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impacts of different types of omnichannel strategies in different industries. In the first essay, we focus on a
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and inventory information to omnichannel consumers who strategically choose whether to gather
information online/offline and whether to buy products online/offline. Specifically, we consider three
information mechanisms: physical showrooms, virtual showrooms, and availability information. Our main
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industry. Specifically, we study the impacts of different self-order technologies on service operations. Online
technology, through websites and mobile apps, allows customers to order and pay before coming to the store;
offline technology, such as self-service kiosks, allows store customers to place orders without interacting with
a human employee. We develop a stylized queueing model and study the impacts of self-order technologies on
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ABSTRACT

OMNICHANNEL OPERATIONS MANAGEMENT

Fei Gao

Xuanming Su

This dissertation studies how a firm could effectively make use of different selling channels

to provide consumers with a seamless shopping experience. In the three essays, by analyz-

ing stylized models where firms operates both online and offline channels and consumers

strategically make channel choices, we examine the impacts of different types of omnichan-

nel strategies in different industries. In the first essay, we focus on a specific omnichannel

fulfillment strategy, i.e., buy-online-and-pick-up-in-store (BOPS). We find it may not be

profitable to implement BOPS on products that sell well in stores. We also consider a de-

centralized retail system where store and online channels are managed separately, and find

it is rarely efficient to allocate all BOPS revenue to a single channel. In the second essay,

we study how retailers can effectively deliver product and inventory information to om-

nichannel consumers who strategically choose whether to gather information online/offline

and whether to buy products online/offline. Specifically, we consider three information

mechanisms: physical showrooms, virtual showrooms, and availability information. Our

main result is that these information mechanisms may sometimes change customers chan-

nel choice in a way such that total product returns increase and total retail profit decreases.

In the third essay, we look at the restaurant industry. Specifically, we study the impacts of

different self-order technologies on service operations. Online technology, through websites

and mobile apps, allows customers to order and pay before coming to the store; offline tech-

nology, such as self-service kiosks, allows store customers to place orders without interacting

with a human employee. We develop a stylized queueing model and study the impacts of

self-order technologies on customer demand, employment levels, and restaurant profits. We

find there could be a win-win-win situation, where everyone in the market, i.e., consumers

iv



(including those who do not use the technology), workers and the firm, could benefit from

the implementation of the self-order technologies.
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CHAPTER 1 : Introduction

The general topic of this dissertation is omnichannel operations management. Nowadays,

firms have many different channels to reach their customers. Instead of treating different

channels as independent silos, more and more firms realize the need to integrate different

channels to provide customers with a seamless shopping experience. This dissertation stud-

ies the impacts of various omnichannel strategies on consumer behavior and firm operational

efficiency through three essays.

In the first essay, we look at a specific omnichannel fulfillment strategy in the retail industry.

Many retailers have recently started to offer customers the option to buy online and pick

up in store (BOPS). We study the impact of the BOPS initiative on store operations. We

build a stylized model where a retailer operates both online and offline channels. Consumers

strategically make channel choices. The BOPS option affects consumer choice in two ways:

by providing real-time information about inventory availability and by reducing the hassle

cost of shopping. We obtain three findings. First, not all products are well-suited for in-

store pickup; specifically, it may not be profitable to implement BOPS on products that

sell well in stores. Second, BOPS enables retailers to reach new customers, but for existing

customers, the shift from online fulfillment to store fulfillment may decrease profit margins

when the latter is less cost effective. Finally, in a decentralized retail system where store

and online channels are managed separately, BOPS revenue can be shared across channels

to alleviate incentive conflicts; it is rarely efficient to allocate all the revenue to a single

channel.

In the second essay, we study how retailers can effectively deliver online and offline infor-

mation to omnichannel consumers who strategically choose whether to gather information

online/offline and whether to buy products online/offline. Information resolves two types of

uncertainty: product value uncertainty (i.e., consumers realize valuations when they inspect

the product in store, but may end up returning the product when they purchase online)
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and availability uncertainty (i.e., store visits are futile when consumers encounter stock-

outs). We consider three information mechanisms: physical showrooms allow consumers to

learn valuations anytime they visit the store, even during stockouts; virtual showrooms give

consumers online access to an imperfect signal of their valuations; availability information

provides real-time information about whether the store is in stock. Our main results follow.

First, physical showrooms may prompt retailers to reduce store inventory, which increases

availability risk and discourages store patronage. Second, virtual showrooms may increase

online returns and hurt profits, if they induce excessive customer migration from store to

online channels. Third, availability information may be redundant when availability risk

is low, and may render physical showrooms ineffective when implemented jointly. Finally,

when customers are homogeneous, these mechanisms may not exhibit significant comple-

mentarities and the optimal information structure may involve choosing only one of the

three.

In the third essay, we shift focus to restaurant industry. Many restaurants have recently im-

plemented self-order technologies across both online and offline channels. Online technology,

through websites and mobile apps, allows customers to order and pay before coming to the

store; offline technology, such as self-service kiosks, allows store customers to place orders

without interacting with a human employee. In this essay, we develop a stylized theoreti-

cal model to study the impact of self-order technologies on customer demand, employment

levels, and restaurant profits. Our main results follow. First, customers using self- order

technologies experience reduced waiting cost and increased demand, and moreover, these

benefits may even carry over to customers who do not use these technologies. Second, al-

though public opinion suggests that self-order technologies facilitate job cuts, we find instead

that some firms should increase employment levels, and paradoxically, this recommendation

holds for firms with high labor costs. Finally, we find that firms should implement online

(offline) self-order technology when customers have high (low) wait sensitivity.
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CHAPTER 2 : Omnichannel Retail Operations with

Buy-Online-and-Pick-up-in-Store

2.1. Introduction

As consumers become accustomed to online shopping, brick-and-mortar retailers have in-

creasingly supplemented their shops with online businesses (Financial Times, 2013). The

online channel has traditionally been viewed as a separate way to sell products. Today,

however, many retailers have realized the need to integrate their existing channels to en-

rich customer value proposition and improve operational efficiency. As a result, there is

an emerging focus on “omnichannel retailing” with the goal of providing consumers with

a seamless shopping experience through all available shopping channels (Bell et al., 2014;

Brynjolfsson et al., 2013; Rigby, 2011). When asked about omnichannel priorities, the re-

tailers surveyed by Forrester Research reported that fulfillment initiatives ranked higher

than any other channel integration program; moreover, among all omnichannel fulfillment

initiatives, allowing customers to buy online and pick up in store (BOPS) is regarded as the

most important one (Forrester, 2014). According to Retail Systems Research (RSR), as of

June 2013, 64% of retailers have implemented BOPS (RSR, 2013).

Retailers benefit from allowing customers to pick up their online orders in store. Specifi-

cally, BOPS generates store traffic and potentially increases sales (New York Times, 2011).

According to a recent UPS study, among those who have used an in-store pickup option,

45% of them have made a new purchase when picking up the purchase in store (UPS, 2015).

Typically, a substantial amount of store sales is generated through such cross-selling: it is

estimated that, on average, when a customer comes to the store intending to buy $100

worth of merchandise, they leave with $120 to $125 worth of merchandise (Washington

Post, 2015). Thus, unsurprisingly, more and more retailers are starting to offer the BOPS

functionality on their websites (RSR, 2013).

A key challenge facing retailers is to choose the right set of products for BOPS. Most
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retailers generally agree that BOPS should not be a blanket functionality that is blindly

applied to all products across all categories. According to senior vice president and general

manager of Walmart.com, Steve Nave, one of the reasons for being selective is to focus on

those products that would “drive more customers into the stores” (Time, 2011). On the

websites of major retailers such as Toys R Us, customers will find that some products are not

eligible for BOPS. For example, new releases such as the LEGO Star Wars Sith Infiltrator

are not available for store pickup. These items are sold in stores, but shoppers need to check

their local stores for availability if they do not wish to wait for online delivery. In contrast,

for most of the extensive line of LEGO products sold on toysrus.com, the BOPS option is

available. Since retailers typically carry large numbers of SKUs online, a key challenge is

to understand the main criteria for selecting which product to allow for in-store pickup.

Many retailers regard BOPS as a way to reach new customers, as this new fulfillment option

has become increasingly popular among shoppers (New York Times, 2011). With BOPS,

consumers experience instant gratification, avoid shipping and delivery changes, and enjoy

the convenience of hassle-free shopping (their items have already been picked and packed

by store staff by the time they arrive). With this unique combination that has never

been offered before, it is not unrealistic for retailers to expect market expansion. However,

another more pessimistic view is that BOPS simply shifts customers from online fulfillment

to store fulfillment; customers who use BOPS would have purchased online anyway. To

understand the impact of BOPS on retailers’ bottom-lines, it is useful to distinguish between

the demand cannibalization and demand creation scenarios described above.

The advent of BOPS blurs the distinction between store and online operations. Although

BOPS orders originate online, they are fulfilled using inventory in retail stores. Conse-

quently, a successful BOPS implementation requires good coordination between the online

and offline channels. Very few retailers have completely dismantled their online and of-

fline channel silos, maintaining a single accounting ledger with an associated organizational

structure for all sales regardless of channel (Forrester, 2014). When online and offline chan-
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nels are operated by separate teams, the company needs to decide how to allocate BOPS

revenue. On this subject, there is no consensus: 46% of retailers allow the online channel to

receive full credit for the transaction, 31% award full credit to the store channel, and 23%

divide them between channels (Forrester, 2014). This lack of consensus is not surprising,

since both channels have legitimate reasons to claim credit. The store incurs operating costs

for fulfilling demand, while the online channel is the source of demand in the first place.

In this chapter, we focus on the following research questions:

1. For what types of product will the BOPS option be profitable?

2. How does BOPS impact the retailer’s customer base?

3. How should BOPS revenue be allocated between store and online channels?

To address these questions, we develop a stylized model that captures essential elements of

omnichannel retail environments. There is a retailer who operates online and store channels,

with the goal of maximizing total expected profit over both channels. Consumers strate-

gically choose among buying online, buying in store, and buying online for store pickup,

to maximize individual utility. We first analyze the centralized system; specifically, for a

particular product with given financial parameters, we study optimal inventory decisions

under BOPS and examine the impact of BOPS on total profits. Using these results, we de-

termine whether a product should be carried in store and whether BOPS should be offered.

Finally, we consider the decentralized system and examine how to allocate BOPS revenue

between channels.

Our first main finding is that BOPS may not be suitable for all products. Specifically, for

products that are bestsellers in retail stores, the benefit of BOPS may be outweighed by the

drawback, which is as follows. Since products that are available for store-pickup must be

in stock, BOPS indirectly discloses real-time store inventory status. Customers initiating a

BOPS order online and finding that the desired item is out of stock will not visit the store.

5



In this way, stockouts of blockbuster products may drive customers away, thus reducing

store traffic and cross-selling opportunities. In other words, BOPS may compromise the

function of bestselling products in attracting customers to the store.

Our second result is that BOPS helps retailers expand their market coverage. As BOPS

mitigates the stockout risk and hassle costs during the shopping journey, more people will be

willing to consider buying from the retailer. However, apart from attracting new customers,

BOPS can also sway the channel choices of existing customers. Among these existing cus-

tomers, some who had waited for their orders to be shipped to them (i.e., online fulfillment)

may now choose to pick up their orders (i.e., store fulfillment) instead. This shift is unprof-

itable if the profit margin is lower in stores compared to the online channel.

Finally, in decentralized systems where store and online channels are operated by separate

entities, we identify a misalignment of incentives. Specifically, the store neglects the fact

that potential BOPS customers may purchase online instead when there is no stock in the

store for them to pick up. Online sales generate value for the company but the store is not

explicitly compensated when they occur. Consequently, the store stocks too much inventory

if they retain 100% of BOPS revenue. To correct for this potential incentive problem, it is

optimal to give the store channel partial credit for fulfilling BOPS demand.

2.2. Literature Review

This chapter studies the management of online and offline channels. With the advent of

e-commerce around the turn of the century, many manufacturers or suppliers introduced a

direct online selling channel, which competes with their own retail partners. Much of the

literature on channel management studies this type of business setting. Chiang et al. (2003)

study a price setting game between a manufacturer and its independent retailer. They find

the manufacturer is more profitable even if no sales occur in the direct channel, because the

manufacturer can use the direct channel to improve the functioning of the retail channel

by preventing the prices from being too high and thus leading to more sales or orders from

6



the retailer. Some other papers also study the pricing game, but are more concerned with

specific pricing mechanisms, e.g., price matching between channels (Cattani et al., 2006)

and personalized pricing (Liu and Zhang, 2006). Apart from pricing, Tsay and Agrawal

(2004) consider firms’ sales effort and find that both parties can benefit from the addition

of a direct channel. Chen et al. (2008) study service competition between the two channels

and characterize the optimal channel strategy for the supplier. Netessine and Rudi (2006)

study the practice of drop-shipping, where the supplier stocks and owns the inventory and

ships products directly to customers at retailers’ request. In contrast to this stream of

work, we focus on the case where a single retailer manages both online and store channels,

as commonly observed in retail environments today.

Omnichannel management has received a lot of attention in industry; the topic is broadly

surveyed in Bell et al. (2014), Brynjolfsson et al. (2013) and Rigby (2011). In addition,

there are a few other papers. Ansari et al. (2008) empirically study how customers migrate

between channels in a multichannel environment and the role of marketers in shaping mi-

gration through their communications strategy. Chintagunta et al. (2012) study consumer

channel choice in grocery stores and empirically quantify the relative transaction costs when

households choose between the online and offline channels. Ofek et al. (2011) focus on the

impact of product returns on a multichannel retailer, and use a theoretical model to ex-

amine how pricing strategies and physical store assistance levels change as a result of the

additional online outlet. Gallino and Moreno (2014) empirically investigate the impact of

BOPS on a retailer’s sales in both online and offline channels. Interestingly, they find that

instead of increasing online sales, the implementation of BOPS is associated with a reduc-

tion in online sales and an increase in store sales and traffic. While most papers in this area

are empirical, we develop a tractable theoretical framework. Using our model, we study

omnichannel inventory management and channel coordination within the firm.

There are models in operations management that study the role of inventory availability

on demand, given that consumers have to incur hassle costs and bear the stockout risk

7



when visiting stores. Dana and Petruzzi (2001) is the first paper that extends the classic

newsvendor model by assuming demand is a function of both price and inventory level.

Since then, many researchers have investigated how to attract people to pay the hassle

cost to come to the store: Su and Zhang (2009) show that it is always beneficial to the

retailer if he can credibly make an ex ante quantity commitment. Yin et al. (2009) compare

the efficacy of two different in-store inventory display formats to manipulate consumer

expectations on the availability. Allon and Bassamboo (2011) explore the issue of cheap

talk when the information shared by the retailer is not verifiable. Alexandrov and Lariviere

(2012) examines the role of reservations in the context of revenue management. Cachon

and Feldman (2015) focus on retailer’s pricing issue and find that a strategy that embraces

frequent discounts is optimal. In this chapter, we study a new way to attract customers to

store, BOPS, by which the retailer shares with customers the real-time information about

store inventory status.

A critical feature of our model is that customers will make additional purchases once they

enter the store. There are many papers in marketing (e.g., Li et al. (2005); Akçura and

Srinivasan (2005); Li et al. (2011)) and operations management (e.g., Netessine et al. (2006);

Gurvich et al. (2009); Armony and Gurvich (2010)) examining how to make use of the

cross-selling opportunities during the interaction with consumers. In this chapter, instead

of studying the design of a cross-selling strategy, we will focus on the impact of cross-selling

benefits on the implementation of the new omnichannel fulfillment strategy, i.e., BOPS.

This chapter provides a different angle to the stream of work on strategic customer behavior

in retail management. Su (2007) study a dynamic pricing problem with a heterogeneous

population of strategic as well as myopic customers and show that optimal price paths could

involve either markups or markdowns. Aviv and Pazgal (2008) study two types of markdown

pricing policies (i.e., contingent and announced fixed-discount) in the presence of strategic

consumers. There is a rich body of work on operational strategies that consider strategic

customers: e.g., capacity rationing (Liu and van Ryzin, 2008), supply chain contracting
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(Su and Zhang, 2008), quick response (Cachon and Swinney, 2009), opaque selling (Jerath

et al., 2010), posterior price matching (Lai et al., 2010) and product rollovers (Liang et al.,

2014). Most of the existing literature consider models in which consumers decide whether

to make an immediate purchase or to wait for future discounts. In contrast, we concentrate

on consumers’ channel choice. In other words, instead of studying the decision of when to

buy, we pay attention to the decision of where to buy.

The topic of decentralization has been studied by many researchers in the operations man-

agement area. There are two streams of literature, focusing on interfirm and intrafirm

coordination. For the former, there is a large body of literature on the design of optimal

contracts to optimize supply chain performance; see, for example, Lee and Whang (1999);

Taylor (2002); Cachon and Lariviere (2005). Readers can refer to Cachon (2003) for a com-

prehensive review. The other research stream addresses conflicts of interest within a firm.

Harris et al. (1982) study an intrafirm resource allocation problem where different divisional

managers of the firm possess private information that is not available to the headquarters.

Porteus and Whang (1991) examine different incentive plans to coordinate the marketing

and manufacturing managers of the firm. A similar cross-functional coordination problem

is also studied by Kouvelis and Lariviere (2000). In retail assortment planning, Cachon and

Kök (2007) study category management, where each category is managed separately by

different managers. In line with this research stream, we look at incentive conflicts between

the store channel and the headquarters of an omnichannel retailer.

2.3. Model

There is a retailer who sells a product through two channels, store and online, at price p.

In the store channel, the retailer faces a newsvendor problem: there is a single inventory

decision q to be made before random demand is realized, so there may eventually be unmet

demand or leftovers in the store. The unit cost of inventory is c, and the salvage value of

leftover units is normalized to zero. The online channel is modeled exogenously: the retailer

simply obtains a net profit margin w from each unit of online demand. This model focuses
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on store operations and can be separately applied to any particular product the retailer

carries.

The market demand D is random and follows a continuous distribution F and density f .

Consumers choose between store and online channels to maximize their utility. Each indi-

vidual consumer has valuation v for the product. When shopping in store, each consumer

incurs hassle cost hs (e.g., traveling to the store or searching for the product in aisles);

similarly, when shopping online, each consumer incurs hassle cost ho (e.g., paying shipping

fees or waiting for the product to arrive). There is a key difference between store and online

hassle costs: hs is incurred before customers find and purchase the product in the store,

whereas ho is incurred after customers make the purchase online. To ensure that consumers

are willing to consider both channels, we assume that both hassle costs are smaller than

the surplus v − p.

We first consider the scenario before BOPS is introduced; here, each consumer makes a

choice between shopping online directly or going to the store. If she chooses to buy online

directly, her payoff is simply given by

uo = v − p− ho.

On the other hand, if she chooses to go to the store, her payoff is

us = −hs + ξ̂(v − p) + (1− ξ̂)(v − p− ho).

To understand this expression, note that the consumer first incurs the hassle cost hs upfront.

Then, once she is in the store, she may encounter two possible outcomes: (1) if the store has

inventory, then she can make a purchase on the spot and receive payoff v−p; (2) if the store

is out of stock, she can go back to buying the product online and receive payoff v − p− ho.

The consumer expects the former to occur with probability ξ̂. Based on this belief, the

consumer compares the expected utility from each channel and chooses accordingly.
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Next, we consider retailer’s decision problem. First, the retailer anticipates that a fraction

φ̂ ∈ [0, 1] of customers will visit the store; i.e., if total demand is D, the retailer expects that

the number of customers coming to the store will be φ̂D. Given this belief, the retailer’s

profit function is

π(q) = pEmin
(
φ̂D, q

)
− cq + rE

(
φ̂D
)

+ wE
((

1− φ̂
)
D
)

+ wE
(
φ̂D − q

)+
. (2.1)

Given the store inventory level q, the newsvendor expected profit from selling the product

in the store channel is shown in the first two terms above. In addition, since customers

tend to make additional purchase when they come to the store (UPS, 2015; Washington

Post, 2015), there is an additional profit r from every customer coming to the store; this is

the third term in the profit function above. The last two terms above show the retailer’s

online profit, the fourth represents profit from customers who shop online directly and the

last represents profit from customers who switch to online after encountering stockouts in

store. With the profit function above, the retailer chooses q to maximize expected profit.

To study the strategic interaction between the retailer and the consumers, we shall use the

notion of rational expectations (RE) equilibrium (see Su and Zhang (2008, 2009); Cachon

and Swinney (2009)). One important feature of a RE equilibrium is that beliefs must be

consistent with actual outcomes. In other words, the retailer’s belief φ̂ must coincide with

the true proportion φ of consumers choosing the store channel, and consumers’ beliefs over

in-store inventory availability probability ξ̂ must agree with the actual in-stock probability

corresponding to the retailer’s chosen quantity q. According to Deneckere and Peck (1995)

and Dana (2001), this probability is given by A(q) = Emin(φD, q)/E(φD) where φ > 0.

The reason is as follows. Conditional on her own presence in the market, an individual

consumer’s posterior demand density is g(x) = xf(x)/ED. Therefore, given this posterior

demand density, the availability probability is
∫

(min (φx, q) /φx) g (x) dx = A (q), since the

product is available with probability min(φx, q)/φx when there are x consumers in the

market. Then, we have the following definition for a RE equilibrium. Henceforth, we refer
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to the RE equilibrium as “equilibrium” for brevity.

Definition 1. A RE equilibrium (φ, q, ξ̂, φ̂) satisfies the following:

i Given ξ̂, if us ≥ uo, then φ = 1; otherwise φ = 0;

ii. Given φ̂, q = arg maxq π(q), where π(q) is given in (2.1);

iii. ξ̂ = A(q);

iv. φ̂ = φ.

Conditions (i) and (ii) state that under beliefs ξ̂ and φ̂, consumers and the retailer are

choosing the optimal decisions. Conditions (iii) and (iv) are the consistency conditions.

First, it is easy to see that there always exists a nonparticipatory equilibrium (0, 0, 0, 0). If

the retailer expects no one comes to the store to buy the product, he will stock nothing

there, i.e., q = 0; If consumers believe there is no inventory in the store, they will not come,

i.e., φ = 0. In the end, we have a self-fulfilling prophecy and beliefs are trivially consistent

with the actual outcome.

Is there any participatory equilibrium where consumers are willing to visit store and the

retailer has stock in the store as well (i.e., φ = 1 and q > 0)? When such an equilibrium

exists, it Pareto-dominates the nonparticipatory equilibrium, because it generates positive

payoffs for both the retailer and consumers. We shall adopt the Pareto dominance equi-

librium selection rule. The following proposition gives the equilibrium result; we use the

superscript (·◦) to denote the equilibrium outcome for this basic scenario. All proofs in this

dissertation are presented in Appendix A.7.

Proposition 1. If hs ≤ ξ◦ · ho and p − c > w, then customers visit store and q◦ =

F̄−1( c
p−w ). Otherwise, no one comes to store and q◦ = 0. Here, ξ◦ =

Emin
(
D,F̄−1

(
c

p−w

))
ED is

the equilibrium in-stock probability at the store.

According to Proposition 1, in order to have positive sales in the store, we need to ensure

that the store channel is attractive to both the consumers and the retailer. As for the
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retailer, it is profitable for him to sell through the store channel only if he could get a

higher margin by selling offline than online (i.e., p − c > w). Nonetheless, even if store

fulfillment is attractive to the retailer, store sales can occur only if consumers are willing

to pay a visit to the store. The first condition of Proposition 1 ensures that: (i) the store

in-stock probability is large enough, and (ii) the online hassle cost dominates the store

hassle cost, so that when put together, consumers are willing to risk encountering stockouts

and come to the store. Under the conditions of Proposition 1, there is a participatory

equilibrium.

Now, we turn to the scenario where the retailer implements BOPS on the product. With

this added functionality, consumers assess information online and face one of two possible

situations. The first possibility is that the product is out of stock at the store and BOPS

is not an option; in this case, the consumer simply buys from the online channel. The

other possibility is that the product is in stock and BOPS is feasible; in this case, the

consumer chooses where to shop and we discuss this decision problem below. We stress that

with the introduction of BOPS, consumers no longer have to form beliefs about inventory

availability because this information is immediately accessible online. In other words, a

useful by-product of BOPS is inventory availability information, which is provided on a

real-time basis.

When BOPS is a viable option, the consumer faces a choice between three alternatives:

buy online, buy in store, or use BOPS. To distinguish between the last two options, we

introduce a new model parameter hb, which is the hassle cost associated with using BOPS.

Although BOPS consumers still need to go to the store after making their purchases online,

the process is different from buying in store; for example, BOPS consumers do not search

for products in store because their orders would already have been picked and packed by

store staff. Therefore, the BOPS hassle cost hb differs from the store and online hassle costs

hs, ho. With this setup, all three alternatives yield the utility v − p − hi, where the hassle

cost hi corresponds to the shopping mode chosen by the consumer. In other words, utility
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maximization boils down to choosing the shopping mode with the lowest cost. When the

online channel offers the lowest hassle cost, consumers never go to the store. When the

store hassle cost is lowest, consumers buy in store but only after verifying online that the

product is in stock. When the BOPS hassle cost is lowest, consumers place orders online

for store pickup.

We are now ready to write down the retailer’s profit function with BOPS. When consumers

choose to go to the store (i.e., when the online hassle cost ho exceeds either the store hassle

cost hs or the BOPS hassle cost hb), the profit function is

π(q) = pEmin (D, q)− cq + rEmin (D, q) + wE (D − q)+ .

This is because when the store inventory level is q, there are on average Emin(D, q) cus-

tomers who come to the store, since they come to the store only when a corresponding unit

is available. The first two terms above correspond to the newsvendor profit from selling the

product and the third term corresponds to the additional cross-selling profit. Finally, when

demand exceeds store inventory, customers who find that the store is out of stock can still

choose to buy online; this yields the last term. In the other case where all consumers prefer

shopping in the online channel (i.e., when ho is the smallest hassle cost), the retailer will

stock nothing in the store (i.e., q = 0) and earn an expected profit π = wED.

We use superscript (·∗) to denote the market outcome with BOPS, which is given in the

following proposition:

Proposition 2. If min(hs, hb) ≤ ho and p− c > w − r, then customers visit the store and

q∗ = F̄−1
(

c
p+r−w

)
. Otherwise, no one comes to store and q∗ = 0.

Proposition 2 (after BOPS) differs from Proposition 1 (before BOPS) in three significant

ways. First, the condition hs ≤ ξ◦ · ho in Proposition 1 is weakened to min(hs, hb) ≤

ho in Proposition 2; in particular, the term corresponding to the in-stock probability ξ◦

vanishes. This discrepancy suggests that the risk of stockouts is no longer of concern after
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the introduction of BOPS. Indeed, BOPS provides real-time inventory information that

essentially guarantees availability once an order is placed. In this way, BOPS attracts

consumers to the store. The second difference is that the condition p−c > w in Proposition

1 is weakened to p− c > w − r in Proposition 2. The former condition requires the margin

to be higher in store than online for the retailer to carry the product in store, but the latter

condition combines the store margin with the cross-selling benefit. In other words, BOPS

makes it more attractive for retailers to carry products in store; due to the cross-selling

benefit r, the retailer may wish to carry a product in store even when the store margin

is lower than the online margin. However, inventory now becomes more important: with

BOPS, the retailer loses both the product margin p− c as well as the cross-selling benefit r

in the event of a stockout. This brings us to the third difference between Propositions 1 and

2: the critical fractile and hence the in-stock probability is higher with BOPS. This occurs

because the underage cost increases from p− c− w to p− c− w + r after the introduction

of BOPS. Consequently, the retailer has the incentive to increase inventory to lure more

customers to the store.

In summary, we find that BOPS impacts store operations in two main ways. First, BOPS

expands the set of products that may be offered at the store. For such products, omnichannel

consumers who were previously unwilling to buy in store can be swayed by BOPS to visit

the store. These products may originally be online exclusives but are now profitable to bring

to retail stores. Second, for products that were originally carried at the store, BOPS leads

to an increase in the in-stock probability. In other words, the store channel stocks more

inventory, and would consequently end up with more leftover inventory. Excess inventory

appears to be an inevitable downside of BOPS implementations (Reuters, 2014); despite

this downside, the next section shows that BOPS may be accompanied by increased profits.

2.4. Information Effect and Convenience Effect

In this section, we compare the market outcomes before and after the introduction of BOPS

(i.e., Propositions 1 and 2). With the following comparison results, we are able to identify
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two main effects of BOPS, i.e., the information effect and the convenience effect.

Let us first describe the framework for our analysis. Based on Propositions 1 and 2, we note

there are three parameter regions. In some cases, consumers who were initially unwilling

to visit the store will find the trip more appealing after the BOPS option is made available.

In some other cases, BOPS will have no impact on channel choice: consumers always prefer

a particular channel regardless of the BOPS option. These possibilities are summarized in

Figure 1 below. Specifically, our three parameter regions are as follows:

i. In the “Always” regions (i.e., hs ≤
Emin

(
D,F̄−1

(
c

p−w

))
ED ho and p − c > w), consumers

always buy the product in store, regardless of the implementation of BOPS;

ii. In the “Never” regions (i.e., min(hs, hb) > ho or p− c ≤ w−r), consumers never come

to the store, preferring to buy the product online;

iii. In the “BOPS” regions (i.e., hs >
Emin

[
D,F̄−1

(
c

p−w∧1
)]

ED ho, min(hs, hb) ≤ ho and p−c >

w − r), consumers come to the store only if BOPS is available. The “BOPS” regions

are further labeled “Information” or “Convenience” as discussed below.

Figure 1: Do consumers buy the product in store?

(a) hb > hs (b) hb ≤ hs

In the following analysis, we will examine the impact of BOPS on the retailer’s profit by

separately considering different parameter regions in Figure 1. We begin with the following

proposition.
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Proposition 3. If hs ∈

(
Emin

[
D,F̄−1

(
c

p−w∧1
)]

ED ho, ho

]
and p−c > w−r, then customers visit

the store only if BOPS is available. Further, BOPS increases total profit (i.e., π∗ > π◦).

The conditions in Proposition 3 correspond to the “BOPS” regions labeled “Information”

in Figures 1a and 1b. In these parameter regions, BOPS influences consumer shopping

behavior through the information sharing mechanism discussed in the previous section.

By revealing real-time information about store inventory status, BOPS draws additional

customers to the store; these customers were previously unwilling to visit the store because

they were discouraged by the possibility of stockouts. In such cases, Proposition 3 confirms

that BOPS leads to increased profit for the retailer. This increase in profit arises because

the store profit margin p− c, combined with the cross-selling benefit r, exceeds the online

margin w. In other words, through information provision, BOPS brings about a demand

shift to the more profitable store channel.

There is a subtle difference between the two “BOPS (Information)” regions of Figures 1a

and 1b. Although demand shifts to the store in both cases, they occur in different ways.

In the “BOPS (Information)” region of Figure 1a, since the pickup hassle cost hb exceeds

the store hassle cost hs, offering BOPS induces consumers to buy in store after verifying

availability online, without actually using the BOPS functionality. On the other hand, in

the corresponding region of Figure 1b, consumers indeed buy online and pick up in store

when the option is available. We separately discuss these two behaviors in the next two

paragraphs.

When consumers verify availability online without actually using the BOPS functionality,

BOPS simply serves as a source of information. The same market outcome arises if the re-

tailer simply provides real-time availability information on the website (i.e., directly showing

whether or not store is in stock). This strategy has been adopted by retailers such as Gap

and Levi’s. Our model can be applied to study this pure information sharing mechanism,

which can be regarded as a special case with hb > hs. In this special case, BOPS generates
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an interesting dynamic: after the implementation of BOPS as an added online functional-

ity, online sales may decrease, while store sales may increase. This phenomenon was first

identified by Gallino and Moreno (2014), who undertake a comprehensive empirical study

of a US retailer with a recent BOPS implementation.

On the other hand, when the pickup process is relatively hassle-free, consumers will indeed

buy online and pick up in store. In this case, apart from eliminating the risk of stockouts as

described above, BOPS also provides consumers with a more convenient means of shopping.

In this sense, comparing the two “BOPS (Information)” regions in Figures 1a and 1b,

consumer surplus is higher in the latter than in the former.

The next proposition examines the “BOPS” region labeled “Convenience” in Figure 1b.

Proposition 4. If hb ≤ ho < hs and p− c > w− r, customers visit the store only if BOPS

is available. Further, BOPS increases total profit (i.e., π∗ > π◦).

The above result highlights the importance of shopping convenience for BOPS to attract

consumers to the store. By additionally providing convenience, BOPS becomes more pow-

erful than a pure information sharing mechanism. In the “BOPS (Convenience)” region of

Figure 1b, a pure information sharing mechanism can never attract customers to the store;

even if customers are guaranteed availability in store, they still prefer to buy online because

the online hassle cost is lower than the store hassle cost (i.e., ho < hs). However, once

BOPS is available and provides convenience that trumps an online order (i.e., hb < ho),

customers may prefer to buy online and pick up in store. This shopping mode benefits the

retailer because customers may buy additional products (yielding profit r) when they pick

up their products. As long as the store margin p− c and cross-selling benefit r exceeds the

online margin w, the convenience dimension of BOPS will lead to increased profit for the

retailer.

Proposition 4 provides a word of caution for retailers. Although making the pickup process

more convenient is potentially a good way to improve the profitability of BOPS, retailers
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should exercise care in preserving the cross-selling benefit. In particular, some retailers

have introduced drive-through service that allows customers to receive their orders without

leaving their cars (New York Times, 2012; Bloomberg, 2012). Although this will help to

reduce hassle in the pickup process, it will also prevent people from entering the store and

thus lead to a loss of the cross-selling benefit r. According to Proposition 4, if the margin

from selling this particular product in the store is very high (i.e., p − c > w), then it is

still profitable for the retailer to implement BOPS even if r = 0. However, if profit margins

are lower in store than online, then the cross-selling profit r plays an important role; in

this case, drive-through service may hurt the retailer’s overall profit by neutralizing the

advantages of cross-selling.

There is a delicate balance between pickup convenience and cross-selling potential. While

consumers appreciate a more convenient pickup process, retail managers wishing to make

the most out of the cross-selling opportunity may choose to locate the pick-up counter at

far corners of the store so that shoppers have to walk through the entire store before picking

up their online orders (Retail Dive, 2015). This tradeoff is illustrated in Figure 2. At one

extreme, setting the pickup counter at the back of store maximizes both pickup cost hb

and cross-selling benefit r (i.e., the dotted L-line). At the other extreme, providing drive

through pickup service minimizes both hb and r (i.e., the dashed L-line). As both hb and

r increase, the L-line in Figure 1 moves up and left, and the “BOPS” region changes. The

optimal location of the L curve depends on retailer’s portfolio of products. According to

Figure 2, if most of the retailer’s products have high store profit margins (i.e., p−c is large)

and can be easily purchased online (i.e., ho is small), then the retailer should seek to make

the pickup process more convenient; in contrast, if most of the retailer’s products have low

store profit margins (i.e., p−c is small) and are difficult to purchase online (i.e., ho is large),

then setting the pickup counter far from the store entrance is a better strategy.

The next proposition tells a different side of the story. Although BOPS brings about many

benefits, it may lead to reduced profits in some cases.
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Figure 2: Impacts of BOPS hassle cost hb and cross-selling benefit r

Proposition 5. If hs ≤
Emin

(
D,F̄−1

(
c

p−w

))
ED ho and p − c > w, customers visit the store

regardless of the implementation of BOPS. Further, if r > 0, then BOPS decreases total

profit (i.e., π∗ < π◦).

The conditions of Proposition 5 correspond to the “Always” regions in Figures 1a and 1b.

In these regions, consumers choose to visit the store regardless of BOPS. Here, BOPS has

an important but easily overlooked effect. Prior to the introduction of BOPS, all customers

were already willing to visit the store, but after BOPS is made available, fewer consumers

will come to the store. This is because customers who attempt to place an order online but

find that the item is not in stock for pickup will no longer go to the store. As store traffic

decreases, the retailer loses the potential profit from cross-selling. The loss of cross-selling

benefits (i.e., whenever r > 0) leads to a reduction in total profits, as shown in Proposition

5. Since BOPS can be selectively implemented, our result suggests that the BOPS option

should not be offered on products that have been attracting considerable demand to the

store.

Our results differ from existing findings in the literature because we study a different infor-

mation sharing mechanism. In our model, BOPS provides real-time information about the

store inventory status, i.e., customers are informed that the product is available until inven-

tory runs out. However, in Su and Zhang (2009), the focus is on quantity commitment, i.e.,

the retailer commits to an initial inventory level in the store. With quantity commitment,
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the retailer may be able to use a small amount of store inventory to attract a large number

of customers to visit the store. In particular, when the cross-selling benefit is very large, the

retailer may still choose to stock the product in the store even if it is more profitable to sell

online, with the hope of attracting customers to make additional purchases in store. Such

a “loss leader strategy” is no longer feasible when the retailer implements BOPS, because

customers have access to real-time store inventory information and will not visit the store

after the product is out of stock. Therefore, we find that BOPS, by providing real-time

inventory information, may decrease profits, while Su and Zhang (2009) find that quantity

commitment is generally valuable.

In summary, BOPS has two effects: it provides customers with real-time information about

in-store inventory availability and it introduces a new shopping mode that may add conve-

nience to customers. The former effect (information effect) helps attract customers to the

store by letting them know about inventory availability, but it is a double-edged sword in

that when inventory is not available, it turns away customers who might be willing to visit

the store. The latter effect (convenience effect) applies when customers use the store pickup

functionality, as opposed to simply using BOPS as a source of availability information; it

draws customers to the store and may even open up new sources of demand.

When put together, the information and convenience effects of BOPS yield different profit

implications. Figures 1a and 1b present a clear distinction: in the “BOPS” regions, BOPS

leads to higher profits, but in the “Always” regions, BOPS leads to lower profits. The

difference between these two regions is that, prior to the introduction of BOPS, consumers

were already willing to visit the store in the latter but not in the former. These results

suggest that BOPS should be offered for products with weak store sales but not those with

strong records to begin with. In other words, it is likely profitable to implement BOPS on

in-store “underdogs” but may not be so for in-store “favorites.”
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2.5. Heterogeneous Customers

In this section, we incorporate customer heterogeneity. For example, some customers may

reside further away from the store than others; some may be more impatient than others

and are thus more averse to waiting for online delivery. In our model, the store and online

hassle costs hs, ho may now differ across customers. Specifically, customers are uniformly

distributed across the following “square” {(hs, ho)|hs ∈ [0, H], ho ∈ [0, H]}, where H > v−p

(i.e., some customers have a prohibitively high hassle cost in one channel). The goal is to

study the impact of BOPS on a retailer’s customer base in such a heterogeneous market.

We begin by considering the scenario in the absence of BOPS. In this case, each customer

has three options: go to the store, buy online, or leave the market. The corresponding

utilities are:

us = −hs + ξ̂(v − p) + (1− ξ̂)u+
o ,

uo = v − p− ho,

ul = 0,

where ξ̂ denotes the belief about store inventory availability as before. Note that customers

who find the store out of stock will buy online only if doing so is preferred over leaving the

market. As customers make utility-maximizing choices (which depend on their hassle costs

hs, ho), the market is divided into four segments, as depicted in Figure 3(a). Specifically,

there are “pure online” customers (who buy online directly), “store→online” customers (who

visit the store but switch online when the store is out of stock), “pure store” customers (who

visit the store exclusively), as well as customers who simply leave the market. Denote the

fractions of these four types of customer as αo, αso, αs, and αl, respectively. Given that

consumers are uniformly distributed in {(hs, ho)|hs ∈ [0, H], ho ∈ [0, H]}, we can find that

αo = v−p
H − ξ̂(v−p)2

2H2 , αso = ξ̂(v−p)2

2H2 , αs = ξ̂(v−p)(H−(v−p))
H2 , and αl = [H−(v−p)][H−ξ̂(v−p)]

H2 .
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On the supply side, the retailer faces the following profit function:

π(q) = pEmin ((α̂s + α̂so)D, q)− cq + rE (α̂s + α̂so)D

+wEα̂oD + wE α̂so
α̂s+α̂so

((α̂s + α̂so)D − q)+
(2.2)

where α̂o, α̂so, α̂s, and α̂l denote the retailer’s beliefs over the α’s above. Given the store

inventory level q, the newsvendor expected profit from selling the product in the store

channel is shown in the first two terms above. The third term captures the additional cross-

selling profit r from every customer coming to the store. The last two terms above show

the retailer’s online profit. The fourth represents profit from customers who shop online

directly; the last represents profit from customers who switch to online after encountering

stockouts in store, in which case we assume store customers have equal chance of being

rationed. With the profit function above, the retailer chooses q to maximize expected

profit.

Definition 2. A RE equilibrium (αo, αso, , αs, αl, q, ξ̂, α̂o, α̂so, α̂s, α̂l) satisfies the following:

i Given ξ̂, then αo = v−p
H − ξ̂(v−p)2

2H2 , αso = ξ̂(v−p)2

2H2 , αs = ξ̂(v−p)(H−(v−p))
H2 , and αl =

[H−(v−p)][H−ξ̂(v−p)]
H2 ;

ii. Given α̂o, α̂so, α̂s and α̂l, q = arg maxq π(q), where π(q) is given in (2.2);

iii. ξ̂ = A(q), where A(q) = Emin((αs+αso)D,q)
E(αs+αso)D

;

iv. α̂s = αs, α̂o = αo, α̂so = αso and α̂l = αl.

The following proposition gives the RE equilibrium. As before, we use the superscripts ·◦

and ·∗ to denote the no-BOPS and BOPS scenario, respectively.

Proposition 6. If p − c > w v−p
2H−(v−p) , then there are customers visiting store (α◦s =

ξ◦(v−p)(H−(v−p))
H2 > 0, α◦so = ξ◦(v−p)2

2H2 > 0) and q◦ = (α◦s + α◦so) F̄
−1

(
c

p−w v−p
2H−(v−p)

)
, where

the equilibrium store in-stock probability is ξ◦ =

min

(
D,F̄−1

(
c

p−w v−p
2H−(v−p)

))
ED . Otherwise, no

one comes to store and q◦ = 0, ξ◦ = 0.
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Next, we turn to the scenario where the retailer implements BOPS on the product. When a

customer uses BOPS, she experiences hassle in both online and offline worlds. For example,

she needs to go through the online payment process and she also has to go to the store

to pick up the product. As a result, we assume the hassle cost of using BOPS is given by

hb = βshs + βoho, where βs, βo ∈ (0, 1). Further, as explained before, all customers have

access to information about store inventory status before they visit the store.

Now, we consider customer choice in the presence of BOPS. There are two cases to consider.

First, when the store is in stock, the consumer faces a choice between four alternatives: buy

online (with payoff v−p−ho), buy in store (with payoff v−p−hs), use BOPS (with payoff

v − p − hb), or leave (with payoff 0). Based on their individual hassle costs, consumers

choose their shopping mode with the highest payoff. Second, when the store is out of stock,

only customers with ho < v − p will choose to buy online, while the rest will leave. With

the above decisions, the market is divided into six segments, as depicted in Figure 3(b).

In addition to the four segments described before, we now see “BOPS→online” customers

(who use BOPS if the store is in stock but switch online otherwise) and “pure BOPS”

customers. Denote the fraction of these two new types of customer as α∗bo and α∗b . We can

calculate the sizes of these six customer segments as follows:

α∗i =

∫∫
A∗i

1

H2
dhsdho, i = o, so, s, l, bo, b

where

A∗o = {(hs, ho) |v − p− ho > max(v − p− hs, v − p− hb, 0)}

A∗so = {(hs, ho) |v − p− hs > max(v − p− ho, v − p− hb, 0), v − p− ho > 0}

A∗s = {(hs, ho) |v − p− hs > max(v − p− ho, v − p− hb, 0), 0 > v − p− ho}

A∗l = {(hs, ho) |0 > max(v − p− ho, v − p− hs, v − p− hb)}

A∗bo = {(hs, ho) |v − p− hb > max(v − p− ho, v − p− hs, 0), v − p− ho > 0}

A∗b = {(hs, ho) |v − p− hb > max(v − p− ho, v − p− hs, 0), 0 > v − p− ho}
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Figure 3: Market Segmentation with and without BOPS

Next, the retailer’s profit function can be expressed as follows:

π(q) =pEmin ((α∗s + α∗b + α∗so + α∗bo)D, q)− cq + rEmin ((α∗s + α∗b + α∗so + α∗bo)D, q)

wEα∗oD + wE
α∗so + α∗bo

α∗s + α∗b + α∗so + α∗bo
((α∗s + α∗b + α∗so + α∗bo)D − q)

+

To understand this expression, note when the store inventory level is q, there are on average

Emin((α∗s + α∗b + α∗so + α∗bo)D, q) customers who come to the store, since they come to the

store only when a corresponding unit is available. The first two terms above correspond

to the newsvendor profit from selling the product and the third term corresponds to the

additional cross-selling profit. The last two terms represent the profit from the online

channel: the fourth term is the profit from those who buy online directly, while the fifth

term is the profit from those who prefer to go to store but buy online instead because of

store stockouts.

Proposition 7. When there is BOPS, the market outcome is given as follows:

• if p− c > w
α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo
− r, then there are customers visiting store and

q∗ = (α∗s + α∗b + α∗so + α∗bo) F̄
−1

(
c

p+r−w
α∗so+α∗

bo
α∗s+α∗

b
+α∗so+α∗

bo

)
;

• if p− c ≤ w α∗so+α
∗
bo

α∗s+α∗b+α∗so+α
∗
bo
− r, then no one ever comes to store and q∗ = 0.
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With a homogeneous population of customers, we identified three possible scenarios (as

shown in Figure 1 in Section 2.4). Consumers may: (i) always visit the store, (ii) never visit

the store, or (iii) visit the store only after BOPS is implemented. With a heterogeneous

consumer population, these types of behavior may coexist, as shown in Figure 4 (which

is obtained from comparing Figures 3(a) and 3(b)). In other words, there are three types

of customers, each exhibiting a specific response to BOPS. Moreover, the retailer’s profit

from each type of customer follows the same pattern as before. If a consumer always visits

the store (as those in the “Always” region), then the retailer’s profit from this customer

decreases after BOPS is implemented; she stops coming to the store once she knows that the

store is out of stock and thus the retailer loses the potential cross-selling benefit. Next, if a

consumer visits the store only after BOPS is implemented (as those in the “BOPS” region),

then BOPS increases retailer’s profit. Finally, if a consumer never shops in the store (as

those in the “Never” region), then offering BOPS does not affect the retailer’s profit.

Figure 4: When do consumers go to store?

The next proposition shows the impact of BOPS on the retailer’s overall customer base.

Proposition 8.

i. BOPS helps to expand market coverage, i.e., α∗s +α∗o +α∗b +α∗so+α∗bo > α◦s +α◦o +α◦so;

ii. Suppose r = 0. If there are customers visiting store when there is no BOPS, then there
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exists w̄ such that the implementation of BOPS decreases total profit (i.e., π∗ < π◦)

if βs + βo < 1 and w > w̄.

Before BOPS is implemented, customers who face high hassle costs in both store and online

channels do not consider purchasing from the retailer. Part (i) of Proposition 8 shows that

BOPS could provide a way for the retailer to reach these customers. By alleviating the risk

of stockouts and reducing the hassle of shopping, BOPS could attract some new customers

to join the market. This market expansion effect could also be seen from the reduction of

the “leave” region in Figure 3(b) compared to Figure 3(a).

While reaching out to new customers, BOPS may change the behavior of existing customers.

Specifically, the more convenient BOPS is, the more existing online customers will choose

to pick up their orders in store; this shift will hurt profits if the store profit margin is lower

than the online profit margin. This potential drawback of BOPS may exist even when r = 0,

as shown in Proposition 8(ii). In other words, apart from possibly eliminating cross-selling

opportunities (when r > 0) as discovered earlier, BOPS has another potential drawback of

shifting demand to a less profitable store channel.

2.6. Decentralized System

In this section, we study the scenario where the store and online channels are operated by

two separate teams, with the goal of understanding how BOPS revenue should be allocated.

We begin by examining the case with homogeneous customers and then later extrapolate our

findings to the case with heterogeneous customers. (A detailed analysis of the decentralized

system for the heterogeneous market is given in Appendix A.1.) We assume that the

conditions in Proposition 2 hold (i.e., min(hs, hb) ≤ ho and p− c > w− r) and BOPS hassle

cost is lowest (i.e., hb < min(hs, ho)); otherwise, there would be nobody using BOPS and the

issue of revenue allocation becomes irrelevant as the system collapses into two independent

channels.

We use θ ∈ [0, 1] to denote the share of BOPS revenue that the store obtains. In other
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words, for every customer who purchases online and picks up in the store, the store earns

θp from selling the product. Note that once the customer comes to the store, the store could

also get an additional profit r through cross-selling. Therefore, the total revenue that the

store could receive from fulfilling each unit of BOPS demand is θp + r. Then, the store’s

expected profit as a function of the stocking decision q̃ is given below. Here, we use the

“tilde” symbol (̃·) to denote the decentralized case.

π̃s = (θp+ r)Emin (D, q̃)− cq̃

Proposition 9. In the decentralized system, the store will stock q̃∗ which is given as follows:

• If θp+ r − c > 0, then q̃∗ = F̄−1
(

c
θp+r

)
;

• If θp+ r − c ≤ 0, then q̃∗ = 0.

In practice, according to the survey conducted by Forrester Research (Forrester, 2014), the

two most common revenue sharing schemes are either giving the store full credit (i.e., θ = 1)

or letting the online channel keep all the revenue (i.e., θ = 0). According to Proposition 9,

when θ = 1, the store will definitely stock the product to serve BOPS users, because he can

not only receive a positive profit margin from selling this particular product, but he may

also be able to cross sell other products to those who come to store for pickup. However, if

θ = 0, BOPS customers represent a pure cost to the store; then, the store may choose not

to stock the product in store, unless the cross-selling benefit is large enough to offset the

loss from serving BOPS customers (i.e., r > c).

What is the optimal share of BOPS revenue that should be allocated to the store? We

use π̃∗(θ) to denote total profit in the decentralized system with revenue allocation θ.

For any given θ, the next proposition compares decentralized and centralized inventory

decisions and shows that the store is usually either overstocked or understocked, relative to

the centralized benchmark. However, there is an optimal revenue share, under which the

decentralized system achieves the centralized optimal profit.
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Proposition 10. Total profit π̃∗(θ) is quasiconcave in θ. Moreover,

• if θ < p−w
p , then q̃∗ < q∗ and π̃∗(θ) < π∗;

• if θ = p−w
p , then q̃∗ = q∗ and π̃∗(θ) = π∗;

• if θ > p−w
p , then q̃∗ > q∗ and π̃∗(θ) < π∗.

Proposition 10 points out an incentive conflict between the store channel and the retail

organization. If the store channel obtains a large share of BOPS revenue, they tend to

stock too much. This is because the store channel considers only store profits but neglects

the fact that customers may still be willing to shop online after the store runs out of

inventory for customers to pick up. In contrast, if the store is allocated only a small share

of BOPS revenue, they tend to stock too little. Since the store channel incurs the inventory

cost for fulfilling BOPS demand, it is natural to suppress inventory to decrease exposure

to potential losses. In general, it is optimal to give the store partial credit for the revenue

earned from BOPS customers. In fact, our result also shows that such a simple revenue

sharing mechanism is sufficient for the retailer to fully coordinate the store and online

channels.

Proposition 10 shows that the optimal revenue share θ∗ = p−w
p coordinates the decentralized

system and achieves the centralized optimal profit π∗. With this optimal revenue share,

the incentives of the store channel are aligned with the entire organization. According to

Proposition 9, the decentralized store channel holds stock if and only if θp + r − c > 0.

However, from the perspective of the entire organization, as we have shown in the previous

section, it is optimal to stock the product in the store as long as p−c > w−r, i.e., whenever

the store margin p− c, combined with the cross-selling benefit r, exceeds the online margin

w. The revenue share θ that aligns both sets of incentives is precisely θ∗ = p−w
p .

Note that the optimal share for the store channel θ∗ = p−w
p is decreasing in w. The reason

is as follows. As the online margin w increases, it becomes more profitable to sell through
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the online channel. However, in the absence of BOPS, the store will continue to stock the

same amount of inventory since they tend to neglect the profit from online orders. Through

sharing the BOPS revenue, the retail organization has a natural way to correct for the

misaligned incentive. By allocating less revenue to the store channel for fulfilling BOPS

demand, the retail organization can induce the store channel to lower their inventory level.

This compensates for the incentive conflict and allows more demand to flow to the more

profitable online channel.

Although Proposition 10 shows that the optimal revenue sharing mechanism will achieve

full centralized profits in a homogeneous market, Appendix A.1 presents a different result

for a heterogeneous market. Specifically, when the proportion of customers who use the

BOPS functionality is too low, the amount of BOPS revenue to be shared between the

channels may be insignificant and as a result, a simple revenue sharing mechanism cannot

fully coordinate the omnichannel retail system. The analysis in Appendix A.1 highlights

the benefit as more customers adopt BOPS: the increased stream of BOPS revenue can

provide headquarters with more leverage to alleviate incentive conflicts between the store

and online channels.

Omnichannel retailers who recognize the incentive conflicts brought about by BOPS have

begun to experiment with simple revenue sharing schemes. A common and simple approach

is to assign full credit for the sale of a BOPS item to both store and online channels. In other

words, there is some double counting on internal books that are subsequently adjusted for.

