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Mechanisms And Modifiers Of Protein Misfolding And Toxicity
Associated With Multisystem Proteinopathy

Abstract
Multisystem proteinopathy (MSP) is a degenerative syndrome incorporating features of inclusion body
myopathy (IBM), Paget’s disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral
sclerosis (ALS) that is currently incurable and ultimately fatal. Missense mutations in the prion-like domains
(PrLDs) of the genes encoding the RNA-binding proteins (RBPs) heterogeneous nuclear ribonucleoprotein
(hnRNP) A1 (D262V) and hnRNPA2 (D290V) cause MSP. These MSP-linked mutations introduce a potent
steric zipper into the PrLD and accelerate spontaneous hnRNPA1 and hnRNPA2 fibrillogenesis. However,
the mechanism by which these variants of hnRNPA1 and hnRNPA2 cause disease is unknown. Here, we
employ Saccharomyces cerevisiae as a model system to recapitulate the cellular phenotype seen in MSP
patients and map the determinants of hnRNPA1 and hnRNPA2 toxicity and misfolding. We have also utilized
a candidate gene approach and an unbiased gene deletion screen to identify genetic modifiers of hnRNPA1
and hnRNPA2 toxicity. Using a series of deletion and truncation constructs, we have determined that
hnRNPA1 and hnRNPA2 require at least one intact RNA-recognition motif and a portion of the low
complexity PrLD to confer toxicity. Thus, we propose a mechanism of toxicity that requires RNA binding and
formation of cytoplasmic inclusions by hnRNPA1 or hnRNPA2. hnRNPA1 and hnRNPA2 form self-
templating fibrils in vitro, which cannot occur in the absence of the PrLD. We identified forty gene deletions
that suppressed the toxicity of hnRNPA1 and hnRNPA2, including RNP (ribonucleoprotein)-granule
components (Sbp1, Lsm6, and Lsm7), molecular chaperones (Hsc82, Sti1, Sse1, and Ydj1), and spliceosome
proteins (Lsm6, Lsm7, Prp18, and Bud31). In all cases, genetic suppressors of hnRNPA1 toxicity also
suppressed hnRNPA2 toxicity, indicating mechanistic convergence. Importantly, only five genes from this list
are known modifiers of FUS or TDP-43 toxicity in yeast. TDP-43 and FUS are also RBPs with PrLDs
implicated in the pathogenesis of neurodegenerative disease. This lack of overlap in genetic modifiers suggests
important mechanistic differences in the underpinnings of cellular toxicity mediated by hnRNPA1 and
hnRNPA2 versus TDP-43 or FUS. By contrast, engineered variants of a protein disaggregase, Hsp104, that
possess potentiated disaggregase activity suppressed the toxicity of TDP-43 and FUS in addition to
hnRNPA1, hnRNPA2, and both MSP-linked mutant hnRNPs. Potentiated Hsp104 variants, therefore,
represent a possibly broadly efficacious therapeutic that could be developed to combat a range of
neurodegenerative phenotypes caused by RBPs with PrLDs. The toxicity suppressors that we have identified
may ultimately have therapeutic implications for not only MSP patients, but also patients with sporadic ALS,
FTD, IBM, and PDB. Future work should include investigation of existing small-molecule inhibitors, for
example Hsp90 or Hsp70 inhibitors, that mimic the genetic deletions we have uncovered for potential
therapeutic use.
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ABSTRACT 
 

MECHANISMS AND MODIFIERS OF PROTEIN MISFOLDING AND TOXICITY ASSOCIATED 

WITH MULTISYSTEM PROTEINOPATHY 

Alice Flynn Ford 

James Shorter, M.A., Ph.D. 

 

Multisystem proteinopathy (MSP) is a degenerative syndrome incorporating features of 

inclusion body myopathy (IBM), Paget’s disease of bone (PDB), frontotemporal 

dementia (FTD), and amyotrophic lateral sclerosis (ALS) that is currently incurable and 

ultimately fatal. Missense mutations in the prion-like domains (PrLDs) of the genes 

encoding the RNA-binding proteins (RBPs) heterogeneous nuclear ribonucleoprotein 

(hnRNP) A1 (D262V) and hnRNPA2 (D290V) cause MSP. These MSP-linked mutations 

introduce a potent steric zipper into the PrLD and accelerate spontaneous hnRNPA1 

and hnRNPA2 fibrillogenesis. However, the mechanism by which these variants of 

hnRNPA1 and hnRNPA2 cause disease is unknown. Here, we employ Saccharomyces 

cerevisiae as a model system to recapitulate the cellular phenotype seen in MSP 

patients and map the determinants of hnRNPA1 and hnRNPA2 toxicity and misfolding. 

We have also utilized a candidate gene approach and an unbiased gene deletion screen 

to identify genetic modifiers of hnRNPA1 and hnRNPA2 toxicity. Using a series of 

deletion and truncation constructs, we have determined that hnRNPA1 and hnRNPA2 

require at least one intact RNA-recognition motif and a portion of the low complexity 

PrLD to confer toxicity. Thus, we propose a mechanism of toxicity that requires RNA 

binding and formation of cytoplasmic inclusions by hnRNPA1 or hnRNPA2. hnRNPA1 
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and hnRNPA2 form self-templating fibrils in vitro, which cannot occur in the absence of 

the PrLD. We identified forty gene deletions that suppressed the toxicity of hnRNPA1 

and hnRNPA2, including RNP (ribonucleoprotein)-granule components (Sbp1, Lsm6, 

and Lsm7), molecular chaperones (Hsc82, Sti1, Sse1, and Ydj1), and spliceosome 

proteins (Lsm6, Lsm7, Prp18, and Bud31). In all cases, genetic suppressors of 

hnRNPA1 toxicity also suppressed hnRNPA2 toxicity, indicating mechanistic 

convergence. Importantly, only five genes from this list are known modifiers of FUS or 

TDP-43 toxicity in yeast. TDP-43 and FUS are also RBPs with PrLDs implicated in the 

pathogenesis of neurodegenerative disease. This lack of overlap in genetic modifiers 

suggests important mechanistic differences in the underpinnings of cellular toxicity 

mediated by hnRNPA1 and hnRNPA2 versus TDP-43 or FUS. By contrast, engineered 

variants of a protein disaggregase, Hsp104, that possess potentiated disaggregase 

activity suppressed the toxicity of TDP-43 and FUS in addition to hnRNPA1, hnRNPA2, 

and both MSP-linked mutant hnRNPs. Potentiated Hsp104 variants, therefore, represent 

a possibly broadly efficacious therapeutic that could be developed to combat a range of 

neurodegenerative phenotypes caused by RBPs with PrLDs. The toxicity suppressors 

that we have identified may ultimately have therapeutic implications for not only MSP 

patients, but also patients with sporadic ALS, FTD, IBM, and PDB. Future work should 

include investigation of existing small-molecule inhibitors, for example Hsp90 or Hsp70 

inhibitors, that mimic the genetic deletions we have uncovered for potential therapeutic 

use. 
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CHAPTER 1: INTRODUCTION—RNA-BINDING PROTEINS WITH PRION-LIKE 

DOMAINS IN HEALTH AND DISEASE 
 

Alice Ford Harrison1,2 and James Shorter1,2 

1Department of Biochemistry and Biophysics, Perelman School of Medicine at the 

University of Pennsylvania, Philadelphia, PA 19104, USA and 

2Neuroscience Graduate Group, Perelman School of Medicine at the University of 

Pennsylvania, Philadelphia, PA 19104, USA 

 

Originally published in Biochemical Journal (2017) Apr 7; 474 (8): 1417-1438 

 

1.1 Protein misfolding unites diverse neurodegenerative diseases 

The problem of neurodegeneration remains a pressing public health concern and 

a biologic black box [1,2]. Age-related neurodegenerative diseases like Alzheimer’s 

disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), 

frontotemporal dementia (FTD, the clinical disorder resulting from frontotemporal lobar 

degeneration (FTLD) [3]) and Huntington’s disease (HD), lead to cell death within the 

central nervous system (CNS) and progressive CNS dysfunction [4-9]. ALS pathology 

also extends to the peripheral nervous system [5,10]. Our lack of understanding of the 

mechanisms and risk factors governing the development and progression of 

neurodegenerative diseases has largely precluded the development of disease-
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reversing therapeutics [4,11,12]. Symptomatic treatments are available for PD and AD, 

but the efficacy of these can be modest or limited by problematic side effects, and they 

do not address the root cause of disease [12,13]. 

Despite dramatic differences in characteristic age of onset, symptomatology, and 

regional involvement of CNS tissue, neurodegenerative disorders are united on a cellular 

and biochemical level by the accumulation of misfolded proteins in the brain [5-7,14-16]. 

Cytoplasmic inclusions of α-synuclein in the neurons of the substantia nigra pars 

compacta and other brain regions are a hallmark feature of PD [8,16,17]. In AD, 

intracellular tangles of misfolded tau protein in conjunction with extracellular plaques of 

aggregated amyloid-β are defining features found in the neocortex and hippocampus 

[9,16,18,19]. In HD, a genetic trinucleotide repeat expansion leads to an elongated 

polyglutamine tract in the protein huntingtin, causing it to form both nuclear and 

cytoplasmic amyloid inclusions [18,19]. In addition, repeat-associated non-ATG (RAN) 

translation occurs in several diseases caused by repeat expansions, including 

spinocerebellar ataxia type 8 (SCA8), myotonic dystrophy type 1, fragile X-associated 

tremor ataxia syndrome, ALS, and HD [20-23]. RAN translation in HD, which occurs in 

multiple reading frames from both sense and antisense transcripts, leads to the 

accumulation of aggregated polyalanine, polyserine, polyleucine, and polycysteine in the 

brains of HD patients [21]. 

1.2 ALS and FTD are related disorders 

ALS, also known as Lou Gehrig’s disease in homage to the prominent baseball 

player who was diagnosed in 1939 and died two years later, is a devastating 

neurodegenerative disorder that affects the upper and lower motor neurons of the brain 
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and spinal cord [5]. The widespread and relentlessly progressive destruction of motor 

neurons causes muscle weakness and atrophy with hyperreflexia and spasticity, 

ultimately leading to paralysis and death within 2-5 years of disease onset in most cases 

[5,24]. FTD is a leading cause of early-onset dementia, second only to AD [25]. It results 

in the selective degeneration of the frontal and temporal lobes of the brain, which 

typically manifests as primarily behavioral dysfunction, including changes in personality 

and executive function or loss of volition, or language deficits [5,25]. It has become 

increasingly clear that there is significant overlap between ALS and FTD clinically, 

genetically, and neuropathologically [3,5,10,25,26]. 

It is now estimated that up to 50% of ALS patients also suffer from cognitive 

impairment or behavioral changes associated with FTLD, and, while in many cases 

these symptoms do not reach a clinical severity that meets criteria for dementia, ~15-

20% of those with ALS also carry a diagnosis of FTD [3,25,27,28]. Similarly, a study of 

FTD patients found that ~50% had motor neuron involvement evident via exam or 

electromyography [3,27]. The idea that purely motor ALS and purely cognitive FTD exist 

at the two ends of a spectrum of disease is not surprising when it is considered that the 

two clinical entities are known to share genetic causes in their familial forms and have 

commonalities in their cellular signatures [15,29]. Like other neurodegenerative 

disorders, ALS and FTD are characterized by pathologic protein aggregation in the 

cytoplasm of affected neurons [15,30]. Among the proteins that have been genetically 

linked to these diseases and identified in cytoplasmic inclusions in patient neurons are 

several RNA-binding proteins (RBPs) that have low-complexity domains (LCDs), termed 
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prion-like domains (PrLDs) because of their similarity in amino acid composition to yeast 

prion domains [31]. 

1.3 Prions are self-replicating protein conformers 

Prions are the cause of devastating human neurodegenerative diseases 

including Creutzfeldt-Jakob disease, Gerstmann-Sträussler Scheinker syndrome and 

fatal familial insomnia, but confer heritable traits that can be beneficial in yeast [18,31-

36]. Prions are infectious protein conformers capable of self-replication, which occurs as 

the prion templates the folding of soluble proteins comprised of the same amino acid 

sequence (Figure 1) [37,38]. In the prion conformation, these proteins typically form 

stable amyloid fibers that are often sodium dodecyl sulfate (SDS) insoluble and resistant 

to proteases and heat denaturation [18,37]. Amyloid is a polymeric ‘cross-β’ structure in 

which the strands of the β-sheets run perpendicular to the axis of the fiber [18,35]. The 

ability of yeast prions to form amyloid is dependent upon a prion domain rich in glycine 

as well as uncharged polar amino acids, including glutamine, asparagine, tyrosine, and 

serine [31,39-41]. Deletion of this prion domain precludes access to the prion state [42], 

and addition of this region to otherwise innocuous proteins is sufficient to confer prion 

behavior [43-45]. Importantly, randomization of the primary amino acid sequence of the 

prion domain does not impact prion formation [46,47]. Identification of several prion 

domains that confer bona fide prion behavior has led to the development of 

bioinformatics algorithms that scan amino-acid composition to screen the human 

genome for proteins with PrLDs [31,39,40,48]. 
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Figure 1: Prions self-replicate conformation by templating the folding of soluble 
protein to the prion conformation. 
Prions are protein conformers that self-replicate by templating the folding of natively 
folded proteins of the same amino acid sequence to the prion conformation [18,35,49]. 
Prions typically form stable amyloid fibers with a hallmark ‘cross-β’ structure in which β-
strands run perpendicular to the axis of the fiber [18,35]. These amyloid assemblies are 
typically resistant to denaturation by heat, proteases, and detergents [18,37,49]. 

 

1.4 Human RBPs with PrLDs cause neurodegenerative diseases. 

Interestingly, a disproportionate number of the ~240 human proteins with PrLDs 

are RNA- or DNA-binding proteins, many of which contain a canonical RNA-recognition 

motif (RRM) [41,50]. Gene ontology (GO) annotations indicate that ~30% of human 

proteins with PrLDs function in RNA binding and ~33% function in DNA binding [41]. 

While RRM-containing genes represent only ~1% of the human protein-coding genome, 

they comprise more than 10% of all genes containing PrLDs [31]. One by one, 

RNA/DNA-binding proteins with PrLDs are being implicated in neurodegenerative 

disease [41,50]. This association began with the identification of a trinucleotide repeat 

expansion in the gene encoding ataxin-1 (ATXN1) that leads to a polyglutamine protein 

product and causes SCA1 [51,52]. The expansion is now recognized to occur within the 

PrLD and promotes aggregation of ataxin 1 [41,53]. A similar expansion in ataxin 2 

(ATXN2) causes SCA2 [52,54]. The SCAs are a group of autosomal dominantly 

inherited disorders characterized by ataxia, tremors, and dysarthria with profound 
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cerebellar atrophy [52]. It would be almost a decade before the misfolding of another 

RBP with a PrLD was linked to the pathogenesis of ALS and FTD. 

1.4.1 Transactivation response element DNA-binding protein 43 

The first of the RRM- and PrLD-containing proteins to be implicated in 

neurodegeneration was TDP-43 (transactivation response element DNA-binding protein 

43, see domain architecture in Figure 2) [29,55]. TDP-43 was identified in 2006 as the 

predominant protein component of the ubiquitinated inclusions observed in ALS patients 

and a subset of cases of FTD in which there was no observable tau or α-synuclein 

aggregation [29,56]. TDP-43 is a primarily nuclear protein that shuttles between the 

nucleus and the cytoplasm and plays a role in mRNA transport, transcriptional 

repression, splicing regulation, miRNA biogenesis, stress granule formation, and the 

stabilization of long intron-containing RNA and long non-coding RNA [57,58]. TDP-43 

favors binding to long UG repeats or UG-enriched RNA sequences [59-62]. We now 

know that TDP-43 is mislocalized to cytoplasmic aggregates in degenerating neurons 

and glia in roughly 97% of sporadic ALS cases and ~45% of sporadic FTD cases 

[57,63]. Its mislocalization has been identified as the primary histologic abnormality in 

cases of inclusion body myositis and a familial form of parkinsonism known as Perry 

syndrome [29,64]. TDP-43 inclusions are also present in many cases of AD, PD, and HD 

[29]. Mutations in the gene encoding TDP-43 (TARDBP) have been identified in cases of 

both familial and sporadic ALS, with mutations segregating with disease in the former, 

further implicating TDP-43 in the pathogenesis of neurodegeneration, [29,65-69]. 

TARDBP mutations are also found in rare instances of FTD [57,70,71]. 
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The vast majority of these observed mutations are found in the C-terminal PrLD 

of TDP-43 (Figure 2) [72], which is critical for elements of normal protein function [41]. 

The PrLD facilitates miRNA biogenesis by mediating interactions with the nuclear 

Drosha complex, which cleaves pri-miRNAs into pre-miRNAs, and the cytoplasmic Dicer 

complex, which then cleaves these pre-miRNAs into mature miRNAs [73]. The TDP-43 

PrLD mediates protein-protein interactions with other splicing factors, including 

heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), hnRNPA2B1, and fused in 

sarcoma (FUS), and is essential for the regulation of splicing of certain mRNA transcripts 

[41,74,75]. The PrLD is essential for recruitment of TDP-43 to stress granules [76]. The 

TDP-43 PrLD is also crucial for aberrant protein aggregation in vitro and in model 

systems, and select disease-linked mutations accelerate protein aggregation in vitro and 

in vivo [31,77-80]. Deletion of the PrLD eliminates protein toxicity in model organisms, as 

does disruption of the RNA-binding ability of TDP-43, suggesting roles for both 

misfolding and RNA engagement in disease pathogenesis [77,78,81,82]. 
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Figure 2: Mutations that cause ALS and FTD cluster in the PrLD of TDP-43. 
TDP-43 is an RBP with two canonical RRMs and a C-terminal PrLD [48,78,79,83]. 
Mutations that have been identified in patients with ALS and FTD are shown, and cluster 
in the PrLD [72,83]. Mutations identified in patients reported to have features of FTD, 
with or without a clinical ALS phenotype, are denoted by an * [70,84-92]. Mutations in 
red have also been observed in healthy control individuals [91,93-96]. Disease-
associated mutations were identified from Buratti [97], Cady et el. [93], Floris et al. [71], 
Lagier-Tourenne et al. [72], Peters et al. [83], the ALS data browser: http://alsdb.org [94], 
and the ALS Online Genetics Database: http://alsod.iop.kcl.ac.uk/ [49,98]. 
 

1.4.2 Fused in sarcoma 

Shortly after the connection was made between TDP-43 and disease, another 

protein with a canonical RRM and a low-complexity PrLD, FUS (see Figure 3 for domain 

architecture), was linked to both ALS and FTD. Similar to TDP-43 in many ways, FUS, 
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also sometimes known as translocated in liposarcoma (TLS), is a primarily nuclear 

protein that functions in transcriptional regulation, pre-mRNA splicing, and other 

elements of mRNA processing and metabolism [57,99]. Notably, though, the most 

common FUS-binding motif is GUGGU, and the repertoires of RNAs bound by TDP-43 

and FUS have little overlap [57]. FUS-binding sites are enriched for 5’ untranslated 

region (UTRs), and it has been suggested that FUS also preferentially binds 3’UTRs, 

and intronic sequences [100,101]. FUS participates in the shuttling of RNA between the 

nucleus and the cytoplasm, miRNA processing, and the stabilization of long intronic 

sequences and long noncoding RNAs [57]. FUS interacts with RNA polymerase II and 

Transcription Factor II D (TFIID), in addition to other transcription factors, and is thought 

to have both transcriptional activation and repression activity [57,100]. FUS is recruited 

to sites of DNA damage and plays an essential role in cellular recovery, including the 

recruitment of other DNA-repair factors [57,100]. 

Mutations in FUS have been linked to sporadic and familial cases of ALS, and 

these patients demonstrate the accumulation of FUS-positive inclusions in the cytoplasm 

of degenerating neurons and glia, and decreased nuclear FUS [5,15,30,102-105]. FUS 

mutations have caused the earliest reported onset of juvenile-onset ALS in children as 

young as 11 years old [106]. Neuronal and glial FUS aggregates have also been 

observed in ~9% of FTD cases, and rare mutations in FUS have been identified in FTD 

patients [5,30,57,107-111]. Of note, nuclear FUS inclusions have been identified in 

patient neurons in cases of polyglutamine diseases including HD, SCA1, and SCA2 

without FUS mutations [57,72]. 
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Putative pathogenic mutations in FUS cluster in the C-terminal proline-tyrosine-

nuclear localization signal (NLS), the RGG-rich region, and the PrLD (Figure 3) 

[57,99,110,112]. Studies in model systems have indicated that RNA-binding is essential 

for the toxic effect of FUS, as is the case for TDP-43, but in addition to the RRM and 

PrLD, a portion of the RGG-rich region is crucial for the aggregation and toxicity of FUS 

[99,110,113]. ALS-linked FUS mutations confer both gain- and loss-of-function 

phenotypes [114]. FUS interacts with the U1 snRNP (small nuclear ribonucleoprotein) of 

the spliceosome and the survival motor neuron (SMN) protein, a component of the 

complex that enables snRNP biogenesis [72,114]. SMN deficiency causes a childhood 

motor neuron disease known as spinal muscular atrophy, which is characterized by a 

reduction in nuclear SMN-containing bodies known as Gems [114]. Similarly, ALS-linked 

mutations in FUS increase the association of FUS with SMN, leading to a reduction in 

the abundance of Gems and altered snRNA levels [114]. These pathologic mutations 

simultaneously decrease FUS binding to the U1 snRNP, resulting in splicing disruptions 

that phenocopy a partial loss of FUS activity [114]. 
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Figure 3: ALS- and FTD-causing mutations in FUS cluster in LC domains and the 
PrLD. 
FUS has an N-terminal PrLD (residues 1-239) that is rich in glutamine, serine, tyrosine, 
and glycine and includes a portion of an adjacent glycine-rich region [110]. FUS has a 
single RRM, two RGG-rich regions, and a zinc-finger domain [83,110]. Mutations in FUS 
that have been associated with ALS and FTD cluster in the PrLD, RGG-rich region, and 
PY-NLS [83,115]. Mutations identified in patients reported to have symptoms of FTD, 
with or without a clinical ALS phenotype, are denoted by an * [116-121]. Mutations in red 
have also been observed in healthy control individuals [94,95,102,103,118,120,122-
126]. Disease-associated mutations were identified from Belzil et al. [122], Corrado et al. 
[102], Huey et al. [118], Kwiatkowski et al. [103], Lagier-Tourenne et al. [72], Lattante et 
al. [115], Mackenzie et al. [30], Peters et al. [83], Rademakers et al. [104], Yan et al. 
[121], the ALS Online Genetics Database: http://alsod.iop.kcl.ac.uk/ [98], and the ALS 
Data Browser: http://alsdb.org [49,94]. 
 

