Fi for i = 0, 1,

Hi = {(β,Ω, σ) : (β,Ω, σ) = h (Σz) for Σz ∈ Hi} for i = 1, 2. (A.1.22)

By (A.1.20) and (A.1.21), we have

H0 = {(ν, I, σ0) : ν ∈ `2 (p, k1, ρ)} ⊂ Θ (k1, σ0, I) ;

H1 =

{
(δ, I, σ0) : δ ∈ `2

(
p, k,

√
k1

k
ρ

)}
⊂ Θ (k, σ0, I) .

(A.1.23)

The second step Let π0 denote the uniform prior over `2 (p, k1, ρ) and π1 denote the

uniform prior over `2

(
p, k,

√
k1

k
ρ
)

. Let πH0 denote the uniform prior on H0 induced

by the prior π0 and πH1 denote the uniform prior on H1 induced by the prior π1. To

calculate the distance TV
(
fπH1

, fπH0

)
, we introduce H = {(0, I, σ2

0 + k1ρ
2)} with πH

denoting the mass prior at this point. Since

TV
(
fπH1

, fπH0

)
≤ TV

(
fπH0

, fπH
)

+ TV
(
fπH1

, fπH
)
≤

1∑
i=0

√
χ2
(
fπH0

, fπH
)
,

it is sufficient to control χ2
(
fπHi , fπH0

)
for i = 0, 1. Applying Lemma 9 with S2 = ∅,

we have

χ2
(
fπH0

, fπH
)

+ 1 = Eν,ν̃
(

1− 1

σ2
0 + k1ρ2

νᵀν̃

)−n
.

χ2
(
fπH1

, fπH
)

+ 1 = Eδ,δ̃

(
1− 1

σ2
0 + k1ρ2

δᵀδ̃

)−n
.

(A.1.24)

In the following, we will control χ2
(
fπH1

, fπH
)
+1 and the argument for χ2

(
fπH0

, fπH
)
+

1 is similar. By the inequality 1
1−x ≤ exp(2x) for x ∈

[
0, log 2

2

]
, if 1

σ2
0+k1ρ2δ

ᵀδ̃ ≤

c̄2 k1ρ2

σ2
0
< log 2

2
, then

(
1− 1

σ2
0+k1ρ2δ

ᵀδ̃
)−n
≤ exp

(
2n
σ2

0
δᵀδ̃
)
. By Lemma 3 in Chapter 2,
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we further have

E exp

(
2n

σ2
0

δᵀδ̃

)
≤ E exp

(
2nk1

σ2
0k

c̄2Jρ2

)
≤ e

k2

q−k

(
1− k

q
+
k

q
exp

(
2c̄2nk1

σ2
0k

ρ2

))ζ0k
≤ e

k2

q−k

(
1− k

q
+
k

q

√
q

k2

)k
≤ e

k2

q−k

(
1 +

1
√
q

)k
,

where the second inequality follows by plugging ρ =

√
log q

k2

4c̄2n
σ0. If k ≤ cmin

{
n

log p
, pγ
}

for a sufficiently small positive constant c, we have kρ2 < log 2
2
σ2

0. Since q−k ≥ cp2γ+ς

with 0 < ς < 1− 2γ, we have χ2
(
fπH1

, fπH
)
≤
(

1
4
− α

2

)2
and TV

(
fπH1

, fπH
)
≤ 1

4
− α

2
.

Similarly, we can establish χ2
(
fπH0

, fπH
)
≤
(

1
4
− α

2

)2
and hence TV

(
fπH1

, fπH0

)
≤

1
2
− α.

The third step. We calculate the distance between µ1 and µ0. Under H0, µ0 = ξ∗k1ρ.

Under H1, we have µ1 = ξ∗k
√

k1

k
ρ. Hence, µ0 and µ1 are fixed constants for a given

ρ. For ξ ∈ Ξ (q, c̄) and k1 ≤ (1 − ζ0)k − 1, we have |µ1 − µ0| ≥ c‖ξ‖∞
√
kk1

√
log p
n
σ0.

By (2.7.3) of Lemma 1 in Chapter 2, we establish (A.1.17).

Proof of (A.1.18)

The first step. We construct the null parameter space H0 = {(0, I, σ2
0)}. We construct

the following parameter space for Σz,

F1 = {Σz
δ : δ ∈ `2 (p, k, ρ)} , where Σz

δ =

 ‖δ‖2
2 + σ2

0 δᵀ

δ Ip×p

 . (A.1.25)

Then we construct the parameter space H1, which is induced by the mapping h

and the parameter space F1, H1 = {(β,Ω, σ) : (β,Ω, σ) = h (Σz) for Σz ∈ F1} . By

(A.1.20) and (A.1.21), we have H1 = {(δ, I, σ0) : δ ∈ `2 (p, k, ρ)} ⊂ Θ (k, I, σ0) .

The second step Let π0 denote the mass prior at the point (0, I, σ2
0) and π1 denote

the uniform prior over `2 (p, k, ρ). Let πH0 denote the mass prior on H0 induced by

the prior π0 and πH1 denote the uniform prior on H1 induced by the prior π1. To
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calculate the distance TV
(
fπH1

, fπH0

)
, we introduce H = {(0, I, σ2

0 + kρ2)} with πH

denoting the mass prior at this point. Since TV
(
fπH1

, fπH0

)
≤
√
χ2
(
fπH0

, fπH
)

+√
χ2
(
fπH1

, fπH
)
, it is sufficient to control χ2

(
fπH1

, fπH
)

and χ2
(
fπH0

, fπH
)
. Applying

Lemma 9 with S2 = ∅, we have

χ2
(
fπH1

, fπH
)

+ 1 = Eδ,δ̃

(
1− 1

σ2
0 + kρ2

δᵀδ̃

)−n
. (A.1.26)

We also have

χ2
(
fπH0

, fπH
)

+ 1 = Eδ,δ̃

(
1− (kρ2)

2

σ4
0

)−n
2

. (A.1.27)

By the similar argument with (A.1.24), if ρ = c
√

log p
n
σ0, then χ2

(
fπH1

, fπH
)
≤(

1
4
− α

2

)2
. If ρ = c 1

√
kn

1
4
σ0, then χ2

(
fπH0

, fπH
)
≤
(

1
4
− α

2

)2
. If we take

ρ = cmin

{√
log p

n
σ0,

1√
kn

1
4

σ0

}
,

then we have TV
(
fπH1

, fπH0

)
≤ 1

2
− α.

The third step. We calculate the distance between µ1 and µ0. Under H0, µ0 = 0.

Under H1, we have µ1 = ξ∗kρ. Hence, µ0 and µ1 are fixed constants for a given ρ.

For ξ ∈ Ξ (q, c̄) , |µ1 − µ0| ≥ c‖ξ‖∞kρ = c‖ξ‖∞min

{
k
√

log p
n
σ0,

√
k

n
1
4
σ0

}
. By (2.7.3) of

Lemma 1 in Chapter 2 , we establish (A.1.18).

A.2 Proof of lemmas

In this section, we prove Lemma 2, 3, 4, 5, 6 and 9. We prove Lemma 2, 3 and 9

in Section A.2.2 , prove Lemma 4 in Section A.2.3, prove Lemma 5 in Section A.2.4,

prove Lemma 6 in Section A.2.5 and prove Lemma 10 in Section A.2.6.
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A.2.1 Technical lemmas

We introduce the following technical lemmas. The first lemma (Theorem 2.3 in

Boucheron et al. (2013)) is a concentration result of χ2 random variable.

Lemma 11. Let χ2
n denote the χ2 random variable with n degrees of freedom, then

we have the following concentration inequality,

P
(∣∣χ2

n − Eχ2
n

∣∣ > 2
√
nt+ 2t

)
≤ 2 exp(−t).

The following lemma (Theorem 1 in Raskutti et al. (2010) ) establishes the con-

centration result for restricted eigenvalue in the Gaussian design.

Lemma 12. For any Gaussian random design X ∈ Rn×p with i.i.d N(0,Σ) rows and

define ρ (Σ) =
√

maxj=1,··· ,p Σjj, there are universal positive constants c, c′ such that

‖Xv‖2√
n
≥ 1

4
‖Σ

1
2v‖2 − 9ρ (Σ)

√
log p

n
‖v‖1 for all v ∈ Rp, (A.2.1)

with probability at least 1− c′ exp (−cn) .

The following lemmas are useful in controlling the χ2 distance between the null

and the alternative hypothesis. The first lemma is established in Cai & Zhou (2012);

Ren et al. (2013).

Lemma 13. Let gi be the density function of N(0,Σi) for i = 0, 1, 2, respectively.

Then ∫
g1g2

g0

=
(
det
(
I − Σ−1

0 (Σ1 − Σ0) Σ−1
0 (Σ2 − Σ0)

))− 1
2 .
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Lemma 14.

χ2
(
fπH1

, fπH0

)
=

∫ (
det
(
I − (Σz

0)−1 (Σz
δ̃
− Σz

0

)
(Σz

0)−1 (Σz
δ − Σz

0)
))−n

2 π (δ) π
(
δ̃
)
dδdδ̃,

(A.2.2)

Lemma 14 follows from the definition of fπH1
, fπH0

, Fubini’s theorem and Lemma

13. For reasons of space, the proof is omitted here.

The following lemma establishes that restricted eigenvalue is a lower bound for

CIF1 and the function ω defined in (2.4.10) in Chapter 2 is a further lower bound for

the restricted eigenvalue.

Lemma 15. The `1 cone invertibility factor CIF1 is lower bounded by restricted

eigenvalue,

CIF1 (1 + 2ε0, T,W ) ≥ n

(2 + 2ε0) max ‖X·j‖2
2

κ2

(
X, k, (1 + 2ε0)

(
max ‖X·j‖2

min ‖X·j‖2

))
.

(A.2.3)

On the event G4,

κ2

(
X, k, (1 + 2ε0)

(
max ‖X·j‖2

min ‖X·j‖2

))
≥ ω (Ω, X, k) , (A.2.4)

where ω (Ω, X, k) is defined in (2.4.10) in Chapter 2. On the event G1 ∩ G4, if

k ≤ c n
log p

, then

CIF1 (1 + 2ε0, T,W ) ≥ n

(2 + 2ε0) max ‖X·j‖2
2

ω (Ω, X, k) ≥ C (M1) . (A.2.5)

where C (M1) = 25
3136(2+2ε0)M2

1
.
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Proof of Lemma 15. We first prove the following useful inequalities,

κ2 (W,k, α0) ≥ n

max ‖X·j‖2
2

κ2

(
X, k, α0

(
max ‖X·j‖2

min ‖X·j‖2

))
, (A.2.6)

and

CIF1 (2ε0 + 1, T,W ) ≥ 1

2 + 2ε0
κ2 (W,k, 1 + 2ε0) . (A.2.7)

Proof of (A.2.6). By the normalization, W = XD where D is defined in (2.7.29) in

Chapter 2. For fixed δ and J0 such that ‖δJc0‖1 ≤ α0‖δJ0‖1, we have

‖Wδ‖2
2

n‖δJ0‖2
2

=
‖XDδ‖2

2

n‖δJ0‖2
2

≥
‖XDδ‖2

2

(
min

√
n

‖X·j‖2

)2

n‖DJ0×J0δJ0‖2
2

,

where DJ0×J0 is the submatrix of D with row indices J0 and column indices J0.

Let u = Dδ, since ‖δJc0‖1 ≤ α0‖δJ0‖1,‖uJc0‖1 ≤ max
√
n

‖X·j‖2‖δJc0‖1 and ‖uJ0‖1 ≥

min
√
n

‖X·j‖2‖δJ0‖1, we have ‖uJc0‖1 ≤ α0

(
max ‖X·j‖2
min ‖X·j‖2

)
‖uJ0‖1. Hence,

κ2(W,k, α0) = min
J0⊂{1,··· ,p},
|J0|≤k

min
δ 6=0,

‖δJc0‖1≤α0‖δJ0
‖1

‖Wδ‖2
2

n‖δJ0‖2
2

≥ min
J0⊂{1,··· ,p},
|J0|≤k

min
u6=0,

‖uJc0‖1≤α0

(
max ‖X·j‖2
min ‖X·j‖2

)
‖uJ0

‖1

(
min

1≤i≤p

√
n

‖X·j‖2

)2 ‖Xu‖2
2

n‖uJ0‖2
2

≥ n

max ‖X·j‖2
2

κ2

(
X, k, α0

(
max ‖X·j‖2

min ‖X·j‖2

))
.

Proof of (A.2.7).

min
J0⊂{1,··· ,p},
|J0|≤|T |

min
δ 6=0,

‖δJc0‖1≤α0‖δJ0
‖1

‖Wδ‖2
2

n‖δJ0‖2
2

≤ min
δ 6=0,

‖δTc‖1≤α0‖δT ‖1

‖Wδ‖2
2

n‖δT‖2
2

≤ min
δ 6=0,

‖δTc‖1≤α0‖δT ‖1

‖δ‖1‖W
ᵀW
n
δ‖∞

‖δT‖2
2

≤ min
δ 6=0,

‖δTc‖1≤α0‖δT ‖1

(1 + α0) ‖δT‖1‖W
ᵀW
n
δ‖∞

‖δT‖2
2

≤ min
δ 6=0,

‖δTc‖1≤α0‖δT ‖1

(1 + α0) |T |‖W ᵀW
n
δ‖∞

‖δT‖1

.
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Since |T | ≤ k, the definitions of κ2(W, |T |, α0) and CIF1 (α0, T,W ) lead to

κ2(W, |T |, α0) ≥ κ2(W,k, α0),

and hence CIF1 (1 + 2ε0, T,W ) ≥ 1
2+2ε0

κ2 (W,k, 1 + 2ε0) . Combining (A.2.6) and

(A.2.7), we establish (A.2.3). The lower bound (A.2.4) follows from the definition

of the event G4. On the event G1, we have
max ‖X·j‖2
min ‖X·j‖2 ≤

7
2
M1. If k ≤ c n

log p
with a

sufficient small constant c, then we have

1

4
√
λmax (Ω)

− 9
1√

λmin (Ω)

(
1 + (1 + 2ε0)

(
max ‖X·j‖2

min ‖X·j‖2

))√
k

log p

n

≥ 1

4
√
M1

− 9
√
M1

(
1 + (1 + 2ε0)

7

2
M1

)√
k

log p

n
>

1

8
√
M1

.

(A.2.8)

Combined with (A.2.3) and (A.2.4), we establish (A.2.5).

A.2.2 Proof of lemmas for the lower bound

We prove the Lemma 2, 9 and for lower bound in this section.

Proof of Lemma 2. Let g0 denote the density function of N(0,Σz
0), g1 denote

the density function of N(0,Σz
δ) and g2 denote the density function of N(0,Σz

δ̃
). By

plugging into Lemma 13, we have

∫
g1g2

g0

=
(
det
(
I − (Σz

0)−1 (Σz
δ − Σz

0) (Σz
0)−1 (Σz

δ̃
− Σz

0

)))− 1
2 . (A.2.9)
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Note that

(Σz
0)−1 =



1
σ2 − 1

σ2ψ
∗
1

(
− 1
σ2ψ

∗
S

)ᵀ
01×p1

− 1
σ2ψ

∗
1 1 + 1

σ2 (ψ∗1)2 1
σ2ψ

∗
1 (ψ∗S)ᵀ 01×p1

− 1
σ2ψ

∗
S

1
σ2ψ

∗
1ψ
∗
S I + 1

σ2 (ψ∗S) (ψ∗S)ᵀ 0k∗×p1

0p1×1 0p1×1 0p1×k∗ Ip1×p1


,

and

(Σz
0)−1 (Σz

δ − Σz
0) =



0 0 01×k∗
1
σ2 (ρ0 − ψ∗1) δᵀ

0 0 01×k∗
1
σ2

(
σ2 + (ψ∗1)2 − ρ0ψ

∗
1

)
δᵀ

0k∗×1 0k∗×1 0k∗×k∗
1
σ2 ((−ρ0 + ψ∗1)ψ∗S) δᵀ

ρ0δ δ 0p1×k∗ 0p1×p1


,

and

(Σz
0)−1 (Σz

δ − Σz
0) (Σz

0)−1 (Σz
δ̃
− Σz

0

)

=



1
σ2ρ0 (ρ0 − ψ∗1) δᵀδ̃ 1

σ2 (ρ0 − ψ∗1) δᵀδ̃ 01×k∗ 01×p1

1
σ2ρ0f1δ

ᵀδ̃ 1
σ2f1δ

ᵀδ̃ 01×k∗ 01×p1

1
σ2ρ0f2δ

ᵀδ̃ 1
σ2f2δ

ᵀδ̃ 0k∗×k∗ 0k∗×p1

0p1×1 0p1×1 0p1×k∗
1
σ2 (ρ0 (ρ0 − ψ∗1) + f1) δδ̃ᵀ


,

where f1 =
(
σ2 + (ψ∗1)2 − ρ0ψ

∗
1

)
and f2 = (−ρ0 + ψ∗1)ψ∗S. Hence, the matrix

(Σz
0)−1 (Σz

δ − Σz
0) (Σz

0)−1 (Σz
δ̃
− Σz

0

)
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is of two equal eigenvalues 1
σ2 (ρ0 (ρ0 − ψ∗1) + f1) δᵀδ̃. By Lemma 14, we establish

χ2
(
fπH1

, fπH0

)
+ 1 = Eδ,δ̃

(
1− 1

σ2 (ρ0 (ρ0 − ψ∗1) + f1) δᵀδ̃
)−n

.

Since the proof of Lemma 9 is similar to that of Lemma 2, we prove Lemma 9 here.

Proof of Lemma 9. Let g0 denote the density function of N(0,Σz
0), g1 denote

the density function of N(0,Σz
δ) and g2 denote the density function of N(0,Σz

δ̃
). By

plugging into Lemma 13, we have

∫
g1g2

g0

=
(
det
(
I − (Σz

0)−1 (Σz
δ − Σz

0) (Σz
0)−1 (Σz

δ̃
− Σz

0

)))− 1
2 . (A.2.10)

Note that

(Σz
0)−1 =


1
σ2

(
− 1
σ2β

∗
S2

)ᵀ
01×p2

− 1
σ2β

∗
S2

Ik∗×k∗ + 1
σ2β

∗
S2

(
β∗S2

)ᵀ
0k∗×p2

0p2×1 0p2×k∗ Ip2×p2

 ,

and

(Σz
0)−1 (Σz

δ − Σz
0) =


0 01×k∗

1
σ2δ

ᵀ

0k∗×1 0k∗×k∗ − 1
σ2β

∗
S2
δᵀ

δ 0p2×k∗ 0p2×p2

 ,

Hence, we have

(Σz
0)−1 (Σz

δ − Σz
0) (Σz

0)−1 (Σz
δ̃
− Σz

0

)
=


1
σ2δ

ᵀδ̃ 01×k∗ 01×p2

− 1
σ2β

∗
S2
δᵀδ̃ 0k∗×k∗ 0k∗×p2

0p2×1 0p2×k∗
1
σ2δδ̃

ᵀ

 .

The matrix (Σz
0)−1 (Σz

δ − Σz
0) (Σz

0)−1
(

Σz
δ̃
− Σz

0

)
is of two equal eigenvalues 1

σ2δ
ᵀδ̃. By

Lemma 14, we establish χ2
(
fπH1

, fπH0

)
+1 = Eδ,δ̃

(
1− 1

σ2δ
ᵀδ̃
)−n

. Lemma 3 is shown

in the proofs of Cai & Low (2005). We prove it here to be self-contained.
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Proof of Lemma 3. By the fact that P (J = j) ≤
(
k
j

) (
k
p

)j (
1− k

p

)k−j (
1− k

p

)−k
and

(
1− k

p

)−k
≤ e

k2

p−k , we have P (J = j) ≤ e
k2

p−k

((
k
j

) (
k
p

)j (
1− k

p

)k−j)
, where(

k
j

) (
k
p

)j (
1− k

p

)k−j
is the pdf of binomial distribution with

(
k, k

p

)
.Hence E exp (tJ) ≤

e
k2

p−k

(
1− k

p
+ k

p
exp (t)

)k
.

A.2.3 Proof of Lemma 4

In the following, we prove the three inequalities (2.7.32), (2.7.33) and (2.7.34) in

Chapter 2 .

Proof of (2.7.32). By Lemma 26, we have

Pθ

(∣∣∣∣‖X·j‖2
2

nΣjj

− 1

∣∣∣∣ ≥ 2

√
t

n
+ 2

t

n

)
≤ 2 exp(−t),

By taking t = C1 log p with C1 = 2.25 and the inequality

2

5
<

√√√√(1− 2

√
C1 log p

n
− 2

C1 log p

n

)
<

√√√√(1 + 2

√
C1 log p

n
+ 2

C1 log p

n

)
<

7

5
,

the union bound leads to Pθ(Gc
1) ≤ 2p1−C1 . By Lemma 26, we have

Pθ

(∣∣∣∣∣(σora)2

σ2
− 1

∣∣∣∣∣ ≥ 2

√
t

n
+ 2

t

n

)
≤ 2 exp (−t) ,

Pθ

(∣∣∣∣∣ξᵀΣ̂ξξᵀΣξ
− 1

∣∣∣∣∣ ≥ 2

√
t

n
+ 2

t

n

)
≤ 2 exp (−t) ,

Pθ

(∣∣∣∣∣uᵀΣ̂uξᵀΩξ
− 1

∣∣∣∣∣ ≥ 2

√
t

n
+ 2

t

n

)
≤ 2 exp (−t) .
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Taking t = log p, we have Pθ (Gc
2) ≤ 2

p
and Pθ(Gc

3) ≤ 4
p
. By Lemma 12, for ‖vSc‖1 ≤

α0‖vS‖1, with probability larger than 1− c′ exp (−cn), we have

‖Xv‖2√
n‖vS‖2

≥ 1

4
√
λmax (Ω)

− 9
1√

λmin (Ω)
(1 + α0)

√
k

log p

n
.

By the definition of κ(X, k, α0),

κ(X, k, α0) ≥ 1

4
√
λmax (Ω)

− 9
1√

λmin (Ω)
(1 + α0)

√
k

log p

n
,

with probability larger than 1− c′ exp (−cn) . Since ‖Wi‖2 =
√
n, by the union bound

of p standard gaussian random variable, we have

Pε|X

(
‖W ᵀε‖∞

n
> σ

√
2δ0 log p

n

∣∣∣∣∣X
)
≤ 1

2
√
πδ0 log p

p1−δ0 ,

and

Pθ (Gc
5) = Pθ

(
‖W ᵀε‖∞

n
> σ

√
2δ0 log p

n

)
≤ 1

2
√
πδ0 log p

p1−δ0 .

The union bound will lead to (2.7.32) in Chapter 2.

The high probability statement (2.7.33) in Chapter 2 is a generalization of Lemma

6.2 in Javanmard & Montanari (2014a). Before the proof, we introduce the fol-

lowing definitions. The sub-gaussian norm of a random variable U is defined as

‖U‖ψ2 = supq≥1
1√
q

(E|U |q)
1
q , and the sub-gaussian norm of a random vector U ∈ Rp

is defined as ‖U‖ψ2 = supv∈Sp−1 ‖〈v, U〉‖ψ2 , where Sp−1 is the unit sphere in Rp. The

sub-exponential norm of a random variable U is defined as ‖U‖ψ1 = supq≥1
1
q

(E|U |q)
1
q ,

and the sub-exponential norm of a random vector U ∈ Rp is defined as ‖U‖ψ1 =

supv∈Sp−1 ‖〈v, U〉‖ψ1 .

Proof of (2.7.33). It is sufficient to show that with probability larger than 1 −
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2p1−c0C2
0 ,

‖ξᵀΩΣ̂− ξᵀ‖∞ ≤ 2C0e‖ξᵀΩ‖2‖Xi·‖2
ψ2

√
log p

n
, (A.2.11)

where ‖Xi·‖2
ψ2
≤ 2

e
M1. We define dᵀ = ξᵀΩΣ̂−ξᵀ and dj = 1

n

∑n
i=1 (ξᵀΩXᵀ

i·) (Xij)−ξj.

