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Resource-Aware Design Of Wireless Control Systems

Abstract
This work is motivated by modern monitoring and control infrastructures appearing in smart homes, urban
environments, and industrial plants. These systems are characterized by multiple sensor and actuator devices
at different physical locations, communicating wirelessly with each other. Desired monitoring and control
performance requires efficient wireless communication, as the more information the sensors convey the more
precise actuation becomes. However wireless communication is constrained by the inherent uncertainty of
the wireless medium as well as resource limitations at the devices, e.g., limited power resources. The increased
number of wireless devices in such environments further necessitates the management of the shared wireless
spectrum with direct account of control performance. To address these challenges, the goal of this work is to
provide control-aware and resource-aware communication policies. This is first examined in the fundamental
problem of allocating transmit power resources for wireless closed loop control. Opportunistic online
adaptation of power to plant and wireless channel conditions is shown to be essential in achieving the optimal
tradeoff between control performance and power utilization. Optimal structural properties of channel access
mechanisms are also considered for the problem of guaranteeing multiple control performance requirements
over a shared wireless medium. This includes scheduling mechanisms implemented by central authorities, as
well as decentralized mechanisms implemented independently by the wireless devices with emerging wireless
interferences. Again the mechanisms exhibit an opportunistic adaptation to varying wireless channel
conditions, especially designed to explore the tradeoffs between different communication links and meet
control performance requirements. The structural characterization is augmented with tractable optimization
algorithms to compute these channel access mechanisms. Finally, as control is naturally a dynamic task that
requires a long term planning, appropriate dynamic algorithms adapting to the varying control system states
are examined. Besides adapting dynamically, the proposed algorithms provide guarantees about long term
control performance and resource utilization by construction.
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ABSTRACT

RESOURCE-AWARE DESIGN OF WIRELESS CONTROL SYSTEMS

Konstantinos Gatsis

George J. Pappas

This work is motivated by modern monitoring and control infrastructures appearing in smart
homes, urban environments, and industrial plants. These systems are characterized by multiple
sensor and actuator devices at different physical locations, communicating wirelessly with each
other. Desired monitoring and control performance requires efficient wireless communication,
as the more information the sensors convey the more precise actuation becomes. However wire-
less communication is constrained by the inherent uncertainty of the wireless medium as well
as resource limitations at the devices, e.g., limited power resources. The increased number of
wireless devices in such environments further necessitates the management of the shared wireless
spectrum with direct account of control performance. To address these challenges, the goal of
this work is to provide control-aware and resource-aware communication policies. This is first
examined in the fundamental problem of allocating transmit power resources for wireless closed
loop control. Opportunistic online adaptation of power to plant and wireless channel conditions
is shown to be essential in achieving the optimal tradeoff between control performance and power
utilization. Optimal structural properties of channel access mechanisms are also considered for
the problem of guaranteeing multiple control performance requirements over a shared wireless
medium. This includes scheduling mechanisms implemented by central authorities, as well as de-
centralized mechanisms implemented independently by the wireless devices with emerging wire-
less interferences. Again the mechanisms exhibit an opportunistic adaptation to varying wireless
channel conditions, especially designed to explore the tradeoffs between different communication
links and meet control performance requirements. The structural characterization is augmented
with tractable optimization algorithms to compute these channel access mechanisms. Finally, as
control is naturally a dynamic task that requires a long term planning, appropriate dynamic algo-
rithms adapting to the varying control system states are examined. Besides adapting dynamically,
the proposed algorithms provide guarantees about long term control performance and resource
utilization by construction.
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Chapter 1: Introduction

Wireless sensors are abundant in modern smart infrastructures, where they are deployed to mon-
itor and control physical processes in our homes, urban environments, and industrial plants.
Essential to the development of such systems is wireless communication, allowing the separa-
tion between the physical locations where sensing and data collection is performed, and different
physical locations where control operations are decided and actuated to the system. To achieve
desired monitoring and control performance, efficient and reliable communication of information
from sensors to actuators is required. However the latter is constrained by the uncertain stochastic
nature of the wireless medium as well as by resource limitations.

Wireless sensors for example are typically battery-operated. The more information a sensor con-
veys the more precise decision making becomes, but the resulting increase in power consumption
at the sensor leads to rapid depletion of its energy resources. Hence tradeoffs between device
lifetime and overall system performance emerge. Besides power limitations, as the number of
wireless sensors and actuators in these environments increases, a need to share the available wire-
less medium between these devices arises. Efficient communication requires frequent channel
access for each sensor, but if this access is not coordinated wireless interferences arise between
transmissions and performance degrades. As a result, the shared wireless medium necessitates
mechanisms for maintaining desired levels of performance among the various devices/systems in
the environment.

Examples of such systems are ubiquitous. Smart buildings (Nghiem and Pappas (2011); Ma et al.
(2012); Oldewurtel et al. (2012)) are instrumented with sensors collecting and transmitting local
information to locations where operation decisions are being made. Monitoring physical processes
with a distributed or large-scale nature also requires efficient sensor communication, as illustrated
in monitoring of, e.g., agricultural applications (Yiming et al. (2007); Ruiz-Garcia et al. (2009);
Cardell-Oliver et al. (2004)), contagious processes (Sadilek et al. (2012); Nowzari et al. (2016)), air
quality and concentration of chemical substances (Kim et al. (2009); De Vito et al. (2011)), traffic
(Horvitz et al. (2012)), or water networks (Whittle et al. (2013)).

Designing wireless sensor-actuator systems with desirable characteristics involves the following
challenges:

• Dynamic Physical Processes: The wireless sensors and actuators of the systems considered
are deployed to collect measurements and control physical processes that are dynamically
and stochastically changing over time. To characterize the performance of such systems it
is indispensable to consider metrics that account for operation over a long time horizon.
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Hence, appropriate metrics of dynamic monitoring or control performance are required.

• Wireless Communication Uncertainties: Due to the intrinsic stochastic behavior of the wire-
less medium, communication between devices is not always reliable but is subject to ran-
domness and non-determinism. The varying wireless conditions create opportunities or
adversities, and their effects on the monitoring and control performance needs to be ac-
counted for. As a result, appropriate wireless communication models which capture this
stochastic behavior need to be employed.

• Adaptive Resource Allocation: Static mechanisms for allocating the available communica-
tion resources are conservative, as in order to maintain desired performance at all times
they have to consider worst operation conditions. In view of the dynamic nature of the
considered physical processes, as well as the variability of the wireless medium, the use of
dynamic resource allocation mechanisms becomes apparent. By adapting to the system con-
ditions during operation, wireless communication resources can be appropriately allocated
only when necessary or only when opportunities arise. The development of such mech-
anisms that can adapt online but can as well provide long time performance guarantees
emerges as a principal research challenge.

1.1. Related Work

The topics considered in this work relate to the area of networked control systems, that is, control
systems implemented over communication networks. The related work can be classified with
respect to the employed communication and channel models. A widely adopted paradigm, which
will also be followed in this work, is that of packet-based communication (Hespanha et al. (2007)). In
this paradigm communication is organized in packets, i.e., when a sensor collects a plant sample or
measurement it transmits the acquired information to the intended receiver in a packet. Packets
are assumed to be long enough so that any quantization effects from converting the collected
information to, e.g., a sequence of bits, can be ignored.

Early works on packet-based networked control systems ignore the cost of conveying informa-
tion, i.e., the cost of transmitting packets, and focus their analysis on the performance of control
loops when various communication uncertainties are taken into account. A fundamental type of
uncertainty arises when transmitting packets over erasure channels which randomly drop some
of the packets. If packets are dropped in an independent and identically distributed fashion there
is a maximum packet drop rate above which controlling or estimating a plant becomes impossi-
ble, i.e., the system becomes unstable. Characterizations of this maximum packet drop rate are
examined by Seiler and Sengupta (2001); Sinopoli et al. (2004); Imer et al. (2006); Hespanha et al.
(2007); Gupta et al. (2007). A different type of communication uncertainty arises when transmitted
packets are received with unknown or random delay. Related characterizations of stability under
delays are considered by Walsh et al. (2002); Hespanha et al. (2007); Heemels et al. (2010).

Besides fundamental stability characterizations, considerable attention has been given on applying

2



appropriate control operations to counteract these communication uncertainties, that is, random
packet drops or delays. This entails the design of appropriate state estimators and controllers,
e.g., linear feedback and observer gains, as discussed by Seiler and Sengupta (2001); Smith and
Seiler (2003); Xu and Hespanha (2005); Imer et al. (2006); Hespanha et al. (2007); Schenato et al.
(2007); Gupta et al. (2007). Overall the fact that packets/measurements are sometimes available
at the receiver while other times they are not requires an appropriate analysis of the system as a
switched or hybrid system.

While in the aforementioned works communication is treated as a constraint or disturbance to the
overall closed loop system, more recent efforts consider communication as an active part of the
design. The resulting setup typically departs from the classic periodic control paradigm, where
the control loop is closed periodically after a fixed amount of time. In particular frameworks such
as event-triggered sampling (Astrom and Bernhardsson (2002); Rabi et al. (2012)), event-triggered
control (Tabuada (2007); Rabi et al. (2008); Heemels et al. (2012, 2013)), or self-triggered control
(Anta and Tabuada (2010); Nowzari and Cortés (2012)) have been proposed to limit the amount
of required communication. The underlying concept in these contributions is to prolong the
time elapsed between successive sampling or input updates as long as some plant performance
criterion is satisfied. Such schemes exhibit in general an average communication rate lower than
periodic schemes that attain similar plant performance. However, communication costs are not
explicitly accounted for in the triggering design.

Communication costs are explicitly modeled in the context of remote state estimation by Xu and
Hespanha (2004); Cogill et al. (2007); Li and Lemmon (2011); Lipsa and Martins (2011); Mesquita
et al. (2012). In this framework a sensor measuring the plant state decides at each time step
whether to transmit its measurement to an estimator or not, and every transmission incurs a
fixed cost. The overall goal is to minimize jointly a penalty on the estimation error and the
communication costs aggregated over time. Alternatively a hard constraint on the number of
transmissions between the sensor and the estimator is considered by Imer and Başar (2005, 2010);
Rabi et al. (2012). The optimal communication is shown to be event-triggered by Xu and Hespanha
(2004), similar to, e.g., Tabuada (2007); Rabi et al. (2008), meaning that transmissions are triggered
when a measure of the plant state exceeds a threshold. Computing the optimal transmission-
triggering sets is in general computationally hard, motivating the development of suboptimal
schemes Cogill et al. (2007); Cogill (2009); Li et al. (2010); Antunes and Heemels (2014).

Related contributions consider the joint design of communication policies as well as control input
policies, assuming again a fixed cost per transmission (Molin and Hirche (2009); Ramesh et al.
(2013)). The problem becomes complex as the policies of the two entities, i.e., the sensor and the
controller, have an information structure that is coupled over time. More specifically, the controller
requires a local state estimator that is in general dependent on the communication policy. Some
structural results for the joint policy design have been recently considered by Nayyar et al. (2013).
Alternatively, one can impose special policy structures leading a separation principle (Ramesh
et al. (2013)) so that optimal inputs and communication schedules can be found by dynamic
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programming for a finite time horizon. Other structural properties of the communication policies
to simplify the state estimation are considered by Han et al. (2015).

The above approaches within the packet-based communication model are related to the approach
followed in this work, however it is worth noting that different lines of research emerge by other
communication or channel models as follows:

• Information-theoretic approaches and Coding: An alternative communication model arises by
considering a digital channel with a limited data-rate. In this case to examine the transfer
of information from sources to destinations, i.e., from sensors to controllers, information-
theoretic approaches are usually followed. A fundamental characterization that arises is the
minimimum bit rate under which an unstable system can be stabilized; see, e.g., Nair et al.
(2007); Franceschetti and Minero (2014). To achieve the communication of plant states, typi-
cally taking values in real vector spaces, an efficient coding and decoding scheme is required
and, in contrast to the packet-based paradigm, quantization effects need to be taken into ac-
count (Wong and Brockett (1997); Brockett and Liberzon (2000); Tatikonda and Mitter (2004);
Yuksel and Başar (2006); Ostrovsky et al. (2009); Sukhavasi and Hassibi (2016)). As the en-
coder and decoder policies depend on each other but are implemented at different physical
locations, the joint design is complex and structural properties are explored by Walrand
and Varaiya (1983); Varaiya and Walrand (1983); Borkar and Mitter (1997); Mahajan (2008).
Further connections between information theoretic measures and control performance are
explored by Martins and Dahleh (2008); Tanaka et al. (2015).

• Input-ouput models of communication: Apart from the packet-based communication paradigm
and the limited data-rate channel model, communication between a sensor and a controller
can also be modeled as an input-output system (Elia (2005)). The uncertainty introduced in
the closed loop due to channel randomness is then treated as stochastic model uncertainty.
This facilitates controller synthesis using robust control techniques (Braslavsky et al. (2007)).
Communication is again not treated as a design variable in this context but a constraint to
closed loop control.

Control over Shared Wireless Channels

The problem of sharing a communication medium between different sensor and actuator devices
has also received considerable attention in the context of networked control systems. The preva-
lent approach to this problem is to design a centralized scheduling mechanism with respect to
control performance objectives. The scheduling mechanisms usually examined are either static
or dynamic. Typical examples of the first type are periodic protocols where the wireless de-
vices transmit in a predefined repeating order, e.g., round-robin. Stability under such protocols
can be analyzed by a switched system approach – see, e.g., Zhang et al. (2001); Hespanha et al.
(2007); Schenato et al. (2007); Donkers et al. (2011). The problem of designing static schedules
suitable for control applications has also been addressed. Periodic sequences leading to stability
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(Hristu-Varsakelis (2001)), controllability and observability (Zhang and Hristu-Varsakelis (2006)),
or minimizing linear quadratic objectives (Le Ny et al. (2011)) have been proposed. Deriving oth-
erwise optimal scheduling sequences is recognized as a hard combinatorial problem (Meier et al.
(1967); Rehbinder and Sanfridson (2004); Gupta et al. (2006)).

The second type of schedulers, the dynamic ones, do not rely on a predefined sequence but ac-
cess to the communication medium is decided dynamically at each step. The decision typically
depends on the current plant/control system states, i.e., informally the subsystem with the largest
state discrepancy is scheduled to communicate. Examples can be found in, e.g., Walsh et al.
(2002); Hristu-Varsakelis and Kumar (2002); Egerstedt and Wardi (2002); Donkers et al. (2011). Re-
cent efforts have also focused on scheduling for event-based controllers (Cervin and Henningsson
(2008); Molin and Hirche (2014)). Another approach, motivated by the problem of scheduling
control tasks sharing a computation resource (CPU) rather than a communication medium, is to
abstract control performance requirements in the time/frequency domain. Knowing, e.g., how of-
ten a task needs resource access to communicate and close the loop, static and dynamic schedules
meeting the desired requirements can be obtained using algorithms from real-time scheduling
theory (Liu (2000); Branicky et al. (2002)).

In contrast to centralized scheduling, decentralized mechanisms where sensors independently
decide access to the shared wireless medium are easier to implement. They do not require pre-
designed sequences of how sensors access the medium, or a central authority to take scheduling
decisions. The drawback however is that packet collisions can occur from simultaneously trans-
mitting sensors, resulting in lost packets and control performance degradation. Control under
decentralized channel access mechanisms has drawn limited attention in the literature. Com-
parisons between different medium access mechanisms for networked control systems and the
impact of packet collisions have been considered either in numerical simulations (Liu and Gold-
smith (2004); Ramesh et al. (2013)) or analytically in simple cases (Rabi et al. (2010); Blind and
Allgöwer (2011)). These include random access mechanisms, where each sensor independently
and randomly decides whether to transmit, and related Aloha-like schemes, where after a packet
collision the involved sensors wait for a random time interval and retransmit. Stability condi-
tions under packet collisions were examined in Zhang (2003); Tabbara and Nesic (2008). Besides
closed loop control, optimal remote estimation over collision channels is considered recently in
Vasconcelos and Martins (2014).

1.2. Outline and Contributions

The goal of this work is to develop mechanisms for efficient communication and resource alloca-
tion in sensor-actuator systems implemented over wireless channels. The topics considered in this
context and the related contributions are presented next.
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Resource-aware Wireless Control Systems

The packet-based paradigm is adopted in modeling the communication between sensors and
actuators. In order to explicitly account for the allocation of transmit power resources however this
model is generalized. In particular, the probability of successfully decoding the transmitted packet
at the receiver is modeled as a function of the channel conditions (fading) as well as the selected
transmit power. This constitutes a generalization of the independent packet success model, as
here a transmitting sensor has the ability to directly control the packet success by adjusting the
transmit power. This communication model allows us to mathematically formulate the problem
of power allocation in wireless control systems. Moreover, it allows us to capture the uncertainties
introduced by the inherent stochastic nature of the wireless medium via channel fading. Finally,
this communication model is extended to the case where multiple sensors need to communicate
over a shared wireless medium (multiple-access channels) and allows for allocation of resources
across multiple systems. These contributions are detailed in Chapter 2.

Power Management for Wireless Sensor-Actuator Systems

Under the introduced power-aware channel model we examine a single loop control system, where
a sensor transmits information over a wireless fading channel to a controller. We formulate the
problem of minimizing jointly the average control performance of the plant as well as the average
power consumption at the sensor. We identify a special information structure that allows the
decoupling of the two designs, so that the control input policy and the power allocation policy can
be designed separately. Then we derive structural properties of the optimal power allocation. We
show that in order to effectively balance the tradeoff between control performance and resource
utilization the sensor needs to opportunistically exploit online the channel conditions as well as
the control system state. Our approach leads to novel designs as it is shown that the sensor needs
to allocate a wide range of transmit powers, in contrast to the binary event-triggered approaches
where a sensor decides just whether to transmit or not. In fact event-triggered policies arise as a
special case in our context. These contributions are detailed in Chapter 3.

Scheduling Sensor-Actuator Systems over Shared Wireless Channels

For the case of multiple wireless control systems sharing a wireless channel we develop centralized
scheduling and power allocation policies. The goal of the policies is to maintain a level of control
performance for each control system, modeled via Lyapunov functions, while minimizing the total
power consumption. This formulation leads to a constrained stochastic optimization problem and
the structure of the optimal solution is characterized. The scheduler opportunistically exploits the
channel conditions experienced by the control systems to decide which system should get access
to the channel. The optimal transmit powers are shown to be decoupled among systems, allowing
for an easy implementation. We further describe algorithms to find the optimal policies either
offline, when the channel distributions are available, or online based on samples from the channel
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states observed during operation. In the latter case we show that the algorithm converges almost
surely to the optimal scheduling and power allocation rule. These contributions are detailed in
Chapter 4.

Random Access Design for Wireless Sensor-Actuator Systems

When alternatively a central authority is not available to implement scheduling decisions, sensors
randomly and independently decide whether to access the channel. The goal is again to guaran-
tee closed loop control performance, however in this case a mitigation of packet collisions arising
from simultaneously transmitting sensors is required. The proposed decentralized sensor access
policies are derived by a constrained optimization formulation. Despite the fact that sensor poli-
cies are coupled, as each sensor is causing collisions to all other links and is subject to collisions
from all other sensors, a decentralized structure emerges. Each sensor should access the channel
when its local channel conditions exceed a threshold, i.e., are favorable enough. The threshold is
selected in a way that balances the gains from transmitting with the losses due to packet collisions
on all other systems. Decentralized algorithms to obtain the optimal mechanism are also explored.
These contributions are detailed in Chapter 5.

Online Control-aware Resource Allocation

While the optimal power allocation problem examined in Chapter 3 indicates that the sensor
needs to allocate its transmit power online based on plant and channel states, computing the op-
timal policy is computationally hard. In particular, the dynamic nature of the control system state
makes it hard to account for the optimal future behavior of the system (or technically the opti-
mal cost-to-go function). To alleviate this computational complexity we provide suboptimal yet
tractable state-aware policies based on the approximate dynamic programming technique of roll-
out algorithms. This approach guarantees by design that the suboptimal state-aware policies have
a control performance and resource utilization that is superior to other non-state-aware policies,
which are hereby used as reference policies.

We further develop state-aware policies for the decentralized channel access problem. In this case
the rollout policies for the sensors are explicitly constrained to prescribed average channel access
rates that do not violate control performance of other systems due to collisions. The design of such
constrained policies becomes tractable based on Lagrange duality arguments. These contributions
are detailed in Chapter 6.
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Chapter 2: Resource-aware Wireless Control
Systems

The control systems considered in this work are characterized by physical separation between
the sensors and controllers/actuators. The sensors are deployed to measure the state of a dy-
namic physical system (plant) and transmit their measurements over wireless channels to con-
trollers/actuators. The latter are responsible for providing appropriate control inputs in order to
regulate the plant given the received information. In this context the most basic architecture is
presented in Fig. 1 and consists of a single sensor-actuator pair over a wireless channel. The goal
of this work is to provide resource-aware and control-aware communication designs. In this chap-
ter we discuss the employed plant and controller models, as well as the wireless communication
model which explicitly takes into account the employed resources.

Plant

Receiver/
Controller

Sensor/
Transmitter

Wireless Channel
hk

xk

pk

uk

wk

Figure 1: Wireless control system architecture. At each time step k the sensor measures and
transmits the plant state xk over a wireless channel to the controller. The selected transmit power
pk and the wireless fading state hk determine whether the message is successfully received. The
goal is to achieve a good trade-off between power consumption and closed loop performance.

2.1. Control System Model

The goal of the architecture in Fig. 1 is to regulate a plant. The evolution of the plants considered
in this work can be described by a discrete-time linear time-invariant system given by

xk+1 = Axk + Buk + wk, k ≥ 0. (2.1)

Here k ≥ 0 represents discrete time steps, xk ∈ Rn is the plant’s state with x0 being an initial
given plant state, uk ∈ Rm is the driving input, and {wk, k ≥ 0} is the process noise which unless
otherwise noted is an independent identically distributed (i.i.d) n-dimensional Gaussian process
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N0,W with zero mean and covariance W. The process noise repeatedly perturbs the system from
the desirable equilibrium operating point 0, taken without loss of generality. If the system is
unstable, i.e., its spectral radius is larger than unity ρ(A) := maxi |λi(A)| > 1, the plant state will
grow unbounded unless appropriate feedback control inputs are provided.

Given a wireless channel model and a communication policy, which is the main part of our design
and is detailed in the following section, plant state measurements from the sensor/transmitter
become available to the receiver/controller. Throughout this work we assume that communication
is organized in packets containing each sensor measurement xk at each time slot (Hespanha et al.
(2007)). A packet transmitted might get received at the receiver during that slot or it might get
dropped. We model the packet success for each time step k as an indicator γk taking value
γk = 1 when information is successfully decoded and γk = 0 otherwise. Variables γk are random
due to uncertainty introduced in the wireless communication as we will see in the following
section. In general they are binary random variables with a time-varying success probability
P(γk = 1) ∈ [0, 1], k ≥ 0.

When a packet is successfully received, the plant state xk becomes completely known to the con-
troller – the effects of measurement quantization and transmission delays are considered negligi-
ble and are thus ignored henceforth. When a packet is dropped, the controller does not know the
current state of the plant. More formally, given the packet success model γk ∈ {0, 1} the controller
receives an output γkxk which is the actual system state when a packet is received and 0 other-
wise. We can further assume that the controller also gets the value of γk so that it can distinguish
between the cases xk = 0 and γk = 0. Overall the information available at the controller at time
k consists of all previously received messages given by {γ0, . . . , γk, γ0x0, . . . , γkxk}. A standing
assumption throughout this work is that the receiver also sends lossless packet acknowledgments
to the sensor/transmitter.

Given the available information, the controller is responsible for deciding what control input uk

to be applied as a feedback to the plant at each time step. The general problem of designing
appropriate control input policies in this context is examined in detail in Chapter 3. In particular
the goal of the control policy is to provide good closed loop control performance. The latter can
be measured as a typical quadratic cost on the plant state and the control input, i.e.,

lim sup
N→+∞

1
N

E
N−1

∑
k=0

xT
k Qxk + uT

k Ruk. (2.2)

The limit in this expression accounts for long term performance while the expectation accounts
for the randomness introduced by the process noise and the wireless communication.

Alternatively some control input policy may be fixed, i.e., the controller is pre-designed, and the
remaining goal is to design the communication policy. To mathematically formulate this case we
consider some examples of frequently used controller policies in networked control systems.
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Example 2.1. Consider the control of a plant given by (2.1). A very simple controller is described by

uk =

{
K xk, if γk = 1
0, if γk = 0

. (2.3)

That is, the controller applies a linear feedback with gain K ∈ Rm×n when a measurement is received,
otherwise does not apply any input when no measurement is received (Hadjicostis and Touri (2002)). The
resulting closed loop system has two modes of operation depending on whether the measurement is received
or not. In particular it can be written as a linear switched system of the form

xk+1 =

{
(A + BK) xk + wk, if γk = 1
A xk + wk, if γk = 0

. (2.4)

Intuitively the closed loop mode A + BK is chosen to be a stable system.

Example 2.2. Alternatively, as a second example consider a controller with the ability to hold the last
applied input until a new measurement is received (Zhang et al. (2001); Seiler and Sengupta (2001)), that
is,

uk =

{
K xk, if γk = 1
uk−1, if γk = 0

. (2.5)

where K is a state feedback gain. The overall evolution of the system can be expressed as a switched system
again where the plant state xk is augmented with the last applied input uk−1 to rewrite the system dynamics
in the form

[
xk+1

uk

]
=



[
A + BK 0

BK 0

] [
xk

uk−1

]
+

[
I
0

] [
wk

]
, if γk = 1[

A I
0 I

] [
xk

uk−1

]
+

[
I
0

] [
wk

]
, if γk = 0

. (2.6)

This is again a switched linear time-invariant system with two modes of operation, open and closed.

Example 2.3. As a third example, consider a more sophisticated controller which may compute and apply a
different control input at each time step. Since the controller does not always have access to the plant state,
it is reasonable to keep a local state estimate x̂k and then apply a control input as a linear feedback with
respect to the estimate, that is,

uk = Kx̂k. (2.7)

An intuitive rule for updating the state estimate is as follows (Xu and Hespanha (2004); Ramesh et al.
(2013))

x̂k =

{
xk if γk = 1,
Ax̂k−1 + Buk−1 if γk = 0

, (2.8)

In other words, when no measurement is received the plant dynamics are used in order to propagate the last
estimate. We can combine the plant state with the state estimate in an augmented state vector to express the
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overall dynamics as

[
xk+1

x̂k

]
=



[
A + BK 0

I 0

] [
xk

x̂k−1

]
+

[
I
0

] [
wk

]
, if γk = 1[

A BK (A + BK)
0 A + BK

] [
xk

x̂k−1

]
+

[
I
0

] [
wk

]
, if γk = 0

(2.9)

This is again a switched linear time-invariant system with two modes of operation, open and closed. In
Chapter 3 it will be shown that this controller becomes optimal for the wireless control system under appro-
priate assumptions.

As can be seen from the preceding examples a general model for the evolution of the plant and
pre-designed controller is a switched linear time-invariant system of the form

xk+1 =

{
Ac xk + wk, if γk = 1
Ao xk + wk, if γk = 0

. (2.10)

Here xk ∈ Rn is the overall state of the control system, with the understanding that this may in-
clude controller states as well as in the examples above. The evolution of the state has two possible
linear modes of operation depending on transmission success. At a successful transmission the
system dynamics are described by the matrix Ac ∈ Rn×n, where ’c’ stands for closed-loop, and
otherwise by Ao ∈ Rn×n, where ’o’ stands for open-loop. We assume that Ac is asymptotically
stable, implying that if system were to transmit at each slot its respective state evolution is stable.
The open loop matrix Ao may be unstable. The terms {wk, k ≥ 0} are again the i.i.d. Gaussian
process noise with zero mean and covariance W.

For a fixed wireless control system of the form (2.10) our goal will be to design appropriate
communication policies that yield good closed loop control performance, i.e., ability to regulate
plant states to the desirable operating point 0 despite external disturbances or communication
uncertainties. In particular we consider two different measures of control performance that will
facilitate the communication design. These are presented next.

2.1.1. Lyapunov-based Control Performance Abstraction

First we capture the ability of the wireless control system to drive fast the system state to the
desirable operating point 0. Convergence to 0 is typically analyzed in control systems via non-
negative functions V(x) of the plant state, i.e., Lyapunov functions. The Lyapunov function of
the state decreases if V(xk+1) ≤ ρV(xk) for all xk ∈ Rn for some scalar ρ < 1 which denotes
some desired rate of decrease. Due to the randomness introduced by the plant disturbance and the
wireless communication it is not possible to guarantee that the Lyapunov function decreases at
each time step. In fact when a plant state measurement is not received the system runs in open
loop and it typically increases V(xk+1) > V(xk). As an alternative then we can require that the
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Lyapunov function decreases in expectation with respect to the system uncertainties, that is,

E[V(xk+1)
∣∣ xk] ≤ ρV(xk) + ε for all xk ∈ Rn and all k ≥ 0 (2.11)

for a desired decrease rate ρ < 1 and some constant ε, independent of the system state. The
expectation in this expression is with respect to the random disturbance wk, k ≥ 0 and the random
wireless communication process γk, k ≥ 0.

For the special case of switched linear systems in (2.10) we suppose that a quadratic Lyapunov
function of the form V(x) = xT Px for some positive definite matrix P ∈ Sn

+ is given. In that case
we can write the control performance specification in the form

E[V(xk+1)
∣∣ xk] ≤ ρV(xk) + Tr(PW) for all xk ∈ Rn and all k ≥ 0. (2.12)

Here ρ < 1 is a given desired decrease rate. The term Tr(PW) is a constant appearing due to the
linearity of the system and the additive process noise with covariance W (cf. (2.10)) as well as the
quadratic form of the Lyapunov function.

The intuition behind condition (2.12) is as follows. If (2.12) holds for each time step k = 0, . . . , N,
then by taking the expectation at both sides and by iterating backwards in time we find that

EV(xN) ≤ ρ EV(xN−1) + Tr(PW) ≤ . . . ≤ ρN EV(x0) +
N−1

∑
k=0

ρk Tr(PW). (2.13)

Hence, system states have second moments that decay exponentially with rate ρ with respect
to initial states, and in the limit remain bounded by Tr(PW)/(1 − ρ), since the sum in (2.13)
converges due to ρ < 1.

The above Lyapunov control performance abstraction facilitates communication design. In Chap-
ter 4 we will convert the above control performance requirements to equivalent explicit wireless
communication requirements, in particular required packet success rates.

2.1.2. Quadratic Control Performance Abstraction

An alternative approach is to consider quadratic regulation costs as usually associated with linear
systems. In particular at each time step we can consider a cost of the form{

xT
k Qc xk, if γk = 1

xT
k Qo xk, if γk = 0

. (2.14)

This costs depends in general on whether transmission occurs (γk = 1) or not (γk = 0) at time k.
Both n× n matrices Qc, Qo are assumed to be positive semidefinite and are design choices. The
case where both matrices are equal is a special case. In view of the system evolution (2.10) the state
xk is a random variable affected by plant disturbance and wireless communication uncertainties.
As it is of interest to examine the long term behavior of the system we consider the average
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expected quadratic cost

lim sup
N→∞

1
N

N−1

∑
k=0

E[xT
k (γkQc + (1− γk)Qo) xk]. (2.15)

Average penalties on actuation, i.e., the actual control inputs, can also be captured in (2.15) as seen
in the following example.

Example 2.4. Consider the control system described in Example 2.2 which is expressed with respect to an
augmented state xk, uk−1. Suppose that we want to account for a joint cost on the plant state and control
inputs xT

k Qxk + uT
k Ruk for some n× n and m× m symmetric positive definite matrices Q, R. It can be

seen from (2.5) that whenever a packet is received this joint cost equals xT
k (Q + KT RK)xk. Otherwise,

when a packet is dropped, the joint cost becomes xT
k Qxk + uT

k−1Ruk−1. In either case this is quadratic cost
on the augmented state that depends on whether the current transmission is successful or not. This is of the
general form (2.14) with respect to the augmented system state.

In the following section we will describe in detail the wireless communication model which de-
termines the packet indicator variables γk, k ≥ 0. Before doing so we briefly describe a difference
between the two control performance abstractions presented above.

Remark 2.1. We point out that overall in this work we are interested in communication design for control
performance, in contrast to determining what communication designs guarantee stability, as is commonly
examined in the literature, e.g. Zhang et al. (2001); Hristu-Varsakelis (2001); Hespanha et al. (2007);
Donkers et al. (2011). The two proposed control performance abstractions provide for different communi-
cation design approaches. We will show (Prop. 4.1 in Chapter 4) that the Lyapunov control performance
abstraction leads to an explicit wireless communication requirement. In particular it corresponds to a con-
vex requirement (lower bound) on the packet success rate at each time step, and leads to a design that is
decoupled from the plant states over time. In contrast, the average quadratic control performance in (2.15)
is in general a non-convex function of the packet success rates. The communication design in this case
(Chapter 6) can exploit dynamic programming approaches and leads to solutions that are adapted online to
plant states.

2.2. Wireless Channel Model

Consider again the wireless control architecture of Fig. 1. At each time step k the wireless sensor
transmits the current plant state measurement with some power pk ∈ [0, pmax] which is a de-
sign variable over a wireless fading channel with coefficient hk. Due to propagation effects the
channel gain hk changes unpredictably over time (Goldsmith, 2005, Ch. 3). We adopt the stan-
dard block fading model of wireless communications whereby channels {hk, k ≥ 0} are modeled
as i.i.d. random variables taking values in the positive reals R+ according to some distribution
φh (Goldsmith, 2005, Ch. 4). The channel states are also independent of the plant process noise
{wk, k ≥ 0} (cf.(2.1) or (2.10)). To allow for transmissions adapted to the current channel condi-
tions the transmitter has access to the channel state information hk before transmitting at time k –
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Figure 2: Complementary error function for FEC and capacity achieving codes. The probability
of successful decoding q for a practical FEC code is a sigmoid function of the received SNR =
h p/N0, while for a capacity achieving code a threshold value SNR0 determines whether a packet
is successfully received.

see Remark 2.3.

At the controller side the received signal includes the information bearing signal and additive
white Gaussian noise (AWGN). The noise power is denoted by N0 and the power of the informa-
tion bearing signal is the product hk pk. Assuming the receiver also has channel state information,
successful decoding of the transmitted packet is determined by the signal to noise ratio (SNR) at
the receiver defined as

SNRk :=
hk pk
N0

. (2.16)

More precisely, given the particular type of modulation and forward error correcting (FEC) code
used, the SNR determines the probability of successful decoding P(γk = 1). To keep the analysis
general we define a generic complementary error function

P(γk = 1) = q (hk, pk) , (2.17)

mapping SNRk := hk pk/N0 to the packet success probability. We assume that q (h, p) is a known
increasing function of the product h p - see Remark 2.2.