1.4.3 TATA-binding protein-associated factor 15 and Ewing sarcoma breakpoint 

region 1 

Studies of FUS and TDP-43 pathogenicity highlight not only the fact that ALS and 

FTD are closely-related entities, but also the potential importance of other RBPs with 

PrLDs in the pathogenesis of neurodegeneration [31,50]. When all human proteins with 

RRMs were screened for cytoplasmic aggregation and toxicity in yeast, as is seen upon 
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overexpression of TDP-43 or FUS in yeast, then filtered based on bioinformatically 

predicted PrLDs, two proteins, TAF15 (TATA-binding protein-associated factor 15) and 

EWSR1 (Ewing sarcoma breakpoint region1), emerged with structural and functional 

similarities to TDP-43 and FUS [31,48]. TAF15 and EWSR1, along with FUS, belong to 

family of proteins known as FET proteins (see Figure 4 for domain architecture) 

[31,127,128]. As their names imply, FET proteins were originally described as 

components of pathogenic fusion oncogenes in certain human cancers [128]. Further 

investigation identified mutations in TAF15 and EWSR1 in patients with sporadic ALS 

(Figure 4) and revealed that either protein may be found depleted from the nucleus and 

mislocalized to cytoplasmic neuronal inclusions in ALS and FTD [48,127-129]. Additional 

evidence for pathogenicity came from in vitro studies demonstrating that both proteins 

are intrinsically aggregation prone and ALS-linked TAF15 and EWSR1 mutations 

accelerate aggregation [48,127]. In addition, both proteins are toxic when overexpressed 

in the Drosophila nervous system and disease-associated TAF15 mutations cause a 

more severe phenotype [48,127]. Finally, in cultured mammalian neurons, disease-

linked TAF15 and EWSR1 mutations induced formation of cytoplasmic TAF15 and 

EWSR1 inclusions [48,127]. 
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Figure 4: FET proteins EWSR1 and TAF15 have domain architectures similar to 
the domain architecture of FUS. 
FUS, TAF15, and EWSR1 are members of the FET protein family, and are similar in 
domain structure and function [100,127,128]. Like FUS (Figure 3), EWSR1 and TAF15 
each have an N-terminal PrLD, a glycine-rich region, and a single RRM, with C-terminal 
RGG-rich regions, a zinc-finger domain, and a PY-NLS [31,48,83,127,130-133]. 
Mutations shown were identified in ALS patients and compiled from Cady et al. [93], 
Couthouis et al. [48], Couthouis et al. [127], Couthouis et al. [132], Ticozzi et al. [129], 
and the ALS Data Browser: http://alsdb.org [49,94]. Those in red have also been 
observed in healthy control individuals [93-95,123,127,132]. 

 

1.5 hnRNPA1 and hnRNPA2B1 cause multisystem proteinopathy. 

More recent information linking LCDs in the context of RBPs to 

neurodegeneration has emerged from the study of a rare degenerative syndrome known 

as multisystem proteinopathy (MSP) [134]. This autosomal, dominantly-inherited 

disorder was formerly known as inclusion body myopathy with Paget’s disease of bone, 

frontotemporal dementia, and amyotrophic lateral sclerosis (IBMPFD/ALS) [134,135]. 



 

14 

 

MSP is a heterogeneous, adult-onset disorder that is characterized by a variable 

presentation, even within the families that it affects [134-136]. Patients may suffer from 

degeneration of the muscle, bone, brain, motor neurons, or several of these tissues 

concurrently [134,137]. The most common feature of disease is inclusion body myopathy 

(IBM), which occurs in ~80-90% of MSP patients and leads to progressive weakness 

and atrophy, primarily of proximal muscle groups [136,138]. Roughly half of MSP 

patients will develop Paget’s disease of bone (PDB), a disorder of increased osteoclast 

activity and bone turnover that is clinically marked by bone pain, pathologic fractures, 

and skeletal deformities, most often of the skull, vertebrae, and pelvis [136,139]. 

Cognitive changes and language deficits that define FTD can be observed in a subset of 

MSP patients, as can the signs of upper and lower motor neuron dysfunction and 

electromyographic findings that are hallmarks of ALS [136,137]. 

There are currently three known genetic causes of MSP [137]. The first identified 

was valosin-containing protein (VCP), a AAA+ protein (ATPase associated with diverse 

cellular activities) that participates in a number of cellular processes including the cell 

cycle, DNA damage repair, apoptosis, the proteotoxic stress response, post-mitotic Golgi 

reassembly, endoplasmic reticulum-associated degradation, and ubiquitin-dependent 

protein degradation [134,135,137,140]. VCP mutations have subsequently been 

identified in patients with isolated ALS, IBM, and PDB [134,138,139,141]. VCP plays a 

critical role in the clearance of stress granules via autophagy, and disease-associated 

VCP variants cause the constitutive formation of stress granules in cell culture, 

suggesting that aberrant stress granule persistence may contribute to 

neurodegenerative disease pathogenesis [142]. 
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Exome sequencing and linkage analysis of two MSP-affected families without 

VCP mutations uncovered pathogenic mutations in the genes encoding heterogeneous 

nuclear ribonucleoproteins (hnRNPs) A1 and A2B1 (hnRNPA1 and hnRNPA2B1), two 

RBPs with PrLDs [134,137]. MSP can be caused by a D262V substitution in hnRNPA1 

or a D290V substitution in hnRNPA2 [134]. hnRNPA1 and hnRNPA2 (the shorter of two 

hnRNPA2B1 isoforms by 12 amino acids, which constitutes roughly 90% of hnRNPA2B1 

expression in most human tissues) share a domain structure consisting of two N-

terminal RRMs and a PY-NLS-containing C-terminal PrLD (Figure 5) [39,134]. 

hnRNPA1 is an abundantly and ubiquitously expressed, primarily nuclear RBP 

that functions widely in nucleic-acid processing [143]. hnRNPA1 binds to promoter 

sequences or transcription factors to either activate or repress transcription and 

contributes to the regulation of alternative splicing and splice-site selection, often 

promoting exon skipping [143-146]. It can shuttle between the nucleus and cytoplasm, 

facilitating nuclear mRNA export [143]. In addition to showing affinity for specific motifs 

including UAGGGA, UAGA, UAGG and UGGGGU [143,147,148], hnRNPA1 binds AU-

rich elements (AREs) (containing AUUUA motifs) that are known to modulate the 

stability and degradation of mature mRNA transcripts [143,149]. hnRNPA1 also binds to 

internal ribosomal entry sites to regulate translation [150,151], is critical for telomere 

biogenesis and length maintenance [143,152], and participates in miRNA processing 

[153,154]. Like hnRNPA1, hnRNPA2B1 is one of the most abundantly expressed 

proteins in the cell, and is predominantly nuclear with the ability to shuttle between the 

nucleus and cytoplasm [147]. It has functional similarities to hnRNPA1, including roles in 

the regulation of alternative pre-mRNA splicing and translation [155-157], mRNA stability 
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[157], and telomere maintenance [158,159]. Distinct from hnRNPA1, hnRNPA2B1 also 

plays a crucial role in mRNA trafficking in neurons and oligodendrocytes [160,161]. Like 

hnRNPA1, hnRNPA2B1 has a significant binding preference for UAG motifs [148]. 

Recent studies of hnRNPA2B1 function in mouse spinal cord, patient fibroblasts, 

and motor neurons derived from human induced pluripotent stem cells (iPSCs) identified 

an enriched UAGG binding motif in CNS tissue [157]. hnRNPA2B1 binding sites were 

particularly enriched in 3’UTRs in vivo and in cultured cells, and hnRNPA2B1 was found 

to contribute to polyadenylation site selection [157]. The importance of hnRNPA2B1 to 

pre-mRNA splicing was illustrated by altered proportions of the long and short isoforms 

of the murine protein Dao upon depletion of hnRNPA2B1 in the mouse CNS [157]. The 

human homologue, DAO, which encodes D-amino acid oxidase, is highly expressed in 

the CNS, and has been implicated in familial ALS [157,162,163]. Loss of hnRNPA2B1 

expression in the mouse model causes increased proportional expression of a short Dao 

isoform that is degraded by the proteasome and has ~85% less enzymatic activity than 

the longer isoform [157]. Importantly, the splicing changes that result from the MSP-

causing substitution, D290V, in hnRNPA2B1 in patient fibroblasts are distinct from those 

that occur due to loss of hnRNPA2B1 function [157]. By contrast, the splicing changes 

caused by the D290V substitution in hnRNPA2B1 have a ~66% overlap with splicing 

alterations observed in fibroblasts from patients with an MSP-causing mutation in VCP 

[134]. This finding suggests a possible etiology for the shared disease phenotype 

caused by mutations in VCP and hnRNPA2B1. 
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1.6 MSP-linked hnRNPA1 and hnRNPA2B1 mutations enhance protein 

aggregation. 

hnRNPA1 and hnRNPA2 have a common domain architecture consisting of two 

N-terminal RRMs and a C-terminal PrLD containing a PY-NLS that mediates nuclear 

import (Figure 5) [134,143]. Interestingly, both MSP-linked mutations involve a valine 

substitution at a conserved gatekeeper aspartate residue in the PrLD that is 

computationally predicted, by two separate algorithms, to increase prionogenicity (Figure 

5) [39,40,134]. Additionally, an algorithm that scores the ability of hexapeptides to form 

amyloid fibrils primarily based on structural information rather than amino acid sequence 

predicts that each of these mutations lies within a “steric-zipper” motif (Figure 6) 

[134,164]. Steric zippers are defined as two self-complementary beta sheets with the 

ability to act as the backbone of an amyloid fibril [164]. The aspartate to valine 

substitution in this region is predicted to strengthen a steric zipper, making the protein 

more prone to fibrillization (Figure 6) [134]. Indeed, both hnRNPA1 and hnRNPA2 form 

fibrils in vitro that are self-seeding (i.e. can nucleate the aggregation of soluble protein), 

thereby reducing the lag phase of assembly, and the disease-associated mutations 

greatly accelerate fibrillization [134,165]. In vitro, the mutant proteins are capable of 

seeding their own assembly as well as the assembly of the corresponding wild-type 

(WT) protein [134], providing a potential explanation for the genetic dominance of MSP 

mutations. A heterozygous individual would produce both WT and mutant protein. 

However, if the presence of the aspartate to valine substitution accelerates the 

misfolding of the mutant protein, and the misfolding of the mutant protein can nucleate 

the misfolding of the WT protein, the presence of the WT allele would not be protective 

against the development of a disease phenotype. 
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Figure 5: MSP-causing mutations affect a conserved aspartate residue in the 
hnRNPA1 and hnRNPA2 PrLDs. 
hnRNPA1 and hnRNPA2 contain two N-terminal RRMs and a C-terminal PrLD [134]. 
The PrLDs contain an RGG motif and a PY-NLS that mediates nuclear import 
[134,143,166]. A 52-amino-acid stretch that occurs in the longer isoform of hnRNPA1 
(hnRNPA1b) is depicted [167]. Missense mutations in hnRNPA1 and hnRNPA2 that 
cause MSP are noted in orange [134]. All other mutations were identified in patients with 
sporadic or familial ALS and compiled from Couthouis et al. [132], Kim et al. [134], Liu et 
al. [168], and the ALS Data Browser: http://alsdb.org [49,94]. Those in red have been 
observed in healthy control individuals [95]. 

 

Muscle biopsies from MSP patients with mutations in VCP, hnRNPA1, or 

hnRNPA2B1 share cytopathologic features including the cytoplasmic aggregation of 

TDP-43, which has also been observed in sporadic IBM in addition to ALS and FTD 
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[134,136,138,169]. A biopsy from an affected individual in the family harboring the 

hnRNPA2D290V variant also demonstrated mislocalization of hnRNPA2 from the nucleus 

to cytoplasmic inclusions, and in muscle fibers obtained from a patient expressing 

hnRNPA1D262V both hnRNPA1 and hnRNPA2 were cleared from myonuclei and localized 

to sarcoplasmic inclusions [134]. Motor neurons differentiated from iPSCs from MSP 

patients with hnRNPA2D290V or VCPR155H mutations demonstrate nuclear hnRNPA2B1 

aggregation [157]. Concurrent mislocalization and partial colocalization of TDP-43 and 

hnRNPA1 or TDP-43 and hnRNPA2 could be observed in muscle fibers of MSP-affected 

patients [134]. Cytoplasmic hnRNPA1- and hnRNPA2-positive aggregates have also 

been identified in sporadic cases of IBM [134,170]. The intersection of protein 

pathologies in MSP and IBM underscores the fact that there is much to be learned about 

common degenerative diseases from more rare, familial disorders.  

Sequencing efforts to uncover pathogenic mutations in familial and sporadic ALS 

patients have identified additional mutations in hnRNPA1 and hnRNPA2 linked to ALS 

[94,132,134]. A substitution (D262N) occurring in a familial case of ALS affects the same 

aspartate residue implicated in the pathogenesis of MSP [134]. The D262N substitution 

in hnRNPA1 introduces a strong steric zipper and strengthens an existing steric zipper 

(Figure 6) [134,164]. Similar to the D262V substitution, D262N significantly reduced the 

lag phase of fibrillization and accelerated hnRNPA1 aggregation in vitro [134]. Several 

other mutations in hnRNPA1 that have been identified in patients with ALS also 

introduce or strengthen steric zipper motifs (Figures 5 and 6) [164]. One of these, a 

mutation in the PY-NLS of hnRNPA1 (P288S) was recently identified as the cause of a 

familial case of flail-arm ALS (Figure 5) [168]. The location of this mutation suggests that 
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hnRNPA2P288S may have impaired nuclear import, leading to increased cytoplasmic 

mislocalization in addition to increased fibrillization propensity. 

 

 

Figure 6: MSP- and ALS-associated mutations are predicted to increase the 
fibrillization propensity of hnRNPA1 and hnRNPA2. 
ZipperDB, a structure-based algorithm, calculates the propensity of hexapeptide 
fragments to form steric zippers [164]. Steric zippers, which are self-complementary β-
sheets that form the backbone of an amyloid fibril, are predicted to form when the 
Rosetta energy of a hexapeptide is below the empirically determined ‘high fibrillization 
propensity’ threshold of -23 kcal/mol [164]. Several of the described mutations in 
hnRNPA1 and hnRNPA2 introduce a predicted steric zipper motif or strengthen an 
existing zipper [49,134,164]. For example, the D262V substitution in hnRNPA1 creates a 
potent SYNVFG zipper, while the D262N substitution also strengthens the GSYNDF 
zipper [134,164]. 

 

Many questions remain, however, about the extent and prevalence of hnRNPA1 

and hnRNPA2 pathology in patients with MSP and sporadic forms of ALS and FTD. 
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Mislocalized hnRNPA1 and hnRNPA2 inclusions have been observed in muscle fibers of 

patients with MSP, but can the clearance of these proteins from the nucleus to 

cytoplasmic foci be observed also in motor neurons of the brain and spinal cord and in 

the frontal and temporal cortical lobes of these patients? It remains unclear how this 

disease manifests in such a heterogeneous way among patients with the same mutation, 

and it would be informative to investigate, via post-mortem biopsy, whether patients that 

developed muscle and bone pathology, for example, but no clinical dementia 

demonstrated evidence of asymptomatic protein pathology in the frontal cortex. Also of 

relevance would be a study of ALS patients with TDP-43 or FUS mutations and 

pathology to look for co-occurrence of hnRNPA1 or hnRNPA2 pathology. WT TDP-43 

aggregates along with hnRNPA1 and hnRNPA2 in MSP [134], suggesting the possibility 

that WT hnRNPA1 and hnRNPA2 may be present in the inclusions driven by mutations 

in other RBPs in ALS and FTD patients. A single study of frontal cortex from 10 patients 

with FTD and TDP-43 pathology showed no mislocalization of hnRNPA1 or hnRNPA2 

[171]. Importantly, one of these patients harbored a familial VCP mutation [171]. Thus, 

VCP mutations are not always accompanied by hnRNPA1 and hnRNPA2 pathology as 

they can be in MSP. 

1.7 Disease-associated RBPs are involved in the formation of RNP granules. 

An important shared feature of ataxin 2, TDP-43, FUS, hnRNPA1, hnRNPA2, 

EWSR1, and TAF15 is their recruitment to stress granules upon cellular exposure to 

environmental stresses like heat shock, infection, ischemia, or oxidative stress 

[50,134,172]. Stress granules are RNP granules that assemble in the cytoplasm in 

stress conditions and incorporate non-translating polyadenylated mRNA transcripts, 
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translation initiation factors, small ribosome subunits, and RBPs (Figure 7) [50,173]. 

They are sites of translation suppression, consisting of stalled translation-initiation 

complexes and translational-silencing proteins in addition to other regulators of RNA 

metabolism, and serve to redirect cellular energy and resources towards the production 

of cytoprotective proteins that will be essential for survival and recovery after stress 

[50,172,174,175]. Processing bodies (P bodies) are a related class of RNP granules that 

are constitutively assembled in addition to being induced by cellular stress (Figure 7) 

[172]. P bodies are cytosolic sites of mRNA decay that interact with stress granules, 

allowing for possible exchange of mRNAs and proteins between assemblies 

[50,172,174,176,177]. Crucial to the reversible assembly of RNP granules is the 

intermolecular association of PrLDs or other LCDs via multiple weak, transient 

interactions as target RNAs are engaged, primarily via RNA-binding domains 

[50,134,175,178]. In some cases, as with hnRNPA1, PrLDs can also bind RNA, 

frequently via RGG motifs [179,180]. In other cases, as with FUS, the PrLD does not 

bind to RNA directly [181]. The PrLD of the mammalian stress granule protein T-cell 

intracellular antigen (TIA1) [182] is required for incorporation into chemically-induced 

stress granules [183]. In yeast, a reduction in the recruitment of prion-like proteins Lsm4 

and Pop2 to P-bodies is observed in the absence of their PrLDs [184]. Therefore, 

despite their propensity for misfolding events, PrLDs have likely been preserved 

throughout evolution in part because they enable essential protein-protein interactions 

that provide the fluid architecture of membraneless cellular compartments [41]. In 

addition to stress granules and P bodies, germ granules are cytoplasmic RNP bodies 

found in the cytoplasm [185]. Membraneless organelles that contribute to nuclear 
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organization include nucleoli, paraspeckles, gems, Cajal bodies, and promyelocytic 

leukemia (PML) bodies [41,158]. 

 

Figure 7: Cytoplasmic RNP granules include stress granules and P bodies. 
Stress granules are cytoplasmic assemblies that form in response to environmental 
stress and are sites of stalled translation initiation [50,172,176]. They contain 
polyadenylated mRNA transcripts, RBPs, translation initiation factors, and small 
ribosomal subunits [173]. P bodies are constitutively present but also form in response to 
stressful conditions [172]. They serve as sites of mRNA degradation and are 
characterized by the elements of the mRNA decapping and decay machinery [50,172]. 
Shown are a number of protein components of mammalian stress granules and P bodies 
[49,50,172,176]. 
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Remarkably, a number of RBPs with PrLDs, which have not yet been connected 

to disease, are emerging as critical scaffolds for the formation of these membraneless 

organelles. For example, the PrLD of RBM14 (as well as FUS) is critical for paraspeckle 

formation [186]. Likewise, the PrLD of hnRNPD plays an important role in Sam68 

nuclear body formation [187], whereas the PrLD of Xvelo is critical for Balbiani body 

formation [188,189]. Finally, PrLDs in DAZ1-4 and DAZL are predicted to have important 

roles in the formation of amyloid-like structures that regulate key meiotic events 

[190,191]. We anticipate that PrLDs in RNA/DNA-binding proteins will continue to 

surface as key scaffolds for various membraneless organelles. PrLDs in proteins that do 

not bind nucleic acids will also likely serve as scaffolds in other contexts. For example, 

the PrLD of Pin2 can function as a trans-Golgi network retention motif by driving the 

assembly of higher order complexes [192]. 

A role for the alteration of RNP granule dynamics in neurodegenerative 

pathology is suggested by studies showing that disease-associated mutant proteins are 

recruited differently to RNP granules than their WT counterparts 

[112,134,173,182,193,194]. Moreover, changes in the expression of RNP granule 

components modify the effects of toxic neurodegenerative disease RBPs in model 

systems [195]. hnRNPA1 and hnRNPA2 are nuclear when expressed in HeLa cells but 

are incorporated into cytoplasmic stress granules upon arsenite stress, and recruitment 

of hnRNPA1D262V and hnRNPA2D290V occurs more rapidly than relocalization of the WT 

proteins [134]. The D290V substitution also enhances hnRNPA2 recruitment to stress 

granules in motor neurons derived from MSP-patient iPSCs [157]. A VCP mutation that 

also causes MSP has the same effect on hnRNPA2 [157]. The fact that these mutations 
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promote the targeting of RBPs to stress granules, while VCP mutations can also 

decrease stress-granule clearance [142], suggests a model in which MSP can be 

caused by any perturbation that shifts the equilibrium of dynamic stress-granule 

formation and dissolution towards granule formation or persistence. In cultured cells, 

familial ALS mutations cause increased formation of TDP-43 inclusions that are also 

positive for stress granule markers after exposure to environmental stress [50,182]. FUS 

variants, too, show enhanced association with stress granule markers in cytoplasmic 

inclusions [50,112,173,193,194]. In a yeast model of TDP-43 proteinopathy, 

overexpression of several RNP granule components, including Tis11, Hrp1, Vts1, Kem1, 

and Pbp1, either enhanced or suppressed the toxicity of TDP-43 expression [195]. 

Pbp1 is a stress-granule protein that interacts with Pab1, also a component of 

stress granules, and regulates mRNA polyadenylation [81,196]. Interestingly, Pbp1 is the 

yeast homologue of human ataxin 2, which bears a polyglutamine expansion in SCA2 

[81]. Deletion of Pbp1 diminishes stress granule formation and suppresses TDP-43 

toxicity in yeast, whereas overexpression of Pbp1 enhances TDP-43 toxicity in yeast 

[81]. The Drosophila homologue, Atx2, also has a dose-dependent effect on TDP-43 

toxicity in the fly nervous system, with a reduction in Atx2 expression reducing the toxic 

TDP-43 phenotype [81]. Further analysis revealed that TDP-43 and ataxin 2 physically 

interact in yeast and humans in an RNA-dependent manner [81]. Furthermore, ataxin 2 

forms abnormal cytoplasmic foci in ALS and FTD patient neurons, and TDP-43 

inclusions can be found in cerebellar Purkinje cells and brainstem nuclei in SCA2 [81]. 

Genetically, mutations in ATXN2 are the most common known risk factor for ALS [81]. 

Polyglutamine expansions of >34 repeats cause SCA2, but intermediate-length 
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expansions from 27 to 33 glutamines in length were found to increase the likelihood of 

developing ALS by a factor of ~2.8 [81,197-199]. 

In Drosophila, increased expression of the stress granule protein PABP causes 

more severe TDP-43-induced retinal degeneration [195]. The cytoplasmic human 

homolog PABPC1 was observed in cytoplasmic inclusions in the motor neurons of ALS 

patients, despite having a predominantly diffuse pattern of localization in healthy controls 

[195]. RNP-granule markers have also been found to modify FUS toxicity in model 

systems [110]. Overexpression of stress granule proteins Pab1, Tif2, Tif3, and Tis11 in a 

yeast model suppressed the toxic effect of FUS overexpression [110,195,196]. The 

human homologue of Tif2, EIF4A1, is similarly able to suppress FUS toxicity in cultured 

mammalian cells [110]. FUS toxicity in yeast is also mitigated by overexpression of the P 

body protein Edc3 or Sbp1, which localizes to both stress granules and P bodies 

[110,196,200]. Both Edc3 and Sbp1 promote mRNA decapping prior to 5’-to-3’ 

degradation [196,201]. Deletion of the stress granule protein Pub1 or the P-body protein 

Lsm7 decreases FUS toxicity in yeast [110,196]. In P bodies, Lsm7 is part of a 

heteroheptameric complex consisting of Lsm proteins 1-7 [202,203]. The Lsm1-7 

proteins activate mRNA decapping and protect mRNA from trimming, a process by 

which transcripts are shortened by 10-20 nucleotides at the 3’ end [202-204]. Lsm7 also 

participates in pre-mRNA splicing as a component of a nuclear complex consisting of 

Lsm proteins 2-8 [202,205,206]. This heptamer stabilizes newly synthesized U6 snRNA 

by binding to its 3’ end [202,205,206]. The Lsm2-8 complex also contributes to mRNA 

degradation in the nucleus by targeting nuclear RNAs for decapping [202,207]. 
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Stress granule formation in yeast is diminished by deletion of Pbp1, the yeast 

homologue of ataxin 2, or Pub1, which is the yeast homologue of the human protein 

TIA1 [208]. TIA1 is required for mammalian stress-granule formation, and reduced ataxin 

2 expression results in reduced stress-granule assembly [209,210]. TIA1 and another 

stress-granule marker, eIF3, have been identified in the proteinaceous inclusions in the 

brain and spinal cord tissue of patients with ALS and FTD [112,182]. TIA1 is a protein 

containing RRMs and a PrLD that is essential for stress-granule formation in cultured 

mammalian cells [50,183]. A mutation in TIA1 causes Welender distal myopathy, and 

mutant TIA1 expression leads to increased stress-granule abundance in cultured cells, 

suggesting that altered stress-granule dynamics may underpin this slowly progressive, 

adult-onset disorder [50,211,212]. 