Depending on accounting protocols, this method is usually akin to allocating equal revenue

shares to each channel. Since the optimal revenue share may not be 50%, the simple

heuristic described above has room for improvement, and our analysis provides a possible

way to think about how to do so.

In practice, a retailer may carry a large number of SKUs with different prices and margins.

Admittedly, it would be impractical to set a different revenue sharing parameter θ for each

SKU. Instead, a retailer may want to have a common θ for a group of products. In such
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case, since the optimal profit function π̃∗(θ) is quasiconcave in θ, the optimal θ∗’s given in

Proposition 10 for the group of products could serve as benchmarks for the retailer to find

a common compromise θ that is close enough to each of the different θ∗’s.

2.7. Conclusion

In this chapter, we study a specific omnichannel fulfillment strategy: buy-online-and-pick-

up-in-store (BOPS). We develop a stylized model that captures essential elements of om-

nichannel retail environments; in particular, consumers strategically choose channels for

purchase and fulfillment. We find that BOPS attracts consumer demand through an in-

formation effect and a convenience effect. The former effect arises because BOPS reveals

real-time information about store inventory availability. Products that are available for

store-pickup must be in stock. With this assurance, customers are more willing to visit

the store. The latter effect arises because BOPS offers a new and possibly more conve-

nient mode of shopping. By helping consumers pick out items and move them to checkout

counters, BOPS reduces the hassle of shopping.

Even though BOPS is a popular fulfillment option among consumers, we find that retailers

need to be cautious when implementing it. Retailers can benefit from this new fulfillment

strategy by being selective when choosing the set of products eligible for in-store pickup.

BOPS can help attract more customers to the store and thus boost the sales of products

that were previously not selling well; however, for store bestsellers, offering the BOPS option

may have the unintended consequence of reducing store traffic. Moreover, although BOPS

can be a good strategy for a retailer to build up its customer base, BOPS may at the same

time drive existing online customers to the store channel where the profit margin might

be lower compared to the online channel. Finally, retailers with decentralized operations

can maximize profits by allocating BOPS revenue between the online and store channels

appropriately, and giving full credit to either channel is seldom optimal.

To simplify the analysis, we have imposed two assumptions in our model: (1) The online
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channel is exogenous and always in stock, and (2) all customers check the information online

when BOPS is offered. As robustness checks, we have built two model extensions to relax

the assumptions above. Specifically, in Appendix A.2.1, we consider the case where the

retailer has limited inventory in both the store and online channels; in Appendix A.2.2,

we consider customers who simply head to the store by default (e.g., they may forget or

simply not care to check websites beforehand). Our key results remain valid in these model

extensions.

Beyond the scope of our current analysis is the potential impact of BOPS on operational

costs. On the one hand, BOPS helps to reduce online shipping costs since it transfers the

burden of last-mile delivery to customers. On the other hand, BOPS is accompanied by

new fulfillment responsibilities wherein a retailer’s comparative advantage may not lie. For

example, stores need to train their workforce to perform pick-and-pack tasks in a timely

fashion (Forrester, 2014), and to handle increased demand, stores need to hire more employ-

ees to deal with online orders (Business Insider, 2012). A more careful cost-based analysis

of BOPS is left as an interesting topic for future research.

The omnichannel strategy discussed in this chapter, BOPS, addresses purchases that origi-

nate online but are completed in the store. In the spirit of Bell et al. (2014), who provide

a framework for omnichannel retail, BOPS customers receive information online but their

demand is fulfilled in the store. The reverse type of shopping behavior is where customers

research the product in stores and then shop online, usually at lower prices. This is known

as showrooming behavior and has been critiqued widely: showroomers and e-tailers are ac-

cused of free-riding on inventory displays at brick-and-mortar stores (Wall Street Journal,

2012b,a). Recent research by Balakrishnan et al. (2014) shows that showrooming behavior

intensifies retail competition, and Mehra et al. (2013) studies how a brick-and-mortar re-

tailer can counteract showrooming behavior through strategies such as price matching and

retail club memberships. Taking the e-tailer’s perspective, Bell et al. (2015) empirically

studies the value of providing offline showrooms to mitigate customer uncertainty. We hope
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that our model in this chapter can contribute to this exciting line of research.
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CHAPTER 3 : Online and Offline Information for Omnichannel Retailing

3.1. Introduction

In the present world of constant connectivity, the consumer’s journey from product discovery

to eventual purchase often involves multiple shopping channels (UPS, 2014). It is not

uncommon for shoppers to browse products in stores and then place an order online, or

to extensively research products online before completing the purchase in a physical store

(Brynjolfsson et al., 2013). Consumers are becoming sophisticated enough to optimize their

shopping experience by exhaustively considering all possible alternatives across all possible

channels. As a result, retailers face immense pressure to integrate the best of both digital

and physical worlds at each step of the customer experience (Rigby, 2011). This is the spirit

of omnichannel retailing, which is fast becoming the norm in the industry (Forrester, 2014).

One of the greatest challenges in the omnichannel environment is to effectively deliver

information (Bell et al., 2014). As consumers actively seek information about product

value and inventory availability, retailers can influence shopping paths by managing the

sources of information. In this chapter, our goal is to understand how information influences

omnichannel consumer behavior and retailer performance.

Displaying products in a showroom is one of the most common ways for retailers to convey

product information to consumers. Typically, consumers can inspect the line of products on

display whenever they come to the store. Although most commonly implemented in stores

of home furniture and consumer electronics, the idea of showrooms has also been recently

adopted by fashion e-tailers such as Bonobos and Warby Parker (New York Times, 2014;

Wall Street Journal, 2014b). These companies have set up pure showrooms with products

purely for display purposes: customers finding something they like in the showrooms can

make a purchase by placing an order on the corresponding website. Although pure show-

rooms may carry a small amount of inventory, their primary function is information rather

than fulfillment; Bell et al. (2015) demonstrate that the former can help generate profits by
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reducing online returns. In this sense, setting up showrooms can be a useful strategy for

omnichannel retailers.

In recent years, showrooms have moved from physical into digital domains. With the

development of virtual reality technology, online shoppers can now try on different products

as if they were in the store (Financial Times, 2011). For example, on the website of BonLook,

an eyewear retailer, consumers can upload their own photos to see how different frames will

look on their digital faces. Similarly, on the website of UK luxury shirt brand Thomas Pink,

consumers can check the fit of a shirt through a digital avatar. Many advanced technologies

are now available from an increasing variety of providers. For example, Metail provides

visualization technology that creates 3D models of shoppers based on a few customized

measurements, while Shoefitr uses 3D scanning technology to measure the insides of shoes

with accuracy up to a quarter of a millimeter (CNET, 2010). With these advances, virtual

showrooms are no longer a figment of imagination as shoppers can now experience products

first-hand anywhere and anytime. As online channels face more pressure from product

returns, which are estimated to account for a third of all Internet sales (Wall Street Journal,

2013a), virtual showrooms will likely become a potential remedy (Bell et al., 2014; CNBC,

2015b).

While product uncertainty may discourage purchase, availability uncertainty may discour-

age patronage. Recognizing this customer concern, many retailers have started to provide

real-time store availability information online. Shoppers can simply enter a zip code to

check the current status of nearby stores (e.g., whether or not a product is in stock, or how

much inventory is available). In fact, many retailers go a step further, allowing customers

to complete the transaction online and pick up their order in the store shortly after; recent

studies of this buy-online-pick-up-in-store option (Gallino and Moreno, 2014; Gao and Su,

2016a) highlight the importance of availability information. Simply put, some customers

will shop in a store only if they know that a product is in stock.

In this chapter, we study the following three types of information mechanisms. Physical
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showrooms allow consumers to inspect products in the store even when it is out of stock;

this may involve setting aside units as permanent display models. Virtual showrooms, by

mimicking physical presence, enable online shoppers to evaluate products without coming to

the store; product value uncertainty is reduced but still present because technology is never

perfect. Availability information allows customers who have not visited the store to learn

whether or not it has a product in stock, so that they may choose a different shopping path

in each case. What is the impact of each of these three mechanisms? Which combination

should a retailer implement? These are the research questions that we study in this chapter.

To address these questions, we develop a stylized model that captures essential elements

of omni-channel retail environments. There is a retailer who operates online and store

channels. Consumers strategically make channel choices to maximize individual utility. An

important feature of our model is that consumers face product value uncertainty. Consumers

who visit the store can inspect the product (if it is in stock) to fully learn their valuation

before deciding whether to purchase; however, consumers who purchase online may later

realize that they do not like the product and end up returning it. Demand is random. In

the store channel, the retailer chooses a stocking quantity before demand is realized and

may end up with leftovers or stockouts; however, in the online channel, the retailer obtains

supply after demand is realized and is hence able to satisfy all orders. In our analysis, we

first study each information mechanism (i.e., physical showrooms, virtual showrooms, or

availability information), and then we examine potential interaction effects among them to

determine the optimal information structure.

We summarize our main findings below.

First, physical showrooms attract customers to the store because they help customers re-

solve product value uncertainty regardless of whether the product is in or out of stock. In

particular, during stockouts, shoppers who learn from the showroom display that they do

not like the product can avoid making an unnecessary purchase online. In this way, phys-

ical showrooms help to reduce returns from customers who encounter a stockout in store,
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substitute online, and then return the product (which may lead to a net loss). Although

physical showrooms reduce the cost of stockouts, they create a temptation for retailers to

lower store inventory levels, and customers who are sensitive to availability risk may prefer

to buy online instead. This leads to more returns and lower profit. Our results thus caution

that physical showrooms are not always profitable, and retailers should make the best effort

to maintain satisfactory inventory service levels in stores equipped with showrooms.

Second, virtual showrooms reduce product value uncertainty online, by screening out con-

sumers who do not like the product before any purchase takes place. Understandably,

returns go down and profits go up. However, our results raise another red flag. Sometimes,

virtual showrooms make online shopping so attractive that customers who were originally

shopping in store choose to migrate online. When there is significant customer migra-

tion online, total returns may go up (even as return rates go down) simply because many

more customers are buying online before product value is completely ascertained (recall

that virtual showrooms reduce but do not completely eliminate product value uncertainty).

Therefore, our results suggest that virtual showrooms are profitable as long as they do not

induce too much customer migration to the online channel.

Third, availability information eliminates availability risk and thus attracts customers to the

store. Although availability information may sometimes be redundant (e.g., when consumers

are already willing to visit the store even without availability information), it does not

hurt profits when implemented on its own. However, when implemented together with

showrooms, it may hamper their effectiveness. For example, suppose a retailer with physical

showrooms now offers availability information as well. Then, when the store is in stock,

customers may show up and be able to learn their valuation from the physical showroom;

however, once customers realize that the store is out of stock, they may not show up. In

this sense, providing availability information makes physical showrooms less useful.

Finally, the information mechanisms studied above do not exhibit significant complemen-

tarities because there are potential overlaps in how they impact consumer behavior. Specif-
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ically, physical showrooms and availability information both attract customers to the store,

and both physical and virtual showrooms mitigate product value uncertainty. Given these

overlaps, the optimal information structure often involves choosing one of the three mech-

anisms. For products that are traditionally afflicted with high online return rates, retailers

should establish physical showrooms; however, for products with relatively more manage-

able online return rates, retailers should consider implementing virtual showrooms, and

possibly also provide availability information to maintain the attractiveness of the store

channel.

3.2. Literature Review

Similar to Chapter 2, this chapter also studies the management of online and offline channels.

The traditional literature on channel management focuses on the situation where different

channels are operated by different companies, e.g., Chiang et al. (2003), Cattani et al.

(2006), Chen et al. (2008), and Netessine and Rudi (2006). In contrast to this stream

of work, we focus on an omnichannel environment, where a retailer operates both online

and offline channels in an integrated way (Bell et al., 2014; Brynjolfsson et al., 2013; Rigby,

2011). In this environment, most operations management papers focus on new omnichannel

fulfillment methods. For example, Gallino and Moreno (2014) empirically test the impact

of buy-online-and-pick-up-in-store (BOPS) on a retailer’s sales in both online and offline

channels, while Gao and Su (2016a) (which is based on Chapter 2 of this dissertation)

study the implementation of BOPS and its implications on channel coordination from a

theoretical perspective. Gallino et al. (2016) investigate another widely-used omnichannel

fulfillment option, i.e., ship-to-store, and empirically demonstrate that within a group of

SKUs, the share of sales of bottom-selling items increases. In contrast to these papers, we

focus how to effectively provide information to consumers in the omnichannel environment.

A closely related paper is Bell et al. (2015), which studies the impact of physical showrooms

on consumers’ channel choice. They find that with the introduction of physical showrooms,

customers with a greater need for product information self-select into the physical channel,
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leading to reduced online returns and increased overall demand. In this chapter, we study

physical showrooms, as well as virtual showrooms and availability information.

There is a large literature devoted to the question of how a firm can induce purchases

from consumers facing product value uncertainty. The most widely studied mechanism

is product returns. Che (1996) and Davis et al. (1995) consider the case where a seller

offers full refunds (or money-back guarantees). Davis et al. (1998) focus on the consumer

hassle costs during the return process, and Moorthy and Srinivasan (1995) show that full

refunds can signal product quality. More recent papers study refund policies in conjunction

with supply chain contracts (Su, 2009), overbooking (Gallego and Sahin, 2010), demand

cannibalization (Akçay et al., 2013), and discount voucher (Gao and Chen, 2015); another

paper by Hsiao and Chen (2012) finds that sellers of low-quality products may have to offer

a refund that exceeds the selling price. The papers above study how returns/refunds can

be used to limit the downside of a bad purchase, but in this chapter, one of our goals is to

reduce the incidence of bad purchases in the first place. To this end, our physical and virtual

showrooms directly reduce product value uncertainty by allowing consumers to experience

products prior to purchase. Ultimately, showrooms and returns policies complement each

other because they serve different functions: while returns policies provide insurance against

consumer loss, showrooms provide product value information.

There is a stream of literature on using product availability as a strategic lever to attract

demand. Being averse to stockouts, consumers may be reluctant to incur the hassle of

going to a store. This practical issue has motivated much work in operations management.

Following the classic paper by Dana and Petruzzi (2001), which extends the newsvendor

model by endogenizing demand as a function of both price and inventory level, many pa-

pers have looked at different strategies to influence consumers’ shopping decisions. Su and

Zhang (2009) show that it is always beneficial to the retailer if he can credibly make an ex

ante quantity commitment. Yin et al. (2009) investigate the impact of two different display

formats, i.e., display-all versus display-one. Allon and Bassamboo (2011) study a situation
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where a retailer could share unverifiable and nonbinding (i.e., cheap talk) inventory infor-

mation with consumers. Alexandrov and Lariviere (2012) examine the role of reservations

in the context of revenue management. Cachon and Feldman (2015) study dynamic pricing

and find that frequent discounts can attract customers to the store. In contrast to the

previous studies, in this chapter, we consider a different mechanism where a retailer shares

real-time store availability information that reflects the current inventory level available to

each individual customer.

3.3. Base Model

There is a retailer who sells a product through two channels, store and online, at price p.

In the store channel, the retailer faces a newsvendor problem: there is a single inventory

decision q to be made before random demand is realized, so there may eventually be un-

met demand or leftovers in the store. The unit cost of inventory is c, which includes the

production/procurement cost and other store-related costs, e.g., the transportation cost of

shipping the product to store and the inventory holding cost in store. Leftover units have

no value. The online channel is modeled exogenously: for each unit sold online, the retailer

obtains a net profit margin w if it is not returned, and incurs a net loss r otherwise.

The market demand D is random and follows distribution F . A fraction of θ ∈ (0, 1) of

the population has positive value v for the product, and a fraction 1 − θ has zero value.

We refer to the former as “high types,” the latter as “low types,” and the parameter

θ as the “high-type probability.” Customers are homogeneous ex ante: they don’t know

their valuation (or type) beforehand, but θ and v are common knowledge. Customers may

learn their valuations before purchase only if they examine the product in store; otherwise,

customers learn valuations after purchase. In particular, online purchases may be returned,

as described below.

Each consumer makes a choice between shopping online directly or going to the store. If she

chooses to buy online directly, she incurs hassle cost ho (e.g., paying shipping fees or waiting
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for the product to arrive), and realizes her valuation only after receiving the product. If she

likes the product (i.e., she is high type), then she keeps it and receives payoff v − p− ho; if

she dislikes the product (i.e., she is low type), then she returns it. Returns are costly to both

the retailer and the consumers: each returned unit generates net loss r > 0 to the retailer

and an additional hassle cost hr > 0 to the consumer. We assume that low type consumers

prefer returning the product to keeping it, i.e., hr < p. Therefore, the consumer’s expected

payoff from buying online directly is given by

uo = θ(v − p− ho)− (1− θ)(ho + hr).

On the other hand, if the consumer chooses to go to the store, she has to first incur hassle

cost hs (e.g., traveling to the store or searching for the product in aisles). We stress that

the store hassle cost hs is incurred before customers find and purchase the product in the

store, whereas the online hassle cost ho above is incurred after customers make the purchase

online. Once she is in the store, the customer may encounter two possible outcomes: (1)

If the store has the product in stock, then she can evaluate the product on the spot: a

high type makes a purchase and receives payoff v − p, while a low type leaves without

any purchase and receives payoff 0. (2) If the store is out of stock, she cannot resolve her

value uncertainty in store, but she can buy the product online and receive an expected

payoff uo instead. Let ξ denote the probability that the store is in stock, and let ξ̂ denote

consumers’ beliefs about this probability; throughout this chapter, we use the hat notation ·̂

to denote beliefs. We assume that customers arrive sequentially to the market, all customer

permutations are equally likely, and customers do not know their order of arrival. As a

result, everyone has the same belief ξ̂. Then, given belief ξ̂, each consumer’s payoff from

visiting the store can be expressed as follows:

us(ξ̂) = −hs + ξ̂θ (v − p) + (1− ξ̂)uo.

Consumers compare the expected utility from each channel and chooses accordingly. In
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the spirit of omnichannel choice, i.e., consumers are willing to consider both channels, we

assume v is large enough so that us(1) ≥ 0 and uo ≥ 0.

Next, we consider the retailer’s decision problem. First, the retailer anticipates that a

fraction φ̂ ∈ [0, 1] of customers will visit the store. Then, if total demand is D, the retailer

expects that the number of customers coming to the store will be φ̂D; also, since only

high-type customers will eventually make a purchase in the store, given the store inventory

level q, the retailer expects that the number of store customers who find that the store has

the product in stock is Din (q) = min
(
φ̂D, qθ

)
, and the remaining Dout (q) =

(
φ̂D − q

θ

)+

will encounter stockouts when they come to the store. Note that even though the inventory

is q, up to q
θ customers may examine the product in the store because only a fraction θ of

those customers will buy. Then, the retailer’s profit is as follows:

π (q) = pθEDin (q)− cq (3.1)

+ [wθ − r(1− θ)]EDout (q) (3.2)

+ [wθ − r(1− θ)](1− φ̂)ED (3.3)

Given the store inventory level q, the newsvendor expected profit from selling the product

in the store channel is shown in the first term (3.1) above. The next two terms respectively

represent profit from customers who switch online after encountering stockouts in the store

and customers who buy online directly. For each unit of online demand, the expected profit

is wθ−r(1−θ), because a fraction (1−θ) of online sales are returned. Again, in the spirit of

omnichannel retailing, we assume wθ− r(1− θ) > 0 so that the retailer is willing to operate

both channels. Finally, the retailer chooses inventory level q to maximize expected profit.

To study the strategic interaction between the retailer and the consumers, we shall use the

rational expectations (RE) equilibrium concept, as what we did in Chapter 2. One impor-

tant feature of a RE equilibrium is that beliefs must be consistent with actual outcomes. In

other words, the retailer’s belief φ̂ must coincide with the true proportion φ of consumers
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choosing the store channel, and consumers’ beliefs over in-store inventory availability ξ̂ must

agree with the actual in-stock probability corresponding to the retailer’s chosen quantity q.

This probability is given by A(q) = Emin(φD, qθ )/E(φD), where φ > 0, using the derivation

from Deneckere and Peck (1995) and Dana (2001). Then, we have the following definition

for a RE equilibrium. Henceforth, we refer to the RE equilibrium as “equilibrium” for

brevity.

Definition 3. A RE equilibrium (φ, q, ξ̂, φ̂) satisfies the following:

i Given ξ̂, if us(ξ̂) > uo, then φ = 1; otherwise φ = 0;

ii. Given φ̂, q = arg maxq π(q).

iii. ξ̂ = A(q).

iv. φ̂ = φ.

Conditions (i) and (ii) state that under beliefs ξ̂ and φ̂, the consumers and the retailer are

choosing the optimal decisions. Conditions (iii) and (iv) are the consistency conditions.

First, note that there is always a nonparticipatory equilibrium (0, 0, 0, 0). If the retailer

expects that no one will come to the store, he will stock nothing there, i.e., q = 0; If

consumers believe there is no inventory in the store, they will not come, i.e., φ = 0. In the

end, we have a self-fulfilling prophecy and beliefs are trivially consistent with the actual

outcome.

Is there any participatory equilibrium where consumers are willing to visit the store and the

retailer has stock in the store as well (i.e., φ = 1 and q > 0)? When such an equilibrium

exists, it Pareto-dominates the nonparticipatory equilibrium. The reasoning is as follows.

In the participatory equilibrium, customers choose to visit the store rather than buying

online directly (as what they would do in the nonparticipatory equilibrium), so they must

be better off in the former. Similarly, the retailer prefers to stock q > 0 in the participatory

equilibrium rather than choosing q = 0 (which leads customers to buy online and yields
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the same profit as the nonparticipatory equilibrium), so the retailer must also be better

off in the participatory equilibrium. In this chapter, we shall adopt the Pareto dominance

equilibrium selection rule. The following proposition gives the equilibrium result; we use

the superscript (·◦) to denote the equilibrium outcome for this base scenario.

Proposition 11. There exists a threshold ψ◦ ∈ [0, 1] such that

• if θ < ψ◦, then consumers visit the store and q◦ = θF̄−1

(
c

p−w+r 1−θ
θ

)
> 0;

• if θ ≥ ψ◦, then consumers buy online directly and q◦ = 0.

Proposition 11 shows that consumers come to the store only if the high-type probability

is low (i.e., θ < ψ◦) and they recognize the need to touch and feel the product before

making a purchase. In this case, the retailer prepares a positive amount of inventory in the

store to accommodate consumer demand. To the retailer, the overage cost is simply the

inventory cost c and the underage cost is given by p− c− w + r 1−θ
θ . The latter expression

is the combination of two effects. First, each unit of underage is a lost opportunity of

selling to a high type, who buys online instead, leading to a difference in profit margin of

p− c−w. Second, each unit of underage is also a lost opportunity for customers to realize

their valuations (by inspecting that unit of inventory); corresponding to one high type who

could have bought this unit are 1−θ
θ low types who could have realized their low valuations

and thus avoided the return cost r. Thus, as the online return cost r increases, the retailer

holds more inventory, purely for informational purposes.

3.4. Physical Showrooms

Previously, in the base model, consumers can evaluate the product in the store only if it is

in stock. Now suppose that there is a physical showroom in the store, so that consumers

can always inspect the product, even when it is out of stock. In this section, we study the

equilibrium outcomes and profit implications of adding such a physical showroom.

As before, we start by considering the consumer’s choice between shopping online and
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in store. The consumer’s payoff from visiting the store is us(ξ̂) = −hs + ξ̂θ (v − p) +

(1− ξ̂)θ (v − p− ho), given her belief about store inventory availability ξ̂. Note that the

first two parts of us remain the same as in the base model. The only change occurs in the

third term: when the consumer encounters stockouts in store, she is still able to realize her

valuation from the physical showroom; she chooses to purchase online and receives payoff

v − p − ho only if she is of high type. The consumer’s payoff from buying online directly,

on the other hand, remains unchanged as uo = θ(v − p− ho)− (1− θ)(ho + hr).

The retailer has a belief φ̂ about the fraction of consumers who would visit the store. Given

this belief, the retailer’s profit is as follows.

π (q) = pθEDin (q)− cq (3.4)

+ wθEDout (q) (3.5)

+ [wθ − r(1− θ)](1− φ̂)ED (3.6)

Comparing this to the profit function in the base model, we note that the only difference

occurs in the term (3.5): this is because the physical showroom allows low types who

encounter stockouts to learn their types and thus avoid the trouble of buying online and then

returning. However, the two profit functions become identical when r = 0. Nevertheless, the

retailer may still obtain different profits in equilibrium because consumer channel choices

may change after the implementation of physical showrooms (i.e., φ in equilibrium may be

different), as shown below.

Similar to the analysis of the base model, we apply the notion of RE equilibrium to describe

the market outcome. We use superscript ·p to denote physical showrooms.

Proposition 12. With physical showrooms, there exists a threshold ψp ∈ [0, 1] such that

• if θ < ψp, then consumers visit the store and qp = θF̄−1
(

c
p−w

)
≥ 0;

• if θ ≥ ψp, then consumers buy online directly and qp = 0.
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Moreover, ψp > ψ◦ if and only if r ≤ r̄ for some r̄ ≥ 0.

Proposition 12 (after the provision of physical showrooms) differs from Proposition 11 (be-

fore the provision of physical showrooms) in two significant ways. First, with a physical

showroom, it may be rational for consumers to visit the store even if they correctly expect

that there is no inventory held in store. Specifically, note that when p− c ≤ w and θ < ψp,

the optimal store inventory is 0 but consumers still visit the store. In this case, the store

serves as a pure showroom: Consumers can always evaluate their valuations in store, but

they must make purchases online since there is no inventory in the store. The idea of pure

showrooms has been pioneered by e-tailers such as Warby Parker and has proven to be

effective in curbing high online return rates (Bell et al., 2015). It is not surprising that

pure showrooms are mostly adopted by e-tailers (i.e., with w higher than p − c); as these

e-tailers establish a brick-and-mortar presence, they start holding inventory in the store.

This is consistent with Warby Parker’s recent move: in their stores, consumers can now buy

non-prescription glasses and sunglasses to take with them.

Another difference between Propositions 11 and 12 is the change in store inventory level.

Because low-type consumers will never buy online when the store is out of stock (since they

can learn that they are of low type via the physical showroom), the underage cost decreases

from p− c− w + r 1−θ
θ to p− c− w. As a consequence, the retailer holds less inventory in

the store (i.e., qp ≤ q◦).

A reduction in store inventory level has a large impact on the channel choice of consumers.

Consumers face two types of uncertainty during the shopping journey: (1) product value

uncertainty, i.e., the possibility of buying something they do not like, and (2) availability

uncertainty, i.e., the possibility of going to the store but encountering a stockout. By allow-

ing consumers to inspect the product any time they come to the store, physical showrooms

help to resolve product value uncertainty, which could attract consumers to visit the store;

however, at the same time, the physical showrooms prompt the retailer to lower the store

inventory level, which would increase availability risk and thus push consumers to the online
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channel. As a result, whether consumers are more likely to visit the store after physical

showrooms are set up depends on which one of the two opposing effects is more significant.

When returns are not too costly for the retailer (i.e., r is small), the reduction of store

inventory is small, so the first effect above dominates and physical showrooms attract some

customers to the store (i.e., ψp > ψ◦). In contrast, when the return cost r is very large, the

second effect dominates and physical showrooms may drive consumers online (i.e., ψp < ψ◦).

This consumer equilibrium behavior can be summarized in Figure 5.

Figure 5: Comparison of consumer behavior with and without physical showroom

Proposition 13. Compared to base model,

• if θ < ψp, then providing physical showrooms increases total profit (i.e., πp > π◦);

• if ψp < ψ◦ and θ ∈ [ψp, ψ◦), then providing physical showrooms reduces total profit

(i.e., πp < π◦);

• if θ ≥ max(ψp, ψ◦), then providing physical showrooms generates the same amount of

profit (i.e., πp = π◦).

According to Proposition 13, when the high-type probability is sufficiently large, i.e.,

θ ≥ max(ψp, ψ◦), then the physical showroom does not make a difference since consumers

will always purchase online. Offering a physical showroom is profitable to the retailer as

long as customers actually visit the showroom in store (as when θ < ψp). Note that in this

case, if the store is out of stock, consumers simply check the product in store but eventually

complete the purchase online. This shopping behavior is known as showrooming, but is gen-
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erated by stockouts rather than price differences. Though consumer showrooming behavior

has been critiqued widely because showroomers often end up buying from a competitor’s

website (Wall Street Journal, 2012b,a), our result implies that it may still be beneficial to

the retailer if consumers facing stockouts can be persuaded to make the purchase on the

retailer’s own online channel.

However, physical showrooms may have a negative effect on the retailer’s profit when θ

is moderate, i.e., θ ∈ [ψp, ψ◦). In this range, consumers would have come to the store in

the base model, but now choose to buy online instead because they do not anticipate high

in-stock probability in the store. In this case, the retailer would see an increase in returns

and a decrease in profit; this is because the online purchases by low types will end up in

returns. According to a comprehensive numerical study, the details of which are given in

Appendix A.5, the implementation of physical showrooms leads to a reduction in profit for

about 4.34% of 914,895 different parameter combinations, most of which arise when the

store profit margin p− c is lower than the online profit margin w.

3.5. Virtual Showrooms

Suppose the retailer implements virtual showrooms in the online channel. By trying on the

product virtually, consumers receive an imperfect signal of their valuations. For modeling

convenience, we assume that the signal S is binary, i.e., a group of consumers remain

interested in the product (i.e., S = 1) while the remaining discover that the product is

not for them and leave (i.e., S = 0). Further, we assume that the latter group consists of

a fraction α ∈ (0, 1] of the low-type customers, i.e., the probabilities that a low-type and

a high-type customer receives a signal S = 0 are P (S = 0|L) = α and P (S = 0|H) = 0,

respectively, where L and H denotes the consumer type (i.e., low and high). In other words,

the virtual showroom only screens out some of low-type customers, while potential high-

type customers still have interest in the product after trying the product virtually. Note if

α = 1, the virtual showroom offers a perfect signal and all consumers learn their types, but

if α < 1, the virtual showroom screens out a fraction α of the low types. We thus interpret
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α as the degree of informativeness of the virtual showroom.

We apply Bayesian updating to the beliefs of those consumers who remain interested in

the product. This group includes all potential high-type customers and a fraction 1− α of

the potential low-type customers. Let θ′ denote the posterior probability of a remaining

customer (i.e., those who received signal S = 1) being high-type. Then, given the priors

P (H) = θ and P (L) = 1 − θ, we have θ′ = P (H|S = 1) = P (S=1|H)P (H)
P (S=1|H)P (H)+P (S=1|L)P (L) =

θ
1−α(1−θ) > θ. Then, the two models, with and without virtual showrooms, are very similar.

The only difference is that virtual showrooms generate a new consumer pool by filtering

away some potential low-type consumers. As a result, the total demand size is D′ = P (S =

1)D = [1− α(1− θ)]D (with cdf F ′(x) = F ( x
1−α(1−θ)) for any x) and a fraction θ′ of them

is of high type. Thus, similar to Proposition 11, the equilibrium outcome is given in the

following proposition; we use the superscript (·v) to denote the equilibrium outcome for the

scenario with virtual showrooms. Henceforth, without further specification, we simply refer

to this new pool of consumers as the retailer’s consumers.

Proposition 14. With virtual showrooms, there exists a threshold ψv ∈ [0, ψ◦] such that

• if θ < ψv, then consumers visit the store and qv = θ′F̄ ′
−1
(

c

p−w+r 1−θ′
θ′

)
> 0;

• if θ ≥ ψv, then consumers buy online directly and qv = 0.

Comparing Proposition 14 (after the provision of virtual showrooms) and Proposition 11

(before the provision of virtual showrooms), since ψv ≤ ψ◦, virtual showrooms may at-

tract customers to buy online instead of in the store (see Figure 6). This is not surprising.

Virtual showrooms give consumers a similar hands-on experience as in the store. With de-

creased product value uncertainty, shopping online becomes more productive and appealing

to consumers.

Interestingly, virtual showrooms are similar to consumer reviews; both provide online con-

sumers with product information to help them alleviate value uncertainty. However, while

reviews provide subjective information from other consumers, virtual showrooms provide
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Figure 6: Comparison of consumer behavior with and without virtual showroom

objective information from the retailer. Therefore, consumer reviews may be subject to

self-selection biases, e.g., Li and Hitt (2008), and they can also be influenced through dy-

namic pricing, as in Papanastasiou and Savva (2016); Yu et al. (2015). In contrast, virtual

showrooms offer information content that is immune to strategic manipulation.

Proposition 15. Compared to the base model,

• if θ < ψv or θ ≥ ψ◦, then providing virtual showrooms increases total profit, i.e.,

πv > π◦;

• if θ ∈ [ψv, ψ◦), there exists w̄ such that providing virtual showrooms increases total

profit (i.e., πv > π◦) if w > w̄; but reduces total profit (i.e., πv < π◦) if w < w̄.

There are three cases discussed in Proposition 15. First, if consumers have a small high-

type probability (i.e., θ < ψv), then they always turn to the physical store for validation

before making any purchasing decision. When the store is out of stock, consumers may

choose to buy online directly before resolving product value uncertainty. In this case,

virtual showrooms help by screening out some low-type consumers beforehand so that the

potential number of returns will be smaller.

Second,if consumers have a large high-type probability (i.e., θ ≥ ψ◦), then they are com-

fortable buying online. In this case, virtual showrooms serve as the main source of product

information for consumers. By screening out potential low-type customers before they make

any purchase on the website, virtual showrooms help to avoid returns and increase profits.
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However, when θ ∈ [ψv, ψ◦), implementing virtual showrooms may backfire. In this case,

consumers originally visit the store in the base model, but virtual showrooms attract them

to buy online instead. Although the online return rate decreases from 1 − θ (without

virtual showroom) to 1 − θ′ (with virtual showroom), total returns may increase. This is

because more people now choose to buy online, including low types who are destined to

return their purchases. The resulting increase in returns will drive down total profit. Unless

the online profit margin is high enough, customer migration from store to online will be

unprofitable for the retailer. This result offers a possible explanation for fashion retailer

H&M’s decision to remove their virtual showroom (called the Dressing Room) from their

website even though it has been popular among consumers (H&M, 2010). Our result also

suggests that retailers should be cautious when looking at online return rates and should

not neglect the total number of returns as an informative companion metric. According

to a comprehensive numerical study, the details of which are given in Appendix A.5, the

implementation of virtual showrooms hurts profits for about 4.58% of 914,895 different

parameter combinations, most of which arise when the online profit margin w is lower than

the store profit margin p− c.

3.6. Availability Information

Suppose the retailer provides availability information on its website, so that consumers

are able to check real-time store inventory status. With such information, the sequence of

consumer arrivals matter: consumers who arrive early will see that the store has inventory

in stock, but consumers who arrive late will encounter stockouts. In the former case, the

consumer can go to the store and receive an expected payoff of us,in = −hs + θ(v − p)

because she will certainly obtain the product if she realizes high valuation. In the latter

case, the consumer will receive nothing from visiting the store and thus will choose to buy

online instead. In practice, some retailers may also reveal the number of units in inventory

as part of the availability information. This does not change consumers’ shopping behavior

in our model, since consumers care only about whether the store is in stock or not when
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they arrive in the market.

Each consumer chooses between shopping online directly or going to the store, given the

current store inventory availability status. Let φin denote the fraction of customers visiting

the store when it is in stock. As before, only high-type consumers will absorb store inventory

when they come to the store. Then, the expected number of customers who see that the

store is in stock is Din (q) = min
(
D, q

θφin

)
, and the remaining Dout (q) =

(
D − q

θφin

)+
will

find that the store is already out of stock when they check availability online. Note that the

expressions for Din(q) and Dout(q) are slightly different from before because all consumers,

whether or not they choose to come to the store, will receive availability information. Thus,

the retailer’s profit function is as follows:

π (q) = pθφinEDin (q)− cq (3.7)

+ [wθ − r(1− θ)] (1− φin)EDin (q) (3.8)

+ [wθ − r(1− θ)]EDout (q) (3.9)

The first two parts of the profit function correspond to the case when the store is in stock:

(3.7) is the newsvendor profit from the store, and (3.8) is the profit from those who buy

online directly. The last part (3.9) corresponds to the case when the store is out of stock

and all consumers buy online.

We use superscript (·a) to denote the market outcome with availability information, which

is given in the following proposition.

Proposition 16. With availability information, there exists a threshold ψa ∈ [ψ◦, 1] such

that the market outcome is given as follows:

• If θ < ψa, then consumers visit store if store is in stock, and buy online directly if

store is out of stock; qa = θF̄−1

(
c

p−w+r 1−θ
θ

)
> 0

• If θ ≥ ψa, then consumers always buy online directly; qa = 0.
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Comparing Proposition 16 (after the provision of availability information) and Proposi-

tion 11 (before the provision of availability information), since ψa ≥ ψ◦, we see that provid-

ing availability information may attract consumers to the store (see Figure 7). In the base

scenario, consumers bear availability risk because they incur the hassle of going to the store

before finding out whether the store is in stock. Now, providing availability information

eliminates availability risk: if the store is in stock, consumers are guaranteed availability

before incurring any sunk cost.

Figure 7: Comparison of consumer behavior with and without availability information

Su and Zhang (2009) study a different availability information sharing mechanism, i.e.,

quantity commitment, under which the retailer commits to an initial inventory level in the

store. Note there are two key differences between quantity commitment and the availability

information mechanism studied in this chapter. First, quantity commitment merely informs

consumers about the retailer’s initial inventory level, and thus consumers may still encounter

stockouts when they visit the store; in contrast, with real-time availability information,

consumers no longer need to face any availability uncertainty. Second, as the name suggests,

quantity commitment requires a commitment device (e.g., reputation or legal institutions),

but real-time availability information is easily verifiable (e.g., using mobile devices); in this

sense, the latter is simpler to implement.

Proposition 17. Compared to the base model,

• if θ < ψ◦ or θ ≥ ψa, then providing availability information generates the same

amount of profit, i.e., πa = π◦;
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• if θ ∈ [ψ◦, ψa), then providing availability information increases total profit, i.e.,

πa > π◦.

According to Proposition 17, offering availability information has no negative effect on

the retailer. Specifically, if availability risk is not a pivotal factor in consumers’ shopping

decision, e.g., they always visit the store because of high product value uncertainty (as

when θ ≤ ψ◦) or they always feel comfortable buying online directly (as when θ > ψa), then

sharing availability information with consumers does not make a difference.

In contrast, if consumers care about availability risk and choose to buy online purely out

of concern for such risk (as when θ ∈ [ψ◦, ψa)), then providing availability information will

have a positive effect on profits. By assuring consumers about inventory availability in store,

the retailer can attract more people to the store; consumers can then physically inspect the

product and realize their valuation before making any purchase. The bottom-line is a

decrease in product returns and thus an increase in total profit.

3.7. Joint Implementation

So far, we have separately looked at physical showrooms, virtual showrooms, and availabil-

ity information. For each information mechanism, we have studied the individual impact

on consumer behavior and retail operational efficiency. In this section, we focus on the

interactions among them, searching for potential complementary effects when the retailer

implements more than one of them at the same time. The goal of this section is to find out

what combination of the three mechanisms the retailer should implement. In the following

analysis, we combine the superscripts of corresponding types of information mechanisms

to form the notation for the combined scenario. For example, superscript ·pa denotes the

case where both physical showroom and availability information are provided. We start

with pairwise combinations before considering implementing all three mechanisms simul-

taneously. Detailed analyses of the market outcome of all these scenarios are given in

Appendix A.3.
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We start with combining physical showrooms and availability information.

Proposition 18. πpa ≤ max(πp, πa), and there exists ψpa ∈ [0, ψp] such that πpa < πp if

θ ∈ [ψpa, ψp).

According to Propositions 12 and 16, both physical showroom and availability information

attract customers to the store. It is this overlap that creates redundancy if they are imple-

mented together. As shown in Proposition 18, there is no complementary effect between

these two mechanisms. In fact, offering availability information may hurt profits if the

retailer has already implemented physical showrooms. We provide a brief explanation next.

When there are both physical showrooms and availability information, as shown in Ap-

pendix A.3.1, consumers always visit the store when the high-type probability is small (i.e.,

θ < ψpa), even when the store is already out of stock and consumers know that. In such

cases, consumers still prefer to check the product in the physical showroom before mak-

ing any purchase. However, if the high-type probability is slightly higher, then consumers

would stop coming to store and instead choose to buy online directly once they know that

the store is out of stock. As a result, the retailer can no longer use the physical showroom

to screen out potential low-type consumers; this may lead to more returns and less profit.

Next, let us combine physical showrooms and virtual showrooms.

Proposition 19. πpv ≤ max(πp, πv), and there exists ψpv ∈ [0, ψp] such that (1) πpv < πp

if θ ∈ [ψpv, ψp), and (2) πpv < πv if ψpv < ψv and θ ∈ [ψpv, ψv).

Both types of showrooms help consumers alleviate product value uncertainty. Given this

overlap, Proposition 19 points out that it is sufficient to implement only one of them.

Again, we see that a profit loss may result when both types of showrooms are used together

compared to the case when they are implemented individually.

The reason why offering both showrooms would make profit strictly worse is because each

one of them may bring about some negative effects as discussed in previous sections, and

combining both does not help to solve these issues. Specifically, when θ ∈ [ψpv, ψp), com-
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pared to the case where there is only physical showrooms, similar to what we have found

in Proposition 15, adding virtual showrooms would cause consumers (including some low

types) to buy online instead of in store, and thus there will be more returns. When ψpv < ψv

and θ ∈ [ψpv, ψv), compared to the case where there is only virtual showroom, similar to

what we have found in Proposition 13, adding physical showrooms may prompt the re-

tailer to decrease store inventory so much that consumers choose to buy online without first

resolving their product value uncertainty in the store.

Finally, we consider the remaining combinations of: (i) putting together virtual showrooms

and availability information, and (ii) putting together all three information mechanisms.

These are respectively studied in the two parts of the following proposition.

Proposition 20.

• There exists ψva ∈ [ψv, 1] such that πva > max(πv, πa) if θ ∈ [ψv, ψva);

• πpva ≤ max(πpv, πva), and there exists ψpva ∈ [0, ψpv] such that πpva < πpv if θ ∈

[ψpva, ψpv).

Proposition 20 contains two parts. The first part shows that there may be a comple-

mentary effect between virtual showrooms and availability information. This happens if

θ ∈ [ψv, ψva), i.e., consumers visit the store when it is in stock and buy online if the store is

out of stock (see Proposition 52 in Appendix A.3.3). In this case, the synergy between avail-

ability information and virtual showrooms works as follows: availability information helps

to attract consumers to the store by eliminating availability uncertainty, and when the store

is out of stock and consumers buy online, the virtual showroom serves as a filter to screen

out low-type consumers. Out of the three information mechanisms studied in this chapter,

virtual showrooms and availability information is the only pair that exhibits complemen-

tarity. This is because there are potential overlaps in the functions of these mechanisms:

Both physical showrooms and availability information would attract customers to store,

while both physical and virtual showrooms would mitigate consumers’ product value un-
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certainty. Consequently, it is unsurprising that we find complementary effects only between

virtual showrooms and availability information. In the same spirit, we also find that it is

not necessary to combine all three different types of information mechanisms, as shown in

the second part of Proposition 20.

To conclude this section, we examine the optimal information structure, based on the three

mechanisms that we have studied. Since it may be costly to implement any one of them,

we consider offering multiple mechanisms only when it generates strictly higher profit.

Then, given Propositions 18 -20, there are five possible options: choose exactly one of

the three mechanisms, implement both virtual showrooms and availability information, or

“do nothing” as in the base model. Let π∗ denote the optimal profit under the optimal

information structure. We have the following result.

Proposition 21.

i. If θ < ψp, then π∗ = πp;

ii. If θ ≥ ψp, then

a) if customers visit the store in the base model (i.e., θ < ψ◦), then there exist

thresholds α1, α2, α3 ∈ [0, 1] such that α1 ≤ α2 ≤ α3 and

∗ if α < α1, then π∗ = πv

∗ if α ∈ (α1, α2), then π∗ = πva

∗ if α ∈ (α2, α3), then π∗ = π◦

∗ if α > α3, then π∗ = πv

b) if customers buy online in the base model (i.e., θ ≥ ψ◦), then there exist thresh-

olds α′1, α
′
2 ∈ [0, 1] such that α′1 ≤ α′2 and

∗ if α < α′1, then π∗ = πva
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∗ if α ∈ (α′1, α
′
2), then π∗ = πa

∗ if α > α′2, then π∗ = πv

Proposition 21 suggests that the main driver behind the optimal information mechanism is

the parameter θ, i.e., the high-type probability. Part (i) of the proposition shows that when

θ is low (i.e., θ < ψp), it is optimal to provide only physical showrooms; part (ii) shows

that when θ is high (i.e., θ ≥ ψp), virtual showrooms or/and availability information work

better. A reasonable proxy for the θ parameter is the online return rate, since products with

a smaller high-type probability θ are more likely to be returned. Therefore, Proposition 21(i)

suggests that for products that are traditionally afflicted with high online return rates (e.g.,

fashion apparel and accessories), physical showrooms should be implemented to attract

customers into stores to touch and feel the product before making a purchase. Our analysis

advocates physical showrooms rather than virtual showrooms, which tend to be a more

intuitive choice for retailers plagued by online returns. Our finding is also consistent with

the recent move by many fashion retailers’ (e.g., Bonobos and Warby Parker’s) to build

more physical showrooms (New York Times, 2014; Wall Street Journal, 2014b).

Next, for products with relatively more manageable online return rates, such as home goods

and electronics (Laseter and Rabinovich, 2011, pg.118), Proposition 21(ii) describes the

optimal information mechanism. Depending on whether customers visit the store or buy

online directly in the base model (i.e., without any information mechanism), the baseline

scenarios are different and our results are separately reported in parts (ii)(a) and (ii)(b).

In both cases, our results suggest that the retailer should consider implementing virtual

showrooms to provide product value information to consumers, and possibly also provide

availability information to maintain the attractiveness of the store channel. In part (ii)(a),

we also find that when customers visit the store in the base model, it may be optimal to

not implement any additional information mechanism at all.

Proposition 21 also demonstrates the importance of the α parameter, i.e., the informative-
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ness of the virtual showroom. Some implementations of virtual showrooms involve rela-

tively rudimentary functions (e.g., picture upload), while others use more advanced virtual

reality technologies (e.g., 3D technology) which offer online shoppers a more vivid try-on

experience. As virtual showrooms become more informative (i.e., as α increases), Proposi-

tion 21(ii) shows that it is possible for them to become less attractive. Specifically, in both

parts (a) and (b), virtual showrooms are a part of the optimal information mechanism only

when α is either sufficiently large or sufficiently small. In other words, attempts to enhance

the informativeness of virtual showrooms, if not significant, may reduce profits. The reason

is as follows: unless the virtual showroom becomes very effective in screening out low-type

customers, it may simply end up attracting online transactions and thus increasing online

returns.

3.8. Extensions

3.8.1. Endogenous Online Channel

In our original model, we have assumed that the online channel is exogenous; specifically,

there is always enough inventory to satisfy online demand. We can extend our basic model

to include an endogenous online channel as follows. Suppose the retailer has a one-time

ordering opportunity to prepare the inventory level qs and qo in the store and online channel.

The unit inventory costs in the store and online channels are cs and co, respectively. The

product price p is still the same across both channels. Then, for each unit of product sold

online, if it is not returned, the retailer earns the revenue p; if it is returned, the retailer

incurs a net cost k. When the store is out of stock, consumers may switch back to the

retailer’s online channel as before. When the online channel is out of stock, those who are

willing to buy online will leave for other websites to buy the product at the same price.

In many companies (e.g., Bonobos and Warby Parker), store employees are trained and

equipped with digital devices to help store customers order online. However, when customers

are shopping online at home, it is hard for a firm to persuade customers to come to store

when online is out of stock. Our model setup is to capture this difference. Appendix A.4.1
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presents a detailed analysis of this model. We find that the drivers behind consumer channel

choice and the effects of the three information mechanisms remain unchanged.

3.8.2. Continuous Valuations

Our analysis has assumed that consumer valuation can take on only two values, either v or

0. As a result, there are only two types of customer in the market, i.e., high types (who

like the product) and low types (who don’t). Our model can be extended to a more general

case. Suppose consumer valuation V follows a continuous distribution G. Similar as our

basic model, consumers are homogeneous ex ante; they know the distribution G but not

their individual valuation beforehand.

Consumers who buy online directly will realize their valuations after receiving the delivery,

and there are three possible outcomes. Consumers with V > p will find that they like

the product and thus keep it, and consumers with V < p − hr will find that they do not

like the product and thus return it. These two types of behavior correspond to the high

type and low type in the basic model. Finally, we have a third possibility: consumers with

V ∈ (p − hr, p) will find that they do not like the product (since V − p < 0) but they still

choose to keep it rather than going through the hassles of returning it back to the retailer

(since −hr < V − p).

When there is a virtual showroom, similar as in the basic model, we assume that it helps

to screen out some “low-type” customers in the online channel. Specifically, the signal

consumers receive after checking with the virtual showroom is binary: those with valuation

V < v̄ will realize that their valuation is low and therefore leave the market without any

purchase, while those with valuation V ≥ v̄ will realize that their valuation is greater than

v̄ and update their belief about the valuation distribution to G′ such that ∀v ≥ v̄, G′(v) =

G(v)−G(v̄)
1−G(v̄) , where the threshold v̄ ≤ p−hr. With some “low-type” customers being screened

out, the total number of customers left in the market is D′ = [1−G(v̄)]D. Then, we obtain

a new customer pool with total demand size D′ and valuation distribution G′. A detailed
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analysis of this model extension is given in Appendix A.4.2, from which we find that our

main insights remain valid.

3.8.3. Informed and Uninformed Consumers

So far, we have assumed that consumers are homogeneous at the beginning of their shopping

journey, although they may have different realized valuations ex post. We can extend our

basic model to incorporate ex ante heterogeneity in the consumer population. Specifically,

suppose that a fraction λ of the customers are informed, i.e., they know that they are

of high type (i.e., with valuation v) right from the beginning. The remaining fraction

1 − λ of customers are uninformed as before, i.e., they do not know their types but they

know the high-type probability θ. As a result, only uninformed customers will react to the

implementation of physical/virtual showrooms, since informed customers do not need any

product value information.

Appendix A.4.3 presents a detailed analysis of our extended model, which shows that most

of our key insights continue to hold. However, there is a slight difference: specifically, we

find that the retailer may sometimes wish to offer both physical showrooms and availability

information (because the former caters to uninformed customers while the latter caters to

informed customers). Nevertheless, we continue to find that physical and virtual showrooms

do not exhibit any complementary effects.

3.8.4. Heterogeneous Valuations

In our analysis, we have assumed that customers have the same valuation v if they find

they like the product. Our model can also be extended to the case where consumers have

heterogeneous valuations. Suppose there are two types of customers and a fraction θ of the

first (second) type customers has value v1 (v2), and a fraction 1− θ has zero value. Then,

as long as both types of customers are willing to consider both channels, i.e., usi(1) ≥ 0 and

uoi ≥ 0, i = 1, 2, all of our previous results continue to hold. The reason is as follows: Each

consumer’s channel choice (which is determined by the sign of usi − uoi) is independent
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of their valuation. Also, because customers pay the same price and they have the same

probability 1 − θ of returning the product, the retailer obtains the same expected profit

from each type of customers. In other words, from the retailer’s perspective, the two types

of customer are the same.

3.9. Conclusion

Consumers are no longer dedicated to one particular channel. Their shopping journey has

become omnichannel; they strategically switch channels to best suit their personal conve-

nience when evaluating and purchasing products. In response, more and more retailers are

starting to transition from the traditional channel-specific management style to omnichan-

nel operations, where different channels are integrated in a seamless way. In this chapter, we

studied three omnichannel information mechanisms, i.e., physical showrooms, virtual show-

rooms, and availability information, which have been recently experimented and adopted

by an increasing number of retailers.

The implementation of any omnichannel strategy is not easy. For example, to set up phys-

ical showrooms, a retailer may need to restructure its stores; similarly, virtual showrooms

rely on the development of relevant technologies, and an integrated information system is

needed to provide availability information online. However, we believe that these technical

barriers will eventually be overcome. In this chapter, we have put aside considerations of

implementation cost, and set our focus on the implications of these information mechanisms

on retail operations. This way, we hope to help retailers understand the pros and cons if

and when implementation becomes possible.

In this chapter, we build a stylized model that captures essential elements of omnichannel

retail environments. We find the information mechanisms are generally profitable to a

retailer by helping to alleviate consumer uncertainty about product value and inventory

availability. However, in some cases, we find unexpected consequences that lead to more

returns and less profit, echoing the well-known enigma that providing more information
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does not necessarily translate into higher profits. Furthermore, we find that the information

mechanisms studied herein may be substitutes, so retailers should exercise caution when

implementing multiple mechanisms simultaneously.

