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Influence Of Local And Circuit-Wide Modulation Of The
Mesocorticolimbic Reward System On The Reinstatement Of Cocaine
Seeking

Abstract
Cocaine abuse poses a significant public health concern both in the United States and across the globe. A
critical issue with cocaine abuse is the discouragingly high rate of relapse among addicts following
detoxification and abstinence. The research presented in this doctoral dissertation examines the influence of
local and circuit-wide modulation of the mesocorticolimbic reward system on cocaine reinstatement, an
animal model of relapse.

The data presented in the second and third chapters of this dissertation demonstrate that DBS may serve as a
possible non-pharmacological therapeutic intervention in the treatment of cocaine addiction. In Chapter 2, I
show that DBS of the nucleus accumbens shell attenuates the cue-induced reinstatement of cocaine seeking,
expanding upon previous work demonstrating the efficacy of accumbal shell DBS in attenuating cocaine
priming-induced reinstatement. In Chapter 3, I demonstrate that DBS of the medial prefrontal cortex
(mPFC), but not the basolateral amygdala (BLA) or the ventral hippocampus (vHipp) selectively attenuates
the reinstatement of cocaine seeking. Moreover, this effect is constrained to the infralimbic subregion of the
mPFC as DBS in the prelimbic or anterior cingulate cortices has no effect on cocaine reinstatement. Further,
my results also suggest that infralimbic mPFC DBS attenuates cocaine reinstatement by disrupting
glutamatergic transmission to the nucleus accumbens.

The data presented in Chapter 4 of this dissertation support a substantial body of evidence demonstrating that
increased transmission through GluA1-containing AMPA receptors (AMPARs) in the nucleus accumbens
shell promotes cocaine reinstatement. These data reveal the novel role of the protein, AKAP150, in the
reinstatement of cocaine seeking. My findings indicate that AKAP150 promotes cocaine reinstatement by
facilitating D1-like dopamine receptor (D1DR)-induced, PKA-mediated phosphorylation of
GluA1-containing AMPARs. Collectively, these findings suggest that AKAP150 may serve as a biochemical
bridge linking the dopamine and glutamate systems in the nucleus accumbens during cocaine reinstatement.
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ABSTRACT 
 

INFLUENCE OF LOCAL AND CIRCUIT-WIDE MODULATION OF THE 

MESOCORTICOLIMBIC REWARD SYSTEM ON THE REINSTATEMENT OF 

COCAINE SEEKING	

 

Leonardo Antonio Guercio 

R. Christopher Pierce, Ph.D. 

Heath D. Schmidt, Ph.D. 

 

Cocaine abuse poses a significant public health concern both in the United States and 

across the globe. A critical issue with cocaine abuse is the discouragingly high rate of 

relapse among addicts following detoxification and abstinence. The research presented 

in this doctoral dissertation examines the influence of local and circuit-wide modulation 

of the mesocorticolimbic reward system on cocaine reinstatement, an animal model of 

relapse.  

 

The data presented in the second and third chapters of this dissertation demonstrate 

that DBS may serve as a possible non-pharmacological therapeutic intervention in the 

treatment of cocaine addiction. In Chapter 2, I show that DBS of the nucleus accumbens 

shell attenuates the cue-induced reinstatement of cocaine seeking, expanding upon 

previous work demonstrating the efficacy of accumbal shell DBS in attenuating cocaine 

priming-induced reinstatement. In Chapter 3, I demonstrate that DBS of the medial 

prefrontal cortex (mPFC), but not the basolateral amygdala (BLA) or the ventral 

hippocampus (vHipp) selectively attenuates the reinstatement of cocaine seeking. 

Moreover, this effect is constrained to the infralimbic subregion of the mPFC as DBS in 
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the prelimbic or anterior cingulate cortices has no effect on cocaine reinstatement. 

Further, my results also suggest that infralimbic mPFC DBS attenuates cocaine 

reinstatement by disrupting glutamatergic transmission to the nucleus accumbens.  

 

The data presented in Chapter 4 of this dissertation support a substantial body of 

evidence demonstrating that increased transmission through GluA1-containing AMPA 

receptors (AMPARs) in the nucleus accumbens shell promotes cocaine reinstatement. 

These data reveal the novel role of the protein, AKAP150, in the reinstatement of 

cocaine seeking. My findings indicate that AKAP150 promotes cocaine reinstatement by 

facilitating D1-like dopamine receptor (D1DR)-induced, PKA-mediated phosphorylation 

of GluA1-containing AMPARs. Collectively, these findings suggest that AKAP150 may 

serve as a biochemical bridge linking the dopamine and glutamate systems in the 

nucleus accumbens during cocaine reinstatement. 

 

In sum, the findings presented herein expand our understanding of the neurobiological 

mechanisms underlying cocaine seeking and identify both a non-pharmacological 

application, deep brain stimulation (DBS), and a novel biochemical target, AKAP150, for 

potential therapeutic interventions in cocaine addiction and craving. 
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Chapter 1 
 

COCAINE ADDICTION AND RELAPSE: A GENERAL INTRODUCTION 
 

Leonardo Antonio Guercio 
	
	

“... I sneered at the poor mortals condemned to live in this valley of tears while I, 

carried on the wings of two leaves of coca, went flying through the spaces of 

77,438 words, each more splendid than the one before... An hour later, I was 

sufficiently calm to write these words in a steady hand: God is unjust because he 

made man incapable of sustaining the effect of coca all life long. I would rather 

have a life span of ten years with coca than one of 

10,000,000,000,000,000,000,000 centuries without coca.” 

- Paolo Mantegazza, Sulle Virtù Igieniche e Medicinali della Coca e sugli 

Alimenti Nervosi in Generale (1859) 

 

Cocaine: A Brief History 

Cocaine is derived from the leaves of the coca plant (Erythroxylon coca), a bushlike 

flower that is indigenous to the Andean mountain range of northwestern South America, 

particularly Colombia, Peru, and Bolivia. For over 4,000 years, the coca leaf has been 

chewed or brewed in tea in order to relieve fatigue from working in high altitudes (Karch, 

2005). The coca plant was first introduced into Europe in the 16th century, following the 

Spanish invasion of Peru and the Incan empire, led by Francisco Pizarro in 1532 

(MacQuarrie, 2008). However, cocaine did not become popular in Europe until the mid-

19th century, when it was isolated from the coca plant. 

In 1860, German chemist Albert Niemann, recognizing the powerful stimulant properties 

of the coca plant, extracted the pure chemical, cocaine hydrochloride, as part of his 
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dissertation work. In the 1880s, Karl Koller, an Austrian ophthalmologist, discovered the 

anesthetic properties of cocaine, which led to its use in eye surgery, and later dentistry 

(Karch, 2005). In 1884, the eminent Austrian psychiatrist Sigmund Freud published a 

book entitled Uber Coca (“On Coca”), in which he touted the many benefits of cocaine, 

including its use as an aphrodisiac, mental stimulant, digestive aid, antidepressant, 

among others. Freud was so enamored with the drug, he erroneously believed that 

chronic cocaine use was not detrimental to the body and that cocaine could also serve 

as a treatment for alcohol and morphine addiction, which ultimately led to the death of 

his best friend for whom he prescribed cocaine to cure his morphine addiction (Karch, 

2005).  

In addition to being used for medical purposes, cocaine was also being used 

recreationally. In the late 19th century, Parke, Davis & Company sold a medicinal kit that 

included 300 mg of powdered cocaine, dissolving solution, and a syringe for intravenous 

injection (Karch, 2005). Also at this time, Vin Mariani, a Bordeaux wine infused with 

cocaine became wildly popular, bolstered by resounding endorsements from Queen 

Victoria of England, Thomas Edison, Ulysses S. Grant, and many others. Pope Leo XIII 

even awarded the wine with a Vatican gold medal, in addition to appearing on posters 

endorsing the wine (Inciardi, 1992). The success of Vin Mariani ultimately led American 

pharmacist John Pemberton to develop a non-alcoholic form of the beverage, since the 

state of Georgia had strict prohibition laws at the time. His formula consisted of 

approximately 2.5 mg of cocaine (from coca leaves) per 100 mL of caffeinated fluid (from 

kola nuts), and he called it Coca-Cola (Spillane, 2000). Even today, the Coca-Cola 

recipe still contains coca leaves for flavor, albeit without cocaine (Karch, 2005).   

By the early 20th century, increased recreational use of cocaine and improved 

knowledge of its addictive properties caused a backlash against drug use, ultimately 



	 3	

leading to the passage of the Harrison Narcotics Act of 1914, which criminalized the use 

of cocaine (Flynn, 1993). The counterculture movement of the 1960s and 1970s led to a 

re-emergence of cocaine use due to a more relaxed attitude towards drugs (Miller, 

2014). Cocaine use further skyrocketed in the 1980s with the advent of crack cocaine, a 

freebase form of cocaine that can be smoked and thereby directly inhaled into the lungs 

(Karch, 2005). Though the market for illegal cocaine grew most dramatically in the 

1980s, it remains a global crisis with approximately 850 tons of cocaine produced in 

2014 (Crime, 2016). 

 

Cocaine Addiction: A Global Public Health Concern 

Drug addiction is a major public health concern in both the United States and worldwide. 

It is estimated that the total costs of substance abuse including productivity, health, and 

crime-related costs, exceed $600 billion annually in the United States alone (National 

Drug Intelligence Center, 2011). Cocaine is the fourth most commonly abused illegal 

drug in the world, with the United States as the global leader in cocaine demand (Crime, 

2016). Approximately 1.5 million Americans aged 12 or older are regular users of 

cocaine, comprising about 0.5% of the US population (Sarra L Hedden, 2015). Cocaine 

use is also responsible for over 500,000 emergency room visits annually (National 

Institute on Drug Abuse, 2016). Thus, cocaine addiction is a prohibitively expensive 

public health epidemic that affects millions of Americans.  

 

Physiological Effects of Cocaine Use 

Cocaine is a biogenic amine transporter inhibitor, exerting its effects on the dopamine, 

serotonin, and norepinephrine systems (Ritz et al., 1990). Cocaine can also block 

voltage-gated sodium channels, making it an effective local anesthetic (O'Leary and 
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Hancox, 2010). The acute effects of cocaine include euphoria, elation, increased energy, 

increased mental alertness, decreased appetite, increased sensitivity to sights, sounds, 

and touch, blood vessels constriction, dilated pupils, increased body temperature, and 

increased heart rate and blood pressure (Karch, 2005). Chronic cocaine use can lead to 

addiction, increased irritability, restlessness, panic attacks, paranoia, psychosis, auditory 

hallucinations, heart attacks, increased risk for stroke and seizures, gastrointestinal tears 

or ulcerations, septal necrosis, loss of sense of smell, lung damage (typically from crack 

cocaine inhalation), sleep disturbances, and malnourishment (National Institute on Drug 

Abuse, 2016). Chronic cocaine users typically develop increased tolerance to the drug, 

which can lead to compulsive drug-seeking behavior and worsening withdrawal 

symptoms (Wolf, 2010). 

 

Drug Abuse and the Cycle of Addiction 

Substance use disorders can range from mild to severe and is determined by the 

number of diagnostic criteria met by the individual. A diagnosis of substance use 

disorder is based on evidence of impaired control, social impairment, risky use, and 

pharmacological criteria. The most commonly abused substances are alcohol, tobacco, 

cannabis, stimulants, opioids, and hallucinogens. Cocaine is the most widely abused 

psychostimulant (Sarra L Hedden, 2015). 

 

Following the initial use of cocaine, drug use can quickly escalate in certain individuals. 

These individuals subsequently enter a cycle of chronic drug taking followed by periods 

of abstinence and subsequent relapse into chronic drug taking. In fact, one of the major 

problems facing cocaine addicts is the discouragingly high rate of relapse, even after 

prolonged abstinence (Carroll, 1994; O'Brien, 1997). In fact, rates of relapse increase as 
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time goes on  — a phenomenon called incubation of craving (Gawin and Kleber, 1986). 

Since drug craving increases over time, long-term abstinence is an extraordinarily 

difficult accomplishment for addicts. However, despite many years of preclinical and 

clinical research focused on understanding the underlying neurobiological and 

neurochemical basis of addiction, there are no FDA-approved pharmacotherapeutic 

interventions for the treatment of cocaine abuse and relapse. 

 

Modeling Cocaine Taking and Relapse: Self-Administration and Reinstatement 

Cocaine craving and relapse in abstinent addicts can be precipitated by 3 major factors: 

stress, environmental stimuli previously associated with drug taking, or re-exposure to 

the drug itself (Wit and Stewart, 1981; Jaffe et al., 1989; O'Brien et al., 1992; Sinha et 

al., 1999). In order to gain a better understanding into the molecular and physiological 

underpinnings of cocaine addiction and relapse, researchers utilize an animal model of 

addiction, specifically the self-administration/extinction/reinstatement paradigm (Shalev 

et al., 2002; Shaham and Hope, 2005; Bossert et al., 2013). This involves training an 

animal to self-administer cocaine via operant conditioning. After a period of self-

administration (typically several hours per day for 14-21 days), the cocaine solution is 

removed and replaced with saline, which extinguishes cocaine taking. Following 

extinction of drug taking, exposure to a stressor, re-exposure to cocaine-associated 

cues, or a non-contingent priming injection of cocaine reinstate drug-seeking behavior 

(Shalev et al., 2002). This model is invaluable for assessing the neurobiological 

underpinnings of drug addiction and craving-induced relapse of cocaine-seeking 

behavior. 

 

Neuronal Circuitry Underlying Cocaine Reinstatement 
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Though cocaine can inhibit transporter activity of the dopamine, serotonin, and 

norepinephrine systems (Ritz et al., 1990), several studies have shown that dopamine is 

the critical biogenic amine underlying the reinstatement of cocaine seeking. 

Administration of a dopamine, but not serotonin or norepinephrine, reuptake inhibitor 

reinstated cocaine seeking (Schenk, 2002; Schmidt and Pierce, 2006a). Dopaminergic 

neurons in the ventral tegmental area (VTA) richly innervate corticolimbic nuclei, 

including the nucleus accumbens, medial prefrontal cortex (mPFC), amygdala, 

hippocampus, and ventral pallidum (Berendse et al., 1992; Brog et al., 1993; Heimer et 

al., 1997). Several of these corticolimbic nuclei, including the medial prefrontal cortex 

(mPFC), hippocampus, and amygdala send robust glutamatergic projections to the 

nucleus accumbens (Phillipson and Griffiths, 1985; Friedman et al., 2002). The nucleus 

accumbens sends efferent GABAergic projections to the VTA and ventral pallidum 

(Heimer et al., 1991; Groenewegen et al., 1999), which in turn, send efferent GABAergic 

projections to the mediodorsal thalamus (Groenewegen, 2003). The mediodorsal 

thalamus sends glutamatergic projections to the mPFC, effectively closing this circuit 

(see Figure 1.1). 

 

The nucleus accumbens can be further divided into two functionally segregated 

subregions, the medial shell and the lateral core (Meredith et al., 1992; Groenewegen et 

al., 1999). The nucleus accumbens shell, considered part of the limbic system, has been 

implicated primarily in the reinforcing and rewarding properties of drugs of abuse (Di 

Chiara and Imperato, 1988; Pontieri et al., 1995; William A Carlezon and Wise, 1996). 

The nucleus accumbens core, considered an extension of the basal ganglia, contributes 

to drug-associated, cue-induced drug seeking (Di Ciano and Everitt, 2004; Fuchs et al., 

2004; Ito et al., 2004). Therefore, the nucleus accumbens serves to integrate the 
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motivational information from the limbic system with the basal ganglia to facilitate an 

appropriate behavioral response.  

 

The Role of the Nucleus Accumbens in Cocaine Seeking 

Nucleus Accumbens and Priming-Induced Reinstatement of Cocaine Seeking 

It is now clear that increased dopamine transmission in the nucleus accumbens 

promotes the reinstatement of cocaine seeking. Thus, intra-nucleus accumbens 

infusions of dopamine (Cornish and Kalivas, 2000) promoted the reinstatement of 

cocaine seeking in rats that previously self-administered cocaine. Co-administration of 

the nonselective dopamine receptor antagonist, fluphenazine, blocked the reinstatement 

of cocaine seeking precipitated by intra-accumbal infusions of dopamine (Cornish and 

Kalivas, 2000). Dopamine transmission is mediated by a family of G-protein coupled 

receptors, with 5 subtypes (D1-D5). These receptors subtypes can be further 

categorized as D1-like (D1 and D5) or D2-like (D2, D3, D4) based on their sequence 

homology and pharmacology (MISSALE et al., 1998; Beaulieu and Gainetdinov, 2011). 

There is an extensive literature indicating that dopaminergic transmission through D1-

like and D2-like dopamine receptors is critical for the reinstatement of cocaine seeking in 

the nucleus accumbens (Bossert et al., 2005; Schmidt and Pierce, 2006b).  

 

Systemic administration of D1-like or D2-like dopamine receptor antagonists blocked the 

reinstatement of cocaine seeking (Self et al., 1996; Khroyan et al., 2000; Vorel et al., 

2002). Peripheral injections of D2-like dopamine receptor agonists promoted cocaine 

priming-induced reinstatement (Self et al., 1996; Khroyan et al., 2000; De Vries et al., 

2002). However, systemically administered D1-like dopamine receptor agonists failed to 

promote, and actually attenuated cocaine reinstatement (Self et al., 1996; Khroyan et al., 
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2000; Self et al., 2000), while intra-accumbal shell administration of D1-like dopamine 

receptor agonists promoted the reinstatement of cocaine-seeking behavior (Bachtell et 

al., 2005; Schmidt et al., 2006; Anderson et al., 2008). These results suggested that 

systemic administration of D1-like dopamine receptor agonists activate D1-like 

dopamine receptors in other brain regions, which counteract the reinstatement of 

cocaine seeking promoted by activation of D1-like dopamine receptors in the nucleus 

accumbens. It should be noted, however, that dopaminergic transmission in the core and 

shell subregions of the nucleus accumbens have differential effects on cocaine seeking. 

Administration of D1-like or D2-like dopamine receptor antagonists in the accumbens 

shell, but not the core, blocked priming-induced reinstatement of cocaine seeking 

(Anderson et al., 2003; 2005; Bachtell et al., 2005). Consistent with these findings, intra-

accumbal shell, but not core, administration of D1-like and D2-like dopamine receptor 

agonists promoted the reinstatement of cocaine seeking (Schmidt and Pierce, 2006b). 

Collectively, these findings offer evidence that D1-like and D2-like dopamine receptors 

play a critical role in cocaine reinstatement and that D1-like dopamine receptors in other 

nuclei besides the nucleus accumbens shell may have differential effects on the 

reinstatement of cocaine seeking.  

 

Although cocaine increases the extracellular concentration of dopamine, there is 

overwhelming evidence that chronic cocaine exposure also affects glutamatergic 

transmission, particularly in the nucleus accumbens, which can have profound effects on 

neuronal function and alter the behavioral effects of cocaine (Schmidt and Pierce, 2010). 

While cocaine has no direct action on glutamatergic neurons or glutamate levels, 

withdrawal from repeated exposure to cocaine reduced basal extracellular levels of 
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glutamate in the nucleus accumbens (Pierce et al., 1996), an effect due to decreased 

activity of the cysteine-glutamate antiporter (Baker et al., 2003a).  

 

Cocaine priming-induced reinstatement is associated with increased extracellular levels 

of glutamate in the nucleus accumbens (Cornish et al., 1999; Cornish and Kalivas, 2000; 

Park et al., 2002; McFarland et al., 2003). In fact, systemic injections of N-acetyl 

cysteine, a pro-drug that increases the activity of the cysteine-glutamate antiporter, 

attenuated cocaine priming-induced reinstatement. Glutamate binds to N-methyl-D-

aspartate (NMDA), α-amino-3-hydroxy-5- methyl-4-isoxazole propionic acid (AMPA), and 

metabotropic glutamate (mGluR) receptors, all of which play a role in cocaine 

reinstatement (Schmidt and Pierce, 2010).  

 

Intra-accumbal administration of AMPA or an AMPA receptor agonist reinstated cocaine 

seeking, whereas intra-accumbal administration of AMPA receptor antagonists 

attenuated cocaine priming-induced reinstatement (Cornish et al., 1999; Cornish and 

Kalivas, 2000; Famous et al., 2008; Ping et al., 2008). These effects were observed in 

both core and shell subregions of the nucleus accumbens. AMPA receptors are 

heteromeric, ligand-gated ion channels expressed throughout the brain that are 

composed of 4 subunits: GluA1-GluA4, and are also permeable to Ca2+, Na+, and K+. 