Considering packet decoding as a part of the communication process, we can model communica-
tion as a sequence of indicator variables γk taking value γk = 1 when information is successfully
decoded and γk = 0 otherwise. Variables γk are Bernoulli distributed with time-varying success
probabilities P(γk = 1) given by (2.17). Packet receipt acknowledgment γk is also sent from the
controller to the sensor as provided by 802.11 and TCP protocols. We assume lossless acknowl-
edgments, so that the sensor knows what information is received at the controller.

A fundamental problem addressed in this work is the design of the transmit powers pk of the
sensor. The design should lead to desired control performance of the system as expressed, e.g., in
the preceding section. Moreover the sensor should make an efficient use of its power resources.
As a result the communication policy needs to take into account the average power utilization as
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measured by

lim sup
N→+∞

1
N

E
N−1

∑
k=0

pk. (2.18)

The expectation here accounts for the uncertainty introduced by the random channel fading pro-
cess, the random packet success, as well as the random control system evolution. A formal prob-
lem specification for the optimal power allocation will be presented in Chapter 3.

The sensor may select transmit power per each packet as a function of the information available to
the sensor, i.e., the plant state measurements, the observed channel realizations, and the receiver
acknowledgments. Informally, to conserve power at the sensor side we want to transmit informa-
tion only when the state xk deviates from its desired value or when the channel realization hk is
favorable. In the first case transmission is necessary to keep the plant under control. In the latter
case the transmission cost is minimal.

The present wireless channel model can be naturally extended to the case where multiple control
systems are

Remark 2.2. The error profiles 1− q (hk, pk) of particular FEC codes are difficult to determine analytically
but can be measured in actual or simulated experiments (Zhang et al. (2008); Ploplys et al. (2004)). Typi-
cally q (hk, pk) is a sigmoid function of hk pk with exponential tails as depicted in Fig. 2. In the theoretical
limit, correct decoding depends on the channel capacity Ck =W log2(1 + SNRk), whereW is the channel
bandwidth. If the packet is transmitted at a rate smaller than Ck bits per second it is almost surely suc-
cessfully decoded, and it is almost surely incorrectly decoded otherwise. Thus, we can write the successful
decoding probability as the indicator function

q (hk, pk) = I

(
hk pk
N0
≥ SNR0

)
, (2.19)

for some constant SNR0. Determining the threshold SNR0 requires specification of the sampling rate and
quantization resolution of the state xk. With α samples per second and β bits per sample we require a
transmission rate of αβ bits per second. The SNR threshold is then given by SNR0 = 2αβ/W − 1. Our
interest in (2.19) is conceptual as it will allow us to recover results in event-triggered communication (Xu
and Hespanha (2004)) as arising from the use of capacity achieving codes – see Section 3.4.1. The form of
(2.19) is shown in Fig. 2.

Remark 2.3. The assumption that channel state information (CSI) is available at the transmitter is typical
in modern wireless communication setups (Goldsmith, 2005, Ch. 9). To measure the wireless channel condi-
tions a short pilot signal of fixed power can be sent from the transmitter and then the fading characteristics
can be estimated at the receiver and sent back to the transmitter by utilizing the reverse channel. Although
accurate CSI is difficult to acquire at the transmitter side, our development can be modified if channel esti-
mates are available in lieu of the actual channel value hk with a reinterpretation of the function q(.). Further
discussion is provided in Appendix A. We additionally point out that even though the pilot signals for the
channel estimation incur some power consumption, we assume that practically this is much lower than the
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Figure 3: Architecture for control over multiple access channels. Independent control systems
close their loops by transmitting over the shared wireless medium to a common receiver/access
point. Each control system i experiences random channel conditions hi. A centralized scheduler
at the access point observes all channel states and opportunistically decides which system is
scheduled to transmit and close the loop.

power necessary for transmitting the packets of the control system, especially for large packet lengths (e.g.
long headers). Hence the power for channel estimation is not included in our objective in (2.18).

Remark 2.4. There is a distinction to be made between errors that are detected by the receiver and errors that
are undetected and may confuse the controller. The model here handles the former and ignores the latter. This
is justified because practical communication schemes include the use of cyclic redundancy checks (CRC) for
error detection that can drive the probability of undetected errors to very small values (Moon, 2005, Ch. 4).
The use of simple CRCs reduces the probability of undetected errors to 10−3, while longer codes can reduce
this probability to 10−7.

2.2.1. Multiple Access Channels

Consider now the case where multiple sensors need to communicate over a shared wireless
medium in order to close their loops, as depicted in Fig. 3. Each sensor is measuring the state
of an independent plant and transmits its local state information to a common access point. For
example this can be a common central controller computing the control inputs to the plants. Each
control system has their own independent dynamics, expressed, e.g., in the form (2.10). The access
point is responsible for deciding at each time step which sensor is scheduled, i.e., gets access to
the channel. The goal is to achieve control performance for all systems.

Each control loop i (i = 1, 2, ..., m) experiences different wireless fading conditions over the shared
channel. In particular by hi,k we refer to the channel fading coefficient that system i experiences if it
transmits at time slot k. Following a block fading model as in the single control loop case, channel
states {hi,k, 1 ≤ i ≤ m} are modeled as constant during each transmission slot k, but independent
and identically distributed across different time slots k according to some joint distribution φh

on Hm. We assume the channel states are available to the access point before transmission – see

16



Remark 2.5 for a practical implementation.

Following our power allocation model, if system i is scheduled to access the channel at a given
time step, the corresponding sensor selects a transmit power level pi,k ∈ [0, pmax]. As described
in (2.17) the probability that the transmitted packet is successfully decoded is a function of the
power level and the link’s channel conditions given by a relationship of the form q(hi,k, pi,k).

The goal of the access point/scheduler is to select one system to access the channel at each time
step. We denote with αi,k = 1 the decision to schedule system i at time k, and αi,k = 0 otherwise.
Since at most one system is scheduled we have ∑m

i=1 αi,k ≤ 1. Let us indicate with γi,k ∈ {0, 1}
the event that a successful transmission occurs at time k for the subsystem i. This is a Bernoulli
random variable with success probability

P[γi,k = 1
∣∣ hk, αk, pk] = αi,k q(hi,k, pi,k) (2.20)

This expression states that the probability of a message for system i being successfully received
equals the probability that system i is scheduled to transmit and the message is correctly decoded.

The scheduler to be designed can take into account current channel information when making the
scheduling decisions online. Intuitively the scheduler might decide to give access to the system
currently experiencing the most favorable channel conditions, as that will result in a most reliable
communication. An important restriction however is posed on the scheduler design due to the
physical systems. To avoid loss of stability or deterioration of control performance, the scheduler
needs to guarantee that each system gets access to the shared channel at a sufficient rate. The
detailed scheduler design in presented in Chapter 4.

Remark 2.5. The centralized scheduler of the multiple access channel architecture in Fig. 3 requires channel
state information. The channel conditions for each system can be measured at the access point at the
beginning of each time slot by short pilot signals sent from the wireless transmitters of all systems to the
access point. Depending on the measured channel states the access point decides which plant is scheduled
to close the loop during the time slot.

2.2.2. Decentralized (Random) Channel Access

An alternative mechanism for sharing the wireless medium is random access. In contrast to
centralized scheduling, this is a decentralized mechanism where sensors independently and ran-
domly decide whether to access the shared wireless medium and transmit plant state measure-
ments to the access point/controller (Fig. 4). Such a mechanism is easier to implement in practical
scenarios, as it does not require a central authority to take scheduling decisions. The drawback
of this decentralized approach however is that packet collisions can occur from simultaneously
transmitting sensors, resulting in lost packets and control performance degradation. Hence sen-
sor access policies need to be appropriately designed to mitigate these effects.

At every slot k each sensor i transmits over the shared channel with some probability αi,k ∈ [0, 1]
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Figure 4: Random access architecture for m control loops over a shared wireless medium. Each
sensor i randomly transmits with probability αi,k at time k to a common access point computing
the plant control inputs. If only sensor i transmits, the successful decoding probability depends
on local channel conditions hi,k. If other sensors transmit at the same time a collision might occur
at sensor i’s transmission, rendering i’s packet lost.

which is a decision variable. A sensor’s transmission might fail due to two reasons, packet de-
coding errors and packet collisions. A collision might be experienced on link i, thereby rendering
packet i lost, if some other sensor j 6= i transmits in the same time slot. We assume that such a
collision event occurs with constant probability qji ∈ [0, 1], given that both sensors i, j transmit in
the slot. Thus, the probability that sensor i’s transmission is free of collisions, i.e., that no other
sensor transmits and causes collisions on link i, equals ∏j 6=i[1− αj,k qji]. See Remark 2.6 for details
of this collision model.

We adopt once again a block fading channel model whereby hi,k is the channel fading coefficient
that system i experiences if it transmits at time slot k. The channel fading coefficients are randomly
varying over time. If sensor i transmits and has a collision free time slot, the success of decoding
the message at the access point/receiver depends on the randomly varying channel conditions on
link i and transmit power. Assuming for simplicity that transmit power is fixed to some value pi

in this setup, we denote by q(hi,k, pi) the probability of successful transmission (cf.(2.17)).

Combining the effects of collisions and packet losses due to fading, the probability that a packet
is successfully decoded at the access point can be written as

P(γi,k = 1) = αi,k q(hi,k, pi) ∏
j 6=i

[
1− αj,k qji

]
. (2.21)

This expression states that the probability of system i in (2.10) closing the loop at time k equals the
probability that transmission i is successfully decoded at the receiver, multiplied by the probability
that no other sensor j 6= i is causing collisions on ith transmission.

The goal of the random access design problem in this case it to design the sensor policies so that
each involved control system has desirable control performance. One the one hand, this requires
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management of the arising packet collisions between sensors. On the other hand, sensors can
opportunistically exploit their local plant or channel information to decide whether to access the
channel. Due to the shared wireless medium the sensor policies are coupled (cf. (2.21)). A formal
problem specification and an efficient design procedure is presented in Chapter 5.

Remark 2.6. Our collision model captured by the probabilities qji subsumes: i) the conservative case where
simultaneous transmissions certainly lead to collisions (qji = 1) usually considered in control literature,
e.g., by Zhang (2003); Tabbara and Nesic (2008), ii) the case where simultaneously transmitted packets
are not always lost (qji < 1), e.g., due to the capture phenomenon (Luo and Ephremides (2002)), and
iii) the asymmetric case where different sensors j, ` interfere differently on link i, e.g., due to their spatial
configuration.
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Chapter 3: Optimal Power Management for
Wireless Sensor-Actuator Systems

3.1. Problem Description

We consider the wireless control architecture shown in Fig. 5 deployed to control a discrete-time
linear time-invariant plant described by the difference equation

xk+1 = Axk + Buk + wk, k ≥ 0, (3.1)

where xk ∈ Rn is the plant’s state with x0 given, uk ∈ Rm the driving input, and {wk, k ≥ 0} is
the process noise composed of independent identically distributed (i.i.d) n-dimensional Gaussian
random variables wk ∼ N0,W with zero mean and covariance W. We assume the plant is unstable
(λmax(A) > 1) but that (A, B) is stabilizable.

The wireless sensor collects state measurements xk that it communicates with power pk ∈ [0, pmax]

over a wireless fading channel with coefficient hk. At the other side of the channel the receiver/
controller uses the received information to determine a control input uk that it feedbacks into the
plant.

The channel fading state hk, k ≥ 0 is modeled as an i.i.d. process (block fading cf. 2.2) with
some known probability distribution φh on the positive reals R+, independent of the plant pro-
cess noise {wk, k ≥ 0}. We make the technical assumption that the distribution of the channel
state is absolutely continuous, i.e., has a probability density function on R+. To allow for trans-
missions adapted to the current channel conditions the transmitter has access to the channel state
information hk before transmitting at time k.

Following the wireless channel modeled introduced in 2.2, the probability of successfully decoding
the message at the receiver/controller at time k, denoted hereby by qk, is a function of the current
channel state hk as well as the current transmit power pk,

qk = q (hk, pk) . (3.2)

The typical form of this function is depicted in Fig. 2. We assume that q (h, p) is a known
increasing function of the product h p. We denote the success of transmission at each time step k
by an indicator variable γk ∈ {0, 1}. Variables γk ∼ Bern(qk) are Bernoulli distributed with time-
varying success probabilities qk given by (3.2). With this communication model the controller
receives the output of the decoding process which we model by the signal yk = γkxk. We further
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Channel:
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γk ∼ Bern(qk)
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Figure 5: Wireless control system architecture. A sensor measures the plant and wireless fading
channel states xk, hk respectively and transmits with power pk. Messages are successfully decoded
at the controller with probability qk that depends on the channel state hk and the power pk. The
sensor receives acknowledgments with a one-step delay.

assume that the controller also gets γk so that it can distinguish between the cases xk = 0 and
γk = 0. Packet receipt acknowledgment γk is also sent to the sensor as provided by 802.11 and
TCP protocols. We assume lossless acknowledgments, so that the sensor knows what information
is received at the controller.

The problem addressed in this chapter is the joint design of the control inputs uk and the transmit
powers pk. The control input uk is determined by the received information y0:k, γ0:k. The power pk

is determined as a function of the plant state measurements x0:k, the observed channel realizations
h0:k, and the controller acknowledgments γ0:k. Informally, to conserve power at the sensor side
we want to transmit information only when the state xk deviates from its desired value or when
the channel realization hk is favorable. In the first case transmission is necessary to keep the plant
under control. In the latter case the transmission cost is minimal. A formal problem specification
is presented in the next section after the following remarks.

To formulate the joint design of plant controller and power management we introduce an equiva-
lent architecture. In view of (3.2), choosing pk is equivalent to choosing the desired probability of
successful decoding qk at time k and transmitting with the minimum required power to achieve
this qk, namely

pk = p(hk, qk) := inf {0 ≤ p ≤ pmax : q(hk, p) ≥ qk} . (3.3)

We can therefore interpret qk as our decision variable with p(hk, qk) denoting the cost of selecting
transmission success probability qk. This leads to the equivalent control system architecture shown
in Fig. 6 where a scheduler block responsible for deciding qk replaces the sensor/transmitter block
of Fig 5. Our formulation generalizes the simple transmit-or-not decision as considered in, e.g., Xu
and Hespanha (2004).

We note for future reference that the assumed monotonicity of the function q(h, p) on the product
h p implies that the power function p(h, q) is increasing in q and decreasing in h. Using maximum
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Figure 6: Equivalent wireless control system architecture. A scheduler decides the successful
decoding probability qk and transmits the state measurement xk with the required power pk =
p(hk, qk). The controller receives the message with probability qk.

power pmax, the transmitter can achieve a maximum successful decoding probability qmax(h) :=
q(h, pmax) for a given channel state h. Therefore, the decision variables qk belong in the interval
[0, qmax(hk)]. We also make the following assumptions.

Assumption 3.1. The maximum achievable successful decoding probability qmax(h) satisfies

Ehqmax(h) > qcrit := 1− 1/λmax(A)2, (3.4)

where expectation is taken over the channel distribution φh.

Assumption 3.2. For any channel realization h, the function p(h, q) in (3.3) is continuous in the successful
decoding probability variable q.

Assumption 3.1 is essentially a stability condition, which as we will see in the following section
states that transmitter has enough power to keep the plant state bounded in second moment, and
it will be used to establish our main Theorems 3.1 and 3.2. Assumption 3.2 is of a technical nature
and will be used in Theorem 3.2.

In the architecture of Fig. 6 the communication decision qk is chosen as a function of the infor-
mation available at the sensor, while the plant control signal uk is a function of the information
available at the controller. These choices are in general allowed to be randomized. The sequence
π := {q0, q1, . . .}, or equivalently the power allocation {p0, p1, . . .}, is termed the communication
policy, whereas the sequence θ := {u0, u1, . . .} denotes the control policy. With fixed policies π, θ,
all random variables are defined on an appropriate product space and have a measure that we
denote as Pπ,θ . We use Eπ,θ to denote integration with respect to Pπ,θ , which we simplify to E

when not leading to confusion. We remark that sensor and controller know each other’s policy.

The policy pair (π, θ) incurs a control cost and a communication cost. As a control cost we adopt
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the standard linear quadratic regulator cost

JN
LQR(π, θ) := Eπ,θ

N−1

∑
k=0

xT
k Qxk + uT

k Ruk, (3.5)

for some pair of matrices R > 0 and Q ≥ 0, with (A, Q1/2) detectable. The communication cost is
given by the expected power consumption

JN
PWR(π, θ) := Eπ,θ

N−1

∑
k=0

p(hk, qk). (3.6)

To quantify the tradeoff between plant performance and power consumption we combine the LQR
cost in (3.5) and the power cost in (3.6) into the limit aggregate cost

J(π, θ) := lim sup
N→∞

1
N

[
JN
LQR(π, θ) + λJN

PWR(π, θ)
]
, (3.7)

for some positive constant λ > 0. Our goal is to design plant and power control policies θ and
π respectively that minimize the joint cost (3.7). These policies depend on what information is
available to the sensor and controller. The specific information structure considered is introduced
next.

3.2. Information structure

Denote as Ok the information known at the controller side at time k just before deciding the input
uk. This information includes the given initial plant state x0, the history of decoding success
variables γ0:k and the decoded signals y0:k, as well as the previously chosen control inputs u0:k−1,
i.e.,

Ok := {x0, γ0:k, y0:k, u0:k−1}. (3.8)

Then the control input uk is chosen as a function of Ok, or more formally, measurable with respect
to the σ-field generated by Ok.

Given the possibility of lost packets as indicated by γk = 0, the controller has partial information
on the plant state xk. It is then of importance to study the MMSE estimate Eπ,θ(xk|Ok). This
estimation is complicated by the fact that the event γk = 0 possibly contains information about
the state xk through the dependence of the probability qk on the value of xk – see Remark 3.1. To
avoid this complication we discard the information given by events of the form γk = 0. Formally,
define τk := max{0 ≤ l ≤ k : γl = 1} as the time of the last successful transmission by time k and
define the sequence

Gk := {x0, γ0:τk , y0:τk , u0:k−1}. (3.9)

with G0 = {x0}. When γk = 1, Gk coincides with Ok. When γk = 0, Gk only contains information
received till the last successful transmission which occurred at time τk < k.
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We restrict attention to control policies θ selecting inputs uk as functions of Gk, possibly random-
ized, and denote the set of all such policies by Θ. Unlike Eπ,θ(xk|Ok), the state MMSE estimate
x̂k := Eπ,θ(xk|Gk) with respect to Gk is easy to compute. When γk = 1 the state xk = yk becomes
known at the receiver side. When γk = 0 no new information becomes available and x̂k is obtained
by propagating x̂k−1 through the plant’s dynamics in (3.1). Put together, we get

x̂k := Eπ,θ(xk|Gk) =

{
yk if γk = 1,
Ax̂k−1 + Buk−1 if γk = 0

, (3.10)

with x̂0 = x0 since the initial state is given.

At the other side of the link at time k the sensor/transmitter has access to the channel realization
hk and the plant state xk which allows selection of the successful transmission probability qk

to depend on the values of both of hk, xk. This affects the controller design however, because
when the controller decides uk−1 to control xk, it should consider the indirect effect on qk. This
information structure renders the joint communication and control co-design problem hard to
analyze. To overcome this, we restrict transmission policies to depend on the channel state hk and
the information about plant state xk that the controller does not know. More precisely consider
the difference between the sensor measurement xk and the controller’s estimate x̂k by (3.10) if the
kth packet is not successfully decoded, that is

εk := xk − (Ax̂k−1 + Buk−1), (3.11)

with ε0 := 0. Observe that the term in the parenthesis is known to the sensor since by the acknowl-
edgment mechanism the controller’s previous estimate x̂k−1 and input uk−1 can be replicated at
the sensor. Alternatively the terms εk can be viewed as the innovations of the controller’s estimate
(3.10) when a new message is received.

We restrict then information at the sensor side to the set Fk defined as a collection of the channel
history h0:k, the history of innovations ε0:k, and past decisions q0:k−1, i.e.,

Fk := {ε0:k, h0:k, q0:k−1}. (3.12)

We also add a technical requirement that the sensor selects maximum transmit power pmax when
the innovation εk gets too large, ‖εk‖ ≥ L for some positive constant L > 0, and the channel gain
hk is favorable, hk ≥ ht for some threshold ht > 0 on channel values. We assume that a positive
success probability qmax(ht) > 0 is achieved at this threshold and also that∫

h≥ht
qmax(h) dφh(h) > qcrit, (3.13)

where qcrit is given in (3.4) and the integration is over the channel distribution φh. Such a chan-
nel threshold exists by Assumption 3.1. We consider then communication policies π selecting
decoding success qk as functions of Fk for each k, possibly randomized, satisfying qk ∈ Q(εk, hk)
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Figure 7: Wireless control system with a restricted information structure. The sensor consists of
two blocks. A pre-processor computes the error εk given the measurement xk and the acknowl-
edgment γk−1. A scheduler decides qk based on εk and the channel state hk, and transmits xk
with the required power pk = p(hk, qk). The controller receives the message with probability qk,
computes the state estimate x̂k and provides input uk to the plant.

where

Q(ε, h) :=

{
qmax(h) if ‖ε‖ ≥ L and h ≥ ht

[0, qmax(h)] otherwise
. (3.14)

We denote the set of all such policies with Π. The technical power saturation requirement is
inconsequential as we may pick L arbitrarily large, and will be used to prove Proposition 3.2 and
Theorem 3.2 in the sequel. Similar requirements have been introduced in Xu and Hespanha (2004);
Mesquita et al. (2012), however our setup is further complicated by the availability of the random
channel states.

The proposed information structure is depicted in Fig. 7. The sensor block is split into a pre-
processor and a scheduler. The pre-processor computes εk based on the sample xk and the ac-
knowledgment γk−1 and feeds it to the scheduler who, upon measuring the channel hk decides
the transmission success probability qk while incurring power cost p(hk, qk). Our goal in this pa-
per is to study policies π ∈ Π and θ ∈ Θ that are optimal with respect to the joint objective (3.7),
that is

minimize
π∈Π, θ∈Θ

J(π, θ). (3.15)

In particular, the next section shows that the information structure we introduced allows optimal
communication and control policies to be designed separately. The standard LQR controller is
shown to be optimal and we then leverage this result to study optimal communication policies in
Section 3.4.

Remark 3.1. If the controller uses the complete information Ok to estimate xk, the optimal plant estimate
is not x̂k as given by (3.10). When a packet drop γk = 0 is observed, and since the communication policy
is known, the controller should consider the possibility that the sensor did not transmit at all, which could
in general give indirect information about the value of xk – see also Molin and Hirche (2009); Imer and
Başar (2010); Lipsa and Martins (2011); Rabi et al. (2012); Ramesh et al. (2013); Nayyar et al. (2013) for
further discussion on this issue. The restriction to Gk in (3.9) allows to overcome this issue and obtain
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linear dynamics of the estimation error ek and the related εk as described next in (3.16),(3.17), but it is not
needed for the separation result of Prop. 3.1 in the following section to hold. An alternative approach to
overcome this issue, followed by other works, is to restrict the communication policy design to transmission
policies with suitable symmetries facilitating estimation (Imer and Başar, 2010; Rabi et al., 2012; Ramesh
et al., 2013; Han et al., 2015).

3.3. Separation of designs

In this section we show that with the imposed restrictions on the information available at sensor
and controller the control law θ ∈ Θ and the communication policy π ∈ Π can be designed sep-
arately. In particular the control policy has no effect on the estimation process at the receiver and
by utilizing a separation principle the optimal controller becomes the standard linear quadratic
one.

Let us denote the difference between the plant state and the estimate kept at the controller by
ek := xk − x̂k and its covariance as seen at the controller by Σk := Eπ

[
ekeT

k

∣∣Gk
]
. The estimation

error dynamics can be found by subtracting (3.10) from the system dynamics (3.1) to get

ek = (1− γk)(Aek−1 + wk−1), (3.16)

with e0 = 0 since x0 is given. Stabilizability of estimation error is guaranteed by Assumption 3.1.
Indeed if transmitter were to use maximum power all the time the dynamics in (3.16) become a
jump linear system since γk are Bernoulli with constant probability equal to the left hand side
of (3.4). Then condition (3.4) is sufficient for bounded second moment as, e.g., in (Hespanha
et al., 2007, Theorem 2). It is also tight in the sense that estimation error becomes unstable if
Ehqmax(h) < qcrit.

Turning our attention to the innovation substituting xk by (3.1) in the definition of εk in (3.11) gives
εk = Aek−1 + wk−1. The term ek−1 equals (1− γk−1)εk−1 as seen by (3.16), therefore εk evolves
according to

εk = (1− γk−1)Aεk−1 + wk−1, (3.17)

with initial value ε0 = 0. The following proposition establishes a separation principle in our
restricted information structure setup, stating that the control action has no effect on the quality
of the future estimates at the controller.

Proposition 3.1. Consider any communication policy π selecting successful decoding probabilities qk as
functions of Fk given in (3.12), possible randomized, with εk defined in (3.11) and channel states hk in-
dependently drawn from a distribution φh. Then at any step k the distributions of the future processes
{ε`, q`, γ`, e`, ` > k} given Gk do not depend on the chosen control policy θ ∈ Θ.

Proof. First note that the processes {wk, hk, k ≥ 0} are by assumption independent of any other
process. Then we follow an induction argument to prove the claim. At k = 0, ε0 is equal to 0,
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q0 depends only on h0 and ε0, γ0 is an independent Bernoulli with success q0, and e0 is also 0
since x0 is initially known. Consider then a time k with a given Gk, the corresponding estimation
error ek given Gk having zero mean and covariance Σk, and a control input uk that is a function
of Gk as described by the control policy θ. The term εk+1 equals Aek + wk, as indicated by the
arguments preceding (3.17), which given Gk has mean 0 and covariance AΣk AT + W. The choice
qk+1 ∈ Fk+1 by construction depends on past variables in Fk which by causality do not depend
on the action uk, as well as the new variables εk+1, hk+1 which are also independent of uk. Also
the distribution of γk+1 ∼ Bern(qk+1) only depends on the distribution of qk+1, and the same
holds for ek+1 which equals (1− γk+1)εk+1 again by the arguments preceding (3.17). To sum up
all variables εk+1, qk+1, γk+1, ek+1 given Gk do not depend on uk. �

The intuition behind this proposition is that the effect of control inputs is subtracted from xk when
forming the innovation terms εk in (3.11) that are fed to the communication policy π. Similar
separation results based on innovation terms have been utilized in other communication/control
design problems (Molin and Hirche (2009); Ramesh et al. (2013); Nair et al. (2007)). The above
proposition restates the separation principle for our power allocation problem under channel
state information.

Since the power cost JN
PWR(π, θ) in (3.6) only depends on pairs (qk, hk), the above proposition

shows that the control policy θ has no effect on the power cost. Thus we can rewrite the objective
in (3.7) as

J(π, θ) = lim sup
N→∞

1
N

JN
LQR(π, θ) + λ lim sup

N→∞

1
N

JN
PWR(π). (3.18)

This means that the optimal control policy θ ∈ Θ for a given communication policy π ∈ Π is the
one minimizing the limit LQR cost. It turns out that the form of the optimal controller does not
depend on the communication policy, leading to a stronger separability than what follows from
(3.18).

Indeed by the above separation principle standard dynamic programming arguments show that
the optimal control law for a finite horizon is given by the standard LQR one, as in, e.g., Molin and
Hirche (2009); Ramesh et al. (2013). We are interested however in the infinite horizon problem.
Our setup differs from the standard LQG/Kalman filtering problem with state observations yk

containing Gaussian noise, where the estimation error covariance Σk converges to some limit and
the system is assumed to start at time k = 0 with this limit estimation error. In our setup whenever
a packet is received the estimation error is reset to zero otherwise it grows (cf. (3.16)), so for the
general communication policies π ∈ Π under consideration it is not clear whether some limit
covariance exists. Alternatively the following proposition shows that estimation errors admit a
uniform bound in second moment.

Proposition 3.2. Suppose Assumption 3.1 holds. Then there exists a finite positive constant M such that
for any communication policy π ∈ Π selecting successful decoding probabilities qk with respect to Fk given
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in (3.12), possibly randomized, satisfying the additional restriction qk ∈ Q(εk, hk) given by (3.14), and for
every k = 0, 1, . . ., it holds that

EπeT
k ek ≤ M. (3.19)

With this bound on expected magnitude of estimation error established, uniform over k and over
any policy π ∈ Π, the following theorem determines the optimal control law for the average
infinite horizon problem (3.15).

Theorem 3.1 (Optimal control policy). Consider the wireless control system of Fig. 7 with any com-
munication policy π := {q0, q1, . . .} ∈ Π selecting successful decoding probabilities qk as functions of Fk

given in (3.12), possibly randomized, with innovation terms εk as defined in (3.11) and channel states hk

independently drawn from a distribution φh, satisfying the additional restriction qk ∈ Q(εk, hk) given by
(3.14). Suppose Assumption 3.1 holds. Then for any control policy θ := {u0, u1, . . .} ∈ Θ composed of
inputs uk as possibly randomized functions of Gk in (3.9) such that

lim
N→∞

1
N

Eπ,θ xT
N xN = 0, (3.20)

the joint objective J(π, θ) described by (3.5) - (3.7) satisfies

J(π, θ) ≥ Tr(PW) + lim sup
N→∞

1
N

Eπ
N−1

∑
k=0

eT
k P̃ek + λp(hk, qk) (3.21)

where P is the solution to the standard algebraic Riccati equation P = AT PA+Q−AT PB(R+ BT PB)−1BT PA
for the system in (3.1) and the linear quadratic regulator cost (LQR) in (3.5), and the matrix P̃ is defined as

P̃ := AT PA + Q− P. (3.22)

Moreover, the minimum value in (3.21) is achieved for the control policy

uk = Kx̂k, (3.23)

with x̂k the state estimate described in (3.10) and the steady state LQR gain K := −(R + BT PB)−1BT PA.

The theorem determines the optimal control policy θ of problem (3.15) as the conventional LQR
controller in (3.23), shown in Fig. 7. The optimal cost given in (3.21) equals a constant Tr(PW)

and a limit average sum term that only depends on the communication policy π ∈ Π. This term
shows that the optimal communication policy needs to balance the power expenditures with a
weighted version of the estimation error at the controller.

Observe that as per (3.10) and (3.16) it holds that ek = (1− γk)εk. Also Eπ [γk|Fk] = Pπ [γk =

1|Fk] = qk and εk ∈ Fk. So we can write

Eπ [eT
k P̃ek|Fk] = Eπ [(1− γk)ε

T
k P̃εk|Fk] = (1− qk)ε

T
k P̃εk, (3.24)
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and taking the expectation in both sides gives

Eπ [eT
k P̃ek] = Eπ [(1− qk)ε

T
k P̃εk]. (3.25)

Substituting the expression (3.25) into the second summand of (3.21) it follows that the optimal
communication policy π ∈ Π of problem (3.15) is the one achieving the infimum cost

J∗COMM := inf
π∈Π

lim
N→∞

1
N

Eπ
N−1

∑
k=0

c(εk, hk, qk), (3.26)

where we define
c(ε, h, q) := (1− q)εT P̃ε + λp(h, q). (3.27)

The difference between the sum in (3.21) and the objective in (3.26) is that in the former ek is not
known at the sensor at time k, while εk in the latter is. This way (3.26) takes the form of a Markov
decision process (MDP) problem with an infinite horizon average cost criterion. The state of the
problem at time k is the pair (εk, hk) ∈ Rn ×R+, the available action is qk ∈ Q(εk, hk) by (3.14),
and the cost-per-stage is c(εk, hk, qk). The state transition probabilities can be obtained from (3.17)
and are given by

P(ε+, h+|ε, h, q)

= [q N0,W(ε+) + (1− q) NAε,W(ε+)] φh(h+). (3.28)

Here ε, h and ε+, h+ denote the current and next states respectively, and q the current action.
When q is chosen at state (ε, h), a variable γ ∼ Bern(q) is drawn. By (3.17) on the event γ = 1,
ε+ = w ∼ N0,W , while on the event γ = 0, ε+ = Aε + w with w ∼ N0,W , which is equivalent
to ε+ ∼ NAε,W . Since h+ is independent of ε, h, ε+, its distribution φh appears as a product in
(3.28). We denote E

[
ε+, h+

∣∣ ε, h, q
]

the integration with respect to the above transition probability
measure.

To sum up, we have exploited the proposed decoupling information structure to determine the
optimal control policy as the standard LQR control input. We proceed in the following section
to show that an optimal communication policy exists and we characterize its main features in the
case of general FEC codes and in the special case of capacity achieving codes.

Remark 3.2. The technical condition (3.20) for the controller in Theorem 3.1 can be viewed as an additional
stability condition requiring that the norm of the plant state grows at a sub-linear rate. Such conditions
appear in general average cost optimal control problems, see e.g. (Bertsekas, 2005, Vol.II, p.254-5), and have
also been used in average LQG problems (Bertsekas, 2005, Vol.II, p.272-3). This technical condition may
potentially be relaxed under a different proof technique.
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3.4. Optimal Communication Policy

Exploiting the MDP formulation of (3.26) we can show that optimal communication policies for
the co-design problem in (3.15) exist. This existence result provides a characterization of these
policies from which we infer the general features of optimal transmit powers pk and corresponding
successful decoding probabilities qk as a function of innovation terms εk and channel realizations
hk.

The existence of optimal policies for average infinite-horizon MDPs on general state spaces re-
quires some technical conditions (Hernández-Lerma and Lasserre (1996)). In our case restriction
to communication policies π ∈ Π that uniformly satisfy (3.14) guarantee existence, as the follow-
ing theorem shows.