1.8 Phase transitions underpin RNP granule formation and misregulation 

It is now thought that RNP-granule components coalesce into membraneless 

compartments through phase transitions that drive the reversible formation of liquid 

droplets or more solid hydrogel states [41,50,213-215]. Several RNP granules have 

been shown to have liquid-like properties, including P granules in C. elegans, P bodies 

in S. cerevisiae, PML nuclear bodies, and mammalian stress granules and P bodies 

[216-218]. These compartments are spherical, can fuse with one another and relax into 

a new sphere, and undergo rapid internal rearrangement as demonstrated by half-

bleaching experiments [216,217,219]. Liquid droplets form via liquid-liquid phase 

separation (LLPS), or the “demixing” of the granule components and the cytoplasm, a 

process modeled by the separation of standing oil and vinegar [219]. Recent work has 

shown that the liquid droplet environment promotes certain biochemical reactions, 
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including the stabilization of RNA hairpins and the unwinding of double-stranded nucleic 

acids [220]. The liquid interior is therefore a specialized microcosm for certain nucleic-

acid remodeling reactions [214]. Liquid droplets create a controlled environment by 

permitting or restricting entry of proteins based on amino acid sequence [220].  

The transition from soluble protein to liquid droplet is characteristically driven by 

intrinsically-disordered proteins, and can be mediated by a multitude of intermolecular 

interactions [178,221]. Disordered LCDs, including PrLDs, associate with each other via 

weak, non-specific interactions in a manner that can be concentration dependent 

[178,181,222]. RNA-binding via RRMs or PrLDs can facilitate additional multivalent 

interactions, explaining the observation that the protein concentration required for the 

formation of hnRNPA1 droplets is decreased in the presence of RNA [178,222]. 

Interactions between disordered regions of the P-granule protein Ddx4 are mediated by 

electrostatic interactions resulting from patterned blocks of residues of alternating net 

charge [178,223]. Structural analysis of the LCD of FUS in the liquid phase-separated 

state demonstrates that it retains a disordered character within droplets, suggesting that 

interactions among PrLDs within liquid droplets are likely to be transient with frequent 

reorientations [41,181]. 

Hydrogels have solid-like properties, a cross-linked structure, a high water 

content, and water-soluble components [219]. Stress granules in yeast are gel-like, 

highlighting the biological relevance of this form of protein assembly [178,217]. LCDs 

can also facilitate the transition to the gel phase [213,224,225]. In vitro, the PrLDs of 

FUS, hnRNPA1 and hnRNPA2 all form hydrogels that are composed of amyloid-like 

fibrils [41,222,224]. These hydrogel structures are capable of trapping homotypic and 
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heterotypic LCDs [224]. FUS LCD hydrogels, for example, bind and retain, with varying 

avidities, soluble FUS LCDs as well as the LCDs of hnRNPA1, hnRNPA2, TDP-43 and 

TIA1 [224]. The role of hydrogel structures in normal RNP granule assembly in 

mammalian cells has been controversial [217,226]. One recent model of mammalian 

stress granules suggests that, rather than being pure liquid droplets, stress granules are 

composed of a liquid-like exterior containing an internal gel-like core [41,226]. 

Recent evidence suggests that inappropriate phase transitions nucleated by RNP 

granules may represent a crucial element of the pathogenesis of neurodegenerative 

disease [222,227]. In vitro experiments exploring LLPS of FUS and hnRNPA1 indicate 

that, over time, liquid droplets are prone to ‘mature’ and undergo a liquid to solid 

transition involving protein fibrillization [222,227]. This process is accelerated by 

pathologic PrLD mutations [222,227]. Mutations in the PrLD of FUS also reduce the 

reversibility of FUS hydrogel formation [225]. This suggests a model in which disease-

causing FUS mutations, which tend to cluster in the PrLD, RGG-rich regions, and NLS 

[83], enhance fiber formation within droplets via one of two mechanisms. First, PrLD 

mutations likely serve to directly increase the propensity of FUS liquids to transition into 

irreversible aggregates [225,227]. Second, NLS mutations, or frameshift mutations that 

disrupt the NLS (Figure 3), may function to increase cytoplasmic FUS concentration by 

decreased nuclear import, driving liquid droplet formation, persistence, and maturation to 

fibrous structures [41,227]. Importantly, though, mutations in the FUS NLS can also 

directly alter the dynamics of phase transitions [225]. When purified FUS with and 

without mutations in the PY-NLS was induced by a temperature shift to form liquid 

droplets in vitro, mutant FUS droplets persisted longer than those composed of WT FUS 
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[225]. Thus, mutations in regions outside the LCD may contribute to pathologic 

persistence of RNP granules leading to aberrant fibril formation. 

The most common cause of ALS and FTD is a hexanucleotide repeat expansion 

in a noncoding region of C9ORF72 [228,229]. This expansion leads to the RAN 

translation of several dipeptide repeat proteins, including poly-(Pro-Arg) (PR) and poly-

(Gly-Arg) (GR), which form nuclear and cytoplasmic inclusions in the brain and spinal 

cord of ALS/FTD patients harboring this expansion [229]. LCDs, such as those 

contained in hnRNPA1, hnRNPA2, and other RNP granule components, are a preferred 

binding target of PR and GR, which can disrupt granule dynamics [229,230]. GR50 or 

PR50 expression in cultured cells caused spontaneous assembly of persistent stress 

granules [229]. GR20 or PR20 reduced the concentration required for hnRNPA1 LLPS, 

and led to the formation of droplets with reduced fluidity [229]. 

1.9 Therapeutic protein disaggregases to counter aberrant phase transitions 

A therapeutic agent with the ability to counteract pathologic phase transitions 

could have tremendous utility across neurodegenerative diseases caused by misfolding 

events related to RNP granule dysfunction. One approach would be to identify a small 

molecule or RNA that could preserve the liquid-granule state by preventing the transition 

to solid aggregates. An agent that could actively reverse the liquid-to-solid phase 

transition would be especially appealing for patients with active disease. Hsp104 is a 

hexameric protein disaggregase in the AAA+ ATPase family [231-233]. It is found in 

yeast and has homologues across eubacteria and eukaryotic species, but no metazoan 

orthologue exists [231,234]. Hsp104 preserves proteostasis and promotes survival in S. 

cerevisiae by renaturing aggregated proteins and returning them to their native 
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conformations after exposure to environmental stress [231,234,235]. It also has the 

ability to rapidly remodel amyloid fibers and prefibrillar oligomers and, in doing so, 

regulates prionogenesis and the propagation and elimination of yeast prion conformers 

[232,235-239]. In S. cerevisiae, Hsp104 also functions in the dissolution of stress 

granules and the maintenance of the liquid-like properties of P bodies [217]. Hsp104 

contributes to the proper targeting of P body components, which mislocalize to stress 

granules in its absence [217]. As a potential therapeutic, Hsp104 has shown promise in 

several models of neurodegenerative disease [8,235,240]. In a rat model of PD, 

expression of Hsp104 decreased dopaminergic neuron loss and accumulation of α-

synuclein aggregates in the substantia nigra of animals expressing a PD-linked α-

synuclein variant [8]. Hsp104 increased lifespan and reduced the number of cortical 

polyglutamine inclusions in a mouse model of HD [240]. Potentiated Hsp104 variants 

with enhanced ATPase activity reduce protein aggregation and suppress toxicity of TDP-

43, FUS, and α-synuclein in S. cerevisiae [234,235,241-243]. Enhanced Hsp104 variants 

also protect against dopaminergic neuron loss in a C. elegans model of PD [235]. These 

studies suggest that Hsp104 has broad activity against neurodegenerative disease 

substrates, and its substrate repertoire can be expanded or sharpened using 

engineering strategies. 

Finally, it will also be important to determine whether endogenous human protein 

disaggregases, including Hsp110, Hsp70, Hsp40, and small heat-shock proteins [244-

246]; HtrA1 [247]; and NMNAT2 plus Hsp90 [248], also display activity against disease-

linked RBPs with PrLDs. These protein-disaggregase systems could also be engineered 

to possess enhanced disaggregase activity against disease-linked RBPs with PrLDs 
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[249]. Moreover, small-molecule drugs that enhance the activity of these systems could 

be useful therapeutics aimed at restoring homeostasis of RBPs with PrLDs [249]. We 

anticipate that harnessing the power of protein disaggregases could lead to important 

advances in treating several devastating diseases caused by aberrant phase transitions 

of RBPs with PrLDs [249]. 

1.10 S. cerevisiae as a tool for modeling neurodegeneration 

The budding yeast S. cerevisiae has emerged as a powerful tool for studying 

protein pathology associated with neurodegeneration [1,7]. There is significant 

conservation of biological pathways from yeast to humans, and the yeast genome is 

tractable and well-catalogued [1,7,250]. Robust yeast models of TDP-43, FUS, and α-

synuclein have been used to identify modifiers of RBP toxicity that have translated to 

Drosophila, C. elegans, and mammalian cell culture models [7,110,195,235,251]. A 

genetic modifier of TDP-43 toxicity in yeast led to the identification of ataxin 2 

expansions as a relatively common genetic risk factor for ALS [81]. Yeast also predicted 

the involvement of TAF15, EWSR1, hnRNPA1, and hnRNPA2 in neurodegenerative 

disease pathogenesis [48]. We have recently established a yeast model of hnRNPA1 

and hnRNPA2 pathology in MSP [134]. This system recapitulates the cytoplasmic 

hnRNPA1 and hnRNPA2 mislocalization and cellular toxicity caused by hnRNPA1 and 

hnRNPA2 seen in patients with MSP [134]. This powerful model will provide a useful 

means for further study of these disease-causing RBPs. 

1.11 Goals of Thesis 

Our goal was to dissect the mechanism by which hnRNPA1 and hnRNPA2B1 

cause MSP by modeling disease pathology in S. cerevisiae. We employed a domain-
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mapping approach to understand which functional regions of hnRNPA1 and hnRNPA2 

are required for protein misfolding and toxicity. We explored the relationship between 

these RBPs and RNP granules in yeast, and asked whether association with stress 

granules or P bodies is an essential feature of hnRNPA1 and hnRNPA2 toxicity in yeast. 

We tested candidate genetic modifiers of hnRNPA1 and hnRNPA2 toxicity and executed 

an unbiased genetic deletion screen in an effort to identify strategies for reversing their 

toxic effects. We aimed to understand how hnRNPA1 and hnRNPA2 are similar to and 

different from each other and other proteins that cause ALS and FTD, including the more 

well-understood TDP-43 and FUS, by comparing the cellular pathways involved in 

protein toxicity through genetic modifier studies. This knowledge will be crucial for 

understanding whether disease-modifying therapeutics should target specific protein 

dysfunction or a more general pathologic process. Our hope is to gain insight into the 

underpinnings of cellular degeneration not only in MSP, but also in sporadic ALS, FTD, 

IBM, and PDB, all of which are closely related and significantly more common disorders. 

A more in depth comprehension of the ways in which RBPs cause disease will be the 

first step towards the development of therapeutic strategies of broad efficacy.
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CHAPTER 2: MECHANISMS AND MODIFIERS OF PROTEIN MISFOLDING AND 

TOXICITY FOR MULTISYSTEM PROTEINOPATHY-LINKED hnRNPA1 AND 

hnRNPA2 

 

2.1 Introduction 

The last century has seen a dramatic increase in human life expectancy, and 

with an aging population comes an increased prevalence of age-related 

neurodegenerative diseases [252]. The financial and emotional burden of disorders like 

AD, PD, ALS and FTD will continue to grow at the societal and individual levels as 

modes of prevention, therapeutic strategies, and effective cures remain elusive [252]. 

The development of clinical interventions will demand a detailed understanding of the 

pathogenic mechanisms underlying these disorders, which are unified by protein 

misfolding and the presence of pathologic proteinaceous aggregates in affected tissues 

[19,29,78,253]. 

Interestingly, a number of proteins implicated in neurodegeneration are RBPs 

with PrLDs—protein domains rich in uncharged polar amino acids and glycine and of 

similar amino acid composition to prion domains that enable yeast prions to self-replicate 

and form stable amyloid [31,39,40]. TDP-43, FUS, TAF15, and EWSR1 have RRMs and 

PrLDs, and are found in the hallmark protein inclusions of ALS and FTLD 

[15,29,31,48,56,72,128]. Moreover, mutations in TDP-43 and FUS can cause these 

diseases, and TAF15 and EWSR1 variants have been identified in sporadic ALS 

patients [29,48,127,129,132]. These observations, and a growing list of RBPs with 
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PrLDs associated with various neurodegenerative pathologies, imply a possible role for 

protein misfolding mediated by PrLDs in age-related degeneration [31,50]. 

Recent genetic studies revealed that specific missense mutations in the PrLDs of 

hnRNPA1 and hnRNPA2, cause familial inclusion body myopathy with Paget’s disease 

of bone, frontotemporal dementia, and amyotrophic lateral sclerosis [134]. This rare age-

related degenerative disease, also known as MSP, has a heterogeneous presentation 

characterized by early degeneration of muscle, bone, brain tissue, and motor neurons, 

and is untreatable and ultimately fatal [134,136]. Interestingly, additional missense 

mutations in the PrLD of hnRNPA1 have been identified in familial and sporadic ALS 

[134,168]. All five identified mutations are predicted, by two separate algorithms, to 

enhance the natural prionogenicity of these RBPs [39,40,134]. 

ZipperDB, an algorithm that scores amyloidogenicity, predicts that these amino 

acid substitutions create hexapeptides with an increased propensity to form “steric 

zippers,” self-complementary beta sheets that constitute the backbone of amyloid fibrils 

[164]. These findings suggest that the PrLDs of hnRNPA1 and hnRNPA2 can assume 

an ordered fibrillar structure and are more likely to do so when harboring these disease-

linked missense mutations. In vitro experiments confirm that purified WT hnRNPA1 and 

hnRNPA2 form self-seeding fibrils, a process that is accelerated in the disease-linked 

variants [134]. This observation provides a possible mechanism for the pathogenicity of 

the mutant hnRNPs and a connection between the aggregation-prone nature of PrLDs 

and neurodegeneration. More recently, it has been established that aberrant fibrillization 

may occur in the context of RNP granules that form via liquid-liquid demixing driven by 

transient interactions of the LCDs of RBPs [178,213,214,222,227]. Disease-linked 



 

36 

 

mutations in hnRNPA1 and FUS promote the transition of these liquid droplet-like 

compartments to more solid, fibrillar structures [222,227]. 

As a first step toward understanding how the mutant proteins hnRNPA1D262V and 

hnRNPA2D290V cause pathology in MSP we determined which functional domains govern 

misfolding and toxicity. We have asked whether the two are intrinsically linked—whether 

hnRNPA1 and hnRNPA2 misfolding is always cytotoxic, and whether protein toxicity can 

occur in the absence of protein misfolding. As we search for therapeutic options for 

patients with MSP and more common degenerative disorders, such as isolated ALS or 

FTLD, it will be important to understand whether the mechanism of cell death is variable 

based on the identity of the disease-causing protein. We aimed to draw comparisons 

among hnRNPA1, hnRNPA2 and the well-studied disease causing proteins TDP-43 and 

FUS to identify mechanistic similarities and distinctions. We also asked whether known 

suppressors of TDP-43 and FUS toxicity could mitigate the toxicity of hnRNPA1 and 

hnRNPA2, which would present opportunities for broadly efficacious therapeutics. 

We have conducted our studies using Saccharomyces cerevisiae, which has 

proven to be a powerful tool for answering similar questions in the context of other 

neurodegenerative diseases associated with protein misfolding including AD, PD, HD, in 

addition to ALS and FTLD [78,110,254-257]. Budding yeast offer an efficient system with 

an easily manipulated, well-understood and highly conserved genome [1]. The 

conservation of cellular pathways from yeast to humans allows us to study perturbations 

due to the misfolding and accumulation of neurodegeneration-associated proteins and 

draw mechanistic conclusions that can be applied to human pathology [1,7]. Yeast were, 

in fact, used to predict that hnRNPA1 and hnRNPA2 were likely to be connected with 
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neurodegenerative disease [48]. In MSP patients, even in the absence of mutations in 

hnRNPA1 and hnRNPA2, muscle atrophy is accompanied by the mislocalization of 

these proteins to cytoplasmic inclusions in muscle tissue [134,137,258]. Overexpression 

of hnRNPA1 and hnRNPA2 in a yeast model of MSP recapitulates this cytoplasmic 

protein accumulation and cytotoxicity [134,258]. Here, we map the domain requirements 

for hnRNPA1 and hnRNPA2 toxicity and aggregation in yeast. We define striking 

similarities but also important differences in how hnRNPA1 and hnRNPA2 aggregate 

and confer toxicity in yeast, which also distinguish them from other ALS-linked RBPs 

with PrLDs, including FUS and TDP-43. These differences will likely help inform potential 

therapeutic strategies. 

2.2 Results 

2.2.1 RRM2 and PrLD determinants enable maximal hnRNPA1 toxicity 

The domain architecture of hnRNPA1 consists of two N-terminal RRMs (RRM1 

and RRM2) that engage RNA [259,260] as well as a C-terminal glycine-rich region 

(Figures 5, 8A) [130,134]. The C-terminal glycine-rich region has been identified as a 

PrLD (residues 195-317), while another algorithm predicts that a shorter sequence within 

the PrLD, referred to as the “core” PrLD (residues 233-272), will have prion-like 

properties [39,40,134]. The PrLD also contains a RGG box (residues 206-234), and 

contributes to the RNA binding and remodeling activity of hnRNPA1 [166,179,261]. A 

PY- NLS (or M9 sequence) resides in the PrLD [130,180]. However, the yeast nuclear 

import machinery does not decode the hnRNPA1 PY-NLS [262,263]. Thus, expression 

of WT hnRNPA1 in yeast recapitulates the cytoplasmic mislocalization of WT hnRNPA1 

that occurs in forms of MSP caused by mutations in hnRNPA2 or VCP [134]. Both WT 
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hnRNPA1 and hnRNPA1D262V were highly toxic when expressed in S. cerevisiae (Figure 

8B) [48,134]. We created a series of deletion and truncation constructs to determine the 

functional domain requirements for this toxicity (Figure 8A-C). All of these constructs 

were robustly expressed (Figure 8C). Thus, variations in the toxicity of hnRNPA1D262V 

constructs could not be attributed to altered protein expression levels. 

The MSP-linked D262V substitution introduces an amyloidogenic hexapeptide 

(residues 259-264) that increases the aggregation propensity of the PrLD of hnRNPA1 

[134]. Indeed, deletion of this hexapeptide greatly retards hnRNPA1 fibril formation in 

vitro [134]. Intriguingly, this hexapeptide is not critical for toxicity in yeast, as neither 

deletion of this enhanced “steric zipper” motif nor deletion of the core PrLD containing 

this hexapeptide (residues 233-272) affected toxicity (Figure 8A, B, constructs ∆259-264 

and ∆233-272). In the absence of this crucial steric zipper, hnRNPA1 is unable to 

fibrillize, but retains the ability to undergo liquid-liquid phase separation, forming protein-

rich droplets with liquid properties [134,222]. Our results suggest that liquid 

hnRNPA1D262V droplets may represent a toxic species in yeast. These surprising results 

led us to question whether the PrLD was required at all for hnRNPA1 toxicity in yeast. 

Deletion of the entire PrLD spanning residues 195-317, preserving only the RRMs 

resulted in decreased toxicity (Figure 8A, B, construct 1-195), demonstrating that PrLD 

determinants contribute to toxicity. Moreover, RRM1 alone was not toxic (Figure 8A, B, 

construct 1-97). Nonetheless, the mild toxicity of the RRM1 plus RRM2 construct, 1-195, 

differentiates hnRNPA1 from TDP-43 and FUS, where deletion of the PrLD eliminates 

toxicity [78,110]. 
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Next, we added back progressively larger portions of the PrLD (Figure 8A, B, 

constructs 1-233, 1-272, and 1-289) in an effort to restore maximal toxicity. Remarkably, 

a very short N-terminal portion of the PrLD corresponding to the RGG box (residues 

218-234) [166] was sufficient to restore maximal toxicity (Figure 8A, B). Thus, the RGG 

box of the PrLD, an RNA-binding portion of this domain [179], plays a critical role in 

hnRNPA1 toxicity in yeast. 

Importantly, the hnRNPA1D262V PrLD construct (Figure 8A, B, construct 195-320) 

was not toxic, indicating that the appended RRMs are critical for hnRNPA1D262V toxicity. 

Indeed, deletion of RRM2 reduced but did not eliminate toxicity (Figure 8A, B, constructs 

∆105-184), whereas deletion of RRM1 had no effect on toxicity (Figure 8A, B, construct 

105-320). Thus, maximal hnRNPA1 toxicity requires RRM2 as well as determinants 

within the PrLD. 
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Figure 8: Mapping the domain requirements for hnRNPA1D262V aggregation and 
toxicity in S. cerevisiae. 
(A) The domain structure of hnRNPA1 is illustrated, along with a series of hnRNPA1D262V 
deletion and truncation constructs, which were expressed in S. cerevisiae. (B) Five-fold 
serial yeast dilutions were spotted on glucose and galactose. hnRNPA1 and 
hnRNPA1D262V were highly toxic when expressed in yeast, and RRM2 was important for 
this toxicity (construct Δ105-184). A portion of the C-terminal PrLD was also crucial 
(construct 1-195). Because hnRNPA1 constructs are under the control of the GAL1 
promoter, expression is repressed on glucose media but robustly induced on galactose 
media. (C) Immunoblot confirmed expression of all hnRNPA1 protein constructs. (D) 
Fluorescence microscopy illustrates the cellular localization of GFP-tagged hnRNPA1 
constructs. The WT protein and all mutant constructs localized to the cytoplasm, with all 
proteins forming foci except the isolated RRM1 (construct 1-97). RRM2 deletions 
resulted in smaller, more numerous foci (constructs Δ105-184 and 195-320). WT, wild 
type; RRM, RNA-recognition motif; PrLD, prion-like domain; NLS, nuclear localization 
signal. 

 

2.2.2 Other ALS-associated hnRNPA1 variants are toxic and form foci in S. 

cerevisiae. 

 We asked whether other ALS-associated hnRNPA1 variants are also toxic when 

expressed in our yeast model and whether these proteins are similarly localized to 

cytoplasmic foci. We overexpressed hnRNPA1D262N, which was identified in a patient 

with familial ALS, and hnRNPA1N267S, which was found in a patient with sporadic ALS, in 

S. cerevisiae. hnRNPA1D262N and hnRNPA1N267S were as toxic as hnRNPA1D262V and 

hnRNPA1 in yeast (Figure 9A). Both hnRNPA1D262N and hnRNPA1N267S formed large 

cytoplasmic foci (Figure 9B). Thus, though the cellular phenotype of patients carrying 

hnRNPA1D262N and hnRNPA1N267S mutations has not been demonstrated, it is likely that 

our yeast model will have utility in modeling a range of hnRNPA1-associated 

pathologies. 
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Figure 9: ALS-associated hnRNPA1 variants are toxic and form cytoplasmic foci in 
yeast. 
(A) A spotting assay was used to compare the toxicities of GFP-tagged hnRNPA1 
variants. hnRNPA1D262N and hnRNPA1N267S were as toxic as hnRNPA1D262V and 
hnRNPA1 in yeast. (B) GFP-tagged hnRNPA1 WT and three disease-associated 
mutants, hnRNPA1D262V, hnRNPA1D262N, and hnRNPA1N267S formed large cytoplasmic 
foci when overexpressed in yeast. 