The current model focuses on a retailer’s inventory decision, while price is assumed to

be exogenous. This model setup applies to the case where the price is predetermined. For

example, Warby Parker has kept the price of most of their glasses constant at $95, even after

they have implemented showrooms. Another interesting and important question is how to

integrate omnichannel initiatives with pricing strategies. Price differentiation has generated

the phenomenon of showrooming: shoppers physically inspect a product in one retailer’s

store and then buy the same product from another online retailer at a lower price (Wall

Street Journal, 2012a,b). Balakrishnan et al. (2014) and Mehra et al. (2013) provide some

initial analyses in this area. When consumers engage in showrooming, one might expect

that physical showrooms will become less profitable; however, there is anecdotal evidence

suggesting that big-box retailers, the presumed victims of showrooming behavior, are in

fact trying to make their stores a better showroom for consumers (CNBC, 2013; Wall Street

Journal, 2013b). Future research is needed to understand this interesting phenomenon.
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CHAPTER 4 : Omnichannel Service Operations with Online and Offline Self-Order

Technologies

4.1. Introduction

Many merchants speak of the gains to be made by fusing in-store with digital commerce.

Now, restaurants are turning to a variety of hardware to make it happen. Specifically,

many firms in the restaurant industry are considering the implementation of self-order

technologies, which are believed to be able to streamline transaction processes, reduce

overhead, and potentially increase revenue (Kimes and Collier, 2015). In general, there are

two types of self-order technologies, depending on whether self-service is offered online or

offline.

Online platforms that allow customers to use services without the direct involvement of

service employees have become ubiquitous with the development of Internet and mobile

technology (Chung, 2013). Recently, many restaurants are also starting to realize the power

of the Internet by providing online self-order service. For example, at the end of 2014,

Starbucks introduced a feature called Mobile Order & Pay in their mobile app, through

which customers can place an order and pay ahead using their mobile devices. This way,

customers can skip the order line and no longer need to wait in the store for their order

to be prepared. Instead, when they later walk into the store, they can go directly to the

pickup area and ask the barista for their order. Besides mobile ordering apps, some other

firms (e.g., Taco Bell) also allow customers to order through the web, although there is

some evidence (e.g., eMarketer (2012)) that restaurant orders placed via mobile apps are

10 times higher than those placed via web.

In-store (offline) machines have been widely used in many service industries to enable cus-

tomer self-service (e.g., ATMs in the banking industry and self checkout stations in the

retail industry). In the restaurant industry, some firms recently installed self-order ma-

chines in their offline store channel. For example, McDonalds have in-store kiosks in about
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45% of their restaurants in Europe, through which customers can place an order without

interacting with a human cashier (Eater, 2016). Chili’s has recently installed more than

45,000 tablets, which allows ordering directly at the table (the Atlantic, 2014). More ad-

vanced technologies, such as robot waiters, have also been adopted by some restaurants to

provide customers with more convenient ordering experiences in the store (Mirror, 2016).

Machines, compared to human cashiers, offer restaurants a cheaper way to take orders from

customers; this is often touted as a major motivation behind many companies’ move to offer

offline self-order service (CNN, 2014; Yahoo Finance, 2016).

Both online and offline self-order technologies allow customers to place an order by them-

selves. However, there are some key differences between the two. On one hand, online

customers have instant access to the online self-order system because they own the digi-

tal device and can also preorder before they arrive at the store. In contrast, with offline

self-order technology, customers cannot preorder in advance and may even need to wait to

use the ordering machines. Another major difference is that online self-order technology

may have limited accessibility among customers, compared to its offline counterpart. This

is because online self-ordering requires customers to have the digital device to access the

platform. For example, Starbuck’s Mobile Order & Pay app, which is regarded as one of

the most popular mobile ordering apps in the industry, is used by only 10% of its customers

(NBC News, 2016). In contrast, in-store machines are generally accessible to any customer

who comes to the store.

Self-order technology is meant to speed up the ordering and purchase process, and thus

helps to boost sales (Business Insider, 2015a). However, the whole restaurant service is not

limited to ordering; a significant part of customer waits occurs while the firm prepares food

in the kitchen area. It is not clear how the customer’s total wait will change as a result

of the implementation of the self-service technology at the ordering stage. Moreover, the

popular press has focused attention on the benefit of self-order technology on those online

or tech-savvy customers (e.g., Wall Street Journal (2014a); Time (2015)), while neglecting
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customers who may not be able to use or have no access to the technology. In this chapter,

we adopt a broad view of the entire operational process and the entire market.

With self-order technology, customers no longer need a store employee to take the order

for them. As a result, there is a lot of public concern about potential job cuts in the

restaurant industry (CNN, 2014). The recent movement of minimum wage increases in

the US further amplifies such concerns, and it is believed that restaurants are going to

turn to automation to replace human workers in order to cut labor costs (Yahoo Finance,

2016). However, restaurants claim that they are not planning to pare down their work force

(Business Insider, 2015a; Huffinton Post, 2015). In this chapter, we intend to reconcile these

two groups of opinions and derive conditions under which total workforce level decreases (as

the public fears) or not (as firms claim) after the implementation of self-order technologies.

The implementation of either type of self-order technologies requires significant invest-

ment. For example, implementing self-order kiosks at McDonalds’ reportedly costs between

$120,000 and $160,000; this is a significant financial burden to the store (Business Insider,

2015b). When it comes to online ordering platforms, for chain restaurants with multiple lo-

cations, the availability of such services at all of its locations is crucial to its success (Mobile

Strategy 360, 2016); this typically requires an integration of IT systems of all stores, which

is a technologically and financially challenging task. Given limited budget, it is important

for firms to know which type of self-order technology is more profitable to pursue.

In this chapter we focus on the following research questions:

1. What are the impacts of both self-order technologies on customer shopping behavior?

2. How should a firm change its capacity and workforce level with self-order technology?

3. Which self-order technology (online or offline) will help a firm generate more profit?

To address these questions, we develop a stylized model. There is a restaurant serving

wait-sensitive customers. The service system is modeled as a two-stage tandem queueing
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network, where customers first place an order through the register and then wait for their

order to be prepared in the kitchen. The firm chooses the capacity level at both stages to

maximize profit rate. We first study the impact of each of the online and offline self-order

technology on the firm’s optimal capacity choice and customer’s shopping behavior. Then,

we compare these results to the base scenario where there is no self-order service. Finally,

we compare online and offline self-order technologies and study how a firm should choose

between the two.

We summarize our main results. First, all customers can benefit from the implementation

of self-order technology and thus increase their shopping rate. On the one hand, those

customers who use the technology shop more frequently than before because of the reduction

of wait cost: With online self-order technology, online customers not only skip the ordering

line, but they can also order prior to arrival and thus do not need to wait in the store while

their food is being prepared; with offline self-order technology, those tech-savvy customers

who are willing to use machines enjoys a shorter wait time than before, as the firm can afford

to provide a larger capacity due to the lower cost of machines. On the other hand, customers

who do not use the self-order technologies may also benefit from their implementation and

thus choose to come to the store more often than before; although they may still encounter

a long line when placing an order, it is now faster to get the food after placing an order

because it is profitable for the firm to increase capacity level in the kitchen.

Second, after the implementation of either type of self-order technology, the firm should shift

workforce from the front-end to the back-end of the store; and sometimes the firm should

even increase total workforce level. On the one hand, the staffing level should decrease at

the front-end as self-order technologies allow customers to place an order without the help

of human servers. On the other hand, as both self-order technologies help to reduce the cost

to serve a customer, the firm may have the incentive to increase capacity in the kitchen area

to speed up the food preparation process in order to attract more customers to the store.

Combining the impact on both the front-end and back-end of the store, it may be profitable
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for the firm to increase jobs after implementing self-order technologies, although public

opinion suggests otherwise (CNN, 2014; Yahoo Finance, 2016). In fact, we find that firms

with high capacity costs (and hence low capacity levels) should have a greater incentive to

hire more workers along with the implementation of self-order technologies, because it is

more effective to increase capacity to attract demand from customers who previously had

to experience long wait times.

Third, online self-order technology allows customers to place an order ahead of time using

their own digital device and thus significantly reduces customer wait cost; however, it is

hard for the firm to offer wide accessibility of the service to customers in the market. With

offline self-order technology, the firm can ensure the availability of the service to any store

customers who are willing to use the technology, but it does not provide customers with as

much benefit of wait cost reduction as the online technology does, since customers still need

to wait in the store for the self-order machines to be available and for the food to be prepared

in the kitchen. As a result, if customers care significantly about wait time, online self-order

technology helps to bring in more profit as it is more effective in relieving customer wait

cost; otherwise, offline self-order technology is more profitable to implement, as the firm can

maximize its impact by broadening its reach. Since customer wait sensitivity is positively

related to income level (Campbell and Frei, 2011; Propper, 1995), our results indicate that

a firm targeting a high-end (low-end) market should first consider implementing online

(offline) self-order technology.

4.2. Literature Review

There is a large body of literature studying capacity management in a queueing system

where customers are sensitive to wait, for example, Mendelson (1985); Chen and Frank

(2004). Hassin and Haviv (2003)[Chapter 8] provides a detailed review of this stream of

literature. One way to change service capacity is through the change of workforce level.

Erlang (1917) first suggested the square-root staffing rule in the context of his study of

circuit-switched telephony, which is later formally proved by Halfin and Whitt (1981) using
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fluid approximation. Bassamboo et al. (2010) study a staffing problem where mean arrival

rate of work is random, and find that simple capacity prescriptions derived via a suitable

newsvendor problem are surprisingly accurate. Please refer to Gans et al. (2003) and Aksin

et al. (2007) for excellent reviews of literature on staffing decisions in services. We contribute

to this stream of literature by studying the impacts of self-service technologies on the service

rate and workforce level decisions, motivated by the recent move towards service automation

in the restaurant industry. At the same time, many firms are shifting service workload from

their employees to outside independent contractor, see Gurvich et al. (2015) and Ibrahim

(2015) for some recent work on workforce management in the on-demand economy; self-

service technology also helps to take some workload away from firms, shifting some service

responsibilities that are traditionally fulfilled by store employees to machines or customers.

Although self-service system is relatively new for restaurants, it has been widely used in

other industries. The implementation of self-service technologies in banks and retail stores

have been studied extensively. Many empirical papers (e.g., Hitt and Frei (2002); Meuter

et al. (2000); Curran et al. (2003); Iqbal et al. (2003); Marzocchi and Zammit (2006))

focus on identifying attitudinal, behavioral, and demographic factors associated with cus-

tomer’s adoption decision and their evaluation process after a firm opens the self-service

channel (e.g., ATM, online banking, self checkout station, etc). Campbell and Frei (2010)

and Xue et al. (2007, 2011) further test whether and how self-service technologies change

customer behavior. In this chapter, we study the impact of self-order technology in the

restaurant industry. A detailed literature review on restaurant management is provided by

Thompson (2010). In particular, the link between self-order technology and job cuts has

generated much debate. Since the adoption of self-order technology is still in its infancy

in the restaurant industry (where its implementation is in the form of pilot programs for

many firms), there is currently little analytical research. Susskind and Curry (2016) and

Tan and Netessine (2016) provide some recent empirical work on the impact of tabletop

ordering devices on restaurant performance. We contribute to the restaurant management

area by analytically examining the impact of both online and offline self-order technologies
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on service operations for restaurants.

In this chapter, we consider a scenario where a firm with a physical store considers offering

the self-order service in the online or offline channel. The integration of online and offline

channels to provide customers seamless shopping experience is the core principle behind

omnichannel management. The topic is broadly surveyed in Bell et al. (2015) and Bryn-

jolfsson et al. (2013). Different omnichannel strategies have been studied in literature, e.g.,

ship-to-store and ship-from-store (Jasin and Sinha, 2015; Gallino et al., 2016), online and

offline showrooms (Bell et al., 2015; Gao and Su, 2016b). Bernstein et al. (2008, 2009) study

firm’s channel choice in the face of competition. Gallino and Moreno (2014) empirically and

Gao and Su (2016a) (which is based on Chapter 2 of this dissertation) analytically examine

the impacts of a new omnichannel fulfillment method, i.e., buy-online-and-pick-up-in-store

(BOPS), on retail operations. Online self-order technology serves a similar function as the

BOPS fulfillment method, both allowing customers to place an order in the online channel

and then pick it up in the offline channel. Most papers in the area of omnichannel manage-

ment focus on retail companies, to which inventory and product management are important

considerations. In contrast, we study a service system with queues, where service capacity

management is crucial.

One of the most common ways of providing online self-order service is through mobile or-

dering apps. How to effectively use mobile devices as a marketing channel to send targeted

promotion messages to customers has been a heated topic; see, for instance, Luo et al.

(2013); Bart et al. (2014); Ghose et al. (2015); Andrews et al. (2015); Fong et al. (2015).

Different from this stream of literature, instead of empirically examining the impacts of

mobile technology on a firm’s marketing efficiency, we analytically study how mobile order-

ing app (or online self-order technology in general) could influence operations in a service

system.
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4.3. Base Model

There is a restaurant serving food to customers. The service system is modeled as a 2-stage

tandem queueing network: at stage 1, customers place their orders through the front-end

cashiers/waiters, and then at stage 2, the order is transmitted to the back-end kitchen area

where food is prepared. From each customer, the firm obtains net revenue r. The firm

decides the service rate (or capacity) at each stage, denoted as µ1 and µ2. Suppose the firm

incurs a cost at rate ciµi for maintaining capacity µi at stage i = 1, 2, where unit capacity

cost ci > 0. To ensure it is profitable to serve a customer, we assume r − c1 − c2 > 0.

There is a number of M homogeneous customers in the market. Customers are assumed to

be infinitesimal, i.e., every customer is small relative to the size of the market. Customers

need to wait at both stages before getting their food. Denote wi(µi,Λ) as the wait time at

stage i = 1, 2 given the capacity µi and total demand rate Λ. Each customer’s shopping

rate λ is assumed to be linearly decreasing in the total wait time w1 + w2, i.e.,

λ = [α− β(w1(µ1,Λ) + w2(µ2,Λ))]+ ,

where coefficients α, β > 0 represent the base shopping rate and wait sensitivity, respectively.

In equilibrium, we should have Λ = Mλ. Moreover, the wait time function w(µ,Λ) should be

convexly decreasing in µ and convexly increasing in λ. For simplicity, we assume w1(µ1,Λ) =

1
µ1−Λ and w2(µ2,Λ) = 1

µ2−Λ , which correspond to the average wait time in a M/M/1 queue.1

Without loss of generality, we normalize market size to 1, i.e., M = 1.2

Given the demand function, the firm chooses the capacity level at each stage, i.e., µ1 and

1We can think of the two-stage tandem queueing network as an open Jackson Network. Then, by Jackson’s
theorem, the queueing network behaves as if it were composed of independent M/M/1 queues (Wolff, 1989).

2The linear demand model can be interpreted in a different way (Cachon and Feldman, 2011): Suppose
customers are heterogeneous in terms of their valuation v of the service. Assume v is uniformly distributed
within (0, v̄). Customer utility is given as u = v − β̃(w1 + w2), and they will come and place an order
if u ≥ 0. Suppose there are α potential customers in the market. Then, total demand is λ = αPr(v ≥
β̃(w1 +w2)) = α− β(w1 +w2), where β = β̃α/v̄. With this interpretation, our results that λ increases after
the implementation of self-order technologies (i.e., Propositions 25 and 30) indicate that these technologies
can help restaurants attract more customers (who were not willing to come before due to long wait) to the
store.
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µ2, to maximize the profit rate, i.e.,

max
λ6µ1,λ6µ2

rλ− c1µ1 − c2µ2

s.t. λ = [α− β (w1(µ1, λ) + w2(µ2, λ))]+
(4.1)

The following proposition gives the optimal solution; we use superscript ·b to denote the

base case.

Proposition 22. ∃ᾱ such that if and only if α > ᾱ, then there exists a unique optimal

solution that yields positive profit:

• µb1 = λb +
√

β(r−c1−c2)
c1

;

• µb2 = λb +
√

β(r−c1−c2)
c2

,

where λb = α− β
√

c1
β(r−c1−c2) − β

√
c2

β(r−c1−c2) > 0.

The expression of optimal capacity follows the rule of thumb for capacity planning (Bas-

samboo et al., 2010): it involves a “base capacity” to match the mean demand (i.e., λb) and

augmenting that by a “safety capacity” (i.e.,
√

β(r−c1−c2)
ci

for stage i = 1, 2) that hedges

against variability in realized arrivals. Note, when the capacity cost ci is cheaper, the firm

can afford to set a higher level of safety capacity. Also, if customers care more about wait

(i.e., β is large), the firm will also set a higher safety capacity level to increase service level.

To conduct meaningful comparisons in the following analysis, we assume α > ᾱ so that the

firm is open and obtains positive profit in the base case.

4.4. Online Self-Order Technology

In this section, we consider the case where the firm implements self-order technology online,

e.g., by providing online ordering website or mobile ordering app. Note that not every

customer in the market will have access to the online self-order service at the moment

when they want to place an order. At the very least, customers need a digital device, e.g.,
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a computer or a smartphone, to enter the self-order platform. Furthermore, with mobile

ordering apps, there is an “app overload” problem, since “no one wants to have to install

a new app for every business or service that they want to interact with,” as remarked by

Facebook CEO Mark Zuckerberg (Wall Street Journal, 2016a). Thus, online self-orders

are available only to digitally-connected customers who are sufficiently engaged with the

firm (e.g., to download the app). In our model, the firm essentially deals with two types

of customers: (i) online customers, who place the order via the online self-order channel,

and (ii) store customers, who physically come to the store to place the order. Suppose the

fraction of the online customers in the market is θ ∈ (0, 1), and the remaining 1 − θ are

store customers.

Our model captures two key effects of online self-order technology. First, online customers

can instantaneously place the order through their own digital devices and do not need to

wait in line for their turn to order the food. In other words, their wait time w1 at stage 1

is essentially reduced to 0. We call this as the instant-order effect of the online self-order

technology. However, customers still need to wait for their food to be prepared in the

kitchen. Another benefit of the online self-order technology is that it allows people to order

in advance, i.e., before they actually arrive at the store. This preorder feature allows online

customers to be able to place an order on the go (and thus make better use of the wait

time), instead of waiting in the store for their food to be ready for pickup. As a result,

online customer’s wait sensitivity for stage 2 is scaled down to ξβ ≤ β, where ξ ∈ (0, 1]. We

call this as the advance-order effect of the online self-order technology. Therefore, online

customers’ shopping rate is given as follows:

λo = [α− ξβw2(µ2,Λ)]+ ,

where Λ is the total demand rate, including both online and store customers. Given that

there is a fraction θ of online customers, the total demand rate from this market segment

is θλo.

73



Next, we turn to store customers. Store customers need to wait in line at stage 1 to place

their order as before. As a result, their total wait time in the store is still the sum of the wait

time at both stages, i.e., w1(µ1,Λ1) + w2(µ2,Λ). Note, because online customers skip the

ordering stage in the store, the demand at stage 1, i.e., Λ1, includes only store customers.

In addition, since restaurants typically don’t distinguish online and offline orders in the

kitchen3, customer average wait time at stage 2, w2(µ2,Λ), only depends on the capacity

level µ2 and total demand rate Λ. As a result, store customers’ shopping rate can be

expressed as follows:

λs = [α− β(w1(µ1,Λ1) + w2(µ2,Λ))]+ .

Given that there is a fraction 1 − θ of store customers, the total demand rate from this

market segment is (1− θ)λs.

In equilibrium, we should have Λ1 = (1− θ)λs and Λ = θλo + (1− θ)λs.

The firm chooses the capacity level at each stage, i.e., µ1 and µ2, to maximize profit rate,

i.e.,

max
(1−θ)λs≤µ1,θλo+(1−θ)λs≤µ2

r (θλo + (1− θ)λs)− c1µ1 − c2µ2

s.t. λo = [α− ξβw2(µ2, θλo + (1− θ)λs)]+

λs = [α− β (w1(µ1, (1− θ)λs) + w2(µ2, θλo + (1− θ)λs))]+

(4.2)

The following proposition gives the optimal solution; we use superscript ·o (for ‘online’) to

denote the case with online self-order technology.

Proposition 23. ∃ᾱ′ ≥ ᾱ such that if α > ᾱ′, then there exists a unique optimal solution:

• µo1 = (1− θ)λos +
√

(1−θ)β(r−c1−c2)
c1

;

• µo2 = (1− θ)λos + θλoo +
√

(1−θ)β(r−c1−c2)+θξβ(r−c2)
c2

,

3For example, according to Taco Bell and Starbucks’ employees, for both companies, the pol-
icy is that once the online order comes in, it gets injected into the order line like it was
at the register. Sources: https://www.reddit.com/r/tacobell/comments/2ssoop/horrible_first_

mobile_order_experience and https://www.reddit.com/r/starbucks/comments/3vt3o7/question_on_

ordering_on_mobile_vs_waiting_on_line/
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where

• λos = α− β
√

c1
(1−θ)β(r−c1−c2) − β

√
c2

(1−θ)β(r−c1−c2)+θξβ(r−c2) > 0,

• λoo = α− ξβ
√

c2
(1−θ)β(r−c1−c2)+θξβ(r−c2) > 0.

Otherwise, there does not exist an optimal solution in which both online and store customers

are served.

To focus on the most interesting and realistic scenario where the firm serves both online and

store customers, we assume α > ᾱ′ throughout the study. Note their α can be interpreted

as customer’s base preference for the product (i.e., the shopping rate if they do not need

to wait). The assumption α > ᾱ′ implies that customers value the product sufficiently to

generate positive demand at zero wait.

The next two results characterize the changes in customer wait times and shopping rates

after the implementation of online self-order technology.

Proposition 24. With online self-order technology,

i. wo1 > wb1;

ii. given c1 and c2, wo2 < wb2 if and only if c1+c2
r > mw for some mw ∈ (0, 1).

Proposition 25. With online self-order technology,

i. online customers come more often than before, i.e., λoo > λb;

ii. given c1 and c2, store customers come to the store more often (i.e., λos > λb) if and

only if c1+c2
r > mλ and θ ∈ (0, ψs) for some mλ ∈ [mw, 1) and ψs > 0;

iii. total demand increases, i.e., θλoo + (1− θ)λos > λb.

According to Proposition 25(i), the firm sees an increase in demand from online customers.

With the online self-order service, online customers can skip the line at stage 1 and easily

place the order via their digital device. Moreover, as online customers can order before they
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actually arrive at the store (e.g., while they are still on the way to the store), they can make

better use of the time while waiting for their food to be ready for pickup. With a reduction

in disutility during the shopping process, online customers increase their shopping rates.

This result is in line with the findings of ChowNow, one of the leading vendors of online

ordering platforms: customers who order from mobile apps order nearly three times more

frequently than before4.

Next, according to Proposition 25(ii), the firm may also see an increase in demand from

store customers. This means that store customers can also benefit from the implementation

of online self-order technology and enjoy a shorter wait time, even though they do not use

the service themselves. Interestingly, the shorter wait does not derive from a shorter line

at stage 1 even though store customers no longer share capacity with online customers to

place orders; on the contrary, as shown in Proposition 24(i), store customers end up waiting

longer at stage 1 as the firm reduces the front-end capacity level µ1 (see Proposition 26(i)

below). Instead, as shown in Proposition 24(ii), the benefit comes from the fact that

customers (including store customers) may wait shorter at stage 2. This is because the firm

may find it profitable to increase workforce level in the kitchen (as shown in the following

Proposition 26(ii)) and thus the faster food preparation stage more than compensates for

the slower order placement stage.

Proposition 26. With online self-order technology,

i. µo1 < µb1;

ii. given c1 and c2, there exists a threshold mµ ∈ (0,mw] such that µo2 > µb2 if c1+c2
r > mµ

and µo2 < µb2 if c1+c2
r < mµ.

Proposition 26 shows the impacts of online self-order technology on a firm’s optimal capacity

decision at both stages 1 and 2. Since capacity is positively related to the workforce level

assigned to the particular stage, we can interpret the results as the change in optimal

workforce level at each stage after the implementation of online self-order technology.

4Source: https://www.chownow.com/online-ordering-system
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With online self-order technology, point (i) in Proposition 26 shows that the firm should

reduce the workforce level in the front end of the store. This is mainly because of the self

service feature of the technology. As online customers place the order by themselves via

their digital device, the firm no longer needs to assign as many cashiers as before to take

customers’ order. This way, the firm is able to save some labor cost without significantly

impairing service at stage 1.

At the same time, Proposition 26(ii) implies that the firm may also need to decrease the

workforce level at stage 2 (i.e., µo2 < µb2). In fact, as Proposition 24 shows, the wait at

stage 2 may increase. This is driven by the fact that online customers can order ahead

of time, and thus can tolerate a longer wait time during which they can conduct other

business instead of waiting in the store, i.e., while the absolute wait w2 increases, online

customers’ disutility from waiting decreases (due to the advance-order effect). Since the

average wait sensitivity in the population decreases, a slower service speed in the kitchen

will hurt demand to a lesser extent. Therefore, the firm may have incentive to further cut

the workforce level at stage 2 to save more labor cost.

However, Proposition 26(ii) also shows that the firm sometimes may need to increase the

workforce level at stage 2. This is because the average total service cost to serve a customer

is cheaper as online customers can place the order by themselves. As a result, it would be

worthwhile for the firm to attract more customers to the store through extra investment in

the capacity in the kitchen area, which helps to increase the speed of service.

Moreover, Proposition 26(ii) indicates that firms with relatively high capacity costs c1, c2

should increase back-end capacity µ2. The reason is as follows: If a firm has relative high

capacity cost, then they tend to have a low initial capacity level µb2 (and thus a long wait

time for customers) before the implementation of online self-order technology. With the

online self-order technology, as shown in Proposition 26(i), the firm can cut the workforce

level in the front end, which enables the firm to make more investment in the kitchen area

to speed up the food preparation process to provide faster service to customers and thus
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boost total sales. Moreover, because of economies of scale in a queueing system, the same

amount of increase in capacity will have a greater effect on the average wait time for a slower

system. This explains why a firm with higher relative capacity cost has more incentive to

increase stage 2 capacity level.

In general, according to Proposition 26, there are two possible outcomes after the imple-

mentation of online self-order technology: The firm should either (1) cut jobs throughout

the entire store, or (2) shift workforce from the front end to the back end. The first sce-

nario is what generates massive concern over job loss among workers (CNN, 2014). But the

firm’s desire to increase capacity at stage 2 to attract more customers may attenuate such

negative effect on the total workforce level. This yields the second possible scenario, where

some cashiers may simply be moved to the kitchen area. In fact, as we demonstrate below,

sometimes a firm needs more than just a shift of workforce level within the firm: they may

need to hire more workers.

Note that we cannot simply sum up the capacity level at each stage to capture the total

workforce level, as different stages may involve different service requirements (e.g., taking

an order may last fifty seconds but making a burger may take three minutes). Therefore,

to study the change of total workforce level in the store, we need to specify the relationship

between capacity µ and workforce level k. Specifically, suppose it takes τi > 0 amount of

time for one worker to serve a customer at stage i. Then, with ki workers at stage i, the

firm can (on average) finish serving ki
τi

customers per unit of time, which corresponds to

the capacity level at that stage. In other words, we have µi = ki
τi

, where ki and τi are the

workforce level and the average customer service requirement (measured in time units) at

stage i, respectively.

With the above normalization between capacity and workforce levels, we have the following

result.

Proposition 27. Given c1 and c2, there exists a threshold mk ∈ [mµ, 1) such that the firm

should increase total workforce level after implementing online self-order technology (i.e.,
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ko1 + ko2 > kb1 + kb2) if and only if c1+c2
r > mk.

Despite a widespread perception that high labor costs encourage the adoption of self-order

technology as a measure to cut jobs (CNN, 2014; Yahoo Finance, 2016), Proposition 27

shows that firms, particularly those with high capacity cost, should choose not to cut any

jobs but rather increase total workforce level in the store along with the implementation

of online self-order technology. This result supports restaurant managers’ claim that the

implementation of self-order technology will bring about minimal job cuts (Business Insider,

2015a; Huffinton Post, 2015).

The reason behind Proposition 27 is as follows: Online self-order technology has two effects

on online customers: (1) It helps to eliminate their wait at stage 1 (i.e., instant-order effect);

and (2) it allows them to preorder and thus reduces the negative impact of wait at stage 2

(i.e., advance-order effect). Both effects have a direct negative impact on workforce level:

The instant-order effect reduces the need for human servers at stage 1, and the advance-

order effect means service speed may not be as important as before since customers care

less about wait. However, both effects also have an indirect impact on workforce level:

They both drive up total demand (as shown in Proposition 25) and thus increase the need

for capacity in the kitchen, especially when capacity cost is relatively high, as shown in

Proposition 26. This relationship is depicted in Figure 8.

Figure 8: Impact of Online Self-Order Technology on Workforce Level

In general, our results above show that the firm is able to attract more demand and thus
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boost sales with online self-order technology. Such increase in total demand is mainly

driven by the fact that online customers are willing to shop more frequently. Meanwhile,

store customers may also choose to increase their shopping rate, as the firm speeds up the

service by increasing the back-end capacity level. Moreover, according to Propositions 25

and 27, if c1+c2
r > max(mk,mλ) and θ ∈ (0, ψs), then we find that everyone in the economy

could benefit from the implementation of online self-order technology: both store and online

customers are willing to come to the store more often (i.e., λos > λb, λoo > λb), the firm

obtains more demand (i.e., θλoo + (1− θ)λos > λb), and more workers are hired by the firm

(i.e., ko1 + ko2 > kb1 + kb2).

4.5. Offline Self-Order Technology

In this section, we consider the case where the firm implements the self-order technology

offline, e.g., by providing in-store kiosks and robot waiters. By replacing human servers

with machines, the firm can lower the marginal cost of service interaction at stage 1; this

is the main reason behind many companies’ move to offer offline self-order service (CNN,

2014; Yahoo Finance, 2016). We model this innovation as follows.

There are two types of servers at stage 1: human (with capacity µ1h) and machine (with

capacity µ1m). The cost of human capacity is the same as before, i.e., c1. However, the

cost of machine capacity is c1m. As mentioned above, we assume that it is cheaper to serve

each customer with machine capacity than with human capacity.

In addition, suppose there are two types of customers: A fraction η ∈ (0, 1) of all customers

are tech-savvy and they always prefer to use the self-order machines. On the other hand, the

remaining 1−η are traditional customers who place an order only with human servers; they

may not be comfortable or proficient with using self-order machines. For each type of cus-

tomers, denote their respective wait times at stage 1 as w1m(µ1m,Λ1m) and w1h(µ1h,Λ1h),

where Λ1m and Λ1h are the total demand rates for machine and human capacities at stage

1. Therefore, each type of customer’s shopping rate is given as follows:
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• tech-savvy customers: λm = [α− β (w1m(µ1m,Λ1m) + w2(µ2,Λ))]+;

• traditional customers: λh = [α− β (w1h(µ1h,Λ1h) + w2(µ2,Λ))]+.

Similar to before, we assume w1m(µ1m,Λ1m) = 1
µ1m−Λ1m

and w1h(µ1h,Λ1h) = 1
µ1h−Λ1h

.

Given that tech-savvy and traditional customers respectively account for η and 1 − η of

the total population, in equilibrium, we should have Λ1m = ηλm, Λ1h = (1 − η)λh, and

Λ = ηλm + (1− η)λh.

Now, we formulate the firm’s optimization problem. The firm chooses the capacity level at

each stage, i.e., µ1h, µ1m and µ2, to maximize profit rate, as follows.

max
ηλm≤µ1m,
(1−η)λh≤µ1h,
ηλm+(1−η)λh≤µ2

r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

s.t. λm = [α− β (w1m (µ1m, ηλm) + w2 (µ2, ηλm + (1− η)λh))]+

λh = [α− β (w1h (µ1h, (1− η)λh) + w2 (µ2, ηλm + (1− η)λh))]+

(4.3)

The following proposition gives the optimal solution; we use superscript ·s (for ‘store’) to

denote the case with offline self-order technology.

Proposition 28. ∃ᾱ′′ ≥ ᾱ′ such that if α > ᾱ′′, then there exists a unique optimal solution:

• µs1m = ηλsm +
√

βη(r−c1m−c2)
c1m

;

• µs1h = (1− η)λsh +
√

β(1−η)(r−c1−c2)
c1

;

• µs2 = ηλsm + (1− η)λsh +
√

β[(r−c1m−c2)η+(r−c1−c2)(1−η)]
c2

,

where

• λsm = α− β
√

c1m
βη(r−c1m−c2) − β

√
c2

β[(r−c1m−c2)η+(r−c1−c2)(1−η)] > 0;

• λsh = α− β
√

c1
β(1−η)(r−c1−c2) − β

√
c2

β[(r−c1m−c2)η+(r−c1−c2)(1−η)] > 0.

Otherwise, there does not exist an optimal solution in which both tech-savvy and traditional
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customers are served.

To focus on the most interesting scenario where the firm serves both tech-savvy and tradi-

tional customers, we assume α > ᾱ′′ throughout the study. This assumption implies that

customers value the product sufficiently to generate positive demand at zero wait.

Our model highlights an important consequence of offline self-order technology: it may

create separate waiting lines, one for human servers and one for machines. There are two

reasons for such separation. First, offline technology may exclude a segment of traditional

customers, who have no choice but to wait for human servers. Second, self-ordering in-

novations may be so popular that some customers are willing to wait behind long lines

even when human cashiers are available (Wall Street Journal, 2016b). Consequently, sep-

arate queues may now emerge in place of the single queue in our base model. Although

self-order technology reduces capacity cost and thus encourages capacity investment, the

separate-queues system goes against conventional wisdom of resource pooling and may lead

to higher waiting times. This is particularly so when the capacity costs of humans and

machines are comparable, i.e., c1m ≈ c1. In practice, without dramatic reductions in cost,

it is unlikely that offline self-order technology will be implemented. After all, reducing lines

and saving time at the ordering stage is one of the main reasons why many restaurants

implement self-order machines in the first place (QSR Magazine, 2016).

Lemma 1. There is a threshold c̄1m ∈ (0, c1) such that average customer wait at stage 1 is

shorter than that in the base model (i.e., ηws1m+ (1−η)ws1h < wb1) if and only if c1m < c̄1m.

The above result shows that as long as machine capacity cost is below a certain threshold,

the firm can afford to provide ample machine capacity to ensure that the average customer

wait at stage 1 is shorter compared to the base model. Henceforth, we make the following

assumption.

Assumption 1. The capacity cost for machines c1m is sufficiently low. Specifically, c1m <

c̄1m.
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In practice, it is widely believed that machines cost significantly less than human employees

(CNN, 2014; Yahoo Finance, 2016). For example, a study by Forrester Research showed

that self-service check-in costs the airlines 16 cents a passenger, compared with $3.68 using

ticket-counter agents (New York Times, 2004). We expect the same magnitude of cost

reduction would apply for self-order machines in a restaurant as well.

The next two propositions characterize customer wait and customer demand in equilibrium,

when offline self-order technology is provided.

Proposition 29. With offline self-order technology,

i. tech-savvy customers wait shorter at stage 1, i.e., ws1m < wb1;

ii. traditional customers wait longer at stage 1, i.e., ws1h > wb1;

iii. everyone waits shorter at stage 2, i.e., ws2 < wb2.

Proposition 30. With offline self-order technology,

i. tech-savvy customers come to the store more often than before, i.e., λsm > λb;

ii. given c1m, c1, c2, traditional customers come to the store more often (i.e., λsh > λb) if

and only if c1+c2
r > m′λ and η ∈ (0, ψ′s) for some m′λ ∈ (0, 1) and ψ′s > 0;

iii. total demand increases, i.e., ηλsm + (1− η)λsh > λb.

Propositions 29 and 30 show the changes in customer wait times and shopping rates after

the implementation of offline self-order technology, respectively. Similar to the case with

online self-order technology, we find that the implementation of offline self-order technology

helps to increase total demand. Moreover, the technology is not only beneficial to those

tech-savvy customers who use the machines; it could also benefit traditional customers who

do not adopt the technology.

According to Proposition 30(i), tech-savvy customers shop more frequently than before.

Different from the case with online self-order technology, tech-savvy customers need to
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share the in-store self-order machines with fellow customers and thus they may still need

to wait to place an order. However, the cheap cost of machines (compared to labor cost)

allows the firm to afford more machine capacity, and thus tech-savvy customers can still

enjoy a shorter wait time with the offline self-order technology compared to the base case.

Proposition 30(ii) implies that the demand from traditional customers may also increase.

This means that traditional customers can also benefit from the implementation of offline

self-order technology, even though they do not use the technology directly. Similar to the

case with online self-order technology, this is mainly because of the potential wait time

reduction at stage 2 rather than at stage 1 (see Proposition 29 (ii) and (iii)). As the next

result confirms, capacity expansion occurs at stage 2 of the service process.

Proposition 31. With offline self-order technology,

i. µs1h < µb1 and µs1m + µs1h > µb1;

ii. µs2 > µb2.

With offline self-order technology, the firm should replace some costly human servers with

cheaper machine servers at stage 1. Therefore, as shown in Proposition 31(i), human capac-

ity in the front end of the store should decrease. But the firm should also increase overall

capacity (i.e., µs1m + µs1h) as the usage of machine capacity brings down average capacity

cost.

Similar to online self-order technology, offline self-order technology could also prompt the

firm to increase the capacity/workforce level at stage 2, as the service cost decreases and

thus the firm can now allocate the extra resources saved from the implementation of cheap

machines at stage 1 to increase the service speed at stage 2 to attract more customers to

the store. However, different from online self-order technology, Proposition 31(ii) implies

that the firm should never decrease the workforce level at stage 2 when the self-order service

is provided offline. The reason is as follows: Online self-order service allows customers to

order ahead of time, and thus online customers can tolerate a longer wait time as they
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can make better use of the wait time rather than standing in the store; in contrast, with

offline self-order machines, customers still need to come to the store to place the order and

physically wait there for their food to be ready for pickup. Therefore, the firm still needs

to keep a high service rate at stage 2 with offline self-order technology, in order to avoid

customers in the store waiting too long after they place the order.

Although self-order machines should replace some human cashiers at stage 1, Proposi-

tion 31(ii) shows that the firm should also increase capacity in the kitchen area to speed

up the food preparation process. The overall impact on optimal workforce levels is char-

acterized in the next proposition. Note that we employ a similar normalization: given

customer’s average service requirement τ1 and τ2, the corresponding workforce levels at

each stage are ks1 = µs1hτ1 and ks2 = µs2τ2. In particular, at stage 1, human capacity µ1h

generates employment but not machine capacity µ1m.

Proposition 32. Given c1m, c1 and c2, then there exists a threshold m′k ∈ (0, 1) such that

the firm should increase total workforce level after implementing offline self-order technology

(i.e., ks1 + ks2 > kb1 + kb2) if and only if c1+c2
r > m′k.

Proposition 32 indicates that the firm may need to increase total workfoce level along with

the implementation of offline self-order technology. This corroborates with McDonald’s

practice in Europe, where they have added more jobs after the implementation of in-store

kiosks (Huffinton Post, 2015). Similar to online self-order technology, Proposition 32 implies

that firms, especially those with high capacity costs (i.e., c1+c2
r ), should increase total

workforce level after the implementation of offline self-order technology. The reason is as

follows: In the case of high capacity cost, self-order machines help save a large amount of

labor cost at stage 1. With these savings, the firm can invest more in manpower at stage 2

to further speed up the service and attract more demand to store. Such capacity investment

is more beneficial when the original capacity level is low (due to high capacity cost), because

capacity investments yield economies of scale in a queueing system as mentioned before.

Similar to the online self-order technology, the implementation of offline self-order technol-
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ogy could lead to a win-win-win situation as well: According to Propositions 30 and 32,

if c1+c2
r > max(m′k,m

′
λ) and η ∈ (0, ψ′s), then both traditional and tech-savvy customers

are willing to come to the store more often (i.e., λsh > λb, λsm > λb), the firm obtains

more demand (i.e., ηλsm + (1 − η)λsm > λb), and more workers are hired by the firm (i.e.,

ks1 + ks2 > kb1 + kb2).

4.6. Profit Implications

In this section, we look at the impact of both types of self-order technologies on firm’s profit.

Denote πb, πo and πs as the optimal profit in the base model, and in the cases with online

and offline self-order technology, respectively.

We first compare the optimal profit with and without self-order technologies. Since both

types of technologies may require a substantial financial investment, it is important to study

the magnitude of the benefit, i.e., πo − πb and πs − πb. If these differences are large, then

it means the implementation of self-order technologies is more likely to generate significant

positive profit for the firm. Our analysis below focuses on the profit change brought about

by each self-order technology, while abstracting away from the implementation costs that

lie beyond the scope of our model.

Proposition 33. Compared with the base model, both types of self-order technologies in-

crease profit (i.e., πo > πb and πs > πb). Moreover,

• with online self-order technology, (1) ∂(πo−πb)
∂r > 0, (2) ∂2(πo−πb)

∂c2∂ξ
< 0 and ∂(πo−πb)

∂c2
< 0

if ξ = 1, (3) ∂(πo−πb)
∂θ > 0, and (4) ∂(πo−πb)

∂ξ < 0;

• with offline self-order technology, (1) ∂(πs−πb)
∂r > 0, (2) ∂(πs−πb)

∂c2
< 0, (3) ∂(πs−πb)

∂η > 0,

and (4) ∂(πs−πb)
∂c1m

< 0.

In general, both types of self-order technologies can generate more profit, which explains

their popularity in the restaurant industry. Moreover, Proposition 33 sheds light on the

impact of different model parameters on the profit improvement.
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First, firms with high gross margin (i.e., large r) will enjoy more benefit from the implemen-

tation of both types of self-order technologies, because they have more incentive to provide

large capacity and thus fast service to attract more customers to the store (as shown by

the optimal solution in Proposition 22). In this case, self-order technologies help to save

service cost as human capacity is replaced with cheaper devices, which is either owned by

customers themselves as with the online technology or provided by the firm as with the

offline technology.

Second, firms with a smaller capacity cost at stage 2 tend to have larger profit improvement

from the implementation of offline self-order technology. A similar result holds for online

self-order technology if there is no advance-order effect (i.e., when ξ = 1). This is because

both types of technologies lead to orders being placed at a faster rate and thus create more

demand at stage 2. To deal with the increase in demand, as shown in Propositions 26 and

31, the firm oftentimes needs to increase capacity at stage 2; a cheaper c2 allows the firm to

make such changes without increasing cost too much. Note c2 can be regarded as the cost

of serving one customer at stage 2, and thus it should be proportional to customer’s service

requirement τ2. In other words, this result implies that firms with an simple food making

process (e.g., quick-service restaurants) will benefit more from the implementation of self-

order technologies. However, for online self-order technology, Proposition 33 shows that

the advance-order effect will attenuate this impact (i.e., ∂2(πo−πb)
∂c2∂ξ

< 0), because waiting at

stage 2 matters less as customers become less sensitive to wait.

In addition, Proposition 33 shows that online self-order technology helps to bring about

more profit improvement when there are more people equipped with mobile/online ordering

devices (i.e., a large θ) and when the advance-order effect is more significant (i.e., a small

ξ). This helps to explain Taco Bell’s decision to implement online self-order technology:

their target audience is a demographic of predominantly male 18-to-34-year-olds (Forbes,

2012), who spend more money online in a given year than any other age group (Business

Insider, 2015c). This result also implies that if a firm chooses to implement online self-order
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technology, then they can strive for a lower ξ. One way to increase the advance-order effect

is to shorten customer’s perceived wait time, which can be achieved by reducing uncertainty

in the waiting process (Maister, 1984) through operational transparency, e.g., by keeping

customer informed about the status of their online order (Buell and Norton, 2011).

Finally, Proposition 33 indicates that offline self-order technology helps to bring about more

profit improvement when more people are willing to use machines by themselves (i.e., a high

η). One way to encourage a higher adoption rate of the technology is through effective inter-

face designs that make the ordering process is simple and intuitive for users. Another factor

that could affect the profitability of offline self-order technology is the capacity cost c1m.

The firm may consider building the ordering machines in-house, rather than purchasing the

service from a third-party kiosks provider, so as to avoid service, licensing, and maintenance

fees.

We next compare the profit generated by online and offline self-order technologies. Cur-

rently, many firms have only one of the two technologies implemented in their stores. For

example, Starbucks and Taco Bell only have online self-order platforms, whereas McDon-

ald’s and HoneyGrow only have kiosks installed in stores. What are the drivers behind

this choice? This is an important question because implementing self-order technologies

involves substantial financial investment and significant changes in store operations (Busi-

ness Insider, 2015b; Mobile Strategy 360, 2016). With unlimited resources, the firm always

prefers having both types of technologies, but with limited resources, understanding the rel-

ative benefits of online and offline technologies will help prioritize implementation efforts.

Proposition 34. There exists β̄ ≥ 0 such that online self-order technology generates more

profit than offline self-order technology (i.e., πo > πs) if and only if β > β̄.

According to Proposition 34, whether online or offline self-order technology is preferred

depends on customers’ wait sensitivity (i.e., β). This is because the two types of self-order

technologies have the following key difference: With online self-order technology, customers

own the digital device (e.g., smartphones, personal computers); in contrast, with offline self-
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order technology, the ordering machines are provided by the restaurant and thus shared by

customers in store. As a result, offline self-order technology is more accessible to customers

as it does not require any digital connectivity on customer’s side (i.e., we should expect

η > θ)5, but online self-order technology is more effective in terms of reducing customer’s

wait time as those online customers owns the ordering device and thus no longer need to

wait to place an order. Consequently, when customers are highly averse to waiting (i.e.,

large β), the firm should offer online self-order service to enable online customers to enjoy

a larger benefit of wait cost reduction. In contrast, when customers are not very sensitive

to delay (i.e., small β), the firm should implement offline self-order technology to maximize

its impact by ensuring that more customers can use the self-order service.

Previous empirical studies (Campbell and Frei, 2011; Propper, 1995) show that high-income

customers tend to have high wait sensitivity. In this light, Proposition 34 implies that

firms targeting a high-income (low-income) market should implement online (offline) self-

order technology. With this interpretation, Proposition 34 gives us a possible explanation

of Starbucks’ choice of mobile ordering app over offline self-order technology, since most

Starbucks stores operate in high-income neighborhoods with a median income higher than

$50,000 (Eater, 2015). However, for McDonald’s, Proposition 34 indicates that offline self-

order technology, e.g., in-store kiosks, might be a better choice, since their typical customer

profile falls within the lower income bracket (Marketplace, 2014). Our result is in line

with McDonald’s current strategy: up to April 2016, they have installed kiosks in 600 U.S.

restaurants; by the end of 2016, the company plans to have them in 1,000 locations (Eater,

2016).

5If η ≤ θ, we can show that β̄ = 0, i.e., online self-order technology always generates more profit than
offline self-order technology.

89



4.7. Extensions

4.7.1. Customer Heterogeneity

In our original model, we have assumed that customers have the same base shopping rate

α and wait sensitivity β. We can extend our basic model to incorporate customer hetero-

geneity in these two demand parameters. Suppose tech-savvy customers and traditional

customers have different base shopping rate and wait sensitivity, denoted as αm and αh,

βm and βh, respectively. In the case with online self-order technology, suppose some tech-

savvy customers have access to the online ordering platform and the remaining customers

(e.g., other tech-savvy customers who may not wish to install the app, and all traditional

customers) place an order in the store. In the case with offline self-order technology, all

tech-savvy customers place an order through the machines while all traditional customers

turn to human servers. This extended model can capture customer heterogeneity in terms

of two aspects: (1) Customers may have different loyalty levels towards the firm (which is

reflected by different base shopping rates), and (2) customers may have different sensitivity

levels towards waiting in the store. In Appendix A.6.1, we present a detailed analysis of

this model. Suppose that tech-savvy customers are more wait sensitive than traditional

customers (i.e., βm ≥ βh); this is natural since customers adopt self-order technology pri-

marily because of their impatience with waiting lines (eMarketer, 2014). We find that our

main insights remain valid.

4.7.2. Convex Impact of Wait Time

So far, we have assumed that demand is a linear function of wait time. Our model can be

extended to a more general case where wait time has a convex impact on customer demand

rate. In other words, there is decreasing sensitivity to each additional minute of waiting as

the waiting spells last longer. Specifically, we consider the following demand function:

λ = α− βwφ1 − βw
φ
2 ,
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where w1 and w2 represent the wait times at stages 1 and 2, and parameter φ ∈ (0, 1]. Since

φ ∈ (0, 1], demand λ is convex with respect to wait time at each stage. Note, the linear

demand model in the basic model is a special case of this general demand model with φ = 1.

Appendix A.6.2 presents a detailed analysis of this extended model, and we find our main

insights continue to hold.

4.7.3. Alternative Wait Time Function

In our analysis, we have formulated the firm’s optimization problem with respect to capacity

µ. The three optimization problems (4.1, 4.2, 4.3) can also be reformulated with respect to

the number of servers as follows:

• Basic model:

max
λ6k1/τ1,λ6k2/τ2

rλ− l1k1 − l2k2

s.t. λ = [α− β (w1(k1, λ) + w2(k2, λ))]+
(4.1′)

• Online self-order technology:

max
(1−θ)λs≤k1/τ1,θλo+(1−θ)λs≤k2/τ2

r (θλo + (1− θ)λs)− l1k1 − l2k2

s.t. λo = [α− ξβw2(k2, θλo + (1− θ)λs)]+

λs = [α− β (w1(k1, (1− θ)λs) + w2(k2, θλo + (1− θ)λs))]+

(4.2′)

• Offline self-order technology:

max
ηλm≤k1m/τ1,
(1−η)λh≤k1/τ1,
ηλm+(1−η)λh≤k2/τ2

r (ηλm + (1− η)λh)− l1mk1m − l1k1 − l2k2

s.t. λm = [α− β (w1 (k1m, ηλm) + w2 (k2, ηλm + (1− η)λh))]+

λh = [α− β (w1 (k1, (1− η)λh) + w2 (k2, ηλm + (1− η)λh))]+

(4.3′)

where l1 = c1/τ1, l1m = c1m/τ1, l2 = c2/τ2, wi(k, λ) = 1
k/τi−λ , and τi is the average service

time at stage i = 1, 2. Here, l1 and l2 can be interpreted as the labor cost per unit of time at
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stages 1 and 2, l1m is the corresponding cost for machines. The number of machine servers

is denoted by k1m.

So far, we have assumed wait time function takes the following form: wi(k, λ) = 1
k/τi−λ . In

Appendix A.6.3, we numerically test the robustness of our main insights with a different

wait time function, i.e.,

wi(k, λ) =
(τi
k

)ρ√2(k+1)−1

i

1− ρi

+ τi

where ρi = λτi
k . This corresponds to the approximated average wait time in a M/M/k queue

(Cachon and Terwiesch, 2009). The numerical results show that our main insights remain

valid.

4.8. Conclusion

In 2016, California and New York approved a $15 minimum wage, which doubles the cur-

rent federal minimum. Dramatic increases in labor costs have a significant effect on the

restaurant industry, where profit margins are pennies on the dollar and labor makes up

about a third of total expenses (Wall Street Journal, 2016b). As a result, restaurants are

turning to service automation to reduce cost while maintaining service quality. In this

chapter, we study online and offline self-order technologies, which have been implemented

by an increasing number of restaurants.

We find that self-order technology could benefit everyone in the economy. Customers,

including those who may not have access to the self-order service, would benefit from a

shorter amount of wait time. In addition, the firm is able to provide higher service capacity

level at lower cost. Interestingly, contrary to the public fear that self-service technology

is bound to replace workers, we find that it is sometimes optimal for firms, especially

those with high capacity cost, to increase workforce level after introducing online ordering

platforms or in-store machines. Especially for the quick-service restaurant industry, which
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is generally a low-margin and high-labor-cost business (Yahoo Finance, 2013), our results

indicate that self-order technologies are more likely to bring about benefits to everyone

including customers, workers, and firms.

Although both online and offline self-order technologies allow customers to place an order

without interacting with a human cashier in the store, each type of technology has different

pros and cons. Online self-order technology offers customers more convenience by allowing

them to preorder using their own digital device, whereas offline self-order technology is more

accessible to customers as the ordering machines are provided in store by the firm. Our

results show that a higher customer wait sensitivity tilts the firm’s optimal choice in favor

of online over offline technologies. Since customers of higher income tend to have higher

wait sensitivity (Campbell and Frei, 2011; Propper, 1995), our results indicate that firms

targeting a high-end market (e.g., Starbucks) should implement online self-order technology

(e.g., mobile ordering app or online ordering website); in contrast, for restaurants whose

customers are mainly in the lower income bracket (e.g., McDonald’s), offline self-order

technology (e.g., in-store kiosks or robot waiters) is more profitable to implement.

Restaurant service includes both ordering and food preparation stages; both require cus-

tomers to wait. Self-order technology helps to shift the workload at the ordering stage from

the firm to customers. Nevertheless, the food preparation stage still requires ample staffing.

This two-stage nature of service processes in the restaurant industry contributes to a shift

of labor from front-end to back-end tasks and possibly to an increase in total workforce

level. However, in some other industries, where self-service technology can cover the entire

service process, it might be inevitable to see workers being replaced by technology. A typi-

cal example is the banking industry, where people can complete most financial transactions

through ATMs and online/mobile channels; this has caused the decline of a large number

of bank branches in the US over the past several years (CNBC, 2015a). We hope our model

in this chapter can contribute to the study of self-service technology in more general ser-

vice processes over a variety of industries. Moreover, some restaurants are even trying to
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automate the food preparation process using robots (Business Insider, 2016). It would also

be interesting to study the impacts of service automation in the kitchen area, in contrast

to the self-order technology in the front end of the store, on consumer shopping behavior

and restaurant service operations.
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APPENDIX

A.1. Decentralized System in Heterogeneous Market

Similar to what we did in Section 2.6, we only look at the case where there are some

customers using BOPS, i.e., p−c > w
α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo
−r and α∗b+α∗bo > 0 (see Proposition 7);

otherwise, there would be nobody using BOPS and the issue of revenue allocation becomes

irrelevant as the system collapses into two independent channels.

