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Epigenomic And Nuclear Architectural Insights Into Rett Syndrome

Abstract
The importance of DNA methylation in neuronal function is highlighted by mutations in the neuronally
enriched “reader” of DNA methylation, methyl-CpG-binding protein 2 (MECP2), causing Rett Syndrome
(RTT), a severe neurodevelopmental disorder. Although MeCP2 displays broad genomic binding, gene
expression changes in Mecp2 mutant mice are very subtle, and brain region-specific, making it difficult to
determine how MeCP2 regulates gene expression. Therefore, we developed an approach to assess cell type-
specific effects of Mecp2 mutations on the transcriptome, epigenome, and chromatin architecture to
determine whether epigenomic features can explain gene misregulation in RTT. Differentially expressed genes
(DEGs) in R106W Mecp2 mutants (R106W) are enriched for MeCP2 binding in the WT setting and are
preferentially demethylated in R106W, suggesting that the loss of MeCP2 binding results in the exposure of
unbound cytosines to demethylation, thus contributing to gene dysregulation. Given that DEGs are enriched
for MeCP2 binding, we next determined unique features of DEGs to gain an understanding of why MeCP2
preferentially targets DEGs. We find that DEGs are cell type-specific, lowly expressed, and intragenically
associated with heterochromatin, active enhancer, and CTCF chromatin states, suggesting that MeCP2 is
essential for the regulation of lowly expressed genes. Upregulated and downregulated DEGs are differentially
enriched for particular chromatin states, providing an insight into the directionality of gene dysregulation.
Given the enrichment of DEGs for active enhancer and CTCF chromatin states, we next investigated
transcription factor (TF) footprints and found thousands of altered TF footprints in R106W, with the CTCF
motif being the most significantly associated. In WT, these sites are enriched for MeCP2 binding, and in
R106W, these sites, which are associated with downregulated DEGs, become demethylated, enabling CTCF
binding. This therefore suggests that MeCP2 can affect CTCF recruitment to chromatin. Given CTCF’s
known role in chromatin organization, we employed Oligopaint and found large-scale condensation of
euchromatin and heterochromatin, as well as decondensation of long genes. Together, this work provides
insight into why DEGs are differentially susceptible to dysregulation in RTT and posits MeCP2 as a key player
in global maintenance of the methylome and chromatin architecture for the preservation of neuronal gene
expression.
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ABSTRACT 
 

 

EPIGENOMIC AND NUCLEAR ARCHITECTURAL INSIGHTS INTO 

RETT SYNDROME 

 

Maria Fasolino 

 

Dr. Zhaolan Zhou 

 

The importance of DNA methylation in neuronal function is highlighted by 

mutations in the neuronally enriched “reader” of DNA methylation, methyl-CpG-binding 

protein 2 (MECP2), causing Rett Syndrome (RTT), a severe neurodevelopmental 

disorder. Although MeCP2 displays broad genomic binding, gene expression changes in 

Mecp2 mutant mice are very subtle, and brain region-specific, making it difficult to 

determine how MeCP2 regulates gene expression. Therefore, we developed an approach 

to assess cell type-specific effects of Mecp2 mutations on the transcriptome, epigenome, 

and chromatin architecture to determine whether epigenomic features can explain gene 

misregulation in RTT. Differentially expressed genes (DEGs) in R106W Mecp2 mutants 

(R106W) are enriched for MeCP2 binding in the WT setting and are preferentially 

demethylated in R106W, suggesting that the loss of MeCP2 binding results in the 

exposure of unbound cytosines to demethylation, thus contributing to gene 

dysregulation. Given that DEGs are enriched for MeCP2 binding, we next determined 

unique features of DEGs to gain an understanding of why MeCP2 preferentially targets 

DEGs. We find that DEGs are cell type-specific, lowly expressed, and intragenically 

associated with heterochromatin, active enhancer, and CTCF chromatin states, 
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suggesting that MeCP2 is essential for the regulation of lowly expressed genes. 

Upregulated and downregulated DEGs are differentially enriched for particular 

chromatin states, providing an insight into the directionality of gene dysregulation. 

Given the enrichment of DEGs for active enhancer and CTCF chromatin states, we next 

investigated transcription factor (TF) footprints and found thousands of altered TF 

footprints in R106W, with the CTCF motif being the most significantly associated. In 

WT, these sites are enriched for MeCP2 binding, and in R106W, these sites, which are 

associated with downregulated DEGs, become demethylated, enabling CTCF binding. 

This therefore suggests that MeCP2 can affect CTCF recruitment to chromatin. Given 

CTCF’s known role in chromatin organization, we employed Oligopaint and found large-

scale condensation of euchromatin and heterochromatin, as well as decondensation of 

long genes. Together, this work provides insight into why DEGs are differentially 

susceptible to dysregulation in RTT and posits MeCP2 as a key player in global 

maintenance of the methylome and chromatin architecture for the preservation of 

neuronal gene expression. 
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CHAPTER 1 

 

Introduction 

 

One Sentence Summary 

 

This chapter provides an introduction to the concepts presented in subsequent 

chapters, with a focus on the outstanding questions in MeCP2 research, and has been 

accepted for publication as a review article in the journal Genes.  

 

Overview 

 

A neuron is unique in its ability to dynamically modify its transcriptional output 

in response to synaptic activity while maintaining a core gene expression program that 

preserves cellular identity throughout a lifetime that is longer than almost every other 

cell type in the body. A contributing factor to the immense adaptability of a neuron is 

attributed to its unique epigenetic landscape that elicits rapid, locus-specific alterations 

in chromatin architecture, which in turn influences gene expression. One such epigenetic 

modification that is sensitive to changes in synaptic activity, as well as essential for 

maintaining cellular identity, is DNA methylation. The focus of this chapter is on the 

importance of DNA methylation in neuronal function, summarizing the recent studies on 

critical players in the establishment of (the “writing”), the modifying or erasing of (the 

“editing”), and the mediation of (the “reading”) DNA methylation in neuroplasticity. One 

“reader” of DNA methylation in particular, methyl-CpG-binding protein 2 (MeCP2), is 

highlighted given that understanding the molecular function of this protein, which has 

undisputed importance in neuronal function, has been the main focus of my graduate 

work.  
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The adaptability of gene expression programs in response to neuronal 

activity 

 

 Neuroplasticity is the ability of the brain to alter neural function in response to 

environmental input. This adaptability, also expressed as long-lasting plasticity, is the 

basis of learning and memory formation. Two neuronal mechanisms that are essential 

for long-lasting plasticity are long-term depression (LTD) and long-term potentiation 

(LTP), which decrease or increase synaptic strength, respectively, in response to activity 

(Malenka and Bear, 2004; McClung and Nestler, 2007). Here we will focus on LTP, as 

key molecules in this process are frequently referenced throughout this review.  

LTP is generally broken down into two phases: a transient “early” phase (30-60 

minutes) that is dependent upon the activation of pre-existing proteins and a stable 

“late” phase (hours, days, or even weeks) that is contingent upon new gene transcription 

and translation (Malenka and Bear, 2004). The induction of early phase LTP is 

dependent upon postsynaptic depolarization that leads to an influx of calcium (Ca2+) 

through NMDA receptors (NMDARs). Ca2+ entry in turn triggers a biochemical cascade 

starting with the activation of calcium/calmodulin-dependent protein kinase II 

(CaMKII) via phosphorylation, which translocates to active synapses where it binds to 

NMDARs and phosphorylates AMPA receptors (AMPAR) and activates RAS-

extracellular signal-regulated kinase (ERK) pathway that leads to an increase in the 

insertion of AMPAR into the synapse. This leads to an increase in the conductance of 

Ca2+ through AMPARs in stimulated spines, which subsequently activates a molecular 

cascade that strengthens potentiated spines (Lisman et al., 2012; Malenka and Bear, 

2004). An important modulator of the CaMKII cascade is the protein phosphatase 1 

(PP1), which at basal conditions dephosphorylates CaMKII; however, in response to 

neuronal activity and subsequent LTP induction, cyclic adenosine monophosphate 

(cAMP) activates protein kinase A, which in turn phosphorylates inhibitor 1 (I-1) that 

inhibits PP1, leading to an increase in CaMKII phosphorylation and activity (Blitzer, 

1998; Brown et al., 2000; Lisman et al., 2012; Malenka and Bear, 2004).  

Similarly to the case of CaMKII, many of the early phase LTP signaling cascades 

converge upon the activation of ERK, which in turn activates various biochemical 

pathways that are essential for late phase LTP. One group of proteins activated by ERK 

are transcription factors, such as cAMP response element binding protein (CREB), FBJ 
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osteosarcoma oncogene B (Fosb), and the transcription factor complex NF-κB, which 

subsequently induce gene expression changes essential for the potentiation of active 

synapses, such as immediate early response genes, ion channels, structural proteins, and 

neurotrophins (LYNCH, 2004; McClung and Nestler, 2007). One neurotrophin that is 

particularly important in the maintenance of LTP is brain-derived neurotrophic factor 

(Bdnf), which acts through mitogen-activated protein kinase (MAPK)/ERK kinase 

(MEK) to increase the expression of activity-regulated cytoskeleton-associated protein 

(Arc), a gene important in cytoskeleton organization at activated synapses (LYNCH, 

2004; Ying et al., 2002). It is during this late phase of LTP where DNA methylation in 

thought to contribute to the regulation of the expression of key genes necessary for the 

maintenance of long-term neuronal plasticity, and in this review, we will summarize the 

substantial body of work supporting this notion. We will begin with an overview of the 

important forms of DNA methylation in the mammalian brain.  

  

Types of DNA methylation in neurons 

 

5mCG: a repressive epigenetic mark 

 

DNA methylation is an epigenetic mechanism that allows for sustained 

adaptability of gene expression in response to developmental or environmental factors; it 

plays an essential role in various biological functions such as regulation of gene 

transcription and the establishment and maintenance of cellular identity (Golshani et al., 

2007; Hutnick et al., 2009; Jaenisch and Bird, 2003). DNA methylation at the 5-carbon 

of cytosine (5mC) is widely distributed throughout the mammalian genome, with ~5% of 

cytosines being methylated in the adult mouse brain. In most mammalian cell types, 

methylation predominately occurs at cytosine-phosphate-guanine dinucleotides (CpG), 

with methylation occurring at 60-90% of CpGs depending on tissue type, and in the 

mammalian brain, ~62% of CpGs are methylated (methylated CpG will subsequently 

referred to as 5mCG) (Lister et al., 2013; Schultz et al., 2015; Varley et al., 2013; Xie et 

al., 2012). DNA methylation is deposited on cytosine by family of enzymes known as the 

DNA methyltransferases (DNMTs). This enzyme family is divided into two broad classes: 

the de novo DNMTs, DNMT3A and DNMT3B, that establish methylation on 
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unmethylated DNA and methylate the complementary strand of DNA strand on 

hemimethylated DNA, and the maintenance DNMT, DNMT1, which can only methylate 

hemimethylated DNA (Klose and Bird, 2006). Whereas Dnmt3a and Dnmt1 are 

expressed in both the embryonic and adult stages, Dnmt3b is detectable only during 

early neurogenesis (Brooks et al., 1996; Feng et al., 2005), suggesting that particular 

DNMTs play a role in neuronal function at specific times over neuronal development and 

maturation. 

DNA methylation at CGs in all somatic types, including the neurons, represses 

the expression of genes and repetitive DNA regions given whole genome bisulfite 

sequencing (WGBS) findings that 5mCG is enriched at intergenic regions, silenced genes, 

and repetitive DNA regions and is depleted at enhancers, promoters, and actively 

expressed gene bodies (Lister et al., 2013; 2009; Xie et al., 2012; Ziller et al., 2013). 

Additionally, 5’-upstream, intragenic, and 3’-downstream 5mCG inversely correlates 

with gene expression in neurons (Mo et al., 2015). Furthermore, 5mCG patterns are 

neuronal type-specific, suggesting that this epigenetic mark regulates gene expression in 

a cell type-specific manner (Lister et al., 2013; Mo et al., 2015). This epigenetic mark is 

also important in nuclear organization and compartmentalization given that DNA 

methylation of satellite repeats is an important step in the formation of heterochromatic 

regions (Cedar and Bergman, 2009; Lehnertz et al., 2003).  

 

Additional neuronally enriched forms of DNA methylation 

 

Historically, DNA methylation was thought to be a stable, repressive covalent 

modification, existing predominately, if not exclusively, as 5mCG. However, this view 

has dramatically changed over the past few years with the discovery that neurons, unlike 

other adult somatic cells, accumulate two other forms of DNA methylation over 

development, 5-hydroxymethylcystosine (5hmC) and non-CG methylation (5mCH, 

where H = A, T, or C). 5hmC levels in neurons are up to 10 fold higher than other cell 

types, reaching ~17% of all DNA methylation in the mouse frontal cortex (Globisch et al., 

2010; Kriaucionis and Heintz, 2009; Münzel et al., 2010; Song et al., 2011; Tahiliani et 

al., 2009). Even though 5mCH is nearly absent in other cell types, except embryonic 

stem cells (ESCs), 5mCH accounts for up to 53% of all of DNA methylation in adult 
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human neurons, making it the predominate form of DNA methylation, and ~25-40% of 

all DNA methylation in the adult mouse neurons. Although the overall percentage of all 

CH dinucleotides that are methylated is relatively low (1.4% of CH dinucleotides in adult 

mouse neurons) compared to those methylated in CG dinucleotides (62% of CG 

dinucleotides in adult mouse neurons), the relative depletion of CG dinucleotides in 

eukaryotic genomes enables the high abundance of methylation in the CH context in 

neurons (Guo et al., 2014; Kinde et al., 2015; Lister et al., 2013; Mo et al., 2015; Schultz 

et al., 2015; Varley et al., 2013; Xie et al., 2012; Ziller et al., 2011). Therefore, these 5hmC 

and 5mCH have added important new dimensions in understanding epigenetic 

regulation of neuronal function.  

 

5hmCG: a neuronally enriched form of DNA methylation associated with gene 

activation 

 

5mC is oxidized by the ten-eleven translocation (TET) family of enzymes to form 

5hmC (Tahiliani et al., 2009). Three Tets are expressed in the brain (Tet1-3), with Tet2 

and Tet3 mRNA levels being considerably higher than Tet1 in the postnatally (Klose and 

Bird, 2006; Szwagierczak et al., 2010). Recently developed sequencing approaches have 

enabled the genomic detection of 5hmC, providing invaluable insight into the biological 

functions of this epigenetic mark. Approximately 0.9% of all cytosines are 

hydroxymethylated in the mouse brain, predominately (>98%) occurring in the CG 

context (Lister et al., 2013). 5hmC is enriched at transcriptionally active sites, such as 

gene bodies, transcriptional end sites, DNaseI-hypersensitive sites (DHSs), and both 

active and poised enhancers, and is depleted at promoters and major satellite regions 

(Lister et al., 2013; Ong and Corces, 2014; Wen et al., 2014). Additionally, gene 

expression levels strongly correlate with intragenic 5hmC levels (Lister et al., 2013; 

Mellén et al., 2012a; Song et al., 2011). These features suggest that 5hmC is involved in 

gene activation, which starkly contrasts with the biological function of 5mC. The 

importance of 5hmC in neuronal maturation and function is highlighted by the fact that 

5hmC levels increase nearly tenfold over development (Lister et al., 2013), and genes 

enriched for 5hmC in the mammalian brain relative to other tissues are related to 
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synaptic function (Khare et al., 2012a). The substantial body of literature regarding the 

importance of the 5hmC and TETs in neuronal function will be reviewed below.  

 

5mCH: a repressive DNA methylation mark in neurons 

 

Whereas 5mCG is established by three DNMTs (DNMT1, DNMT3a, and 

DNMT3b) and levels remain unchanged during development (Klose and Bird, 2006), 

5mCH is catalyzed by DNMT3a (Ramsahoye et al., 2000) and levels increase during 

synaptogenesis, which coincides with an increase in Dnmt3a mRNA levels during this 

same time period (Guo et al., 2014; Lister et al., 2013). Further supporting the unique 

role of Dnmt3a in 5mCH formation is a study in which exogenous Dnmt3a expression in 

Drosophila lead to the formation of de novo 5mCH (Ramsahoye et al., 2000). 

Additionally, conditional deletion of Dnmt3a from the brain during early development 

results in a significant reduction in 5mCH, specifically in the 5mCA and 5mCT contexts, 

but not in the 5mCG context (Gabel et al., 2015; Guo et al., 2014). Similarly to 5mCG, 5’-

upstream, intragenic, and 3’-downstream 5mCH levels inversely correlate with gene 

expression, with gene body 5mCH outperforming 5mCG as an indicator transcriptional 

levels in the brain (Guo et al., 2014; Mo et al., 2015). Additionally, 5mCH patterns are 

cell type-specific, which is similar to 5mCG, but 5mCH is an even better indicator than 

5mCG in this regard (Guo et al., 2014; Mo et al., 2015). 5mCH-mediated repression has 

been confirmed with the use of a methylated quantitative reporter assay in hippocampal 

neurons (Guo et al., 2014). Furthermore, 5mCH is abundant at regions with low CpG 

density and at linker regions of nucleosomes, whereas it is absent from sites bound by 

transcription factors and at nucleosomal cores (Burger et al., 2013; Guo et al., 2014; Mo 

et al., 2015). Taken together, this suggests that brain-specific establishment or mediation 

of this epigenetic mark may contribute to its unique regulatory effect in neurons (Kinde 

et al., 2015), and we will discuss these possibilities below.  

 

The necessity of DNA methylation in neurodevelopment  

 

The importance of DNA methylation in neurons has been demonstrated in 

studies in which the loss of key enzymes that regulate DNA methylation, DNMTs and 
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TETs, leads to deficits in neuronal function. Embryonic deletion of Dnmt1 from 

forebrain neuronal progenitors in mice results in hypomethylation, deregulation of gene 

expression, deficits in cerebral cortical formation and maturation, increased dendritic 

branching, reductions in LTP, defects in learning and memory, and severe embryonic 

and early postnatal degeneration (Golshani et al., 2007; Hutnick et al., 2009). Similarly, 

embryonic deletion of Dnmt3a from the entire central nervous system (CNS) of mice 

also results in neuronal dysfunction, such as hypoactivity, motor abnormalities, 

decreased grip strength, a reduction in motor neuron number, and a shortened lifespan 

(Nguyen et al., 2007). Human genetics also supports the importance of DNMTs in 

neuronal function as DNMT1 has been linked to hereditary sensory and neuropathy with 

dementia and hearing loss (Klein et al., 2011), DNMT3A with an overgrowth syndrome 

with intellectual disability (Tatton-Brown et al., 2014), DNMT3B with recessive 

mutations that cause immunodeficiency, centromere instability, and facial anomalies 

(ICF) syndrome in which a large percentage of patients have intellectual disability 

(Bestor et al., 1999; Bird, 2002; Okano et al., 1999). 

Similarly to DNMTs, various studies have also demonstrated the importance of 

TETs in brain development. Tet1 constitutive KO mice or mice lacking the catalytic 

dioxygenase domain of Tet1 have memory deficits, a reduction in the expression of genes 

associated with neurogenesis and neuronal activity (along with hypermethylation at the 

promoters of this gene group), LTP deficits, increased LTD, and a reduction in the 

proliferating potential of neural progenitor cells (NPCs) (Kaas et al., 2013; Zhang et al., 

2013). Proliferation potential is also influenced by the other two TET family members, 

TET2 and TET3, as the knockdown of Tet2 and Tet3 via electroporation of shRNAs into 

the cortex of mice leads to defects in the progression of differentiated neurons from the 

subventricular zone (Hahn et al., 2013).  

Given that these are embryonic perturbations of DNMTs and TETS, these 

findings highlight the importance of these enzymes and DNA methylation dynamics 

during neuronal development. Studies specifically focusing on these enzymes in 

postmitotic neuron have also highlighted the importance of DNA methylation in 

neuroplasticity, as discussed below. 
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DNA methylation in neuronal maturation and neuroplasticity   

 

Since DNMTs are usually expressed in frequently dividing cells for the 

establishment and maintenance of DNA methylation patterns, it was originally 

perplexing to find considerable levels of maintenance enzyme Dnmt1 and de novo 

enzyme Dnmt3a in adult postmitotic neurons (Feng et al., 2005; Goto et al., 1994). 

However, several lines of evidence now support that these enzymes are essential for 

neuronal plasticity in postmitotic neurons.  

Learning and memory is associated with alterations in the methylation status of 

various plasticity-related genes. Fear conditioning causes the memory-suppressor gene 

Pp1 to become rapidly methylated, resulting in the repression of this gene. This response 

is dependent upon DNMT activity given that chemical inhibition of these enzymes 

abolishes this effect (Miller and Sweatt, 2007). Another plasticity gene whose 

methylation status is affected in response to contextual fear conditioning is Bdnf, which 

undergoes promoter specific methylation that correspond with isoform-specific changes 

in gene expression (Lubin et al., 2008; Martinowich, 2003). The regulation of isoform-

specific expression of Bdnf is DNMT-dependent since chemical inhibition of DNMTs 

results in alterations in promoter methylation and isoform expression (Lubin et al., 

2008). The importance of DNMTs in eliciting the changes in gene expression necessary 

for long-term memory formation is corroborated by the observed increase in Dnmt3a 

and Dnmt3b expression in the hippocampus in response to fear conditioning in both 

mice and rats (Miller and Sweatt, 2007; Morris et al., 2014), and inhibiting DNMT 

activity, via intra-hippocampal infusion of a DNMT inhibitor, abolishes memory 

formation (Miller and Sweatt, 2007).  

Double conditional knockout mice lacking Dnmt1 and Dnmt3a in postnatal 

forebrain excitatory neurons (deletion occurring at 2-3 weeks using the Camk2a 

promoter-drive Cre recombinase, Camk2a-Cre) results in a decrease in DNA 

methylation, misexpression of genes, reduction in soma size, alterations in synaptic 

function, and deficits in learning and memory (Feng et al., 2010). Although Dnmt1 single 

conditional knockout in postnatal forebrain excitatory neurons (via the use of Camk2a-

Cre) does not appear to affect learning and memory nor a variety of cellular and 

molecular characteristics in the hippocampus or cortex, including methylation levels, 

neuronal survival, gene expression, soma size, or synaptic function (LTP and LTD) (Fan 
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et al., 2001; Feng et al., 2010; Morris et al., 2014); however, this loss of Dnmt1 does 

result in an anxiolytic and antidepressant phenotype, suggesting that cell types, brain 

regions, or neuronal circuits that underlie specify behaviors can be differentially 

vulnerable to the loss of certain DNMTs (Morris et al., 2016). A consensus on the 

consequence of Dnmt3a loss in postmitotic forebrain excitatory neurons remains to be 

determined, as one group reports no changes in any parameters assessed (DNA 

methylation, gene expression genes, soma size, synaptic function, and learning and 

memory), and another group finding deficits in LTP in conjunction with associative and 

episodic memory dysfunction (Feng et al., 2010; Morris et al., 2014).  

Additionally, the importance of the TETs in postmitotic neurons has also been 

ascertained. Tet1 is involved in neuronal activity-induced DNA demethylation and gene 

expression changes since short-hairpin mediated knockdown of endogenous Tet1 in the 

dentate gyrus (DG) completely abolished electroconvulsive stimulation (ECS)-induced 

demethylation of Bdnf IX and Fgf1B promoters (Guo et al., 2011b). These findings are in 

agreement with another study that has shown that Tet1 knockdown in hippocampal 

neurons leads to the hypermethylation of promoter IV of Bdnf and subsequent 

repression of transcript from this promoter (Yu et al., 2015). Transcript levels of Tet1, 

but not Tet2 or Tet3, is significantly downregulated in the dorsal CA1 of mice after fear 

learning (Kaas et al., 2013).  

TET2 is also thought to play a role in the demethylation of developmentally 

dependent genomic loci. With the use of Tet2 knockout mice, it was found that this TET 

family member is responsible for the oxidation of large fraction (19.7%) of CG genomic 

regions that gain hydroxymethylation status over development and aging (Lister et al., 

2013). Studies on TET3 function in the brain have confirmed that this most highly 

expressed brain Tet family member is essential in mediating neuronal activity-

dependent gene expression programs. When mice undergo extinction training, there is a 

significant increase in Tet3 mRNA in the cortex. Tet3 knockdown via lentiviral plasmids 

in the infralimbic prefrontal cortex (ILPFC) have normal fear memory acquisition but 

impaired fear memory extinction. Furthermore, inhibiting NMDAR activity blocked the 

increase in Tet3 expression associated with fear memory extinction, suggesting that the 

rise in Tet3 occurs via an NMDAR-mediated pathway. Fear acquisition and fear 

extinction result in genome-wide differences of 5hmC at locations that contain CA or CT 
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dinucleotide repeats instead of CGs (Li et al., 2014). Tet3 expression levels correlate with 

neuronal activity as well; an increase in synaptic transmission correlates with an increase 

in Tet3 mRNA and protein levels, but not Tet1 or Tet2. When Tet3 is knocked down from 

hippocampal neurons in culture, mEPSC amplitudes are significantly larger than 

controls, and the reciprocal effect occurs when Tet3 is overexpressed. Tet3 is also 

essential for the maintenance of homeostatic synaptic plasticity. In Tet3 knockdown 

neurons, promoter IV of Bdnf is hypermethylated, resulting in a decrease in expression 

from this promoter (Yu et al., 2015). Taken together, these findings implicate that there 

are essential locus-specific alterations in DNA methylation during neuronal plasticity 

that are mediated by DNMTs and TETs. 

 

Deciphering DNA methylation: An introduction to methyl-CpG-binding 

proteins 

 

Methylation is thought to influence transcription by altering DNA-protein 

interactions, such as the binding of transcription factors (Becker et al., 1987) or the 

recruitment of proteins that bind methylated DNA (Filion et al., 2005; Hendrich and 

Bird, 1998; Prokhortchouk et al., 2001; Unoki et al., 2004) The families of proteins that 

bind methylated DNA to mediate the molecular consequences of this epigenetic mark, 

canonically known as “readers” of DNA methylation, are the SET- and Ring finger-

associated (SRA) domain family, the Kaiso family of proteins, and the methyl-CpG-

binding domain (MBD) protein family (Hendrich and Bird, 1998; Nan et al., 1993). 

MBDs, consisting of six MBD proteins (MBDs 1-6) and methyl-CpG-binding protein 2 

(MeCP2), were originally demarcated as a family due to their shared, highly conserved 

MDB domain (Hendrich and Bird, 1998; Roloff et al., 2003); however, it has since been 

discovered that two of the family members, MBD5 and MBD6, do not bind to methylated 

DNA (Laget et al., 2010) and that some of these family members also have the ability to 

bind to other forms of DNA methylation in addition to 5mCG through their MBD: a point 

mutation in the MBD of MBD3 renders it able to bind unmodified cytosine, 5mCG, and 

5hmCG(Hashimoto et al., 2012; Spruijt et al., 2013) and MeCP2 has recently been 

demonstrated to bind with high affinity to 5mCA and 5hmCH (Chen et al., 2015; Gabel et 

al., 2015; Guo et al., 2014; Lagger et al., 2016). In this review, we will focus on the most-
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well studied reader of DNA methylation, MeCP2, given its recognized importance in 

neuronal function and unique ability to bind a neuronal-enriched form of DNA 

methylation, 5mCH.  

MeCP2’s role in neuronal function 

 

MeCP2 is a nuclear protein found in various tissues in mammals (Meehan et al., 

1989; Shahbazian, 2002), with highest expression in the brain where it is half as 

abundant as nucleosomes (Skene et al., 2010). Within the brain, MeCP2 protein levels 

are seven times higher in neurons than glia, underscoring the importance of this protein 

in neuronal function (Shahbazian, 2002). However, various studies have shown that 

MeCP2 is also important for glial function, supporting glial dysfunction as a contributing 

factor in RTT pathology (Ballas et al., 2009; Delépine et al., 2016; Lioy et al., 2011; 

Maezawa et al., 2009; Nguyen et al., 2012). The levels of MeCP2 in the mammalian brain 

increase over postnatal development, suggesting that MeCP2 is important for synapse 

maturation (Balmer et al., 2002; Shahbazian, 2002). Clear evidence for the importance 

of this gene in CNS came with the discovery that mutations in MECP2 cause Rett 

Syndrome (RTT), a severe neurological disorder that affects 1 in 10,000 live female 

births, making it one of the most common causes of intellectual disability in females 

(Amir et al., 1999). Given that MECP2 is an X-linked gene, RTT is almost exclusive 

found in females, as hemizygous loss of MECP2 function in males leads to severe 

neonatal encephalopathy and death (Amir et al., 1999; Ellison et al., 1992; Schanen and 

Francke, 1998; Schanen et al., 1997; Zoghbi et al., 1990).   

RTT is characterized by normal development for the first 6 months of life 

followed by regression and symptomatic presentation, which includes loss of acquired 

purposeful hand skills and spoken language, gait abnormalities, and hand stereotypies 

(Jeffrey L Neul et al., 2010; Percy et al., 2010). Postnatal deceleration of head growth is 

another clinical feature of RTT (Jeffrey L Neul et al., 2010; Percy et al., 2010), and 

radiological and pathological examination have determined that this is due to a 

reduction in brain size (Armstrong et al., 1995). Given the absence of degenerative 

features, this change is brain volume is attributed to a reduction the number and length 

of dendrites, resulting in more densely pack neurons (Armstrong et al., 1995; Belichenko 

et al., 1994). These changes are brain region- and cortical layer-specific, as different 
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groups have only observed changes in a subset areas examined (Armstrong et al., 1995; 

Wang et al., 2013). Additionally, the cortical layers (layer III and V) are indicative of 

deficits initiating during the second period of cortical development when lower layers are 

refining their connectivity with layer III postnatally. Furthermore, these dendritic 

alterations do not worsen over adulthood, indicating that RTT is not a progressive 

disease after development (Armstrong et al., 1995). Supporting a functional consequence 

of these anatomical deficits are electrophysiological studies in neurons derived from RTT 

induced pluripotent stem cells (iPSCs) that have found a decrease in the amplitude and 

frequency of spontaneous excitatory transmission (Marchetto et al., 2010). Taken 

together, these findings in RTT patients are clear indications of a disrupted neuronal 

network and suggest that RTT is a neuronal maturation and/or maintenance disorder.   

To understand the molecular underpinnings of RTT, mice lacking Mecp2 or 

carrying RTT patient-associated mutations in Mecp2 have been developed, and the 

majority of neurological features are observed in these whole-body Mecp2-mutant mice, 

such as normal development during early life followed by symptomatic presentation of 

altered gait, motor incoordination, hindlimb clasping, and cognitive deficits (Chen et al., 

2001; Goffin et al., 2012; Guy et al., 2001). Loss of Mecp2 from the CNS either 

embryonically (embryonic day 12, E12) or postnatally (postnatal day 21, P21) resulted in 

phenotypes that were indistinguishable from whole-body loss of Mecp2 (Chen et al., 

2001), emphasizing the importance of this MBD protein in mature neuronal function 

and maintenance. In addition to behavioral phenotypes, Mecp2-mutant mice display 

additional pathological and histological features found in RTT patients, namely, a 

smaller brain size (Chen et al., 2001; Goffin et al., 2012; Guy et al., 2001) and a reduction 

in the number and length of dendrites (Belichenko et al., 2009a; 2009b). Furthermore, 

dendritic spines are reduced in number and altered in morphology, resembling 

immature spines, in Mecp2-null mice (Belichenko et al., 2009a; 2009b; Wood and 

Shepherd, 2010; Wood et al., 2009). The reduction in dendrite branches and dendritic 

spines is suggestive of neuronal connectivity deficits in Mecp2-null mice. And in fact, 

electrophysiological experiments corroborate these anatomical alterations. A reduction 

in excitatory synapses, as well as the quantal excitatory transmission at those synapses, 

contributes to a reduction in spontaneous firing rate of cortical neurons in Mecp2-null 

mice (Chao et al., 2007; Dani and Nelson, 2009; Dani et al., 2005; Goffin et al., 2012). In 

addition to synaptic dysfunction, there are also deficits in LTP and LTD, which is 
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thought to occur subsequently to the synaptic dysfunction (Dani and Nelson, 2009). This 

alteration in LTP and LTD harkens back to LTP and LTD deficits observed in DNMT and 

TET loss of function mice. Given these neuronal deficits, the molecular perturbations 

that occur with MeCP2 mutations or loss have been intensely studied in order to 

understand the biological function of this protein.  