 

2.2.3 hnRNPA1 constructs with RRM1 and RRM2 or the PrLD aggregate in yeast 

hnRNPA1D262V and hnRNPA1 mislocalized to a few, large cytoplasmic foci 

(Figure 8A, D, Figure 9B) [48,134]. Deletion of the MSP-linked steric zipper from the 

PrLD did not affect this localization, nor did deletion of the core PrLD (Figure 8A, D, 

constructs ∆259-264 and ∆233-272), indicating that these highly aggregation-prone 

regions are not required for the formation of cytoplasmic protein foci in yeast. C-terminal 

deletions in the PrLD also did not affect the localization of hnRNPA1D262V (Figure 8A, D, 

constructs 1-289, 1-272 and 1-233). By contrast, deletion of one or both RRMs, resulted 

in more numerous protein foci that were scattered throughout the cytoplasm (Figure 8A, 
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D, constructs 105-320, ∆105-184 and 195-320). Thus, formation of distinct, large foci 

likely depends upon interactions mediated by RRM1 and RRM2. Indeed, RRM1 and 

RRM2 were sufficient to maintain the distribution of hnRNPA1 to few large cytoplasmic 

foci in the absence of the PrLD (Figure 8D, construct 1-195). RRM1 alone, however, was 

diffusely located throughout the cell and did not form foci (Figure 8D, construct 1-97). 

Thus, the only soluble hnRNPA1 construct was not toxic (Figure 8B, D). However, 

aggregation per se was not sufficient for toxicity as the PrLD alone aggregated but was 

not toxic (Figure 8B, D). Indeed, these findings suggest that hnRNPA1 aggregation is 

only connected with toxicity if the construct bears an intact RRM (Figure 8B, D), 

indicating that aggregation and RRM-mediated RNA binding are required for toxicity. 

Next, we asked whether the cytoplasmic foci formed by various hnRNPA1 and 

hnRNPA1D262V constructs represent bona fide aggregates via sedimentation analysis of 

yeast lysates [79,235]. As expected, construct 1-97, RRM1 alone, which exhibits diffuse 

fluorescence (Figure 8D), was confined to the soluble fraction as was the endogenous 

soluble protein Pgk1 (Figure 10A). Both hnRNPA1 and hnRNPA1D262V partitioned to the 

insoluble fraction, indicating formation of biochemical aggregates (Figure 10A). Likewise, 

the PrLD construct hnRNPA1D262V 195-320 also separated primarily into the insoluble 

fraction (Figure 10A). By contrast, however, the RRM1 and RRM2 construct, 1-195, 

partitioned to both the soluble and insoluble fractions (Figure 10A), indicating that the 

large foci formed by hnRNPA1 1-195 in yeast (Figure 8D) likely represent more transient 

or unstable aggregated structures. Thus, the PrLD enables a greater proportion of 

hnRNPA1 to form insoluble structures. 
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Typically, yeast prions form infectious amyloid fibrils that are SDS-resistant 

[35,37]. For yeast prions, a distinctive prion domain enriched in uncharged polar amino 

acids and glycine enables prionogenesis [31,39,40]. The PrLD of hnRNPA1 possesses 

similar amino acid composition to canonical yeast prion domains [31,39,40,50,134,258]. 

Thus, we assessed whether aggregates formed by various hnRNPA1 constructs were 

amyloid-like via semi-denaturing detergent-agarose gel electrophoresis (SDD-AGE) 

[264]. As a positive control, we employed the yeast prion protein Rnq1 [265] tagged with 

YFP, which as expected formed a smear of large SDS-resistant conformers (Figure 10B) 

[266]. With the exception of the hnRNPA1D262V PrLD construct, 195-320, none of the 

hnRNPA1 constructs formed a very high molecular weight smear like Rnq1 in the 

presence of 2% SDS (Figure 10B). Rather, with the exception of the hnRNPA1D262V PrLD 

construct, 195-320, all the hnRNPA1 constructs formed two distinct higher-order species 

above the 250kDa marker (Figure 10B, arrow). These high molecular weight forms likely 

represent SDS-resistant oligomeric structures or stable RNP particles. These findings 

distinguish hnRNPA1 from TDP-43, which was resolved entirely as SDS-soluble 

monomers via SDD-AGE [78]. Intriguingly, the non-toxic hnRNPA1D262V PrLD construct, 

195-320, formed a very high molecular weight smear more similar to Rnq1 (Figure 10B). 

Thus, the hnRNPA1D262V PrLD construct, 195-320, likely forms amyloid-like conformers 

in yeast, which are non-toxic. Likewise, amyloid forms of Rnq1 are not toxic to yeast 

[267,268]. Overexpression of soluble Rnq1 is highly toxic to yeast cells bearing Rnq1 

prions, i.e. [RNQ+] yeast, but toxicity results from SDS-soluble forms of Rnq1 and 

increased formation of SDS-resistant Rnq1 amyloid is protective [267,268]. 
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Figure 10: The PrLD of hnRNPA1D262V forms high-molecular weight, SDS-resistant 
species and is crucial for the aggregation of the full-length protein.  
(A) In vivo sedimentation was carried out on clarified yeast cell lysates. hnRNPA1, 
hnRNPA1D262V, and construct 195-320 entered the pellet fraction when lysates were 
subjected to ultracentrifugation, indicating the formation of biochemical aggregates. 
Construct 1-97 segregated primarily to the soluble lysate fraction, suggesting a lack of 
aggregate formation. Construct 1-195 demonstrated both aggregated and soluble 
species. For all constructs, 10% of each of the total and soluble fractions was run 
alongside 20% of the pelleted protein fraction. (B) Yeast expressing hnRNPA1 and all 
hnRNPA1D262V constructs were subject to SDD-AGE. A YFP-tagged prion protein, Rnq1, 
served as a positive control, forming amyloid species that were SDS-insoluble, indicated 
by a high molecular weight smear (bracket). In 2% SDS, the hnRNPA1D262V PrLD in 
isolation (construct 195-320) formed a similar high molecular weight smear that was 
distinct from a secondary higher order species (arrow) formed by all other constructs. A 
red label indicates a highly toxic construct, yellow denotes intermediate toxicity, and 
green is used for non-toxic constructs. SDD-AGE experiments were done in 
collaboration with Michael Y. Soo. 
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2.2.4 The hnRNPA1 PrLD is critical for fibrillization in vitro 

The ability of various hnRNPA1D262V constructs to form higher-order, SDS-

resistant species in yeast and the ability of the hnRNPA1D262V PrLD construct, 195-320, 

to form amyloid-like structures of similar size to Rnq1 prions led us to examine whether 

hnRNPA1 might form amyloid in vitro. Previously, we demonstrated that purified, 

recombinant hnRNPA1 forms self-seeding fibrils, a process that is accelerated by the 

MSP-linked mutation D262V, but whether these fibrils were amyloid was unclear [134]. 

We now show that unlike recombinant fibrils formed by full-length FUS or TDP-43 

[79,110], these hnRNPA1 fibrils bind Thioflavin T (ThT), a diagnostic amyloid dye (Figure 

11A), indicating that they likely adopt an amyloid cross-β structure [222]. hnRNPA1D262V 

spontaneously assembled into ThT-reactive fibrils more rapidly than hnRNPA1 (Figure 

3A). The major difference was a much shorter lag phase prior to assembly for 

hnRNPA1D262V (~2.5h) compared to hnRNPA1 (~10.5h; Figure 11A). Thus, the D262V 

mutation enables hnRNPA1 to more rapidly nucleate amyloidogenesis. The ability of 

hnRNPA1 and hnRNPA1D262V to readily access an amyloid state in vitro suggests that 

the hnRNPA1D262V PrLD construct, 195-320, is likely forming amyloid conformers in 

yeast (Figure 10B). 
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Figure 11: hnRNPA1D262V forms ThT positive fibrils and requires the C-terminal 
PrLD to fibrillize in vitro.  
(A) Fluorescence spectroscopy was used to measure ThT fluorescence over 12 hours. 
hnRNPA1 and hnRNPA1D262V assembled into ThT-positive fibrils. (B) Purified hnRNPA1, 
hnRNPA1D262V, and construct 1-195 were agitated at 25°C for 24 hours. hnRNPA1D262V 
105-320 was agitated at 37°C. Protein aggregation was monitored by sedimentation. 
Values represent means ± s.e.m. (n=3). Deletion of the PrLD (construct 1-195) 
abrogated fibril formation. (C) Transmission electron microscopy images taken at 24 
hours. hnRNPA1 aggregates were fibrillar and there was a distinct lack of fiber assembly 
by hnRNPA1 construct 1-195. ThT assays were conducted by Zamia Diaz and Emily 
Scarborough. Sedimentation and EM were performed by Lin Guo. 

 

Previously, we demonstrated that hnRNPA1 fibrillization is retarded in vitro upon 

making a small deletion of a hexapeptide (residues 259-264) in the PrLD corresponding 

to the position of the enhanced steric zipper in hnRNPA1D262V [134]. However, in yeast, 

deletion of this hexapeptide did not affect aggregation (Figure 8D), suggesting a more 

complex aggregation process in vivo, or perhaps the formation of liquid droplets as 

opposed to protein fibrils [222]. Indeed, the RRM1 and RRM2 protein, 1-195, aggregated 

in yeast (Figure 8D, 10A). However, in vitro, hnRNPA1 1-195 did not aggregate, 

whereas constructs bearing the PrLD aggregated rapidly (Figure 11B, C). Indeed, 

deletion of RRM1 in the presence of the D262V missense mutation (construct 

hnRNPA1D262V 105-320) created a protein that aggregated more rapidly than 

hnRNPA1D262V, which in turn aggregated more rapidly than hnRNPA1 (Figure 11B). 

Electron microscopy revealed that hnRNPA1, hnRNPA1D262V, and hnRNPA1D262V 105-

320 formed fibrils, whereas the isolated hnRNPA1 RRMs did not (Figure 11C). These 

findings suggest that the RRM1 and RRM2 protein, 1-195, is not intrinsically aggregation 

prone in contrast to the PrLD-containing hnRNPA1 proteins. Thus, the formation of 



 

49 

 

hnRNPA1 1-195 aggregates in yeast (Figure 8D, 10A) likely reflects a more complex 

process such as incorporation into RNP granules, which we do not recreate in vitro. 

2.2.5 RRM1, RRM2, and PrLD determinants enable maximal hnRNPA2 toxicity 

Do hnRNPA2 and hnRNPA1 have similar domain requirements for toxicity, 

mislocalization, and aggregation? To answer this question, we created a set of GFP-

tagged protein constructs corresponding to those designed for hnRNPA1 (Figure 8A, 

12A-C). All of these constructs were robustly expressed (Figure 12C). Thus, variations in 

the toxicity of hnRNPA2D290V constructs are not due to altered expression. The domain 

structure of hnRNPA2 closely resembles that of hnRNPA1, containing two RRMs and a 

C-terminal glycine-rich PrLD spanning residues 190-337, which also includes a smaller 

core PrLD (residues 266-303), a RGG box (residues 191-218), and a PY-NLS (residues 

296-319; Figure 12A) [31,39,40,130,269]. As with hnRNPA1, the yeast nuclear import 

machinery does not recognize the hnRNPA2 PY-NLS [262]. Thus, WT hnRNPA2 is 

mislocalized to the cytoplasm as in MSP cases caused by mutations in hnRNPA1 or 

VCP [134]. Indeed, both hnRNPA2D290V and hnRNPA2 are highly toxic in yeast (Figure 

12A, B) [48,134]. 

As with hnRNPA1, deletion of the hnRNPA2 steric zipper motif (residues 287-

292) created by the D290V mutation did not lessen this toxic phenotype, nor did deletion 

of the core PrLD (residues 266-303) (Figure 12A, B, constructs ∆287-292 and ∆266-

303). It was surprising that these very aggregation-prone segments were not required for 

toxicity. Hence, we tested whether the hnRNPA2 PrLD was required for toxicity. Deletion 

of the entire hnRNPA2 PrLD spanning residues 184-341, preserving only the RRMs 

eliminated toxicity (Figure 12A, B, construct 1-185), demonstrating that the PrLD is 
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critical for toxicity. Likewise, RRM1 alone was not toxic (Figure 8A, B, construct 1-92). 

These findings distinguish hnRNPA2 from hnRNPA1, as deletion of the hnRNPA1 PrLD 

does not eliminate toxicity (Figure 8A, B, construct 1-195). Thus, the domain 

requirements for hnRNPA1 and hnRNPA2 toxicity in yeast are subtly different. 

Next, we added back progressively larger portions of the hnRNPA2 PrLD (Figure 

12A, B, constructs 1-266, 1-303, and 1-319) in an effort to restore maximal toxicity. Here 

too, hnRNPA2 differed from hnRNPA1 as addition of a short N-terminal portion of the 

PrLD containing the RGG box (residues 186-266) was not sufficient to restore maximal 

toxicity (Figure 12A, B, construct 1-266) as it did for hnRNPA1 (Figure 8A, B, construct 

1-233). Indeed, larger portions of the PrLD were required to restore maximal hnRNPA2 

toxicity (Figure 12A, B, constructs 1-303 and 1-319). 

In further contrast to hnRNPA1D262V, hnRNPA2D290V was much less toxic upon 

deletion of RRM1 (Figure 12A, B, construct 100-341), whereas the equivalent 

hnRNPA1D262V construct exhibited maximal toxicity (Figure 8A, B, construct 105-320). 

Moreover, deletion of RRM2 alone completely suppressed hnRNPA2D290V toxicity (Figure 

12A, B, construct ∆100-179), but only partially reduced hnRNPA1D262V toxicity (Figure 

8A, B, construct ∆105-184). Thus, maximal hnRNPA2D290V toxicity is more dependent 

upon both RRMs, with a larger contribution from RRM2, and also requires a larger 

portion of the PrLD in comparison to hnRNPA1D262V. 
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Figure 12: Mapping the domain requirements for hnRNPA2D290V aggregation and 
toxicity in S. cerevisiae.  
(A) The domain structure of hnRNPA2 is highly similar to that of hnRNPA1 (depicted in 
Figures 5 and 8). A series of hnRNPA2D290V deletion and truncation constructs were 
expressed in S. cerevisiae and assayed for toxicity and cellular localization. (B) A 
spotting assay (five-fold serial yeast dilutions) was performed to compare toxicities of 
hnRNPA2 constructs. hnRNPA2 and hnRNPA2D290V were highly toxic when expressed in 
yeast, and both RRMs were required for maximal toxicity (constructs 100-341 and Δ100-
179). Part of the C-terminal PrLD was also essential (construct 1-185). hnRNPA2 
expression is repressed on glucose media and induced on galactose media. (C) 
Immunoblot confirmed robust expression of all hnRNPA2 protein constructs. (D) 
Fluorescence microscopy illustrates the cellular localization of GFP-tagged hnRNPA2 
constructs. The WT protein and all mutants were found in the cytoplasm. All proteins 
containing a portion of the PrLD formed foci, while the isolated RRM domains were 
diffuse throughout the cytoplasm (constructs 1-185 and 1-92). Deletion of one or both 
RRMs resulted in an increase in the number of foci formed (constructs 100-341, Δ100-
179, and 184-341). WT, wild type; RRM, RNA-recognition motif; PrLD, prion-like domain; 
NLS, nuclear localization signal. 

 

2.2.6 PrLD determinants are critical for hnRNPA2 aggregation in yeast 

hnRNPA2 and hnRNPA2D290V formed cytoplasmic foci in yeast (Figure 12D), 

although those formed by hnRNPA2D290V were smaller and less common than those 

formed by hnRNPA1 (Figure 12D). Deletion of the steric zipper hexapeptide (residues 

287-292) maintained this pattern of diffuse staining with few small foci, as did elimination 

of the core hnRNPA2 PrLD (Figure 12D, constructs ∆287-292 and ∆266-303). C-terminal 

deletions in the PrLD also did not affect this localization (Figure 12A, D, constructs 1-

319, 1-303 and 1-266). As with hnRNPA1D262V (Figure 8D), deletion of one or both RRMs 

of hnRNPA2D290V resulted in an increase in the number of cytoplasmic puncta (Figure 

12D, constructs 100-341, ∆100-179 and 184-341). Interestingly, deletion of both RRMs 

appeared to decrease the amount of diffuse cytoplasmic hnRNPA2 and yield intense 

hnRNPA2 foci (Figure 12D, construct 184-341). In the absence of the PrLD, hnRNPA2 

constructs yielded predominantly diffuse cytoplasmic staining (Figure 12D, constructs 1-
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185, 1-92). Thus, in contrast to hnRNPA1, the hnRNPA2 RRM1 and RRM2 construct, 1-

185, does not readily form cytoplasmic foci. 

Next, we asked whether the cytoplasmic foci formed by various hnRNPA2 and 

hnRNPA2D290V constructs represent bona fide aggregates via sedimentation analysis of 

yeast lysates [79,235]. Significant fractions of hnRNPA2 and hnRNPA2D290V were 

partitioned to the insoluble fraction (Figure 13A). However, hnRNPA2 and hnRNPA2D290V 

were also found in the soluble fraction (Figure 13A). Indeed, hnRNPA2 was more 

soluble in comparison to hnRNPA1 (Figure 10A, 13A). By contrast, the hnRNPA2D290V 

PrLD was primarily insoluble (Figure 13A, construct 184-341). The RRMs were found in 

primarily the soluble fraction with a small proportion of protein in the insoluble fraction 

(Figure 13A, construct 1-185). hnRNPA2 1-92 did not aggregate and was detected only 

in the soluble fraction (Figure 13A, construct 1-92). Thus, the hnRNPA2 PrLD primarily 

drives hnRNPA2 aggregation in yeast, whereas RRM1 and RRM2 also contribute in 

hnRNPA1 (Figure 13A). 
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Figure 13: The PrLD of hnRNPA2 is crucial for the aggregation of the full-length 
protein.  
(A) Overexpressed hnRNPA2, hnRNPA2D290V, and construct 184-341 aggregated and 
entered the pellet fraction when clarified yeast cell lysates were subjected to 
ultracentrifugation. The RRMs (construct 1-185) formed both aggregated and soluble 
species, while RRM1 alone (construct 1-92) segregated predominantly to the soluble 
lysate fraction. For all constructs, 10% of each of the total and soluble fractions was run 
alongside 20% of the pelleted protein fraction. (B) hnRNPA2 and all hnRNPA2D290V 
constructs were subject to SDD-AGE with YFP-tagged Rnq1 serving as a positive, 
amyloid-forming control. None formed the high molecular weight smear that is 
characteristic of Rnq1 prion species (bracket). All hnRNPA2 proteins did form a 
secondary high molecular weight species (arrow). Red-, yellow-, and green-labeled 
constructs have high, intermediate, and low toxicity, respectively. SDD-AGE was 
performed in collaboration with Michael Y. Soo. 

 

SDD-AGE revealed that none of the hnRNPA2 constructs formed very high 

molecular weight species similar to Rnq1-YFP prions (Figure 13B). Thus, in contrast to 

the hnRNPA1D262V PrLD, the hnRNPA2D290V PrLD does not form a higher order amyloid 
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species akin to Rnq1-YFP prions (Figure 10B, 13B). Rather, all the hnRNPA2 constructs 

formed two distinct SDS-resistant species, one from ~75-250kDa and another greater 

than 250kDa (Figure 13B, arrow). These high molecular weight forms likely represent 

SDS-resistant oligomeric structures or stable RNP particles. However, no pattern 

emerged for formation of these species by toxic or non-toxic constructs. Indeed, the toxic 

full-length hnRNPA2 constructs and non-toxic RRM constructs (1-185 and 1-92) both 

partitioned to these two species (Figure 13B). Interestingly, these two discrete higher 

order hnRNPA2 structures were smaller than those formed by hnRNPA1 (Figure 10B, 

13B), indicating that the two hnRNPs assemble into particles of different sizes. 

2.2.7 The hnRNPA2 PrLD is critical for fibrillization in vitro  

Next, we tested the in vitro determinants of hnRNPA2 fibrillization. hnRNPA2D290V 

assembles into fibrils more rapidly than hnRNPA2 [134]. However, in contrast to 

hnRNPA1, hnRNPA2 and hnRNPA2D290V form ThT-negative fibrils in vitro (Figure 14A 

and 14C). The hnRNPA2 PrLD is required for aggregation, as the isolated RRMs 

(construct 1-185) did not aggregate (Figure 14B). Deletion of RRM1 from hnRNPA2D290V 

did not affect the accelerated lag time of the assembly of the mutant protein (Figure 

14B). hnRNPA2, hnRNPA2D290V, and hnRNPA2 100-341 all formed abundant fibrils, 

whereas RRM1 and RRM2 in the absence of the PrLD were unable to do so (Figure 

14C). Thus, the hnRNPA2 PrLD is critical for fibrillization. 
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Figure 14: hnRNPA2D290V forms THT negative fibrils and requires the C-terminal 
prion-like domain to fibrillize in vitro.  
(A) Fluorescence spectroscopy was used to show that, in contrast to hnRNPA1, purified 
hnRNPA2 and hnRNPA2D290V did not form ThT-positive aggregates. (B) Purified 
hnRNPA2, hnRNPA2D290V, and construct 1-185 were agitated at 25°C for 24 hours. 
hnRNPA2D290V 100-341 was agitated at 37°C. Protein aggregation was monitored by 
sedimentation. Values represent means ± s.e.m. (n=3). Deletion of the PrLD (construct 
1-185) eliminated aggregation. (C) Transmission electron microscopy images taken at 
24 hours show that hnRNPA2 formed fibrillar structures, but a construct lacking the PrLD 
(construct 1-185) did not. ThT assays were conducted by Zamia Diaz and Emily 
Scarborough. Sedimentation and EM were performed by Lin Guo. 

 

2.2.8 Disruption of RRM-RNA interactions suppressed hnRNPA1D262V, 

hnRNPA2D290V, and TDP-43 toxicity 

Mutation of conserved phenylalanine residues to aspartic acid in the RRM 

interferes with the RNA-binding ability of hnRNPA1 and hnRNPA2 [179,260]. Thus, we 

introduced these missense mutations into RRM1, RRM2, or both RRMs of 

hnRNPA1D262V and hnRNPA2D290V and assessed toxicity (Figure 15A, B). All constructs 

were expressed at similar levels (Figure 15C). Mutation of F57 and F59 in RRM1 of 

hnRNPA1D262V strongly suppressed toxicity (Figure 15B), whereas mutation of F148 and 

F150 in RRM2 of hnRNPA1D262V suppressed toxicity to a lesser extent (Figure 15B). 