AMPA receptors have a unique feature where conversion of a glutamine (Q) residue to 

an arginine (R) on the GluA2 subunit renders GluA2-containing AMPA receptors 

impermeable to calcium (Hume et al., 1991; Rueter et al., 1995). Since most GluA2 

subunits are edited in this matter, GluA2-containing AMPA receptors are considered 

calcium-impermeable (Tanaka et al., 2000). 
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Cocaine reinstatement is associated with the phosphorylation and trafficking of GluA1 

and GluA2-containing AMPA receptors. Consistent with these results, suppression of 

GluA1 transcription in the accumbens blocked the reinstatement of cocaine seeking 

induced by a priming injection of cocaine (Ping et al., 2008). Cocaine reinstatement is 

associated with increased phosphorylation and surface expression of GluA1-containing 

AMPA receptors and of GluA1 in the accumbens shell, but not the core (Anderson et al., 

2008).  Consistent with this, preventing the transport of GluA1-containing AMPA 

receptors to the cell surface in the nucleus accumbens shell attenuated priming-induced 

reinstatement of cocaine seeking (Anderson et al., 2008). Additionally, extended 

withdrawal from cocaine self-administration increased surface expression of GluA1-

containing, but not GluA2-containing, AMPA receptors in the nucleus accumbens 

(Conrad et al., 2008). Cocaine reinstatement is also associated with increased 

phosphorylation and decreased surface expression of GluA2-containing AMPA receptors 

in the accumbens shell, but not the core (Famous et al., 2008). Disruption of trafficking 

of GluA2-containing AMPA receptors attenuated cocaine priming-induced reinstatement 

(Famous et al., 2008). Similarly, more recent studies have shown that withdrawal from 

cocaine self-administration and incubation of cocaine craving is associated with 

increased insertion of GluA1-containing, GluA2-lacking, calcium-permeable AMPA 

receptors (CP-AMPARs) in the nucleus accumbens (Mameli et al., 2009; Ferrario et al., 

2010; McCutcheon et al., 2011b). Taken together, these findings suggest that cocaine 

reinstatement is associated with increases in accumbal glutamatergic transmission, 

mediated in part by the differential trafficking of GluA1 and GluA2 subunits. 

 

Nucleus Accumbens and Cue-Induced Reinstatement of Cocaine Seeking 
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Relapse to drug-seeking behavior can be induced by re-exposure to environmental cues 

and contexts previously associated with drug taking (O'Brien et al., 1992). This can be 

modeled experimentally in three major ways: context-induced reinstatement (Crombag 

and Shaham, 2002), discrete cue-induced reinstatement (Meil and See, 1996), and 

discriminative cue-induced reinstatement (Weiss et al., 2000). Behavioral findings from 

all three models will be outlined below, however, we will primarily focus on discrete cue-

induced reinstatement.  

 

As in priming-induced reinstatement, re-exposure to cocaine-associated stimuli resulted 

in increased glutamate levels in the nucleus accumbens (Hotsenpiller and Giorgetti, 

2001). Systemic or intra-accumbal core administration of baclofen and muscimol 

attenuated cue-induced reinstatement of cocaine-seeking behavior (Di Ciano and 

Everitt, 2004; Fuchs et al., 2004). Additionally, excitotoxic lesions of the nucleus 

accumbens core, but not the shell, attenuated cocaine seeking induced by discrete cues 

(Ito et al., 2004). Consistent with these findings, systemic and intra-accumbal core 

administration of an AMPA receptor antagonist, or intra-accumbal core administration of 

an NMDA receptor antagonist, attenuated cue-induced reinstatement (Di Ciano, 2001; 

Bäckström and Hyytiä, 2006; 2007; Zavala et al., 2008) – however, these treatments had 

no effect when injected into the accumbens shell. Systemic administration of ceftriaxone, 

an antibiotic that enhances glutamate reuptake in synapses, attenuated cocaine cue-

induced reinstatement (Sari et al., 2009; Sondheimer and Knackstedt, 2011; Fischer et 

al., 2013). Consistent with this, ceftriaxone-mediated attenuation of cue-

induced cocaine reinstatement was reversed by blockade of GLT-1, which is responsible 

for glutamate reuptake, in the accumbens core, but not the shell (Fischer et al., 2013).  

 



	 12	

While the role of the accumbens core is well established for cue-induced reinstatement 

of cocaine seeking, there is evidence that the accumbens shell also contributes to cue-

induced reinstatement, particularly in context-induced reinstatement. Administration of 

baclofen and muscimol into the accumbens shell attenuated the context-induced 

reinstatement of cocaine seeking (Fuchs et al., 2008). Additionally, intra-accumbal shell 

administration of AMPA/kainate glutamate receptor antagonist CNQX attenuated 

context-induced reinstatement of cocaine seeking (Xie et al., 2012). It should be noted, 

however, that similar effects were observed in the accumbens core in both cases. 

Together, these findings suggest that the nucleus accumbens core, and to a lesser 

extent, the accumbens shell, is critical for cue-induced reinstatement of cocaine seeking. 

 

The Role of the mPFC in Cocaine Seeking 

The mPFC can be divided into three functional components: the anterior cingulate 

cortex, the prelimbic cortex, and the infralimbic cortex (Krettek and Price, 1977), all of 

which receive dense dopaminergic projections from the VTA (Heidbreder and 

Groenewegen, 2003). These regions can also be segregated into the dorsal mPFC, 

which includes the anterior cingulate cortex and dorsal prelimbic cortex, and the ventral 

mPFC, which includes the ventral prelimbic and infralimbic cortices (Graybiel et al., 

1990; Steketee, 2003). Notably, these regions have differential glutamatergic projections 

to the nucleus accumbens. The dorsal mPFC projects mainly to the nucleus accumbens 

core, whereas the ventral mPFC projects primarily to the nucleus accumbens shell 

(Berendse et al., 1992; Wright and Groenewegen, 1995; Ding et al., 2001). While there 

is strong evidence for the role of the dorsal mPFC in the reinstatement of cocaine 

seeking, there is also evidence for the role of the ventral mPFC as well.  
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Infusion of dopamine or cocaine into the dorsal mPFC reinstated cocaine seeking 

(McFarland and Kalivas, 2001; Park et al., 2002). Consistent with this, administration of 

baclofen and muscimol (McFarland and Kalivas, 2001) or TTX (Capriles et al., 2003) into 

the prelimbic, but not infralimbic, cortex attenuated cocaine priming-induced 

reinstatement. Additionally, administration of nonspecific, D1-like, or D2-like dopamine 

antagonists into the prelimbic, but not infralimbic, cortex blocked cocaine reinstatement 

(McFarland and Kalivas, 2001; Park et al., 2002; Capriles et al., 2003; Sun and Rebec, 

2005). These findings suggest a strong role for dopaminergic transmission in the dorsal 

mPFC in cocaine priming-induced reinstatement. 

 

The glutamatergic projections from the mPFC to the nucleus accumbens play a critical 

role in the reinstatement of cocaine seeking (Kalivas and O'Brien, 2008; Schmidt and 

Pierce, 2010). As mentioned previously, cocaine priming-induced reinstatement is 

associated with increased glutamate release in the nucleus accumbens, an effect that 

was blocked by pharmacological inactivation of the dorsal mPFC (McFarland et al., 

2003). Consistent with this, reinstatement of cocaine seeking induced by administration 

of cocaine directly into the dorsal mPFC was blocked by intra-accumbal administration of 

AMPA antagonists (Park et al., 2002). Additionally, repeated cocaine exposure 

increased the excitability of glutamatergic projection neurons in the prelimbic cortex 

(Hearing et al., 2013), which increased their responsiveness for cocaine (Sun and 

Rebec, 2006). 

 

While there is strong evidence for the role of the dorsal mPFC in cocaine reinstatement, 

there is also evidence, albeit conflicting, that the ventral mPFC plays a critical role as 

well. In one particular study, administration of baclofen and muscimol into the infralimbic 
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cortex reinstated cocaine seeking while microinjections of AMPA into this region 

attenuated cocaine seeking (Peters et al., 2008). This is inconsistent with the finding that 

administration of baclofen and muscimol into either the prelimbic or infralimbic cortices 

attenuated cocaine priming-induced reinstatement (Vassoler et al., 2013). Additionally, 

recent work has demonstrated that activation of the infralimbic mPFC-accumbens shell 

glutamatergic pathway is critical for the reinstatement of heroin and alcohol seeking 

(Bossert et al., 2012; Willcocks and McNally, 2013). Further, it has been shown the 

infralimbic cortex is involved in the consolidation of memories for the extinction of 

cocaine-seeking behavior (LaLumiere et al., 2010). Collectively, these results indicate 

that increased dopamine transmission in the mPFC, and glutamatergic transmission 

from the mPFC to the nucleus accumbens are critical for the reinstatement of cocaine 

seeking. 

 

The Role of the Basolateral Amygdala in Cocaine Seeking 

The amygdala is another nucleus that plays a critical role in the reinstatement of 

cocaine-seeking behavior. Like the hippocampus and mPFC, it also receives 

dopaminergic projections from the VTA (Fallon et al., 1978)and sends glutamatergic 

projections to the nucleus accumbens (Phillipson and Griffiths, 1985). The amygdala can 

be divided into many subnuclei, several of which have been shown to be involved in 

various types of cocaine reinstatement, particularly cue-induced reinstatement of 

cocaine seeking (Grimm, 2000; McFarland et al., 2004; Fuchs et al., 2005; Mashhoon et 

al., 2009; Stefanik and Kalivas, 2013).  

 

The basolateral amygdala (BLA) has also been implicated in priming-induced 

reinstatement of cocaine seeking. Immediate-early genes arc and zif268 in the BLA were 
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upregulated following priming-induced reinstatement of cocaine seeking (Ziółkowska et 

al., 2011). Consistent with this, lesions of the BLA attenuated cocaine priming-induced 

reinstatement (Yun and Fields, 2003). However, inactivation of the BLA using lidocaine 

had no effect on priming-induced reinstatement of cocaine seeking (McFarland and 

Kalivas, 2001). Administration of NMDA into the BLA reinstated cocaine seeking (Hayes 

et al., 2003) and antagonism of D1-like and D2-like dopamine receptors, in the BLA 

attenuated cocaine priming-induced reinstatement (Alleweireldt et al., 2006; Di Ciano, 

2008). Additionally, pharmacological manipulations in the BLA that promote experience-

dependent plasticity enhanced extinction and attenuated cocaine seeking (Xue et al., 

2014). While these results indicate that the BLA is involved in the priming-induced 

reinstatement of cocaine seeking, further studies are required to elucidate the precise 

mechanisms by which this nucleus contributes to priming-induced reinstatement. 

 

The Role of the Ventral Hippocampus in Cocaine Seeking 

The hippocampus, a critical region for memory and reward-related behaviors, can be 

segregated into dorsal and ventral regions (Moser and Moser, 1998). The dorsal 

hippocampus is critical for spatial memory (Moser et al., 1995), whereas the ventral 

hippocampus plays more important role in motivated behaviors (Henke, 1990). 

Additionally, these regions have different anatomical connections, with distinct inputs 

and outputs (Swanson and Cowan, 1977). The ventral hippocampus is strongly 

innervated with dopaminergic projections from the VTA (Gasbarri et al., 1994a; 1994b). 

Additionally, the ventral hippocampus is the major output region of the hippocampus 

(Groenewegen et al., 1987) with strong projections to the nucleus accumbens, 

particularly the accumbens shell (Fanselow and Dong, 2010). Stimulation of the ventral 

hippocampus leads to increased extracellular dopamine levels in the nucleus 
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accumbens, an effect that was abolished through blockade of glutamate receptors in the 

accumbens (Blaha et al., 1997; Taepavarapruk et al., 2000).  

 

There is also evidence for the role of the ventral hippocampus in the reinstatement of 

cocaine seeking. Inactivation of the ventral hippocampus with lidocaine blocked cocaine 

priming-induced reinstatement (Sun and Rebec, 2003). Consistent with this, 

administration of baclofen and muscimol to the ventral hippocampus attenuated cocaine 

priming-induced reinstatement (Rogers and See, 2007). These results indicate a role for 

the hippocampus, particularly the ventral hippocampus, in the reinstatement of cocaine 

seeking. 

 

Taken together, these findings demonstrate that cocaine reinstatement is associated 

with both circuit-wide changes in the mesocorticolimbic reward system, as well as 

cellular and molecular changes within each of these subnuclei, particularly the nucleus 

accumbens. Focusing on circuit-level changes and potential therapeutic value, Chapters 

2 and 3 will examine how deep brain stimulation (DBS) in mesocorticolimbic nuclei can 

modulate cocaine seeking and which nuclei are optimal targets for clinical studies. 

 

Deep Brain Stimulation 

Deep brain stimulation (DBS) was originally developed in the 1950s in order to produce 

“reversible lesions” in the brain and was thought to be a potential replacement for the 

lobotomy in the treatment of psychiatric disorders (Lozano and Lipsman, 2013). 

However, DBS did not achieve widespread acceptance since decent pharmacological 

treatments for psychiatric disorders were developed at that time as well. In the 1980s, it 

became increasingly apparent that levodopa, the standard pharmacotherapy for 
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Parkinson’s disease, both failed to halt the progression of the disease and also led to 

debilitating side effects (Benabid et al., 2001) – thus, the interest in DBS as a therapeutic 

option re-emerged. In 1987, it was shown that DBS of the thalamus relieved tremors in 

Parkinson’s patients (Benabid et al., 1987). A few years later, the same group showed 

that DBS of the subthalamic nucleus (STN) ameliorated symptoms in Parkinson’s 

patients (Pollak et al., 1993). Due to its highly effective outcomes and minimal side 

effects, DBS grew in popularity throughout the 1990s and 2000s (Hariz, 2012). In 1997, 

the US Food and Drug administration approved DBS for the treatment of essential 

tremor, with approval for the treatment of Parkinson’s disease and dystonia following in 

2002 and 2003, respectively.  

 

DBS Mechanism of Action 

Despite years of research, the mechanism of action of DBS remains unclear. General 

hypotheses in the field suggest that DBS acts via 1) silencing stimulated neurons 

through depolarization inactivation and/or activation of GABAergic interneurons or 2) 

activation of associated circuit structures. The first hypothesis is supported from several 

studies that observed suppressed firing of neuronal populations around the stimulation 

electrode (Benazzouz and Hallett, 2000; Kiss et al., 2002; Meissner et al., 2005). 

However, there are credible findings suggesting that DBS may produce local activation 

(McIntyre et al., 2004; Montgomery and Gale, 2008). Several studies support the second 

hypothesis that DBS can produce activation of nearby axons and afferent structures 

(Vitek, 2002; McCracken and Grace, 2007; Johnson et al., 2008; Gradinaru et al., 2009; 

Vassoler et al., 2013). However, a growing body of evidence suggests that the 

mechanism of action of DBS is far more complex than the “local inhibition, distant 

excitation” hypothesis, including affecting multiple neurotransmitter systems (Barat et al., 
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2012; Hess et al., 2013; Martinez et al., 2013). It is clear that more research is required 

to provide additional insight into the potential mechanisms of DBS and potentially 

improve clinical outcomes. 

 

DBS and Drug Addiction 

The success of DBS in treating movement disorders paved the way for its use as a 

therapeutic modality in psychiatric disorders. Indeed, DBS is being studied in a number 

of psychiatric conditions, including obsessive-compulsive disorder, major depression, 

eating disorders, Tourette’s syndrome, and drug addiction (Lozano and Lipsman, 2013). 

There have been a number of successful case studies that have examined the effects of 

DBS on drug addiction. In a pilot study of DBS of the accumbens in 5 patients with 

severe alcohol addiction, all subjects reported complete remission of their craving for 

alcohol (Müller et al., 2009; 2016). Another case study showed complete remission of 

heroin abuse by a patient for 6 years. Remarkably, the patient refrained from drug abuse 

during active stimulation for the first 2.5 years and remained abstinent for 3.5 years even 

after the stimulation was removed (Zhou et al., 2011). DBS of the nucleus accumbens 

was also shown to be effective in alleviating symptoms of severe alcohol dependence in 

one case study (Kuhn et al., 2011) and smoking cessation and weight loss in others 

(Kuhn et al., 2009; Mantione et al., 2010). In all cases, DBS of the nucleus accumbens 

produced no unwanted side effects. The majority of the studies have targeted the 

nucleus accumbens shell, though there is evidence that DBS of the STN is effective in 

treating drug addiction as well (Rouaud et al., 2010). 

 

Recent preclinical evidence bolsters support for accumbal shell DBS as an effective 

treatment for drug addiction. DBS of the nucleus accumbens prevented morphine-
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conditioned place preference (Liu et al., 2008), attenuated cocaine priming-induced 

reinstatement of drug seeking (Vassoler et al., 2008; 2013; Hamilton et al., 2015), 

reduced cocaine sensitization (Creed et al., 2015), attenuated cue-induced 

reinstatement of drug seeking (Guo et al., 2013; Guercio et al., 2015), decreased alcohol 

consumption (Knapp et al., 2009; Wilden et al., 2014) and reduced methamphetamine 

intake (Batra et al., 2016). Taken together, these clinical and preclinical findings suggest 

that DBS of the accumbens shell may serve as a highly effective treatment for 

intractable drug addiction. 

 

While DBS may be a potential therapeutic modality in the treatment of cocaine addiction, 

it does not shed light on the complicated neurobiology underlying the drug addiction and 

relapse. Discouragingly, despite decades of research, the core pathophysiological 

mechanism of drug addiction remains unknown. A greater understanding of the 

neurobiological circuitry and mechanisms underlying drug addiction will help lead to 

improved pharmacotherapies. Thus, chapter 4 of this dissertation will examine how 

cellular and molecular changes in the nucleus accumbens contribute to the 

reinstatement of cocaine seeking by examining the novel role of a protein, AKAP150. 

 

Bridging the Dopamine and Glutamate Systems in the Nucleus Accumbens in 

Cocaine Reinstatement 

Long-term neural adaptations in both the dopaminergic and glutamatergic systems are 

involved in the drug-associated learning underlying cocaine reinstatement (Jones and 

Bonci, 2005; Kauer and Malenka, 2007). Dopaminergic transmission from the VTA to the 

nucleus accumbens (Schmidt et al., 2005; Shaham and Hope, 2005), the mPFC 

(McFarland and Kalivas, 2001; Park et al., 2002; Capriles et al., 2003), the ventral 
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hippocampus (Vorel, 2001; Sun and Rebec, 2003), and BLA (See et al., 2001; 

Alleweireldt et al., 2006) contribute to the reinstatement of cocaine seeking. While these 

nuclei all send glutamatergic projections to the nucleus accumbens, certain circuits play 

more specific roles in various types of cocaine reinstatement (Britt et al., 2012; Bossert 

et al., 2013). The interaction between the dopamine and glutamate systems in the 

nucleus accumbens, however, is crucial for the reinstatement of cocaine seeking.   

 

The nucleus accumbens is predominately made up of medium spiny neurons that 

express either D1-like dopamine receptors or D2-like dopamine receptors (Gangarossa 

et al., 2013). Both D1-containing and D2-containing medium spiny neurons receive 

glutamatergic projections from the mPFC, hippocampus, and BLA (Papp et al., 2012; 

MacAskill et al., 2014), but exhibit different efferent projections (Smith et al., 2013). 

Dopamine acts to modulate excitatory input to the accumbens from the mPFC, 

hippocampus, and BLA (Jentsch et al., 2000; Goto and Grace, 2008). The medium spiny 

neurons in the accumbens integrate information from dopaminergic and glutamatergic 

inputs to generate an appropriate behavioral response (Papp et al., 2012). 

 

Protein Kinase A (PKA) Signaling in the Nucleus Accumbens in Cocaine 

Reinstatement 

D1-like dopamine receptor (D1DR) signaling in the nucleus accumbens shell is critical 

for the reinstatement of cocaine seeking (Anderson et al., 2003; Pierce and Kumaresan, 

2006; Schmidt et al., 2006; Schmidt and Pierce, 2006b). D1DRs are Gs-coupled 

receptors that stimulate the production of cyclic adenosine monophosphate (cAMP), 

which ultimately lead to the activation of PKA (MISSALE et al., 1998; Beaulieu and 

Gainetdinov, 2011). Chronic exposure to cocaine leads to increased D1DR signaling, as 
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well as increased cAMP formation and PKA activity in the nucleus accumbens (Self et 

al., 1995; Unterwald et al., 1996; Lu et al., 2003; Anderson and Pierce, 2005). 

Consistent with these observations, inhibition of PKA in the nucleus accumbens reduces 

cocaine self-administration (Self et al., 1998) and decreases motivation to obtain cocaine 

as measured by progressive ratio responding (Lynch and Taylor, 2005). Surprisingly, 

intra-accumbal core administration of a PKA inhibitor, Rp-cAMP, promoted the 

reinstatement of cocaine seeking (Self et al., 1998). A potential explanation for this 

unexpected result is that Rp-cAMPs can also inhibit other cAMP-activated targets, such 

as exchange factors directly activated by cAMP (Epacs) (Bos, 2006). Epac activation 

leads to increased levels of the GTPase, Rap, which can interact with the Ras/ERK 

cascade to modulate ERK-dependent processes (Lin et al., 2003; Johnson-Farley et al., 

2005). There is considerable evidence linking ERK activation in the accumbens core 

with cocaine seeking (Edwards et al., 2011; Fricks-Gleason and Marshall, 2011). In 

summary, D1DR signaling in the accumbens shell is critical for the reinstatement for 

cocaine seeking and D1DR stimulation leads to downstream PKA activation. The role of 

PKA in cocaine reinstatement, however, has not been thoroughly characterized. 

 

GluA1 Phosphorylation and Trafficking in the Nucleus Accumbens in Cocaine 

Reinstatement 

AMPARs play a major role in cocaine-induced synaptic plasticity and cocaine 

reinstatement, as detailed above. The carboxy-terminal region of the GluA1 subunit 

contains all of the known protein phosphorylation sites, including residues 

phosphorylated by PKA, Protein Kinase C (PKC), and Ca2+/calmodulin-dependent 

protein kinase II (CaMKII) (Derkach et al., 2007; Anggono and Huganir, 2012). PKC and 

CaMKII can phosphorylate GluA1 at several residues, particularly Serine 831 (Ser831). 
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Phosphorylation at Ser831 is associated with GluA1 trafficking following cocaine 

reinstatement (Anderson et al., 2008; Pierce and Wolf, 2013).   