We define that qij = (ξᵀΩXᵀ
i·) (Xij) and we have the following properties of qij:

1. Eqij = ξj and qij is sub-exponential random variable with

‖qij‖ψ1 ≤ 2‖ξᵀΩ‖2‖Xi·‖2
ψ2
. (A.2.12)

2. qij − vj is sub-exponential random variable with

‖qij − ξj‖ψ1 ≤ 2‖qij‖ψ1 ≤ 4‖ξᵀΩ‖2‖Xi·‖2
ψ2
,

where the first inequality follows from Remark 5.18 in Vershynin (2012) and Ja-

vanmard & Montanari (2014a) and the second inequality follows from (A.2.12).

To show (A.2.12), we have

‖qij‖ψ1 = sup
p≥1

1

p
(E|qij|p)

1
p ≤ sup

p≥1

1

p

(
E|ξᵀΩXᵀ

i·|2pE|Xij|2p
) 1

2p

≤ 2 sup
p≥1

1√
2p

(
E|ξᵀΩXi·|2p

) 1
2p sup

p≥1

1√
2p

(
E|Xij|2p

) 1
2p

≤ ‖ξᵀΩ‖22 sup
p≥1

1√
2p

(
E| ξᵀΩ

‖ξᵀΩ‖2

Xᵀ
i·|2p
) 1

2p

sup
p≥1

1√
2p

(
E|eᵀjX

ᵀ
i·|2p
) 1

2p ≤ 2‖ξᵀΩ‖2‖Xi·‖2
ψ2
.

By the property of sum of independent centered subexponential random variables

(Vershynin, 2012; Javanmard & Montanari, 2014a), we have

Pθ

(
1

n
|

n∑
i=1

qij − ξj| ≥ ε

)
≤ 2 exp

(
−c0nmin

(
ε

K
,
ε2

K2

))
, (A.2.13)
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where K = 2e‖ξᵀΩ‖2‖Xi·‖2
ψ2

and c0 = 1
6
. By taking ε = 2eC0‖ξᵀΩ‖2‖Xi·‖2

ψ2

√
log p
n
≤

2e‖ξᵀΩ‖2‖Xi·‖2
ψ2

, then Pθ
(

1
n
|
∑n

i=1 qij − ξj| ≥ ε
)
≤ 2 exp (−c0C

2
0 log p) . Hence

Pθ

(
max
j
|dj| ≥ 2eC0‖ξᵀΣ−1‖2‖Xi·‖2

ψ2

√
log p

n

)
≤ 2p1−c0C2

0 ,

which leads to (A.2.11).

The proof of (2.7.34) in Chapter 2 relies on the results in Ren et al. (2013).

Proof of (2.7.34). We will control the probability P (Sc ∩G). Define

τ0 = (1 + ε0)λ0 max

{
4kλ0,

8λ0k

C (M1)

}

and D1 =
{
‖W ᵀε‖∞

n
> σoraλ0

ε0−1
ε0+1

(1− τ0)
}
. By (A.2.5), on the event G1 ∩ G4, if

k ≤ c n
log p

, then τ ≤ τ0, where τ is defined in (2.7.31). Hence, on the event G1 ∩ G4,

we have Sc1 =
{
‖W ᵀε‖∞

n
> σoraλ0

ε0−1
ε0+1

(1− τ)
}
⊂ D1. If k ≤ c n

log p
, by the definition of

τ0 and ε0 = 2.01
η0

+ 1, we have
λ0

ε0−1
ε0+1

(1−τ0)√
2δ0 log p

n

= 2.01+2.01η0

2.01+2η0
(1− τ0) ≥ 1. If δ0 log p > 2 and

k ≤ c n
log p

, as discussed in inequality (100) in Ren et al. (2013), we have

Pθ (G1 ∩G4 ∩ Sc1) ≤ P (D1) = Pθ
(
‖W ᵀε‖∞
nσora

> λ0
ε0 − 1

ε0 + 1
(1− τ0)

)
≤Pθ

(
‖W ᵀε‖∞
nσora

>

√
2δ0 log p

n

)
≤ c

1√
πδ0 log p

p1−δ0 .

In the following, we control G ∩ S1 ∩ Sc2. On the event G1 ∩G4, if σ > (1 + ν0)σ̂, we

have σ̂
σ
− 1 < −ν0

1+ν0
; If σ < (1− ν0)σ̂, we have σ̂

σ
− 1 > ν0

1−ν0
, and hence ν0

1+ν0
<
∣∣ σ̂
σ
− 1
∣∣ .

On the event S1,
∣∣ σ̂
σora
− 1
∣∣ ≤ τ ≤ τ0, and hence

∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ ∣∣∣∣( σ̂

σora
− 1

)
σora

σ

∣∣∣∣+

∣∣∣∣σoraσ − 1

∣∣∣∣ ≤ τ0

(∣∣∣∣σoraσ − 1

∣∣∣∣+ 1

)
+

∣∣∣∣σoraσ − 1

∣∣∣∣ .
By solving the above inequality for

∣∣σora
σ
− 1
∣∣, we have

∣∣σora
σ
− 1
∣∣ > ν0

1+ν0
−τ0

1+τ0
, and
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∣∣∣ (σora)2

σ2 − 1
∣∣∣ > ν0

1+ν0
−τ0

1+τ0
. On the event G1 ∩ G4 ∩ S1, if k ≤ c n

log p
, we have

ν0
1+ν0

−τ0
1+τ0

≥
ν0

1+ν0

2
(

1+
ν0

2(1+ν0)

) = ν0

2+3ν0
, and hence

Sc2 = {σ > (1 + ν0)σ̂, σ < (1− ν0)σ̂} ⊂ D2 =

{∣∣∣∣∣(σora)2

σ2
− 1

∣∣∣∣∣ > ν0

2 + 3ν0

}
,

and

Pθ (Sc2 ∩ S1 ∩G) ≤ Pθ (D2) ≤ 2 exp

(
−
(
g0 + 1−

√
2g0 + 1

2

)
n

)
, (A.2.14)

where g0 = ν0

2+3ν0
, and the last inequality follows from the concentration of χ2 distri-

bution. Combining the above inequalities (A.2.3) and (A.2.14), we have

Pθ (S ∩G) = Pθ (S1 ∩G)− Pθ (Sc2 ∩ S1 ∩G)

=Pθ (G)− Pθ (Sc1 ∩G)− Pθ (Sc2 ∩ S1 ∩G)

≥Pθ (G)− c 1√
πδ0 log p

p1−δ0 − 2 exp

(
−
(
g0 + 1−

√
2g0 + 1

2

)
n

)
.

(A.2.15)

A.2.4 Proof of Lemma 5.

By the normalization (2.7.28) in Chapter 2, the scaled Lasso algorithm (2.3.4) in

Chapter 2 can be expressed as

{d̂, σ̂} = arg min
d∈Rp,σ∈R

‖y −Wd‖2
2

2nσ
+
σ

2
+ λ0

p∑
j=1

|dj|. (A.2.16)

For fixed µ, we also define d̂ (µ) = arg mind∈Rp
‖y−Wd‖22

2n
+ µ

∑p
j=1 |dj|. Note that

d̂ = d̂ (λ0σ̂) and d̂j = β̂j
‖X·j‖2√

n
for j ∈ [p]. (A.2.17)
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The proof of Lemma 5 depends on the following lemmas. The first two lemmas are

Proposition 1 and Proposition 2 in an arXiv version of Ren et al. (2013).

Lemma 16. For any ε0 > 1, on the event
{
‖W ᵀε‖∞

n
≤ µ ε0−1

ε0+1

}
, we have

‖d̂ (µ)− d‖1 ≤ (2 + 2ε0) max

‖dT c‖1,

(
‖W ᵀε‖∞

n
+ µ
)
|T |

CIF1 (2ε0 + 1,T,W)

 , (A.2.18)

where T is defined in (2.7.31).

Lemma 17. Let {d̂, σ̂} be the solution of the scaled Lasso (A.2.16). For any ε0 > 1,

on the event S1 =
{
‖W ᵀε‖∞

n
≤ σoraλ0

ε0−1
ε0+1

(1− τ)
}
, we have

∣∣∣∣ σ̂σora − 1

∣∣∣∣ ≤ τ. (A.2.19)

where τ is defined in (2.7.31).

By Lemma 17, on the event S1 =
{
‖W ᵀε‖∞

n
≤ σoraλ0

ε0−1
ε0+1

(1− τ)
}
, we have

‖W ᵀε‖∞
n

≤ λ0σ̂
ε0 − 1

ε0 + 1
.

By Lemma 16 with µ = λ0σ̂ and the relation (A.2.17), we have

‖β̂ − β‖1 ≤ (2 + 2ε0)

√
n

min ‖X·j‖2

max

‖dT c‖1,

(
‖W ᵀε‖∞

n
+ λ0σ̂

)
|T |

CIF1 (2ε0 + 1, T,W )

 .

By the definition of the index set T , the event G4 and ‖β‖0 ≤ k,

‖β̂ − β‖1 ≤ (2 + 2ε0)

√
n

min ‖X·j‖2

max

kλ0σ
ora,

(
σ
√

2δ0 log p
n

+ λ0σ̂

)
k

CIF1 (2ε0 + 1, T,W )

 .
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By replacing CIF1 (1 + 2ε0, T,W ) with its lower bound in (A.2.3), we establish (2.7.35)

in Chapter 2.

A.2.5 Proof of Lemma 6

By (A.2.11), on the event B1, we choose λn = 4C0M
2‖ξ‖2

√
log p
n

and ξᵀΩ belongs

to the feasible set of (2.3.5) in Chapter 2. Hence, ûᵀΣ̂û ≤ uᵀΣ̂u = 1
n
‖Xu‖2

2, where

Xu ∈ Rn follows i.i.d Gaussian with variance uᵀΣu = ξᵀΩξ. On the event G3, we

have

uᵀΣ̂u ≤ ξᵀΩξ

(
1 + 2

√
log p

n
+ 2

log p

n

)
≤ 49

25
M1‖ξ‖2

2. (A.2.20)

On the event G ∩ S,

C2 (X, k) k

√
log p

n
σ̂ ≤ C1(M1)k

√
log p

n
σ,

where C1(M1) = 2500
√
M1 max

{
1.25, 2

C(M1)

}
.Hence, on the eventG∩S∩B1, we have

C1 (X, k) k log p
n
σ̂ ≤ 4C0M

2
1C1 (M1) k log p

n
σ and 1.01

√
ûᵀΣ̂û
n
σ̂zα/2 ≤ 8

√
M1

5
√
n
‖ξ‖2zα/2σ. There

exists a large positive integer p0 such that if p ≥ p0,

log p ≥ 1.01 max

{
4C0M

2
1C1 (M1) ,

8
√
M1

5
zα/2, C1(M1)

}
.

For p ≥ p0, we establish the inequalities (2.7.38) and (2.7.37) in Chapter 2.

A.2.6 Proof of Lemma 10

The control of probability of Ḡ1, Ḡ2, Ḡ3 and Ḡ4 follows from the similar argument of

Lemma A.2.3. In the following, we will control Pθ
(
Ḡ5

)
. We have the decomposition

ξᵀ
(

I− Σ̂(2)
)(

β̂ − β
)

= 1
n2

∑n2

j=1 δj with δj = ξᵀ
(

I−
(
X

(2)
j

)ᵀ
X

(2)
j

)(
β̂ − β

)
. Sim-
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ilarly to the proof of (2.7.33), we can show that Eδj = 0 and δj is sub-exponential

random variable with ‖δj‖ψ1 ≤ 4‖ξ‖2‖β̂ − β‖2‖X(2)
j· ‖2

ψ2
≤ 8

e
‖ξ‖2‖β̂ − β‖2M1. By the

property of sum of independent centered subexponential random variables (Vershynin,

2012; Javanmard & Montanari, 2014a), we have

Pθ

(
1

n
|

n∑
i=1

δj| ≥ ε

)
≤ 2 exp

(
−c0nmin

(
ε

K
,
ε2

K2

))
,

where K = 8‖ξ‖2‖β̂ − β‖2M1 and c0 = 1
6
. By taking ε = 8

√
6 log 2

(1−γ0)α
‖ξ‖2‖β̂ −

β‖2
1√
n
M1 ≤ K, we have (A.1.16).
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B
Supplement for Chapter 3

B.1 Difference between Θ(k) and Θ0(k)

In Chapter 3, we have investigated the minimax estimation rate, minimax expected

length and adaptivity of confidence intervals for the loss ‖β̂−β‖2
q with 1 ≤ q ≤ 2 over

the parameter spaces Θ0(k) and Θ(k). It is interesting to compare the minimaxity

and adaptivity behaviors between loss estimation over the parameter spaces Θ(k) and

Θ0(k). The comparison shows significant differences between estimating the `2 loss

and the `q loss with 1 ≤ q < 2 as well as the differences between the two parameter

spaces Θ(k) and Θ0(k).

In terms of the minimax estimation rate and minimax expected length of confi-

dence intervals, the prior information Σ = I and σ = σ0 reduces the convergence rate

for the `2 loss ‖β̂ − β‖2
2 from k log p

n
to min

{
k log p
n
, 1√

n

}
. With this prior information,

the adaptive estimation of `2 loss is made possible over the regime
√
n

log p
� k . n

log p
.

In contrast, even with such prior information, the minimax convergence rate remains

unchanged for the case 1 ≤ q < 2.

Regarding adaptivity of confidence intervals, the prior knowledge Σ = I and σ = σ0

is extremely useful for the construction of adaptive confidence intervals for the `2 loss

in the regime
√
n

log p
. k . n

log p
. Though adaptivity is still impossible outside this
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regime, we have seen that, with this prior knowledge, the expected length of optimal

confidence intervals over the regime k1 .
√
n

log p
. k2 . n

log p
is reduced from k2

log p
n

to

1√
n
.

In contrast, for `q loss with 1 ≤ q < 2, even with this prior information, it is still

impossible to construct adaptive confidence intervals for ‖β̂ − β‖2
q with 1 ≤ q < 2.

However, a comparison of Theorem 14 in Chapter 3 with Theorem 15 in Chapter 3

reveals that the expected length of confidence intervals is reduced with such prior

knowledge, from k
2
q

2
log p
n

to k
2
q
−1

2
1√
n

in the regime k1 .
√
n

log p
. k2 . n

log p
and from

k
2
q

2
log p
n

to k
2
q
−1

2 k1
log p
n

in the regime
√
n

log p
. k1 ≤ k2 . n

log p
.

B.2 Minimaxity and adaptivity of confidence in-

tervals for ‖β̂ − β‖2
q over Θσ0(k, s)

In Chapter 3, we have shown that there is significant difference between Θ0(k) and

Θ(k) in terms of the minimax convergence rates and the adaptivity behaviors. As

discussed in Section 3.7 in Cai & Guo (2016a), the parameter space Θ0(k) is relatively

simple and in this section, we consider a more general parameter space for (β,Σ, σ),

Θσ0(k, s) =

(β,Σ, σ0) :

‖β‖0 ≤ k,
1

M1

≤ λmin (Σ) ≤ λmax (Σ) ≤M1

‖Σ−1‖L1 ≤M, max
1≤i≤p

‖
(
Σ−1

)
i· ‖0 ≤ s

 , (B.2.1)

for some positive constant M1 ≥ 1 and M > 0. We will present the lower bound

results over Θσ0(k, s) in Section B.2.1 and the upper bound results in Section B.2.2.
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B.2.1 Minimax lower bounds

In this section, we first establish the minimax lower bounds over the parameter

Θσ0(k, s).

Theorem 22. Suppose 0 < α, α0 < 1/4, s�
√
n/log p and the sparsity levels k1, k2

and k0 satisfy Assumption (B2) in Chapter 3 with the constant c0 defined in (3.9.14)

in Chapter 3. For any estimator β̂ satisfying

sup
θ∈Θ(k0)

Pθ
(
‖β̂ − β∗‖2

q ≥ C∗‖β∗‖
2
q

0

log p

n
σ2

)
≤ α0, (B.2.2)

with a constant C∗ > 0.

1. If k2 .
√
n

log p
, then there is some constant c > 0 such that

R∗α

(
Θσ0 (k1, s) ,Θσ0 (k2, s) , β̂, `q

)
≥ ck

2
q

2

log p

n
σ2

0. (B.2.3)

2. If
√
n

log p
. k2 . n

log p
, then there is some constant c > 0 such that

R∗α

(
Θσ0 (k1, s) ,Θσ0 (k2, s) , β̂, `q

)
≥ cmax


(

(1− c2)2M1k
2
q
−1

2 k1
log p

n
− (1 + c2

1)
1

M1

k
2
q

1

log p

n

)
+

,
k

2
q
−1

2√
n

σ2
0,

(B.2.4)

where c1 =
C∗
√
M1k

1
q
0

(k1−k0)
1
q

and c2 =
C∗k

1
q
0

√
M1(k2−k0)

1
q−

1
2 (k1−k0)

1
2

.

Consequently, we have

R∗α

(
Θσ0(ki, s), β̂, `2

)
≥ c

k
2
q

i log p

n
σ2

0 for 1 ≤ q ≤ 2, i = 1, 2. (B.2.5)

Remark 10. The minimax lower bound (B.2.5) with i = 1 follows from (B.2.3) and

(B.2.4) by taking k2 = k1. The minimax lower bound (B.2.5) with i = 2 follows from
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(B.2.3) and (B.2.4) by taking k1 = 1
2
k2 and the fact that R∗α

(
Θσ0(k2, s), β̂, `2

)
≥

R∗α

(
Θσ0 (k1, s) ,Θσ0 (k2, s) , β̂, `q

)
. Theorem 18 is the special case of the above with

q = 2.

B.2.2 Minimax upper bounds

In this section, we will focus on the estimator β̂ constructed based on the subsample

Z(1) =
(
y(1), X(1)

)
and satisfying Assumption (A) in Chapter 3 with δ > 2 and

demonstrate the lower bounds (B.2.3) and (B.2.4) in Theorem 22 can be achieved.

The Lasso estimator β̂L defined in (3.2.10) in Chapter 3 with A > 4
√

2 is an example

of such estimators. To simply the notation, we use Ω to denote Σ−1. Let Ω̂ denote

the CLIME estimator (Cai et al., 2011) of Ω and λmax(Ω̂) and λmin(Ω̂) denote the

maximum and minimum eigenvalue of the estimator Ω̂.

The constructions of confidence intervals are very similar to the confidence inter-

vals, CI1
α (Z) in (3.3.8), and CI2

α (Z, k2, q) in (3.3.19) in Chapter 3. The only difference

here is that there is no prior knowledge Σ = I and we need to estimate Ω = Σ−1 based

on the data Z. In the following, we will detail the modification of CI1
α (Z) in (3.3.8)

in Chapter 3 and CI2
α (Z, k2, q) in (3.3.19) in Chapter 3.

We modify the construction of CI1
α (Z) proposed in (3.3.8) in Chapter 3 as follows,

CI3
α (Z) =

0.99λmin ×

(
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0

)
+

, 1.01λmax ×

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

)
+

 ,

(B.2.6)

where λmax = max
{
λmax(Ω̂), log p

}
and λmin = max

{
λmin(Ω̂), log p

}
and

ψ (Z) = min

{
1

n2

∥∥∥y(2) −X(2)β̂
∥∥∥2

2
, σ2

0 log p

}
. (B.2.7)

Before modifying the construction of CI2
α (Z, k2, q) in (3.3.19) in Chapter 3, we
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restrict our attention to the set of estimator β̂ satisfying the following assumption,

sup
θ∈Θ(k)

Pθ
(
‖(β̂ − β)Sc‖1 ≥ c∗‖(β̂ − β)S‖1 with S = supp(β)

)
≤ Cp−δ, (B.2.8)

for all k � n
log p

. For β̂ satisfying (B.2.8), we modify the construction of CI2
α (Z, k2, q)

in (3.3.19) in Chapter 3 as follows,

CI4
α (Z, k2, q) =

(
0.99λmin

(
ψ (Z)

1
n2
χ2

1−α2
(n2)

− σ2
0

)
+

, 1, 01λmax

(
(1 + c∗)2k2

) 2
q−1

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

)
+

)
.

(B.2.9)

The following proposition shows that the minimax lower bound (B.2.4) can be achieved

by the confidence interval CI3
α (Z) in (B.2.6) for the case q = 2 and CI4

α (Z, k2, q) in

(B.2.9) for the case 1 ≤ q < 2.

Proposition 10. Suppose p ≥ n, k1 ≤ k2 . n
log p

s �
√

n
log p

and β̂ is constructed

based on the subsample Z(1) =
(
y(1), X(1)

)
and satisfies Assumption (A) in Chapter

3. Then CI3
α (Z) defined in (B.2.6) satisfies,

lim inf
n,p→∞

inf
θ∈Θσ0 (k2,s)

Pθ
(
‖β̂ − β‖2

2 ∈ CI3
α (Z)

)
≥ 1− α, (B.2.10)

and

R
(
CI3

α (Z) ,Θσ0 (k1, s)
)
.

(
k1

log p

n
+

1√
n

)
σ2

0. (B.2.11)

In addition, if β̂ satisfies Assumption (A) in Chapter 3 and the assumption (B.2.8)

with δ > 2, then CI4
α (Z, k2, q) defined in (B.2.9) satisfies,

lim inf
n,p→∞

inf
θ∈Θσ0 (k2,s)

Pθ
(
‖β̂ − β‖2

q ∈ CI4
α (Z, k2, q)

)
≥ 1− α, (B.2.12)

and

R
(
CI4

α (Z, k2, q) ,Θσ0 (k1, s)
)
. k

2
q
−1

2

(
k1

log p

n
+

1√
n

)
σ2

0. (B.2.13)
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Similar to the construction in (B.2.9) and (B.2.6), we can modify the construction

of confidence interval CI0
α (Z, k, q) in (3.3.15) defined in Chapter 3 by replacing the

known minimum and maximum eigenvalues with the corresponding estimates λmin(Ω̂)

and λmax(Ω̂). The minimax lower bounds (B.2.5) and (B.2.3) can be achieved by such

construction of confidence intervals.

B.3 Additional lower bound analysis

In this Section, we prove the lower bound results, Theorem 9, Theorem 10, Theorem

11, Theorem 13, Theorem 15, Theorem 17, Theorem 18, Theorem 19 and Theorem

22.

B.3.1 Proof of Theorem 17

Proof of (3.6.6)

By (3.6.4) and (3.9.3) in Chapter 3, we have Pπi
(
‖β̂ (Z)− β∗‖q ≤ cidi

)
≥ 1 − α0 −

TV (fπi , fθi) , for i = 1, 2. Then by (3.9.2) in Chapter 3, we have

PZ,θ∼πi
(
‖β̂ (Z)− β∗‖q ≤ cidi

)
≥ 1− α0 − TV (fπi , fθi) , for i = 1, 2. (B.3.1)

Define the following events

Ai =

{
z : (1− ci) di ≤ inf

θ∈Fi
‖β̂ (z)− β (θ) ‖q ≤ sup

θ∈Fi
‖β̂ (z)− β (θ) ‖q ≤ (1 + ci) di

}
, for i = 1, 2.

(B.3.2)

If ‖β̂(z)− β∗‖q ≤ cidi and θ ∈ Fi where i = 1, 2, then

‖β̂ (z)− β (θ) ‖q ≥ ‖β (θ)− β∗‖q − ‖β̂(z)− β∗‖q ≥ (1− ci) di, (B.3.3)
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and

‖β̂ (z)− β (θ) ‖q ≤ ‖β (θ)− β∗‖q + ‖β̂(z)− β∗‖q ≤ (1 + ci) di. (B.3.4)

By (B.3.1), (B.3.3) and (B.3.4), we have PZ,θ∼πi (Ai) ≥ 1−α0−TV (fπi , fθi) , for i =

1, 2. Applying (3.9.2) in Chapter 3, we obtain

Pπ1 (A1) ≥ 1−α0−TV (fπ1 , fθ1) , and Pπ2 (A2) ≥ 1−α0−TV (fπ2 , fθ2) . (B.3.5)

By the second inequality of (B.3.5) and (3.9.3) in Chapter 3, we have Pπ1 (A2) ≥

1− α0 − TV (fπ2 , fθ2)− TV (fπ2 , fπ1) . Combined with the first inequality of (B.3.5),

we further have

Pπ1 (A1 ∩ A2) ≥ 1− 2α0 −
2∑
i=1

TV (fπi , fθi)− TV (fπ2 , fπ1) . (B.3.6)

By the coverage property, we have

inf
θ∈F1∪F2

Pθ
(
‖(β̂ (Z)− β (θ) ‖2

q ∈ CIα

(
β̂, `q, Z

))
≥ 1− α. (B.3.7)

Define the following event indexed with θ, Bθ =
{
z : ‖(β̂ (z)− β (θ) ‖2

q ∈ CIα

(
β̂, `q, z

)}
.