With revenue sharing parameter θ, the store channel’s profit is given as follows

π̃s =

(
α∗s + α∗so

α∗s + α∗b + α∗so + α∗bo
+

α∗b + α∗bo
α∗s + α∗b + α∗so + α∗bo

θ

)
pEmin ((α∗s + α∗b + α∗so + α∗bo)D, q)− cq

+ rEmin ((α∗s + α∗b + α∗so + α∗bo)D, q)

Proposition 35. In the decentralized system, the store will stock q̃∗ which is given as

follows:

• If
(

α∗s+α∗so
α∗s+α∗b+α∗so+α

∗
bo

+
α∗b+α∗bo

α∗s+α∗b+α∗so+α
∗
bo
θ
)
p+ r − c > 0, then

q̃∗ = (α∗s + α∗b + α∗so + α∗bo) F̄
−1

 c(
α∗s+α∗so

α∗s+α∗
b

+α∗so+α∗
bo

+
α∗
b

+α∗
bo

α∗s+α∗
b

+α∗so+α∗
bo
θ

)
p+r

;

• If
(

α∗s+α∗so
α∗s+α∗b+α∗so+α

∗
bo

+
α∗b+α∗bo

α∗s+α∗b+α∗so+α
∗
bo
θ
)
p+ r − c ≤ 0, then q̃∗ = 0.

Proposition 36. Total profit π̃∗(θ) is quasiconcave in θ. Moreover,

• If
α∗b+α∗bo
α∗so+α

∗
bo
< w

p , then ∀θ ∈ [0, 1], q̃∗ > q∗ and π̃∗(θ) < π∗.

• If
α∗b+α∗bo
α∗so+α

∗
bo
≥ w

p , then

– if θ <
(α∗b+α∗bo)p−(α∗so+α

∗
bo)w

(α∗b+α∗bo)p
, then q̃∗ < q∗ and π̃∗(θ) < π∗;

– if θ =
(α∗b+α∗bo)p−(α∗so+α

∗
bo)w

(α∗b+α∗bo)p
, then q̃∗ = q∗ and π̃∗(θ) = π∗;

– if θ >
(α∗b+α∗bo)p−(α∗so+α

∗
bo)w

(α∗b+α∗bo)p
, then q̃∗ > q∗ and π̃∗(θ) < π∗.
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Proposition 36 shows that if there are not many people using BOPS (i.e.,
α∗b+α∗bo
α∗so+α

∗
bo
< w

p or

α∗bp+ α∗bo(p−w) < α∗sow), then there is not enough BOPS revenue for the two channels to

share and thus for the headquarters to fully correct store channels’ incentive: Even if the

store channel is given no credit for fulfilling BOPS demand, i.e., θ = 0, they still stock more

than the system optimal level.

A.2. Model Extensions to Chapter 2

A.2.1. Endogenous Online Channel

In this section, we relax the assumption in the original model that online is exogenous.

Suppose both online and offline follow newsvendor setup. Retail price is p, which is the

same across both channels. Cross-selling benefit in store is r. Unit inventory costs are cs

and co in the store and online channel, both of which are smaller than p. Retailer needs to

decide inventory levels qs and qo in the store and online channel.

Homogeneous Market

Consumers setup is the same as before: They have valuation v for the product and hassle

costs hs, ho, hb. We assume when the online channel is out of stock, those who are willing

to buy online will leave for other websites to buy the product at the same price. Therefore,

given belief about store inventory availability ξ̂, consumer’s utility from visiting store is the

same as before, i.e., us = −hs + ξ̂(v − p) + (1 − ξ̂)(v − p − ho). Consumers compare the

expected utility from each channel and choose accordingly.

Retailer has belief φ̂ about the fraction of customers who visit store. Given this belief, the

retailer’s profit function is

π(qs, qo) = pEmin
(
φ̂D, qs

)
− csqs + rEφ̂D+ pEmin

(
(1− φ̂)D +

(
φ̂D − qs

)+
, qo

)
− coqo

(A.1)

Definition 4. A RE equilibrium (qs, qo, φ, φ̂, ξ̂) satisfies the following:

96



i Given ξ̂, if us ≥ uo, then φ = 1; otherwise φ = 0;

ii. Given φ̂, (qs, qo) = arg maxπ(qs, qo), where π(qs, qo) is given in (A.1);

iii. ξ̂ = A(qs);

iv. φ̂ = φ.

The following proposition gives the RE equilibrium.

Proposition 37. If hs ≤
Emin

(
D,F̄−1

(
cs
p

))
ED ho and cs < co, then customers visit store and

q◦s = F̄−1( csp ) and q◦o = 0. Otherwise, no one comes to store and q◦s = 0 and q◦o = F̄−1( cop ).

With BOPS, retailer’s profit function is as follows:

• If min(hs, hb) > ho, then no one comes to store, and thus

π = pEmin (D, qo)− coqo

• If min(hs, hb) ≤ ho, then consumers come to store if it is in stock, and thus

π = (p+ r)Emin (D, qs)− csqs + pEmin
(
(D − qs)+, qo

)
− coqo

Proposition 38. When there is BOPS,

• if min(hs, hb) ≤ ho and cs < co + r, then customers visit store and

– if cs ≤ p+r
p co, then q∗s = F̄−1

(
cs
p+r

)
and q∗o = 0;

– if cs >
p+r
p co, then q∗s = F̄−1

(
cs−co
r

)
and q∗o = F̄−1

(
co
p

)
− F̄−1

(
cs−co
r

)
;

• otherwise, no one comes to store and q∗s = 0 and q∗o = F̄−1
(
co
p

)
.

Comparing Propositions 37 and 38, we can have the three regions as before, though the

shape is different (see Figure 9).
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Figure 9: Do consumers buy the product in store?

(a) hb > hs (b) hb ≤ hs

In the “BOPS” and “Always” region, we can get similar comparison results as before:

Proposition 39. If hs ∈

(
Emin

(
D,F̄−1

(
cs
p

))
ED ho, ho

]
and cs < co + r, then customers visit

the store only if BOPS is available. Further, BOPS increases total profit (i.e., π∗ > π◦).

Proposition 40. If hb ≤ ho < hs and cs < co + r, customers visit the store only if BOPS

is available. Further, BOPS increases total profit (i.e., π∗ > π◦).

Proposition 41. If hs ≤
Emin

(
D,F̄−1

(
cs
p

))
ED ho and cs < co, then customers visit store re-

gardless of the implementation of BOPS. Further, if r > 0, then BOPS decreases total profit

(i.e., π∗ < π◦).

Heterogeneous Market

Similar as what we did for the homogeneous market, we assume when the online channel

is out of stock, those who are willing to buy online will leave for other websites to buy the

product at the same price. Thus, we could find that consumers behavior remains the same

as before.

Given retailer’s belief α̂o, α̂so, α̂s, α̂l, the retailer’s profit function is

π (qs, qo) =pEmin ((α̂s + α̂so)D, qs)− csqs + rE (α̂s + α̂so)D

+ pEmin

(
α̂oD +

α̂so
α̂s + α̂so

((α̂s + α̂so)D − qs)+, qo

)
− coqo

(A.2)
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Definition 5. A RE equilibrium (αo, αso, , αs, αl, qs, qo, ξ̂, α̂o, α̂so, α̂s, α̂l) satisfies the fol-

lowing:

i Given ξ̂, then αo = v−p
H − ξ̂(v−p)2

2H2 , αso = ξ̂(v−p)2

2H2 , αs = ξ̂(v−p)(H−(v−p))
H2 , and αl =

[H−(v−p)][H−ξ̂(v−p)]
H2 ;

ii. Given α̂o, α̂so, α̂s and α̂l, (qs, qo) = arg maxπ(qs, qo), where π(qs, qo) is given in (A.2);

iii. ξ̂ = A(qs), where A(qs) = Emin((αs+αso)D,qs)
E(αs+αso)D

;

iv. α̂s = αs, α̂o = αo, α̂so = αso and α̂l = αl.

Proposition 42.

• If cs <
v−p

2H−(v−p)co + 2H−2(v−p)
2H−(v−p) p, then there are customers visiting store, specifically,

– if cs < co, then α◦s =
ξ◦1(v−p)(H−(v−p))

H2 , α◦so =
ξ◦1(v−p)2

2H2 , α◦o = v−p
H − ξ◦1(v−p)2

2H2 ,

q◦s = (α◦s + α◦so)F̄
−1( csp ) and q◦o = α◦oF̄

−1( cop ), where ξ◦1 =
min

(
D,F̄−1

(
cs
p

))
ED

– if cs ≥ co, then α◦s =
ξ◦2(v−p)(H−(v−p))

H2 , α◦so =
ξ◦2(v−p)2

2H2 , α◦o = v−p
H − ξ◦2(v−p)2

2H2 , q◦s =

(α◦s+α
◦
so)F̄

−1

(
cs− v−p

2H−(v−p) co
2H−2(v−p)
2H−(v−p) p

)
and q◦o = (α◦o+α

◦
so)F̄

−1( cop )−α◦soF−1

(
cs− v−p

2H−(v−p) co
2H−2(v−p)
2H−(v−p) p

)
,

where ξ◦2 =

min

D,F−1

 cs−
v−p

2H−(v−p) co
2H−2(v−p)
2H−(v−p) p


ED

• If cs ≥ v−p
2H−(v−p)co + 2H−2(v−p)

2H−(v−p) p, then no one ever comes to store and q◦s = 0, q◦o =

v−p
H F̄−1( cop ), ξ◦ = 0.

With BOPS, retailer’s profit function is as follows

π (qs, qo) =pEmin ((α∗s + α∗b + α∗so + α∗bo)D, qs)− csqs + rEmin ((α∗s + α∗b + α∗so + α∗bo)D, qs)

+ pEmin

(
α∗oD +

α∗so + α∗bo
α∗s + α∗b + α∗so + α∗bo

((α∗s + α∗b + α∗so + α∗bo)D − qs)
+, qo

)
− coqo

Proposition 43. Suppose r = 0. When there is BOPS, market outcome is given as follows:

• If cs <
α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo
co+

α∗s+α∗b
α∗s+α∗b+α∗so+α

∗
bo
p, then there are customers visiting store, and
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– if cs < co, then q∗s = (α∗s + α∗so)F̄
−1( csp ) and q∗o = α∗oF̄

−1( cop )

– if cs ≥ co, then q∗s = (α∗s + α∗so)F̄
−1

(
cs−

α∗so+α∗bo
α∗s+α∗

b
+α∗so+α∗

bo
co

α∗s+α∗
b

α∗s+α∗
b

+α∗so+α∗
bo
p

)
and q∗o = (α∗o +

α∗so)F̄
−1( cop )− α∗soF−1

(
cs−

α∗so+α∗bo
α∗s+α∗

b
+α∗so+α∗

bo
co

α∗s+α∗
b

α∗s+α∗
b

+α∗so+α∗
bo
p

)
,

• If cs ≥ v−p
2H−(v−p)co + 2H−2(v−p)

2H−(v−p) p, then no one ever comes to store and q∗s = 0, q∗o =

v−p
H F̄−1( cop ).

Proposition 44.

i. BOPS helps to expand market coverage, i.e., α∗s +α∗o +α∗b +α∗so+α∗bo > α◦s +α◦o +α◦so;

ii. Suppose r = 0. If there are customers visiting store when there is no BOPS, then there

exists c̄s such that the implementation of BOPS decreases total profit (i.e., π∗ < π◦)

if βs + βo < 1 and cs > c̄s.

This shows that although BOPS could expand market coverage, it may still reduce total

profit even if r = 0.

Decentralized System

Finally, let’s look at decentralized system. Here, for simplicity of exposition, we only look at

the homogeneous market. Same as before, we only consider the situation where consumers

use BOPS when it is available. Then, with the revenue sharing parameter θ, store and

online’s profits are given as follows:

π̃s = (θp+ r)Emin (D, q̃s)− csq̃s

π̃o = (1− θ) pEmin (D, q̃s) + pEmin
(
(D − q̃s)+, q̃o

)
− coq̃o

Note the BOPS revenue is just free money to the online channel. So we only need to

consider store’s incentive. Comparing π̃s with the centralized profit funtion π, we can

still find that the store channel ignores the fact that customers would buy online instead

100



in case of stockouts (i.e., the second term in π̃o), and thus there will be a profit loss in

the decentralized system compared to the centralized case. Moreover, it is easy to find

the following revenue sharing parameter will correct store’s incentive and coordinate both

channels:

• If cs ≤ p+r
p co, then θ∗ = 1

• If cs >
p+r
p co, then θ∗ = cor

(cs−co)p ∈ (0, 1).

A.2.2. Default Channel Choice

Suppose a fraction λ of customers are nonstrategic, who head to store by default (because

they may forget or they may not care about checking the website beforehand) and may

consider buying from the online channel only if store is out of stock; the rest 1 − λ are

strategic as before. As a result, when there is BOPS, only a fraction 1−λ of customers will

check online for store inventory information.

Homogeneous Market

Let’s first consider the case when there is no BOPS. Assume all customers (including both

nonstrategic and strategic customers) have the same online hassle cost ho. Then, since

v − p− ho ≥ 0, all nonstrategic customers will buy online if store is out of stock.

The retailer has a belief about the fraction of strategic customers who visit store, denoted

as φ̂. Given this belief, his total profit is

π =pEmin
((
λ+ φ̂(1− λ)

)
D, q

)
− cq + rE

(
λ+ φ̂(1− λ)

)
D

+ wE(1− φ̂)(1− λ)D + wE
((
λ+ φ̂(1− λ)

)
D − q

)+

The following proposition gives the RE equilibrium.

Proposition 45. If hs ≤
Emin

(
D,F̄−1

(
c

p−w

))
ED ho and p − c > w, then strategic customers
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visit store and q◦ = F̄−1
(

c
p−w

)
. Otherwise, no strategic customer comes to store and

q◦ = λF̄−1
(

c
p−w ∧ 1

)
.

When there is BOPS, strategic customers choose their shopping channel given the current

store inventory status.

• If min(hs, hb) ≤ ho, strategic customers come to store if it is in stock and the retailer’s

profit is

π = pEmin (D, q)− cq + rEλD + rE(1− λ) min (D, q) + wE(D − q)+

• If min(hs, hb) > ho, no strategic customers come to store and the retailer’s profit is

π = pEmin (λD, q)− cq + rEλD + wE(1− λ)D + wE(λD − q)+

Proposition 46. When there is BOPS, if min(hs, hb) ≤ ho and p− c > w− (1− λ)r, then

strategic customers visit store and q∗ = F̄−1
(

c
p+(1−λ)r−w

)
; otherwise, no strategic customer

comes to store and q∗ = λF̄−1
(

c
p−w ∧ 1

)
.

Comparing Propositions 45 and 46, Figure 10 shows the impact of BOPS on strategic

customer’s channel choice. Note it is similar to Figure 1 in Section 2.4, and it is easy to

verify that the same insights still hold in this case, i.e., BOPS increases profit in the “BOPS”

region as it helps to persuade strategic customers to the more profitable store channel, but

BOPS decreases profit in the “Always” region because strategic customers do not come to

store once it is out of stock and thus the retailer loses some cross-selling profits.

Heterogeneous Market

Strategic customer’s behavior is the same as before. As for nonstrategic customers, they

always first go to store. When nonstrategic customers are in store, if store is in stock, they
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Figure 10: Do strategic consumers buy the product in store?

(a) hb > hs (b) hb ≤ hs

buy on the spot; if store is out of stock, they can either buy online instead (and obtain

payoff v − p − ho) or leave (and obtain payoff 0). Assume, nonstrategic consumers are

heterogeneous in terms of ho, and the distribution is the same as strategic customers, i.e.,

all nonstrategic customers are distributed uniformly on the line [0, H]. Then, when store

is out of stock, a fraction v−p
H of nonstrategic customers (i.e., those with ho ≤ v − p) will

substitute to the online channel.

When there is no BOPS, we keep using notation αo, αs and αso to denote the fraction of

the pure online, pure store and store-to-online customers among strategic customers. The

retailer has belief over these α’s, denoted as α̂o, α̂s, and α̂so. Given this belief, the retailer’s

profit is

π =pEmin ((λ+ (α̂s + α̂so) (1− λ))D, q)− cq + rE (λ+ (α̂s + α̂so) (1− λ))D

+ wEα̂o(1− λ)D + w
v−p
H λ+ α̂so (1− λ)

λ+ (α̂s + α̂so) (1− λ)
E((λ+ (α̂s + α̂so) (1− λ))D − q)+

Proposition 47. When there is no BOPS, the RE equilibrium is given as follows:

• If equation ξ =
min

(
D,F̄−1

(
c

p−w∆◦(ξ)∧1
))

ED has a solution ξ◦ > 0, then there are strate-

gic consumers visiting store and (α◦s = ξ◦(v−p)(H−(v−p))
H2 > 0, α◦so = ξ◦(v−p)2

2H2 >

0) and q◦ = (λ+ (α◦s + α◦so)(1− λ)) F̄−1
(

c
p−w∆◦(ξ◦)

)
, where ∆◦(ξ) = v−p

2H−(v−p) +

(v−p)(H−(v−p))λ
H(2H−(v−p))

[
λ+

2H−(v−p)
2H2 (v−p)ξ(1−λ)

] ;
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• otherwise, no strategic customer comes to store and q◦ = 0.

Note a sufficient condition for the equation ξ =
min

(
D,F̄−1

(
c

p−w∆◦(ξ)∧1
))

ED having a positive

solution is p − w∆◦(0) > c. The reason is as follows: If ξ = 1, the left hand side of the

equation is strictly larger than the right hand side; if ξ = 0, when p− w∆◦(0) > c, the left

hand side of the equation is strictly smaller than the right hand side. Since both sides of the

equation are continuous and increasing in ξ, the equation must have a solution ξ◦ ∈ (0, 1).

Next, let’s look at the case when there is BOPS. Note nonstrategic customers will always

first visit store, so they will not be influenced by the information effect. Let’s keep using our

original notations, α∗s, α
∗
o, α
∗
b , α
∗
so, α

∗
bo, to denote the fraction of pure store, pure online, pure

BOPS, store-to-online and BOPS-to-online customers among strategic customers. Then,

the retailer’s profit function is

π =pEmin ((λ+ (α∗s + α∗so + α∗b + α∗bo) (1− λ))D, q)− cq + rEλD

+ rE
(α∗s + α∗so + α∗b + α∗bo) (1− λ)

λ+
(
α∗s + α∗so + α∗b + α∗bo

)
(1− λ)

min ((λ+ (α∗s + α∗so + α∗b + α∗bo) (1− λ))D, q)

+ wEα∗o(1− λ)D

+ wE
v−p
H λ+ (α∗so + α∗bo) (1− λ)

λ+
(
α∗s + α∗so + α∗b + α∗bo

)
(1− λ)

((λ+ (α∗s + α∗so + α∗b + α∗bo) (1− λ))D − q)+

Proposition 48. With BOPS, the market outcome is given as follows:

• if p− c > w∆∗ − r (α∗s+α∗so+α
∗
b+α∗bo)(1−λ)

λ+(α∗s+α∗so+α
∗
b+α∗bo)(1−λ)

, then there are strategic customers visiting

store and

q∗ = (λ+ (α∗s + α∗so + α∗b + α∗bo) (1− λ)) F̄−1

 c

p− w∆∗ + r
(α∗s+α∗so+α

∗
b+α∗bo)(1−λ)

λ+(α∗s+α∗so+α
∗
b+α∗bo)(1−λ)

 ,

where ∆∗ =
v−p
H

λ+(α∗so+α∗bo)(1−λ)

λ+(α∗s+α∗so+α
∗
b+α∗bo)(1−λ)

;

• otherwise, no strategic customer comes to store and q∗ = 0.
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Proposition 49.

i. BOPS helps to expand market coverage, i.e., λ+ (α∗s + α∗o + α∗b + α∗so + α∗bo)(1− λ) >

λ+ (α◦s + α◦o + α◦so)(1− λ);

ii. Suppose r = 0. If p− w∆◦(0) > c, i.e., there are customers visiting store when there

is no BOPS, then there exist w̄ and β̄s > 0 such that the implementation of BOPS

decreases total profit (i.e., π∗ < π◦) if βs < β̄s, w > w̄ and H > v−p
βo

.

This shows that although BOPS could expand market coverage, it may still reduce total

profit even if r = 0.

Decentralized System

For simplicity of exposition, let’s only look at the homogeneous market. In a decentralized

system, assuming there are strategic customers using BOPS, the store’s profit is

π̃s = pEλmin (D, q̃) + rEλD︸ ︷︷ ︸
from nonstrategic customers

+ (θp+ r)E(1− λ) min (D, q̃)︸ ︷︷ ︸
from strategic customers

−cq̃

Comparing it with the centralized profit function π described above, we find the store’s

incentive is not fully aligned with the system’s. With proper choice of the revenue sharing

parameter θ, we should be able to correct store’s incentive. However, we find that if λ is

very large, we may not have enough BOPS revenue to correct store’s incentive to overstock.

Thus, a simple θ may not be enough to make sure we achieve the centralized profit level.

A.3. Detailed Analyses of Scenarios When Multiple Mechanisms are Provided Simul-

taneously

A.3.1. Providing both Physical Showrooms and Availability Information

With physical showrooms and availability information, consumer utilities are as follows
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• utility from buying online directly: uo = θ(v − p− ho)− (1− θ)(ho + hr)

• utility from visiting store when store is in stock: us,in = −hs + θ(v − p)

• utility from visiting store when store is out of stock: us,out = −hs + θ(v − p− ho)

Then, if uo < us,out, i.e.,

hs < (1− θ)(ho + hr) (A.3)

consumers would always visit store, even if it is shown that store is out of stock. In this case,

retailer profit is π = pEmin(θD, q)−cq+wE(θD−q)+ = (p−w)Emin(θD, q)−cq+wEθD,

and thus the optimal store inventory level qpa = θF̄−1
(

c
p−w

)
. Note condition (A.3) is

equivalent to θ < ψpa where ψpa = min(max(ho+hr−hsho+hr
, 0), 1), given θ ∈ (0, 1).

If uo ∈ [us,out, us,in), i.e.,

hs ∈ [(1− θ)(ho + hr), ho + (1− θ)hr) (A.4)

consumers would visit store if store is in stock but buy online directly if store is out of stock.

In this case, retailer profit π = pEmin(θD, q) − cq + wE(θD − q)+ − rE 1−θ
θ (θD − q)+ =

(p−w+ r 1−θ
θ )Emin(θD, q)− cq+ (wθ− r(1− θ))ED, and thus the optimal store inventory

level qpa = θF̄−1

(
c

p−w+r 1−θ
θ

)
. Note condition (A.4) is equivalent to θ ∈ [ψpa, ψ̃pa) where

ψ̃pa = min(max(ho+hr−hshr
, 0), 1). Moreover, note if the critical fractile c

p−w+r 1−θ
θ

≥ 1 (⇔

θ ≥ r
(w+r−p+c)+ , given θ ∈ (0, 1)), then qpa = 0, i.e., the store never has the product in

stock and thus consumers actually always buy online as a result.

If uo ≥ us,in, i.e., hs ≥ ho+(1−θ)hr or θ ≥ ψ̃pa, then consumers always buy online directly.

In this case, retailer profit π = wEθD − rE(1 − θ)D. The optimal inventory level is just

qpa = 0.

The following proposition summaries the discussion above, where ψ
pa

= min( r
(w+r−p+c)+ , ψ̃

pa)

Proposition 50. With physical showrooms and availability information, the market out-
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come is given as follows:

• If θ ≤ ψpa, then consumers always visit store; qpa = θF̄−1
(

c
p−w

)
;

• If θ ∈ [ψpa, ψ
pa

), then consumers visit the store if it has the product in stock but buy

online directly if store is out of stock; qpa = θF̄−1

(
c

p−w+r 1−θ
θ

)
;

• If θ ≥ ψpa, then consumers always buy online directly; qpa = 0.

A.3.2. Providing both Physical Showrooms and Virtual Showrooms

With virtual showrooms, there is a new customer pool. Then, having both physical show-

rooms and virtual showrooms is very similar to the case when there is only physical show-

rooms, simply replacing with a new set of parameters (θ′ and D′ (or F ′)). Thus, similar to

the proof of Proposition 12, we can easily find the RE equilibrium (the proof of which is

omitted):

Proposition 51. With physical showrooms and virtual showrooms, there exists a threshold

ψpv such that

• if θ < ψpv, then consumers visit store; qpv = θ′F̄ ′
−1
(

c
p−w

)
• if θ ≥ ψpv, then consumers buy online directly; qpv = 0.

A.3.3. Providing both Virtual Showrooms and Availability Information

Again, note that with virtual showrooms, there is a new customer pool. Then, having both

virtual showrooms and availability information is very similar to the case when there is only

availability information, simply replacing with a new set of parameters (θ′ and D′ (or F ′)).

Thus, similar to the proof of Proposition 16, we can easily find the market outcome (the

proof of which is omitted):

Proposition 52. With virtual showrooms and availability information, there exists a thresh-

old ψva ∈ [ψv, 1] such that the market outcome is given as follows:
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• If θ < ψva, then consumers visit store if store is in stock, and buy online directly if

store is out of stock; qva = θ′F̄ ′
−1
(

c

p−w+r 1−θ′
θ′

)
• If θ ≥ ψva, then consumers always buy online directly; qva = 0.

A.3.4. Providing All Three Mechanisms

Similar to the previous two sections, we note that with virtual showrooms, there is a new

customer pool. Then, having all three mechanisms is very similar to the case when there

are both physical showrooms and availability information, simply replacing with a new set

of parameters (θ′ and D′ (or F ′)). Thus, similar to the discussion in Section A.3.1, we can

easily find the market outcome (the proof of which is omitted):

Proposition 53. With all three types of information, the market outcome is given as fol-

lows:

• If θ < ψpva, then consumers always visit store; qpva = θ′F̄ ′
−1
(

c
p−w

)
;

• If θ ∈ [ψpva, ψ
pva

), then consumers visit store if it is in stock but buy online directly

if store is out of stock; qpva = θ′F̄ ′
−1
(

c

p−w+r 1−θ′
θ′

)
;

• If θ ≥ ψpva, then consumers always buy online directly; qpva = 0.

A.4. Model Extensions to Chapter 3

In Chapter 3, we have the following main findings:

1. Adding physical showrooms may reduce profits.

2. Adding virtual showrooms may reduce profits.

3. Providing only availability information never reduces profits.

4. There is no complementary effect between physical showrooms and availability infor-

mation.
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5. There is no complementary effect between physical showrooms and virtual showrooms.

In this section, we extend our basic model in three different ways. The goal is to show the

robustness of the results listed above.

A.4.1. Endogenous Online Channel

In this section, we relax the assumption in Chapter 2 that the online channel is exogenous.

Suppose both online and offline channels follow the standard newsvendor setup. The retail

price is p, which is the same across both channels. Unit inventory costs are cs and co in

the store and online channel, both of which are smaller than p. For each unit sold online,

if it is not returned, the retailer can get the revenue p, i.e., the price of the product; if it is

returned, the retailer incurs net cost k (i.e., the retailer cannot make money from dealing

with returns). The retailer decides the inventory levels in both channels, qs and qo, in the

beginning.

Consumers setup is the same as before. We assume when the online channel is out of stock,

those who are willing to buy online will leave for other websites to buy the product at the

same price and obtain the same utility uo. Note, when consumers encounter a stockout

in store, they will buy from the retailer’s online channel first. In many companies (e.g.,

Bonobos and Warby Parker), store employees are trained and equipped with digital devices

to help store customers order online. However, when customers are shopping online at

home, it is hard for a firm to persuade customers to come to store when online is out of

stock. Our model setup is to capture this difference.

With this model setup, we can find that consumer’s utility functions, and thus their channel

choices, remain unchanged.

Base Model

Given belief φ̂, the retailer’s total profit is
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• If φ̂ = 1, then

π(qs, qo) = pEmin (θD, qs)− csqs + [pθ − k(1− θ)]Emin

((
D − qs

θ

)+
, qo

)
− coqo

• If φ̂ = 0, then

π(qs, qo) = [pθ − k(1− θ)]Emin (D, qo)− coqo

Definition 6. A RE equilibrium (qs, qo, φ, φ̂, ξ̂) satisfies the following:

i Given ξ̂, if us > uo, then φ = 1; otherwise φ = 0;

ii. Given φ̂, (qs, qo) = arg maxπ(qs, qo);

iii. ξ̂ = A(qs);

iv. φ̂ = φ.

Proposition 54. In the base model, the RE equilibrium is given as follows:

• If hs < ξ◦1 [ho + (1− θ)hr] and co ≥ [pθ − k(1− θ)] csp , then consumers visit store (i.e.,

φ◦ = 1) and q◦s = θF̄−1( csp ), q◦o = 0;

• if hs < ξ◦2 [ho + (1 − θ)hr] and co < [pθ − k(1 − θ)] csp and cs ≤ k 1−θ
θ + co

θ , then

consumers visit store (i.e., φ◦ = 1) and q◦s = θF̄−1
(
θcs−co
k(1−θ)

)
, q◦o = F̄−1

(
co

pθ−k(1−θ)

)
−

F̄−1
(
θcs−co
k(1−θ)

)
;

• otherwise, no one comes to store (i.e., φ◦ = 0) and q◦s = 0, q◦o = F̄−1
(

co
pθ−k(1−θ)

)
,

where ξ◦1 =
Emin

(
D,F̄−1

(
cs
p

))
ED , ξ◦2 =

Emin
(
D,F̄−1

(
θcs−co
k(1−θ)

))
ED .

Physical Showrooms

Suppose there is a physical showroom in the store. Given belief φ̂, the retailer’s total profit

is
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• If φ̂ = 1, then

π = pEmin (θD, qs)− csqs + pEmin
(
(θD − qs)+, qo

)
− coqo

• If φ̂ = 0, then

π = [pθ − k(1− θ)]Emin (D, qo)− coqo

Proposition 55. With physical showrooms, the RE equilibrium is given as follows:

• If hs <
Emin

(
D,F̄−1

(
cs
p

))
ED θho + (1− θ) (ho + hr) and cs < co, then consumers come to

store (i.e., φp = 1) and qps = θF̄−1( csp ), qpo = 0;

• if hs < (1− θ)(ho + hr) and cs ≥ co, then consumers come to store (i.e., φp = 1) and

qps = 0, qpo = θF̄−1( cop );

• otherwise, no one comes to store (i.e., φp = 0) and qps = 0, qpo = F̄−1
(

co
pθ−k(1−θ)

)
.

Proposition 56. If (1− θ) (ho + hr) < hs <
Emin

(
D,F̄−1

(
cs
p

))
ED [ho + (1− θ)hr] and [pθ −

k(1 − θ)] csp < co < cs, then consumers visit store if there is no physical showroom (i.e.,

φ◦ = 1) and they buy online directly if there is physical showroom (i.e., φp = 0). Also, in

this case, physical showroom decreases profit, i.e., π◦ > πp.

This shows that our first finding, i.e., physical showrooms could backfire, is robust.

Virtual Showroom

Suppose there is a virtual showroom online. This is just a special case of the base model,

with D′ and θ′.

Proposition 57. With virtual showrooms, the RE equilibrium is given as follows:

• If hs < ξv1 [ho+ (1−θ′)hr] and co ≥ [pθ′−k(1−θ′)] csp , then consumers visit store (i.e.,

φv = 1) and qvs = θ′F̄ ′−1( csp ), qvo = 0;
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• if hs < ξv2 [ho + (1− θ′)hr] and co < [pθ′ − k(1− θ′)] csp and cs ≤ k 1−θ′
θ′ + co

θ′ , then con-

sumers visit store (i.e., φv = 1) and qvs = θ′F̄ ′−1
(
θ′cs−co
k(1−θ′)

)
, qvo = F̄ ′−1

(
co

pθ′−k(1−θ′)

)
−

F̄ ′−1
(
θ′cs−co
k(1−θ′)

)
;

• otherwise, no one comes to store (i.e., φv = 0) and qvs = 0, qvo = F̄ ′−1
(

co
pθ′−k(1−θ′)

)
,

where ξv1 =
Emin

(
D′,F̄ ′−1

(
cs
p

))
ED′ , ξv2 =

Emin

(
D′,F̄ ′−1

(
θ′cs−co
k(1−θ′)

))
ED′ .

Proposition 58. If
Emin

(
D,F̄−1

(
cs
p

))
ED [ho + (1− θ′)hr] < hs <

Emin
(
D,F̄−1

(
cs
p

))
ED [ho+(1− θ)hr]

and [pθ′− k(1− θ′)] csp < co, then consumers visit store if there is no virtual showroom (i.e.,

φ◦ = 1) and they buy online directly if there is virtual showroom (i.e., φv = 0). Also, in this

case, there exists c̄o such that virtual showroom decreases profit (i.e., π◦ > πv) if co > c̄o.

This shows that our second finding, i.e., virtual showrooms could backfire, is robust.

Availability Information

Suppose there is availability information.

• If hs < ho + (1− θ)hr, then consumers will come to store only if it is in stock. Then,

the retailer’s profit is

π = pEmin (θD, qs)− csqs + [pθ − k(1− θ)]Emin

((
D − qs

θ

)+
, qo

)
− coqo

• If hs ≥ ho + (1− θ)hr, then consumers never come to store. Then, the retailer’s profit

is π = [pθ − k(1− θ)]Emin(D, qo)− coqo.

Proposition 59. With availability information, the market outcome is given as follows:

• If hs < ho + (1 − θ)hr and co ≥ [pθ − k(1− θ)] csp , then consumers visit store if store

is in stock and qas = θF̄−1( csp ), qao = 0;

• if hs < ho + (1 − θ)hr and co < [pθ − k(1 − θ)] csp and cs ≤ k 1−θ
θ + co

θ , then con-
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sumers visit store if store is in stock and qas = θF̄−1
(
θcs−co
k(1−θ)

)
, qao = F̄−1

(
co

pθ−k(1−θ)

)
−

F̄−1
(
θcs−co
k(1−θ)

)
;

• otherwise, no one ever comes to store and qas = 0, qao = F̄−1
(

co
pθ−k(1−θ)

)
,

Proposition 60. Availability info never reduces profit, i.e., πa ≥ π◦.

This shows that our third finding, i.e., availability information never reduces profit, is

robust.

Joint Implementation

Here, we only look at the two pairs, i.e., physical showrooms and availability information,

and physical showrooms and virtual showrooms. Our goal is to check if there is any com-

plementary effect between them.

Suppose there are both physical showrooms and availability information.

• If hs < (1− θ)(ho + hr), then consumers would always visit store. Thus,

π = pEmin (θD, qs)− csqs + pEmin
(
(θD − qs)+, qo

)
− coqo

• if (1 − θ)(ho + hr) ≤ hs < ho + (1 − θ)hr, then consumers come to store only if it is

in stock. Thus,

π = pEmin (θD, qs)− csqs + [pθ − k (1− θ)]Emin

((
D − qs

θ

)+
, qo

)
− coqo

• if hs ≥ ho + (1− θ)hr, then no one ever comes to store. Thus,

π = [pθ − k (1− θ)]Emin (D, qo)− coqo

Proposition 61. πpa ≤ max(πp, πa)
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This shows that there is no complementary effect between physical showroom and availabil-

ity information.

Suppose there are both physical and virtual showrooms. This is just the same as the physical

showroom only scenario with a different customer pool D′ and θ′.

Proposition 62. πpv ≤ max(πp, πv)

This shows that there is no complementary effect between these two types of showrooms.

A.4.2. Continuous Valuation

Suppose consumer valuation V is continuously distributed on [0,+∞). Let G(v) be the

proportion of consumers with a valuation v or lower. Ex ante, consumers know the distri-

bution G but not their valuations, so they are homogeneous. Ex post, consumers will learn

their valuations after purchase or by checking the product in store.

All other model elements remain the same as before.

Base Model

If consumers buy online directly, after they get the delivery, they can realize their valuation.

For a consumer with V , if she keeps it, she gets payoff V − p − ho; if she returns it, her

payoff is −ho − hr. Then, only those with V < p− hr will return the product. The ex ante

expected payoff of buying online directly is

uo = EV max(V − p− ho,−ho − hr)

Note those with V ∈ (p−hr, p) will not like the product (since V < p) but they don’t return

it because the return cost is too high (since V − p > −hr).

In the store, if there is stock, then consumers can realize their valuation, and only those

with V ≥ p will make a purchase on the spot, and the others will leave. If store is out of
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stock, they can buy online. So the expected payoff is

us(ξ̂) = −hs + ξ̂EV max(V − p, 0) + (1− ξ̂)uo

Here, as what we did in Chapter 2, we assume consumers would consider both channels,

i.e., uo ≥ 0 and us(1) ≥ 0.

Denote the fraction of customers who visit store as φ. In an equilibrium, this could be

either 0 or 1, since consumers are ex ante homogeneous.

Given belief φ̂, the retailer’s profit function is

π(q) =pḠ (p)EDDin (q)− cq (A.5)

+
[
wḠ (p− hr)− rG (p− hr)

]
EDDout (q) (A.6)

+
[
wḠ (p− hr)− rG (p− hr)

] (
1− φ̂

)
EDD (A.7)

where Din(q) = min(φ̂D, q
Ḡ(p)

), and Dout(q) = (φ̂D − q
Ḡ(p)

)+.

Definition 7. A RE equilibrium (q, φ, φ̂, ξ̂) satisfies the following:

i Given ξ̂, if us > uo, then φ = 1; otherwise φ = 0;

ii. Given φ̂, q = arg maxπ(q);

iii. ξ̂ = A(q), where A(q) = min(φD,q/Ḡ(p))
EφD ;

iv. φ̂ = φ.

Proposition 63. If hs < h◦s, then consumers visit store (i.e., φ◦ = 1) and

q◦ = Ḡ (p) F̄−1

(
c

p−w Ḡ(p−hr)

Ḡ(p)
+r

G(p−hr)

Ḡ(p)

)
, where h◦s = ξ◦(EV max(V −p, 0)+ho−EV max(V −

p,−hr)) and ξ◦ =

ED min

D,F̄−1

 c

p−w Ḡ(p−hr)
Ḡ(p)

+r
G(p−hr)
Ḡ(p)


EDD

; otherwise, no one comes to store

(i.e., φ◦ = 0), and q◦ = 0.

115



Physical Showrooms

With physical showrooms, when store is out of stock, consumers are still able to realize

their valuation. In such case, only those store customers with V − p− ho ≥ 0 will keep on

buying online. So

us(ξ̂) = −hs + ξ̂EV max(V − p, 0) + (1− ξ̂)EV max(V − p− ho, 0)

Then, the retailer’s profit is

π =pḠ (p)EDDin (q)− cq (A.8)

+ wḠ(p+ ho)EDDout (q) (A.9)

+
[
wḠ (p− hr)− rG (p− hr)

] (
1− φ̂

)
EDD (A.10)

where Din(q) = min(φ̂D, q
Ḡ(p)

), and Dout(q) = (φ̂D − q
Ḡ(p)

)+.

Proposition 64. With physical showrooms, if hs < hps, then consumers visit store (i.e.,

φp = 1), and qp = Ḡ (p) F̄−1

(
c

p−w Ḡ(p+ho)

Ḡ(p)

)
, where hps = ξpEv max(V − p, 0) + (1 −

ξp)EV max(V −p−ho, 0)+ho−EV max(V −p,−hr) and ξp =

ED min

D,F̄−1

 c

p−w Ḡ(p+ho)
Ḡ(p)


EDD

;

otherwise, no one comes to store (i.e., φp = 0), and qp = 0. Moreover, hps > h◦s if and only

if r is small enough.

Proposition 65. If hps < h◦s and hs ∈ [hps, h◦s), then consumers come to store in the base

case but buy online directly if there is physical showroom. As a result, providing physical

showrooms reduces total profit (i.e., πp < π◦).

This shows that our first finding, i.e., physical showrooms could backfire, is robust.
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Virtual Showrooms

Similar to what we did in Chapter 3, we assume virtual showrooms help to screen out some

“low-type” customers. Specifically, the signal consumers receive after checking with the

virtual showroom is still binary: those whose valuation V < v̄ will realize their valuation

is low and therefore leave the market without any purchase, while those whose valuation

V ≥ v̄ will know their valuation is greater than v̄ and update their belief about the valuation

distribution to G′ such that ∀v ≥ v̄, G′(v) = G(v)−G(v̄)
1−G(v̄) . Here, we assume threshold v̄ ≤

p−hr, i.e., virtual showrooms would screen out only those who really don’t like the product

and are bound to return the product if they buy it online. The total number of customers

left in the market is D′ = [1−G(v̄)]D.

Thus, the model is the same as base model except for a new customer pool, D′ and G′. We

denote E′V as the expectation over V given G′.

Proposition 66. With virtual showrooms, if hs < hvs, then consumers visit store (i.e.,

φv = 1), and qv = Ḡ (p) F̄−1

(
c

p−w Ḡ
′(p−hr)

Ḡ′(p) +r
G′(p−hr)

Ḡ′(p)

)
, where hvs = ξv(E′V max(V − p, 0) +

ho − E′V max(V − p,−hr)) and ξv =

ED min

D,F̄−1

 c

p−w Ḡ
′(p−hr)
Ḡ′(p) +r

G′(p−hr)
Ḡ′(p)


EDD

; otherwise, no

one comes to store (i.e., φv = 0), and qv = 0. Moreover, hvs < h◦s.

Proposition 67. If hs ∈ [hvs , h
◦
s), then consumers come to store in the base case but buy

online directly if there is virtual showroom. As a result, there exists w̄ such that providing

virtual showrooms reduces total profit (i.e., πv < π◦) if w < w̄.

This shows that our second finding, i.e., virtual showrooms could backfire, is robust.

Availability Information

With availability information, if it is shown that store is in stock, then us,in = −hs +

EV max(V − p, 0). Apparently, consumer will not go to store if store is out of stock.
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Denote φin as the fraction of customers visiting store when it is in stock. Then, the retailer’s

profit function is

π (q) = pḠ(p)φinEDin (q)− cq

+ [wḠ(p− hr)− rG(p− hr)] (1− φin)EDin (q)

+ [wḠ(p− hr)− rG(p− hr)]EDout (q)

where Din(q) = min(D, q
θφin

) and Dout(q) = (D − q
θφin

)+.

Proposition 68. With availability information, if hs ≤ has , then consumers come to store

if store is in stock and buy online if store is out of stock, where has = EV max(V − p, 0) +

ho − EV max(V − p,−hr) and qa = Ḡ (p) F̄−1

(
c

p−w Ḡ(p−hr)

Ḡ(p)
+r

G(p−hr)

Ḡ(p)

)
; otherwise, no one

comes to store, and qa = 0.

Proposition 69. Compared to the base case, providing availability information never de-

creases profit, i.e., πa ≥ π◦.

This shows that our third finding, i.e., availability never reduces profit, is robust.

Joint Implementation

Here, we only look at the two pairs, i.e., physical showrooms and availability information,

and physical showrooms and virtual showrooms. Our goal is to check if there is any com-

plementary effect between them.

Suppose there are both physical showrooms and availability information. Now even if store

is out of stock, consumers may still want to visit store, us,out = −hs+EV max(V −p−ho, 0);

if store is in stock, us,in = −hs + EV max(V − p, 0).

• If hs ≤ EV max(V − p − ho, 0) + ho − EV max(V − p,−hr), then consumers come to

store even if store is out of stock. Thus,

π = pED min
(
Ḡ (p)D, q

)
− cq + wḠ (p+ ho)ED

(
D − q

Ḡ (p)

)+
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• If EV max(V − p−ho, 0) +ho−EV max(V − p,−hr) < hs ≤ EV max(V − p, 0) +ho−

EV max(V − p,−hr), then consumers come to store only if it is in stock. Thus,

π = pED min
(
Ḡ (p)D, q

)
− cq +

[
wḠ (p− hr)− rG (p− hr)

]
ED

(
D − q

Ḡ (p)

)+

• If hs > EV max(V − p, 0) + ho − EV max(V − p,−hr), then no one comes to store.

Thus,

π =
[
wḠ (p− hr)− rG (p− hr)

]
EDD

Proposition 70. πpa ≤ max(πp, πa)

This shows that there is no complementary effect between physical showrooms and avail-

ability information.

Suppose there are both physical and virtual showrooms. This is just the same as the physical

showrooms only scenario with a different customer pool D′ and G′.

Proposition 71. πpv ≤ max(πp, πv).

This shows that there is no complementary effect between these two types of showroom.

A.4.3. Informed and Uninformed Customers

Suppose that there are two groups of customers: a fraction λ of them are informed and a

fraction 1 − λ of them are uninformed. Informed customers know they are high type (v).

But uninformed customers don’t know their type ex ante; they just know θ of them are

high type (v) while the others are low type (0).

Everything else remains the same as the base model. Note the uninformed customers’

behavior remains the same as what we described in the simple model. So, here we only

describe informed customers’ behavior. In this section, we use subscripts ·u and ·i to denote

the parameters regarding uninformed and informed customers, respectively.

119



Base Model

For uninformed customers, their utility functions are given in Chapter 3 and are also pre-

sented here:

• uo,u = θ(v − p− ho)− (1− θ)(ho + hr)

• us,u(ξ̂) = −hs + ξ̂θ(v − p) + (1− ξ̂)uo,u

For informed customers, they don’t have valuation uncertainty, but still they need to face

availability uncertainty. Specifically, their utility functions are

• uo,i = v − p− ho

• us,i(ξ̂) = −hs + ξ̂(v − p) + (1− ξ̂)uo,i

Denote the fraction of informed customers who visit store as φi, and the fraction of un-

informed customers who visit store as φu. We only consider the cases where people from

the same group choose the same channel. Therefore, we have four possible equilibrium

outcomes:

1. φi = 0, φu = 0

2. φi = 1, φu = 0

3. φi = 0, φu = 1

4. φi = 1, φu = 1

Note if us,i(ξ̂) > uo,i, then we must have us,u(ξ̂) > uo,u. Thus, φi = 1, φu = 0 cannot be an

equilibrium. So we have three left.

Given beliefs φ̂i and φ̂u, the retailer’s profit function is
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• if φ̂i = 1 and φ̂u = 1, then

π(q) =pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+

+ wEλ

(
D − q

λ+ (1− λ) θ

)+

• if φ̂i = 0 and φ̂u = 1, then

π(q) =pEmin ((1− λ) θD, q)− cq

+ [wθ − r (1− θ)]E
[
(1− λ)D − q

θ

]+

+ wEλD

• if φ̂i = 0 and φ̂u = 0, then

π(q) = [wθ − r(1− θ)]E(1− λ)D + wEλD

Definition 8. A RE equilibrium (φu, φi, q, ξ̂, φ̂u, φ̂i) satisfies the following:

i Given ξ̂,

φu =

 1 if us,u > uo,u

0 if us,u ≤ uo,u
and φi =

 1 if us,i > uo,i

0 if us,i ≤ uo,i

ii. Given φ̂u, φ̂i, q = arg maxq π(q);

iii. ξ̂ = A(q), where A(q) = Emin((λφi+(1−λ)φuθ)D,q)
E(λφi+(1−λ)φuθ)D

;

iv. φ̂u = φu, φ̂i = φi.

Proposition 72. In the base model, the RE equilibrium is as follows:
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• if hs < ξ◦1ho, then all customers come to store, i.e., φ◦i = 1, φ◦u = 1

• if ξ◦2ho ≤ hs < ξ◦2 [ho + (1− θ)hr], then only uninformed customers come to store, i.e.,

φ◦i = 0, φ◦u = 1;

• otherwise, no one comes to store, i.e., φ◦i = 0, φ◦u = 0,

where ξ◦1 =

Emin

D,F̄−1

 c

p−w+r
(1−θ)(1−λ)
λ+(1−λ)θ


ED and ξ◦2 =

Emin

(
D,F̄−1

(
c

p−w+r 1−θ
θ

))
ED .

Physical Showrooms

Suppose there is a physical showroom. The informed customers’ utility functions remain

the same as in the base model, since showrooms do not have any effect on them.

Given beliefs φ̂i and φ̂u, the retailer’s profit function is

• if φ̂i = 1 and φ̂u = 1, then

π =pEmin ((λ+ (1− λ) θ)D, q)− cq

+ wE[(λ+ (1− λ) θ)D − q]+

• if φ̂i = 0 and φ̂u = 1, then

π =pEmin ((1− λ) θD, q)− cq

+ wθE
[
(1− λ)D − q

θ

]+

+ wEλD

• if φ̂i = 0 and φ̂u = 0, then

π = [wθ − r(1− θ)]E(1− λ)D + wEλD
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Proposition 73. With physical showrooms, the RE equilibrium is as follows:

• if hs < ξpho, then all customers come to store, i.e., φpi = 1, φpu = 1

• if ξpho ≤ hs < ξpθho + (1 − θ)(ho + hr), then only uninformed customers come to

store, i.e., φpi = 0, φpu = 1;

• otherwise, no one comes to store, i.e., φpi = 0, φpi = 0,

where ξp =
Emin

(
D,F̄−1

(
c

p−w

))
ED .

Proposition 74. If max{ξ◦2ho, ξpθho + (1 − θ)(ho + hr)} < hs < ξ◦2 [ho + (1 − θ)hr], then

uninformed customers come to store in the base case and buy online if there is physical

showroom while informed customers always buy online. As a result, physical showroom

decreases total profit, i.e., π◦ > πp.

This shows that our first finding, i.e., physical showrooms could backfire, is robust.

Virtual Showrooms

Suppose there is a virtual showroom online. Note virtual showrooms do not affect informed

customers. It simply screens out α of low-type uninformed customers. Then D′ = [1 −

α(1− θ)(1− λ)]D, θ′ = θ
1−α(1−θ) and λ′ = λ

1−α(1−θ)(1−λ) .

Here, we refer to those remaining in the market as the customers.

Proposition 75. With virtual showroom, the RE equilibrium is as follows:

• if hs < ξv1ho, then all customers come to store, i.e., φvi = 1, φvu = 1

• if ξv2ho ≤ hs < ξv2 [ho + (1− θ)hr], then only uninformed customers come to store, i.e.,

φvi = 0, φvu = 1;

• otherwise, no one comes to store, i.e., φvi = 0, φvi = 0,
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where ξv1 =

Emin

D′,F̄ ′−1

 c

p−w+r
(1−θ′)(1−λ′)
λ′+(1−λ′)θ′




ED′ and ξv2 =

Emin

(
D′,F̄

′−1

(
c

p−w+r 1−θ′
θ′

))
ED′ .

Proposition 76. If max{ξ◦2ho, ξv2 [ho+(1−θ′)hr]} < hs ≤ ξ◦2 [ho+(1−θ)hr], then uninformed

customers come to store in the base case and buy online if there is virtual showroom while

informed customers always buy online. As a result, there exists w̄ such that providing virtual

showroom decreases total profit (i.e., π◦ > πv) if w < w̄.

This shows that our second finding, i.e., virtual showrooms could backfire, is robust.

Availability Information

With availability info, customers (including informed) don’t need to form beliefs.

• If hs < ho, then both informed and uninformed customers go to store if in stock.

Thus, retailer’s profit

π =pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+

+ wEλ

(
D − q

λ+ (1− λ) θ

)+

• if ho ≤ hs < ho+(1−θ)hr, then only uninformed customer will go to store if in stock.

Thus,

π =pEmin ((1− λ) θD, q)− cq

+ [wθ − r (1− θ)]E
[
(1− λ)D − q

θ

]+

+ wEλD
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• if hs ≥ ho + (1− θ)hr, then no one ever comes to store. Thus,

π = [wθ − r(1− θ)]E(1− λ)D + wEλD

Proposition 77. With availability information,

• If hs < ho, then both informed and uninformed customers go to store if store is in

stock, and qa = (λ+ (1− λ) θ) F̄−1

(
c

p−w+r
(1−λ)(1−θ)
λ+(1−λ)θ

)
;

• If ho ≤ hs < ho+(1−θ)hr, then only uninformed customer will go to store if in stock,

and qa = (1− λ) θF̄−1

(
c

p−w+r 1−θ
θ

)
;

• If hs ≥ ho + (1− θ)hr, then no one ever comes to store, and qa = 0.

Proposition 78. Compared to the base case, providing availability information never de-

creases profit, i.e., πa ≥ π◦.

This shows that our third finding, i.e., availability information never reduces profit, is

robust.

Joint Implementation

Here, we only look at the two pairs, i.e., physical showrooms and availability information,

and physical showrooms and virtual showrooms. Our goal is to check if there is any com-

plementary effect between them.

Suppose there are both physical showrooms and availability information.