 

PKA phosphorylation of GluA1 at Ser845 leads to increased open probability of 

AMPARs (Banke et al., 2000). PKA phosphorylation of Ser845 also increases the 

surface expression of GluA1-containing AMPARs. In cultured accumbal neurons, D1DR 

stimulation increased both Ser845 phosphorylation and GluA1 surface expression (Chao 

et al., 2002a; 2002b). Consistent with these findings, cocaine reinstatement was 

attenuated by intra-accumbal shell administration of AAV10-GluA1-C99, which impairs 

the trafficking of GluA1-containing AMPA receptors to the cell surface (Anderson et al., 

2008). Additionally, withdrawal from cocaine self-administration led to both increased 

GluA1 surface expression, Ser845 phosphorylation, and increased rectification, which 

suggests an increase in in CP-AMPARs (Conrad et al., 2008; McCutcheon et al., 

2011b). Furthermore, withdrawal from cocaine self-administration caused an increase in 

the rectification index specifically in D1- but not D2-containing medium spiny neurons in 

the accumbens (Pascoli et al., 2014). Together, these findings suggest that 

D1DR/PKA/AMPAR signaling in the nucleus accumbens shell is critically involved in 

cocaine seeking.  

 

A-Kinase Anchoring Protein 150 (AKAP150) and Neuronal Plasticity  

A-Kinase anchoring proteins (AKAPs) are a family of proteins that contain an α-helical 

motif that binds the N-terminus of the PKA-RII subunit. By binding PKA and anchoring it 

at the synapse, AKAPs facilitate second messenger signaling (Wong and Scott, 2004; 

Carnegie et al., 2009). While there are many different forms of AKAPs, AKAP150 is the 

best characterized (Wong and Scott, 2004). AKAP150 is a postsynaptic scaffolding 
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protein that binds numerous signaling, accessory, receptor, and ion channel proteins 

involved in long-term synaptic plasticity (Sanderson and Dell'Acqua, 2011). AKAP150 is 

expressed throughout the forebrain, with highest expression seen in the striatum, 

including the nucleus accumbens (Glantz et al., 1992; Ostroveanu et al., 2007). 

AKAP150 is anchored to the plasma membrane and the post-synaptic density (PSD) in 

dendritic spines via interactions with F-actin, phosphatidyniositol-4,5-bisphosphate 

(PIP2), and cadherin cell adhesion molecules (Dell'Acqua, 1998; Gomez et al., 2002; 

Gorski et al., 2005). In addition to a PKA binding domain, AKAP150 also contains a 

membrane-associated guanylate kinase (MAGUK) motif that promotes its interaction 

with AMPA and NMDA receptors via binding to scaffolding proteins, PSD-95 and SAP97 

(Colledge et al., 2000; Sanderson and Dell'Acqua, 2011). Furthermore, AKAP150 

enhances PKA-mediated phosphorylation of AMPARs, especially Ser845 on GluA1 

subunits (Colledge et al., 2000; Tavalin et al., 2002). AKAP150 is also known to bind 

PKC (Klauck et al., 1996), and can interact with L-type Ca2+ channels via interaction with 

a leucine zipper (LZ) domain (Oliveria et al., 2007). The organization of this postsynaptic 

assembly suggests that AKAP150 is a critical scaffolding protein that regulates activity-

dependent signaling processes at synapses. 

 

There is extensive literature suggesting the importance of AKAP150 in mediating 

synaptic plasticity and memory formation. Administration of St-Ht31, a cell-permeable 

peptide that disrupts PKA binding to AKAP (Carr et al., 1992), into the lateral amygdala 

impairs auditory fear memory (Moita et al., 2002). AKAP150 KO mice exhibit impaired 

learning of the Morris Water Maze, a spatial memory task. They also show decreased 

AMPA currents and impaired LTD in the hippocampus (Tunquist et al., 2008). AKAP150-

D36 transgenic mice, where the final 36 amino acid residues – which includes the PKA 
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binding domain – are deleted, exhibit impaired LTP and LTD (Weisenhaus et al., 2010). 

AKAP150-anchored PKA regulates GluA1 phosphorylation and CP-AMPAR synaptic 

incorporation in NMDA-receptor mediated LTD (Sanderson et al., 2016). In addition, 

sleep deprived mice exhibiting memory deficits show reduced expression of AKAP150 

and reduced AMPA receptor phosphorylation (Hagewoud et al., 2009). Interestingly, 

many of the cellular and molecular mechanisms underlying learning and memory are 

also critically involved in neuronal plasticity associated with cocaine addiction (Kauer 

and Malenka, 2007).  

 

Despite extensive investigation on synaptic plasticity and learning mediated via 

AKAP150, the role of AKAP150 in drug addiction has been minimally explored. 

However, recent evidence shows that AKAP signaling is involved in the reinstatement of 

cocaine seeking (Reissner et al., 2011). Disruption of AKAP-PKA binding in the nucleus 

accumbens attenuates the reinstatement of cocaine seeking and reduces the post-

synaptic density (PSD) content of PKA. AKAP150 is also increased in PSD fractions of 

the nucleus accumbens from cocaine-treated rats (Reissner et al., 2011). Together, 

these findings strongly suggest that AKAP150 facilitates PKA-mediated plasticity 

underlying cocaine seeking. 

 

Summary 

As a whole, the work encompassed in this dissertation advances both our understanding 

of the basic science underlying cocaine relapse as well as uncovers better therapeutic 

modalities for the treatment of cocaine addiction and relapse. 
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Figures 
 

	

Figure 1. 1 Simplified schematic of the mesocorticolimbic reward system. 
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Abstract 
 
Stimuli previously associated with drug taking can become triggers that can elicit craving 

and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep 

brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of 

cocaine seeking, an animal model of relapse. Rats were allowed to self-administer 

cocaine (0.254 mg, i.v.) for 2 h daily for 21 d, with each infusion of cocaine being paired 

with a cue light. After 21 d of self-administration, cocaine-taking behavior was 

extinguished by replacing cocaine with saline in the absence of the cue light. Next, 

during the reinstatement phase, DBS was administered bilaterally into the nucleus 

accumbens shell through bipolar stainless steel electrodes immediately prior to re-

exposure to cues previously associated with cocaine reinforcement. DBS continued 

throughout the 2 h reinstatement session. Parallel studies examined the influence of 

accumbens shell DBS on reinstatement induced by cues previously associated with 

sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell 

significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. 

Together, these results indicate that DBS of the accumbens shell disrupts cue-induced 

reinstatement associated with both a drug and a natural reinforcer.	
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Introduction 
 
Deep brain stimulation (DBS), originally developed in the 1950s, first achieved 

recognition in the 1980s as a potential therapeutic intervention for Parkinson’s disease 

and other movement disorders (Lozano and Lipsman, 2013). Due to its highly effective 

outcomes, reversibility, and minimal side effects, DBS has grown in popularity over the 

past 25 years (Hariz, 2012; Lozano and Lipsman, 2013), garnering FDA approval for the 

treatment of several movement disorders. 

 

The success of DBS in treating movement disorders paved the way for its use as a 

therapeutic modality in psychiatric disorders. Indeed, DBS is being studied in a number 

of psychiatric conditions, including obsessive-compulsive disorder, major depression, 

eating disorders, Tourette’s syndrome, and drug addiction (Lozano and Lipsman, 2013; 

Müller et al., 2013). This is primarily due to the belief that DBS is relatively safe, free of 

unwanted side effects, and in some cases, may even have beneficial effects on 

attention, learning and memory, and executive function (Grubert et al., 2011; Bossert et 

al., 2013). Although DBS is highly invasive procedure with a surgical fatality rate 

estimated at 0.4%, the high costs associated with severe drug addiction have led many 

to conclude that DBS as a therapeutic intervention is a valuable avenue of research (Wit 

and Stewart, 1981; Müller et al., 2013).  

 

Recent preclinical and clinical studies suggest that deep brain stimulation (DBS) of the 

nucleus accumbens, a limbic structure that is critically involved in the reinforcing and 

reinstating effects of drugs of abuse, may be a possible therapy in the treatment of drug 

addiction (Müller et al., 2013; Pierce and Vassoler, 2013). In a pilot study of DBS of the 

accumbens in 5 patients with severe alcohol addiction, all subjects reported complete 
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remission of their craving for alcohol (Müller et al., 2009). Another case study showed 

complete remission of heroin abuse by a patient for 6 years. Remarkably, the patient 

refrained from drug abuse during active stimulation for the first 2.5 years and remained 

abstinent for 3.5 years even after the stimulation was removed (Zhou et al., 2011). In all 

cases, DBS of the nucleus accumbens produced no unwanted side effects.  

 

In animal models of addiction, DBS of the nucleus accumbens prevented morphine-

conditioned place preference (Liu et al., 2008), attenuated cocaine priming-induced 

reinstatement of drug seeking (Vassoler et al., 2008; 2013), and decreased alcohol 

consumption (Knapp et al., 2009). However, although recent work indicates that 

accumbens DBS attenuated cue-induced reinstatement of heroin seeking (Guo et al., 

2013), the influence of DBS on cue-induced reinstatement of cocaine seeking is 

unknown. Therefore, we examined the effects of DBS in the nucleus accumbens on cue-

induced reinstatement of cocaine-seeking as well as sucrose-seeking behavior.	
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Materials and Methods 

Animals and housing. Male Sprague-Dawley rats (Rattus norvegicus) weighing 250-

300g were ordered from Taconic Laboratories (Germantown, NY, USA). Animals were 

individually housed with food and water available ad libitum. Animals in the sucrose 

reinstatement study received ~25 g chow per day and had water available ad libitum. A 

12h light/dark cycle (lights on at 7:00 am) was used and all experiments were performed 

during the light cycle. All experimental procedures were consistent with the ethical 

guidelines of the U.S. National Institutes of Health and were approved by the University 

of Pennsylvania Perelman School of Medicine Institutional Animal Care and Use 

Committee. 

 

Materials. All experiments used Med-Associates (East Fairfield, VT, USA) operant 

chambers equipped with response levers, house light, cue light, pumps for injecting 

drugs intravenously, and food hoppers for dispensing sucrose pellets. Operant 

chambers were enclosed within ventilated, sound attenuating chambers.  

 

Surgery. Prior to surgery, the rats were injected intraperitoneally with 80 mg/kg ketamine 

and 12 mg/kg xylazine (Sigma-Aldrich; St. Louis, MO, USA). An indwelling silastic 

catheter was placed into the right jugular vein (side opposite the heart) and sutured in 

place. The catheter was then threaded subcutaneously over the shoulder blade and was 

routed to a mesh backmount platform (CamCaths, UK) that was sutured below the skin 

between the shoulder blades. Catheters were flushed daily with 0.3 ml of an antibiotic 

(Timentin, 0.93 mg/ml; Henry Schein, Melville, NY, USA) dissolved in heparinized saline. 

Catheters were sealed with plastic obturators when not in use.  
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After catheter implantation, the rats were mounted in a stereotaxic apparatus (Kopf 

Instruments; Tujunga, CA, USA) and bipolar stainless steel electrodes (Plastics One; 

Roanoke, VA, USA) were implanted into to the nucleus accumbens shell according to 

the following coordinates, relative to bregma (Paxinos and Watson, 1997): + 1.0 mm 

anteroposterior (A/P), +/– 3.0 mm mediolateral (M/L), – 7.3 mm dorsoventral (D/V). The 

stereotaxic arms were set at a 17° angle. Electrodes were cemented in place by affixing 

dental acrylic to three stainless steel screws fastened to the skull. 

 

Cocaine self-administration, extinction, and cue-induced reinstatement of drug seeking. 

Following a 7 d recovery period, the rats were placed in operant chambers and were 

allowed to press a lever for intravenous cocaine infusions (0.254 mg of cocaine 

dissolved 59 µL of saline) on a fixed ratio 1 (FR1) schedule of reinforcement. Each 

active lever press resulted in an infusion of cocaine and the drug-paired cue (concurrent 

illumination of the cue light above the active lever) for 5 s. When stable responding was 

achieved with the FR1 schedule (i.e., <15% variation in response rates over 3 

consecutive days), they were switched to an FR5 schedule. A 20 s timeout period during 

which responses have no scheduled consequences followed each cocaine infusion. 

Active lever presses made during the time out were counted but did not result in drug 

delivery and inactive lever presses were of no consequence. The rats were limited to a 

maximum of 30 cocaine infusions per daily 2 h self-administration session. 

 

After 21 d of cocaine self-administration, the animals underwent an extinction phase 

during which cocaine was replaced with saline. Additionally, presses on the active lever 

no longer produced presentation of the drug-paired cue light. Daily 2 h extinction 

sessions were conducted until responding was <15% of the response rate maintained by 
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cocaine self-administration. Following the extinction phase, the ability of re-exposure to 

the cue light to reinstate drug-seeking behavior was assessed. For the reinstatement 

test sessions, the FR5 schedule was used where active lever presses produced the light 

cue that had been presented during self-administration. However, satisfaction of the 

response requirements for each component resulted in a saline infusion rather than a 

cocaine infusion. Each reinstatement session was followed by extinction sessions until 

responding was again <15% of the response rate maintained by cocaine self-

administration. All animals underwent 2 reinstatement sessions, counterbalanced with 

respect to whether stimulation was given. 

 

Sucrose self-administration, extinction and cue-induced reinstatement of sucrose 

seeking. Rats were trained to self-administer 45 mg sucrose pellets (Research Diets; 

New Brunswick, NJ, USA) using the same procedures described above. After 21 days of 

daily 1 h food-reinforced operant sessions, rats underwent an extinction phase where 

responding no longer resulted in food delivery or cue light presentation. After lever 

pressing decreased to 15% or less of the responding maintained by contingent sucrose 

reinforcement, animals began reinstatement testing. Reinstatement of sucrose seeking 

was promoted by presentation of the cue light. For reinstatement, the FR5 schedule was 

used where active lever presses produced the light cue that had been presented during 

self-administration. However, satisfaction of the response requirements for each 

component did not dispense any sucrose pellets. Each 1 h reinstatement session was 

followed by extinction sessions until responding was again <15% of the response rate 

maintained by sucrose. 

 

Deep brain stimulation. For DBS experiments, we used alternating current with biphasic 



	 33	

symmetrical pulses (60 µs pulse width and a 160 Hz frequency) and 150 µA of current, 

parameters that are consistent with previous work in this field (Chang et al., 2003; 

Mayberg et al., 2005; Vassoler et al., 2013). Immediately before the start of a 

reinstatement session, 0 or 150 µA current was delivered continuously to the bipolar 

electrodes. The stimulation continued for the duration of the 2 h reinstatement session. 

In the 0 µA condition, the electrodes were attached in the exact same manner as the 150 

µA condition but DBS was not administered. The 0 and 150 µA currents were 

administered in a counterbalanced fashion across the multiple reinstatement test days. 

 

Verification of electrode placements. After the completion of all experiments, the animals 

were given an overdose of pentobarbital (100 mg/kg) and perfused intracardially with 

0.9% saline followed by 10% formalin. The brains were removed and coronal sections 

(100 µm) were taken at the level of the nucleus accumbens with a vibratome (Technical 

Products International; St. Louis, MO, USA). Animals with electrode placements outside 

of the areas of interest, or with excessive mechanical damage, were excluded from 

subsequent data analysis. 

 

Drugs. Cocaine hydrochloride was obtained from the National Institute on Drug Abuse 

(Rockville, MD, USA) and dissolved in bacteriostatic 0.9% saline. 

 

Statistics. All reinstatement experiments were analyzed with two-way ANOVAs with 

repeated measures over reinstatement days. Pairwise analyses were made with 

Bonferroni post-tests (p < 0.05). 
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Results 
 
DBS of the accumbens shell attenuates cue-induced reinstatement of cocaine seeking 

Following cocaine self-administration and extinction, deep brain stimulation of the 

nucleus accumbens shell (0 or 150 µA) was administered throughout the 2 h cue-

induced reinstatement test session. Active lever responses (mean±SEM) during the final 

days of cocaine self-administration and extinction are shown in Figure 1A. Total active 

and inactive lever responses (mean±SEM) from the reinstatement session are presented 

in Figure 1B. These data were analyzed using a two-way ANOVA (both treatment and 

lever were within-subject factors), which revealed significant main effects of DBS 

treatment (F(1,5)=45.53, p<0.0011) and lever (F(1,5)=29.13, p<0.0029), as well as a 

significant interaction between these variables (F(1,5)=17.32, p<0.0088). Subsequent 

pairwise analyses indicated that the total active lever responses were significantly 

different between the 0 and 150 µA treatments during cue-induced reinstatement test 

sessions (Bonferroni, p<0.05). The time course data for active lever responding (Figure 

1C) were analyzed with a two-way ANOVA (treatment and time were both within-

subject), which revealed significant main effects of DBS treatment (F(1,5)=45.54, 

p<0.0011) and time (F(11,55)=9.474, p<0.0001) as well as a significant interaction between 

these variables (F(11,55)=5.115, p<0.0001). Subsequent pairwise analyses indicated that 

the active lever responses between 0 and 150 µA treatments were significantly different 

over the first 10 minutes of the reinstatement session (Bonferroni, p<0.001). The 

electrode placements are shown in Figure 1D (n=6). Although inactive lever responding 

was somewhat lower in the DBS treatment relative to control (Figure 1B), the low 

number of inactive responses limits the ability of this measure to accurately assess 

nonspecific rate suppression effects. Therefore, we also assessed the effects of DBS in 

the nucleus accumbens shell (0 or 150 µA) on the reinstatement of sucrose seeking. 
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DBS of the accumbens shell attenuates cue-induced reinstatement of sucrose seeking 

In order to determine if the effects of DBS in the accumbens shell were reinforcer 

specific, we tested the effect of DBS in the accumbens shell on sucrose cue-associated 

reinstatement.  Active lever responses (mean±SEM) during the final days of sucrose 

self-administration and extinction are shown in Figure 2A. Total active and inactive lever 

responses (mean±SEM) from the reinstatement session during which DBS was 

administered to the accumbens shell during cue-induced sucrose reinstatement test 

sessions are shown in Figure 2B. These data were analyzed with a two-way ANOVA 

(treatment and lever were within-subject factors), which revealed no effect of DBS 

treatment (F(1,5)=1.836, p<0.2334), a significant effect of lever (F(1,5)=31.62, p<0.0025) 

and a significant interaction between these variables (F(1,5)=9.352, p<0.0282). 

Subsequent pairwise analyses indicated that the total active lever responses between 

the 0 and 150 µA treatments were significantly different (Bonferroni, p<0.05). The time 

course data for active lever responding (Figure 2C) were analyzed with a two-way 

ANOVA (treatment and time were within-subject factors), which revealed no significant 

effect of DBS treatment (F(1,5)=5.875, p<0.0598), but a significant main effect of time 

(F(11,55)=15.73, p<0.0001) as well as a significant interaction between these variables 

(F(11,55)=2.094, p<0.0362). Subsequent pairwise analyses indicated that the active lever 

responses between 0 and 150 µA treatments were significantly different over the first 10 

minutes of the reinstatement session (Bonferroni, p<0.001). All data from one animal 

were removed because of highly unusual time course responses in the 0 µA control 

condition (162 active lever presses between 40 and 60 minutes with no other presses). 

This is well beyond 2 SDs above the mean for this group. Electrode placements for 

these studies are shown in Figure 2D (n=6). 
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Discussion 
 
We have previously shown that DBS of the accumbens shell attenuated cocaine 

priming-induced reinstatement of drug seeking but had no influence on the reinstatement 

of sucrose seeking (Vassoler et al., 2013). The current data expand upon these findings 

and indicate that DBS of the nucleus accumbens shell also attenuates cue-induced 

reinstatement of cocaine and sucrose seeking.  

 

The role of the accumbens core in cue-induced reinstatement of drug seeking is well 

established in the literature. Administration of an AMPA/kainate receptor antagonist in 

the nucleus accumbens core, but not the shell, reduced cue-induced cocaine-seeking 

behavior (Di Ciano, 2001). Additionally, excitotoxic lesions of the core, but not the shell, 

markedly attenuated cue-induced reinstatement of cocaine seeking (Ito et al., 2004). 

Indeed, the accumbens core plays a critical role in cue-induced reinstatement of other 

drugs of abuse as well, including heroin, amphetamine, and even natural rewards such 

as sucrose (Di Ciano and Everitt, 2004). While much is known about the accumbens 

core and its role in cue-induced reinstatement of drug seeking, the role of the 

accumbens shell in cue-induced reinstatement of drug seeking is much more complex.  

 

Most studies have reported no effect or an attenuated effect in cue-induced 

reinstatement of drug or food seeking following pharmacological inactivation of the 

accumbens shell (Fuchs et al., 2004; Bossert et al., 2007; Lin and Pratt, 2014). Others 

have even demonstrated potentiated cue-induced reinstatement of food seeking 

following inactivation of the accumbens shell (Floresco et al., 2008). Our results may 

differ from these studies as DBS has multiple potential mechanisms of action, including, 

but not limited to, inactivation of target brain regions. Additionally, our findings suggest 
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that while accumbal shell DBS is effective at attenuating priming-induced reinstatement 

(Vassoler et al., 2013), it seems to be a questionable treatment for cue-induced 

reinstatement, as it also attenuated cue-induced reinstatement of sucrose seeking 

(Figure 2B). Although we show nonspecific behavioral effects of accumbal shell DBS, we 

do not believe that these effects are due to generalized motor inhibition, as we do not 

see any attenuation in inactive lever responding in either group. Additionally, we have 

previously shown that although DBS of the nucleus accumbens shell attenuates the 

priming-induced reinstatement of cocaine seeking, it has no effect on the priming-

induced reinstatement of sucrose seeking (Vassoler et al., 2008). These findings lead us 

to believe that the nonspecific behavioral effects elicited by accumbal shell DBS are not 

due to generalized motor inhibition, but rather to the differences between priming-

induced and cue-induced reinstatement tasks.    