Define M1 = ∪θ∈F1Bθ and M2 = ∪θ∈F2Bθ. We then obtain

PZ,θ∼π1 (M1) =

∫ (∫
1M1fθ (z) dz

)
π1 (θ) dθ ≥

∫ (∫
1Bθfθ (z) dz

)
π1 (θ) dθ ≥ 1−α,

where the last inequality follows from (B.3.7). Similarly, we can establish PZ,θ∼π2 (M2) ≥

1− α. By (3.9.2) in Chapter 3, we further have

Pπ1 (M1) = PZ,θ∼π1 (M1) ≥ 1−α and Pπ2 (M2) = PZ,θ∼π2 (M2) ≥ 1−α. (B.3.8)
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By the second inequality of (B.3.8) with (3.9.3) in Chapter 3, we have Pπ1 (M2) ≥

1− α− TV (fπ2 , fπ1) . Combined with the first inequality of (B.3.8), we have

Pπ1 (M1 ∩M2) ≥ 1− 2α− TV (fπ2 , fπ1) . (B.3.9)

Combining (B.3.6) and (B.3.9), we obtain

Pπ1 (A1 ∩ A2 ∩M1 ∩M2) ≥ 1− 2α0 − 2α−
2∑
i=1

TV (fπi , fθi)− 2TV (fπ2 , fπ1) .

(B.3.10)

For z ∈M1 ∩M2, there exists θ̄1 ∈ F1 and θ̄2 ∈ F2 such that

‖β̂ (z)− β
(
θ̄1

)
‖2
q ∈ CIα

(
β̂, `q, z

)
and ‖β̂ (z)− β

(
θ̄2

)
‖2
q ∈ CIα

(
β̂, `q, z

)
. (B.3.11)

Since z ∈ A1 ∩ A2, we have

(1− c1)d1 ≤ ‖β̂ (z)− β
(
θ̄1

)
‖q ≤ (1 + c1)d1, and (1− c2)d2 ≤ ‖β̂ (z)− β

(
θ̄2

)
‖q ≤ (1 + c2)d2.

(B.3.12)

For z ∈ A1 ∩ A2 ∩M1 ∩M2, (B.3.11) and (B.3.12) lead to

R
(

CIα

(
β̂, `q, z

))
≥ (1− c2)2 d2

2 − (1 + c1)2 d2
1.

Combined with (B.3.10), we establish

Eπ1R
(

CIα

(
β̂, `q, Z

))
≥ c∗4

(
(1− c2)2 d2

2 − (1 + c1)2 d2
1

)
.

Since the maximum risk is lower bounded by the Bayesian risk, we establish (3.6.6)

in Chapter 3.

Proof of (3.6.5)

The proof of (3.6.5) in Chapter 3 combines the proof ideas of (3.6.2) and (3.6.6) in
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Chapter 3. Assume that

sup
θ∈F1

Pθ
(∣∣∣L̂q(Z)− ‖β̂(Z)− β(θ)‖2

q

∣∣∣ ≥ 1

4
d2

2

)
≤ α1, with α1 =

1

10
. (B.3.13)

Otherwise, we can establish (3.6.5) in Chapter 3 by having

sup
θ∈F1

Pθ
(∣∣∣L̂q(Z)− ‖β̂(Z)− β(θ)‖2

q

∣∣∣ ≥ 1

4
d2

2

)
≥ α1. (B.3.14)

By (B.3.13), we have supθ∈F1
Pθ
(

minθ∈F1

∣∣∣L̂q(Z)− ‖β̂(Z)− β(θ)‖2
q

∣∣∣ ≥ 1
4
d2

2

)
≤ α1 and

hence

Pπ1

(
min
θ∈F1

∣∣∣L̂q(Z)− ‖β̂(Z)− β(θ)‖2
q

∣∣∣ ≤ 1

4
d2

2

)
≥ 1− α1.

Define M0 =
{
z : minθ∈F1

∣∣∣L̂q(z)− ‖β̂(z)− β(θ)‖2
q

∣∣∣ ≤ 1
4
d2

2

}
. By (3.9.3) in Chapter

3, we obtain

Pπ2 (M0) ≥ 1− α1 − TV (fπ2 , fπ1) . (B.3.15)

Define Ai with i = 1, 2 as in (B.3.2). Similar to (B.3.6), we can establish the following

control of probability

Pπ2 (A1 ∩ A2) ≥ 1− 2α0 −
2∑
i=1

TV (fπi , fθi)− TV (fπ2 , fπ1) . (B.3.16)

By combining (B.3.16) and (B.3.15), we establish that

Pπ2 (A1 ∩ A2 ∩M0) ≥ 1− α1 − 2α0 −
2∑
i=1

TV (fπi , fθi)− 2TV (fπ2 , fπ1) . (B.3.17)

For z ∈M0, there exist θ̄ ∈ F1 such that

∣∣∣L̂q (z)− ‖β̂(z)− β(θ̄)‖2
q

∣∣∣ ≤ 1

4
d2

2. (B.3.18)
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For z ∈ A1 ∩ A2, we have the following results for θ̄ and any θ ∈ F2,

(1−c1)d1 ≤ ‖β̂(z)−β(θ̄)‖q ≤ (1+c1)d1, and (1−c2)d2 ≤ ‖β̂ (z)−β (θ) ‖q ≤ (1+c2)d2.

(B.3.19)

Hence, for z ∈ A1 ∩ A2 ∩M0 and θ ∈ F2, we have

∣∣∣L̂q (z)− ‖β̂(z)− β(θ)‖2
q

∣∣∣
≥
∣∣∣‖β̂(z)− β(θ)‖2

q − ‖β̂(z)− β(θ̄)‖2
q

∣∣∣− ∣∣∣L̂q (z)− ‖β̂(z)− β(θ̄)‖2
q

∣∣∣
≥(1− c2)2d2

2 − (1 + c1)2d2
1 −

1

4
d2

2,

(B.3.20)

where the last inequality follows from (B.3.18) and (B.3.19). That is, for z ∈ A1 ∩

A2 ∩M0, we obtain

min
θ∈F2

∣∣∣L̂q (z)− ‖β̂(z)− β(θ)‖2
q

∣∣∣ ≥ ((1− c2)2 − 1

4
)d2

2 − (1 + c1)2d2
1. (B.3.21)

Note that

sup
θ∈F2

Pθ
(∣∣∣L̂q (Z)− ‖β̂(Z)− β(θ)‖2

q

∣∣∣ ≥ ((1− c2)2 − 1

4
)d2

2 − (1 + c1)2d2
1

)
≥ sup

θ∈F2

Pθ
(

min
θ∈F2

∣∣∣L̂q (Z)− ‖β̂(Z)− β(θ)‖2
q

∣∣∣ ≥ ((1− c2)2 − 1

4
)d2

2 − (1 + c1)2d2
1

)
.

Since the max risk is lower bounded by the Bayesian risk, the final term of the last

inequality can be further bounded by

Pπ2

(
min
θ∈F2

∣∣∣L̂q (Z)− ‖β̂(Z)− β(θ)‖2
q

∣∣∣ ≥ ((1− c2)2 − 1

4
)d2

2 − (1 + c1)2d2
1

)
≥ Pπ2 (A1 ∩ A2 ∩M0) ≥ 1− α1 − 2α0 −

2∑
i=1

TV (fπi , fθi)− 2TV (fπ2 , fπ1) ,

(B.3.22)
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where the inequality follows from (B.3.21) and (B.3.17). Combing (B.3.14) and

(B.3.22), we establish (3.6.5) in Chapter 3.

B.3.2 Proof of Theorem 19 and Theorem 22

To establish the theorems, we need to establish the following three lower bounds,

R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
≥ ck

2
q

2

log p

n
σ2

0, for k2 .

√
n

log p
(B.3.23)

and for
√
n

log p
. k2 . n

log p
,

R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
≥ ck

2
q
−1

2

1√
n
σ2

0, (B.3.24)

R∗α

(
Θσ0 (k1, s) ,Θσ0 (k2, s) , β̂, `q

)
≥ c

(
(1− c2)2M1(k2 − k0)

2
q
−1(k1 − k0)ρ2 − 1

M1

(1 + c1)2 (k1 − k0)
2
q ρ2

)
+

.

(B.3.25)

By the fact that R∗α

(
Θσ0 (k1, s) ,Θσ0 (k2, s) , β̂, `q

)
≥ R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
,

Theorem 22 follows from (B.3.23), (B.3.24) and (B.3.25). Theorem 19 follows from

(B.3.23), (B.3.24) and (B.3.25) with M1 = 1. In the following, we will prove (B.3.23),

(B.3.24) and (B.3.25), separately.

Proof of (B.3.23)

The proof of (B.3.23) is an application of (3.6.3) of Theorem 16 in Chapter 3. For

θ0 = (β∗, I, σ0) ∈ Θ0 (k0) , we construct

F = {(β∗ + δ, I, σ0) : δ ∈ ` (β∗, k2 − k0, ρ)} ⊂ Θ0 (k2) , (B.3.26)
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where

` (β∗, k2 − k0, ρ) = {δ : supp (δ) ⊂ supp (β∗)c , ‖δ‖0 = k2 − k0, δi ∈ {0, ρ}} .

(B.3.27)

Let S = supp (β∗). Without loss of generality, we assume S = {1, 2, · · · , k0}. Let p1

denote the size of Sc and hence p1 = p − k0. Let π denote the uniform prior on the

parameter space F , which is induced by the uniform prior of δ on ` (β∗, k2 − k0, ρ).

Under the Gaussian random design model, Zi = (yi, Xi·) ∈ Rp+1 follows a joint

Gaussian distribution with mean 0. Let Σz denote the covariance matrix of Zi.

For the indices of Σz, we use 0 as the index of yi and {1, · · · , p} as the indices for

(Xi1, · · · , Xip) ∈ Rp. Decompose Σz into blocks

Σz
yy

(
Σz
xy

)ᵀ
Σz
xy Σz

xx

 , where Σz
yy, Σz

xx

and Σz
xy denote the variance of y, the variance of X and the covariance of y and

X, respectively. There exists a bijective function h : Σz → (β,Σ, σ) and the inverse

mapping h−1 : (β,Σ, σ)→ Σz, where h−1 ((β,Σ, σ)) =

βᵀΣβ + σ2 βᵀΣ

Σβ Σ

 and

h(Σz) =
(
(Σz

xx)
−1 Σz

xy,Σ
z
xx,Σ

z
yy −

(
Σz
xy

)ᵀ
(Σz

xx)
−1 Σz

xy

)
. (B.3.28)

Based on the bijection, the control of χ2 (fπ, fθ0) is reduced to the control of the χ2

distance between two multivariate Gaussian distributions.

The parameter spaces for Σz corresponding to {θ0} and F are

H1 = {Σz
0} , where Σz

0 =


‖β∗‖2

2 + σ2
0 (β∗S)ᵀ 01×p1

β∗S Ik0×k0 0k0×p1

0p1×1 0p1×k0 Ip1×p1

 ,
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and

H2 = {Σz
δ : δ ∈ ` (β∗, k2 − k0, ρ)} , where Σz

δ =


‖β∗‖2

2 + ‖δ‖2
2 + σ2

0 (β∗S)ᵀ δᵀ

β∗S Ik0×k0 0k0×p1

δ 0p1×k0 Ip1×p1

 .

Define θ1 = (β∗, I, σ2
0 + ‖δ‖2

2). For δ ∈ ` (β∗, k2 − k0, ρ), we have ‖δ‖2
2 = (k2 − k0)ρ2

and hence θ1 = (β∗, I, σ2
0 + (k2 − k0)ρ2). By TV (fπ, fθ0) ≤ TV (fπ, fθ1)+TV (fθ1 , fθ0),

it is sufficient to control TV (fπ, fθ1) and TV (fθ1 , fθ0) . By (3.9.1) in Chapter 3, it is

sufficient to establish χ2 (fπ, fθ1) ≤ ε21 and χ2 (fθ1 , fθ0) ≤ ε21.

Let Eδ,δ̃ denote the expectation with respect to the independent random variables

δ, δ̃ with a uniform prior over the parameter space ` (β∗, k2 − k0, ρ). The following

two lemmas are useful to control χ2 (fπ, fθ1) and χ2 (fθ1 , fθ0). The proof of Lemma

18 is given in Section B.5.2.

Lemma 18.

χ2 (fπ, fθ1) + 1 = Eδ,δ̃

(
1− δᵀδ̃

‖δ‖2
2 + σ2

0

)−n
2
(

1− δᵀδ̃

‖δ̃‖2
2 + σ2

0

)−n
2

. (B.3.29)

χ2 (fθ1 , fθ0) + 1 = Eδ,δ̃

(
1− ‖δ‖

2
2‖δ̃‖2

2

σ4
0

)−n
2

. (B.3.30)

The following lemma (Lemma 3 in Cai & Guo (2016b)) controls the right hand

side of (B.3.29).

Lemma 19. Suppose the random variable J follows Hypergeometric (p, k, k) with

P (J = j) =
(kj)(

p−k
k−j)

(pk)
, then we have

E exp (tJ) ≤ e
k2

p−k

(
1− k

p
+
k

p
exp (t)

)k
. (B.3.31)
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By the construction (B.3.26), we have ‖δ̃‖2
2 = ‖δ‖2

2 = (k2 − k0)ρ2 and δᵀδ̃ ≤

(k2 − k0)ρ2. By the inequality 1
1−x ≤ exp(2x) for x ∈

[
0, log 2

2

]
, if (k2−k0)ρ2

σ2
0

< log 2
2
, we

have

(
1− δᵀδ̃

‖δ‖22 + σ2
0

)−n
2
(

1− δᵀδ̃

‖δ̃‖22 + σ2
0

)−n
2

≤ exp

(
2n

δᵀδ̃

(k2 − k0)ρ2 + σ2
0

)
≤ exp

(
2n
δᵀδ̃

σ2
0

)
.

(B.3.32)

Let J denote the hypergeometric distribution with parameters (p1, k2 − k0, k2 − k0).

We further have

E exp

(
2n
δᵀδ̃

σ2
0

)
= EJ exp

(
2n
Jρ2

σ2
0

)
≤ e

(k2−k0)2

p1−(k2−k0)

(
1− k2 − k0

p1
+
k2 − k0

p1
exp

(
1

σ2
0

2nρ2

))(k2−k0)

≤ e
(k2−k0)2

p1−(k2−k0)

(
1− k2 − k0

p1
+
k2 − k0

p1

√
p1

(k2 − k0)2

)(k2−k0)

≤ e
(k2−k0)2

p1−(k2−k0)

(
1 +

1
√
p1

)(k2−k0)

,

(B.3.33)

where the first inequality applies Lemma 19 and the second inequality follows by

plugging ρ = 1
2

√
log

p1
(k2−k0)2

n
σ0. If (k2 − k0) ≤ c0 min

{
n

log p
, pγ
}

, we have (k2 − k0)ρ2 <

log 2
2
σ2

0. Since (k2 − k0) ≤ c0p
γ with 0 ≤ γ < 1

2
, we have χ2 (fπ, fθ1) ≤ ε21. Since

‖δ‖22
σ2

0
=
‖δ̃‖22
σ2

0
= (k2−k0)ρ2

σ2
0

< log 2
2
, we have the following control of (B.3.30),

E
δ,δ̃

(
1− ‖δ‖

2
2‖δ̃‖22
σ4

0

)−n
2

≤ exp

(
n

(
(k2 − k0)ρ2

σ2
0

)2
)

= exp


(

(k2 − k0)log p1

(k2−k0)2

)2

16n

 ,

(B.3.34)

where the inequality follows from 1
1−x ≤ exp(2x) for x ∈

[
0, log 2

2

]
and the equality

follows by plugging in ρ = 1
2

√
log

p1
(k2−k0)2

n
σ0. Under the assumption (k2 − k0) ≤

c
√
n

log p
, we have χ2 (fθ1 , fθ0) ≤ ε21 and hence TV (fπ, fθ1) ≤ ε1, TV (fθ1 , fθ0) ≤ ε1 and

TV (fπ, fθ0) ≤ 2ε1. Note that d = (k2−k0)
1
q ρ. By (3.2.6) in Chapter 3 and ‖β∗‖0 ≤ k0,

we establish

Pθ0

(
‖β̂ − β∗‖2

q ≤ C

(
k0

k2 − k0

) 2
q

d2

)
≥ 1− α0.
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By (3.6.3) in Chapter 3 and the fact C
(

k0

k2−k0

) 1
q ≤ 1

16
, we establish (B.3.23).

Proof of (B.3.24)

The proof of (B.3.24) is based on the exactly same argument with (B.3.23) by taking

ρ = (log (1 + ε21))
1
4

1

n
1
4
√
k2−k0

σ0. Since k2 ≥ C
√
n

log p
and k0 ≤ c0k2, then

(log
(
1 + ε21

)
)

1
4

1

n
1
4

√
k2 − k0

σ0 ≤
1

2

√
log p1

(k2−k0)2

n
σ0

and hence (B.3.33) holds. It is sufficient to control the following term

Eδ,δ̃

(
1− ‖δ‖

2
2‖δ̃‖2

2

σ4
0

)−n
2

≤ exp

(
n

(
(k2 − k0)ρ2

σ2
0

)2
)
≤ 1 + ε21. (B.3.35)

In this case, d2 =
√

log (1 + ε21)(k2 − k0)
2
q
−1 1√

n
σ2

0 and

Pθ0

‖β̂ − β∗‖2
q ≤ C

k
2
q

0
log p
n

(k2 − k0)
2
q
−1 1√

n

d2

 ≥ 1− α0.

Since k0 ≤ c0 min{k1,
√
n

log p
} and k1 ≤ k2, we have C

k
2
q
0

log p
n

(k2−k0)
2
q−1 1√

n

≤ 1
16

and the lower

bound (B.3.24) follows from (3.6.3) of Theorem 16 in Chapter 3.

Proof of (B.3.25) The proof of (B.3.25) is an application of (3.6.6) of Theorem 17

in Chapter 3. The key is to construct parameter spaces F1, F2 and the points θ1

and θ2 and then control the distribution distances between the density functions. Let

S = supp (β∗). Without loss of generality, we assume S = {1, 2, · · · , k0}. Define p0

denote the largest integer smaller than p−k0

2
, I1 = {k0 + 1, k0 + 2, · · · , k0 + p0} and

I2 = {k0 + p0 + 1, k0 + p0 + 2, · · · , p}. Define Σ0 =


IS×S 0 0

0 M1II1×I1 0

0 0 1
M1

II2×I2

 .
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For θ0 = (β∗, I, σ0), we construct

F1 =

{
(β∗ + ν,Σ0, σ0) : ν ∈ `

(
I1, k1 − k0,

1√
M1

ρ

)}
⊂ Θ0 (k1) ;

F2 =

{
(β∗ + δ, I, σ0) : δ ∈ `

(
I2, k2 − k0,

√
M1

√
k1 − k0

k2 − k0

ρ

)}
⊂ Θ0 (k2) ,

(B.3.36)

where

`

(
I1, k2 − k0,

1
√
M1

ρ

)
=

{
ν : supp (ν) ⊂ I1, ‖ν‖0 = k1 − k0, νi ∈

1
√
M1
{0, ρ}

}
, (B.3.37)

and

`

(
I2, k2 − k0,

√
M1

√
k1 − k0

k2 − k0
ρ

)
=

{
δ : supp (δ) ⊂ I2, ‖δ‖0 = k2 − k0, δi ∈

√
M1

√
k1 − k0

k2 − k0
{0, ρ}

}
. (B.3.38)

Let πi denote the uniform prior on the parameter space Fi for i = 1, 2. The corre-

sponding parameter spaces for Σz corresponding to F1 and F2 are

H1 =

{
Σzν : ν ∈ `

(
I1, k1 − k0,

1
√
M1

ρ

)}
where Σzν =

 ‖β∗‖22 + (k1 − k0) ρ2 + σ2
0 (β∗ + ν)ᵀ

β∗ + ν Σ0

 ,

and

H2 =

{
Σzδ : δ ∈ `

(
I2, k2 − k0,

√
M1

√
k1 − k0

k2 − k0
ρ

)}
where Σzδ =

 ‖β∗‖22 + (k1 − k0) ρ2 + σ2
0 (β∗ + δ)ᵀ

β∗ + δ Σ0

 .

Since dist2
1 = M1‖ν‖2

2 = (k1 − k0)ρ2 and dist2
2 = 1

M1
‖δ‖2

2 = (k1 − k0)ρ2, we have

θ1 = θ2 = (β∗,Σ0, σ
2
0 + (k1 − k0)ρ2). In this case, we have TV (fθ2 , fθ1) = 0. By the

same argument of (B.3.29) in Lemma 18, we have

χ2 (fπ1 , fθ1) + 1 = Eν,ν̃
(

1− M1ν
ᵀν̃

(k1 − k0) ρ2 + σ2
0

)−n
2
(

1− M1ν
ᵀν̃

(k1 − k0) ρ2 + σ2
0

)−n
2

,
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and

χ2 (fπ2 , fθ2) + 1 = Eδ,δ̃

(
1−

1
M1
δᵀδ̃

(k1 − k0) ρ2 + σ2
0

)−n
2
(

1−
1
M1
δᵀδ̃

(k1 − k0) ρ2 + σ2
0

)−n
2

.

Taking ρ = 1
2

√
log

p1
(k2−k0)2

n
σ0, a similar argument to (B.3.32) and (B.3.33) leads to

TV (fπi , fθi) ≤ ε1 for i = 1, 2. Note that d2
1 = 1

M1
(k1−k0)

2
q ρ2, d2

2 = M1(k2−k0)
2
q
−1(k1−

k0)ρ2. The assumption (3.2.7) leads to Pθi
(
‖β̂ − β∗‖2

q ≤ c2
i d

2
i

)
≥ 1− α0, for i = 1, 2,

where c1 =
C∗
√
M1k

1
q
0

(k1−k0)
1
q

and c2 =
C∗k

1
q
0

√
M1(k2−k0)

1
q−

1
2 (k1−k0)

1
2

. By (3.6.6) in Chapter 3, we

obtain

R∗α

(
Θ0 (k1) ,Θ0 (k2) , β̂, `q

)
≥ c

(
(1− c2)2M1(k2 − k0)

2
q
−1(k1 − k0)ρ2 − 1

M1

(1 + c1)2 (k1 − k0)
2
q ρ2

)
+

.

(B.3.39)

B.3.3 Proof of Theorem 18

Theorem 18 is implied by Theorem 22. Since k0 ≤ c∗0k1, we have (1 − c2)2 ≥ 1√
M1

and (1 + c1)2 ≤
√
M1. By k0 ≤ c0 min{k1,

√
n

log p
}, (B.2.4) implies the lower bound

min{k1 log p
n

, 1√
n
}σ2

0. Combined with (B.2.3), we can establish (3.7.3) in Chapter 3.

B.3.4 Proof of Theorems 11 and 13

The minimax lower bound of Theorem 11 follows from Theorem 12. We take k1 =

k2 = k and (3.3.5) in Chapter 3 follows from (3.3.7) in Chapter 3. The minimax lower

bound (3.3.6) in Chapter 3 follows from (3.3.5) in Chapter 3 and Lemma 8. The

minimax lower bound of Theorem 13 follows from Theorem 14. We take k1 = k2 = k

and (3.3.13) follows from (3.3.18). The minimax lower bound (3.3.14) in Chapter 3

follows from (3.3.13) in Chapter 3 and Lemma 8.
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B.3.5 Proof of Theorems 10 and 15

The proofs of Theorem 10 and 15 are applications of the minimax lower bounds

(3.6.2) and (3.6.3) of Theorem 16 in Chapter 3, respectively. To apply Theorem 16,

it is sufficient to construct the least favorable set F corresponding to the point θ0 =

(β∗, I, σ0) such that the distribution distance TV (fπ, fθ0) or χ2 (fπ, fθ0) is controlled

and the functional distance d = minθ∈F ‖β (θ)− β∗‖q is maximized. In the following,

we first establish Theorem 15 by constructing F with the prior π and control the

distance χ2 (fπ, fθ0). Taking θ0 = (β∗, I, σ0) with ‖β∗‖0 ≤ k0 and Θ = Θ (k2), we

define F = F (θ0, k2 − k0, ρ) as

F (θ0, k2 − k0, ρ) =

{
θ = (β∗ + δ, I, σ) : δ ∈ ` (β∗, k2 − k0, ρ) , σ =

√
σ2

0 − (k2 − k0) ρ2

}
,

(B.3.40)

where ` (β∗, k2 − k0, ρ) is defined in (B.3.27). Note that F (θ0, k2 − k0, ρ) ⊂ Θ (k2).