 

Proposed molecular functions of MeCP2 

 

Multiple functions have been proposed for MeCP2 

 

 This year marks the 25th year anniversary of the discovery of MeCP2 (Lewis et al., 

1992). Over this span of time, ~1000 papers have been published with MeCP2 in the 

title. This large body of research has greatly advanced our understanding of MeCP2; 

however, a consensus on the specific molecular function of MeCP2 has yet to be reached, 

with evidence supporting MeCP2’s role as a transcriptional repressor, transcriptional 

activator, chromatin organizer, regulator of alternative splicing, and miRNA processor 

(Lyst and Bird, 2015). In this review, we will focus on the three prevailing models, 

transcriptional repressor, transcriptional activator, and chromatin organizer. 

 

MeCP2: a repressor? 

 

A screen for proteins that bind methylated DNA led to the discovery of MeCP2, 

given its high affinity for DNA methylation, as it is capable of binding DNA with a 

symmetrically methylated 5mCG (Lewis et al., 1992) through its 85kda MBD (Nan et al., 

1993). In this initial work, it was also found that MeCP2 nuclear localization mirrored 

that of 5mCG; it is concentrated at pericentromeric heterochromatin, which is known to 

contain ~40% of all genomic 5mCG at major satellite DNA (Lewis et al., 1992). Another 

functional domain of MeCP2 is the transcriptional repression domain (TRD), which has 

been show to exhibit long range repression, up to 2kb away from a transcriptional start 

site (Nan et al., 1997). A small portion of the TRD interacts with the histone deacetylase 

(HDAC)-containing co-repressor complexes nuclear receptor co-repressor (NCOR) and 

silencing mediator of retinoic acid and thyroid hormone receptor (SMRT), and bridge 
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this site of interaction is termed the NCOR-SMRT interaction domain (NID) (Kokura et 

al., 2001; Lyst et al., 2013; Stancheva et al., 2003). MeCP2 has also been shown to 

interact with the HDAC-containing repressor complex Sin3a (Bird et al., 1998; Jones et 

al., 1998). The importance of the MDB and NID is also supported from human genetics 

since RTT-causing missense mutations, but not neutral polymorphisms mutations, 

predominately cluster in these two protein domains (Lyst and Bird, 2015; Lyst et al., 

2013). Notably, each of the four missense mutations within the NID abrogate MeCP2’s 

ability to bind to the NCoR/SMRT co-repressor complex (Lyst et al., 2013), highlighting 

the importance of this interaction for MeCP2 function. Since deacetylation of histone 

tails leads to transcriptional repression (Grunstein, 1997), these findings on the 

functional domains of MeCP2 suggest a model in which MeCP2 acts as a molecular 

bridge to connect DNA methylation with chromatin changes that elicit repression (Bird 

et al., 1998).  

Various studies support that MeCP2 binds globally across the genome at 

methylated cytosine sites (Chen et al., 2015; Cohen et al., 2011; Gabel et al., 2015; Skene 

et al., 2010). Chromatin immunoprecipitation (ChIP) has demonstrated that MeCP2 

binding profiles scale with CG methylation density (Baubec et al., 2013; Chen et al., 

2015; Skene et al., 2010), with high levels of binding at CG methylation dense regions 

and lower levels of binding at unmethylated CG islands (CGIs) (Skene et al., 2010). It has 

recently been discovered that in addition to 5mCG, MeCP2 can also bind to 5mCH, 

specifically 5mCA, with high affinity (Chen et al., 2015; Gabel et al., 2015; Guo et al., 

2014; Kinde et al., 2015; Lagger et al., 2016). When the genome-wide MeCP2 binding 

profiles in mouse cortical tissue were compared to base-pair resolution profiles of 5mC 

and 5hmC, it was found that MeCP2 binding globally correlates with 5mCG, 5mCA (or 

5mCAC), and 5hmCAC density, but not 5hmCG. Additionally, misregulated genes in 

Mecp2 KO mice are enriched for MeCP2 binding and 5mCA (Chen et al., 2015; Gabel et 

al., 2015; Guo et al., 2014; Kinde et al., 2015; Lagger et al., 2016). However, it remains to 

be determined which subsets of misregulated genes show this enrichment. One group 

finds that genes enriched with MeCP2 binding tend to be long and also enriched with 

5mCA, and that in the absence of Mecp2 in cortical tissue, upregulated genes tend to be 

long, implicating MeCP2 as a transcriptional repressor (Gabel et al., 2015). An 

independent group confirms this finding in the hypothalamus with the finding that 

MeCP2 binding is enriched at genes that are upregulated in Mecp2 KO mice (Lagger et 
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al., 2016). However, another group reported that both upregulated and downregulated 

genes in Mecp2-null hypothalamus tissue are enriched for MeCP2 binding and 5mCH, 

suggesting a more complex model in which MeCP2 is both an activator and repressor 

(Chen et al., 2015). An important difference between the analyses carried out by the first 

two groups versus the third group is that the former analyzed MeCP2 and 5mCH 

enrichment within the gene bodies and surrounding regions of misregulated genes 

(Gabel et al., 2015; Lagger et al., 2016) whereas the later normalized intragenic MeCP2 

and 5mCH enrichment to the surrounding regions of misregulated genes (Chen et al., 

2015). Given that the raw data used by two opposing groups (Chen et al., 2015; Lagger et 

al., 2016) were identical, it is important to keep in mind that data analysis methods can 

critically influence the interpretation of MeCP2 function since gene expression changes 

are subtle in RTT. 

 

MeCP2: an activator? 

 

In direct opposition of the repressor model, MeCP2 has also been proposed to be a 

transcriptional activator. In mouse neurons differentiated from Mecp2-null ES cells, 

there is a significant reduction of overall RNA synthesis, which was detected with the use 

of a radioactive ribonucleotide incorporation assay (Yazdani et al., 2012). Similarly, in 

human neurons derived from MECP2-null ES cells, per-cell total RNA levels are 

significantly reduced, and this phenotype gets worse as time passes (Li et al., 2013). 

These findings are supported by an independent group that found a significant reduction 

of Serine5 phosphorylated RNA polymerase (a proxy for transcriptional activity) in 

Mecp2-null mouse neurons in vivo using array tomography (Linhoff et al., 2015). 

Additionally, gene expression studies from various brain regions of Mecp2-null mice 

have found that more genes are repressed than activated, supporting MeCP2’s role as an 

activator (Ben-Shachar et al., 2009; Chahrour et al., 2008; Zhao et al., 2013). 

Furthermore, genome-wide promoter analysis revealed that the majority of MeCP2-

bound promoters are actively expressed genes that are not highly methylated, which 

therefore indicates that MeCP2 binding isn’t solely correlated with repression (Yasui et 

al., 2007). Molecularly, there is evidence supporting that MeCP2 mediates its activator 

role through its interaction with cyclic AMP-responsive element-binding protein 1 
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(CREB1) at genes that are activated, but not at those that are repressed (Chahrour et al., 

2008). However, corroboration of this finding by independent groups is lacking. Related 

to this, MeCP2 has been found to bind to 5hmCH (more specifically, 5hmCA) in vitro 

with the use of the electrophoretic mobility shift assay (EMSA) (Gabel et al., 2015). 

However, whether 5hmCA is associated with gene activation, like 5hmCG, or whether the 

binding of MeCP2 to 5hmCA is biologically significant given the low percentage of 5hmC 

that is in the CH context, remains to be determined. Notably, multiple studies support 

that MeCP2 does not bind to 5hmCG, either in vitro, with the use of EMSAs, fluorescent 

polarization, or mass spectrometry (Gabel et al., 2015; Hashimoto et al., 2012; 

Khrapunov et al., 2014; Spruijt et al., 2013; Valinluck et al., 2004), or in vivo via 

correlating MeCP2 ChIP-seq profiles with base-pair resolution profiles of 5hmCG, which 

in fact shows an anticorrelation between the two (Gabel et al., 2015). Taken together with 

the previous section, these data indicate that more studies are necessary before 

classifying MeCP2 as a bona fide transcriptional activator or repressor.    

 

MeCP2: a transcriptional mediator of neuronal activity? 

 

 In line with MeCP2 acting as a regulator of transcription, are findings 

demonstrating MeCP2’s ability to regulate gene expression in an activity-dependent 

manner. In this model, at basal conditions, unmodified MeCP2 functions as a repressor 

when bound to gene regions. However, upon stimulation, post-translational 

modifications on MeCP2 lead to a reduction in MeCP2 binding and subsequent gene 

activation. This function of MeCP2 is particularly intriguing given the necessity of genes 

expression changes for the maintenance of long-term neuronal plasticity. One important 

neuronal plasticity-related gene affected by the loss of MeCP2 function is Bdnf, with 

transcript and protein levels being significantly reduced in the brains of Mecp2-knockout 

mice (Chahrour et al., 2008; Chang et al., 2006; Chen et al., 2015). The levels of Bdnf 

appear to be critically important for the RTT phenotype since increasing levels of Bdnf in 

Mecp2-null mice ameliorates electrophysiological dysfunction, improves locomotor 

deficits, and extends lifespan (Chang et al., 2006). In the wild type setting, 5mCH levels 

and MeCP2 binding are enriched across the Bdnf locus, suggesting that MeCP2 binding 

to developmentally regulated 5mCH sites is critical for the regulation of genes that are 
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important in the manifestation of RTT phenotypes (Chen et al., 2015). Under basal 

conditions in neuronal cultures, MeCP2 is bound to the methylated promoter III of Bdnf 

where it is thought to act as a repressor of transcription through the recruitment of the 

Sin3a repression complex which is found to be present via ChIP (Chen, 2003; 

Martinowich, 2003; Zhou et al., 2006). However, in response to membrane 

depolarization, MeCP2 and the Sin3a complex disassociates from the Bdnf promoter and 

a reduction of methylation at the promoter in conjunction with an increase in 

expression, dendritic complexity, and spine maturation (Chen, 2003; Martinowich, 

2003; Zhou et al., 2006). The release of MeCP2 is mediated by calcium-dependent, 

CaMKII-mediated phosphorylation of MeCP2 at serine 421 (pS421) given that loss of this 

phosphorylation site on MeCP2 results in the loss of activity-dependent Bdnf expression 

(Chen, 2003; Zhou et al., 2006). This phosphorylated form of MeCP2 is brain-specific, as 

it is absent in a multitude of tissues, suggesting that this activity-dependent form of 

MeCP2 might underlie why RTT is predominately a neurological disorder.  

In the mouse brain in response to neuronal activity, 10-30% of total MeCP2 

becomes phosphorylated at S421 (Cohen et al., 2011). However, the genomic binding 

profile of MeCP2 remains virtually unchanged in response to neuronal activity in the 

mouse brain, in opposite to what was observed at Bdnf. To investigate the importance of 

MeCP2 phosphorylation at S421 in vivo, knock-in mice have been created in which S421 

is converted to alanine (S421A), prevent the phosphorylation of this site. Cortical 

pyramidal neurons in these mutants have increased dendritic complexity and an increase 

in the amplitude of miniature inhibitory postsynaptic currents (mIPSCs), highlighting 

the importance of this phosphorylation site on MeCP2 in neuronal development and 

function. When MeCP2 binding is assessed in wild-type and MeCP2-S421A primary 

cultures in response to neuronal activity, it was found that the binding patterns are 

maintained in the mutant, implicating that this phosphorylation site is not necessary for 

the release of MeCP2 from bound sites in response to neuronal activation (Cohen et al., 

2011). Similarly to what was observed in the mouse brain, when MeCP2 binding patterns 

are compared in basal and stimulated primary neuronal cultures, no changes are 

detectable, which does not support a model in which activity-dependent phosphorylation 

of MeCP2 releases repressive binding. Additionally, the employment of a more sensitive 

and targeted approach, ChIP-PCR of MeCP2 at activity-dependent genes in neuronal 

cultures in response to stimulation, MeCP2 binding remained similar. This suggests that 
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additional phosphorylation events might contribute to the release of MeCP2 from 

chromatin or that specific stimulation paradigms are require to elicit a release. 

Additionally, activity induced gene expression programs are not altered in the MeCP2-

S241A mutant mice, suggesting that singular phosphorylation site is not responsible for 

the release of MeCP2 from genomic regions (Cohen et al., 2011). And in fact, three 

additional phosphorylation sites on MeCP2 have been described: S86, S247, and T308. 

Phosphorylation of these sites on MeCP2 are differentially induced in response to 

various forms of stimulation, such as robust neuronal activity, exogenous BDNF, and 

chemically induced elevations of cAMP, suggesting that these phosphorylation sites 

induce different expression patterns in response to external stimuli. Supporting the 

importance of one of these phosphorylation site is the finding that mice carrying a 

T308A mutation in MeCP2 display RTT phenotypes, constitutive NCoR/SMRT binding 

to MeCP2, and a reduction in the expression of activity-induced genes (Ebert et al., 

2013). In addition to the S421, S86, S247, and T308 phosphorylation sites on MeCP2, 

additional phosphorylation sites and post-translational modifications on MeCP2 have 

been identified, suggesting that this protein is regulated in various ways (Gonzales et al., 

2012; Tai et al., 2016). Taken together, these findings highlight the potential importance 

of MeCP2 as a mediator of gene expression changes in response to neuronal activity; 

however, much remains to be explored to determine the transcriptional effects of the 

various post-translation modifications on MeCP2.  

 

MeCP2: an architectural protein? 

 

In addition to the MBD, MeCP2 has three additional domains that enable it to bind 

to DNA. These are three basic clusters containing AT-hook-like domains, which bind to 

AT-rich sequences of DNA (Baker et al., 2013; Lewis et al., 1992). The recombinant form 

of one of these AT-Hook domains, AT-Hook 2 (amino acids 265-272), has been shown to 

independently bind to DNA, and an RTT-associated mutation in this domain (R270X) 

abolishes this ability. Additionally, the importance of this domain in forming higher 

order structures is highlighted by the finding that recombinant MeCP2-WT is able to 

compact nucleosomal arrays, but MeCP2-R106X is not (Baker et al., 2013). This also 

relates to in vitro work that has demonstrated the necessity of A/T rich DNA (four or 
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more A/T bases) adjacent to a methylated CpG site for efficient MeCP2 binding (Klose et 

al., 2005). Another region of MeCP2 implicated in chromatin organization is the C-

terminal portion of the MBD that has been found to bind to ATRX, a chromatin 

remodeler that is mutated in α-thalassemia/mental retardation, X-linked syndrome 

(ATRX syndrome) (Nan et al., 2007). MeCP2 is thought to be important for the 

localization of ATRX to pericentric heterochromatin, as loss of MeCP2 function in 

Mecp2-null mice or in mice carrying several RTT-associated point mutations in Mecp2 

abolishes ATRX localization to pericentric heterochromatin specifically in the brain 

(Baker et al., 2013; Nan et al., 2007).  

Recombinant MeCP2 binds, compacts, and oligomerizes nucleosomal arrays in 

vitro (Georgel et al., 2003; Ghosh et al., 2010; Nikitina et al., 2007b). Compaction by 

MeCP2 comes in two forms, the clustering of nucleosomes and the formation of DNA-

MeCP2-DNA complexes (Nikitina et al., 2007b). One striking feature of nucleosomal 

array compaction by MeCP2 is the formation of chromatin loops (free DNA emanating 

from clusters of nucleosomes) (Ghosh et al., 2010; Horike et al., 2004), which are 

implicated in the silencing of loci in vivo (Horike et al., 2004). Further supporting 

MeCP2’s role in chromatin compaction is the finding that ectopic expression of the MBD 

of MeCP2 in mouse myoblasts is sufficient to cause the clustering of pericentric 

heterochromatin (Brero et al., 2005). In a comprehensive study evaluating the effect of 

21 RTT-associated mutations to bind and cluster chromocenters in mouse myoblasts, it 

was found that half of the mutations lead to deficits in chromatin binding and two-thirds 

showed a decrease in the ability to cluster chromocenters (Agarwal et al., 2011). When 

the nuclear localization of heterochromatin protein 1 (HP1), a protein essential for 

heterochromatin packaging, and MeCP2 were compared over cellular differentiation 

using an in vitro system culture system for myogenesis, it was found that both HP1 

(specifically the γ isoform (HP1γ) and MeCP2 redistributed to heterochromatin foci 

around the same time (Agarwal et al., 2007). Additionally, MeCP2 interacts through its 

N-terminal domain (the first 55 amino acids) to the chromo shadow domain of HP1 

(Agarwal et al., 2007). Taken together, these in vitro and cell culture studies suggest that 

MeCP2 plays a role in the organization and compaction of nucleosomes, especially in 

heterochromatin, and suggest that loss of function of MeCP2 would lead to 

decondensation of heterochromatin.  



	
20	

However, although few in number, studies examining the in vivo effects of 

MeCP2 loss on heterochromatin compaction in mouse neurons have found an increase, 

rather than decrease, in heterochromatinization. Using array tomography (AT) in mosaic 

RTT mouse females, it was found that although the total amount of nuclear DAPI 

remained similar between WT and MeCP2-null neurons, there was an increase of DAPI 

density in heterochromatin, as well as an increase in heterochromatin size in CA1 

pyramidal cells. Additionally, it was found that heterochromatin volume and nuclear 

volume are negatively correlated, suggesting that chromatin condensation reduces 

nuclear size. Interestingly, AT also allowed for quantitative analysis of the distribution of 

MeCP2 within the nucleus, finding that only 30% of MeCP2 is localized to 

heterochromatin, while the remain 70% localizes to euchromatin and nucleoplasm. AT 

imaging allowed for the detection of H4K20me3 overlapping with heterochromatin foci 

in MeCP2-null nuclei, which is not found in MeCP2-positive neurons, but rather 

H4K20me3 staining was found in a region adjacent to dense, major satellite rich 

heterochromatic foci in CA1 pyramidal neurons. The redistribution of H4K20me3 in 

Mecp2-null neurons is dramatic, with 65% changing it localization to dense 

heterochromatin, while there was a negligible increase (11%) in H4K20me3 nuclear 

levels. Additionally, there is a significant distribution of H3K9me3 to dense, major-

satellite rich heterochromatin, as well as a slight increase (10%) in total H3K9me3 

abundance (Linhoff et al., 2015). This change in nuclear organization is cell type-specific 

given that granule cells of the dentate gyrus show a similar pattern that was observed in 

CA1 pyramidal neurons, but this alteration is absent in granule cells of the cerebellum. 

Another study found that although heterochromatin size and numbers are affected 

embryonically and perinatally in Mecp2-null neurons, these affects are not found later 

during development. The importance of chromocenter size is highlighted by a study that 

found an increase in heterochromatin size after induced depolarization in primary 

neuronal cultures; however, this effect is absent in Mecp2-deficient primary neurons 

(Singleton et al., 2011). Given that the findings from the few studies on heterochromatic 

changes in vivo are disparate, more research is warranted to determine the 

organizational defects that occur when MeCP2   

Further support for MeCP2’s role in chromatin organization comes from studies 

that have compared the functions of MeCP2 to histone H1 (H1), an essential component 

of chromatin that binds to linker DNA and organizes nucleosomes into higher order 
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structures. H1 is present at the level of 1 molecule per nucleosome in most somatic cells, 

except for neurons, where it is present at the level of 1 molecule for every two 

nucleosomes (Allan, 1984; PEARSON et al., 1984; Skene et al., 2010). In vitro, MeCP2 is 

able to displace H1 from preassembled chromatin (Ghosh et al., 2010; Ishibashi et al., 

2008; Nan et al., 1997), but not vice versa(Ghosh et al., 2010), suggesting that H1 and 

MeCP2 compete for binding to linker DNA regions. Additional in vitro support for this 

comes from studies with nucleosomal arrays in which human MeCP2 is found to bind to 

11bp of the linker DNA entry-exit site, protecting this portion of linker DNA from 

micrococcal nuclease (MNase) digestion, and an RTT-associated mutation in the MDB, 

MeCP2-R106W, results in a loss of protection of the linker DNA from MNase digestion 

(Nikitina et al., 2007a). Furthermore, linker DNA is essential for MeCP2’s ability to 

properly bind to nucleosomes, and this binding induces a variety of conformational 

changes to linker DNA (Nikitina et al., 2007a). Additionally, of all the canonically 

histone components, MeCP2 is in closest proximity to H3, whose N-terminal region is in 

close proximity to the linker region (Nikitina et al., 2007a). When mouse fibroblasts 

stably expressing fluorescent MeCP2 are challenged with recombinant H1, and vice versa 

(mouse fibroblasts stably expressing fluorescent H1 were challenged by recombinant 

MeCP2), it was found that MeCP2 and H1 compete for binding sites, but that similar to 

in vitro findings, MeCP2 is more effective at expelling H1 than the reverse (Ghosh et al., 

2010). In mouse fibroblasts, H1 and MeCP2 colocalize at pericentromeric 

heterochromatin (Ghosh et al., 2010). MeCP2 induces nucleosomal array compaction in 

a zigzag folding pattern that is very similar to the manner in which H1 induces 

compaction, which is thought to be essential for 30nm fiber formation that is the basic 

building block of heterochromatin (Ghosh et al., 2010). Furthermore, in Mecp2-

knockout neurons from the cortex, H1 protein levels double, reaching the abundance of 1 

molecule per nucleosome in neurons (Skene et al., 2010). Histone H1 levels do not 

change in unsorted nuclei from the cortex, which contains both glia and neurons, 

suggesting that this change is specific to neurons (Skene et al., 2010). This suggests that 

lower levels of H1 in the neurons are due to the presence of MeCP2, and that in the 

absence of MeCP2, sites are now open for histone H1 occupancy (Skene et al., 2010). It is 

possible that the substitution of MeCP2 by H1 leads to less dynamic transcriptional 

changes in response to neuronal activity. However, this remains to be fully addressed. 
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MeCP2: a multifunctional protein 

 

 Twenty-five years of research on MeCP2 has led to vast insight into the complex, 

multifaceted function of this protein, generating numerous hypothesized molecular 

models. And yet another model is emerging—a synergistic model that treats many of the 

proposed functions as an integrative piece of MeCP2’s function instead of treating them 

as mutually exclusive entities. It is possible that MeCP2 is predominately as an 

architectural protein that is important for regulating chromatin structural changes that 

aid in the activation or repression of genes necessary for long-lasting plasticity in 

response to neuronal activity. Therefore, in this model, the transcription activator or 

repressor effects that have been attributed to MeCP2 would be secondary to its 

organizational role, similar to the function of CCCTC-binding factor (CTCF) (Ong and 

Corces, 2014; Phillips and Corces, 2009). However, to prove such a model, additional 

studies are necessary to determine nuclear organizational defects, and the consequential 

effect on gene expression, elicited by loss of MeCP2 function. And therefore, the goal of 

this work was to carryout such analysis for the better understanding of the downstream 

molecular effects of MeCP2 loss of function to gain insight into RTT pathology. 
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CHAPTER 2: 
 

Biotin tagging of MeCP2 reveals contextual insights into the Rett syndrome 
transcriptome 

 

One Sentence Summary 

 

This chapter summarizes our approach that enables cell type-specific biotinylation of 

MeCP2 across various contexts, revealing MeCP2 as a unique global modulator of gene 

transcription and pointing to new directions for translational research in Rett Syndrome.  

 

Abstract 
 

Mutations in MECP2 cause Rett syndrome (RTT), an X-linked neurological disorder 

characterized by regressive loss of neurodevelopmental milestones and acquired 

psychomotor deficits. However, the cellular heterogeneity of the brain impedes 

understanding of how MECP2 mutations contribute to RTT. We therefore developed cell 

type-specific biotin tagging of MeCP2 in mice bearing RTT-associated mutations and 

profiled their nuclear transcriptomes. Although most gene expression changes are 

largely specific to each mutation and cell type, lowly expressed cell type-enriched genes 

are preferentially disrupted by MeCP2 mutations, with upregulated and downregulated 

genes reflecting distinct functional categories. Subcellular RNA analysis in MeCP2 

mutant neurons further reveals reductions in the nascent transcription of long genes and 

uncovers widespread post-transcriptional compensation at the cellular level. Finally, we 

overcame cellular mosaicism in female RTT models and identified distinct gene 

expression changes between neighboring wild-type and mutant neurons, altogether 

providing contextual insights into RTT etiology that support personalized therapeutic 

interventions. 

Introduction 
 

RTT is a progressive X-linked neurological disorder that represents one of the most 

common causes of intellectual disability among young girls. Patients experience a 
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characteristic loss of acquired social and psychomotor skills and develop stereotyped 

hand movements, hypotonia, breathing irregularities, and seizures after 6-18 months of 

normal development1. Approximately 95% of RTT cases are mapped to the X-linked gene 

encoding methyl-CpG binding protein 2 (MeCP2), a ubiquitously expressed protein that 

is highly enriched in postmitotic neurons2,3. The majority of RTT-associated mutations 

cluster within two functionally distinct domains of MeCP2. The Methyl-CpG Binding 

Domain (MBD) allows MeCP2 to recognize and bind to methylated cytosines4. The 

Transcriptional Repression Domain (TRD) mediates protein-protein interactions with 

histone deacetylase-containing co-repressors, such as the NCoR-SMRT and mSin3A 

complexes5–7. These domains support MeCP2 as a chromatin factor that mediates 

transcriptional repression7,8, although transcriptional activation by MeCP2 has also been 

reported9–11. 

Different types of mutations in MECP2, together with random X-chromosome 

inactivation (XCI), are thought to underlie a spectrum of mild to severe clinical 

symptoms among RTT patients12. Mouse models carrying RTT-associated mutations 

recapitulate this phenotypic variability, although most studies are limited to hemizygous 

male mice13–16. Given that MeCP2 is a chromatin-bound nuclear protein, the 

identification of MeCP2 transcriptional targets in the brain remains key towards 

illuminating RTT etiology17. However, target identification is confounded by the cellular 

heterogeneity of the brain, which contains multiple intermixed cell types that differ in 

morphology, function, electrophysiological properties, and transcriptional programs18–22. 

Analyses using heterogeneous brain tissues obscures cell type-specific gene expression 

changes, impeding the assessment of MeCP2 function at the transcriptional level. The 

identification of transcriptional targets is further complicated by the widespread binding 

patterns of MeCP2 to methylated cytosines (mCpG and mCpA)8,23,24, hydroxymethylated 

cytosines (hmCpG)25, or unmethylated GC-rich regions26 throughout the genome. 

Furthermore, although RTT predominantly affects heterozygous females, an 

experimental strategy to selectively identify gene expression changes from Mecp2 

mutant-expressing cells in a mosaic female brain has not yet been developed. 

In this study, we addressed the confounding effects of cellular heterogeneity by 

engineering genetically modified mice whereby nuclear MeCP2 is labeled with biotin 

using Cre-Lox recombination. To understand the molecular impact of RTT-associated 
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mutations on cell type-specific gene expression in vivo, we also developed an allelic 

series of knockin mice bearing one of two frequent RTT missense mutations, T158M and 

R106W. When combined with Fluorescence-Activated Cell Sorting (FACS), this strategy 

effectively circumvents cellular heterogeneity in the brain and allows for the isolation of 

neuronal nuclei from targeted cell types. By examining MeCP2-mediated gene 

expression changes in different cell types, we identified underlying transcriptional 

features that correlate with the severity of the MeCP2 mutation. We also found that 

genome-wide transcriptional changes in the nucleus are opposed by post-transcriptional 

compensation of RNAs in a gene length-dependent manner. Furthermore, our approach 

allows us to circumvent cellular mosaicism and profile the transcriptome of neighboring 

wild-type (WT) and mutant neurons in females, thereby discerning cell and non-cell 

autonomous transcriptional effects. This comprehensive study across different neuronal 

settings allows us to propose a contextualized model by which cell and non-cell 

autonomous transcriptional changes in different cell types contribute to the molecular 

severity of neuronal deficits observed in RTT, uncovering new directions for therapeutic 

development. 

 

Results 

 

Engineering a System to Genetically Biotinylate MeCP2 In Vivo 

 

Biotin-mediated affinity tagging has been widely utilized in cell and animal models for 

multiple experimental approaches because of the strong (Kd = 4x10-14M) and specific 

interaction between biotin and avidin protein27. We exploited this approach to 

investigate MeCP2 function by using homologous recombination to insert a short 23-

amino acid affinity tag immediately upstream of the Mecp2 stop codon (Fig. 1a and 

Supplementary Fig. 1a). This tag comprises a TEV protease cleavage site and a 15-amino 

acid biotinylation consensus motif (termed Tavi, TEV and Avidin-binding) that can be 

post-translationally labeled with biotin by the E. coli biotin ligase, BirA. To biotinylate 

the tag in cell types of interest, we also generated Cre-dependent BirA transgenic mice 

(herein R26STOP-BirA; Supplementary Fig. 1b). Therefore, upon crossing mice to a cell 

type-specific Cre line, BirA is expressed and subsequently biotinylates MeCP2-Tavi (Fig. 
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1b). We used EIIa-Cre28 to ubiquitously express BirA (herein R26BirA) and confirmed that 

MeCP2 is specifically biotinylated in vivo under conditions where BirA is expressed and 

the Tavi tag is present (R26BirA/+;Mecp2Tavi/y; Fig. 1c and Supplementary Fig. 1c). 

 To exclude the possibility that tagging MeCP2 adversely affects its molecular 

function, we assessed MeCP2 RNA and protein expression levels from age-matched 

Mecp2Tavi/y (herein TAVI) and Mecp2+/y mice (herein WT; Supplementary Figs. 1d-f). We 

also examined MeCP2 binding to methylated DNA and its known protein interactions. 

We found that tagged and untagged MeCP2 both exhibit similar levels of binding at 

methylated major satellite repeats and IAP elements (Supplementary Fig. 1g), and 

MeCP2-Tavi remains associated with NCoR-SMRT (Supplementary Fig. 1h). We also 

found that MeCP2-Tavi protein, but not RNA, is reduced by ~40%  when compared to 

untagged MeCP2 in mice at 20 weeks of age (Supplementary Fig. 1e-f). Given that we 

observed similar levels of MeCP2 chromatin binding between WT and TAVI mice, the 

diminution likely affects soluble, rather than chromatin-bound, MeCP2. Notably, a 50% 

reduction in MeCP2 expression leads to hypoactivity and altered behavioral phenotypes 

in mice by one year of age29. Despite reduced MeCP2 protein expression, we found that 

TAVI mice are phenotypically indistinguishable from WT mice (Fig. 1g-j and 

Supplementary Fig. 1i), and do not display RTT-like features over an observational 

period of 20 weeks (Fig. 1i; data not shown). These data support that TAVI mice appear 

functionally equivalent to WT mice, at least up to 20 weeks of age. 