• If hs < min(ho, (1− θ)(ho + hr)), then informed customers go to store if in-stock and

buy online if stockouts; uninformed customers always go to store. Thus,

π = pEmin ((λ+ (1− λ) θ)D, q)− cq + wE((λ+ (1− λ) θ)D − q)+
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• If ho < (1 − θ)(ho + hr) and ho ≤ hs < (1 − θ)(ho + hr), then informed customers

always buy online; uninformed customers always go to store. Thus,

π = pEmin ((1− λ) θD, q)− cq + wE((1− λ) θD − q)+ + wEλD

• If ho > (1− θ)(ho + hr) and (1− θ)(ho + hr) ≤ hs < ho, then informed customers go

to store if in stock and buy online if stockouts; uninformed customers go to stock if

in stock and buy online if stockouts. Thus,

π =pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+

+ wEλ

(
D − q

λ+ (1− λ) θ

)+

• If max(ho, (1 − θ)(ho + hr)) ≤ hs < ho + (1 − θ)hr, then informed customers always

buy online; uninformed customers go to store if in stock and buy online if out of stock.

Thus,

π =pEmin ((1− λ) θD, q)− cq

+ [wθ − r (1− θ)]E
[
(1− λ)D − q

θ

]+

+ wEλD

• If hs ≥ ho + (1− θ)hr, then no one ever comes to store. Thus,

π = [wθ − r(1− θ)]E(1− λ)D + wEλD

Proposition 79. πpa > max(πp, πa) if and only if ξpho < hs < min(ho, (1− θ)(ho + hr)).

Let us compare consumer equilibrium behavior in the three scenarios when ξpho < hs <
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min(ho, (1− θ)(ho + hr):

i. Physical showrooms only:

– informed customer: buy online

– uninformed customer: go to store

ii. Availability information only:

– informed customer: go to store if in stock, buy online if stockouts

– uninformed customer: go to store if in stock, buy online if stockouts

iii. Physical showrooms and availability information:

– informed customer: go to store if in stock, buy online if stockouts

– uninformed customer: always go to store

Proposition 79 shows that when different types of customers require different types of in-

formation, we may need to offer both physical showroom and availability info. Specifically,

we need physical showrooms to attract uninformed customer, and availability information

to attract informed customers to the store.

Suppose there are both physical and virtual showrooms. This is similar to the physical

showrooms only scenario with D′, θ′ and λ′.

Proposition 80. πpv ≤ max(πp, πv).

This shows that there is no complementary effect between these two types of showrooms.

A.5. Numerical Study for Chapter 3

The goals of this numerical study are as follows:

1. Investigate the likelihood of π◦ > πp;
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2. Investigate the likelihood of π◦ > πv.

Here, we consider the following parameter values:

• v = 60

• p = 30, w = 15

• p−c
w = {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4}

• r = {1, 3, 5, 7, 9}

• ho = {1, 2, 3, 4, 5}

• hs = {1, 2, 3, 4, 5}

• hr = {1, 2, 3, 4, 5}

• D ∼ N(µ, σ2), where µ = 100, σ
µ = {1

4 ,
1

4.5 ,
1
5 ,

1
5.5 ,

1
6 ,

1
6.5 ,

1
7 ,

1
7.5 ,

1
8}

• α = {0.1, 0.3, 0.5, 0.7, 0.9}

• θ = {0.1, 0.3, 0.5, 0.7, 0.9}

There are 1,265,625 cases in total. After checking with the assumptions we made in Chap-

ter 3, we end up having 914,895 cases. For each case, we calculate the equilibrium profit

π◦, πp and πv based on the equilibrium outcomes described in Chapter 3.

We are interested in how frequent π◦ > πp and π◦ > πv happen.

Among all the 914,895 cases, we find that 4.34% of them have π◦ > πp, and 4.58% of them

have π◦ > πv.

Figures 11 and 12 show how the results change given different profit margin ratios. Specif-

ically, given p−c
w , we calculate the fraction of cases where π◦ > πp (see Figure 11) and
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π◦ > πv (see Figure 12). From these two figures, we find a general pattern: physical show-

rooms are more likely to reduce profits when the store channel is less profitable, while virtual

showrooms are more likely to reduce profits when the online channel is less profitable. An

implication to retailers: showrooms should be implemented in their strong channels.

Figure 11: Proportion of instances that physical showrooms backfire (i.e., πo > πp)

A.6. Model Extensions to Chapter 4

In Chapter 4, we have three main insights:

1. [Demand] With self-order technologies, total demand increases; and those who don’t

use the technology may also benefit from their implementation and choose to visit

store more often. (I.e., Propositions 25 and 30)

2. [Workforce Level] With self-order technologies, total workforce level may increase,

especially for firms with high cost-revenue ratio. (I.e., Propositions 27 and 32)

3. [Profit] Online self-order technology generates more profit than offline self-order tech-

nology if and only if customer wait sensitivity is large. (I.e., Proposition 34)
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Figure 12: Proportion of instances that virtual showrooms backfire (i.e., πo > πv)

Below, we extend our basic model in three different ways. The goal is to show the robustness

of the results listed above.

A.6.1. Model Extension: Customer Heterogeneity

Suppose there are two types of customers. A fraction η are tech-savvy customers, and

the rest 1 − η are traditional customers. Tech-savvy customers and traditional customers

have different base shopping rate and wait sensitivity, denoted as αm and αh, βm and βh,

respectively. This general demand model can capture customer heterogeneity in terms of

two aspects: (1) Customers may have different loyalty levels towards the firm (which is

reflected by different base shopping rates), and (2) customers may have different sensitivity

levels towards wait in store. The model presented in Chapter 4 is a special case of this

general model with αh = αm and βh = βm. We assume tech-savvy customers are more wait

sensitive than traditional customers (i.e., βm ≥ βh); this is natural since customers adopt

self-order technology primarily because of their impatience with waiting lines (eMarketer,

2014).

Similar to what we did in Chapter 4, in the following analysis, we focus on the case where
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the firm serves both types of customers, which is a valid assumption when αm and αh are

large.

Base Model

Given the demand rate function of each type of customers, i.e., λm = [αm− βm(w1 +w2)]+

and λh = [αh−βh(w1 +w2)]+, the firm chooses the capacity level at each stage, µ1 and µ2,

to maximize the profit rate, i.e.,

max
(1−η)λh+ηλm6µ1,(1−η)λh+ηλm6µ2

rλ− c1µ1 − c2µ2

s.t. λm = [αm − βm (w1(µ1, (1− η)λh + ηλm) + w2(µ2, (1− η)λh + ηλm))]+

λh = [αh − βh (w1(µ1, (1− η)λh + ηλm) + w2(µ2, (1− η)λh + ηλm))]+

(A.11)

Proposition 81. The firm’s optimal solution is given as follows:

• µb1 = λb +
√

((1−η)βh+ηβm)(r−c1−c2)
c1

;

• µb2 = λb +
√

((1−η)βh+ηβm)(r−c1−c2)
c2

,

where λb = (1−η)λbh+ηλbm, where λbh = αh−βh
√

c1
((1−η)βh+ηβm)(r−c1−c2)−βh

√
c2

((1−η)βh+ηβm)(r−c1−c2)

and λbm = αm − βm
√

c1
((1−η)βh+ηβm)(r−c1−c2) − βm

√
c2

((1−η)βh+ηβm)(r−c1−c2)

Online Self-Order Technology

Suppose there is online self-order technology, then some tech-savvy customers will use the

technology and become online customers. Suppose a fraction θ ≤ η of all customers are

online customers. Because of the instant-order and advance-order effects, their shopping

rate is given by λmo = [αm − ξβmw2]+, where ξ ∈ (0, 1]. As for store customers, there are

two types: traditional customers (with demand function λh = [αh − βh(w1 + w2)]+) and

the remaining tech-savvy customers who don’t have access to the online technology (with

demand function λms = [αm − βm(w1 + w2)]+).
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The firm chooses the capacity level at each stage, i.e., µ1 and µ2, to maximize profit rate:

max
(1−η)λh+(η−θ)λms≤µ1,
θλmo+(1−η)λh+(η−θ)λms≤µ2

r (θλmo + (1− η)λh + (η − θ)λms)− c1µ1 − c2µ2

s.t. λmo = [αm − ξβmw2(µ2, θλmo + (1− η)λh + (η − θ)λms)]+

λh = [αh − βh (w1(µ1, (1− η)λh + (η − θ)λms) + w2(µ2, θλmo + (1− η)λh + (η − θ)λms))]+

λms = [αm − βm(w1(µ1, (1− η)λh + (η − θ)λms) + w2(µ2, θλmo + (1− η)λh + (η − θ)λms))]+

(A.12)

Proposition 82. With online self-order technology, the firm’s optimal solution is given as

follows:

• µo1 = (1− η)λoh + (η − θ)λoms +
√

((1−η)βh+(η−θ)βm)(r−c1−c2)
c1

;

• µo2 = (1− η)λoh + (η − θ)λoms + θλomo +
√

((1−η)βh+(η−θ)βm)(r−c1−c2)+θξβm(r−c2)
c2

,

where

• λomo = αm − ξβm
√

c2
((1−η)βh+(η−θ)βm)(r−c1−c2)+θξβm(r−c2) ;

• λoh = αh − βh
√

c1
((1−η)βh+(η−θ)βm)(r−c1−c2) − βh

√
c2

((1−η)βh+(η−θ)βm)(r−c1−c2)+θξβm(r−c2) ;

• λoms = αm−βm
√

c1
((1−η)βh+(η−θ)βm)(r−c1−c2)−βm

√
c2

((1−η)βh+(η−θ)βm)(r−c1−c2)+θξβm(r−c2) .

Proposition 83. With online self-order technology,

• online customers come more often than before, i.e., λomo > λbm;

• given c1 and c2, store customers come to store more often (i.e., λoh > λbh and λoms >

λbm) if and only if c1+c2
r > mλ and θ ∈ (0, ψs) for some mλ < 1 and ψs > 0;

• total demand increases, i.e., θλomo + (1− η)λoh + (η − θ)λoms > (1− η)λbh + ηλbm.

This shows that our original Proposition 25 still holds in this case.

Proposition 84. Given c1 and c2, then there exists a threshold mk < 1 such that the

firm increases total workforce level after implementing online self-order technology (i.e.,
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ko1 + ko2 > kb1 + kb2) if and only if c1+c2
r > mk.

This shows that our original Proposition 27 still holds in this case.

Offline Self-Order Technology

With offline self-order technology, same as the base model, tech-savvy customers always

prefer to use the self-order machines, while traditional customers place an order only with

human servers. Then, the firm’s optimization problem is given as follows:

max
ηλm≤µ1m,
(1−η)λh≤µ1h,
ηλm+(1−η)λh≤µ2

r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

s.t. λm = [αm − βmw1m (µ1m, ηλm)− βmw2 (µ2, ηλm + (1− η)λh)]+

λh = [αh − βhw1h (µ1h, (1− η)λh)− βhw2 (µ2, ηλm + (1− η)λh)]+

(A.13)

Proposition 85. With offline self-order technology, the firm’s optimal solution is given as

follows:

• µs1m = ηλsm +
√

βmη(r−c1m−c2)
c1m

;

• µs1h = (1− η)λsh +
√

βh(1−η)(r−c1−c2)
c1

;

• µs2 = ηλsm + (1− η)λsh +
√

βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)
c2

,

where

• λsm = αm − βm
√

c1m
βmη(r−c1m−c2) − βm

√
c2

βm(r−c1m−c2)η+βh(r−c1−c2)(1−η) ;

• λsh = αh − βh
√

c1
βh(1−η)(r−c1−c2) − βh

√
c2

βm(r−c1m−c2)η+βh(r−c1−c2)(1−η) .

Similar to what we did in Chapter 4, in the following analysis, we assume the machine

capacity cost c1m is small enough such that the average wait time at stage 1 is shorter with

self-order technology compared to the base case, i.e., ηws1m + (1− η)ws1h < wb1.

Proposition 86. With offline self-order technology,

133



• tech-savvy customers come more often than before, i.e., λsm > λbm;

• given c1m, c1, c2, traditional customers come to store more often (i.e., λsh > λbh) if and

only if c1+c2
r > m′λ and η ∈ (0, ψ′s) for some m′λ < 1 and ψ′s > 0;

• total demand increases, i.e., ηλsm + (1− η)λsh > (1− η)λbh + ηλbm.

This shows that our original Proposition 30 still holds in this case.

Proposition 87. Given c1m, c1 and c2, then there exists a threshold m′k < 1 such that

the firm increases total workforce level after implementing offline self-order technology (i.e.,

ks1 + ks2 > kb1 + kb2) if and only if c1+c2
r > m′k.

This shows that our original Proposition 32 still holds in this case.

Profit Implications

Suppose βh = bbh and βm = bbm, i.e., b measures the base wait sensitivity in the market.

Proposition 88. There exists b̄ ≥ 0 such that online self-order technology generates more

profit than offline self-order technology (i.e., πo > πs) if and only if b > b̄.

This shows that our original Proposition 34 still holds in this case.

A.6.2. Convex Impact of Wait Time

In Chapter 4, we assumed demand is a linear function of wait time. In this extension,

we relax this assumption. Specifically, we consider the following demand function: λ =

α−βwφ1 −βw
φ
2 , where w1 and w2 represent the wait times at stages 1 and 2, and parameter

φ ∈ (0, 1]. Since φ ∈ (0, 1], demand λ is convex with respect to wait time at each stage.

Note, the linear demand model presented in Chapter 4 is a special case of this general

demand model with φ = 1.

Similar to what we did in Chapter 4, in the following analysis, we focus on the case where

the firm serves all types of customers (including online, store, tech-savvy, traditional), which
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is a valid assumption when α is large.

Base Model

Given the demand function, the firm chooses the capacity level at each stage, µ1 and µ2, to

maximize the profit rate, i.e.,

max
λ6µ1,λ6µ2

rλ− c1µ1 − c2µ2

s.t. λ =
[
α− β (w1(µ1, λ))φ − β (w2(µ2, λ))φ

]+
(A.14)

Proposition 89. The firm’s optimal solution is given as follows:

• µb1 = λb +
(
φβ(r−c1−c2)

c1

) 1
1+φ

;

• µb2 = λb +
(
φβ(r−c1−c2)

c2

) 1
1+φ

,

where λb = α− β
(

c1
φβ(r−c1−c2)

) φ
1+φ − β

(
c2

φβ(r−c1−c2)

) φ
1+φ

.

Online Self-Order Technology

With online self-order technology, because of the instant-order and advance-order effects,

online customer’s demand function is given as λo = α− ξβwφ2 . The store customer’s demand

function remains the same as before, i.e., λs = α − βwφ1 − βwφ2 . Therefore, the firm’s

optimization problem is as follows:

max
(1−θ)λs≤µ1,(1−θ)λs+θλo≤µ2

r ((1− θ)λs + θλo)− c1µ1 − c2µ2

s.t. λo =
[
α− ξβ (w2(µ2, (1− θ)λs + θλo))

φ
]+

λs =
[
α− β (w1(µ1, (1− θ)λs))φ − β (w2(µ2, (1− θ)λs + θλo))

φ
]+

(A.15)

Proposition 90. With online self-order technology, the firm’s optimal solution is given as

follows:
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• µo1 = (1− θ)λos +
(
φ(1−θ)β(r−c1−c2)

c1

) 1
1+φ

;

• µo2 = (1− θ)λos + θλoo +
(
φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

c2

) 1
1+φ

,

where

• λos = α− β
(

c1
φ(1−θ)β(r−c1−c2)

) φ
1+φ − β

(
c2

φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

) φ
1+φ

,

• λoo = α− ξβ
(

c2
φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

) φ
1+φ

.

Proposition 91. With online self-order technology,

• online customers come more often than before, i.e., λoo > λb;

• given c1 and c2, store customers come to store more often (i.e., λos > λb) if and only

if c1+c2
r > mλ and θ ∈ (0, ψs) for some mλ < 1 and ψs > 0;

• total demand increases, i.e., (1− θ)λos + θλoo > λb.

This shows that our original Proposition 25 still holds in this case.

Proposition 92. Given c1 and c2, then there exists a threshold mk < 1 such that the

firm increases total workforce level after implementing online self-order technology (i.e.,

ko1 + ko2 > kb1 + kb2) if and only if c1+c2
r > mk.

This shows that our original Proposition 27 still holds in this case.

Offline Self-Order Technology

With self-order technology, the firm’s optimization problem is given as follows:

max
ηλm≤µ1m,
(1−η)λh≤µ1h
ηλm+(1−η)λh≤µ2

r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

s.t. λm =
[
α− β(w1m (µ1m, ηλm))φ − β(w2 (µ2, ηλm + (1− η)λh))φ

]+

λh =
[
α− β(w1h (µ1h, (1− η)λh))φ − β(w2 (µ2, ηλm + (1− η)λh))φ

]+

(A.16)
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Proposition 93. With offline self-order technology, the firm’s optimal solution is given as

follows:

• µs1m = ηλsm +
(
φβη(r−c1m−c2)

c1m

) 1
1+φ

;

• µs1h = (1− η)λsh +
(
φβ(1−η)(r−c1−c2)

c1

) 1
1+φ

;

• µs2 = ηλsm + (1− η)λsh +
(
φβη(r−c1m−c2)+φβ(1−η)(r−c1−c2)

c2

) 1
1+φ

,

where

• λsm = α− β
(

c1m
φβη(r−c1m−c2)

) φ
1+φ − β

(
c2

φβη(r−c1m−c2)+φβ(1−η)(r−c1−c2)

) φ
1+φ

;

• λsh = α− β
(

c1
φβ(1−η)(r−c1−c2)

) φ
1+φ − β

(
c2

φβη(r−c1m−c2)+φβ(1−η)(r−c1−c2)

) φ
1+φ

.

Similar to what we did in Chapter 4, in the following analysis, we assume the machine

capacity cost c1m is small enough such that the average wait time at stage 1 is shorter with

self-order technology compared to the base case, i.e., ηws1m + (1− η)ws1h < wb1.

Proposition 94. With offline self-order technology,

• tech-savvy customers come more often than before, i.e., λsm > λb;

• given c1m, c1, c2, traditional customers come to store more often (i.e., λsh > λb) if and

only if c1+c2
r > m′λ and η ∈ (0, ψ′s) for some m′λ < 1) and ψ′s > 0;

• total demand increases, i.e., ηλsm + (1− η)λsh > λb.

This shows that our original Proposition 30 still holds in this case.

Proposition 95. Given c1m, c1 and c2, then there exists a threshold m′k < 1 such that

the firm increases total workforce level after implementing offline self-order technology (i.e.,

ks1 + ks2 > kb1 + kb2) if and only if c1+c2
r > m′k.

This shows that our original Proposition 32 still holds in this case.
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Profit Implications

Proposition 96. There exists β̄ ≥ 0 such that online self-order technology generates more

profit than offline self-order technology (i.e., πo > πs) if and only if β > β̄.

This shows that our original Proposition 34 still holds in this case.

A.6.3. Alternative Wait Time Function

In Chapter 4, we formulated firm’s optimization problem with respect to capacity µ. The

three optimization problems (4.1, 4.2, 4.3) can also be reformulated with respect to the

number of servers k as follows:

• Basic model:

max
λ6k1/τ1,λ6k2/τ2

rλ− l1k1 − l2k2

s.t. λ = [α− β (w1(k1, λ) + w2(k2, λ))]+
(4.1′)

• Online self-order technology:

max
(1−θ)λs≤k1/τ1,θλo+(1−θ)λs≤k2/τ2

r (θλo + (1− θ)λs)− l1k1 − l2k2

s.t. λo = [α− ξβw2(k2, θλo + (1− θ)λs)]+

λs = [α− β (w1(k1, (1− θ)λs) + w2(k2, θλo + (1− θ)λs))]+

(4.2′)

• Offline self-order technology:

max
ηλm≤k1m/τ1,
(1−η)λh≤k1/τ1,
ηλm+(1−η)λh≤k2/τ2

r (ηλm + (1− η)λh)− l1mk1m − l1k1 − l2k2

s.t. λm = [α− β (w1 (k1m, ηλm) + w2 (k2, ηλm + (1− η)λh))]+

λh = [α− β (w1 (k1, (1− η)λh) + w2 (k2, ηλm + (1− η)λh))]+

(4.3′)
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where l1 = c1/τ1, l1m = c1m/τ1, l2 = c2/τ2, wi(k, λ) = 1
k/τi−λ , and τi is the average service

time at stage i = 1, 2. Here, l1 and l2 can be interpreted as the labor cost per unit of time at

stages 1 and 2, l1m is the corresponding cost for machines. The number of machine servers

is denoted by k1m.

In Chapter 4, we have assumed wait time function takes the following form: wi(k, λ) =

1
k/τi−λ . In this section, we numerically test the robustness of our main insights with a

different wait time function, i.e.,

wi(k, λ) =
(τi
k

)ρ√2(k+1)−1

i

1− ρi

+ τi (A.17)

where ρi = λτi
k . This corresponds to the approximated average wait time in a M/M/k queue

(Cachon and Terwiesch, 2009).

In the numerical study, we consider the following parameter values:

• τ1 = {0.5
60 ,

1
60}. We assume the average service requirement is 0.5/60 or 1/60 hour

(i.e., 30 seconds or 1 min) to place an order.

• τ2 = tτ1, where t = {3, 5, 7}. Here, we only look at the case where τ2 > τ1 because it

generally takes longer cooking food at stage 2 than processing an order at stage 1.

• α = 100. Here, we assume the maximum traffic (i.e., if there is no wait) in a store is

100 people per hour.

• β = {300, 400, 500, 600}. This implies that the longest amount of wait time people

can tolerate (after which their shopping rate is 0) is α/β = {1/3, 1/4, 1/5, 1/6} hours.

• η = {0.6, 0.7, 0.8, 0.9}

• θ = ζη, where ζ = {0.2, 0.4, 0.6, 0.8}.

• ξ = {0.2, 0.4, 0.6, 0.8}
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• l1 = l2 = {8, 9, 10, 11} The range of the hourly wage is consistent with the data

provided by the Bureau of Labor Statistics (http://www.bls.gov/oes/current/

oes353021.htm).

• l1m = xl1, where x = {0.01, 0.1}.

• l1τ1+l2τ2
r = {0.1, 0.3, 0.5, 0.7}. The range of the cost-revenue ratio is selected based

on the following fact: According to National Restaurant Association (2010), for a

restaurant, the median cost of food and beverage sales is 31.9%, and the median cost

of salaries and wages is 29.4%. Note, l1τ1 + l2τ2 is the cost to serve one customer;

r is the sales revenue from each customer net of cost of food and beverage. Then,

the data above implies that the median of the cost-revenue ratio l1τ1+l2τ2
r should be

around 29.4%/(1− 31.9%) = 43.2%.

There are 49.152 cases in total. After checking with the assumptions we made in Chapter 4,

we end up having 35,620 cases. For each case, we solve the three optimization problems

above with the wait time function (A.17). To simplify calculation, we assume k1, k2, k1m ∈

R+.

First, we check the impact of self-order technology on demand. Here are the results:

• With online technology, compared to the base scenario:

– total demand increases (i.e., θλoo + (1− θ)λos > λb) in all cases;

– online customers come more often (i.e., λoo > λb) in all cases;

– store customers come more often (i.e., λos > λb) in about 21.7% of cases.

• With offline technology, compared to the base scenario:

– total demand increases (i.e., ηλsm + (1− η)λsh > λb) in all cases;

– tech-savvy customers come more often (i.e., λsm > λb) in all cases;
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– traditional customers come more often (i.e., λsh > λb) in about 5.4% of cases.

These results are consistent with Propositions 25 and 30 in Chapter 4.

Next, we check the impact of self-order technology on workforce level:

• Figure 13 shows the proportion of instances that ko1 + ko2 > kb1 + kb2 given the cost-

revenue ratio (l1τ1 + l2τ2)/r. It shows that a firm with higher cost-revenue ratio will

be more likely to increase workforce level after the implementation of online self-order

technology, which is consistent with Proposition 27.

• Figure 14 shows the proportion of instances that ks1 + ks2 > kb1 + kb2 given the cost-

revenue ratio (l1τ1 + l2τ2)/r. It shows that a firm with higher cost-revenue ratio will

be more likely to increase workforce level after the implementation of offline self-order

technology, which is consistent with Proposition 32.

Finally, we check the optimal choice between online and offline self-order technologies:

Figure 15 shows the proportion of instances that πo > πs given β. It implies that online

self-order technology is more profitable if β is large, which is consistent with Proposition 34.

Figure 13: Proportion of instances that total workforce level increases after the implemen-
tation of online self-order technology (i.e., ko1 + ko2 > kb1 + kb2)
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Figure 14: Proportion of instances that total workforce level increases after the implemen-
tation of offline self-order technology (i.e., ks1 + ks2 > kb1 + kb2)

Figure 15: Proportion of instances that online self-order technology generates more profit
than offline self-order technology (i.e., πo > πs)

A.7. Proofs

Proof of Proposition 1: Let’s look for participatory RE equilibrium, where φ = 1 and q > 0.

All we need to do is to check the four conditions specified in Definition 1.

First, we look at retailer’s problem: Given belief φ̂, the retailer maximizes total profit π =

pEmin(φ̂D, q)− cq + rE(φ̂D) + wE((1− φ̂)D) + wE(φ̂D − q)+
= (p − w)Emin(φ̂D, q) −

cq+(φ̂r+w)ED, which is a typical newsvendor problem (plus a constant (φ̂r+w)ED), and

therefore the optimal order quantity q◦ is given by F̄
(
q◦

φ̂

)
= c

p−w ∧ 1, where x ∧ y means

min(x, y).
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Since in equilibrium, the retailer’s belief is consistent with the outcome, we have φ̂ = φ = 1.

Thus, q◦ = F̄−1
(

c
p−w ∧ 1

)
. Since q > 0 in the participatory equilibrium, we must have

p− c > w and thus q◦ = F̄−1
(

c
p−w

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂◦ = A(q◦) = Emin(φD, q◦)/E(φD) = Emin(D, F̄−1( c
p−w ))/ED.

Finally, we go back to consumer’s decision. To ensure φ = 1, we need us ≥ uo, i.e.,

hs ≤ ξ̂◦ho. Therefore, we need hs ≤
Emin(D,F̄−1( c

p−w ))

ED ho.

Based on the analysis above, we find the conditions for a participatory equilibrium are

hs ≤
Emin(D,F̄−1( c

p−w ))

ED ho and p − c > w. And the equilibrium outcome is φ = 1 and

q◦ = F̄−1
(

c
p−w

)
.

Proof of Proposition 2: If min(hs, hb) ≤ ho, then the profit function π = pEmin (D, q) −

cq+ rEmin (D, q) +wE (D − q)+ = (p+ r−w)Emin(D, q)− cq+wED, which is a typical

newsvendor problem (plus a constant wED). Thus, the optimal order quantity q∗ is given

by F̄ (q∗) = c
p+r−w ∧ 1. Then, if p − c > w − r, we have q∗ = F̄−1

(
c

p+r−w

)
; otherwise,

q∗ = 0.

If min(hs, hb) > ho, then no customer comes to store and thus the retailer will stock nothing

in the store, i.e., q∗ = 0.

Proof of Proposition 3: If hs ∈

(
Emin

[
D,F̄−1

(
c

p−w∧1
)]

ED ho, ho

]
and p− c > w − r, then

π∗ = pEmin (D, q∗)− cq∗ + rEmin (D, q∗) + wE(D − q∗)+

= (p+ r − w)Emin (D, q∗)− cq∗ + wED

> wED

= π◦

where the inequality is due to the fact that q∗ > 0. This completes the proof.
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Proof of Proposition 4: If hb ≤ ho < hs and p − c > w − r, then q∗ = F̄−1
(

c
p+r−w

)
> 0

because of Proposition 2. Then,

π∗ = pEmin (D, q∗)− cq∗ + rEmin (D, q∗) + wE(D − q∗)+

= (p+ r − w)Emin (D, q∗)− cq∗ + wED

> wED

= π◦

where the inequality is due to the fact that q∗ > 0. This completes the proof.

Proof of Proposition 5: If hs ≤
Emin

(
D,F̄−1

(
c

p−w

))
ED ho and p− c > w, we have q◦ 6= q∗ when

r > 0. Then

π◦ = pEmin (D, q◦)− cq◦ + rED + wE(D − q◦)+

= (p◦ − w)Emin (D, q◦)− cq◦ + rED + wED

> (p∗ − w)Emin (D, q∗)− cq∗ + rED + wED

> (p∗ − w)Emin (D, q∗)− cq∗ + rEmin (D, q∗) + wED

= p∗Emin (D, q∗)− cq∗ + rEmin (D, q∗) + wE(D − q∗)+

= π∗

where the first inequality is due to the strict concavity of the newsvendor profit function and

q◦ is the unique maximizer of π◦, and the second inequality is because ED > Emin(D, q)

for any q. This completes the proof.

Proof of Proposition 6: Note nonparticipatory equilibrium, (v−pH , 0, 0, 0, 0, 0, v−pH , 0, 0, 0), al-

ways exists. Same as what we did in the base model, we are going to look for participatory

equilibrium, where α◦s > 0, α◦so > 0 and q◦ > 0. All we need to do is to check the four

conditions specified in Definition 2.

First, we look at retailer’s problem: Given belief α̂o, α̂s, α̂so, the retailer maximizes total
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profit

π = pEmin ((α̂s + α̂so)D, q)− cq + rE (α̂s + α̂so)D

+wEα̂oD + wE α̂so
α̂s+α̂so

((α̂s + α̂so)D − q)+

=
(
p− w α̂so

α̂s+α̂so

)
Emin((α̂s + α̂so)D, q)− cq

+((α̂s + α̂so)r + (α̂o + α̂so)w)ED

which is a typical newsvendor problem (plus a constant ((α̂s + α̂so)r + (α̂o + α̂so)w)ED),

and therefore the optimal order quantity q◦ is given by F̄
(

q◦

α̂s+α̂so

)
= c

p−w α̂so
α̂s+α̂so

∧ 1.

Since in equilibrium, the retailer’s belief is consistent with the outcome, we have α̂i = α◦i ,

i = o, s, so. Note, in any participatory equilibrium, ξ > 0. Then, α◦so
α◦s+α◦so

= v−p
2H−(v−p) . Thus,

q◦ = (α◦s + α◦so)F̄
−1

(
c

p−w v−p
2H−(v−p)

∧ 1

)
. Since q◦ > 0 in the participatory equilibrium, we

must have p− c > w v−p
2H−(v−p) and thus q◦ = (α◦s + α◦so)F̄

−1

(
c

p−w v−p
2H−(v−p)

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂ = A(q◦) = Emin((α◦s + α◦so)D, q
◦)/E((α◦s + α◦so)D) = Emin(D, F̄−1( c

p−w v−p
2H−(v−p)

))/ED,

which is indeed greater than 0. Thus, there are customers who are willing to come to store.

Based on the analysis above, we find the condition for a participatory equilibrium is p−c >

w v−p
2H−(v−p) . And the equilibrium store inventory level q◦ = F̄−1

(
c

p−w v−p
2H−(v−p)

)
.

Proof of Proposition 7: Note the retailer’s profit can be expressed as

π =
(
p+ r − w α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo

)
Emin ((α∗s + α∗b + α∗so + α∗bo)D, q)− cq

+w(α∗o + α∗so + α∗bo)ED

which is a typical newsvendor problem (plus a constant w(α∗o + α∗so + α∗bo)ED). Thus, the

optimal store inventory level is given by

q∗ = (α∗s + α∗b + α∗so + α∗bo) F̄
−1

 c

p+ r − w α∗so+α
∗
bo

α∗s+α∗b+α∗so+α
∗
bo

∧ 1


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Proof of Proposition 8: Denote A◦l = {(hs, ho)|max(v − p − ho,−hs + ξ◦(v − p)) < 0} and

A∗l = {(hs, ho)|max(v − p − ho, v − p − hs, v − p − βshs − βoho) < 0}. To prove part (i),

we simply need to show that A∗l ⊂ A◦l . Since ξ◦ < 1, for any (hs, ho) ∈ A∗l , we will have

(hs, ho) ∈ A◦l . Thus, A∗l ⊂ A◦l .

Next, let’s look at part (ii). To simplify notation, we denote ∆◦ = v−p
2H−(v−p) and ∆∗ =

α∗so+α
∗
bo

α∗s+α∗b+α∗so+α
∗
bo

. Note if βs + βo > 1, we have ∆◦ < ∆∗. Thus, p−c
∆◦ >

p−c
∆∗ .

If there are customers visiting store when there is no BOPS, we need to have w < p−c
∆◦ . The

following analysis assumes this condition holds.

Suppose r = 0. If w ≥ p−c
∆∗ (this is possible since p−c

∆◦ > p−c
∆∗ ), then no one comes to store

when there is BOPS . In this case,

π∗ = wE (α∗so + α∗bo + α∗o)D

= wE (α◦so + α◦o)D

< pEmin ((α◦s + α◦so)D, q)− cq + rE (α◦s + α◦so)D + wEα◦oD

+ wE
α◦so

α◦s + α◦so
((α◦s + α◦so)D − q)

+

= π◦

where the inequality is because q = 0 is also a feasible but not the optimal solution to the

case where there is no BOPS. If w < p−c
∆∗ , then there are consumers visiting store when

there is BOPS. Note (1) π◦ − π∗ is continuous in w, and (2) π◦ > π∗ when w = p−c
∆∗ . Thus,

the analysis above implies that there exists w̄ < p−c
∆∗ such that π◦ > π∗ if w > w̄.

Proof of Proposition 9: Note π̃s is a typical newsvendor profit function. Then, the optimal

order quantity q̃∗ is given by F̄ (q̃∗) = c
θp+r ∧ 1. Thus, if θp + r − c > 0, we have q̃∗ =

F̄−1
(

c
θp+r

)
, otherwise, q̃∗ = 0.
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Proof of Proposition 10: In the decentralized system, for any θ, denote optimal stock levels

in the store as q̃∗(θ). Suppose we have the same stock level in the centralized system. Then

clearly we will achieve exactly the same total profit as π̃∗(θ), since the BOPS revenue is

just shared between channels in the decentralized case. Thus, we must have π̃∗(θ) ≤ π∗.

And due to the fact that π is strictly concave in q and q∗ > 0 (because of the assumptions

that hb < min(hs, ho) and p− c > w − r), we have π̃∗(θ) = π∗ if only if q̃∗ = q∗.

Next, let’s compare the optimal store inventory levels in both the centralized and decen-

tralized systems:

• If θ < p−w
p , then c

θp+r >
c

p+r−w . Thus, q̃∗ = F̄−1
(

c
θp+r

)
< F̄−1

(
c

p+r−w

)
= q∗. Since

q̃∗ 6= q∗, π̃∗ < π∗.

• If θ = p−w
p , then c

θp+r = c
p+r−w . Thus, q̃∗ = F̄−1

(
c

θp+r

)
= F̄−1

(
c

p+r−w

)
= q∗. Since

q̃∗ = q∗, π̃∗ = π∗.

• If θ > p−w
p , then c

θp+r <
c

p+r−w . Thus, q̃∗ = F̄−1
(

c
θp+r

)
> F̄−1

(
c

p+r−w

)
= q∗. Since

q̃∗ 6= q∗, π̃∗ < π∗.

Finally, let’s prove π̃∗ is quasiconcave in θ.

Let’s first show that π̃∗ is nondecreasing in θ < p−w
p . If θ ≤ c−r

p , then q̃∗ = 0 and thus

π̃∗ = wED, which is independent of θ. If θ ∈ ( c−rp , p−wp ), then ∂π̃∗

∂θ = ∂π̃∗

∂q
∂q̃∗

∂θ > 0, because

∂π̃∗

∂q > 0 if q < q̃∗ and ∂q̃∗

∂θ > 0.

Then, let’s show that π̃∗ is nonincreasing in θ > p−w
p . Note ∂π̃∗

∂θ = ∂π̃∗

∂q
∂q̃∗

∂θ < 0, because

∂π̃∗

∂q < 0 if q > q̃∗ and ∂q̃∗

∂θ > 0.

Thus, we can conclude that π̃∗ is quasiconcave in θ.

Proof of Proposition 35: Note π̃s is a typical newsvendor profit function. Then, the optimal

order quantity q̃∗ is given by F̄ ( q̃∗

α∗s+α∗b+α∗so+α
∗
bo

) = c(
α∗s+α∗so

α∗s+α∗
b

+α∗so+α∗
bo

+
α∗
b

+α∗
bo

α∗s+α∗
b

+α∗so+α∗
bo
θ

)
p+r
∧ 1.
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Thus, if(
α∗s+α∗so

α∗s+α∗b+α∗so+α
∗
bo

+
α∗b+α∗bo

α∗s+α∗b+α∗so+α
∗
bo
θ
)
p+ r − c > 0, then

q̃∗ = (α∗s + α∗b + α∗so + α∗bo) F̄
−1

 c(
α∗s+α∗so

α∗s+α∗
b

+α∗so+α∗
bo

+
α∗
b

+α∗
bo

α∗s+α∗
b

+α∗so+α∗
bo
θ

)
p+r

, otherwise, q̃∗ = 0.

Proof of Proposition 11: Let’s look for participatory RE equilibrium, where φ = 1. All we

need to do is to check the four conditions specified in Definition 1.

First, we look at the retailer’s problem: Note the profit function can be expressed as

π = (p−w+ r 1−θ
θ )Emin(φ̂θD, q)− cq+ (wθ− r(1− θ))ED, which is a typical newsvendor

problem (plus a constant (wθ + r(1− θ))ED), and therefore the optimal order quantity q◦

is given by F̄
(
q◦

φ̂θ

)
= c

p−w+r 1−θ
θ

.

Since in equilibrium, the retailer’s belief is consistent with the outcome, we have φ̂ = φ = 1.

Thus, q◦ = θF̄−1

(
c

p−w+r 1−θ
θ

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂◦ = A(q◦) = Emin(φθD, q◦)/E(φθD) = Emin(D, F̄−1( c
p−w+r 1−θ

θ

))/ED.

Finally, we need to check, given ξ̂ = Emin(D, F̄−1( c
p−w+r 1−θ

θ

))/ED, consumers are indeed

willing to visit store, i.e., us > uo, which gives us the condition

hs <
Emin(D, F̄−1( c

p−w+r 1−θ
θ

))

ED
[ho + (1− θ)hr]. (SA.1)

Note the right hand side of condition (SA.1) is decreasing in θ and is also boundless for

θ ∈ R. Therefore, there exists a unique θ◦ ∈ R such that hs =
Emin(D,F̄−1( c

p−w+r 1−θ◦
θ◦

))

ED [ho +

(1− θ◦)hr] and condition (SA.1) is equivalent to θ < θ◦. Since θ ∈ (0, 1) in our model, we

truncate the cutoff point and set ψ◦ = min(max(θ◦, 0), 1).

Based on the analysis above, we find the condition for a participatory equilibrium is θ < ψ◦.
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In such case, the equilibrium store inventory level is q◦ = θF̄−1

(
c

p−w+r 1−θ
θ

)
, which is

strictly positive, since condition (SA.1) will not hold otherwise.

Proof of Proposition 12: Let’s look for participatory RE equilibrium, where φ = 1.

First, we look at the retailer’s problem: Note the profit function can be expressed as

π = (p−w)Emin(φ̂θD, q)− cq + (wθ− r(1− φ̂)(1− θ))ED, which is a typical newsvendor

problem (plus a constant (wθ−r(1−φ̂)(1−θ))ED), and therefore the optimal order quantity

qp is given by F̄
(
qp

φ̂θ

)
= c

p−w .

Since in equilibrium, the retailer’s belief is consistent with the outcome, we have φ̂ = φ = 1.

Thus, qp = θF̄−1
(

c
p−w

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂p = A(qp) = Emin(φθD, qp)/E(φθD) = Emin(D, F̄−1( c
p−w ))/ED.

Finally, we need to check given ξ̂ = Emin(D, F̄−1( c
p−w ))/ED, consumers are indeed willing

to visit store, i.e., us > uo, which gives us the condition

hs <
Emin(D, F̄−1( c

p−w ))

ED
θho + (1− θ)(ho + hr). (SA.2)

Note the left hand side of condition (SA.2) is decreasing in θ and is also boundless for θ ∈ R.

Therefore, there exists a unique θp ∈ R such that hs =
Emin(D,F̄−1( c

p−w ))

ED θpho+(1−θp)(ho+

hr) and condition (SA.2) is equivalent to θ < θp. Since θ ∈ (0, 1) in our model, we truncate

the cutoff point and set ψp = min(max(θp, 0), 1) and thus we get the equilibrium result.

Note ∂ψo

∂r ≥ 0 and ∂ψp

∂r = 0. Also, when r = 0, condition (SA.1) implies condition (SA.2),

and thus θp ≥ θ◦ or ψp ≥ ψ◦. Therefore, ∃r̄ ≥ 0 such that ψp > ψ◦ if and only if r < r̄.
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Proof of Proposition 13: If θ < ψp, then we have

π◦ = pEmin(θD, q◦)− cq◦ + wE(θD − q◦)+ − rE 1− θ
θ

(θD − q◦)+

< pEmin(θD, q◦)− cq◦ + wE(θD − q◦)+

< pEmin(θD, qp)− cqp + wE(θD − qp)+ = πp

where the second inequality is because qp rather than q◦ is the optimal solution that maxi-

mizes the newsvendor profit function πp.

If ψp < ψ◦ and θ ∈ [ψp, ψ◦), then we have

π◦ = pEmin(θD, q◦)− cq◦ + wE(θD − q◦)+ − rE 1− θ
θ

(θD − q◦)+

= (p− w − r1− θ
θ

)Emin(θD, q◦)− cq◦ + wθED − rE(1− θ)D

> wEθD − rE(1− θ)D = πp

If θ ≥ max(ψp, ψ◦), then π◦ = wEθD − rE(1− θ)D = πp.

Proof of Proposition 14: Since this is just the base model with a new set of parameter θ′

and D′, similar to the proof of Proposition 1, we can show that the participatory equilibrium

exists if and only if

hs <

Emin(D′, F̄ ′−1( c

p−w+r 1−θ′
θ′

))

ED′
[ho + (1− θ′)hr]. (SA.3)

and in the participatory equilibrium, we have φv = 1 and qv = θ′F̄ ′( c

p−w+r 1−θ′
θ′

) > 0.

Since D′ = [1 − α(1 − θ)]D and F ′(x) = F ( x
1−α(1−θ)), the right hand side of condi-

tion (SA.3) equals to

Emin

(
D,F̄−1

(
c

p−w+r 1−θ′
θ′

))
ED [ho + (1 − θ′)hr], which is decreasing in

θ and is also boundless for θ ∈ R. Therefore, there exists a unique θv ∈ R such that

hs =

Emin(D,F̄−1( c

p−w+r
1−θ′(θv)
θ′(θv)

))

ED [ho + (1 − θ′(θv))hr] and condition (SA.3) is equivalent

to θ < θv, where θ′(θv) = θv

1−α(1−θv) , i.e., the posterior fraction of high-type customers
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given prior θv. Since θ ∈ (0, 1) in our model, we truncate the cutoff point and set

ψv = min(max(θv, 0), 1) and thus we get the equilibrium result.

Since θ′ > θ, it is easy to show that condition (SA.3) implies condition (SA.1), and thus

θ◦ ≥ θv. Therefore, their truncated counterparts ψ◦ ≥ ψv.

Proof of Proposition 15: If θ < ψv, then we have

π◦ = pEmin(θD, q◦)− cq◦ + wE(θD − q◦)+ − rE 1− θ
θ

(θD − q◦)+

< pEmin(θD, q◦)− cq◦ + wE(θD − q◦)+ − rE 1− θ′

θ′
(θD − q◦)+

= pEmin(θ′D′, q◦)− cq◦ + wE(θ′D′ − q◦)+ − rE 1− θ′

θ′
(θ′D′ − q◦)+

< pEmin(θ′D′, qv)− cqv + wE(θ′D′ − qv)+ − rE 1− θ′

θ′
(θ′D′ − qv)+ = πv

where the first inequality is because of θ′ > θ, the second inequality is because qv rather

than q◦ is the optimal solution that maximizes the newsvendor profit function πv.

If θ ≥ ψ◦, then we have π◦ = wEθD − rE(1 − θ)D < wEθD − rE(1 − α)(1 − θ)D =

wEθ′D′ − r(1− θ′)D′ = πv.

If θ ∈ [ψv, ψ◦), then π◦ = (p − w + r 1−θ
θ )Emin(θD, q◦) − cq◦ + (wθ − r(1 − θ))ED, while

πv = wEθ′D′ − rE(1− θ′)D′ = wEθD − rE(1− α)(1− θ)D. Then, by Envelop Theorem,

∂(π◦−πv)
∂w = ∂π◦

∂w −
∂πv

∂w = −Emin(θD, q◦) < 0. To conclude the result, we just need to note

that it is indeed possible to have π◦ > πv, e.g., when α is very close to 0.

Proof of Proposition 16: Comparing us,in and uo, we have

• us,in > uo if the following condition holds

hs < ho + (1− θ)hr (SA.4)

Then, consumers visit store if store is in stock. Thus, retailer profit function is π =
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pEmin(θD, q)−cq+wE(θD−q)+−rE 1−θ
θ (θD−q)+ = (p−w+r 1−θ

θ )Emin(θD, q)−

cq+(wθ−r(1−θ))ED, which is a typical newsvendor problem (plus a constant (wθ+

r(1−θ))ED), and therefore the optimal order quantity qa = θF̄−1

(
c

p−w+r 1−θ
θ

)
. Note

condition (SA.4) is equivalent to θ < ψ̃a, where ψ̃a = min(max(ho+hr−hshr
, 0), 1), given

θ ∈ (0, 1). Moreover, note if the critical fractile c
p−w+r 1−θ

θ

≥ 1 (⇔ θ ≥ r
(w+r−p+c)+ ,

given θ ∈ (0, 1)), then qa = 0, i.e., store is never in stock and thus consumers actually

always buy online as a result.

• If condition (SA.4) does not hold, i.e., θ ≥ ψ̃a, then us,in ≤ uo and consumers buy

online directly. Then, it is easy to see that the optimal store inventory level is qa = 0.

By setting ψa = min( r
(w+r−p+c)+ , ψ̃

a), we get the market outcome.

Finally, to prove ψa ≥ ψ◦, we only need to note the following two facts: First, since

condition (SA.1) implies condition (SA.4), we have ψ̃a ≥ ψ◦; second, since c
p−w+r 1−θ

θ

≥ 1

(or θ ≥ r
(w+r−p+c)+ ) implies that q◦ = 0, we have r

(w+r−p+c)+ ≥ ψ◦.

Proof of Proposition 17: If θ < ψ◦, then we have

π◦ = pEmin(θD, q◦)− cq◦ + wE(θD − q◦)+ − rE 1− θ
θ

(θD − q◦)+

= pEmin(θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+ = πa

If θ ≥ ψa, then we have π◦ = wEθD − rE(1− θ)D = πa.

If θ ∈ [ψ◦, ψa), then we have

π◦ = wEθD − rE(1− θ)D

< (p− w + r
1− θ
θ

)Emin(θD, qa)− cqa + wEθD − rE(1− θ)D

= pEmin(θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+ = πa
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Proof of Proposition 18: First, note condition A.3 in Appendix A.3.1 implies condition (SA.2),

thus ψpa ≤ ψp. Moreover, it is easy to check that ψ
pa

= ψa. Since ψpa ≤ ψ
pa

, we have

ψpa ≤ ψa.

1. If θ < ψpa, then πp = pEmin (θD, qp) − cqp + wE(θD − qp)+ = pEmin (θD, qpa) −

cqpa + wE(θD − qpa)+ = πpa and

πp = pEmin (θD, qp)− cqp + wE(θD − qp)+

> pEmin (θD, qa)− cqa + wE(θD − qa)+

> pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+ = πa

where the first inequality is because qp is the unique maximal of πp. Thus, we have

πp = πpa > πa.

2. If θ ∈ [ψpa,min(ψp, ψa)), then

πp = pEmin (θD, qp)− cqp + wE(θD − qp)+

> pEmin (θD, qa)− cqa + wE(θD − qa)+

> pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+ = πa

and

πa = pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+

= pEmin (θD, qpa)− cqpa + wE(θD − qpa)+ − rE 1− θ
θ

(θD − qpa)+ = πpa

Thus, we have πp > πa = πpa

3. If θ ∈ [min(ψp, ψa),max(ψp, ψa)),
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• if ψp < ψa, then

πa = pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+

= pEmin (θD, qpa)− cqpa + wE(θD − qpa)+ − rE 1− θ
θ

(θD − qpa)+ = πpa

and

πa = pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+

=

(
p− w + r

1− θ
θ

)
Emin (θD, qa)− cqa + wEθD − rE (1− θ)D

> wEθD − rE (1− θ)D = πp

Thus, we have πa = πpa > πp;

• if ψp > ψa, then

πa = pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+

= pEmin (θD, qpa)− cqpa + wE(θD − qpa)+ − rE 1− θ
θ

(θD − qpa)+ = πpa

and

πp = pEmin (θD, qp)− cqp + wE(θD − qp)+

> pEmin (θD, qa)− cqa + wE(θD − qa)+

> pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+ = πa

Thus, we have πp > πa = πpa.

4. If θ ≥ max(ψp, ψa), then πp = πa = πpa = wEθD − rE(1− θ)D.

Proof of Proposition 19: The addition of virtual showrooms only creates a new customer

pool with D′ and θ′. Then since ψp is determined by condition (SA.2), ψpv should be
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determined by condition hs <
Emin(D′,F̄

′−1( c
p−w ))

ED′ θho + (1 − θ′)(ho + hr), which is implied

by condition (SA.2). Thus, we have ψpv ≤ ψp.

If θ < ψpv, then πp = pEmin (θD, qp)− cqp +wE(θD − qp)+ = pEmin (θ′D′, qpv)− cqpv +

wE(θ′D′ − qpv)+ = πpv and

πp = pEmin (θD, qp)− cqp + wE(θD − qp)+

> max
(
pEmin (θD, qv)− cqv + wE(θD − qv)+, wEθD

)
> max

(
pEmin

(
θ′D′, qv

)
− cqv + wE

(
θ′D′ − qv

)+ − rE 1− θ′

θ′
(
θ′D′ − qv

)+
,

wEθ′D′ − rE
(
1− θ′

)
D′

)

= πv

If θ ∈ [ψpv, ψp), then πp = pEmin (θD, qp)−cqp+wE(θD − qp)+ = (p− w)Emin (θD, qp)−

cqp + wEθD > wEθ′D′ − rE (1− θ′)D = πpv and

πp = pEmin (θD, qp)− cqp + wE(θD − qp)+

> max
(
pEmin (θD, qv)− cqv + wE(θD − qv)+, wEθD

)
> max

(
pEmin

(
θ′D′, qv

)
− cqv + wE

(
θ′D′ − qv

)+ − rE 1− θ′

θ′
(
θ′D′ − qv

)+
,

wEθ′D′ − rE
(
1− θ′

)
D′

)

= πv

If θ ∈ [ψp,max(ψp, ψv)), then πp = wEθD − rE(1− θ)D and πpv = wEθ′D′ − r(1− θ′)D′,
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and

πv = pEmin
(
θ′D′, qv

)
− cqv + wE

(
θ′D′ − qv

)+ − rE 1− θ′

θ′
(
θ′D′ − qv

)+
=

(
p− w + r

1− θ′

θ′

)
Emin

(
θ′D′, qv

)
− cqv + wEθ′D′ − rE

(
1− θ′

)
D′

> wEθ′D′ − rE
(
1− θ′

)
D′

= wEθD − r (1− α)E (1− θ)D

≥ max (πpv, πp)

If θ ≥ max(ψp, ψv), πv = πpv = wEθ′D′ − r(1 − θ′)D′ = wEθD − r (1− α)E (1− θ)D >

wEθD − rE(1− θ)D = πp.

Proof of Proposition 20: Let’s first prove the part (i):

Think of the case with virtual showroom as a new base model with a new customer pool.

Then, since ψa ≥ ψ◦, we should also have ψva ≥ ψv.

If θ ∈ [ψv, ψva), then

πva = pEmin
(
θ′D′, qva

)
− cqva + wE

(
θ′D′ − qva

)+ − rE 1− θ′

θ′
(
θ′D′ − qva

)+
=

(
p− w + r

1− θ′

θ′

)
Emin

(
θ′D′, qva

)
− cqva + wEθ′D′ − rE

(
1− θ′

)
D′

> wEθ′D′ − rE
(
1− θ′

)
D′ = πv

and

πva = pEmin
(
θ′D′, qva

)
− cqva + wE

(
θ′D′ − qva

)+ − rE 1− θ′

θ′
(
θ′D′ − qva

)+
> pEmin

(
θ′D′, qa

)
− cqa + wE

(
θ′D′ − qa

)+ − rE 1− θ′

θ′
(
θ′D′ − qa

)+
> pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ

θ
(θD − qa)+ = πa
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Thus, we get part (i).

Next, let’s look at part (ii):

Since we can think of the case with virtual showroom as a new base model with new

customer pool (θ′ and D′), the proof should be similar to the proof of Proposition 18 and

thus omitted.

Proof of Proposition 21: Let’s first look at the case when θ < ψp. In Proposition 13, we

have shown that πp > π◦. Thus, all we need to show is that physical showroom is strictly

better than the other three options as well.