The prior π on F (θ0, k2 − k0, ρ) is induced by the uniform prior of δ on ` (β∗, k2 − k0, ρ).

In the following, we will control χ2 (fπ, fθ0).

Let Σz
0 denote the covariance matrix of (yi, Xi) corresponding to θ0 = (β∗, I, σ) ∈

Θ (k0). Let S = supp (β∗). Without loss of generality, we assume S = {1, 2, · · · , k0}.

Let p1 denote the size of Sc and hence p1 = p − k0. We have the expression of the

covariance matrix Σz
0 corresponding to θ0,

Σz
0 =


‖β∗‖2

2 + σ2
0 (β∗S)ᵀ 01×p1

β∗S Ik0×k0 0k0×p1

0p1×1 0p1×k0 Ip1×p1

 . (B.3.41)
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The corresponding set of Σz to F = F (θ0, k2 − k0, ρ) is

H = {Σz
δ : δ ∈ ` (β∗, k2 − k0, ρ)} , with Σz

δ =


‖β∗‖2

2 + σ2
0 (β∗S)ᵀ δᵀ

β∗S Ik0×k0 0k0×p1

δ 0p1×k0 Ip1×p1

 .

(B.3.42)

The following lemma (Lemma 7 in Cai & Guo (2016c)) controls the χ2 distance

between fπ and fθ0 .

Lemma 20.

χ2 (fπ, fθ0) + 1 = Eδ,δ̃

(
1− 1

σ2
0

δᵀδ̃

)−n
. (B.3.43)

By the construction (B.3.40), we have ‖δ̃‖2
2 = ‖δ‖2

2 = (k2 − k0) ρ2 and δᵀδ̃ ≤
(k2 − k0) ρ2. By the inequality 1

1−x ≤ exp(2x) for x ∈
[
0, log 2

2

]
, if (k2−k0)ρ2

σ2
0

< log 2
2
, we

have
(

1− 1
σ2

0
δᵀδ̃
)−n
≤ exp

(
2
σ2

0
nδᵀδ̃

)
. Let J denote the hypergeometric distribution

with parameters (p1, k2 − k0, k2 − k0). We further have

E exp

(
2

σ2
0

nδᵀδ̃

)
= E exp

(
1

σ2
0

2Jnρ2

)
≤ e

(k2−k0)2

p1−(k2−k0)

(
1− k2 − k0

p1
+
k2 − k0

p1
exp

(
1

σ2
0

2nρ2

))k2−k0
≤ e

(k2−k0)2

p1−(k2−k0)

(
1− k2 − k0

p1
+
k2 − k0

p1

√
p1

(k2 − k0)
2

)k2−k0
≤ e

(k2−k0)2

p1−(k2−k0)

(
1 +

1
√
p1

)k2−k0
,

(B.3.44)

where the first inequality applies Lemma 19 and the second inequality follows by

plugging ρ = 1
2

√
log

p1
(k2−k0)2

n
σ0. If k2 ≤ c0 min

{
n

log p
, pγ
}

, we have (k2−k0)ρ2

σ2
0

< log 2
2

and

establish χ2 (fπ, fθ0) ≤ ε21 by (B.3.44) and TV(fπ, fθ0) ≤ ε1 by (3.9.1) in Chapter 3,

where ε1 = 1−2α−2α0

12
.

To establish Theorem 15, we apply Theorem 16 and compute

d =
1

2
(k2 − k0)

1
q

√
log p1

(k2−k0)2

n
σ0.
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By (3.2.6) in Chapter 3 and ‖β∗‖0 ≤ k0, we establish

Pθ0

(
‖β̂ − β∗‖2

q ≤ C∗
(

k0

k2 − k0

) 2
q

d2

)
≥ 1− α0. (B.3.45)

By the fact C∗
(

k0

k2−k0

) 2
q ≤ 1

16
, we establish (3.6.1) in Chapter 3. By applying

(3.6.3) of Theorem 16, we establish (3.4.2) in Chapter 3. Since θ0 ∈ Θ(k2) and

R∗α

(
Θ (k2) , β̂, `q

)
≥ R∗α

(
{θ0} ,Θ (k2) , β̂, `q

)
, the lower bound (3.4.1) in Chapter 3

with i = 2 follows from (3.4.2) in Chapter 3. For (3.4.1) in Chapter 3 with i = 1,

the lower bound is established using the above argument with k2 replaced by k1. The

following lemma shows that β̂SL with A > 2
√

2 satisfying the assumption (A2) and

hence the lower bounds (3.4.1) and (3.4.2) in Chapter 3 hold for β̂SL with A > 2
√

2.

Lemma 21. If A > 2
√

2, then we have

Pθ0
(
‖β̂SL − β∗‖2

q ≥ C‖β∗‖
2
q

0

log p

n
σ2

0

)
≤ c exp (−c′n) + p−c.

To establish Theorem 10, we apply the general lower bound (3.6.2) in Chapter 3

and the same argument between (B.3.40) and (B.3.45) by replacing k2 with k.

B.3.6 Proof of Theorem 9

The proof of Theorem 9 is similar to the proof of Theorem 19, which is presented in

Section B.3.2. For the case k .
√
n

log p
, the proof is similar to (B.3.23). Taking θ0, F

and ρ as defined in the proof of (B.3.23), with k2 = k, we apply (3.6.2) in Theorem

16, we establish (3.2.8) and (3.2.9) in the regime k .
√
n

log p
in Chapter 3.

The proof of (3.2.8) in the case
√
n

log p
� k . n

log p
is similar to that of (B.3.24).

Taking θ0, F and ρ as defined in the proof of (B.3.24), with k2 = k, we establish

(3.2.8) in Chapter 3 for
√
n

log p
� k . n

log p
. The proof of (3.2.9) in Chapter 3 in the
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case
√
n

log p
� k . n

log p
is similar to that of (B.3.25). Taking θ0, θ1, θ2, F1,F2 and ρ

as defined in the proof of (B.3.25), with k1 = 1
3
k and k2 = k, we apply (3.6.5) of

Theorem 17 to establish (3.2.9) in Chapter 3 for
√
n

log p
� k . n

log p
.

B.4 Upper bound analysis

In Section B.4.1, we establish minimax upper bounds of Theorems 11, 12, 13, 14 and

15 based on Propositions 3, 4, 5 and 6. In later sections, we establish Propositions 2,

3, 4, 5, 6, 7 and 10.

B.4.1 Proof of upper bounds of Theorems

In the following, we will establish the minimax upper bounds in the main paper based

on Propositions 3, 4, 5 and 6.

Proof of the upper bound of Theorem 11 By Proposition 4, the minimax con-

vergence rate (3.3.6) in Chapter 3 over k .
√
n

log p
is achieved by the confidence interval

CI0
α (Z, k, 2) defined in (3.3.15) in Chapter 3. By Proposition 3, the minimax conver-

gence rate (3.3.6) in Chapter 3 over
√
n

log p
� k . n

log p
is achieved by the confidence

interval CI1
α (Z) defined in (3.3.8) in Chapter 3.

Proof of the upper bound of Theorem 12 By Proposition 4, the minimax lower

bound (3.3.7) in Chapter 3 in the region k2 .
√
n

log p
is achieved by the confidence

interval CI0
α (Z, k2, 2). By proposition 3, the minimax lower bound (3.3.7) in Chapter

3 over
√
n

log p
� k2 . n

log p
is achieved by the confidence interval CI1

α (Z).

Proof of the upper bound of Theorem 13 By Proposition 4, the minimax con-

vergence rate (3.3.14) in Chapter 3 is achieved by the confidence interval CI0
α (Z, k, q).
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Proof of the upper bound of Theorem 14 By Proposition 4, the minimax lower

bound (3.3.18) in Chapter 3 in the regime k1 ≤ k2 .
√
n

log p
is achieved by the confi-

dence interval CI0
α (Z, k2, q). By Proposition 5, the minimax lower bounds (3.3.18) in

Chapter 3 in the regime k1 .
√
n

log p
. k2 . n

log p
and

√
n

log p
. k1 ≤ k2 . n

log p
are achieved

by the confidence interval CI2
α (Z, k2, q) defined in (3.3.19) in Chapter 3.

Proof of the upper bound of Theorem 15 By Proposition 6, the minimax lower

bounds (3.4.1) in Chapter 3 are achieved by the confidence interval CIα (Z, ki, q) de-

fined in (3.4.4) in Chapter 3 for i = 1, 2 and the lower bound in (3.4.2) in Chapter 3

is achieved by the confidence interval CIα (Z, k2, q).

B.4.2 Proof of Proposition 6

The following argument is similar to the upper bound argument in Cai & Guo

(2016b,c), which also relies on the results from Bickel et al. (2009); Ren et al. (2013);

Sun & Zhang (2012). We first normalize the columns of X and the true sparse vector

β and the linear regression model can be expressed as

y = Wd+ ε, with W = XD, d = D−1β and ε ∼ N(0, σ2I), (B.4.1)

where D = diag
( √

n
‖X·j‖2

)
j∈[p]

denotes the p × p diagonal matrix with (j, j) entry to

be
√
n

‖X·j‖2 . Setting δ0 = A√
2

and η0 = ( A√
2
)

1
2 − 1, we have λ0 = (1 + η0)

√
2δ0 log p

n
. Take

ε0 = 2.01
η0

+ 1, ν0 = 0.01 and C1 = 2.25. Rather than use the constants directly in the

following discussion, we use δ0, η0, ε0, ν0 and C1 to represent the above fixed constants

in the following discussion. We also assume that log p
n
≤ 1

25
and δ0 log p > 2.

Define the l1 cone invertibility factor (CIF1) as follows,

CIF1 (α0, K,W ) = inf

{
|K|‖W ᵀW

n
u‖∞

‖uK‖1

: ‖uKc‖1 ≤ α0‖uK‖1, u 6= 0

}
, (B.4.2)
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where K is an index set. Define σora = 1√
n
‖y −Xβ‖2 = 1√

n
‖y −Wd‖2,

T = {k : |dk| ≥ λ0σ
ora}, τ = (1 + ε0)λ0 max

{
4

σora
‖dT c‖1,

8λ0|T |
CIF1 (2ε0 + 1, T,W )

}
.

(B.4.3)

To facilitate the proof, we define the following events for the random design X and

the error ε,

G1 =

{
2

5

1√
M1

<
‖X·j‖2√

n
<

7

5

√
M1 for 1 ≤ j ≤ p

}
,

G2 =

{∣∣∣∣∣(σora)2

σ2
− 1

∣∣∣∣∣ ≤ 2

√
log p

n
+ 2

log p

n

}
,

G3 =

{
κ(X, k, k, α) ≥ 1

4
√
λmax (Ω)

− 9√
λmin (Ω)

(1 + α)

√
k

log p

n

}
,

G4 =

{
‖W ᵀε‖∞

n
≤ σ

√
2δ0 log p

n

}
,

S1 =

{
‖W ᵀε‖∞

n
≤ σoraλ0

ε0 − 1

ε0 + 1
(1− τ)

}
,

S2 = {(1− ν0) σ̂ ≤ σ ≤ (1 + ν0)σ̂} .

Define G = ∩4
i=1Gi and S = ∩2

i=1Si. We introduce the following lemma to control the

probability of events G and S. Lemma 22 was established as Lemma 4 in Cai & Guo

(2016b), which relies on the results in Ren et al. (2013).

Lemma 22.

Pθ (G) ≥ 1− 6

p
− 2p1−C1 − 1

2
√
πδ0 log p

p1−δ0 − c′ exp (−cn) , (B.4.4)
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where c and c′ are universal positive constants. If k ≤ c n
log p

, then

Pθ (G ∩ S) ≥ Pθ (G)− 2 exp

(
−
(
g0 + 1−

√
2g0 + 1

2

)
n

)
− c′′ 1√

log p
p1−δ0 , (B.4.5)

where c, c′ and c′′ are universal positive constants and g0 = ν0

2+3ν0
.

The following lemma establishes a data-dependent upper bound for the term ‖β̂−

β‖2
q with 1 ≤ q ≤ 2. The proof of this lemma is in Section B.5.3.

Lemma 23. On the event G ∩ S,

‖β̂SL − β‖2
q ≤

 16Amax ‖X·j‖2
2σ̂

nκ2
(
X, k, k, 3

(
max ‖X·j‖2
min ‖X·j‖2

))
2

k
2
q

log p

n
. (B.4.6)

On the event G ∩ S, we have σ̂ ≤ (1 + ν0)σ < log p and there exists p0 such that

if p ≥ p0, then we have

 16Amax ‖X·j‖2
2σ̂

nκ2
(
X, k, k, 3

(
max ‖X·j‖2
min ‖X·j‖2

))
2

k
2
q

log p

n
≤ C

(
k

2
q

log p

n

)
σ̂2 �

(
k

2
q

log p

n
log p

)
σ̂2.

(B.4.7)

By Lemma 23, we have Pθ
(
‖β̂ − β‖2

q ∈ CIα (Z, k, q)
)
≥ Pθ(G∩S). Then the coverage

property (3.4.5) in Chapter 3 follows from Lemma 22. Recall that B = {σ̂ ≤ log p}.

The expected length is controlled as follows,

EθL (CIα (Z, k, q)) = EθL (CIα (Z, k, q)) 1B

=EθL (CIα (Z, k, q)) 1B∩(S∩G) + EθL (CIα (Z, k, q)) 1B∩(S∩G)c

≤Ck
2
q

log p

n
σ2 + k

2
q

log p

n
(log p)3 Pθ ((S ∩ G)c)

≤Ck
2
q

log p

n

(
σ2 + C

(
p1−min{δ0,C1} + c′ exp (−cn)

)
(log p)3) ,

(B.4.8)

where the first inequality follows from (B.4.7) and second inequality follows from
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Lemma 22. If log p
n
≤ c, then

(
p1−min{δ0,C1} + c′ exp (−cn)

)
(log p)3 → 0 and hence

(3.4.6) in Chapter 3 follows.

B.4.3 Proof of Proposition 4

For the split samples y(1) = X(1)β+ε(1) and y(2) = X(2)β+ε(2), we define the following

events

Ḡ1 =

{
0.9 <

‖X(1)
j· ‖2√
n1

< 1.1 for 1 ≤ j ≤ p

}
,

Ḡ2 =

{
κ(X(1), k, k, α) ≥ 1

4
√
λmax (Ω)

− 9√
λmin (Ω)

(1 + α)

√
2k

log p

n1

}
,

Ḡ3 =

{
2
‖
(
W (1)

)ᵀ
ε(1)‖∞

n1

≤ A

√
log p

n1

σ0

}
,

Ḡ4 =

{
‖
(
W (1)

)ᵀ
ε(1)‖∞

n1

≤ η0 − 1

η0 + 1
A

√
log p

n1

σ0

}
,

Ḡ5 =

{
‖β̂L − β‖2

q ≤ C∗1 (A, k) k
2
q

log p

n

}
,

Ḡ6 =

{
‖β̂L − β‖2

2 ≤ C∗2 (A, k) k
log p

n

}
,

Ḡ7 =

{
1

n2

∥∥∥y(2) −X(2)β̂L
∥∥∥2

2
≤
(
σ2

0 + ‖β̂L − β‖2
2

)(
1 + 2

√
2 log p

n2

+ 2
log p

n2

)}
,

Ḡ8 =

{
1

n2

∥∥∥y(2) −X(2)β̂L
∥∥∥2

2
≤ σ2

0

(
1 +

k log p

n1

)(
1 + 2

√
2 log p

n2

+ 2
log p

n2

)}
,

whereW
(1)
·j = X

(1)
·j

√
n1

‖X(1)
·j ‖2

for j = 1, · · · , p and η0 = 1.01
√
A+
√

2√
A−
√

2
, C∗1(A, k) = (22Aσ0)2(

1
4
−42

√
2k log p
n1

)4

and C∗2(A, k) =

(
3η0
η0+1

Aσ0

)2

(
1
4
−(9+11η0)

√
2k log p
n1

)4 . We introduce the following lemma to control the

probability Pθ(Ḡi) for 1 ≤ i ≤ 8. The lemma is proved in Section B.5.4.
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Lemma 24. Suppose k ≤ c n
log p

and θ ∈ Θ0(k). If A > 4
√

2, we have

Pθ
(
Ḡ5

)
≥ Pθ

(
Ḡ1 ∩ Ḡ2 ∩ Ḡ3

)
≥ 1− c exp (−c′n)− cp1−A

2

8 . (B.4.9)

If A >
√

2, we have

Pθ
(
Ḡ6

)
≥ Pθ

(
Ḡ1 ∩ Ḡ2 ∩ Ḡ4

)
≥ 1− c exp (−c′n)− p−c, (B.4.10)

and

Pθ
(
Ḡ7

)
≥ 1− p−2 and Pθ

(
Ḡ8

)
≥ Pθ

(
Ḡ6

)
(1− cp−2), (B.4.11)

where c and c′ are positive constants.

The coverage property (3.3.16) in Chapter 3 follows from the fact that

Pθ
(
‖β̂L − β‖2

q ∈ CI0
α (Z, k, q)

)
≥ Pθ(Ḡ5).

For the case q = 2, the coverage property follows from

Pθ
(
‖β̂L − β‖2

2 ∈ CI0
α (Z, k, 2)

)
≥ Pθ(Ḡ6).

The expected length (3.3.17) in Chapter 3 follows from the definition of CI0
α (Z, k, q).

B.4.4 Proof of Propositions 2, 3, 5 and 10

We will first introduce the following lemma, which establishes conditional distribution

of ‖y(2) −X(2)β̂‖2
2.

Lemma 25. Suppose the estimator β̂ is constructed based on the subsample Z(1) =
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(
y(1), X(1)

)
, then

‖y(2) −X(2)β̂‖2
2 |
(
y(1), X(1)

)
∼
(
‖Σ1/2(β − β̂)‖2

2 + σ2
0

)
χ2 (n2) , (B.4.12)

and

Pθ

(
χ2
α
2

(n2) ≤ ‖y(2) −X(2)β̂‖2
2

‖Σ1/2(β − β̂)‖2
2 + σ2

0

≤ χ2
1−α

2
(n2)

)
= 1− α. (B.4.13)

The above Lemma follows from the observation that conditioning on
(
y(1), X(1)

)
,

y
(2)
i −X

(2)
i β̂ = X

(2)
i

(
β − β̂

)
+ ε

(2)
i ∼ N

(
0, ‖Σ1/2(β − β̂)‖2

2 + σ2
0

)
.

Proof of Proposition 2

We first introduce the following lemma (Theorem 2.3 in Boucheron et al. (2013))

about concentration of χ2 random variable.

Lemma 26. Let χ2
n denote the χ2 random variable with n degrees of freedom, then

we have the following concentration inequality,

P
(∣∣χ2

n − Eχ2
n

∣∣ > 2
√
nt+ 2t

)
≤ 2 exp(−t).

Since ‖β̂L − β‖2
2 is non-negative, we have

Pθ
(∣∣∣L̃2 − ‖β̂L − β‖22

∣∣∣ ≥ δn,p 1√
n

)
≤ Pθ

(∣∣∣∣ 1

n2
‖y(2) −X(2)β̂L‖22 − σ2

0 − ‖β̂L − β‖22
∣∣∣∣ ≥ δn,p 1√

n

)
.
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By (B.4.12) (with Σ = I), we establish that

Pθ
(∣∣∣∣ 1

n2

‖y(2) −X(2)β̂L‖2
2 − σ2

0 − ‖β̂L − β‖2
2

∣∣∣∣ ≥ δn,p
1√
n

)
≤Pθ

({∣∣∣∣ 1

n2

‖y(2) −X(2)β̂L‖2
2 − σ2

0 − ‖β̂L − β‖2
2

∣∣∣∣ ≥ δn,p
1√
n

}
∩ Ḡ6

)
+ Pθ(Ḡc6)

≤ exp

(
−
Cδ2

n,p

σ4
0

)
Pθ(Ḡ6) + Pθ(Ḡc6) ≤ exp

(
−
Cδ2

n,p

σ4
0

)
+ cp−c + c exp(−c′n),

(B.4.14)

where the last inequality follows from Lemma 26. Taking supremum on both sides of

(B.4.14), we establish (3.2.12) in Chapter 3.

Proof of coverage properties in Propositions 3, 5 and 10

We first introduce the following confidence intervals,

C̄I
1
α (Z) =

(
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0,
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

)
,

C̄I
2
α (Z, k2, q) =

(
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0, (16k2)
2
q
−1

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

))
,

C̄I
3
α (Z) =

(
0.99λmin

(
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0

)
, 1.01λmax

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

))
,

and

C̄I
4
α (Z, k2, q)

=

(
0.99λmin

(
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0

)
, 1, 01λmax

(
(1 + c∗)2k2

) 2
q
−1

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

))
.
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Since the loss is positive, the coverage property of CIiα is the same with that of C̄I
i
α,

for i = 1, 2, 3, 4. We also have

EL
(
CIiα
)
≤ EL

(
C̄I

i
α

)
, for i = 1, 2, 3, 4. (B.4.15)

On the event Ḡ8, we have ψ (Z) = 1
n2
‖y(2) −X(2)β̂L‖2

2 and hence

Pθ
(
‖β̂L − β‖22 ∈ C̄I

1
α (Z)

)
≥ Pθ

({
χ2
α
2

(n2) ≤ ‖y
(2) −X(2)β̂L‖22
‖β − β̂L‖22 + σ2

0

≤ χ2
1−α

2
(n2)

}
∩ Ḡ8

)

≥Pθ

χ2
α
2

(n2) ≤ ‖y(2) −X(2)β̂L‖22
‖β − β̂L‖22 + σ2

0 ≤ χ2
1−α

2
(n2)


+ Pθ

(
Ḡ8

)
− 1

≥1− α− exp(−c′n)− cp−c,

where the last inequality follows from (B.4.13) and Lemma 24. The coverage property

(3.3.10) in Chapter 3 over Θ0(k) follows from taking infimum over both sides of above

inequality.

To establish the coverage property in Proposition 5, we introduce the following

lemma, which establishes an upper bound for ‖a‖qq where 1 ≤ q ≤ 2 and a ∈ Rp.

Lemma 27.

‖a‖qq ≤

(
p∑
j=1

|aj|

)2−q( p∑
j=1

a2
j

)q−1

. (B.4.16)

The above lemma is established in the proof of Theorem 7.1 in Bickel et al. (2009).

We introduce the following confidence interval, Define the events

Ḡ ′6 =

{
‖β̂L − β‖2

2 ≤ C∗2 (A, k1) k1
log p

n

}
,

Ḡ ′8 =

{
1

n2

∥∥∥y(2) −X(2)β̂L
∥∥∥2

2
≤ σ2

0

(
1 +

k1 log p

n1

)(
1 + 2

√
log p

n2

+
2 log p

n2

)}
,
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and similar to Lemma 24, we have

min
θ∈Θ0(k1)

Pθ(Ḡ ′6 ∩ Ḡ ′8) ≥ 1− c exp (−c′n)− cp1−A
2

8 − cp−2. (B.4.17)

Note that

‖β̂L − β‖2
2 ≤ ‖β̂L − β‖2

q, for 1 ≤ q < 2. (B.4.18)

For the Lasso estimator β̂L with A > 4
√

2, let S denote the support of β, then on

the event Ḡ3,

‖β̂L − β‖2
1 ≤ 16‖(β̂L − β)S‖2

1 ≤ 16k2‖β̂L − β‖2
2. (B.4.19)

By Lemma 27, on the event Ḡ3, we have ‖β̂L−β‖2
q ≤ (16k2)

2
q
−1 ‖β̂L−β‖2

2. Combined

with (B.4.4) and (B.4.18), we establish the coverage property (3.3.20) in Chapter 3.