When both RRMs of hnRNPA1D262V were mutated toxicity was suppressed to a similar 

extent as when only RRM1 was disrupted (Figure 15B). The strong suppression of 

toxicity by the F57D:F59D mutation of RRM1 of hnRNPA1D262V was not anticipated as 

deletion of RRM1 from hnRNPA1D262V had minimal effect on toxicity (Figure 8A, 

construct 105-320). However, a crystal structure of the hnRNPA1 RRM1 and RRM2 

isolated and bound to a trinucleotide RNA target suggests that while the unbound RRMs 

are tightly packed with limited space for RNA interaction with RRM2, binding of RNA to 
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RRM1 causes a conformational change that shifts the two RRMs away from one another 

[270]. We suggest that deletion of RRM1 does not affect hnRNPA1 toxicity because 

RRM2-RNA interactions are uninhibited. In the case of RRM1 missense mutations, the 

tight packing of the RRMs is maintained in the absence of RNA binding to RRM1, 

effectively diminishing RNA interactions with both RRMs, thereby significantly reducing 

protein toxicity. 

Interestingly, when we mutated corresponding phenylalanine residues in 

hnRNPA2D290V (F52 and F54 in RRM1 and F143 and F145 in RRM2) to aspartic acid, we 

observed complete suppression of toxicity whether RRM1, RRM2, or both RRMs were 

mutated (Figure 15B). These findings suggest that RNA binding to both RRMs of 

hnRNPA2D290V is critical for toxicity. By contrast, in the context of full-length 

hnRNPA1D262V, RNA binding to RRM1 is more critical for toxicity than RNA binding to 

RRM2, perhaps because RNA binding to RRM2 is at least partially contingent upon RNA 

binding to RRM1 [270]. 
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Figure 15: Disruption of RRM-mediated RNA binding reduces the toxicity of 
hnRNPA1D262V and hnRNPA2D290V and alters cytoplasmic aggregation patterns.  
(A) Missense mutations were introduced at the indicated locations in RRMs 1 and 2 of 
hnRNPA1D262V and hnRNPA2D290V to disrupt RNA binding. (B) Yeast were spotted in 
five-fold dilution series, and mutation of one or both RRMs of hnRNPA1D262V or 
hnRNPA2D290V suppressed toxicity. (C) Western blotting confirmed robust expression of 
RNA-binding deficient proteins. (D) Fluorescence microscopy revealed that missense 
mutations in both RRMs of hnRNPA1D262V resulted in the formation of smaller and more 
numerous cytoplasmic foci (RRM1,2). This pattern was also observed when either or 
both RRMs of hnRNPA2D290V are perturbed (RRM1, RRM2, RRM1,2). RRM, RNA-
recognition motif; PrLD, prion-like domain; NLS, nuclear localization signal. 
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Next, we asked whether RRM:RNA interactions influence the aggregation pattern 

of hnRNPA1D262V and hnRNPA2D290V. hnRNPA1D262V formed large cytoplasmic foci after 

mutation of RRM1 or RRM2 (Figure 15D). However, mutation of RRM1 and RRM2 

caused hnRNPA1D262V to form smaller, more scattered foci throughout the cytoplasm 

(Figure 15D). By contrast, mutation of RRM1, RRM2, or both RRMs alter the distribution 

of hnRNPA2D290V from few large foci to many small foci (Figure 15D). 

Next, we compared these requirements for RRM-RNA binding to hnRNPA1D262V 

and hnRNPA2D290V for toxicity to those of TDP-43 (Figure 16A-C). Thus, we mutated 

each of five crucial phenylalanine residues to leucine to ask whether RRM:RNA binding 

is critical for the toxicity of TDP-43 (Figure 16A) [60,271]. Mutation of F147 or F149 in 

RRM1 had no effect on TDP-43 toxicity (Figure 16C), and mutation of these two 

residues simultaneously only partially suppressed protein toxicity (Figure 16C). Mutation 

of F194, F229, or F231 in RRM2 provided stronger toxicity suppression (Figure 16C). 

The toxicity mitigating effect of mutating any two of these together was comparable to 

mutating each alone (Figure 16C). The strongest toxicity suppression was evident after 

mutation of all three RRM2 phenylalanines or all five described residues together (Figure 

16C). Thus, RNA binding to RRM2 of TDP-43 is more critical for toxicity than RNA 

binding to RRM1. Mutation of one or more phenylalanines in either RRM1 or RRM2 had 

no effect on the formation of cytoplasmic TDP-43 foci (Figure 16B). However, mutation 

of all five phenylalanine residues restored nuclear TDP-43 localization (Figure 16B). 

Taken together, these data suggest that the toxic effects of TDP-43, hnRNPA1D262V, and 

hnRNPA2D290V all require RNA binding by RRMs. 
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Figure 16: Disruption of RRM-mediated RNA binding reduces the toxicity of TDP-
43 and can restore nuclear localization. 
(A) The domain structure of TDP-43 is illustrated. The indicated RRM-mutants were 
expressed in S. cerevisiae. (B) Fluorescence microscopy was used to assess the 
cellular localization of RNA-binding deficient TDP-43 mutants. The 5F->L protein is 
nuclear, while all other mutants form cytoplasmic aggregates, similar to TDP-43. (C) 
Spotting onto inducing galactose media demonstrated that missense mutations in RRM2 
were more effective than those in RRM1 at suppressing the toxic effect of TDP-43. 
RRM, RNA-recognition motif; PrLD, prion-like domain; NLS, nuclear localization signal. 
Experiments in the figure were performed by Maria Armakola. 

 

2.2.9 Potentiated Hsp104 variants suppress hnRNPA1D262V and hnRNPA2D290V 

toxicity 

Hsp104 is a AAA+ protein (ATPase Associated with diverse Activities) and a 

yeast protein disaggregase that is found in all eukaryotes except metazoa [8,231,232]. 

Hsp104 disassembles both amyloid and amorphous aggregates, and promotes survival 

in yeast by renaturing misfolded proteins after environmental stress [231,238]. 

Expression of Hsp104 in a rat model of PD reduced assembly of α-synuclein inclusions 

and degeneration of dopaminergic neurons [8]. Potentiated Hsp104 variants, including 

Hsp104A503S, Hsp104V426L and Hsp104A437W, reduce aggregation and toxicity of TDP-43, 

FUS, and α-synuclein in yeast [234,235]. These three missense mutations fall in the 

coiled-coil middle domain (MD) of Hsp104, and increase ATPase and unfoldase activity 

[235]. It is hypothesized that specific mutations in the MD enhance activity by disruption 

of autoinhibitory interactions or by mimicking allosteric activation events, perhaps 

including the binding of Hsp70 to the MD [235,242,243]. Thus, we tested whether 

potentiated Hsp104 variants could mitigate the toxicity of hnRNPA1, hnRNPA2 and the 

disease-associated mutants in ∆hsp104 yeast (Figure 17A). 
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When yeast were plated onto inducing galactose media and allowed to grow for 2 

days at 30°C, we observed that potentiated variants had no effect on the toxicity of 

hnRNPA1, hnRNPA1D262V, or hnRNPA2, but were able to weakly suppress the toxicity of 

hnRNPA2D290V and FUS (Figure 17A). The toxicity suppression of FUS and 

hnRNPA2D290V was more robust after 3 days of growth at 30°C (Figure 17C). We 

lowered the expression levels of all toxic proteins and potentiated Hsp104 variants by 

plating on a combination of galactose and sucrose, which reduced the toxicity of 

hnRNPA1, hnRNPA1D262V, hnRNPA2, and hnRNPA2D290V. hnRNPA1, hnRNPA1D262V, 

hnRNPA2, and hnRNPA2D290V toxicity was mitigated by Hsp104A503S, Hsp104V426L and 

Hsp104A437W, but not by Hsp104 (Figure 17A). Thus, hnRNPA1D262V and hnRNPA2D290V 

toxicity can be alleviated by enhanced protein disaggregases based on Hsp104. 

Overexpression of enhanced Hsp104 variants slightly decreased the expression of 

hnRNPA1, hnRNPA2, and MSP-associated variants (Figure 17B). Hsp104A503S, 

Hsp104V426L and Hsp104A437W had similar effects on FUS expression levels (Figure 17B). 

Thus, the reductions in hnRNPA1 and hnRNPA2 toxicity may be due to destabilization or 

increased degradation of these proteins. Interestingly, hnRNPA2D290V expression 

appears to be reduced the most by potentiated Hsp104 variants (Figure 17B). This may 

explain why hnRNPA2D290V toxicity could be suppressed by Hsp104 variants on pure 

galactose media but hnRNPA1, hnRNPA1D262V, and hnRNPA2 toxicity could not. 
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Figure 17: Potentiated forms of Hsp104 can suppress the toxicity of hnRNPA1, 
hnRNPA1D262V, hnRNPA2, and hnRNPA2D290V. 
(A) Yeast coexpressing toxic disease proteins with Hsp104 or potentiated Hsp104 
variants were spotted onto inducing galactose media or a mixture of sucrose and 
galactose that causes a reduction in expression driven by the galactose promoter. 
Hsp104 variants A503S, V426L and A437W, but not the WT disaggregase, effectively 
suppressed the toxicity of hnRNPA1, hnRNPA1D262V, hnRNPA2 and hnRNPA2D290V on 
growth media containing a 1:1 mixture of sucrose and galactose. Hsp104 and disease 
proteins were both under the regulation of the GAL1 promoter. FUS was used as 
positive control for toxicity suppression. Spotting assays are shown after 2 days of 
growth at 30°C. (B) Western blotting confirmed expression of Hsp104 and toxic, 
disease-associated proteins after growth in media supplemented with both sucrose and 
galactose. (C) hnRNPA2D290V and FUS expressing strains from (A) shown after 3 days of 
growth at 30°C on glucose- and galactose-containing media. Hsp104A503S, Hsp104V426L, 
and Hsp104A437W robustly suppressed the toxicity of hnRNPA2D290V at high expression 
levels. 

 

2.2.10 hnRNPA1 and hnRNPA2 colocalize with a stress granule marker 

RNP granules including stress granules and P bodies play an important role in 

RNA metabolism and homeostasis, serving as sites of stalled translation initiation and 

mRNA degradation, respectively [50]. We asked whether association with stress 

granules plays a role in the toxicity of hnRNPA1 and hnRNPA2. We coexpressed GFP-

tagged hnRNPA1 or hnRNPA2 with mCherry tagged Pab1, a yeast stress granule 

protein [196]. Pab1 is a cytoplasmic poly(A)-binding protein consisting of four RRMs that 

mediate RNA binding and protein-protein interactions [272]. Pab1 regulates mRNA 

deadenylation, increases mRNA stability by opposing decapping, and facilitates mRNA 

translation [273-276]. Pab1 contributes to, but is not required for, the formation of stress 

granules in yeast [196]. It has also been suggested that Pab1 promotes the removal of 

mRNAs from P bodies [196,277]. 
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Pab1 was localized diffusely throughout the cytoplasm of cells when expressed 

in control cells (Figure 18A). However, expression of hnRNPA1 or hnRNPA1D262V caused 

Pab1 to form foci that co-localized with hnRNPA1 or hnRNPA1D262V (Figure 18A). 

hnRNPA1D262V lacking RRM1 or RRM2 also colocalized with Pab1 foci (Figure 18A, 

constructs 105-320 and Δ105-184). Expression of the hnRNPA1 RRMs alone (1-195) 

was also accompanied by formation of Pab1 foci, which colocalized with hnRNPA1 1-

195 (Figure 18A, construct 1-195). 70-90% of cells harboring inclusions formed by RRM-

containing hnRNPA1 constructs also demonstrated Pab1 inclusion formation (Figure 

18B). By contrast, Pab1 remained diffuse upon expression of the non-toxic 

hnRNPA1D262V PrLD construct (Figure 18A, construct 195-320), with only 5% of cells that 

contained hnRNPA1D262V inclusions also exhibiting Pab1 foci (Figure 18B, construct 195-

320). Thus, hnRNPA1 induces the formation of Pab1 foci, in a manner that depends on 

the hnRNPA1 RRMs. Importantly, only toxic hnRNPA1 constructs induced formation of 

Pab1 foci, indicating that inappropriate Pab1 localization or altered stress granule 

assembly may contribute to hnRNPA1 toxicity. While we observed that the hnRNPA1 

PrLD did not induce the formation of Pab1 foci or Pab1-containing stress granules, the 

PrLD is efficiently recruited to stress granules in HeLa cells exposed to sodium arsenite 

stress [222]. Taken together, these observations suggest that the hnRNPA1 PrLD may 

be capable of interaction with stress granule components, but, in yeast, is not sufficient 

to drive their assembly.  
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Figure 18: A stress granule marker, Pab1, forms foci that colocalize with 
aggregated hnRNPA1 and hnRNPA1D262V, and hnRNPA2, but remains diffuse 
throughout the cytoplasm when coexpressed with hnRNPA2D290V.  
(A) Fluorescence microscopy was used to compare the localization of GFP-tagged 
hnRNPA1 constructs and mCherry-tagged Pab1. Yeast expressing mCherry-tagged 
Pab1 were a gift from Frank Luca. Pab1 formed foci in the presence of hnRNPA1 
constructs containing an RRM, but not when coexpressed with the isolated 
hnRNPA1D262V PrLD. When present, Pab1 foci colocalized with hnRNPA1. (B) 
Quantification of (A). Values represent means ± s.e.m.; n=2 (***p≤0.001; one-way 
ANOVA comparing each construct to the WT protein using a Dunnett correction for 
multiple comparisons). (C) Fluorescence microscopy showed that, when coexpressed 
with hnRNPA2, Pab1 formed foci that colocalize with hnRNPA2, but Pab1 did not form 
foci when coexpressed with hnRNPA2D290V. (D) Quantification of (C). Values represent 
means ± s.e.m.; n=2 (***p≤0.001, ****p≤0.0001; one-way ANOVA comparing each 
construct to the WT protein using a Dunnett correction for multiple comparisons).  

 

Pab1 also formed foci when coexpressed with hnRNPA2, and hnRNPA2 

colocalized with Pab1 foci (Figure 18C). Roughly 70% of cells harboring hnRNPA2 foci 

also demonstrated Pab1 assemblies (Figure 18D). Surprisingly, however, expression of 

hnRNPA2D290V was not accompanied by the formation of Pab1 foci, and only ~14% of 

cells with hnRNPA2D290V inclusions also exhibited Pab1 focus formation (Figure 18C,D). 

In this minority of cells, Pab1 foci colocalized with hnRNPA2D290V foci. When 

overexpressed with hnRNPA2D290V, Pab1 was primarily localized diffusely throughout the 

cytoplasm (Figure 18C). Pab1 was similarly diffuse throughout cells expressing 

hnRNPA2D290V lacking either or both RRMs (Figure 18C, constructs 100-341, ∆100-179 

and 184-341). Fewer then 6% of cells expressing hnRNPA2D290V constructs lacking 

RRM2 that formed foci also contained Pab1 inclusions (Figure 18D). Expression of 

hnRNPA2D290V lacking RRM1 was accompanied by Pab1 focus formation in ~25% of 

cells (Figure 18D). Of cells that did form Pab1 assemblies, we observed that, on 

average, ~30% contained at least one Pab1 focus that did not colocalize with co-



 

69 

 

occurring hnRNPA2D290V 100-341 foci, which we did not observe upon expression of full-

length hnRNPA2 or hnRNPA2D290V. We confirmed that the expression of mCherry-

tagged Pab1 from the endogenous promoter did not affect the toxicity of any hnRNPA1 

or hnRNPA2 protein constructs (compare Figures 19A and 19B with 8B and 12B). Our 

results suggest that the introduction of the D290V mutation into the hnRNPA2 PrLD 

disrupts the robust formation of Pab1 foci induced by hnRNPA2, and RNA binding via 

RRMs is important for the colocalization of hnRNPA2 with Pab1. Moreover, unlike 

hnRNPA1 and hnRNPA1D262V, hnRNPA2D290V toxicity is not accompanied by Pab1 

inclusion formation. Thus, the formation of Pab1 foci is not a general requirement of 

hnRNPA1 and hnRNPA2 toxicity in yeast. Aberrant aggregation of Pab1 may contribute 

to the toxicity of hnRNPA1, hnRNPA1D262V, and hnRNPA2, but is likely a single element 

of multiple perturbations caused by hnRNPA1 or hnRNPA2 expression. hnRNPA2D290V 

does not typically induce Pab1 foci but is very toxic, suggesting that, in yeast, an 

interaction between Pab1 and hnRNPA2D290V is not essential for toxicity. 
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Figure 19: Expression of mCherry-tagged Pab1 does not affect toxicity of 
hnRNPA1, hnRNPA2, or deletion constructs. 
Yeast expressing Pab1-mCherry from the endogenous Pab1 promoter and hnRNPA1 or 
hnRNPA1D262V constructs from the Gal1 promoter were spotted in five-fold dilution series 
onto inducing galactose media. The toxicity of hnRNPA1 constructs is unchanged by the 
expression of mCherry-tagged Pab1. When Pab1-mCherry was similarly coexpressed 
with hnRNPA2 constructs and spotted onto galactose media, it had no effect on the 
toxicity of hnRNPA1, hnRNPA2D290V, or hnRNPA2D290V deletion constructs. 

 

2.2.11 Overexpression of Tif2, but not Pab1, reduces hnRNP toxicity 

If the mislocalization of Pab1 to aberrant cytoplasmic foci plays a role in the 

toxicity phenotype caused by hnRNPA1 and hnRNPA1D262V expression, we 

hypothesized that overexpression of Pab1 might compensate for this sequestration and 

reduce the toxicity of hnRNPA1 and hnRNPA1D262V. Pab1 overexpression is known to 

reduce the toxicity of FUS when overexpressed [110], as is overexpression of another 

stress-granule marker, Tif2 [110,278]. Tif2 is an RNA-helicase that is homologous to the 
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mammalian translation initiation factor eIF4A [279]. Tif2 facilitates protein synthesis by 

unwinding mRNA secondary structures to allow ribosomal binding to the mRNA 

[279,280]. In mammalian cells, inhibition or alteration of eIF4A activity is sufficient to 

induce stress granule formation [281]. We observed no effect on the toxicity of 

hnRNPA1, hnRNPA1D262V, hnRNPA2, or hnRNPA2D290V when Pab1 was simultaneously 

overexpressed (Figure 20A). Pab1 overexpression did not suppress toxicity on either 

galactose or sucrose/galactose media. By contrast, overexpression of Tif2 weakly 

reduced the toxicity of hnRNPA1, hnRNPA2, and both disease-linked hnRNPs, but only 

when Tif2 was expressed from a high copy number 2-micron plasmid (Figure 20B). 

Moreover, Tif2-mediated suppression of hnRNPA1 and hnRNPA2 toxicity was only 

evident when cells were grown on sucrose/galactose media. At higher expression levels 

induced by galactose media, Tif2 overexpression did not affect hnRNPA1 or hnRNPA2 

toxicity. The effect of Tif2 on hnRNPA1 and hnRNPA2 toxicity could not be attributed to 

a reduction in hnRNP expression levels (Figure 20C). It is possible that increased 

protein translation induced by Tif2 overexpression negatively regulates assembly of 

stress-granule components, preventing the formation of pathologic assemblies mediated 

by hnRNPA1 and hnRNPA2.  

These data suggest that RNP-granule components can mitigate the toxic effect 

of RBPs in neurodegenerative pathology. Moreover, different RNP-granule components 

suppress FUS toxicity compared to hnRNPA1 and hnRNPA2 toxicity, indicating possible 

mechanistic differences in how these RBPs confer toxicity. Tif2 facilitates translation 

initiation [279], and its overexpression suppresses hnRNPA1, hnRNPA2, and FUS 

toxicity, suggesting that increased translation may decrease the toxicity of each of these 
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RBPs in yeast. Though Pab1 also facilitates translation initiation directly by binding to 

eIF4G and indirectly by stabilizing mRNA [272,275], its overexpression suppresses the 

toxicity of FUS but not of hnRNPA1 or hnRNPA2. These findings may indicate that the 

helicase activity of Tif2 is a rate-limiting step in translation initiation, preventing 

significant increases in translation as a result of increased expression of only Pab1. If 

this is true, Pab1 suppression of FUS toxicity must occur via a mechanism other than 

increased protein translation. If, for example, Pab1 interacts directly with FUS but not 

hnRNPA1 or hnRNPA2, increased binding of overexpressed Pab1 to FUS could prevent 

aberrant FUS binding to other essential proteins and RNAs. This would explain the 

specific ability of Pab1 overexpression to suppress FUS toxicity but not that of hnRNPA1 

or hnRNPA2. 
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Figure 20: Overexpression of Tif2, but not Pab1, reduces the toxicity of hnRNPA1, 
hnRNPA1D262V, hnRNPA2, and hnRNPA2D290V.  
(A) A spotting assay demonstrates that overexpression of the stress granule marker 
Pab1 did not affect the toxicity of hnRNPA1, hnRNPA1D262V, hnRNPA2 or hnRNPA2D290V. 
(B) Overexpression of the stress-granule marker Tif2 weakly reduced the toxicity of 
hnRNPA1, hnRNPA1D262V, hnRNPA2 and hnRNPA2D290V. (C) Overexpression of Tif2 did 
not affect hnRNPA1, hnRNPA1D262V, hnRNPA2 or hnRNPA2D290Vexpression levels after 
5-7 hours of induction in liquid media containing sucrose and galactose. Galactose-
supplemented media was used for maximal expression of overexpressed proteins from 
the galactose-inducible promoter. Sucrose was added to the media to reduce expression 
from the galactose promoter. Overexpression modifier studies were performed in 
collaboration with Olivia Zhou. 
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2.2.12 hnRNPA1 and hnRNPA2 colocalize with a P-body marker 

Next, we coexpressed hnRNPA1 constructs with RFP-tagged Dcp2, a yeast P-

body protein [282]. Dcp2 is a decapping enzyme that represents a crucial element of the 

mRNA decapping and decay machinery that accumulates in cytoplasmic P bodies [177]. 

With Dcp1, Dcp2 removes the 5’ cap from mRNA transcripts that have been 

deadenylated, preparing them for 5’ to 3’ degradation by the exonuclease Xrn1 

[176,177]. Dcp2 is required for recruitment of Dcp1 to P bodies [282]. Dcp2 is not 

required for P-body assembly, but loss of Dcp2 activity leads to a reduction in P-body 

size [282]. 

When expressed with an empty vector, Dcp2 displayed diffuse fluorescence plus 

discrete punctae (Figure 21A, vector). hnRNPA1 and hnRNPA1D262V foci overlapped with 

Dcp2 foci (Figure 21A). hnRNPA1D262V lacking RRM1 or RRM2 also colocalized with 

large Dcp2 foci (Figure 21A, constructs 105-320 and Δ105-184). Greater than 80% of 

cells containing Dcp2 inclusions and aggregated hnRNPA1, hnRNPA1D262V, 

hnRNPA1D262V 105-320 or hnRNPA1D262V Δ105-184 demonstrated colocalization of Dcp2 

and hnRNPA1 construct foci (Figure 21B). The isolated hnRNPA1 RRMs, too, 

consistently colocalized with Dcp2 foci (Figure 21A, construct 1-195). By contrast, the 

PrLD construct showed reduced colocalization with Dcp2 (Figure 21A, construct 195-

320), with only ~50% of cells demonstrating overlap between hnRNPA1D262V 105-320 

and Dcp2 foci (Figure 21B). This hnRNPA1 PrLD construct is characterized by small, 

scattered protein punctae, and while there was frequent colocalization with Dcp2 (Figure 

21A, construct 195-320, top), we also observed many cells in which the hnRNPA1 PrLD 
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punctae were spatially distinct from Dcp2 punctae (Figure 21A, construct 195-320, 

bottom). Thus, toxic hnRNPA1 constructs typically form foci that colocalize with stress-

granule (Pab1) and P-body (Dcp2) markers, while the PrLD is recruited to P bodies with 

reduced efficiency. Yeast P bodies are liquid-like assemblies that form via LLPS, and the 

hnRNPA1 PrLD readily undergoes LLPS in vitro [217,222]. Taken with our data, this 

suggests that, in yeast, although the hnRNPA1 PrLD likely undergoes LLPS it does not 

necessarily do so in the setting of P-body formation. Thus, LLPS may be insufficient for 

maximal hnRNPA1 recruitment to P bodies in the absence of RNA binding by RRMs.  
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Figure 21: Deletion of both RRMs disrupts the colocalization of hnRNPA1D262V and 
hnRNPA2D290V with the P-body protein Dcp2.  
(A) Fluorescence microscopy was used to compare the localization of GFP-tagged 
hnRNPA1 constructs and RFP-tagged Dcp2. Dcp2 formed punctae in the absence and 
presence of hnRNPA1 expression. These punctae colocalize with hnRNPA1 and 
hnRNPA1D262V, but colocalization was reduced when hnRNPA1D262V lacked both RRMs 
(construct 195-320). An example of colocalization and an instance of non-colocalization 
are shown for yeast expressing this construct. (B) Quantification of (A). Values represent 
means ± s.e.m.; n=2-3 (**p≤0.01; one-way ANOVA comparing each construct to the WT 
protein using a Dunnett correction for multiple comparisons). (C) Fluorescence 
microscopy showed that Dcp2 formed punctae that colocalize with hnRNPA2 and 
hnRNPA2D290V. There was decreased colocalization when hnRNPA2D290V lacked both 
RRM domains (construct 184-341). An example of colocalization and an instance of non-
colocalization are shown for yeast expressing this construct. (D) Quantification of (C). 
Values represent means ± s.e.m.; n=2-4 (*p≤0.05; one-way ANOVA comparing each 
construct to the WT protein using a Dunnett correction for multiple comparisons). 