 

MeCP2 Missense Mutations Recapitulate RTT-like Phenotypes in Mice 

 

Four of the eight most frequent RTT mutations are missense mutations, three of which 

are located in the MBD of MeCP2 and include R106W (2.76% of RTT patients), R133C 

(4.24%), and T158M (8.79%)30. Typical RTT patients bearing the R133C mutation 

display milder clinical symptoms, whereas patients carrying the T158M or R106W 

mutation exhibit moderate or severe symptoms, respectively12. Although the clinical 

severity of these mutations scales with their effects on MeCP2 binding affinity to 

methylated DNA13,31–33, this relationship is not fully understood on a molecular level. 

We thus generated independent Mecp2T158M-Tavi (herein T158M) and Mecp2R106W-

Tavi (herein R106W) knock-in mice in parallel with TAVI mice (Fig. 1a). Relative to TAVI 
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mice, we found that both Mecp2 mutant mice display significant reductions in MeCP2 

protein expression despite comparable levels of mRNA (Fig. 1e-f and Supplementary Fig. 

1j), similar to other RTT mutations in the MBD13,14. We further performed MeCP2 

immunofluorescent staining (IF) using hippocampal sections of BirA-expressing mice to 

examine the subcellular localization of MeCP2 mutant protein. In contrast to MeCP2 WT 

and TAVI protein, MeCP2 T158M and R106W are diffuse throughout the nucleus and 

not properly localized to heterochromatic foci, indicative of a reduced capacity to bind 

mCpGs in vivo (Fig. 1d). Streptavidin IF is also noticeably reduced in Mecp2 mutant 

mice, likely due to the reduced protein stability associated with these mutations (Fig. 1d 

and Supplementary Fig. 1k). Although streptavidin IF confirmed a loss of MeCP2 

localization to heterochromatic foci, this channel also revealed a portion of mutant 

MeCP2 redistributed to the nucleolus (Supplementary Fig. 1k-l), similar to GFP-tagged 

MeCP2 upon deletion of the MBD34. Upon site-by-site comparison, we found that T158M 

and R106W mice also exhibit RTT-like phenotypes similar to that of Mecp2-null mice, 

including decreased brain and body weight, and an age-dependent increase in 

phenotypic score (Fig. 1g-i). Although lifespan is significantly reduced in all three Mecp2 

mutant mice, the median survival of R106W mice more closely resembles that of Mecp2-

null than T158M mice (Fig. 1j). Statistical analysis revealed a significant difference in the 

survival curves of T158M (median survival = 14 weeks) and R106W mice (median 

survival = 10 weeks; Mantel Cox P = 0.012). Thus different mutations within the MBD 

differentially affect the severity of RTT-like phenotypes in mice. 

Given that MeCP2 T158M is known to retain partial affinity for mCpGs, and that 

our T158M mice exhibit higher MeCP2 protein levels and longer survivability when 

compared to R106W mice, we infer that this mutation represents a partial loss-of-

function. In contrast, the R106W mutation, which abolishes affinity for mCpGs, exhibits 

lower MeCP2 protein levels and lower survivability on par with Mecp2-null mice, 

represents a complete loss-of-function. 

 

Genetic Biotinylation Permits Cell Type-specific Transcriptional Profiling 

 

Given MeCP2’s abundant expression throughout the CNS, we devised a biotinylation-

based strategy for cell type-specific nuclei isolation and transcriptional profiling (Fig. 2a-
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b). As an example, we used the NeuroD6/NEX-Cre line35 to drive BirA expression and 

MeCP2-Tavi biotinylation in forebrain excitatory neurons (Fig. 2a and Supplementary 

Fig. 2a-h). Quantification of pan-neuronal (NeuN), pan-inhibitory (GAD67), and 

inhibitory-specific (parvalbumin, somatostatin and calretinin) neuronal markers in the 

somatosensory cortex of Mecp2Tavi/y;R26cBirA/+;NEXCre/+ (NEX-Cre) mice demonstrated 

that biotinylation occurs in ~80% of NeuN+ cortical neurons devoid of inhibitory 

markers, consistent with NEX-Cre-mediated recombination in excitatory neurons 

(Supplementary Fig. 2h). FACS using stained cortical nuclei from NEX-Cre mice 

identified three distinct nuclear populations (Fig. 2c). RT-PCR for cell type-specific 

markers confirmed that NeuN+Biotin+ nuclei reflect excitatory neurons, whereas 

NeuN+Biotin- nuclei represent a mixture of inhibitory interneuron subtypes (Fig. 2c-d). 

Excitatory and inhibitory populations are both depleted of astrocytic, microglial and 

oligodendrocytic markers, which are restricted to the third, non-neuronal population of 

NeuN-Biotin- nuclei (Fig. 2d). We also used the Dlx5/6-Cre line36 to drive BirA 

expression in forebrain GABAergic neurons and obtained results inverse to that of NEX-

Cre mice (Fig. 2a and Supplementary Fig. 2a-j), confirming that MeCP2-Tavi is reliably 

biotinylated in Cre-defined cell types. 

Having established a cell type-specific nuclei isolation approach, we next 

performed transcriptional profiling in mice near the onset of RTT-like phenotypes. We 

employed the NEX-Cre driver and isolated 120,000 or 250,000 cortical excitatory and 

inhibitory nuclei from 6-week male T158M, R106W and TAVI mice via FACS, followed 

by total RNA-seq. We found biological replicates to be well correlated (Fig. 2e and 

Supplementary Fig. 3a), and ~74% of total reads mapped to introns. Intron-mapped 

reads represent chromatin-associated primary transcripts that are commonly used as a 

proxy for transcriptional activity37,38. Because MeCP2 is thought to function as a 

transcriptional modulator17, nuclear RNA-seq thus affords an unique opportunity to 

study the primary effects of RTT mutations on gene expression. 

 We first analyzed gene expression profiles from cortical excitatory and inhibitory 

neurons in TAVI mice to confirm that a nuclear transcriptome analysis of genic-mapped 

reads can be used to study cell types. Unsupervised hierarchical clustering shows that 

replicate transcriptomes are highly correlated by cell type, and genic-mapped reads 

illustrate genes that are selectively expressed for each cell type (Fig. 2g and 
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Supplementary Fig. 3a). We identified 9,379 differentially expressed genes (DEGs, FDR 

< 0.05) between excitatory and inhibitory neurons, the majority (86.9%) of which 

comprise protein-coding genes (Fig. 2f and Supplementary Fig. 3b). Approximately half 

of these cell type-enriched genes display Gene Ontology (GO) functions consistent with 

glutamatergic pyramidal cell types (herein EXC-enriched; Supplementary Fig. 3c), 

including cell signaling and post-synaptic functions, whereas the remaining half exhibit 

GO functions consistent with metabolically active GABAergic interneurons (herein INH-

enriched; Supplementary Fig. 3d), including cellular respiration and mitochondrial 

function. These functional associations demonstrate that total RNA-seq from cell type-

specific nuclei discerns known functional differences between excitatory and inhibitory 

neurons.  

 

Protein-Coding Genes are More Severely Affected in R106W Mice 

 

We next compared nuclear gene expression profiles in excitatory and inhibitory neurons 

between 6-week old mutant (T158M, R106W) and control (TAVI) mice to identify and 

characterize DEGs associated with the appearance of RTT-like phenotypes (Fig. 3a). We 

identified more DEGs in R106W excitatory and inhibitory neurons than T158M neurons, 

indicating that the number of misregulated genes positively scales with the severity of 

the Mecp2 mutation (Fig. 3b). More than 90% of MeCP2 DEGs are protein-coding genes 

(Supplementary Fig. 4a), significantly higher than the percentage of protein-coding 

genes from genomic (60.4%), actively expressed (77.7-78.3%) and cell type-enriched 

(86.2-87.7%) gene distributions (Supplementary Fig. 3b). We therefore excluded non-

coding genes from further analyses. We note that the number and percentage of protein-

coding DEGs overlapping between T158M and R106W genotypes is greater in inhibitory 

(74.8% of T158M DEGs) than excitatory neurons (40% of T158M DEGs; Fig. 3c). 

Moreover, overlapping DEGs tend to be misregulated in the same direction (Fig. 3c).  

The median fold change of T158M and R106W DEGs is consistently small in 

mutant neurons, particularly when compared to overall differences in gene expression 

between excitatory and inhibitory neurons. Because the R106W mutation leads to a more 

severe phenotype, we examined whether this mutation impacts gene expression to a 

greater extent than the T158M mutation. We compared fold changes between T158M 
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and R106W DEGs, limiting our analysis to protein-coding genes that overlap between 

genotypes to account for disproportionate numbers of DEGs. Within this subset, the 

median fold change among upregulated and downregulated DEGs is consistently higher 

in both cell types of R106W mice than those of T158M mice (Fig. 3d). The differences 

between mutations are more apparent in inhibitory neurons as the cumulative fold 

change in R106W neurons is significantly shifted to the right of that in T158M neurons 

(Fig. 3e). A similar trend is also observed in excitatory neurons (Fig. 3e). 

These data suggest that the number of genes and the degree to which they are 

misregulated positively correlate with RTT phenotypic severity, reflecting the molecular 

consequence of differentially impaired MeCP2 binding to methylated DNA. Moreover, 

inhibitory neurons appear to be more sensitive to the transcriptional effects of such 

mutations than excitatory neurons. 

 

Transcriptional Features of T158M and R106W DEGs  

 

The genetic removal of MeCP2 from different brain regions or cell types in mice is 

associated with distinct, non-overlapping phenotypes that reflect the specific neural 

circuit being impaired16,17. In a similar fashion, we investigated whether MeCP2-

dependent transcriptional changes are specific to each cell type. Indeed, we found only 

20 T158M DEGs (6.2% of total) and 114 R106W DEGs (10.7% of total) that overlap 

between excitatory and inhibitory neurons (Fig. 3f), similar to a study using Mecp2-null 

mice39. This degree of overlap is unexpectedly low, given that 74.2% of expressed genes 

are shared between excitatory and inhibitory neurons (data not shown). The finding that 

MeCP2-dependent gene expression changes are specific to each cell type prompted us to 

examine the association between MeCP2 DEGs and EXC/INH-enriched genes. We found 

that cell type-enriched genes are significantly overrepresented and comprise 70-80% of 

DEGs in each cell type (Fig. 3g). Moreover, EXC- and INH-enriched genes are 

preferentially downregulated and upregulated, respectively, in each cell type (Figure 3h).  

Furthermore, upon examination of relative expression levels of MeCP2 DEGs 

using Fragments Per Kilobase of transcript per Million mapped reads (FPKM), we found 

that T158M, R106W, and overlapping DEGs all displayed significantly lower median 
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FPKM values than overall expressed genes in each cell type (Fig. 3i). To confirm whether 

low-expressing genes are specifically enriched for MeCP2 DEGs, we divided actively 

expressed genes from each cell type into four equally sized bins according to the FPKM 

expression level. Among these bins, EXC- and INH-enriched genes display expected 

distributions for each cell type (Supplementary Fig. 4b). In contrast, T158M and R106W 

DEGs are preferentially enriched in Q1, the bottom 25th percentile of actively expressed 

genes, in both excitatory and inhibitory neurons (Fisher Exact one-tailed P, T158M EXC 

= 1.11e-07, T158M INH = 2.03e-04, R106W EXC = 4.04e-08, R106W INH = 1.50e-02; 

Supplementary Fig. 4b). Between both mutations, we found that T158M DEGs are more 

likely to be enriched in Q1 (Fisher Exact Odds Ratio (OR) for Q1, T158M EXC = 3.1, 

T158M INH = 3.2) than R106W DEGs (Fisher OR for Q1, R106W EXC = 2.0, R106W 

INH = 1.3). Accordingly, R106W DEGs consistently display significantly higher FPKM 

values than T158M DEGs in both cell types, and these higher FPKM genes are 

predominantly downregulated in R106W neurons (Fig. 3i and Supplementary Fig. 4c).  

Thus, in excitatory and inhibitory neurons of mice at 6 weeks of age, low-

expressing cell type-enriched genes are particularly sensitive to MeCP2 dysfunction 

regardless of mutation and cell type. However, when compared to the T158M mutation, 

the increased severity of the R106W mutation is consequently associated with an 

increased number of high-expressing genes that are preferentially downregulated in both 

cell types. 

 

Upregulated and Downregulated Genes Demarcate Distinct Cellular Functions  

 

We noticed that DEGs are preferentially downregulated in excitatory neurons and 

upregulated in inhibitory neurons, and this trend is preserved among the DEGs shared 

between both mutations (Fig. 3c). The increased severity of the R106W mutation also 

correlates with increased numbers of high-expressing DEGs that are preferentially 

downregulated, whereas upregulated DEGs similarly comprise low-expressing genes in 

both mutants (Supplementary Fig. 4c). Given these characteristics, we next performed a 

pre-ranked Gene Set Enrichment Analysis (GSEA, FDR < 0.1) to determine whether 

upregulated and downregulated DEGs represent functionally distinct categories. We 

found that upregulated genes in T158M and R106W mice are both primarily associated 
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with transcriptional regulation (Fig. 3j). These include DNA-binding transcriptional 

activators, co-activators, repressors, and chromatin remodelers, most of which tend to be 

INH-enriched genes (Fig. 3j and Supplementary Fig. 4d). Significant functional 

categories associated with downregulated genes, however, are specifically detected in 

R106W excitatory neurons and enriched for post-synaptic membrane proteins, including 

Na2+, K+, Ca2+ and Cl- channels, synaptic scaffolding proteins, and ionotropic glutamate 

receptors (Fig. 3j). The specific loss of these synaptic functions appears to be consistent 

with the preferential downregulation of high-expressing genes in R106W excitatory 

neurons and the development of more severe phenotypes in R106W than T158M mice. 

Although significant gene functions were not identified among downregulated DEGs in 

inhibitory neurons using our established GSEA FDR cutoff, gene functions associated 

with upregulated DEGs in R106W inhibitory neurons are related to cellular metabolism 

and signal transducer activity (Supplementary Fig. 4e).  

 

Subcellular RNA Fractions Reveal Global Transcriptional and Post-transcriptional 

Changes 

 

Several recent reports implicate MeCP2 in the transcriptional regulation of long genes, 

which are preferentially upregulated in the neurons of multiple RTT animal models23,39. 

We therefore examined the possibility that genome-wide transcriptional changes may 

correlate with T158M and R106W phenotypic and molecular severity. Similar to these 

studies, we sorted and binned expressed protein-coding genes according to gene length 

and measured the mean fold change in Mecp2 mutant neurons at 6 weeks of age. 

Nuclear transcriptomes revealed a striking inversion of previously reported gene 

expression changes whereby short (≤ 100kb in gene length) and long (> 100kb in gene 

length) genes are upregulated and downregulated, respectively, in a length-dependent 

manner (Supplementary Fig. 5a). 

 Although most nuclear RNAs comprise intron-containing pre-mRNA transcripts 

on chromatin, the presence of processed mRNA transcripts awaiting nuclear export may 

confound the assessment of transcriptional events using nuclear RNA alone40. We 

therefore performed global nuclear run-on with high-throughput sequencing (GRO-

seq41) to directly assess de novo transcriptional activity by RNA polymerase in cortical 
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nuclei of TAVI and R106W mice. Similar to sorted nuclear RNA, the nascent 

transcription of short and long genes in R106W neurons is predominantly increased and 

decreased, respectively (Fig. 4a). LOESS local regression of DEGs that were identified in 

R106W excitatory and inhibitory neurons, which are individually upregulated or 

downregulated, also revealed a similar overall trend towards the preferential 

downregulation of long genes (Fig. 4a). The genome-wide trend we observe in sorted 

nuclear RNA thus represents a primary effect at the transcriptional level, prompting us 

to further investigate if the length-dependent upregulation of long genes that was 

previously reported may represent an indirect effect of MeCP2-dependent 

transcriptional deregulation. To test this, we resected cortical tissue from TAVI and 

R106W mice at 6 weeks of age. Each cortical half was used to isolate whole cell RNA or 

nuclear RNA in parallel, followed by sequencing. Whole cell RNA from mutant cortices 

display a length-dependent increase in the mean expression of long genes (Fig. 4b), 

similar to what was previously described23,39. In contrast, cortical nuclear RNA isolated 

from the same TAVI and R106W mice exhibited a length-dependent upregulation of 

short genes and downregulation of long genes genome-wide (Fig. 4c), corroborating the 

transcriptional changes we observed from nascent RNA (Fig. 4a) and sorted nuclear 

RNA preparations (Supplementary Fig. 5a). Using the 10,390 expressed genes associated 

with de novo transcription by GRO-seq (Fig. 4d), we observed that genes upregulated in 

nascent and nuclear RNA fractions were cumulatively shorter in length relative to those 

upregulated in whole cell RNA, and the inverse was observed among downregulated 

genes (Fig. 4e). Together, these data demonstrate that gene expression changes in 

Mecp2-mutant neurons are substantially different between subcellular RNA fractions. 

 To directly compare individual genes across subcellular fractions, we next 

classified all 10,390 expressed genes into eight groups depending on the direction in 

which genes are misregulated across fractions. Groups B and D comprise 38.4% of 

expressed genes and represent expression changes that are misregulated in the same 

direction across nascent, nuclear, and whole cell RNA fractions (Fig. 4f). Among these 

groups of genes, log2 fold changes measured from the whole cell are significantly smaller 

than fold changes in the nuclear compartment, suggesting that gene expression changes 

in the nucleus are post-transcriptionally minimized in the cell (Fig. 4f and 

Supplementary Fig. 5b). The majority of genes (48%), however, exhibit expression 



	
34	

changes in nuclei that are significantly inverted in whole cell RNA (Groups A,C,G,H; Fig. 

4f). Groups A and C consist of relatively long, EXC-enriched genes that are 

transcriptionally downregulated in nascent RNA but post-transcriptionally upregulated 

using whole cell RNA (Fig. 4f and Supplementary Fig. 5c-d). DAVID gene ontology 

revealed that Group A genes are associated with synaptic functions and protein 

phosphorylation signaling at the plasma membrane (Fig. 4g). Groups G and H consist of 

considerably shorter, INH-enriched genes that are transcriptionally upregulated in 

nascent RNA but post-transcriptionally downregulated in whole cell RNA (Fig. 4f and 

Supplementary Fig. 5c-d). Notably, Group G genes are functionally associated with 

cellular energy and metabolism in mitochondria (Fig. 4g). Finally, we used the GRO-seq 

dataset to also filter for genes in age-matched T158M and R106W sorted neurons that 

are associated with de novo transcriptional activity in cortical nuclei (Supplementary Fig. 

5e). This revealed a trend towards long genes being more severely downregulated in both 

excitatory and inhibitory neurons bearing the R106W mutation when compared to the 

T158M mutation (Fig. 4h and Supplementary Fig. 5f-g). 

Taken together, these data support that global gene expression changes in 

Mecp2-mutant mice differ between subcellular RNA fractions, and that many long genes 

are transcriptionally downregulated in the nucleus of Mecp2 mutant neurons. 

Furthermore, the molecular severity of missense mutations correlates with the extent to 

which these long genes are downregulated in both excitatory and inhibitory neurons at 6 

weeks of age.  

 

Female RTT Mouse Models Reveal Cell and Non-Cell Autonomous DEGs  

 

RTT is an X-linked disorder that primarily affects heterozygous females. However, the 

extent to which intermixed Mecp2 WT and mutant (MUT) neurons in cellular mosaic 

RTT females affect each other at the level of gene expression remains unknown. The 

reduced stability and expression of T158M and R106W mutant protein allowed us to use 

our genetic tagging and sorting strategy to isolate and profile WT (denoted by subscript: 

T158MWT, R106WWT) and MUT (denoted by subscript: T158MMUT, R106WMUT) excitatory 

neurons from mosaic female mice. By comparing the gene expression profiles of WT or 

MUT neurons from heterozygous mutant mice to those from control mice (TAVIWT), we 
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could discern both cell and non-cell autonomous gene expression changes as a result of 

MeCP2 mutations. We thus generated TAVI (Mecp2Tavi/+;R26cBirA/+;NEXCre/+), T158M 

(Mecp2Tavi/T158M-Tavi;R26cBirA/+;NEXCre/+), and R106W (Mecp2Tavi/R106W-

Tavi;R26cBirA/+;NEXCre/+) mosaic females that each carry one copy of the Tavi-tagged WT 

allele and one copy of the tagged T158M, tagged R106W, or untagged WT allele. 

We first aged females to ~18 weeks, when T158M and R106W females both 

display RTT-like phenotypes relative to TAVI females (Fig. 5a). We next subjected female 

cortical nuclei for FACS isolation (Fig. 5b-c and Supplementary Fig. 6a). From the 

number of females sampled, we did not detect skewed XCI (> 75%) among excitatory 

neurons in TAVI, T158M, or R106W mice (Fig. 5d). When compared to TAVIWT neurons, 

we identified a total of 526 and 678 unique protein-coding DEGs in T158MWT and MUT and 

R106WWT and MUT neurons, respectively (Fig. 5e and Supplementary Fig. 6b). Most DEGs 

represent cell autonomous gene expression changes that occur in mutant neurons alone 

(Fig. 5e). However, R106W DEGs contain a larger proportion of indirect DEGs that are 

found in both WT and MUT neurons (43.4%; Fig. 5e), revealing a mutation-specific 

susceptibility of WT neurons to non-cell autonomous gene expression changes in 

heterozygous females. We further visualized differences in transcriptomes using 

principal component analysis (PCA) to plot the first two major axes of variation (PC1 vs. 

PC2; Fig. 5f). PC2 separates neuronal populations by Mecp2 allele status (WT vs. MUT 

neurons) irrespective of genotype, indicating that Mecp2 mutations induce cell 

autonomous changes that are transcriptionally distinct from neighboring wild-type 

neurons. However, PC1 accounts for twice the variation as PC2 and clusters R106W-

derived populations away from other genotypes, revealing the additive extent to which 

indirect DEGs associate with this mutation. Against PC1 and PC2, T158MWT neurons 

closely resemble TAVIWT, suggesting that the mere presence of mutant neurons is not 

sufficient to generate the indirect gene expression changes apparent in R106W mice (Fig. 

5f). Thus, indirect DEGs are likely a result of the increased molecular severity associated 

with the R106W mutation. 

We found that 194 DEGs overlap between T158M and R106W female mice, most 

of which are misregulated in the same direction (Fig. 5g). Among these genes, cell 

autonomous transcriptional changes (149 genes, 76.8%) are more likely to be shared 

across independent Mecp2 mutations than non-cell autonomous changes (9 genes, 4.6%; 
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Fig. 5h). These overlapping DEGs also show higher fold changes in R106W than T158M 

female mice, similar to observations from male mice (Fig. 5i). However, this difference is 

mainly driven by indirect DEGs in R106W neurons (Fig. 5h). 

Using the R106W female mice to further characterize features that distinguish 

Mecp2-dependent DEGs in WT and MUT neurons, we noticed that non-cell autonomous 

DEGs are predominantly upregulated (~60%) in contrast to cell autonomous DEGs 

(~48%; Supplementary Fig. 6b). The absolute fold change among cell autonomous gene 

expression changes is also significantly smaller than non-cell autonomous changes, 

particularly among upregulated genes (Supplementary Fig. 6c). Furthermore, cell 

autonomous DEGs are considerably longer in gene length, specifically among 

upregulated genes (Supplementary Fig. 6d). To determine if cell and non-cell 

autonomous DEGs represent distinct biological processes, we next performed pre-

ranked GSEA (FDR < 0.1) and found that non-cell autonomous gene expression changes 

primarily affect cell-to-cell signaling and negative regulation of protein-kinases 

(Supplementary Fig. 6e). Indeed, these DEGs include several immediate early and late 

response genes that are induced by neuronal activity and modulate signaling pathways 

associated with synaptic plasticity42. In contrast, cell autonomous DEGs are significantly 

associated with transcriptional regulation (Supplementary Fig. 6f). These functional 

categories demonstrate a marked resemblance to those observed in excitatory neurons of 

male T158M and R106W mice (Fig. 5j). The striking consistency with which these 

functional annotations characterize Mecp2-mutant neurons, despite apparent 

differences in age and sex, supports the cell autonomous disruption of these functions as 

a key, contributing factor to RTT pathogenesis. 

 

Discussion 
 

The complexity of MeCP2 molecular function, coupled with the cellular heterogeneity of 

the brain, complicates the identification and interpretation of transcriptional changes in 

RTT. To overcome these challenges, we developed a genetic strategy to biotinylate 

MeCP2 and its mutant variants in different cell types of adult mice. This strategy couples 

in vivo biotinylation with Cre-Lox technology and extends the use of the Tavi tag for cell 

type-specific biochemical purification and molecular profiling studies43. Notably, the 
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small size of the Tavi tag makes it ideal for targeted gene insertion using CRISPR-Cas9 

technology. Our genetic approach can thus be expanded to any protein-coding gene of 

interest for cell type-specific in vivo applications beyond those conveyed in this study. 

By using an allelic series of mutations in mice to perform a transcriptome 

analysis of cortical neurons that vary by cell type, subcellular compartment, and sex, we 

discovered underlying transcriptional features that correlate with impairments in 

MeCP2 binding to chromatin and have therapeutic implications for RTT. Our 

characterization of T158M and R106W mice demonstrates that both mutations are 

associated with a similar age-dependent onset and progression of RTT-like phenotypes. 

We also found that both mutations exhibit similar molecular features among upregulated 

genes, including those in male and female Mecp2-mutant neurons that encode INH-

enriched transcription factors and chromatin remodelers. Because T158M and R106W 

mutations both impair MeCP2 binding to chromatin and lead to RTT-like phenotypes, 

the misexpression of transcriptional regulators may contribute to shared etiology in 

T158M and R106W mice. In support, both GRO-seq and nuclear RNA-seq show a trend 

towards the increased transcription of short, INH-enriched genes across the genome in 

T158M and R106W mice. Many of these genes are functionally associated with cellular 

respiration and energy metabolism, which could provide a transcriptional basis for 

several clinical features shared among RTT patients that notably resemble mitochondrial 

and metabolic disorders44. 

We also show that lowly-expressed, cell type-enriched genes are sensitive to the 

effects of MeCP2 dysfunction, which likely contributes to the specificity of MeCP2-

mediated gene expression changes in different neuronal cell types. However, regardless 

of cell type, the R106W mutation affects a larger number of genes that tend to be both 

highly expressed and preferentially downregulated relative to the T158M mutation, 

consistent with the greater impairment of MeCP2 R106W binding to methylated DNA32. 

GRO-seq and nuclear RNA-seq further demonstrates that transcriptional differences 

between these two mutations extend to most long genes throughout the genome, which 

tend to be highly expressed in neurons45. Our data is thus in partial agreement with 

global reductions of Ser5-phosphorylated RNA polymerase in Mecp2-null neuronal 

nuclei46 and supports MeCP2 as a global modulator of gene transcription. Given that 

transcription is impeded by chromatin-mediated physical constraints47, loss of MeCP2 
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occupancy may induce alterations to chromatin structure or organization that decreases 

the efficiency of transcriptional elongation at long genes. Alternatively, the loss of 

MeCP2 binding may reduce HDAC3-mediated transcription factor de-acetylation that 

could be required for long gene transcriptional activation48. Of note, downregulated 

genes are associated with synaptic morphology and function, which is stereotypically 

reduced in Mecp2-deficient neurons16. Because R106W mice also display reduced 

lifespan compared to T158M mice, it is possible that reductions in long gene 

transcription may act as a modifier in specific neuronal cell types, worsening subsets of 

RTT-like phenotypes. RTT patients with mutations that preserve MeCP2 binding do 

exhibit milder clinical features than patients for whom binding is disrupted12. Additional 

transcriptional assessments of milder mutations that preserve MeCP2 binding to 

chromatin, coupled with our biotin tagging and nuclei sorting approach, are necessary to 

further standardize and refine genotype-phenotype correlations at the transcriptional 

level. 

RTT transcriptional changes in neuronal nuclei complement the reported 

upregulation of long genes across multiple RTT mouse models23,39. By analyzing 

subcellular distributions of RNA, we found that the upregulation of most long genes in 

Mecp2 mutant neurons is absent in nuclear and nascent RNA but present in whole cell 

RNA. Notably, whole cell RNA is enriched for cytoplasmic mRNAs whose steady-state 

abundance and turnover is modulated by post-transcriptional regulatory mechanisms, 

including RNA nuclear retention, miRNA-mediated decay, or sequestration into 

cytoplasmic RNA granules40,49. Gene expression changes using whole cell RNA may thus 

be compensatory and not fully reflective of transcriptional activity. This aptly questions 

the therapeutic benefit surrounding the use of small molecules that decrease long gene 

transcription for treating RTT patients. Rather, fold changes across subcellular RNA 

fractions appear consistent with post-transcriptional mechanisms that could abate 

cellular consequences arising from global alterations in synaptic, mitochondrial, and 

metabolic gene transcription. Identifying molecular players that underlie a cellular 

compensation of RTT-associated transcriptional changes may yield a novel class of 

interventional therapies that can be administered prior to or during the initial regression 

phase of RTT, minimizing its pathological impact during neurodevelopment. 
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Importantly, our approach allows for the novel isolation and molecular 

examination of Mecp2 WT and MUT neurons from cellular mosaic female mice, which 

represent more accurate pre-clinical models of RTT. We demonstrate that WT neurons 

are also susceptible to the effects of Mecp2 mutations in neighboring cells, and that these 

non-cell autonomous gene expression changes are dependent on the molecular severity 

of the MeCP2 mutation. Additionally, non-cell autonomous gene expression changes also 

occur in Mecp2 MUT neurons, indicating that DEGs in RTT neurons arise from MeCP2-

dependent and independent molecular processes. Further investigation, encompassing a 

wide range of X-inactivation ratios across multiple ages, cell types, and Mecp2 

mutations, are thus required to elucidate direct and indirect contributions to RTT. 

The non-cell autonomous gene expression changes we found in R106W females 

markedly include genes whose expression is stereotypically induced by neuronal activity. 

These genes are known to negatively modulate synaptic plasticity by reducing 

responsiveness to excessive neuronal stimuli42. The selective upregulation of these 

indirect genes in WT and MUT neurons of R106W, but not T158M, mice may be a 

response to increased neuronal activity among severely affected mosaic neurons. This 

would be strikingly consistent with morphological reductions in dendritic branching and 

synaptic spine density exhibited by both WT and MUT neurons of heterozygous Mecp2-

null female mice50. Accordingly, electrophysiological abnormalities observed in 

phenotypically severe Mecp2-null mice might not fully reflect the milder spectrum of 

RTT-associated mutations. Furthermore, two of these late-response genes, Bdnf and 

Igf1, are indirectly upregulated in both WT and MUT neurons of 18-week old females 

and encode neuroprotective peptides that improve RTT synaptic, cellular, and behavioral 

deficits16,51. Because these molecules are in active clinical trials52, pathways associated 

with non-cell autonomous DEGs may act to ameliorate RTT-associated neuronal 

phenotypes and could represent a novel source of therapeutic targets for treating RTT 

patients. 
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Materials and Methods 

 

Generation of Mouse Lines  

 

The targeting construct used for homologous recombination at the Mecp2 locus in 

murine ES cells was cloned in two arms by PCR amplification of sv129 genomic DNA. 

The 5′ arm was PCR amplified with 5′-AGGAGGTAGGTGGCATCCTT-3′ and 5′-

CGTTTGATCACCATGACCTG-3′ primers, whereas the 3′ arm was PCR amplified with 5′-

GAAATGGCTTCCCAAAAAGG-3′ and 5′-AAAACGGCACCCAAAGTG-3′ primers. 