The proof of coverage properties in Proposition 10 is a generalization of those

in Propositions 3 and 5. We also define the following extra event to facilitate the

discussion,

Ḡ9 =

{
max

{∣∣∣∣∣λmin(Ω̂)

λmin(Ω)
− 1

∣∣∣∣∣ ,
∣∣∣∣∣λmax(Ω̂)

λmax(Ω)
− 1

∣∣∣∣∣
}
≤ 0.01

}
. (B.4.20)

By Theorem 1 in Cai et al. (2011), with a proper chosen tuning parameter, we have

Pθ(Ḡ9) ≥ 1− p−2. On the event Ḡ8, we have ψ (Z) = 1
n2
‖y(2)−X(2)β̂‖2

2. On the event

Ḡ9, we have λmax = λmax(Ω̂) and λmin = λmin(Ω̂) and then

Pθ
(
‖β̂ − β‖22 ∈ C̄I

3
α (Z)

)
≥Pθ

({
χ2
α
2

(n2) ≤ ‖y(2) −X(2)β̂‖22
‖Σ1/2(β − β̂)‖22 + σ2

0

≤ χ2
1−α

2
(n2)

}
∩ Ḡ8 ∩ Ḡ9

)

≥Pθ

({
χ2
α
2

(n2) ≤ ‖y(2) −X(2)β̂‖22
‖Σ1/2(β − β̂)‖22 + σ2

0

≤ χ2
1−α

2
(n2)

})
+ Pθ

(
Ḡ8 ∩ Ḡ9

)
− 1

≥1− α− cp−c.
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The coverage property (B.2.10) over Θσ0(k, s) follows from taking infimum over both

sides of above inequality.

Combining (B.2.10) and the fact that with probability greater than 1− p−δ,

‖β̂ − β‖2
2 ≤ ‖β̂ − β‖2

q ≤
(
(1 + c∗)2k2

) 2
q
−1 ‖β̂ − β‖2

2, for 1 ≤ q < 2, (B.4.21)

we establish the coverage property (B.2.12).

Proof of expected lengths in Propositions 3, 5 and 10

In the following, we control expected lengths of confidence intervals C̄I
i
α for i =

1, 2, 3, 4. By (B.4.15), these upper bounds are also upper bounds for expected lengths

of CIiα for i = 1, 2, 3, 4.

We start with the expected length of C̄I
1
α over Θ0(k). Note that

ψ (Z)
1
n2
χ2
α
2

(n2)
− ψ (Z)

1
n2
χ2

1−α
2

(n2)
= ψ (Z) f(n2),

where f(n2) =

(
1
n2
χ2

1−α2
(n2)− 1

n2
χ2
α
2

(n2)

1
n2
χ2
α
2

(n2) 1
n2
χ2

1−α2
(n2)

)
. On the event Ḡ8, we have

ψ (Z) =
1

n2

‖y(2) −X(2)β̂L‖2
2

and then obtain

E

∣∣∣∣∣ ψ (Z)
1
n2
χ2
α
2

(n2)
− ψ (Z)

1
n2
χ2

1−α
2

(n2)

∣∣∣∣∣1Ḡ6∩Ḡ8
=

(
E

1

n2

‖y(2) −X(2)β̂L‖2
21Ḡ6∩Ḡ8

)
f(n2)

≤
(
E

1

n2

‖y(2) −X(2)β̂L‖2
21Ḡ6

)
f(n2).

Conditioning on (X(1), y(1)), by taking expectation of right hand side of above equa-
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tion with respect to (X(2), y(2)), the right hand side is equal to

E
((
‖β − β̂L‖2

2 + σ2
0

)
1Ḡ6

)
f(n2) ≤

(
Ck

log p

n
+ 1

)
σ2

0f(n2).

Based on Lemma 26, we have 1 − 2

√
2 log 4

α

n
− 4

log 4
α

n
≤ 1

n2
χ2
α
2

(n2) ≤ 1
n2
χ2

1−α
2

(n2) ≤

1 + 2

√
2 log 4

α

n
+ 4

log 4
α

n
and hence f(n2) ≤ C√

n
. Hence, we have

E

∣∣∣∣∣ ψ (Z)
1
n2
χ2
α
2

(n2)
− ψ (Z)

1
n2
χ2

1−α
2

(n2)

∣∣∣∣∣1Ḡ6∩Ḡ8
≤ C√

n

(
Ck

log p

n
+ 1

)
σ2

0. (B.4.22)

Note that

E

∣∣∣∣∣ ψ (Z)
1
n2
χ2
α
2

(n2)
− ψ (Z)

1
n2
χ2

1−α
2

(n2)

∣∣∣∣∣1(Ḡ6∩Ḡ8)
c ≤ σ2

0 log p× f(n2)Pθ
((
Ḡ6 ∩ Ḡ8

)c)
≤ 1√

n
σ2

0 log p
(
cp−c + c exp (−c′n)

)
.

Combined with (B.4.22), we establish EL
(

C̄I
1
α

)
. 1√

n
σ2

0 and hence (3.3.11) in Chap-

ter 3.

To control the expected length of C̄I
2
α (Z, k2, q) over Θ0(k1), we decompose the

length as

L
(

C̄I
2
α (Z, k2, q)

)
= L

(
C̄I

1
α (Z)

)
+
(

(16k2)
2
q
−1 − 1

)( ψ (Z)
1
n2
χ2
α
2

(n2)
− σ2

0

)
. (B.4.23)

Since we have established EL
(

C̄I
1
α

)
. 1√

n
σ2

0, it is sufficient to control the term
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E
∣∣∣∣ ψ(Z)

1
n2
χ2
α
2

(n2)
− σ2

0

∣∣∣∣ . On the event Ḡ ′8, we have ψ (Z) = 1
n2
‖y(2) −X(2)β̂L‖2

2 and

ψ (Z)
1
n2
χ2
α
2

(n2)
− σ2

0 =

1
n2
‖y(2) −X(2)β̂L‖2

2 − σ2
0 −

(
1
n2
χ2
α
2

(n2)− 1
)
σ2

0

1
n2
χ2
α
2

(n2)

=
1
n2
‖y(2) −X(2)β̂L‖2

2 − σ2
0 − ‖β̂L − β‖2

2

1
n2
χ2
α
2

(n2)
−

(
1
n2
χ2
α
2

(n2)− 1
)
σ2

0 − ‖β̂L − β‖2
2

1
n2
χ2
α
2

(n2)
.

Hence, we have

E

∣∣∣∣∣ ψ (Z)
1
n2
χ2
α
2

(n2)
− σ2

0

∣∣∣∣∣1Ḡ′6∩Ḡ′8 ≤ E

∣∣∣∣∣
1
n2
‖y(2) −X(2)β̂L‖2

2 − σ2
0 − ‖β̂L − β‖2

2

1
n2
χ2
α
2

(n2)

∣∣∣∣∣1Ḡ′6
+ E

∣∣∣ 1
n2
χ2
α
2

(n2)− 1
∣∣∣σ2

0 + ‖β̂L − β‖2
2

1
n2
χ2
α
2

(n2)
1Ḡ′6 ≤ C

(
1√
n

+ k1
log p

n

)
σ2

0,

(B.4.24)

and

E

∣∣∣∣∣ ψ (Z)
1
n2
χ2
α
2

(n2)
− σ2

0

∣∣∣∣∣1(Ḡ′6∩Ḡ′8)
c ≤ σ2

0 log pPθ
((
Ḡ ′6 ∩ Ḡ ′8

)c)
≤ Cσ2

0 log p
(
cp1−A

2

8 + cp−2 + c exp (−c′n)
)
≤ C

(
k1 log p

n
+

1√
n

)
σ2

0,

(B.4.25)

where the last inequality follows from the inequality (B.4.17) and the fact that A >

4
√

2 and n ≤ p. The control of length (3.3.21) in Chapter 3 follows from (B.4.23),

(B.4.24) and (B.4.25).

In the following, we control the expected lengths of C̄I
3
α and C̄I

4
α over Θσ0(k, s).

Applying the similar argument as (B.4.24) and (B.4.25), we have

Eλmax

∣∣∣∣∣ ψ (Z)
1
n2
χ2
α
2

(n2)
− σ2

0

∣∣∣∣∣1Ḡ′6∩Ḡ′8∩Ḡ9
≤ C

(
1√
n

+ k1
log p

n

)
σ2

0,
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and

Eλmax

∣∣∣∣∣ ψ (Z)
1
n2
χ2
α
2

(n2)
− σ2

0

∣∣∣∣∣1(Ḡ′6∩Ḡ′8∩Ḡ9)
c ≤ σ2

0 log p2Pθ
((
Ḡ ′6 ∩ Ḡ ′8

)c)
≤ Cσ2

0 log p
(
cp−δ + cp−2 + c exp (−c′n)

)
≤ C

(
k1 log p

n
+

1√
n

)
σ2

0,

where the last inequality follows from the inequality (B.4.17) and the fact that δ > 2

and n ≤ p. The above two inequalities lead to the control of expected lengths in

(B.2.11) and (B.2.13).

B.4.5 Proof of Proposition 7

We will consider the estimators β̂ satisfying Assumption (A) introduced in (3.5.1) in

Chapter 3. The minimax lower bounds (3.2.9) in Theorem 9, (3.2.13) in Theorem

10 and the minimax lower bound k log p
n

of (3.2.8) in Theorem 9 in Chapter 3 can be

achieved by the trivial estimator 0.

For estimators β̂ constructed using the subsample Z(1) =
(
y(1), X(1)

)
, the minimax

lower bound 1√
n
σ2

0 of (3.2.8) in Theorem 9 in Chapter 3 can be achieved by the

estimator as defined in (3.2.11) in Chapter 3, L̃2 =

(
1
n2

∥∥∥y(2) −X(2)β̂
∥∥∥2

2
− σ2

0

)
+

.

Applying the proof of Proposition 2, we can establish, for any sequence δn,p →∞,

lim sup
n,p→∞

sup
θ∈Θ0(k)

Pθ
(∣∣∣L̃2 − ‖β̂ − β‖2

2

∣∣∣ ≥ δn,p
1√
n

)
= 0.

The minimax lower bound k log p
n
σ2

0 in (3.3.5) in Theorem 11 in Chapter 3 can be

achieved by the confidence interval (0, C∗k log p
n
σ2

0). The minimax lower bound k2 log p
n

σ2
0

of (3.3.7) in Theorem 12 in Chapter 3 can be achieved by the confidence interval

(0, C∗k2
log p
n
σ2

0); For estimators β̂ constructed using the subsample Z(1) =
(
y(1), X(1)

)
,

the minimax lower bound 1√
n
σ2

0 of (3.3.5) in Theorem 11 in Chapter 3 and (3.3.7) in

Theorem 12 in Chapter 3 can be achieved by the confidence interval CI1
α (Z) as defined
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in (3.3.8) in Chapter 3 with ψ (Z) = min

{
1
n2

∥∥∥y(2) −X(2)β̂
∥∥∥2

2
, σ2

0 log p

}
. Applying

the proof of Proposition 3, we can establish that the constructed confidence interval

satisfies

lim inf
n,p→∞

inf
θ∈Θ0(k)

P
(
‖β̂ − β‖2

2 ∈ CI1
α (Z)

)
≥ 1− α,

and

R
(
CI1

α (Z) ,Θ0 (k)
)
.

1√
n
σ2

0.

The minimax lower bound (3.3.13) in Theorem 13 in Chapter 3 can be achieved

by the confidence interval (0, C∗k
2
q log p

n
σ2

0). The minimax lower bound ck
2
q

2
log p
n
σ2

0 of

(3.3.18) in Theorem 14 in Chapter 3 can be achieved by the confidence interval

(0, C∗k
2
q

2
log p
n
σ2

0).

The minimax lower bounds ck
2
q
−1

2
1√
n
σ2

0 of (3.3.18) and ck
2
q
−1

2 k1
log p
n
σ2

0 of (3.3.18)

in Theorem 14 in Chapter 3 can be achieved by the confidence interval CI2
α (Z, k2, q)

as defined in (3.3.19) in Chapter 3

((
ψ (Z)

1
n2
χ2

1−α
2

(n2)
− σ2

0

)
+

,
(
(1 + c∗)2k2

) 2
q
−1

(
ψ (Z)

1
n2
χ2
α
2

(n2)
− σ2

0

)
+

)
,

with ψ (Z) = min

{
1
n2

∥∥∥y(2) −X(2)β̂
∥∥∥2

2
, σ2

0 log p

}
. Applying the proof of Proposition

5, we can establish that

lim inf
n,p→∞

inf
θ∈Θ0(k2)

Pθ
(
‖β̂ − β‖2

q ∈ CI2
α (Z, k2, q)

)
≥ 1− α,

and

R
(
CI2

α (Z, k2, q) ,Θ0 (k1)
)
. k

2
q
−1

2

(
k1

log p

n
+

1√
n

)
σ2

0.

Note that the proof of Proposition 5 requires the following conditions, β̂ is constructed

based on the subsample Z(1) =
(
y(1), X(1)

)
and it satisfies Assumption (A) and (3.5.2)
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in Chapter 3 with δ > 2.

The minimax lower bound (3.4.1) in Theorem 15 in Chapter 3 can be achieved by

the confidence interval CIα (Z, k, q) as defined in (3.4.4) in Chapter 3 with ϕ (Z, k, q) =

C∗k
2
q log p

n
σ̂2.

B.5 Proof of extra lemmas

In this section, we prove Lemma 7, 8, 18, 21, 23 and 24.

B.5.1 Proof of Lemma 7

The equality (3.9.2) in Chapter 3 follows from

PZ,θ∼π (Z ∈ A) =

∫ ∫
1z∈Afθ (z) π (θ) dzdθ =

∫
1z∈A

(∫
fθ (z) π (θ) dθ

)
dz

=

∫
1z∈Afπ (z) dz = Pπ (Z ∈ A) ,

where the second equality follows from the Fubini’s theorem.

The inequality (3.9.3) in Chapter 3 follows from

|Pπ1 (Z ∈ A)− Pπ2 (Z ∈ A)| =
∣∣∣∣∫ 1z∈Afπ1 (z) dz −

∫
1z∈Afπ2 (z) dz

∣∣∣∣
≤
∫
|fπ1 (z)− fπ2 (z)| dz,

where the equality follows from the definition of Pπi and the inequality follows from

the triangle inequality.

B.5.2 Proof of Lemma 18

In the following, we prove Lemma 18 in Chapter 3. The following lemmas are useful

in controlling the χ2 distance between the null and the alternative hypothesis. The
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first lemma is established in Cai & Zhou (2012); Ren et al. (2013).

Lemma 28. Let gi be the density function of N(0,Σi) for i = 0, 1, 2, respectively.

Then ∫
g1g2

g0

=
(
det
(
I − Σ−1

0 (Σ1 − Σ0) Σ−1
0 (Σ2 − Σ0)

))− 1
2 .

Lemma 29. Let δ and δ̃ be independent random variables with the prior distribution

π, then

χ2 (fπ, f0) + 1

=

∫ (
det
(
I− (Σz

0)−1 (Σz
δ̃
− Σz

0

)
(Σz

0)−1 (Σz
δ − Σz

0)
))−n

2 π (δ) π
(
δ̃
)
dδdδ̃.

(B.5.1)

The proof of the above lemma can be found in Cai & Guo (2016b). We first

introduce the covariance matrix of (yi, Xi) corresponding to the parameter θ1,

Σz
1 =


‖β∗‖2

2 + ‖δ‖2
2 + σ2

0 (β∗S)ᵀ 01×p1

β∗S Ik0×k0 0k0×p1

0p1×1 0p1×k0 Ip1×p1

 . (B.5.2)

Since Σz
1 only depends on δ through the `2 norm ‖δ‖2

2 = (k2 − k0)ρ2, Σz
1 is fixed for

a given ρ. To control χ2 (fπ, fθ1), we have the following expression for the main term

of (B.5.1),

(Σz
1)−1 (Σz

δ − Σz
1) (Σz

1)−1 (Σz
δ̃
− Σz

1

)
=


1

‖δ‖22+σ2
0
δᵀδ̃ 01×k0 01×p1

− 1
‖δ‖22+σ2

0
β∗Sδ

ᵀδ̃ 0k0×k0 0k0×p1

0p1×1 0p1×k0

1

‖δ̃‖22+σ2
0

δδ̃ᵀ

 .
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By applying Lemma 29, we have

χ2 (fπ, fθ1) + 1 = Eδ,δ̃

(
1− δᵀδ̃

‖δ‖2
2 + σ2

0

)−n
2
(

1− δᵀδ̃

‖δ̃‖2
2 + σ2

0

)−n
2

.

To control χ2 (fθ1 , fθ0), we have the following expression for the main term of (B.5.1),

(Σz
0)−1 (Σz

1 − Σz
0) (Σz

0)−1 (Σz
1 − Σz

0) =


‖δ‖22‖δ̃‖22

σ4
0

‖δ‖22‖δ̃‖22
σ4

0
(β∗S)ᵀ 01×p1

0k0×1 0k0×k0 0k0×p1

0p1×1 0p1×k0 0p1×p1

 .

By applying Lemma 29, we have

χ2 (fθ1 , fθ0) + 1 = Eδ,δ̃

(
1− ‖δ‖

2
2‖δ̃‖2

2

σ4
0

)−n
2

.

B.5.3 Proof of Lemma 23

By the normalization (B.4.1) in Chapter 3, the scaled Lasso algorithm can be ex-

pressed as

{d̂, σ̂} = arg min
d∈Rp,σ∈R

‖y −Wd‖2
2

2nσ
+
σ

2
+ λ0

p∑
j=1

|dj|. (B.5.3)

The following lemma from an arXiv version of Ren et al. (2013) is useful to control

the estimation of the noise level σ.

Lemma 30. Let {d̂, σ̂} be the solution of the scaled Lasso (B.5.3). For any ε0 > 1,

on the event S1 =
{
‖W ᵀε‖∞

n
≤ σoraλ0

ε0−1
ε0+1

(1− τ)
}
, we have

∣∣∣∣ σ̂σora − 1

∣∣∣∣ ≤ τ. (B.5.4)

where τ is defined in (B.4.3).
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For fixed µ, we also define d̂ (µ) = arg mind∈Rp
‖y−Wd‖22

2n
+ µ

∑p
j=1 |dj|. Note that

d̂ = d̂ (λ0σ̂) and d̂j = β̂SLj
‖X·j‖2√

n
for j ∈ [p]. (B.5.5)

Setting A > 2
√

2, on event G ∩ S, we have the following events

B1 =

{
1

n
‖W ᵀW

(
d̂− d

)
‖∞ ≤ λ0σ̂

}
and B2 =

{
2

√
2 log p

n
σ0 ≤ λ0σ̂

}
. (B.5.6)

Based on the proof of Theorem 7.2 in Bickel et al. (2009), on the event G ∩ S, we

have

‖β̂SL − β‖2
q ≤

max ‖X·j‖2
2

n

(
16Aσ̂

κ2(W,k, k, 3)

)2

k
2
q

log p

n
.

Similar to the proof of Lemma 13 in Cai & Guo (2016b), we have

κ2 (W,k, k, 3) ≥ n

max ‖X·j‖2
2

κ2

(
X, k, k, 3

(
max ‖X·j‖2

min ‖X·j‖2

))
, (B.5.7)

and then establish (B.4.6). By the definitions of G1 and G3, we establish (B.4.7).

B.5.4 Proof of Lemma 24

The control of events Ḡ1, Ḡ2, Ḡ3 and Ḡ4 is similar to that of Lemma 22 and will be

omitted here. We will present the proofs of Pθ(Ḡ5) and Pθ(Ḡ6). We establish Pθ(Ḡ5) ≥

Pθ(Ḡ1 ∩ Ḡ2 ∩ Ḡ3) by showing that Ḡ5 holds on the event Ḡ1 ∩ Ḡ2 ∩ Ḡ3. Based on the

proof of Theorem 7.2 in Bickel et al. (2009) and (B.5.7), on the event Ḡ1 ∩ Ḡ2 ∩ Ḡ3 ,

we have

‖β̂L − β‖2
q ≤

(22Aσ0)2(
1
4
− 42

√
2k log p
n1

)4k
2
q

log p

n
.

For the case q = 2, we can establish ‖β̂L − β‖2
2 for the case A >

√
2 by applying

the finer results established in Ye & Zhang (2010). By Theorem 3 and (27) in Ye &
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Zhang (2010), on the event Ḡ1 ∩ Ḡ2 ∩ Ḡ4, we have

‖β̂L − β‖2
2 ≤

(
3η0

η0+1
Aσ0

)2

(
1
4
− (9 + 11η0)

√
2k log p
n1

)4k
log p

n
.

Hence, Pθ(Ḡ6) ≥ Pθ(Ḡ1 ∩ Ḡ2 ∩ Ḡ4). Let Pθ(·|(X(1), y(1))) denote the conditional prob-

ability of (X(2), y(2)) on (X(1), y(1)). Note that conditioning on
(
y(1), X(1)

)
, we have

y
(2)
i −X

(2)
i β̂L = X

(2)
i

(
β − β̂L

)
+ε

(2)
i ∼ N

(
0, ‖β − β̂L‖2

2 + σ2
0

)
and ‖y(2)−X(2)β̂L‖2

2 ∼(
‖β − β̂L‖2

2 + σ2
0

)
χ2 (n2) . By Lemma 26, we have Pθ(Ḡ7|(X(1), y(1))) ≥ 1− cp−2 and

hence Pθ(Ḡ7) ≥ 1 − cp−2. The control of Pθ(Ḡ8) follows from the fact Pθ(Ḡ8) ≥

Pθ(Ḡ7 ∩ Ḡ6) ≥ (1− cp−2)Pθ(Ḡ6).

B.5.5 Proof of Lemma 8 and 21

The proof of Lemma 8 follows from (B.4.9) and (B.4.10) of Lemma 24 by taking k =

‖β∗‖0. The proof of Lemma 21 follows from Lemma 22 and 23 by taking k = ‖β∗‖0.
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C
Supplement for Chapter 4

C.1 Theory for valid IVs after controlling for high

dimensional covariates

In this section, we state the theoretical results for valid IVs after controlling for high

dimensional covariates. Under the assumptions (R1)-(R3), Theorem 23 shows if the

instruments are valid after conditioning on many covariates, then the estimator β̂H

in our procedure is consistent and asymptotically normal.

Theorem 23. Suppose we have valid IVs, that is π∗ = 0 in (4.2.2), and the assump-

tions (R1)− (R3) hold. The following property holds for the estimator β̂H ,

√
n
(
β̂H − β∗

)
= T β

∗
+ ∆β∗ , (C.1.1)

where T β
∗ |W ∼ N (0,VH), VH = σ2/‖γ∗‖4

2

∥∥∥∑j∈S∗ γ
∗
j Wû[j]/

√
n
∥∥∥2

2
and ∆β∗/

√
VH

p→

0 as
√
sz1s log p/

√
n→ 0.

Theorem 23 states that if the IVs satisfy the exclusion restriction and no unmea-

sured confounding after conditioning on many covariates, β̂H defined in (4.3.13) is a

consistent and the dominating part of the scaled difference
√
n(β̂H − β) is normal.
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Based on the asymptotic normality established in (C.1.1), the following theorem jus-

tifies the coverage property of the confidence interval proposed in (4.3.14) under the

assumption that all instruments have no direct effect and are unconfounded after

conditioning on many covariates.

Theorem 24. Suppose we have valid IVs, that is π∗ = 0 in (4.2.2) and the assump-

tions (R1)− (R3) hold. Assuming
√
sz1s log p/

√
n→ 0, the confidence interval given

in (4.3.14) has asymptotically coverage probability 1− α, i.e.,

P

{
β∗ ∈

(
β̂H − z1−α/2

√
V̂H/n, β̂H + z1−α/2

√
V̂H/n

)}
→ 1− α, (C.1.2)

Theorem 24 is similar to a result given in Chernozhukov et al. (2015a), who studied

IV estimators in high dimensional regime where all the instruments are valid after

conditioning. However, there are some notable differences between our results and

those in Chernozhukov et al. (2015a) in terms of sparsity and instrument-covariate

modeling assumptions that are required to achieve 1−α coverage. A simulation study

is carried out in Section 4.5 to compare our procedure to that of the oracle.

C.2 Proofs of Theorems

In this section, we provide detailed proofs of Theorem 20, 23, 24 and 21. Proof of

extra lemmas are presented in next section. Before presenting the proof, we will

introduce the notations used throughout the proof.

C.2.1 Notations

For any vector v ∈ Rp, let vj denote the jth element of v. Let ‖v‖1, ‖v‖2, and ‖v‖∞

be the usual 1, 2 and ∞-norms, respectively. Let ‖v‖0 denote the 0-norm, i.e. the

number of non-zero elements in v. The support of v, denoted as supp(v) ⊆ {1, . . . , p},
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is defined as the set containing the non-zero elements of the vector v, i.e. j ∈ supp(v)

if and only if vj 6= 0. Also, for a vector v ∈ Rp and set J ⊆ {1, . . . , p}, we denote

vJ ∈ Rp to be the vector where all the elements except whose indices are in J are

zero. For a set J , |J | denotes its cardinality.