 

Our present findings show that DBS of the accumbens shell attenuates cue-induced 

reinstatement of cocaine and sucrose seeking. As previously stated, preclinical and 

clinical literature suggest that DBS of the accumbens is a promising therapeutic modality 

in the treatment of addiction, especially due to the lack of unwanted side effects. These 

findings suggest that while DBS of the nucleus accumbens shell is a promising 

therapeutic modality for the treatment of severe cocaine addiction, clinical trials should 

proceed with caution, as there may be nonselective effects of accumbal DBS.	
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Figures 
 

	

Figure 2. 1 Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced 
reinstatement of cocaine seeking. (A) Mean (±SEM) active lever responses during the final days 
of cocaine self-administration and extinction. (B) Mean (±SEM) active and inactive lever 
responses from reinstatement sessions with 0 or 150 µA stimulation aimed at the accumbens 
shell. (C) Time course of active lever responding from 0 or 150 µA stimulation of the accumbens 
shell. (D) Electrode placements from the shell (dark circles). The values are in millimeters, 
relative to bregma. *p < 0.001 0 µA compared to 150 µA. There were 6 animals per group. 
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Figure	2.	2	Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced 
reinstatement of sucrose seeking. (A) Mean (±SEM) active lever responses during the final days 
of sucrose self-administration and extinction. (B) Mean (±SEM) active and inactive lever 
responses from reinstatement sessions with 0 or 150 µA stimulation aimed at the accumbens 
shell. (C) Time course of active lever responding from 0 or 150 µA stimulation of the accumbens 
shell. (D) Electrode placements from the shell (dark circles). The values are in millimeters, 
relative to bregma. *p < 0.05 0 µA compared to 150 µA. There were 6 animals per group.	
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Abstract 
Deep brain stimulation DBS is a promising therapeutic modality for the treatment of 

addiction. To date, most findings have examined the effects of DBS in the nucleus 

accumbens in drug addiction. Here, we investigate the effects of DBS in brain regions 

that send robust glutamatergic projections to the nucleus accumbens, specifically the 

medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and ventral hippocampus 

(vHipp) on the priming-induced reinstatement of cocaine seeking, an animal model of 

relapse, in male Sprague Dawley rats. The current results demonstrate that DBS in the 

infralimbic mPFC, but not the prelimbic or anterior cingulate cortices, attenuates cocaine 

reinstatement. We also demonstrate that DBS of the BLA and vHipp attenuate the 

reinstatement of both cocaine and sucrose seeking. To examine potential circuit-wide 

changes, zif268 immunohistochemistry was used to examine neuronal activity following 

DBS of the infralimbic mPFC. We show that infralimbic mPFC DBS is associated with 

decreased zif268 immunoreactivity in the nucleus accumbens shell. Our findings 

suggest that infralimbic mPFC DBS attenuates cocaine reinstatement by disrupting 

glutamatergic transmission to the nucleus accumbens. These results support previous 

claims that the mPFC may be an effective target for DBS in the treatment of addiction. 
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Introduction 
 
Cocaine abuse is a serious public health concern both in the United States and 

worldwide. In the United States, cocaine is the third most commonly abused illicit drug, 

after marijuana and prescription opiates, with nearly 1 million regular users (SAMHSA, 

2014). Despite years of preclinical and clinical research, pharmacological therapies have 

met with limited success and there remain no FDA-approved treatments for cocaine 

addiction and relapse.  

 

Recent evidence shows that deep brain stimulation (DBS), an FDA-approved treatment 

for movement disorders (Lozano and Lipsman, 2013), may be a viable therapeutic 

option in the treatment of intractable drug addiction (Müller et al., 2013; Pierce and 

Vassoler, 2013). To date, the majority of these studies have focused primarily on the 

nucleus accumbens, a limbic structure that plays a critical role in the reinforcing 

properties of drugs of abuse, including cocaine. DBS of the nucleus accumbens shell, 

but not the core, attenuated both the priming- and cue-induced reinstatement of cocaine 

seeking, animal models of relapse (Vassoler et al., 2008; 2013; Guercio et al., 2015). 

DBS of the accumbens shell also suppressed locomotor sensitization to cocaine (Creed 

et al., 2015), another behavioral task that reflects aspects of plasticity related to drug 

craving (Robinson and Berridge, 2001; Steketee and Kalivas, 2011). However, since 

DBS is a highly invasive procedure, with a surgical fatality rate of approximate 0.5% 

(Müller et al., 2013), it is critical to determine if there are other promising target areas 

with high effectiveness, safety, and feasibility in treating drug addiction. The role of the 

nucleus accumbens in cocaine reinstatement is well known. However, other 

mesocorticolimbic nuclei contribute heavily to the reinstatement of cocaine seeking 

(Schmidt et al., 2005). In particular, the medial prefrontal cortex (mPFC), ventral 
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hippocampus (vHipp), and basolateral amygdala (BLA) send rich glutamatergic 

projections to the nucleus accumbens (Phillipson and Griffiths, 1985; Friedman et al., 

2002) and are critical for the reinstatement of cocaine seeking (Grimm, 2000; McFarland 

and Kalivas, 2001; Sun and Rebec, 2003; Schmidt and Pierce, 2010; Lüscher and 

Malenka, 2011). We sought to determine whether these nuclei could also serve as target 

regions for DBS in the treatment of cocaine addiction. 

 

The underlying mechanism of DBS remains unclear. We have previously shown that the 

attenuation of cocaine reinstatement by accumbal shell DBS is not due to inactivation of 

the medium spiny neurons as intra-accumbal shell infusion of GABA agonists, baclofen 

and muscimol, or lidocaine, did not mimic the effects seen with DBS (Vassoler et al., 

2013). In fact, DBS of the accumbens shell promoted antidromic activation of GABAergic 

interneurons in the mPFC (Vassoler et al., 2013). This is consistent with 

electrophysiological evidence indicating that accumbens DBS inhibited spontaneous 

activity of cortico-accumbal glutamatergic projection neurons, while antidromically 

stimulating cortical interneurons (McCracken and Grace, 2007). Recent evidence 

indicated that DBS of the nucleus accumbens leads to decreased extracellular levels of 

glutamate and increased levels of GABA in rats that had been exposed to morphine 

(Yan et al., 2013). Another study showed that increases in GABA concentration 

mediated by accumbal DBS were attenuated by pre-treatment with memantine, an 

NMDA receptor antagonist (Varatharajan et al., 2015). These results suggest that DBS 

of glutamatergic projections to the nucleus accumbens may modulate the reinstatement 

of cocaine seeking.  
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In the current study, we investigated the effects of DBS in brain regions that send robust 

glutamatergic projections to the nucleus accumbens, specifically the mPFC, BLA, and 

vHipp, on the reinstatement of cocaine seeking. Moreover, we examined immediate-

early gene activation in the nucleus accumbens to examine potential mechanisms that 

may contribute to the effects of DBS on cocaine reinstatement. Our results suggest that 

DBS attenuates cocaine reinstatement by disrupting glutamatergic transmission to the 

nucleus accumbens.	
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Materials and Methods 
 
Animals and housing:  Male Sprague-Dawley rats (Rattus norvegicus) weighing 250-300 

g were obtained from Taconic Laboratories (Germantown, NY).  Rats were individually 

housed with food and water available ad libitum. A 12/12 hr light/dark cycle was used 

with the lights on at 7:00 a.m.  All experimental procedures were performed during the 

light cycle. All experimental procedures were consistent with the ethical guidelines of the 

US National Institutes of Health and were approved by the Perelman School of Medicine 

Institutional Animal Care and Use Committee at the University of Pennsylvania. 

 

Materials:  All experiments used Med-Associates (East Fairfield, VT) instrumentation 

enclosed within ventilated, sound attenuating chambers. Each operant conditioning 

chamber was equipped with response levers, stimulus lights, food pellet dispensers and 

injection pumps for injecting drugs intravenously. 

 

Surgery:  Prior to surgery, rats were anesthetized with 80 mg/kg ketamine and 12 mg/kg 

xylazine.  An indwelling silastic catheter was placed into the right jugular vein (side 

opposite the heart) and sutured in place.  The catheter was then threaded 

subcutaneously over the shoulder blade and was routed to a mesh backmount platform 

(CamCaths, Cambridge, UK/ Strategic Applications Inc., Libertyville, Il) that was sutured 

below the skin between the shoulder blades.  Catheters were flushed daily with 0.3 ml of 

an antibiotic (Timentin, 0.93 mg/ml) dissolved in heparinized saline.  The catheters were 

sealed with plastic obturators when not in use.Following catheter implantation, the rats 

were mounted in a stereotaxic apparatus (Kopf Instruments, CA) and bipolar stainless 

steel electrodes (Plastics One, Roanoke, VA) were trimmed and implanted into to the 

basolateral amygdala, ventral hippocampus, infralimbic medial prefrontal cortex, 
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prelimbic medial prefrontal cortex, or anterior cingulate prefrontal cortex according to the 

following coordinates, relative to bregma (Paxinos and Watson, 1997): basolateral 

amygdala:  -2.8 mm anteroposterior (A/P), ±5.0 mm mediolateral (M/L), -8.5 mm 

dorsoventral (D/V); ventral hippocampus: -5.5 mm A/P, ±5.0 mm M/L, -6.5 mm D/V; 

infralimbic prefrontal cortex: +2.5 mm A/P, ±2.0 mm M/L, -5.39 mm D/V, 21.78° angle; 

prelimbic prefrontal cortex: +2.5 mm A/P, ±2.0 mm M/L, -4.2 mm D/V, 19.5° angle; 

anterior cingulate prefrontal cortex: +2.5 mm A/P, ±2.0 mm M/L, -3.0 mm D/V, 27.8° 

angle. Electrodes were cemented in place by affixing dental acrylic to three stainless 

steel screws fastened to the skull.   

 

Cocaine self-administration and extinction. Following a 7 d recovery period, rats were 

placed in operant conditioning chambers and allowed to press a lever for intravenous 

cocaine infusions (0.254 mg of cocaine, 59 µL of saline, infusion over 5 s). Rats initially 

were trained using a fixed ratio 1 (FR1) schedule of reinforcement. When the animals 

achieved stable responding with the FR1 schedule (i.e., <15% variation in total presses 

over 3 consecutive days), they were switched to an FR5 schedule. A 20 s timeout period 

during which active, drug-paired lever responses had no scheduled consequences 

followed each cocaine infusion. Each operant chamber was also equipped with an 

inactive lever. Responses made on the inactive lever had no scheduled consequences. 

The rats were limited to a maximum of 30 cocaine infusions per daily 2 h self-

administration session. After 21 d of daily cocaine self-administration sessions, rats 

underwent an extinction phase during which cocaine was replaced with 0.9% 

bacteriostatic saline. Daily 2 h extinction sessions were conducted until active lever 

responding was <15% of the responses averaged over the last 3 days of cocaine self-

administration. 
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Sucrose self-administration and reinstatement. Following a 7 d period for recovery from 

surgery, separate groups of rats were food restricted (~25 g of daily chow; Harland 

Teklad, Wilmington, DE) and allowed to self-administer 50 mg Noyes sucrose pellets 

(Research Diets; New Brunswick, NJ, USA) using the same procedures described 

above. After 21 d of daily 1 h sucrose-reinforced operant sessions, rats underwent an 

extinction phase during which active lever responding no longer resulted in sucrose 

delivery. Daily extinction sessions were continued until active lever responding was 

<15% of the responses averaged over the last 3 days of sucrose self-administration. 

Reinstatement of sucrose seeking was promoted by non-contingent administration of 

one sucrose pellet every 2 min during the first 10 min of the reinstatement test session. 

Each reinstatement test day was followed by extinction sessions (typically only one or 

two) until responding was again <15% of the responses achieved during self-

administration. 

 

Deep brain stimulation. In most DBS experiments (both clinical and preclinical), many 

parameters are fixed and uniform across studies. We used alternating current with 

biphasic symmetrical pulses (60 µs pulse width and a 160 Hz frequency), parameters 

that are consistent with previous work from our lab and others (Chang et al., 2003; 

Mayberg et al., 2005; Vassoler et al., 2013). Stimulation intensities, in contrast, are often 

varied within and between studies, usually in the range of 50 –200 µA (Benazzouz and 

Hallett, 2000; Chang et al., 2003; Mayberg et al., 2005). We previously reported that 150 

µA of current is an effective stimulation intensity in our reinstatement paradigm (Vassoler 

et al., 2008). Immediately before the start of a reinstatement session, 0 or 150 µA 

current was delivered continuously to the bipolar electrodes. The stimulation continued 
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for the duration of the 2 h reinstatement session. Throughout the 0 µA condition, the 

stimulation tethers were attached in the exact same manner as the 150 µA condition. 

The 0 and 150 µA currents were administered in a counterbalanced fashion across the 

multiple reinstatement test days. 

 

Immunohistochemistry. For the IHC experiments, a separate cohort of rats were 

implanted with electrodes in the infralimbic mPFC and underwent cocaine self-

administration and extinction as described above. Immediately prior to the reinstatement 

testing, rats randomly received either 0 or 150 µA current stimulation followed a systemic 

priming injection of saline or cocaine (10 mg/kg, i.p.). Rats were placed immediately into 

the operant chambers and responding was recorded for 30 min. Rats were then returned 

to their home cage for 30 min, since zif expression is known to peak ~60 min following a 

stimulus (Wang, 1998). Rats were then deeply anesthetized with sodium pentobarbital 

(100 mg/kg) and perfused with 120 mL of ice-cold PBS followed by 60 mL of ice-cold 4% 

paraformaldehyde (PFA). The brains were subsequently removed and stored in 4% PFA 

for 24 h, at which point the brains were switched to a 30% sucrose solution in PBS for 72 

h. Coronal sections (30 µm) were taken using a vibratome in 1% Na azide in PBS and 

then processed for immunohistochemistry. Zif immunoreactivity was detected using a 

rabbit polyclonal antibody (SantaCruz sc-189, 1:1000). Coronal sections were mounted 

on electrostatic slides (both conditions, stimulated and not stimulated, were mounted on 

the same slide) and allowed to dry. They were then washed with PBS and blocked for 1 

h in PBS with 0.1% Triton X-100 and 3% normal donkey serum. Following the blocking 

step, slides were incubated overnight in primary antibody, 0.1% Triton X-100, and 3% 

normal donkey serum at 4°C. The following day, the slides were washed in PBS and 

incubated for 2 h at room temperature in a fluorescent secondary antibody (AlexaFluor 
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488 anti-rabbit, 1:500) and 3% normal donkey serum. The slides were washed for a final 

time, allowed to air dry, and coverslipped using DPX mountant. Staining was visualized 

with a confocal microscope. 

 

Verification of electrode placements. After the completion of all experiments, the animals 

were given an overdose of pentobarbital (100 mg/kg) and perfused intracardially with 

0.9% saline followed by 10% formalin. The brains were removed and coronal sections 

(100 µm) were taken with a vibratome (Technical Products International; St. Louis, MO, 

USA). Animals with electrode placements outside of the areas of interest, or with 

excessive mechanical damage, were excluded from subsequent data analysis. 

 

Drugs. Cocaine hydrochloride was obtained from the National Institute on Drug Abuse 

(Rockville, MD, USA) and dissolved in bacteriostatic 0.9% saline. 

 

Statistics. All reinstatement experiments were analyzed with two-way ANOVAs with 

repeated measures over reinstatement days. Pairwise analyses were made with 

Bonferroni post-tests (p < 0.05).	



	 50	

Results 
 
Deep brain stimulation of the infralimbic, but not prelimbic or anterior cingulate, 

prefrontal cortex attenuates cocaine reinstatement 

The mPFC has been shown to be critically involved in the reinstatement of cocaine 

seeking (McFarland and Kalivas, 2001; Park et al., 2002; Stefanik et al., 2013). 

However, the effect of mPFC DBS on cocaine seeking has not yet been examined. Total 

active and inactive lever responding (mean±SEM) from the reinstatement session during 

which DBS was applied to the infralimbic mPFC are presented in Figure 1A. These data 

were analyzed using a two-way ANOVA (both treatment and lever were within-subject 

factors), which revealed no effect of DBS treatment (F(1,7) = 2.52, p=0.16), a significant 

main effect of lever responding (F(1,7) = 36.91, p<0.001), and a significant interaction 

between these variables (F(1,7) = 7.849, p<0.05). Subsequent pairwise analyses 

indicated that the total active lever responses between the 0 and 150 µA treatment were 

significantly different (Bonferroni, p<0.05).  

 

In order to determine if the effects of DBS in the infralimbic mPFC were reinforcer-

specific, we tested its effects on sucrose reinstatement. Total active and inactive lever 

responding (mean±SEM) from the reinstatement session during which DBS was applied 

to the infralimbic mPFC are presented in Figure 1B. These data were analyzed using a 

two-way ANOVA which revealed no effect of DBS treatment (F(1,8) = 0.2339, p=0.64), a 

significant main effect of lever responding (F(1,8) = 70.74, p<0.0001), and no interaction 

between these variables (F(1,8) = 0.4386, p=0.53). The electrode placements for both 

cocaine and sucrose experiments are shown in Figure 1C. 
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Total active and inactive lever responding (mean±SEM) from the reinstatement session 

during which DBS was applied to the prelimbic and anterior cingulate cortices are 

presented in Figure 2A and 2B, respectively. These data were analyzed using separate 

two-way ANOVAs. The results of the prelimbic mPFC (Fig 2A) revealed no effect of DBS 

treatment (F(1,7) = 1.779, p=0.22), a significant main effect of lever responding (F(1,7) = 

35.09, p<0.001), and no interaction between these variables (F(1,7) = 0.7098, p=0.43). 

The results of the anterior cingulate mPFC (Fig 2B) revealed no effect of DBS treatment 

(F(1,6) = 1.099, p=0.34), a significant main effect of lever responding (F(1,6) = 34.15, 

p<0.01), and no interaction between these variables (F(1,6) = 1.874, p=0.22). Subsequent 

pairwise analyses indicated that the total inactive lever responses between the 0 and 

150 µA treatment were significantly different (Bonferroni, p<0.05). The electrode 

placements for both regions are shown in Figure 2C. 

 

Deep brain stimulation of the basolateral amygdala attenuates the reinstatement of both 

cocaine and sucrose seeking 

There is strong evidence for the BLA in the reinstatement of cocaine seeking, as lesions 

of the BLA attenuated cocaine priming-induced reinstatement (Yun and Fields, 2003). 

Additionally, optogenetic inhibition of the BLA attenuated cocaine reinstatement 

(Stefanik and Kalivas, 2013). 

 

Total active and inactive lever responding (mean±SEM) from the reinstatement session 

during which DBS was applied to the BLA are presented in Figure 3A. These data were 

analyzed using a two-way ANOVA which revealed a strong trend of DBS treatment (F(1,6) 

= 5.171, p=0.06), a significant main effect of lever responding (F(1,6) = 88.07, p<0.0001), 

and a significant interaction between these variables (F(1,6) = 7.76, p<0.05). Subsequent 
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pairwise analyses indicated that the total active lever responses between the 0 and 150 

µA treatment were significantly different (Bonferroni, p<0.05).  

 

To determine if the effects of DBS in the BLA were reinforcer-specific, we tested its 

effects on sucrose reinstatement. Total active and inactive lever responding 

(mean±SEM) from the reinstatement session during which DBS was applied to the BLA 

are presented in Figure 3B. These data were analyzed using a two-way ANOVA which 

revealed a significant main effect of DBS treatment (F(1,5) = 10.86, p<0.05), a significant 

main effect of lever responding (F(1,5) = 28.69, p<0.01), and a significant interaction 

between these variables (F(1,5) = 26.31, p<0.01). Subsequent pairwise analyses 

indicated that the total active lever responses between the 0 and 150 µA treatment were 

significantly different (Bonferroni, p<0.05). The electrode placements are shown in 

Figure 3C. 

 

Deep brain stimulation of the ventral hippocampus attenuates the reinstatement of both 

cocaine and sucrose seeking 

The ventral hippocampus has been shown to be critical nucleus in promoting cocaine 

reinstatement. Inactivation of the ventral hippocampus with lidocaine blocked cocaine 

priming-induced reinstatement (Sun and Rebec, 2003). Consistent with this, 

administration of baclofen and muscimol to the ventral hippocampus attenuated cocaine 

priming-induced reinstatement (Rogers and See, 2007).  

 

Following cocaine self-administration and extinction, DBS of the ventral hippocampus (0 

or 150 µA) was administered throughout a 2 h cocaine-primed reinstatement session. 

Total active and inactive lever responding (mean±SEM) from the reinstatement session 
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during which DBS was applied to the ventral hippocampus are presented in Figure 4A. 

These data were analyzed using a two-way ANOVA which revealed a significant effect 

of DBS treatment (F(1,5) = 9.453, p<0.05), a significant main effect of lever responding 

(F(1,5) = 8.092, p<0.05), and a significant interaction between these variables (F(1,5) = 

12.83, p<0.05). Subsequent pairwise analyses indicated that the total active lever 

responses between the 0 and 150 µA treatment were significantly different (Bonferroni, 

p<0.05). 