Restriction sites at the ends of each arm were created using nested primers for cloning 

into a vector containing a loxP-flanked neomycin cassette (Neo) and a diphtheria toxin A 

negative-selection cassette. QuikChange (Stratagene) insertional mutagenesis was used 

to generate the Mecp2-Tavi targeting construct by inserting the Tavi tag immediately 

upstream of the Mecp2 stop codon within the 5’ arm.  

The portion of the Tavi tag containing the biotinylation consensus sequenced flanked by 

5’ NaeI and 3’ BspHI restriction sites was inserted through two rounds of mutagenesis: 

Round 1 Forward: 5’-

GACCGAGAGAGTTAGCGCCGGCCTGAACGACATCTTCGAGTCATGACTTTACATAGAG

CG-3’ 

Round 1 Reverse: 5’-

CGCTCTATGTAAAGTCATGACTCGAAGATGTCGTTCAGGCCGGCGCTAACTCTCTCGGT

C-3’ 

Round 2 Forward: 5’-

CTGAACGACATCTTCGAGGCTCAGAAAATCGAATGGCACGAATCATGACTTTACATAGA

G-3’ 

Round 2 Reverse: 5’-

CTCTATGTAAAGTCATGATTCGTGCCATTCGATTTTCTGAGCCTCGAAGATGTCGTTCA

G-3’ 
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The portion of the tag containing the TEV protease cleavage site was inserted upstream 

of the NaeI restriction site with a third round of mutagenesis: 

Round 3 Forward: 5’-

GACCGAGAGAGTTAGCGAAAACCTGTATTTTCAGGGCGCCGGCCTGAACGACATC-3’ 

Round 3 Reverse: 5’- 

GATGTCGTTCAGGCCGGCGCCCTGAAAATACAGGTTTTCGCTAACTCTCTCGGTC-3’ 

To generate Mecp2-Tavi targeting constructs bearing independent RTT-

associated point mutations, QuikChange site-directed mutagenesis was used to mutate 

MeCP2 arginine 106 to tryptophan and MeCP2 threonine 158 to methionine within the 

3’arm and 5’arm, respectively. A single nucleotide at codon T160 also underwent site-

directed mutagenesis for a silent mutation to introduce a BstEII restriction site to 

correctly identify targeted ES cells. 

To generate conditional BirA transgenic mice, PCR primers containing AscI 

restriction sites and a Kozak consensus sequence were used to subclone the BirA coding 

sequence and insert it downstream of both a CAG promoter and a floxed transcriptional 

attenuator, Neo-STOP, within pROSA26-1, a transgenic targeting vector that has 

previously been characterized53. 

After confirmation by Sanger sequencing and linearization with NotI (Mecp2-

Tavi targeting construct and its mutant variants) or SgfI (BirA targeting construct), the 

constructs were electroporated into sv129-derived murine ES cells. Correctly targeted ES 

cells were independently injected into C57BL/6 blastocysts and subsequently implanted 

into pseudopregnant females. Agouti offspring were screened by southern blot and PCR 

genotyping to confirm germline transmission of the Mecp2-Tavi, Mecp2T158M-Tavi, 

Mecp2R106W-Tavi, and R26cBirA alleles. In the case of the Mecp2-Tavi allele and its mutant 

variants, the resulting offspring were mated with C57BL/6 EIIa-cre mice to ensure 

germline deletion of the floxed Neo cassette between Mecp2 exons 3 and 4. 

 

Additional Mouse lines  
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Dlx5/6-Cre (Stock 008199) and EIIa-Cre (Stock 003724) mice were obtained from 

Jackson Laboratories28,36. NeuroD6/NEX-Cre mice were obtained with permission from 

the Nave Laboratory35. 

 

Animal Husbandry  

 

Experiments were conducted in accordance with the ethical guidelines of the US 

National Institutes of Health and with the approval of the Institutional Animal Care and 

Use Committee of the University of Pennsylvania. All of the experiments described were 

performed using mice on a congenic sv129:C57BL/6J background with the knock-

in/transgenic alleles backcrossed to C57BL/6J mice (Charles River) for at least five 

generations, unless otherwise stated. Mice were housed in a standard 12h light/12h dark 

cycle with access to ample amounts of food and water. Mice bearing the Tavi tag were 

genotyped using a bipartite primer PCR-based strategy to detect the Tavi tag at the 3’-

end of the endogenous Mecp2 gene (Forward: 5’-CACCCCGAAGCCACGAAACTC-3’, 

Reverse: 5’-TAAGACTCAGCCTATGGTCGCC-3’) and give rise to a 318-bp product from 

the wild-type allele and a 388-bp product from the tagged allele. Mice bearing the BirA 

transgene were genotyped using a tripartite primer PCR-based strategy to detect the 

presence or absence of the CAG promoter at the Rosa26 locus (Forward:5’-

TGCTGCCTCCTGGCTTCTGAG-3’, Reverse #1: 5’-GGCGTACTTGGCATATGATACAC-3’, 

Reverse #2: 5’-CACCTGTTCAATTCCCCTGCAG-3’) and give rise to a 173-bp product 

from the wild-type allele and a 477-bp product from the transgene-bearing allele. Mice 

bearing Cre-recombinase (either NeuroD6/NEX-Cre or Dlx5/6-Cre) were genotyped 

using PCR-based strategies as previously described35,36. 

 

Phenotypic Assessment  

 

For tagged Mecp2 knock-in mice, phenotypic scoring was performed on a weekly basis 

for the presence or absence of RTT-like symptoms as previously described54. Investigator 

was blinded to genotypes during phenotypic assessment of mice. For BirA transgenic 
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mice, no formal scoring was performed. However, R26BirA heterozygous and homozygous 

mice are viable, fertile, and devoid of any gross abnormalities, consistent with previously 

engineered transgenic mice that express BirA either ubiquitously or within restricted 

tissues using cell type-specific promoters55,56. 

 

Immunofluorescence and Microscopy  

 

Mice were anesthetized with 1.25% Avertin (wt/vol), transcardially perfused with 4% 

paraformaldehyde (wt/vol) in 0.1M sodium-potassium phosphate buffered saline and 

postfixed overnight at 4°C. Brains were coronally or sagittally sectioned at 20µm using a 

Leica CM3050 S cryostat. Immunofluorescence on free-floating sections was performed 

as previously described, except sections were permeabilized with 0.5% Triton without 

methanol for 20 minutes, and sections were blocked overnight with 10% Normal Goat 

Serum and 1:100 unconjugated goat anti-mouse IgG (Sigma M5899). The following 

primary antibodies were incubated at 4°C overnight: rabbit anti-MeCP2 C-terminus 

(1:1000, in house), rabbit anti-nucleolin (1:1000, Abcam ab22758), mouse anti-

parvalbumin (1:500, Millipore MAB1572), rabbit anti-calretinin (1:1000, Swant 

7699/3H), mouse anti-GAD67 (1:500, Millipore MAB5406), mouse anti-NeuN (1:500, 

Millipore MAB377). For rat anti-somatostatin (1:250, Millipore MAB354MI), primary 

incubation was performed for 48 hours at 4°C. Fluorescence detection of primary 

antibodies was performed using Alexa 488-conjugated goat anti-rabbit (1:1000, 

Invitrogen A11008), Alexa 488-conjugated goat anti-mouse (1:1000, Invitrogen A11029), 

and Alexa 488 goat anti-rat (1:1000, Invitrogen A11006). Fluorescence detection of 

biotin was performed simultaneously with secondary antibody incubations, using 

Streptavidin Dylight 650 (1:1000, Fisher 84547) for fluorescence microscopy and 

Streptavidin Dylight 550 (1:1000, Fisher 84542) for confocal microscopy. Sections were 

counterstained with DAPI (1:1000, Affymetrix 14564) to visualize DNA before mounting 

with Fluoromount G (SouthernBiotech). Images were acquired using a Leica DM5500B 

fluorescent microscope with a Leica DFC360 FX digital camera (region-specific 

biotinylation, quantification of neuronal cell type-specific markers) or a Leica TCS SP8 

Multiphoton confocal microscope (representative images of neuronal cell type specific 
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markers, subcellular localization of MeCP2). Images were acquired using identical 

settings for laser power, detector gain amplifier offset and pinhole diameter in each 

channel. Image processing was performed using ImageJ and Adobe Photoshop, 

including identical adjustments of brightness, contrast, and levels in individual color 

channels and merged images across genotypes. 

 

Quantitative western analysis  

 

Quantitative western blot was performed using Odyssey Infrared Imaging System 

(Licor). Primary antibodies include rabbit anti-MeCP2 C-terminus (1:4000, in house), 

mouse anti-MeCP2 N-terminus (1:4000, Sigma M7433), mouse anti-NeuN (1:500, 

Millipore MAB377), and rabbit anti-Histone H3 (1:1000, Abcam ab1791). Secondary 

antibodies include anti-rabbit IRDye 680LT (1:10,000, Licor), anti-mouse IRDye 

800CW (Licor), Streptavidin Dylight 650 (1:10,000, Fisher 84547) and Streptavidin 

Dylight 800 (1:10,000, Fisher 21851). Quantification of protein expression levels was 

carried out following Odyssey Infrared Imaging System protocols. 

 

Co-immunoprecipitation using nuclear extracts  

 

Tissues were mined on ice and homogenized in ice cold lysis buffer (10 mM HEPES pH 

7.9, 1.5mM MgCl2, 10mM KCl, 0.5% NP-40, 0.2mM EDTA, protease inhibitors). Nuclei 

were pelleted, washed and resuspended in nuclear extract (NE) buffer (20mM HEPES 

pH 7.9, 1.5mM MgCl2, 500mM KCl, 0.2mM EDTA, 10% glycerol, protease inhibitors). 

Nuclei were incubated in NE buffer at 4°C for two hours with rotation. Samples were 

cleared by ultracentrifugation with a TLA 100.3 rotor (Beckman Optima TL) at 4°C for 

30 minutes and the supernatant taken for nuclear extract. Protein concentration was 

quantified using a modified Bradford assay (Bio-Rad). 1mg of nuclear extract was 

adjusted to 300µl total volume with NE buffer to perform IP in duplicate. Protein G 

Dynabeads or Streptavidin M-280 Dynabeads (Life Technologies) were washed three 

times in PBS with 0.1% Tween-20 and 0.1% BSA. Nuclear extracts were cleared for 30 
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minutes at 4°C with 25µl Protein G Dynabeads. For streptavidin pulldown, 50µl of 

Streptavidin M-280 Dynabeads were added to the nuclear extract and incubated at 4°C 

for two hours with rotation. To test if the Tavi tag was required for streptavidin 

pulldown, nuclear extracts were split and incubated with or without 200U TEV protease 

(Invitrogen) in the absence of a reducing agent and without agitation at 4°C for ≥ 4 hours 

prior to IP. For antibody immunoprecipitation, 5µg of (rabbit anti-MeCP2, in house) was 

added to the nuclear extract and incubated overnight at 4°C with rotation. Protein G 

beads were blocked in wash buffer overnight at 4°C with rotation. Blocked beads were 

then incubated with antibody-bound nuclear extract for two hours at 4°C with rotation. 

Beads were washed four times in PBS with 0.1% Tween-20 and split into two equal 

volumes. Each sample was resuspended in 25µl loading buffer with 50mM DTT and 

boiled for 10 minutes at 95°C prior to loading on a 4-12% Bis-Tris NuPage gel (Life 

Technologies). 

 

Chromatin immunoprecipitation  

 

Forebrain tissues from male mice at 8 weeks were homogenized in cross-linking buffer 

(1% formaldehyde (wt/vol), 10mM HEPES (pH 7.5), 100mM NaCl, 1mM EDTA, 1mM 

EGTA) and cross-linked for 5 minutes at RT. After quenching with 125mM glycine, cross-

linked tissue was washed with ice-cold PBS and dounced with 16 strokes in lysis buffer 

(50mM HEPES (pH 7.5), 140mM NaCl, 1mM EDTA, 1mM EGTA, 10% glycerol (vol/vol), 

0.5% NP-40 (vol/vol), and 0.25% Triton X-100 (vol/vol) with protease inhibitors). 

Nuclei were pelleted, washed and resuspended in chromatin buffer (10mM Tris-HCl (pH 

8.0), 1mM EDTA, and 0.5mM EGTA with protease inhibitors). Chromatin was sonicated 

using a Diagenode Bioruptor, and salt and detergent were added to adjust the chromatin 

buffer to 0.5% Triton X-100, 150mM NaCl, 10mM EDTA, and 0.1% sodium deoxycholate 

(DOC, vol/vol), and precleared at 4°C with Protein A Dynabeads (Invitrogen). For 

immunoprecipitation, 3µg of purified rabbit anti-MeCP2 IgG (in house) or non-specific 

rabbit IgG control (Millipore NI01) was incubated with 45µg of chromatin for 4 hours, 

followed by an overnight incubation with pre-blocked Protein A Dynabeads, at 4°C with 

rotation. Bead-bound chromatin was washed with low salt buffer (50mM HEPES pH 7.5, 
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150mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% DOC), high salt buffer (50mM HEPES 

pH 7.5, 500mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% DOC), LiCl buffer (50mM 

Tris-HCl pH 8.0, 150mM NaCl, 1mM EDTA, 0.5% NP-40, 0.5% DOC) and TE buffer 

(10mM Tris-HCl pH 8.0, 1mM EDTA). Chromatin was eluted with elution buffer (50mM 

Tris-HCl pH 8.0, 10mM EDTA, and 1% SDS (wt/vol)), digested with proteinase K (0.5mg 

ml-1), and reversed crosslinked at 65°C overnight. After RNase A treatment, DNA 

fragments were extracted with phenol/chloroform and ethanol-precipitated. 

 Quantitative real-time PCR (qPCR) analysis was carried out using SYBR green 

detection (Life Technologies) on an ABI Prism 7900HT Real-Time PCR System (Applied 

Biosystems). The percent input for each amplicon was determined by comparing the 

average threshold cycle of the immunoprecipitated DNA to a standard curve generated 

using serial dilutions of the input DNA and interpolating the “fraction of input” value for 

this sample. 

 

FACS Isolation of Neuronal Nuclei for RT-PCR and RNA-seq  

 

Nuclei were isolated from fresh cortical tissue for FACS as previously described under 

ice-cold and nuclease-free conditions57. Mouse cortices were rapidly resected on ice and 

subjected to dounce homogenization in homogenization buffer (0.32M sucrose, 5mM 

CaCl2, 3mM MgAc2, 10mM Tris-HCl pH 8.0, 0.1% Triton, 0.1mM EDTA, Roche 

Complete Protease Inhibitor without EDTA). Homogenates were layered onto a sucrose 

cushion (1.8M sucrose, 10mM Tris-HCl pH 8.0, 3mM MgAc2 Roche Complete Protease 

Inhibitor without EDTA) and centrifuged in a Beckman Coulter L7 Ultracentrifuge at 

25,000 rpm at 4°C for 2.5 hours using a Beckman Coulter SW28 swinging bucket rotor. 

Nuclei were resuspended & washed once in blocking buffer (1x PBS, 0.5% BSA (Sigma 

A4503), RNasin Plus RNase Inhibitor (Promega)) and pelleted using a tabletop 

centrifuge at 5000 RCF at 4°C for 10 minutes. Nuclei were resuspended in blocking 

buffer to a concentration of ~6x106 nuclei/ml, blocked for 20 minutes at 4°C with 

rotation, then incubated with Streptavidin Dylight 650 (1:1000, Fisher 84547) and Alexa 

488-conjugated anti-NeuN antibody (1:1000, Millipore MAB377X) for 30 minutes at 4°C 

with rotation. After a 5-minute incubation with 1:1000 DAPI to enable singlet detection 
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during FACS, labeled nuclei were washed for an additional 30 minutes at 4°C with 

blocking buffer, pelleted and resuspended in blocking buffer with 1% BSA. A BD 

Biosciences Influx cell sorter at the University of Pennsylvania Flow Cytometry and Cell 

Sorting Facility was used to identify cell type-specific populations of nuclei, and 1.2 – 2.5 

x105 singlet nuclei from specified populations were directly sorted into Qiagen Buffer 

RLT Plus for immediate lysis and stabilization of RNA transcripts. Total nuclear RNA 

was processed using the Qiagen AllPrep DNA/RNA mini kit according to manufacturer 

instructions, with exception to the on-column DNaseI treatment. RNA was eluted from 

RNeasy mini spin columns and treated with DNaseI (Qiagen 79254) for 25 minutes at 

room temperature, then precipitated with glycogen/NaOAc and stored in ethanol at -

80°C. Ethanol precipitation of nuclear RNA was carried out to completion prior to 

initiating RT-PCR or RNA-seq library construction. 

For RT-PCR, total RNA was prepared from FACS-isolated cortical nuclei of TAVI 

male mice at 6 weeks (2-3 mice pooled per biological replicate, 3 replicates each). To 

validate cell type-specific cortical nuclei populations, total RNA from 120,000 sorted 

nuclei was converted to cDNA with random hexamers using the SuperScript III First-

Strand Synthesis System (Invitrogen). RT-PCR was performed on a ABI Prism 7900HT 

Real-Time PCR System (Applied Biosystems) using exon-spanning Taqman gene 

expression assays to detect mRNA transcripts for the following genes: CRE 

(Mr00635245_cn), Mecp2 (Mm01193537_g1), Rbfox3 (Mm01248771_m1), Gfap 

(Mm01253033_m1), Aif1 (Mm00479862_g1), Mog (Mm00447824_m1), Slc17a7 

(Mm00812886_m1), Tbr1 (Mm00493433_m1), Gad1 (Mm04207432_g1), Slc35a1 

(Mm00494138_m1), Ht3ar (Mm00442874_m1), Pvalb (Mm00443100_m1), Sst 

(Mm00436671_m1), Pgk1 (Mm00435617_m1), Actb (Mm00607939_s1), ß2m 

(Mm00437762_m1). A geometric mean was calculated to normalize mRNA expression 

levels to multiple housekeeping genes (Actb, ß2m, and Pgk1), and cell type-enrichment 

for each sorted population was determined relative to the total mixed population of 

DAPI+ nuclei. 

 For RNA-seq, total RNA was prepared from FACS-isolated cortical nuclei of male 

mice at 6 weeks (TAVI, T158M, R106W, 2-3 mice pooled per biological replicate, 4 

replicates each) and female mice at 18 weeks (TAVI, T158M, R106W, single mouse per 

biological replicate, 2 replicates each). No method of randomization was used to 
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determine how animals were allocated to experimental groups, which was determined by 

genotype. The numbers of biological replicates used for differential gene expression 

analysis are in compliance with ENCODE consortium long RNA-seq recommendations 

(≥2 replicates). Furthermore, the total amount of RNA isolated from 120,000-250,000 

sorted nuclei was used as input for library construction; hence differential gene 

expression comparisons between FACS-isolated Mecp2 control and mutant neurons are 

performed using RNA from equivalent numbers of neuronal nuclei. Total RNA was 

depleted of ribosomal RNAs, subjected to 5 minutes of heat fragmentation, and 

converted to strand-specific cDNA libraries using the TruSeq Total RNA library prep kit 

with RiboZero depletion (Illumina). Multiplexed libraries were submitted for 100 paired-

end sequencing on the Illumina HiSeq 2000/2500 platform at the University of 

Pennsylvania Next Generation Sequencing Core facility, yielding approximately 30-40M 

total reads per library. 90-95% of total reads were uniquely mapped to the mouse 

Ensembl GRCm38/mm10 mouse genomic assembly. 

 

GRO-seq  

 

Nuclei were isolated from fresh cortical tissue under ice-cold and nuclease-free 

conditions as described in the preceding section. After ultracentrifugation, nuclei were 

resuspended & washed once in PBS (1x PBS, RNasin Plus RNase Inhibitor (Promega)) 

and pelleted using a tabletop centrifuge at 5000 RCF at 4°C for 10 minutes. Nuclei were 

resuspended in PBS, pipetted through a 0.22µm filter and counted using a 

hemocytometer. Nuclei were then pelleted, resuspended to a concentration of 5×106 - 

10×106 nuclei/100µl in glycerol storage buffer (50mM Tris pH 8.3, 40% glycerol, 5mM 

MgCl2, 0.1 mM), and flash frozen in liquid N2 for storage until needed. 

For each nuclear run-on (NRO), 100µl of nuclei was mixed with 46.5µl NRO 

Reaction Buffer (10mM Tris pH 8.0, 5mM MgCl2, 1 mM DTT, 300mM KCl), 3.5µl 

Nucleoside Mix (50µM ATP, 50µM GTP, 2µM CTP, 50µM Br-UTP, 0.4U/µl RNasin), and 

50µl 2% Sarkosyl  
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Nuclear Run On Stop Solution (20mM Tris pH 7.4, 10mM EDTA, 2% SDS). The NRO 

reaction was performed at 30°C for 5 minutes, then terminated by a 20 minute 

incubation with DNAse I at 37°C, followed by a hour-long incubation with 225µl NRO 

Stop Buffer (20mM Tris, pH 7.4, 10mM EDTA, 2% SDS) and Proteinase K at 55°C. 

Phenol-extracted RNA was fragmented with 0.2N NaOH, and BrdU-RNA was isolated 

three consecutive times with BrdU-antibody beads, with enzymatic TAP and PNK 

treatments to remove the cap and 3’-phosphate and to add a 5’-phosphate, as well as 

Illumina TruSeq small RNA sample prep kit adapter ligations between BrU-RNA 

isolation steps as described41,58. 

 

RNA-seq Mapping, Read Counting, and Differential Expression Analysis  

 

The mouse mm10 genomic sequence 

(Mus_musculus.GRCm38.75.dna.primary_assembly.fa.gz) and gene information 

(Mus_musculus.GRCm38.75.gtf.gz) were downloaded from Ensembl release 75. The 

genome files used for mapping were built by STAR using the parameters "STAR --

runMode genomeGenerate --runThreadN 12  

--genomeDir ./ --genomeFastaFiles 

Mus_musculus.GRCm38.75.dna.primary_assembly.fa.gz --sjdbGTFfile 

Mus_musculus.GRCm38.75.gtf --sjdbOverhang 100". The FASTQ files were mapped to 

the mouse Ensembl GRCm38/mm10 genome assembly by STAR (version 2.3.0) 59 using 

the parameters "--genomeDir ENSEMBL_75_mm10 --runThreadN 10 --

outFilterMultimapNmax 1 --outFilterMismatchNmax 3". Perl scripts generated in-house 

were used to count the number of read pairs that mapped to across the entire gene body 

(exon + intron) for each gene. If one end of a read pair overlapped with the annotated 

genomic region of a given gene and the other did not, the read pair was included in the 

final count for that gene. Therefore, the total number of read pairs that overlapped 

within a given gene represented the final read count for that gene. All intron and exon-

mapped reads were used for differentially expressed gene comparisons, which were all 

performed using the edgeR (v3.10.0) and DEseq2 (v1.8.0) R packages60,61. Genes with a 

total edgeR CPM ≥2 were included in the edgeR comparison. A false discovery rate < 
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0.05 was set to identify differentially expressed genes. No fold change cutoff was applied. 

For each comparison, the results of edgeR and DESeq2 analyses were merged to avoid 

method-based biases. The mean fold change and the mean FDR generated from both 

methods were used for generating plots and heatmaps. 

 

Functional Enrichment of Differentially Expressed Genes  

 

For DAVID gene ontology, a list of differentially expressed protein-coding genes was 

compared to a background list of actively expressed protein-coding genes from their 

respective cell type. Statistically significant terms (Benjamini P < 0.01, FDR < 0.05) were 

plotted for Figures S3C-D. For Gene Set Enrichment Analysis (GSEA), we performed a 

seeded, pre-ranked GSEA from lists of differentially expressed protein-coding genes 

(ranked by fold change) using the September 2015 Mouse GO Gene Set Release 

(http://download.baderlab.org/EM_Genesets/September_24_2015/Mouse/). GSEA 

network associations (P-value < 0.1, Q-value < 0.1) were visualized using the 

Enrichment Map application (v2.0.1) in Cytoscape (v3.2.1)62,63, and clustered using gene 

set overlap coefficients. 

 

Determination of Actively Expressed Genes  

 

Actively expressed genes for excitatory and inhibitory neurons were determined by 

calculating the normalized FPKM (zFPKM) and using ZFPKM ≥ 3 for the active gene 

cutoff as previously described64.  

 

Statistical Analyses  

 

Statistical analyses were performed using Graphpad Prism version 6.0 for Mac 

(GraphPad Software, La Jolla California USA, www.graphpad.com) and R65. No 
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statistical method was used to estimate sample size, as pre-specified effect sizes were not 

assumed. No animals or samples were excluded from analyses. Individual statistical tests 

are fully stated in the main text or figure legends. Comparisons of normally distributed 

data consisting of two groups with equal variances (F-test equality of variance P > 0.05) 

were analyzed using Student’s T-test, and unequal variances (F-test equality of variance 

P < 0.05) using Students T-test with Welch’s correction for unequal variance. 

Comparisons of normally distributed data consisting of three or more groups were 

analyzed using One-way ANOVA with the appropriate post-hoc test. Comparison of two 

or more factors across multiple groups was analyzed using a Two-way ANOVA with 

Sidak’s correction for multiple comparisons. Comparisons of non-normally distributed 

data were analyzed using the Mann-Whitney/Wilcoxon test (two groups) or the Kruskal-

Wallis test (three or more groups) with the appropriate post-hoc test. For multiple 

comparisons, all p-values are adjusted using the Holm-Bonferroni correction unless 

otherwise indicated. 

 

Main Figure Statistical Analyses 

 

Figure 1 Utilization and characterization of Mecp2Tavi mice and associated RTT variants 

(f) nreplicates = 4, One-way ANOVA [F = 25.55, P = 0.0012]; Tukey’s multiple comparisons 

correction applied. (g) nWT = 20, nTAVI = 11, nKO = 6, nT158M = 6, nR106W = 12; One-way 

ANOVA [F = 20.05, P < 0.0001]; Tukey’s multiple comparison correction applied. (h) 

nWT = 31, nTAVI = 23, nKO = 17, nT158M = 39, nR106W = 26, Mantel-Cox [χ2 = 109.3, df = 4, P < 

0.0001]. 

 

Figure 2 Cell type-specific transcriptional profiling of neuronal nuclei  

(d) nreplicates = 3, Two-way ANOVA, Control [Cell Type-Gene Interaction, F = 42.68, P < 

0.0001; Cell Type, F = 222.0, P < 0.0001; Gene, F =80.03, P < 0.0001], Non-Neuronal 

[Cell Type-Gene Interaction, F = 12.47, P < 0.0001; Cell Type, F = 109.8, P < 0.0001; 

Gene, F = 7.655, P = 0.0027], EXC-specific [Cell Type-Gene Interaction, F = 4.376, P = 

0.0198; Cell Type, F = 1227, P < 0.0001; Gene, F = 0.3267, P = 0.5756], INH-spectific 
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[Cell Type-Gene Interaction, F = 3.047, P = 0.0040; Cell Type, F = 646.5, P < 0.001; 

Gene, F = 2.916, P = 0.033]; Dunnett’s multiple comparisons correction applied. 

 

Figure 3 T158M and R106W differentially expressed genes at 6 weeks of age 

(e) One-tailed Wilcoxon Signed Rank, Excitatory PUpregulated = 4.357e-3, Excitatory 

PDownregulated = 7.345e-3, Inhibitory PUpregulated = 4.575e-09, Inhibitory PDownregulated = 

1.684e-05. (e) One-tailed Two-sample Kolmogorov-Smirnov, Excitatory P = 0.1241 

[D^+ = 0.17391], Inhibitory P = 2.032e-05 [D^+ = 0.31776]. (g) Chi-square Goodness-

of-Fit, Excitatory PT158M < 2.2e-16 [χ2 = 182.2, df = 2], Excitatory PR106W < 2.2e-16 [χ2 = 

401.11, df = 2], Inhibitory PT158M < 2.2e-16 [χ2 = 119.94, df = 2], Inhibitory PR106W < 2.2e-

16 [χ2 = 346.86, df = 2]. (i) Two-tailed Kruskal-Wallis Rank Sum, Excitatory P  < 2.2e-16 

[χ2 = 418.2, df = 3], Inhibitory P  < 2.2e-16 [χ2 = 1026.9, df = 3]; Pairwise Wilcoxon Rank 

Sum P displayed. 

 

Figure 4 Genome-wide length-dependent transcriptional changes in RTT mutant mice 

(e) Top, n = 10,390 genes, Kolmogorov-Smirnov P < 2.2e-16 for each nascent or nuclear 

RNA versus whole cell RNA comparison, no correction for multiple comparisons. (f) n = 

10, 390 genes, Kruskal-Wallis PGroup A < 2.2e-16 [χ2 = 2664.8, df = 2], PGroup B < 2.2e-16 [χ2 

= 290.18, df = 2], PGroup C < 2.2e-16 [χ2 = 2403.3, df = 2], PGroup D < 2.2e-16 [χ2 = 319.36, df 

= 2], PGroup E < 2.2e-16 [χ2 = 1483.8, df = 2], PGroup F < 2.2e-16 [χ2 = 1385.8, df = 2], PGroup G 

< 2.2e-16 [χ2 = 2522.9, df = 2], PGroup H < 2.2e-16 [χ2 = 2442.7, df = 2]; Pairwise Wilcoxon 

Rank Sum P displayed. 

 

Figure 6 T158M and R106W differentially expressed genes in mosaic female mice 

(a) Two-way ANOVA [Genotype-Time Interaction, F = 2.987, P = 0.0712; Genotype, F = 

41.14, P < 0.0001; Time, F = 7.332, P = 0.0129; Subjects (matching), F = 1.873, P = 

0.0744]. (b) FACS isolation of cortical mosaic excitatory neuronal nuclei from 

heterozygous TAVI, T158M, or R106W female mice. (c) nT158M = 4, nR106W = 9, Two-way 
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ANOVA [Population-Genotype Interaction, F = 0.3320, P = 0.5703; Population, F = 

111.1, P < 0.0001; Genotype, F = 0.332, P = 0.5703]. (d) nTAVI = 12, nT158M = 4, nR106W = 9, 

One-way ANOVA [F = 0.9376, P = 0.4067]. (h) One-tailed Fisher’s Exact Test [Odds 

Ratio = 19.3, P = 2.43e-05]. (i) One-tailed Wilcoxon Signed Rank, PTotal Overlap = 0.0331, 

PCell. Auto. = 0.5778, PNon-Cell Auto. = 8.825e-06. 

 

Data availability 

 

All sequencing data reported in this study has been deposited in the NCBI Gene 

Expression Omnibus (GSE83474). 
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Figures 
Figure 1  

Figure 1 Utilization and characterization of Mecp2Tavi mice and associated RTT variants 

(a) Diagram of wild-type and tagged MeCP2 showing R106W or T158M missense 

mutations. MBD, Methyl-CpG Binding Domain; TRD, Transcriptional Repression 

Domain. (b) Breeding strategy to biotinylate the Tavi tag in a Cre-dependent manner. 