πp = pEmin (θD, qp)− cqp + wE(θD − qp)+

> max
(
pEmin (θD, qv)− cqv + wE(θD − qv)+, wEθD

)
> max

(
pEmin

(
θ′D′, qv

)
− cqv + wE

(
θ′D′ − qv

)+ − rE 1− θ′

θ′
(
θ′D′ − qv

)+
,

wEθ′D′ − rE
(
1− θ′

)
D′

)

= πv

A similar argument could be used to prove πp > πva, by simply replacing the superscript

·v with ·va in the equation above. Finally, compared with the case where there is only

availability information

πp = pEmin (θD, qp)− cqp + wE(θD − qp)+

> max
(
pEmin (θD, qa)− cqa + wE(θD − qa)

+
, wEθD

)
> max

(
pEmin (θD, qa)− cqa + wE(θD − qa)

+ − rE 1− θ
θ

(θD − qa)
+
, wEθD − rE (1− θ)D

)
= πa

So, we can conclude π∗ = πp.
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Next, let’s look at the case where θ ≥ ψp. Let’s first show the suboptimality of the option

of offering only physical showroom:

• if θ < max(ψp, ψ◦), then

π◦ = pEmin (θD, q◦)− cq◦ + wE(θD − q◦)+ − rE 1− θ
θ

(θD − q◦)+

=

(
p− w + r

1− θ
θ

)
Emin (θD, q◦)− cq◦ + wEθD − rE (1− θ)D

> wEθD − rE (1− θ)D = πp

• if θ > max(ψp, ψ◦), then π◦ = wEθD − rE (1− θ)D = πp

So in the following analysis, we only need to look at the other four types of information.

• Case 1: θ < ψ◦. Note that if ψp ≥ ψ◦, we don’t even have this case. So in the

following proof, we only focus on the case when ψp < ψ◦. Note when α = 0, we have

ψv = ψ◦ and ψva = ψa. Also, it is easy to check that ∂ψv

∂α ≤ 0 and ∂ψva

∂α ≤ 0. Then,

let’s set α1 = arg min
α∈[0,1]

|θ − ψv (α)| and α2 = arg min
α∈[0,1]

|θ − ψva (α)|. Since ∀α ψv ≤ ψva,

we have α1 ≤ α2.

– If α < α1, then θ < ψv ≤ min(ψ◦, ψva) ≤ ψa. Therefore, πv = πva and πa = π◦.

Moreover,

πv = pEmin
(
θ′D′, qv

)
− cqv + wE

(
θ′D′ − qv

)+ − rE 1− θ′

θ′
(
θ′D′ − qv

)+
> pEmin

(
θ′D′, qa

)
− cqa + wE

(
θ′D′ − qa

)+ − rE 1− θ′

θ′
(
θ′D′ − qa

)+
> pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ

θ
(θD − qa)+ = πa

Thus, π∗ = πv.
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– If α ∈ (α1, α2), then ψv < θ < min(ψ◦, ψva) ≤ πa. Therefore, πa = π◦. Also,

πva = pEmin
(
θ′D′, qva

)
− cqva + wE

(
θ′D′ − qva

)+ − rE 1− θ′

θ′
(
θ′D′ − qva

)+
> pEmin

(
θ′D′, qa

)
− cqa + wE

(
θ′D′ − qa

)+ − rE 1− θ′

θ′
(
θ′D′ − qa

)+
> pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ

θ
(θD − qa)+ = πa

and

πva = pEmin
(
θ′D′, qva

)
− cqva + wE

(
θ′D′ − qva

)+ − rE 1− θ′

θ′
(
θ′D′ − qva

)+
=

(
p− w + r

1− θ′

θ′

)
Emin

(
θ′D′, qva

)
− cqva + wEθ′D′ − rE

(
1− θ′

)
D′

> wEθ′D′ − rE
(
1− θ′

)
D′ = πv

Thus, we can conclude π∗ = πva.

– If α > α2, then ψv ≤ ψva < θ < ψ◦ ≤ ψa. Therefore, πa = π◦ and πv = πva.

Thus, we only need to compare π◦ and πv. Because ∂(πv−π◦)
∂α = r(1− θ)ED > 0,

there exists α3 ≥ α2 such that π◦ > πv if and only if α ∈ (α2, α3). Thus, π∗ = π◦

if α ∈ (α2, α3); π∗ = πv if α > α3.

• Case 2: θ > ψ◦.

– If θ ∈ [max(ψ◦, ψp),max(ψa, ψp)], then let’s set α′1 = arg min
α∈[0,1]

|θ − ψva (α)|.

∗ If α < α′1, then ψv ≤ ψ◦ < θ < ψva ≤ ψa. Therefore, πv = wEθ′D′− rE(1−

θ′)D′ > wEθD − r(1− θ)D = π◦. Also,

πva = pEmin
(
θ′D′, qva

)
− cqva + wE

(
θ′D′ − qva

)+ − rE 1− θ′

θ′
(
θ′D′ − qva

)+
> pEmin

(
θ′D′, qa

)
− cqa + wE

(
θ′D′ − qa

)+ − rE 1− θ′

θ′
(
θ′D′ − qa

)+
> pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ

θ
(θD − qa)+ = πa
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and

πva = pEmin
(
θ′D′, qva

)
− cqva + wE

(
θ′D′ − qva

)+ − rE 1− θ′

θ′
(
θ′D′ − qva

)+
=

(
p− w + r

1− θ′

θ′

)
Emin

(
θ′D′, qva

)
− cqva + wEθ′D′ − rE

(
1− θ′

)
D′

> wEθ′D′ − rE
(
1− θ′

)
D′ = πv

Thus, we can conclude π∗ = πva.

∗ If α > α′, then ψv ≤ min(ψ◦, πva) ≤ max(ψ◦, ψva) < θ < ψa. Therefore,

πva = πv and

πa = pEmin (θD, qa)− cqa + wE(θD − qa)+ − rE 1− θ
θ

(θD − qa)+

=

(
p− w + r

1− θ
θ

)
Emin (θD, qa)− cqa + wEθD − rE (1− θ)D

> wEθD − rE (1− θ)D = π◦

Thus, we conly need to compare πv and πa. Because ∂(πv−πa)
∂α = r(1 −

θ)ED > 0, there exists α′2 ≥ α′1 such that πa > πv if and only if α ∈ (α′1, α
′
2).

Thus π∗ = πa if α ∈ (α′1, α
′
2); π∗ = πv if α > α′2.

– If θ > max(ψa, ψp), then since ψv ≤ ψ◦ and ψa ≥ ψ◦, we have ψa ≥ ψv.

Also, note ψa is determined by condition (SA.4), which is implied by condition

hs < ho+(1−θ′)hr, which could be shown to determine the cutoff ψva. Thus, we

also have ψva ≤ ψa. Then, if θ ≥ max(ψp, ψa), we have πv = πva = wEθ′D′ −

rE(1 − θ′)D′ > wEθD − rE(1 − θ)D = πa = πp = π◦. So we can conclude

π∗ = πv. In this case, we can simply set α′1 = α′2 = 0.

160



Proof of Proposition 22: First, consider the following optimization problem:

max
0≤λ≤µ1≤ rαc1 ,0≤λ≤µ2≤ rαc2

rλ− c1µ1 − c2µ2

s.t. λ = α− β (w1(µ1, λ) + w2(µ2, λ))

(A.18)

Since the constraint set is compact and the objective function is continuous, by Weierstass

Theorem, there is a maximum to (A.18). Let’s denote the optimal solution to (A.18) as

λ∗, µ∗1, µ
∗
2, then the corresponding optimal objective value π∗ = rλ∗ − c1µ

∗
1 − c2µ

∗
2.

Lemma 2. If π∗ > 0, then (λ∗, µ∗1, µ
∗
2) must be the optimal solution to the optimization

problem (4.1); if π∗ ≤ 0, then there is no solution to (4.1) that yields positive profit.

Proof of Lemma 2: If π∗ > 0, then we must have λ∗ > 0. Thus, (λ∗, µ∗1, µ
∗
2) is also a feasible

solution to (1). Suppose the optimal solution to (1) is (λb, µb1, µ
b
2) 6= (λ∗, µ∗1, µ

∗
2). Then, it

means that πb = rλb − c1µ
b
1 − c2µ

b
2 > π∗ > 0. Then, it is easy to check that (λb, µb1, µ

b
2) is

a feasible solution to (A.18) as well. But it leads to a higher objective value πb for (A.18),

which contradicts to the fact that (λ∗, µ∗1, µ
∗
2) is the optimal solution to (A.18). Thus, we

must have (λb, µb1, µ
b
2) = (λ∗, µ∗1, µ

∗
2).

If π∗ ≤ 0, suppose there exists a solution (λb, µb1, µ
b
2) to (1) such that πb = rλb−c1µ

b
1−c2µ

b
2 >

0. Then, it is easy to check that (λb, µb1, µ
b
2) should also be a feasible solution to (A.18),

which leads to a positive objective value πb for (A.18). This contradicts to the fact that

π∗ ≤ 0. Thus, there is no solution to (4.1) that yields positive profit.

By Lemma 2, finding the optimal solution to (4.1) that yields positive profit is equivalent

to finding the optimal solution to (A.18) that yields positive profit.

The Lagrangian of (A.18) is defined as follows:

L (λ, µ1, µ2, ρ) = rλ− c1µ1 − c2µ2 + ρ

[
λ− α+ β

(
1

µ1 − λ
+

1

µ2 − λ

)]
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where ρ ∈ R is the Lagrange multiplier. To find the critical points of L (λ, µ1, µ2, ρ), we

solve the following equation set:

∂L
∂λ = r + ρ+ ρβ 1

(µ1−λ)2 + ρβ 1
(µ2−λ)2 = 0

∂L
∂µi

= −ci − ρβ 1
(µi−λ)2 = 0, i = 1, 2

λ− α+ β
(

1
µ1−λ + 1

µ2−λ

)
= 0

0 ≤ λ ≤ µ1 ≤ rα
c1
, 0 ≤ λ ≤ µ2 ≤ rα

c2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to (A.18)

is one of the critical points. (Note the constraint qualification holds everywhere on the

feasible set.) Let’s first ignore the boundary conditions that 0 ≤ λ and µi ≤ rα
ci

, and solve

the equation set above, which gives us a unique solution:

λ∗ = α− β
√

c1
β(r−c1−c2) − β

√
c2

β(r−c1−c2)

µ∗1 = λ∗ +
√

β(r−c1−c2)
c1

µ∗2 = λ∗ +
√

β(r−c1−c2)
c2

(A.19)

So, if λ∗ ≥ 0 and µ∗i ≤ rα
ci

, i = 1, 2, then (λ∗, µ∗1, µ
∗
2) must be the optimal solution to

(A.18); otherwise, the optimal solution to (A.18) must be corner solution (i.e., at least one

of the follow holds, λ∗ = 0 and µ∗i = rα
ci

, i = 1, 2), in which case the optimal value is clearly

nonpositive. Note, with (λ∗, µ∗1, µ
∗
2) defined in (A.19), we have π∗ = rλ∗−c1µ

∗
1−c2µ

∗
2 = (r−

c1− c2)α−2
√
β(r − c1 − c2)c1−2

√
β(r − c1 − c2)c2, which is positive if α >

2
√
β(
√
c1+
√
c2)√

r−c1−c2
.

It is easy to check that if α >
2
√
β(
√
c1+
√
c2)√

r−c1−c2
, we have λ∗ ≥ 0 and µ∗i ≤ rα

ci
, i = 1, 2. This

implies that there is an optimal solution (λ∗, µ∗1, µ
∗
2) that yields positive profit for (A.18) if

and only if α > ᾱ =
2
√
β(
√
c1+
√
c2)√

r−c1−c2
. Then, by Lemma 2, we can conclude that same result

holds for the optimization problem (4.1).

Proof of Proposition 23: Suppose we set the two capacity levels at µb1, µ
b
2 (i.e., the optimal
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solution in the base model). Then, the demand rates are

λ?o =
[
α− ξβw2(µb2, (1− θ)λ?s + θλ?o)

]+
λ?s =

[
α− β

(
w1(µb1, (1− θ)λ?s) + w2(µb2, (1− θ)λ?s + θλ?o)

)]+
It is easy to check (1− θ)λ?s + θλ?o > λb. This implies that the profit with µb1, µ

b
2 and online

self-order technology is greater than πb. Therefore, under optimal solution, there must be

customers coming to store after the implementation of online self-order technology, i.e., at

least one of λos and λoo is positive. Note, if λos > 0, we must have λoo > 0. Thus, we must

have λoo > 0 in the optimal solution. So the optimization problem (4.2) is equivalent to the

following problem

max
0≤λo,(1−θ)λs≤µ1,(1−θ)λs+θλo≤µ2

r ((1− θ)λs + θλo)− c1µ1 − c2µ2

s.t. λo = α− ξβw2(µ2, (1− θ)λs + θλo)

λs = [α− β (w1(µ1, (1− θ)λs) + w2(µ2, (1− θ)λs + θλo))]
+

(A.20)

Then, the firm has two choices:

i. Shut down stage 1 (i.e., µ1 = 0) and sell only to online customers. In this case, the

optimal solution is obtained by solving the following optimization problem:

max
0≤λo,θλo≤µ2≤ rαc2

rθλo − c2µ2

s.t. λo = α− ξβw2(µ2, θλo)

(A.21)

The Lagrangian of (A.21) is defined as follows:

L (λo, µ2, ρ) = rθλo − c2µ2 + ρ

[
λo − α+ ξβ

1

µ2 − θλo

]

where ρ ∈ R is the Lagrange multiplier. To find the critical points of L (λo, µ2, ρ), we
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solve the following equation set:

∂L
∂λo

= rθ + ρ+ ρξβθ 1
(µ2−θλo)2 = 0

∂L
∂µ2

= −c2 − ρξβ 1
(µ2−θλo)2 = 0

λo − α+ ξβ 1
µ2−θλo = 0

0 ≤ λo, θλo ≤ µ2 ≤ rα
c2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to

(A.21) is one of the critical points. (Note the constraint qualification holds everywhere

on the feasible set.) Let’s first ignore the conditions that 0 ≤ λo and µ2 ≤ rα
c2

, and

solve the equation set above, which gives us a unique solution:

λ∗o = α− ξβ
√

c2
θξβ(r−c2)

µ∗2 = λ∗o +
√

θξβ(r−c2)
c2

(A.22)

So, if λ∗ ≥ 0 and µ∗2 ≤ rα
c2

, then (λ∗o, µ
∗
2) together with λ∗1 = 0, µ∗1 = 0 must be the

optimal solution to (A.21); otherwise, the optimal solution to (A.21) must be corner

solution (i.e., at least one of the follow holds, λ∗o = 0 and µ∗2 = rα
c2

), in which case the

optimal value is clearly nonpositive, and thus the firm won’t choose this option at all.

ii. Sell to both types of customers. In this case, the optimal solution is obtained by

solving the following optimization problem:

max
0≤λo,0≤(1−θ)λs≤µ1≤ rαc1 ,(1−θ)λs+θλo≤µ2≤ rαc2

r ((1− θ)λs + θλo)− c1µ1 − c2µ2

s.t. λo = α− ξβw2(µ2, (1− θ)λs + θλo)

λs = α− β (w1(µ1, (1− θ)λs) + w2(µ2, (1− θ)λs + θλo))

(A.23)
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The Lagrangian of (A.23) is defined as follows:

L̃ (λs, λo, µ1, µ2, ρ1, ρ2) =r ((1− θ)λs + θλo)− c1µ1 − c2µ2

+ ρ1

[
λo − α+ ξβ

1

µ2 − (1− θ)λs − θλo

]
+ ρ2

[
λs − α+ β

1

µ1 − (1− θ)λs
+ β

1

µ2 − (1− θ)λs − θλo

]

where ρ1, ρ2 ∈ R are the Lagrange multipliers. To find the critical points of

L̃ (λs, λo, µ1, µ2, ρ1, ρ2), we solve the following equation set:

∂L̃
∂λs

= r (1− θ) + ρ2 + ρ1ξβ (1− θ) 1
(µ2−(1−θ)λs−θλo)2 + ρ2β (1− θ) 1

(µ1−(1−θ)λs)2

+ρ2β (1− θ) 1
(µ2−(1−θ)λs−θλo)2 = 0

∂L̃
∂λo

= rθ + ρ1 + ρ1ξβθ
1

(µ2−(1−θ)λs−θλo)2 + ρ2βθ
1

(µ2−(1−θ)λs−θλo)2 = 0

∂L̃
∂µ1

= −c1 − ρ2β
1

(µ1−(1−θ)λs)2 = 0

∂L̃
∂µ2

= −c2 − ρ1ξβ
1

(µ2−(1−θ)λs−θλo)2 − ρ2β
1

(µ2−(1−θ)λs−θλo)2 = 0

λo − α+ ξβ 1
µ2−(1−θ)λs−θλo = 0

λs − α+ β 1
µ1−(1−θ)λs + β 1

µ2−(1−θ)λs−θλo = 0

0 ≤ λo, 0 ≤ (1− θ)λs ≤ µ1 ≤ rα
c1
, (1− θ)λs + θλo ≤ µ2 ≤ rα

c2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to

(A.23) is one of the critical points. (Note the constraint qualification holds everywhere

on the feasible set.) Let’s first ignore the boundary conditions (i.e., 0 ≤ λo, 0 ≤ λs

and µi ≤ rα
ci

i = 1, 2), and solve the equation set above, which gives us a unique

solution:

λ̃∗s = α− β
√

c1
(1−θ)β(r−c1−c2) − β

√
c2

(1−θ)β(r−c1−c2)+θξβ(r−c2)

λ̃∗o = α− ξβ
√

c2
(1−θ)β(r−c1−c2)+θξβ(r−c2)

µ̃∗1 = (1− θ)λ̃os +
√

(1−θ)β(r−c1−c2)
c1

µ̃∗2 = (1− θ)λ̃os + θλ̃oo +
√

(1−θ)β(r−c1−c2)+θξβ(r−c2)
c2

So, if (λ̃∗o, λ̃
∗
s, µ̃
∗
1, µ̃
∗
2) is an interior solution, then it must be the optimal solution to
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(A.23); otherwise, the solution to (A.23) must be corner solution, in which case we can

check the optimal value is either nonpositive or strictly less than that under option

(i), and thus the firm never chooses this option.

Therefore, the optimal solution to (A.20) (and thus to (4.2)) must be chosen from the

interior solutions under the two options, whichever gives higher optimal value. For option

(i), under the interior solution (λ∗o, λ
∗
s, µ
∗
1, µ
∗
2), the optimal value is π∗ = r((1−θ)λ∗s+θλ∗o)−

c1µ
∗
1 − c2µ

∗
2 = (r − c2)θα − 2

√
θξβ(r − c2)c2; for option (ii), under the interior solution

(λ̃∗o, λ̃
∗
s, µ̃
∗
1, µ̃
∗
2), the optimal value is π̃∗ = r((1− θ)λ̃∗s + θλ̃∗o)− c1µ̃

∗
1− c2µ̃

∗
2 = (r− c2− c1(1−

θ))α− 2
√

(1− θ)β(r − c1 − c2)c1 − 2
√

[(1− θ)β(r − c1 − c2) + θξβ(r − c2)]c2. Thus, π∗ <

π̃∗ if and only if α > ᾱ′′ = 2
√
βc1√

(1−θ)(r−c1−c2)
+

2
√

[(1−θ)β(r−c1−c2)+θξβ(r−c2)]c2
(r−c1−c2)(1−θ) − 2

√
θξβ(r−c2)c2

(r−c1−c2)(1−θ) .

Then, we conclude the proof by setting ᾱ′ = max(ᾱ, ᾱ′′).

Proof of Proposition 24: From Propositions 22 and 23, we get wb1 =
√

c1
β(r−c1−c2) , wb2 =√

c2
β(r−c1−c2) , wo1 =

√
c1

(1−θ)β(r−c1−c2) , and wo2 =
√

c2
(1−θ)β(r−c1−c2)+θξβ(r−c2) . Since θ > 0, we

have wo1 > wb1. Also, note that
∂(wo2−wb2)

∂r > 0 and lim
r→c1+c2

(
wo2 − wb2

)
< 0. Thus, given c1

and c2, ∃r̄ > c1 + c2 such that wo2 < wb2 if and only if c1+c2
r > c1+c2

r̄ = mw.

Proof of Proposition 25: λoo = α−
√

ξ2β2c2
(1−θ)β(r−c1−c2)+θξβ(r−c2) ≥ α−

√
βc2

(1−θ)(r−c1−c2)+θ(r−c2) >

α −
√

βc2
r−c1−c2 > α −

√
βc1

r−c1−c2 −
√

βc2
r−c1−c2 = λb where the first inequality is because of

ξ ≤ 1.

Next, let’s prove the second bullet point in Proposition 25. Note,

(
λos − λbs

) √r − c1 − c2

β
=

√
c1

β
+

√
c2

β
−
√

c1

(1− θ)β
−
√

c2

(1− θ)β + θξβ r−c2
r−c1−c2

which is decreasing in r for r ≥ c1 + c2. When r → c1 + c2,
(
λos − λbs

) √r−c1−c2
β →

√
c1
β +√

c2
β −

√
c1

(1−θ)β > 0 if θ < ψs = 1−
( √

c1√
c1+
√
c2

)2
. Then, we can conclude the result.
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By Proposition 24, λos > λb must happen when wo2 < wb2, and thus we have mλ > mw.

Finally, let’s prove the third point in Proposition 25. Note (1− θ)λos+θλoo = α−
√

(1−θ)βc1
r−c1−c2 −

√
c2
√

(1−θ)β+θξβ√
r− (1−θ)β(c1+c2)+θξβc2

(1−θ)β+θξβ

. Also,
∂
√

(1−θ)βc1
∂θ < 0,

∂
√

(1−θ)β+θξβ

∂θ ≤ 0, and
∂

(1−θ)β(c1+c2)+θξβc2
(1−θ)β+θξβ

∂θ < 0.

Thus, (1− θ)λos + θλoo is increasing in θ. Note when θ = 0, we have (1− θ)λos + θλoo = λb.

Thus, (1− θ)λos + θλoo > λb for all θ > 0.

Proof of Proposition 26: Note µo1 =
√

1− θ

(
√

1− θα−
√

βc1
r−c1−c2−

√
βc2

(r−c1−c2)+θ/(1−θ)ξ(r−c2)+

√
β(r−c1−c2)

c1

)
, which is decreasing in θ. Since when θ = 0 we have µo1 = µb1, we can conclude

µo1 < µb1 for any θ > 0.

Next, let’s prove part (ii). Note that

µo2−µb2√
β(r−c1−c2)

=
√
c1−
√

(1−θ)c1
r−c1−c2 +

√
c2−(1−θ+θξ)

√
c2

1−θ+θξ r−c2
r−c1−c2

r−c1−c2

+

√
1−θ+θξ r−c2

r−c1−c2
c2

−
√

1
c2

(A.24)

It is easy to find the 1st and 3rd terms in (A.24) are decreasing in r. Also, since ξ ≤ 1,

we have
√
c2 − (1− θ + θξ)

√
c2

1−θ+θξ r−c2
r−c1−c2

> 0. Thus, we find the 2nd term in (A.24)

is also decreasing in r. In sum, we find
µo2−µb2√
β(r−c1−c2)

is decreasing in r. Note, when

−β (r − c1 − c2) + ξβ (r − c2) = 0 (i.e., r = c1+c2−ξc2
1−ξ > c1 + c2). then µo2 − µb2

=
(
1−
√

1− θ
)√ βc1

r−c1−c2 + (1− ξ) θ
√

βc2
r−c1−c2 > 0. Thus, there exists r̄ > c1+c2−ξc2

1−ξ such

that µo2 > µb2 if and only if r < r̄. Then, we can define mµ = c1+c2
r̄ and conclude the result.

Because (1−θ)λos+θλoo > λb, wo2 < wb2 implies µo2 > µb2. Thus, we must have mµ < mw.
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Proof of Proposition 27:

ko1 + ko2 − kb1 − kb2 = −θατ1 +
√

βc1
r−c1−c2 (τ1 + τ2)

(
1−
√

1− θ
)

− (τ1 + τ2)

[
((1− θ)β + θξβ)

√
c2

(1−θ)β(r−c1−c2)+θξβ(r−c2) − β
√

c2
β(r−c1−c2)

]
−
√

β(r−c1−c2)
c1

τ1

(
1−
√

1− θ
)

+τ2

(√
(1−θ)β(r−c1−c2)+θξβ(r−c2)

c2
−
√

β(r−c1−c2)
c2

)
+τ1θξβ

√
c2

(1−θ)β(r−c1−c2)+θξβ(r−c2)

(A.25)

Let’s first show the 3rd term in (A.25), i.e.,

− (τ1 + τ2)

[
((1− θ)β + θξβ)

√
c2

(1−θ)β(r−c1−c2)+θξβ(r−c2)−β
√

c2
β(r−c1−c2)

]
(denoted as f3(r))

is decreasing in r:

∂f3

∂r
= − (τ1 + τ2)

−√c2

2

√
(1− θ)β + θξβ(

r − c2 − (1−θ)βc1
(1−θ)β+θξβ

) 3
2

+

√
βc2

2(r − c1 − c2)
3
2



Since ∂[(1−θ)β+θξβ]
∂θ ≤ 0 and

∂[r−c2− (1−θ)βc1
(1−θ)β+θξβ

]

∂θ > 0, we can find that ∂f3

∂r is decreasing in θ.

Note when θ = 0, ∂f3

∂r = 0. Thus, ∂f3

∂r < 0 for all θ > 0.

Next, let’s show the 5th term in (A.25), i.e., τ2

(√
(1−θ)β(r−c1−c2)+θξβ(r−c2)

c2
−
√

β(r−c1−c2)
c2

)
(denoted as f5(r)) is decreasing in r: Note,

∂
√

(1−θ)β(r−c1−c2)+θξβ(r−c2)

∂r =

√
(1−θ)β+θξβ

2
√
r− (1−θ)β(c1+c2)+θξβc2

(1−θ)β+θξβ

.

Since
∂
√

(1−θ)β+θξβ

∂θ ≤ 0 and
∂

(1−θ)β(c1+c2)+θξβc2
(1−θ)β+θξβ

∂θ < 0, we find
∂
√

(1−θ)β(r−c1−c2)+θξβ(r−c2)

∂r is

decreasing in θ, and thus ∂f5

∂r is decreasing in θ. Note when θ = 0, we have ∂f5

∂r = 0. Thus,

∂f5

∂r < 0 for all θ > 0.

Therefore, we can conclude that
∂(ko1+ko2−kb1−kb2)

∂r < 0. Note, if r → c1 + c2, we have (ko1 +

ko2−kb1−kb2)
√
r − c1 − c2 → (τ1 +τ2)

√
βc2 +

√
βc1(τ1 +τ2)(1−

√
(1− θ)) > 0, which implies

ko1 + ko2 − kb1 − kb2 > 0 if r is very close to c1 + c2. Thus, there exists r̄ > c1 + c2 such that

ko1 + ko2 − kb1 − kb2 > 0 if and only if r < r̄. Then, we can define mk = c1+c2
r̄ . Since to have

ko1 + ko2 − kb1 − kb2 > 0, we must have µo2 > µb2, this implies mk > mµ.
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Proof of Proposition 28: The retailer has three options to choose from:

1. Serve only tech savvy customers (i.e., by setting µ1h = 0), and the optimization

problem is

max
0≤ηλm≤µ1m≤ rα

c1m
0≤ηλm≤µ2≤ rαc2

rηλm − c1mµ1m − c2µ2

s.t.λm = α− β 1
µ1m−ηλm − β

1
µ2−ηλm

if we ignore the boundary conditions, we can derive the unique optimal solution as

λ̃∗m = α− β
√

c1m
ηβ(r−c1m−c2) − β

√
c2

ηβ(r−c1m−c2)

µ̃∗1m = ηλ̃∗m +
√

ηβ(r−c1m−c2)
c1m

µ̃∗2 = ηλ̃∗m +
√

ηβ(r−c1m−c2)
c2

(A.26)

and the corresponding optimal value is π̃∗ = (r−c1m−c2)ηα−2
√
ηβ(r − c1m − c2)c1m−

2
√
ηβ(r − c1m − c2)c2. So, if (λ̃∗m, µ̃

∗
1m, µ̃

∗
2) is an interior solution, then it must be the

optimal solution to (A.26); otherwise, the solution to (A.26) must be corner solution,

in which case we can check the optimal value is clearly nonpositive, and thus the firm

never chooses this option.

2. Serve only traditional customers (i.e., by setting µ1m = 0), and the optimization

problem is

max
0≤(1−η)λh≤µ1h≤ rαc1
0≤(1−η)λh≤µ2≤ rαc2

r (1− η)λh − c1hµ1h − c2µ2

s.t. λh = α− β 1
µ1h−(1−η)λh

− β 1
µ2−(1−η)λh

(A.27)

if we ignore the boundary conditions, we can derive the unique optimal solution as

λ̂∗h = α− β
√

c1
(1−η)β(r−c1−c2) − β

√
c2

(1−η)β(r−c1−c2)

µ̂∗1 = (1− η)λ̂∗m +
√

(1−η)β(r−c1−c2)
c1

µ̂∗2 = (1− η)λ̂∗m +
√

(1−η)β(r−c1−c2)
c2

and the corresponding optimal value is π̂∗ = (r − c1 − c2)(1− η)α
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− 2
√

(1− η)β(r − c1 − c2)c1 − 2
√

(1− η)β(r − c1 − c2)c2. So, if (λ̂∗h, µ̂
∗
1, µ̂
∗
2) is an

interior solution, then it must be the optimal solution to (A.27); otherwise, the solution

to (A.27) must be corner solution, in which case we can check the optimal value is

clearly nonpositive, and thus the firm never chooses this option.

3. Serve both types of customers. In this case, the optimal solution is obtained by solving

the following optimization problem:

max
0≤ηλm≤µ1m≤ rα

c1m
,

0≤(1−η)λh≤µ1h≤ rαc1 ,
ηλm+(1−η)λh≤µ2≤ rαc2

r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

s.t. λm = α− βw1m (µ1m, ηλm)− βw2 (µ2, ηλm + (1− η)λh)

λh = α− βw1h (µ1h, (1− η)λh)− βw2 (µ2, ηλm + (1− η)λh)

(A.28)

Since the constraint set is compact and the objective function is continuous, by Weier-

strass Theorem, there is a maximum to (A.28).

The Lagrangian of (A.28) is defined as follows:

L(λm, λh, µ1m, µ1h, µ2, ρm, ρh) = r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

−ρm
(
λm − α+ β 1

µ1m−ηλm + β 1
µ2−ηλm−(1−η)λh

)
−ρh

(
λh − α+ β 1

µ1h−(1−η)λh
+ β 1

µ2−ηλm−(1−η)λh

)
where ρm, ρh ∈ R are the Lagrange multiplier. To find the critical points of

L(λm, λh, µ1m, µ1h, µ2, ρm, ρh), we solve the following equation set:

∂L
∂λm

= rη − ρm − ρmβη

(µ1m−ηλm)2 − (ρm+ρh)βη

(µ2−ηλm−(1−η)λh)2 = 0

∂L
∂λh

= r (1− η)− ρh − ρhβ(1−η)

(µ1h−(1−η)λh)2 − (ρm+ρh)β(1−η)

(µ2−ηλm−(1−η)λh)2 = 0

∂L
∂µ1m

= −c1m + ρmβ

(µ1m−ηλm)2 = 0

∂L
∂µ1h

= −c1 + ρhβ(1−η)

(µ1h−(1−η)λh)2 = 0

∂L
∂µ2

= −c2 + (ρm+ρh)β(1−η)

(µ2−ηλm−(1−η)λh)2 = 0

0 ≤ ηλm ≤ µ1m ≤ rα
c1m

, 0 ≤ (1− η)λh ≤ µ1h ≤ rα
c1
, ηλm + (1− η)λh ≤ µ2 ≤ rα

c2
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By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to

(A.28) is one of the critical points. (Note the constraint qualification holds everywhere

on the feasible set.) Let’s first ignore the boundary conditions, and solve the equation

set above, which gives us a unique solution:

λ∗m = α− β
√

c1m
βη(r−c1m−c2) − β

√
c2

β[(r−c1m−c2)η+(r−c1−c2)(1−η)]

λ∗h = α− β
√

c1
β(1−η)(r−c1−c2) − β

√
c2

β[(r−c1m−c2)η+(r−c1−c2)(1−η)]

µ∗1m = ηλ∗m +
√

βη(r−c1m−c2)
c1m

µ∗1h = (1− η)λ∗h +
√

β(1−η)(r−c1−c2)
c1

µ∗2 = ηλ∗m + (1− η)λ∗h +
√

β[(r−c1m−c2)η+(r−c1−c2)(1−η)]
c2

Note it is easy to check that if λ∗m ≥ 0 and λ∗h ≥ 0, then µi ≤ rα
ci

. Thus, if λ∗m ≥ 0 and

λ∗h ≥ 0 (or α is large), then (λ∗m, λ
∗
h, µ
∗
1m, µ

∗
1h, µ

∗
2) is the optimal solution to (A.28),

and the corresponding optimal value is π∗ = (r− c1m− c2)ηα+ (r− c1− c2)(1−η)α−

2
√
ηβc1m(r − c1m − c2)− 2

√
(1− η)β(r − c1 − c2)c1

− 2
√
βc2[(r − c1m − c2)η + (r − c1 − c2)(1− η)].

So, if (λ∗m, λ
∗
h, µ
∗
1m, µ

∗
1h, µ

∗
2) is an interior solution, then it must be the optimal solution

to (A.28); otherwise, the solution to (A.28) must be corner solution, in which case we

can check the optimal value is either nonpositive or strictly less than that under the

first two options, and thus the firm never chooses this option.

Note π∗ − π̃∗ and π∗ − π̂∗ are linearly increasing in α, and thus if and only if α is large

enough, we have π∗ > max(π̃∗, π̂∗), and thus it is optimal for the firm to serve both types

of customers.

Proof of Lemma 1: From the optimal solution given in Proposition 28, we know ws1h =√
c1

β(1−η)(r−c1−c2) , ws1m =
√

c1m
βη(r−c1m−c2) , and ws2 =

√
c2

β[(r−c1m−c2)η+(r−c1−c2)(1−η)] .
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Then, ηws1m + (1− η)ws1h =
√

ηc1m
β(r−c1m−c2) +

√
(1−η)c1

β(r−c1−c2) which is increasing in c1m. Also,

when c1m = 0, ηws1m + (1− η)ws1h < wb1. Thus, there exists c̄1m > 0 such that ηws1m + (1−

η)ws1h < wb1 if and only if c1m < c̄1m.

Proof of Proposition 29: Because η < 1, we can find ws1h > wb1. Since ηws1m + (1− η)ws1h <

wb1, we must have ws1m < wb1. Also, since c1m < c1, we have ws2 < wb2.

Proof of Proposition 30: First, because ws1m < wb1 and ws2 < wb2, we find λsm = α− βws1m −

βws2 > α− βwb1 − βwb2 = λb.

Second, note

(
λsh − λb

)√
r − c1 − c2

β
=

√
c1

β
+

√
c2

β
−
√

c1

β (1− η)
−
√

c2

βη r−c1m−c2r−c1−c2 + β (1− η)

which is decreasing in r. Then, if lim
r→c1+c2

(λsh−λ
b)
√
r−c1−c2

β =
√

c1
β +

√
c2
β −

√
c1

β(1−η) > 0

(i.e., η is small enough), then there exists r̄ > c1 + c2 such that λsh > λb if and only if r < r̄

(or c1+c2
r < c1+c2

r̄ = m′λ).

Finally, note

ηλsm + (1− η)λsh = α−
√

ηβc1m

r − c1m − c2
−

√
(1− η)βc1

r − c1 − c2

−

√
βc2

(r − c1m − c2) η + (r − c1 − c2) (1− η)

> α−
√

βc1

r − c1 − c2
−

√
βc2

(r − c1 − c2)

= λb

where the inequality is due to c1m < c1 and Assumption 1, which implies ηws1m+(1−η)ws1h <

wb1 (by Lemma 1) or
√

ηβc1m
r−c1m−c2 +

√
(1−η)βc1
r−c1−c2 <

√
βc1

r−c1−c2 ).
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Proof of Proposition 31: Note µs1h =
√

1− η
(√

1− ηα−
√

βc1
r−c1−c2

−
√

βc2
(r−c1−c2)+η/(1−η)(r−c1m−c2) +

√
β(r−c1−c2)

c1

)
, which is decreasing in η. Since when η = 0

we have µs1h = µb1, we can conclude µs1h < µb1 for any η > 0. Also, note

µs1m + µs1h =α−
√

ηβc1m

r − c1m − c2
−

√
(1− η)βc1

r − c1 − c2

−

√
βc2

(r − c1m − c2) η + (r − c1 − c2) (1− η)

+

√
βη (r − c1m − c2)

c1m
+

√
β (1− η) (r − c1 − c2)

c1

Because of Assumption 1 and Lemma 1, we have ηws1m + (1 − η)ws1h < wb1, and thus√
ηβc1m

r−c1m−c2 +
√

(1−η)βc1
r−c1−c2 <

√
βc1

r−c1−c2 . Because c1m < c1, we have
√

βc2
(r−c1m−c2)η+(r−c1−c2)(1−η) <√

βc2
r−c1−c2 . Also, define function f (η) =

√
βη(r−c1m−c2)

c1m
+
√

β(1−η)(r−c1−c2)
c1

. We can easily

check that f is a concave function. Note f(0) =
√

β(r−c1−c2)
c1

and f(1) >
√

β(r−c1−c2)
c1

. This

implies that f(η) >
√

β(r−c1−c2)
c1

for any η ∈ (0, 1]. Based on the results above, we can

conclude that µs1m + µs1h > α−
√

βc1
r−c1−c2 −

√
βc2

r−c1−c2 +
√

β(r−c1−c2)
c1

= µs1.

Second, note

µs2 =α−
√

ηβc1m

r − c1m − c2
−

√
(1− η)βc1

r − c1 − c2

−

√
βc2

(r − c1m − c2) η + (r − c1 − c2) (1− η)

+

√
β [(r − c1m − c2) η + (r − c1 − c2) (1− η)]

c2

Because of Assumption 1 and Lemma 1, we have ηws1m + (1 − η)ws1h < wb1, and thus√
ηβc1m

r−c1m−c2 +
√

(1−η)βc1
r−c1−c2 <

√
βc1

r−c1−c2 . Also, define function

g (η) = −
√

βc2
(r−c1m−c2)η+(r−c1−c2)(1−η) +

√
(r−c1m−c2)η+(r−c1−c2)(1−η)

c2
. We can easily check

that g is an increasing function. Thus, for any η ∈ (0, 1], g(η) > g(0) =
√

βc2
r−c1−c2 +√

β(r−c1−c2)
c2

. Based on the results above, we can conclude that µs2 > α −
√

βc1
r−c1−c2 −
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√
βc2

r−c1−c2 +
√

β(r−c1−c2)
c2

= µs2.

Proof of Proposition 32: Note

∂ks1
∂r

=
τ1

√
β (1− η) c1

2(r − c1 − c2)
3
2

+
τ1 (1− η)

√
βc2

2[(r − c1m − c2) η + (r − c1 − c2) (1− η)]
3
2

+
τ1

√
β (1− η)

2
√
c1 (r − c1 − c2)

which is decreasing in η. Since ks1 = kb1 when η = 0, we can conclude that
∂ks1
∂r <

∂kb1
∂r as

η > 0.

Note

∂ks2
∂r

=

√
ηβc1m

2(r − c1m − c2)
3
2

+

√
β (1− η) c1

2(r − c1 − c2)
3
2

+

√
βc2

2[(r − c1m − c2) η + (r − c1 − c2) (1− η)]
3
2

+

√
β

2
√
c2 [(r − c1m − c2) η + (r − c1 − c2) (1− η)]

Because of ηws1m + (1 − η)ws1h < wb1 (by Assumption 1 and Lemma 1) and c1m < c1, we

have
√
ηβc1m

2(r−c1m−c2)
3
2

+

√
β(1−η)c1

2(r−c1−c2)
3
2
<

√
βc1

2(r−c1−c2)
3
2

. Also, define function

f (η) =
√
βc2

2[(r−c1m−c2)η+(r−c1−c2)(1−η)]
3
2

+
√
β

2
√
c2[(r−c1m−c2)η+(r−c1−c2)(1−η)]

, which is a decreasing

function. Thus, for any η > 0, f(η) < f(0). Based on the results above, we can conclude

that
∂ks2
∂r <

√
βc1

2(r−c1−c2)
3
2

+
√
βc2

2(r−c1−c2)
3
2

+
√
β

2
√
c2(r−c1−c2)

=
∂kb2
∂r .

Because
∂ks2
∂r <

∂kb2
∂r and

∂ks1
∂r <

∂kb1
∂r , we can conclude that

∂(ks1+ks2)
∂r <

∂(kb1+kb2)
∂r . Note when

r → c1 + c2, then ks1 + ks2 − kb1 − kb2 > 0. Thus, there exists r̄ > c1 + c2 such that

ks1 + ks2 − kb1 − kb2 > 0 if and only if r < r̄. Then, define m′k = (c1 + c2)/r̄ and we get the

result.

Proof of Proposition 33: Based on the optimal solutions, we have

• πb = rλb − c1µ
b
1 − c2µ

b
2 = (r − c1 − c2)α− 2

√
β(r − c1 − c2)c1 − 2

√
β(r − c1 − c2)c2
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• πo = r((1−θ)λo1+θλo2)−c1µ
o
1−c2µ

o
2 = [r−c2−c1(1−θ)]α−2

√
(1− θ)β(r − c1 − c2)c1−

2
√

[(1− θ)β(r − c1 − c2) + θξβ(r − c2)]c2

• πs = r ((1− η)λsh + ηλsm)− c1mµ
s
1m − c1µ

s
1 − c2µ

s
2 = (r − c1m − c2) ηα

+ (r − c1 − c2) (1− η)α− 2
√
ηβc1m (r − c1m − c2)− 2

√
(1− η)β (r − c1 − c2) c1

− 2
√
βc2 [(r − c1m − c2) η + (r − c1 − c2) (1− η)]

Let’s first compare πo and πb.

Suppose we keep using µb1 and µb2 in the case of online self-order technology. Then, we

want to show that total demand rate λ > λb. Suppose not, i.e., λ ≤ λb. Then, we have

w2 = 1/(µb2−λ) ≤ wb2. Because ξ ≤ 1, we have λo = α−ξβw2 > λbo. This means that λs < λbs

(otherwise we cannot have λ = (1− θ)λs + θλo ≤ λb). Then, w1 = 1/(µb1− (1− θ)λs) < wb1.

This implies that λs = α − βw1 − βw2 > λbs. This contradicts the result λs < λbs that we

just obtained. So we must have λ > λb. Then, with this feasible solution µb1 and µb2 with

online self-order technology, the total profit is rλ−c1µ
b
1−c2µ

b
2 > πb. Therefore, the optimal

profit πo > πb.

Next, we look at how πo − πb changes as different model parameters change.

(1)
∂(πo−πb)

∂r =
√

c1β
r−c1−c2 +

√
c2β

r−c1−c2 −
√

(1−θ)c1β
r−c1−c2 −

√
(1−θ+θξ)c2β

r− 1−θ
1−θ+θξ c1−c2

> 0, because θ ≤ 1

and ξ ≤ 1.

(2)
∂(πo−πb)

∂c2
= µb2 − µo2. Since

∂µo2
∂ξ > 0, we have ∂2(πo−πb)

∂c2∂ξ
< 0. Also, note that if ξ = 1,

then µb2 < µo2, and thus ∂(πo−πb)
∂c2

< 0.

(3) Let’s first prove the following lemma:

Lemma 3. πo is increasing in θ.

Proof of Lemma 3: For θ1, θ2 ∈ [0, 1], suppose θ1 < θ2. Denote the optimal solution

when θ = θ1 as µ41 , µ
4
2 , λ

4
s , λ

4
o . The corresponding total demand and profit are

λ4 = (1− θ1)λ4s + θ1λ
4
o and π4. It is easy to check that λ4s < λ4o .
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When θ = θ2, suppose we keep using µ41 and µ42 . Then, under this feasible solution,

we want to show that total demand rate λ > λ4. Suppose not, i.e., λ ≤ λ4. Then,

w2 = 1

µ42 −λ
≤ 1

µ42 −λ4
= w42 , which implies that λo ≥ λ4o . Since λ ≤ λ4, θ1 < θ2

and λo ≥ λ4o , we can find λs ≤ λ4s . Then, w1 = 1

µ41 −(1−θ2)λs
< 1

µ41 −(1−θ1)λ4s
= w41 .

However, if w2 < w42 and w1 ≤ w41 , then we must have λs > λ4s , which contradicts

to what we just found (i.e., λs ≤ λ4s ). Thus, we must have λ > λ4. This implies

that when θ = θ2, with the feasible solution µ41 and µ42 , we have more demand and

thus more profit. Therefore, the optimal profit when θ = θ2, denoted as π44, must

be greater than π4. This completes the proof.

According to Lemma 3, we have ∂πo

∂θ > 0. Therefore, ∂(πo−πs)
∂θ > 0.

(4) It is easy to find that ∂πo

∂ξ < 0. Thus, ∂(πo−πb)
∂ξ < 0.

Nest, let’s compare πs and πb.

Note

∂
(
πs − πb

)
∂η

= (c1 − c1m)α−

√
βc1m (r − c1m − c2)

η
+

√
βc1 (r − c1 − c2)

1− η

−
√
βc2 (c1 − c1m)√

(r − c1m − c2) η + (r − c1 − c2) (1− η)

> (c1 − c1m)

√
βc1m

η (r − c1m − c2)
−

√
βc1m (r − c1m − c2)

η
+

√
βc1 (r − c1 − c2)

1− η

=

√
r − c1 − c2
r − c1m − c2

√
c1c1mβ

(√
r − c1m − c2
(1− η) c1m

−
√
r − c1 − c2

ηc1

)
> 0

where the first inequality is because of λsm > 0 (and thus

α > β
√

c1m
βη(r−c1m−c2)+β

√
c2

β[(r−c1m−c2)η+(r−c1−c2)(1−η)]), and the second inequality is because

ws1m < ws1h (and thus
√

r−c1m−c2
(1−η)c1m

−
√

r−c1−c2
ηc1

> 0).

Next, we look at how πs − πb changes as different model parameters change.
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(1) Note
∂(πs−πb)

∂r =
√

c1
r−c1−c2 +

√
c2

r−c1−c2 −
√

ηc1m
r−c1m−c2 −

√
(1−η)c1
r−c1−c2

−
√

c2
(r−c1m−c2)η+(r−c1−c2)(1−η)

Because of Assumption 1 and Lemma 1, we have ηws1m + (1− η)ws1h < wb1, and thus√
ηc1m

r−c1m−c2 +
√

(1−η)c1
r−c1−c2 <

√
c1

r−c1−c2 . Also, because c1m < c1, we have
√

c2
r−c1−c2 >√

c2
(r−c1m−c2)η+(r−c1−c2)(1−η) . Thus,

∂(πs−πb)
∂r > 0.

(2) ∂(πs−πb)
∂c2

= µb2 − µs2 < 0.

(3) Let’s first prove the following lemma:

Lemma 4. πs is increasing in η.

Proof of Lemma 4: For η1, η2 ∈ [0, 1], suppose η1 < η2. Denote the optimal solution

when η = η1 as µ∗1m, µ
∗
1h, µ

∗
2, λ

∗
s, λ

∗
o. The corresponding total demand and profit

are λ∗ = (1− η1)λ∗h + η1λ
∗
m and π∗. Since w∗1m < w∗1h, we have λ∗m > λ∗h.

When η = η2, consider the following feasible solution: λ4m = λ∗m, λ
4
h = λ∗h, µ

4
1m =

µ∗1m+ (η2−η1)λ∗m, µ
4
1h = µ∗1h− (η2−η1)λ∗h, µ

4
2 = µ∗2 + (η2−η1)(λ∗m−λ∗h). Then, the

corresponding profit π4 = π∗+ r(λ∗m−λ∗h)− c1m(η2−η1)λ∗m+ c1(η2−η1)λ∗h− c2(η2−

η1)(λ∗m − λ∗h) > π∗ + (r− c1 − c2)(η2 − η1)(λ∗m − λ∗h) > 0, where the first inequality is

due to c1m < c1. Therefore, the optimal profit with η = η2 must be greater than π∗.

This concludes the proof.

By Lemma 4, we find ∂(πs−πb)
∂η > 0.

(4) It is easy to find that ∂πs

∂c1m
< 0. Thus, ∂(πs−πb)

∂c1m
< 0.
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Proof of Proposition 34:

πo − πs =− c1 (1− θ)α+ [c1mη + c1 (1− η)]α

+ 2
√
ηβ (r − c1m − c2) c1m + 2

√
(1− η)β (r − c1 − c2) c1

+ 2
√
βc2 [(r − c1m − c2) η + (r − c1 − c2) (1− η)]

− 2
√

(1− θ)β (r − c1 − c2) c1 − 2
√

[(1− θ)β (r − c1 − c2) + θξβ (r − c2)] c2

Note that ∂2(πo−πs)
∂η2 < 0. When η = 0, πs = πb < πo. Define η̄ such that c1(1 − θ) =

c1mη̄ + c1(1 − η̄). When η = η̄, then we can check that πo − πs > 0. Thus, for η ∈ (0, η̄],

we have πo − πs > 0, or β̄ = 0. [It is easy to check that η̄ > θ. Thus, if η ∈ (0, θ], we must

have πo > πs or β̄ = 0.]

If η > η̄, we have−c1(1−θ)α+[c1mη+c1(1−η)]α < 0. Then,
∂ π

o−πs√
β

∂β =
∂
−c1(1−θ)α+[c1mη+c1(1−η)]α√

β

∂β

> 0. Thus, there exists β̄ ≥ 0 such that πo − πs > 0 if and only if β > β̄.

Proof of Proposition 36: In the decentralized system, for any θ, denote optimal stock levels

in the store as q̃∗(θ). Suppose we have the same stock level in the centralized system. Then

clearly we will achieve exactly the same total profit as π̃∗(θ), since the BOPS revenue is

just shared between channels in the decentralized case. Thus, we must have π̃∗(θ) ≤ π∗.

And due to the fact that π is strictly concave in q and q∗ > 0 (because of the assumptions

that p− c > w
α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo
− r), we have π̃∗(θ) = π∗ if only if q̃∗ = q∗.

Next, let’s compare the optimal store inventory levels in both the centralized and decen-

tralized systems:

• If
α∗b+α∗bo
α∗so+α

∗
bo
< w

p , then ∀θ ∈ [0, 1], we have
(

α∗s+α∗so
α∗s+α∗b+α∗so+α

∗
bo

+
α∗b+α∗bo

α∗s+α∗b+α∗so+α
∗
bo
θ
)
p + r >

p+ r − w α∗so+α
∗
bo

α∗s+α∗b+α∗so+α
∗
bo

. Therefore, q̃∗ > q∗. Since q̃∗ 6= q∗, π̃∗ < π∗.

• If
α∗b+α∗bo
α∗so+α

∗
bo
≥ w

p , then

178



– if θ <
(α∗b+α∗bo)p−(α∗so+α

∗
bo)w

(α∗b+α∗bo)p
, then q̃∗ = F̄−1

 c(
α∗s+α∗so

α∗s+α∗
b

+α∗so+α∗
bo

+
α∗
b

+α∗
bo

α∗s+α∗
b

+α∗so+α∗
bo
θ

)
p+r

 <

F̄−1

(
c

p+r−w
α∗so+α∗

bo
α∗s+α∗

b
+α∗so+α∗

bo

)
= q∗. Since q̃∗ 6= q∗, π̃∗ < π∗.

– if θ =
(α∗b+α∗bo)p−(α∗so+α

∗
bo)w

(α∗b+α∗bo)p
, then q̃∗ = F̄−1

 c(
α∗s+α∗so

α∗s+α∗
b

+α∗so+α∗
bo

+
α∗
b

+α∗
bo

α∗s+α∗
b

+α∗so+α∗
bo
θ

)
p+r

 =

F̄−1

(
c

p+r−w
α∗so+α∗

bo
α∗s+α∗

b
+α∗so+α∗

bo

)
= q∗. Since q̃∗ = q∗, π̃∗ = π∗.

– if θ >
(α∗b+α∗bo)p−(α∗so+α

∗
bo)w

(α∗b+α∗bo)p
, then q̃∗ = F̄−1

 c(
α∗s+α∗so

α∗s+α∗
b

+α∗so+α∗
bo

+
α∗
b

+α∗
bo

α∗s+α∗
b

+α∗so+α∗
bo
θ

)
p+r

 >

F̄−1

(
c

p+r−w
α∗so+α∗

bo
α∗s+α∗

b
+α∗so+α∗

bo

)
= q∗. Since q̃∗ 6= q∗, π̃∗ < π∗.

Finally, let’s prove π̃∗ is quasiconcave in θ.

Let’s first show π̃∗ is nondecreasing in θ < p−w
p . If θ ≤ (α∗s+α∗b+α∗so+α

∗
so)(c−r)−(α∗s+α∗so)p

(α∗b+α∗bo)p
, then

q̃∗ = 0 and thus π̃∗ = wE(α∗o + α∗so + α∗bo)D, which is independent of θ. If

(α∗s+α∗b+α∗so+α
∗
so)(c−r)−(α∗s+α∗so)p

(α∗b+α∗bo)p
< θ <

(α∗b+α∗bo)p−(α∗so+α
∗
bo)w

(α∗b+α∗bo)p
, then ∂π̃∗

∂θ = ∂π̃∗

∂q
∂q̃∗

∂θ > 0, because

∂π̃∗

∂q > 0 if q < q̃∗ and ∂q̃∗

∂θ > 0.