 

In order to determine if the effects of DBS in the ventral hippocampus were reinforcer-

specific, we tested its effects on sucrose reinstatement. Total active and inactive lever 

responding (mean±SEM) from the reinstatement session during which DBS was applied 

to the ventral hippocampus are presented in Figure 4B. These data were analyzed using 

a two-way ANOVA which revealed no effect of DBS treatment (F(1,7) = 3.507, p=0.1033), 

lever responding (F(1,7) = 23.45, p=0.0019), and a significant interaction between these 

variables (F(1,7) = 7.314, p=0.0304). Subsequent pairwise analyses indicated that the 

total active lever responses between the 0 and 150 µA treatment were significantly 

different (Bonferroni, p<0.05). The electrode placements are shown in Figure 4C. 

 

Deep brain stimulation of the infralimbic medial prefrontal cortex reduced neuronal 

activation in the nucleus accumbens shell 

It has been demonstrated that disruption of cortico-accumbal glutamatergic projections 

attenuates cocaine seeking (Park et al., 2002; Schmidt and Pierce, 2010). To determine 

if infralimbic mPFC DBS attenuated activation of glutamatergic projection neurons in the 

nucleus accumbens shell during cocaine reinstatement, we used immunohistochemistry 

to determine the levels of the immediate-early gene zif268 following DBS. Briefly, rats 
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underwent cocaine self-administration and extinction as described previously. 

Subsequently, rats underwent a 30 min reinstatement session and randomly received 0 

or 150 µA stimulation following a systemic priming challenge injection of either saline or 

cocaine (10 mg/kg, i.p.).  

 

Total active lever responses (mean ± SEM) from the 30 min reinstatement session are 

shown in Figure 5A. These data were analyzed using a two-way ANOVA (both DBS 

treatment and challenge were between-subject factors), which revealed significant main 

effects of DBS treatment (F(1,4) = 16.32, p<0.05), challenge injection (F(1,4) = 33.94, 

p<0.01), and a significant interaction between these variables (F(1,4) = 15.64, p<0.05). 

Post hoc analyses showed that total active lever responses were significantly different 

between Cocaine/Control groups and all other groups (Bonferroni, p<0.05) 

 

Total zif268-positive cells (mean ± SEM) in the nucleus accumbens shell are quantified 

and shown in Figure 5B. These data were analyzed using a two-way ANOVA, which 

revealed significant main effects of DBS treatment (F(1,4) = 64.57, p<0.01), challenge 

injection (F(1,4) = 62.16, p<0.01), and a significant interaction between these variables 

(F(1,4) = 64.57, p<0.01). Post hoc analyses showed that the amount zif268-positive cells 

were significantly different between Cocaine/Control groups and all other groups 

(Bonferroni, p<0.01; n = 2/group). Representative images of zif268 staining are shown in 

Figure 5C.	
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Discussion 
 
The mPFC, vHipp, and BLA send rich glutamatergic projections to the nucleus 

accumbens (Phillipson and Griffiths, 1985; Friedman et al., 2002) and are critical for the 

reinstatement of cocaine seeking (Grimm, 2000; McFarland and Kalivas, 2001; Sun and 

Rebec, 2003; Schmidt and Pierce, 2010; Lüscher and Malenka, 2011). In this study, we 

examine whether these nuclei could also serve as target regions for DBS in the 

treatment of cocaine addiction. The present results show that DBS of the infralimbic 

mPFC attenuates the reinstatement of cocaine, but not sucrose, seeking. Further, we 

show that this effect is region-specific as DBS in the prelimbic mPFC or anterior 

cingulate cortex does not attenuate cocaine reinstatement. We also show that DBS of 

the BLA or the vHipp attenuates the reinstatement of both cocaine and sucrose seeking, 

illustrating possible deficits in natural reward processing and operant responding. 

Collectively, these results provide evidence that the infralimbic mPFC may be an 

effective target for DBS in the treatment of intractable drug addiction. 

 

The mPFC can be divided into three functional subregions: the anterior cingulate cortex, 

the prelimbic cortex, and the infralimbic cortex (Krettek and Price, 1977). Our findings 

indicate that DBS of the infralimbic mPFC, but not the prelimbic or anterior cingulate 

cortices, attenuates cocaine reinstatement. Further, we observe an increase in inactive 

lever responding when DBS is applied to the anterior cingulate cortex, suggesting a 

generalized disruption in locomotor behavior. Since DBS of the infralimbic mPFC 

selectively attenuates cocaine, but not sucrose reinstatement, and we see no effect on 

cocaine reinstatement and generalized disruption in locomotor behavior when DBS is 

applied to the prelimbic and anterior cingulate cortices, this suggests that the infralimbic 
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mPFC is the ideal mPFC subregion to target when applying DBS for the treatment of 

cocaine addiction. 

 

Our findings add to the complex literature surrounding the role of infralimbic-accumbens 

shell projections in the reinstatement of cocaine seeking. The mPFC subregions have 

differential glutamatergic projections to the nucleus accumbens. The dorsal mPFC (i.e. 

anterior cingulate and dorsal prelimbic cortices) projects mainly to the nucleus 

accumbens core, whereas the ventral mPFC (i.e. ventral prelimbic and infralimbic 

cortices) projects primarily to the nucleus accumbens shell (Berendse et al., 1992; 

Wright and Groenewegen, 1995; Ding et al., 2001). The present results are consistent 

with previous work showing that DBS of the accumbens shell, but not the core, 

attenuates the reinstatement of cocaine seeking (Vassoler et al., 2013). However, these 

findings appear at odds with other studies showing that administration of a cocktail of 

GABA receptor agonists baclofen and muscimol into the core, but not the shell, as well 

as all 3 subregions of the mPFC attenuates cocaine reinstatement (Vassoler et al., 

2013). Moreover, administration of baclofen and muscimol into the infralimbic mPFC 

reinstates cocaine seeking while microinjections of AMPA into this region attenuates 

cocaine seeking (Peters et al., 2008). Since multiple neurotransmitter systems in the 

mPFC are involved in cocaine reinstatement, these conflicting findings emphasize that a 

single pharmacological manipulation cannot provide definitive conclusions about the role 

of a single brain region in cocaine reinstatement. Additionally, our results may differ from 

these pharmacological studies as DBS has multiple potential mechanisms including, but 

not limited to, inactivation of target nuclei. Though there are wide-ranging findings 

suggesting that the infralimbic mPFC plays a complex role in drug-seeking behavior 

(Moorman et al., 2015), the present results add to the growing body of literature 
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demonstrating a role for infralimbic mPFC-accumbens shell glutamatergic pathway in the 

reinstatement of drug seeking (Bossert et al., 2012; Vassoler et al., 2013; Willcocks and 

McNally, 2013). 

 

In this study, we show that DBS of the BLA attenuates the reinstatement of both cocaine 

and sucrose seeking. The amygdala can be divided into many subnuclei, several of 

which play an important role in drug-seeking behavior, particularly cue-induced 

reinstatement of cocaine seeking (Grimm, 2000; McFarland et al., 2004; Fuchs et al., 

2005; Mashhoon et al., 2009; Stefanik and Kalivas, 2013). The BLA is also implicated in 

drug priming-induced reinstatement of cocaine seeking. Lesions of the BLA attenuates 

cocaine priming-induced reinstatement (Yun and Fields, 2003). Further, antagonism of 

D1-like and D2-like dopamine receptors, in the BLA attenuates cocaine priming-induced 

reinstatement (Alleweireldt et al., 2006; Di Ciano, 2008). In addition to reducing drug-

seeking behavior, our results also show that DBS of the BLA also attenuates sucrose 

reinstatement. This is consistent with data suggesting that the BLA plays a complex role 

in reward-related behaviors. Specifically, lesions of the BLA block conditioned place 

preference for food (Everitt et al., 1991) as well as impair approach to a conditioned 

stimulus predictive of sucrose reinforcement (Burns et al., 1993). Other findings show 

that inactivation of the BLA has no effect on, or even potentiates reinstatement of food 

seeking (McLaughlin and Floresco, 2007). Further, neurons in the BLA exhibit complex 

response properties depending on behavioral tasks and outcomes (Carelli et al., 2003; 

Tye et al., 2008; 2010). Since DBS of the BLA indiscriminately impairs operant 

responding, these findings suggest that it may not be an effective target for DBS in the 

treatment of cocaine addiction.   
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Similar to DBS in the BLA, DBS of the vHipp also attenuates both cocaine and sucrose 

reinstatement. The hippocampus, a critical region for memory and reward-related 

behaviors, can be segregated into dorsal and ventral regions (Moser and Moser, 1998). 

The dorsal hippocampus is critical for spatial memory (Moser et al., 1995), whereas the 

ventral hippocampus plays more important role in motivated behaviors (Henke, 1990). 

Like the mPFC and BLA, the vHipp is strongly innervated with dopaminergic projections 

from the VTA (Gasbarri et al., 1994a; 1994b). Additionally, the vHipp is the major output 

region of the hippocampus (Groenewegen et al., 1987), with strong projections to the 

nucleus accumbens, particularly the accumbens shell (Fanselow and Dong, 2010). 

There is evidence for the role of the vHipp in the reinstatement of cocaine seeking. 

Inactivation of the vHipp with lidocaine blocks cocaine priming-induced reinstatement 

(Sun and Rebec, 2003). Consistent with this, administration of baclofen and muscimol to 

the vHipp attenuates cocaine priming-induced reinstatement (Rogers and See, 2007). 

However, there is also evidence that modulation of the vHipp can affect other reward-

related behaviors. Specifically, stimulation of ghrelin receptors in the vHipp increases ad 

libitum food taking and operant responding for food reward (Kanoski et al., 2013). 

Additionally, stimulation of glucagon-like peptide-1 (GLP-1) receptors in the vHipp 

attenuates both ad libitum food taking and operant responding for food reward (Hsu et 

al., 2015). These findings support the literature showing that disrupting activity in the 

vHipp can impair natural reward processing. For these reasons, the vHipp may not be an 

appropriate target for DBS in the treatment of cocaine addiction. 

 

We also demonstrate that infralimbic mPFC DBS reduces zif268 immunoreactivity in the 

nucleus accumbens shell, suggesting that the reduction in cocaine seeking is likely 

mediated by inactivation of glutamatergic projection neurons. This is in agreement with 
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our previous work showing that DBS of the accumbens shell is associated with 

antidromic activation of GABAergic interneurons in the infralimbic mPFC (Vassoler et al., 

2013). Moreover, accumbal DBS inhibits spontaneous activity of prefrontal cortico-

accumbal glutamatergic neurons while also stimulating cortical interneurons (McCracken 

and Grace, 2007). Taken together, these findings suggest that accumbal DBS impairs 

glutamatergic transmission from the mPFC. Our results expand upon this finding and 

suggest that infralimbic mPFC DBS attenuates glutamatergic transmission in the 

accumbens shell to reduce cocaine seeking. This suggests that DBS produces 

inactivation in the target nucleus, rather than antidromic activation of afferent structures. 

This is consonant with similar findings in depression showing that DBS in these regions 

produces similar behavioral outcomes, albeit with distinct patterns of regional activity 

and functional connectivity (Hamani et al., 2014).  

 

The current findings contribute to the growing body of literature indicating that DBS may 

be an effective therapeutic intervention in the treatment of cocaine addiction. Moreover, 

these data support previous claims that the mPFC may be a potentially effective target 

for DBS in the treatment of addiction (Luigjes et al., 2012). Our preclinical findings 

strongly suggest that in addition to the nucleus accumbens shell (Vassoler et al., 2008; 

2013), the infralimbic mPFC may be another effective target for DBS (present results). 

Our results also indicate that when considering brain regions to target for DBS as a 

treatment for cocaine craving, one must take into account the potential of DBS to 

produce adverse effects on behavior, including general motor impairments, deficits in 

operant learning, and altered natural reward processing. Further studies should examine 

in greater detail the circuit-wide influences of both infralimbic mPFC and accumbal shell 

DBS in cocaine reinstatement in order to optimize their therapeutic strategy.	
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Figures 
 

	

Figure 3. 1 Deep brain stimulation of the infralimbic mPFC attenuates cocaine reinstatement. (A) 
Mean (±SEM) active and inactive lever responses from cocaine reinstatement session with 0 or 
150 µA stimulation aimed at the infralimbic mPFC. (B) Mean (±SEM) active and inactive lever 
responses from sucrose reinstatement session with 0 or 150 µA stimulation aimed at the 
infralimbic mPFC. (C) Electrode placements from the infralimbic mPFC (dark circles). The values 
are in millimeters, relative to bregma. *p < 0.05 0 µA compared to 150 µA. There were 8-9 
animals per group. 
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Figure 3. 2 Deep brain stimulation of the prelimbic or anterior cingulate cortices has no effect on 
cocaine reinstatement. (A) Mean (±SEM) active and inactive lever responses from cocaine 
reinstatement session with 0 or 150 µA stimulation aimed at the prelimbic mPFC. (B) Mean 
(±SEM) active and inactive lever responses from cocaine reinstatement session with 0 or 150 µA 
stimulation aimed at the anterior cingulate cortex. (C) Electrode placements from the prelimbic 
mPFC (dark circles) and anterior cingulate cortex (grey circles). The values are in millimeters, 
relative to bregma. *p < 0.05 0 µA compared to 150 µA. There were 7-8 animals per group. 
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Figure 3. 3 Deep brain stimulation of the basolateral amygdala attenuates both cocaine and 
sucrose reinstatement. (A) Mean (±SEM) active and inactive lever responses from cocaine 
reinstatement session with 0 or 150 µA stimulation aimed at the BLA. (B) Mean (±SEM) active 
and inactive lever responses from sucrose reinstatement session with 0 or 150 µA stimulation 
aimed at the BLA. (C) Electrode placements from the BLA (dark circles). The values are in 
millimeters, relative to bregma. *p < 0.05 0 µA compared to 150 µA. There were 7 animals per 
group. 
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Figure 3. 4 Deep brain stimulation of the ventral hippocampus attenuates both cocaine and 
sucrose reinstatement. (A) Mean (±SEM) active and inactive lever responses from cocaine 
reinstatement session with 0 or 150 µA stimulation aimed at the vHipp. (B) Mean (±SEM) active 
and inactive lever responses from sucrose reinstatement session with 0 or 150 µA stimulation 
aimed at the vHipp. (C) Electrode placements from the BLA (dark circles). The values are in 
millimeters, relative to bregma. *p < 0.05 0 µA compared to 150 µA. There were 6-8 animals per 
group. 
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Figure 3. 5 Deep brain stimulation of the infralimbic mPFC is associated with decreased zif268 
immunoreactivity in the nucleus accumbens shell. At the reinstatement test session, all animals 
received either a saline or cocaine priming injection followed by either 0 or 150 µA stimulation. (A) 
Mean (±SEM) active and inactive lever responses from 30 min reinstatement session. (B) Mean 
(±SEM) zif268-positive cells in the nucleus accumbens shell. (C) Representative images from all 
conditions. *p < 0.05 0 µA compared to 150 µA. There were 2 animals per group. 
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Abstract 
 
There is a large body of evidence suggesting that many of the cellular and molecular 

mechanisms that underlie learning and memory are also critically involved in cocaine-

induced plasticity. A-Kinase Anchoring Proteins (AKAPs) are scaffolding proteins that 

localize Protein Kinase A (PKA) to subcellular compartments to facilitate second 

messenger signaling. Though there are many different isoforms of AKAPs, AKAP150 is 

the most well-characterized and is highly expressed in the brain. Though the role of 

AKAP150 in synaptic plasticity, learning, and memory has been well established, its 

involvement in cocaine addiction has been minimally explored. Here, we examine the 

role of AKAP150 in the reinstatement of cocaine-seeking behavior, an animal model of 

relapse. The present results show that blockade of PKA binding to AKAPs in the nucleus 

accumbens shell of Sprague-Dawley rats attenuates cocaine reinstatement induced by a 

both priming injection of cocaine and intra-accumbal shell administration of a D1-like 

dopamine receptor (D1DR) agonist. Moreover, this effect seems to be dependent on the 

AKAP150 isoform as viral expression of a dominant negative isoform of AKAP150 

lacking the PKA binding domain in the accumbens shell also attenuates cocaine 

reinstatement. This attenuation in cocaine reinstatement is accompanied by decreased 

phosphorylation of GluA1-containing AMPA receptors (AMPARs). Additionally, our 

findings also reveal decreases in AMPAR eEPSCs after disruption of PKA binding to 

AKAP150. Collectively, these results support the novel hypothesis that AKAP150 

promotes the reinstatement of cocaine-seeking behavior by facilitating D1DR-induced, 

PKA-mediated phosphorylation of GluA1-containing AMPARs.	
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Introduction 
 
Neuroadaptations in both the dopamine and glutamate systems in the nucleus 

accumbens contribute heavily to the reinstatement of cocaine seeking, an animal model 

of relapse (Shaham and Hope, 2005; Kauer and Malenka, 2007; Schmidt and Pierce, 

2010). It has been shown that stimulation of accumbens shell, but not core, D1-like 

dopamine receptors (D1DRs) promoted the reinstatement of cocaine seeking (Bachtell 

et al., 2005; Schmidt et al., 2006; Anderson et al., 2008). Additionally, administration of a 

D1DR antagonist into the accumbens shell, but not the core, attenuated cocaine 

reinstatement (Anderson et al., 2003; Bachtell et al., 2005). D1DR stimulation leads to 

increased cyclic adenosine monophosphate (cAMP) production, ultimately activating 

protein kinase A (PKA) (MISSALE et al., 1998; Beaulieu and Gainetdinov, 2011). 

Chronic exposure to cocaine leads to increased D1DR signaling, as well as increased 

cAMP formation and PKA activity in the nucleus accumbens (Self et al., 1995; Unterwald 

et al., 1996; Lu et al., 2003), which have been implicated in cocaine self-administration 

and reinstatement (Self et al., 1998).  

 

One of the intracellular targets of PKA is the AMPA glutamate receptor (AMPAR), which 

plays a major role in cocaine reinstatement (Schmidt and Pierce, 2010). PKA 

phosphorylation of the GluA1 subunit of AMPARs leads to increased open probability of 

AMPARs as well as increased surface expression of GluA1-containing AMPARs (Banke 

et al., 2000; Malinow, 2003). In cultured accumbal neurons, D1DR stimulation increased 

both GluA1 phosphorylation by PKA and GluA1 surface expression (Chao et al., 2002a; 

2002b). Moreover, cocaine reinstatement was attenuated by intra-accumbal shell 

administration of AAV10-GluA1-C99, which impairs the trafficking of GluA1-containing 

AMPARs to the cell surface (Anderson et al., 2008). Thus, one of the main mechanisms 
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underlying cocaine priming-induced reinstatement of drug seeking is the activation of 

D1DRs in the accumbens shell, which results in PKA-dependent insertion of GluA1-

containing AMPARs into synapses. 

 

A-Kinase anchoring proteins (AKAPs) are a family of proteins that bind and localize PKA 

to distinct subcellular compartments to facilitate second messenger signaling (Wong and 

Scott, 2004; Carnegie et al., 2009). While there are many different forms of AKAPs, 

AKAP79/150 (human79/rodent150; also known as AKAP5) is the best characterized 

(Wong and Scott, 2004). AKAP150 is highly expressed in the brain, particularly the 

striatum/accumbens, and binds numerous signaling, receptor, accessory, and ion 

channel proteins involved in long-term synaptic plasticity (Glantz et al., 1992; 

Ostroveanu et al., 2007; Sanderson and Dell'Acqua, 2011). In particular, AKAP150 

localizes PKA to AMPARs via interaction with the scaffolding protein SAP97, leading to 

enhanced phosphorylation of GluA1 (Colledge et al., 2000; Tavalin et al., 2002). This 

process was shown to be critical in mediating synaptic plasticity and memory formation. 

Thus, either total deletion or deletion of the final 36 amino acids of AKAP150, which 

contains the PKA binding domain, impaired operant learning, spatial memory, 

hippocampal LTP and LTD, and reduced AMPA currents (Tunquist et al., 2008; 

Weisenhaus et al., 2010). Additionally, sleep deprived mice exhibiting memory deficits 

showed reduced AKAP150 expression and reduced AMPAR phosphorylation 

(Hagewoud et al., 2009). Recent evidence also indicated that AKAP150 expression was 

increased in the post-synaptic density PSD fractions of the nucleus accumbens of 

cocaine-treated rats and disruption of AKAP-PKA binding attenuated cocaine 

reinstatement (Reissner et al., 2011). These findings strongly suggest a potential role for 

AKAP150 in mediating cocaine addiction and craving.  
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In the current study, we further investigated the role of AKAP150 in the reinstatement of 

cocaine seeking. Using biochemical and electrophysiological techniques, we examined 

the underlying signaling mechanisms by which AKAP150 can affect cocaine 

reinstatement. Our results demonstrate that AKAP150 facilitates cocaine reinstatement 

by promoting the D1DR-induced, PKA-mediated phosphorylation of GluA1-containing 

AMPARs.	
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Materials and Methods 
 
Animals and housing:  Male Sprague-Dawley rats (Rattus norvegicus) weighing 250-300 

g were obtained from Taconic Laboratories (Germantown, NY). Rats were housed 

individually with food and water available ad libitum. A 12/12 hr light/dark cycle was used 

with the lights on at 7:00 a.m. All experimental procedures were performed during the 

light cycle. All experimental procedures were consistent with the ethical guidelines of the 

US National Institutes of Health and were approved by the Perelman School of Medicine 

Institutional Animal Care and Use Committee at the University of Pennsylvania. 