Theorem 3.2 (Optimal communication policy). Consider the Markov decision process with optimal cost
as in (3.26), state transition probabilities as in (3.28), and actions restricted to qk ∈ Q(εk, hk) with Q(ε, h)
abiding to (3.14). If Assumptions 3.1 and 3.2 hold true there exists a function V : Rn ×R+ 7→ R such
that for all ε ∈ Rn and h ∈ R+ it satisfies

V(ε, h) = min
q∈Q(ε,h)

{c(ε, h, q)− J∗COMM

+E
[
V(ε+, h+)

∣∣ ε, h, q
]}

. (3.29)

The optimal communication cost can be written as J∗COMM = Ew,hV(w, h), where Ew,h denotes integration
with respect to the product measure N0,W × φh. The optimal communication policy π∗ achieving the
minimum cost can be written as a function of the error and channel states at time k, q∗k = q∗(εk, hk), and
is the one achieving the minimum in the right hand side of (3.29), i.e.

q∗(ε, h) := argmin
q∈Q(ε,h)

{c(ε, h, q)− J∗COMM

+E
[
V(ε+, h+)

∣∣ ε, h, q
]}

. (3.30)

The theorem states that the optimal communication policy exists, is deterministic, and also sta-
tionary in the sense that q∗k adapts only to the current state (εk, hk) and not the complete history Fk

in (3.12). The optimal policy is described by (3.30) in terms of a function V(ε, h) that solves (3.29).
Note that this function is unique up to a constant. Related characterizations of optimal commu-
nication policies when the decision is whether to transmit or not appear in Xu and Hespanha
(2004); Mesquita et al. (2012). Our setup however differs since the decision is on the transmit
power and this depends on the random wireless channel state. The proof of the theorem relies
on constructing a Lyapunov-like function that is common for all policies π ∈ Π, and applying the
MDP results of Vega-Amaya (2003). This methodology has been used in Mesquita et al. (2012),
however a refined construction is required here to account for the random channel states.

An informal interpretation of condition (3.29) based on finite state spaces (Bertsekas, 2005) is
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the following. Suppose the constant J∗COMM, corresponding to the optimal cost of (3.26), was
known. Subtracting this constant from the cost-per-stage in problem (3.26) does not change the
optimal policy, and gives a relative cost per stage c(ε, h, q) − J∗COMM indicating how far we are
from the optimal average cost. Then equation (3.29) has exactly the form of a standard Bellman
equation for a non-averaged infinite horizon problem with this relative cost per stage (Bertsekas,
2005, Vol.I, Ch.7). The function V(ε, h) captures the expected future relative cost of following the
optimal policy when starting from state (ε, h), and is termed the relative value function. Bellman’s
equation (3.29) states that the optimal choice q at every step minimizes the sum of the current-
stage relative cost c(ε, h, q) − J∗COMM and the expected future relative cost E

[
V(ε+, h+)

∣∣ ε, h, q
]
.

The minimization over the current action q gives again the value V(ε, h) of the current state at the
left hand side of (3.29).

In principle one can find V(ε, h) using value iteration or policy iteration algorithms which involve
iterative application of (3.29) (Hernández-Lerma and Lasserre, 1996). This procedure is, however,
computationally onerous as each iteration requires minimizing the right hand side of (3.29) for all
possible state pairs (ε, h) ∈ Rn ×R+. Nevertheless, (3.29) still gives qualitative information on the
optimal policy.

Let us ignore the case ‖ε‖ ≥ L, h ≥ ht in (3.14) as it is irrelevant for the following discussion.
Integrating V(ε, h) with respect to the transition (3.28) gives

E [V(ε+, h+)|ε, h, q]

= qEw,h+V(w, h+) + (1− q)Ew,h+V(Aε + w, h+). (3.31)

We substitute this, the cost-per-stage c(ε, h, q) defined by (3.27), and the expression J∗COMM =

Ew,hV(w, h) provided by the theorem in the minimization of (3.30), and upon reordering terms,
the optimal communication policy can be written as

q∗(ε, h) = argmin
q∈[0,qmax(h)]

λp(h, q) + (1− q)R(ε), (3.32)

where for convenience we defined the function

R(ε) := Ew,h [V(Aε + w, h)−V(w, h)] + εT P̃ε, (3.33)

which can be thought as a penalty function on the error ε. The optimal policy q∗(ε, h) depends
on the shape of the function p(h, q) and takes values anywhere in the interval [0, qmax(h)]. The
optimal power allocation can be found by converting (3.32) to power by (3.2), (3.3), and is described
by

p∗(ε, h) := argmin
p∈[0,pmax]

λp + (1− q(h, p))R(ε). (3.34)

Despite the fact that V(ε, h) and R(ε) are hard to compute, the above expression is an important
characterization of the optimal power allocation. It provides a tool for qualitative analysis of
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Figure 8: Optimal power allocation for FEC codes with different complementary error functions.
The optimal transmit power p∗ is plotted as a function of the factor R(ε) for a fixed channel state
h using FEC codes with different q-SNR characteristics. When the q-SNR curve becomes steeper,
the optimal power allocation resembles a step function.

different FEC codes in wireless control systems. We illustrate this in Fig. 8 where we examine
how the q-SNR relationship of a FEC code affects the optimal power allocation. For simplicity we
fix the channel state h and plot p∗ in Fig. 8 as a function of R(ε). In all cases, when the error
penalty R(ε) is below some threshold, the best option is to not transmit. Above the threshold, the
optimal transmit power increases as the error penalty R(ε) gets larger. For powerful FEC codes
characterized by a steep q-SNR relationship, close to the theoretical limit in (2.19), the optimal
power allocation resembles a step function, since the probability of successful decoding becomes
practically one for large powers. For fat q-SNR tails, this behavior deteriorates as the sensor needs
to transmit with higher power to achieve a larger q.

Then in Fig. 9 we present qualitative plots of the optimal decoding probability q∗ and optimal
transmit power p∗ as functions of both the factor R(ε) and the channel state h for a given q-SNR
characteristic. The blue region indicates the event where no transmission occurs. This happens if
channel gain h is low, where transmission is costly, or if error ε has a low penalty, meaning that
there is no need to update the receiver’s estimate. This no-transmission region becomes larger
for a higher penalty λ on power in (3.7). Outside this region a transmission occurs and transmit
power adapts to both channel and error states. In principle when channel gain h is high, a small
amount of power suffices. For intermediate values of channel h power takes a wide range of
values depending on the error as well.

Overall this optimal power management displays different features than the standard ”0-1” event-
triggered transmission paradigm of, e.g., Xu and Hespanha (2004) or Tabuada (2007). It can be
though as a ’soft” version of these policies since the power decision ranges between [0, pmax], or
equivalently the decoding q between [0, qmax(h)]. Finally we note that the transmit power/remote
estimation problem has also been studied in the very recent works of Quevedo et al. (2012); Leong
and Dey (2012), which however consider only power adaptation to the channel and the packet
drop processes, not the plant state/error observed online. Hence the qualitative characterization
we discuss here and the connections with the event-triggered paradigm were not apparent.
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Figure 9: Optimal decoding probability and power allocation for a FEC code. Color intensity
indicates the magnitude of optimal decoding probability q∗ and optimal transmit power p∗ as
functions of the factor R(ε) and the channel state h.

Since computing the optimal power allocation becomes a computationally hard problem, tractable
suboptimal power allocation policies are developed in Chapter 6. In the following chapter we
consider the problem of multiple wireless control systems sharing a wireless medium and design
appropriate resource-aware and control-aware scheduling policies.

3.4.1. Optimal solution for capacity achieving codes

Consider now the case of capacity achieving codes. By (2.19), at time k the transmitter needs
to use either pk = 0, i.e. not transmitting, or pk = p0/hk with p0 := N0SNR0, which certainly
guarantees correct packet delivery. Any other power allocation is unfavorable. However the
instantaneous power is bounded by pk ≤ pmax, so the sensor can transmit only when p0/hk ≤
pmax, or equivalently when the channel state exceeds hk ≥ p0/pmax.

In this case we are looking again for a randomized policy, i.e. a distribution on the two power
options {0, p0/hk} when hk ≥ p0/pmax. With a slight abuse of notation we denote qk ∈ [0, 1] the
probability of choosing power p0/hk. Then when hk ≥ p0/pmax the transmitter draws independent
γk ∼ Bern(qk) and transmits with power pk = γk p0/hk. The decoding success at the receiver is
given by the same γk. The expected power consumption becomes

E
N−1

∑
k=0

pk = E
N−1

∑
k=0

qk
p0

hk
I

(
hk ≥

p0

pmax

)
. (3.35)
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Observe that this is of the same form as the expected power consumption of the original problem
given in (3.6) with the function p(h, q) substituted with q p0/h I (h ≥ p0/pmax). Then the state-
ments of the results so far hold for the capacity achieving codes as well. For this special case of
p(h, q) however the minimization in (3.32) becomes linear in q, and the optimal communication
policy is deterministic,

qCA(ε, h) :=

{
0 if h R(ε) ≤ λ p0 or h ≤ p0/pmax

1 otherwise
, (3.36)

or in terms of power

pCA(ε, h) :=

{
0 if h R(ε) ≤ λ p0 or h ≤ p0/pmax

p0/h otherwise
. (3.37)

This is an event-triggered transmission scheme along the lines of, e.g., Xu and Hespanha (2004),
except that now the decision is also affected by the current channel state h apart from the error
ε. This deterministic policy was expected as the limit behavior of powerful FEC codes in Fig. 8.
The region of the plant/channel state space Rn ×R+ where it is optimal to transmit is described
in (3.36) as h R(ε) > λp0 and h ≥ p0/pmax. Intuitively condition h R(ε) > λp0 states that when
channel gain is large, transmitting is worthy as it does not cost much, while when an error penalty
R(ε) is large, it is necessary to transmit in order to reset it to zero. This region gets smaller when
the constant p0 = N0SNR0 (cf. (2.19)) increases, since transmission then requires more power, or
when λ increases, since power then is penalized more in the objective (3.7).

3.5. Proofs

3.5.1. Proof of Proposition 3.2

First note that, by the same arguments we use to derive (3.25) later, conditioned on Fk we can
rewrite

Eπ eT
k ek = Eπ(1− qk)ε

T
k εk. (3.38)

The bound in (3.19) will be shown by an equivalent bound on the innovation process {εk, k ≥ 0}.
By Proposition 3.1 for any communication policy π ∈ Π this process is independent of the control
policy θ ∈ Θ and its evolution is given by (3.17). This evolution can be described more formally
along with the i.i.d. channel process hk ∼ φh by a stochastic transition kernel given the values of
ε, h and decision q at each step as

P(ε+, h+|ε, h, q)

= [q N0,W(ε+) + (1− q) NAε,W(ε+)] φh(h+). (3.39)

This expression is included again in (3.28), where its derivation is explained in detail.
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The following technical lemma shows that under Assumption 3.1 one can construct a Lyapunov-
like function common for all communication policies, satisfying explicitly the technical require-
ments of (Vega-Amaya, 2003, Assumptions 3.1, 3.2). The uniform bound (3.19) will be a direct
consequence of these requirements. We note also that the lemma will be subsequently used to
prove Theorem 3.2 based on the results of Vega-Amaya (2003).

Lemma 3.1. Suppose Assumption 3.1 holds and consider the innovation and channel processes {εk, hk, k ≥
0} described by the transition (3.39), with communication decisions satisfying qk ∈ Q(εk, hk) given in
(3.14). Then there exists a measurable function W on Rn ×R+ bounded below by a constant γ > 0 such
that

(1− q)εTε + c ≤ KW(ε, h), (3.40)

where c ≥ 0 is some constant, for all ε, h ∈ Rn × R+, q ∈ Q(ε, h), for some positive K. Moreover
there exists a non-trivial measure ν on Rn ×R+, a non-negative measurable function r(ε, h, q) ≥ 0 for
ε, h ∈ Rn ×R+, q ∈ Q(ε, h), and a positive constant µ < 1 such that

(i) ν(W) :=
∫

W(ε, h)dν(ε, h) < ∞,

(ii) P(ε+ ∈ B1, h+ ∈ B2|ε, h, q) ≥ ν(B1, B2)r(ε, h, q)

for all measurable subsets (B1, B2) ∈ B(Rn ×R+),

(iii) E [W(ε+, h+)|ε, h, q] ≤ µW(ε, h) + r(ε, h, q)ν(W)

(iv)
∫

r(ε, h, q)dν(ε, q) > 0 for all q ∈ Q(ε, h).

Proof. The proof is constructive. Let

ν := N0,W × φh and r(ε, h, q) := q. (3.41)

Let us denote the set where the choice of q is free as

S := {(ε, h) ∈ Rn ×R+ : ‖ε‖ < L or h < ht}. (3.42)

We choose µ < 1 such that

µ > 1− qmax(ht) + qmax(ht)ν(S), (3.43)

µ > (1− q̄) λmax(A)2, (3.44)

where q̄ denotes the integral introduced in (3.13),

q̄ :=
∫ +∞

ht
qmax(h)dφh(h). (3.45)

The right hand side of (3.43) is less than 1 because the event S under the measure ν happens with
probability less than 1 and we have assumed qmax(ht) > 0. The right hand side of (3.44) is also
less than 1 because of Assumption 3.1 and by the choice for ht that satisfies (3.13).
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For future reference note that by construction of the set Q(ε, h), for any L > 0, when ‖ε‖ ≥ L we
can upper bound

1− q ≤ 1− qmax(h)I (h ≥ ht) =: ψ(h), (3.46)

where we named the quantity on the right ψ(h) to be used within this proof. This inequality holds
because when h < ht, we have q ≥ 0, and when h ≥ ht, we choose q = qmax(h).

Finally we pick

W(ε, h) :=ψ(h)εT Hε + β I (ε, h ∈ S) + γ, (3.47)

where β, γ > 0 are appropriate positive constants that will be designed next, and H � 0 is a
positive definite matrix satisfying

(1− q̄)AT HA− µH = −Θ, (3.48)

for some positive definite matrix Θ > 0. This Lyapunov equation is feasible by our choice of µ

that satisfies (3.44).

Next we show that the conditions of the lemma are satisfied for the constructed quantities. First
observe that W(ε, h) ≥ γ > 0 by construction. Then we check (3.40). When ‖ε‖ < L,

(1− q)εTε + c ≤ L2 + c ≤ K(β + γ) ≤ KW(ε, h), (3.49)

for a sufficiently large K, where the last inequality follows from the form of W(ε, h) on ‖ε‖ < L.
On the other hand if ‖ε‖ ≥ L, we may use (3.46) to upper bound

(1− q)εTε + c ≤ ψ(h)εTε + c

≤ K(ψ(h)εT Hε + γ) ≤ KW(ε, h), (3.50)

for a sufficiently large K, by our choice for the function W(ε, h) when ‖ε‖ ≥ L.

We proceed to show that parts (i)-(iv) in the statement of the lemma also hold. Part (i) holds
because the integral of W(ε, h) with our chosen measure ν equals

ν(W) = (1− q̄)Tr(HW) + ν(S)β + γ < ∞. (3.51)

Part (ii) holds because the transition probability in (3.39) gives

P(ε+ ∈ B1, h+ ∈ B2|ε, h, q)

= [q N0,W(B1) + (1− q) NAε,W(B1)] φh(B2)

≥ q N0,W(B1) φh(B2) = r(ε, h, q)ν(B1, B2). (3.52)
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Part (iv) follows by our choice r(ε, h, q) = q and the construction of the set Q(ε, h) in (3.14) because∫
r(ε, h, q)dν(ε, h) ≥

∫
ε,h∈Sc

qmax(h)dν(ε, h)

= q̄
∫
‖ε‖≥L

dN0,W(ε) > 0. (3.53)

The remainder of the proof shows that (iii) also holds. First observe that by the transition defined
in (3.39) and our choices for the measure ν and the function r(.) we have

E [W(ε+, h+)|ε, h, q] = r(ε, h, q)ν(W)

+ (1− q)
∫

W(ε+, h+)dNAε,W(ε+) d φh(h+). (3.54)

Substituting (3.54) in (iii), we only need to show that

(1− q)
∫

W(ε+, h+)dNAε,W(ε+) d φh(h+) ≤ µW(ε, h). (3.55)

Plugging the expression of W(ε, h) given by (3.47) in the integral of the left hand side, condition
(3.55) becomes

(1− q) { (1− q̄)
[
εT AT HAε + Tr(HW)

]
+βNAε,W × φh(S) + γ} ≤ µW(ε, h). (3.56)

We can bound NAε,W × φh(S) ≤ ν(S) for any ε ∈ Rn, and also (1− q)(1− q̄)Tr(HW) ≤ Tr(HW).
So a sufficient condition for (3.56) is to show that

(1− q)
{
(1− q̄)εT AT HAε + β ν(S) + γ

}
+ Tr(HW)

≤ µW(ε, h) (3.57)

holds for every choice of q ∈ Q(ε, h). To show this we examine cases.

Case ‖ε‖ ≥ L. Using (3.46) to upper bound 1− q ≤ ψ(h), and upon substituting W(ε, h) in (3.57)
and rearranging terms, we need to show equivalently that

ψ(h)
{

εT
[
(1− q̄)AT HA− µH

]
ε

+βν(S) + γ}+ Tr(HW) ≤ µ {βI (h < ht) + γ} (3.58)

By the choice of H in (3.48) the quadratic on the left hand side is negative definite equal to to
−εTΘε. And since ‖ε‖ ≥ L we can upper bound −εTΘε ≤ −λmin(Θ)L2 ≤ 0. After these, a
sufficient condition for (3.58) is

Tr(HW) + ψ(h) {βν(S) + γ} ≤ µ {βI (h < ht) + γ} (3.59)
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Now consider two cases for h. If h < ht condition (3.59) becomes

Tr(HW) + βν(S) + γ ≤ µ(β + γ). (3.60)

On the other hand if h ≥ ht we have that qmax(h) ≥ qmax(ht) by monotonicity of qmax, so we may
bound ψ(h) = 1− qmax(h) ≤ 1− qmax(ht). Condition (3.59) becomes

Tr(HW) + (1− qmax(ht)) {βν(S) + γ} ≤ µγ. (3.61)

We pick a γ > to satisfy (3.61) with equality, that is

γ =
(1− qmax(ht))ν(S)β + Tr(HW)

µ− (1− qmax(ht))
(3.62)

where the denominator is positive by the choice of µ in (3.43). We will show that condition (3.60)
also holds by an appropriate choice for β > 0.

Case ‖ε‖ < L. In this case q ≥ 0⇒ 1− q ≤ 1 and it is sufficient for (3.57) to show that

sup
‖ε‖<L

εT(1− q̄)AT HAε + Tr(HW) + βν(S) + γ

≤ µ(β + γ) (3.63)

holds, where on the right hand side we lower bounded the quadratic term of W by 0. This is of
the general form

C2 + βν(S) + γ ≤ µ(β + γ) (3.64)

for some constant C2, and recall that the left over condition (3.60) is of the same form. Plugging
the chosen γ by (3.62) in (3.64) leads to a condition of the form

C3 ≤
(

1− qmax(ht) ν(S)
µ− (1− qmax(ht))

)
µβ, (3.65)

for some constant C3. We want to be able select β > 0 that satisfies (3.65) for any value of the
constant C3. Hence we require the coefficient of β to be strictly positive. This turns out to be
equivalent to µ > 1− qmax(ht) + qmax(ht)ν(S), which corresponds to our choice of µ in (3.43).
Therefore we conclude that part (iii) of the lemma holds as well and this completed the proof. �

Returning to the proof of Proposition 3.2, combining (3.38) with condition (3.40) of the above
Lemma we have that Eπ eT

k ek ≤ K EπW(εk, hk), so it suffices for (3.19) to show that a uniform
bound on the expected value of W(εk, hk) exists.

By condition (ii) of the above lemma for (B1, B2) = (Rn, R+) we have that r(ε, h, q) ≤ 1/ν(Rn, R+).
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Plugging this in (iii) leads to

E [W(ε+, h+)|ε, h, q] ≤ µW(ε, h) + ν(W)/ν(Rn, R+) (3.66)

Iterated applications of this inequality across some policy π ∈ Π yields

EπW(εk, hk) ≤ µk E W(ε0, h0) +
ν(W)

(1− µ)ν(Rn, R+)
(3.67)

Thus since µ < 1 a uniform bound on EπW(εk, hk) exists and this completes the proof.

3.5.2. Proof of Theorem 3.1

First note that since Σk := Eπ
[
ekeT

k

∣∣Gk
]

we have that

Eπ [Tr(Σk)] = EπeT
k ek. (3.68)

Then under Assumption 3.1, Proposition 3.2 states that for any π ∈ Π condition (3.19) holds and
guarantees that both quantities in (3.68) are bounded uniformly over k.

To establish the optimality of the proposed control law we use the fact that the Bellman-like
equation

V(Gk) + Tr(PW) + Tr(P̃Σk) =

min
uk

Eπ
[

xT
k Qxk + uT

k Ruk + V(Gk+1)|Gk, uk

]
, (3.69)

is satisfied for the function

V(Gk) = Eπ
[

xT
k Pxk

∣∣Gk

]
, (3.70)

with V(G0) = xT
0 Px0, where P is the solution to the standard algebraic Riccati equation and P̃ is

given by (3.22). The existence of P is guaranteed by the stabilizability of (A, B) and detectability
of (A, Q1/2).

Indeed observe that we can use the tower property to rewrite the term on the right hand side of
(3.69) as

Eπ [V(Gk+1)|Gk, uk] = Eπ
[

xT
k+1Pxk+1|Gk, uk

]
= Eπ

[
(Axk + Buk)

T P(Axk + Buk)|Gk, uk

]
+ Tr(PW), (3.71)

where the last equality follows by substituting xk+1 from the system equation (3.1). The quadratic
minimization over uk at the right hand side of (3.69) takes the standard form appearing in LQR
problems with partial state information - see e.g. (Bertsekas, 2005, Vol. II, Section 5.2). The argu-
ment of the minimization in (3.69) is given by the control law (3.23). Straightforward substitutions
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show that the optimal value of the minimization equals the left hand side of (3.69).

The equation (3.69) can be used to show that the optimal control policy is (3.23). First iterate (3.69)
for k = 0, . . . , N − 1 across some control policy θ ∈ Θ to get

V(G0) + N Tr(PW) + Eπ
N−1

∑
k=0

Tr(P̃Σk)

≤ JN
LQR(π, θ) + Eπ,θV(GN) (3.72)

Dividing (3.72) by N and taking the limit as N → ∞, the term on the left hand side tends to

lim sup
N→∞

1/N

[
xT

0 Px0 + N Tr(PW) + Eπ
N−1

∑
k=0

Tr(P̃Σk)

]

= Tr(PW) + lim sup
N→∞

1/N Eπ
N−1

∑
k=0

eT
k P̃ek (3.73)

where we used (3.68) to convert Σk to ek.

Then consider the term on the right hand side of (3.72). Any control policy θ ∈ Θ satisfying (3.20)
also satisfies

lim
N→∞

1
N

Eπ,θV(GN) = lim
N→∞

1
N

Eπ,θ xT
N PxN = 0 (3.74)

by the form of V given in (3.70). Thus taking the limit as N → ∞, by (3.74) the term on the right
hand side of (3.72) tends to the average LQR cost. The inequality in (3.72) then shows that the
average LQR cost of θ is larger or equal to the limit of the left hand side which was given in (3.73).
The result (3.21) of the theorem follows by including the power cost that depends only on the
communication policy π as suggested by (3.18).

The final step of the proof is to show that the control policy θ∗ defined by (3.23) gives exactly the
LQR cost given in (3.73). This policy satisfies (3.69) with equality, so (3.72) also holds with equality
for θ∗. Dividing by N and taking the limit as before would prove the desired result if condition
(3.74) also holds for θ∗. We next verify that this is the case.

Indeed use u∗k = Kx̂k and xk = x̂k + ek to rewrite the closed loop system equation (3.1) under θ∗ as

xk+1 = (A + BK)x̂k + Aek + wk. (3.75)

Then denoting ρ := λmax(A + BK) which is stable, ρ < 1, we can upper bound (3.71) under θ∗ by

Eπ,θ∗ [V(Gk+1)|Gk]

≤ ρ2 x̂T
k Px̂k + Tr(AT PAΣk) + Tr(PW)

= ρ2V(Gk) + Tr((AT PA− ρ2P)Σk) + Tr(PW) (3.76)
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where in the last equality we used the fact that x̂k x̂T
k = Eπ

[
xkxT

k

∣∣Gk
]
−Σk. Taking expectation on

both sides of (3.76) we have that

Eπ,θ∗V(Gk+1) ≤ ρ2Eπ,θ∗V(Gk)

+ Tr((AT PA− ρ2P)Eπ,θ∗ Σk) + Tr(PW) (3.77)

But (3.68) and (3.19) imply that Eπ,θ∗Σk is uniformly bounded over k so the term on the second
line of (3.77) is bounded by some constant δ < ∞. Iterating the above inequality (3.77) across θ∗

up to k = N yields

Eπ,θ∗
[

xT
N PxN

]
≤ ρ2N xT

0 Px0 + δ/(1− ρ2) (3.78)

which guarantees the limit (3.74) since ρ < 1.

3.5.3. Proof of Theorem 3.2

The proof of the theorem is a direct application of the theorems contained in Vega-Amaya (2003).
For these we need to show that (Vega-Amaya, 2003, Assumptions 3.1, 3.2, 3.4) hold in our case.
In particular (Vega-Amaya, 2003, Assumption 3.1) requires that the cost per stage is bounded
|c(ε, h, q)| ≤ KW(ε, h) by a positive measurable function W. This is a consequence of (3.40) of
Lemma 3.1, since

|c(ε, h, q)| ≤ (1− q)λmax(P̃)εTε + λpmax (3.79)

which is of the same form as (3.40). Also (Vega-Amaya, 2003, Assumption 3.2) requires exactly the
conditions given in (i)-(iv) of Lemma 3.1. Finally (Vega-Amaya, 2003, Assumption 3.4) requires
the following conditions for the functions W and r satisfying Lemma 3.1.

Assumption 3.3. For every ε ∈ Rn, h ∈ R+

(i) Q(ε, h) is compact,

(ii) c(ε, h, q) is lower semi-continuous in q ∈ Q(ε, h),

(iii) P(ε+, h+|ε, h, q) is strongly continuous 1 in q ∈ Q(ε, h),

(iv) the mapping q→ E [W(ε+, h+)|ε, h, q] is continuous,

(v) r(ε, h, q) is continuous in q ∈ Q(ε, h).

Part (i) is trivial, and (ii) is a consequence of the continuity of p(h, q) by Assumption 3.2. Strong
continuity in (iii) is guaranteed by the fact that the transition kernel given in (3.28) has a probability
density function. Part (iv) holds because the transition (3.28) is linear in q, and (v) is trivial.

1i.e. for every bounded measurable function Ψ on Rn ×R+, the mapping q 7→ E[Ψ(ε+, h+)|ε, h, q] is continuous
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Having established (Vega-Amaya, 2003, Assumptions 3.1, 3.2, 3.4), then (Vega-Amaya, 2003, The-
orems 3.5, 3.6) state that in our case the infimum J∗COMM in (3.26) exists, there exists a function
V(ε, h) that satisfies (3.29), and the optimal policy is the minimizer of the right hand side of (3.29)
as given in (3.30).

Finally note that (3.29) holds if we add any constant to V(ε, h), so without loss of generality we
may take V(0, ĥ) = 0 for some ĥ. Then for ε = 0, h = ĥ (3.29) gives

V(0, ĥ) = 0 = min
q∈Q(0,ĥ)

{
c(0, ĥ, q)− J∗COMM

+E
[
V(ε+, h+)

∣∣ 0, ĥ, q
]}

. (3.80)

Note that by (3.28), P(ε+, h+|0, ĥ, q) = N0,W(ε+) φh(h+), and also c(0, ĥ, q) = λp(ĥ, q) by (3.27), so
(3.80) becomes

0 = min
q∈Q(0,ĥ)

{
λp(ĥ, q)− J∗COMM + Ew,hV(w, h)

}
. (3.81)

The minimizer is q = 0, giving the optimal value J∗COMM = Ew,hV(w, h) provided in the statement
of the theorem.
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Chapter 4: Opportunistic Control over
Multiple Access Channels

4.1. Problem Description

In this chapter we consider a wireless control architecture with multiple control systems over a
shared wireless medium. The architecture, introduced in Section 2.2.1, is repeated here as well
in Fig. 10. The setup consists of m independent networked control systems. Each control loop i
(i = 1, 2, ..., m) includes a wireless transmitter communicating to a common receiver/access point.
For example this can be a wireless sensor transmitting plant measurements to a common controller
computing the control inputs to the plants. A centralized scheduler, implemented at the access
point, decides which control system is given access to the shared wireless channel.

We denote the state of system i at each time k by xi,k ∈ Rni . The evolution of each system at time
k depends on whether a transmission occurs at time k or not for link/system i, hereby denoted
as γi,k ∈ {0, 1}. We assume then that each system is described by a known switched linear time-
invariant system of the form

xi,k+1 =

{
Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (4.1)

This model was introduced in Section 2.1 where examples of such control systems were presented.
We assume that the closed-loop matrix Ac,i is asymptotically stable for each system i, implying
that if system i were to transmit at each slot its respective state evolution is stable. The open loop
matrices Ao,i may be unstable. The additive terms wi,k model an independent (both across time
k for each plant i, and across plants) identically distributed (i.i.d.) noise process with mean zero
and covariance Wi � 0.

Let us now describe the wireless communication system and model how it determines the packet
transmission success γi,k. Suppose there are f different frequencies that each system may use to
communicate to the access point and let the wireless channel fading conditions for a system i and
frequency j at time slot k be denoted as hij,k. Channel conditions take values in a subset H ⊆ R+

of the positive reals. We adopt a block fading model whereby channel states {hij,k, 1 ≤ i ≤ m, 1 ≤
j ≤ f } are modeled as constant during each transmission slot k, but independent and identically
distributed across different time slots k according to some joint distribution φ on Hm× f . They are
also independent of the plant process noise wi,k. We assume the channel states are available to the
access point before transmission – see Remark 2.5 for a practical implementation. We also make
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Plant 1
x1(k)

· · · Plant m
xm(k)

· · ·Controller 1 Controller m

Access Point/ Scheduler

h1(k) hm(k)

Shared Wireless
Channel

Figure 10: Architecture for control over multiple access channels. Independent control systems
close their loops by transmitting over the shared wireless medium to a common receiver/access
point. Each control system i experiences random channel conditions hi. A centralized scheduler
at the access point observes all channel states and opportunistically decides which system is
scheduled to transmit and close the loop.

the following technical assumption on their joint distribution to exclude the possibility of channel
states becoming degenerate random variables.

Assumption 4.1. The joint distribution φ of channel states {hij,k, 1 ≤ i ≤ m, 1 ≤ j ≤ f } is absolutely
continuous, i.e., has a probability density function on Hm× f .

If system i transmits at time k over frequency j it selects a transmit power level pij,k taking values
in [0, pmax]. Following the wireless channel model introduced in Section 2.2, the probability of
successfully decoding the message at the receiver depends on the received power level expressed
by the product h · p of channel fading and the allocated transmit power. The probability of success
is given by a known relationship of the form q(hij,k · pij,k) – see also Fig. 2 where this relationship
is depicted. The following technical assumption on the form of the function q(hp) will be helpful
in the subsequent sections.

Assumption 4.2. The function q(.) as a function of the product r = h p for r ≥ 0 satisfies:

(a) q(0) = 0,

(b) q(r) is continuous, and strictly increasing when q(r) > 0, i.e., for r′ > r it holds that q(r′) > q(r) > 0,

(c) for any µ ∈ R+ and for almost all values h ∈ H the set argmin0≤p≤pmax
p− µ q(h p) is a singleton.

Parts (a) and (b) of this assumption state that the probability of successful decoding q(h p) is
zero when the received power level h p is small, and it becomes positive q(h p) > 0 and strictly
increasing for larger values of h p. These properties are verified for cases of practical interest as
shown in Fig. 2. Part (c) is more stringent but not restrictive in practice. The function q(hp)
typically has a sigmoid form with exponential tails as shown in Fig. 2. This verifies that the power
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minimizer in (c) is unique for almost all channel gains h, and is either equal to zero or belongs
to the strictly concave exponential tail. We also note that the minimizer set in (c) exists by the
continuity assumption in (b). These properties are assumed for technical reasons that will become
clear later (see the discussion before Theorem 4.1).

We are interested in a centralized mechanism that selects which system accesses each of the avail-
able frequencies at the channel, i.e., which system is scheduled to transmit. We denote with αij,k = 1
the decision to schedule system i on frequency j at time k, and αij,k = 0 otherwise. To avoid packet
collisions we let at most one system transmit on each frequency j, that is ∑m

i=1 αij,k ≤ 1. We allow

each system i to transmit on at most one frequency, that is ∑
f
j=1 αij,k ≤ 1. Mathematically we

denote the set ∆m, f of all feasible scheduling decisions αij,k at each time k as

∆m, f =

{
α ∈ {0, 1}m× f :

∑m
i=1 αij ≤ 1, 1 ≤ j ≤ f ,

∑
f
j=1 αij ≤ 1, 1 ≤ i ≤ m

}
. (4.2)

For compactness we group channel states, scheduling decisions, and power allocations of the
communication model at time k into matrices hk ∈ Hm× f , αk ∈ ∆m, f , and pk ∈ [0, pmax]m× f

respectively. We can then model the transmission event γi,k of system i at time k given schedul-
ing variables, power allocation, and channel state, as a Bernoulli random variable with success
probability

P[γi,k = 1
∣∣ hk, αk, pk] =

f

∑
j=1

αij,k q(hij,k, pij,k) (4.3)

This expression states that the probability of a message for system i being successfully received
equals the probability that the message is correctly decoded if system i is scheduled to transmit
on any of the f available frequencies. Note that, by design of the scheduling variables, system i
uses at most one frequency, and we make the implicit assumption that no interferences arise from
transmissions on different frequencies.

Our goal is to design the communication variables of the shared wireless control system, i.e., the
scheduling and power allocation. Since the randomly varying channel affects the communication
process, we are interested in selecting scheduling and power variables that adapt to channel states
hk in order to counteract or exploit these effects. Overall we express the scheduling and power
decisions at time k by mappings αk = α(hk) and pk = p(hk) selected from the sets

A = {α : Hm× f → ∆m, f },

P = {p : Hm× f → [0, pmax]
m× f }. (4.4)

Since channel states hk are i.i.d. over time k these mappings do not need to change over time.
Substituting the scheduling and power allocation mappings α(.), p(.) in our communication model
described by (4.3) the probability of successful transmission for each system i at any given slot k
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becomes

P(γi,k = 1) = Ehk

{
P[γi,k = 1

∣∣ hk, α(hk), p(hk)]
}

= Eh

f

∑
j=1

αij(h) q(hij, pij(h)). (4.5)

Here the expectation is with respect to the joint distribution φ of the channel realization hk which
we assumed to be identical for any time k, hence we drop the index k. Note also that the communi-
cation process modeled by the sequence {γi,k, 1 ≤ i ≤ m, k ≥ 0} depends only on variables related
to the wireless communication counterpart of the overall system, and is in particular independent
of the system evolutions {xi,k, 1 ≤ i ≤ m, k ≥ 0}.