(c) Representative western blot showing the conditions in which the Tavi tag is 
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biotinylated using whole brain nuclear extracts. Blot is probed with streptavidin for 

biotin detection and antibodies against MeCP2 N-terminus, Tavi tag, and NeuN. (d) 

Representative images showing immunofluorescent detection of biotinylated MeCP2 and 

mutant variants in hippocampal tissues of untagged (WT) and tagged (TAVI, T158M, 

R106W) male mice at 6 weeks of age. Tissue is probed with streptavidin for biotin 

detection and antibody against the MeCP2 C-terminus. Scale bars represent 10 µm. (e) 

Representative western blot comparing MeCP2 protein expression levels between Tavi-

tagged control (TAVI) and mutant (T158M, R106W) male mice at 6 weeks of age. Blot is 

probed with antibodies against the MeCP2 C-terminus and TBP. (f) Quantification of 

western blot in (e) (nreplicates = 4, One-way ANOVA). (g) Brain weights from untagged 

(WT, KO) and tagged (TAVI, T158M, R106W) male mice at 6 weeks of age (nWT = 20, 

nTAVI = 11, nKO = 6, nT158M = 6, nR106W = 12; One-way ANOVA). (h) Body weight over 

postnatal age in untagged (WT, KO) and tagged (TAVI, T158M, R106W) male mice. Data 

points consist of at least 6 observations each. Total number of mice assessed: nWT = 31, 

nTAVI = 23, nKO = 15, nT158M = 14, nR106W = 28. (i) RTT-like phenotypic score across 

postnatal development in untagged (WT, KO) and tagged (TAVI, T158M, R106W) male 

mice. Data points over time consist of at least 6 observations each. Total number of mice 

assessed: nWT = 31, nTAVI = 23, nKO = 15, nT158M = 14, nR106W = 28. (j) Kaplan-Meier 

survival curve for untagged (WT, KO) and tagged (TAVI, T158M, R106W) male mice 

(nWT = 31, nTAVI = 23, nKO = 17, nT158M = 39, nR106W = 26). *P < 0.5, **P < 0.01, ***P < 

0.001, ****P < 0.0001, n.s. = not significant; all pooled data depicts mean ± SEM. See 

also Supplementary Figure 1. 
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Figure 2 

 

Figure 2 Cell type-specific transcriptional profiling of neuronal nuclei (a) 

Representative images showing immunofluorescent detection of biotinylated MeCP2-

Tavi protein in Cre-specified neuronal populations of the mouse hippocampus. Probed 
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using streptavidin for biotin detection and antibody against the MeCP2 C-terminus. 

Scale bars represent 100µm. (b) Schematic of cortical nuclei preparation and FACS 

isolation. (c) FACS analysis of labeled cortical nuclei populations. Data shown is 

representative of nine independent experiments using NEX-Cre mice. Percentages 

indicate the mean distribution of neurons that are biotin+ (excitatory; 85.2% ± 0.35) or 

biotin- (inhibitory; 14.8% ± 0.35). (d) RT-PCR validation of FACS-isolated populations 

depicted in (c) (nreplicates = 3, Two-way ANOVA). (e) Pearson correlation of biological 

replicate nuclear RNA-seq libraries from FACS-isolated populations depicted in (c). 

Colors correspond to EXC-enriched (blue) and INH-enriched (red) genes identified 

through differential expression analysis of excitatory and inhibitory neurons. (f) Pearson 

correlation of excitatory and inhibitory RNA-seq libraries. Data shown is representative 

of 4 biological replicates. Note lower Pearson correlation and clear dispersal of cell type-

enriched genes. (g) IGV browser snapshot of Dlgap1 genomic locus in excitatory and 

inhibitory neurons of TAVI male mice at 6 weeks of age. RefSeq and Ensembl gene 

annotations are both shown. *P < 0.5, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s. = 

not significant; all pooled data depicts mean ± SEM. See also Supplementary Figures 

2 and 3. 
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Figure 3 

Figure 3 T158M and R106W differentially expressed genes at 6 weeks of age (a) FACS 

isolation of cortical excitatory and inhibitory neuronal nuclei from TAVI, T158M, or 

R106W male mice at 6 weeks of age. (b) Total number of protein coding and non-coding 
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differentially expressed genes (DEGs) identified in excitatory or inhibitory neurons of 

Mecp2-mutant mice. (c) Heatmap displaying log2 fold changes among protein-coding 

DEGs in excitatory and inhibitory neurons of Mecp2-mutant mice, compared across 

genotypes. Excitatory DEGs nshared = 69 genes, Hypergeometric P = 3.15e-77. Inhibitory 

DEGs nshared = 107 genes, Hypergeometric P = 5.33e-134. (d) Boxplots comparing log2 

median fold changes among overlapping DEGs between T158M and R106W neurons in 

(c) (One-tailed Wilcoxon Signed Rank). (e) Cumulative distribution function of the 

absolute log2 fold change among overlapping DEGs between T158M and R106W neurons 

in (c) (One-tailed Two-sample Kolmogorov-Smirnov). (f) Heatmap displaying log2 fold 

changes among protein-coding DEGs in excitatory and inhibitory neurons of Mecp2-

mutant mice, compared across cell types. (g) Distribution of constitutive, EXC- or INH-

enriched genes among T158M and R106W protein-coding DEGs, compared against 

genomic distribution (Chi-square Goodness-of-Fit). (h) Bar plot summarizing R106W 

DEGs, partitioned by cell type-enriched or constitutive genes, which are preferentially 

upregulated or downregulated. Red indicates statistical significance (One-tailed Fisher’s 

Exact Test).  (i) Boxplots comparing the log2 FPKM distribution of actively expressed 

genes against T158M, R106W, and shared DEGs for each cell type (Pairwise Wilcoxon 

Rank Sum P displayed). (j) Enrichment map of pre-ranked Gene Set Enrichment 

Analysis (GSEA) functional network associations. Data represents DEGs from R106W 

(top) and T158M (bottom) excitatory neurons (P-value < 0.01, Q-value < 0.1). Nodes 

denote functional categories, colored by Normalized Enrichment Score (NES). Line 

weight denotes extent of gene overlap between connected nodes. *P < 0.5, **P < 0.01, 

***P < 0.001, ****P < 0.0001, n.s. = not significant. See also Supplementary Figure 

4. 
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Figure 4 

 

Figure 4 Genome-wide length-dependent transcriptional changes in RTT mutant mice 

(a) Genome-wide log2 fold changes in R106W mice (n = 2) compared to TAVI mice (n = 

2) at 6 weeks of age using GRO-seq. Top, Lines represent mean fold change in expression 

for genes binned according to gene length (200 gene bins, 40 gene step) as described in 

23. Ribbon represents SEM of genes in each bin. Bottom, Smoothed scatterplot depicting 

LOESS correlation between gene length and log2 fold change for all individual protein-
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coding genes detected in GROseq. Genes in red highlight R106W DEGs identified from 

sorted excitatory and inhibitory neuronal nuclei. (b,c) Same as in (a), but using total 

RNA-seq analysis of whole cell (b) or nuclear (c) cortical RNA isolated from the same 

biological samples. (d) Top, Diagram of RNA distribution across subcellular 

compartments. Bottom, Area proportional Venn diagram comparing overlap in gene 

expression changes between nuclear RNA, whole cell RNA, and nascent RNA. (e) 

Cumulative distribution function of gene lengths for all upregulated and downregulated 

protein-coding genes among nascent, nuclear, and whole cell RNA fractions (n = 10,390 

genes, Kolmogorov-Smirnov). (f) Top, Boxplots depicting median log2 fold changes in 

R106W mice between nascent, nuclear, and whole cell RNA fractions, classified by the 

direction of gene misregulation (n = 10, 390 genes, Pairwise Wilcoxon Rank Sum P 

displayed). Gene groups are sorted by median gene length. Arrows highlight gene groups 

with similar changes (38.4% of genes), opposite changes (48%), or incongruent changes 

(13.6%) across subcellular fractions. Bottom, Heatmap displaying statistical enrichment 

of 6-week T158M and R106W DEGs in excitatory neurons among gene groups (One-

tailed Fisher’s Exact Test). (g) DAVID Gene ontology terms (Benjamini P < 0.01, FDR < 

0.05) for Group A and Group G sets of genes defined in (f). (h) Mean log2 fold change in 

6-week R106W (red; n = 4) and T158M (orange, n = 4) sorted excitatory neurons (left) 

and inhibitory neurons (right) using GRO-seq filtered genes. See also Supplementary 

Figure 5. 
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Figure 5 

 

Fig. 5. T158M and R106W differentially expressed genes in mosaic female 

mice (a) RTT-like phenotypic score in TAVI (n = 12), T158M (n = 4), and R106W (n = 

9) female mice (Two-way ANOVA). Data depicts mean ± SEM. (b) FACS isolation of 

cortical mosaic excitatory neuronal nuclei from heterozygous TAVI, T158M, or R106W 

female mice. (c) Biotin signal intensity from FACS-isolated populations depicted in (a) 

(nT158M = 4, nR106W = 9, Two-way ANOVA). Data depicts mean ± SEM. (d) X-inactivation 

ratios among cortical excitatory neurons in female mice, displayed as a percentage of the 
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FACS-sorted WT population (nTAVI = 12, nT158M = 4, nR106W = 9, One-way ANOVA). Data 

points in red highlight samples used for RNA-seq. Data depicts mean ± SEM. (e) Bar 

graph showing the cell and non-cell autonomous distribution of total protein-coding 

DEGs identified from T158M and R106W female mice. (f) Principal component analysis 

of WT and MUT cell populations isolated from TAVI, T158M, and R106W female mice. 

(g) Heatmap displaying log2 fold changes among the total number of protein-coding 

DEGs detected in both WT and MUT populations from T158M or R106W female mice. 

Note genes that overlap across genotype (n = 194). (h) Proportion of cell autonomous 

and non-cell autonomous genes that overlap between T158M and R106W female 

excitatory neurons (One-tailed Fisher’s Exact Test). (i) Boxplots comparing absolute log2 

fold change between cell autonomous and non-cell autonomous shared DEGs (n = 185) 

between T158M and R106W female mice (One-tailed Wilcoxon Signed Rank). (j) 

Enrichment map of pre-ranked GSEA functional network associations (P-value < 0.01, 

Q-value < 0.1). Data represents DEGs that overlap between T158M and R106W mice (n 

= 185). Nodes denote functional categories, colored by NES. Line weight denotes extent 

of gene overlap between connected nodes. *P < 0.5, **P < 0.01, ***P < 0.001, ****P < 

0.0001, n.s. = not significant. See also Supplementary Figure 6
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Supplementary Information  
Supplementary Figure 1 

 

Supplementary Figure 1. Design and characterization of MeCP2-Tavi and BirA mice (a) 

Schematic of targeting strategy for generating Tavi-tagged knock-in mice at the 
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endogenous Mecp2 gene locus. MBD, Methyl-CpG Binding Domain; TRD, 

Transcriptional Repression Domain; NEO, Neomycin cassette. (b) Schematic of 

targeting strategy for generating conditional BirA transgenic mice at the Rosa26 gene 

locus. (c) Western blot showing the conditions in which the Tavi tag is biotinylated and 

accessible for biochemical pulldown using whole brain nuclear extracts. Pulldowns were 

performed using streptavidin or an antibody against MeCP2 C-terminus. Blot is probed 

with antibodies against MeCP2 N-terminus and Tavi tag. (d) Relative MeCP2 mRNA 

expression levels between wild-type untagged and tagged mice at 20 weeks of age, 

normalized to GAPDH mRNA (n = 3, Two-tailed Unpaired Student t-test P = 0.7882). 

(e) Relative MeCP2 protein expression levels between wild-type untagged and tagged 

mice at 20 weeks of age, normalized to TBP (n = 3, Two-tailed Unpaired Student t-test P 

= 0.0203). (f) Western blot comparing MeCP2 protein expression levels between wild-

type untagged and tagged mice at 20 weeks of age. Blot is probed with antibodies against 

MeCP2 C-terminus and TBP. (g) ChIP-PCR signal of MeCP2 binding at highly 

methylated repetitive elements using antibodies against MeCP2 C-terminus or normal 

rabbit IgG (nreplicates = 3, Two-way ANOVA, Major Sattelite [Antibody-Genotype 

Interaction, F = 1.313, P = 0.2850; Antibody, F = 933.5, P < 0.0001; Genotype, F = 

0.5824, P = 0.4673], IAP [Antibody-Genotype Interaction, F = 1.672, P = 0.2320; 

Antibody, F = 262.6, P < 0.0001; Genotype, F = 0.9161, P = 0.3665]). (h) Streptavidin-

mediated pulldown of biotinylated MeCP2-Tavi and interacting NCoR co-repressor 

components (HDAC3, TBLR1). Blot is probed with streptavidin for biotin detection and 

antibodies against MeCP2 C-terminus, HDAC3, and TBLR1. (i) Brain weight from 

untagged (WT) and tagged (TAVI) male mice at 20 weeks of age (nWT = 21, nTAVI = 23, 

Two-tailed Unpaired Student t-test P = 0.1096). (j) Relative MeCP2 mRNA expression 

levels between wild-type untagged and tagged mice at 6 weeks of age (n=3-4 per 
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genotype, One-way ANOVA [F = 0.9238, P  = 0.4721]). (k) Representative images 

showing immunofluorescent detection of biotinylated mutant MeCP2 in hippocampal 

tissues of untagged (WT) and tagged (T158M, R106W) male mice at 6 weeks of age. 

Tissue is probed with streptavidin for biotin detection and an antibody against MeCP2 C-

terminus. Scale bars represent 10µm. (l) Immunofluorescent spatial colocalization of 

biotinylated mutant MeCP2 and nucleoli in hippocampal tissue of untagged (WT) and 

tagged (T158M, R106W) male mice at 6 weeks of age. Tissue is probed with streptavidin 

for biotin detection and an antibody against nucleolin. Scale bars represent 10µm. *P < 

0.5, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s. = not significant; all pooled data 

depicts mean ± SEM. See also Fig. 1.
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Supplementary Figure 2 

Validation of NEX-Cre and Dlx5/6-Cre mouse lines (a,b) Representative images 

showing immunofluorescent detection of biotinylated MeCP2-Tavi protein in Cre-

specified neuronal populations of the mouse cortex (a) and striatum (b). Probed using 

streptavidin for biotin detection and an antibody against the MeCP2 C-terminus. Scale 
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bars represent 100µm. (c,d,e,f,g) Representative confocal images depicting Cre-

mediated biotinylation in NeuN+ (c), GAD67+ (d), Parvalbumin+ (e), Somatostatin+ (f), 

and Calretinin+ (g) neurons. Scale bars represent 50µm. (h) Quantification of Cre-

mediated biotinylation in NeuN+, Parvalbumin+, or Calretinin+ neurons (n = 3, Two-

tailed Unpaired Student t-test PNeuN < 0.0001, PCalretinin < 0.0001, PParvalbumin = 0.0023). 

(i) FACS analysis of labeled cortical nuclei populations. Data shown is representative of 

three independent experiments using Dlx5/6-Cre mice. Percentages indicate the mean 

distribution of neurons that are biotin+ (inhibitory; 14.2% ± 0.4) or biotin- (excitatory; 

85.8% ± 0.4). (j) RT-PCR validation of FACS-isolated populations depicted in (i) 

(nreplicates = 3, Two-way ANOVA, Control [Cell Type-Gene Interaction, F = 353.8, P < 

0.0001; Cell Type, F = 337.4, P < 0.0001; Gene, F = 203.2, P < 0.0001], Non-Neuronal 

[Cell Type-Gene Interaction, F = 3.535, P = 0.0119; Cell Type, F = 20.98, P < 0.0001; 

Gene, F = 2.973, P = 0.0702], EXC-specific [Cell Type-Gene Interaction, F = 0.9698, P = 

0.4312; Cell Type, F = 351.1, P < 0.0001; Gene, F = 7.491, P = 0.0146], INH-spectific 

[Cell Type-Gene Interaction, F = 2.251, P = 0.0274; Cell Type, F = 901.3, P < 0.0001; 

Gene, F = 1.345, P = 0.2703]; Dunnett’s multiple comparisons correction applied). *P < 

0.5, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s. = not significant; all pooled data 

depicts mean ± SEM. See also Fig. 2.
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Supplementary Figure 3 

Functional characterization of excitatory and inhibitory neurons (a) Unsupervised 

hierarchical clustering and heatmap showing correlations between excitatory and 

inhibitory neuronal nuclei from 6-week TAVI mice. (b) Distribution of protein coding 
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and non-coding genes across genomic, actively expressed, or cell type-enriched genes in 

each cell type. (c) DAVID gene ontology terms (Benjamini P < 0.01, FDR < 0.05) for 

EXC-enriched genes and their median gene lengths, all sorted by degree of fold change 

(low, moderate, high enrichment) relative to inhibitory neurons. Dotted line indicates 

the null proportion of low (62.3%), moderate (33.6%), and high (4.1%) enrichment 

among total EXC-enriched protein-coding genes (n = 3,968). (d) DAVID gene ontology 

terms (Benjamini P < 0.01, FDR < 0.05) for INH-enriched genes and their median gene 

lengths, all sorted by degree of fold change (low, moderate, high) relative to excitatory 

neurons. Dotted line indicates the null proportion of low (70.0%), moderate (25%), and 

high (5%) enrichment among total INH-enriched protein-coding genes (n = 4,194). See 

also Fig. 2. 
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Supplementary Figure 4  

Transcriptional features characterize MeCP2 DEGs (a) Distribution of protein coding 

and non-coding genes among T158M or R106W DEGs in each cell type. (b) Bar plot 

showing significant enrichment of MeCP2 DEGs across binned actively expressed genes 

(One-tailed Fisher’s Exact Test). Dotted line represents null distribution. Q4 represents 
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top 25% of actively expressed genes (high expression), Q1 represents bottom 25% of 

actively expressed genes (low expression). (c) Boxplots comparing log2 FPKM 

distributions between T158M, R106W, and shared DEGs, partitioned by upregulated and 

downregulated genes (Two-tailed Kruskal-Wallis Rank Sum, Excitatory PUpregulated = 

0.4739 [χ2 = 1.4937, df = 2], Excitatory PDownregulated = 6.276e-10 [χ2 = 42.378, df = 2], 

Inhibitory PUpregulated = 0.3037 [χ2 = 2.3831, df = 2], Inhibitory PDownregulated = 1.162e-08 [χ2 

= 36.542, df = 2]; Pairwise Wilcoxon Rank Sum P displayed). Additional boxplot shows 

log2 FPKM distribution of actively expressed genes for each cell type. (d) Left, Pie chart 

depicting the proportion of leading edge genes that are upregulated and downregulated 

among nodes related to transcriptional regulation (see Figure 3J). Right, Heat map 

depicting the preference of cell type-enriched genes among leading edge genes (One-

tailed Fisher’s Exact Test). (e) Enrichment map of pre-ranked GSEA functional network 

associations (P-value < 0.01, Q-value < 0.1). Data represents DEGs from R106W 

inhibitory neurons. Nodes denote functional categories, colored by NES. Line weight 

denotes extent of gene overlap between connected nodes. *P < 0.5, **P < 0.01, ***P < 

0.001, ****P < 0.0001, n.s. = not significant. See also Fig. 3. 
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Supplementary Figure 5 

Extended Data for Figures 4 (a) Mean log2 fold change in 6-week R106W (red; n = 4) 

and T158M (orange, n = 4) sorted excitatory neurons (top) and inhibitory neurons 

(bottom); not filtered for GRO-seq detected genes. (b) Smoothed scatterplot comparing 

log2 fold changes between nascent and whole cell RNA fractions (left), nuclear and whole 

cell RNA fractions (center), and nascent and nuclear RNA fractions (right) in R106W 

mutant mice (n = 10,390 genes). (c) Boxplots depicting gene length for corresponding 

gene groups in Figure 4F, sorted by median gene lengths. Dotted line depicts median 

gene length for all 10,390 genes. (d) Barplot depicting fraction of protein-coding DEGs 
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classified as constitutive, EXC- or INH-enriched genes within the gene groups defined in 

Figure 4F. Dotted line represents null distribution among all 10,390 genes. (e) Top, 

Diagram of RNA distribution across subcellular compartments. Bottom, Area 

proportional Venn diagram comparing overlap in gene expression changes between 

sorted excitatory nuclear RNA, whole cell RNA, and nascent RNA. (f) Left, Genome-

wide Kolmogorov-Smirnov maximum distance (D^+) between cumulative distributions 

of log2 fold changes between 6-week T158M and R106W sorted excitatory neurons. D^+ 

is summarized in bar plots (right). (g) Same as in (f), but using log2 fold changes 

between t-week T158M and R106W sorted inhibitory neurons. *P < 0.5, **P < 0.01, ***P 

< 0.001, ****P < 0.0001, n.s. = not significant. See also Fig. 4. 
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Supplementary Figure 6 

Cell and non-cell autonomous gene expression changes in RTT are functionally distinct 

(a) Left, Browser snapshot of X-inactivation control genomic locus in both WT and MUT 
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neurons of TAVI, T158M, and R106W female mice at 18 weeks of age. Right, Percentage 

of reads detected with knock-in wild-type or mutant allele for each sorted population. 

(b) Heatmap displaying log2 fold changes among protein-coding DEGs in WT and MUT 

populations of T158M or R106W female excitatory neurons. (c) Boxplots comparing 

median log2 fold changes among cell and non-cell autonomous genes (Two-tailed 

Kruskal-Wallis Rank Sum, PUpregulated = 3.483e-14 [χ2 = 61.976, df = 2], PDownregulated = 

0.0015 [χ2 = 12.983, df = 2]; Pairwise Wilcoxon Rank Sum P displayed). (d) Cumulative 

distribution function comparing gene lengths among cell and non-cell autonomous genes 

(Two-tailed Kruskal-Wallis Rank Sum, PUpregulated = 1.246e-08 [χ2 = 36.401, df = 2], 

PDownregulated = 0.015 [χ2 = 8.4161, df = 2]; Pairwise Wilcoxon Rank Sum P displayed). (e) 

Enrichment map of pre-ranked GSEA functional network associations (P-value < 0.01, 

Q-value < 0.1). Data represents non-cell autonomous DEGs in R106W female excitatory 

neurons. Nodes denote functional categories, colored by NES. Line weight denotes 

extent of gene overlap between connected nodes. (f) Same as in (e), but using data from 

cell autonomous DEGs in R106W female excitatory neurons. *P < 0.5, **P < 0.01, ***P < 

0.001, ****P < 0.0001, n.s. = not significant. See also Fig. 
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CHAPTER 3 
 

A Rett Syndrome-associated mutation in Mecp2 alters the epigenomic and 

chromatin architectural landscape of excitatory neurons 

 

One Sentence Summary 
 

Given the transcriptomic changes we observed in Chapter 2, this chapter 

evaluates epigenomic and chromatin architectural changes in Mecp2 mutant mice, 

providing insight into why DEGs are differentially susceptible to dysregulation in RTT 

and positing MeCP2 as a key player in global maintenance of the methylome and 

chromatin architecture for the preservation of neuronal gene expression.  

  

Results 
 

DNA methylation changes associated with R106W Mice 

  

Numerous studies investigating the genome-wide binding patterns of MeCP2 via 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) in various mouse 

brain regions have found that MeCP2 binds broadly across the genome (Chen et al., 

2015; Cohen et al., 2011; Gabel et al., 2015; Skene et al., 2010). Although broadly found, 

MeCP2 is preferentially enriched at methylated regions of the genome, correlating with 

both 5mCG (Chen et al., 2015; Cohen et al., 2011; Gabel et al., 2015; Skene et al., 2010) 

and 5mCH dinucleotide density (Chen et al., 2015; Gabel et al., 2015). Given that MeCP2 

binds to methylated DNA and that DNA methylation patterns are cell type-specific, we 

sought to profile MeCP2 binding in a neuronal cell type-specific manner. Therefore, we 

investigated the cell type-specific binding pattern of MeCP2 with the use of a Mecp2WT-

Tavi/y;R26cBirA/+;NEXCre/+ mouse line (subsequently referred to as WT), in which an 

affinity tag (TEV protease cleavage site and a biotinylation consensus motif, termed Tavi 

for TEV and Avidin-binding) on MeCP2 is biotinylated in a Cre-dependent manner in 
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forebrain excitatory neurons.  With the use of streptavidin conjugated magnetic beads, 

we carried out MeCP2 ChIP-seq in cortical excitatory neurons of 6-week mice. We found 

that MeCP2 binds globally across the genome (Figure 1a), which is in agreement with 

previous reports (Chen et al., 2015; Cohen et al., 2011; Gabel et al., 2015; Skene et al., 

2010). Also in line with published work, we find that MeCP2 is highly enriched at major 

satellite DNA and previously established high-affinity sites and lowly enriched at known 

low-affinity sites (Chen et al., 2015) (Figure S1A).  

Given this global binding pattern and the large body of literature supporting that 

MeCP2 binds to methylated DNA, we next sought to determine the global effect of the 

R106W mutation on DNA methylation since this mutation in the methyl-CpG-binding 

domain (MBD) of MeCP2 is known to abolish its ability to bind to methylated DNA. A 

very simplistic model would predict that MeCP2 perseveres the methylation status of the 

cytosines to which it binds, and therefore, in the presence of a mutation like R106W that 

abolishes MeCP2’s ability to bind to DNA, unbound cytosines could be subjected to 

hydroxymethylation and/or demethylation. Studies on this subject are few in number, 

with one group finding that levels of 5hmC anticorrelated with levels of MeCP2 in mouse 

cerebellar tissue (loss of MeCP2 resulted in an increase in 5hmC and overexpression of 

MeCP2 lead to an decrease in 5hmC) (Szulwach et al., 2011) and another group finding 

correlation between MeCP2 presence and 5hmC, with the absence of MeCP2 correlating 

with a reduction in 5hmC in mouse granule cells of the cerebellum (Mellén et al., 2012a). 

In addition to the conflicting conclusions of these findings, neither of these studies 

examined 5mC and 5hmC simultaneously, and therefore, it remains to be determined 

whether 5mC levels are altered, as well as the interplay between 5mC and 5hmC, in RTT. 

Therefore, with the use of streptavidin conjugated to a fluorophore, we applied a 

fluorescence-activated cell sorting (FACS)-based approach to isolate cortical excitatory 

nuclei in 6-week WT and Mecp2R106W-Tavi/y;R26cBirA/+;NEXCre/+ (subsequently referred to 

as R106W) mice. Whole genome bisulfite sequencing (WGBS) and Tet-assisted bisulfite 

sequencing (TAB-seq) was carried out on these nuclei to obtain genome-wide, base pair 

resolution profiles of 5mC and 5hmC, as integration of these two approaches enables 

distinction between the two. The average genomic sequencing coverage for WGBS and 

TAB-seq were ~14-fold (average cytosine coverage ~10 fold) (Figure S1B) and our 

methylation data is highly correlated (r = 0.94) with previously published WGBS in WT 
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excitatory neurons (Figure S1C). We find that the majority of 5mC and 5hmC are in the 

CG context in similar percentages to previously published work (Lister et al., 2013; Mo et 

al., 2015) (Figure S1D).  

We found significant DNA methylation changes in R106W, with a global decrease 

in 5mC and increase in 5hmC in both the CG and CH contexts in R106W (Figure 1B-C & 

Figure S1E). Additionally, a significantly higher fraction of cytosines in the CH context 

are altered than those in the CG context for both 5mC and 5hmC (Figure S1F), suggesting 

that methylation in the CH context is more susceptible to demethylation in RTT. Given 

this global reduction in 5mC and increase in 5hmC, we next investigated whether the 

same cytosines that are losing 5mC are gaining 5hmC.  We found that while 18% of 

cytosines with a decrease in 5mC are gaining 5hmC, the majority (55%) of cytosines with 

a reduction in 5mC are completely unmethylated (neither 5mC nor 5hmC) (Figure 1D).  

These findings support the simplistic model that loss of MeCP2 binding leads to a 

reduction in methylation and suggest that MeCP2 binding at CH is particularly 

important for the preservation of methylation in this context.   

Next, we sought to determine whether the reduction in 5mC in R106W leads to 

an alteration in genome wide methylation states. Therefore, we employed MethylSeekR 

(Burger et al., 2013) to segment 5mC in the CG context into fully methylated regions 

(FMRs; average methylation is greater than 50%; associated with gene repression), low-

methylated regions (LMRs; average methylation of 30%; which are associated with gene 

regulatory regions), unmethylated regions (UMRs; average methylation of 5.7%; which 

are associated with CpG islands), and partially methylated domains (PMDs; regions with 

disordered methylation)(Burger et al., 2013; Lister et al., 2009). In agreement with 

previous reports(Avrahami et al., 2015), FMRs comprise the majority of the genome, 

with ~2.1 Gbp found in this state (Figure S1G). In contrast to previous reports(Lister et 

al., 2013; Mo et al., 2015), PMDs are present in our data (~5.8Mbp), which is likely due 

to the methylation states in this current study being demarcated based solely on 5mC, 

rather than evaluating both 5mC and 5hmC simultaneously (Figure S1G). In R106W, in 

comparison to WT, there is an increase in the number of basepairs in LMRs, UMRs, and 

PMDs, and a decrease in the number of basepairs in FMRs (Figure S1G). This finding 

suggests that methylated regions are shifting to a lower methylated state and/or a more 
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disordered methylation state, and thus, implicates MeCP2 as necessary for the 

maintenance of FMRs, which are associated with repression.  

Following our observation of global hypomethylation at the single cytosine 

resolution in R106W, we next sought to determine whether stretches of DNA have 

different methylation patterns in RTT. To do so, we defined differentially methylated 

regions (DMRs; consisting methylation changes in both CG and CH contexts combined) 

between WT and R106W. We identified 35,962 5mC DMRs (3,207 hyper-5mC-DMRs 

with a median length of 248 bp; and 32,755 hypo-5mC-DMRs with a median length of 

319bp) and 8,925 5hmC DMRs (935 hyper-5hmC-DMRs with a median length of 246bp 

and 7,990 hypo-5hmC-DMRs with a median length of 246bp) (Figure 1E), which is in 

agreement with the genome wide changes we found at the single cytosine level. Next, we 

investigated whether differentially expressed genes (DEGs) in excitatory cortical neurons 

of R106W mice at 6 weeks of age are significantly associated with methylation changes.  

In previous work, we employed our FACS-based approach to profile the transcriptome of 

cortical excitatory nuclei of 6-week WT and R106W mice, leading to the identification of 

425 DEGs. We found that the number of these DEGs that intragenically overlap with 

hypo-5mC-DMRs, but not any of the other DMR states, is significantly greater than 

chance (chance being 1,000 permutations of randomly selected intragenic regions that 

are number and length matched to DEGs) (Figure 1F). Furthermore, similar percentages 

of upregulated and downregulated DEGs are enriched for each of the DMR states (Figure 

S1H), suggesting that a loss of methylation is not simply a reflection of the directionality 

of gene expression changes in the mutant since loss of methylation is usually associated 

with gene upregulation, but not downregulation. 

Following the simplistic model that predicts loss of MeCP2 binding would lead to 

demethylation of unbound cytosines, we reasoned that DEGs could preferentially be 

subjected to hypomethylation if they are enriched with MeCP2 occupancy in the WT 

setting. Therefore, we plotted the average MeCP2 read count in excitatory neurons in the 

gene bodies, plus 100kb upstream and downstream, of upregulated DEGs, 

downregulated DEGs, and all actively expressed genes in cortical excitatory neurons 

(Figure 1G). We found that both upregulated and downregulated DEGs are intragenically 

enriched for MeCP2 binding in comparison to all actively expressed genes. Additionally, 

upregulated DEGs have more MeCP2 enrichment than downregulated DEGs (Figure 1G). 
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Notably, these patterns are not observed when the average read count for the Input is 

plotted in a similar manner (Figure S1I), supporting that this enrichment is specific to 

MeCP2. These results suggest that MeCP2’s ability to bind to methylated DNA preserves 

the methylation status of cytosines, and when MeCP2’s ability to bind to methylated 

DNA is compromised, such as in the R106W mutant, methylated cytosines are subjected 

to hydroxymethylation and/or demethylation. Furthermore, these data suggest that 

DEGs are preferentially affected in RTT due to their enrichment of MeCP2 binding in the 

WT setting.  