 

Materials:  All experiments used Med-Associates (East Fairfield, VT) instrumentation 

enclosed within ventilated, sound attenuating chambers. Each operant conditioning 

chamber was equipped with response levers, food pellet dispensers and infusion pumps 

for injecting drugs intravenously. 

 

Drugs and Viruses. Cocaine hydrochloride was obtained from the National Institute on 

Drug Abuse (Rockville, MD) and dissolved in bacteriostatic 0.9% saline. InCELLect 

AKAP inhibitor St-Ht31 and control peptide St-Ht31P were purchased from Promega 

(Madison, WI). D1-like dopamine receptor agonist R-(+)-6-chloro-7,8-dihydroxy-1-

phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) was purchased 

from Tocris Bioscience (Minneapolis, MN). SKF-81297 was dissolved in bacteriostatic 

0.9% saline.  

 

Herpes simplex virus (HSV) vectors were constructed and packaged at the Viral Gene 

Transfer Core at the McGovern Institute for Brain Research (MIT, Cambridge, MA, USA) 

as described previously (Neve et al., 2005). Briefly, AKAP79∆PKA cDNA was inserted 
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into the HSV amplicon HSV-PrpUC, packaged and resuspended in 10% sucrose. The 

average titer of the resulting HSV stocks was 4.0 x 10
8 infectious units per ml. 

Transgene expression was regulated by HSV IE 4/5 vectors, which produced a transient 

increase in transgene expression that was maximal between 3 and 4 days after infusion 

and dissipated completely by 6–7 days (Neve et al., 2005). All viruses were designed to 

co-express enhanced green fluorescent protein (eGFP) driven by a separate CMV 

promoter. Control viruses express a scrambled sequence plus eGFP. Control virus 

expressed an empty vector plus eGFP. 

 

Surgery:  Prior to surgery, the rats were anesthetized with 80 mg/kg ketamine and 12 

mg/kg xylazine.  An indwelling silastic catheter was placed into the right jugular vein 

(side opposite the heart) and sutured in place.  The catheter was then threaded 

subcutaneously over the shoulder blade and was routed to a mesh backmount platform 

(CamCaths, Cambridge, UK/ Strategic Applications Inc., Libertyville, Il) that was sutured 

below the skin between the shoulder blades.  Catheters were flushed daily with 0.3 ml of 

an antibiotic (Timentin, 0.93 mg/ml) dissolved in heparinized saline.  The catheters were 

sealed with plastic obturators when not in use. Following catheter implantation, rats were 

mounted in a stereotaxic apparatus (Kopf Instruments, CA) and stainless steel guide 

cannula (14 mm, 24 gauge; Small Parts Inc., Roanoke, VA) were implanted dorsal to the 

nucleus accumbens shell according to the following coordinates, relative to bregma 

(Paxinos and Watson, 1997): +1.0 mm anteroposterior (A/P), ±1.0 mm mediolateral 

(M/L), -5.0 mm dorsoventral (D/V). Guide cannulae were cemented in place by affixing 

dental acrylic to three stainless steel screws fastened to the skull. An obturator (33-

gauge wire) was inserted into each guide cannula to prevent occlusion. 
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Cocaine self-administration and extinction. Following a 7 d period for recovery from 

surgery, rats were placed in operant conditioning chambers and allowed to press a lever 

for intravenous cocaine infusions (0.254 mg of cocaine, 59 µL of saline, infusion over 5 

s). Rats initially were trained using a fixed ratio 1 (FR1) schedule of reinforcement. When 

the animals achieved stable responding with the FR1 schedule (i.e., <15% variation in 

total presses over 3 consecutive days), they were switched to an FR5 schedule. A 20 s 

timeout period during which active, drug-paired lever responses had no scheduled 

consequences followed each cocaine infusion. Each operant chamber was also 

equipped with an inactive lever. Responses made on the inactive lever had no 

scheduled consequences and served as an operant control. The rats were limited to a 

maximum of 30 cocaine infusions per daily 2 h self-administration session. After 21 d of 

daily cocaine self-administration sessions, rats underwent an extinction phase during 

which cocaine was replaced with 0.9% bacteriostatic saline. Daily 2 h extinction sessions 

were conducted until active lever responding was <15% of the responses averaged over 

the last 3 days of cocaine self-administration.  

 

Sucrose self-administration and extinction. Following a 7 d period for recovery from 

surgery, a separate group of rats were food restricted (~25 g of daily chow; Harland 

Teklad, Wilmington, DE) and allowed to self-administer 50 mg Noyes sucrose pellets 

(Research Diets; New Brunswick, NJ, USA) using the same procedures described 

above. After 21 d of daily 1 h sucrose-reinforced operant sessions, rats underwent an 

extinction phase where active lever responding no longer resulted in sucrose delivery. 

Extinction of sucrose self-administration was continued until active lever responding 

decreased to 15% or less of the responses averaged over the last 3 days of sucrose 

self-administration. 
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Cocaine and Sucrose Reinstatement – St-Ht31 Microinjections. Following the extinction 

phase, reinstatement was assessed. The obturators were removed from the guide 

cannulae and 33-gauge stainless steel microinjectors were inserted into the guide 

cannulae. The microinjectors extended 2 mm below the ventral end of the guide 

cannulae into the nucleus accumbens shell. To determine the role of AKAP signaling in 

cocaine reinstatement, bilateral intra-accumbal shell microinfusions of St-Ht31 or control 

St-Ht31P peptide (0.5 µL, 10mM) occurred over 120 s. This dose of St-Ht31 was 

previously shown to modulate cocaine-seeking behavior (Reissner et al., 2011). 

Following microinfusions, the microinjectors remained in place for an additional 60 s to 

allow the solution to diffuse away from the tips of the microinjectors prior to removal. For 

cocaine reinstatement, 30 min following intra-accumbal shell microinjections, a systemic 

priming injection of cocaine (10mg/kg, i.p.) was administered immediately prior to a 

reinstatement test session. During reinstatement, satisfaction of the response 

requirements for each component resulted in a saline infusion rather than a cocaine 

infusion. For sucrose reinstatement, the experimenter remotely administered one 

sucrose pellet every 2 min for the first 10 min of the reinstatement test session. 

For sucrose reinstatement, active lever presses had no scheduled consequences. For 

both cocaine and sucrose reinstatement, each reinstatement session was followed by 

extinction sessions (typically only one or two) until responding was <15% of the 

response rate maintained by self-administration. The FR5 schedule was used 

throughout extinction and reinstatement. St-Ht31 or St-Ht31P were administered in the 

reinstatement session in a counterbalanced fashion. 

 

In a separate experiment, cocaine reinstatement was induced by intra-accumbal shell 
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microinfusions of the selective D1-like dopamine receptor (D1DR) agonist SKF-81297 as 

described previously (Schmidt et al., 2006). To determine whether AKAPs mediate 

D1DR agonist-induced reinstatement of cocaine seeking, St-Ht31 or control St-Ht31P 

(0.5 µL, 10mM) was microinjected into the shell 30 min before intra-accumbal shell 

infusions of SKF-81297 (0.5 µL).  

 

Cocaine and Sucrose Reinstatement – Viral Vectors. In these experiments, rats 

underwent daily extinction sessions until active lever responding was ~20% of the 

responses averaged over the final 3 d of self-administration. Rats then received bilateral 

intra-accumbal shell microinfusions of either HSV-GFP or HSV-AKAP79∆PKA over 10 

min for a total volume of 2 µL per hemisphere. Following the microinfusions, the 

microinjectors were left in place for an additional 120 s to allow the solution to diffuse 

away from the tips. Rats continued to undergo extinction for 3 days for peak viral 

expression prior to reinstatement testing. Cocaine and sucrose reinstatement were 

induced as described above. 

 

Western Blotting. Rats underwent cocaine reinstatement with viral pretreatments as 

described above. Immediately prior to the reinstatement testing, animals randomly 

received a systemic priming injection of saline or cocaine (10 mg/kg, i.p.). Rats were 

placed immediately into the operant chambers following injection of saline or cocaine. 

Responding was recorded for 30 min, after which the pairs of rats were removed from 

the operant chambers and immediately decapitated. Whole brains were extracted and 

flash-frozen in isopentane on dry ice, then stored at -80◦C. Brains were sliced on a 

cryostat and the nucleus accumbens shell was dissected by tissue punch (2.0 mm Harris 

Unicore stainless steel punchers, Ted Pella, Inc.). Tissue samples were stored at −80◦C 
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until processing for Western bloting. Tissue was processed for Western Blotting as 

described previously (Anderson et al., 2008). For all samples, protein concentration was 

quantified using a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal 

amounts of protein (10–20µg) were loaded and separated in 10% Tris-Glycine gels (Life 

Technologies, Grand Island, NY) by SDS-PAGE, then transferred to nitrocellulose 

membranes using the iBlot dry transfer system (Life Technologies), which were then 

preblocked with Tris-buffered saline containing 0.1% Tween 20 (TBST) and 5% bovine 

serum albumin for 1 h before overnight incubation with the following primary antibodies: 

pSer845-GluA1 (1:1000, Millipore #04-1073), total GluA1 (1:1000, Millipore #MAB2263), 

PKA-RII (1:1000, Santa Cruz #sc-909). Membranes were concurrently incubated with 

mouse monoclonal anti-GAPDH (1:2000, Cell Signaling #2118) as a loading control. 

Primary antibody incubation was followed by three washes [10 min each with rocking, 

room temperature (RT)] in Tris-buffered saline containing 0.1% Tween 20. Membranes 

were then incubated for 1 h at RT with secondary antibodies (IRDye 800 goat anti-

mouse and IRDye 680 goat anti-rabbit, 1:5000) in Odyssey blocking buffer 0.05% Tween 

20 (LI-COR Biosciences). Antibody/protein complexes were visualized using the 

Odyssey IR imaging system (Li-Cor Biosciences). For pSer845 and GluA1 analysis, gels 

were transferred to nitrocellulose membranes for 1 hour at 100V using SDS Running 

Buffer (Bio-Rad) and immunoprobed in TBST with 5% milk (Bio-Rad). HRP conjugated 

secondary antibody dilutions were 1:10,000 (Bio-Rad). Bands were visualized using the 

myECL Imager (ThermoFisher Scientific). Band intensities were quantified using either 

the Odyssey or mECL Imaging software. For data analysis, all bands were normalized to 

GAPDH and divided by the mean of the control group. The ratio of phosphorylated to 

native protein was then calculated.  
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Electrophysiology. A separate cohort of rats underwent cocaine reinstatement with viral 

pretreatments as described above. Immediately after a 30 min reinstatement session, 

rats were decapitated and brain slices prepared as described previously (Ortinski et al., 

2013). In brief, the brain was removed and coronal slices (300 µm) containing the 

nucleus accumbens were cut with a Vibratome (VT1000S, Leica Microsystems) in ice-

cold dissection artificial cerebrospinal fluid solution (aCSF), in which NaCl was replaced 

by an equiosmolar concentration of sucrose. Dissecting aCSF consisted of 219 mM 

sucrose, 2.5 mM KCl, 1.2 mM NaH2PO4, 26 mM NaHCO3, 10 mM glucose, 2.5 mM 

MgSO4, and 1 mM CaCl2 (pH 7.2–7.4 when saturated with 95% O2/5% CO2). Slices 

were incubated at 32-35°C for 30 min in recording aCSF and then maintained at room 

temperature. Recording aCSF consisted of (in mM): 219 NaCl, 2.3 KCl, 1.25 mM 

NaH2PO4, 26 NaHCO3, 10 glucose, 1 MgCl2, 2 CaCl2. Prior to experiments, slices were 

transferred to a recording chamber continuously perfused with oxygenated aCSF at 1.8-

2 mL/min and heated to 30°C. Slices were viewed using infrared differential interference 

contrast optics under an upright microscope (Eclipse FN1, Nikon Instruments) with a 

40X water immersion objective. Whole-cell recordings were obtained using borosilicate 

glass pipettes filled with intracellular solution containing: 95 mM CsCH3O3S, 55 mM 

CsCl, 0.2 mM EGTA, 10 mM HEPES, 1 mM MgCl2, 2 mM Na2-ATP, 0.3 mM Na-GTP, 5 

mM QX-314, 0.1mM spermine, adjusted to pH 7.2–7.3 with CsOH (osmolarity 280–290 

mOsm). All experiments were performed in the presence of 100 µM picrotoxin (to block 

GABAA) and 50 µM APV (to block NMDA). Recordings were conducted with a 

MultiClamp 700B, Digidata 1440A, and pClamp software (Molecular Devices) while 

acquiring data at 20 kHz and low pass filtered at 2 kHz. Access resistance was 

continuously monitored throughout the experiments and cells were discarded if the 

access resistance changed by >25%. To avoid recording from damaged cells, neurons 
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within 50 µm of the injection cannula track were excluded from the analysis. There were 

no differences on any of the measures between GFP- negative cells in slices exposed to 

HSV-AKAP79∆PKA and slices exposed to HSV-GFP. Therefore, these cells were 

pooled for analysis.  

A bipolar tungsten stimulation electrode connected to a stimulus isolator (ISO-Flex) was 

typically positioned dorsal to the recorded neuron to trigger evoked EPSCs (eEPSCs). 

Stimulation occurred at 0.1 Hz a minimal stimulation intensity required to evoke a 

consistent post-synaptic response was determined. Peak eEPSC amplitudes were then 

measured at double and triple the minimal stimulation intensity to construct the 

input/output curves. Average responses were then calculated based on 5–10 eEPSCs at 

each stimulation intensity.  

 

Verification of cannula placements. After the completion of all experiments, rats were 

given an overdose of pentobarbital (100 mg/kg, i.p.), brains were removed and stored in 

10% formalin for at least 1 week. Coronal sections (100 µm) were taken at the level of 

the nucleus accumbens with a vibratome (Technical Products International; St. Louis, 

MO, USA). The sections were mounted on gelatin-coated slides. Animals with cannula 

placements located outside of the accumbens shell, or with excessive mechanical 

damage, were excluded from subsequent data analysis. 

 

Viral expression. To ascertain viral expression, we injected (2 µL/hemisphere) HSV-

AKAP79∆PKA into the nucleus accumbens shell of separate, drug-naive rats. At 3 days 

after injection, animals received 100 mg/kg pentobarbital (i.p.) before perfusion with 120 

mL ice-cold PBS followed by 60 mL 4% PFA dissolved in ice-cold PBS. Brains were 

removed and placed in 4% PFA for 24 h before storage in 30% sucrose dissolved in 
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PBS with 1% sodium azide. Coronal sections (30 µm) were taken using a vibratome 

(Technical Products International; St. Louis, MO, USA) and mounted directly onto 

polarized glass slides. Dry slides were washed in 1X PBS, and then blocked for 1 h in 

0.1% triton and 3% normal donkey serum in 1X PBS. We then added primary antibody 

(Anti-GFP, 1:500, Millipore #MAB3580; Anti-AKAP79, 1:500, Santa Cruz #sc-17772) — 

diluted 1:1000 in 0.1% triton + 3% donkey serum in PBS to the slides and incubated 

overnight at 4°C. The next day, the slides were washed in 1X PBS before incubation in 

secondary fluorescent antibody at room temperature for 2 h (Alexa Fluor 488, 1:500; 

Alexa Fluor 562, 1:500; Jackson ImmunoResearch, West Grove, PA). After 2 h, slides 

were washed in 1X PBS before being cover-slipped using Vectashield mounting medium 

(Vector Laboratories, Burlingame, CA) and imaged for GFP expression using fluorescent 

microscopy 

 

Statistics. All reinstatement experiments were analyzed with two-way ANOVAs with 

repeated measures over reinstatement test days. Pairwise analyses were made with 

appropriate post-hoc tests (p < 0.05).	
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Results 
 
AKAP signaling is required for the reinstatement of cocaine, but not sucrose seeking 

AKAP signaling in the nucleus accumbens core has been implicated in the reinstatement 

of cocaine seeking (Reissner et al., 2011). To confirm if these effects are also seen in 

the accumbens shell, we microinjected a cell-permeable inhibitory peptide (St-Ht31) that 

disrupts the binding of PKA to all AKAP isoforms into the nucleus accumbens shell of 

rats that had previously self-administered cocaine and reinstated them with an acute 

priming injection of cocaine (10 mg/kg, i.p.). Total active and inactive lever responses 

(mean±SEM) are shown in Figure 1A (n = 9). These data were analyzed using a two-

way ANOVA (both treatment and lever were within-subject factors), which revealed 

significant main effects of treatment (F(1,8) = 34.46, p<0.001), lever responding (F(1,8) = 

49.62, p<0.001), and a significant interaction between these variables (F(1,8) = 26.05, 

p<0.001). Subsequent pairwise analyses indicated that the total active lever responses 

between the St-Ht31 and St-Ht31P treatments were significantly different (Bonferroni, 

p<0.0001).  

 

Previous evidence suggests that intra-accumbal infusions of St-Ht31 do not affect 

cocaine-induced locomotor activity (Reissner et al., 2011). However, AKAP150 mutant 

mice lacking the PKA binding domain exhibit, among other things, deficits in operant 

learning behavior (Weisenhaus et al., 2010). To determine if the effects of St-Ht31 impair 

operant learning generally, we tested its effects on sucrose reinstatement. Total active 

and inactive lever responses (mean±SEM) for rats pretreated with intra-accumbal shell 

microinfusions of either St-Ht31 or St-Ht31P prior to reinstatement of sucrose-seeking 

behavior are shown in Figure 1B (n = 8). These data were analyzed using a two-way 

ANOVA which revealed no effect of treatment (F(1,7) = 1.726, p=0.23), a significant effect 
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of lever responding (F(1,7) = 50.74, p<0.001), and no interaction between these variables 

(F(1,7) = 1.472, p=0.26). The cannula placements are shown in Figure 1C. 

 

AKAP signaling is required for D1DR agonist-induced reinstatement of cocaine seeking 

Stimulation of D1DRs in the accumbens shell promotes the reinstatement of cocaine 

seeking (Bachtell et al., 2005; Schmidt et al., 2006), an effect likely due to PKA 

activation (Self et al., 1998). To determine if AKAPs are required for D1DR-stimulated 

reinstatement of cocaine seeking, rats were pretreated with microinfusions of either St-

Ht31 or St-Ht31P into the nucleus accumbens shell prior to intra-accumbal shell 

injections of SKF-81297. Total active and inactive lever responses (mean±SEM) are 

shown in Figure 2A (n = 5). These data were analyzed using a two-way ANOVA which 

revealed significant effects of treatment (F(1,4) = 31.4, p<0.01), lever responding (F(1,4) = 

13.48, p<0.05), and a significant interaction between these variables (F(1,4) = 33.57, 

p<0.01). Subsequent pairwise analyses indicated that the total active lever responses 

between the St-Ht31 and St-Ht31P treatments were significantly different (Bonferroni, 

p<0.01). Cannula placements are shown in Figure 2B.  

 

Expression of HSV-AKAP79∆PKA in the accumbens shell attenuates the reinstatement 

of cocaine, but not sucrose seeking 

Although there are over 50 different isoforms of AKAPs, AKAP150 is perhaps the best 

characterized (Wong and Scott, 2004; Sanderson and Dell'Acqua, 2011). AKAP150 is 

highly expressed in the striatum and plays a critical role in learning behaviors 

(Ostroveanu et al., 2007; Tunquist et al., 2008; Weisenhaus et al., 2010). Additionally, 

recent evidence suggests that AKAP150 expression is upregulated in the nucleus 

accumbens after cocaine self-administration and extinction (Reissner et al., 2011).  
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We sought to examine the role of AKAP150 in the reinstatement of cocaine seeking 

behavior. Following self-administration and extinction, we expressed a humanized 

dominant negative isoform of AKAP150 lacking the PKA binding domain and co-

expressing GFP (HSV-AKAP79∆PKA) in the accumbens shell. As outlined in 

experimental timeline illustrated in Figure 3A, the reinstatement session occurred 3 days 

following viral microinjections (HSV-eGFP vs. HSV-AKAP79∆PKA), at peak HSV 

expression (Neve et al., 2005) (Figure 3B). Total active and inactive lever responses 

(mean±SEM) from the cocaine reinstatement session are shown in Figure 3C (n = 10-

13/group). These data were analyzed using a two-way ANOVA (virus treatment was a 

between-subjects factor and lever a within-subject factor), which revealed no effect of 

virus treatment (F(1,20) = 3.166, p=0.09), a significant effect of lever responding (F(1,20) = 

111.7, p<0.0001), and a significant interaction between these variables (F(1,20) = 8.423, 

p<0.01). Subsequent pairwise analyses indicated that the total active lever responses 

between the HSV-eGFP and HSV-AKAP79∆PKA treatments were significantly different 

(Bonferroni, p<0.01). 