 

We observed very similar results when we followed Dcp2-RFP localization upon 

expression of hnRNPA2 or hnRNPA2D290V (Figure 21C). Thus, we observed 

colocalization of hnRNPA2 and hnRNPA2D290V with the P-body protein in ~90% of cells 

containing both Dcp2 foci and hnRNPA2 foci (Figure 21C,D). Deletion of RRM1 or 

RRM2 maintained colocalization of hnRNPA2D290V with Dcp2 foci (Figure 21C,D  

constructs 100-341 and ∆100-179). Deletion of both RRMs reduced colocalization with 

Dcp2 foci (Figure 21C, 184-341), and ~30% of cells demonstrated no overlap between 

Dcp2 foci and hnRNPA2D290V 184-341 inclusions. Our findings suggest that toxic 

hnRNPA2D290V constructs aggregate and colocalize with P-body markers, but not stress-

granule markers. By contrast, toxic hnRNPA1D262V constructs aggregate and colocalize 

with both P-body and stress-granule markers. Thus, the effects of hnRNPA1D262V and 

hnRNPA2D290V on RNP-granule markers in yeast are distinct. It is also important to note 

that P-body colocalization is not sufficient to drive hnRNPA2D290V toxicity, as 

hnRNPA2D290V ∆100-179 was not toxic but colocalized with Dcp2. 
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We performed a spotting assay to confirm that expression of RFP-tagged Dcp2 

from the endogenous Dcp2 promoter did not alter the viability of cells expressing 

hnRNPA1, hnRNPA2, MSP-associated mutants, or deletion constructs (Figure 22). The 

toxicity of each hnRNP construct was comparable in cells with and without Dcp2-RFP 

expression (Compare figures 8B, 12B, and 22). 

 

 

Figure 22: Expression of RFP-tagged Dcp2 does not alter the toxicity of hnRNPA1, 
hnRNPA2, or deletion constructs. 
A spotting assay was used to compare cell viability of yeast strains expressing 
hnRNPA1, hnRNPA2, MSP-associated mutants, or deletion constructs with and without 
concurrent expression of RFP-tagged Dcp2. hnRNP construct toxicity was unaffected by 
expression of Dcp2-RFP from the endogenous Dcp2 promoter. 
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2.2.13 Deletion of Lsm7, but not Pub1 or Pbp1, is protective against hnRNPA1 and 

hnRNPA2 toxicity. 

We wished to identify genetic deletion suppressors of hnRNPA1D262V and 

hnRNPA2D290V toxicity, which could have important therapeutic implications for MSP 

patients. Previous screens have uncovered genetic modifiers that suppress the toxicity 

of TDP-43 and FUS in yeast models [110,251], and we explored the possibility that 

these approaches could be used to combat the toxic phenotype of hnRNPA1 and 

hnRNPA2 overexpression. We first employed a candidate gene strategy to identify 

putative modifiers of hnRNPA1 and hnRNPA2 toxicity. We honed in on Lsm7, a P-body 

protein that was identified as a deletion suppressor of FUS toxicity [110,282], Pbp1, a 

stress granule marker that suppresses the toxicity of TDP-43 when deleted 

[196,251,278], and Pub1, a stress granule protein that reduces FUS toxicity when 

deleted [110,196,278]. Lsm7 is a component of the nuclear Lsm2-8 complex and the 

cytoplasmic Lsm1-7 heptamer [202,207]. In the nucleus, Lsm2-8 stabilizes newly 

synthesized U6 snRNA, enabling efficient pre-mRNA splicing [202,205]. In the 

cytoplasm, Lsm1-7 localizes to P bodies and serves as an activator of decapping during 

mRNA degradation [203]. Lsm1-7 also, in concert with another decapping activator, 

Pat1, protects mRNA transcripts from 3’ to 5’ end trimming [204]. Pbp1 is the yeast 

homologue of human ataxin 2 [81]. Both Pbp1 and ataxin 2 are crucial for stress granule 

formation [208,210]. Pbp1 interacts with the C-terminal end of Pab1 and regulates 

mRNA polyadenylation [283]. The interactome of Pbp1 suggests that it may also 

contribute to RNA editing, pre-mRNA splicing, nuclear export of mRNA, and mRNA 

degradation [283]. Pub1 is a polyadenylated-RNA-binding protein found in both the 

nucleus and cytoplasm [284]. The human homologue of Pub1, TIA1 is essential for 
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stress granule formation, and depletion of Pub1 impairs stress granule assembly in 

yeast [208,209]. Pub1 also functions in the regulation of mRNA decay by stabilizing 

specific mRNA transcripts and may play a role in the regulation of translation [285]. 

We expressed hnRNPA1, hnRNPA2 and their disease-associated mutants in 

LSM7-, PBP1-, and PUB1-deletion strains and plated cultures on galactose for high 

hnRNP expression and a sucrose/galactose mix for lower hnRNP expression. In the 

Δlsm7 background there was no evidence of toxicity suppression on galactose media, 

but on sucrose/galactose hnRNPA1, hnRNPA1D262V, hnRNPA2 and hnRNPA2D290V were 

less toxic in yeast lacking the gene encoding Lsm7 (Figure 23A). Deletion of LSM7 

suppressed toxicity but did not reduce toxic protein expression levels (Figure 23B). 

Deletion of PBP1 or PUB1 did not reduce the toxicity of hnRNPA1, hnRNPA1D262V, 

hnRNPA2 or hnRNPA2D290V at high or low expression levels (Figure 23C). In contrast to 

TDP-43 and FUS, hnRNPA1 and hnRNPA2 remain toxic in the absence of these stress 

granule components. 
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Figure 23: Deletion of LSM7, but not PBP1 or PUB1, reduces the toxicity of 
hnRNPA1, hnRNPA1D262V, hnRNPA2, or hnRNPA2D290V in S. cerevisiae. 
(A) Spotting of serial yeast dilutions to compare hnRNP toxicity in WT yeast and yeast 
lacking the LSM7 gene. Deletion of LSM7 reduced the toxicity of hnRNPA1, 
hnRNPA1D262V, hnRNPA2, and hnRNPA2D290V on sucrose/galactose but not galactose. 
(B) Immunoblotting confirmed that deletion of LSM7 did not alter the expression of 
hnRNPA1, hnRNPA2, or disease associated mutants. (C) A spotting assay 
demonstrated that deletion of the stress-granule genes PBP1 and PUB1 did not affect 
the toxicity of hnRNPA1, hnRNPA1D262V, hnRNPA2, or hnRNPA2D290V at high or low 
expression levels. 
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2.2.14 Overexpression of U6 snRNA does not suppress hnRNPA1 or hnRNPA2 

toxicity. 

Our data indicate that a function of Lsm7 is crucial to the pathogenic mechanism 

underlying the toxicity conferred by hnRNPA1, hnRNPA2, and FUS. Lsm7 plays a role in 

two distinct cellular pathways: it is an element of the cytoplasmic Lsm1-7 complex that 

localizes to P bodies and functions in mRNA degradation, and it is a component of the 

nuclear Lsm2-8 heteroheptamer that stabilizes the U6 snRNA during pre-mRNA splicing 

[203,205]. One of the consequences of LSM7 deletion is the cytoplasmic accumulation 

of U6 snRNA, which is normally confined to the nucleus [286]. We wondered whether 

this RNA mislocalization could mitigate hnRNPA1 and hnRNPA2 toxicity by creating a 

binding decoy for these toxic RBPs, thereby preventing them from sequestering 

essential RNAs and proteins. To investigate this possibility, we overexpressed U6 

snRNA in WT yeast expressing hnRNPA1, hnRNPA1D262V, hnRNPA2, or hnRNPA2D290V 

to recapitulate the cytoplasmic increase in U6 snRNA (Kristen Lynch, personal 

communication). Overexpression of U6 did not reduce the toxicity of hnRNPA1, 

hnRNPA2, or either MSP-associated variant (Figure 24). Thus, overexpression of U6 

snRNA does not phenocopy LSM7 deletion (Figure 24). It remains to be determined 

whether the nuclear or cytoplasmic functions of Lsm7 are crucial to disrupt hnRNPA1 or 

hnRNPA2 toxicity. 
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Figure 24: Overexpression of U6 snRNA does not reduce hnRNPA1, hnRNPA2, or 
MSP-linked variant toxicity. 
Yeast were transformed to overexpress U6 snRNA concurrently with hnRNPA1, 
hnRNPA2, hnRNPA1D262V, or hnRNPA2D290V. A spotting assay demonstrated that U6 
snRNA did not reduce the toxicity of these RBPs. 

 

2.2.15 Deletion of DBR1 does not protect against hnRNPA1 or hnRNPA2 toxicity. 

Another candidate toxicity modifier to emerge from screens against TDP-43 and 

FUS was deletion of DBR1, which suppresses toxicity of both TDP-43 and FUS in yeast 

[251]. DBR1 encodes a lariat-debranching enzyme, which cleaves intronic lariats that 

are released during pre-mRNA splicing, thereby initiating the degradation of these 

noncoding RNAs [251,287]. Loss of Dbr1 enzymatic activity results in the accumulation 

of cytoplasmic lariats, which reduces TDP-43 and FUS toxicity, perhaps by acting as a 

binding “decoy” and preventing their association with essential endogenous RNAs and 

RBPs [251]. In humans, roughly three quarters of all genomic hnRNPA1 and hnRNPA2 

binding sites are intronic, with over half found in distal introns [148]. Thus, we tested 

whether deletion of DBR1 mitigated hnRNPA1 and hnRNPA2 toxicity. Deletion of DBR1 
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mitigated FUS toxicity without affecting FUS expression (Figure 25A, B). By contrast, 

deletion of DBR1 did not affect WT or MSP-linked hnRNPA1 or hnRNPA2 toxicity or 

expression (Figure 25A, B). Thus, strategies to inhibit Dbr1 are unlikely to be effective 

against MSP-linked hnRNPA1 or hnRNPA2 toxicity. These data further reinforce the 

idea that reducing the toxicity of RBPs with PrLDs may need to be tailored to the specific 

RBP in question. 

 

Figure 25: Loss of the lariat-debranching enzyme, Dbr1, does not suppress the 
toxicity of hnRNPA1, hnRNPA1D262V, hnRNPA2, or hnRNPA2D290V.  
(A) A spotting assay demonstrates that deletion of the gene encoding the lariat-
debranching enzyme, DBR1, had no effect on the toxicity of hnRNPA1, hnRNPA2, or 
disease-associated mutants. FUS was used as a positive control for toxicity 
suppression. (B) Western blotting confirmed expression of toxic proteins in WT and 
dbr1Δ strains. 
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2.2.16 A deletion screen reveals novel suppressors of hnRNPA1 and hnRNPA2 

toxicity. 

To identify genetic modifiers of hnRNPA1 that do not overlap with those 

previously isolated for TDP-43 and FUS, we performed a deletion screen of the ~4850 

non-essential yeast genes [110]. We expressed hnRNPA1 or hnRNPA2 in yeast strains 

lacking each non-essential gene and compared growth on a sucrose and galactose 

mixture to the growth of WT yeast expressing hnRNPA1 or hnRNPA2. Due to the strong 

toxicity phenotype associated with these proteins, we did not identify any enhancers of 

protein toxicity. We did, however, identify forty gene deletions that suppressed the 

toxicity of both hnRNPA1 and hnRNPA2 (Table 1, Figures 26 and 27). All of these also 

suppressed the toxicity of the MSP-associated variants hnRNPA1D262V and 

hnRNPA2D290V. Importantly, we did not observe any deletions that affected the toxicity of 

only hnRNPA1 or hnRNPA2. Thus, despite subtle differences in the domains that drive 

hnRNPA1 and hnRNPA2 toxicity (Figures 8 and 12) and differences in how they 

colocalize with RNP granules (Figure 18), these results indicate that their toxicities can 

be overcome via similar mechanisms. 

We identified two deletion suppressors that had previously been identified as 

deletion suppressors of FUS toxicity: LSM7 and SSE1 (Figure 26) [110]. We did not 

uncover any genetic deletions that suppress the toxicity of TDP-43 in addition to 

hnRNPA1 and hnRNPA2 (Figure 26) [251]. Two proteins that suppressed hnRNPA1 and 

hnRNPA2 toxicity when deleted, Sbp1 and Sko1, are known to reduce the toxicity of 

FUS when overexpressed [99,110]. A single protein, Rtt103, was found to suppress 
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hnRNPA1 and hnRNPA2 toxicity when deleted, and also suppresses FUS toxicity when 

overexpressed [110]. 

 

 

Figure 26: Deletion suppressors of hnRNPA1 and hnRNPA2 toxicity have little 
overlap with those uncovered as suppressors of TDP-43 and FUS toxicity.  
The number of gene deletions that are known to suppress the toxicity of various RBPs is 
shown. Deletion suppressors have been identified by screening each of the non-
essential genes in the yeast genome [110,251]. Yeast deletion screens uncovered 
genetic deletion suppressors of TDP-43 and FUS toxicity, and only one gene deletion 
was found to suppress both TDP-43 and FUS toxicity [110,251]. We performed a 
deletion screen using the same yeast library and uncovered 40 suppressors of 
hnRNPA1 and hnRNPA2 toxicity, only two of which are known to suppress FUS toxicity 
and none of which were identified in the screen for TDP-43 toxicity suppressors 
[110,251]. 

 

We can infer mechanistic dissimilarity between the toxic effects of FUS and those 

of hnRNPA1 and hnRNPA2 based on the fact that genetic screens have indicated a lack 

of overlap between suppressors of FUS toxicity and suppressors of hnRNPA1 and 

hnRNPA2 toxicity (Figure 26) [110]. Moreover, the functional pathways that include 

genetic suppressors of FUS toxicity are distinct from those that involve genes that 



 

87 

 

suppress the toxicity of hnRNPA1 and hnRNPA2 [110,288]. GO term analysis of a 

functional network of deletion suppressors of hnRNPA1 and hnRNPA2 toxicity and 

twenty related genes demonstrated enrichment for genes encoding proteins with roles in 

RNA splicing, proteasome assembly, protein folding, and protein acetylation (Table 1) 

[288]. We also noted three P body-associated proteins: Lsm7, Sbp1 and Lsm6 

[200,203,205]. Sbp1 is also found in stress granules [200]. Sbp1 is involved in, but not 

required for, mRNA decapping and facilitates translational repression and P-body 

formation [200,201]. Lsm6 and Lsm7 function in P-bodies as part of a complex 

containing Lsm proteins 1-7 that serves to promote mRNA decapping [203,205,289,290]. 

They also, however, are found in the heteroheptameric Lsm2-8 ring, which prevents the 

degradation of newly synthesized U6 snRNA, allowing efficient mRNA splicing to 

proceed [205,206].  

 

Function FDR 
Genes in 
network 

Genes in 
genome 

protein refolding 3.66082E-05 6 17 
protein folding 0.004331147 8 89 
proteasome assembly 0.010457544 5 28 
mRNA splicing, via spliceosome 0.066845626 7 108 
RNA splicing, via transesterification reactions 
with bulged adenosine as nucleophile 0.066845626 7 109 
ATPase regulator activity 0.066845626 4 24 
RNA splicing, via transesterification reactions 0.090527236 7 118 
'de novo' protein folding 0.096157976 3 11 
protein acetylation 0.111055477 5 56 
small nuclear ribonucleoprotein complex 0.128240701 5 59 

Table 1: Functional enrichment of an interaction network incorporating deletion 
suppressors of hnRNPA1 and hnRNPA2 toxicity and related proteins.  
An interaction network incorporating the forty deletion suppressors of hnRNPA1 and 
hnRNPA2 toxicity uncovered in our unbiased screen and twenty related proteins is 
functionally enriched for proteins involved in protein folding and refolding, splicing, 
proteasome assembly, and protein acetylation. Interaction network and functional data 
from the GeneMANIA prediction server [288].  
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Interestingly, components of the U2 and U5 snRNPs, Bud31 [291] and Prp18 

[292], respectively, were also identified in our screen as suppressors of hnRNPA1 and 

hnRNPA2 toxicity, suggesting the importance of the regulation of splicing to RBP-

mediated toxicity. Bud31 is a highly conserved element of the S. cerevisiae splicing 

machinery that facilitates entry into the first catalytic step of pre-mRNA splicing and, at 

elevated temperatures, is required for the second catalytic step [293,294]. It is required 

for splicing of certain RNA transcripts, including several that are involved in budding, yet 

dispensable in the processing of others [295]. Prp18 functions in exon ligation during 

splicing, serving to stabilize the interaction of exon ends with the spliceosome to 

facilitate the joining of exons [292,296]. 

We were also interested to observe four members of the yeast chaperone 

network emerge as toxicity suppressors: Hsc82 (an Hsp90 chaperone [297]), Sti1 (an 

Hsp90 co-chaperone [298]), Sse1 (an Hsp110 chaperone [299]), and Ydj1 (an Hsp40 

chaperone [300]). Hsc82 is the constitutively expressed Hsp90 homologue in yeast 

[301]. It is expressed at high levels and induced further upon heat shock [302]. Hsp90 

proteins function with co-chaperones to mediate late-stage folding of client proteins, 

either upon de novo protein synthesis or during reactivation of denatured proteins 

following stress [303,304]. Hsp90 proteins can stabilize signaling proteins in 

conformations that allow activation [297]. They are involved in the assembly and 

disassembly of protein complexes including the proteasome, transcriptional complexes, 

and the kinetochore complex [297,301]. Hsp90 proteins have also been implicated in 

telomere length regulation [305] and determination of prion variants in yeast [306]. The 
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Hsp90 co-chaperone Sti1 facilitates maturation of Hsp90 client proteins by mediating the 

transfer of substrate to Hsp90 from Hsp70, which functions in early folding of nascent or 

denatured substrates [297,304,307]. Sti1 modulates ATPase activity, serving to activate 

the ATPase activity of Hsp70 and inhibit the ATPase activity of Hsp90 [307-309]. Sti1, 

with Hsp70 and Hsp90, has also been implicated in mitochondrial function and loss of 

yeast [PSI+] prions due to overexpression of Hsp104 [310-312]. Sse1 is an Hsp110 

chaperone that acts as a nucleotide exchange factor for Ssa1 and Ssb1, cytoplasmic 

yeast Hsp70s [313]. In vitro, Sse1 binds, but does not refold, denatured substrates [314]. 

Sse1 is essential for the maturation of several Hsp90 clients and for Hsp90-mediated 

repression of Hsf1, a yeast transcription factor that activates the heat shock response 

[299,304,314]. Sse1 also plays a role in prion formation and propagation [315,316]. Ydj1 

is an Hsp40 in yeast that serves as an Hsp70 co-chaperone [317]. Ydj1 stimulates 

Hsp70 ATPase activity and contributes to a number of Hsp70 functions including 

protection and folding of nascent or denatured polypeptides [300,318,319], protein 

translocation across the membranes of the endoplasmic reticulum and mitochondria 

[320,321], and ubiquitin-mediated proteasomal protein degradation [300,319,322]. Ydj1 

is a cofactor for the remodeling factor Hsp104 [323], and overexpression of Ydj1 cures 

select yeast prions [317,324]. Interestingly, Ydj1 is essential for yeast P-body formation 

in stress conditions [325]. It also is thought to promote dissolution of stress granules and 

reinitiation of translation following stress, as deletion of Ydj1 leads to increased vacuolar 

degradation of stress granules and impaired translational recovery after stress [326]. 

It is not unexpected that the proteostasis network would play an integral role in 

neurodegenerative diseases linked to aberrations in protein homeostasis, though it is 
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intriguing that this set of proteins has not emerged as a means of suppressing TDP-43 

or FUS toxicity [110,251]and thus seems to have some specificity for hnRNPA1 and 

hnRNPA2. Future studies should seek to identify the mechanistic role these chaperone 

proteins play in conferring hnRNPA1 and hnRNPA2 toxicity. Both Sti1 and Sse1 

collaborate with both Hsp70 and Hsp90 [297,299,313], suggesting that disruption of the 

functional interface between Hsp70 and Hsp90 could be key to limiting the toxicity of 

hnRNPA1 and hnRNPA2.  