Given the enrichment of MeCP2 occupancy at DEGs in the WT setting and the 

reduction of methylation at DEGs in the mutant, we next sought to determine the 

relationship between DEGs and 5mC levels in the WT setting. To do so, we plotted 

average methylation levels intragenically, plus 1kb upstream and downstream, across 

upregulated DEGs, downregulated DEGs, and all actively expressed genes in cortical 

excitatory neurons (Figure 1H-I). While upregulated DEGs have higher levels of 

intragenic 5mCG and 5mCH methylation than actively expressed genes in the WT 

setting, downregulated DEGs do not. Additionally, upregulated DEGs have higher levels 

of intragenic 5mCG and 5mCH than downregulated DEGs, which is in agreement with 

upregulated DEGs having a greater enrichment of MeCP2 than downregulated DEGs 

(Figure 1G). These findings suggest that high average levels of 5mC, either in the 5mCG 

or 5mCH context, isn’t the sole feature in determining MeCP2 enrichment, since both 

upregulated and downregulated DEGs are enriched with MeCP2 binding, but only 

upregulated genes have higher average levels of 5mCH and 5mCG than actively 

expressed genes in excitatory neurons.   

 

Chromatin Features of Rett Syndrome-associated differentially expressed genes 

 

Our finding that average intragenic levels of 5mCG and 5mCH are not the sole 

determinant of MeCP2 binding led us to determine common chromatin features of DEGs 

to gain insight into why these genes are enriched for MeCP2 binding in WT and 

preferentially susceptible to misregulation in Rett Syndrome. With the use of a Hidden 

Markov Model, ChromHMM (http://compbio.mit.edu/ChromHMM/) (Ernst and Kellis, 
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2012), multiple chromatin datasets were integrated to define chromatin states in the 

adult male mouse cortex. Chromatin immunoprecipitation sequencing (ChIP-seq) 

datasets from six histone marks were used, three of which were generated from 6-15-

week mouse cortical tissue by our lab, H3K9me3 (associated with heterochromatin), 

H3K4me3 (associated with promoter regions), and H3K79me2 (associated with gene 

bodies), and three are publicly accessible datasets from 8-11-week mouse excitatory 

neurons of the cortex, H3K27ac (associated with promoter and enhancer activation), 

H3K4me1 (associated with enhancers), and H3K27me3 (associated with polycomb 

regions)(Mo et al., 2015).  Additionally, we used publicly accessible CCCTF-binding 

factor (CTCF) ChIP-seq (Encode: ENCFF001LIJ) and Polr2a ChIP-seq (Encode: 

ENCFF001LIV) data from 8-week mouse cortical tissue.  We also assessed open 

chromatin regions in excitatory neurons of the cortex from 6-week old mice (using our 

Mecp2WT-Tavi/y;R26cBirA/+;NEXCre/+ mouse line) with the assay for transposase accessible 

chromatin using sequencing (ATAC-seq), and we found that our ATAC-seq data highly 

correlates with previously published ATAC-seq data in excitatory neurons (r = 0.88) 

(Figure S2A) and that our biological replicates are well correlated (r = 0.986) (Figure 

S2B). Finally, we incorporated our MeCP2 ChIP-seq data from excitatory cortical 

neurons of 6-week with the use of our Mecp2WT-Tavi/y;R26cBirA/+;NEXCre/+ mouse line. 

Therefore, these data sets allow for the demarcation of chromatin states in cortical 

neurons, primarily excitatory neurons due to 85% of neurons in the cortex consisting of 

excitatory neurons and the fact that some of these datasets specifically assessed 

excitatory neurons, of 6-15-week male mice. 

Using these various epigenomic datasets, ChromHMM identified 11 independent 

chromatin states (Figure 2A).  We found that the number of DEGs intragenically 

enriched for heterochromatin, active enhancers, and CTCF chromatin states is 

significantly greater than chance (chance being random sampling (1,000 times) of genes 

that are number and length matched to DEGs) (Figure 2B). When the relative 

enrichments are compared across upregulated and downregulated DEGs, it was found 

that three states are differentially enriched: the polycomb and active enhancer chromatin 

states are found in a significantly higher percentage of downregulated DEGs and the 

active promoter state is found in a significantly higher percentage of upregulated DEGs 

(Figure 2C). Given that DEGs display intragenic enrichment for heterochromatin states, 
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we next sought to determine whether our DEGs are associated with lamin associated 

domains (LADs) since H3K9me 2/3 is enriched along the entirety of LADs(Guelen et al., 

2008; Harr et al., 2015; Wen et al., 2009). To do so, we used publicly available data of 

lamin B1 associated domains from mouse neural precursor cells (NPCs) since this is the 

closest data available to mouse cortical tissue (Peric-Hupkes et al., 2010) and found that 

DEGs are not associated with LADs (Figure S2C). These data suggest that DEGs are 

associated with a unique chromatin environment, which may explain the susceptibility of 

these genes to misregulation in RTT. Furthermore, the differential enrichment of 

particular chromatin states at upregulated versus downregulated genes provides insight 

into the directionality of gene misregulation in RTT.   

Given that DEGs are significantly intragenically associated with hypo-5mC-

DMRs, we next sought to determine whether particular intragenic chromatin states are 

enriched for this DMR state.  To do so, we isolated all chromatin state regions that 

overlap with DEGs and determined whether particular states significantly overlap with 

5mC-hypo-DMRs. Heterochromatin, polycomb, and gene body states that are 

intragenically located within DEGs are significantly associated with hypo-5mC-DMRs 

(Figure 2D).  We next determined which chromatin states are significantly associated 

with hypo-5mC-DMRs genome-wide and found similar states to be enriched: 

heterochromatin, polycomb, gene body, and low-signal 1 states (Figure S2D).  Taken 

together, these data suggest that repressive states (heterochromatin and polycomb) are 

globally demethylated in the mutant and that the enrichment of heterochromatin within 

DEGs can partially explain their differential vulnerability to misregulation.  Additionally, 

the enrichment of gene bodies with hypo-5mC-DMRs is suggestive of a potential global 

effect on genes. 

Given our finding that DEGs are associated with active enhancer and CTCF 

chromatin states, we next sought to determine whether particular transcription factors 

(TFs) bind in or near DEGs (intragenic region plus 100kb upstream and downstream).  

To do so, we performed TF footprinting analysis (Piper et al., 2015; 2013) in our ATAC-

seq peak regions of excitatory neurons and subsequently used HOMER(Heinz et al., 

2010) to identify TF motifs significantly associated with these footprints. Using this 

approach, we identified 19 TFs that are associated with footprints in ATAC-seq peak 

regions of WT cortical excitatory neurons (Figure S2E). When evaluating these TF 
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footprints for significant enrichment with DEGs, we found that DEGs are significantly 

associated with CTCF, NeuroD2, and POU2F2 (Figure S2E). Furthermore, when the 

relative enrichments of these TFs are compared across upregulated and downregulated 

DEGs, we found that the ATF1 footprint is associated with a significantly higher 

percentage of upregulated DEGs than downregulated DEGs (Figure S2F). In addition to 

enrichment intragenically plus 100kb upstream  and downstream, CTCF was also 

enriched intragenically plus 500kb upstream and downstream (Figure 2E). These 

findings suggest that certain TFs and architectural proteins, such as CTCF, are important 

in the regulation of DEGs, and furthermore, that particular TFs regulate upregulated 

versus downregulated DEGs.   

 

CTCF Binding Site Alterations in R106W Mice 

 

 Given our findings that DEGs are significantly enriched with particular TF and 

architectural protein footprints, the CTCF chromatin state, and the active enhancer state, 

we next sought to investigate whether open regulatory regions are altered in the R106W 

mice compared to WT. To do so, we carried out ATAC-seq in cortical excitatory neurons 

of 6-week R106W male mice and compared the ATAC-seq profiles between WT and 

R106W. The ATAC-seq read coverage for WT and R106W were comparable (Figure S3A), 

and similar to the WT biological replicates, the R106W ATAC-seq biological replicates 

were highly correlated (r = 0.985) (Figure S3B). The number and genomic distribution of 

ATAC-seq peak regions are similar across WT and R106W (Figure S3C). When the 

genomic locations of ATAC-seq peak regions were statistically tested for differences in 

Tn5 transposase integrations (the enzyme used in ATAC-seq to fragment and insert 

adapters into open regions of the genome) between WT and R106W, only 5 regions were 

found to be significantly different (0.005% of all ATAC-seq peak regions). These findings 

suggest that the location of open regulatory regions does not change in R106W mice, 

which is in agreement with the subtle gene expression changes observed in the R106W 

mice.  

Although the genomic location of open regulatory regions did not change in the 

mutant, it is possible that the recruitment and/or binding affinity of TFs is subtly 



	
90	

affected within these open regulatory regions, and that such a difference cannot be 

detected by simply comparing Tn5 transposase integrations at ATAC-seq peak regions. 

In order to assess this, we performed differential ATAC-seq footprinting with the use of 

Wellington-bootstrap (Piper et al., 2013; 2015) and found thousands of differential 

ATAC-seq footprints: 31,907 sites that are WT specific (sites that are lost in R106W; 

referred to as “R106W lost footprint sites”) and 36,474 sites that are R106W specific 

(sites that are gained in R106W; referred to as “R106W gained footprint sites”).  To 

increase the stringency of our differential footprints, we subsequently only evaluated 

footprints with a differential footprint score of 2 or higher, which equated to 3,459 

R106W gained footprint sites and 2,471 R106W lost footprint sites. Visualizing average 

Tn5 transposase integrations across all R106W gained or lost footprint sites confirms 

that these are differential footprint sites, given the large difference in average Tn5 

transposase integrations across the differential sites in WT and R106W (Figures 3A and 

Figure S3D). We then used HOMER(Heinz et al., 2010) to identify TF motifs 

significantly associated with these differential footprints. We identified 15 TF motifs that 

are significantly associated with R106W gained footprint sites and 10 TF motifs that are 

significantly associated with R106W lost footprint sites (Figure S3E-F). Since CTCF was 

the most significantly enriched TF motif, we focused subsequent analyses on R106W 

CTCF gained footprint sites. Visualizing Tn5 transposase integrations at CTCF 

differential footprint sites by either evaluating Tn5 transposase insertions at each of the 

R106W CTCF gained footprint sites independently (Figure 3B) or by averaging 

integrations across all R106W CTCF gained footprint sites (Figure 3C) confirmed that 

these footprints are more enriched in R106W than WT.  

To corroborate that the R106W CTCF gained sites are enriched for CTCF binding 

in R106W in comparison to WT, we next performed CTCF ChIP-seq in cortical tissue 

from WT and R106W male mice at 6 weeks of age. When the average CTCF ChIP-seq 

read counts at the R106W CTCF gained footprint sites are compared between WT and 

R106W, CTCF read count is greater at these sites in R106W than WT (Figure 3D). This 

supports that these R106W CTCF gained footprint sites are enriched for CTCF binding in 

R106W compared to WT. One plausible explanation for the gain of CTCF binding at 

these regions in R106W could be that these sites are losing methylation in R106W, and 

therefore, enabling the binding of the methylation-sensitive CTCF at these sites. To test 
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this, we compared the average 5mC methylation levels at each cytosine from the center 

of the R106W CTCF gained footprint sites plus 1kb upstream and downstream in WT and 

R106W and found a significant reduction in average methylation levels (p=0.0002501, 

Fisher’s exact test) in R106W. And following our simple model that predicts that MeCP2 

binding preserves the methylation status of cytosines to which it binds, we next 

investigated whether MeCP2 binding is enriched at these R106W CTCF gained footprint 

sites in the WT setting. Therefore, we analyzed the average MeCP2 ChIP-seq read count 

at the R106W CTCF gained footprint sites plus 2kb upstream and downstream and found 

that MeCP2 is enriched at these sites (Figure3E). These findings suggest that the loss of 

MeCP2 binding at these regions leads to demethylation and/or accessibility of these sites 

to CTCF binding.  

 We next evaluated the genomic distribution of R106W CTCF gained sites and 

found that they are located on every chromosome, in both intergenic and intragenic 

regions (Figure 3F). We subsequently sought to determine whether DEGs are enriched 

for R106W CTCF gained sites. We found that a higher percentage of DEGs are associated 

with R106W CTCF gained sites than chance (Figure 3G). Additionally, DEGs overlap 

with more R106W CTCF gained sites than chance (Figure 3G). However, when 

upregulated and downregulated DEGs were evaluated independently, a significant 

percentage of downregulated genes were associated with R106W CTCF gained sites than 

chance, but not upregulated DEGs (Figure 3H and Figure S3G). These data suggest that 

the R106W mutation leads to a loss of methylation at sites that are bound by MeCP2 in 

the WT setting, which therefore leads to CTCF binding at a portion of these sites. 

Furthermore, downregulated DEGs, but not upregulated DEGs, are enriched for CTCF 

gained sites, providing insight into the directionality of gene misregulation in R106W 

mice.  

 

Nuclear Architectural Alterations in R106W mice 

 

The observation of genome-wide R106W CTCF gained sites, along with the 

known importance of CTCF in genome organization(Ong and Corces, 2014), led us to 

next examine whether there are detectable nuclear architectural changes in RTT. To do 

so, we isolated nuclei from WT and R106W mouse cortical tissue and visualized various 
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genomic regions with the use of Oligopaint FISH probes, which allow for highly specific 

and efficient genomic targeting (Beliveau et al., 2012). We began by investigating the 

extent to which global alterations occur in the two large-scale chromatin organizational 

components, heterochromatin and euchromatin. Heterochromatin is a compact 

conformational state with low levels of transcription, and euchromatin is an open, 

transcriptionally active conformational state (Becker et al., 2016).  

We first investigated the euchromatic conformational state by designing primary 

Oligopaint FISH probes that span the entire euchromatic region of chromosome 9 

(Chr9) and subsequently using secondary oligo probes conjugated to a fluorophore for 

visualization of euchromatic Chr9 (Figure 4A). Chr9 was chosen because of its 

intermediary size (12th largest chromosome out of 21 chromosomes). We also used 

streptavidin conjugated to a fluorophore to visualize and restrict analysis to one cortical 

cell type, excitatory neurons (Figure 4A). We first measured the volume of the nucleus to 

determine whether our FISH protocol preserves the known phenotype of reduced 

nuclear volume in RTT (Mazumder et al., 2008b), and we found that the volume of 

R106W nuclei is significant reduced compared to WT (Figure 4B).  Chr9 volume is also 

significantly reduced in R106W nuclei (Figure 4C), and when Chr9 volume is normalized 

to nuclear volume, the effect is nullified (Figure 4D). This suggests that Chr9 is 

condensing in R106W nuclei and that the reduction in Chr9 volume is proportional to 

the reduction in nuclear volume. This general relationship between chromatin 

condensation and nuclear size is supported by previous work (Linhoff et al., 2015; 

Mazumder et al., 2008a; Shen et al., 1996). Additionally, we observed an elongation of 

Chr9 (ratio of longest axis/shortest axis) in R106W (Figure S4A). Finally, we investigated 

the nuclear location of Chr9 by segmenting the nucleus into 5 regions of equal volume 

from the periphery to center (Figure S4B) and computing the fraction of Chr9 found in 

each nuclear segment. There was found to be a small, but significant, shift of Chr9 

towards the periphery of the nucleus (Figure S4C). Taken together, these data support 

Chr9 condensation, as well as slight changes in Chr9 shape and nuclear positioning, in 

RTT.  

 Given these euchromatic observations, we next investigated the extent of 

heterochromatic changes in R106W nuclei. A major component of heterochromatin is 

repetitive DNA sequences, existing primarily in two forms: pericentric major satellites 
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and centromeric minor satellites. Therefore, we visualized heterochromatin by designing 

primary Oligopaint FISH probes that specifically target mouse major or minor satellites, 

as well as designing secondary oligo probes that uniquely bind to these two regions with 

different conjugated fluorophores (Figure 4E). Similar to euchromatic Chr9 volume, 

both major and minor satellite volume (both total and average volume per foci) was 

significantly reduced in R106W (Figure 4F-G and S4D-E) However, differing from 

euchromatin, when major and minor total volume was normalized to nuclear volume, 

the reduction in volume remains significant (Figure 4H and S4).  This suggests that the 

reduction in volume for major and minor satellites is greater than the reduction in 

nuclear volume. We also observed a significant reduction in major and minor satellite 

number (Figure 4I and S4G), which might be explained by the significant reduction in 

average distance between major and minor satellites (Figure 4J and S4H), suggesting 

that similar organizational compartments are merging together. There is also an increase 

in merging across major and minor satellites compartments, given the significant 

increase in major and minor overlap (Figure 4K). Finally, there was found to be a slight, 

but significant, shift in major and minor satellite positioning toward the center of the 

nucleus (Figure S4I-J). Therefore, these findings support condensational and 

organizational defects in heterochromatin in RTT.  

Given these alterations in euchromatin and heterochromatin, we next sought to 

determine whether we could detect organizational changes at the gene level, comparing a 

DEG to a gene of similar length (referred to as Control) whose expression does not 

significantly change in R106W excitatory neurons. We chose to examine two genes on 

Chr9 given our prior findings of condensation of the euchromatin regions of this 

chromosome: Bmper was chosen as the DEG (length: 262,127 bp and fold change (FC): 

1.3) and Ncam1 was chosen as the Control (length: 294,562bp). Oligopaint probes were 

designed to span the entire intragenic regions of these genes (Figure 5A). Differing from 

what was observed for the euchromatic region of Chr9 or heterochromatin, both the 

DEG (Bmper) and Control (Ncam1) volume increased in R106W (Figure S5A-B) and this 

increase remained significant after normalizing for nuclear size (Figure 5B-C).  Next, 

given our bioinformatics findings that DEGs intragenically overlap with the 

heterochromatic chromatin state, we next determined the distance from the center of 

each gene to the center of the nearest major satellite. In agreement with our 
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bioinformatics data, we find that the DEG (Bmper) is closer to a major satellite than the 

control gene (Ncam1) (Figure 5D and Figure S5C) in the WT setting; however, this 

difference was not observed in the mutant setting (Figure S5D-E). Therefore, we 

reasoned that the distance of at least one of the genes to its nearest major satellite is 

perhaps changing in the RTT. When the distance of each gene to its nearest major 

satellite was compared between WT and R106W, we found that although the raw 

distance does not change for either gene (Figure S5F-G), the normalized distance of the 

DEG (Bmper) to its nearest major satellite significantly increases (Figure 5E and S5H). 

Taken together, these data suggest that gene bodies, for both DEGs and Controls alike, 

are decondensing in RTT, and that the proximity of a DEG to major satellite could be a 

contributing factor to misregulation in RTT. Additionally, we garnered insight into the 

directionality of gene misregulation in RTT, since this upregulated DEG shifts 

significantly away from repressive heterochromatin, which could contribute to 

transcriptional upregulation. 

Next, we sought to investigate another DEG and Control gene to determine 

whether similar differences are observed. This time we chose a downregulated DEG, 

Sgcd (length: 1,092,717bp, RPKM: 4.9, and FC: 0.79), and a Control gene of similar 

length and expression levels, Gpc6 (length: 1,054,233 and RPKM: 6.8). This 

downregulated DEG is also associated with a R106W CTCF gained footprint site. Similar 

to what was observed above for the other DEG and Control pair, both genes increased in 

volume in RTT (Figure S5I-J) and this remained significant after normalizing for nuclear 

size (Figure 5F-G).  Another characteristic similar to the other gene pair, the DEG (Sgcd) 

is closer to a major satellite than the Control gene (Gpc6) in WT (Figure 5H and S5K), 

and in R106W, the distances are similar between the DEG and Control (Figure S5L-M). 

However, differing from what was observed previously, when measuring the distance of 

a gene to its nearest major satellite across WT and R106W, the downregulated DEG 

distance remains unchanged (Figure 5I and S5N) and the Control gene distance 

increases (Figure S5O), although this effect is lost when normalized to nuclear volume 

(Figure S5P). Collectively, this corroborates the gene body decondensation, for both 

DEGs and Control genes alike, in RTT, and supports that DEGs are located in closer 

proximity to major satellites than Controls. Moreover, the downregulated DEG stays in 

similar proximity to its nearest major satellite, which is in opposition to the upregulated 
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DEG shifting significantly away from its nearest major satellite, implicating this 

proximity to a repressive state as a plausible explanation the directionality of gene 

misregulation in RTT.  

To further substantiate the observed increase in nuclear volume of gene bodies of 

both DEGs and Controls in RTT, we used Oligopaint probes to intragenically labeled 11 

DEGs of varying lengths, expression levels, and FC, as well as 11 matched Controls with 

similar lengths and expression levels (Figure S6A). Using this approach, we again find an 

increase in volume for both DEGs and Control genes in R106W nuclei (Figure 6A-B and 

Figure S6B-C). We also evaluated the nuclear location of DEGs and Controls across WT 

and R106W and found a slight, but significant, shift of both DEGS and Controls towards 

the center of the nucleus (Figure S6D-E), suggestive of global organizational alterations 

in RTT. When the nuclear location of DEGs was compared to that of Controls, it was 

found that DEGs are significantly located more centrally than Controls in both WT and 

R106W (Figure 6D and Figure S6F), which is in agreement with DEGs being in closer 

proximity to major satellites than Controls since the majority of major satellites are 

located centrally.   

Finally, given our findings of decondensation of both DEGs and Controls by 

visualizing the entire gene body, we next sought to determine whether this increase in 

volume could also be found by measuring the distances between different regions of the 

gene body, since an increase in volume should correlate with an increase in distance 

between different regions of the gene. To do so, we designed Oligopaint probes that 

target 100kb regions at the 5’ end, Middle (Mid), and 3’ end of a downregulated DEG 

(Kcnip4; length: 1,135,403bp, RPKM: 33.7, FC: 0.76) and Control Gene (Tenm2; length: 

1,229,39bp and RPKM: 29.5) (Figure 6E). This downregulated DEG is associated with a 

R106W CTCF gained footprint site. To gain insight into the conformation of these genes, 

we measured the distances across all combinations of intragenic locations (5’ to Mid, 

Mid to 3’, and 5’ to 3’) and compared the 5’ to 3’ distance to that of the sum of 5’ to Mid 

plus Mid to 3’ (referred to as 5’ to 3’ Summed) and found that the 5’ to 3’ distance is 

shorter than the 5’ to 3’ Summed distance (Figure S6G), suggesting that both of these 

genes are not in a linear conformation, but rather a loop-like conformation. First, we 

compared the sum of all distances (5’ to Mid plus Mid to 3’ plus 5’ to 3’) across WT and 

R016W and found that this summed distance is greater in R016W for both the DEG 
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(Kcnip4) and Control (Tenm2) (Figure S6H), which confirms what we previously found 

with the volume expansion of two pairs of genes. Next, we measured the distances 

between each of the intragenic regions in both the DEG (Kcnip4) and Control (Tenm2) 

across WT and R106W. The distance between 5’ to Mid remained unchanged for both 

genes (Figure 6F) and both genes demonstrate a significant increase in 5’ to 3’ distance 

(Figure 6G) across WT and R106W.  However, the DEG (Kcnip4), but not Control 

(Tenm2), displayed an increase Mid to 3’ distance (Figure 6H) across WT and R106W. 

Given this DEG-specific increase in the Mid to 3’ region of the gene, we next evaluated 

the distances between Mid to 3’ in the WT setting between the DEG (Kcnip4) and 

Control (Tenm2) and found that the distance between the Mid to 3’ of the DEG is the 

only distance significantly shorter in the DEG (Figure S6I), suggesting that perhaps this 

is a unique feature of DEGs and that disruption of this tight chromatin unit might be 

contributing to gene misregulation. This is particularly intriguing given that the R106W 

CTCF gained site is located nearest to the 3’ end of DEG, suggesting that this gain in 

CTCF binding could possibly be contributing to the alteration in chromatin compaction. 

 

Materials and Methods 
 

ChIP-seq library construction and mapping  

 

MeCP2, H3K4me3, and CTCF ChIP-seq were generated from 3 cortices of 6-week 

male mice (Mecp2WT-Tavi/y;R26cBirA/+;NEXCre/+ or Mecp2R106W-Tavi/y;R26cBirA/+;NEXCre/+). 

H3K79me2 and H3K9me3 ChIP-seq were generated from 3 cortices of 15-week old male 

mice. 50-200ug of chromatin was used per IP, which was performed as previously 

described in Chapter 2 of this dissertation. Libraries were generated using NEB 

enzymatic reagents (End Repair, 5' Adenylation, Adapter Ligation) with Illumina Truseq 

adapters according to Illumina ChIP-seq prep kit manufacturer instructions. Libraries 

were sequenced on a HiSeq 2500 (50SE). The ChIP-seq FASTQ files were mapped to the 

mouse mm10 genome with bowtie using “-v 2 -m 1”. Only uniquely mapped reads were 

included for further analysis.  
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MeCP2 ChIP-RT-PCR 

 

The following primers were used:  

1) Major Satellite: forward 5′-catccacttgacgacttgaaaa-3′, reverse, 5′-

gaggtccttcagtgtgcattt-3′ 

2) high-affinity site 1: forward 5′-atgttccagggatgatgaactt-3′, reverse 5′-gctacgcagtaga- 

gacatgctg-3′ 

3) high-affinity site 2: forward 5′-atgtagacgtacacgcccttg-3′, reverse 5′-

agttctgactgtcctggaactg-3′ 

4) low-affinity site 1: forward 5′- ccagctactcgcggctttacgg-3′, reverse 5′-

cctcccgccctgcttatccagt-3′ 

5) low- affinity site 2: forward 5′-ggaagtgaggacagaaatggac-3′, reverse 5′- 

attggctcataccaaaccagag-3′ 

TAB-seq and WGBS library construction, mapping, and analysis  

 

Genomic DNA was isolated from nuclei of cortical excitatory neurons using an 

AllPrep DNA/RNA Mini kit (Qiagen cat. #80204) and subsequently treated with RNase 

(Roche cat. # 11119915001). TAB-seq and WGBS libraries were generated from 400ng 

and 300ng of DNA, respectively, as previously reported (Yu et al., 2012a). Trim Galore 

was used to remove the adaptor contamination from the raw sequencing reads using “-

stringency 2 --length 36”. The trimmed reads were mapped to mm10 genome by 

Bismark41 using parameters  “-n 2 -l 40”. Clonal reads were excluded to avoid PCR 

artifacts. Methylation calling was performed by Binomial distribution followed by the 

Benjamini-Hochberg correction. The mC level for a cytosine was calculated as the WGBS 

methylation levels subtracted the hmC level in that cytosine.  
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MethylSeekR 

 

 Identification of UMRs, LMRs, and PMDs was carried out as previously described 

(Burger et al., 2013). Unique to our analysis was the demarcation of states based solely 

on 5mC, rather than evaluating both 5mC and 5hmC combined given that we performed 

both WGBS and TAB-seq, allowing for the distinction between the two methylation 

marks. Our α distribution had a distinct long tail, and therefore, we identified and 

masked PMDs genome-wide. To identify FMRs, all UMRs, LMRs, and PMDs were 

excluded from the genome using bedtools subtract, and the remaining sequences were 

taken to be FMRs. 

 

ATAC-seq library construction  

 

Five hundred thousand cell type-specific nuclei were sorted and subsequently 

pelleted as previously described (Jiang et al., 2008). Briefly, 1.6 mL of nuclei in PBS were 

mixed with 372 µL of pelleting buffer (360 µL of 2M Sucrose, 10 µL of 1M CaCl2, and 2 µL 

of 3M Mg(Ac)2) by gentle inversion, incubated on ice for 15 min, and centrifuged for 15 

min at 5,000 rpm at 4°C. Nuclei were resuspended in 60 µL of 1x TD Buffer (Illumina 

Cat #FC-121-1030) and counted using a hemocytometer. 50,000 nuclei were brought up 

to 47.5 µL with 1x TD buffer and transposed with 2.5 µL of transposase (Illumina Cat 

#FC-121-1030) for 30 min at 37°C. ATAC-seq libraries were constructed exactly as laid 

out previously (Buenrostro et al., 2013), with a few exceptions. First, only 2.0 µL of 25 

µM customized Nextera PCR Primers were used during PCR amplification. Second, the 

additional number of PCR cycles for each library was kept to 3-4 cycles (step 6 under III. 

PCR Amplification). Third, the final amplified library was purified using AMPure XP 

beads (Beckman A63881) to remove larger fragments (> 800 bp) by using 0.5X beads to 

remove larger fragments, removing the supernatant, adding 1.6X beads to the 

supernatant, and subsequently following the AMPure XP bead (Beckman A63881) 

instructions for DNA isolation. Libraries were analyzed on a Bioanalyzer (Agilent) and 

sequenced on an Illumina HiSeq (100 PE).  
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ATAC-seq mapping  

 

The mate1 and mate2 files of the paired-end sequencing were mapped separately to the 

mm10 genome by bowtie38 using “-v 2 -m 1”. If both mates of a read pair were mapped to 

the opposite strands of the same chromosome and the distance in-between was less than 

2 kb, the read pair was included for further analysis.  

 

Random Sampling for determining significant enrichment 

 

 Bedtoools shuffle with the –incl flag was used to select number- and length- 

matched regions that were then intersected with features of interest. Carrying this out 

1,000 times led to the generation of a random distribution from which a population 

mean and standard deviation was obtained for the generation of a z-score that was then 

converted into a two-tailed p-value.  

 

Footprint and differential footprint analysis 

 

ATAC-seq Fastq files were merged across biological replicates and Epinomics’ 

ATAC-Seq platform (https://open.epigenomics.co/) was used for adapter trimming, 

alignment, filtering (removal of duplicates and mitochondrial reads).  Footprinting was 

performed using the pyDNase (http://pythonhosted.org/pyDNase/) (Piper et al., 2013; 

2015) script wellington_footprints.py with default parameters and the–A flag to indicate 

that the data come from ATAC-seq. Footprints with a p-value cutoff of e-20 were 

subsequently used for analysis. Footprints were extended 10bp upstream and 

downstream, and Homer (Heinz et al., 2010) was used for de novo TF motif discovery 

using findMotifsGenome.pl with the flag –size given. For differential footprint analysis, 

the pyDNase script wellington_bootstrap.py was used to determine WT-specific 

andR106W-specific footprints with default parameters and the –A flag. To create a 

background file for motif enrichment, WT and R106W ATAC-seq peaks that did not 

contain either a WT-specific or R106W-specific footprint were subjected to footprinting 
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using the pyDNase script wellington_footprints.py, and footprints with a p-value cutoff 

of e-20 were subsequently used for analysis. All footprints were extended 10bp upstream 

and downstream prior to de novo TF motif discovery with Homer with the background 

files specified using findMotifsGenome.pl with the flags –h, -size given, and -bg. To 

determine the location of TFs of interest, Homer’s annotatePeaks.pl script was used with 

the flag –size given. For the generation of plots that display the average Tn5 integrations 

around a set of regions, the pyDNase script dnase_average_profile.py was used with the 

–A flag. For the generation of the heatmaps displaying the raw data, the pyDNase script 

dnase_to_javatreeview.py was used along with the –A flag and –o flag, which orders the 

differential footprint from most differential at the top to least differential at the bottom. 

JavaTreeView was used for heatmap visualization. 