 

In order to determine if the disruption of PKA binding to AKAP150 affects general 

operant behavior, we tested the effects intra-accumbal shell injections of HSV-

AKAP79∆PKA on sucrose reinstatement. Total active and inactive lever responding 

(mean±SEM) from the sucrose reinstatement session are presented in Figure 3D (n = 

7/group). These data were analyzed using a two-way ANOVA which revealed no effect 

of virus treatment (F(1,12) = 0.01814, p=0.89), a significant main effect of lever responding 

(F(1,12) = 26.99, p<0.001), and no interaction between these variables (F(1,12) = 0.01413, 

p=0.91). The cannula placements are shown in Figure 3E. 
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Expression of HSV-AKAP79∆PKA in the accumbens shell attenuates PKA-mediated 

phosphorylation of GluA1 Ser845 

Previous work showed that intra-accumbal injections of St-Ht31 attenuated GluA1 

surface expression (Reissner et al., 2011). Since it is well-established that open 

probability and surface expression of GluA1 are regulated by PKA phosphorylation 

(Malinow, 2003), we examined the phosphorylation state of Ser845, a PKA 

phosphorylation site on GluA1 AMPAR subunits, following intra-accumbal shell 

administration of HSV-AKAP79∆PKA. 

 

Total active lever responses (mean ± SEM) from the 30 min reinstatement session are 

shown in Figure 4A. These data were analyzed using a two-way ANOVA (both virus and 

treatment were between-subject factors), which revealed significant main effects of virus 

(F(1,36) = 16.29, p<0.001), treatment (F(1,36) = 47.31, p<0.0001), and a significant 

interaction between these variables (F(1,36) = 22.06, p<0.0001). Post hoc analyses 

showed that total active lever responses were significantly different between GFP/Coc 

groups and all other groups (Tukey, p<0.0001; n = 9-11/group).  

 

The average intensity for pSer845 in the nucleus accumbens shell was expressed as 

percent change from control and is shown in Figure 4B. Percentages were analyzed by 

two-way ANOVA (both virus and treatment were between-subject factors), which 

revealed no effect of virus (F(1,36) = 2.397, p=0.13), no effect of treatment (F(1,36) = 3.384, 

p=0.07), but a significant interaction between these variables (F(1,36) = 4.332, p<0.05). 

Post hoc analyses showed that the GFP/Coc group was significantly different from 

GFP/Sal and AKAP/Coc groups (Tukey, p<0.05; n = 9-11/group). 
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Since the AKAP79/150 α-helical motif binds to the PKA-RII regulatory subunit dimer 

near the AKAP C-terminus (Sanderson and Dell'Acqua, 2011), we wanted to be sure 

that deletion of this anchoring domain did not affect overall expression of the PKA-RII 

subunit in the accumbens shell. The average intensity for PKA RII in the nucleus 

accumbens shell was expressed as percent change from control and is shown in Figure 

4C (n = 7/group). Percentages were analyzed by two-way ANOVA (both virus and 

treatment were between- subject factors), which revealed no effects of virus (F(1,24) = 

0.3518, p=0.56), treatment (F(1,24) = 0.1112, p=0.74), or interaction between these 

variables (F(1,24) = 0.00374, p=0.95). 

 

Expression of HSV-AKAP79∆PKA in the accumbens shell attenuates AMPAR currents 

Given our biochemical findings that intra-accumbal shell administration of HSV-

AKAP79∆PKA attenuated phosphorylation of GluA1-Ser845, we sought to examine the 

effects on AMPAR eEPSCs after reinstatement. Representative traces of eEPSCs from 

AKAP+ and AKAP- cells are shown in Figure 5A. Quantification of this experiment is 

depicted in Figure 5B. These data were analyzed with a two-sample t-test, which 

revealed a significant difference in the size of the AMPA eEPSCs between the two 

groups at 2x intensity (AKAP+: n = 9; AKAP-: n = 9; p=0.008) and 3x intensity (p = 0.03). 

The rectification index was also assessed in both AKAP+ and AKAP- cells, which 

revealed no significant differences between the two groups (p = 0.18, two- sample t-

test). Additionally, we analyzed the AMPAR eEPSCs of rats treated with HSV-GFP. A 

one-way ANOVA indicated no significant differences between AKAP- (n = 9), GFP+ (n = 

7), and GFP- (n = 8) neurons at 2x (F(2,21) = 0.92, p=0.41) or 3x (F(2,21) = 1.23, p=0.31) 

intensities.	
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Discussion 
 
Our results indicate that disruption of PKA binding to AKAPs, specifically AKAP150, in 

the nucleus accumbens shell attenuates the reinstatement of cocaine seeking. We show 

that AKAP150 promotes cocaine reinstatement by facilitating D1DR-induced, PKA-

mediated phosphorylation of GluA1-containing AMPARs. Collectively, these results 

suggest that AKAP150 can bridge the dopamine and glutamate systems in the nucleus 

accumbens to promote cocaine seeking. 

 

The current findings support previous findings that nonspecifically disrupting PKA 

binding to all AKAP isoforms in the nucleus accumbens attenuate cocaine reinstatement 

(Reissner et al., 2011). Our results expand upon the previous findings as we show that 

disruption of PKA binding specifically to the AKAP150 isoform attenuates cocaine 

reinstatement. Additionally, our findings show that AKAP signaling is required for the 

D1DR agonist-induced reinstatement of cocaine seeking. D1DR stimulation in the 

nucleus accumbens, particularly the shell subregion, promotes cocaine reinstatement 

(Schmidt et al., 2006) by increasing transmission through GluA1-containing AMPARs. 

The C-terminal region of the GluA1 subunit of AMPARs can be phosphorylated by PKA, 

Protein Kinase C (PKC), and calcium/calmodulin-dependent kinase II (CaMKII) (Derkach 

et al., 2007; Anggono and Huganir, 2012), all of which contribute to the reinstatement of 

cocaine seeking (Self et al., 1998; Anderson et al., 2008; Schmidt et al., 2013). In part, 

D1DR stimulation reinstates cocaine seeking via serial activation of L-type calcium 

channels and CaMKII (Anderson et al., 2008). Cocaine reinstatement is also associated 

with D1DR-dependent increases in GluA1-pSer831, a PKC/CaMKII phosphorylation site, 

as well as increased surface expression of GluA1-containing AMPARs (Anderson et al., 

2008). However, D1DR stimulation leads to cAMP and subsequently PKA activation, 
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which is linked to cocaine seeking (Self et al., 1998). Surprisingly, intra-accumbal 

administration of a PKA inhibitor, Rp-cAMP, promotes the reinstatement of cocaine 

seeking (Self et al., 1998). A potential explanation for this unexpected result is that Rp-

cAMPs can also inhibit other cAMP-activated targets, such as exchange factors directly 

activated by cAMP (Epacs) (Bos, 2006). Epac activation leads to increased levels of the 

GTPase, Rap, which can interact with the Ras/ERK cascade to modulate ERK-

dependent processes (Lin et al., 2003; Johnson-Farley et al., 2005). There is 

considerable evidence linking ERK activation in the accumbens core with cocaine 

seeking (Edwards et al., 2011; Fricks-Gleason and Marshall, 2011). Our findings 

suggest that AKAP150 is required for the appropriate subcellular targeting of PKA during 

D1DR-mediated reinstatement of cocaine seeking.  

 

In addition to a PKA binding domain, AKAP150 also contains a membrane-associated 

guanylate kinase (MAGUK) motif that promotes its interaction with AMPA and NMDA 

receptors via binding to scaffolding proteins, PSD-95 and SAP97 (Colledge et al., 2000; 

Robertson et al., 2009; Sanderson and Dell'Acqua, 2011). Furthermore, AKAP150 

enhances PKA-mediated phosphorylation of AMPARs, especially Ser845 on GluA1 

subunits (Colledge et al., 2000; Tavalin et al., 2002). Our findings show that disrupting 

the binding of PKA to AKAP150 attenuates GluA1-Ser845 phosphorylation and reduces 

AMPAR eEPSCs. PKA phosphorylation of GluA1 at Ser845 leads to increased open 

probability of AMPARs and increases surface expression of GluA1-containing AMPARs 

(Banke et al., 2000; Malinow, 2003). In cultured accumbal neurons, D1DR stimulation 

increases both Ser845 phosphorylation and GluA1 surface expression (Chao et al., 

2002a; 2002b). Consistent with these findings, cocaine reinstatement is attenuated by 

intra-accumbal shell administration of AAV10-GluA1-C99, which impairs the trafficking of 
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GluA1-containing AMPA receptors to the cell surface (Anderson et al., 2008). Moreover, 

withdrawal from cocaine self-administration leads to both increased GluA1 surface 

expression, Ser845 phosphorylation, and increased rectification, which suggests an 

increase in GluA1-containing, GluA2-lacking calcium permeable AMPARs (CP-

AMPARs) (Conrad et al., 2008; McCutcheon et al., 2011b). Our findings also support 

previous work demonstrating that disrupting AKAP signaling in the nucleus accumbens 

reduces GluA1 surface expression (Reissner et al., 2011). Surprisingly, in that study, no 

change was observed in the phosphorylation status of GluA1-Ser845. However, there 

are several methodological differences between the previous and current study, most 

notably the biochemical findings of the previous study were observed in drug-naïve 

animals. Additionally, stimulus-driven changes in GluA1-Ser845 phosphorylation can 

enhance AMPA-mediated excitatory synaptic transmission and increase synaptic 

localization of GluA1, partially through AKAP150-PKA binding (Lee et al., 2003; Man et 

al., 2007; Qiu et al., 2014), whereas unstimulated changes in GluA1 surface expression 

and AMPA transmission can be independent of basal Ser845 phosphorylation (Lee et 

al., 2003; Lu et al., 2008; Sanderson et al., 2016).  

 

Our findings also reveal decreases in AMPAR eEPSCs after disruption of PKA binding to 

AKAP150. This is consistent with previous work showing that synaptic plasticity is 

impaired in GluA1 KO mice, as well as S845A mutant mice that have impaired Ser845 

phosphorylation and PKA-deficient AKAP150-D36 mice (Lee et al., 2003; Lu et al., 

2008). Additionally, disruption of PKA binding to AKAPs leads to downregulation of 

AMPAR currents (Tavalin et al., 2002). Several studies also suggest that PKA binding to 

AKAP150 and phosphorylation of GluA1-Ser845 can lead to increased surface 

expression of GluA1-containing AMPARs, particularly CP-AMPARs (Qiu et al., 2014; 
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Sanderson et al., 2016). However, we did not observe any significant reduction in 

rectification index. Typically, CP-AMPAR accumulation in the nucleus accumbens is 

linked to long-access (Mameli et al., 2009; Ferrario et al., 2010; McCutcheon et al., 

2011a; 2011b), but not short-access cocaine self-administration (Purgianto et al., 2013) 

or experimenter-delivered cocaine (McCutcheon et al., 2011b). However, a recent study 

illustrated that blocking CP-AMPARs in the nucleus accumbens attenuates the 

reinstatement of cocaine seeking following a short-access paradigm (White et al., 2015), 

though this effect was likely mediated through transient increases in GluA1 surface 

expression as seen previously (Anderson et al., 2008; Schierberl et al., 2011). These 

data demonstrate that AKAP150 facilitates GluA1-Ser845 phosphorylation and 

increased AMPAR transmission, promoting cocaine reinstatement. Furthermore, this 

suggests that during cocaine reinstatement there is synaptic incorporation of GluA1-

containing AMPARs, some of which may form CP-AMPARs, but most will likely form 

GluA1A2 heteromers.  

 

In addition to associating with AMPARs and NMDARs via its MAGUK domain, AKAP150 

can also bind PKC (Klauck et al., 1996). PKC signaling plays a critical role in cocaine 

reinstatement. Cocaine reinstatement is associated with increased PKC activation and 

can be attenuated by intra-accumbal administration of PKC inhibitors (Schmidt et al., 

2013). Moreover, cocaine reinstatement is associated with increased GluA1-Ser831 

phosphorylation (Anderson et al., 2008). PKC phosphorylates GluA1 subunits at Ser831, 

facilitating GluA1 insertion into the membrane (Song and Huganir, 2002). AKAP150 can 

also interact with L-type calcium channels via interaction with a leucine zipper domain at 

its C-terminus (Oliveria et al., 2007). AKAP150 facilitates PKA phosphorylation of L-type 

calcium channels at Ser1928, thereby increasing channel activity (Gao et al., 1997). This 
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channel plays a major role in cocaine-induced synaptic plasticity and cocaine 

reinstatement. Specifically, intra-accumbal shell administration of diltiazem, an L-type 

calcium channel antagonist, attenuates the reinstatement of cocaine seeking 

precipitated either by systemic cocaine injection or intra-accumbal shell administration of 

the D1DR agonist SKF-81297 (Anderson et al., 2008). Though we did not investigate the 

interactions between PKC, L-type calcium channels, and AKAP150 in this study, these 

findings underscore the importance of AKAP150 as a major regulator of cocaine-induced 

plasticity and cocaine craving. 

 

The present results contribute to the growing body of literature indicating that increased 

transmission through GluA1-containing AMPARs in the nucleus accumbens shell 

promotes the reinstatement of cocaine seeking. Moreover, these data demonstrate a 

compelling role for AKAP150 as a biochemical bridge linking the dopamine and 

glutamate systems in the nucleus accumbens during cocaine reinstatement. These 

findings suggest that AKAP150 may be a potential novel target for the development of 

cocaine addiction pharmacotherapies.	
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Figures 
 

	

Figure 4. 1 Intra-accumbal shell mincroinjections of St-Ht31 attenuates cocaine, but not sucrose, 
reinstatement. Mean (±SEM) active and inactive lever responses from (A) cocaine reinstatement 
session, (B) sucrose reinstatement session. (C) Cannula placements from the nucleus 
accumbens shell (dark circles). The values are in millimeters, relative to bregma. ***p < 0.001 St-
Ht31 compared to St-Ht-31P Control. There were 8-9 animals per group. 
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Figure 4. 2 Intra-accumbal shell mincroinjections of St-Ht31 attenuates D1DR-agonist induced 
reinstatement of cocaine seeking. (A) Mean (±SEM) active and inactive lever responses from 
reinstatement session. (B) Cannula placements from the nucleus accumbens shell (dark circles). 
The values are in millimeters, relative to bregma. *p < 0.05 St-Ht31 compared to St-Ht-31P 
Control. There were 5 animals per group. 
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Figure 4. 3 Intra-accumbal shell expression of HSV-AKAP79∆PKA attenuates cocaine, but not 
sucrose, reinstatement. (A) Schematic of experimental paradigm. (B) Representative image of 
peak expression in the nucleus accumbens 3 days following HSV-AKAP79∆PKA injection. Three 
days prior to the reinstatement test session, all animals received either HSV-AKAP79∆PKA or 
HSV-GFP injections to the nucleus accumbens shell. (C) Mean (±SEM) active and inactive lever 
responses from cocaine reinstatement session, (D) sucrose reinstatement session. (E) Cannula 
placements from the nucleus accumbens shell (dark circles). The values are in millimeters, 
relative to bregma. *p < 0.05 HSV-AKAP79∆PKA compared to HSV-GFP. There were 10-13 
animals per group. 
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Figure 4. 4 Intra-accumbal shell expression of HSV-AKAP79∆PKA attenuates GluA1-Ser845 
phsphorylation. All animals received either HSV-AKAP79∆PKA or HSV-GFP injections to the 
nucleus accumbens shell three days prior to the reinstatement test session. At the reinstatement 
test session, all animals received either a saline or cocaine priming injection. (A) Mean (±SEM) 
active and inactive lever responses from 30 min reinstatement session. (B) Decreases in GluA1-
Ser845 phosphorylation are measured by Western blot (see insets). (C) No change in PKA-RII 
expression is observed by Western blot (see insets). ***p < 0.001, *p < 0.05 HSV-AKAP79∆PKA 
compared to HSV-GFP. There were 9-11 animals per group. 
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Figure 4. 5 HSV-AKAP79∆PKA reduces the recruitment of AMPA receptors following cocaine 
reinstatement. (A) Representative traces from an AKAP79∆PKA-positive neuron (left) and an 
uninfected neuron (right). A minimal intensity for eEPSC recruitment was obtained (1x) and then 
increased to 2x and 3x this intensity. Arrowheads represent stimulation and the stimulation 
artifacts of been removed for visual clarity. (B) Summary of the recruitment curves for 
AKAP79∆PKA-positive (black circles, n = 9) and uninfected (red circles, n = 9) neurons. * p < 
0.05. 
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Chapter 5 
 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

Leonardo Antonio Guercio 

 

Overview 

Cocaine abuse poses a significant public health concern both in the United States and 

across the globe. Cocaine is the fourth most commonly abused illegal drug in the world, 

with the United States as the global leader in cocaine demand (Crime, 2016). 

Approximately 1.5 million Americans aged 12 or older are regular users of cocaine, 

comprising about 0.5% of the US population (Sarra L Hedden, 2015). Cocaine use is 

also responsible for nearly 500,000 emergency room visits annually (National Institute 

on Drug Abuse, 2016). A critical concern with cocaine abuse is the discouragingly high 

rate of relapse among addicts following detoxification and abstinence, making it a 

continuing public health concern that impacts our society, government, and healthcare 

system (O'Brien, 1997).  

Preclinical research using rodent cocaine self-administration and reinstatement 

paradigms can elucidate the neurobiological underpinnings of human cocaine addiction 

and relapse, potentially leading to the development of novel therapeutic interventions 

that can reduce the burden of drug addiction on our society. The research presented in 

this doctoral dissertation examined the influence of local and circuit-wide modulation of 

the mesocorticolimbic reward system on cocaine reinstatement, an animal model of 

relapse. In sum, the findings presented herein expand our understanding of the 

neurobiological mechanisms underlying cocaine seeking and identify both a non-

pharmacological application, deep brain stimulation (DBS), and a novel biochemical 

target, AKAP150, for potential therapeutic interventions in cocaine addiction and craving. 
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     The data presented in the second and third chapters of this dissertation 

demonstrated that DBS may serve as a possible non-pharmacological therapeutic 

intervention in the treatment of cocaine addiction. In Chapter 2, I showed that DBS of the 

nucleus accumbens shell attenuated the cue-induced reinstatement of cocaine seeking. 

This expands upon our previous work showing that accumbal shell DBS attenuated 

priming-induced reinstatement of cocaine seeking (Vassoler et al., 2008; 2013). In 

Chapter 3, I demonstrated that DBS of the medial prefrontal cortex (mPFC), but not the 

basolateral amygdala (BLA) or the ventral hippocampus (vHipp) selectively attenuated 

the reinstatement of cocaine seeking. Moreover, this effect was constrained to the 

infralimbic subregion of the mPFC as DBS in the prelimbic or anterior cingulate cortices 

had no effect on cocaine reinstatement. My results also showed that infralimbic mPFC 

DBS decreased zif268 immunoreactivity in the nucleus accumbens shell, suggesting 

inactivation of glutamatergic cortico-accumbal projections. These findings bolster a 

wealth of evidence suggesting that addiction causes a maladaptive response in the 

circuit between the mPFC and the nucleus accumbens, and that this maladaptation can 

be corrected through non-pharmacological manipulation (Chen et al., 2013; Stefanik et 

al., 2013; Vassoler et al., 2013). Moreover, my findings demonstrate that in addition to 

the nucleus accumbens, the mPFC may be an effective target for DBS in the treatment 

of cocaine craving and relapse.  

The data presented in Chapter 4 of this dissertation support a substantial body of 

evidence demonstrating that increased transmission through GluA1-containing AMPA 

receptors (AMPARs) in the nucleus accumbens shell promotes cocaine reinstatement. 

Moreover, these data revealed the novel role of the protein, AKAP150, in the 

reinstatement of cocaine seeking. My findings indicate that AKAP150 promotes cocaine 

reinstatement by facilitating D1-like dopamine receptor (D1DR)-induced, PKA-mediated 
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phosphorylation of GluA1-containing AMPARs. Taken together, these findings suggest 

that AKAP150 may serve as a biochemical bridge linking the dopamine and glutamate 

systems in the nucleus accumbens during cocaine reinstatement. 

 

The development of novel pharmarcotherapies for cocaine addiction 

Over the past decade, remarkable advancements have been made in both the 

neuroscience of mental health and society’s awareness of mental illness. Despite these 

advances, the treatment of mental illness remains a significant challenge. Mental illness 

remains the leading cause of morbidity and mortality and psychiatric disorders constitute 

five of the top ten causes of disability and premature death (Insel, 2009; Collins et al., 

2011; Bloom et al., 2012). Additionally, in 2010, the global cost of mental health 

disorders was $2.5 trillion, an estimate that is projected to balloon to $6.5 trillion by 2030 

(Bloom et al., 2012). Drug addiction is a complex mental health disorder and is among 

the most prevalent neuropsychiatric disorders affecting modern society (Crime, 2016). 

Discouragingly, despite decades of research, the core pathophysiological mechanism of 

drug addiction remains unknown. A greater understanding of the neurobiological circuitry 

and mechanisms underlying drug addiction will lead to improved pharmacotherapies. 

     Drugs of abuse mediate their initial reinforcing properties through dopaminergic 

modulation of the mesocorticolimbic reward system. Despite their differing mechanisms 

of action, all classes of addictive drugs (e.g. opiates, psychostimulants, alcohol, nicotine, 

cannabinoids) increase dopamine (DA) transmission in mesocorticolimbic nuclei (Di 

Chiara and Imperato, 1988), including the nucleus accumbens (Pierce and Kumaresan, 

2006). The increase of mesocorticolimbic DA transmission as a common pathway for 

drugs of abuse is consistent with the findings that DA encodes reward-prediction error 

(Keiflin and Janak, 2015). However, the initial, acute actions of addictive drugs dissipate 
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as the drugs are metabolized by the brain and therefore cannot explain the long-term 

development of addictive behaviors. In 2001, a seminal study showed that a single 

injection of cocaine sufficed to induce a long-lasting potentiation of excitatory 

glutamatergic synapses onto VTA DA neurons (Ungless et al., 2001). Two years later, 

this finding was also observed with other drugs of abuse, specifically amphetamine, 

morphine, alcohol, and nicotine (Saal et al., 2003). These findings led to numerous 

studies highlighting the importance of glutamatergic transmission and synaptic plasticity 

in response to exposure to addictive drugs (Kauer and Malenka, 2007; Kalivas, 2009; 

Schmidt and Pierce, 2010; Lüscher and Malenka, 2011). Taken together, these findings 

revealed that both the dopamine and glutamate systems underlie the addictive 

properties of nearly all drugs of abuse. 