Our primary goal in designing the communication variables of the system is to guarantee a level
of closed loop control performance for each subsystem. To formalize the problem description
we consider Lyapunov-like performance requirements for each control system, as introduced in
Section 2.1.1. In particular suppose that for each system i a quadratic Lyapunov function of the
form

Vi(xi) = xT
i Pixi, xi ∈ Rni , (4.6)

with positive definite matrix Pi ∈ Sni
++ is given. A Lyapunov-like requirement then states that for

all systems i at time k the Lyapunov functions at the next time step decrease at the desired rates
ρi < 1 in expectation, that is

E
[
Vi(xi,k+1)

∣∣ xi,k
]
≤ ρi Vi(xi,k) + Tr(PiWi) (4.7)

for any possible value of the current plant states xi,k ∈ Rni . The expectation over the next system
state xi,k+1 on the left hand side accounts via (4.1) for the randomness introduced by the process
noise wi,k as well as the transmission success γi,k. The latter is expressed in (4.5) and depends on
the observed channel state hk as well as the communication decisions αk, pk.

On the other hand, apart from control performance requirements an efficient communication
design should make an efficient use of the available power resources at the devices. The induced
overall expected power consumption on each slot k is given by

Ehk

m

∑
i=1

f

∑
j=1

αij,k(hk)pij,k(hk), (4.8)

summing up the transmit power of each system i and frequency j if the system is scheduled to
transmit. The expectation here is with respect to the joint distribution φ of channels hk. We design
scheduling and power allocation (cf. (4.4)) that are control-performance aware (cf. (4.11)) and also
energy-efficient (cf. (4.8)) through a stochastic optimization framework that we present next.

We formulate the problem of designing scheduling and power allocation in an optimization frame-
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work as follows.

Problem 4.1 (Optimal Scheduling and Power Allocation Design). Consider a shared wireless control
architecture with f frequencies and m systems of the form (4.1), quadratic Lyapunov performance require-
ments by (4.7), channel states hk ∈ Hm× f i.i.d. with distribution φ, and communication modeled by (4.3).
The design of optimal scheduling and power allocation as functions of the current channel states αk = α(hk)

and pk = p(hk) respectively is posed as

minimize
α,p∈(A,P)

Ehk

m

∑
i=1

f

∑
j=1

αij,k(hk)pij,k(hk) (4.9)

subject to E
[
Vi(xi,k+1)

∣∣ xi,k
]
≤ ρiVi(xi,k) + Tr(PiWi)

for all xi,k ∈ Rni , i = 1, . . . , m. (4.10)

In other words, at each time step we seek to minimize the total expected power consumption (4.8)
of the design while satisfying the Lyapunov requirements (4.7) for all systems i and for any value
of the current plant states xi,k ∈ Rni , since scheduling and power allocation adapt to channel states
but are independent of the plant states.

The Lyapunov control performance abstraction can be equivalently translates to desired packet
success rates for each link. This important observation will permit the design of control-aware
scheduling policies. It is formally stated in the following proposition.

Proposition 4.1 (Lyapunov Control Performance Abstraction). Consider a switched linear system
described by (4.1) where γi,k, k ≥ 0 is a sequence of random binary variables, and a quadratic function
Vi(xi) = xT

i Pixi, xi ∈ Rni with a positive definite matrix Pi � 0. Further suppose that the function Vi(xi)

is a Lyapunov function for the closed loop mode of the system, i.e., AT
c,i Pi Ac,i ≺ ρi Pi. Then the function

Vi(xi) decreases with an expected rate ρi < 1 at each step, i.e., we have

E
[
Vi(xi,k+1)

∣∣ xi,k
]
≤ ρi Vi(xi,k) + Tr(PiWi) for all xi,k ∈ Rni , k ≥ 0, (4.11)

if and only if the packet success rate satisfies

P(γi,k = 1) ≥ ci, for all k ≥ 0, (4.12)

where ci is computed by the semidefinite program

ci = min{θ ≥ 0 : θ AT
c,iPi Ac,i + (1− θ) AT

o,iPAo,i � ρiPi}. (4.13)

This proposition is important as it transforms control performance requirements (4.11) to wireless
communication requirements, i.e., desired packet success rates (4.12) for each link. In particular
there exist easily computed non-negative constants ci ≥ 0 such that (4.7) is equivalent to requiring
P(γi,k = 1) ≥ ci. This makes explicit how the resource allocation functions α(.), p(.) appear in the
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optimization problem via (4.5).

As a result the optimization problem (4.9) can be equivalently written as

minimize
α,p∈(A,P)

Eh

m

∑
i=1

f

∑
j=1

αij(h)pij(h) (4.14)

subject to ci ≤ Eh

f

∑
j=1

αij(h) q(hij, pij(h)), i = 1, . . . , m

Here we have dropped the time indices k from the variables hk since they are identically dis-
tributed over time. Finally we make a constraint qualification assumption that is typical in opti-
mization theory, i.e., that a strictly feasible solution exists.

Assumption 4.3. There exist variables α′ ∈ A and p′ ∈ P that satisfy the constraints of the optimization
problem (4.14) with strict inequality, i.e.,

ci < Eh

f

∑
j=1

α′ij(h) q(hij, p′ij(h)), i = 1, . . . , m (4.15)

By the equivalence between problems (4.9) and (4.14), condition (4.15) can be interpreted as a
feasibility/schedulability assumption for the shared wireless control system. It requires that there
exist some channel-aware scheduling and power allocation such that the control performance
requirements (4.7) of all control systems are met. This assumption however does not provide any
information on how to find such a solution.

In the rest of the chapter we examine problem (4.14), which is equivalent to the optimal scheduling
and power allocation for the shared wireless control architecture (Problem 4.1). Since this problem
is feasible (Assumption 4.3) we denote the optimal value by P and an optimal solution pair by
α∗(.), p∗(.). In the following section we characterize the form of the optimal solution and describe
a methodology to obtain it.

4.2. Optimal scheduling and power allocation

In this section we examine how the optimal scheduling and power allocation for the wireless
control system can be recovered by considering the optimization problem in the dual domain.
This allows us to develop an offline algorithm to solve the problem and provides an explicit
characterization of the form of the optimal solution.

First let us derive the Lagrange dual problem of (4.14). Consider non-negative dual variables
µ ∈ Rm

+ corresponding to each one of the m constraints of (4.14). The Lagrangian then is defined
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as

L(α, p, µ) = Eh

m

∑
i=1

f

∑
j=1

αij(h)pij(h)

+
m

∑
i=1

µi

[
ci −Eh

f

∑
j=1

αij(h) q(hij, pij(h))
]

, (4.16)

while the dual function is defined as

g(µ) = inf
α,p∈(A,P)

L(α, p, µ). (4.17)

For future reference we also denote the set of functions α(.), p(.) that minimize the Lagrangian at
µ by

(A,P)(µ) = argmin
α,p∈(A,P)

L(α, p, µ), (4.18)

whenever the minimizers exist. This set might contain in general multiple solutions and we denote
with α(µ), p(µ) an arbitrary element pair of the set. Since the pair itself is a function on Hm× f

(cf. (4.4)), we denote the value of the pair at a point h ∈ Hm× f by α(µ; h), p(µ; h).

The Lagrange dual problem is defined as follows.

D = sup
µ∈Rm

+

g(µ). (4.19)

According to Lagrange duality theory the optimal dual value D is a lower bound on the optimal
cost P of problem (4.14). The following proposition however establishes a strong duality result
(D = P) for the problem under consideration and provides a relationship between the optimal
primal and dual variables.

Proposition 4.2. Let Assumptions 4.1 and 4.3 hold. Let P be the optimal value of the optimization problem
(4.14) and (α∗, p∗) be an optimal solution, and let D be the optimal value of the dual problem (4.19) and
µ∗ be an optimal solution. Then

(a) P = D (strong duality)

(b) µ∗i

[
ci −Eh ∑

f
j=1 α∗ij(h) q(hij, p∗ij(h))

]
= 0 for all i = 1, . . . , m (complementary slackness)

(c) (α∗, p∗) ∈ (A,P)(µ∗)

This proposition states that strong duality holds even though the original problem is not convex,
regardless also of the form of the function q(h, p) (Assumption 4.2 is not imposed). More impor-
tantly, part (c) suggests the possibility of finding the optimal primal variables α∗, p∗ by solving
first for the optimal point µ∗ of the dual problem, and then searching for primal variables the
minimize the Lagrangian function at µ∗ (cf. (4.18)). As we present next, this direction provides a
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significant advantage. The design of infinite-dimensional scheduling and power allocation poli-
cies that meet the control performance specifications in Problem 4.1 is reduced to the problem
of determining finite-dimensional optimal dual variables. A technical caveat of Proposition 4.2(c)
is that the optimal policies are included in a set which could in general contain other irrelevant
policies. As we show next, Assumption 4.2 helps overcome this issue.

4.2.1. Dual subgradient method

To solve the dual problem in (4.19), that is, to maximize the dual function g(µ), we employ a dual
projected subgradient algorithm (Bertsekas et al., 2003, Ch. 8). We first note that function g(µ) is
concave, as a pointwise infimum over functions linear in µ (cf. (4.17)). A subgradient direction for
g(µ) at any point µ ∈ Rm

+ is a vector, denoted here as s(µ) ∈ Rm, that satisfies

g(µ′)− g(µ) ≤ (µ′ − µ)Ts(µ) for allµ′ ∈ Rm
+. (4.20)

If we pick α(µ), p(µ) ∈ (A,P)(µ) by (4.18) then a subgradient s(µ) can be found as the constraint
slack of the primal problem (4.14) evaluated at these points, i.e.,

si(µ) = ci −Eh

f

∑
j=1

αij(µ; h) q(hij, pij(µ; h)). (4.21)

To show this observe that for any µ′ ∈ Rm
+ in general we have g(µ′) ≤ L(α(µ), p(µ), µ′) by the

definition of the dual function in (4.17). Subtracting g(µ) = L(α(µ), p(µ), µ) from both sides of
this inequality and expanding the terms of the Lagrangian as in (4.16) we get

g(µ′)− g(µ) ≤
m

∑
i=1

(µ′i − µi)

[
ci −Eh

f

∑
j=1

αij(µ; h) q(hij, pij(µ; h))
]

. (4.22)

Comparing this with the property of the subgradient in (4.20), we verify that (4.21) indeed gives
a subgradient direction. We also note for future reference that for any µ the subgradients are
bounded because at the right hand side of (4.21) the term ci is bounded and the term in the
expectation corresponds to a probability (cf.(4.5)).

A projected dual subgradient ascent method to maximize the concave dual function g(µ) consists
of the following steps:

1. At iteration t given µ(t) find primal optimizers of the Lagrangian at µ(t) according to (4.18),

p(µ(t)), α(µ(t)) ∈ (A,P)(µ(t)) (4.23)

2. Evaluate the subgradient vector s(µ(t)) by (4.21) and update the dual variables by an ascent

50



step
µ(t + 1) = [µ(t) + ε(t)s(µ(t))]+ (4.24)

where [ ]+ denotes the projection on the non-negative orthant and ε(t) > 0 is the stepsize.

The stepsizes are selected to be square summable but not summable, i.e.,

∑
t≥1

ε(t)2 < ∞, ∑
t≥1

ε(t) = ∞. (4.25)

Before stating the convergence properties of the algorithm, we note that in order to implement it
we need an efficient way to compute primal Lagrange optimizers in (4.23) that solve (4.18). This
problem also relates to our capability of finding the optimal primal variables of interest α∗, p∗

as we have argued by Proposition 4.2(c). Hence we turn our focus to problem (4.18). A more
convenient expression for the Lagrangian defined in (4.16) can be obtained by rearranging terms
to get

L(α, p,µ) = µTc+

Eh

m

∑
i=1

f

∑
j=1

αij(h)
[
pij(h)− µiq(hij, pij(h))

]
. (4.26)

This form provides a useful separation structure for the primal Lagrangian optimizers that we
exploit in the following proposition.

Proposition 4.3. For any µ ∈ Rm
+ the following hold true:

(a) Solutions α(µ), p(µ) ∈ (A,P)(µ) of problem (4.18) can be obtained at each h ∈ Hm× f as

pij(µ; h) = pij(µi; hij) = argmin
0≤p≤pmax

p− µiq(hij, p) (4.27)

for any i = 1, . . . , m and j = 1, . . . , f , and

α(µ; h) = argmin
α∈R

m× f
+

m

∑
i=1

f

∑
j=1

αij ξ(hij, µi) (4.28)

subject to
m

∑
i=1

αij ≤ 1,
f

∑
j=1

αij ≤ 1

where
ξ(hij, µi) = min

0≤p≤pmax
p− µiq(hij, p). (4.29)

(b) If Assumptions 4.1 and 4.2 hold, then for any solution α(µ), p(µ) ∈ (A,P)(µ) the vector s(µ) defined
in (4.21) has a unique value.
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The first part of the proposition provides in (4.27) and (4.28) a method to obtain primal Lagrange
optimizers that can be used in step (4.23) of the subgradient algorithm. Interestingly, the minimiz-
ing scheduling and power allocation decisions can be computed separately at each channel state
value h ∈ Hm× f , hence significantly simplifying the computation. A further separability for the
power allocation across systems and frequencies is revealed – see Remark 4.1.

The second part of the proposition relies on the properties of the function q(h, p) by Assumption
4.2 in order to establish that the subgradient vector s(µ) takes a unique value. The proof relies
on the fact that the expected value in si(µ) (cf. (4.21)) conditioned on the channel state h is almost
surely either zero, because system i should not be scheduled, or unique, because the optimal
Lagrange minimizers α(µ; h), p(µ; h) are unique. For example, Assumption 4.2(c) ensures that
the power minimizer p(µ; h) in (4.27) is (almost surely) unique. Proposition 4.3(b) is important
because it allows a stronger and more explicit characterization of the optimal scheduling and
power allocation than the set-characterization of Proposition 4.2(c). This is established in the
following theorem.

Theorem 4.1 (Optimal Scheduling and Power Allocation). Consider the design of channel-aware
scheduling and power allocation variables in Problem 4.1 for the shared wireless control architecture of
Fig. 10, and let Assumptions 4.1, 4.2, 4.3 hold. Then optimal scheduling α∗ and power allocation p∗ are
obtained by (4.27)-(4.29) at any point µ∗ ∈ Rm

+ that is an optimal solution of the dual problem (4.19).
Moreover a point µ∗ can be obtained by iterating (4.23)-(4.24), i.e., µ(t) → µ∗, for stepsizes satisfying
(4.25).

The theorem characterizes the optimal scheduling and power allocation that meet the control
performance specifications in our shared wireless control architecture – see Remarks 4.1, 4.2 for
more details about the form of the optimal policy. It is worth noting that the optimal policy need
not be unique. More precisely, there might be many optimal dual solutions µ∗, each corresponding
to a different scheduling and power allocation policy according to the theorem. However all such
policies will have the same objective value in (4.9).

The theorem also establishes a methodology to find the optimal communication policy by iterating
(4.23)-(4.24). This can be viewed as an offline algorithm, and requires knowledge of the channel
distribution. In the next section we develop an online algorithm that solves for the optimal com-
munication policy based instead only on a random sequence of channel realizations observed
during system execution.

Remark 4.1. According to Theorem 4.1, the optimal power allocation can be obtained at each channel value
h by solving (4.27) at the point µ∗. In particular p∗ij(h) depends on the variables µ∗i and hij pertinent only to
system i and frequency j and not on the whole vectors µ∗ or h. This implies a decentralized power allocation
among systems and frequencies, made explicit in (4.27) by the notation pij(µi; hij). Similar separability
results are also known in the context of resource allocation for wireless communication networks Liu et al.
(2003); Georgiadis et al. (2006); Ribeiro (2012) even though in those works the goal is to maximize user
utility (capacity, data rates, etc.) while the goal here is to meet closed loop control performance. The
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separability can be intuitively understood from the shared wireless control architecture of Fig. 10, since
each transmitter experiences different channel conditions and is responsible for an independent control task.
Moreover, this optimal power allocation can be easily implemented in practice. The transmitter of each
control system i can store its value µ∗i and adapt transmit power, whenever scheduled, based on the channel
conditions it currently experiences. The optimal scheduling α∗(h) in (4.28), on the other hand, is centralized
since it depends on the whole vector µ∗ and all channel states h.

Remark 4.2. The optimal scheduling decision in (4.28) is posed as a linear program by relaxing the integer
constraints of ∆m, f in (4.2), hence the policy is computationally efficient. As mentioned in the proof of the
theorem there is no loss in the relaxation, as the optimal solution to the linear program is integer. It is worth
noting that (4.28) solves a standard assignment problem2 which opportunistically tries to match control
systems to frequencies at each time slot. A numerical example of this opportunistic behavior is shown in
Fig. 11 of Section 4.4. Besides the linear program presented here, integer programming algorithms with
complexity polynomial in the number of systems m and frequencies f exist (Bertsimas and Tsitsiklis, 1997,
Ch. 7). In the special case of a single frequency ( f = 1) the complexity of scheduling in (4.28) is linear in
the number of systems (O(m)), since the scheduler looks for and schedules the system i with the minimum
value ξ(hi, µi).

4.3. Online scheduling and power allocation

The algorithm presented in the previous section to obtain optimal scheduling and power alloca-
tion for the shared wireless control system of Problem 4.1 is hard to implement in practice. In
the primal step (4.23) one needs to obtain a solution pair α(h), p(h) for a continuum of channel
variables h ∈ Hm× f , while for the dual step in (4.24) one needs to compute the subgradient di-
rection s(µ) in (4.21) by integrating over the channel distribution φ. A practical implementation
would require drawing a large number of samples from φ and solving for primal variables at
these samples to obtain an estimate of the actual subgradient direction. This is computationally
intensive, does not scale for a large number of systems m and frequencies f , while also in most
cases of practical interest the channel distribution is not available.

These drawbacks motivate us to develop an online algorithm to solve Problem 4.1. The algorithm
is a stochastic version of the primal/dual steps (4.23), (4.24) of the offline subgradient method and
does not rely on availability of the channel distribution. In particular, suppose that at time k a
channel realization hk is observed, and the current power and scheduling decision are selected by
solving (4.27)-(4.28) at the current hk, i.e.,

pij,k = pij(µi,k; hij,k), i = 1, . . . , m, j = 1, . . . , f ,

αk = α(µk; hk). (4.30)

Then in contrast to updating the dual variables µk by (4.24) after computing the vector (4.21), sup-

2Technically the standard assignment problem requires equal number of systems and frequencies. This can be accom-
plished by introducing dummy systems or frequencies with zero values ξ(hij, µi).
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Algorithm 4.1 Online Scheduling and Power Allocation

Input: m, f , c ∈ [0, 1]m, q : H× [0, pmax] 7→ [0, 1], εk ∈ R+, k ≥ 0
1: Initialize µ0 ∈ Rm

+, k← 0
2: loop
3: At time k observe channel state hk
4: Compute power allocation for all systems i and frequencies j by

pij,k ← argmin
0≤p≤pmax

p− µi,kq(hij, p) (4.33)

ξij,k ← min
0≤p≤pmax

p− µi,kq(hij, p) (4.34)

5: Decide scheduling by solving

αk ← argmin
α∈∆m, f

m

∑
i=1

f

∑
j=1

αij ξij,k (4.35)

6: Compute for all i = 1, . . . , m

si,k ← ci −
f

∑
j=1

αij,k q(hij,k, pij,k) (4.36)

7: Update dual variables by µk+1 ← [µk + εksk]+
8: end loop

pose only the current channel measurement and power/scheduling choices are used. In particular,
suppose we compute

si,k = ci −
f

∑
j=1

αij,k q(hij,k, pij,k), i = 1, . . . , m, (4.31)

and update the variables µk by

µk+1 = [µk + εksk]+ (4.32)

where [ ]+ is the projection on the non-negative orthant and εk > 0 is the stepsize.

To emphasize that this is an online algorithm we have explicitly indexed the variables with k
corresponding to real time slots. This procedure, summarized in Algorithm 4.1, gives scheduling
and power variables {αk, pk, k ≥ 0} as well as dual variables {µk, k ≥ 0} which are random
because they depend on the random observed channel sequence {hk, k ≥ 0}. The main difference
compared to the subgradient algorithm of the previous section is that it follows random directions
sk in (4.31) instead of the exact subgradient directions s(µk) by (4.21). Comparing these two
expressions it is immediate that the expected value of sk coincides with the subgradient s(µk), so it
is reasonable to conjecture that the online algorithm is expected to move towards the maximum of
the dual function, as the subgradient method does. The following proposition indeed establishes
convergence in a strong sense.

54



Proposition 4.4. Consider the optimization problem (4.14) and its dual derived in (4.19) and let Assump-
tion 4.3 hold. Let a sequence µk, k ≥ 0 be obtained by steps (4.30)-(4.32) based on a sequence {hk, k ≥ 0} of
i.i.d. random variables with distribution φ, and stepsizes εk satisfying (4.25). Then almost surely we have
that

lim
k→∞

µk = µ∗, and lim
k→∞

g(µk) = D (4.37)

where µ∗ is an optimal solution of the dual problem and D is the optimal value of the dual problem.

The proposition states that the stochastic online algorithm yields a random sequence of dual
variables µk that converges to the optimal point µ∗ almost surely for any sequence of channel
realizations that is observed. However the real problem of interest is the primal problem (4.14),
or equivalently Problem 4.1. This is the problem of optimal design of scheduling and power allo-
cation policies that satisfy the given Lyapunov performance requirements (4.11) for each control
system i, while also minimizing the expected power expenditures of the communication process.
Hence, in the following theorem, we characterize how the control systems would actually perform
if the communication variables are selected according to the proposed online algorithm.

Theorem 4.2 (Online Scheduling and Power Allocation). Consider a shared wireless control architec-
ture composed of m systems of the form (4.1), f frequencies, and communication modeled by (4.3) depending
on channel states hk ∈ Hm× f which are i.i.d. with distribution φ, and scheduling and power allocation
variables αk ∈ ∆m, f , pk ∈ [0, pmax]m× f . Also consider given quadratic Lyapunov performance require-
ments (4.11) for each system and let Assumptions 4.1, 4.2, 4.3 hold. If αk, pk are chosen according to
(4.30)-(4.32), then almost surely with respect to the channel sequence {hk, k ≥ 0} the control performances
for all systems i = 1, . . . , m satisfy

lim sup
k→∞

E[Vi(xi,k+1)
∣∣ xi,k = xi, h0, . . . , hk−1]

≤ ρiVi(xi) + Tr(PiWi), (4.38)

for any state values xi ∈ Rni . In addition, the power consumption almost surely satisfies

lim sup
k→∞

E

[ m

∑
i=1

f

∑
j=1

αij,k pij,k

∣∣∣∣h0, . . . , hk−1

]
≤ P (4.39)

where P is the optimal value of the optimization problem (4.9).

According to the theorem the scheduling and power allocation variables selected by the online
algorithm lead in the limit to the desired Lyapunov requirements for all control systems and
to the optimal power expenditure, for almost all channel sequences. We can also establish the
following corollary.

Corollary 4.1. Consider the setup of Theorem 4.2. Then for any positive constant δ > 0 there exists a time
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step N such that for all times k ≥ N we have that

E
[
Vi(xi,k+1)

∣∣ xi,k
]
≤ (ρi + δ) Vi(xi,k) + Tr(PiWi) (4.40)

for any possible value of plant states xi,k ∈ Rni and for all systems i = 1, . . . , m.

Recall that we initially asked for a communication design that guarantees expected control per-
formance requirements at each time step k in (4.11). According to the above corollary our online
algorithm approximately satisfy this. After a sufficiently long time horizon the expected decrease
rates of all Lyapunov functions get arbitrarily close to the desired ones. Before proceeding to sim-
ulations of the stochastic online algorithm, we present an intuitive interpretation of the algorithm
from an economic resource allocation point of view.

4.3.1. Pricing interpretation of online scheduling and power allocation algorithm

In this section we provide an interpretation of the problem variables as well at the online Algo-
rithm 4.1 in economic terms. In particular we may view each transmitter in the wireless control
architecture as an agent that utilizes some scarce resource, namely transmit power, to produce
some ’good’, namely the probability of successfully transmitting and closing the corresponding
control loop. Our development shows that each closed loop has a Lyapunov control performance
requirement (cf. (4.11)) that can be translated as requiring ci units of good (cf. (4.14)). Under this
view, the dual variables µi can be interpreted as the ’unit price’ at which each agent can ’sell’ the
produced good. In this context the role of Algorithm 4.1 is to determine unit prices such that all
demand levels ci are met and in the most profitable manner from the agents’ perspective.

More specifically, consider a time step k where prices are set to µk and the current channel condi-
tions are described by hk. If agent i gets access to the channel at frequency j, the agent can spend
an amount pij,k to produce q(hij,k, pij,k) units of good, which can be sold at a price of µi,k per unit.
In this case the total profit for the agent can be expressed as

µi,k q(hij,k, pij,k)− pij,k, (4.41)

i.e., the difference between the total revenue µi,k q(hij,k, pij,k) and the total cost pij,k. The optimal
resource allocation pij,k is the one maximizing the profit (4.41), matching exactly the optimization
over power provided in (4.33). The optimal profit if agent i gets access to the channel at frequency
j under conditions hij,k equals −ξij,k given in (4.34).

Then the role of the scheduler is to opportunistically assign agents to the available frequencies
in a way that maximizes the total aggregated profit. In particular the scheduler observes cur-
rent conditions hij,k for all agents i and frequencies j, computes the possible profit −ξij, k of all
agent/frequency pairs, and searches for the scheduling α ∈ ∆m, f defined by (4.2) that maximizes
the total profit

∑
i,j

αij(−ξij, k) (4.42)
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Figure 11: Optimal channel-aware scheduling for the example presented in Section 4.4. System 1
has a harder Lyapunov decrease rate requirement and is scheduled to transmit for most observed
channel states h1, h2. System 2 is scheduled only if its channel conditions h2 are much more fa-
vorable that those of system 1. When both channels are very adverse, systems select zero transmit
powers so scheduling is irrelevant.

aggregated over all agents. This optimal scheduling matches the one implemented by Algo-
rithm 4.1 (cf. line (4.35)).

After the current scheduling αk and power pk decisions have been made, the unit prices µk+1

for the next step are adjusted depending on the current production levels. If the production for
system i exceeds the required level ci, i.e., si,k < 0 in (4.31), then the unit price for system i is
reduced to µi,k + εksi,k (cf. line 7 in Algorithm 4.1). If on the other hand the production for system
i does not meet ci, i.e., si,k > 0, then the unit price i increases to µi,k + εksi,k.

According to Theorem 4.2 the online algorithm converges almost surely to the optimal prices µ∗,
under which the expected production meets demand. Moreover the expected total production
cost (the objective of problem (4.14)) becomes optimal in the limit.

We note that Theorem 4.2 does not provide theoretical guarantees on how fast the solution con-
verges to the optimal one. We discuss this issue along with other limitations of the algorithm
in Section VI. In the following section we present simulations verifying our theoretical results,
and also indicating that the convergence of the algorithm is relatively fast so that online control
performance is not severely affected.
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4.4. Numerical Simulations

We first illustrate through simulations the opportunistic nature of the communication mechanism
for wireless control systems obtained in Section 4.2, in particular how scheduling and power
decisions adapt appropriately to channel conditions to meet the control performance goals. More-
over we compare the resulting performance with other simple non channel-adaptive mechanisms.
Recall that control systems with vector states are converted to scalar constraints in optimization
problem (4.14) by introducing the constants ci. Hence without loss of generality we consider scalar
control systems.

Consider a heating system application controlling the temperature in two independent rooms of a
building. Assuming the wireless control architecture of Fig. 10 with m = 2, wireless sensors trans-
mit the temperatures of each room to a central location (the access point in Fig. 10) responsible for
adjusting the heating in the rooms. For simplicity suppose both systems have identical dynamics
of the form (4.1) with state xi,k denoting the difference between current and some desired temper-
ature for room i. When system i transmits (γi,k = 1), heating is activated for system i and results
in stable dynamics Ac,i = 0.4. Otherwise if γi,k = 0 heating is deactivated and the system is open
loop unstable with Ao,i = 1.1.

For simplicity we assume there is one ( f = 1) available frequency and for symmetry let channel
states h1,k and h2,k be independent for each system, both having an exponential distribution with
mean 1. The function q(h, p) is shown in Fig. 2. For these scalar systems it suffices to consider
Lyapunov functions Vi(x) = x2. We require then that system 1 guarantees a high Lyapunov
decrease ρ1 = 0.75 rate according to (4.11), while system 2 only requires ρ2 = 0.90. For these
choices we get a higher required success of transmission c1 ≈ 0.44 for system 1 (solving (4.45) of
Prop. 4.1), compared to a lower c2 ≈ 0.30 of system 2.

Using the offline subgradient method of Section 4.2 to solve problem (4.14), the optimal channel-
aware scheduling and power allocation variables are depicted in Fig. 11 and Fig. 12 respectively.
We observe in Fig. 11 that System 1, which requires higher transmission success c1, is scheduled
to transmit for most values of the channel states h1, h2. System 2, which has a lower requirement,
is scheduled only if its channel h2 is sufficiently favorable and system 1 experiences an adverse
channel h1. This illustrates how the scheduler exploits opportunistically the channel conditions
to select which system will transmit to close the loop, in order to meet the Lyapunov constraints
in a power efficient manner. Note also that when both systems experience very adverse channels
scheduling is irrelevant because, as we will see in Fig. 12, the optimal transmit powers then are
zero (no transmission).

The optimal power allocation is decentralized as we noted in Remark 4.1, i.e., the transmit power
pi for system i depends only on the channel hi that system i experiences. Thus we plot in Fig. 12
the power allocation for both systems on same axes. For both systems, when the channel condi-
tions are adverse it is not worth to spend transmit power. System 1, which has a more demanding
control constraint, requires in general higher transmit power since, as we saw in Fig. 11, it is
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Figure 12: Optimal channel-aware power allocation for the example presented in Section 4.4. Un-
der adverse channel conditions systems do not transmit. The channel threshold for transmission
for system 1 is lower than that of system 2 because the former has a higher Lyapunov decrease
rate requirement. System 1 also requires higher transmit power.

scheduled to transmit even under adverse channel conditions. This is also captured in the ex-
pected power consumption of each system computed numerically as Ehα∗1(h)p∗1(h1) ≈ 11mW and
Ehα∗2(h)p∗2(h2) ≈ 6.5mW. Hence the minimum total power budget required to meet the control
objectives is 17.5mW.

To demonstrate the power savings obtained by the opportunistic mechanism we compare with a
simple non-channel-aware mechanism. In particular suppose that at each step a system is sched-
uled randomly to access the channel/frequency. With a slight abuse of notation systems 1 and 2
are chosen with probabilities α1 and α2 = 1− α1 respectively. When a system is selected, we sup-
pose it transmits with a constant power level pc. The control performance requirements (cf. (4.14))
in this case become αi Ehi

q(hi pc) ≥ ci for i = 1, 2 and the total power cost is (α1 + α2) pc = pc. We
are interested then in selecting the minimum constant power pc that would satisfy both control re-
quirements. It can be easily argued that a necessary and sufficient condition for the requirements
is ∑i=1,2 αi Ehi

q(hi pc) ≥ c1 + c2, which is equivalent to Ehi
q(hi pc) ≥ c1 + c2 since ∑i=1,2 αi = 1.

We compute then numerically the minimum constant pc that satisfies this equivalent requirement,
which is pc ≈ 73mW. Note that this transmit power is higher than the optimal opportunistic
power policy in Fig. 12. Moreover, in this example, the optimal opportunistic scheduling and
power allocation achieves almost 80% decrease in power consumption compared to an optimal
not channel-aware randomized schedule scheme.

4.4.1. Stochastic online scheduling and power allocation

Next we implement the stochastic online algorithm of Section 4.3 in a setup with three (m = 3)
control loops sharing two ( f = 2) frequencies. For example consider again the room heating
system of the previous section including three rooms/systems with identical dynamics, Ao,i = 1.1
and Ac,i = 0.4 as before. The chosen desired Lyapunov decrease rates are shown in Table 1,
implying that system 1 is the most demanding. We assume channel states hij are independent
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Control
objec-
tive
ρ

Mean
Fad-
ing
hi1

Mean
Fad-
ing
hi2

Transmit
Rate
at
Freq.
1

Transmit
Rate
at
Freq.
2

Plant 1 0.8 1 1 0.46 0.40
Plant 2 0.92 1 1 0.34 0.29
Plant 3 0.92 1 2 0.16 0.29

Table 1: System parameters & online transmission rates

across systems i and frequencies j, and have exponential distributions with means given in Table
1. In particular we model that system 3 experiences better channel quality (higher channel fading
gain) in the second frequency.

The evolution of the dual variables µk during Algorithm 4.1 is shown in Fig. 13. After a number
of iterations (time k in this example corresponds to seconds) they remain in a small neighborhood
around the optimal µ∗, as anticipated by the theoretical a.s. convergence in Prop. 4.4. Conse-
quently, the scheduling and power allocation decisions taken online are almost feasible for the
constraints of problem (4.14) after a number of iterations. We observe that the dual variable corre-
sponding to system 1 is the largest, consistent with the fact that it has a harder control requirement
to meet. Using the economic interpretation of Section 4.3.1 about the dual variables, the price at
which agent 1 can sell its produced good is higher, giving the incentive to schedule agent 1 to
produce more often. On the other hand, systems 2 and 3 have the same control requirements but
the dual variable for system 2 is larger. The reason is that system 2 experiences worse channel con-
ditions than system 3 (cf. Table 1), which imply higher required transmit power, or in economic
terms a higher production cost in (4.41). By setting a higher selling price µ2, system 2 becomes
profitable enough so that it is scheduled to produce at a sufficient rate to meet the requirement.

In Table 1 we show the average transmission rates selected by the online algorithm, i.e., the average
number of time slots where each system i was selected to transmit (with a positive power level)
at each frequency j as 1/N ∑N

k=1 αij,kI
(

pij,k > 0
)

. System 3 was scheduled mainly at frequency
2, exploiting its better channel quality. This forced systems 1 and 2 to use frequency 1 more
often. Also system 1, which has higher control requirement, transmitted more often than the
other systems. This behavior resulted from the online algorithm using only an observed channel
sequence, not any prior knowledge on the channel quality distribution.