 

ChromHMM Modeling 

 

Modeling was followed exactly as laid out in the ChromHMM manual 

(http://compbio.mit.edu/ChromHMM/) (Ernst and Kellis, 2012), with the specification 

of 11 states.   

 

RP30M, RPKM, and FPKM 

 

The number of sequencing reads or read-pairs mapped to the whole gene bodies 

(GRO-seq, ChIP-seq, ATAC-seq, and total RNA-seq) or the exonic regions (mRNA-seq) 

of each gene were counted by in house Perl programs. RP30M, read counts per 30 

million uniquely mapped reads or read-pairs. For RPKM and FPKM, edgeR was used to 

normalize the read counts to obtains the count per million (CPM) values, and then the 

CPM values were further normalized by the length of whole gene (GRO-seq, ChIP-seq, 

ATAC-seq, and total RNA-seq) or the total length of all exons (mRNA-seq) to obtain the 

values of RPKM (reads per kilobase per million mapped reads, single-end sequencing 

data) and FPKM (fragments per kilobase per million mapped read-pairs, paired-end 
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sequencing data). A gene was defined as an expressed gene if its GRO-seq RPKM > 0.5 

and as a non-expressed gene if its GRO-seq RPKM < 0.01.   

 

Metagene analysis (heatmaps and line plots)  

 

The total numbers of uniquely mapped reads or read-pairs for all sequencing data 

were normalized to 30 million. The signal represents the RP30M per base pair or per 

bin. For bin analysis, the gene body, upstream, and downstream regions were divided 

into 1000 equal bins for each gene, respectively, and the number of sequencing reads for 

each bin was calculated and normalized. For the heatmaps, the normalized bin signals 

were used to generate the heatmaps. For the line plots, the median value of the 

normalized bin signals of a given bin of that gene group was used to generate the plots. 

Heatmaps were generated by heatmap.2 function in the gplots R package.  

 

Oligopaint probe design and synthesis 

 

 Probes were designed as previously described (Beliveau et al., 2012), with one 

exception: bowtie2 was used instead of OligoArray. CustomArray was used for 

Oligopaint library synthesis as previously described (Beliveau et al., 2012). Oligopaint 

probe synthesis was carried out as previously described (Beliveau et al., 2015). 

 

Oligopaint FISH 

 

A single cortex per biological sample was homogenized, and the homogenate was 

treated with 1% formaldehyde for 5 minutes and subsequently quenched with glycine. 

Nuclei were then isolated as previously described in Chapter 2 and resuspended in PBS. 

Nuclei in PBS were then placed on Polysine slides (Thermo Scientific™, cat. #6776215) 

for 30 minutes and subsequently fixed onto the slides with 4% PFA for 5 minutes, 
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followed by rinsing with PBS for 10 minutes. Nuclei on slides were stored in PBS at 4oC 

until use. FISH was carried out as previously described (Beliveau et al., 2015; 2012). 

Briefly, slides in PBS were warmed to room temperature (RT). Slides were then 

incubated in 2X SCCT for 5 min at RT, 50% formamide in 2X SCCT for 5 min at RT, 50% 

formamide in 2X SCCT for 2.5 minutes at 92oC, and 50% formamide in 2X SSCT for 20 

minutes at 60oC. Nuclei were then hybridized with 50pmol of Oligopaint probe in a 

hybridization mixture consisting of 2X SSCT, 50% formamide, 10% (w/v) dextran 

sulfate, and 10mg of RNase. A coverslip and rubber cement were used to seal the 

hybridization mixture. Slides were then placed on a 92oC heat block for 2.5 min to enable 

denaturation, followed by overnight hybridization in a humidified chamber at 42oC. 

Slides were then washed in 2X SSCT for 15 minutes at 60oC followed by two 10 min 2X 

SCCT RT washes. Nuclei were then hybridized with 10pmol of secondary oligos 

conjugated to fluorophores in hybridization mixture, sealed with a coverslip and rubber 

cement, and hybridized for 2 hours at RT. Slides were then washed in 2X SSCT for 15 

minutes at 60oC followed by two 10 min 2X SCCT RT washes. Slides were then stained 

with streptavidin conjugated to a fluorophore (1:1000) for 2 hr at RT in 2X SCCT. Slides 

were then stained for 5 minutes with DAPI (1:5000) and washed for 10 min in 2X SCCT 

at RT twice. Slides were then mounted and imaged. 

 

Oligopaint analysis 

 

 Images were analyzed using TANGO (Tools for Analysis of Nuclear Genome 

Organization) (Ollion et al., 2013). Downstream data analysis was performed only on 

excitatory neurons, which was determined by measuring the intensity of streptavidin 

staining.  
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Figures 
 

Figure 1 

 

Figure 1. Global Hypomethylation is significantly association with DEGs in 

R106W mice. (A) Browser representation of MeCP2 binding and the four major forms 

of methylation in cortical excitatory neurons across a region of Chr9. For the DNA 

methylation tracks, the height of each track represents % methylation (0-100%). (B) 
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Top: Heat-scatterplot representation of 5mC differentially methylated cytosines in WT 

and R106W mice. Bottom: Heat-scatterplot representation of 5hmC differentially 

methylated cytosines in WT and R106W mice. Each dot represents a single differentially 

methylated cytosine. (C) Comparison of the percentage of all cytosines in the CG (left) or 

CH (right) context that are 5mC (top) or 5hmC (bottom) in WT versus R106W excitatory 

cortical neurons (*****p < 2.2e-16, Fisher’s exact test). (D) Heatmap representation of 

differentially methylated cytosines in R106W mice. Each line represents a single 

differentially methylated cytosine. (E) Heatmaps of differentially methylated regions 

(DMRs) in R106W. (F) Number of DEGs vs Random Genes (random sampling (1,000 

times) of genes that are number and length matched to DEGs) that overlap with each of 

the 4 types of DMRs. The mean, maximum, and minimum numbers of overlapping genes 

are displayed for the Random Genes (###p <0.005, two-tailed test). (G) MeCP2 read 

count from our MeCP2 ChIP-seq in excitatory neurons in the gene bodies, plus 100kb 

upstream and downstream, of upregulated DEGs, downregulated DEGs, and all actively 

expressed genes in cortical excitatory neurons. The gene body, upstream, and 

downstream regions were divided into 1000 equal bins for each gene and the number of 

sequencing reads for each bin was calculated and normalized. RP30M: read counts per 

30 million. (H) 5mCG or (I) 5mCH gene body methylation levels across upregulated 

DEGs, downregulated DEGs, and all actively expressed genes in WT cortical excitatory 

neurons. The gene body region was segmented in 1000 equally sized bins for each gene 

and the average cytosine methylation level for each bin was calculated and normalized.  
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Figure 2 

 

Figure 2. Differentially expressed genes in R106W are associated with 

particular chromatin states. (A) Hidden Markov Modeling of 10 chromatin datasets 

let to the demarcation of 11 re-occurring combinatorial patterns that were used to define 

chromatin states. (B) Number of DEGs vs Random Genes (random sampling (1,000 

times) of genes that are number and length matched to DEGs) that overlap with each of 

the 11 states. The mean, maximum, and minimum numbers of overlapping genes are 

displayed for the Random Genes (***p<0.00005 & ****p<0.00001, two-tailed test). (C) 

The percentage of upregulated DEGs and downregulated DEGs associated with 

chromatin states that significantly differed in enrichment between the two DEG states 

(#p<0.05 & *p<0.0005, Fisher’s exact test). (E) Number of DEGs vs Random Genes 

(random sampling (1,000 times) of genes that are number and length matched to DEGs) 
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that overlap with the CTCF site either intragenically plus 100kB upstream and 

downstream or intragenically plus 500kb upstream and downstream (#p<0.05 & 

###p<0.005, two-tailed test).  
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Figure 3 

 

Figure 3. Alterations in CTCF Binding in R106W Mice (A) Average Tn5 insertion 

profiles at R106W gained footprint sites plus 100bp upstream and downstream in 

R106W vs WT (red: positive strand cuts; blue: negative strand cuts). (B) Heatmap of the 

Tn5 insertions at R106W CTCF gained footprint sites in R106W and WT ordered from 

most differential at the top to least differential at the bottom. Yellow indicates a greater 

number of positive strand cuts compared to negative strand cuts per nucleotide position 

and blue indicates a greater number of negative strand cuts. (C) Average Tn5 insertion 

profiles at R106W CTCF gained footprint sites plus 100bp upstream and downstream in 
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R106W vs WT (red: positive strand cuts; blue: negative strand cuts).  (D) Mean 

difference in CTCF ChIP-seq read count in R106W and WT at R106W CTCF gained 

footprint sites plus 2kb upstream and downstream. RP30M: read counts per 30 million. 

(E) MeCP2 mean read count at R106W CTCF gained footprint sites plus 2kb upstream 

and downstream. RP30M: read counts per 30 million. (F) Genomic distribution of 

R106W CTCF gained footprint sites. (G) Number of unique overlaps or total overlaps of 

DEGs or (H) downregulated DEGs vs Random Genes (random sampling (1,000 times) 

of genes that are number and length matched to DEGs) with R106W CTCF gained 

footprint sites (gene bodies plus 500kb upstream and downstream). The mean, 

maximum, and minimum numbers of overlapping genes are displayed for the Random 

Genes (#p<0.05, ##p<0.01, & ###p <0.005, two-tailed test). 
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Figure 4 

Figure 4. Heterochromatic and euchromatic condensation in R106W mice. 

(A) Fluorescence images of DAPI, biotin (labeling biotinylated MeCP2 in excitatory 

neurons), and Chr9 in WT and R106W nuclei. Cumulative frequency distribution and 
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boxplot of  (B) nuclear volume, (C) total Chr9 volume (per nucleus sum), (D) and the 

percentage of the nucleus occupied by Chr9 ((Chr9 volume divided by nuclear volume) x 

100) (n=3 WT animals and n=3 R106W animals with 126 nuclei per animal). (E) 

Fluorescence images of DAPI, biotin, major satellites, and minor satellites in WT and 

R106W nuclei. Cumulative frequency distribution and boxplot of (F) total major satellite 

volume (per nucleus sum), (G) average major satellite volume (average volume of a 

single major satellite foci), (H) percentage of the nucleus occupied by major satellites 

((total major satellite volume divided by nuclear volume) x 100), (I) major satellite 

number per nucleus, (J) average distance between major satellites, (K) fraction of major 

satellite volume that overlaps with minor satellites (n=3 WT animals and n=3 R106W 

animals with 118 nuclei per animal). Boxplots extend from the 25th to 75th percentiles 

with a line at the median and whiskers range from the 10th to 90th percentiles. 

###p<0.005, *p<0.0005, **p<0.0001. Significance marks in the frequency distribution 

area indicate significance via the Kolmogorov-Smirnov test and significance marks in the 

boxplots indicate significance via the Mann-Whitney test.  
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Figure 5 

Figure 5. Gene body decondensation in R106W mice. (A) Fluorescence images 

of DAPI, biotin (labeling biotinylated MeCP2 in excitatory neurons), DEG (Bmper), and 

Control  (Ncam1) in WT and R106W nuclei. Cumulative frequency distribution and 

boxplot of  (B) percentage of the nucleus occupied by Control (Ncam1) ((total Control 

volume divided by nuclear volume) x 100), (C) percentage of the nucleus occupied by 

DEG (Bmper) ((total DEG volume divided by nuclear volume) x 100), (D) distance of 

DEG (Bmper) or Control (Ncam1) from nearest major satellite in WT, and (E) DEG 

(Bmper) distance to nearest major satellite (n=3 WT animals and n=3 R106W animals 

with 125 nuclei per animal; #p<0.05; ##p<0.01; ###p<0.005; **p<0.0001; significance 

marks in the frequency distribution area indicate significance via the Kolmogorov-

Smirnov test and significance marks in the boxplots indicate significance via the Mann-

Whitney test). Cumulative frequency distribution and boxplot of  (F) percentage of the 

nucleus occupied by Control (Gpc6) ((total Control volume divided by nuclear volume) x 

100), (G) percentage of the nucleus occupied by DEG (Sgcd) ((total DEG volume divided 

by nuclear volume) x 100), (H) distance of DEG (Sgcd) or Control (Gpc6) from nearest 
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major satellite in WT, and (I) DEG (Sgcd) distance to nearest major satellite (n=3 WT 

animals and n=3 R106W animals with 100 nuclei per animal; ##p<0.01; *p<0.0005; 

**p<0.0001; significance marks in the frequency distribution area indicate significance 

via the Kolmogorov-Smirnov test and significance marks in the boxplots indicate 

significance via the Mann-Whitney test). Boxplots extend from the 25th to 75th percentiles 

with a line at the median and whiskers range from the 10th to 90th percentiles. 
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Figure 6 

 

Figure 6. Further confirmation of gene body decondensation in R106W. (A) 

Fluorescence images of DAPI, biotin (labeling biotinylated MeCP2 in excitatory 

neurons), DEGs, and Controls in WT and R106W nuclei. Cumulative frequency 
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distribution and boxplot of  (B) percentage of the nucleus occupied by Controls ((total 

volume of Controls divided by nuclear volume) x 100), (C) percentage of the nucleus 

occupied by DEGs ((total volume of DEGs divided by nuclear volume) x 100) (n=2 WT 

animals and n=3 R106W animals with 125 nuclei per animal; ###p<0.005; *p<0.0005; 

**p<0.0001; significance marks in the frequency distribution area indicate significance 

via the Kolmogorov-Smirnov test and significance marks in the boxplots indicate 

significance via the Mann-Whitney test). (D) Comparison of the nuclear location of 

Controls vs DEGs in WT across all 5 Shells (**p<0.0001; Mann-Whitney test). (E) 

Fluorescence images of DAPI and biotin (labeling biotinylated MeCP2 in excitatory 

neurons), along with the 5’ end, Middle, and 3’ end of a DEG (Kcnip4) or Control 

(Tenm2) WT and R106W nuclei. Cumulative frequency distribution and boxplot of (F) 

the normalized distance between the 5’ to Mid gene regions (distance divided by nuclear 

radius) of a DEG (Kcnip4) or Control (Tenm2), (G) the normalized distance between the 

5’ to 3’ gene regions (distance divided by nuclear radius) of a DEG (Kcnip4) or Control 

(Tenm2), and (H) the normalized distance between the Mid’ to 3’ gene regions (distance 

divided by nuclear radius) of a DEG (Kcnip4) or Control (Tenm2) (n=3 WT animals and 

n=3 R106W animals with 100 nuclei per animal; ##p<0.01; *p<0.0005; **p<0.0001; 

significance marks in the frequency distribution area indicate significance via the 

Kolmogorov-Smirnov test and significance marks in the boxplots indicate significance 

via the Mann-Whitney test). Boxplots extend from the 25th to 75th percentiles with a line 

at the median and whiskers range from 10th to 90th percentiles. 
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Supplemental Figure 1 

 

Figure S1. (A) RT-PCR of DNA pulled down by streptavidin in cortical tissue of mice 

with no biotinylated (R26cBirA/+;NEXCre/+), with loss of the biotinylated MeCP2-Tavi tag 

(Mecp2WT-Tavi/y;R26cBirA/+;NEXCre/+; lysates are treated with Tev protease prior to 

streptavidin mediated pulldown, which leads to the cleavage of the biotinylated Tavi tag 
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on MeCP2, or Biotinylated MeCP2-Tavi (Mecp2WT-Tavi/y;R26cBirA/+;NEXCre/+) using 

primers for major satellite DNA and previously established high-affinity sites and lowly 

enriched at known low-affinity sites (Chen et al., 2015). (B) WGBS and TAB-seq 

sequencing information. (C) Density map comparing the methylation status of 

individual cytosines between previously published data and our own data (MeCP2WT) 

from glutamatergic cortical neurons. r, Pearson correlation. (D) Percentage of all 

cytosines that are methylated in each of the 4 major contexts of DNA methylation in WT. 

Percentages within the bars represent the percentage of 5mC or 5hmC in the CG context. 

(E) Summary of the number of methylated cytosines and differentially methylated 

cytosines in various contexts. (F) Context of methylation changes in R106W (*****p < 

2.2e-16, Fisher’s exact test). (G) Summary of the number of basepairs in FMRs, LMRs, 

UMRs, and PMDs. (H) The percentage of upregulated DEGs and downregulated DEGs 

that overlap with each of the 4 types of DMRs. (I) Input read count in the gene bodies, 

plus 100kb upstream and downstream, of upregulated DEGs, downregulated DEGs, and 

all actively expressed genes in cortical excitatory neurons. The gene body, upstream, and 

downstream regions were divided into 1000 equal bins for each gene and the number of 

sequencing reads for each bin was calculated and normalized. RP30M, read counts per 

30 million. 
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Supplemental Figure 2 

 

Figure S2. (A) Density map comparing accessible genomic regions (via ATAC-seq) 

between previously published data and our own data in glutamatergic neurons. r, 

Pearson correlation; RPM, reads per million. (B) Density map comparing accessible 

genomic regions between the two ATAC-seq biological replicates in excitatory neurons. r, 

Pearson correlation; RPM, reads per million. (C) Number of DEGs vs Random Genes 

(random sampling (1,000 times) of genes that are number and length matched to DEGs) 

that overlap with the lamin associated domains (LADs) (****p<0.00001, two-tailed test). 
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(D) Number of 5mC-hypo-DMRs vs Random Regions (random sampling (1,000 times) 

of regions throughout the genome that are number and length matched to 5mC-hypo-

DMRs) (****p<0.00001, two-tailed test). (E) Number of DEGs vs Random Genes 

(random sampling (1,000 times) of genes that are number and length matched to DEGs) 

that overlap with the each of the 19 TF footprint sites intragenically plus 100kB upstream 

and downstream (****p<0.00001 & #p<0.05, two-tailed test). (F) The percentage of 

upregulated DEGs and downregulated DEGs associated with the TF footprint sites that 

significantly differed in enrichment between the two DEG states (#p<0.05). 
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Supplemental Figure 3 

 

Figure S3. (A) ATAC-seq sequencing information. (B) Density map comparing 

accessible genomic regions between the two ATAC-seq biological replicates in excitatory 

neurons. r, Pearson correlation; RPM, reads per million. (C) Genomic distribution of 

ATAC-seq peaks in WT and R106W. (D) Average Tn5 insertion profiles at R106W lost 

footprint sites plus 100bp upstream and downstream in WT vs R106W (red: positive 
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strand cuts; blue: negative strand cuts). (E-F) Summary tables of the TF motifs enriched 

at R106W lost gained and lost footprint sites. (G) Number of unique overlaps or total 

overlaps of upregulated DEGs vs Random Genes (random sampling (1,000 times) of 

genes that are number and length matched to DEGs) with R106W CTCF gained footprint 

sites (gene bodies plus 500kb upstream and downstream). The mean, maximum, and 

minimum numbers of overlapping genes are displayed for the Random Genes.  
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Supplemental Figure 4 

 

Figure S4. (A) Cumulative frequency distribution and boxplot of Chr9 elongation (n=3 

WT animals and n=3 R106W animals with 126 nuclei per animal; **p<0.0001; 

significance marks in the frequency distribution area indicate significance via the 

Kolmogorov-Smirnov test and significance marks in the boxplots indicate significance 

via the Mann-Whitney test).  (B) Schematic demonstrating shell designations for 

nuclear location analysis. (C) Comparison of Chr9 nuclear location in WT vs R106W 

across all 5 shells (n=3 WT animals and n=3 R106W animals with 126 nuclei per animal; 

##p<0.01; **p<0.0001, Mann-Whitney test). Cumulative frequency distribution and 

boxplot of (D) total minor satellite volume (per nucleus sum), (E) average minor 

satellite volume (average volume of a single major satellite foci), (F) percentage of the 
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nucleus occupied by minor satellites ((total major satellite volume divided by nuclear 

volume) x 100), (G) minor satellite number per nucleus, and (H) average distance 

between minor satellites (n=3 WT animals and n=3 R106W animals with 118 nuclei per 

animal; ###p<0.005; *p<0.0005; **p<0.0001; significance marks in the frequency 

distribution area indicate significance via the Kolmogorov-Smirnov test and significance 

marks in the boxplots indicate significance via the Mann-Whitney test). Comparison of 

(I) major satellite or (J) minor satellite location in WT and R106W across all 5 shells 

(n=3 WT animals and n=3 R106W animals with 118 nuclei per animal; ##p<0.01; 

###p<0.005; *p<0.0005; **p<0.0001, Mann-Whitney test). Boxplots extend from the 25th 

to 75th percentiles with a line at the median and whiskers range from the 10th to 90th 

percentiles. 
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Supplemental Figure 5 

 

Figure S5. Cumulative frequency distribution and boxplot of  (A) Control (Ncam1) 

volume, (B) DEG (Bmper) volume, (C) distance of DEG (Bmper) or Control (Ncam1) to 

nearest major satellite in WT, (D) raw distance of DEG (Bmper) or Control (Ncam1) to 
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nearest major satellite in R106W, (E) normalized distance of DEG (Bmper) or Control 

(Ncam1) to nearest major satellite in R106W, (F) Control (Ncam1) raw distance to 

nearest major satellite, (G) DEG (Bmper) raw distance to nearest major satellite, (H) 

Control (Ncam1) normalized distance to nearest major satellite (n=3 WT animals and 

n=3 R106W animals with 125 nuclei per animal; ##p<0.01; ###p<0.005; **p<0.0001). 

Cumulative frequency distribution and boxplot of  (I) Control (Gpc6) volume, (J) DEG 

(Sgcd) volume, (K) distance of DEG (Sgcd) or Control (Gpc6) to nearest major satellite 

in WT, (L) raw distance of DEG (Sgcd) or Control (Gpc6) to nearest major satellite in 

R106W, (M) normalized distance of DEG (Sgcd) or Control (Ncam1) to nearest major 

satellite in R106W, (N) DEG (Sgcd) raw distance to nearest major satellite, (O) Control 

(Gpc6) raw distance to nearest major satellite, (H) Control (Gpc6) normalized distance 

to nearest major satellite (n=3 WT animals and n=3 R106W animals with 100 nuclei per 

animal; ###p<0.005; ####p<0.001; *p<0.0005 **p<0.0001; significance marks in the 

frequency distribution area indicate significance via the Kolmogorov-Smirnov test and 

significance marks in the boxplots indicate significance via the Mann-Whitney test). 

Boxplots extend from the 25th to 75th percentiles with a line at the median and whiskers 

range from 10th to 90th percentiles. 
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Supplemental Figure 6 

 

Figure S6. (A) Table summarizing the features of DEGs and Controls used. Cumulative 

frequency distribution and boxplot of (B) Controls volume and (C) DEGs volume (n=2 
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WT animals and n=3 R106W animals with 125 nuclei per animal; **p<0.0001; 

significance marks in the frequency distribution area indicate significance via the 

Kolmogorov-Smirnov test and significance marks in the boxplots indicate significance 

via the Mann-Whitney test). Comparison of the nuclear location of (D) DEGs in WT vs 

R106W across all 5 shells, (E) Controls in WT vs R106W across all 5 shells, (F) Controls 

vs DEGs in WT across all 5 shells (###p<0.005; *p<0.0005; **p<0.0001; Mann-Whitney 

test). (G) Distances between different locations of the genes. 5’ to 3’ summed is the sum 

of the 5’ to Mid distance and the Mid to 3’ distance (n= 3 WT animals with 100 nuclei per 

animal for both genes). (H) Sum of the normalized distances between all pairwise 

combinations of locations (5’ to Mid, Mid to 3’, and 5’ to 3’) (n=3 WT animals and n=3 

R106W animals with 100 nuclei per animal; #p<0.05; ##p<0.01; ###p<0.0005; 

significance marks in the frequency distribution area indicate significance via the 

Kolmogorov-Smirnov test and significance marks in the boxplots indicate significance 

via the Mann-Whitney test). (I) Comparison of distances the WT setting. Boxplots 

extend from the 25th to 75th percentiles with a line at the median and whiskers range 

from 10th to 90th percentiles.  
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CHAPTER 4 
 

Summary / Discussion 
 

Since the discovery of MeCP2, twenty-five years of research on this protein has 

led to vast insight into the complex, multifaceted function of this protein, generating 

numerous hypothesized molecular models, such as, a transcriptional repressor, a 

transcriptional activator, a chromatin organizer, a regulator of alternative splicing, and a 

miRNA processor (Lyst and Bird, 2015). Given that MeCP2 is a methyl-CpG-binding 

protein and that DNA methylation patterns are cell type-specific (Mo et al., 2015), we 

hypothesized that MeCP2 influences gene expression in a cell type-specific manner, and 

that cellular heterogeneity must first be resolved in order to clearly delineate 

transcriptional and epigenomic alterations for the understanding of how MeCP2 affects 

transcription.  

With the employment of our cell type-specific approach, we found that 

differentially expressed genes (DEGs) in Mecp2 mutant mice are neuronal type-

dependent, given that the vast majority of misregulated genes in excitatory or inhibitory 

neurons are exclusive to each cell type. In agreement with various studies (Ben-Shachar 

et al., 2009; Chahrour et al., 2008; Tudor et al., 2002), gene expression differences in 

R106W mice were found to be very subtle, with 70% of DEGs exhibiting less than a 50% 

alteration in expression levels. Additionally, the numbers of DEGs that are upregulated 

and downregulated are very similar, supporting neither an activator nor repressor model 

for MeCP2. Furthermore, we find that DEGs are long and lowly expressed. Focusing on 

one cell type, excitatory cortical neurons, we find that DEGs appear to be regulated by 

MeCP2, rather than the DEGs being a byproduct of indirect effects, since cell type-

specific ChIP-seq of MeCP2 demonstrates that DEGS are intragenically enriched with 

MeCP2 when compared to genes that are not misregulated in RTT. Our finding that both 

upregulated and downregulated DEGs are enriched with 5mC-hypomethylated 

differentially methylated regions (DMRs) suggests that the loss of MeCP2 binding at 

DEGs in Mecp2 mutant mice leads to the demethylation of unbound cytosines within 

DEG gene bodies, and thus, contributes to the dysregulation of these genes. Given these 

findings, we next sought to investigate whether DEGs are enriched with 5mC (in both the 

CG or CH context) in order to gain an understanding of the epigenomic features that lead 
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to the recruit of MeCP2.  We found that gene bodies of upregulated, but not 

downregulated, DEGs contain higher levels of 5mCG and 5mCH than genes that are not 

misregulated in RTT. Notably, our findings on upregulated DEGs are in agreement with 

recently published work that have found that MeCP2 enrichment at upregulated genes 

correlates with high levels of 5mCH (Chen et al., 2015; Gabel et al., 2015). This implies 

that the binding of MeCP2 at upregulated DEGs in the WT setting leads to gene 

repression (given the upregulation in the mutant context), suggesting that MeCP2 is a 

repressor. However, the regulatory role of MeCP2 at downregulated DEGs is currently 

unclear, with our study finding that downregulated DEGs are associated with MeCP2 

enrichment, but not with high levels of 5mCH; one previously published study finding 

that downregulated DEGs are associated with both MeCP2 binding and high levels of 

5mCH (Chen et al., 2015); and another study finding that downregulated DEGs are 

neither associated with MeCP2 binding nor high levels of 5mCH (Gabel et al., 2015). One 

plausible explanation for this discrepancy is that different brain regions/cell types were 

assessed in each of these studies, with our study evaluating excitatory neurons of the 

cortex, one study using whole cortical/cerebellar homogenate (Gabel et al., 2015), and 

the other study using the hypothalamus (Chen et al., 2015). These findings also raise the 

possibility that MeCP2 function is chromatin-feature dependent: the binding of MeCP2 

at regions with high levels of methylation could lead to gene repression, whereas the 

binding of MeCP2 at regions with low levels of methylation (and possibly in conjunction 

with other chromatin features, like histone modifications or chromatin accessibility) 

could lead to gene activation.  

Since average intragenic levels of 5mCG and 5mCH cannot fully explain MeCP2 

recruitment to DEGs, we next sought to determine common chromatin features of DEGs 

in the WT context to gain insight into why these genes are enriched for MeCP2 binding 

in WT and preferentially susceptible to dysregulation in RTT. The observation that DEGs 

are lowly expressed is supported by our finding that DEGs are intragenically enriched for 

the heterochromatic state (H3K9me3) based on ChIP-seq data and that DEGs are in 

closer proximity to major satellites (a major component of heterochromatin) than 

control genes via Oligopaint FISH. These findings are in line with the fact that MeCP2 is 

highly concentrated at pericentromeric heterochromatin (Lewis et al., 1992), suggesting 

that MeCP2 could play a role in the regulation of lowly expressed genes.  
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Two other chromatin features were found to be significantly associated with the 

gene bodies of DEGs in the WT context: CTCF and active enhancer chromatin states. As 

a general feature, previous studies have found significant coenrichment of CTCF with 

enhancers (Chepelev et al., 2012; Sanyal et al., 2012). CTCF enrichment at DEGs was 

also corroborated via transcription factor footprinting analysis in open chromatin 

regions. Given that CTCF is an architectural protein important for bridging together 

regulatory sequences, it is possible that DEGs, especially given their length, require a 

particular interconnected topology that aids in enhancer recruitment for the 

maintenance of gene expression. And furthermore, it is possible that MeCP2 plays a role 

in facilitating this specialized topology for the maintenance of appropriate gene 

expression levels. Additionally, we found that certain chromatin features are 

differentially enriched in upregulated versus downregulated DEGs, which aids in 

understanding the directionality of gene dysregulation in RTT. A significantly higher 

percentage of upregulated DEGs than downregulated DEGs are associated with the 

active promoter state, suggesting that upregulated DEGs are in an environment that 

facilitates gene expression. Contrastingly, a significantly higher percentage of 

downregulated DEGs than upregulated DEGs are associated with the polycomb state, 

suggesting that downregulated DEGs are in an environment associated with gene 

repression. Taken together, these findings suggest that chromatin environment plays a 

role in determining whether a gene will be upregulated or downregulated upon loss of 

MeCP2 binding. Additionally, a significantly higher percentage of downregulated DEGs 

are associated with active enhancers, which is in opposition to a model predicting that 

chromatin state dictates gene expression changes observed upon loss of MeCP2 function, 

however, an explanation for this apparent discrepancy will be offered below.  

 Given the finding that CTCF and active enhancer chromatin states are enriched at 

DEGs, we next surveyed open chromatin regions via ATAC-seq and found that the gross 

location and number of regulatory regions remain similar in R106W mice. However, a 

more stringent analysis that evaluated the transcription factor (TF) footprint patterns 

and location within open regulatory regions led to the discovery of thousands of 

footprints (both lost and gained) in R106W mice. This suggests that the recruitment 

and/or binding affinity of TFs is subtly affected within open regulatory regions, which is 

in alignment with the subtlety of gene expression changes found in RTT (here, and (Ben-
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Shachar et al., 2009; Chahrour et al., 2008; Tudor et al., 2002)). CTCF was found to be 

the most significantly enriched TF motif within gained footprint sites (with gained 

meaning more enriched in R106W than WT), and we subsequently confirmed that these 

sites are enriched with CTCF binding in R106W compared to WT via CTCF ChIP-seq. We 

found that these sites are enriched for MeCP2 binding in WT mice and that these sites 

are significantly associated with a loss of methylation in R106W. Taken together, these 

data suggest that the binding of MeCP2 in the WT context can prevent the recruitment of 

CTCF, either by acting as a physical hindrance to CTCF binding and/or by preserving the 

methylation status at these loci that would prevent methylation-sensitive CTCF from 

binding (Maurano et al., 2015). CTCF gained sites are widespread across chromosomes, 

occurring both intergenically and intragenically. We additionally found that CTCF sites 

that are gained in R106W are significantly enriched in/around downregulated DEGs, but 

not upregulated DEGs. This finding suggests that downregulated DEGs are potentially 

more susceptible to changes in CTCF binding, and consequently, changes in chromatin 

organization. And in light of our previous unexplained finding that in comparison to 

upregulated DEGs, downregulated DEGs are enriched with active enhancers, these 

findings implicate the gain of CTCF binding sites in/around downregulated DEGs as 

potentially leading to alterations in the topology required for the preservation of active 

enhancer interactions that are necessary for the maintenance of gene expression, and 

thus, as a possible factor leading to transcriptional downregulation.  