     Currently, there exist effective, FDA-approved treatments for opioid, alcohol, and 

nicotine addiction. However, despite decades of focused research, there are no FDA-

approved pharmacotherapies for cocaine addiction. Initially, drugs that modulate the 

dopaminergic system were assessed in both preclinical and clinical studies for the 

treatment of cocaine addiction, based on the fact that all drugs of abuse increase DA 

transmission in the mesocorticolimbic reward system. There was particular interest in the 

D1DR antagonists, as they lacked the sometimes dangerous extrapyramidal side effects 

observed with D2-like dopamine receptor (D2DR) antagonists (Haney and Spealman, 

2008). These studies revealed that acute administration of D1DR antagonists attenuated 

the reinforcing effects of cocaine (Romach et al., 1999; Platt et al., 2002). However, 

clinical use of a D1DR antagonist requires repeated administration and cocaine addicts 

treated with a D1DR antagonist, ecopipam, actually increased cocaine self-

administration (Haney et al., 2001). Another potential therapeutic for cocaine addiction 

that showed promise was N-acetylcysteine (NAC). NAC, an FDA-approved treatment for 
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acetaminophen overdose, reduced glutamate levels in the nucleus accumbens following 

cocaine self-administration and cocaine reinstatement (Baker et al., 2002; 2003b). A 

similar reduction in glutamate levels was observed in the prefrontal cortex of cocaine-

dependent patients treated with NAC (Schmaal et al., 2012). However, in a double-blind, 

placebo-controlled clinical trial, NAC failed to reduce cocaine use in actively using 

cocaine-dependent individuals, though there was some evidence suggesting that it may 

delay cocaine relapse in abstinent addicts (LaRowe et al., 2013). Collectively, these 

clinical findings demonstrate that broad-based manipulations on dopamine or glutamate 

signaling are not efficacious in the treatment of cocaine addiction. 

Recent preclinical work has begun to examine a more nuanced interaction 

between accumbal dopamine and glutamate systems in cocaine craving and relapse. 

The nucleus accumbens is predominately made up of medium spiny neurons that 

express either D1DRs or D2DRs (Gangarossa et al., 2013). Neurons in the nucleus 

accumbens integrate information from dopaminergic and glutamatergic inputs stemming 

from cortical and limbic structures to generate appropriate goal-directed behavioral 

responses (Papp et al., 2012; Scofield et al., 2016). Stimulation of D1DRs in the nucleus 

accumbens led to increased phosphorylation and surface expression of GluA1-

containing, or GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) (Chao et al., 

2002a; 2002b; Anderson et al., 2008; Ferrario et al., 2011; Hobson et al., 2013). 

Interestingly, withdrawal from cocaine self-administration caused an increase in the 

rectification index of D1- but not D2-containing medium spiny neurons in the accumbens, 

suggesting an increase in CP-AMPARs in those cells(Pascoli et al., 2014). It should be 

noted that while these studies have not identified effects in D2-containing medium spiny 

neurons, previous work has shown that D2DRs and D2-containing medium spiny 

neurons in the accumbens can regulate glutamatergic transmission and contribute to 
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cocaine seeking (Bamford et al., 2004; Dani and Zhou, 2004; Bock et al., 2013; Ortinski 

et al., 2015).  

Signaling pathways activated by the dopamine and glutamate converge at the 

post-synaptic density, a highly organized, macromolecular complex of synaptic proteins 

that serve to process and integrate neural signals to the nucleus (Kennedy, 2000; de 

Bartolomeis and Fiore, 2004). Synaptic proteins have been implicated in many 

psychiatric disorders, including drug addiction (Kalivas and Volkow, 2005) and may 

provide novel therapeutic targets (de Bartolomeis et al., 2014). The work encompassed 

in Chapter 4 of this dissertation adds to the growing body of literature highlighting the 

importance of synaptic proteins in the nucleus accumbens during cocaine reinstatement 

(Reissner et al., 2011; Wiggins et al., 2011; Schmidt et al., 2013; Briand et al., 2014; 

White et al., 2015). I showed that disruption of PKA binding specifically to the AKAP150 

isoform attenuated cocaine reinstatement by reducing transmission through GluA1-

containing AMPARs in the nucleus accumbens shell. These findings, coupled with the 

fact that AKAP150 is most highly expressed in the striatum (Ostroveanu et al., 2007) and 

can also interact with both PKC and L-type calcium channels, both of which are critically 

involved in cocaine seeking (Anderson et al., 2008; Schmidt et al., 2013), highlight the 

potential therapeutic value of AKAP150 in the treatment of cocaine craving and relapse. 

 

Non-pharmacological brain stimulation in the treatment of cocaine addiction 

Over the past few years, the global pharmaceutical industry has significantly curtailed its 

investment in drug development for psychiatric disorders, with some companies 

shuttering their research programs entirely (Miller, 2010). Surprisingly, this retreat has 

come despite the fact that psychiatric drugs have been extremely profitable for the 

pharmaceutical industry, with 1 in 5 American adults currently taking at least one 
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psychiatric drug (Hyman, 2013). This retreat can perhaps be explained by the significant 

issues plaguing translational neuroscience and psychiatry: cellular and molecular 

underpinnings of disease remain elusive, animal models provide poor face and 

predictive validity, and validated biomarkers or other objective tests to aid in diagnosis 

and treatment have not been found (Nestler and Hyman, 2010; Hyman, 2012). There are 

several concerns with developing novel pharmacotherapies for substance use disorders 

(Paul et al., 2010). First, the estimated development costs range from $4-11 billion, with 

the entire process taking an average of over 13 years to complete. Second, the return on 

investments for these new medications is poor, with large pharmaceutical companies 

expecting to recover only 26 cents on the dollar, or a <0.3% return on new product 

revenues. Finally, and perhaps most importantly, the lack of developmental efficiency is 

troubling, with a measly ~7% approval rate of CNS compounds that make it to clinical 

development. In fact, in 2015, the FDA approved 45 novel drugs, only 3 of which had 

indications for nervous system disorders (CDER, 2016). Since drug addiction is a highly 

prevalent neuropsychiatric disorder, these issues are a major cause for concern. 

 Currently, there are FDA-approved medications for drug addiction, specifically 

opiate, alcohol, and nicotine addiction. While these medications are effective, they target 

only certain aspects of the addictive process (Koob et al., 2009) and work best when 

used in combination with social and behavioral interventions (Douaihy et al., 2013). 

Importantly, there are no effective, FDA-approved pharmacotherapies for cocaine 

addiction, despite rational drug development and well-controlled clinical trials (Pierce et 

al., 2012). Drug addiction is a significant financial burden on our society, healthcare 

system, and criminal justice system, with total costs exceeding $600 billion annually in 

the United States alone (National Drug Intelligence Center, 2011). This underscores a 
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critical need for effective non-pharmacological treatments, particularly for cocaine 

addiction. 

 In April 2013, President Barack Obama announced the beginning of the BRAIN 

Initiative (Brain Research through Advancing Innovative Technologies), a national, 

collaborative, public-private research initiative, with the goal of supporting the 

development of innovative technologies that would enhance our dynamic understanding 

of the human brain. Importantly, this initiative also aims to further illuminate our 

understanding of brain disorders in hopes of developing better treatments and improving 

outcomes for patients with these disorders. The United States is not alone: the BRAIN 

Initiative is part of a global effort by the G8 countries and others to further our 

understanding of neuroscience and brain disorders (Grillner et al., 2016). One of the 

high priority research areas for the BRAIN Initiative is the continued improvement of 

existing technologies and development of novel technologies to modulate neural activity 

(HHS, 2014).  

 Modulation of neural activity by electromagnetic brain stimulation is an active of 

area of neuropsychiatric research. Since pharmacotherapeutics for psychiatric disorders 

have limited effectiveness and are becoming increasingly expensive to develop (Hyman, 

2013), recent efforts have focused on brain stimulation as a potential treatment modality. 

At present, there are several different types of brain stimulation used medically. Chief 

among them are electroconvulsive therapy (ECT), transcranial magnetic stimulation 

(TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). 

Electroconvulsive therapy (ECT), also known as shock therapy, works by electrically 

inducing seizures in patients suffering from psychiatric disorders, particularly depression. 

Unfortunately, ECT is associated with adverse events including cognitive impairments 

and retrograde amnesia, and is thus used a last resort intervention for psychiatric 
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disorders (Rudorfer et al., 2003). TMS has its roots in early 20th century Vienna, when 

psychiatrists Pollacsek and Beer filed a patent to treat depression and other neuroses 

with an electromagnetic device that resembled current TMS machines. However, the 

modern TMS era began in the 1980s, when Tony Barker and colleagues developed a 

focal electromagnetic device that could induce currents in the spinal cord (Barker et al., 

1985). They soon realized that this technology could allow them to non-invasively 

stimulate the human brain. Briefly, TMS works by placing an electromagnetic coil on the 

scalp of a patient. The electricity flowing through the coil creates a powerful (~1.5 Tesla), 

but brief (microseconds) magnetic field that can pass through the skull and modulate the 

electrical properties of neurons. Like TMS, tDCS is another non-invasive form of brain 

stimulation. Though the principles underlying tDCS date back to the time of Luigi 

Galvani, it was not seriously considered as a technique to modulate brain activity until 

2000 (Nitsche and Paulus, 2000). tDCS works by applying constant weak (~1 mA) 

electrical current through scalp electrodes. Unlike TMS, which can elicit action potentials 

in cortical neurons, tDCS induces subthreshold changes in the membrane potential of 

neurons, thereby more subtly increasing or decreasing the probability of eliciting action 

potentials. DBS, originally developed in the 1950s, first achieved recognition in the 

1980s as a potential therapeutic intervention for Parkinson’s disease and other 

movement disorders (Benabid et al., 1987). Briefly, DBS involves implanting an 

electrode deep in the brain and connecting it to a generator, located in the chest wall, 

which sends constant electrical current into the brain. While DBS is an invasive 

procedure, unlike TMS and tDCS, it allows physicians and scientists to target structures 

deep in the brain, which is not possible with TMS and tDCS. Both TMS and DBS are 

FDA-approved for treating and investigating neuropsychiatric disorders, while tDCS 

remains an experimental treatment. 
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These methods of brain stimulation have become increasingly examined as 

potential therapeutic modalities for psychiatric disorders, particularly depression 

(Kammer and Spitzer, 2012; George et al., 2014). TMS is FDA-approved for the 

treatment of major depressive disorder. In 2010, a sham-controlled, randomized, multi-

site clinical trial demonstrated that TMS of the dorsolateral prefrontal cortex (dlPFC), as 

a drug-free monotherapy, produced a significant anti-depressant effect in patients 

(George et al., 2010) and lasted several weeks to months (McDonald et al., 2011; 

Mantovani et al., 2012). A similar, albeit smaller, effect was seen using tDCS of the 

dlPFC. Patients showed an improvement in mood as well as improvements in attention 

and working memory (Loo and Martin, 2012). DBS of subcortical structures, including 

the nucleus accumbens, has also been shown to demonstrate significant antidepressant 

effects (Mayberg et al., 2005; Bewernick et al., 2010). In addition to treating depression, 

these brain stimulation modalities have also been demonstrated to be effective in 

treating other psychiatric disorders as well (George et al., 2014), particularly drug 

addiction.  

There is a growing body of evidence supporting brain stimulation as a potential 

therapeutic modality for drug addiction (Salling and Martinez, 2016). TMS, tDCS, and 

DBS have a wide range of effects across nearly all drug classes (e.g. alcohol, nicotine, 

heroin, cocaine, and cannabis). However, since there are no effective 

pharmacotherapeutic interventions for cocaine addiction, it is critically important to 

examine whether brain stimulation can serve as a potential therapeutic modality. TMS of 

the dlPFC and mPFC reduced both craving for cocaine and cocaine use (Camprodon et 

al., 2007; Politi et al., 2008; Hanlon et al., 2015; Terraneo et al., 2016). Additionally, TMS 

of the mPFC was shown to inhibit stimulus-evoked activity in the mPFC and decrease 

activity in the striatum (Hanlon et al., 2015). The tDCS studies on cocaine addiction have 
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primarily focused on cortical excitability and cognitive function (Conti et al., 2014; Gorini 

et al., 2014). However, a recent randomized, double-blind clinical trial showed that tDCS 

in the dlPFC reduced cocaine craving (Batista et al., 2015). These findings suggest that 

TMS and tDCS may be preferable to DBS in treating drug addiction since they are non-

invasive, unlike DBS. However, neither TMS nor tDCS can effectively target subcortical 

structures. Furthermore, DBS is a one-time implantation surgery that can allow for 

uninterrupted, hands-off, chronic stimulation as opposed to TMS and tDCS, which only 

offer acute stimulation, with each session having to be done in the presence of a trained 

medical professional. To date, there has been only one clinical study investigating the 

effects of DBS on cocaine addiction, which showed that in a single patient, accumbens 

shell DBS reduced his cocaine dependence based on both objective and subjective 

measures (Gonçalves-Ferreira et al., 2016). The patient displayed significant clinical 

improvement, in line with improvements seen with accumbal DBS in alcohol, heroin, and 

nicotine addiction (Kuhn et al., 2009; Müller et al., 2009; Kuhn et al., 2011; 2014). 

Collectively, these findings emphasize that brain stimulation may be a highly valuable 

therapeutic modality in the treatment of drug addiction, especially cocaine addiction. 

While there has only been a single, pilot clinical study investigating the role of 

DBS in cocaine addiction, a wealth of evidence from animal studies suggest that DBS 

may help treat cocaine craving and relapse. DBS of the nucleus accumbens shell, but 

not the core or dorsal striatum, attenuated priming-induced reinstatement of cocaine 

seeking (Vassoler et al., 2008; 2013). DBS of the nucleus accumbens also suppressed 

locomotor sensitization to cocaine (Creed et al., 2015), another behavioral task that 

reflects aspects of plasticity related to drug craving (Robinson and Berridge, 2001; 

Steketee and Kalivas, 2011). The work encompassed in Chapter 2 of this dissertation 

expands upon these findings, demonstrating that accumbal shell DBS also attenuates 
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cue-induced reinstatement of cocaine seeking (Guercio et al., 2015). While nearly all 

preclinical and clinical studies investigating DBS as a treatment for drug addiction have 

focused on the nucleus accumbens, evidence from clinical studies using TMS and tDCS 

suggest that the PFC may be a potentially effective target for DBS in treating cocaine 

addiction. The work encompassed in Chapter 3 of this dissertation reveals that DBS of 

the mPFC selectively attenuated the reinstatement of cocaine seeking. These findings 

support previous claims that in addition to the nucleus accumbens, the mPFC may be 

another effective target for DBS in the treatment of cocaine craving and relapse (Luigjes 

et al., 2012). 

 

The societal benefits of improved treatments for drug addiction 

It is estimated that the total costs of substance abuse including productivity, health, and 

crime-related costs, exceed $600 billion annually in the United States alone(National 

Drug Intelligence Center, 2011). Given these prohibitively high costs, it is imperative to 

enact sensible drug policies and legislation based on well-substantiated scientific and 

public health research. In 2008, President Barack Obama reignited the Office of National 

Drug Control Policy in an attempt to counteract the decades long, failed “war on drugs” 

of previous administrations. The goal of the Obama administration was to restore 

balance to drug control efforts by organizing an unprecedented coordination 

government-wide public health, public safety, and scientific approaches to reduce drug 

use and its consequences.  

The unfortunate connection between drug use and crime is well known (National 

Institute on Drug Abuse, 2014). There are 7 million adults involved with the criminal 

justice system in the United States, both incarcerated and on probation (Glaze and 

Herberman, 2013). Slightly more than half of all federal prisoners had a drug offense as 



	 106	

their most grievous offense (National Institute on Drug Abuse, 2014). Further, 70% of 

state prisoners and 64% of federal prisoners regularly used drugs prior to incarceration, 

with 25% of violent offenders in state prisons having committed their crimes while 

intoxicated (Mumola and Karberg, 2007). Untreated substance using offenders are far 

more likely to relapse into drug use and criminal behavior, further taxing the public health 

and criminal justice systems (National Institute on Drug Abuse, 2014). Treatment in 

correctional settings followed by aftercare in the community when offenders are released 

leads to substantial reductions in the rates of re-incarceration and the associated 

criminal justice costs (McCollister et al., 2003a; 2003b). Additionally, the Obama 

administration has reformed the judicial branch by creating drug courts. These are 

special dockets designed specifically for non-violent offenders with a history of 

substance abuse, allowing for continued, court-managed participation in treatment 

programs to help reduce the rate of relapse associated with jail-time and recent parole 

(Anon, 2015). In addition to relieving the criminal justice costs, improved drug policies 

and drug treatment may also help to normalize racial disparities in drug convictions, as 

African-Americans are far more likely than Caucasians to be convicted for drug-related 

offenses (AnnCarson et al., 2015), despite equal rates of drug use (Sarra L Hedden, 

2015). 

Substance use also places a major financial burden on our healthcare system, 

both for payers and providers. Patients with histories of substance use disorders have 

elevated hospital and psychiatric admissions, substantially increasing total health care 

costs (Clark et al., 2009). In 2010, the Obama administration passed the Affordable Care 

Act, which includes substance use rehabilitation as an essential component of health 

care. This is a significant benefit for people with substance use disorders as they are far 

more likely to be uninsured compared to the national average (Bouchery et al., 2012). 
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Since the loss of insurance benefits is associated with restricted access to care and the 

closure of drug abuse treatment centers (Bret E Fuller et al., 2006; Deck et al., 2006), 

the Affordable Care Act is a welcome respite to those struggling with substance use 

disorders. Further, treatment for substance use disorders can lead to reduction in the 

utilization and cost of medical care (Walter et al., 2005).  

 Improving treatments for those struggling with addiction is not only our moral and 

ethical responsibility, it is also financially prudent. The economic benefits of investing in 

drug treatment exceed the costs of treatment, with cost-benefit analyses showing that 

every dollar spent on care returns 7 dollars in benefits (Ettner et al., 2006). These 

treatment benefits include increases in employment income and decreases in avoided 

costs of criminal activities, incarceration, and hospitalization (Ettner et al., 2006).  

 

Concluding Remarks 

The work encompassed in this doctoral dissertation demonstrates that local and circuit-

wide manipulations of the mesocorticolimbic reward system can modulate the 

reinstatement of cocaine seeking. There is a substantial body of literature indicating that 

DBS of the nucleus accumbens may be a potential therapeutic modality in the treatment 

of cocaine addiction. Specifically, DBS of the nucleus accumbens shell, but not the core 

or dorsal striatum, attenuates the priming-induced reinstatement of cocaine seeking 

(Vassoler et al., 2008; 2013). The present results expand upon this finding by showing 

DBS of the nucleus accumbens shell also attenuated cue-induced reinstatement of 

cocaine seeking (Guercio et al., 2015). The work herein also revealed a novel target 

brain region for DBS in the treatment of cocaine addiction: DBS of the infralimbic mPFC 

selectively attenuated the reinstatement of cocaine seeking. These findings are 

consonant with results from other therapeutic modalities, such as TMS and tDCS, 
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suggesting that mPFC stimulation can reduce cocaine use and craving (Batista et al., 

2015; Hanlon et al., 2015; Terraneo et al., 2016).  

It is now clear that cocaine reinstatement is associated with changes in 

dopamine and glutamate transmission in the nucleus accumbens (Schmidt et al., 2005; 

Schmidt and Pierce, 2010). Further, it has been shown that cocaine reinstatement 

promotes modifications of glutamatergic receptors and associated proteins, causing 

altered excitatory transmission in the nucleus accumbens, (Pierce and Wolf, 2013). The 

results of this dissertation expanded upon this knowledge identifying a necessity for the 

protein, AKAP150, which acts as a biochemical bridge between the dopamine and 

glutamate systems to promote the reinstatement of cocaine seeking. These findings 

present AKAP150 as a potential novel pharmacotherapeutic target in the treatment of 

cocaine craving and relapse. Since broad-based manipulations of dopamine and 

glutamate transmission have failed to produce effective pharmacotherapies for cocaine 

addiction, drugs that manipulate synaptic proteins to indirectly modulate receptor 

functioning may prove more fruitful in selectively combating addictive behaviors.  

Finally, this dissertation addressed why we, as a nation, must invest in improved 

drug treatments and advocate for sensible drug policies. Improving treatments for those 

struggling with addiction is not only our moral and ethical responsibility, it is also 

financially prudent (Ettner et al., 2006). Given the significant burden drug addiction 

places on our society, healthcare, and criminal justice systems, it is imperative that we 

tackle this challenge using scientific, legal, and socioeconomic approaches. It is 

assuredly a difficult task, but as Benjamin Franklin, founder of this great University 

wisely stated, “without continual growth and progress, such words as improvement, 

achievement, and success have no meaning.” 
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