For any n by p matrix M ∈ Rn×p, we denote the (i, j) element of matrix M as

Mij, the ith row as Mi., and the jth column as M.j. Let Mᵀ be the transpose of M.

Finally, ‖M‖∞ represents the element-wise matrix sup norm of matrix M.

For a sequence of random variables Xn, we use Xn
p→ X and Xn

d→ X to represent

that Xn converges to X in probability and in distribution, respectively. For any two

sequences an and bn, we will write an � bn if lim sup bn
an

= 0 and write an � bn if

bn � an. We use c and C to denote generic positive constants that may vary from

place to place.

Throughout the whole proof section, we will use β,γ,Γ,ψ,Ψ,π,Θ11,Θ22,Θ12,

Σ, T β,∆β to stand for β∗,γ∗,Γ∗,ψ∗,Ψ∗,π∗,Θ∗11,Θ
∗
22,Θ

∗
12,Σ

∗, T β
∗
,∆β∗ respectively

and define

v̂[j] = Wᵀû[j] for 1 ≤ j ≤ pz.

We also introduce the notation Ω = Σ−1, σ1 =
√

Θ11, σ2 =
√

Θ22 and Πi· = (ei1, εi2).

Let M2 = max{1/λmin(Θ), λmax(Θ)} and hence 1/M2 ≤ λmin(Θ) ≤ λmax(Θ) ≤

M2. We normalize the columns of W as H.j =
√
nW.j/‖W.j‖2 for j ∈ [p]. Let

Diag = diag (‖W.j‖2/
√
n)1≤j≤p denote the p × p diagonal matrix with (j, j) entry

to be ‖W.j‖2/
√
n. We set λ0 =

√
2.05 log p/n = (1 + γ0)

√
2δ0 log p/n, where δ0 =

√
1.025 > 1 and γ0 = (1.025)

1
4 − 1 > 0. Take ε0 = 2.01/γ0 + 1, ν0 = 0.01, τ0 =

0.01, C1 = 2.25, c0 = 1/6 and C0 = 3. We also assume that log p/n → 0 and

δ0 log p > 2. Rather than use the constants directly in the following discussion, we

use δ0, π0, ε0, ν0, C1, C0 and c0 to represent the above fixed constants in the following

discussion. We review the following definition of restricted eigenvalue introduced in
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Bickel et al. (2009),

κ(X, k, α0) = min
J0⊂{1,··· ,p},
|J0|≤k

min
δ 6=0,

‖δJc0‖1≤α0‖δJ0
‖1

‖Xδ‖2√
n‖δJ0‖2

. (C.2.1)

Define the oracle estimator of σ1 and σ2 as

σora1 =
1√
n
‖Y − ZΓ−XΨ‖2 and σora2 =

1√
n
‖D − Zγ −Xψ‖2,

and

τ =
√

1 + ε0
2
√
sλ0

κ(H , 4s, 1 + 2ε0)
. (C.2.2)

C.2.2 Proof of Theorem 20

Define

A(V) = Σ̂V,V − Σ̂V,VcΣ̂
−1
Vc,VcΣ̂Vc,V and A∗(V) = ΣV,V −ΣV,VcΣ

−1
Vc,VcΣVc,V .

We introduce the following lemmas to facilitate the proof.

Lemma 31. Under the assumptions of Theorem 20, we have

lim
n→∞

P
(
Ṽ = V∗

)
= 1 (C.2.3)

Lemma 32. Under the assumptions of Theorem 20, we have

√
n

(
γ̃ᵀ
V∗A(V∗)Γ̃V∗
γ̃ᵀ
V∗A(V∗)γ̃V∗

− β

)
d→ N

(
0,

Θ11 + β2Θ22 − 2βΘ12

γᵀV∗A
∗(V)γV∗

)
. (C.2.4)

The estimator defined in (4.3.15) can be expressed as β̂E =
γ̃ᵀ
Ṽ
A(Ṽ)Γ̃Ṽ

γ̃ᵀ
Ṽ
A(Ṽ)γ̃Ṽ

, and hence
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the difference
√
n
(
β̂E − β

)
can be expressed as

√
n
(
β̂E − β

)
=
√
n

(
γ̃ᵀ
V∗A(V∗)Γ̃V∗
γ̃ᵀ
V∗A(V∗)γ̃V∗

− β

)
1Ṽ=V∗ +

∑
V6=V∗

√
n

(
γ̃ᵀ
VA(V)Γ̃V
γ̃ᵀ
VA(V)γ̃V

− β

)
1Ṽ=V

(C.2.5)

By Lemma 31, we have 1Ṽ=V∗
p→ 1 and 1Ṽ=V

p→ 0 if V 6= V∗. Combined with Lemma

32 and Slutsky’s theorem, we establish

√
n

(
γ̃ᵀ
V∗A(V∗)Γ̃V∗
γ̃ᵀ
V∗A(V∗)γ̃V∗

− β

)
1Ṽ=V∗

d→ N

(
0,

Θ11 + β2Θ22 − 2βΘ12

γᵀV∗A
∗(V∗)γV∗

)
.

Note that for any ε0 > 0,

P

(∣∣∣∣∣√n(β̂E − β)−√n
(
γ̃ᵀ
V∗A(V∗)Γ̃V∗
γ̃ᵀ
V∗A(V∗)γ̃V∗

− β

)
1Ṽ=V∗

∣∣∣∣∣ ≥ ε0

)
≤ P

(
Ṽ 6= V∗

)
(C.2.6)

and it follows from Lemma 31 that

√
n
(
β̂E − β

)
−
√
n

(
γ̃ᵀ
V∗A(V∗)Γ̃V∗
γ̃ᵀ
V∗A(V∗)γ̃V∗

− β

)
1Ṽ=V∗

p→ 0. (C.2.7)

By Lemma 3.7 in Wooldridge (2010), we establish (4.4.1).
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C.2.3 Preliminary lemmas for high dimension case

We first define the following events for the random design W (the normalized H)

and the error Π,

G1 =

{
2

5

1√
M1

<
‖W.j‖2√

n
<

7

5

√
M1 for 1 ≤ j ≤ p

}
,

G2 =

{∣∣∣∣∣(σorai )2

σ2
i

− 1

∣∣∣∣∣ ≤ 2

√
log p

n
+ 2

log p

n
for i = 1, 2

}
,

G3 =

{∣∣∣∣∣γᵀΣ̂γ

γᵀΣγ
− 1

∣∣∣∣∣ ≤ 12

√
log p

n
and

∣∣∣∣∣Ωj·
ᵀΣ̂Ωj·

Ωjj

− 1

∣∣∣∣∣ ≤ 12

√
log p

n
, 1 ≤ j ≤ pz

}
,

G4 =

{
κ(H , 4s, 1 + 2ε0) ≥ 1

2
√
M1

}
,

G5 =

{
‖HᵀΠi·‖∞

n
≤ σi

√
2δ0 log p

n
for i = 1, 2

}
,

S1 =

{
‖HᵀΠi·‖∞

n
≤ σorai λ0

ε0 − 1

ε0 + 1
(1− τ) for i = 1, 2

}
,

S2 = {(1− ν0) σ̂i ≤ σi ≤ (1 + ν0)σ̂i for i = 1, 2} ,
(C.2.8)

and

A1 =
{
‖eᵀjΩΣ̂− eᵀj‖∞ ≤ λn, j = 1, 2, · · · , pz

}
, where λn = 2eC0M

2
1

√
log p

n
,

A2 =

{
|γ̃j − γj| ≤

‖v̂[j]‖2σ2√
n

√
2.05 log pz for 1 ≤ j ≤ pz

}
,

A3 =

{
max

1≤j≤pz

∥∥∥∥ 1

n
(v̂[j])ᵀΠ·i

∥∥∥∥
∞
≤

(
1 + 12

√
log p

n

)
M1

√
2.05 log pz

n
σi, for i = 1, 2

}
,

A4 =

 2√
n

∑
j∈S∗

γjv
ᵀΠ·2 ≤

2
√

log p√
n

∥∥∥∥∥∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥
2

√
Θ22

 ,

A5 =

 1√
n

∑
j∈S∗

γjv
ᵀ (Π·1 + βΠ·2) ≤

√
log p√
n

∥∥∥∥∥∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥
2

√
Θ11 + β2Θ22 + 2βΘ12

 ,

(C.2.9)
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where Σ̂ = 1
n
WᵀW and v̂[j] = Wᵀû[j]. Define

G = ∩5
i=1Gi and S = ∩2

i=1Si and A = ∩5
i=1Ai.

We introduce the following lemmas to control the probability of events G, S and A.

The detailed proofs of the following lemmas are presented in Section C.3.4 and C.3.5.

Lemma 33. If s ≤ cn/log p, then

P (G) ≥ 1− 6

p
− 2p1−C1 − 1

2
√
πδ0 log p

p1−δ0 − 2 exp

(
− c
′n

M3
1

)
, (C.2.10)

and

P (G ∩ S) ≥ P (G)− 2 exp

(
−
(
g0 + 1−

√
2g0 + 1

2

)
n

)
− c′′ 1√

log p
p1−δ0 , (C.2.11)

where g0 = ν0/(2 + 3ν0) and c, c′, c∗ and c′′ are universal positive constants, not de-

pending on n and p. We also have

P (A1) ≥ 1− 2pzp
1−c0C2

0 , and P(A4 ∩ A5) ≥ 1− p−c, (C.2.12)

min{P(A2),P(A3)} ≥ P ((A1 ∩G1 ∩G3))− 1

2
√
π log pz

p−0.02
z . (C.2.13)

Lemma 34. On the event A1 ∩G1 ∩G3, we have

(1− λn)2

2M1

≤ ‖v̂
[j]‖2

2

n
≤

(
1 + 12

√
log p

n

)
M1, for 1 ≤ j ≤ pz. (C.2.14)
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If sz1

√
log p/n→ 0, on the event G3, we have

1

n

∥∥∥∥∥∥
∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥∥
2

2

≥ M1‖γ‖22 (1− sz1λn)
2

1− 12
√

log p
n

and
1

n

∥∥∥∥∥∥
∑
j∈V∗

γjv̂
[j]

∥∥∥∥∥∥
2

2

≥ M1‖γV∗‖22 (1− sz1λn)
2

1− 12
√

log p
n

.

(C.2.15)

Furthermore, we have

M1 (1− sz1λn)2

‖γ‖2
2

(
1− 12

√
log p
n

) 1

M2

≤ VH ≤
4sz1M2

1M2(1 + β2)

‖γ‖2
2

, (C.2.16)

and

M1 (1− sz1λn)2

‖γV∗‖2
2

(
1− 12

√
log p
n

) 1

M2

≤ V ≤ 4sz1M2
1M2(1 + β2)

‖γV∗‖2
2

. (C.2.17)

C.2.4 Proof of Theorem 23

The proof of Theorem 23 is based on Lemma 35 and the following expression for the

estimator β̂H , β̂H = γ̂ᵀΓ/‖̂γ‖2
2, where ‖̂γ‖2

2 =
∑

j∈S̃ γ̃
2
j and γ̂ᵀΓ =

∑
j∈S̃ γ̃jΓ̃j.

Lemma 35. Suppose that
√
sz1slog p/

√
n → 0, π∗ = 0 and the assumptions (R1) −

(R3) hold. Then we have the following decompositions,

√
n
(
‖̂γ‖2

2 − ‖γ‖2
2

)
=

2√
n

∑
j∈S∗

γjv
ᵀΠ·2 +Rγ, (C.2.18)

and
√
n
(
γ̂ᵀΓ− γᵀΓ

)
=

1√
n

∑
j∈S∗

γjv
ᵀ (Π·1 + βΠ·2) +Rinter, (C.2.19)

where

2√
n

∑
j∈S∗

γjv
ᵀΠ·2 ∼ N

0,
4

n

∥∥∥∥∥∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥
2

2

Θ22

 , (C.2.20)
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1√
n

∑
j∈S∗

γjv
ᵀ (Π·1 + βΠ·2) ∼ N

0,
1

n

∥∥∥∥∥∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥
2

2

(
Θ11 + β2Θ22 + 2βΘ12

) ,

(C.2.21)

and on the event A ∩ S ∩G, we have

max
{
|Rγ | ,

∣∣Rinter
∣∣} ≤ C (|β|+ 1) ‖γ‖2

√
sz1s

log p√
n

+ Csz1
log pz√
n
. (C.2.22)

Then on the event A ∩ S ∩G, we have

max
{∣∣∣‖̂γ‖22 − ‖γ‖22∣∣∣ , ∣∣∣γ̂ᵀΓ− γᵀΓ

∣∣∣} ≤ C‖γ‖2sz1

√
log p

n
+Csz1

log pz

n
≤ C‖γ‖2sz1

√
log p

n
. (C.2.23)

In the following, we will prove (C.1.1) in the main paper. Note that

β̃ − β = − β

‖γ‖22

(
‖̂γ‖22 − ‖γ‖22

)
+

1

‖γ‖22

(
γ̂ᵀΓ− γᵀΓ

)
+
‖γ‖22 − ‖̂γ‖22
‖γ‖22

(
γ̂ᵀΓ

‖̂γ‖22
− γᵀΓ

‖γ‖22

)
. (C.2.24)

By Lemma 35, we have the following decomposition,

√
n
(
β̃ − β

)
= T β + ∆β, (C.2.25)

where

T β = − β

‖γ‖2
2

2√
n

∑
j∈S∗

γjv
ᵀΠ·2 +

1

‖γ‖2
2

1√
n

∑
j∈S∗

γjv
ᵀ (Π·1 + βΠ·2)

=
1

‖γ‖2
2

1√
n

∑
j∈S∗

γjv
ᵀ (Π·1 − βΠ·2) ,

and ∆β = Res1 + Res2 with

Res1 =
1

‖γ‖2
2

(
−βRγ +Rinter

)
and Res2 =

√
n
‖γ‖2

2 − ‖̂γ‖2
2

‖γ‖2
2

(
γ̂ᵀΓ

‖̂γ‖2
2

− γᵀΓ

‖γ‖2
2

)
.
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By the distribution of Π, we establish that

T β |W ∼ N

0,
1

n‖γ‖4
2

∥∥∥∥∥∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥
2

2

(
Θ11 + β2Θ22 − 2βΘ12

) . (C.2.26)

By Lemma 35, on the event G ∩ S ∩ A, we have

1√
VH

|Res1| ≤ C
1

‖γ‖2
(
|β| |Rγ |+

∣∣Rinter
∣∣) ≤ C (|β|+ 1)

√
sz1s

log p√
n

+ C
1

‖γ‖2
sz1 log p√

n
. (C.2.27)

Note that on the event G ∩ S ∩ A,

1√
VH

Res2 ≤ C
√
n
‖γ‖22 − ‖̂γ‖22
‖γ‖2

×

(
γ̂ᵀΓ− γᵀΓ

)
+ β

(
‖γ‖22 − ‖̂γ‖22

)
‖γ‖22 +

(
‖̂γ‖22 − ‖γ‖22

) ≤ C s
3
z1(log p)

3
2

n
, (C.2.28)

where the last inequality follows from (C.2.23). Combined with (C.2.27), by

√
sz1slog p/

√
n→ 0,

we can establish that on the event G ∩ S ∩ A,

∣∣∣∆β/
√

VH

∣∣∣ ≤ C
√
sz1s

log p√
n

+ C
1

‖γ‖2

sz1 log p√
n

. (C.2.29)

Since
√
sz1slog p/

√
n → 0, we establish ∆β/

√
VH

p→ 0. Combined with (C.2.26), we

establish (C.1.1).

C.2.5 Proof of Theorem 24

We first introduce the following lemma to establish the coverage property.

Lemma 36. Suppose that π∗ = 0 and the assumptions (R1) − (R3) hold. As
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√
sz1s log p/

√
n→ 0, then we have

V̂H

VH

p→ 1. (C.2.30)

By (C.2.26), we have Tβ√
VH
∼ N (0, 1). Combined with (C.2.29) and Lemma 36,

we have
√
n
β̂H − β√

V̂H

=
T β + ∆β

√
VH

×
√

VH√
V̂H

d→ N (0, 1) . (C.2.31)

and hence the coverage property (C.1.2) follows.

C.2.6 Proof of Theorem 21

The proof of the theorem follows from the following lemma, which characterizes the

behavior of the selection process (4.3.7) and (4.3.9) in the main paper.

Lemma 37. Suppose that
√
sz1s log p/

√
n→ 0 and the assumptions (R1)− (R3) and

(IN1) − (IN2) are satisfied. With probability larger than 1 − c (p−c + exp (−cn)), we

have

Ṽ ⊂

{
i ∈ S∗ :

∣∣∣∣πjγj
∣∣∣∣ ≤ 2C∗

1

δmin

√
log pz

n

}
and

∣∣∣Ṽ∣∣∣ > 1

2
|S∗| . (C.2.32)

Under the extra assumption (IN3) in the main paper, with probability larger than

1− c (p−c + exp (−cn))

Ṽ = V∗. (C.2.33)
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We have the following decomposition,

β̂ − β =

∑
j∈Ṽ γ̃jΓ̃j∑
j∈Ṽ γ̃

2
j

−
∑

j∈Ṽ γjΓj∑
j∈Ṽ γ

2
j

+

∑
j∈Ṽ γjΓj∑
j∈Ṽ γ

2
j

− β

=

(∑
j∈Ṽ γ̃jΓ̃j∑
j∈Ṽ γ̃

2
j

−
∑

j∈Ṽ γjΓj∑
j∈Ṽ γ

2
j

)
+

∑
j∈Ṽ γjπj∑
j∈Ṽ γ

2
j

,

(C.2.34)

where the first term is taken as the variance term and the second term is taken as the

bias term. In the following, we are going to analyze the bias and the variance term

separately. For the bias term, we have

∣∣∣∣∣
∑

j∈Ṽ γjπj∑
j∈Ṽ γ

2
j

∣∣∣∣∣ =

∣∣∣∣∣
∑

j∈Ṽ γ
2
j
πj
γj∑

j∈Ṽ γ
2
j

∣∣∣∣∣ ≤ max
j∈Ṽ

∣∣∣∣πjγj
∣∣∣∣ ≤ 2C∗

1

δmin

√
log pz

n
, (C.2.35)

where the last inequality follows from (C.2.32). The following lemma controls the

variance term.

Lemma 38. Suppose that
√
sz1s log p/

√
n→ 0 and the assumptions (R1)− (R3) and

(IN1)− (IN3) are satisfied. On the event A ∩ S ∩G, we have

∣∣∣∣∣
∑

j∈Ṽ γ̃jΓ̃j∑
j∈Ṽ γ̃

2
j

−
∑

j∈Ṽ γjΓj∑
j∈Ṽ γ

2
j

∣∣∣∣∣ ≤ C
1

δmin

√
log pz

n
. (C.2.36)

Combining (C.2.35) and (C.2.36), we can establish (4.4.4) in the main paper.

Under the stronger assumption (4.4.3) in the main paper, we can establish (C.2.33)

and the decomposition (C.2.34) holds as

β̂ − β =

(∑
j∈V∗ γ̃jΓ̃j∑
j∈V∗ γ̃

2
j

−
∑

j∈V∗ γjΓj∑
j∈V∗ γ

2
j

)
.

Based on the this expression, (4.4.5) in Chapter 4 will follow the same argument with

(C.1.1), which is presented in Section C.2.4. We introduce the following lemma to

establish the coverage property.
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Lemma 39. Suppose the assumptions (R1) − (R5) and (IN1) − (IN3) are satisfied.

As
√
sz1s log p/

√
n→ 0, we have

V̂

V

p→ 1. (C.2.37)

Similarly to the proof of Theorem 24 in Section C.2.5, we establish

√
n
β̂ − β√

V̂
=
T β + ∆β

√
V

×
√

V√
V̂

d→ N (0, 1) , (C.2.38)

and hence establish the coverage property (4.4.6) in the main paper.

C.3 Proof of extra lemmas

In this section, we prove extra lemmas used in the proof of main theorems.

C.3.1 Proof of Lemma 31

Define I = {1, 2, · · · , pz}. We first note the following expression for γ̃j and Γ̃j for

i ∈ I,

√
n (γ̃j − γj) =

(
Σ̂−1

)
j,·

1√
n

WᵀΠ·2 and
√
n
(
Γ̃j − Γj

)
=
(
Σ̂−1

)
j,·

1√
n

WᵀΠ·1

(C.3.1)

and the following limiting theorem ( Theorem 3.1 in Wooldridge (2010)),

γ̃
p→ γ and Γ̃

p→ Γ, (C.3.2)

√
n (γ̃ − γ)

d→ N
(

0,Θ22

(
Σ−1

)
I,I

)
and

√
n
(
Γ̃− Γ

)
d→ N

(
0,Θ11

(
Σ−1

)
I,I

)
.

(C.3.3)
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Note that √
Θ̂22‖W(Σ̂−1)·j‖2√

n

p→
√

Θ22 (Σ−1)jj. (C.3.4)

We define the following events

B1 =
{
S̃ = S∗

}
B2 =

{
max
j∈V∗
‖π̃[j]‖0 <

|S∗|
2

< min
j∈S∗\V∗

‖π̃[j]‖0

}
B3 =

{
supp

(
π̃

[j]
S∗

)
= supp (πS∗) for j ∈ V∗

} (C.3.5)

On the event B = B1 ∩ B2 ∩ B3, we have Ṽ = V∗ and it is sufficient to show that

lim
n→∞

P(B) = 0 (C.3.6)

For j ∈ S, we have

|γ̃j| −

√
Θ̂22‖W(Σ̂−1)·j‖2√

n

√
a0 log n

n

p→ |γj| > 0, (C.3.7)

where the convergence follows from (C.3.2) and (C.3.4). For j ∈ Sc, we have

√
n

a0 log n
|γ̃j| −

√
Θ̂22‖W(Σ̂−1)·j‖2√

n

p→ −
√

Θ22 (Σ−1)jj < 0, (C.3.8)

where the convergence follows from (C.3.3) and (C.3.4). Combining (C.3.7) and

(C.3.8), we establish that

lim
n→∞

P (B1) = 1. (C.3.9)

In the following, we control limn→∞P(B). Without loss of generality, we assume

1 ∈ S̃ and focus on the case i = 1. In the following, we are going to analyze the
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performance of β̂[1] and π̃
[1]
j . Note that

β̂[1] − Γ1

γ1

p→ 0. (C.3.10)

and hence we have

√
Θ̂11 + (β̂[1])2Θ̂22 − 2β̂[1]Θ̂12

‖W((Σ̂−1)k· − γ̃k
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(Σ̂−1)1·)‖2
√
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(
Γ1
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)2

Θ22 − 2
Γ1
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Θ12

√
(Σ−1)kk +

(
γk
γ1

)2

(Σ−1)11 − 2
γk
γ1

(Σ−1)k1.

(C.3.11)

We also have the following expression

π̂
[1]
k −

(
Γk −

Γ1

γ1

γk

)
=

(
Γ̃k −

Γ̃1

γ̃1
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)
−
(
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γk

)
=
(
Γ̃k − Γk

)
− Γ1

γ1

(γ̃k − γk)−
γk
γ2

1

(
γ1

(
Γ̃1 − Γ1

)
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)
+

(
Γ̃1

γ̃1

− Γ1

γ1

)(
γk
γ1

(γ̃1 − γ1)− (γ̃k − γk)
) (C.3.12)

Note that

√
n

((
Γ̃k − Γk

)
− Γ1

γ1

(γ̃k − γk)−
γk
γ2

1

(
γ1

(
Γ̃1 − Γ1

)
− Γ1 (γ̃1 − γ1)

))
=

((
Σ̂−1

)
·k
− γj
γ1

(
Σ̂−1

)
·1

)
1√
n

Wᵀ

(
Π·2 −

Γ1

γ1

Π·1

)
d→ N

(
0,Θ11 +

(
Γ1
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)2
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)
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+

(
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)2 (
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− 2

γk
γ1

(
Σ−1

)
k1

)
,

(C.3.13)

where the convergence follows from Theorem 3.1 in Wooldridge (2010). By (C.3.2)

and (C.3.3), we have

(
Γ̃1

γ̃1

− Γ1

γ1

)(
γk
γ1

(γ̃1 − γ1)− (γ̃k − γk)
)

p→ 0.
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Combined with (C.3.10) and (C.3.13), we have

√
n√

Θ̂11 + (β̂[1])2Θ̂22 − 2β̂[1]Θ̂12
‖W((Σ̂−1)k·−

γ̃k
γ̃1

(Σ̂−1)1·)‖2
√
n

(
π̂

[1]
k −

(
Γk −

Γ1

γ1
γk

))
p→ N(0, 1)

(C.3.14)

and hence

π̂
[1]
k

p→ Γk −
Γ1

γ1

γk. (C.3.15)

We divide the discussion into the following three cases,

• 1 ∈ S∗\V∗ and k ∈ V∗;

• 1 ∈ V∗ and k ∈ V∗;

• 1 ∈ V∗ and k ∈ S∗\V∗.