We uncovered several dubious open reading frames that suppressed hnRNPA1 

and hnRNPA2 toxicity when deleted (Table 2, Figures 27 and 28). These may represent 

functional non-coding RNAs that facilitate hnRNPA1 and hnRNPA2 toxicity. Non-coding 

RNAs in yeast and humans can regulate transcription and thereby affect gene 

expression [327,328], which may contribute to RBP-mediated toxicity.  
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YEAST 
GENE 

HUMAN 
HOMOLOGUE 

YEAST 
LOCALIZATION 

FUNCTION IN YEAST 

AHC2 - cytoplasm, 
nucleus 

Component of ADA histone acetyltransferase complex 

ALE1 MBOAT2, 
MBOAT1, 
MBOAT5, 
MBOAT7* 

endoplasmic 
reticulum 

Lysophospholipid acyltransferase 

ARC18 ARPC3 actin 
colocalization 

Subunit of ARP2/3 complex, which is required for cortical actin 
patch motility and integrity 

BUD31 BUD31 nucleus Component of U2 snRNP; functions in mRNA splicing and bud 
site selection 

CAF4 - mitochondrion WD40 repeat-containing protein associated with the CCR4-
NOT complex; involved in mitochondrial fission 

CTI6 - nucleus Component of Rpd3L histone deacetylase complex; relieves 
transcriptional repression 

DUR3 - - Plasma membrane transporter for urea and polyamines 

HSC82 HSP90AA1, 
HSP90AB1 

cytoplasm Hsp90 chaperone; involved in determination of prion variants 

KEL2 - bud Negative regulator of mitotic exit; involved in regulation of actin 
cable assembly, cytokinesis and polarized growth 

LSM6 LSM6 cytoplasm, 
nucleus [205] 

Component of cytoplasmic Lsm1-7 complex involved in mRNA 
decay and nuclear Lsm2-8 complex that comprises part of the 
U6 snRNP; P-body protein 

LSM7 LSM7 cytoplasm, 
nucleus [205] 

Component of cytoplasmic Lsm1-7 complex involved in mRNA 
decay and nuclear Lsm2-8 complex that comprises part of the 
U6 snRNP; P-body protein 

MDM20 NAA25 cytoplasm Non-catalytic subunit of NatB acetyltransferase; involved in 
mitochondrial inheritance and actin assembly 

MEC3 HUS1 [329] - DNA damage and meiotic checkpoint protein 

NAS2 PSMD9 cytoplasm Proteasome-interacting protein; involved in assembly of 19S 
proteasomal regulatory particle 

NDT80 C11orf9 [330] - Meiosis specific transcription factor 

PAI3 - cytoplasm, 
nucleus 

Cytoplasmic proteinase A inhibitor 

POC4 PAC4 [331] cytoplasm Component of Poc4p-Irc25p chaperone complex; involved in 
proteasome formation 

PRP18 PRPF18 [332] - Component of snRNP U5; functions in 3' splice site positioning 
during mRNA splicing 

PSY2 PPP4R3A, 
PPP4R3B 

nucleus Subunit of protein phosphatase PP4 complex; regulates 
recovery from DNA damage and non-homologous end-joining 
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PUN1 - cytoplasm, cell 
periphery, bud 

Plasma membrane protein; involved in cell wall integrity and 
thermotolerance 

RTT103 Kub5-Hera 
[333] 

nucleus Involved in transcription termination by RNA polymerase II; 
regulates Ty1 transposition 

SBP1 RBM14 [99] cytoplasm P-body protein; involved in repression of translation 

SEM1 DSS1 [334] nucleus Lid component of 26S proteasome regulatory subunit; functions 
in nuclear mRNA export 

SET2 SETD2 [335] nucleus Histone methyltransferase; plays a role in transcriptional 
elongation 

SKO1 - cytoplasm, 
nucleus 

Basic leucine zipper transcription factor; activates and 
represses transcription; involved in osmotic and oxidative 
stress responses 

SPT3 SUPT3H nucleus Transcriptional regulator 

SSE1 HSPH1 cytoplasm Hsp110 chaperone; involved in prion propagation and 
determining prion variants 

STI1 STIP1 cytoplasm Hsp90 and Hsp70 cochaperone; regulates spatial organization 
of cytosolic amyloid-like proteins 

TCM62 - - Putative mitochondrial chaperone; involved in assembly of 
succinate dehydrogenase complex 

UBP11 - - Ubiquitin protease 

WSC3 - cell periphery Sensor-transducer of stress-activated signaling pathway; 
involved in cell wall maintenance and in response to heat 
shock and other stress 

YAP3 - cytoplasm, 
nucleus 

Basic leucine zipper (bZIP) transcription factor 

YDC1 ACER3 vacuole Alkaline dehydroceramidase; involved in sphingolipid 
metabolism 

YDJ1 DNAJA1, 
DNAJA2, 
DNAJA4 

cytoplasm, 
nucleus 

Hsp40 cochaperone; involved in regulation of Hsp90 and 
Hsp70 function 

YDR010C - - Dubious open reading frame 

YHL008C - vacuole Putative protein of unknown function 

YJL064W - - Dubious open reading frame; overlaps with DLS1 gene 

YMR135W-A - - Dubious open reading frame 

YNL190W - endoplasmic 
reticulum, cell 
periphery 

Hydrophilin protein; essential in desiccation-rehydration 
process; cell wall protein 

YPL182C - - Dubious open reading frame; overlaps with CTI6 gene 
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Table 2: A genome-wide deletion screen uncovers suppressors of both hnRNPA1 
and hnRNPA2 toxicity.  
Listed are genetic deletions that emerged as suppressors of hnRNPA1D262V or 
hnRNPA2D290V toxicity from a screen of all non-essential yeast genes. Human 
orthologues are noted. Functional descriptions were adapted from the Saccharomyces 
Genome Database [336]. Cellular localization information is from the Yeast GFP Fusion 
Localization Database unless otherwise noted [337]. The genetic deletion screen was 
done in collaboration with Julien Couthouis and Olivia Zhou. 
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Figure 27: Gene deletions suppress toxicity of hnRNPA1 and hnRNPA1D262V. 
Representative spotting assays are shown for 40 gene deletions that suppressed the 
toxicity of hnRNPA1 and hnRNPA1D262V. Yeast strains harboring gene deletions were 
transformed to express hnRNPA1 or hnRNPA1D262V, spotted in five-fold dilution series 
onto sucrose/galactose media to induce protein expression, and allowed to grow for 2 
(A) or 3 (B) days at 30°C. Experiments are separated by dashed lines. Spotting assays 
to validate hits from gene deletion screen were done in collaboration with Julien 
Couthouis and Olivia Zhou. 
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Figure 28: Gene deletions that suppress hnRNPA1 toxicity also suppress toxicity 
of hnRNPA2 and hnRNPA2D290V. 
Spotting assays are shown for gene deletions shown in Figure 27 that suppressed the 
toxicity of hnRNPA1 and hnRNPA1D262V. Yeast deletion strains were transformed to 
express hnRNPA2 or hnRNPA2D290V, spotted in five-fold dilution series onto 
sucrose/galactose media to induce protein expression, and allowed to grow for 2 (A) or 3 
(B) days at 30°C. All forty strains also exhibited suppression of hnRNPA2 and 
hnRNPA2D290V toxicity. Experiments are separated by dashed lines. Spotting assays to 
validate hits from gene deletion screen were done in collaboration with Julien Couthouis 
and Olivia Zhou. 
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2.2.17 Overexpression of Hsp82 does not suppress hnRNPA1 or hnRNPA2 

toxicity. 

The constitutively expressed Hsp90 chaperone in yeast, Hsc82 [302,338], which 

emerged from our deletion screen as one of the strongest deletion suppressors of both 

hnRNPA1 and hnRNPA2 toxicity, is one of two closely related heat shock proteins in 

yeast [302]. The other is Hsp82 [302]. Under homeostatic conditions, Hsc82 is 

abundantly expressed, while Hsp82 is expressed at significantly lower levels [302]. Upon 

heat stress, expression of both proteins is induced, but Hsp82 is induced more robustly 

[302]. Deletion of HSC82 results in a compensatory increase in HSP82 mRNA levels 

[338], and so we wondered whether increased Hsp82 expression, rather than a loss of 

Hsc82, was the cause of the strong reduction in hnRNPA1 and hnRNPA2 toxicity. To 

answer this question, we overexpressed Hsp82 from a high-copy 2-micron plasmid in 

yeast also overexpressing hnRNPA1, hnRNPA1D262V, hnRNPA2, or hnRNPA2D290V. 

Overexpression of Hsp82 had no effect on the toxicity of these proteins (Figure 29). This 

finding might suggest that loss of Hsc82 function directly disrupts the toxic effects of 

hnRNPA1 and hnRNPA2. However, genes other than HSP82 that get overexpressed 

upon HSC82 deletion may also be important to suppress hnRNPA1 and hnRNPA2 

toxicity in yeast. 
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Figure 29: Overexpression of Hsp82 does not affect hnRNPA1 or hnRNPA2 
toxicity. 
Yeast were transformed to overexpress hnRNPA1, hnRNPA1D262V, hnRNPA2, or 
hnRNPA2D290V with high levels of Hsp82. Yeast strains were spotted onto inducing 
media. Hsp82 did not decrease the toxic phenotype of hnRNPA1, hnRNPA1D262V, 
hnRNPA2, or hnRNPA2D290V. Hsp82 experiments were done in collaboration with Olivia 
Zhou. 

 

2.3 Discussion 

We have demonstrated important mechanistic similarities and differences among 

the toxic effects caused by various RBPs that are inextricably linked to 

neurodegenerative disease, including hnRNPA1 and hnRNPA2, which cause MSP and 

ALS, and FUS and TDP-43, which are causally linked to ALS and FTD 

[29,65,72,134,258]. We have shown that hnRNPA1 and hnRNPA2 require at least a 

single RRM and a portion of the PrLD to confer significant toxicity in a yeast model. This 

observation suggests that the pathogenicity of these hnRNPs is mechanistically two-fold, 

involving both RNA binding and protein aggregation. This finding, in turn, is consistent 
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with the model that has emerged from studies of TDP-43 and FUS, which both also 

require the presence of an intact RRM and a portion of the PrLD for maximal toxicity 

[78,110]. This similarity is important in that it provides two potential mechanisms of 

action for possible therapeutics that could be of broad utility in neurodegenerative 

diseases caused by RBPs: 1) inhibition of RNA binding or 2) disruption of protein 

aggregation. We have identified enhanced Hsp104 variants that show promise in 

combating a large repertoire of toxic proteins [235], and other agents that interfere with 

either RNA binding or protein aggregation may be similarly efficacious. 

Interestingly, though we know that both hnRNPA1 and hnRNPA2 form fibrillar 

structures in vitro, constructs lacking a critical hexapeptide that are incapable of forming 

fibers in vitro still confer toxicity in vivo and form protein foci. It has been shown that the 

hnRNPA1 hexapeptide deletion construct still assembles into liquid-like droplets in vitro 

[222,339], leading us to wonder if liquid assemblies built on transient PrLD interactions 

rather than stable fibrous aggregates are mediators of hnRNPA1 and hnRNPA2 toxicity. 

Indeed, it was recently shown that liquid-liquid demixing causes dosage sensitivity of 

Mip6, an RBP with two LCDs that are not predicted to be prion-like, in yeast [39,340]. 

Upon overexpression, Mip6 forms toxic cytoplasmic liquid-like compartments that 

incorporate mRNA and proteins including transcription factors from the cytosol [340]. We 

propose that hnRNPA1 and hnRNPA2 may act via a similar mechanism, sequestering 

essential proteins and RNA transcripts. It is important to note that protein aggregation 

was not sufficient to confer toxicity in the absence of RNA-binding mediated by RRMs. 

Indeed, the isolated PrLDs of hnRNPA1D262V and hnRNPA2D290V formed cytoplasmic 
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aggregates in our yeast model, including an SDS-resistant amyloid species formed by 

the hnRNPA1 PrLD, but did not affect the viability of cells. 

Like other RBPs with LCDs, hnRNPA1 and hnRNPA2 are recruited to stress 

granules, and disease-associated mutations alter the dynamics of incorporation [50,134]. 

In our model, too, hnRNPA1 and hnRNPA2 associated with RNP granule components, 

though it was not clear whether the resultant protein foci represented bona fide stress 

granules or p-bodies. The emergence, however, of RNP granule components (Lsm6, 

Lsm7 and Sbp1) as modifiers of protein toxicity suggested that the interaction of 

hnRNPA1 and hnRNPA2 with elements of these cellular compartments may play a 

central role in toxicity. It is especially notable that different RNP granule components are 

effective in the suppression of TDP-43 and FUS as compared to each other and 

hnRNPA1 and hnRNPA2, with very limited overlap.  

There is significant evidence to suggest that increased protein translation may be 

sufficient to overcome the toxicity of FUS in yeast. Theoretically increased translation 

could compensate for sequestration of proteins and RNA to pathologic RNP granules 

and increased mRNA degradation. FUS toxicity is suppressed by overexpression of 

Pab1 or deletion of Pub1 [110]. Both Pab1 and Pub1 are poly(A)-binding proteins 

involved in stress granule formation [208,272,284], but Pab1 is thought to facilitate 

translation while Pub1 may negatively regulate translation via interaction with AREs 

[276,285]. FUS toxicity is also suppressed by overexpression of the stress granule-

associated translation initiation factors Tif2 and Tif3 [110]. Both Tif2 and Tif3 have 

helicase activity, and Tif3 promotes the interaction of Tif2 with eiF4G [279,341,342]. 

LSM7 deletion suppresses FUS toxicity, and could also do so via increased translation 
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due to increased mRNA transcript availability in the setting of reduced Lsm1-7-mediated 

decapping [203]. 

Two other P-body proteins, Sbp1 and Edc3, suppress FUS toxicity when 

overexpressed [110]. However, both Sbp1 and Edc3 promote P-body formation and 

mRNA decapping and would be predicted to decrease translation when overexpressed 

[177,201,208], suggesting that their effects on protein translation do not explain their 

suppression of FUS toxicity. These proteins may directly interact with FUS, serving as a 

buffer against the sequestration of essential RNA and proteins. It is also possible that 

FUS expression in yeast causes the formation of non-functional P body-like structures, 

and that overexpression of P-body components that promote assembly can facilitate 

additional formation of functional structures.  

Lastly, overexpression of the P-body protein Tis11, also known at Cth2 [343], 

which promotes decay of specific mRNAs during iron deprivation in yeast, suppresses 

FUS toxicity [110,344].  Tis11 is an RNA-binding protein that is upregulated during iron 

depletion and facilitates downregulation of iron-consuming cellular processes, including 

respiration and the tricarboxylic acids cycle, via enhanced degradation of crucial mRNA 

targets [345]. It is also thought to similarly mediate an adaptive response in yeast during 

oxidative stress [345]. This finding suggests that specific proteins that are downregulated 

in the setting of iron deficiency may directly contribute to FUS toxicity in yeast. Tis11 

overexpression also suppresses the toxicity of TDP-43 [195], suggesting the possibility 

that investigation of the genes that are downregulated during iron starvation in yeast 

might yield insight into mechanistic overlap between TDP-43 and FUS toxicity.  
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Overexpression of the P-body protein Vts1, another facilitator of mRNA decay, 

also suppresses the toxicity of TDP-43 in yeast [195,346]. Vts1 facilitates mRNA 

degradation by the recruitment of a deadenylase complex [346]. Overexpression of the 

stress-granule protein Hrp1, which is involved in 3’ cleavage and polyadenylation of 

mRNA to produce stable transcripts [347], enhances TDP-43 toxicity [195]. The stress-

granule protein Pbp1 is also important for the addition of the 3’ poly(A) tail that that is 

important for transcript stability, nuclear mRNA export, and mRNA translation [283,347]. 

Loss of Pbp1, which leads to impaired polyadenylation [283], suppresses TDP-43 

toxicity [251]. Taken together, these observations suggest that decreased transcript 

availability, and perhaps decreased translation of specific protein products, mitigates 

TDP-43 toxicity. Thus, specific TDP-43 protein interactions may confer toxic gain-of-

function in the yeast cytoplasm. Finally, overexpression of the 5’-3’ exonuclease Xrn1 

enhances TDP-43 toxicity [195,208]. Xrn1 is an effector of mRNA degradation but also 

promotes transcription initiation and elongation [348]. Thus, it is possible that Xrn1 

overexpression enhances TDP-43 toxicity by increasing mRNA transcript levels and, 

consequently, protein translation. 

The three RNP granule components that suppress hnRNPA1 and hnRNPA2 

toxicity when depleted are Sbp1, Lsm6, and Lsm7 (Table 2). All three are P-body 

proteins that enhance decapping, and their loss would be predicted to increase 

translation [201,203]. This finding suggests that the mechanism underpinning hnRNPA1 

and hnRNPA2 toxicity is more similar to the mechanism of FUS toxicity than that of TDP-

43 toxicity. This idea is also supported by the fact that we have identified deletion 

suppressors of hnRNPA1 and hnRNPA2 toxicity that also suppress FUS toxicity [110] 
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but none that also suppress TDP-43 toxicity [251] (Figure 26). However, SBP1 

overexpression suppresses FUS toxicity [110], while SBP1 deletion suppresses 

hnRNPA1 and hnRNPA2 toxicity (Table 2, Figure 28). It is, therefore, possible that FUS, 

hnRNPA1, and hnRNPA2 do not cause toxicity in mechanistically similar ways, and that 

genetic modifications that suppress the toxicity of all three do so via distinct pathways. 

For example, deletion of Lsm6 and Lsm7 could cause increased translation that 

suppresses FUS toxicity and splicing alterations that suppress hnRNPA1 and hnRNPA2 

toxicity. Sbp1 could directly interact with FUS, competitively buffering FUS toxicity 

caused by aberrant RNA and protein binding when overexpressed. Sbp1 could also 

compete with hnRNPA1 and hnRNPA2 for binding to certain non-essential proteins in 

the cytoplasm. Deletion of Sbp1 might then reduce hnRNPA1 and hnRNPA2 toxicity by 

increasing the availability of these cytoplasmic proteins to bind hnRNPA1 or hnRNPA2 

and prevent sequestration of essential mRNA. 

It is likely that FUS and TDP-43 cause toxicity by affecting distinct processes 

within the RNA-metabolism machinery or differentially affecting specific subsets of RNAs 

when compared to hnRNPA1 and hnRNPA2. TDP-43, FUS, hnRNPA1, and hnRNPA2 

participate in the regulation of multiple steps of RNA metabolism, including transcription, 

splicing, and translation [57,143-146,150,151,155-157]. Thus it is possible that these 

RBPs could activate or perturb any of these processes in yeast. Furthermore, it is likely 

that their RNA targets would differ, as FUS and TDP-43 do not share binding targets 

with each other or with hnRNPA1 and hnRNPA2 in mammalian cells 

[57,59,62,143,147,148]. The preferred binding motifs of hnRNPA1 and hnRNPA2 are 
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similar, which is in accord with the fact that their shared modifiers suggest that they 

affect the same pathways [143,147,148]. 

Additional deletion modifiers identified by our screens against hnRNPA1 and 

hnRNPA2 were largely non-overlapping with known modifiers of TDP-43 and FUS 

toxicity from similarly executed screens, indicating that despite the structural and 

functional similarities among these RBPs, there are mechanistic differences underlying 

the pathologies caused by each (Figure 26). Two intriguing functional protein classes 

emerged as being linked to hnRNPA1 and hnRNPA2 toxicity: members of the yeast 

proteostasis network and snRNP complex proteins. One advantage of using yeast as a 

model system for human disease is the strong homology between the yeast and human 

genomes, which allows us to draw inferences about the cellular processes perturbed in 

disease based on genetic toxicity modifiers in yeast [1,7]. Indeed, the spliceosome 

machinery is highly conserved between yeast and humans, and Lsm6, Lsm7, Bud31, 

and Prp18 all have human homologues. Thus, inhibition of specific splicing factors may 

represent a therapeutic strategy for diseases of hnRNPA1 and hnRNPA2 misfolding. 

One hypothesis to explain the suppression of hnRNPA1 and hnRNPA2 toxicity by 

splicing perturbations would be that increased intronic inclusion causes cytoplasmic 

accumulation of transcripts targeted for nonsense-mediated decay (NMD) rather than 

translation [349]. If hnRNPA1 and hnRNPA2 aberrantly sequester essential mRNAs in 

RNP granules, causing their inappropriate degradation, nonfunctional intron-containing 

transcripts might compete for the degradation machinery (Figure 30A). Alternatively, 

hnRNPA1 and hnRNPA2 could cause detrimental splicing alterations that are eliminated 

by the disruption of the splicing machinery (Figure 30B). Finally, the genes encoding one 
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or more proteins that interact with hnRNPA1 and hnRNPA2 to functionally confer toxicity 

could contain introns. Reductions in the activity of the splicing machinery would render 

these transcripts nonfunctional, and translation would be diminished, leading to reduced 

toxicity (Figure 30C). 



 

107 

 

 
Figure 30: Proposed mechanisms to explain the suppression of hnRNPA1 and 
hnRNPA2 toxicity by perturbation of the splicing machinery in yeast. 
(A) It is possible that hnRNPA1 and hnRNPA2 sequester essential mRNAs to RNP 
granules preventing their translation and leading instead to their degradation. Disruption 
of the splicing machinery could lead to the accumulation of intron-containing transcripts 
that compete for the mRNA degradation machinery, making essential transcripts once 
again available for translation. (B) Alterations in splicing caused by hnRNPA1 and 
hnRNPA2 might lead to production of proteins with gain-of-function toxicity, and 
disruption of the splicing machinery could eliminate production of the improperly spliced 
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transcripts encoding these toxic proteins. (C) The toxic effects of hnRNPA1 and 
hnRNPA2 could be dependent upon their interactions with one or more cellular proteins. 
If the mRNA transcripts encoding these interacting proteins contain introns, the 
disruption of the splicing machinery could diminish their translation and reduce the 
availability of these proteins for toxic protein-protein interactions. 

 

Our screen has also implicated the human protein quality control machinery, as 

homologs of several chaperones and cochaperones reduce hnRNPA1 and hnRNPA2 

toxicity when deleted in yeast. Moreover, the human homologue of Hsc82, Hsp90AA1, 

and the human homolog of Ydj1, DnaJA1, have known clients that cause 

neurodegeneration. Overexpression of DnaJA1 was found to reduce the accumulation of 

tau, one of the pathologically aggregated proteins in AD and other ‘tauopathies,’ in 

cultured cells, and DNAJA1 levels were observed to be lower in the brains of patients 

with AD [350]. Hsp90AA1 has an inhibitory effect on the amyloidogenesis of 

Aβ [351], which points to a model in which Hsc82 may be acting to prevent the formation 

of fibrillar hnRNPA1 and hnRNPA2 structures, and its deletion mitigates toxicity by 

shifting the equilibrium away from toxic oligomer or droplet formation and towards non-

toxic fibrous aggregate accumulation. In a yeast model of Huntingtin (Htt) toxicity, Htt 

harboring an expanded polyglutamine tract (Htt103Q) can form tight, amyloid-like 

assemblies that are benign or detergent soluble aggregates that are more amorphous 

and can be toxic [352,353]. In this model, Sti1 reduces Htt103Q toxicity by incorporating 

Htt103Q into large amyloid-like inclusions [353]. It is possible that Sti1 similarly facilitates 

the assembly of large hnRNPA1 and hnRNPA2 inclusions that represent a toxic species, 

while STI1 deletion causes an increased proportion of benign, amorphous species. 
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Yeast chaperones also affect RNP granule dynamics, providing possible insight 

into their role in hnRNPA1 and hnRNPA2 toxicity [217,325,326]. Loss of Sse1 alters 

yeast stress granule assembly dynamics and delays stress granule dissolution [217]. 

Ydj1 has an LC domain and is required for the formation of P bodies [325]. Moreover, 

loss of Ydj1 causes increased targeting of stress granules to the vacuole for degradation 

and prevents the restoration of protein translation during recovery from stress [326]. 

Another cytoplasmic yeast Hsp40, Sis1, promotes stress granule clearance via 

autophagy rather than dissolution and returning of mRNAs to translation [326]. These 

findings suggest that stress-granule clearance via autophagy via the Sis1 pathway may 

be beneficial in the setting of overexpression of hnRNPA1 or hnRNPA2 in yeast.  

Members of the Hsp90 family are a particularly appealing therapeutic target, as 

inhibitors are currently in clinical trials as anti-cancer agents [354] and have shown 

promise in models of neurodegeneration, specifically a mouse model of spinal and 

bulbar muscular atrophy and a Drosophila model of Parkinson’s disease [355,356]. Our 

data suggest that Hsp90 inhibitors might be similarly efficacious in MSP patients. Future 

studies should focus on testing the modifiers of hnRNPA1 and hnRNPA2 toxicity that we 

have uncovered in metazoan model systems, including C. elegans, Drosophila, and 

mammalian neuronal cell culture to establish their relevance in the nervous system.  

A lingering question in the field of RBP pathology as it relates to 

neurodegeneration is whether therapeutic strategies targeting specific RBPs will be 

preferable to, or more attainable than, a broadly efficacious anti-disease agent. We have 

demonstrated potential avenues for both approaches. All genetic overexpression and 

deletion suppressors discussed appear to be specifically efficacious against one or more 
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RBPs, but there is not a known alteration of gene expression that suppresses the toxicity 

of hnRNPA1 and hnRNPA2 in addition to both TDP-43 and FUS. This presents the 

opportunity for tailored therapeutic strategies designed to approach specific mutations 

and protein pathologies. We have, however, identified engineered Hsp104 variants that 

antagonize the toxic effects of all four RBPs. Hsp104 variants including A503S, V426L, 

and A437W, therefore, may ultimately be of utility in patients with ALS and FTD of 

various etiologies in addition to IBM, PFD, and MSP. Future work will include a focus on 

identifying small-molecule modifiers of hnRNPA1 and hnRNPA2 toxicity and exploring 

the specificity of these modifiers to expand our repertoire of therapeutic candidates and 

to gain additional mechanistic insight into the RBP-misfolding disorders. 