Finally, we examine the evolution of the three heating control systems when the online algorithm
is employed for scheduling and power decisions. Suppose that for all systems i the states xi,
which measure deviations from reference room temperatures, are perturbed by disturbances wi,k

as in (4.1), which we model as independent Gaussian with mean zero and variance Wi = 1. We
plot in Fig. 14 the evolution of the empirical quadratic averages 1/N ∑N

k=1 x2
i,k. Recall that when

the Lyapunov condition (4.11) is satisfied, we get from (2.13) of Section 2.1.1 that the expected
limit quadratic costs are bounded by Wi/(1− ρi). We observe from Fig. 14 that after some initial
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Figure 13: Evolution of dual variables µk over time k using the online algorithm. After a number
of steps the dual variables µk remain in a neighborhood around the optimal values µ∗.
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Figure 14: Average quadratic costs during the online scheduling and power allocation algorithm.
The stochastic algorithm keeps the average quadratic cost of each control system close to the upper
bound of the limit expected cost, shown with dashed lines, induced theoretically by the required
Lyapunov decrease rates.

transient the online communication algorithm keeps the empirical average quadratic costs close
to the theoretical upper bounds.

4.5. Proofs

4.5.1. Proof of Proposition 4.1

For simplicity we drop the indices i within the proof. The expectation over the next system state
xk+1 on the left hand side of (4.11) accounts via (4.1) for the randomness introduced by the process
noise wk and the random packet success γk. In particular we have that

E
[
V(xk+1)

∣∣ xk
]
= P(γk = 1) xT

k AT
c PAcxk + P(γk = 0) xT

k AT
o PAoxk + Tr(PW). (4.43)
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Here we used the fact that the random variable γk is independent of the system state xk and
depends just on the communication model. Plugging (4.43) at the left hand side of (4.11) we get

P(γk = 1) xT
k AT

c PAcxk + P(γk = 0) xT
k AT

o PAoxk ≤ ρxT
k Pxk. (4.44)

Since condition (4.11) needs to hold for all xk ∈ Rn we can rewrite (4.44) as a linear matrix
inequality (Boyd and Vandenberghe (2009))

P(γk = 1)AT
c PAc + (1−P(γk = 1))AT

o PAo � ρP, (4.45)

The values P(γk = 1) that satisfy this linear matrix inequality belong in some closed convex
set. We know by assumption that the case P(γk = 1) = 1 belongs in this set by the assumption
that V(x) is a Lyapunov function for the closed loop mode of the system. As a result there is a
minimum value c, given by the semidefinite program (4.13), such that condition (4.45) is equivalent
to P(γk = 1) ≥ c.

4.5.2. Proof of Proposition 4.2

Statement (a) under assumptions 4.1 and 4.3 follows immediately from (Ribeiro, 2012, Theorem 1)
where a similar optimization setup is examined. The proof is omitted due to space limitations.

To show (b) observe that, by definition of the dual function in (4.17), at the point µ∗ we have that

g(µ∗) ≤ L(α∗, p∗, µ∗) (4.46)

Since µ∗ is optimal for (4.19) and using part (a) we have for the left hand side of (4.46) that
g(µ∗) = D = P. On the other hand, the right hand side of (4.46), by the definition of the
Lagrangian at (4.16), equals

L(α∗,p∗, µ∗) = P

+
m

∑
i=1

µ∗i

[
ci −Eh

f

∑
j=1

α∗ij(h) q(hij, p∗ij(h))
]

, (4.47)

because the objective of (4.14) at the optimal solution (α∗, p∗) equals the optimal value P. These
expressions for the left and right hand sides of the inequality in (4.46) therefore give

P ≤ P +
m

∑
i=1

µ∗i

[
ci −Eh

f

∑
j=1

α∗ij(h) q(hij, p∗ij(h))
]

. (4.48)

This implies that the sum on the right hand side is non-negative. However all summands are
non-positive, because µ∗ ≥ 0 by dual feasibility (4.19), and the terms in the brackets in (4.48) are
non-positive because (α∗, p∗) are feasible for the primal problem (4.14). The only possibility is
that all summands in (4.48) are identically zero, which proves statement (b).
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We have established that (4.48) holds with equality, so by tracing back our steps, we have that
(4.46) holds with equality too, which, by the definition of the dual function on (4.17) translates to

inf
α,p∈(A,P)

L(α, p, µ∗) = L(α∗, p∗, µ∗). (4.49)

This verifies statement (c).

4.5.3. Proof of Proposition 4.3

We first show part (a) of the proposition. Consider the problem of minimizing the Lagrangian
as given at the form (4.26) over variables α(.), p(.) for some µ ∈ Rm

+. Since µTc is constant the
problem is equivalent to 3

inf
α,p∈(A,P)

Eh ∑
i,j

αij(h)
[
pij(h)− µiq(hij, pij(h))

]
. (4.50)

Without loss of generality we can exchange the expectation over h and the minimization over
functions α(.), p(.) in (4.50) to equivalently solve for each h ∈ Hm× f

inf
α(h)∈∆m, f

p(h)∈[0,pmax]m× f

∑
i,j

αij(h)
[
pij(h)− µiq(hij, pij(h))

]
(4.51)

This step is valid because any pair of functions α, p that does not minimize the objective in (4.51)
on a set of values of variables h with φ-positive measure must yield a strictly larger expected
value in the objective of (4.50). In other words, the minimizers of (4.50) can only differ from the
minimizers of (4.51) at a set of values for h with measure zero.

Then note that at any h ∈ Hm× f and any choice for the variable α(h) we have that αij(h) ≥ 0.
Hence the optimization over p(h) in (4.51) can be rearranged to

inf
α(h)∈∆m, f

∑
i,j

αij(h)

inf
pij(h)∈[0,pmax]

pij(h)− µiq(hij, pij(h)). (4.52)

The optimization over power variables pi,j(h) in this expression corresponds exactly to (4.27).
Using the notation introduced in (4.29), the minimization over scheduling variables α(h) in (4.52)
becomes

inf
α(h)∈∆m, f

∑
i,j

αij(h) ξ(hij, µi). (4.53)

This is an integer programming problem over αij ∈ {0, 1} according to the set ∆m, f (cf.(4.2)). The
expression given in (4.28) is a linear programming relaxation of (4.53) by assuming αij ≥ 0. The

3Within this proof we denote ∑m
i=1 ∑

f
j=1 as ∑i,j for compactness.
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relaxation is tight (see, e.g., (Bertsimas and Tsitsiklis, 1997, Th. 7.5)), meaning that the optimal
solution of (4.28) will be integer and feasible with respect to ∆m, f , hence optimal for (4.53) too.

Now let us prove part (b) of the proposition. We need to show that any pair α(µ), p(µ), which
are functions of h, that solves (4.50) gives a unique evaluation of s(µ) given in (4.21). Since si(µ)

involves integrating the term
f

∑
j=1

αij(µ; h) q(hij, pij(µ; h)) (4.54)

with respect to the distribution φ of h ∈ Hm× f , it suffices to show that (4.54) is unique φ-a.s.

By the argument presented already, minimizing (4.50) is a.s. equivalent to minimizing (4.51). The
latter is again equivalent to the problem (4.52) since all αij(h) ≥ 0. Note that the only case where
the optimizers in (4.51) can differ from the ones obtained in (4.52) is if αij(µ; h) = 0 for some i, j
is optimal at some values h ∈ Hm× f and the power minimizer pij(µ; h) in (4.51) can be chosen
arbitrarily. But this does not affect the computation of si(µ) since (4.54) will equal zero. Hence we
only need to show that the minimizers α(µ; h), p(µ; h) in (4.52) imply a.s. uniqueness of (4.54).

For values of h where the minimizers α(µ; h), p(µ; h) of problem (4.52) are unique it is immediate
that (4.54) has a unique value, hence we only need to consider h where the minimizers are not
unique. By Assumption 4.2(c) the minimizer p(µ; h), which is given in (4.27), is unique for almost
all h, therefore we only need to focus on the set of values for h where the minimizer α(µ; h),
described by (4.28), is not unique.

Let us denote by E the set of interest, i.e., the set of h ∈ Hm× f where α(µ; h) in (4.28) is not unique.
By considering all possible pairs of multiple solutions α′ 6= α′′ in the finite set ∆m, f , we can rewrite
E as a union E =

⋃
α′ 6=α′′∈∆m, f

Eα′ ,α′′ where Eα′ ,α′′ ⊆ Hm× f such that

h ∈ Eα′ ,α′′ ⇔ α′, α′′ ∈ argmin
α∈∆m, f

∑
i,j

αij ξ(hij, µi). (4.55)

In other words, the set Eα′ ,α′′ is the set of values h where both α′, α′′ are optimal for (4.28). The rest
of the proof shows that on any Eα′ ,α′′ the value of (4.54) is almost surely unique.

The set Eα′ ,α′′ depends on the shape of the function ξ defined in (4.29), so next we point out two
properties of ξ(hij, µi).

Fact 1: For almost all hij where the optimal value of problem (4.29) is ξ(hij, µi) = 0, the optimal
solution is unique and equals pij(µ; h) = 0.

Proof of Fact 1: First we note that for any hij, the choice p = 0 is feasible for problem (4.29) and
by Assumption 4.2(a) it gives an objective p− µiq(hij, p) = 0. So whenever the optimal value of
problem (4.29) is 0, then p = 0 is an optimal solution. This optimal solution is unique for almost
all hij because of Assumption 4.2(c).
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Fact 2: If at some hij the optimal value of problem (4.29) is ξ(hij, µi) < 0, then for h′ij > hij we have
that ξ(h′ij, µi) < ξ(hij, µi).

Proof of Fact 2: First note that at the given hij it must be that the optimal solution pij(µ; h) of
problem (4.29) satisfies q(hij, pij(µ; h)) > 0. This is true because otherwise q(hij, pij(µ; h)) = 0
implies ξ(hij, µi) = pij(µ; h) ≥ 0. Second by Assumption 4.2(b) when q(.) > 0, it is strictly
increasing in its argument. Thus we have

ξ(hij,µi) = pij(µ; h)− µiq(hij, pij(µ; h))

> pij(µ; h)− µiq(h′ij, pij(µ; h)) ≥ ξ(h′ij, µi) (4.56)

for h′ij > hij.

Let us now fix some α′ 6= α′′ ∈ ∆m, f and consider the set Eα′ ,α′′ . Pick indices ı,  where α′, α′′

differ, i.e., without loss of generality, α′ı, = 1, α′′ı, = 0. Consider first the case of h ∈ Eα′ ,α′′ where
ξ(hı,, µı) = 0. By Fact 1 above we know that this implies pı,(µ; h) = 0 is almost surely the unique
optimizer of (4.27). But in that case q(hı,, pı,(µ; h)) = 0, and the choice of αı,(h) does not affect
the value of (4.54), which is zero.

Second, we examine the set h ∈ Eα′ ,α′′ where ξ(hı, µı) < 0. We will show that this event happens
with φ-probability zero. In particular by Assumption 4.1 φ has a probability density function
on Hm× f , or more formally φ is absolutely continuous with respect to the Lebesgue measure on
Hm× f . Hence to show that the discussed event has φ-measure zero, it suffices to show that it has
Lebesgue measure zero. Note that we can upper bound the set as follows

Eα′ ,α′′
⋂ {

h : ξ(hı, µı) < 0
}

⊆ {h : ∑
i,j
(α′′ij − α′ij) ξ(hij, µi) = 0, ξ(hı, µı) < 0}

= {h : ∑
i 6=ı,j 6=

(α′′ij − α′ij) ξ(hij, µi) = ξ(hı, µı) < 0} (4.57)

The subset in the first step is justified from the fact that, in contrary to the definition of Eα′ ,α′′ in
(4.55), we do not take α′, α′′ to be optimal for problem (4.28). We only require that they yield the
same objective in the problem. The second step follows by the appropriately selected indices ı, .

We will now argue that the last set in (4.57) has Lebesgue measure zero. If we fix the values of
all the variables/coordinates hij, i 6= ı, j 6= , there is at most one value for the variable/coordinate
hı that belongs in the set. The reason is that for values of the hı coordinate where ξ(hı, µı) < 0,
Fact 2 above states that ξ(hı, µı) is strictly monotonic in hı. Hence there can be at most one value
hı that equals the sum within the last set of (4.57). This means that the last set in (4.57) can be
equivalently described by a mapping from an m · f − 1 dimensional space to the space Hm× f , or
in other words it is a lower-dimensional subset of Hm× f . Hence it has Lebesgue measure zero.
This implies that the first set in (4.57) has Lebesgue (and φ) measure zero as well.
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The above procedure can be iterated for any pair α′, α′′ to conclude that in their union set E the
value of the subgradient vector is almost surely unique.

4.5.4. Proof of Theorem 4.1

Let µ∗ be an optimal solution of the dual problem (4.19). First, we argue that every pair α(µ∗), p(µ∗)
chosen from the set of Lagrangian minimizers (A,P)(µ∗) at the point µ∗ (cf. (4.18)) is an optimal
solution to primal Problem 4.1 (equivalently (4.14)). Under Assumptions 4.1 and 4.2, Proposition
4.3(b) states that the vector s(µ∗) in (4.21) has the same value at any chosen pair α(µ∗), p(µ∗).
Since s(µ∗) is also the constraint slack of the chosen pair in the primal problem (4.14), then any
Lagrange optimizers α(µ∗), p(µ∗) have the same constraint slack. Moreover, under Assumptions
4.1 and 4.3, Proposition 4.2(c) states that the optimal primal variables α∗, p∗ are one such pair
of Lagrange optimizers at µ∗, and by definition they have a feasible constraint slack. Hence all
Lagrange optimizers α(µ∗), p(µ∗) have the same feasible constraint slack as α∗, p∗. Additionally
all optimizers α(µ∗), p(µ∗) yield the same minimum Lagrangian value L(α(µ∗), p(µ∗), µ∗). By
the form of the Lagrangian in (4.16) it follows that all optimizers α(µ∗), p(µ∗) also give the same
primal objective in (4.14) as the point α∗, p∗, i.e., the minimum P. Hence any optimizer pair
α(µ∗), p(µ∗) is primal optimal. The first statement of the theorem follows because the scheduling
and power allocation obtained by (4.27)-(4.29) at µ∗ describe one pair of Lagrange optimizers at
µ∗, i.e., are optimal solutions to Problem 4.1.

The convergence of iterations (4.23)-(4.24) to the optimal dual variable µ∗ for stepsizes in (4.25)
relies on the boundedness of the subgradient vectors (as mentioned after (4.22)) and follows from
a standard subgradient method argument – for a proof see, e.g., (Bertsekas et al., 2003, Prop.
8.2.6).

4.5.5. Proof of Proposition 4.4

We begin by noting that at every time k the vector sk computed by (4.31) is a stochastic subgradient
for the dual function g(µ) at the point µk, i.e.,

g(µ′)− g(µk) ≤ (µ′ − µk)
TE[sk

∣∣ µk] for allµ′ ∈ Rm
+. (4.58)

To show this fact compare equations (4.30)-(4.31) of the online algorithm with (4.21) to conclude
that E[sk

∣∣ µk] = s(µk) because hk is i.i.d for every k. Inequality (4.58) then follows directly from
(4.20).

Then note that by Assumption 4.3 there exists a strictly feasible primal solution α′, p′. Call P′ the
resulting objective value (4.14) at this point, and let a positive constant ε′ > 0 denote the constraint
slack of (4.15) at this point, i.e., ci + ε′ ≤ Eh ∑

f
j=1 α′ij(h) q(hij, p′ij(h)). Then we may bound the dual
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function (4.17) at the optimal µ∗ by

D = g(µ∗) ≤ L(α′, p′, µ∗) = P′+

m

∑
i=1

µ∗i

[
ci−Eh

f

∑
j=1

α′ij(h) q(hij, p′ij(h))
]
≤ P′ −

m

∑
i=1

µ∗i ε′

Rearranging the above inequality, and since µ∗ ≥ 0, it follows that µ∗` ≤ ∑m
i=1 µ∗i ≤ (P′ −D)/ε′ for

every `, i.e., the optimal dual variables are finite.

Since the optimal dual variables are finite, the distance ‖µk−µ∗‖ between any random µk obtained
by Algorithm 4.1 and the set of optimal dual variables µ∗ is well-defined and bounded. The
following lemma gives an upper bound on this distance. Here recall that as we commented after
(4.21) the subgradients s(µ) are always bounded in our problem.

Lemma 4.1. Let D be the optimal value of the dual problem (4.19), µ∗ be an optimal solution, and S be the
bound on the subgradient ‖s(µ)‖ ≤ S for any µ ∈ Rm

+. Then at each step k of Algorithm 4.1 the update of
µk+1 satisfies

E[‖µk+1 − µ∗‖2 |µk] ≤ ‖µk − µ∗‖2 + ε2
kS2 − 2εk(D− g(µk)) (4.59)

Proof. First use the expression µk+1 = [µk + εksk]+ in Algorithm 4.1 to write

‖µk+1 − µ∗‖ = ‖[µk + εksk]+ − µ∗‖ ≤ ‖µk + εksk − µ∗‖, (4.60)

where the last inequality holds because when projecting on the positive orthant the distance from
a point µ∗ in the orthant can only decrease. Taking expectation on both sides given µk and
expanding the square norm of the right hand side, we get

E[‖µk+1 − µ∗‖2 |µk] ≤‖µk − µ∗‖2 + ε2
kS2

+ 2εk(µk − µ∗)TE[sk
∣∣ µk] (4.61)

where we bounded ‖E[sk
∣∣ µk]‖2 < S2. Then (4.59) follows from (4.61) by applying inequality

(4.58) with µ′ = µ∗. �

Based on (4.59), we will use a supermartingale convergence argument to show that ‖µk−µ∗‖2 → 0
almost surely. Note first that at any µk ∈ Rm

+ the dual function is smaller than the optimal value
(cf. (4.19)), so D− g(µk) ≥ 0. Hence (4.59) can be simplified to

E[‖µk+1 − µ∗‖2 |µk] ≤ ‖µk − µ∗‖2 + ε2
kS2. (4.62)

Then consider the sequence of random variables

ak = ‖µk − µ∗‖2 + ∑
`≥k

ε2
l S2. (4.63)
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This stochastic process is: i) measurable with respect to the sequence (filtration) Fk = {µ0:k}, ii)
non-negative, iii) integrable because µk generated by Algorithm 4.1 is bounded at every k and
stepsizes are square summable, iv) satisfies E[ak+1

∣∣Fk] ≤ ak as can be seen by definition (4.63)
and (4.62).

Such a stochastic process is called a supermartingale (Durrett, 2010, Ch. 5), and a non-negative
supermartingale converges almost surely to some limit random variable (Durrett, 2010, Th. 5.2.9).
Observe that the second summand ∑∞

`=k ε2
l S2 of ak in (4.63) is deterministic and converges to 0

because of square summability of the stepsizes. Hence the random variable ‖µk − µ∗‖2 converges
almost surely (to some limit random variable).

To arrive at a contradiction suppose the limit random random variable is not identically zero.
Equivalently, with probability δ > 0 we have ‖µk − µ∗‖2 ≥ ε for some ε > 0 for all sufficiently
large k. This implies that µk and g(µk) are bounded away from the optimal µ∗ and D respectively,
hence the following expected value diverges,

E ∑
k≥0

2εk(D− g(µk)) = +∞. (4.64)

However taking expectation at both sides of (4.59) and iterating for k = 0, . . . , N − 1 implies

E‖µN − µ∗‖2 ≤ ‖µ0 − µ∗‖2

+
N−1

∑
k=0

2ε2
kS2 −E

N−1

∑
k=0

2εk(D− g(µk)). (4.65)

The left hand side is non-negative, but (4.64) implies that in the limit as N → ∞ the right hand
side becomes negative. This is a contradiction. Therefore it must be that ‖µk − µ∗‖2 converges to
zero with probability 1.

By continuity of the concave dual function g(µ) we also have that g(µk) converges to g(µ∗) = D
a.s.

4.5.6. Proof of Theorem 4.2 and Corollary 4.1

The proofs of the two results are presented together. First we will show that the statements
(4.38) of Theorem 4.2 and (4.40) of Corollary 4.1 hold, by converting them into equivalent ones
involving variables relating to the dual problem (4.19). Imitating the steps leading from problem
(4.9) to problem (4.14), the statement (4.38) is equivalent to

lim sup
k→∞

ci −Ehk

[ f

∑
j=1

αij,k q(hij,k, pij,k)

∣∣∣∣ µk

]
≤ 0 (4.66)

holding a.s. with respect to the channel sequence {hk, k ≥ 0}. Here we exploited the fact that
by the online algorithm the variables αk, pk conditioned on the value of µk are independent of the
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observed channel history (but µk does depend on the whole history). Similarly we see that the
statement (4.40) is equivalent to

lim sup
k→∞

ci −E

f

∑
j=1

αij,k q(hij,k, pij,k) ≤ 0 (4.67)

The term inside the limit is the expected (i.e., unconditioned) value of the term in (4.66) with
respect to the random sequence {hk, k ≥ 0}.

Condition (4.66) is equivalent to lim supk→∞ Ehk
[sk
∣∣ µk] ≤ 0 using the expression of sk given in

(4.31). Also we already argued in the proof of Prop. 4.4 that Ehk
[sk
∣∣ µk] = s(µk) where s(µk) is

given by (4.21) and is a subgradient of the dual function g at µk. To sum up, (4.38) is equivalent to

lim sup
k→∞

s(µk) ≤ 0 a.s. (4.68)

Similarly, condition (4.40) via (4.67) is equivalent to lim supk→∞ Es(µk) ≤ 0. But the latter is a
consequence of (4.68) because lim supk→∞ Es(µk) ≤ E lim supk→∞ s(µk) ≤ 0. The first inequality
follows by applying Fatou’s lemma (Durrett, 2010, Thm. 1.6.5) to the bounded below (as we
comment after (4.21)) random variable −s(µk). The second inequality follows by monotonicity of
expectation. Hence, to prove the statements (4.38) and (4.40) it suffices to show (4.68) which we
do next.

Under Assumption 4.3 we have established in Proposition 4.4 that a.s. µk → µ∗. Then we note a
convex analysis fact by (Bertsekas et al., 2003, Prop. 4.2.3). If g is concave, and µk → µ∗, and s(µk)

is selected as a subgradient of g at µk, then every limit point of s(µk) is a subgradient of g at µ∗.
Hence for the sequence of µk obtained by the online algorithm we have that s(µk) converges a.s.
to a subgradient of g at µ∗.

Also, as follows from Danskin’s theorem (Bertsekas et al., 2003, Prop. 4.5.1), the subgradients
of the dual function g at any point µ belong in the convex hull of the vectors s(µ) obtained in
(4.21). Hence the sequence s(µk) converges a.s. to the convex hull of the vectors s(µ∗). But under
Assumptions 4.1, 4.2, and 4.3, as we argued in the proof of Theorem 4.1, the vectors s(µ∗) take
a unique value that satisfies s(µ∗) ≤ 0. Hence for the sequence of µk obtained by the online
algorithm we have that lim supk→∞ s(µk) ≤ 0 a.s., which is exactly what we set out to prove in
(4.68).

Finally let us prove (4.39). Recall that the dual function equals g(µ) = L(α(µ), p(µ), µ) where
α(µ), p(µ) are chosen as Lagrange optimizers at µ according to (4.18). Using the definition of the
Lagrangian at (4.16) and the interpretation of the subgradient s(µ) at (4.21) as the constraint slack,
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we have that for any µk

g(µk) = L(α(µk), p(µk), µk)

= Eh

m

∑
i=1

αi(µk; h)pi(µk; h) + µT
k s(µk) (4.69)

Now observe that the expectation in (4.39) equals the expectation given in (4.69) because by design
of Algorithm 4.1 the primal variables αk, pk are selected as Lagrange optimizers at µk. Therefore
to show that (4.39) holds a.s. it suffices to show that the expectation in (4.69) converges a.s. to P
which equals D by strong duality.

Proposition 4.4 establishes that the left hand side of (4.69) converges to g(µk) → D, and also that
µk → µ∗ a.s. We have also already argued that s(µk) → s(µ∗) a.s. Therefore also µT

k s(µk) →
µ∗Ts(µ∗) a.s. But by Prop. 4.2(b) µ∗Ts(µ∗) = 0. This shows that the expectation at the right hand
side of (4.69) converges to D, which completes the proof.
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Chapter 5: Random Access Design for
Wireless Control Systems

5.1. Problem Formulation

In this chapter a decentralized channel access method is employed for multiple control systems
sharing a wireless medium. The architecture was introduced in Section 2.2.2 and is depicted again
in Fig. 15. Each sensor i (i = 1, 2, ..., m) in the architecture transmits measurements of plant i to an
access point responsible for computing the plant control inputs. Packet collisions might arise on
the shared medium between simultaneously transmitting sensors. We are interested in designing
a mechanism for each sensor to independently decide whether to access the medium (random
access) in a way that guarantees desirable control performance for all control systems.

We denote by γi,k ∈ {0, 1} the success of the transmission at time k for link/system i, determined
by the communication algorithm to be designed. As introduced in Section 2.1 the evolution of
each system i depends on the success of transmission and is described by a switched linear time-
invariant system of the form

xi,k+1 =

{
Ac,i xi,k + wi,k, if γi,k = 1,
Ao,i xi,k + wi,k, if γi,k = 0.

(5.1)

Here xi,k ∈ Rni denotes the state of control system i at each time k. At a successful transmission
the system dynamics are described by the asymptotically stable closed-loop matrix Ac,i ∈ Rni×ni ,
and otherwise by the unstable open-loop matrix Ao,i ∈ Rni×ni . The additive terms wi,k model
an independent (both across time k for each system i, and across systems) identically distributed
(i.i.d.) noise process with mean zero and covariance Wi � 0. Example of such control systems
were presented in Section 2.1.

According to the random access communication mechanism, introduced in Section 2.2.2, at each
time step k a sensor i transmits over the shared wireless medium with a probability αi,k ∈ [0, 1]
which is a design variable. A sensor’s transmission might fail due to two reasons, packet decoding
errors and packet collisions. A collision might be experienced on link i, thereby rendering packet
i lost, if some other sensor j 6= i transmits in the same time slot. We assume that such a collision
event occurs with constant probability qji ∈ [0, 1], given that both sensors i, j transmit in the slot.
Thus, the probability that sensor i’s transmission is free of collisions, i.e., that no other sensor
transmits and causes collisions on link i, equals ∏j 6=i[1− αj,k qji].
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Figure 15: Random access architecture for m control loops over a shared wireless medium. Each
sensor i randomly transmits with probability αi,k at time k to a common access point computing
the plant control inputs. If only sensor i transmits, the successful decoding probability depends
on local channel conditions hi,k. If other sensors transmit at the same time a collision might occur
at sensor i’s transmission, rendering i’s packet lost.

If sensor i transmits and has a collision free time slot, the success of decoding the message at the
access point/receiver depends on the randomly varying channel conditions on link i. Employing
the block fading wireless channel model introduced in Section 2.2 we denote by hi,k ∈ R+ the
current fading state for link i at time k, which is assumed i.i.d. across time with distribution
φi. We also assume channel states are independent among systems i, a common assumption in
the literature Adireddy and Tong (2005); Qin and Berry (2006); Hu and Ribeiro (2011), as well as
independent of the plant process noise wi,k. The probability of successful decoding, in absence of
collisions, depends on the current channel fading and transmit power of the sensor. For simplicity
in this section we assume the transmit power for each sensor i is fixed to some constant value pi.
Then the decoding probability is given by a relationship of the form q(hi,k, pi). An illustration of
this function is depicted in Fig. 2. Since power pi is fixed in this setup (not a design variable) it is
omitted and the decoding probability is denoted as q(hi,k) in the rest of this chapter. The function
q : R+ → [0, 1] is assumed to be continuous and strictly increasing, i.e., higher channel fading
states imply higher packet success probability.

Combining the effects of collisions and packet losses due to fading, the probability that a packet
is successfully decoded at the access point can be written as

P(γi,k = 1) = αi,k q(hi,k) ∏
j 6=i

[
1− αj,k qji

]
. (5.2)

This expression states that the probability of system i in (5.1) closing the loop at time k equals the
probability that transmission i is successfully decoded at the receiver, multiplied by the probability
that no other sensor j 6= i is causing collisions on ith transmission.

Channel states reveal information about how easy it is for each sensor to successfully communi-
cate, assuming no other sensor transmits. We assume that before deciding whether to transmit
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each sensor has access to its respective channel state and may adapt accordingly. For example
sensor i may transmit with higher or lower rate αi,k under favorable or unfavorable channel states
hi,k respectively. Hence we design policies that are measurable functions of the form αi,k = αi(hi,k).
Since channel states are i.i.d. over time we restrict attention to stationary policies, and drop the
time index when not necessary. The set of all access policies for sensor i is then

Ai = {αi : R+ → [0, 1]} (5.3)

and the vector α(.) of access policies for all sensors belongs in the Cartesian product space A =

A1 × . . .Am. For fixed sensor access policies, the probability of successful transmission on link i
can be expressed as

P(γi,k = 1) = Ehi
[αi(hi) q(hi)] ∏

j 6=i

[
1−Ehj

[αj(hj)] qji

]
.

(5.4)

This expression follows from (5.2) by taking expectation with respect to the channel states and
using the independence of channels among systems. The expectation is well-defined as both
functions α(.), q(.) are measurable and bounded in [0, 1] hence integrable.

We make the following technical assumption on the probability distribution of channel states,
which holds true for practically considered models (Goldsmith, 2005, Ch. 3).

Assumption 5.1. The distributions φi of channel states {hi,k, k ≥ 0} for all i = 1, . . . , m are absolutely
continuous, i.e., have a probability density function on R+.

The random packet success on link i modeled by (5.4) causes each control system i in (5.1) to
switch in a random fashion between the two modes of operation (open and closed loop). As a
result, the sensor access policies α(.) to be designed affect the performance of all control systems.
We account for control performance via a Lyapunov-function-based abstraction, as introduced
in Section 2.1.1. In particular we assume that a quadratic function Vi(xi) = xT

i Pixi, xi ∈ Rni

with a positive definite matrix Pi � 0 is provided for each system. To achieve desired control
performance every function Vi(xi) is required to decrease with a desired rate ρi < 1 in expectation at each
step, i.e.,

E
[
Vi(xi,k+1)

∣∣ xi,k
]
≤ ρi Vi(xi,k) + Tr(PiWi) (5.5)

for all xi,k ∈ Rni . The expectation in this expression accouns for the randomness introduced by
the wireless communication as well as the plant process noise.

By Proposition 4.1 of Section 2.1.1 the above Lyapunov control performance requirements are
equivalent to guaranteeing minimum packet success rates for each link i, i.e.,

P(γi,k = 1) ≥ ci, (5.6)
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for some non-negative constants ci ≥ 0 that are easily computed (by the semidefinite program
(4.45)). Hence to achieve desired control performance we need to ensure that (5.6) holds for all
links i.

Besides control performance, it is desired that the sensors’ channel access mechanism makes an
efficient use of their power resources. Since sensor i transmits with a fixed power pi > 0 when
it decides to access the channel, the total expected power consumption at each slot is given by

∑m
i=1 Ehi

αi(hi)pi summing up the transmit power of each system i if the system decides to transmit.
We pose then the design of the sensor access rates α that minimize the total expected power
consumption subject to the desired control performance (5.5) (equivalently (5.6)) for all plants as

minimize
α∈A

m

∑
i=1

Ehi
αi(hi)pi (5.7)

subject to ci ≤ Ehi
[αi(hi)q(hi)] ∏

j 6=i

[
1−Ehj

[αj(hj)]qji

]
i = 1, . . . , m. (5.8)

Technically we assume that the problem is strictly feasible, as follows.

Assumption 5.2. There exists α′ ∈ A that satisfies constraints (5.8) with strict inequality.

In the following section we proceed to characterize the optimal access policies α∗. In particular
we reveal a simple and intuitive decoupled structure. Each sensor i independently accesses the
channel in a way that trades off the goal of closed loop i with the effect of collisions on all other
closed loops j 6= i collectively. Later we develop a procedure to find these optimal access policies.

5.2. Channel-aware Random Access Design

Our main result is the following characterization of the optimal access policies for the sensors.

Theorem 5.1 (Optimal sensor access policies). Consider a random access architecture with m control
loops of the form (5.1), communication modeled by (5.4), and control performance abstracted by (5.5)-
(5.6) for each loop i = 1, . . . , m. Consider the design of optimal sensor access policies (5.7)-(5.8), and let
Assumptions 5.1, 5.2 hold. Then there exists a matrix of non-negative elements ν∗ ∈ Rm×m

+ such that the
optimal sensor access policy for each sensor i = 1, . . . , m is written as

α∗i (hi) =

{
1 if ν∗ii q(hi) ≥ pi + ∑j 6=i ν∗ji qij

0 otherwise.
(5.9)

We observe the following interesting facts. First note that the optimal policies are deterministic,
that is, given current channel conditions each sensor either transmits or not. Second we note that
by the assumed strict monotonicity of the packet success function q(.), the optimal sensor access
policies in (5.9) are threshold policies. That is, a sensor transmits only when its corresponding
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channel quality is above some threshold. The intuitive interpretation is that a sensor should
attempt to close its loop only when its channel is sufficiently favorable.

Third, and more importantly, the optimal policies are decoupled among the sensors. That is be-
cause the policy α∗i (or equivalently the threshold for sensor i) in (5.9) only depends on parameters
pertinent to system i, i.e., its transmit power pi, and the values ν∗ii and ∑j 6=i ν∗ji qij which belong in
the ith column of matrix ν∗. Hence, as long as the matrix ν∗ is available, each sensor can select
its optimal channel access policy independently of what the other sensors are trying to achieve.
We note that decentralized threshold-based policies have also been shown to be optimal for gen-
eral wireless communication networks Adireddy and Tong (2005); Qin and Berry (2006); Hu and
Ribeiro (2011). The context differs however, since in these works the objective is thoughput-based
utility functions in contrast to the packet success rates used for control systems here.

As we explain in the proof, the matrix ν∗ technically corresponds to the optimal Lagrange multi-
plier of an appropriately defined problem (cf. (5.25)-(5.28)). An intuitive alternative interpretation
is as follows. We can think of each diagonal term ν∗ii as the importance of control performance of
system i, and of each offdiagonal term ν∗ji as the collision effect that sensor i has on system j. The
optimal access policy for sensor i in (5.9), or equivalently the optimal channel threshold, trades off
the requirement on loop i and the collective negative effect (∑j 6=i ν∗jiqij) on all other control loops
j 6= i. That is because a larger value ν∗ii corresponds to a lower threshold (sensor transmits more
often), while a larger value ∑j 6=i ν∗jiqij corresponds to a higher threshold (sensor transmits less of-
ten). Note also that the latter summands are normalized by the parameters qij, i.e., the probability
that sensor i collides with link i when both sensors transmit. Morever, a high transmit power pi

in (5.9) also implies that sensor i should access the channel less often to limit expenditures.