1 ∈ S∗\V∗ and k ∈ V∗

In this case, Γk − Γ1

γ1
γk = π1

γ1
γk 6= 0. Hence, we have

∣∣∣π̂[1]
k

∣∣∣− 2.05

√
Θ̂11 + (β̂[1])2Θ̂22 − 2β̂[1]Θ̂12

‖W((Σ̂−1)k· − γ̃k
γ̃1

(Σ̂−1)1·)‖2
√
n

√
log n

n

p→
∣∣∣∣π1

γ1

γk

∣∣∣∣ > 0

(C.3.16)

and

lim
n→∞

P
(
k ∈ supp

(
π̃

[1]
S∗

))
= 1. (C.3.17)

Hence, by the assumption (IN1),

lim
n→∞

P

(
‖π̃[1]
S∗‖0 >

|V∗|
2

)
= 1. (C.3.18)

1 ∈ V∗ and k ∈ V∗
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In this case, Γk − Γ1

γ1
γk = 0. By (C.3.14), we have

∣∣∣π̂[1]
k

∣∣∣
2.05

√
Θ̂11 + (β̂[1])2Θ̂22 − 2β̂[1]Θ̂12

‖W((Σ̂−1)k·−
γ̃k
γ̃1

(Σ̂−1)1·)‖2
√
n

√
logn
n

p→ 0 (C.3.19)

and

lim
n→∞

P
(
k 6∈ supp

(
π̃

[1]
S∗

))
= 1. (C.3.20)

Hence, by the assumption (IN1),

lim
n→∞

P

(
‖π̃[1]
S∗‖0 <

|V∗|
2

)
= 1. (C.3.21)

1 ∈ V∗ and k ∈ S∗\V∗

In this case, Γk − Γ1

γ1
γk = πk 6= 0. Hence, we have

∣∣∣π̂[1]
k

∣∣∣− 2.05

√
Θ̂11 + (β̂[1])2Θ̂22 − 2β̂[1]Θ̂12

‖W((Σ̂−1)k· − γ̃k
γ̃1

(Σ̂−1)1·)‖2
√
n

√
log n

n

p→ |πk| > 0

(C.3.22)

and hence

lim
n→∞

P
(
k ∈ supp

(
π̃

[1]
S∗

))
= 1. (C.3.23)

Since we can replace the index 1 with any index j ∈ Ṽ , then (C.3.18) and (C.3.21)

can be correspondingly replaced by

lim
n→∞

P

(
‖π̃[j]
S∗‖0 >

|V∗|
2

)
= 1 for j ∈ S∗\V∗; (C.3.24)

lim
n→∞

P

(
‖π̃[j]
S∗‖0 <

|V∗|
2

)
= 1 for j ∈ V∗. (C.3.25)

By (C.3.24) and (C.3.25), we can establish limn→∞P (B1 ∩ B2) = 1. By (C.3.20) and

(C.3.23), we have

lim
n→∞

P
(

supp
(
π̃

[1]
S∗

)
= supp (πS∗)

)
= 1. (C.3.26)
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Similarly, we can obtain that

lim
n→∞

P
(

supp
(
π̃

[j]
S∗

)
= supp (πS∗) for j ∈ V∗

)
= 1, (C.3.27)

and hence limn→∞P (B1 ∩ B2 ∩ B3) = 1.

C.3.2 Proof of Lemma 32

Note that

√
n

(
γ̃ᵀ
V∗A(V∗)Γ̃V∗
γ̃ᵀ
V∗A(V∗)γ̃V∗

− β

)
=
γ̃ᵀ
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(
Σ̂−1

)
V∗·

γ̃ᵀ
V∗A(V∗)γ̃V∗

1√
n

Wᵀ (Π·2 − βΠ·1) . (C.3.28)

Since
γ̃ᵀ
V∗A(V∗)

(
Σ̂−1

)
V∗·

γ̃ᵀ
V∗A(V∗)γ̃V∗

p→ γᵀ
V∗A

∗(V∗) (Σ−1)V∗·
γᵀ
V∗A

∗(V∗)γV∗
(C.3.29)

and

1√
n

Wᵀ (Π·2 − βΠ·1)
d→ N

(
0,
(
Θ11 + β2Θ22 − 2βΘ12

)
Σ
)
, (C.3.30)

we have

γ̃ᵀ
V∗A(V∗)

(
Σ̂−1

)
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γ̃ᵀ
V∗A(V∗)γ̃V∗

1√
n

Wᵀ (Π·2 − βΠ·1)

d→ N

(
0,
γᵀ
V∗A

∗(V∗) (Σ−1)V∗V∗ A
∗(V∗)γV∗

(γᵀ
V∗A

∗(V∗)γV∗)2

(
Θ11 + β2Θ22 − 2βΘ12

)) (C.3.31)

Since A∗(V∗) (Σ−1)V∗V∗ A
∗(V∗) = A∗(V∗), we establish (C.2.4).

C.3.3 Lemmas for scaled Lasso and de-biasing Lasso

We introduce the following lemmas for scaled Lasso and de-biasing Lasso used in the

later proofs. Lemma 40 establishes the convergence rate of the scaled Lasso method,
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which is based on the analysis in Sun & Zhang (2012).

Lemma 40. On the event G ∩ S, if s ≤ cn/log p, then

‖Γ̂−Γ‖1+‖Ψ̂−Ψ‖1 ≤ Cs

√
log p

n
σ1, ‖γ̂−γ‖1+‖ψ̂−ψ‖1 ≤ Cs

√
log p

n
σ2, (C.3.32)

1√
n
‖Z(Γ̂− Γ) +X(Ψ̂−Ψ)‖2 ≤ C

√
s log p

n
σ1, (C.3.33)

and

1√
n
‖Z(γ̂ − γ) +X(ψ̂ −ψ)‖2 ≤ C

√
s log p

n
σ2. (C.3.34)

The following lemma is the key result for the de-biasing Lasso estimator, estab-

lished in Zhang & Zhang (2014); Javanmard & Montanari (2014a); van de Geer et al.

(2014).

Lemma 41. We have the following expressions for the proposed de-biased estimator,

Γ̃− Γ = DΓ + ∆Γ, (C.3.35)

where

DΓ
j =

1

n
vᵀΠ·1 and ∆Γ

j =

(
1

n
(û[j])ᵀΣ̂− eᵀj

) Γ̂− Γ

Ψ̂−Ψ

 , i = 1, · · · , pz. (C.3.36)

We also have

γ̃ − γ = Dγ + ∆γ , (C.3.37)

where

Dγ
j =

1

n
vᵀΠ·2 and ∆γ

j =

(
1

n
(û[j])ᵀΣ̂− eᵀj

) γ̂ − γ
ψ̂ −ψ

 , i = 1, · · · , pz. (C.3.38)
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On the event S ∩G ∩ A, we have

max
{
‖∆γ‖∞, ‖∆Γ‖∞

}
≤ Cs

log p

n
max {σ1, σ2} . (C.3.39)

C.3.4 Proof of Lemma 33

The proof of Lemma 33 is a generalization of Lemma 4 in Cai & Guo (2016b). In

the following, we extend the Gaussian design in Cai & Guo (2016b) to sub-gaussian

design considered in this paper. Since the error of the regression is still assumed to

be Gaussian, it is sufficient to establish the probability bound of G1, G3, G4 and A1

for the sub-gaussian design matrix and control the events A2 and A3. The probability

bound of the event A1 for the sub-gaussian design is established in Lemma 4 of Cai &

Guo (2016c). By Corollary 5.17 in Vershynin (2012) and the union bound, we have

P

(
max
1≤j≤p

∣∣∣∣ 1n (‖W.j‖2
2 − E‖W.j‖2

2

)∣∣∣∣ ≥ ε

)
≤ 2p exp

(
−1

6
min

{
ε2

K2
,
ε

K

}
n

)
,

where K = 4M1. Taking ε = 12M1

√
log p/n, we have

P

(
max

1≤j≤p

∣∣∣∣ 1n (‖W.j‖22 − E‖W.j‖22
)∣∣∣∣ ≥ 12M1

√
log p

n

)
≤ 2p−

1
2 and P (G1) ≥ 1− 2p−

1
2 .

(C.3.40)

Similarly, we have P
(∣∣ 1

n
(‖Wu‖2

2 − E‖Wu‖2
2)
∣∣ ≥ 12M1‖u‖2

√
log p/n

)
≤ 2p−

3
2 , and

P

(∣∣∣∣ 1n
(
‖Wu‖2

2

E‖Wu‖2
2

− 1

)∣∣∣∣ ≥ 12M1
‖u‖2

E‖Wu‖2
2

√
log p/n

)
≤ 2p−

3
2 ,

and hence

P (G3) ≥ 1− (pz + 2)p−
3
2 .

By Theorem 1.6 in Zhou (2009), if n ≥ 1/θ2×c′M3
1 max

{
12(2 + γ0)2M1s log (5ep/4s) , 9 log p

}
,

then with probability at least 1− 2 exp (−cθ2n/M3
1 ) , for all δ such that there exists
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|J0| ≤ 4s and ‖δJc0‖1 ≤ γ0‖δJ0‖1, we have ‖Zδ‖2/(
√
n‖Σ 1

2 δ‖2) ≥ 1 − θ. By tak-

ing θ = 1
2
, if n ≥ 4c′M3

1 max
{

12 (2 + γ0)2M1s log (5ep/4s) , 9 log p
}
, then P (G4) ≥

1− 2 exp (−cn/M3
1 ) . In the following, we control the events A2 and A3,

P(Ac2) ≤P

max
1≤i≤q

∣∣Dγ
j

∣∣√
Var

(
Dγ
j

) ≥√2.02 log pz

+ P

 max
1≤j≤pz

∣∣∆γ
j

∣∣√
Var

(
Dγ
j

) ≥ 0.01
√

log pz


≤ 1

2
√
π log pz

p−0.02
z + P ((S ∩G ∩A1)c) ,

where the first inequality follows from (C.3.37) and the second inequality follows

from (C.3.38) and (C.3.39). The control of P(A4 ∩ A5) follows from (C.2.20) and

(C.2.21). Note that

P(Ac3) ≤P ((A1 ∩G1 ∩G3)c) + P (Ac3 ∩ A1 ∩G1 ∩G3)

≤P ((A1 ∩G1 ∩G3)c) + 2P

(
max

1≤j≤pz

1

‖v̂[j]‖2σ1

|vᵀΠ·1| ≥
√

2.05 log pz

)
≤P ((A1 ∩G1 ∩G3)c) +

1√
π log pz

p−0.05
z ,

where the second inequality follows from (C.2.14) and the last inequality follows from

the fact that 1/(‖v̂[j]‖2σ1)× vᵀΠ·1 conditioning on W is normally distributed.

C.3.5 Proof of Lemma 34

In the following, we only establish the results for v̂[1] and the same argument extends

to v̂[j] where 1 ≤ j ≤ pz. Since λn = 2eC0M
2
1

√
log p/n is chosen such that Ω1· belongs

to the feasible set, we have

‖v̂[1]‖2
2

n
≤ ‖WΩ1·‖2

2

n
. (C.3.41)

By Lemma 12 in Javanmard & Montanari (2014a), we have

‖v̂[1]‖2
2

n
≥ (1− λn)2

Σ̂11

. (C.3.42)

209



By the definition of G1 and G3, we establish (C.2.14). Let I = {1, 2, · · · , pz} and

assume that M ∈ Rp×pz belongs to the feasible set ‖Σ̂Ω − I·I‖∞ ≤ λn, where I·I

denotes the sub-matrix of the identity matrix containing the column with index i ∈ I,

that is, ‖Σ̂M − I·I‖∞ ≤ λn, and hence

‖Σ̂Mγ − γ‖∞ = ‖
(
Σ̂M − I·I

)
γ‖∞ ≤ ‖Σ̂M − I·I‖∞‖γ‖1 ≤ λn‖γ‖1. (C.3.43)

Note that

∣∣∣γᵀΣ̂Mγ − ‖γ‖2
2

∣∣∣ =
∣∣∣γᵀ
(
Σ̂Mγ − γ

)∣∣∣ ≤ ‖γ‖1‖Σ̂Mγ − γ‖∞ ≤ λn‖γ‖2
1, (C.3.44)

where the last inequality follows from (C.3.43). The inequality (C.3.44) informs that

Mγ is in the feasible set

∣∣∣γΣ̂ (Mγ)− ‖γ‖2
2

∣∣∣ ≤ λn‖γ‖2
1. (C.3.45)

We define µ∗ as

µ∗ = arg min
µ
µᵀΣ̂µ

subject to
∣∣∣γᵀΣ̂µ− ‖γ‖2

2

∣∣∣ ≤ λn‖γ‖2
1

(C.3.46)

By (C.3.45), we have the following inequality,

1

n

∥∥∥∥∥∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥
2

2

= γᵀMᵀΣ̂Mγ ≥ (µ∗)ᵀ Σ̂µ∗. (C.3.47)

In the following, we will show that (µ∗)ᵀ Σ̂µ∗ = 〈µ∗, Σ̂µ∗〉 is further lower bounded.

Since µ∗ is feasible in the constrained set of (C.3.46), we have ‖γ‖2
2 − γᵀΣ̂µ∗ −
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λn‖γ‖2
1 ≤ 0, and hence for any positive constant c > 0, we have

〈µ∗, Σ̂µ∗〉 ≥ 〈µ∗, Σ̂µ∗〉+ c
(
‖γ‖2

2 − γᵀΣ̂µ∗ − λn‖γ‖2
1

)
≥min

µ

(
〈µ, Σ̂µ〉+ c

(
‖γ‖2

2 − γᵀΣ̂µ− λn‖γ‖2
1

))
= −c

2

4
〈γ, Σ̂γ〉+ c

(
‖γ‖2

2 − λn‖γ‖2
1

)
.

(C.3.48)

Note that ‖γ‖2
1λn ≤ sz1λn‖γ‖2

2 = Csz1

√
log p/n‖γ‖2

2 � ‖γ‖2
2, where the last inequal-

ity holds when sz1

√
log p/n→ 0. By (C.3.48), we have

〈µ∗, Σ̂µ∗〉 ≥ max
c>0
−c

2

4
〈γ, Σ̂γ〉+ c

(
‖γ‖2

2 − λn‖γ‖2
1

)
=

(‖γ‖2
2 − λn‖γ‖2

1)
2

〈γ, Σ̂γ〉
≥ ‖γ‖

4
2 (1− sz1λn)2

〈γ, Σ̂γ〉
.

(C.3.49)

On the event G3, we establish (C.2.15) for
∥∥∥∑j∈S∗ γjv̂

[j]
∥∥∥2

2
/n. The same argument

holds for
∥∥∥∑j∈V∗ γjv̂

[j]
∥∥∥2

2
/n. Note that

1

M2

≤ Θ11 + β2Θ22 − 2βΘ12 =

(
1 −β

)
Θ

 1

−β

 ≤M2

(
1 + β2

)
. (C.3.50)

Combined with (C.2.15), we establish the first inequality of (C.2.16). Note that

1

n

∥∥∥∥∥∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥
2

2

≤

(
2M2

∑
j∈V∗
|γj|

)2

≤ sz1‖γ‖2
2. (C.3.51)

Combined with (C.3.50), we establish the second inequality of (C.2.16). By the

similar argument, we can establish (C.2.17).
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C.3.6 Proof of Lemma 35

In the following proof, we will use the shorthand 〈a, b〉J =
∑

j∈J ajbj. We have the

following decompositions for ‖̂γ‖2
2 − ‖γ‖2

2 and γ̂ᵀΓ− γᵀΓ,

‖̂γ‖2
2 − ‖γ‖2

2 =2〈γ, Dγ〉S̃ + 2〈γ,∆γ〉S̃ + 〈Dγ , Dγ〉S̃ + 〈∆γ ,∆γ〉S̃ + 2〈Dγ ,∆γ〉S̃

−

 ∑
j∈S∗\S̃

γ2
j −

∑
j∈S̃\S∗

γ2
j

 ,

(C.3.52)

and

γ̂ᵀΓ− γᵀΓ =〈γ, DΓ〉S̃ + 〈Γ, Dγ〉S̃ + 〈γ,∆Γ〉S̃ + 〈Γ,∆γ〉S̃ + 〈Dγ , DΓ〉S̃ + 〈∆γ ,∆Γ〉S̃

+ 〈Dγ ,∆Γ〉S̃ + 〈DΓ,∆γ〉S̃ −

 ∑
j∈S∗\S̃

γjΓj −
∑

j∈S̃\S∗

γjΓj

 .

(C.3.53)

Recall that v̂[j] = Wᵀû[j], then we have the following expression

〈γ, Dγ〉S̃ =
1

n

∑
j∈S̃

γjv
ᵀΠ·2, (C.3.54)

and

〈γ, DΓ〉S̃ + 〈Γ, Dγ〉S̃ =
1

n

∑
j∈S̃

vᵀ (γjΠ·1 + ΓjΠ·2) . (C.3.55)

Note that S̃ is correlated with the error Π·1 and Π·2. However, we can compare S̃

with the true support S∗,

〈γ, Dγ〉S̃ − 〈γ, D
γ〉S∗ =

1

n

∑
j∈S̃

γjv
ᵀΠ·2 −

1

n

∑
j∈S∗

γjv
ᵀΠ·2

=
1

n

∑
j∈S̃\S∗

γjv
ᵀΠ·2 −

1

n

∑
j∈S∗\S̃

γjv
ᵀΠ·2,

(C.3.56)
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and

(
〈γ, DΓ〉S̃ + 〈Γ, Dγ〉S̃

)
−
(
〈γ, DΓ〉S∗ + 〈Γ, Dγ〉S∗

)
=

1

n

∑
j∈S̃

vᵀ (γjΠ·1 + ΓjΠ·2)− 1

n

∑
j∈S∗

vᵀ (γjΠ·1 + ΓjΠ·2)

=
1

n

∑
j∈S̃\S∗

vᵀ (γjΠ·1 + ΓjΠ·2)− 1

n

∑
j∈S∗\S̃

vᵀ (γjΠ·1 + ΓjΠ·2) .

(C.3.57)

Hence, the residual terms are

Rγ =
√
n
(
2〈γ,∆γ〉S̃ + 〈Dγ , Dγ〉S̃ + 〈∆γ ,∆γ〉S̃ + 2〈Dγ ,∆γ〉S̃

)
+
√
n

 1

n

∑
j∈S̃\S∗

γjv
ᵀΠ·2 −

1

n

∑
j∈S∗\S̃

γjv
ᵀΠ·2

−√n
 ∑
j∈S∗\S̃

γ2
j −

∑
j∈S̃\S∗

γ2
j

 ,

(C.3.58)

and

Rinter =
√
n
(
〈γ,∆Γ〉S̃ + 〈Γ,∆γ〉S̃ + 〈Dγ , DΓ〉S̃ + 〈∆γ ,∆Γ〉S̃ + 〈Dγ ,∆Γ〉S̃ + 〈DΓ,∆γ〉S̃

)
+
√
n

 1

n

∑
j∈S̃\S∗

vᵀ (γjΠ·1 + ΓjΠ·2)− 1

n

∑
j∈S∗\S̃

vᵀ (γjΠ·1 + ΓjΠ·2)


−
√
n

 ∑
j∈S∗\S̃

γjΓj −
∑

j∈S̃\S∗

γjΓj

 .

(C.3.59)

Define S∗0 =
{
j : |γj| >

√
2.05 log pz

√
Var

(
Dγ
j

)}
to be the set of strong signals, on

the event A2, we have

S∗0 ⊂ S̃ ⊂ S∗, and
∣∣∣S̃∣∣∣ ≤ sz1. (C.3.60)
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On the event A3, we have

max
{∥∥DΓ

∥∥
∞ , ‖D

γ‖∞
}
≤

(
1 + 12

√
log p

n

)
M1

√
2.05 log pz

n
max{σ1, σ2}. (C.3.61)

On the event S ∩G ∩ A,

max
{
‖∆γ‖∞, ‖∆Γ‖∞

}
≤ Cs

log p

n
max{σ1, σ2}. (C.3.62)

Combing (C.3.60), (C.3.61) and (C.3.62), we have on the event S ∩G ∩ A,

max
{
〈Dγ , Dγ〉S̃ , 〈D

Γ, DΓ〉S̃
}
≤ Csz1

log pz

n
, (C.3.63)

max
{
〈∆γ ,∆γ〉S̃ , 〈∆

Γ,∆Γ〉S̃
}
≤ Csz1

(
s

log p

n

)2

. (C.3.64)

Note that

∣∣〈Dγ ,∆γ〉S̃
∣∣ ≤√〈Dγ , Dγ〉S̃〈∆γ ,∆γ〉S̃ ≤

1

2

(
〈Dγ , Dγ〉S̃ + 〈∆γ ,∆γ〉S̃

)
.

Hence, we have

∣∣〈Dγ , Dγ〉S̃ + 〈∆γ ,∆γ〉S̃ + 2〈Dγ ,∆γ〉S̃
∣∣ ≤ Csz1

log pz

n
+ Csz1

(
s

log p

n

)2

, (C.3.65)

and

∣∣〈Dγ , DΓ〉S̃ + 〈∆γ ,∆Γ〉S̃ + 〈Dγ ,∆Γ〉S̃ + 〈DΓ,∆γ〉S̃
∣∣ ≤ Csz1

log pz

n
+ Csz1

(
s

log p

n

)2

.

(C.3.66)

We also have the following control

2
∣∣〈γ,∆γ〉S̃

∣∣ ≤ ‖γ‖2

√
〈∆γ ,∆γ〉S̃ ≤ C‖γ‖2

√
sz1s

log p

n
, (C.3.67)
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and ∣∣〈γ,∆Γ〉S̃ + 〈Γ,∆γ〉S̃
∣∣ ≤ C (‖γ‖2 + ‖Γ‖2)

√
sz1s

log p

n
. (C.3.68)

On the event S ∩ G ∩ A, we have S̃\S∗ = ∅ and hence 1
n

∑
j∈S̃\S∗ γjv

ᵀΠ·2 =

0,
∑

j∈S̃\S∗ γjΓj = 0 and
∑

j∈S̃\S∗ γ
2
j = 0; On the event S ∩G ∩ A, we also have

∣∣∣∣∣∣ 1n
∑

j∈S∗\S̃

γjv
ᵀΠ·2

∣∣∣∣∣∣ ≤ 1

n
sz1 max

j∈S∗\S̃
|γj| |vᵀΠ·2|

≤sz1

√
2.05 log pz

√
Var

(
Dγ
j

)(
1 + 12

√
log p

n

)
M1

√
2.05 log pz

n
σ2 ≤

sz1 log pz

n
.

(C.3.69)

On the event S ∩G ∩ A, we get

∣∣∣∣∣∣
∑

j∈S∗\S̃

γ2
j

∣∣∣∣∣∣ ≤ sz1
log pz

n
. (C.3.70)

By (C.3.58), (C.3.65), (C.3.67), (C.3.69) and (C.3.70), we establish that on the event

S ∩G ∩ A,

|Rγ | ≤ Csz1
log pz√
n

+ C‖γ‖2

√
sz1s

log p√
n
. (C.3.71)

Similarly, we can establish that and

∣∣Rinter
∣∣ ≤ Csz1

log pz√
n

+ C (‖γ‖2 + ‖Γ‖2)
√
sz1s

log p√
n
. (C.3.72)

We can establish (C.2.19) and (C.2.22) by taking Γj = βγj. Note that

2
√

log p√
n

∥∥∥∥∥∥
∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥∥
2

√
Θ22 = 2

√
log p

n

√
Θ22

Θ11 + β2Θ22 − 2βΘ12

√
VH‖γ‖22,

√
log p√
n

∥∥∥∥∥∥
∑
j∈S∗

γjv̂
[j]

∥∥∥∥∥∥
2

√
Θ11 + β2Θ22 + 2βΘ12 =

√
log p

n

√
Θ11 + β2Θ22 + 2βΘ12

Θ11 + β2Θ22 − 2βΘ12

√
VH‖γ‖22.