2.4 Materials and Methods 

2.4.1 Yeast strains, plasmids, and media 

All experiments were performed using BY4741 yeast (MATa, his3Δ1, leu2Δ0, 

met15Δ0, ura3Δ0). Deletion strains harbor the KanMX cassette in place of the deleted 

gene of interest. BY4741 pbp1Δ and BY4741 pub1Δ were obtained from F. Bradley 

Johnson. BY4741 lsm7Δ and BY4741 dbr1Δ [251] were obtained from Aaron Gitler. The 

construction of centromeric pAG416Gal-hnRNPA1-GFP and pAG416Gal-hnRNPA2-

GFP plasmids for yeast expression was previously described [134], as was the 

construction of pAG416Gal-FUS [110] and pAG416Gal-TDP-43 [78]. All missense 

mutations and deletions were generated using QuikChange Lightning site-directed 

mutagenesis (Agilent) and confirmed by DNA sequencing. pAG413Gal-Hsp104, 

pAG413Gal-Pab1, pAG413Gal-Dcp2, pAG423Gal-Tif2, and pAG423Gal-Hsp82 were 

used for coexpression studies. Frank Luca provided a plasmid for the expression of 
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RFP-tagged Dcp2 driven by the endogenous promoter and a yeast strain expressing 

integrated mCherry-tagged Pab1, also under the control of the endogenous promoter. 

The pSNR6 plasmid for overexpression of U6 snRNA was provided by Roy Parker. 

Yeast were grown in rich media (YPD) or selective synthetic media lacking the 

appropriate amino acids and supplemented with 2% glucose, raffinose, or galactose, or 

a combination of sucrose and galactose totaling 2% of the final volume.  

2.4.2 Yeast transformation and spotting assay 

Yeast were transformed with plasmid DNA using polyethylene glycol and lithium 

acetate according to standard protocols [357]. Transformed yeast were grown at 30°C 

on non-inducing, selective glucose media. They were then passaged overnight in 

raffinose-containing media to mid/late log-phase, and normalized for OD600. A five-fold 

dilution series was spotted in parallel on solid non-inducing, glucose containing media 

and solid media containing either galactose or a combination of sucrose and galactose 

to induce protein expression. Plates were incubated for 2-3 days at 30°C.  

2.4.3 Immunoblotting 

Yeast cells from overnight liquid raffinose cultures were spun down, resuspended 

in galactose- or sucrose/galactose-containing media and grown >5 hours at 30°C to 

induce protein expression. Cells were harvested and treated with 0.1M NaOH for five 

minutes at room temperature. After centrifugation, pelleted cells were resuspended in 1x 

SDS sample buffer and boiled for five minutes. Total protein concentration was 

normalized based on the OD600 of the induced cultures, and lysates were resolved via 

SDS-PAGE (4%-20% gradient, BioRad) followed by transfer to a PVDF membrane. 

Membranes were blocked overnight at 4°C in Odyssey® Blocking Buffer (LI-COR 
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Biosciences) and probed using rabbit anti-GFP polyclonal antibody (Sigma-Aldrich), 

mouse anti-PGK monoclonal antibody (Novex), rabbit anti-FUS polyclonal antibody 

(Bethyl Laboratories), rabbit anti-Hsp104 polyclonal antibody (Enzo Life Sciences), 

680RD goat anti-rabbit secondary antibody (LI-COR), and 800CW goat anti-mouse 

secondary antibody (LI-COR). Blots were visualized using an Odyssey® Fc imager and 

Image Studio software. 

2.4.4 Sedimentation analysis of yeast lysates 

Yeast cells were grown overnight in raffinose-containing media at 30°C, then 

grown for 5-6 hours in galactose-containing media before harvesting for sedimentation. 

OD600 was normalized to 1.2 and 200mL cells were spun down and resuspended in 

12mL lysis buffer (30mM HEPES pH 7.4, 150mM NaCl, 1% glycerol, 0.5% Triton X-100, 

5mM EDTA, 1mM DTT, 1mM PMSF, 1% fungal protease inhibitor cocktail (Sigma)). The 

suspension was then passed three times through a French press (Emulsiflex C-3) to lyse 

the cells. Lysates were cleared by centrifugation (6000g for 5 minutes) and a 200ul 

fraction was taken to represent the total cellular protein content and boiled for five 

minutes in 3x SDS sample buffer. Another 200ul aliquot was separated into soluble and 

pelleted fractions by centrifugation at 100,000g for 15 minutes. The soluble fraction was 

boiled for five minutes in 3x SDS sample buffer and the pellet was dissolved and boiled 

for 10 minutes in 1x SDS sample buffer. 10% of the total and soluble protein fractions 

and 20% of the pelleted protein fraction were separated via SDS-PAGE and 

immunoblotted as described above. 
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2.4.5 Fluorescence Microscopy 

Yeast cultures grown overnight in raffinose media were diluted to early/mid log-

phase in galactose media and grown for >5 hours at 30°C to induce hnRNP expression. 

Live, untreated cells were visualized at 100x magnification on a Leica-DMIRBE 

microscope. To visualize nuclear material, cells were incubated for 15-30 minutes at 

room temperature with Hoechst 33342 stain (167µg/mL). All images were analyzed and 

processed using ImageJ software. 

2.4.6 SDD-AGE 

Yeast cells were grown overnight in raffinose-containing media, then harvested 

by centrifugation and resuspended in galactose-containing media to induce protein 

expression. Following 6-hour induction, yeast were pelleted by centrifugation, washed in 

water and then resuspended in spheroplasting solution (1.2 M D-sorbitol, 0.5 mM MgCl, 

220 mM Tris, pH 7.5, 50 mM β-mercaptoethanol and 0.5 mg/ml Zymolyase 100T) and 

incubated for 1 hour at 30˚C. Spheroplasts were collected by centrifugation (500 rcf for 5 

minutes) and resuspended in lysis buffer (100 mM Tris (pH 7.5), 50 mM NaCl, and 2x 

Sigma Protease Inhibitor cocktail—P8215). The suspensions were vortexed at high 

speed for 1 minute at 4˚C and then snap-frozen in dry ice and ethanol. Samples were 

thawed on wet ice and protein concentrations were determined by BCA Protein Assay. 

4X sample buffer (2X TAE, 20% glycerol, 2 or 8% SDS, 10% β-mercaptoethanol, and 

bromophenol blue) was added and lysates were incubated for 5 minutes at room 

temperature. Samples of the same total protein concentration were loaded on a 1.5% 

Agarose gel with 1X TAE and 0.1% SDS, cast in a horizontal slab electrophoresis 

apparatus tray. Samples were run at 5 V/cm gel length in a cold room until dye front was 
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1.5 cm from the end of the gel. The samples were then transferred overnight to a 

nitrocellulose membrane as previously described [358]. The membrane was processed 

for Western Blot analysis with α-GFP (Roche Cat. No. 11814460001) primary and α-

Mouse (Rockland Anti-MOUSE IgG (H&L) IRDye800) secondary antibodies and proteins 

were detected using a Li-Cor Odyssey Model 9120. 

2.4.7 Confocal microscopy 

Yeast coexpressing GFP-tagged hnRNP constructs and mCherry- or RFP-

tagged stress granule and P-body proteins were grown overnight at 30°C in non-

inducing raffinose media lacking uracil and leucine. Cultures were spun down and cell 

pellets were resuspended in galactose media to induce hnRNP expression. After 5-6 

hours of induction at 30°C, cells were harvested for microscopy. Live, unstained cells 

were imaged using a spinning disk confocal microscope equipped with a Yokogawa 

CSU X1 scan head combined with an Olympus IX 81 microscope. Acquisition and 

hardware were controlled by MetaMorph, version 7.7 (Molecular Devices, Downingtown 

PA). An Andor iXon3 897 EMCCD camera (Andor Technology, South Windsor CT) was 

used for image capture. Solid-state lasers for excitation (488 nm for GFP, 561 nm for 

RFP/mCherry) were housed in a launch constructed by Spectral Applied Research 

(Richmond Hill, Ontario, Canada). All images were analyzed and processed using 

ImageJ software. 

2.4.8 Protein Purification  

WT and mutant hnRNPA1 and hnRNPA2 were expressed and purified from E. 

coli as GST-tagged proteins. Expression constructs were generated in pDuet to contain 

a TEV-cleavable site, resulting in a GST-TEV-hnRNP construct. GST-TEV-hnRNP was 
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overexpressed in E. coli BL21-CodonPlus(DE3)-RIL cells (Agilent) and purified under 

native conditions using a glutathione-sepharose column (GE) according to the 

manufacturer’s instructions. Proteins were eluted from the glutathione sepharose with 

assembly buffer (hnRNPA1 D262V 105-320: 50 mM Tris-HCl, pH 8, 200 mM trehalose, 

and 20 mM glutathione; all other constructs: 40mM HEPES-NaOH, 150mM KCl, 5% 

glycerol, 20mM glutathione, pH 7.4). Protein was centrifuged for 10 min at 16,100g, and 

supernatant was separated from pellet to remove any protein aggregates. Protein 

concentration was determined by Bradford assay (Bio-Rad) in comparison to BSA 

standards. 

2.4.9 Sedimentation analysis of hnRNPA1 fibrillization 

To follow the reaction kinetics by sedimentation analysis, at different time points, 

samples were centrifuged at 16,100 g for 10 min at 4°C. Supernatant and pellet fractions 

were then resolved by SDS-PAGE and stained with Coomassie Brilliant Blue. The 

amount of protein in either fraction was determined by densitometry in comparison 

to known quantities of hnRNPA1/hnRNPA2. 

 2.4.10 Transmission electron microscopy 

Samples (10 µl) were adsorbed onto glow-discharged 300-mesh 

Formvar/carboncoated copper grid (Electron Microscopy Sciences) and stained with 2% 

(w/v) aqueous uranyl acetate. Excess liquid was removed, and grids were allowed to air 

dry. Samples were viewed by a JEOL 1010 transmission electron microscope. 

2.4.11 ThT fluorescence 

ThT fluorescence was used to assess fibrillization as previously described [359]. 
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2.4.12 Genetic deletion screen for toxicity modifiers 

We used the synthetic genetic array (SGA) technique to screen the collection of 

non-essential only yeast knockout strains. Screens were performed as described [360-

362] with some modifications [363], using a Singer RoToR HDA (Singer Instruments, 

Somerset, UK). The galactose-inducible expression constructs (pAG416Gal-hnRNPA1 

and pAG416Gal-hnRNPA2B1) were introduced into MATα strain Y7092 to generate the 

query strains. Query strains were mated to the yeast haploid deletion collection of non- 

essential genes (MATa, each gene deleted with KanMX cassette). Diploids were 

selected for by plating yeast onto glucose media lacking uracil with G418 added. 

Diploids were then grown on 2% YPD prior to sporulation. Yeast were induced to 

undergo sporulation by plating on media containing 1.5% potassium acetate, 0.1% 

glucose, 0.25% yeast extract, 0.01% amino-acids supplement mixture (2 g histidine, 10 

g leucine, 2 g lysine, 2 g uracil), and 50 mg/L G418. Glucose media lacking histidine, 

arginine, lysine, and uracil and supplemented with canavanine and thialysine was used 

to select for MATa haploids. G418 was then used to select for MATa haploids harboring 

the KanMX cassette and yeast were grown in the presence of glucose (hnRNPA1 or 

hnRNPA2 expression ‘‘off’’) or a 1:1 mixture of sucrose and galactose (hnRNPA1 or 

hnRNPA2 expression ‘‘on’’). After growth at 30ºC for 2 days for glucose plates and 4 

days for sucrose/galactose plates, plates were photographed and colony sizes 

measured by ImageJ image analysis software, based on Collins et al. 2006 [364]. The 

screen was repeated twice and hits were selected and validated by repeat 

transformations and spotting on 1:1 or 3:1 sucrose:galactose. 
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CHAPTER 3: CONCLUSIONS AND FUTURE DIRECTIONS 
 

Using Saccharomyces cerevisiae as a model system, we have mapped the 

determinants of protein toxicity for two RBPs with PrLDs that are known to cause MSP, a 

degenerative syndrome encompassing features of ALS, FTD, IBM, and PDB. We have 

established that both hnRNPA1 and hnRNPA2 require an intact RRM and a portion of 

the PrLD, and thus propose a mechanism of toxicity that requires both RNA-binding and 

the formation of protein assemblies. It is unknown whether the toxic species in yeast is a 

solid fibrous state, a liquid droplet-like assembly, a soluble oligomer or a combination of 

these. We have highlighted the importance of the splicing machinery, the yeast protein 

quality control machinery, and RNP-granule components to the toxicity of both hnRNPA1 

and hnRNPA2 through a genetic deletion screen to identify modifiers of toxicity. 

Identifying cellular pathways that affect RBP-mediated toxicity can give us insight into 

the mechanisms underlying cell death. Importantly, all suppressors of hnRNPA1 also 

suppressed hnRNPA2 toxicity, and vice versa, suggesting a shared molecular pathway 

underlying the pathogenesis of disease caused by these proteins. It was also notable 

that there was very little overlap between modifiers of hnRNPA1 and hnRNPA2 toxicity 

and modifiers of other toxic, disease causing RBPs, specifically TDP-43 and FUS. Our 

data suggest mechanistic differences underpinning toxicity among these structurally and 

functionally similar proteins. 

We have also expanded the repertoire of disease substrates rescued by 

engineered variants of the protein disaggregase Hsp104 (A503S, V426L, and A437W). 

These potentiated disaggregases with elevated ATPase activity robustly suppress the 
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toxicity of TDP-43, FUS, and α-synuclein in yeast, whereas Hsp104 has no effect 

[234,235]. We have shown that these Hsp104 mutants, and likely many others, given the 

wide genetic landscape that supports rescue of cell viability in the setting of TDP-43 and 

FUS expression [234,235], are also able to suppress hnRNPA1 and hnRNPA2 toxicity. 

Ultimately, adaptation of Hsp104 for use in patients with neurodegenerative diseases 

could represent a broadly applicable therapeutic strategy that does not require the use of 

genotyping or biopsy to identify patient-specific protein pathology. 

These studies will provide a framework for extending the study of MSP to 

mammalian and other higher order systems, and future work will use the insights 

gleaned from these experiments to explore candidate therapeutic agents in Drosophila, 

mouse models, or primary neuronal cultures. There remain, however, unanswered 

questions and further yeast studies that could potentially add to our knowledge base and 

generate additional leads for exploration in other models. A genetic overexpression 

screen to complement our deletion screen would be a natural first step, and a high-

throughput small molecule screen could tease out additional information about specific 

pathways affected by hnRNPA1 and hnRNPA2. The results from our deletion screen 

provide an arsenal of genes and pathways that can be targeted in a host of disease 

models using short interfering RNAs (siRNAs), antisense oligonucleotides (ASOs), or 

CRISPR/Cas9 technology [365-367]. They also raise a number of mechanistic questions 

that could begin to be answered in yeast. 

It was particularly curious to us that deletion of DBR1, which encodes the lariat-

debranching enzyme, did not suppress the toxic effects of hnRNPA1 and hnRNPA2, as 

it does for TDP-43 and FUS. Loss of Dbr1 causes the cytoplasmic accumulation of 
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intronic RNA lariats as they are excised from mRNA transcripts during splicing and 

cannot be degraded in the absence of the initial debranching step [251,368]. It is 

proposed that in the absence of lariat debranching, the undegraded RNA lariats bind to 

FUS and TDP-43, acting as ‘decoy’ interactors and preventing these toxic proteins from 

sequestering essential RNA and proteins [251]. We hypothesized that this mechanism 

would be widely applicable across toxic RBPs, however the observation that hnRNPA1 

and hnRNPA2 toxicity was unaffected by DBR1 deletion led us to consider the possibility 

that the nucleotide content of the yeast intronic genome is preferentially bound by TDP-

43 and FUS, but not hnRNPA1 or hnRNPA2. We propose that noncoding RNAs tailored 

to the preferred binding motifs of hnRNPA1 or hnRNPA2 and expressed at high levels in 

the cytoplasm could functionally replace RNA lariats and buffer protein toxicity as non-

essential binding partners. One approach to achieving this goal would be to design long, 

repetitive RNA sequences that could be expressed as circular RNA. Circular RNA is, in 

general, protected from cytoplasmic degradation, likely because, without linear ends, it is 

not recognized by the RNA-decay machinery [369]. Delivery of exogenous RNAs, 

though not without difficulties, is currently being explored in various forms, including 

siRNAs and ASOs, for a range of disorders including hepatitis B, cardio-metabolic 

disorders, and rare genetic disorders [367]. Three ASO therapeutics have been 

approved for use by the FDA [367]. Though these therapies are aimed at silencing 

endogenous RNA, the same principles of delivery could be applied to introduce a 

circular non-coding RNA species to buffer the toxicity of neurodegeneration-causing 

RBPs. 
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We are especially intrigued by the ability of either LSM6 or LSM7 deletion to 

suppress the toxicity of hnRNPA1 and hnRNPA2, because the encoded proteins both 

participate in two disparate aspects of RNA metabolism: splicing and degradation [40]. It 

would be of great utility to discern which of these processes, when perturbed, disrupts 

the toxicity of hnRNPA1 and hnRNPA2. Lsm6 and Lsm7 assemble into two distinct 

heteroheptameric complexes; Lsm1-7 is localized to P bodies in the cytoplasm, sites of 

mRNA degradation, and Lsm2-8 is a component of the spliceosomal U6 snRNP 

[202,203]. Of the eight proteins present in these two complexes, three are non-essential 

(Lsm1, Lsm6, and Lsm7) [202], and, therefore, candidate toxicity suppressors within the 

parameters of our deletion screen. Lsm1-7 play a role in promoting decapping in the 

mRNA degradation pathway, as does another deletion suppressor that emerged from 

our screen, Sbp1 [200,201,203]. Our evidence suggests that it is less likely that the 

decapping role of Lsm6 and Lsm7 is crucial to the toxicity of hnRNPA1 and hnRNPA2 

for a number of reasons. First, the third non-essential gene in the Lsm1-7 complex was 

not found to be a suppressor of hnRNPA1 or hnRNPA2. Additionally, we did not find 

deletion of other elements of the decapping machinery, including Pat1 and Dhh1 [177], 

to have any effect on hnRNPA1- or hnRNPA2-mediated toxicity. Moreover, Sbp1 is also 

found in stress granules, suggesting that its role in hnRNPA1 and hnRNPA2 toxicity may 

be related to a process other than RNA decapping and decay [200]. 

An alternative hypothesis is that splicing perturbations from the disruption of the 

Lsm2-8 complex inhibit the toxic effects of hnRNPA1 and hnRNPA2. This hypothesis 

could be confirmed by treating cells with a small molecule inhibitor of splicing concurrent 

with overexpression of hnRNPA1 or hnRNPA2. If, in fact, the inhibition of splicing 
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suppresses the toxicity of these RBPs, it could be due to the effective depletion of 

spliced yeast genes. In yeast, intron-retaining transcripts are degraded either by the 

nuclear exosome or by NMD and do not get translated [349]. Experimentally determining 

whether the depletion of specific essential proteins through reduced splicing efficiency 

reduces hnRNPA1 and hnRNPA2 toxicity could yield insight into additional toxicity-

modifying biologic pathways that were not revealed by scanning the non-essential 

genome. Just under 5% of the yeast genome (283 genes) contains introns [370]. After 

filtering this list to exclude non-essential genes (which were explored in our deletion 

screen), each remaining yeast gene with an intronic sequence could be tested for 

modifying effects on hnRNPA1 and hnRNPA2 toxicity. This could be done in two ways. 

Knowing that we expect decreased gene expression to suppress toxicity, we could 

overexpress each gene and look for those that enhance toxicity in the setting of 

hnRNPA1 or hnRNPA2 overexpression. This approach could prove difficult because 

hnRNPA1 and hnRNPA2 both confer a high level of toxicity at baseline. An alternative 

approach would include generating temperature-sensitive, conditional mutant strains for 

each intron-containing gene. Temperature-sensitive strains typically allow for the 

manipulation of gene expression levels within a range of growth temperatures [371]. 

Altering growth conditions to reduce expression of individual essential genes could 

reveal genetic interactions that modify RBP toxicity. This approach could be expanded to 

include inhibition of all untested essential yeast genes, but the information from our 

deletion screen suggests that intron-containing genes may be a fruitful starting point.  

An important question that has not been resolved is: what species represents the 

toxic conformation of hnRNPA1 and hnRNPA2 in S. cerevisiae? A portion of the PrLD is 
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required for maximal toxicity, suggesting that the formation of protein assemblies is 

crucial for toxicity. Whether these toxic assemblies are liquid droplets, fibrillar 

aggregates, or perhaps prefibrillar oligomers remains unclear. Several pieces of 

evidence suggest that, in yeast, more stable fibrillar hnRNPA1 or hnRNPA2 aggregates 

may be protective, just as more stable aggregates are the benign species in a yeast 

model of Htt toxicity [353]. First, hnRNPA1 lacking a crucial steric zipper motif does not 

readily fibrillize in vitro, but does form liquid droplets [134,222]. This construct is highly 

toxic in yeast (Figure 8). Moreover, the PrLD of hnRNPA1D262V forms stable aggregates 

that are detergent-insoluble in yeast, and this construct is benign (Figures 8 and 10). 

Finally, the human homologue of Hsc82 negatively regulates amyloidogenesis [351]. 

Deletion of Hsc82, which suppresses hnRNPA1 and hnRNPA2 toxicity in yeast, may 

shift the relative abundance of protein conformers away from oligomers and droplets and 

towards stable cross-β structures. It would be useful to examine whether toxic hnRNPA1 

and hnRNPA2 form liquid droplets in yeast, and whether the elimination of these species 

can reduce toxicity.  

Aliphatic alcohols, including 1,6-hexanediol, 2,5-hexanediol, 1,5-pentanediol, or 

1,4-butanediol, can disrupt the weak interactions between LCDs that mediate LLPS, and 

they have been proposed as a method of elucidating whether cellular structures form via 

LLPS [217,229,230]. New evidence suggests, however, that 1,6-hexanediol can also 

disrupt elements of cytoskeletal organization and reduce cellular viability [372]. It would, 

therefore, not be straightforward to examine which, if any, hnRNPA1 and hnRNPA2 

constructs form liquid-like assemblies simply by exposing cells to aliphatic alcohols and 
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assessing for alterations in hnRNPA1 or hnRNPA2 localization or dissolution of 

hnRNPA1 or hnRNPA2 foci using fluorescence microscopy.  

Finally, the contribution of hnRNPA1 and hnRNPA2 mutations to the overall 

landscape of neurodegeneration is currently unknown in that we do not yet know how 

frequently these mutations occur or how penetrant they are. The discovery of hnRNPA1 

and hnRNPA2 mutations in MSP was rapidly followed by the identification of additional 

hnRNPA1 and hnRNPA2 mutations in patients with sporadic and familial ALS [94,134], 

and we expect the number of patients suffering from neurodegenerative phenotypes with 

identified mutations in hnRNPA1 or hnRNPA2 to grow as our knowledge of disease 

increases. Moreover, mutations in the PrLD of hnRNPDL, leading to D378N or D378H 

substitutions, have now been linked to limb-girdle muscular dystrophy type 1G [373]. We 

anticipate that over time additional RBPs with PrLDs will continue to emerge in 

connection with degenerative diseases [31,41]. 
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