The decoupled structure of the optimal sensor access policies in Theorem 5.1 relies on knowing
the values ν∗. In the following section we develop a distributed iterative procedure to obtain the
desired ν∗.

Remark 5.1. In our work in Gatsis et al. (2015c) we consider simpler random access policies for the sensors,
not taking into account channel state information. In particular we consider that at every time k each sensor
i randomly and independently transmits with some constant probability α̃i ∈ [0, 1] to be designed. Similarly
to (5.4) the probability of successfully closing each loop is given by P(γi,k = 1) = α̃i qii ∏j 6=i

[
1− α̃jqji

]
.

It turns out (Gatsis et al., 2015c, Theorem 2) that the optimal access rates α̃∗, i.e., the solution to a problem
equivalent to the channel-aware setup in (5.7)-(5.8) can be expressed as

α̃i =
ν̃ii

pi + ∑j 6=i ν̃ji qij
(5.10)

for each i ∈ {1, . . . , m} for some non-negative matrix ν̃ ∈ Rm×m
+ . The matrix ν̃ here has the same

interpretation as the matrix ν∗ of Theorem 5.1 but the two matrices are different as they correspond to
different problems. Hence we see that for the non-channel-aware case the sensors need to randomize (0 <

α̃i < 1). In contrast, conditioned on channel state information being available the optimal policies for the
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sensors are deterministic, exploiting favorable channel conditions to transmit.

We can now capitalize on the fact that the optimal sensor access policies that guarantee control
performance of all closed loop systems and minimize power expenditures are characterized in
terms of some appropriate matrix of values ν∗ (Theorem 5.1). We develop an iterative procedure
to determine the optimal sensor access policies by computing these values ν∗. The procedure
is distributed and easily implementable in the architecture of Fig. 15. In particular the common
access point/controller is responsible for finding ν∗ and communicates them to the sensors via
the reverse channel, so that the sensors do not need to directly coordinate or communicate among
themselves.

Technically as we have argued in the proof of Theorem 5.1 the values ν∗ are the optimal Lagrange
dual variables of an appropriately defined problem (cf.(5.25)-(5.28)). The iterative procedure pre-
sented in Algorithm 5.1 corresponds mathematically to a dual subgradient algorithm (Bertsekas
et al., 2003, Ch. 8) to find the optimal dual variables ν∗. Alternatively we can interpret the proce-
dure as a distributed implementation in the wireless control architecture of Fig. 15 as follows.

At each period t the access point/controller of Fig. 15 maintains a tentative matrix of values ν(t).
At the beginning of each period, the access point (AP) sends to each sensor i the values νii(t) and

∑j 6=i νji(t)qij via the reverse channel (Step 3). For the rest of the period t each sensor uses a random
access policy α(hi, ; t) as if the received values ν(t) corresponded to the optimal ν∗ (Step 4). Here
α(hi; t) denotes the valuation of the policy during period t at any channel state hi ∈ R+. Then the
AP measures the gap between desired and current control performance of each system during this
period and updates the values ν(t) to ν(t + 1) to prepare for the next period (Step 7). To perform
this update the AP needs to compute4 the average transmission and packet success rates for each
system during this period (Step 5) and keep track of some auxiliary variables (Step 6).

This algorithm is guaranteed to converge to the optimal sensor access policies as we state next.

Theorem 5.2 (Sensor access policy optimization). Consider the setup of Theorem 5.1. The iterations of
Algorithm 5.1 with stepsizes in (5.14)-(5.16) satisfying ∑t≥0 ε(t)2 < ∞, ∑t≥0 ε(t) = ∞ converge to the
optimal sensor access policies, i.e.,

ci ≤ lim
t→∞

Ehi
[αi(hi; t)q(hi)] ∏

j 6=i

[
1−Ehj

[αj(hj; t)]qji

]
,

(5.17)

for all i = 1, . . . , m, and

lim
t→∞

m

∑
i=1

Ehi
[αi(hi; t)]pi =

m

∑
i=1

Ehi
[α∗i (hi)]pi. (5.18)

4Here we assume that even when collisions arise the AP can identify which sensor transmits at each time slot. Hence it
can measure the average rate Ehi [αi(hi ; t)] at which each sensor i accesses the channel, as well as the term Ehi [αi(hi ; t) q(hi)]
which is the packet success ratio when only sensor i transmits.
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Algorithm 5.1 Distributed random access computation

1: Initialize λ(0) ∈ Rm
+, ν(0) ∈ Rm×m

+ at the AP
2: loop At period t = 0, 1, . . .
3: AP sends νii(t), ∑j 6=i νji(t) qij to each sensor i.
4: During the period each sensor i accesses the channel according to policy

αi(hi; t)←
{

1 if νii(t) q(hi) ≥ pi + ∑j 6=i νji(t) qij
0 otherwise.

(5.11)

5: AP measures Ehi
[αi(hi; t) q(hi)], Ehi

[αi(hi; t)] for all sensors i = 1, . . . , m during the period.
6: AP computes the auxiliary variables

βii(t) ←
[

λi(t)
νii(t)

]
B

(5.12)

β ji(t) ←
[

1− λi(t)
νij(t)

]
B

(5.13)

for all i 6= j ∈ {1, . . . , m}, where [ ]B denotes the projection to the set defined in (5.24).
7: AP updates the new dual variables

νii(t + 1)←
[
νii(t) +

ε(t)
(

βii(t)−Ehi
[αi(hi; t)q(hi)]

)]
+

(5.14)

νij(t + 1)←
[
νij(t) +

ε(t)
(

Ehj
[αj(hj; t)]qji − β ji(t)

) ]
+

(5.15)

λi(t + 1)←
[
λi(t) + ε(t)

(
log(ci)− log(βii(t))

−∑
j 6=i

log(1− β ji(t))
) ]

+
(5.16)

or all i 6= j ∈ {1, . . . , m}, where [ ]+ denotes the projection to the non-negatives R+.
8: end loop

The caveat of this distributed implementation is that it requires information exchange between
sensors and the access point, hence it introduces some communication overhead. This overhead
however burdens mainly the access point which is typically a base station with more capabilities
compared to the simpler wireless sensors.

5.3. Numerical simulations

We present a numerical example of the random access design. We consider a case with m = 2
scalar control systems of the form (5.1). We assume the first system has open and closed loop
dynamics given by Ao,1 = 1.1, Ac,1 = 0.5 respectively, i.e., it is open loop unstable. We assume
the second system has integrator open loop dynamics Ao,i = 1 and stable closed loop dynamics
Ac,2 = 0.4. Both systems are perturbed by zero-mean unit-variance Gaussian noises, hence both
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Figure 16: Evolution of dual variables during the optimization algorithm. The elements of the
matrix ν(t) converge to the optimal values ν∗ required to obtain the optimal sensor access policies.

system states will diverge unless the closed loops are applied appropriately. The systems are
asymmetric, but we model a symmetric control performance requirement. The Lyapunov function
Vi(xi) = x2

i (Pi = 1) for both plants i = 1, 2 is required to decrease with expected rate ρ1 = ρ2 = 0.8
(cf. (5.5)). By Proposition 4.1 these control performance requirements are equivalent to required
packet success rates c1 ≈ 0.43, c2 ≈ 0.27 for the two sensors, computed by (4.45). Hence System 1,
which is more unstable, requires a higher packet success rate.

We assume that both channel states h1,k, h2,k are i.i.d. exponential with mean 1. In isolation
each sensor faces a packet success probability modeled by the function q(hi,k), i = 1, 2 shown
in Fig. 2. Also when both sensors transmit at the same time, collisions occur with probability
q12 = q21 = 0.5. The transmit powers are taken equal p1 = p2 = 1.

We solve the random access design problem (5.7)-(5.8) by implementing Algorithm 5.1, which as
explained in the previous section solves the problem in the dual domain. We note that at each
iteration of the algorithm some expectations with respect to the channel state distributions need

78



Iterations t
200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.5

1

1.5

2 Channel threshold 1
Channel threshold 2

Figure 17: Channel thresholds corresponding to the access policies selected by the optimization
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Sensor 1 has a lower threshold, i.e., transmits more often, since it is required to guarantee control
performance for a more demanding (unstable) plant.
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Figure 18: Evolution of control systems using the optimal random access policies. Both systems
remain stable despite collisions and packet drops. Also their long run average quadratic cost
converges to the same value, since be design both systems were required to have the same control
performance.

to be computed, in particular in steps (5.14) and (5.15) of Algorithm 5.1. In our simulations we
approximate these expectations with averages from a large number of samples, since samples from
the exponential channel distributions can be readily simulated. The iterates of the matrix dual
variables ν(t) during the simulation are shown in Fig. 16 where we observe that they converge to
the optimal values ν∗, as was also shown in the proof of Theorem 5.2. We also plot the evolution
of the sensor access policies αi(hi; t), or equivalently the thresholds of these policies during the
simulation of the algorithm in Fig. 17. As also established in Theorem 5.2 the channel thresholds
converge to their optimal values in the limit. We observe that the Sensor 1 has a lower threshold,
meaning that it transmits more often, which is natural since it corresponds to the unstable plant.

After the optimal access policies (equivalently channel thresholds) have been found, we simulate
the random access architecture with the obtained. In Fig. 18 we plot the empirical average long
term quadratic cost of the systems 1/N ∑N

k=1 x2
i,k for each system i = 1, 2. We first observe that
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both systems remain stable despite packet collisions over the shared channel. Moreover, even
though the two systems are asymmetric, both long term average costs converge to the same value
because we required the same control performance for both systems. More specifically this long
term cost equals the value Tr(PiWi)/(1− ρi) = 1/(1− 0.8) = 5 for both systems i = 1, 2, as noted
in Section 2.1.1. Hence even though the two plants have different dynamics, the obtained channel
access policies provide symmetric performance by design. The empirical rates 1/N ∑N

k=1 αi,k at
which each sensor transmits equal 0.51 and 0.32 for i = 1, 2 respectively. As expected, both
sensors access the channel at a rate higher than the respective necessary packet success rate on
each link, i.e., α∗i > ci. This happens because the sensors need to counteract the effect of packet
collisions, as well as packet drops due to decoding errors.

5.4. Proofs

5.4.1. Proof of Theorem 5.1

The first part of the proof involves converting problem (5.7)-(5.8) into an equivalent auxiliary
optimization problem which has zero duality gap. Then in the second part we use Lagrange
duality arguments to show that (5.9) describes an optimal solution for the auxiliary problem.

We begin by a modification to remove the product of the expectations appearing in the constraints
(5.8). Taking the logarithm at each side of (5.8) preserves the feasible set of variables by mono-
tonicity. Then the logarithm of the product at the right hand side of (5.8) becomes a sum of
logarithms, and we can rewrite the optimal random access design problem equivalently as

minimize
α∈A

m

∑
i=1

Ehi
αi(hi)pi (5.19)

subject to log(ci) ≤ log(Ehi
[αi(hi) q(hi)])

+ ∑
j 6=i

log(1−Ehj
[αj(hj)]qji), (5.20)

i = 1, . . . , m.

Here we make an implicit technical assumption that the terms Ehi
[αi(hi) q(hi)] and Ehi

[αi(hi)] qij

in (5.20), which in general take values in the unit interval [0, 1] as all involved variables belong
there too, are bounded away from 0 and 1. Then the logarithms in (5.20) are well-defined and
finite. This does not restrict the feasible set of solutions, as intuitively each sensor i can neither
choose αi(hi) too close to 0 otherwise it cannot meet its packet success requirement in (5.8), nor
too close to 1 otherwise it causes significant packet collisions on other sensors.

Next, we replace the term Ehi
[αi(hi) q(hi)] in constraint (5.20) by an auxiliary variable βii for

i = 1, . . . , m, and the terms Ehj
[αj(hj)]qji in (5.20) by variables β ji for j 6= i. Hence we rewrite (5.20)

as

log(ci) ≤ log(βii) + ∑
j 6=i

log(1− β ji). (5.21)

80



To force the auxiliary variables to behave like the expectations we introduce additional constraints
of the form

βii ≤ Ehi
[αi(hi) q(hi)] (5.22)

β ji ≥ Ehj
[αj(hj)] qji (5.23)

for all i, j ∈ {1, . . . , m}, j 6= i. Each of these variables are restricted to a subset

βij ∈ B = [βmin, βmax] (5.24)

of the unit interval [0, 1]. In a matrix form β ∈ Bm×m. These upper and lower bounds guarantee
that all logarithms at constraints (5.21) are finite, as we also assumed for constraint (5.20). Overall
we formulate the auxiliary optimization problem

minimize
α∈A, β∈Bm×m

m

∑
i=1

Ehi
αi(hi)pi (5.25)

subject to log(ci) ≤ log(βii) + ∑
j 6=i

log(1− β ji) (5.26)

βii ≤ Ehi
[αi(hi) q(hi)] (5.27)

β ji ≥ Ehj
[αj(hj)] qji (5.28)

i, j ∈ {1, . . . , m}, j 6= i

We argue that this auxiliary problem is equivalent to the original one in (5.7)-(5.8), in the sense that
a feasible solution of one problem corresponds to a feasible solution with the same objective value
for the other problem. Indeed let’s start with a feasible solution α for (5.7)-(5.8). Let us define
variables β that make (5.27), (5.28) hold with equality for all i, j ∈ {1, . . . , m}, j 6= i. Then the
pair α, β is also feasible for problem (5.25)-(5.28) and has the same objective. Reversely, consider a
feasible pair α, β for problem (5.25)-(5.28). Without loss we can assume that all constraints (5.27)-
(5.28) hold with equality. Otherwise if, say, an inequality i in (5.27) is strict, we can increase the
value of variable βii till equality in (5.27) is reached without loss of feasibility in (5.26) and without
changing the objective value in (5.25). A similar procedure can be performed if some inequality
(5.28) is strict, leading finally to a new feasible point satisfying (5.27)-(5.28) with equalities. Then
it is immediate that α is also feasible for (5.8) and has the same objective.

Based on the established equivalence, in the rest of the proof it suffices to show that (5.9) describes
an optimal solution for the auxiliary problem (5.25)-(5.28). The advantage of formulating this
auxiliary problem is that it has zero duality gap as can be shown by the results in Ribeiro (2012). To
formally state this result, let us denote the optimal value of this problem by P∗ (finite by feasibility
Assumption 4.3) and let us define the Lagrange dual problem. We associate dual variables λi ≥ 0
with inequalities (5.26), νii ≥ 0 with (5.27), and νij ≥ 0 with (5.28), for i, j ∈ {1, . . . , m}. We write
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the Lagrangian function as

L(α, β, λ, ν) =
m

∑
i=1

Ehi
αi(hi)pi

+
m

∑
i=1

λi

{
log(ci)− log(βii)−∑

j 6=i
log(1− β ji)

}
+

m

∑
i=1

νii(βii −Ehi
[αi(hi) q(hi)])

+
m

∑
i=1

∑
j 6=i

νij(Ehj
[αj(hj)] qji − β ji) (5.29)

Here the dual variables take values λ ∈ Rm
+, ν ∈ Rm×m

+ . We can rearrange the terms of the
Lagrangian in the form

L(α, β, λ, ν) =
m

∑
i=1

{
Ehi

αi(hi)
[

pi + ∑
j 6=i

νjiqij − νiiq(hi)
]

+∑
j 6=i

[
−λi log(1− β ji)− νijβ ji

]
+νiiβii − λi log(βii) + λi log(ci)

}
. (5.30)

This form is useful because each primal variable (αi(hi) and β ji for each i, j) is decoupled from the
others, a fact we will exploit next. Then we can define the Lagrange dual function

g(λ, ν) = inf
α∈A, β∈Bm×m

L(α, β, λ, ν), (5.31)

as well as the Lagrange dual problem whose optimal value we denote by D∗ as

D∗ = inf
λ∈Rm

+ , ν∈Rm×m
+

g(λ, ν). (5.32)

Then we can establish the following zero duality property about the auxiliary problem (5.25)-
(5.28).

Proposition 5.1 (Strong Duality). Let Assumptions 5.1 and 5.2 hold. Then the problem (5.25)-(5.28) has
zero duality gap, i.e., P∗ = D∗. Moreover if α∗, β∗ are optimal solutions and λ∗, ν∗ are optimal solutions
for the dual problem (5.32), then

α∗, β∗ ∈ argmin
α∈A, β∈Bm×m

L(α, β, λ∗, ν∗). (5.33)

The result follows from (Ribeiro, 2012, Theorems 1 and 4) where general stochastic optimization
problems of the form (5.25)-(5.28) are examined under absolute continuity (Assumption 5.1) and
strict feasibility (Assumption 5.2). The proof is omitted due to space limitations.
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The above characterization suggests that we can recover the optimal variables α∗, β∗ of our prob-
lem by just minimizing the unconstrained Lagrangian function. A technical caveat of (5.33) is that
it describes an inclusion only, implying that in general there might be Lagrangian minimizers that
are not optimal. The following lemma excludes such cases by establishing that the Lagrangian
minimizers α, which are functions, i.e., infinite-dimensional variables, are unique up to a set of
measure zero. Moreover the following lemma gives an explicit expression for these minimizers.

Lemma 5.1. Consider any dual variables λ ∈ Rm
+, ν ∈ Rm×m

+ . Then the functions α ∈ A that minimize
the Lagrangian L(α, β, λ, ν) are uniquely defined except for a set of arguments h ∈ Rm

+ of measure zero,
and are given by

αi(hi; λ, ν) =

{
1 if νiiq(hi) ≥ pi + ∑j 6=i νjiqij

0 otherwise.
(5.34)

for each i = 1, . . . , m and for every value hi ∈ R+.

In (5.34) the term αi(hi; λ, ν) denotes the function αi that minimizes the Lagrangian L(α, β, λ, ν) at
given dual points λ, ν evaluated at an argument hi.

To sum up we have shown in (5.33) that the optimal solution α(.) to problem (5.25)-(5.28) belongs
in the set of Lagrange minimizers at λ∗, ν∗, and by Lemma 5.1 these minimizers are unique up to
a set of measure zero. As a result, all these minimizers will have the same objective and constraint
slack in problem (5.25)-(5.28), and they will all be optimal for this problem. In particular, the
specific minimizer defined by αi(hi; λ∗, ν∗) given in (5.34) will be optimal for the problem, and
corresponds exactly to the one given in (5.9) at the statement of the theorem.

5.4.2. Proof of Lemma 5.1

Consider the problem of minimizing the Lagrangian L(α, β, λ, ν) over variables α ∈ A, β ∈ Bm×m.
Due to the separability of the Lagrangian given in the form (5.30) over variables α, β, we can
separate the problem into subproblems

argmin
β ji∈B

−λi log(1− β ji)− νijβ ji (5.35)

argmin
βii∈B

νiiβii − λi log(βii) (5.36)

argmin
αi∈Ai

Ehi
αi(hi)

[
pi + ∑

j 6=i
νjiqij − νiiq(hi)

]
(5.37)

for i, j ∈ {1, . . . , m}, i 6= j. Next we need to verify that (5.34) is optimal for (5.37). Note that
without loss of generality we can exchange the expectation operator Ehi

and the minimization
over αi ∈ Ai, which is a function αi : R+ → [0, 1] defined for any channel value hi ∈ R+, to
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equivalently solve

argmin
αi(hi)∈[0,1]

αi(hi)
[

pi + ∑
j 6=i

ν∗jiqij − ν∗iiq(hi)
]
. (5.38)

pointwise at all values hi ∈ R+. This is valid because any function αi that minimizes (5.37) can
differ form the minimizer in (5.38) at a set of values hi ∈ R+ with measure at most zero.

Then we can verify that (5.34) is the minimizer in (5.38). That is because the right hand side in
(5.38) is a linear expression of αi(hi) ∈ [0, 1]. Hence the minimizer αi(hi) is uniquely defined, and
takes values either 0 or 1 except for the values hi where pi + ∑j 6=i ν∗jiqij − ν∗iiq(hi) = 0. In the latter
case the minimizer is not uniquely defined. However due to the strict monotonicity assumption
for q(hi) this case occurs for at most one value hi, hence it is a measure zero event due to the
absolute continuity of the measure φi by Assumption 5.1. This completes the proof.

We also note for future reference the terms β that minimize the Lagrangian. Since (5.35), (5.36)
are strongly convex, their minimizers are unique and satisfy the first order conditions ∂L/∂β = 0,
that is

νii −
λi
βii

= 0 (5.39)

λi
1− β ji

− νij = 0. (5.40)

respectively subject to the box constraints β ji ∈ B for all i, j ∈ {1, . . . , m}. As a result the optimal
solutions are given by

βii(λ, ν) =

[
λi
νii

]
B

(5.41)

β ji(λ, ν) =

[
1− λi

νij

]
B

(5.42)

for all i 6= j ∈ {1, . . . , m}, where [ ]B denotes the projection to the set defined in (5.24).

5.4.3. Proof of Theorem 5.2

A sufficient condition for (5.17) and (5.18) is that

limt→∞ Ehi
[αi(hi; t)] = Ehi

[α∗i (hi)] (5.43)

limt→∞ Ehi
[αi(hi; t)q(hi)] = Ehi

[α∗i (hi)q(hi)] (5.44)

hold for all i = 1, . . . , m. Indeed this immediately implies (5.18), while (5.17) is also implied since
the optimal policy α∗ for problem (5.7)-(5.8) needs to be feasible. In the proof of Theorem 5.1 we
argued that problem (5.7)-(5.8) is equivalent to the auxiliary problem (5.25)-(5.28) with variables
α ∈ A, β ∈ Bm×m. Hence it suffices to show that the algorithm converges to the optimal solution
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of this auxiliary problem in the sense of (5.43)-(5.43).

Recall that after introducing dual variables λ ∈ Rm
+, ν ∈ Rm×m

+ , the Lagrange dual function g(λ, ν)

of the auxiliary problem (5.25)-(5.28) is defined in (4.17). We begin by arguing that that at each
iteration of the algorithm, the dual variables λ(t), ν(t) according to (5.14)-(5.16) move towards a
subgradient direction of the dual function. For convenience let us denote the direction of the steps
at (5.14)-(5.15) by the matrix sν(t) ∈ Rm×m defined as

sν,ii(t) = βii(t)−Ehi
[αi(hi; t) q(hi)] (5.45)

sν,ij(t) = Ehj
[αj(hj; t)]qji − β ji(t) (5.46)

for all i 6= j ∈ {1, . . . , m}, and the steps at (5.16) by the vector sλ(t) ∈ Rm defined as

sλ,i(t) = log(ci)− log(βii(t))−∑
j 6=i

log(1− β ji(t)) (5.47)

for all i ∈ {1, . . . , m}. We argue that sν(t), sλ(t) are subgradient directions for the dual function at
the point λ(t), ν(t), i.e., that

g(λ′, ν′)− g(λ(t), ν(t)) ≤ ( λ′ − λ(t) )Tsλ(t)

+Tr( (ν′ − ν(t)) sν(t) ) (5.48)

for all λ′ ∈ Rm
+, ν′ ∈ Rm×m

+ . This can be shown as follows.

Consider an iteration of Algorithm 5.1. The variable α(t) selected by the algorithm at step (5.11)
is a variable that minimizes the Lagrangian L(α, β, λ(t), ν(t)) with respect to the variable α ∈ A.
This follows directly from Lemma 5.1. Similarly the variables β(t) at step (5.13) minimize the
Lagrangian function L(α, β, λ(t), ν(t) with respect to the variable β ∈ Bm×m. This fact is included
in the proof of Lemma 5.1 at (5.41)-(5.42). As a result by the definition of the dual function in
(4.17) it follows that g(λ(t), ν(t)) = L(α(t), β(t), λ(t), ν(t)). Additionally we can substitute the
Lagrangian at the right hand side with the form given at (4.16) to get

g(λ(t), ν(t)) =
m

∑
i=1

Ehi
αi(hi; t)pi + λ(t)Tsλ(t)

+Tr(ν(t)sν(t)). (5.49)

Here for convenience we replaced the lengthy parentheses of (4.16) by the equivalent terms sλ(t),
sν(t) defined in (5.46), (5.47), (5.45).

Next note that at any point λ′, ν′ the dual function g(λ′, ν′) is by definition (4.17) the minimum of
the Lagrangian L(α, β, λ′, ν′), hence we must have that g(λ′, ν′) ≤ L(α(t), β(t), λ′, ν′). Using again
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the notation sλ(t), sν(t) at the right hand side we get that

g(λ′, ν′) ≤
m

∑
i=1

Ehi
αi(hi; t)pi + λ′Tsλ(t) + Tr(ν′sν(t)),

(5.50)

Subtracting (5.49) from (5.50) by sides yields (5.48).

To sum up, at each iteration of the algorithm the dual variables λ(t), ν(t) move towards a sub-
gradient direction of the dual function. Additionally the subgradients are bounded. That is true
for sν(t) because all the terms at the right hand side of (5.45)-(5.46) are between 0 and 1. It is also
true for sλ(t) because the logarithms at the right hand side of (5.47) are finite by the restriction
β(t) ∈ Bm×m defined in (5.24). Under the bounded subgradient condition, convergence of λ(t),
ν(t) to the optimal dual variables λ∗, ν∗ for stepsizes as in the statement of the theorem relies on
standard subgradient method arguments – see, e.g., (Bertsekas et al., 2003, Prop. 8.2.6) for a proof.

In the rest of the proof, based on the established convergence of the dual variables to the opti-
mal ones, we will show that the same holds for the primal variable α(.; t) in the sense of (5.43)-
(5.43). Note that at any iteration t the function αi(.; t) takes the value 1 when νii(t) q(hi) ≥
pi + ∑j 6=i νji(t)qij and 0 otherwise. Due to the strict monotonicity of the function q(.) this is a
threshold-like function taking the value 1 when hi ≥ h̄i(t) = q−1(pi + ∑j 6=i νji(t)qij)/νii(t)). Since
we have established that ν(t)→ ν∗, and since the function q(.) is continuous hence its inverse too,
we conclude that the threshold h̄i(t) converges to h̄∗i = q−1(pi + ∑j 6=i ν∗jiqij)/ν∗ii). By Theorem 5.1
this limit value equals the threshold of the optimal access policy, which is also of a threshold form.

Hence we conclude that αi(.; t)→ α∗i (.) pointwise for all hi ∈ R+ except perhaps for the point h∗i ,
i.e., the optimal threshold point. By absolute continuity of the probability measure φi the point
h∗i has a probability measure zero. Hence α(.; t)→ α∗(.) almost everywhere. Also both sequences
of functions αi(.; t) and αi(.; t)q(.) are uniformly bounded in [0, 1]. By the Bounded Convergence
Theorem (Billingsley, 1995, Theorem 16.5) we conclude that convergence in expectation, i.e., (5.43)
and (5.43), also holds. This completes the proof.
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Chapter 6: Adaptation to Plant States

The allocation of communication resources in wireless control architectures needs to account for
the dynamic evolution of the control system over time. For example, in the problem of power
management examined in Chapter 3 it is shown that the optimal transmit power for a sensor
needs to be dynamically and opportunistically adapted to the control system state and wireless
channel state online. Formally it is shown that such communication design problems can be seen
as Markov Decision Process (MDP) problems (Bertsekas (2005)), where the state is composed of
the plant state xk and the channel state hk, while the decided actions are the resource allocation
variables at each time step, e.g. the transmit power pk. The difficulty in solving these MDP
instances lies on the fact that the state space takes a continuum of values rendering standard
dynamic programming algorithms, e.g., value or policy iteration (cf. Bertsekas (2005)), computa-
tionally hard. In Chapters 4, 5 this difficulty is bypassed using a different control performance
abstraction (Lyapunov functions), however the developed solutions excluded the adaptation to
physical plant states.

In this chapter we alleviate the technical difficulties of the optimal designs by proposing subopti-
mal yet tractable resource allocation algorithms that benefit from online adaptation to both control
system states and channel conditions. The proposed policies have their basis in the approximate
dynamic programming notion of rollout algorithms. More importantly, despite their suboptimal-
ity, the proposed algorithms provide control performance and resource utilization guarantees.
These guarantees are enforced by design, as the proposed algorithms are designed in order to im-
prove upon simple non-adaptive algorithms that are used as a reference. As we see in numerical
simulations the proposed policies achieve in practice significant gains in performance.

We begin by introducing the proposed algorithms in the problem of transmit power allocation for
control systems, and then in the scheduling problem. Finally, we propose suboptimal algorithms
for the more complicated problem of random access design for control systems.

6.1. Rollout Power Allocation Policies

We consider again the problem of a sensor communicating over a wireless fading channel to a
controller in order to control a plant. The control system is described by a switched linear time
invariant model of the form (cf. Section 2.1)

xk+1 =

{
Ac xk + wk, if γk = 1
Ao xk + wk, if γk = 0

(6.1)
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depending on whether a successful transmission occurs at time k or not, indicated with vari-
ables γk ∈ {0, 1}. Here xk ∈ Rn denotes the state of the overall control system at time k, and
Ac, Ao ∈ Rn×n are the stable closed loop and unstable open loop dynamics respectively. The plant
disturbance wk, k ≥ 0 in (6.1) is an i.i.d. process with some given probability distribution φw with
mean zero and positive definite covariance W.

The wireless channel has an i.i.d. fading state hk ∈ R+, k ≥ 0 with some probability distribution
φh (cf. Section 2.2). The sensor selects a transmit power level pk ∈ [0, pmax] at each time step, and
the probability of successfully receiving the message at the controller and closing the loop is given
by the relationship

P(γk = 1) = q(hk, pk) (6.2)

as described in Section 2.2.

We are interested in maintaining good control performance over a long time horizon. In particular
we consider quadratic costs on the system state given by{

xT
k Qc xk, if γk = 1

xT
k Qo xk, if γk = 0

. (6.3)

These costs depend on the success of the transmission at each time step, as introduced in Sec-
tion 2.1.2. Both matrices Qc, Qo are assumed to be positive semidefinite.

Our goal is to design transmit power policies, that is, transmission decisions pk, k ≥ 0 adapted to
the available plant and channel information xk, hk at the sensor at each time step k. The objective
is to minimize the long time average control performance described as

Jcontrol(p0, p1, . . .) = lim sup
N→∞

1
N

N−1

∑
k=0

E[xT
k (γkQc + (1− γk)Qo) xk]. (6.4)

As the transmit power affects the mode of operation (open or closed) by (6.2), the evolution of the
system in (6.1) and the cost in (6.3) lead to a different average expected cost in (6.4). Besides, the
transmit power selection should make an efficient use of the available power resources accounted
by

Jcomm(p0, p1, . . .) = lim sup
N→∞

1
N

N−1

∑
k=0

Epk. (6.5)

Our approach to designing control-aware and channel-aware power allocation policies begins by
considering simpler policies that will be used as a reference. The proposed policies will then
emerge as improvements upon the reference ones.
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6.1.1. Reference Policies and Relative Value of Transmission

We consider a family of policies adapting transmit power only to the channel state hk and not to
the plant state xk. Such a policy can be described as pk = p̃(hk) for some measurable function
p̃ : R+ → [0, pmax] mapping channel states to power values5. We will call such a policy a reference
policy. Since channel states are independent of the plant states xk, as well as independent and
identically distributed over time, the policy p̃ results in a successful packet decoding (cf. (6.2))
with a constant probability at each time step k denoted here by q̃ defined as

q̃ := P(γk = 1) = Eh[q(h, p̃(h))]. (6.6)

The expectation in this expression is with respect to the channel distribution φh. Moreover this
reference policy has an average power consumption given by

Jcomm(p̃) = Eh[p̃(h)] (6.7)

where we used again the fact that the channel states are i.i.d. over time.

Under the considered reference policy for the system (6.1) the closed loop mode Ac is applied
with constant probability q̃ in (6.6) while the open loop mode Ao is applied with the complement
probability. The stability of the system under such a reference policy can be characterized using
well established results in the context of random jump linear systems. In particular, a direct
application of (Costa and Fragoso, 1993, Theorem 1) verifies the following stability result.

Proposition 6.1 (Reference policy stability). Consider the wireless control system (6.1) with commu-
nication modeled as (6.2). Consider a reference policy of the form pk = p̃(hk), k ≥ 0, leading to a packet
success probability q̃ given in (6.6). Then the system is mean square stable, i.e., lim supk→∞ ExkxT

k < ∞,
if and only if

max
i=1,...,n2

|λi{q̃ AT
c ⊗ AT

c + (1− q̃) AT
o ⊗ AT

o }| < 1 (6.8)

where ⊗ denotes the Kronecker product.

After having established the stability properties of the reference policy, the following proposition
characterizes the quadratic control performance of such a reference policy, denoted by Jcontrol(p̃).

Proposition 6.2 (Reference Policy Performance). Consider the wireless control system (6.1) with com-
munication modeled as (6.2) and control costs described by (6.3). Consider a reference policy of the form
pk = p̃(hk), k ≥ 0, leading to mean square stability with a packet success probability q̃ given in (6.6). Then
there exists a positive semidefinite matrix P ∈ Sn

+ satisfying the linear matrix equality

P = q̃ (Qc + AT
c PAc) + (1− q̃)(Qo + AT

o PAo), (6.9)

5Throughout the chapter we use the boldface notation to denote the functions/policies we are interested in designing.
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and the average control cost (6.4) equals

Jcontrol(p̃) = Tr(P W). (6.10)

The interpretation of the matrix P in this proposition is as follows. The quadratic function xT
k Pxk

models the future expected control cost if the sensor follows the reference policy starting from
system state xk at time k, i.e., the cost-to-go function of this policy (Bertsekas (2005)). This char-
acterization of the reference policy is important as it leads to an easily computable cost-to-go
function by solving (6.9) – see Remark 6.2.

Given a reference policy and the associated cost-to-go function, we will develop policies that
adapt to plant and channel states online while they improve upon the control and communication
performance of the reference policies. To prepare for the proposed policies we define the matrix

M := Qo + AT
o PAo −Qc − AT

c PAc. (6.11)

We interpret the quadratic form xT
k Mxk as the relative value of transmission at the current control

system state xk. Indeed if the sensor successfully transmits (γk = 1), the current control cost is
xkQcxk and the system evolves according to Ac meaning that the future expected costs becomes
xT

k AT
c PAcxk assuming the reference model for the future. Alternatively if no transmission occurs

(γk = 1), the current and future control cost becomes xk(Qo + AT
o PAo)xk. Hence the relative gains

if the sensor transmits as compared to not transmitting involve the matrix difference in (6.11).