Then, let’s show that π̃∗ is nonincreasing in θ >
(α∗b+α∗bo)p−(α∗so+α

∗
bo)w

(α∗b+α∗bo)p
. Note ∂π̃∗

∂θ = ∂π̃∗

∂q
∂q̃∗

∂θ <

0, because ∂π̃∗

∂q < 0 if q > q̃∗ and ∂q̃∗

∂θ > 0.

Thus, we can conclude that π̃∗ is quasiconcave in θ.

Proof of Proposition 37: Note nonparticipatory equilibrium, (0, F̄−1( cop ), 0, 0, 0), always ex-

ists. Same as what we did in the base model, we are going to look for participatory equilib-

rium, where φ◦ = 1 and q◦s > 0. All we need to do is to check the four conditions specified

in Definition 4.

First, we look at retailer’s problem: In the participatory equilibrium, retailer’s belief is

consistent, i.e., φ̂ = φ◦ = 1. Then, the retailer’s profit is π = pEmin(D, qs)− csqs + rED+
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pEmin((D− qs)+, qo)− coqo = rED+pEmin(D, qs+ qo)− csqs− coqo, the optimal solution

of which is easy to find as the follows

• if cs < co, then q◦s = F̄−1( csp ) and q◦o = 0

• if cs ≥ co, then q◦s = 0 and q◦o = F̄−1( cop ).

Thus, to ensure participatory equilibrium, we need cs < co.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂◦ = A(q◦s) = Emin(φ◦D, q◦s)/E(φ◦D) = Emin(D, F̄−1( csp ))/ED.

Finally, we go back to consumer’s decision. To ensure φ◦ = 1, we need us ≥ uo, i.e.,

hs ≤ ξ̂◦ho. Therefore, we need hs ≤
Emin(D,F̄−1( cs

p
))

ED ho.

Based on the analysis above, we find the conditions for a participatory equilibrium are

hs ≤
Emin(D,F̄−1( cs

p
))

ED ho and cs < co. And the equilibrium outcome is φ◦ = 1, q◦s = F̄−1
(
cs
p

)
and q◦o = 0.

Proof of Proposition 38: First, let’s look at the case where min(hs, hb) ≤ ho. In this case,

consumers come to store if it is in stock. Thus, the retailer’s profit is

π = (p+ r)Emin (D, qs)− csqs + pEmin
(
(D − qs)+, qo

)
− coqo

First, by checking the Hessian matrix, we can easily find the profit function is jointly concave

in (qs, qo). Moreover, note that ∂π
∂qs

= rF̄ (qs) + pF̄ (qs + qo)− cs and ∂π
∂qo

= pF̄ (qs, qo)− co.

Thus, by the first order condition and taking into account the constraints that qs ≥ 0 and

qo ≥ 0, we can find the optimal solution that maximizes the profit function as follows:

• if cs ≤ p+r
p co, then F̄ (q∗s) = cs

p+r ⇒ q∗s = F̄−1( cs
p+r ), and q∗o = 0

• if cs ∈ (p+rp co, co + r), then F̄ (q∗s) = cs−co
r ⇒ q∗s = F̄−1( cs−cor ), and F̄ (q∗s + q∗o) = co

p ⇒

q∗o = F̄−1( cop )− F̄−1( cs−cor )
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• if cs ≥ co + r, then q∗s = 0 and F̄ (q∗o) = co
p ⇒ q∗o = F̄−1( cop ), in which case customers

actually never come to store because store does not have any inventory.

Then, let’s look at the case where min(hs, hb) > ho. Then, consumers never come to store

and the retailer’s profit is π = pEmin(D, qo)− coqo, which is a newsvendor problem. Thus,

q∗s = 0 and q∗o = F̄−1( cop ).

Proof of Proposition 39: If customers visit the store only if BOPS is available, then

π∗ = (p+ r)Emin (D, q∗s)− csq∗s > pEmin (D, q◦o)− coq◦o = π◦

where the inequality is because (q∗s , q
∗
o) rather than (q◦s , q

◦
o) maximizes π∗.

Proof of Proposition 40: Since consumer behavior is the same as Proposition 39, the proof

is also very similar to the one for Proposition 39, and thus omitted.

Proof of Proposition 41: If hs ≤
Emin

(
D,F̄−1

(
cs
p

))
ED ho and cs < co, then q◦s = F̄−1( csp ), q◦o =

0, q∗s = F̄−1( cs
p+r ) and q∗o = 0. Then,

π◦ = rED + pEmin (D, q◦s)− csq◦s

> rED + pEmin (D, q∗s)− csq∗s

> rEmin (D, q∗s) + pEmin (D, q∗s)− csq∗s = π∗

where the first inequality is due to the fact that q◦s rather than q∗s maximizes π◦.

Proof of Proposition 42: Note nonparticipatory equilibrium always exists. Same as what

we did in the base model, we are going to look for participatory equilibrium, where αs > 0,

αso > 0 and q◦s > 0.

First, let’s look at retailer’s problem. It is easy to verify that π is jointly concave in (qs, qo).

Also, note that with α̂i = α◦i , i = s, o, so, l,
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• if qs
α◦s+α◦so

> qo
α◦o

, then

∂π
∂qs

= pF̄
(

qs
α◦s+α◦so

)
− cs

∂π
∂qo

= pF̄
(
qo
α◦o

)
− co

• if qs
α◦s+α◦so

≤ qo
α◦o

, then

∂π
∂qs

= α◦s
α◦s+α◦so

pF̄
(

qs
αs+α◦so

)
+ α◦so

α◦s+α◦so
pF̄

(
qo+

α◦so
α◦s+αso

qs

α◦o+α◦so

)
− cs

∂π
∂qo

= pF̄

(
qo+

α◦so
α◦s+α◦so

qs

α◦o+α◦so

)
− co

Then, given the constraints qs ≥ 0 and qo ≥ 0, we can easily get the solution as follows:

• If cs < co, then

q◦s = (α◦s + α◦so) F̄
−1
(
cs
p

)
q◦o = α◦oF̄

−1
(
co
p

)

• if cs ≥ co and cs <
α◦so

αs+α◦so
co + α◦s

α◦s+α◦so
p, then

q◦s = (α◦s + α◦so) F̄
−1

(
cs−

α◦so
α◦s+α◦so

co

α◦s
α◦s+α◦so

p

)

q◦o = (α◦o + α◦so) F̄
−1
(
co
p

)
− α◦soF̄−1

(
cs−

α◦so
α◦s+α◦so

co

α◦s
α◦s+α◦so

p

)

• if cs ≥ α◦so
α◦s+α◦so

co + α◦s
α◦s+α◦so

p, then

q◦s = 0

q◦o = (α◦o + α◦so) F̄
−1
(
co
p

)

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂◦ = A(q◦s) = Emin((α◦s + α◦so)D, q
◦
s)/E((α◦s + α◦so)D). Thus, if cs < co, then ξ̂◦ = ξ◦1 ; if

cs ≥ co and cs <
α◦so

αs+α◦so
co + α◦s

α◦s+α◦so
p, then ξ̂◦ = ξ◦2 ; otherwise, ξ̂◦ = 0. Here, we used the
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fact that for any ξ̂ > 0, we have αso
αs+αso

= v−p
2H−(v−p) and αs

αs+αso
= 2H−2(v−p)

2H−(v−p) .

Note ξ̂◦ is independent of α’s. Thus, to ensure equilibrium, we just need to replace ξ̂ with

ξ̂◦ and set all the αs to satisfy (i) in Definition 5.

Proof of Proposition 43: First, when r = 0, we can find that π is jointly concave in (qs, qo).

Also,

• if qs
α∗s+α∗b+α∗bo+α

∗
so
> qo

α∗o
, then

∂π
∂qs

= pF̄
(

qs
α∗s+α∗b+α∗so+α

∗
bo

)
− cs

∂π
∂qo

= pF̄
(
qs
α∗o

)
− co

• if qs
α∗s+α∗b+α∗bo+α

∗
so
≤ qo

α∗o
, then

∂π
∂qs

=
α∗s+α∗b

α∗s+α∗b+α∗so+α
∗
bo
pF̄
(

qs
α∗s+α∗b+α∗so+α

∗
bo

)
+

α∗so+α
∗
bo

α∗s+α∗b+α∗so+α
∗
bo
pF̄

(
qo+

α∗so+α∗bo
α∗s+α∗

b
+α∗so+α∗

bo
qs

α∗o+α∗so+α
∗
bo

)
− cs

∂π
∂qo

= pF̄

(
qo+

α∗so+α∗bo
α∗s+α∗

b
+α∗so+α∗

bo
qs

α∗o+α∗so+α
∗
bo

)
− co

Then, given the constraints qs ≥ 0 and qo ≥ 0, we can easily get the solution as follows:

• If cs < co, then

q∗s = (α∗s + α∗b + α∗so + α∗bo) F̄
−1
(
cs
p

)
q∗o = α∗oF̄

−1
(
co
p

)
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• if cs ≥ co and cs <
α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo
co +

α∗s+α∗b
α∗s+α∗b+α∗so+α

∗
bo
p, then

q∗s = (α∗s + α∗b + α∗so + α∗bo) F̄
−1

(
cs−

α∗so+α∗bo
α∗s+α∗

b
+α∗so+α∗

bo
co

α∗s+α∗
b

α∗s+α∗
b

+α∗so+α∗
bo
p

)

q∗o = (α∗o + α∗so + α∗bo) F̄
−1
(
co
p

)
− (α∗so + α∗bo) F̄

−1

(
cs−

α∗so+α∗bo
α∗s+α∗

b
+α∗so+α∗

bo
co

α∗s+α∗
b

α∗s+α∗
b

+α∗so+α∗
bo
p

)

• if cs ≥
α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo
co +

α∗s+α∗b
α∗s+α∗b+α∗so+α

∗
bo
p, then

q∗s = 0

q∗o = (α∗o + α∗so + α∗bo) F̄
−1
(
co
p

)

Proof of Proposition 44: Since consumer behavior remains the same as before, part (i) re-

mains valid as before.

Next, let’s look at part (ii). To simplify notation, we denote ∆◦ = v−p
2H−(v−p)co + 2H−2(v−p)

2H−(v−p) p

and ∆∗ =
α∗so+α

∗
bo

α∗s+α∗b+α∗so+α
∗
bo
co +

α∗s+α∗b
α∗s+α∗b+α∗so+α

∗
bo
p. Note if βs + βo < 1, we have ∆◦ > ∆∗.

If there are customers visiting store when there is no BOPS, we need to have cs < ∆◦. The

following analysis assumes this condition holds.

Suppose r = 0. If cs ≥ ∆∗ (this is possible since ∆◦ > ∆∗), then no one comes to store
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when there is BOPS. In this case,

π∗ = pEmin ((α∗o + α∗so + α∗bo)D, q
∗
o)− coq∗o

= pEmin ((α◦o + α◦so)D, q
∗
o)− coq∗o

< pEmin ((α◦s + α◦so)D, q
◦
s)− csq◦s + rE (α◦s + α◦so)D

+ pEmin

(
α◦oD +

α◦so
α◦s + α◦so

((α◦s + α◦so)D − q◦s)
+, q◦o

)
− coq◦o

= π◦

where the inequality is because qs = 0, qo = q∗o is also a feasible but not the optimal solution

to the case where there is no BOPS. If cs < ∆∗, then there are consumers visiting store

when there is BOPS. Note (1) π◦ − π∗ is continuous in cs, and (2) π◦ > π∗ when cs = ∆∗.

Thus, the analysis above implies that there exists c̄s < ∆∗ such that π◦ > π∗ if cs > c̄s.

Proof of Proposition 45: Note there are two possible equilibrium outcomes

i. Participatory equilibrium: φ◦ = 1

ii. Nonparticipatory equilibrium: φ◦ = 0.

Let’s first look for participatory equilibrium: First, we look at retailer’s problem: Given

belief φ̂, the retailer maximizes total profit

π = pEmin((λ+ φ̂(1− λ))D, q)− cq + rE((λ+ φ̂(1− λ))D)

+wE((1− φ̂)(1− λ)D) + wE((λ+ φ̂(1− λ))D − q)+

= (p− w)Emin((λ+ φ̂(1− λ))D, q)− cq + ((λ+ φ̂(1− λ))r + w)ED

which is a typical newsvendor problem (plus a constant ((λ + φ̂(1 − λ))r + w)ED), and

therefore the optimal order quantity q◦ is given by F̄
(

q◦

λ+φ̂(1−λ)

)
= c

p−w ∧ 1. Since in equi-

librium, the retailer’s belief is consistent with the outcome, we have φ̂ = φ◦ = 1. Thus,

q◦ = F̄−1
(

c
p−w ∧ 1

)
. Since q > 0 in the participatory equilibrium, we must have p− c > w

and thus q◦ = F̄−1
(

c
p−w

)
. Note in equilibrium, we also need consumer’s belief to be consis-
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tent with the outcome, i.e., ξ̂◦ = A(q◦) = Emin(D, q◦)/E(D) = Emin(D, F̄−1( c
p−w ))/ED.

Finally, we go back to consumer’s decision. To ensure φ◦ = 1, we need us ≥ uo, i.e.,

hs ≤ ξ̂◦ho. Therefore, we need hs ≤
Emin(D,F̄−1( c

p−w ))

ED ho. Based on the analysis above,

we find the conditions for a participatory equilibrium are hs ≤
Emin(D,F̄−1( c

p−w ))

ED ho and

p− c > w. And the equilibrium outcome is φ◦ = 1 and q◦ = F̄−1
(

c
p−w

)
.

Next, let’s look for nonparticipatory equilibrium, i.e., φ◦ = 0. Note, given belief φ̂, the

retailer’s optimal store inventory level is given by F̄
(

q◦

λ+φ̂(1−λ)

)
= c

p−w ∧ 1 as shown above.

Since in equilibrium, the retailer’s belief is consistent with the outcome, we have φ̂ =

φ◦ = 0. Thus, q◦ = λF̄−1
(

c
p−w ∧ 1

)
. Note in equilibrium, we also need consumer’s

belief to be consistent with the outcome, i.e., ξ̂◦ = A(q◦) = Emin(λD, q◦)/E(λD) =

Emin(D, F̄−1
(

c
p−w ∧ 1

)
)/ED. Finally, we go back to consumer’s decision. To ensure φ◦ =

0, we need us < uo, i.e., hs > ξ̂◦ho. Therefore, we need hs ≤
Emin(D,F−1

(
c

p−w∧1
)

)

ED ho. Based

on the analysis above, we find the conditions for a nonparticipatory equilibrium are hs ≤
Emin(D,F−1

(
c

p−w∧1
)

)

ED ho. And the equilibrium outcome is φ◦ = 0 and q◦ = λF̄−1
(

c
p−w ∧ 1

)
.

Finally, note the conditions for the participatory equilibrium and nonparticipatory equi-

librium are mutually exclusive and collectively exhaustive. Thus, the equilibrium always

exists and is unique.

Proof of Proposition 46: If min(hs, hb) ≤ ho, then the profit function π = pEmin (D, q) −

cq+rEλD+rE(1−λ) min (D, q)+wE(D − q)+ = (p+(1−λ)r−w)Emin(D, q)−cq+wED,

which is a typical newsvendor problem (plus a constant wED). Thus, the optimal order

quantity q∗ is given by F̄ (q∗) = c
p+(1−λ)r−w ∧ 1. Then, if p − c > w − (1 − λ)r, we have

q∗ = F̄−1
(

c
p+r−w

)
; otherwise, q∗ = 0.

If min(hs, hb) > ho, then no strategic customer comes to store and thus the retailer’s profit

is π = pEmin (λD, q)− cq+rEλD+wE(1−λ)D+wE(λD − q)+ = (p−w)Emin(λD, q)−

cq + (rλ + w)ED, which is a typical newsvendor problem (plus a constant (rλ + w)ED).

Thus, the optimal order quantity q∗ = λF̄−1( c
p−w ∧ 1).
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Proof of Proposition 47: Let’s first look for participatory equilibrium:

First, we look at retailer’s problem: The retailer’s profit can be expressed as

π = pEmin ((λ+ (α̂s + α̂so) (1− λ))D, q)− cq + rE (λ+ (α̂s + α̂so) (1− λ))D

+wEα̂o (1− λ)D + w
v−p
H

λ+α̂so(1−λ)

λ+(α̂s+α̂so)(1−λ)E((λ+ (α̂s + α̂so) (1− λ))D − q)+

=

(
p− w

v−p
H

λ+α̂so(1−λ)

λ+(α̂s+α̂so)(1−λ)

)
Emin ((λ+ (α̂s + α̂so) (1− λ))D, q)− cq

+
(
w
(v−p
H λ+ (α̂o + α̂so) (1− λ)

)
+ r (λ+ (α̂s + α̂so) (1− λ))

)
ED

which is a typical newsvendor problem (plus a constant(
w
(v−p
H λ+ (α̂o + α̂so) (1− λ)

)
+ r (λ+ (α̂s + α̂so) (1− λ))

)
ED), and therefore the opti-

mal order quantity q◦ is given by F̄
(

q◦

λ+(α̂s+α̂so)(1−λ)

)
= c

p−w
v−p
H

λ+α̂so(1−λ)

λ+(α̂s+α̂so)(1−λ)

∧ 1.

Since in equilibrium, the retailer’s belief is consistent with the outcome, we have α̂i = α◦i ,

i = o, s, so. Thus, F̄
(

q◦

λ+(α◦s+α◦so)(1−λ)

)
= c

p−w∆◦(ξ) ∧ 1

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂ = ξ◦ = A(q◦) = Emin((λ + (α◦s + α◦so) (1− λ))D, q◦)/E((λ + (α◦s + α◦so) (1− λ))D) =

Emin(D, F̄−1( c
p−w∆◦(ξ◦) ∧ 1)/ED. To ensure the existence of a participatory equilibrium,

we need to make sure there exists ξ◦ > 0 such that ξ◦ = Emin(D, F̄−1( c
p−w∆◦(ξ◦) ∧ 1)/ED.

What’s left is to show that when equation ξ =
min

(
D,F̄−1

(
c

p−w∆◦(ξ)∧1
))

ED does not have a

positive solution, nonparticipatory outcome (i.e., no strategic customers comes to store and

q = 0) is an equilibrium.

Note a necessary condition for the equation ξ =
min

(
D,F̄−1

(
c

p−w∆◦(ξ)∧1
))

ED not having a positive

solution is p − w∆◦(0) ≤ c. Note ∆◦(0) = v−p
H . Given p − w v−p

H ≤ c, it is easy to find

that the retailer will set q = 0 if no strategic customers visit store. Then, given q = 0,

strategic customers will indeed not come to store. Thus, this nonparticipatory outcome is

a RE equilibrium.
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Proof of Proposition 48: The profit function can be expressed as

π =

[
p− w∆∗ + r

(α∗s+α∗so+α
∗
b+α∗bo)(1−λ)

λ+(α∗s+α∗so+α
∗
b+α∗bo)(1−λ)

]
Emin ((λ+ (α∗s + α∗so + α∗b + α∗bo) (1− λ))D, q)

−cq +
(
w
(v−p
H λ+ (α∗o + α∗so + α∗bo) (1− λ)

)
+ rλ

)
ED

which is a typical newsvendor problem (plus a constant(
w
(v−p
H λ+ (α∗o + α∗so + α∗bo) (1− λ)

)
+ rλ

)
ED). Thus, the optimal order quantity

q∗ = (λ+ (α∗s + α∗so + α∗b + α∗bo) (1− λ)) F̄−1

 c

p−w∆∗+r
(α∗s+α∗so+α∗

b
+α∗

bo)(1−λ)

λ+(α∗s+α∗so+α∗
b

+α∗
bo)(1−λ)

∧ 1


Proof of Proposition 49: If v−pβo < H, then lim

βs→0

α∗so+α
∗
bo

α∗s+α∗so+α
∗
b+α∗bo

> v−p
H . Therefore, lim

βs→0
∆∗ >

v−p
H . Since ∆∗ is continuous in βs, there exists β̄s > 0 such that ∆∗ > v−p

H if βs < β̄s. Note

∆◦(0) = v−p
H .

Suppose r = 0. If w ≥ p−c
∆∗ (this is possible since p−c

∆◦ > p−c
∆∗ ), then no one comes to store

when there is BOPS . In this case,

π∗ =

(
w

(
v − p
H

λ+ (α∗o + α∗so + α∗bo) (1− λ)

)
+ rλ

)
ED

=

(
w

(
v − p
H

λ+ (α◦o + α◦so) (1− λ)

)
+ rλ

)
ED

< pEmin ((λ+ (α◦s + α◦so) (1− λ))D, q◦)− cq◦ + rE (λ+ (α◦s + α◦so) (1− λ))D

+ wEα◦o (1− λ)D + w
v−p
H λ+ α◦so (1− λ)

λ+ (α◦s + α◦so) (1− λ)
E((λ+ (α◦s + α◦so) (1− λ))D − q◦)+

= π◦

where the inequality is because q = 0 is also a feasible but not the optimal solution to the

case where there is no BOPS. If w < p−c
∆∗ , then there are consumers visiting store when

there is BOPS. Note (1) π◦ − π∗ is continuous in w, and (2) π◦ > π∗ when w = p−c
∆∗ . Thus,

the analysis above implies that there exists w̄ < p−c
∆∗ such that π◦ > π∗ if w > w̄.

Proof of Proposition 54: Note nonparticipatory equilibrium, (0, F̄−1( co
pθ−k(1−θ)), 0, 0, 0), al-
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ways exists. Same as what we did in Chapter 3, we are going to look for participatory

equilibrium, where φ◦ = 1 and q◦s > 0. All we need to do is to check the four conditions

specified in Definition 6.

First, we look at retailer’s problem: In the participatory equilibrium, retailer’s belief is

consistent, i.e., φ̂ = φ◦ = 1. Then, the retailer’s profit is

π = pEmin (θD, qs)− csqs + [pθ − k (1− θ)]Emin

((
D − qs

θ

)+
, qo

)
− coqo.

It is easy to verify the profit function is jointly concave in (qs, qo). Note the first order

derivatives are given as follows: ∂π∂qs = k 1−θ
θ F̄

( qs
θ

)
+
(
p− k 1−θ

θ

)
F̄
( qs
θ + qo

)
− cs and ∂π

∂qo
=

[pθ − k (1− θ)] F̄
( qs
θ + qo

)
− co. Given that qs ≥ 0 and qo ≥ 0, it is easy to find the optimal

solution is given as follows:

• if co ≥ [pθ − k(1− θ)] csp , then F̄ ( qsθ ) = cs
p and qo = 0

• if co < [pθ − k(1 − θ)] csp and cs ≤ k 1−θ
θ + co

θ , then F̄ ( qsθ ) = θcs−co
k(1−θ) and F̄ ( qsθ + qo) =

co
pθ−k(1−θ)

• if co < [pθ − k(1− θ)] csp and cs > k 1−θ
θ + co

θ , then qs = 0 and F̄ (qo) = co
pθ−k(1−θ)

Thus, to ensure participatory equilibrium, we need (i) co ≥ [pθ − k(1 − θ)] csp or (ii) co <

[pθ − k(1− θ)] csp and cs ≤ k 1−θ
θ + co

θ

Let’s first look at case (i): In equilibrium, we also need consumer’s belief to be consistent

with the outcome, i.e., ξ̂◦ = A(q◦s) = Emin(φ◦D, q◦s/θ)/E(φ◦D) = Emin(D, F̄−1( csp ))/ED.

Then, we go back to consumer’s decision. To ensure φ◦ = 1, we need us > uo, i.e.,

hs <
Emin(D,F̄−1( cs

p
))

ED [ho + (1− θ)hr].

Next, let’s look at case (ii): In equilibrium, we also need consumer’s belief to be consistent

with the outcome, i.e., ξ̂◦ = A(q◦s) = Emin(φ◦D, q◦s/θ)/E(φ◦D) =
Emin(D,F̄−1( θcs−co

k(1−θ) ))

ED .

Then, we go back to consumer’s decision. To ensure φ◦ = 1, we need us > uo, i.e.,
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hs <
Emin(D,F̄−1( θcs−co

k(1−θ) ))

ED [ho + (1− θ)hr].

Based on the analysis above, we find the conditions for a participatory equilibrium are

• hs <
Emin(D,F̄−1( cs

p
))

ED [ho+(1−θ)hr] and co ≥ [pθ−k(1−θ)] csp , in which the equilibrium

outcome is φ◦ = 1, q◦s = θF̄−1
(
cs
p

)
and q◦o = 0.

• hs <
Emin(D,F̄−1( θcs−co

k(1−θ) ))

ED [ho+(1−θ)hr] and co < [pθ−k(1−θ)] csp and cs ≤ k 1−θ
θ + co

θ , in

which the equilibrium outcome is φ◦ = 1, q◦s = θF̄−1
(
θcs−co
k(1−θ)

)
, q◦o = F̄−1

(
co

pθ−k(1−θ)

)
−

F̄−1
(
θcs−co
k(1−θ)

)
.

Proof of Proposition 55: Note nonparticipatory equilibrium, (0, F̄−1( co
pθ−k(1−θ)), 0, 0, 0), al-

ways exists. Same as what we did in Chapter 3, we are going to look for participatory

equilibrium, where φp = 1.

First, we look at retailer’s problem: In the participatory equilibrium, retailer’s belief is con-

sistent, i.e., φ̂ = φp = 1. Then, retailer’s profit is π = pEmin(θD, qs)−csqs+pEmin((θD−

qs)
+, qo)− coqo = pEmin(θD, qs+ qo)− csqs− coqo. Then, it is easy to find that the optimal

solution is as follows

• if cs < co, then qps = θF̄−1( csp ) and qpo = 0

• if cs ≥ co, then qps = 0 and qpo = θF̄−1( cop ).

Let’s first look at the case when cs < co. In equilibrium, we also need consumer’s be-

lief to be consistent with the outcome, i.e., ξ̂p = A(qps) = Emin(φpD, qps/θ)/E(φpD) =

Emin(D, F̄−1( csp ))/ED. Then, we go back to consumer’s decision. To ensure φp =

1, we need us > uo, i.e., hs < ξ̂pθho + (1 − θ)(ho + hr). Therefore, we need hs <

Emin(D,F̄−1( cs
p

))

ED θho + (1− θ)(ho + hr).

Next let’s look at the case when cs ≥ co. In equilibrium, we also need consumer’s belief
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to be consistent with the outcome, i.e., ξ̂p = A(qps) = 0. Then, we go back to consumer’s

decision. To ensure φp = 1, we need us > uo, i.e., hs < ξ̂pθho + (1− θ)(ho + hr). Therefore,

we need hs < (1− θ)(ho + hr).

Based on the analysis above, we find the conditions for a participatory equilibrium are

• hs <
Emin

(
D,F̄−1

(
cs
p

))
ED θho + (1− θ) (ho + hr) and cs < co, in which the equilibrium

outcome is φp = 1, qps = θF̄−1( csp ), qpo = 0;

• hs < (1− θ)(ho+hr) and cs ≥ co, in which the equilibrium outcome is φp = 1, qps = 0,

qpo = θF̄−1( cop );

Proof of Proposition 56: If (1− θ) (ho + hr) < hs <
Emin

(
D,F̄−1

(
cs
p

))
ED [ho + (1− θ)hr] and

[pθ − k(1 − θ)] csp < co < cs, according to Propositions 54 and 55, we can easily find that

φ◦ = 1, q◦s = θF̄−1( csp ), q◦o = 0 and φp = 0, qps = 0, qpo = F̄−1( co
pθ−k(1−θ)). Then,

π◦ = pEmin (θD, q◦s)− csq◦s

> [pθ − k (1− θ)]Emin (D, qpo)− coqpo = πp

where the inequality is because qs = 0 and qo = qpo is a feasible but not the optimal solution

to the case where there is no physical showroom.

Proof of Proposition 57: The proof is similar to the proof of Proposition 54. We only need

to replace D and θ with D′ and θ′. Details are omitted.

Proof of Proposition 58: If
Emin

(
D,F̄−1

(
cs
p

))
ED [ho + (1− θ′)hr] < hs <

Emin
(
D,F̄−1

(
cs
p

))
ED [ho+

(1− θ)hr] and [pθ′ − k(1 − θ′)] csp < co, then φ◦ = 1, q◦s = θF̄−1( csp ), q◦o = 0 and φv =

0, qvs = 0, qvo = F̄
′−1( co

pθ′−k(1−θ′)). Then, π◦ = pEmin(θD, q◦s) − csq◦s and πv = [pθ′ − k(1 −

θ′)]Emin(D, qvs ) − coq
v
s . Note by Envelop Theorem, we have ∂(π◦−πv)

∂co
= qvs > 0. Also,
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note when co = pθ′ − k(1 − θ′), πv = 0 < πo. Thus, there exists c̄o such that π◦ > πv if

co > c̄o.

Proof of Proposition 59: If hs < ho + (1 − θ)hr, then consumers come to store only if it is

in stock. For the profit function

π = pEmin (θD, qs)− csqs + [pθ − k(1− θ)]Emin

((
D − qs

θ

)+
, qo

)
− coqo

it is easy to check it is jointly concave in (qs, qo). Note the first order derivatives are

∂π
∂qs

= k 1−θ
θ F̄

( qs
θ

)
+
(
p− k 1−θ

θ

)
F̄
( qs
θ + qo

)
− cs and ∂π

∂qo
= [pθ − k (1− θ)] F̄

( qs
θ + qo

)
− co.

Given that qs ≥ 0 and qo ≥ 0, it is easy to find the optimal solution is given as follows:

• if co ≥ [pθ − k(1− θ)] csp , then F̄ ( q
a
s
θ ) = cs

p and qao = 0

• if co < [pθ − k(1 − θ)] csp and cs ≤ k 1−θ
θ + co

θ , then F̄ ( q
a
s
θ + qao ) = co

pθ−k(1−θ) and

F̄ ( q
a
s
θ ) = θcs−co

k(1−θ)

• if co < [pθ − k(1− θ)] csp and cs > k 1−θ
θ + co

θ , then qas = 0 and F̄ (qao ) = co
pθ−k(1−θ)

If hs ≥ ho + (1 − θ)hr, then all customers always buy online. Then, profit function is

π = [pθ − k(1− θ)]Emin(D, qo)− coqo. Thus, qas = 0, qao = F̄−1( co
pθ−k(1−θ)).

Proof of Proposition 60:

• If hs < ho + (1− θ)hr and co ≥ [pθ − k(1− θ)] csp , then πa = pEmin (θD, qas )− csqas .

– If hs < ξ◦1 [ho + (1− θ)hr], then π◦ = pEmin (θD, q◦s)− csq◦s = πa;

– If hs ≥ ξ◦1 [ho + (1 − θ)hr], then π◦ = [pθ + k (1− θ)]Emin (D, q◦o) − coq◦o < πa,

where the inequality is because qs = 0 and qo = q◦o is also a feasible but not the

optimal solution to the case where there is availability information;
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• If hs < ho + (1 − θ)hr and co < [pθ − k(1 − θ)] csp and cs ≤ k 1−θ
θ + co

θ , then πa =

pEmin (θD, qas )− csqas + [pθ + k (1− θ)]Emin

((
D − qas

θ

)+
, qao

)
− coqao

– If hs ≤ ξ◦2 [ho + (1− θ)hr], then

π◦ = pEmin (θD, q◦s)−csq◦s+[pθ − k (1− θ)]Emin

((
D − q◦s

θ

)+
, q◦o

)
−coq◦o = πa;

– hs > ξ◦2 [ho + (1 − θ)hr], then π◦ = [pθ − k (1− θ)]Emin (D, q◦o) − coq◦o < πa,

where the inequality is because qs = 0 and qo = q◦o is also a feasible but not the

optimal solution to the case where there is availability information;

• Otherwise, then πa = [pθ − k (1− θ)]Emin (D, qao )− coqao = π◦.

Proof of Proposition 61. • If hs ≤ (1− θ)(ho + hr), then

πpa = max
qs,qo≥0

{
pEmin (θD, qs)− csqs + pEmin

(
(θD − qs)+, qo

)
− coqo

}
= pEmin (θD, qps)− csqps + pEmin

(
(θD − qps)

+, qpo
)
− coqpo = πp

• If (1− θ)(ho + hr) ≤ hs < ho + (1− θ)hr, then

πpa = max
qs,qo≥0

{
pEmin (θD, qs)− csqs + [pθ − k (1− θ)]Emin

((
D − qs

θ

)+
, qo

)
− coqo

}
= pEmin (θD, qas )− csqas + [pθ − k (1− θ)]Emin

((
D − qas

θ

)+

, qao

)
− coqao = πa

• If hs > ho + (1− θ)hr, then

πpa = max
qo≥0
{[pθ − k (1− θ)]Emin (D, qo)− coqo}

= [pθ + k (1− θ)]Emin (D, qao )− coqao = πa
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Proof of Proposition 62: First, similar to the proof of Proposition 55, we can find the RE

equilibrium for the case when there are both physical and virtual showrooms. We simply

replace D and θ with D′ and θ′. The results are given as follows:

• If hs <
Emin

(
D′,F̄ ′−1

(
cs
p

))
ED′ θ′ho + (1− θ′) (ho + hr) and cs < co, then consumers come

to store (i.e., φpv = 1) and qpvs = θ′F̄ ′−1( csp ), qpvo = 0;

• if hs < (1− θ)(ho + hr) and cs ≥ co, then consumers come to store (i.e., φpv = 1) and

qpvs = 0, qpvo = θ′F̄ ′−1( cop );

• otherwise, no one comes to store (i.e., φpv = 0) and qpvs = 0, qpvo = F̄ ′−1
(

co
pθ′−k(1−θ′)

)
.

Then, let’s compare profits.

• If hs <
Emin

(
D,F̄−1

(
cs
p

))
ED θ′ho + (1− θ′) (ho + hr) and cs < co, then

πpv = pEmin (θ′D′, qpvs )− csqpvs + pEmin
(

(θ′D′ − qpvs )
+
, qpvo

)
− coqpvo

= pEmin (θ′D′, qps)− csqps + pEmin
(

(θ′D′ − qps)+
, qpo
)
− coqpo = πp

• If hs < (1− θ′)(ho + hr) and cs > co, then

πpv = pEmin (θ′D′, qpvo )− coqpvo

= pEmin (θ′D′, qpo)− coqpo = πp

• Otherwise,

πpv = [pθ′ − k (1− θ′)]Emin (D′, qpvo )− coqpvo

≤ pEmin (θ′D′, qvs )− csqvs + [pθ′ − k (1− θ′)]Emin

((
D′ − qvs

θ′

)+
, qvo

)
− coqvo

= πv

where the inequality is because qs = 0, qo = qpvo is also a feasible solution to the case

where there is only virtual showroom.
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Proof of Proposition 63: Note nonparticipatory equilibrium, (0, 0, 0, 0), always exists. Same

as what we did in the simple model, we are going to look for participatory equilibrium, where

φ◦ = 1 and q◦ > 0. All we need to do is to check the four conditions specified in Definition 7.

First, we look at retailer’s problem: Given belief φ̂ = 1, the retailer maximizes total profit

π = pEmin(Ḡ(p)D, q)− cq + [wḠ(p− hr)− rG(p− hr)]E(D − q
Ḡ(p)

)+

= (p−w Ḡ(p−hr)
Ḡ(p)

+rG(p−hr)
Ḡ(p)

)Emin(Ḡ(p)D, q)−cq+(wḠ(p−hr)−rG(p−hr))ED, which is a

typical newsvendor problem (plus a constant (wḠ(p−hr)− rG(p−hr))ED), and therefore

the optimal order quantity q◦ = Ḡ(p)F̄−1

(
c

p−w Ḡ(p−hr)

Ḡ(p)
+r

G(p−hr)

Ḡ(p)

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂◦ = A(q◦) = Emin(φD, q◦/Ḡ(p))/E(φD) = Emin(D, F̄−1( c

p−w Ḡ(p−hr)

Ḡ(p)
+r

G(p−hr)

Ḡ(p)

))/ED.

Finally, we go back to consumer’s decision. To ensure φ = 1, we need us > uo, which gives

us the condition hs < h◦s.

Proof of Proposition 64: Let’s look for participatory RE equilibrium, where φ = 1.

First, we look at retailer’s problem: Given belief φ̂ = 1, the retailer maximizes total profit

π = pEmin(Ḡ(p)D, q)− cq + wḠ(p+ ho)E(D − q
Ḡ(p)

)+ = (p−w Ḡ(p+ho)
Ḡ(p)

)Emin(Ḡ(p)D, q)−

cq + (wḠ(p + ho))ED, which is a typical newsvendor problem (plus a constant ((wḠ(p +

ho))ED), and therefore the optimal order quantity qp = Ḡ(p)F̄−1

(
c

p−w Ḡ(p+ho)

Ḡ(p)

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome, i.e.,

ξ̂p = A(qp) = Emin(φD, qp/Ḡ(p))/E(φD) = Emin(D, F̄−1( c

p−w Ḡ(p+ho)

Ḡ(p)

))/ED.

Finally, we go back to consumer’s decision. To ensure φ = 1, we need us > uo, which gives

us the condition hs < hps.

Note ∂h◦s
∂r ≥ 0 and ∂hps

∂r = 0. Also, when r = 0, we have h◦s < hps. Therefore, ∃r̄ ≥ 0 such
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that hps > h◦s if and only if r < r̄.

Proof of Proposition 65: If hps < h◦s and hs ∈ [hps, h◦s], then

π◦ = pEmin
(
Ḡ (p)D, q◦

)
− cq◦ +

[
wḠ (p− hr)− rG (p− hr)

]
E

(
D − q◦

Ḡ (p)

)+

>
[
wḠ (p− hr)− rG (p− hr)

]
ED = πp

where the inequality is because q = 0 is a feasible but not the optimal solution to the case

where there is no physical showroom.

Proof of Proposition 66: Since this is just the base model with a new set of parameters

G′ and D′, similar to the proof of Proposition 63, we can show that the participatory

equilibrium exists if and only if hs < hvs .

Next, let’s show that hvs < h◦s: Note that

ξv =

ED′ min

(
D′, F̄

′−1

(
c

p−w Ḡ
′(p−hr)

Ḡ′(p) +r
G′(p−hr)

Ḡ′(p)

))
ED′D′

=

ED min

(
D, F̄−1

(
c

p−w Ḡ(p−hr)

Ḡ(p)
+r

G(p−hr)−G(v̄)

Ḡ(p)

))
EDD

<

ED min

(
D, F̄−1

(
c

p−w Ḡ(p−hr)

Ḡ(p)
+r

G(p−hr)

Ḡ(p)

))
EDD

= ξ◦

and then,

hvs = ξv
(
E′V max (V − p, 0) + ho − E′V max (V − p,−hr)

)
= ξv

(
EV max (V − p, 0)− EV max (V − p+ hr, 0)

1−G (v̄)
+ ho + hr

)
< ξo

(
EV max (V − p, 0)− EV max (V − p+ hr, 0)

1−G (v̄)
+ ho + hr

)
< ξo (EV max (V − p, 0)− EV max (V − p+ hr, 0) + ho + hr) = h◦s
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Proof of Proposition 67: If hs ∈ [hvs , h
◦
s), then

π◦ − πv = pEmin
(
Ḡ (p)D, q◦

)
− cq◦ +

[
wḠ (p− hr)− rG (p− hr)

]
E

(
D − qo

Ḡ (p)

)+

−
[
wḠ (p− hr)− r (G (p− hr)−G (v̄))

]
ED

=

[
p− wḠ (p− hr)

Ḡ (p)
+ r

G (p− hr)
Ḡ (p)

]
Emin

(
Ḡ (p)D, q◦

)
− cq◦ − rG (v̄)ED

By Envelop Theorem, we have ∂(π◦−πv)
∂w = − Ḡ(p−hr)

Ḡ(p)
Emin

(
Ḡ (p)D, q◦

)
< 0. To conclude

the result, we just need to note that it is indeed possible to have π◦ > πv, e.g., when α is

very close to 0.

Proof of Proposition 68: Solving for us,in > uo, we have the condition hs < has . In this case,

the retailer’s profit is

π = pEmin
(
Ḡ (p)D, q

)
− cq +

[
wḠ (p− hr)− rG (p− hr)

]
E

(
D − q

Ḡ (p)

)+

Thus, qa = Ḡ (p) F̄−1

(
c

p−w Ḡ(p−hr)

Ḡ(p)
+r

G(p−hr)

Ḡ(p)

)
.

If us,in ≤ uo, i.e., hs ≥ has , then no one comes to store. So clearly, qa = 0.

Proof of Proposition 69:

• If hs < ξ◦(EV max(V − p, 0) + ho − EV max(V − p,−hr)),

πa = pEmin
(
Ḡ (p)D, qa

)
− cqa +

[
wḠ (p− hr)− rG (p− hr)

]
E

(
D − qa

Ḡ (p)

)+

= pEmin
(
Ḡ (p)D, q◦

)
− cq◦ +

[
wḠ (p− hr)− rG (p− hr)

]
E

(
D − q◦

Ḡ (p)

)+

= π◦

• If ξ◦(EV max(V − p, 0) + ho −EV max(V − p,−hr)) ≤ hs <V Emax(V − p, 0) + ho −
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EV max(V − p,−hr), then

πa = pEmin
(
Ḡ (p)D, qa

)
− cqa +

[
wḠ (p− hr)− rG (p− hr)

]
E

(
D − qa

Ḡ (p)

)+

>
[
wḠ (p− hr)− rG (p− hr)

]
ED = π◦

where the inequality is because q = 0 is also a feasible but not the optimal solution

to the case where there is availability information.

• If hs ≥ EV max(V − p, 0) + ho − EV max(V − p,−hr), then

πa =
[
wḠ (p− hr)− rG (p− hr)

]
ED = πo.

Proof of Proposition 70: • If hs ≤ EV max(V − p − ho, 0) + ho − EV max(V − p,−hr),

then

πpa = max
q≥0

{
pED min

(
Ḡ (p)D, q

)
− cq + wḠ (p+ ho)ED

(
D − q

Ḡ (p)

)+
}

= pED min
(
Ḡ (p)D, qp

)
− cqp + wḠ (p+ ho)ED

(
D − qp

Ḡ (p)

)+

= πp

• If EV max(V − p−ho, 0) +ho−EV max(V − p,−hr) < hs ≤ EV max(V − p, 0) +ho−

EV max(V − p,−hr), then,

πpa = max
q≥0

{
pED min

(
Ḡ (p)D, q

)
− cq

+
[
wḠ (p− hr)− rG (p− hr)

]
ED

(
D − q

Ḡ (p)

)+
}

= pED min
(
Ḡ (p)D, qa

)
− cqa +

[
wḠ (p− hr)− rG (p− hr)

]
ED

(
D − qa

Ḡ (p)

)+

= πa

• If hs > EV max(V − p, 0) + ho − EV max(V − p,−hr), then
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π =
[
wḠ (p− hr)− rG (p− hr)

]
EDD = πa.

Proof of Proposition 71: Similar to the proof of Proposition 64, we can get the RE equi-

librium of the case when there are both physical and virtual showrooms. We just need to

replace D and G with D′ and G′. Thus, the RE equilibrium is given as follows:

With physical and virtual showrooms, if hs ≤ hpvs , then consumers visit store (i.e., φpv = 1),

and qpv = Ḡ′ (p) F̄ ′−1

(
c

p−w Ḡ
′(p+ho)

Ḡ′(p)

)
, where hpvs = ξpvE′V max(V−p, 0)+(1−ξpv)E′V max(V−

p− ho, 0) + ho −E′V max(V − p,−hr) and ξpv =

ED′ min

D′,F̄ ′−1

 c

p−w Ḡ
′(p+ho)
Ḡ′(p)


ED′D

′ ; otherwise,

no one comes to store (i.e., φpv = 0), and qpv = 0.

Note that Ḡ′(p+ho)
Ḡ′(p)

= Ḡ(p+ho)
Ḡ(p)

. Then, we can find ξpv = ξp.

hpvs = ξpvE′V max(V − p, 0) + (1− ξpv)E′V max(V − p− ho, 0) + ho − E′V max(V − p,−hr)

=
ξpvEV max (V − p, 0) + (1− ξpv)EV max (V − p− ho, 0)− EV max (V − p+ hr, 0)

1−G (v̄)

+ ho + hr

< ξpvEV max (V − p, 0) + (1− ξpv)EV max (V − p− ho, 0)− EV max (V − p+ hr, 0)

+ ho + hr

= ξpEV max (V − p, 0) + (1− ξv)EV max (V − p− ho, 0)− EV max (V − p+ hr, 0)

+ ho + hr

= hps
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• If hs ≤ hpvs , then

πpv = pEmin
(
Ḡ′ (p)D′, qpv

)
− cqpv + wḠ′ (p+ ho)E

(
D′ − qpv

Ḡ′ (p)

)+

= pEmin
(
Ḡ (p)D, qpv

)
− cqpv + wḠ (p+ ho)E

(
D − qpv

Ḡ (p)

)+

= pEmin
(
Ḡ (p)D, qp

)
− cqp + wḠ (p+ ho)E

(
D − qp

Ḡ (p)

)+

= πp

• If hs ∈ (hpvs ,max(hpvs , hvs)], then

πpv =
[
wḠ′ (p− hr)− rG′ (p− hr)

]
ED′D

′

< pEmin
(
Ḡ′ (p)D′, qv

)
− cqv +

[
wḠ′ (p− hr)− rG′ (p− hr)

]
ED′

(
D′ − qv

Ḡ′ (p)

)+

= πv

where the inequality is because q = 0 is also a feasible but not the optimal solution

to the case when there is only virtual showroom.

• If hs > max(hpvs , hvs), then πpv =
[
wḠ′ (p− hr)− rG′ (p− hr)

]
ED′D

′ = πv.

Proof of Proposition 72: Note nonparticipatory equilibrium, (0, 0, 0, 0, 0, 0), always exists.

Same as what we did in Chapter 3, we are going to look for participatory equilibrium, where

at least one of φi and φu is 1.

• Let’s first look for conditions where φu = φi = 1 is an equilibrium.
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Given φ̂u = φ̂i = 1, then the retailer’s profit function is

π(q) =pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+

+ wEλ

(
D − q

λ+ (1− λ) θ

)+

=

[
p− w + r

(1− θ)(1− λ)

λ+ (1− λ)θ

]
Emin ((λ+ (1− λ) θ)D, q)− cq

+ [w (θ (1− λ) + λ)− r (1− θ) (1− λ)]ED

which is a typical newsvendor problem (plus a constant

[w (θ (1− λ) + λ)− r (1− θ) (1− λ)]ED), and therefore the optimal order quantity

q◦ = (λ+ (1− λ) θ) F̄−1

(
c

p−w+r
(1−θ)(1−λ)
λ+(1−λ)θ

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome,

i.e., ξ̂◦ = Emin((λ+(1−λ)θ)D,q◦)
E(λ+(1−λ)θ)D =

Emin

D,F̄−1

 c

p−w+r
(1−θ)(1−λ)
λ+(1−λ)θ


ED = ξ◦1 .

Finally, we go back to consumer’s decision. To ensure φu = φi = 1, we need us,u ≥ uo,u

and us,i > uo,i, which gives us the condition hs < ξ◦1ho.

• Next, let’s look for the condition where φi = 0 and φu = 1.

Given φ̂i = 0 and φ̂u = 1, the retailer’s profit is

π(q) =pEmin ((1− λ) θD, q)− cq + [wθ − r (1− θ)]E
[
(1− λ)D − q

θ

]+
+ wEλD

=

[
p− w + r

1− θ
θ

]
Emin ((1− λ) θD, q)− cq

+ [(wθ − r (1− θ)) (1− λ) + wλ]ED

which is a typical newsvendor problem (plus a constant

[(wθ − r (1− θ)) (1− λ) + wλ]ED), and therefore the optimal order quantity q◦ =

(1− λ) θF̄−1

(
c

p−w+r 1−θ
θ

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome,
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i.e., ξ̂◦ = Emin((1−λ)θD,q◦)
E(1−λ)θD =

Emin

(
D,F̄−1

(
c

p−w+r 1−θ
θ

))
ED = ξ◦2 .

Finally, we go back to consumer’s decision. To sure φu = 1 and φi = 0, we need

us,u > uo,u and us,i ≤ uo,i, which gives us the condition ξ◦2 ≤ hs < ξ◦2 [ho + (1− θ)hr].

In the end, we note that ξ◦2 ≥ ξ◦1 . Thus, the conditions for the two types of participatory

RE equilibrium is disjoint. Then, the participatory RE equilibrium is unique. Also, for all

the other cases, we only have nonparticipatory equilibrium.

Proof of Proposition 73: Let’s look for participatory RE equilibrium,, where at least one of

φi and φu is 1.

• Let’s first look for conditions where φu = φi = 1 is an equilibrium.

Given φ̂u = φ̂i = 1, the retailer’s profit is

π = pEmin ((λ+ (1− λ) θ)D, q)− cq + wE((λ+ (1− λ) θ)D − q)+

= (p− w)Emin ((λ+ (1− λ) θ)D, q)− cq + w (λ+ (1− λ) θ)ED

which is a typical newsvendor problem (plus a constant w (λ+ (1− λ) θ)ED), and

therefore the optimal order quantity qp = (λ+ (1− λ)θ)F̄−1( c
p−w ).

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome,

i.e., ξ̂p = Emin((λ+(1−λ)θ)D,qp)
E(λ+(1−λ)θ)D =

Emin
(
D,F̄−1

(
c

p−w

))
ED .

Finally, we go back to consumer’s decision. To ensure φu = φi = 1, we need us,u ≥ uo,u

and us,i > uo,i, which gives us the condition hs < ξpho.

• Next, let’s look for the condition where φi = 0 and φu = 1 is an equilibrium.
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Given φ̂i = 0 and φ̂u = 1, the retailer’s profit is

π(q) =pEmin ((1− λ) θD, q)− cq + wE[(1− λ)D − q]+ + wEλD

= (p− w)Emin ((1− λ) θD, q)− cq + [w(1− λ)θ + wλ]ED

which is a typical newsvendor problem (plus a constant [w(1− λ)θ + wλ]ED), and

therefore the optimal order quantity qp = (1− λ) θF̄−1
(

c
p−w

)
.

Note in equilibrium, we also need consumer’s belief to be consistent with the outcome,

i.e., ξ̂p = Emin((1−λ)θD,qp)
E(1−λ)θD =

Emin
(
D,F̄−1

(
c

p−w

))
ED .

Finally, we go back to consumer’s decision. To sure φu = 1 and φi = 0, we need us,u >

uo,u and us,i ≤ uo,i, which gives us the condition ξp ≤ hs < ξpθho + (1− θ)(ho + hr).

Proof of Proposition 74: If max{ξ◦2ho, ξpθho + (1− θ)(ho + hr)} < hs < ξ◦2 [ho + (1− θ)hr],

then

πp = [wθ − r(1− θ)]E(1− λ)D + wEλD

< pEmin ((1− λ) θD, q◦)− cq◦ + [wθ − r (1− θ)]E
[
(1− λ)D − q◦

θ

]+

+ wEλD = π◦

where the inequality is because q = 0 is also a feasible but not the optimal solution to the

case where there is no physical showroom.

Proof of Proposition 75: Since this is just the base model with a new set of parameters

D′, θ′, λ′, the proof is similar to the proof of Proposition 72, and thus omitted.
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Proof of Proposition 76: If max{ξ◦2ho, ξv2 [ho + (1− θ′)hr]} ≤ hs < ξ◦2 [ho + (1− θ)hr], then

π◦ − πv =

(
p− w + r

1− θ
θ

)
Emin ((1− λ) θD, q◦)− cq◦

+ ((wθ − r (1− θ)) (1− λ) + wλ)ED −
((
wθ′ − r

(
1− θ′

)) (
1− λ′

)
+ wλ′

)
ED′

=

(
p− w + r

1− θ
θ

)
Emin ((1− λ) θD, q◦)− cq◦ − rα (1− θ) (1− λ)ED

By Envelop Theorem, we have ∂(π◦−πv)
∂w = −Emin ((1− λ) θD, q◦) < 0. To conclude the

result, we just need to note that it is indeed possible to have π◦ > πv, e.g., when α is very

close to 0.

Proof of Proposition 77:

• If hs < ho, then the retailer’s profit can be expressed as

π =

[
p− w + r

(1− θ) (1− λ)

λ+ (1− λ) θ

]
Emin ((λ+ (1− λ) θ)D, q)− cq

+ [w (θ (1− λ) + λ)− r (1− θ) (1− λ)]ED,

which is a newsvendor profit (plus a constant [w (θ (1− λ) + λ)− r (1− θ) (1− λ)]ED).

Thus, the optimal inventory level is qa = (λ+ (1− λ) θ) F̄−1

(
c

p−w+r
(1−λ)(1−θ)
λ+(1−λ)θ

)
;

• If ho ≤ hs < ho + (1− θ)hr, then the retailer’s profit can be expressed as

π =
[
p− w + r 1−θ

θ

]
Emin ((1− λ) θD, q)− cq

+ [w (θ (1− λ) + λ)− r (1− θ) (1− λ)]ED

which is a newsvendor profit (plus a constant [w (θ (1− λ) + λ)− r (1− θ) (1− λ)]ED).