(C.3.73)
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By the definition of A4 and A5 in (C.2.9) and Lemma 34, we establish

max

{∣∣∣∣∣ 2n ∑
j∈S∗

γjv
ᵀΠ·2

∣∣∣∣∣ ,
∣∣∣∣∣ 1n ∑

j∈S∗
γjv

ᵀ (Π·1 + βΠ·2)

∣∣∣∣∣
}
≤ Csz1

√
log p

n
‖γ‖2 (C.3.74)

Combined with (C.2.22), we establish (C.2.23).

C.3.7 Proof of Lemma 38

The proof of Lemma 38 is similar to that of Lemma 35 and we will present it here.

Similar to (C.3.52) and (C.3.53), we can obtain the following expressions,

∑
j∈Ṽ

γ̃2
j −

∑
j∈Ṽ

γ2
j =

1

n

∑
j∈Ṽ

γjv
ᵀΠ·2 + 〈Dγ , Dγ〉Ṽ + 〈∆γ ,∆γ〉Ṽ + 2〈Dγ ,∆γ〉Ṽ , (C.3.75)

and

∑
j∈Ṽ

γ̃jΓ̃j −
∑
j∈Ṽ

γjΓj =
1

n

∑
j∈Ṽ

vᵀ (γjΠ·1 + ΓjΠ·2) + 〈γ,∆Γ〉Ṽ + 〈Γ,∆γ〉Ṽ ,

+〈Dγ , DΓ〉Ṽ + 〈∆γ ,∆Γ〉Ṽ + 〈Dγ ,∆Γ〉Ṽ + 〈DΓ,∆γ〉Ṽ ,

(C.3.76)

On the event A ∩ S ∩G, we have

1

n

∑
j∈Ṽ

γjv
ᵀΠ·2 ≤

√
|Ṽ|‖γ‖2 max

j∈Ṽ

‖v̂[j]‖2

n

√
2.05 log pz ≤ C‖γ‖2

√
|Ṽ| log pz

n
, (C.3.77)

where the last inequality follows from (C.2.14). Combined with the fact Γj = γj(β +

πj/γj) and |πj/γj| ≤ C
√

log pz/n, we also establish that

1

n

∑
j∈Ṽ

vᵀ (γjΠ·1 + ΓjΠ·2) ≤
√
|Ṽ|‖γ‖2 max

j∈Ṽ

‖v̂[j]‖2
n

√
2.05 log pz ≤ C‖γ‖2

√
|Ṽ| log pz

n
.

(C.3.78)
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By (C.3.77), (C.3.78), (C.3.65) and (C.3.66), we obtain the following inequalities

max


∣∣∣∣∣∣
∑
j∈Ṽ

γ̃jΓ̃j −
∑
j∈Ṽ

γjΓj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∑
j∈Ṽ

γ̃2
j −

∑
j∈Ṽ

γ2
j

∣∣∣∣∣∣


≤ Csz1
log pz

n
+ Csz1

(
s

log p

n

)2

+ C‖γṼ‖2

√
2|Ṽ| log pz

n
.

(C.3.79)

Since |Ṽ| > |V∗|/2 and minj∈S∗ |γj| ≥ δmin �
√

log pz/n, we have
∣∣∣∑j∈Ṽ γ̃

2
j −

∑
j∈Ṽ γ

2
j

∣∣∣�∑
j∈Ṽ γ

2
j . We have the following decomposition,

∣∣∣∣∣
∑

j∈Ṽ γ̃jΓ̃j∑
j∈Ṽ γ̃

2
j

−
∑

j∈Ṽ γjΓj∑
j∈Ṽ γ

2
j

∣∣∣∣∣
≤

(∑
j∈Ṽ γ

2
j

) ∣∣∣∑j∈Ṽ γ̃jΓ̃j −
∑

j∈Ṽ γjΓj

∣∣∣+
∣∣∣∑j∈Ṽ γjΓj

∣∣∣ ∣∣∣∑j∈Ṽ γ̃
2
j −

∑
j∈Ṽ γ

2
j

∣∣∣(∑
j∈Ṽ γ̃

2
j

)(∑
j∈Ṽ γ

2
j

)
≤C

max
{∣∣∣∑j∈Ṽ γ̃jΓ̃j −

∑
j∈Ṽ γjΓj

∣∣∣ , ∣∣∣∑j∈Ṽ γ̃
2
j −

∑
j∈Ṽ γ

2
j

∣∣∣}∑
j∈Ṽ γ

2
j

≤ C
1

δmin

√
log pz

n
,

(C.3.80)

where the last inequality follows from (C.3.79) and the facts that |Ṽ| > |V∗|/2,

minj∈S∗ |γj| ≥ δmin �
√

log pz/n and s log p/
√
n→ 0.

C.3.8 Proof of Lemma 37

Since minj∈S∗ |γj| ≥ δmin �
√

log p/n, on the event A ∩ S ∩G, we have

S̃ = S∗.

Without loss of generality, we assume 1 ∈ S̃ and focus on the case i = 1. In the

following, we are going to analyze the performance of β̂[1] and π̃
[1]
j . In the following,
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we first analyze β̂[1],

√
n

(
β̂[1] −

(
β +

π1

γ1

))
= T β,1 + ∆β,1, (C.3.81)

where

T β,1 =
1√
nγ1

(v̂[1])
ᵀ
(

Π·1 −
(
β +

π1

γ1

)
Π·2

)
and ∆β,1 = R1 +R2, (C.3.82)

with

R1 =

√
n

γ1

(
∆Γ

1 −
(
β +

π1

γ1

)
∆γ

1

)
, and R2 =

− (Dγ
1 + ∆γ

1 )

γ1 + (Dγ
1 + ∆γ

1 )

(
T β,1 +R1

)
.

(C.3.83)

To analyze π̃[1], we first analyze the following estimator,

π̂[1] = Γ̃− β̂[1]γ̃. (C.3.84)

Note that

π̂
[1]
j − πj =− π1

γ1

γj +
(
Γ̃j − Γj

)
−
(
β +

π1

γ1

)
(γ̃j − γj)− γj

(
β̂[1] −

(
β +

π1

γ1

))
−
(
β̂[1] −

(
β +

π1

γ1

))
(γ̃j − γj) .

(C.3.85)

By (C.3.35) and (C.3.36), we have

√
n
(
Γ̃j − Γj

)
=

1√
n
vᵀΠ·1 +

√
n∆Γ

j . (C.3.86)

By (C.3.37) and (C.3.38), we have

√
n (γ̃j − γj) =

1√
n
vᵀΠ·2 +

√
n∆γ

j . (C.3.87)
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By plugging (C.3.82), (C.3.86) and (C.3.87) into (C.3.85), we have the following

decomposition of π̂
[1]
j − πj

√
n
(
π̂

[1]
j − πj

)
= −
√
n
π1

γ1

γj + Tπj + ∆πj , (C.3.88)

where

Tπj =
1√
n

(
vᵀ − γj

γ1

(v̂[1])ᵀ
)(

Π·1 −
(
β +

π1

γ1

)
Π·2

)
,

and

∆πj =
√
n

(
∆Γ
j −

(
β +

π1

γ1

)
∆γ
j − γj∆β,1

)
−
(
T β,1 + ∆β,1

)
(γ̃j − γj) . (C.3.89)

Define the events for i ∈ S∗,

F i =

 max
j∈S∗,j 6=i

|Tπj | ≤ 2.02
√

log pz

√
Θ11 +

(
β +

πi
γi

)2

Θ22 − 2

(
β +

πi
γi

)
Θ12

∥∥∥v̂[j] − γj
γi
v̂[i]
∥∥∥

2√
n

.


Then for F = ∩i∈S∗F i, we have

P (F ) ≥ 1− Cs2
z1p
−2.04
z ≥ 1− cp−c. (C.3.90)

The proof of Lemma 37 relies on the following lemmas. The following lemma provides

upper bound and lower bound for the variance term and the proof of the following

lemma can be found in Section C.3.11.

Lemma 42. On the event A ∩ S ∩G, we have

√
Θ11 +

(
β +

∣∣∣∣π1

γ1

∣∣∣∣)2

Θ22 − 2

(
β +

π1

γ1

)
Θ12

∥∥∥v̂[j] − γj
γ1

v̂[1]
∥∥∥

2√
n

≤ 1.1
√
M1M2

(
1 +

∣∣∣∣γjγ1

∣∣∣∣)
√

1 +

(
β +

π1

γ1

)2

,

(C.3.91)
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and √
Θ11 +

(
β +

∣∣∣∣π1

γ1

∣∣∣∣)2

Θ22 − 2

(
β +

π1

γ1

)
Θ12

∥∥∥v̂[j] − γj
γ1

v̂[1]
∥∥∥

2√
n

≥ 0.45

√
M1

M2

(
1 +

∣∣∣∣γjγ1

∣∣∣∣)
√

1 +

(
β +

π1

γ1

)2

.

(C.3.92)

Lemma 43. On the event A ∩ S ∩G ∩ F 1, for large n, we have

0.995 ≤

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
Θ11 +

(
β + π1

γ1

)2

Θ22 − 2
(
β + π1

γ1

)
Θ12

∥∥∥v̂[j] − γj
γ1

v̂[1]

∥∥∥
2

≤ 1.005.

(C.3.93)

On the event A ∩ S ∩G ∩ F 1, we have

max
j∈S∗

1√
n
|Tπj | ≤ 2.02

√
log pz

n

√
Θ11 +

(
β +

π1

γ1

)2

Θ22 − 2

(
β +

π1

γ1

)
Θ12

∥∥∥v̂[j] − γj
γ1

v̂[1]
∥∥∥

2√
n

;

(C.3.94)

and

max
j∈S∗

1√
n
|∆πj | ≤ 1

300

√
log pz

n

√
Θ11 +

(
β +

π1

γ1

)2

Θ22 − 2

(
β +

π1

γ1

)
Θ12

∥∥∥v̂[j] − γj
γ1

v̂[1]
∥∥∥

2√
n

.

(C.3.95)

The ratio π1

γ1
can be divided into the following three cases,

1. strongly invalid instrument case, |π1/γ1| ≥ C∗(1/δmin)
√

log pz/n, where C∗ =

12(1 + |β|)
√
M1/M2;

2. weakly invalid instrument case, |π1/γ1| < C∗(1/δmin)
√

log pz/n;

3. valid instrument case, π1/γ1 = 0.

We are going to show that our procedure (4.3.9) in Chapter 4 will rule out the strong

invalid instrument case and a stronger assumption (4.4.3) in Chapter 4 will help use

rule out the weakly invalid instrument case. In the following, we will analyze the

three cases separately.
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strongly invalid instrument case

In this case, we assume that |π1/γ1| ≥ C∗(1/δmin)
√

log pz/n. For j ∈ V∗, (C.3.88)

can be re-expressed as

√
n
(
π̂

[1]
j − 0

)
= −
√
n
π1

γ1

γj + Tπj + ∆πj . (C.3.96)

We are going to show that on the event A ∩ S ∩G ∩ F 1,

‖π̃[1]‖0 >
|S∗|

2
. (C.3.97)

It is sufficient to show for j ∈ V∗

∣∣∣∣−π1

γ1
γj +

1√
n

(Tπj + ∆πj )

∣∣∣∣ ≥ 2.05

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz

n

∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

,

(C.3.98)

which can be reduced to

max
j∈V∗

1√
n
|Tπj + ∆πj | ≤ 2.05

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz
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∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

; (C.3.99)

and

∣∣∣∣π1

γ1

γj

∣∣∣∣ ≥ 4.1

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz

n

∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

. (C.3.100)

By (C.3.93), (C.3.94) and (C.3.95), we establish (C.3.99). By (C.3.91) and (C.3.93),
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we have

4.1

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
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n
.

(C.3.101)

The last term can be further upper bounded by

|γj|
1
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8.2× 1.005× 1.1
√
M1M2

(
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∣∣∣∣β +
π1
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√
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√
log pz

n
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√
M1M2|

π1
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|
√

log pz

n

≤0.99
C∗
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|γj|
√

log pz

n
+ C

√
log pz

n

δmin

∣∣∣∣π1

γ1

γj

∣∣∣∣ ,

(C.3.102)

where the first inequality follows from triangle inequality and the second inequality fol-

lows from the definition of C∗. Since δmin �
√

log p/n and |π1/γ1| ≥ C∗(1/δmin)
√

log pz/n,

by (C.3.101) and (C.3.102), we conclude (C.3.100).

weakly invalid instrument case

In this case, we assume 0 < |π1/γ1| < C∗(1/δmin)
√

log pz/n. We have the following

expression of (C.3.88),

π̂
[1]
j = πj −

π1

γ1

γj +
1√
n

(Tπj + ∆πj) . (C.3.103)
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We are going to show that on the event A ∩ S ∩G ∩ F 1,

{
j ∈ S∗ :

∣∣∣∣πjγj
∣∣∣∣ ≥ 2C∗

1

δmin

√
log pz

n

}
⊂ supp

(
π̃[1]
)
. (C.3.104)

It is sufficient to show the following inequality if |πj/γj| > 2C∗(1/δmin)
√

log pz/n,

∣∣∣∣πj − π1

γ1
γj +

1√
n

(Tπj + ∆πj )

∣∣∣∣ ≥ 2.05

√
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(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz

n

∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

,

(C.3.105)

which can be reduced to

max
j∈supp(π)∩S∗

1√
n
|Tπj + ∆πj | ≤ 2.05

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz
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∥∥∥v̂[j] − γ̃j
γ̃1
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2√
n

,

(C.3.106)

∣∣∣∣πj − π1

γ1

γj

∣∣∣∣ ≥ 4.1

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz
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∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

.

(C.3.107)

By (C.3.93), (C.3.94) and (C.3.95), we establish(C.3.106). Since

1

|γj|

∣∣∣∣πj − π1

γ1

γj

∣∣∣∣ ≥ ∣∣∣∣πjγj
∣∣∣∣− ∣∣∣∣π1

γ1

∣∣∣∣ ≥ C∗
1

δmin

√
log pz

n
,

the assumption 0 < |π1/γ1| < C∗(1/δmin)
√

log pz/n and (C.3.102) lead to (C.3.107).

valid instrument case

In this case, the instrumental variable is valid with π1/γ1 = 0. For j ∈ V∗, (C.3.88)

can be re-expressed as
√
n
(
π̂

[1]
j − 0

)
= Tπj + ∆πj . (C.3.108)
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By (C.3.93), (C.3.94) and (C.3.95), on the event A ∩ S ∩G ∩ F 1,

max
j∈V∗

1√
n
|Tπj + ∆πj | ≤ 2.05

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz

n

∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

.

(C.3.109)

and hence

supp
(
π̃[1]
)
⊂ supp (π) and ‖π̃[1]‖0 <

|S∗|
2
. (C.3.110)

For |πj/γj| ≥ C∗(1/δmin)
√

log pz/n, by (C.3.102), we obtain

|πj| ≥ 4.1

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz

n

∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

. (C.3.111)

Combined with (C.3.109), we have

∣∣∣π̂[1]
j

∣∣∣ ≥ 2.05

√
Θ̂11 +

(
β̂[1]
)2

Θ̂22 − 2β̂[1]Θ̂12

√
log pz

n

∥∥∥v̂[j] − γ̃j
γ̃1

v̂[1]
∥∥∥

2√
n

. (C.3.112)

Hence {
j ∈ S∗ :

∣∣∣∣πjγj
∣∣∣∣ ≥ C∗

1

δmin

√
log pz

n

}
⊂ supp

(
π̃[1]
)
. (C.3.113)

By comparing (C.3.97) and (C.3.110), we rule out the strong invalid instrumental

variable case and obtain
∣∣∣Ṽ∣∣∣ > |S∗| /2 in (C.2.32). Further by (C.3.104) and (C.3.113),

we establish (C.2.32). With a stronger assumption (4.4.3) in the main paper, the weak

invalid instrument case is also ruled out and (C.3.113) leads to (C.2.33).
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C.3.9 Proof of Lemma 36

The proof of this lemma follows from the following results. Under the regularity

assumptions (R1)− (R3), as
√
sz1s log p/

√
n→ 0, we have

max
1≤i,j≤2

|Θ̂ij −Θij|
p→ 0; (C.3.114)

and

‖̂γ‖2
2

‖γ‖2
2

p→ 1 and

∥∥∥∑j∈S̃ γ̃jv̂
[j]
∥∥∥

2∥∥∥∑j∈S∗ γjv̂
[j]

∥∥∥
2

p→ 1. (C.3.115)

By (C.1.1) and (C.3.114), we establish that

√
Θ̂11 + β̂2Θ̂22 − 2β̂Θ̂12√

Θ11 + (β)2Θ22 − 2βΘ12

p→ 1.

Combined with (C.3.115), we establish (C.2.30).

Proof of (C.3.114) A stronger version of this proposition has already been proved

in Ren et al. (2013), where part of it was already established in Sun & Zhang (2012).

To be self-contained, we will provide the sketch of the proof in the following.

The difference between Θ̂−Θ can be decomposed as,

Θ̂−Θ = Θora −Θ + Θ̂−Θora, (C.3.116)

where Θora
11 = 1

n
‖Y − ZΓ − XΨ‖2

2, Θora
22 = 1

n
‖D − Zγ − Xψ‖2

2 and Θora
12 = 1

n
(Y −

ZΓ −XΨ)ᵀ(D − Zγ −Xψ). In the following, we only provide the detailed analysis

of Θ̂12 − Θora
12 . The other differences can be established in a similar way and the

difference between Θora −Θ can be established by central limit theorem.

Θ̂12 −Θora
12 =

1

n

 γ̂ − γ
ψ̂ −ψ

ᵀ

WᵀW
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n
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·2W
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+
1

n
Πᵀ
·1W

 γ̂ − γ
ψ̂ −ψ

 .

(C.3.117)
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By (C.3.117), we have

∣∣∣Θ̂12 −Θora
12

∣∣∣ ≤ 1√
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1

n
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 γ̂ − γ
ψ̂ −ψ
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(C.3.118)

The following of the proof follows from Lemma 40 and definition of event G.

Proof of (C.3.115) For a given 0 < ε0 < 1, we have

P
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2
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)
.

By Lemma 35, on the event A ∩ S ∩G, we have
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n)2, we obtain that
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)
≤ P ((A ∩ S ∩G)c) .

Combined with Lemma 33, we establish the first convergence result of (C.3.115). On

the event S ∩G ∩ A, we have
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By Lemma 34, we have

∑
j∈S̃ |γ̃j − γj|
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n
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[j]

∥∥∥
2

≤

(∑
j∈S̃ |γ̃j − γj|+

∑
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)√(
1 + 12

√
log p
n

)
M1√

M1‖γ‖22(1−sz1λn)2

1−12
√

log p
n

≤ Csz1

√
log p

n
≤ ε0,

and hence the second convergence result of (C.3.115) follows from the following in-

equality.

C.3.10 Proof of Lemma 39

Define ‖̃γ‖2
2 =

∑
j∈Ṽ γ̃

2
j and ‖γV∗‖2

2 =
∑

j∈V∗ γ
2
j . The proof of this lemma is further

based on the following results. Under the assumptions (R1)− (R5) and (IN1)-(IN3).

As
√
sz1s log p/

√
n→ 0, we have

‖̃γ‖2
2

‖γV∗‖2
2

p→ 1 and

∥∥∥∑j∈Ṽ γ̃jv̂
[j]
∥∥∥

2∥∥∥∑j∈V∗ γjv̂
[j]
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2

p→ 1. (C.3.119)

By (C.3.114) and (4.4.4) in the main paper, we establish that

√
Θ̂11 + β̂2Θ̂22 − 2β̂Θ̂12√

Θ11 + (β)2Θ22 − 2βΘ12

p→ 1.

Combined with (C.3.119), we establish (C.2.37).

Proof of (C.3.119) For a given 0 < ε0 < 1, we have

P
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2
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)
.
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By Lemma 37, on the event A ∩ S ∩G ∩ F , we have Ṽ = V∗ and (C.3.79) leads to

∣∣∣∣∣ ‖̃γ‖2
2 − ‖γV∗‖2

2

‖γV∗‖2
2

∣∣∣∣∣ ≤ C
1
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2

sz1
log pz

n
+ Csz1

(
s

log p

n

)2

+ C‖γṼ‖2

√
2|Ṽ| log pz

n

 .

(C.3.120)

Since ‖γV∗‖2
2 � (s log p/

√
n)2, we obtain that

∣∣∣∣∣ ‖̃γ‖2
2 − ‖γV∗‖2

2

‖γV∗‖2
2

∣∣∣∣∣ ≤ ε0
1− ε0

and P
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2

‖̃γ‖2
2

− 1

∣∣∣∣∣ ≥ ε0

)
≤ P ((A ∩ S ∩G ∩ F )c) .

Combined with Lemma 33 and (C.3.90), we establish the first converge result of

(C.3.119).

On the event S ∩G ∩ A ∩ F , we have
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By Lemma 34, we have

∑
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Hence the second converge result of (C.3.119) follows from

P

∣∣∣∣∣∣
∥∥∥∑j∈Ṽ γ̃jv̂
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∥∥∥
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 ≤ P ((S ∩G ∩ A ∩ F )c) .
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C.3.11 Proof of Lemmas 40, 41, 42 and 43

Proof of Lemma 40 We only estalbish the first half of (C.3.32) and (C.3.33). The

proof of the second half of (C.3.32) and (C.3.34) will be similar. The proof has been

established in Sun & Zhang (2012) for fixed designs under certain assumptions for

the design. In the following, we will check that the assumptions in Corollary 1 in

Sun & Zhang (2012) are satisfied with high probability for the subgaussian random

designs considered in this paper and then apply equation (23) in Sun & Zhang (2012).

By the definition of τ ∗ in Sun & Zhang (2012), we have τ ∗ ≤ τ where τ is defined

in (C.2.2). Hence, on the event S1, equation (23) in Sun & Zhang (2012) holds.

By the relationship between `1 cone invertibility factor and the restricted eigenvalue

established in Lemma 13 of Cai & Guo (2016c), we obtain that on the event S ∩G,

‖Γ̂− Γ‖1 + ‖Ψ̂−Ψ‖1 ≤ C
sλ0σ1

κ2(H , 4s, 1 + 2ε0)
. (C.3.122)

Similar to the proof of Lemma 13 in Cai & Guo (2016c), we establish

κ2 (H , 4s, 1 + 2ε0) ≥ n

max ‖W.j‖2
2

κ2

(
W, 4s, (1 + 2ε0)

(
max ‖W.j‖2

min ‖W.j‖2

))
. (C.3.123)

Hence, on the event G ∩ S, we establish the first half of (C.3.32). Since

1

n
‖Z(Γ̂− Γ) +X(Ψ̂−Ψ)‖2

2 ≤ ‖
1

n
WᵀW

 Γ̂− Γ

Ψ̂−Ψ

 ‖∞ (‖Γ̂− Γ‖1 + ‖Ψ̂−Ψ‖1

)
,

we establish (C.3.33).

Proof of Lemma 41 The decompositions (C.3.35) and (C.3.37) are established by

the definitions of Γ̃ and γ̃. The error bound (C.3.39) follows from the following
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inequality

|∆γ
j | ≤ ‖

(
1

n
(û[j])ᵀΣ̂− eᵀj

)
‖∞‖

 γ̂ − γ
ψ̂ −ψ

 ‖1.

Proof of Lemma 42

This lemma can be established by a similar argument with Lemma 34. On the event

A ∩ S ∩G, we have

1√
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(C.3.124)

and
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. (C.3.125)

Hence, (C.3.91) and (C.3.92) follow from the above inequalities (C.3.124) and (C.3.125).

Proof of Lemma 43

(C.3.93) follows from the standard convergence analysis and (C.3.94) follows from

high probability statement of Gaussian random variable. It remains to establish

(C.3.95). We will analyze the expression (C.3.89) term by term. Note that on the

event A ∩ S ∩G,
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(C.3.126)
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Hence
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Since ∣∣∣∣∆Γ
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we have
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By the assumption minj∈S∗ |γj| �
√

log p/n and (C.3.92), we establish (C.3.95).
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