6.1.2. Rollout policy

We propose then the following power allocation policy proll
ν : Rn ×R+ → [0, pmax] mapping the

current plant and channel conditions xk, hk to a transmit power pk. In particular let the sensor
choose the transmit power according to the following minimization

pk = proll
ν (xk, hk) := argmin

p∈[0,pmax]

νp− q(hk, p)xT
k Mxk. (6.12)

Here ν ≥ 0 is a non-negative constant. The expression at the right hand side of (6.12) repre-
sents a tradeoff between the allocated power (measured by νp) and the expected gains in control
performance (given by xT

k Mxk) if the transmission is successful (which happens with probability
q(hk, p)).

We call the proposed policy in (6.12) a rollout policy. We note that a rollout policy depends on the
selected reference policy p̃ via the matrix M appearing in (6.12). One may think of the reference
policy as a knob or a tunable parameter that gives different rollout policies. We will not actively
design or tune here the reference policy, but will assume one is given to us. However we note
that the approaches in Chapters 4, 5 may be useful to come up with good channel-aware reference
policies.
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Figure 19: The control and communication performance of a selected reference policy is depicted,
along with the selected tradeoff line ν ≥ 0 between the two objectives. By Theorem 6.1 the control
and communication performance resulting from the rollout policy is guaranteed to lie left of the
selected tradeoff (shaded area). The actual rollout performance for this example is also depicted.
The set of reference policies with constant power allocation p̃(.) are also depicted for comparison.

The following theorem is the main result of this section and characterizes the performance of the
rollout policy.

Theorem 6.1 (Rollout Power Policy Performance). Consider the system described by (6.1) with com-
munication modeled as (6.2) and control costs described by (6.3). Let p̃ be a given reference policy leading to
mean square stability, associated with a matrix M defined in (6.11). For any non-negative constant ν ≥ 0,
suppose the sensor follows the rollout policy pk = proll

ν (xk, hk) given in (6.12). Then the average control
and communication costs of this policy satisfy

Jcontrol(p
roll
ν ) + ν Jcomm(proll

ν ) ≤ Jcontrol(p̃) + ν Jcomm(p̃). (6.13)

This theorem provides a guarantee on the joint control performance and power consumption of
the proposed rollout policy. In particular it states that the rollout policy performs better that the
reference policy with respect to a linear combination of the two objectives. It is worth noting
that even though an optimal power policy might be hard to find, the proposed suboptimal policy
is given explicitly in (6.12). By tuning the weight ν ≥ 0, i.e., by a simple modification of the
proposed policy in (6.12), one can get a more improved control performance or power utilization.
A geometric interpretation is given in Fig. 19. As we will also see in numerical simulations this
results in significant performance improvements in practice.

An example is presented next.

Example 6.1. Consider the setup of Chapter 3. In that case a specific controller is employed in order to
control a linear plant (cf. Theorem 3.1). This leads to a problem where the sensors tries to regulate the
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estimation error εk evolving according to (3.17). This is special case of the general switched linear system
(6.1). For this special case the dynamics are given by Ao = A, Ac = 0, and the estimation cost is given by
Qc = 0, Qo = P̃ (cf.(3.27)). For a channel-adapted reference policy of the form p̃, with an average packet
success q̃ given by (6.6), one first solves for the reference matrix P in (6.9), which now becomes a Lyapunov
equation of the form

P = (1− q̃) (APAT + P̃). (6.14)

The resulting rollout power allocation policy (6.12) as a function of the system state, which here is the
estimation error εk, and the channel state hk becomes

proll
ν (εk, hk) := argmin

p∈[0,pmax]

νp− q(hk, p)εT
k (APAT + P̃)εk. (6.15)

Observe that (6.15) is of the same form as the optimal communication policy (3.32) except that the optimal
unknown function R(εk) in the latter is replaced by an easily computed quadratic form. Since the rollout
policy is suboptimal the quadratic can be viewed as an approximation of the function R(εk).

For the particular case of capacity achieving codes repeating the analysis of Section 3.4.1 we can modify
(6.15) to obtain the suboptimal policy

proll,CA
ν (εk, hk) :=

{
0 if hk εT

k (APAT + P̃)εk ≤ ν p0 or hk ≤
p0

pmax
p0
hk

otherwise
. (6.16)

Again the unknown function R(εk) in (3.36) is approximated by a quadratic that can be easily computed.
This is an explicit event-triggered communication policy, where the events depend on the current channel
state hk and error εk. For more details see Gatsis et al. (2014c).

After the following remarks, we extend the rollout policy development to the case of state-aware
scheduling of multiple control systems over a shared wireless medium.

Remark 6.1 (Rollout Algorithm Interpretation). The motivation behind rollout policies is as follows. In
a Markov Decision Process there is a state space, e.g., composed of plant and channel states x, h in our case,
and an action space, e.g., power p in our case, which affects the evolution of the states. The goal is to find an
action policy that minimizes a long term cost, where at each time step a function c(x, h, p) penalizes current
states and actions. The optimal action at each step arises by solving a problem of the form

argmin
p∈[0,pmax]

c(x, h, q) + E
[
V∗(x+, h+)

∣∣ x, h, q
]

. (6.17)

for some function V∗ called the optimal cost-to-go function, and where the expectation is over the state
evolution. In cases where the optimal cost-to-go function V∗ is not easily computed, rollout policies arise as
suboptimal solutions (Bertsekas, 2005, Vol. I). One needs to find a reference policy (or a class of reference
policies) for which the cost-to-go function, which is suboptimal in general, is easily computed. Say the policy
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is π and the corresponding function is Vπ . Then the rollout policy is given by solving

argmin
p∈[0,pmax]

c(x, h, q) + E
[
Vπ(x+, h+)

∣∣ x, h, q
]

. (6.18)

in lieu of the optimal policy (6.17). In other words, the rollout policy finds the optimal current action
assuming that the reference policy will be used from the next time step and onwards. At the next time step
a rollout action is selected as well, and so on in a receding horizon fashion. The specialization of (6.18) in
our setting yields (6.12).

The rollout policy (6.18) is a heuristic. Intuitively if the reference policy π is close to the optimal policy then
the rollout is close to the optimal as well. Even though it is not easy to characterize how worse the rollout
performs compared to the optimal policy, in practice it usually performs well as noted by (Bertsekas, 2005,
Vol. I).

Rollout sensor transmit policies have also been used by Antunes and Heemels (2014) however without
account of power resources but based on deterministic periodic transmission schedules as references. As a
result the transmission decisions in that work are updated once every period, unlike our policies in (6.12)
which allow the sensor to continuously exploit online at each time step the stochastic plant state and channel
state processes.

Remark 6.2. The matrix equation (6.9) is linear in the unknown variable P hence can be readily solved. A
specific solution approach, often used in the context of jump linear systems (Costa and Fragoso (1993)) or
of Lyapunov equations (Laub, 2005, Ch. 13), is to vectorize the matrix equation to convert it to a vector of
linear equations. That is,

vec(P) = (q̃ AT
c ⊗ AT

c + (1− q̃) AT
o ⊗ AT

o ) vec(P) + vec(q̃ Qc + (1− q̃) Qo) (6.19)

where⊗ denotes the Kronecker product. Here we employed the identity vec(ABC) = CT ⊗ A vec(B) (Laub,
2005, Ch. 13). The vectorized matrix P that solves (6.19) is written as

vec(P) =
[

I − (q̃ AT
c ⊗ AT

c − (1− q̃) AT
o ⊗ AT

o )
]−1

vec(q̃ Qc + (1− q̃) Qo). (6.20)

This way the cost-to-go matrix P is described explicitly as a function of the system dynamics, costs, and
packet success of the reference policy. We also note that mean square stability of the reference policy implies
the existence of such a solution (cf. Prop. 6.2). Indeed (6.8) implies that the matrix in (6.20) is invertible.

6.1.3. Numerical examples

Consider the control of a plant of the form (2.1) with dynamics

A =

[
1.05 0

0 0.6

]
, B =

[
1
4

]
. (6.21)
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Figure 20: Contour plot of the indefinite value-of-transmission function example.

Suppose first we employ the controller introduced in Example 2.1 which applies a state feedback
whenever a message is received and zero input otherwise, i.e., Ac = A + BK, Ao = A. Moreover
let the feedback gain K be chosen as the optimal LQR controller with respect to quadratic state
and control costs given by identity matrices Q = I2, R = I1. That would be the best feedback gain
if communication was perfect.

Suppose we pick a reference power allocation policy p̃ which is constant, resulting in an average
packet success rate q̃ = 0.3 (cf. (6.6)), meaning that the sensor would close the loop with the con-
troller over the channel 30% of the time. To implement the rollout policy of the form (6.12) we
solve for the reference matrix P by (6.9) and for the value-of-transmission matrix M in (6.11). We
observe that the resulting matrix M is indefinite as it has one positive and one negative eigen-
value. In Fig. 20 we illustrate the contour plot of the quadratic xT Mx. The plot has a hyperbolic
form, and sometimes the quadratic function takes negative values. Intuitively this negative value
of transmission exists because the feedback gain of the controller is designed assuming a perfect
communication link. The intermittent communication however degrades the value of sensor in-
formation to the controller. This numerical example serves to point out that communication and
control policies are in general coupled leading to perhaps counter-intuitive results.

Alternatively for the same plant we consider the more sophisticated controller of Example 2.3
(or Chapter 3) which keeps a local plant state estimate x̂k and applies the control input uk = Kx̂k

with K being the standard LQR feedback gain. For the same reference policy p̃ and average packet
success rate q̃ = 0.3 we solve for the matrices P, M in (6.9) and (6.11) respectively. We observe then
that the matrix M is positive semi-definite and exactly half of its eigenvalues are zero. Actually,
we can prove theoretically that for any plant combined with a controller of this form the quadratic
form is exactly equal to a positive definite quadratic function of just the terms εk = xk − Ax̂k−1.
The latter terms can be thought of as the innovation process of the plant – see also Chapter 3.
This contours of this value-of transmission function are plotted in Fig. 21 which in contrast to the
previous case exhibits an ellipsoid form.
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Figure 21: Contour plot of the positive definite value-of-transmission function example.
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Figure 22: Control performance and average power consumption of proposed rollout policies, in
comparison with the reference policies.

We assume now the plant is perturbed by zero mean Gaussian noise with covariance W = 1. We
implement the rollout power allocation policy of the form (6.12) for the controller with the local
estimator. The resulting average control performance and power consumption after varying the
parameter ν are shown in Fig. 22. We observe significant performance improvements compared
to the reference policies.

These performance improvements can be understood if we look at an example of the schedule of
selected powers during operation Fig. 23. The sensor often times does not transmit at all, while
when it does it adapts its transmit power. Typically higher system states require higher transmit
power, and better channel conditions indicate opportunities for communication with low amounts
of power.
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Figure 23: Schedule of selected transmit powers by the rollout algorithm.

6.2. Rollout Multiple Access Policies

In this section we discuss how the rollout power allocation procedure can be extended for the case
where multiple independent plants need to communicate over the same wireless channel. In that
case we design an online scheduler who decides at each time step which sensor gets access to
the channel based on the plant and channel conditions experienced by all systems. We revisit the
setup of Chapter 4. There are m plants of the form (6.1) indexed by i = 1, . . . , m, i.e.,

xi
k+1 =

{
Ai

c xi
k + wi

k, if γi
k = 1

Ai
o xi

k + wi
k, if γi

k = 0
(6.22)

and corresponding quadratic costs of the form (6.3) given by{
xi

k
T Qi

c xk, if γi
k = 1

xi
k

T Qi
o xk, if γi

k = 0
. (6.23)

for positive semidefinite matrices Qi
o, Qi

c, i = 1, . . . , m.

The channel fading state for each system i at time k is denoted by hi
k. Channel conditions for

all sensor-controller pairs are grouped in a vector hk assumed to be i.i.d. over time with distri-
bution φh. When system i is scheduled it decides upon a transmit power pi

k and this results in
a transmission success with probability given by a function q(hi

k, pi
k) of the current channel and

power. System i is scheduled with probability αi
k ∈ [0, 1] at time k. Since at most one system can

be scheduled at each time step, the scheduling vector αk takes values in the probability simplex
Am = {α ∈ [0, 1]m : ∑m

i=1 αi ≤ 1}, where the inequality means that there is a probability that no
plant is scheduled.
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To follow the rollout procedure introduced in the previous section, we need to pick reference
policies. Once again we consider reference scheduling and power allocation policies that are
functions of the channel conditions but independent of the plant states. Let α̃(h) and p̃(h) be the
reference scheduling and power allocation policies. Under the reference policies, each system i
closes its loop, i.e., successfully transmits, with probability

q̃i := P(γi
k = 1) = Eh[α̃

i(h)q(hi, p̃i(hi))] (6.24)

at each time step k, where the expectation is with respect to the joint channel distribution. The
average power consumption for each system is given by

Ji
comm(α̃, p̃) = lim sup

N→∞

1
N

N−1

∑
k=0

E αi
k pi

k = Eh[α̃
i(h) p̃i(hi)]. (6.25)

As in (6.9) in the previous section, we can compute the control cost-to-go function for each system
i = 1, . . . , m under this reference policy by solving for matrices Pi satisfying

Pi = q̃i (Qi
c + Ai

c
T

Pi Ai
c) + (1− q̃i)(Qi

o + Ai
o

T
Pi Ai

o). (6.26)

From these matrices we can deduce the relative value of transmission matrices

Mi := Qi
o + Ai

o
T

Pi Ai
o −Qi

c − Ai
c

T
Pi Ai

c. (6.27)

The rollout scheduling and power allocation policy is then implemented as follows. Fix some
vectors of non-negative weights µ ≥ 0, ν ≥ 0. Given the current channel conditions hi

k and plant
state xi

k for all systems i = 1, . . . , m, the current scheduling and power allocation are selected as
the solutions to the optimization

min
α∈Am

{
m

∑
i=1

αi min
pi∈[0,pmax]

[
νi pi − µi q(hi

k, pi) xi
k

T
Mixi

k

]}
(6.28)

The structure of this rollout policy resembles the structure of the channel-only-aware scheduling
in Chapter 4 but also involves plant states. In particular each sensor selects its transmit power
in a decentralized fashion based only on its corresponding local plant and channel conditions,
by solving the inner minimization problem in (6.28). We point out that this power optimization
problem has the same structure as in the single loop case in (6.12). The scheduler decision then
is as follows. Since (6.28) involves a sum over the scheduling probability vector α ∈ Am, the
scheduler will deterministically select to schedule the system currently resulting in the lowest
power-control tradeoff. A similar opportunistic scheduling structure was also found in Chapter 4.

Moreover we can extend Theorem 6.1 in the current setup. By utilizing the rollout policy (6.28)
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the total average control and communication costs satisfy by design

m

∑
i=1

µi Ji
control +

m

∑
i=1

νi Ji
comm ≤

m

∑
i=1

µi Ji
control(α̃, p̃) +

m

∑
i=1

νi Ji
comm(α̃, p̃). (6.29)

The weights ν ≥ 0, µ ≥ 0 are parameters that can be tuned to penalize more or less the control
and/or communication costs for different systems independently.

We note that in order to implement this state-aware policy, the scheduler needs to have access to
the actual plant states. This might be unrealistic in the uplink case of, e.g., Fig. 10, where the access
point receives sensor measurements and needs to schedule one without knowing the exact plant
states. The setup becomes more practical in the downlink case where an access point has all the
sensor data available and decides to communicate to one of many different receivers/controllers.
We also note that rollout algorithms have been used for the problem of scheduling control sys-
tems elsewhere in the literature (Antunes et al. (2012)) however without consideration of power
resources or wireless fading channels.

6.3. Rollout Random Access Policies

In this section we revisit the setup of Chapter 5 where multiple sensors decide in a decentralized
manner whether to transmit or not over a shared wireless channel in order to close their loops.
In this section we will design sensor policies adapted online to their local plant state as well as
channel state conditions. That is in contrast to the policies designed in Chapter 5 which did not
involve plant adaptation. As in the previous section there are m independent systems and each
one has its own plant states xi

k and dynamics of the form

xi
k+1 =

{
Ai

c xi
k + wi

k, if γi
k = 1

Ai
o xi

k + wi
k, if γi

k = 0
(6.30)

for i = 1, . . . , m. Here wi
k, k ≥ 0 denotes an i.i.d. noise process with some known distribution φwi

with zero mean and covariance Wi. We emphasize that knowledge of the distribution is important
in the development that follows, however our results hold regardless of the type of distribution.
As in the previous section the systems have their own control costs (cf. (6.23)) and i.i.d. channel
states hi

k with some distribution φhi .

According to the decentralized mechanism each sensor i = 1, . . . , m transmits at each time step
k over the shared channel with probability αi

k ∈ [0, 1]. We suppose that a collision occurs if
more than one sensors transmit at the same time slot, and a collision-free transmission is subject
to packet decoding errors depending on channel fading conditions and transmit power. In this
section we suppose each sensor’s i transmit power is fixed to some value pi, not a design variable.
As a result, the probability that sensor i successfully closes its loop at time k equals

P(γi
k = 1

∣∣ αk, hk) = αi
k q(hi

k, pi) ∏
j 6=i

[
1− αi

k

]
. (6.31)
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This expression was also introduced in Chapter 5 (cf. (5.2)) and states that the probability of system
i closing its loop at time k equals the probability that transmission i is successfully decoded at
the receiver, multiplied by the probability that no other sensor j 6= i is causing collisions on
ith transmission. Similar to Chapter 5 we will assume the success function q(hi

k, pi) is strictly
increasing in the channel conditions hi

k.

Consider now reference channel access policies for the sensors independent of the plant states,
but potentially adapting to local channel states. In particular we consider policies of the form
αi

k = α̃i(hi
k) for each i = 1, . . . , m, where α̃i : R+ → [0, 1] is a mapping of current local channel

states to the probability of accessing the shared channel. The vector of all sensor reference policies
is denoted by α̃. Under these reference policies, a sensor j is accessing the channel with probability
that we denote as

α̃j := E[α̃j(hj
k)]. (6.32)

Here the expectation is with respect to the jth channel distribution. Substituting these reference
policies in (6.31), the probability of system i closing its loop becomes constant at each time step
that we denote as

q̃i := P(γi
k = 1) = E[α̃i(hi

k) q(hi
k, pi)] ∏

j 6=i
[1− α̃j]. (6.33)

Here we used the fact that channel distributions are independent among systems.

Assuming all systems are mean square stable under the chosen reference policies α̃ (cf. Proposi-
tion 6.1), then according to Proposition 6.2 the control performance of each system i under this
policy is given by Ji

control(α̃) = Tr(Pi Wi) where the positive semidefinite matrix Pi solves

Pi = q̃i (Qi
c + Ai

c
T

Pi Ai
c) + (1− q̃i)(Qi

o + Ai
o

T
Pi Ai

o) (6.34)

for the term q̃i defined in (6.33).

Moreover we can define once again the relative value of transmitting for each system i under the
current plant conditions as the quadratic term xi

k
T Mixi

k, with the matrix Mi defined as in (6.27).
In this section we also make the assumption that this value is always non-negative.

Assumption 6.1. For each system i the matrix Mi = Qi
o + Ai

o
T Pi Ai

o−Qi
c− Ai

c
T Pi Ai

c is positive semidef-
inite.

Unlike the previous cases where the decision at each time step was centralized, here each sen-
sor makes their own decision in a decentralized fashion based on their own local information.
Unfortunately it is not obvious how to generalize the previous centralized rollout policies (Sec-
tions 6.1, 6.2) in this setting. We propose instead a different methodology for improving upon the
reference policies.

According to the reference policy each sensor j accesses the channel on average with a constant
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rate α̃j given in (6.32) and is mean square stable. Intuitively this rate is low enough so that the
resulting collisions on all other communication links do not deteriorate the control performance
of the rest of the systems. This rate can be thought of as a safe access rate. Our approach in the
current section is to allow the sensors to adapt to their local plant and channel states, but explicitly
require that the rate at which each sensor accesses the shared channel at every time step prescribes
to the reference safe access rate. We term this approach constrained rollout.

6.3.1. Constrained Rollout Policies

To formalize our approach we first characterize the information available to each sensor at the
beginning of a time step k. Before measuring the channel state hi

k, the sensor knows that its
distribution is given by φhi . Additionally before measuring the plant state xi

k, sensor i knows by
(6.30) that xi

k has a distribution φwi centered at some current mean value denoted here by x̄i
k. In

other words xi
k = x̄i

k + wi
k−1. Similarly to (6.30) the mean x̄i

k evolves according to

x̄i
k =

{
Ai

c xi
k−1, if γi

k−1 = 1
Ai

o xi
k−1, if γi

k−1 = 0
. (6.35)

That is, if a transmission occurred at the last time step the sensor knows that the plant state evolves
according to the closed loop mode Ai

c and expects a measurement xi
k with mean x̄i

k = Ai
cxi

k−1. The
case of no transmission is similar. The sensor can keep track of this evolving mean value assuming
it knows all past measurements and transmission successes by acknowledgments.

Our approach is to guarantee that, conditioned on the current locally available information, sensor
i transmits with the prescribed access rate on average, that is

E[αi
k
∣∣ x̄i

k] ≤ α̃i. (6.36)

At time k the sensor may adapt its channel access decision αi
k to the measured plant and channel

states xi
k, hi

k respectively. Hence we allow in general a policy of the form αi
k = αi(xi

k, hi
k), where

the set of all such transmission functions at any given mean state value x̄k is denoted by

A = {αi : Rni ×R+ → [0, 1]}. (6.37)

We propose then to select dynamically at each time step k the transmission functions αi, i = 1, . . . , m
as a solution to a constrained optimization problem. The sensor would like to maximize the
expected gains in control performance due to transmission, while at the same time adheres to the
prescribed access rates according to (6.36). Formally this optimization problem is

minimize
αi∈A

E[−αi(xi
k, hi

k) q(hi
k, pi) ∏

j 6=i
(1− α̃j) xi

k
T

Mixi
k
∣∣ x̄i

k] (6.38)

subject to E[αi(xi
k, hi

k)
∣∣ x̄i

k] ≤ α̃i. (6.39)

100



In this problem the expectations are with respect to the current channel distribution of hi
k, as well

as the plant state distribution xi
k which conditioned on the current mean value x̄i

k just depends on
the current noise wi

k−1. We denote the optimal solutions, i.e., the optimal transmission functions
as α∗i for each system i.

At each time step the sensor selects the current transmit function as a solution to the constrained
optimization problem (6.38)-(6.39) where both the objective and the constraint are expressed in ex-
pectation over the current plant and channel conditions xk, hk to be measured. The expected objective to
be minimized in (6.38) entails the quadratic form xi

k
T Mixi

k of the local plant state xi
k. As explained

in Section 6.1 this represents the relative gains in control performance if a successful transmission
occurs. The objective also involves the probability of successful transmission q(hi

k, pi). So the
overall objective indeed represents the expected gains in control performance of the system.

For the proposed policy we can establish the following result which characterizes the control
performance using the proposed constrained rollout policies.

Theorem 6.2 (Rollout Random Access Policy Performance). Let Assumption 6.1 hold. Suppose every
sensor uses the policy α∗i optimizing (6.38)-(6.39) at each time step. Then the control cost of each system
i = 1, . . . , m satisfies

Ji
control(α

∗) ≤ Ji
control(α̃). (6.40)

where Ji
control(α̃) is the control cost using the reference policies.

This result is important as it demonstrates that despite the collisions arising in the shared medium
between transmissions, each sensor can adapt to their own local plant state measurements and
channel conditions and guarantee an improved control performance (compared to the reference).
As a side remark we note that by construction the sensors transmit at the same rate as the reference
policies. This is because (6.39) is enforced at each time step, hence it holds in the long run too. The
average rate of collisions remains the same as for the reference policy as well. What changes is that
transmissions occur when it is opportunistically more important for the system, hence successful
transmissions also occur when it is important.

To find the transmission function α∗i at each time step given its current mean state x̄i
k ∈ Rni , the

sensor needs to solve problem (6.38)-(6.39). This is an optimization problem over the space of
transmission functions, i.e., an infinite-dimensional optimization problem. However as we show
in the following result it enjoys simple threshold-based optimal solutions.

Proposition 6.3. Consider the transmission function optimization problem in (6.38)-(6.39) given any
fixed x̄i

k ∈ Rni . Suppose the distributions φhi of channel states {hi
k, k ≥ 0} and φwi of plant disturbances

{wi
k, k ≥ 0} of system i are absolutely continuous, i.e., have probability density functions. Then there exists

a non-negative constant νi ≥ 0, depending on x̄i
k, such that the function

α∗i(xi
k, hi

k) =

{
1, if q(hi

k, pi) ∏j 6=i(1− α̃j) xi
k

T Mixi
k ≥ νi

0 otherwise.
(6.41)
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is an optimal solution.

The above proposition shows first that the proposed decision is not randomized but deterministic.
Given the current plant and channel conditions the sensor will either transmit or not. Furthermore
it is of a threshold form. The sensor transmits if the product between the current channel success
q(hi

k, pi)∏(1− α̃j) and value of transmission xi
k

T Mixi
k exceeds some threshold. Here the packet

success assumes that all other sensors j 6= i will adhere to their reference access rates α̃j.

We note that threshold policies with respect to the plant state frequently appear in the event-
based control framework of, e.g., Xu and Hespanha (2004); Molin and Hirche (2009); Heemels
et al. (2012). The threshold value here however is not a free parameter, but it depends on the
current mean value x̄i

k which dynamically varies at each time step (cf. (6.35)). As a result the
transmission decision αi

k is not just a time-invariant function of states xi
k, hi

k but it also depends on
the mean value x̄i

k. This feature distinguishes our policies from other event-based control policies
and is by construction added to ensure that the sensor adheres to the prescribed safe access rate
α̃i.

Since Prop. 6.3 simplifies the search for general transmission functions in Theorem 6.2 to the
search for threshold functions, we describe next a computationally efficient procedure to find the
appropriate threshold. We note that in order to implement the proposed policy, a transmission
function solving problem (6.38)-(6.39) is needed for any possible mean value x̄i

k ∈ Rni . This
requires the solution of an infinite number of such optimization problems. In practice, as well as
in the numerical simulations that follow, the space of mean values x̄i

k ∈ Rn can be discretized and
we can solve instead a large number of optimization problems at the discrete points.

6.3.2. Computing Transmission Functions

For notational simplicity we now drop the time index k. From the proof of Prop. 6.3 we see
that the threshold νi, as a function of the current mean x̄i, corresponds to the optimal Lagrange
dual variable of problem (6.38)-(6.39). We briefly describe a dual subgradient algorithm to find
this optimal dual point. A subgradient direction for the dual problem is typically given by the
constraint slack of the primal problem evaluated at a primal Lagrangian minimizer (cf. (Bertsekas
et al., 2003, Ch.8)). More precisely, given some dual variable νt ≥ 0 at iteration t, a corresponding
primal solution is given by substituting νt in place of νi in (6.41).

The constraint slack of this solution with respect to (6.39) is given by the difference

st := P
[
q(hi, pi) ∏

j 6=i
(1− α̃j) xiT

Mixi ≥ νt ∣∣ x̄i
]
− α̃i. (6.42)

Hence a dual subgradient ascent algorithm to compute the point νt+1 for the next iteration is given
by

νt+1 = max
{

0, νt + εt st

}
(6.43)

where εt ≥ 0 is a stepsize, and the maximum is taken so that the new dual variable is projected
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to the non-negatives. Iterating (6.43), the dual variable νt converges to the optimal νi – see,
e.g., (Bertsekas et al., 2003, Ch. 8.2).

6.3.3. Numerical Simulations

We consider a random access architecture involving the control of two (m = 2) scalar systems of
the form (6.30). The first system is described by

x1
k+1 =

{
0.6 x1

k + w1
k , if γ1

k = 1
1.1 x1

k + w1
k , if γ1

k = 0
, (6.44)

i.e., its open loop is unstable. The second system is assumed to have open loop integrator dynam-
ics and a controller resetting the state to zero, i.e.,

x2
k+1 =

{
0 x2

k + w2
k , if γ2

k = 1
1 x2

k + w2
k , if γ2

k = 0
. (6.45)

Due to plant noise, taken here to be standard Gaussian, both system states will grow unbounded
unless communication is performed often enough to close the loops. Moreover we assume the
same quadratic state costs for both systems Qi

o = Q1
c = 1, i = 1, 2 (cf. (6.23)). We also assume the

channel fading states for the two systems are identically distributed, hi
k ∼ exp(1), i = 1, 2, k ≥ 0,

while the probability of success is modeled as in Fig. 2.

We begin our approach by considering reference policies. For simplicity we assume both sensors
access the shared wireless channel with a constant probability under the reference policies. In
particular suppose system 1 which is the unstable one accesses the channel with probability α̃1 =

0.40, while system 2 which is the marginally stable one with probability α̃2 = 0.15. Despite
the collisions arising when both sensors transmit simultaneously the two systems remain stable.
Their control performances can be evaluated either theoretically following Section 6.3, i.e., by
Ji
control(α̃) = Tr(Pi Wi) where Pi satisfies (6.34), or in simulations. In Fig. 24 we plot the empirical

control cost from simulations

J1
control(α̃) = lim

N→∞

1
N

N−1

∑
k=0

(x1
k)

2 ≈ 32,

J2
control(α̃) = lim

N→∞

1
N

N−1

∑
k=0

(x2
k)

2 ≈ 13. (6.46)

In other words using the reference policies the more unstable system experiences worse control
performance.

We now employ the proposed state-aware policies described in the previous section. In particular
each sensor i = 1, 2 keeps track of its own plant state statistics, and applies the transmission rule
α∗i solving problem (6.38)-(6.39). This is a threshold-based policy as shown in (6.41) which can be
computed following Section 6.3.2. Sensor i has to solve this problem for all possible current mean

103



0 1 2 3 4 5 6 7 8 9

x 10
4

0

10

20

30

40

50
Mean cost System 1

 

 

Reference
Proposed

0 1 2 3 4 5 6 7 8 9

x 10
4

0

10

20

30

40

50
Mean cost System 2

 

 

Reference
Proposed

Figure 24: Simulation of reference random access policies and proposed state-aware random ac-
cess policies. By opportunistically adapting to system states the proposed policies exhibit a sig-
nificantly improved control performance.

values x̄i
k ∈ R of the plant state. In simulations we discretize the space x̄i

k ∈ R, find the policies at
the discrete points, and during run-time the sensor selects the policy of the closest discrete point.

We simulate the random access wireless architecture using the proposed state-aware policies and
in Fig. 24 we present the average empirical control cost, i.e.,

J1
control(α

∗) = lim
N→∞

1
N

N−1

∑
k=0

(x1
k)

2 ≈ 6.3,

J2
control(α

∗) = lim
N→∞

1
N

N−1

∑
k=0

(x2
k)

2 ≈ 6.6 (6.47)

during simulation. As verified by Theorem 6.2 the performance using the proposed state-aware
policies is improved compared to the reference. The theoretical result claims just an improvement,
however the simulations illustrate significant improvements at the order of 80% for plant 1 and
50% for system 2. The reason for these improvements is that the proposed policies adapt online
in an opportunistic fashion to both plant and channel conditions. This way a sensor accesses the
shared channel only when favorable channel states or necessary control requirements appear. We
note that it seems that the more unstable system has higher performance improvements. We also
note that control performances are improved even though collisions still occur, in fact at the same
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Figure 25: Reference random access. Green stars indicate successful transmissions for each system.
Red circles indicate collisions between the two systems. Successful transmissions happen in a
random fashion independent of the system states.
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Figure 26: Constrained rollout random access. Green stars indicate successful transmissions for
each system. Red circles indicate collisions between the two systems. Successful transmissions
typically occur when the systems states are large, meaning that control performance is at stake.

rate as in the reference policies.

The large performance improvements can also be understood by looking at sample system traces
(Fig. 25, Fig. 26. In the reference policy successful transmissions happen in a random fashion,
independent of system states. In the constrained rollout policies successful transmissions are be
design correlated with times when the system states are large, i.e., control regulation is needed.

Finally, we would also like to point out that the plant adaptation of the proposed rollout policy
is so significant that in many cases it can outperform non-state-aware centralized policies. In
other words it overcomes the performance losses due to collisions. For example, consider the
two systems given above and consider a centralized scheduler that gives access to system 1 with
probability 0.4 at each time step, and gives access to system 2 with probability 0.15 at each time
step. These are the same rates as the reference random access rates, but in a centralized scheduling
setup. We can compute the control performances for systems 1 and 2 to be respectively 13.7, 8
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which are worse than the control performances achieved by the proposed state-aware random
access policy.

6.4. Proofs

6.4.1. Notation used for the proofs of Proposition 6.2 and Theorem 6.1

We introduce some notation that will be used within the proofs of this chapter. When the current
plant and channel states take some values x ∈ Rn, h ∈ R+ and the sensor takes a decision
p ∈ [0, pmax], let γ ∈ {0, 1} denote the random success of the current transmission modeled
by (6.2). Also let x+ ∈ Rn, h+ ∈ R+ denote the random value of the plant and channel states at
the next time step. The distribution of the former depends on γ and the current plant disturbance
w ∼ φw according to x+ = γAcx + (1− γ)Aox + w as follows from (6.1). The next channel state is
independent by assumption. We denote the integration with respect to the distribution of γ and
x+, h+ given the values of x, h, p as E[.

∣∣ x, h, p]. This expectation depends just on the control and
communication system model, not on the employed policy.