Thus, the optimal inventory level is qa = (1− λ) θF̄−1

(
c

p−w+r 1−θ
θ

)
;

• If hs ≥ ho + (1− θ)hr, then no one ever comes to store, and thus qa = 0.
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Proof of Proposition 78:

• If hs < ξ◦1ho, then

πa = max
q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+
+ wEλ

(
D − q

λ+ (1− λ) θ

)+}
= pEmin ((λ+ (1− λ) θ)D, q◦)− cq◦ + [wθ − r (1− θ)]E (1− λ)

[
D − q◦

λ+ (1− λ) θ

]+
+ wEλ

(
D − q◦

λ+ (1− λ) θ

)+

= π◦

• If ξ◦1ho < hs < ho,

– if ξ◦2 < hs ≤ ξ◦2 [ho + (1− θ)hr], then

πa = max
q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+

+ wEλ

(
D − q

λ+ (1− λ) θ

)+}
≥ pEmin ((λ+ (1− λ) θ)D, q◦)− cq◦

+ [wθ − r (1− θ)]E (1− λ)

[
D − q◦

λ+ (1− λ) θ

]+

+ wEλ

(
D − q◦

λ+ (1− λ) θ

)+

=

[
p− w + r (1− θ) 1− λ

λ+ (1− λ) θ

]
Emin ((λ+ (1− λ) θ)D, q◦)− cq◦

+ [(wθ − r (1− θ)) (1− λ) + wλ]ED

≥
[
p− w + r (1− θ) 1

θ

]
Emin ((1− λ) θD, q◦)− cq◦

+ [(wθ − r (1− θ)) (1− λ) + wλ]ED

= π◦
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– otherwise, then

πa = max
q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+
+ wEλ

(
D − q

λ+ (1− λ) θ

)+}
≥ [wθ − r(1− θ)]E(1− λ)D + wEλD

= π◦

where the inequality is because q = 0 is a feasible but not the optimal solution

to the case where there is availability information.

• If ho < hs < ho + (1− θ)hr, then

– if ξ◦2 < hs ≤ ξ◦2 [ho + (1− θ)hr], then

πa = max
q≥0

{
pEmin ((1− λ) θD, q)− cq

+ [wθ − r (1− θ)]E
[
(1− λ)D − q

θ

]+
+ wEλD

}
= pEmin ((1− λ) θD, q◦)− cq◦ + [wθ − r (1− θ)]E

[
(1− λ)D − q◦

θ

]+

+ wEλD

= π◦

– otherwise, then

πa = max
q≥0

{
pEmin ((1− λ) θD, q)− cq

+ [wθ − r (1− θ)]E
[
(1− λ)D − q

θ

]+
+ wEλD

}
≥ [wθ − r(1− θ)]E(1− λ)D + wEλD

= π◦

where the inequality is because q = 0 is a feasible but not the optimal solution

to the case where there is availability information.
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• If hs > ho + (1− θ)hr, then πa = [wθ − r(1− θ)]E(1− λ)D + wEλD = π◦.

Proof of Proposition 79:

• If hs < min(ξpho, ho, (1− θ)(ho + hr)), then

πpa = max
q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq + wE((λ+ (1− λ) θ)D − q)+}

= pEmin ((λ+ (1− λ) θ)D, qp)− cqp + wE((λ+ (1− λ) θ)D − qp)+

= πp

• If ξpho < hs < min(ho, (1− θ)(ho + hr), then

πpa = max
q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq + wE((λ+ (1− λ) θ)D − q)+}

≥ pEmin ((λ+ (1− λ) θ)D, qp)− cqp + wE((λ+ (1− λ) θ)D − qp)+

= (p− w)Emin ((λ+ (1− λ) θ)D, qp)− cqp + w(λ+ (1− λ)θ)ED

> (p− w)Emin ((1− λ) θD, qp)− cqp + w(λ+ (1− λ)θ)ED

= πp

πpa = max
q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq + wE((λ+ (1− λ) θ)D − q)+}

≥ pEmin ((λ+ (1− λ) θ)D, qa)− cqa + wE((λ+ (1− λ) θ)D − qa)+

= (p− w)Emin ((λ+ (1− λ) θ)D, qa)− cqa + w(λ+ (1− λ)θ)ED

> (p− w)Emin ((λ+ (1− λ) θ)D, qa)− cqa + w(λ+ (1− λ)θ)ED

− r(1− θ)(1− λ)[ED − Emin(D,
qa

λ+ (1− λ)θ
)]

= πa
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• If ho < (1− θ)(ho + hr) and ho < hs < (1− θ)(ho + hr), then

πpa = max
q≥0

{
pEmin ((1− λ) θD, q)− cq + wE((1− λ) θD − q)+ + wEλD

}
= pEmin ((1− λ) θD, qp)− cqp + wE((1− λ) θD − qp)+ + wEλD

= πp

• If ho > (1− θ)(ho + hr) and (1− θ)(ho + hr) < hs < ho, then

πpa = max
q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq

+ [wθ − r (1− θ)]E (1− λ)

[
D − q

λ+ (1− λ) θ

]+
+ wEλ

(
D − q

λ+ (1− λ) θ

)+}
= pEmin ((λ+ (1− λ) θ)D, qa)− cqa

+ [wθ − r (1− θ)]E (1− λ)

[
D − qa

λ+ (1− λ) θ

]+
+ wEλ

(
D − qa

λ+ (1− λ) θ

)+

= πa

• If max(ho, (1− θ)(ho + hr)) < hs < ho + (1− θ)hr, then

π = max
q≥0

{
pEmin ((1− λ) θD, q)− cq + [wθ − r (1− θ)]E

[
(1− λ)D − q

θ

]+
+ wEλD

}
= pEmin ((1− λ) θD, qa)− cqa + [wθ − r (1− θ)]E

[
(1− λ)D − qa

θ

]+
+ wEλD

= πa

• If hs > ho + (1− θ)hr, then πpa = [wθ − r(1− θ)]E(1− λ)D + wEλD = πa.

Proof of Proposition 80: Similar to the proof of Proposition 73, we can get the RE equi-

librium of the case when there are both physical and virtual showrooms. We just need to

replace D, θ, λ with D′, θ′, λ′. Thus, the RE equilibrium is given as follows:

• if hs ≤ ξvho, then all customers come to store, i.e., φvi = 1, φvu = 1
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• if ξvho < hs ≤ ξvθ′ho + (1 − θ′)(ho + hr), then only uninformed customers come to

store, i.e., φvi = 0, φvu = 1;

• otherwise, no one comes to store, i.e., φvi = 0, φvu = 0,

where ξv =
Emin

(
D′,F̄ ′−1

(
c

p−w

))
ED′ .

It is easy to find that ξv = ξp.

• If hs < ξpho, then

πpv = max
q≥0

{
pEmin

((
λ′ +

(
1− λ′

)
θ′
)
D′, q

)
− cq + wE

((
λ′ +

(
1− λ′

)
θ′
)
D′ − q

)+}
= max

q≥0

{
pEmin ((λ+ (1− λ) θ)D, q)− cq + wE

((
λ+ (1− λ) θ′

)
D − q

)+}
= pEmin ((λ+ (1− λ) θ)D, qp)− cqp + wE((λ+ (1− λ) θ)D − qp)+

= πp

• If ξpho < hs < ξpθ′ho + (1− θ′)(ho + hr), then

πpv = max
q≥0

{
pEmin

((
1− λ′

)
θ′D′, q

)
− cq + wθ′E

((
1− λ′

)
D − q

θ′

)+
+ wEλ′D′

}
= max

q≥0

{
pEmin ((1− λ) θD, q)− cq + wθE

(
(1− λ)D − q

θ

)+
+ wEλD

}
= pEmin ((1− λ) θD, qp)− cqp + wθE

(
(1− λ)D − qp

θ

)+

+ wEλD

= πp
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• If ξpθ′ho + (1− θ′)(ho + hr) < hs < ξpθho + (1− θ)(ho + hr), then

πpv =
[
wθ′ − r

(
1− θ′

)]
E
(
1− λ′

)
D + wEλ′D′

≤ wθ′E(1− λ′)D′ + wEλ′D′

= wθE(1− λ)D + wEλD

≤ pEmin ((1− λ) θD, qp)− cqp + wθE

(
(1− λ)D − qp

θ

)+

+ wEλD

= πp

where the inequality is because q = 0 is also a feasible but not the optimal solution

to the case where there is only physical showroom.

• If hs > ξpθho + (1− θ)(ho + hr), then πpv = [wθ′ − r (1− θ′)]E (1− λ′)D′+wEλ′D′.

Let’s compare πpv with πv. Note πv can take only three values:

– if φvi = φvu = 1, then

πv =pEmin
((
λ′ +

(
1− λ′

)
θ′
)
D′, qv

)
− cqv

+
[
wθ′ − r

(
1− θ′

)]
E
(
1− λ′

) [
D′ − qv

λ′ + (1− λ′) θ′

]+

+ wEλ′
(
D′ − qv

λ′ + (1− λ′) θ′

)+

≥
[
wθ′ − r

(
1− θ′

)]
E
(
1− λ′

)
D′ + wEλ′D′ = πpv

where the inequality is because q = 0 is also a feasible but not the optimal

solution to the case where there is only virtual showroom;

– if φvi = 0 and φvu = 1, then

πv =pEmin
((

1− λ′
)
θ′D′, qv

)
− cqv

+
[
wθ′ − r

(
1− θ′

)]
E

[(
1− λ′

)
D′ − qv

θ′

]+

+ wEλ′D′

≥
[
wθ′ − r

(
1− θ′

)]
E
(
1− λ′

)
D′ + wEλ′D′ = πpv

210



where the inequality is because q = 0 is also a feasible but not the optimal

solution to the case where there is only virtual showroom;

– if φvi = φvu = 0, then πv = [wθ′ − r (1− θ′)]E (1− λ′)D′ + wEλ′D′ = πpv.

Proof of Proposition 81: Let’s define α = (1− η)αh + ηαm and β = (1− η)βh + ηβm.

Since we only focus on the case where the retailer serves both types, the optimal solution

can be obtained by solving the following optimization problem:

max

λm, λh ≥ 0,

(1− η)λh + ηλm 6 µ1 6 rα
c1
,

(1− η)λh + ηλm 6 µ2 6 rα
c2

r((1− η)λh + ηλm)− c1µ1 − c2µ2

s.t. λm = αm − βm (w1(µ1, (1− η)λh + ηλm) + w2(µ2, (1− η)λh + ηλm))

λh = αh − βh (w1(µ1, (1− η)λh + ηλm) + w2(µ2, (1− η)λh + ηλm))

the optimal solution of which can be obtained by the following optimization problem:

max
0≤λ≤µi≤ rαci

rλ− c1µ1 − c2µ2

s.t. λ = α− β (w1(µ1, λ) + w2(µ2, λ))

(A.29)

where λ = (1− η)λh + ηλm. The Lagrangian of (A.29) is defined as follows:

L (λ, µ1, µ2, ρ) = rλ− c1µ1 − c2µ2 + ρ

[
λ− α+ β

(
1

µ1 − λ
+

1

µ2 − λ

)]

where ρ ∈ R is the Lagrange multiplier. To find the critical points of L (λ, µ1, µ2, ρ), we
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solve the following equation set:

∂L
∂λ = r + ρ+ ρβ 1

(µ1−λ)2 + ρβ 1
(µ2−λ)2 = 0

∂L
∂µi

= −ci − ρβ 1
(µi−λ)2 = 0, i = 1, 2

λ− α+ β
(

1
µ1−λ + 1

µ2−λ

)
= 0

0 ≤ λ ≤ µ1 ≤ rα
c1
, 0 ≤ λ ≤ µ2 ≤ rα

c2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to (A.29)

is one of the critical points. (Note the constraint qualification holds everywhere on the

feasible set.) Since the firm finds it optimal to serve both types of customers, the solution

must be interior, which gives us a unique solution:

λb = α− β
√

c1
β(r−c1−c2) − β

√
c2

β(r−c1−c2)

µb1 = λb +
√

β(r−c1−c2)
c1

µb2 = λb +
√

β(r−c1−c2)
c2

Then, we can find λbh = αh−βhw1(µb1, λ
b)−βhw2(µb2, λ

b) = αh−βh
√

c1
β(r−c1−c2)−βh

√
c2

β(r−c1−c2)

and λbm = αm−βmw1(µb1, λ
b)−βmw2(µb2, λ

b) = αm−βm
√

c1
β(r−c1−c2) −βm

√
c2

β(r−c1−c2) .

Proof of Proposition 82: Since we only focus on the case where the retailer serves all types

of customers, the optimal solution can be obtained by solving the following optimization

problem:

max

λmo,λh,λms≥0,

(1−η)λh+(η−θ)λms≤µ1≤ rα
c1
,

θλmo+(1−η)λh+(η−θ)λms≤µ2≤ rα
c2

r (θλmo + (1− η)λh + (η − θ)λms)− c1µ1 − c2µ2

s.t. λmo = αm − ξβmw2(µ2, θλmo + (1− η)λh + (η − θ)λms)

λh = αh − βh (w1(µ1, (1− η)λh + (η − θ)λms) + w2(µ2, θλmo + (1− η)λh + (η − θ)λms))

λms = αm − βm(w1(µ1, (1− η)λh + (η − θ)λms) + w2(µ2, θλmo + (1− η)λh + (η − θ)λms))

the optimal solution of which can be obtained by solving the following optimization prob-
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lem:

max

0 ≤ (1− θ)λs ≤ µ1 ≤ rα
c1
,

θλmo + (1− θ)λs ≤ µ2

r (θλmo + (1− θ)λs)− c1µ1 − c2µ2

s.t. λmo = αm − ξβmw2(µ2, θλmo + (1− θ)λs)

λs = αs − βs (w1(µ1, λs) + w2(µ2, θλmo + (1− θ)λs))

(A.30)

where λs = (1−η)λh+(η−θ)λms
1−θ , αs = (1−η)αh+(η−θ)αm

1−θ and βs = (1−η)βh+(η−θ)βm
1−θ . The La-

grangian of (A.30) is

L (λmo, λs, µ1, µ2, ρ1, ρ2) =r (θλmo + (1− θ)λs)− c1µ1 − c2µ2

+ ρ1 (λmo − αm + ξβmw2(µ2, θλmo + (1− θ)λs))

+ ρ2 (λs − αs + βs (w1(µ1, λs) + w2(µ2, θλmo + (1− θ)λs)))

To find the critical points of L (λmo, λs, µ1, µ2, ρ1, ρ2), we solve the following equation set:

∂L
∂λs

= r (1− θ) + ρ2 + ρ1ξβm (1− θ) 1
(µ2−(1−θ)λs−θλo)2 + ρ2βs (1− θ) 1

(µ1−(1−θ)λs)2

+ρ2βs (1− θ) 1
(µ2−(1−θ)λs−θλo)2 = 0

∂L
∂λmo

= rθ + ρ1 + ρ1ξβmθ
1

(µ2−(1−θ)λs−θλmo)2 + ρ2βsθ
1

(µ2−(1−θ)λs−θλmo)2 = 0

∂L
∂µ1

= −c1 − ρ2βs
1

(µ1−(1−θ)λs)2 = 0

∂L
∂µ2

= −c2 − ρ1ξβm
1

(µ2−(1−θ)λs−θλmo)2 − ρ2βs
1

(µ2−(1−θ)λs−θλmo)2 = 0

λmo − αm + ξβm
1

µ2−(1−θ)λs−θλmo = 0

λs − αs + βs
1

µ1−(1−θ)λs + βs
1

µ2−(1−θ)λs−θλmo = 0

0 ≤ (1− θ)λs ≤ µ1 ≤ rα
c1
, 0 ≤ λmo, (1− θ)λs + θλmo ≤ µ2 ≤ rα

c2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to (A.30)

is one of the critical points. (Note the constraint qualification holds everywhere on the

feasible set.) Since the firm finds it optimal to serve all types of customers, the solution
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must be interior, which gives us a unique solution:

µo1 = (1− θ)λos +
√

βs(r−c1−c2)
c1

µo2 = (1− θ)λos + θλomo +
√

βs(r−c1−c2)+θξβm(r−c2)
c2

λomo = αm − ξβm
√

c2
βs(r−c1−c2)+θξβm(r−c2)

λos = αs − βs
√

c1
βs(r−c1−c2) − βh

√
c2

βs(r−c1−c2)+θξβm(r−c2)

Then,

λos = αh − βhw1(µo1, (1− θ)λos)− βhw2(µo2, θλ
o
mo + (1− θ)λos)

= αh − βh
√

c1
((1−η)βh+(η−θ)βm)(r−c1−c2) − βh

√
c2

((1−η)βh+(η−θ)βm)(r−c1−c2)+θξβm(r−c2)

and

λoms = αm − βmw1(µo1, (1− θ)λos)− βmw2(µo2, θλ
o
mo + (1− θ)λos)

= αm − βm
√

c1
((1−η)βh+(η−θ)βm)(r−c1−c2) − βm

√
c2

((1−η)βh+(η−θ)βm)(r−c1−c2)+θξβm(r−c2)

Proof of Proposition 83: Note

λomo = αm − ξβm
√

c2
(1−θ)βs(r−c1−c2)+θξβm(r−c2)

≥ αm − βm
√

c2
(1−θ)βs(r−c1−c2)+θβm(r−c2)

> αm − βm
√

c2
β(r−c1−c2)

> αm − βm
√

c1
β(r−c1−c2) − βm

√
c2

β(r−c1−c2) = λbm

where the first inequality is because of ξ ≤ 1, and the second inequality is because β =

(1− η)βh + ηβm = (1− θ)βs + θβm.
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Note (
λoh − λbh

) √r−c1−c2
βh

=
(
λoms − λbms

) √r−c1−c2
βm

=
√

c1
β +

√
c2
β −

√
c1

(1−θ)βs −
√

c2
(1−θ)βs+θβm r−c2

r−c1−c2

which is decreasing in r. Then if
√

c1
β +

√
c2
β −

√
c1

(1−θ)βs > 0 (or θ is small enough), then

given c1 and c2, there exists r̄ > c1 + c2 such that λoh − λbh > 0 and λoms − λbm > 0 if and

only if c1+c2
r > c1+c2

r̄ .

Proof of Proposition 84:

ko1 + ko2 − kb1 − kb2

= −θατ1 +
√

βc1
r−c1−c2 (τ1 + τ2)

(
1−
√

1− θ
)

− (τ1 + τ2)

[
((1− θ)βs + θξβm)

√
c2

(1−θ)βs(r−c1−c2)+θξβm(r−c2) − β
√

c2
β(r−c1−c2)

]
−
√

β(r−c1−c2)
c1

τ1

(
1−
√

1− θ
)

+ τ2

(√
(1−θ)βs(r−c1−c2)+θξβm(r−c2)

c2
−
√

β(r−c1−c2)
c2

)
+τ1θξβm

√
c2

(1−θ)βs(r−c1−c2)+θξβm(r−c2)

(A.31)

Let’s first show the 3rd term in (A.31), i.e.,

− (τ1 + τ2)

[
((1− θ)βs + θξβm)

√
c2

(1−θ)βs(r−c1−c2)+θξβm(r−c2) − β
√

c2
β(r−c1−c2)

]
(denoted as

f3(r)) is decreasing in r:

∂f3

∂r
= − (τ1 + τ2)

−√c2

2

√
(1− θ)βs + θξβm(

r − c2 − (1−θ)βsc1
(1−θ)βs+θξβm

) 3
2

+

√
βc2

2(r − c1 − c2)
3
2



Since ∂[(1−θ)βs+θξβm]
∂θ ≤ 0 and

∂[r−c2− (1−θ)βsc1
(1−θ)βs+θξβm

]

∂θ > 0 and ∂β
∂θ = βm − βs ≥ 0 (because

βm ≥ βh), we can find that ∂f3

∂r is decreasing in θ. Note when θ = 0, ∂f3

∂r = 0. Thus, ∂f3

∂r < 0

for all θ > 0.

Next, let’s show the 5th term in (A.31), i.e., τ2

(√
(1−θ)βs(r−c1−c2)+θξβm(r−c2)

c2
−
√

β(r−c1−c2)
c2

)
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(denoted as f5(r)) is decreasing in r:

∂f5

∂r
=

τ2

2
√
c2

 √
(1− θ)βs + θξβm√

r − (1−θ)βs(c1+c2)+θξβmc2
(1−θ)βs+θξβm

−
√
β√

r − c1 − c2

 < 0

Therefore, we can conclude that
∂(ko1+ko2−kb1−kb2)

∂r < 0. Note, if r → c1 + c2, we have (ko1 +

ko2 − kb1 − kb2)
√
r − c1 − c2 → (τ1 + τ2)

√
βc2 +

√
βc1(τ1 + τ2)(1−

√
1− θ) > 0, which implies

ko1 + ko2 − kb1 − kb2 > 0 if r is very close to c1 + c2. Thus, there exists r̄ > c1 + c2 such that

ko1 + ko2 − kb1 − kb2 > 0 if and only if r < r̄. Then, we can define mk = c1+c2
r̄ .

Proof of Proposition 85: Since we only focus on the case where the retailer serves all types

of customers, the optimal solution can be obtained by solving the following optimization

problem:

max
0≤ηλm≤µ1m≤ rα

c1m
,

0≤(1−η)λh≤µ1h≤ rαc1 ,
ηλm+(1−η)λh≤µ2≤ rαc2

r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

s.t. λm = αm − βmw1m (µ1m, ηλm)− βmw2 (µ2, ηλm + (1− η)λh)

λh = αh − βhw1h (µ1h, (1− η)λh)− βhw2 (µ2, ηλm + (1− η)λh)

(A.32)

The Lagrangian of (A.32) is

L (λm, λh, µ1h, µ1m, µ2, ρh, ρm)

= r (ηλm + (1− η)λh)− c1µ1h − c1mµ1m − c2µ2

− ρh
(
λh − αh + βh

1

µ1h − (1− η)λh
+ βh

1

µ2 − (1− η)λh − ηλm

)
− ρm

(
λm − αm + βm

1

µ1m − ηλm
+ βm

1

µ2 − (1− η)λh − ηλm

)
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To find the critical points, we solve the following equation set:

∂L
∂λm

= rη − ρm − ρmβmη

(µ1m−ηλm)2 − (ρmβm+ρhβh)η

(µ2−ηλm−(1−η)λh)2 = 0

∂L
∂λh

= r (1− η)− ρh − ρhβh(1−η)

(µ1h−(1−η)λh)2 − (ρmβm+ρhβh)(1−η)

(µ2−ηλm−(1−η)λh)2 = 0

∂L
∂µ1m

= −c1m + ρmβm
(µ1m−ηλm)2 = 0

∂L
∂µ1h

= −c1 + ρhβh(1−η)

(µ1h−(1−η)λh)2 = 0

∂L
∂µ2

= −c2 + (ρmβm+ρhβh)(1−η)

(µ2−ηλm−(1−η)λh)2 = 0

0 ≤ ηλm ≤ µ1m ≤ rα
c1m

, 0 ≤ (1− η)λh ≤ µ1h ≤ rα
c1
, ηλm + (1− η)λh ≤ µ2 ≤ rα

c2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to (A.30)

is one of the critical points. (Note the constraint qualification holds everywhere on the

feasible set.) Since the firm finds it optimal to serve all types of customers, the solution

must be interior, which gives us a unique solution:

λsm = αm − βm
√

c1m
βmη(r−c1m−c2) − βm

√
c2

βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)

λsh = αh − βh
√

c1
βh(1−η)(r−c1−c2) − βh

√
c2

βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)

µs1m = ηλsm +
√

βmη(r−c1m−c2)
c1m

µs1h = (1− η)λsh +
√

βh(1−η)(r−c1−c2)
c1

µs2 = ηλsm + (1− η)λsh +
√

βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)
c2

Proof of Proposition 86: First, note

(λsm−λbm)
√
β

βm
=
√

c1
r−c1−c2 +

√
c2

r−c1−c2

−
√

c1mβ
βmη(r−c1m−c2) −

√
c2β

βmη(r−c1m−c2)+βh(1−η)(r−c1−c2)

Because c1m < c1, we have
√

c2
r−c1−c2 −

√
c2β

βmη(r−c1m−c2)+βh(1−η)(r−c1−c2) > 0. Also, we can

easily check that ws1h > wb1. Then, since ηws1m + (1− η)ws1h < wb1, we must have ws1m < wb1,

which implies
√

c1
r−c1−c2 −

√
c1mβ

βmη(r−c1m−c2) > 0. Thus, we have
(λsm−λbm)

√
β

βm
> 0 or λsm > λbm.
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Second, note

(
λsh − λbh

)√
β (r − c1 − c2)

βh
=
√
c1 +

√
c2 −

√
c1β

βh (1− η)
−
√

c2β

βmη
r−c1m−c2
r−c1−c2 + βh (1− η)

which is decreasing in r. Then if
√
c1 +

√
c2 −

√
c1β

(1−η)βh
> 0 (or η is small enough), then

there exists r̄ > c1 + c2 such that λsh − λbh > 0 if and only if c1+c2
r > c1+c2

r̄ .

Finally, let’s look at total demand rate. We first prove the following lemma:

Lemma 5. If ηws1m + (1− η)ws1h < wb1, then
√

βmηc1m
r−c1m−c2 +

√
βh(1−η)c1
r−c1−c2 <

√
βc1

r−c1−c2 .

Proof of Lemma 5: Because ηws1m+(1−η)ws1h < wb1, we have
√

β2ηc1m
βm(r−c1m−c2)+

√
β2(1−η)c1
βh(r−c1−c2) <√

βc1
r−c1−c2 . So all we need show is

√
β2ηc1m

βm(r−c1m−c2) +
√

β2(1−η)c1
βh(r−c1−c2) ≥

√
βmηc1m
r−c1m−c2 +

√
βh(1−η)c1
r−c1−c2 .

Note

√
β2ηc1m

βm(r−c1m−c2) +
√

β2(1−η)c1
βh(r−c1−c2) −

√
βmηc1m
r−c1m−c2 −

√
βh(1−η)c1
r−c1−c2

≥
√

β2(1−η)c1
βh(r−c1−c2) −

√
βh(1−η)c1
r−c1−c2 −

[√
β2
m −

√
β2
] [√

c1
β(r−c1−c2) −

√
(1−η)c1

βh(r−c1−c2)

]
=
√

(1−η)c1
βh(r−c1−c2) (βm − βh) (1− η)

[
1

1−η −
√

βh
(1−η)β

]
≥ 0

where the first inequality is because
√

β2ηc1m
βm(r−c1m−c2)+

√
β2(1−η)c1
βh(r−c1−c2)−

√
βmηc1m
r−c1m−c2−

√
βh(1−η)c1
r−c1−c2

is decreasing in c1m and ηws1m + (1 − η)ws1h < wb1, and the second inequality is because

βm ≥ βh and β > (1− η)βh. This completes the proof.

Because ηws1m + (1 − η)ws1h < wb1, Lemma 5 and c1m < c1, we can check that ηλsm +

(1− η)λsh = α−
√

βmηc1m
r−c1m−c2−

√
βh(1−η)c1
r−c1−c2 −β

√
c2

βmη(r−c1m−c2)+βh(1−η)(r−c1−c2) > α−
√

βc1
r−c1−c2−

β
√

c2
β(r−c1−c2) = λb

Proof of Proposition 87: Note
∂ks1
∂r =

τ1
√
βh(1−η)c1

2(r−c1−c2)
3
2

+
τ1(1−η)βhβ

√
c2

2[βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)]
3
2

+

τ1
√
βh(1−η)

2
√
c1(r−c1−c2)

< τ1
√
βc1

2(r−c1−c2)
3
2

+ τ1
√
βc2

2(r−c1−c2)
3
2

+ τ1
√
β

2
√
c1(r−c1−c2)

=
∂kb1
∂r , where the inequality is

218



because c1m < c1 and β > (1− η)βh.

Also, note

∂ks2
∂r =

√
ηβmc1m

2(r−c1m−c2)
3
2

+

√
βh(1−η)c1

2(r−c1−c2)
3
2

+
β2√c2

2[βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)]
3
2

+ β

2
√
c2[βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)]

By Lemma 5 and c1m < c1, we have
√
ηβmc1m

2(r−c1m−c2)
3
2

+

√
βh(1−η)c1

2(r−c1−c2)
3
2
<

√
βc1

2(r−c1−c2)
3
2

. Also, define

function f (c1m) =
β2√c2

2[βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)]
3
2

+ β

2
√
c2[βm(r−c1m−c2)η+βh(r−c1−c2)(1−η)]

,

which is an increasing function. Thus, f(c1m) < f(c1). Since
∂kb2
∂r =

√
βc1

2(r−c1−c2)
3
2

+ f (c1), we

have
∂ks2
∂r <

∂kb2
∂r .

Therefore, we can conclude that
∂(ks1+ks2−kb1−kb2)

∂r < 0. Note, if r → c1 + c2, we have (ks1 +

ks2 − kb1 − kb2)
√
r − c1 − c2 → (τ1 + τ2)(

√
βc1 +

√
βc2 −

√
βh(1− η)c1) > 0, which implies

ks1 + ks2 − kb1 − kb2 > 0 if r is very close to c1 + c2. Thus, there exists r̄ > c1 + c2 such that

ks1 + ks2 − kb1 − kb2 > 0 if and only if r < r̄. Then, we can define m′k = c1+c2
r̄ .

Proof of Proposition 88:

πo − πs =− c1 (1− θ)α+ [c1mη + c1 (1− η)]α

+ 2
√
ηβm (r − c1m − c2) c1m + 2

√
(1− η)βh (r − c1 − c2) c1

+ 2
√
c2 [βm (r − c1m − c2) η + βh (r − c1 − c2) (1− η)]

− 2
√

(1− θ)βs (r − c1 − c2) c1 − 2
√

[(1− θ)βs (r − c1 − c2) + θξβo (r − c2)] c2

Note that ∂2(πo−πs)
∂θ2 < 0. Also note that when θ = η, we must have the πo > πs, the proof of

which is as follows: Suppose the optimal solution for the offline model is µs1m, µ
s
1h, µ

s
2, λ

s
m, λ

s
h.

Consider the following feasible solution for the online model: µ41 , µ
4
2 , λ

4
m, λ

4
h , where µ41 =

µs1h and µ42 = µs2. Then, suppose ηλ4m + (1 − η)λ4h ≤ ηλsm + (1 − η)λsh. Then, we must

have w42 ≤ ws2. Then, because online customers don’t wait at stage 1, we have λ4m > λsm.

Then, λ4h < λsh. Then, w41 < ws1. However, if w41 < ws1 and w42 < ws2, then this means that
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λ4h > λsh. We get a contradiction. Thus, we must have ηλ4m + (1− η)λ4h > ηλsm + (1− η)λsh.

This implies that π4 > πs. Thus, we must have πo ≥ π4 > πs. The results above implies

that ∃θ̄ ≤ η such that πo > πs if and only if θ > θ̄.

Note when c1mη = c1(η − θ) (or θ = (c1−c1m)η
c1

), we have πo − πs > 0 for any b > 0. This

implies that θ̄ ≤ (c1−c1m)η
c1

. Thus, for any b > 0, if θ ≥ (c1−c1m)η
c1

(or c1mη−c1(η−θ) ≥ 0), we

must have πo−πs > 0, i.e., b̄ = 0. If c1mη−c1(η−θ) < 0, then
∂ π

o−πs√
b

∂b =
∂

(c1mη−c1(η−θ))α√
b

∂b > 0.

Thus, there exists b̄ ≥ 0 such that πo − πs > 0 if and only if b > b̄.

Proof of Proposition 89: Since we only focus on the case where the retailer serves all types

of customers, the optimal solution can be obtained by solving the following optimization

problem:

max
06λ6µ16 rα

c1
,λ6µ26 rα

c2

rλ− c1µ1 − c2µ2

s.t. λ = α− β (w1(µ1, λ))φ − β (w2(µ2, λ))φ
(A.33)

The Lagrangian of (A.33) is

L (λ, µ1, µ2, ρ) = rλ− c1µ1 − c2µ2 + ρ

(
λ− α+ β

1

(µ1 − λ)φ
+ β

1

(µ2 − λ)φ

)

To find the critical points, we solve the following equation set:

∂L
∂λ = r + ρ+ φρβ

(µ1−λ)1+φ + φρβ

(µ2−λ)1+φ∂
= 0

∂L
∂µ1

= −c1 − φρβ

(µ1−λ)1+φ = 0

∂L
∂µ2

= −c2 − φρβ

(µ2−λ)1+φ = 0

λ− α+ β 1
(µ1−λ)φ

+ β 1
(µ2−λ)φ

λ ≤ µ1, λ ≤ µ2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to (A.29)

is one of the critical points. (Note the constraint qualification holds everywhere on the

feasible set.) Since the firm finds it optimal to serve both types of customers, the solution
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must be interior, which gives us a unique solution:

λb = α− β
(

c1
φβ(r−c1−c2)

) φ
1+φ − β

(
c2

φβ(r−c1−c2)

) φ
1+φ

µb1 = λb +
(
φβ(r−c1−c2)

c1

) 1
1+φ

µb2 = λb +
(
φβ(r−c1−c2)

c2

) 1
1+φ

Proof of Proposition 90: Since we only focus on the case where the retailer serves all types

of customers, the optimal solution can be obtained by solving the following optimization

problem:

max

0≤(1−θ)λs≤µ1≤ rαc1 ,

0≤λo,

(1−θ)λs+θλo≤µ2≤ rαc2

r ((1− θ)λs + θλo)− c1µ1 − c2µ2

s.t. λo = α− ξβ (w2(µ2, (1− θ)λs + θλo))
φ

λs = α− β (w1(µ1, (1− θ)λs))φ − β (w2(µ2, (1− θ)λs + θλo))
φ

(A.34)

The Lagrangian of (A.34) is given as follows:

L (λo, λs, µ1, µ2, ρo, ρs) =r (θλo + (1− θ)λs)− c1µ1 − c2µ2

− ρ1

(
λo − α+ ξβ(w2(µ2, θλo + (1− θ)λs))φ

)
− ρ2

(
λs − α+ β(w1(µ1, λs))

φ + β(w2(µ2, θλmo + (1− θ)λs))φ
)
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To find the critical points, we solve the following equation set:

∂L
∂λs

= r (1− θ) + ρ2 + φρ1ξβ (1− θ) 1
(µ2−(1−θ)λs−θλo)1+φ + φρ2β (1− θ) 1

(µ1−(1−θ)λs)1+φ

+φρ2β (1− θ) 1
(µ2−(1−θ)λs−θλo)1+φ = 0

∂L
∂λo

= rθ + ρ1 + φρ1ξβθ
1

(µ2−(1−θ)λs−θλo)1+φ + φρ2βθ
1

(µ2−(1−θ)λs−θλo)1+φ = 0

∂L
∂µ1

= −c1 − φρ2β
1

(µ1−(1−θ)λs)1+φ = 0

∂L
∂µ2

= −c2 − φρ1ξβ
1

(µ2−(1−θ)λs−θλo)1+φ − ρ2β
1

(µ2−(1−θ)λs−θλo)1+φ = 0

λo − α+ ξβ 1
µ2−(1−θ)λs−θλo = 0

λs − α+ β 1
µ1−(1−θ)λs + β 1

µ2−(1−θ)λs−θλo = 0

0 ≤ (1− θ)λs ≤ µ1 ≤ rα
c1
, 0 ≤ λo, (1− θ)λs + θλo ≤ µ2 ≤ rα

c2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to (A.29)

is one of the critical points. (Note the constraint qualification holds everywhere on the

feasible set.) Since the firm finds it optimal to serve both types of customers, the solution

must be interior, which gives us a unique solution:

λos = α− β
(

c1
φ(1−θ)β(r−c1−c2)

) φ
1+φ − β

(
c2

φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

) φ
1+φ

λoo = α− βo
(

c2
φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

) φ
1+φ

µo1 = (1− θ)λos +
(
φ(1−θ)β(r−c1−c2)

c1

) 1
1+φ

µo2 = (1− θ)λos + θλoo +
(
φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

c2

) 1
1+φ

Proof of Proposition 91:

λoo = α−
[

c2(ξβ)1+φ

φξβθ(r−c2)+φβ(r−c1−c2)(1−θ)

] φ
1+φ

≥ α−
[

c2βφ

φθ(r−c2)+φ(r−c1−c2)(1−θ)

] φ
1+φ

> α−
[

c2βφ

φ(r−c1−c2)

] φ
1+φ

> α− β
(

c1
φβ(r−c1−c2)

) φ
1+φ − β

(
c2

φβ(r−c1−c2)

) φ
1+φ

= λb
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where the first inequality is because of ξ ≤ 1.

Next, let’s prove the second bullet point. Note

(
λos − λb

) (r−c1−c2)
φ

1+φ

β

=
(
c1
φβ

) φ
1+φ

+
(
c2
φβ

) φ
1+φ −

(
c1

φβ(1−θ)

) φ
1+φ −

(
c2

φβ(1−θ)+φξβθ r−c2
r−c1−c2

) φ
1+φ

which is decreasing in r. When r → c1 +c2,
(
λos − λb

) (r−c1−c2)
φ

1+φ

β →
(
c1
φβ

) φ
1+φ

+
(
c2
φβ

) φ
1+φ −(

c1
φβ(1−θ)

) φ
1+φ

> 0 if θ is small enough. Then, we can conclude the result.

Finally, let’s prove the third point. Note (1− θ)λos+θλoo = α−((1− θ)β)
1

1+φ

(
c1

φ(r−c1−c2)

) φ
1+φ−

c

φ
1+φ
2 ((1−θ)β+θξβ)

1
1+φ(

r− (1−θ)β(c1+c2)+θξβc2
(1−θ)β+θξβ

) φ
1+φ

, which is increasing in θ. Note when θ = 0, we have (1− θ)λos +

θλoo = λb. Thus, (1− θ)λos + θλoo > λb for all θ > 0.

Proof of Proposition 92:

ko1 + ko2 − kb1 − kb2

= −θατ1 + (τ1 + τ2)
(

1− (1− θ)
φ

1+φ

)
β
(

c1
φβ(r−c1−c2)

) 1
1+φ

− (τ1 + τ2)

[
((1− θ)β + θξβ)

(
c2

φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

) 1
1+φ − β

(
c2

φβ(r−c1−c2)

) 1
1+φ

]
−
(
φβ(r−c1−c2)

c1

) 1
1+φ

τ1

(
1− (1− θ)

1
1+θ

)
+τ2

((
c2

φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

)− 1
1+φ −

(
c2

φβ(r−c1−c2)

)− 1
1+φ

)
+τ1θξβ

(
c2

φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

) 1
1+φ

(A.35)

Let’s first show the 3rd term in (A.35), i.e.,

− (τ1 + τ2)

[
((1− θ)β + θξβ)

(
c2

φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

) 1
1+φ−β

(
c2

φβ(r−c1−c2)

) 1
1+φ

]
(denoted

as f3(r)) is decreasing in r:

∂f3
∂r

= − (τ1 + τ2)

− c
1

1+φ

2

(1 + φ)φ
1

1+φ

((1− θ)β + θξβ)
φ

1+φ(
r − c2 − (1−θ)βc1

(1−θ)β+θξβ

) 1
1+φ+1

+
β

φ
1+φ c

1
1+φ

2

(1 + φ)φ
1

1+φ (r − c1 − c2)
1

1+φ+1


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which is decreasing in θ. Note when θ = 0, ∂f3

∂r = 0. Thus, ∂f3

∂r < 0 for all θ > 0.

Next, let’s show the 5th term in (A.35), i.e.,

τ2

((
c2

φ(1−θ)β(r−c1−c2)+φθξβ(r−c2)

)− 1
1+φ −

(
c2

φβ(r−c1−c2)

)− 1
1+φ

)
(denoted as f5(r)) is decreas-

ing in r:

∂f5

∂r
=

c
− 1

1+φ

2

(1 + φ)φ
− 1

1+φ

 ((1− θ)β + θξβ)
1

1+φ(
r − (1−θ)β(c1+c2)+θξβc2

(1−θ)β+θξβ

) φ
1+φ

− β
1

1+φ

(r − c1 − c2)
φ

1+φ

 < 0

Therefore, we can conclude that
∂(ko1+ko2−kb1−kb2)

∂r < 0. Note, if r → c1 +c2, we have (ko1 +ko2−

kb1 − kb2)(r − c1 − c2)
1

1+φ → (τ1 + τ2)β
(
c2
φβ

) 1
1+φ

+
(

1− (1− θ)
φ

1+φ

)
β
(
c1
φβ

) 1
1+φ

(τ1 + τ2)(1−√
(1− θ)) > 0, which implies ko1 + ko2 − kb1 − kb2 > 0 if r is very close to c1 + c2. Thus, there

exists r̄ > c1 + c2 such that ko1 + ko2 − kb1 − kb2 > 0 if and only if r < r̄. Then, we can define

mk = c1+c2
r̄ .

Proof of Proposition 93: Since we only focus on the case where the retailer serves all types

of customers, the optimal solution can be obtained by solving the following optimization

problem:

max
0≤ηλm≤µ1m≤ rα

c1m
,

0≤(1−η)λh≤µ1h≤ rαc1
ηλm+(1−η)λh≤µ2≤ rαc2

r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

s.t. λm = α− β(w1m (µ1m, ηλm))φ − β(w2 (µ2, ηλm + (1− η)λh))φ

λh = α− β(w1h (µ1h, (1− η)λh))φ − β(w2 (µ2, ηλm + (1− η)λh))φ

(A.36)
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The Lagrangian of (A.36) is given as follows:

L(λm, λh, µ1h, µ1m, µ2, ρm, ρh)

= r (ηλm + (1− η)λh)− c1mµ1m − c1µ1h − c2µ2

− ρm

(
λm − α+ β

(
1

µ1m − ηλm

)φ
+ β

(
1

µ2 − ηλm − (1− η)λh

)φ)

− ρh

(
λh − α+ β

(
1

µ1h − (1− η)λh

)φ
+ β

(
1

µ2 − ηλm − (1− η)λh

)φ)

To find the critical points, we solve the following equation set:

∂L
∂λm

= rη − ρm − ρmβη

(µ1m−ηλm)φ+1 −
(ρm+ρh)βη

(µ2−ηλm−(1−η)λh)φ+1 = 0

∂L
∂λh

= r (1− η)− ρh − ρhβ(1−η)

(µ1h−(1−η)λh)φ+1 −
(ρm+ρh)β(1−η)

(µ2−ηλm−(1−η)λh)φ+1 = 0

∂L
∂µ1m

= −c1m + ρmβ

(µ1m−ηλm)φ+1 = 0

∂L
∂µ1h

= −c1 + ρhβ(1−η)

(µ1h−(1−η)λh)φ+1 = 0

∂L
∂µ2

= −c2 + (ρm+ρh)β(1−η)

(µ2−ηλm−(1−η)λh)φ+1 = 0

ηλm ≤ µ1m, (1− η)λh ≤ µ1h, ηλm + (1− η)λh ≤ µ2

By Proposition 5.6 in (Sundaram, 1996)[page 122], we know the optimal solution to (A.29)

is one of the critical points. (Note the constraint qualification holds everywhere on the

feasible set.) Since the firm finds it optimal to serve both types of customers, the solution

must be interior, which gives us a unique solution:

λsm = α− β
(

c1m
φβη(r−c1m−c2)

) φ
1+φ − β

(
c2

φβη(r−c1m−c2)+φβ(1−η)(r−c1−c2)

) φ
1+φ

λsh = α− β
(

c1
φβ(1−η)(r−c1−c2)

) φ
1+φ − β

(
c2

φβη(r−c1m−c2)+φβ(1−η)(r−c1−c2)

) φ
1+φ

µs1m = ηλsm +
(
φβη(r−c1m−c2)

c1m

) 1
1+φ

µs1h = (1− η)λsh +
(
φβ(1−η)(r−c1−c2)

c1

) 1
1+φ

µs2 = ηλsm + (1− η)λsh +
(
φβη(r−c1m−c2)+φβ(1−η)(r−c1−c2)

c2

) 1
1+φ
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Proof of Proposition 94: First note

(
λsm − λb

)
φ

φ
1+φ

β
1

1+φ

=

(
c1

r − c1 − c2

) φ
1+φ

+

(
c2

r − c1 − c2

) φ
1+φ

−
(

c1m

η (r − c1m − c2)

) φ
1+φ

−
(

c2

η (r − c1m − c2) + (1− η) (r − c1 − c2)

) φ
1+φ

Because c1m < c1, we have
(

c2
r−c1−c2

) φ
1+φ −

(
c2

η(r−c1m−c2)+(1−η)(r−c1−c2)

) φ
1+φ

> 0. Also,

we can easily check that ws1h > wb1. Then, since ηws1m + (1 − η)ws1h < wb1, we must

have ws1m < wb1, which implies
(

c1
r−c1−c2

) φ
1+φ −

(
c1m

η(r−c1m−c2)

) φ
1+φ

> 0. Thus, we have

(λsm−λb)φ
φ

1+φ

β
1

1+φ
> 0, or λsm > λb.

Second, note

(
λsh − λbh

)
(r − c1 − c2)

φ
1+φφ

φ
1+φ

β
1

1+φ

= c1

φ
1+φ+c2

φ
1+φ−

(
c1

1− η

) φ
1+φ

−

(
c2

η r−c1m−c2r−c1−c2 + (1− η)

) φ
1+φ

which is decreasing in r. Then if c1

φ
1+φ + c2

φ
1+φ −

(
c1

1−η

) φ
1+φ

> 0 (or η is small enough), then

there exists r̄ > c1 + c2 such that λsh − λbh > 0 if and only if c1+c2
r > c1+c2

r̄ .

Finally, let’s look at total demand rate. We first prove the following lemma:

Lemma 6. If ηws1m + (1− η)ws1h < wb1, then η(ws1m)φ + (1− η)(ws1h)φ < (wb1)φ.

Proof of Lemma 6: Because 0 < ηws1m + (1− η)ws1h < wb1, we have (ηws1m + (1− η)ws1h)φ <

(wb1)φ. Note (ηws1m+ (1−η)ws1h)φ ≥ ηφ(ws1m)φ+ (1−η)φ(w1h)φ ≥ η(ws1m)φ+ (1−η)(w1h)φ,

where the second inequality is because of η ∈ (0, 1) and φ ∈ (0, 1]. Thus, we have η(ws1m)φ+

(1− η)(ws1h)φ < (wb1)φ.
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Because ηws1m + (1− η)ws1h < wb1, Lemma 5 and c1m < c1, we can check that

ηλsm + (1− η)λsh = α− ηβ
(

c1m

φηβ (r − c1m − c2)

) φ
1+φ

− (1− η)β

(
c1

φ (1− η)β (r − c1 − c2)

) φ
1+φ

− β
(

c2

φβη (r − c1m − c2) + φβ (1− η) (r − c1 − c2)

) φ
1+φ

> α− β
(

c1

φβ (r − c1 − c2)

) φ
1+φ

− β
(

c2

φβ (r − c1 − c2)

) φ
1+φ

= λb

Proof of Proposition 95: First note

∂ks1
∂r =

φ
1

1+φ β
1

1+φ (1−η)
1

1+φ c

φ
1+φ
1 τ1

(1+φ)(r−c1−c2)
φ

1+φ
+1

+
τ1(1−η)β2φ2c

φ
1+φ
2

(1+φ)[β(r−c1m−c2)η+β(r−c1−c2)(1−η)]
φ

1+φ
+1

+ τ1(βφ(1−η))
1

1+φ

(1+φ)c
1

1+φ
1 (r−c1−c2)

φ
1+φ

<
φ

1
1+φ β

1
1+φ c

φ
1+φ
1 τ1

(1+φ)(r−c1−c2)
φ

1+φ
+1

+
τ1β2φ2c

φ
1+φ
2

(1+φ)[β(r−c1−c2)]
φ

1+φ
+1

+ τ1(βφ)
1

1+φ

(1+φ)c
1

1+φ
1 (r−c1−c2)

φ
1+φ

=
∂kb1
∂r

Also, note

∂ks2
∂r = ηβ

(
c1m
φβη

) φ
1+φ φ

1+φ
1

(r−c1m−c2)
φ

1+φ
+1

+ (1− η)β
(

c1
φβ(1−η)

) φ
1+φ φ

1+φ
1

(r−c1−c2)
φ

1+φ
+1

+φβ2c
φ

1+φ

2
φ

1+φ
1

(β(r−c1m−c2)η+β(r−c1−c2)(1−η))
φ

1+φ
+1

+ φβ

(1+φ)c
1

1+φ
2

1

(β(r−c1m−c2)η+β(r−c1−c2)(1−η))
φ

1+φ

By Lemma 6 and c1m < c1, we have

ηβ
(
c1m
φβη

) φ
1+φ φ

1+φ
1

(r−c1m−c2)
φ

1+φ
+1

+ (1− η)β
(

c1
φβ(1−η)

) φ
1+φ φ

1+φ
1

(r−c1−c2)
φ

1+φ
+1

< β
(
c1
φβ

) φ
1+φ φ

1+φ
1

(r−c1−c2)
φ

1+φ
+1
.
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Also, define function

f (c1m) =φβ2c
φ

1+φ

2

φ

1 + φ

1

(β (r − c1m − c2) η + β (r − c1 − c2) (1− η))
φ

1+φ
+1

+
φβ

(1 + φ) c
1

1+φ

2

1

(β (r − c1m − c2) η + β (r − c1 − c2) (1− η))
φ

1+φ

,

which is an increasing function. Thus, f(c1m) < f(c1). Since

∂kb2
∂r = β

(
c1
φβ

) φ
1+φ φ

1+φ
1

(r−c1−c2)
φ

1+φ
+1

+ f (c1), we have
∂ks2
∂r <

∂kb2
∂r .

Therefore, we can conclude that
∂(ks1+ks2−kb1−kb2)

∂r < 0. Note, if r → c1 + c2, we have (ks1 +

ks2−kb1−kb2)(r− c1− c2)
φ

1+φ → (τ1 + τ2)β
1

1+φφ
−φ
1+φ (c

φ
1+φ

1 + c
φ

1+φ

2 − c
φ

1+φ

1 (1−η)
1

1+φ ) > 0, which

implies ks1 + ks2− kb1− kb2 > 0 if r is very close to c1 + c2. Thus, there exists r̄ > c1 + c2 such

that ks1 + ks2 − kb1 − kb2 > 0 if and only if r < r̄. Then, we can define m′k = c1+c2
r̄ .

Proof of Proposition 96: Note that

πo = [r − c1 (1− θ)− c2]α−
(
c1
φ

) φ
1+φ

[β (r − c1 − c2) (1− θ)]
1

1+φ

−φ
1

1+φ c
φ

1+φ

1 [β (r − c1 − c2) (1− θ)]
1

1+φ

−
(
c2
φ

) φ
1+φ

[(1− θ)β (r − c1 − c2) + θξβ (r − c2)]
1

1+φ

−φ
1

1+φ c
φ

1+φ

2 [(1− θ)β (r − c1 − c2) + θξβ (r − c2)]
1

1+φ

and

πs = (r − c2)α− c1mηα− c1 (1− η)α

−
[
φ
− φ

1+φ + φ
1

1+φ

]
c

φ
1+φ

1m [ηβ (r − c1m − c2)]
1

1+φ

−
[
φ
− φ

1+φ + φ
1

1+φ

]
c

φ
1+φ

1 [(1− η)β (r − c1 − c2)]
1

1+φ

−
[
φ
− φ

1+φ + φ
1

1+φ

]
c

φ
1+φ

2 [ηβ (r − c1m − c2) + β (1− η) (r − c1 − c2)]
1

1+φ

Note that ∂2(πo−πs)
∂θ2 < 0. Also note that when θ = η, we must have the πo > πs, the proof of

which is as follows: Suppose the optimal solution for the offline model is µs1m, µ
s
1h, µ

s
2, λ

s
m, λ

s
h.

Consider the following feasible solution for the online model: µ41 , µ
4
2 , λ

4
m, λ

4
h , where µ41 =
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µs1h and µ42 = µs2. Then, suppose ηλ4m + (1 − η)λ4h ≤ ηλsm + (1 − η)λsh. Then, we must

have w42 ≤ ws2. Then, because online customers don’t wait at stage 1, we have λ4m > λsm.

Then, λ4h < λsh. Then, w41 < ws1. However, if w41 < ws1 and w42 < ws2, then this means that

λ4h > λsh. We get a contradiction. Thus, we must have ηλ4m + (1− η)λ4h > ηλsm + (1− η)λsh.

This implies that π4 > πs. Thus, we must have πo ≥ π4 > πs. The results above implies

that ∃θ̄ ≤ η such that πo > πs if and only if θ > θ̄.

Note when c1mη = c1(η − θ) (or θ = (c1−c1m)η
c1

), we have πo − πs > 0 for any β > 0. This

implies that θ̄ ≤ (c1−c1m)η
c1

. Thus, for any β > 0, if θ ≥ (c1−c1m)η
c1

(or c1mη−c1(η−θ) ≥ 0), we

must have πo−πs > 0, i.e., b̄ = 0. If c1mη−c1(η−θ) < 0, then

∂ π
o−πs

β
1

1+φ

∂β =

∂
(c1mη−c1(η−θ))α

β
1

1+φ

∂β > 0.

Thus, there exists β̄ ≥ 0 such that πo − πs > 0 if and only if β > β̄.
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