Moreover consider the function
V(x, h) := xT P(h)x (6.48)

where P(h) is a symmetric positive semidefinite matrix defined as

P(h) := q(h, p̃(h)) (Qc + AT
c PAc) + (1− q(h, p̃(h)))(Qo + AT

o PAo), (6.49)

where P is defined in (6.9). It is also easy to see from (6.49) that the expected value of the matrix
P(h) with respect to the channel distribution φh equals the matrix P, i.e.,

EhP(h) = P. (6.50)

Define also for any x ∈ Rn, h ∈ R+ and p ∈ [0, pmax] the function

F(x, h, p) := E[xT (γQc + (1− γ)Qo) x + V(x+, h+)
∣∣ x, h, p]−V(x, h)− Tr(PW) (6.51)

Substituting x+ = γAcx + (1− γ)Aox + w in V(x+, h+) at the right hand side and by expanding
the expectation term we have

E[xT (γQc + (1− γ)Qo) x+V(x+, h+)
∣∣ x, h, p] = q(h, p) xT(Qc + AT

c PAc)x

+ (1− q(h, p))xT(Qo + AT
o PAo)x + Tr(P W) (6.52)

where the latter term Tr(P W) is due to the variance of the system disturbance and (6.50). Sub-
stituting (6.52) and (6.48)-(6.49) in the definition of the function F(x, h, p) in (6.51) we derive an
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equivalent expression for the function as

F(x, h, p) = −(q(h, p)− q(h, p̃(h)) ) xT Mx (6.53)

All the above expressions will be used for the proofs of our results. In particular we will make
use of both expressions (6.51) and (6.53). We also note for future reference that substituting the
reference policy function p̃(h) in (6.53) we directly get

F(x, h, p̃(h)) = 0 (6.54)

6.4.2. Proof of Proposition 6.2

We are now ready to prove the result of this Proposition. First we will show that there is a unique
symmetric positive semidefinite matrix solution P of (6.9). To do this we can describe the solution
P as the limit of the matrix recursion

Pk+1 = q̃ (Qc + AT
c Pk Ac) + (1− q̃)(Qo + AT

o Pk Ao), (6.55)

for some initial matrix condition P0. This recursion is convergent. To see this, we can perform the
vectorization operation (see also Remark 6.2) to rewrite the recursion as

vec(Pk+1) = (q̃ AT
c ⊗ AT

c − (1− q̃) AT
o ⊗ AT

o ) vec(Pk) + vec(q̃ Qc + (1− q̃) Qo). (6.56)

By assumption the employed reference policy p̃ leads to mean square stability, which implies (6.8),
i.e., that the matrix in (6.56) is asymptotically stable. Hence vec(Pk) converges to a unique limit
point, and the matrix Pk converges to a unique matrix P solving equation (6.9).

To show that P is also a symmetric positive semidefinite matrix, let us pick the initial condition
P0 = q̃ Qc + (1− q̃)Qo. It can be easily argued by induction that Pk+1 � Pk � 0 for all k ≥ 0.
Hence the limit also satisfies P = limk→∞ Pk � 0.

We are now ready to prove the second part of the proposition. That is, if xk, hk denote the random
variables describing the plant and channel states of the system at time k when using the reference
policy pk = p̃(hk), we will show that

lim
N→∞

1
N

N−1

∑
k=0

E[xT
k (γkQc + (1− γk)Qo) xk] = Tr(P W). (6.57)

If xk, hk are the random variables denoting the plant and channel states of the system at time k
using the reference policy pk = p̃(hk), then by (6.54) we have that

F(xk, hk, pk) = F(xk, hk, p̃(hk)) = 0 (6.58)
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holds almost surely for all k ≥ 0. Since the function F is equal to zero, by its definition (6.51) we
conclude that

E[xT
k (γkQc + (1− γk)Qo)xk + V(xk+1, hk+1)

∣∣ xk, hk, pk] = V(xk, hk) + Tr(P W) (6.59)

holds almost surely for all k ≥ 0.

Let us take the expectation of (6.59) with respect to the distribution of xk, hk to conclude that

E[xT
k (γkQc + (1− γk)Qo)xk + V(xk+1, hk+1)] = E[V(xk, hk)] + Tr(P W) (6.60)

holds for all k ≥ 0. Summing up (6.60) for k = 0, . . . , N − 1, removing the telescoping terms

∑N−1
k=0 EV(xk, hk), and dividing by N we get that

1
N

N−1

∑
k=0

E[xT
k (γkQc + (1− γk)Qo) xk] +

1
N

E[V(xN , hN)] =
1
N

EV(x0, h0) + Tr(P W) (6.61)

Consider now the terms EV(xk, hk) = E xT
k P(hk) xk for any time k ≥ 0. Since the channel state hk

at time k is by the model independent of the plant state xk and distributed by φh, we have that

EV(xk, hk) = Tr(EP(hk)E xk xT
k ) = Tr(P E xk xT

k ) < ∞ (6.62)

Here in the second equality we used (6.50) and in the inequality we used the mean square stability
of the system by assumption (lim supk→∞ ExkxT

k < ∞). Hence the terms EV(x0, h0), E[V(xN , hN)]

in (6.61) are uniformly bounded over N. Hence taking the limit in (6.61) as N → ∞ verifies (6.57)
and completes the proof.

6.4.3. Proof of Theorem 6.1

We use the notation introduced in the proof of Prop. 6.2. For any constant ν ≥ 0, and any plant and
channel state value x ∈ Rn, h ∈ R+ consider the minimization of the expression F(x, h, p) + ν p
over power choices p ∈ [0, pmax]. Since the reference choice p̃(h) is one feasible solution we have

min
p∈[0,pmax]

F(x, h, p) + ν p ≤ F(x, h, p̃(h)) + ν p̃(h) = ν p̃(h). (6.63)

where the last equality follows from (6.54). We then analyze the left hand side of the above
inequality (6.63). By the expression for the function F given in (6.53) we have that

min
p∈[0,pmax]

F(x, h, p) + ν p = min
p∈[0,pmax]

ν p− (q(h, p)− q(h, p̃(h)) ) xT Mx (6.64)

This minimization is exactly the same as the one appearing in (6.12), hence the optimal solution
to this minimization problem is proll

ν (x, h). As a result (6.63) implies the inequality

F(x, h, proll
ν (x, h)) + ν proll

ν (x, h) ≤ ν p̃(h). (6.65)
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We will use this inequality to prove the Theorem.

Suppose xk, hk are the random variables representing the plant and channel states at the kth time
step after employing the policy pk = proll

ν (xk, hk) given in (6.12). By (6.65) we get then that

F(xk, hk, pk) + ν pk ≤ ν p̃(hk). (6.66)

holds almost surely for all k ≥ 0. Substituting then the definition of the function F by (6.51) in
(6.66) we have that

E[xT
k (γkQc + (1− γk)Qo) xk+V(xk+1, hk+1)

∣∣ xk, hk, pk] + ν pk

≤ V(xk, hk) + Tr(PW) + ν p̃(hk) (6.67)

holds almost surely for all k ≥ 0. By taking the expectation of the above inequality with respect
to the processes xk, hk, pk we have that

E[xT
k (γkQc + (1− γk)Qo) xk+ν pk + V(xk+1, hk+1)]

≤ EV(xk, hk) + Tr(PW) + ν Ep̃(hk) (6.68)

holds for all k ≥ 0. Then summing up all the above inequalities (6.68) for k = 0, . . . , N − 1,
removing the telescoping terms ∑N−1

k=0 EV(xk, hk), and dividing by N we get

1
N

N−1

∑
k=0

E[xT
k (γkQc + (1− γk)Qo) xk + ν pk] +

1
N

E[V(xN , hN)] ≤

1
N

EV(x0, h0) + Tr(P W) + ν
1
N

N−1

∑
k=0

Ep̃(hk) (6.69)

Now since the function V is non-negative (cf.(6.49)), the term E[V(xN , hN)] is also non-negative
and can be omitted from (6.69). Moreover EV(x0, h0) is bounded as the initial plant state x0 has
finite variance by assumption. Hence by taking the limit in (6.69) as N → ∞ we conclude that

lim sup
N→∞

1
N

N−1

∑
k=0

E[xT
k (γkQc+(1− γk)Qo) xk + ν pk] ≤

Tr(P W) + ν lim sup
N→∞

1
N

N−1

∑
k=0

Ep̃(hk) (6.70)

As established in Proposition 6.2 the value Tr(P W) is equal to the average control performance
Jcontrol(p̃) of the reference policy p̃. Also the average sum at the right hand side of (6.70) is equal
to the average power consumption of the reference policy p̃ given in (6.7). Hence (6.70) verifies
(6.13) and completes the proof.
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6.4.4. Proof of Theorem 6.2

For simplicity the arguments to follow prove (6.40) for some fixed system i. A symmetric argument
can be performed for each system i = 1, . . . , m. We will use notation similar to the one introduced
in the proof of Proposition 6.2, however the present setup is more complex as there are many
systems.

We will refer to the current mean value for each system i by x̄i ∈ Rni as introduced in (6.35).
Then the current plant state xi ∈ Rni at system i depends on the current mean x̄i and the current
random plant disturbance wi ∈ Rni with distribution φwi , according to x̄i = xi + wi. When the
current channel states for each system i take some values hi ∈ R+ and the sensors access the
channel with probabilities αi ∈ [0, 1], let γi ∈ {0, 1} denote the random transmission success on
link i modeled by (6.31). Also let xi

+ ∈ Rni , hi
+ ∈ R+ denote the random value of the plant and

channel states for system i at the next time step. The distribution of the former depends on γi and
the next plant disturbance wi

+ ∼ φwi according to (6.30). The next channel state hi
+ is independent

of all other variables by assumption. In a vector form we will denote the above variables as
x̄ ∈ Rn, x ∈ Rn, h ∈ Rm

+, α ∈ [0, 1]m, γ ∈ 0, 1m, x+ ∈ Rn, h+Rm
+. We denote the integration

with respect to the distributions of these variables given the values of x, h, α as E[.
∣∣ x, h, α]. This

expectation depends just on the control and communication system model, not on the employed
policy. The expectation of any function of just the current plant and channel states x, h given the
current mean values x̄ will be denoted by E[.

∣∣ x̄].

Moreover, similar to the proof of Proposition 6.2, define the functions

Vi(xi, hi) := xiT
Pi(hi)xi (6.71)

for i= 1, . . . , m, where Pi(hi) are symmetric positive semidefinite matrices defined as 6

Pi(hi) :=α̃i(hi) q(hi) ∏
j 6=i

[1− α̃j(hj)] (Qi
c + Ai

c
T

Pi Ai
c)

+

(
1− α̃i(hi) q(hi) ∏

j 6=i
[1− α̃j(hj)]

)
(Qi

o + Ai
o

T
Pi Ai

o), (6.72)

where Pi is defined in (6.34). It is also easy to see from (6.72) and the definition of Pi in (6.34)
that the expected value of the matrix Pi(hi) with respect to the channel distribution φh equals the
matrix Pi, i.e., EhPi(hi) = Pi.

Similar to the proof of Proposition 6.2, define also for any xi ∈ Rni , hi ∈ R+ and α ∈ [0, 1]m the
function

F(xi, hi, α) := E[xiT
(γiQi

c + (1− γi)Qi
o) xi + Vi(xi

+, hi
+)
∣∣ xi, hi, α]−Vi(xi, hi)− Tr(PiWi) (6.73)

Note that the function depends on the whole vector α, i.e., the transmissions of all sensors. Fol-
6As the powers pi are fixed for all systems, for brevity we will denote the function q(hi

k , pi) as q(hi
k).
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lowing arguments similar to the ones leading from (6.51) to (6.53) we can equivalently write the
function F as

F(xi, hi, α) = −
[

αi ∏
j 6=i

[1− αj]− α̃i(hi) ∏
j 6=i

[1− α̃j(hj)]

]
q(hi) xiT

Mi xi (6.74)

Now substituting αi in (6.74) from any local transmission function αi(xi, hi) for each system
i = 1, . . . , m we get an expression F(xi, hi, α(x, h)) which depends only on the current plant and
channel conditions x, h of all systems, where with a slight abuse of notation here we use

α(x, h) :=


...

αi(xi, hi)
...

 . (6.75)

We also note for future reference that substituting the reference transmission functions α̃i(hi) in
(6.74) we directly get

F(xi, hi, α̃(h)) = 0 (6.76)

for any values of x ∈ Rn, h ∈ Rm
+.

The proof of the theorem relies on the following technical lemma.

Lemma 6.1. Let Assumption 6.1 hold. Then for any value of x̄ ∈ Rn it holds that

E
[

F
(

xi, hi, α∗(x, h)
) ∣∣ x̄

]
≤ 0 (6.77)

where α∗ are the optimal solutions of problems (6.38)-(6.39) for all systems i = 1, . . . , m.

Before proceeding to the proof of the lemma let us show how it can establish the desired result.
Suppose xk, hk are the random variables representing the plant and channel states of all systems
at the kth time step after each system j = 1, . . . , m employs the proposed policy α

j
k = α∗j(xj

k, hj
k)

solving (6.38)-(6.39) . By (6.77) we get then that

E
[

F
(

xi
k, hi

k, αk

) ∣∣ x̄k

]
≤ 0. (6.78)

holds almost surely for all k ≥ 0. Substituting then the definition of the function F by (6.73) in
(6.78) we have that

E[xi
k

T
(γi

kQi
c + (1− γi

k)Q
i
o) xi

k + Vi(xi
k+1, hi

k+1)−Vi(xi
k, hi

k)
∣∣ x̄k] ≤ Tr(PiWi) (6.79)

(6.80)

holds almost surely for all k ≥ 0. By taking the expectation of the above inequality with respect
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to the processes xk, hk, αk we have that

E[xi
k

T
(γi

kQi
c + (1− γi

k)Q
i
o) xi

k] + EVi(xi
k+1, hi

k+1)−EVi(xi
k, hi

k) ≤ Tr(PiWi) (6.81)

holds for all k ≥ 0. Then summing up all the above inequalities (6.81) for k = 0, . . . , N − 1,
removing the telescoping terms ∑N−1

k=0 EVi(xi
k, hi

k), and dividing by N we get

1
N

N−1

∑
k=0

E[xi
k

T
(γi

kQi
c + (1− γi

k)Q
i
o) xi

k] +
1
N

E[Vi(xi
N , hi

N)] ≤
1
N

EV(xi
0, hi

0) + Tr(Pi Wi) (6.82)

Now since the function V is non-negative (cf.(6.72)), the term E[Vi(xi
N , hi

N)] is also non-negative
and can be omitted from (6.82). Moreover EV(xi

0, hi
0) is bounded as the initial plant states have

finite variance by assumption. Hence by taking the limit in (6.82) as N → ∞ we conclude that

lim sup
N→∞

1
N

N−1

∑
k=0

E[xi
k

T
(γi

kQi
c + (1− γi

k)Q
i
o) xi

k] ≤ Tr(Pi Wi) (6.83)

As established in Proposition 6.2 the value Tr(Pi Wi) is equal to the average control performance
Ji
control(α̃) of the reference policy α̃. Hence (6.83) verifies (6.40) and completes the proof.

Proof of Lemma 6.1. First for notational convenience for any transmission functions α1, . . . , αm let
us define the function

F(αi, α−i) := E
[

F
(

xi, hi, α(x, h)
) ∣∣ x̄

]
(6.84)

where α−i is the set of all transmission functions for systems j 6= i. To prove the lemma we need
to show that

F(α∗i, α∗−i) ≤ 0. (6.85)

Let us substitute the expression for the function F given in (6.74) in (6.84) to rewrite

F(αi, α−i) = E

[
−
[

αi(xi, hi) ∏
j 6=i

[1− αj(xj, hj)]− α̃i(hi) ∏
j 6=i

[1− α̃j(hj)]

]
q(hi) xiT

Mi xi ∣∣ x̄

]
(6.86)

Now note that the plant and channel states for all systems j 6= i conditioned on the current mean
values x̄ become independent among systems, because transmission functions are localized on
each system. As a result we have

F(αi, α−i) = −E
[
αi(xi, hi) q(hi) xiT

Mi xi ∣∣ x̄i
]
∏
j 6=i

E
[
1− αj(xj, hj)

∣∣ x̄j
]

+ E
[
α̃i(hi) q(hi) xiT

Mi xi ∣∣ x̄i
]

∏
j 6=i

E
[
1− α̃j(hj)

∣∣ x̄j
] ]

(6.87)

Then note that by construction, the policies α∗j for all systems j 6= i satisfy the constraint (6.39),
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i.e.,
E[α∗j(xj, hj)

∣∣ x̄j] ≤ α̃j = E[α̃j(hj)] (6.88)

where the last equality follows from (6.32). Since all the above quantities are probabilities, i.e.,
take values in [0, 1] we conclude that

−∏
j 6=i

E
[
1− α∗j(xj, hj)

∣∣ x̄
]
≤ −∏

j 6=i
E
[
1− α̃j(hj)

∣∣ x̄
]

. (6.89)

Applying this inequality to (6.87), and since the matrix Mi is positive semidefinite by Assumption
6.1, we have that

F(αi, α∗−i) ≤ F(αi, α̃−i) (6.90)

holds for any transmission function αi.

Now consider the problem of minimizing F(αi, α̃−i) over functions αi such that

E[αi(xi, hi)
∣∣ x̄i] ≤ α̃i (6.91)

holds. By the expression (6.87) we have that the objective equals

F(αi, α̃−i) = −E
[
(αi(xi, hi)− α̃i(hi)) q(hi) xiT

Mi xi ∣∣ x̄
]

∏
j 6=i

[
1− α̃j

]
(6.92)

This is exactly the same objective as the one appearing in the optimization problem (6.38)-(6.39),
whose optimal solution is α∗i. Hence the optimal solution is the same for both problems and it
satisfies

F(α∗i, α̃−i) = min
αi s.t. (6.91)

F(αi, α̃−i). (6.93)

Now note that the reference transmission function α̃i is by construction a feasible solution to this
problem, in general suboptimal, hence it must be that

F(α∗i, α̃−i) ≤ F(α̃i, α̃−i) (6.94)

Recall however that F(α̃i, α̃−i) = 0 due to (6.76). Hence

F(α∗i, α̃−i) ≤ 0 (6.95)

Combining (6.90) with (6.95) verifies (6.85) and completes the proof of the lemma. �
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6.4.5. Proof of Proposition 6.3

To simplify notation we will drop the index i within the proof and we will also omit the constant
term ∏j 6=i(1− α̃j). More specifically we will prove under the same assumptions that the following
optimization problem

minimize
α(.)∈A

E[−α(x, h) q(h, p) xT Mx
∣∣ x̄] (6.96)

subject to E[α(x, h)
∣∣ x̄] ≤ α̃. (6.97)

for any fixed value x̄ ∈ Rn has a solution of the form

α∗(x, h) =

{
1, if q(h, p) xT Mx ≥ ν

0 otherwise.
(6.98)

for some non-negative ν ≥ 0 which depends on x̄.

We will show that problem (6.96)-(6.97) has zero duality gap and that ν corresponds to the optimal
Lagrange dual variable. This is based on the results of Ribeiro (2012) where stochastic optimization
problems of a similar mathematical structure are considered.

First, note that the expectations in (6.96)-(6.97) are well defined for any measurable function α ∈ A.
This is true for (6.97) as α takes values in the finite interval [0, 1], and for (6.96) as the function
q(.) is bounded and the distribution of x has finite second moments by assumption. Second, the
problem is strictly feasible. For example a constant policy α(x, h) = α̂ for all x ∈ Rn, h ∈ R+ for
some α̂ ∈ [0, α̃) strictly satisfies (5.21). Third, note that the random variables x, h have an absolutely
continuous probability distribution given by the product of the plant disturbance distribution φw

and the channel distribution φh which are abs. continuous by assumption.

Let us denote the optimal value of (6.96)-(6.97) by P∗ and let us define the Lagrange dual problem.
Consider a dual variable ν ∈ R+. Then the Lagrangian function can be written as

L(α, ν) = E[−α(x, h) q(h, p) xT Mx] + ν(E[α(x, h)]− α̃) (6.99)

where for simplicity we dropped the conditioned expectation notation as x̄ is fixed. Note then
that by additivity of expectation we can rewrite the Lagrangian as

L(α, ν) = E[−α(x, h) (q(h, p) xT Mx− ν)]− να̃ (6.100)

The Lagrange dual problem whose optimal value we denote by D∗ is posed as

D∗ = maximize
ν∈R+

min
α∈A

L(α, ν). (6.101)

Then we can establish the following results.
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By (Ribeiro, 2012, Theorem 1) the problem (6.96)-(5.21) has zero duality gap, i.e., P∗ = D∗. More-
over by (Ribeiro, 2012, Theorem 4), if α∗ is an optimal primal solution and ν∗ is an optimal solution
for the dual problem (6.101), then

α∗ ∈ argmin
α∈A

L(α, ν∗). (6.102)

These results hold under the abs. continuous probability measures and strict feasibility which we
verified above.

The above characterization (6.102) suggests that we can recover the optimal variables α∗ by just
minimizing the unconstrained Lagrangian function. Given the form of the Lagrangian given in
(6.100) we rewrite (6.102) as

α∗ ∈ argmin
α∈A

E[−α(x, h) (q(h, p) xT Mx− ν∗)]. (6.103)

Moreover minimizing over the function α defined for all arguments x ∈ Rn, h ∈ R+ above is
equivalent to minimizing at each argument separately, that is

α∗(x, h) ∈ argmin
α(x,h)∈[0,1]

−α(x, h) (q(h, p) xT Mx− ν∗). (6.104)

In other words we have exchanged the expectation and the minimization. This is done almost
surely without loss of optimality, i.e., an optimal solution α∗ needs to satisfy (6.104) at all points
x, h except perhaps for a measure zero set. The optimal value of α(x, h) ∈ [0, 1] at each point x, h
takes value either 0 or 1 according to (6.98) given in the statement. Technically, since (6.104) is an
inclusion we have to argue that the minimizers at the right hand side are almost surely unique.
Indeed the set of points x, h where the minimizer is not unique is the set defined as

S = {x, h : q(h, p) xT Mx = ν∗}. (6.105)

Note then that
P(S) = E[ P[q(h, p) = ν∗/xT Mx

∣∣ x] ] = E[0] = 0. (6.106)

That is because the function q(h, p) is assumed strictly increasing in h, hence there is at most a
single point h meeting the equality, and since the distribution of h is abs. continuous the integral
over that set must be zero.

To sum up, we have shown that for each value x̄ there exists a constant ν ≥ 0 such that the optimal
solution is given by (6.98). This concludes the proof.
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Chapter 7: Conclusion

The goal of this work was to design resource allocation policies for control systems implemented
over wireless channels. Towards this goal, appropriate abstractions of wireless control systems
were developed in Chapter 2. On the one hand this includes the mathematical description of
dynamical systems involving sensors and actuators communicating between different physical lo-
cations. The main feature of these systems is that they operate on different modes, open and closed
loop, depending on whether transmissions occur successfully or not. Appropriate abstractions of
long term control performance are also introduced. On the other hand, the uncertainties in wire-
less communication are also explicitly modeled with wireless channel models. These models not
only account for the randomly varying fading channel conditions, but also explicitly capture the
allocation of transmit power resources. This model facilitates the analysis and design of resource
allocation algorithms in wireless control systems.

The fundamental problem of co-designing transmit powers and control inputs for a wireless
sensor-actuator system is considered in Chapter 3. The goal of the design is to minimize jointly
average (linear quadratic) control performance and average power utilization. Separation of the
two designs is made possible by a suboptimal decoupled information structure. The resulting
optimal power allocation is characterized qualitatively and an opportunistic adaptation nature is
revealed. Transmission should be avoided under adverse channel conditions or when the control
system is under desirable conditions, while power allocation should increase as the system devi-
ates. This introduces a novel paradigm for operating power-constrained wireless control systems.
Related publications include Gatsis et al. (2013b, 2014c). Preliminary extensions to the problem of
managing receiver power resources are presented in Gatsis et al. (2013a).

Channel-aware schedulers for wireless control systems with multiple loops closing over a shared
wireless medium are considered in Chapter 4. This is posed as a constrained stochastic optimiza-
tion problem where desired control performance requirements need to be guaranteed for each
system, while the overall transmit power utilization is to be minimized. The structure of the
optimal solution is characterized. The scheduler opportunistically decides one plant to close the
loop at each time step, while transmit powers can be decoupled among the different sensors. We
develop an offline optimization algorithm to solve the problem, as well as an online communica-
tion algorithm that converges to the optimal performance using only random observed channel
sequences. Related publications include Gatsis et al. (2014a, 2015a). An extension of the approach
to scheduling inter-dependent control tasks is considered in Gatsis et al. (2014b).

With decentralized channel access algorithms, sensors can independently decide whether to access
the shared medium, without the need of a centralized scheduler. However the emerging wireless
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interferences cause control performance degradation, hence need to be mitigated. In Chapter 5 we
develop a random access mechanism for control systems. The proposed policies are decoupled
among systems and balance the control performance gains from transmissions with the losses due
to interferences. Related publications include Gatsis et al. (2015c, 2016a). A different algorithm
based on a game-theoretic approach is considered in Gatsis et al. (2015b) allowing the sensors to
learn their policies in a decentralized fashion.

Finally in Chapter 6 we design dynamic sensor transmission policies adapting online to the vary-
ing control system state as well as the wireless channel state. Based on approximate dynamic
programming the proposed policies come with improved control performance and resource uti-
lization, as compared to simple policies used as a reference. The approach is illustrated in the
problem of transmit power allocation, in the problem of scheduling, as well as in the problem
of decentralized channel access. The latter case is particularly complex as the sensor policies
are coupled globally over the shared medium but are allowed to adapt only to locally available
information. Related publications include Gatsis et al. (2016b,c).

7.1. Open Problems and Future Research Directions

The future of modern smart infrastructures entails large numbers of interconnected devices in
interaction with the physical world. As the control inputs applied to the system by actuators rely
on wirelessly received data collected by sensors, the joint design of efficient control and wire-
less communication policies remains an important challenge. Despite recent advances towards
this end (e.g. Gatsis et al. (2014c); Nayyar et al. (2013)), the determination of appropriate infor-
mation structures as well as computationally tractable policy design algorithms requires further
consideration.

The efficient allocation of communication resources, as in the problems examined in this work,
needs to account for a large number of interconnected closed loop systems. To enable such a large
scale design appropriate optimization procedures need to be developed, for example, distributed
optimization algorithms and efficient spectrum management. As wireless sensors and actuators
become available to the rest of the system in a time varying fashion, i.e., randomly connect or
disconnect, the communication algorithms need to respond and adapt online to these changes
and maintain efficiency.

As control systems change dynamically over time, opportunistically adapted mechanisms such
as those presented in Chapter 6 become apparent. These mechanisms can respond to sensor
measurements that are critical for the performance of the system, however determining when such
critical measurements take place is challenging because of the large scale nature of the systems
and the fact that information is only locally available. Moreover, to achieve efficient utilization
of communication resources over a long planning horizon, appropriate abstractions of control
performance need to be taken into account.

Furthermore, with increased connectivity an increased number of security concerns arise. Sen-
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sor measurements may not always be desired to be shared with other connected systems due
to privacy concerns. In that case wireless mechanisms need not only account for reliable com-
munication but also safe communication, e.g., in the presence of eavesdroppers. Alternatively if
malicious agents are able to intrude and inject false measurements over the communication chan-
nel, it is essential to determine defense/controller strategies that would maintain control system
integrity.
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Appendix A: Imperfect Channel State Information

According to the wireless communication model of Chapter 2 the sensor/transmitter relies on
channel state information to decide whether to access the channel to transmit and close the loop.
Perfect channel state information is difficult to acquire at the transmitter side in practice, hence
some channel estimation procedure needs to be followed – see, e.g., Hassibi and Hochwald (2003)
for a discussion. In this section we illustrate how our developments can be adapted in this case.

A common model for imperfect channel state information in the literature is that channel outage
occurs when the attempted transmission rate is higher than the maximum rate supported by the
current channel conditions (Vakili et al. (2006); Zheng et al. (2008); Ouyang et al. (2010); Hu and
Ribeiro (2013)). More specifically, suppose at some time step the channel state is given by hk ∈ R+

while the sensor only knows a channel estimate ĥk ∈ R+. We do not examine a specific channel
estimation procedure but instead characterize the estimation quality by a conditional probability
distribution P(h

∣∣ ĥ).

The current channel state hk can support a packet success rate described by the function q(hk p)
depending on received power level hk p as described in Section 2.2. To achieve this rate however
the transmitter needs to select a code appropriately adapted to the channel state hk which is not
perfectly known. Suppose then that the sensor attempts to transmit at the estimated packet success
rate q(ĥk p) instead. The probability of successfully receiving the message is then modeled as

P(γk = 1
∣∣ hk, ĥk) =

{
q(ĥk p) if ĥk ≤ hk,
0 otherwise

(A.1)

That is, the rate equals the attempted rate if the channel fading gain is higher than the estimated
gain, otherwise a channel outage occurs and the rate is zero. Depending on how reliable the
channel estimation procedure is, the channel outage may result in significant performance losses.

A commonly proposed solution to mitigate this effect of channel outage is to employ a backoff
rate. Given the current channel estimate the transmitter can attempt to communicate at a lower
rate than the estimated rate to protect against the case where the actual channel state is worse than
the estimated one. Instead of transmitting at the estimate rate q(ĥk p) the sensor can alternatively
select a backoff rate, or equivalently a backoff channel gain b(ĥk) depending on the current channel
estimate. The transmitter then attempts the backoff packet success rate q(b(ĥk) p). The resulting
probability of successful transmission then becomes

P(γk = 1
∣∣ hk, ĥk) =

{
q(b(ĥk) p) if b(ĥk) ≤ hk,
0 otherwise

(A.2)

Integrating (A.2) with respect to the estimation quality model P(hk
∣∣ ĥk) we conclude that

P(γk = 1
∣∣ ĥk) = q(b(ĥk)) P( b(ĥk) ≤ hk

∣∣ ĥk). (A.3)

The backoff channel rate b(ĥk) can then be selected at each channel estimate ĥk in order to max-
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imize the probability of success given in the above expression. There is a tradeoff in this design.
Low backoff rates imply fewer outages, as the second term in the product above increases, but
also lower achieved rates, as the first term decreases. Typically backoff channels/rates are selected
lower than the channel estimates, b(ĥk) ≤ ĥk, so that the outage event b(ĥk) > hk happens with
lower probability (Hu and Ribeiro (2013)). After a backoff mechanism is selected, we can denote
(A.3) as a general function of the form

P(γk = 1
∣∣ ĥk) = q̂(ĥk). (A.4)

The policies based on channel states presented in this work are still valid by replacing the general
channel model (2.17) with the modified one in (A.4) expressed with respect to channel estimates.
For example, consider a sensor obtaining channel state estimates ĥk, k ≥ 0 which are i.i.d. over
time and deciding whether to communicate over the channel in order to close its loop. Let us
indicate this choice by a variable αk ∈ [0, 1]. Similar to the development of rollout policies (6.12),
(6.28) in Sections 6.1, 6.2 we can propose the following policy

αk = argmin
α∈[0,1]

−α q̂(ĥk) xT
k Mxk + ν α. (A.5)

Here ν ≥ 0 is a non-negative constant parameter and the matrix M corresponds to the relative
value-of-transmitting the current state xk, as introduced in (6.11). Due to linearity of the objective
the solution αk to (A.5) takes values either 1 or 0, transmit or not. The sensor transmits when
the expected value of transmission q̂(ĥk) xT

k Mxk exceeds the parameter ν. We note that here the
expected value of transmission takes into account the possible current channel state values given
the current channel state estimate.
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Appendix B: Control over Markov Fading Channels

In this section we briefly present how our resource allocation approach needs to be modified in
cases where the channel fading conditions between sensors and actuators are not independent over
time but follow instead a Markov process (Mushkin and Bar-David (1989); Ahmad et al. (2009);
Ouyang et al. (2012)). To simplify the exposition suppose the channel can take one of two states,
h0, h1 and the transition probability between states hi and hj is denoted as pij, for i, j ∈ {1, 2}. The
resulting Markov chain is assumed to be irreducible and aperiodic so that it possesses a stationary
distribution. As introduced in 2.2 the probability of successful transmission at a channel state hi

when transmitting with power p is modeled by the relationship q(hi, p).

Consider now the problem of optimal power allocation according to Chapter 3 where we are
interested in minimizing the objective

lim sup
N→+∞

1
N

E
N−1

∑
k=0

xT
k Qxk + uT

k Ruk + λpk. (B.1)

Assuming that an optimal solution exists and that it technically satisfies the Bellman equation, as
is the case in Theorem 3.2, then we can characterize its form as follows. When the current plant
conditions are given by εk ∈ Rn (the innovation term in (3.11)) and the current channel conditions
are given by hk ∈ {h0, h1}, the optimal transmit power at the sensor is given by

p∗k = argmin
p∈[0,pmax]

λp− q(hk, p) R(εk, hk) (B.2)

for some function R(ε, h). Comparing this with the optimal power allocation for the i.i.d. channel
case presented in (3.34) we see that here the channel hk structurally plays a dual role. The current
channel state hk not only shows how easy it is to transmit at the current time step (by the term
q(hk, p)) but also reveals information about future gains (by the term R(εk, hk)) since the channel
state at the next time step is correlated.

We also briefly present how the Markovian channel structure affects the design of rollout power
allocation policies as presented in Section 6.1. To begin with, suppose a reference policy is avail-
able which selects a power level p̃i ∈ [0, pmax] under channel conditions hi, for i = 0, 1. We denote
the corresponding packet success probabilities at the two possible channel states according to the
reference policy as

q̃i := q(hi, p̃i), i = 0, 1. (B.3)

Suppose then the control system dynamics are given by

xk+1 =

{
Ac xk + wk, if γk = 1
Ao xk + wk, if γk = 0

(B.4)

as in Section 6.1. Also for simplicity suppose control system states are penalized at each time step
by a quadratic cost of the form xT

k Qxk, i.e., the cost does not depend on the current packet success
(cf. (6.3)).
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Similar to (6.9), we first solve for matrices corresponding to the future control cost-to-go of the
reference policy. Due to the Markovian structure, here we have to actually solve for a set of
matrices {Pi, i = 0, 1}, one for each possible channel state value. Intuitively that is because the
future expected control cost depends the current channel state. In particular one needs to solve

Pi = Q + ∑
j=0,1

pij

{
q̃j AT

c Pj Ac + (1− q̃j)AT
o Pj Ao

}
, for i = 0, 1. (B.5)

These are a set of coupled linear matrix equalities that have to be jointly solved, e.g., via the
vectorization approach in Remark 6.2.

Given the above reference policy, we can construct rollout power allocation policies that improve
upon the reference performance, similar to the approach in Section 6.1. It turns out that the power
allocation takes the following form. If the current plant state is hk = hi, for i = 0, 1 and current
control system state is xk, the transmit power according to the rollout policy becomes

proll
k = argmin

p∈[0,pmax]

νp− q(hi, p) xT
k (AT

o Pi Ao − AT
c Pi Ac)xk (B.6)

where ν ≥ 0 is a scalar parameter. This power choice is in general of the same form as in the
i.i.d. channel state (cf. (6.12)). A closer look reveals again the dual role of the current channel
state as it appears both in the term q(hi, p) and in the quadratic form xT

k (AT
o Pi Ao − AT

c Pi Ac)xk.
The latter quadratic form can be interpreted as the value of transmitting under the current control
state xk and the current channel state hk = hi. The reason for the latter is that the current channel
conditions reveal information about how easy it will be to close the loop in the future, as channel
states are coupled over time in a Markovian fashion. Hence current channel conditions are taken
into account in evaluating future control performance gains.
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