 Given the widespread gain of CTCF binding in R106W, we next investigated 

whether these changes in CTCF correlate with changes in chromatin architecture by 

employing Oligopaint FISH. On the global scale, we observed that both euchromatin and 

heterochromatin (major satellites) are reduced in volume in RTT, which is suggestive of 

chromatin condensation and that heterochromatin (major satellites) are slightly more 

affected than euchromatin, which is in align with the enrichment of MeCP2 at 

pericentromeric heterochromatin in WT. In addition to a reduction in major satellite 

volume, major satellites are located slightly more centrally and reduced in number, 

which may be partially explained by the observed reduction in the average distance 

between major satellites, suggesting that major satellites are clustering together in RTT. 

This finding might also aid in understanding the molecular and cellular phenotypes 

observed in RTT, given that pericentromeric heterochromatin undergo significant 



	
131	

changes over neuronal development (Martou and De Boni, 2000; Solovei et al., 2004). 

In neurons, heterochromatin number decreases from postnatal day 0 to 3 and then 

increases to adult levels by postnatal day 15, and heterochromatin nuclear location is 

predominately established by postnatal day 5-6 (Martou and De Boni, 2000; Solovei et 

al., 2004). The timing of these heterochromatin alterations coincide with the period of 

synaptogenesis in mice (2-4 weeks of age) (De Felipe, 1997), suggesting that this 

reorganization is important for neuronal function and that the organizational alterations 

observed in R106W mice could be a contributing factor in the neuroplasticity defects 

observed in RTT (Chao et al., 2007; Dani and Nelson, 2009; Dani et al., 2005; Goffin et 

al., 2012). In support of this, we find that DEGs are enriched with genes associated with 

synaptic morphology and function (post-synaptic membrane proteins, including Na2+, 

K+, Ca2+ and Cl- channels, synaptic scaffolding proteins, and inotropic glutamate 

receptors).  

 Given these large-scale changes in nuclear architecture, we next investigated 

whether DEGs are also susceptible to changes in chromatin organization. Therefore, we 

employed Oligopaint FISH to label the entire intragenic regions of DEGs vs Control 

genes (genes without expression changes in R106W mice). Two differences were 

observed between DEGs and Controls: (1) DEGs are in closer proximity to major 

satellites in the WT setting and (2) DEGs are located more centrally than controls in both 

the WT and R106W setting, with the second finding possibly being linked to the first 

finding since major satellites are predominately centrally located. Our finding that DEGs 

are intragenically associated with the heterochromatin state based on ChIP data 

corroborates this Oligopaint observation. However, the difference between DEG and 

Control proximity to major satellites is lost in the Mecp2 mutant setting, suggesting that 

heterochromatin proximity alone cannot account for gene misregulation in RTT. 

Therefore, perhaps it’s a combination of all/some of the unique chromatin and gene 

features of DEGs that render them differentially susceptible. Or perhaps proximity to 

major satellites is only an effective repression mechanism for DEGs, but not Controls, 

due to the genomic context in which DEGs are found (Jost et al., 2015). Interestingly, it 

was found that upregulated DEGs slightly, but significantly, shift away from major 

satellites in the R106W, while downregulated DEGs remain in similar proximity. This 

shift away from the repressive, heterochromatic state may partly explain the 
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upregulation of some DEGs. Given that downregulated DEGs are significantly associated 

with CTCF gained sites, it is possible that this gain of binding creates a particular, 

perhaps inflexible, conformational state that prevents DEGs from shifting away from 

major satellites.  

Differing from what was found for major satellites and euchromatin, we found 

that DEGs (both upregulated and downregulated) and Control genes alike increase in 

volume, which is suggestive of decondensation. To explore this more stringently, we 

labeled the 5’ end, Middle (Mid), and 3’ end of a DEG or control gene and measured the 

distances across all combinations. At this level of scrutiny, we found that although both 

the DEG and Control expand from 5’ to 3’, the DEG preferentially expands from Mid to 3’ 

as well. This suggests that, although both DEGs and controls are decondensing, DEGs 

are either decondensing to a greater extent and that particular regions of the genes are 

expanding to a greater extent. It is possible that the condensation or the conformational 

state of the Mid to 3’ region of DEGs is particularly important for gene regulation, with 

circumstantial evidence coming from our observation that the Mid to 3’ distance of the 

DEG is the only distance that is significantly shorter than the Control in the WT setting. 

These findings complement recently published work in the RTT field that topoisomerase 

(an enzyme that decondenses chromatin) inhibition leads to the rectification of the 

expression of RTT-associated upregulated DEGs in cell culture (Gabel et al., 2015), 

suggesting that upregulated DEGs are decondensed. The decondensation of DEGs is also 

in agreement with our methylation data of 5mC-hypomethylation being enriched at 

DEGs. 

Taken together, this work implicates MeCP2 as a global, context-dependent 

modulator of gene transcription, rather than a gene-specific activator or repressor, and is 

supportive of MeCP2’s role as an architectural protein. Additionally, this work provides 

insight into the chromatin features of DEGs that may account for their differential 

susceptible to dysregulation in RTT and posits MeCP2 as a key player in global 

maintenance of the methylome and chromatin architecture for the preservation of 

neuronal gene expression. In support of this model, although we focused our analyses on 

CTCF, we observed thousands of additional alterations in TF footprinting, which are 

associated with various TFs, suggesting that the sum of all these subtle changes in TF 

binding could be contributing to the subtle transcriptional alterations observed. And 
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therefore, yet another model of MeCP2 function is emerging—a synergistic model that 

treats many of the proposed molecular models as an integrative piece of MeCP2’s 

function rather than treating them as mutually exclusive entities. It is possible that 

MeCP2 is predominately an architectural protein important for regulating chromatin 

structures that aid in the activation or repression of genes necessary for long-lasting 

plasticity in response to neuronal activity. And therefore, in this model, the 

transcriptional activator or repressor effects that have been attributed to MeCP2 would 

be secondary to its architectural role. 
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APPENDIX PART 1 
 

Distinct cellular and molecular environments support aging-related DNA 
methylation changes in the substantia nigra 

 

One Sentence Summary 
 

This story, which found that distinct cellular and molecular environments account for 

aging-associated methylation changes in the SN, is published in Epigenomics.   

 

Abstract 
 

We aimed to investigate the relationship between brain region-specific changes in global 

DNA methylation over aging and cellular and molecular environments. We measured 

two major forms of DNA methylation and analyzed Dnmt, Tet, and metabolite levels in 

the striatum and substantia nigra (SN) over aging in healthy male mice. The ratio of 5-

hydroxymethylcytosine to 5-methylcytosine increases over aging in the SN, and 5-

hydroxymethylcytosine increases preferentially in dopaminergic neurons. Additionally, 

this age-dependent alteration in methylation correlates with a reduction in the ratio of α-

ketoglutarate to succinate in the SN. Distinct cellular and molecular environments 

account for aging-associated methylation changes in the SN, implicating this epigenetic 

mechanism in the susceptibility of this brain region to age-related cell loss.  

 

Introduction 
 

Neurons live longer than nearly all other cell types in the body. In the absence of a 

degenerative disease, the lifespan of most neurons is only limited by the longevity of the 

organism. However, some brain regions and neuronal types are more vulnerable to age-

related cell death and degenerative diseases. One susceptible neuronal population is 

dopaminergic neurons of the substantia nigra, with a 5-8% loss per decade of life in 
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humans during normal aging (FEARNLEY and LEES, 1991; Jagust, 2013). This neuronal 

population is also susceptible to the age-related neurodegeneration in Parkinson’s 

disease (Goedert et al., 2013). The molecular mechanisms underlying the enhanced 

vulnerability of dopaminergic neurons of the SN to age-related cell loss and degenerative 

disease remains unclear.  

Currently, the leading molecular predictor of chronological age is the pattern of 

DNA methylation of the C5 position of cytosine at CpG dinucleotide sites, which 

outperforms all other biomarkers, such as cell cycle inhibitor p16INK4A expression and 

telomere length attrition rate (Benayoun et al., 2015; Sanders and Newman, 2013; 

Tsygankov et al., 2009). Quantitative models based solely on methylation patterns are 

able to predict an individual’s age with an average error of only 5.2 years (Benayoun et 

al., 2015; Bocklandt et al., 2011; Day et al., 2013; Hannum et al., 2013; Maegawa et al., 

2010). DNA methylation is an epigenetic mechanism catalyzed by DNA 

methyltransferases (DNMTs) that allows for the adaptability of gene expression in 

response to developmental or environmental factors; it plays an essential role in various 

biological functions such as regulation of gene transcription and establishment and 

maintenance of cellular identity (Jaenisch and Bird, 2003). Historically, DNA 

methylation was thought to be a stable, repressive covalent modification in mammalian 

cells, existing predominantly as 5-methylcytosine (5mC). However, in 2009, two seminal 

papers confirmed the existence of another cytosine modification, 5-

hydroxymethylcytosine (5hmC), which is formed from the oxidation of 5mC by the ten-

eleven translocation (TET) family of proteins and is generally thought to correlate with 

gene activation (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009). It has since been 

discovered that 5hmC can be converted to unmodified cytosine (He et al., 2011; Ito et al., 

2011). Thus, environmental influences can lead to changes in DNA methylation levels 

and patterns.  

Age-associated alterations in DNA methylation vary in absolute number and 

genomic loci depending on organ type (Day et al., 2013; Maegawa et al., 2010), 

suggesting that different tissues have different rates of changes in DNA methylation over 

aging.  However, it is unclear whether brain regions vary in the degree of DNA 

methylation changes over aging, given the limited studies examining age-related changes 

in only a few brain regions. Early chromatography studies found that global 5mC levels 

in the whole brain of mice decrease with aging (Sanders and Newman, 2013; Tsygankov 
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et al., 2009; Wilson et al., 1987).  Recent studies employing bisulfite treatment of DNA, 

which allows for genome-wide profiling of DNA methylation (both 5mC and 5hmC, 

indistinguishably), from the cortex of human and mouse over aging have generated 

different results, with Day and colleagues (Day et al., 2013) finding an increase in DNA 

methylation in human cortex using Illumina bead chips that evaluate 26,486 CpG sites 

and Lister et al. (Lister et al., 2013) observing stable DNA methylation levels in both the 

mouse or human by employing whole-genome sequencing to assess all C sites in the 

frontal cortex. Studies focusing on age-related changes in 5mC in the hippocampus of 

mice using immunohistochemistry or enzyme-linked immunosorbent assays (ELISAs) 

have also produced conflicting results, with one reporting an increase (Chouliaras et al., 

2012b) and another finding no change (Chen et al., 2012), respectively. There are also 

contradictory results regarding 5hmC in the hippocampus over aging, with one study 

finding no change using a chemical labeling, affinity enrichment approach followed by 

sequencing (hMe-Seal) (Szulwach et al., 2011), while two other studies reported an 

increase in 5hmC via ELISA (Chen et al., 2012) and immunohistochemistry (Chouliaras 

et al., 2012a).  

There are various factors contributing to the lack of congruity among studies. 

First, different methods have vastly different levels of sensitivity. Second, methods 

employing bisulfite treatment cannot distinguish between 5mC and 5hmC (Nestor et al., 

2010), which is a necessary distinction to make given the biological difference between 

the two, and therefore, cannot be compared to methods that evaluate 5mC or 5hmC 

independently. Lastly, the underlying cellular heterogeneity might account for the 

discrepancies observed across brain regions. Given these incongruous findings, 

additional research is necessary to determine the extent to which DNA methylation and 

hydroxymethylation change with aging in the brain, and whether these changes are brain 

region-specific. It is especially important to assess age-associated changes in DNA 

methylation in the SN, an area hitherto unexplored, given this region’s enhanced 

vulnerability to aging.  

Since DNA methylation integrates environmental and developmental signals for 

the modulation of transcriptional output, we set out to determine the degree to which 

global levels of 5mC and 5hmC differ across two brain regions. We compare the DNA 

methylation status of the SN to the dorsal striatum, the region to which dopaminergic 

neurons of the SN project (Goedert et al., 2013), to gain insight into the susceptibility of 
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the SN to age-related cell death. To address whether changes observed in the SN are 

specific to dopaminergic neurons, we performed semiquantitative 

immunohistochemistry of 5hmC in tyrosine hydroxylase (TH)-positive, dopaminergic 

and parvalbumin (PV)-positive neurons of the SN. Finally, we focused on the regulation 

of 5mC and 5hmC to gain insight into the underlying mechanism contributing to the 

differences in DNA methylation status over aging between the striatum and SN. First, we 

measured the expression levels of enzymes responsible for regulating 5mC and 5hmC, 

and secondly, we assessed metabolites that regulate TET function. Our findings suggest 

that distinct cellular and molecular environments account for the different DNA 

methylation states observed between the striatum and SN over aging, and therefore, 

implicate this epigenetic mechanism in the enhanced, age-related vulnerability of this 

neuronal population.  

Results 
 

Age-related changes in DNA methylation are brain region-specific  

 

We employed reversed-phase HPLC coupled with tandem mass spectrometry 

(LC-MS/MS and LC-MS/MS/MS), along with the inclusion of stable isotope-labeled 

standards, and carried out accurate measurement of 5mC and 5hmC across aging (P90, 

young, and P545, old) from the striatum and SN of male mice. We found that there is no 

statistically significant, age-dependent effect on total methylated cytosine (5mC plus 

5hmC), total 5mC, or total 5hmC (Figure 1A-C). However, the ratio of 5hmC to 5mC 

(5hmC/5mC) shows an age-dependent change, with an effect of age (F1,36=8.358, 

p=0.0065) and an interaction effect (F1,36=4.197, p=0.0478), as well as a significant 

increase over aging in the SN (~2% increase, p=0.0077), but not the striatum (Figure 

1D). 5mC percentage of total methylated cytosine also shows an age-related change, with 

an effect of age (F1,36=8.283, p=0.0067) and an interaction effect (F1,36=4.166, 

p=0.0486), along with a significant decrease over aging exclusively in the SN (~2% 

decrease, p=0.008) (Figure 1E). Additionally, 5hmC percentage of total methylated 

cytosine changes over aging, with an effect of age (F1,36=8.283, p=0.0067) and an 

interaction effect (F1,36=4.166, p=0.0486), together with an aging-related increase only in 

the SN (~2% increase, p=0.008) (Figure 1F). 
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Cell type-specific changes in 5hmC across aging in the substantia nigra 

  

Given the brain region-specific changes in DNA methylation observed in the SN 

over aging, we subsequently examined the extent to which changes in DNA methylation 

are specific to nigral dopaminergic neurons, the cell population that is susceptible to 

degeneration with advanced aging. Parvalbumin (PV)-positive neurons of the SN were 

used as the comparison group since they are located adjacent to the dopaminergic 

neurons, allowing for the control of microenvironmental effects (González-Hernández 

and Rodríguez, 2000). Using 5hmC immunostaining, we evaluated the levels of this 

epigenetic mark in dopaminergic neurons via co-staining for tyrosine hydroxylase (TH, 

an enzyme required for dopamine synthesis) or in PV-positive neurons via costaining for 

PV in the SN of young and old mice (Figure 2A-B). Semiquantitative analyses revealed an 

increase in 5hmC immunoreactivity in nigral TH-positive, dopaminergic neurons over 

aging (p=0.0003), but not in nigral PV-positive neurons (Figure 2C).  

 

Dnmt and Tet expression over aging in the striatum and substantia nigra 

 

Since DNA methylation status is mediated by two families of enzymes, DNMTs 

and TETs, we measured mRNA levels of the family members that are highly expressed in 

the brain: Dnmt1 and Dnmt3a, which methylate cytosine to 5mC, and Tet2 and Tet3, 

which oxidize 5mC to 5hmC. Dnmt1 (p=0.0432) and Dnmt3a (p = 0.0185) expression 

significantly increased in the striatum, but not in the SN, over aging (Figure 3A-B). Tet2 

and Tet3 expression levels, on the other hand, did not change in either brain region over 

aging (Figure 3C-D).  

 

Metabolites in the striatum and substantia nigra across aging  

 

We next investigated the potential contribution of metabolites to the observed 

differences in global DNA methylation status between the striatum and SN over aging. 

The metabolite α-ketoglutarate (α-KG) is an obligatory cofactor for TET function 

(Tahiliani et al., 2009). TETs use molecular oxygen to catalyze oxidative decarboxylation 

of α-KG, creating a highly reactive intermediate that converts 5mC to 5hmC, as well as 
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generating carbon dioxide and succinate as byproducts (Kohli and Zhang, 2013). 

Recently, it was discovered that the intracellular ratio of α-KG to succinate (α-

KG/succinate) regulates TET activity, which in turn alters DNA methylation levels 

(Carey et al., 2015). Therefore, we evaluated the ratio of α-KG/succinate over aging in 

both brain regions by using a highly quantitative method that employs gas 

chromatography mass spectrometry (GC-MS) and isotope-labeled standards. In addition 

to α-KG and succinate, we measured lactate, citrate, and fumarate to ensure that any 

differences observed in the α-KG/succinate ratio were not due to changes in metabolite 

flux through the mitochondrial tricarboxylic acid cycle. We found that the levels of all 

metabolites measured did not statistically differ across aging in either brain region 

(Figure 4A-E & G-K). However, we found that although the α-KG/succinate ratio 

remained unchanged across aging in the striatum (Figure 4F), it significantly decreased 

in the SN (Figure 4L).  

 

Discussion 
 

Although few in number, previous studies suggest that changes in global 5mC 

and 5hmC occur in the brain over the aging process (Chen et al., 2012; Chouliaras et al., 

2012a; Day et al., 2013; Lister et al., 2013; Szulwach et al., 2011; Wilson et al., 1987); 

however, the findings have been inconsistent, likely due to the inherent differences in 

methods detecting 5mC and 5hmC and the brain regions assessed. Given the different 

biological functions of 5mC and 5hmC, and the discrepancies regarding age-associated 

changes of these two major forms of DNA epigenetic modifications in the brain, we used 

a highly sensitive LC-MS/MS and LC-MS/MS/MS method to measure 5mC and 5hmC 

levels from the striatum and SN at two different ages (P90, young and P545, old). We 

specifically chose the SN given its enhanced vulnerability to aging, and the striatum was 

selected as the brain region for comparison since this is the area to which dopaminergic 

neurons of the SN project (Goedert et al., 2013).  

We found selective changes in these two epigenetic marks over aging in the SN, 

but not striatum. Specifically, we observed an increase in the ratio of 5hmC/5mC, which 

correlated with a 2% decrease in the 5mC percentage of total methylated cytosine and a 
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2% increase in the 5hmC percentage of total methylated cytosine. This suggests that 

although the absolute levels of 5mC and 5hmC do not significantly change, the 

percentage of sites that are converted from 5mC to 5hmC increases in the SN over aging. 

Although a 2% change in DNA methylation seems marginal, this could account for a 

change at ~1 million cytosines, given that there are ~50 million cytosines that are 

methylated in the mouse genome (Lister et al., 2013), and therefore, the changes 

observed are substantial and potentially biologically relevant. When we examined two 

neuronal types in the SN, we found a significant increase in 5hmC in the TH-positive, 

dopaminergic population, but not in neighboring PV-positive neurons. Despite the 

limitation of a small sample size (n=4 per group), these findings suggest that changes in 

global levels of 5hmC during aging are both brain region- and cell type-specific. Since 

95% of the striatum is composed of GABAergic medium spiny neurons (Tepper and 

Bolam, 2004) and since PV-positive neurons of the SN are GABAergic, our findings 

suggest that GABAergic neurons maintain their DNA methylation status across aging, 

independent of the brain region. This study elucidates a novel age-associated molecular 

change in the vulnerable dopaminergic population and indicates that changes in 5hmC 

are contingent upon the intracellular molecular environment, rather than extracellular 

environment (i.e. brain region). 

Therefore, we subsequently examined the molecular environment that could 

underlie the difference in DNA methylation status between the striatum and SN over 

aging and made two discoveries. First, we found an age-associated increase in both 

Dnmts that are highly expressed in the brain, Dnmt1 and Dnmt3a, in the striatum, but 

not the SN. It’s plausible that the increase in Dnmts over aging in the striatum 

contributes to the stability of the ratio of 5hmC/5mC, unlike the SN. Our second finding 

was the decrease in the α-KG/succinate ratio in the SN, but not striatum, albeit with a 

small sample size (n=4 for the young group and n=6 for the old group). This suggests 

that brain region-specific metabolic changes over aging could contribute to region-

specific changes in DNA methylation. Since we are measuring steady-state levels of the 

metabolites, this finding supports a model in which TETs are more active in the SN of 

old animals given the relative depletion of the α-KG pool, which is used by TETs to 

oxidize 5mC to 5hmC, and an increase in succinate, which is a byproduct of TET activity. 

Importantly, this result is consistent with our finding of an increase in the 5hmC/5mC 
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ratio over aging in the SN, but not striatum.  

Additional research is necessary to define a potentially causative role of the 

enzymatic expression and/or metabolic ratio alterations with the age-related differences 

in DNA methylation status between the striatum and SN. There are other regulators of 

TETs that were not assessed in this work that could also contribute to the brain region-

specific DNA methylation differences across aging, such as iron levels, ascorbic acid 

levels, and calpain activity (Blaschke et al., 2013; Tahiliani et al., 2009; Wang and Zhang, 

2014; Yin et al., 2013). Additionally, determining the genomic locations of these 

methylation changes, and consequential alterations in gene expression (Mellén et al., 

2012a), will aid in elucidating how normal aging predisposes nigral dopaminergic 

neurons to cell death.   

 

Conclusions 

 

This work suggests that an increase in TET activity, as indicated by the alteration 

in the α-KG/succinate ratio, underlies the selective, age-dependent increase in the ratio 

of 5hmC/5mC in the SN. This work also supports that a brain region less susceptible to 

aging, like the striatum, is able to employ protective mechanisms, such as increasing 

Dnmt expression, to stabilize DNA methylation profiles over aging. Taken together, our 

findings suggest that distinct cellular and molecular environments support the different 

DNA methylation states observed between the striatum and SN over aging, and 

specifically within dopaminergic neurons, implicating this epigenetic mechanism in the 

enhanced vulnerability of this neuronal population in aging. 

 

Summary Points 

 

• There are age-associated changes in DNA methylation in the substantia nigra, but 

not striatum. 

o Aging did not significantly affect any of the DNA methylation parameters 

assessed in the striatum.  
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o In the substantia nigra, on the other hand, the ratio of 5hmC/5mC 

significantly increases over aging, suggesting that although the absolute 

levels of 5mC and 5hmC do not significantly change, the percentage of 

sites that are converted from 5mC to 5hmC increases. 

• There is a selective increase in 5hmC over aging in tyrosine hydroxylase-positive 

dopaminergic neurons, but not parvalbumin-positive neurons, of the substantia 

nigra. 

o Our results indicate that changes in 5hmC over aging are cell type-

dependent and contingent upon the intracellular molecular environment, 

rather than the extracellular environment (i.e. brain region). 

• There is an age-dependent increase in Dnmt expression in the striatum, but not 

substantia nigra. 

o In the substantia nigra over aging, Tet2, Tet3, Dnmt1, and Dnmt3a mRNA 

levels remain unchanged.  

o In the striatum, although Tet2 and Tet3 mRNA levels are stable across 

aging, Dnmt1 and Dnmt3a levels increase, suggesting that an increase in 

Dnmts contributes to the stability of the ratio of 5hmC/5mC over aging, 

unlike the substantia nigra. 

• We found a substantia nigra-selective reduction in the α-KG to succinate ratio 

over aging. 

o Although the α-KG/succinate ratio remains unchanged across aging in the 

striatum, it significantly decreases in the substantia nigra.  

o Since we are measuring steady-state levels of the metabolites, this finding 

supports a model in which TETs are more active in the substantia nigra of 

old animals given the relative depletion of the α-KG pool, which is used by 

TETs to oxidize 5mC to 5hmC, and an increase in succinate, which is a 

byproduct of TET activity. 

• Conclusion 

o Our findings suggest that distinct cellular and molecular environments 

account for the different DNA methylation states observed between the 

striatum and substantia nigra over aging, and therefore, implicate this 

epigenetic mechanism in the enhanced vulnerability of this neuronal 

population over aging. 
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Materials and Methods 
 

Animal tissue  

 

All experiments were performed according to protocols approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania. All mice 

were on the C57BL/6 genetic background. Tissues from healthy young male animals 

were collected at postnatal day 90 (P90), and tissues from healthy old male animals were 

collected at P545. Bilateral dorsal striatum and substantia nigra samples were collected 

as previously described (Salvatore et al., 2012; Spijker, 2011). Briefly, a mouse brain 

matrix (ASI-instruments) was used to coronally section the brain. Bilateral dorsal 

striatum collection started rostrally when the anterior portion of the anterior 

commissure crosses the midline (Bregma 0.20mm) and ended caudally with the loss of 

the connection between the dorsal 3rd ventricle and the lateral ventricles (Bregma -

0.58mm). Bilateral SN collection started rostrally when the hippocampus completely 

wraps around the midbrain (Bregma -2.92mm) and ended caudally with the 

disappearance of distinct blades of the dentate gyrus (Bregma -3.64mm).  

Reverse-phase HPLC coupled with tandem mass spectrometry  

LC-MS/MS and MS/MS/MS measurements of 5mC and 5hmC were performed 

blind to age and brain region. DNA was isolated using an AllPrep DNA/RNA Micro Kit 

(Qiagen) and treated with RNase (Roche). DNA (1 µg) was then treated with nuclease P1 

(0.5 U) and phosphodiesterase 2 (0.00025 U) at 37°C for 48 hr in a digestion buffer (30 

mM sodium acetate, 1.0 mM zinc acetate, 1 mM EHNA, pH 5.6), followed by the addition 

of alkaline phosphatase (0.05 U) and phosphodiesterase 1 (0.0005 U) in another buffer 

(50 mM Tris-HCl, pH 8.9) for 2 hr. For MS quantification of 5-hydroxymethyl-2ʹ-

deoxycytidine (5hmC) and 5-methyl-2ʹ-deoxycytidine (5mC), 50 fmol of [1,3-15N2-2ʹ-D]-

5hmC and 600 fmol of [1ʹ,2ʹ,3ʹ,4ʹ,5ʹ-D5]-5mC were added to the digestion mixture of 50 

ng genomic DNA. Enzymes were removed by chloroform extraction. The resulting 

aqueous layer was subjected to LC-MS/MS and MS/MS/MS analyses on an LTQ linear 

ion-trap mass spectrometer (Thermo Fisher Scientific, San Jose, CA) that was equipped 

with an electrospray ionization interface and coupled to an Agilent 1200 capillary HPLC 
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(Agilent Technologies, Santa Clara, CA). Separation was carried out on a 0.5 × 250 mm 

Zorbax SB-C18 column (5 µm in particle size, Agilent Technologies, Santa Clara, CA) 

with a flow rate of 8.0 µL/min. A solution of 2 mM sodium bicarbonate (pH 7.0, solution 

A) and methanol (solution B) were used as mobile phases and a gradient of 5 min 0-20% 

B and 25 min 20-70% B was employed for the separation. MS settings were as follows: 

electrospray voltage, 5 kV; capillary temperature, 275°C; capillary voltages, 38 V; tube 

lens voltages, 60 V; sheath gas flow rate, 15 arbitrary units. Selected-ion chromatograms 

were plotted for monitoring the transitions of m/z 258à142à124 for 5hmC, m/z 

261à144à126 for [1,3-15N2, 2ʹ-D]-5hmC, m/z 242à126 for 5mC, and m/z 247à126 for 

[1ʹ,2ʹ,3ʹ,4ʹ,5ʹ-D5]-5mC. The calibration curve for 5hmC and 5mC was constructed 

previously (Liu et al., 2015; 2013). The numbers of moles of 2ʹ-deoxyguanosine (dG), 

5mdC, and 5hmC in each sample were calculated from the peak area ratios, the 

calibration curves, and the amounts of stable isotope-labeled standards added.  5mC and 

5hmC were then calculated as the percentage of dG (% dG) by dividing the moles of 5mC 

or 5hmC, respectively, by the moles of dG. Total methylated cytosine was calculated by 

adding 5mC (% dG) and 5hmC (% dG) per sample, the ratio of 5hmC to 5mC was 

calculated by dividing 5hmC (% dG) by 5mC (% dG), 5mC percentage of total methylated 

cytosine was calculated by dividing 5mC (% dG) by total methylated cytosine, and 5hmC 

percentage of total methylated cytosine was calculated by dividing 5hmC (% dG) by total 

methylated cytosine. The sample size is 10 animals per group (n=10 bilateral young 

striatum samples, n=10 bilateral old striatum samples, n=10 bilateral young SN samples, 

and n=10 bilateral old SN samples). To reduce biological variation, the striatum and SN 

samples were taken from the same animal. Additionally, RNA was taken from these same 

tissue samples for the quantitative RT-PCR, and therefore, a total of 10 old and 10 young 

animals (20 animals total) were used for the reverse-phase HPLC coupled with tandem 

mass spectrometry and quantitative RT-PCR experiments.  

Semiquantitative Immunohistochemistry   

Mice were anesthetized with 1.25% Avertin, transcardially perfused with 4% 

paraformaldehyde in PBS, and postfixed with 4% paraformaldehyde in PBS overnight at 

4°C. Immunohistochemistry was carried out on 20 µm free-floating sections as 

previously described (Liao et al., 2008).Tissue sections from the SN (see animal tissue 

section above for the Bregma coordinates of the SN) were incubated with a 5hmC 
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antibody (1:1000, Active Motif (39791)) in blocking solution overnight at 4°C. The next 

day, the tissues were removed from the 5hmC antibody solution and incubated with 

either a tyrosine hydroxylase (TH) antibody (1:1000, Abcam (ab76442)) or a 

parvalbumin (PV) antibody (1:1000, Millipore (mab1572)) for 1 hr at 22-24°C. 

Fluorescence detection of 5hmC was performed using Alexa Fluor 488 (1:1000, 

Invitrogen) and of TH or PV using Alexa Fluor 594 for 1 hr at 22-24°C. Images were 

captured and subsequently analyzed blind to age (the marked differences in neuronal 

morphology prevent blinding of neuronal cell types). Images were captured using a Leica 

confocal microscope with identical settings for laser power, detector gain amplifier 

offset, and pinhole diameter for each channel for TH-positive neurons across both ages, 

and the same for PV-positive neurons. TH-positive and PV-positive neurons were 

analyzed from the same biological samples, with 4 animals in the young group and 4 

animals in the old group. 38 bilateral TH-positive neurons and 15 bilateral PV-positive 

neurons were analyzed per animal, giving a total of 152 TH-positive and 60 PV-positive 

neurons that were analyzed at each age. 5hmC fluorescence was measured using ImageJ 

as previously described (Burgess et al., 2010). Briefly, the free form tool was used to 

calculate the area and integrated density of 5hmC for each TH-positive or PV-positive 

neuron with a nucleus in focus. The freeform tool was then used to measure the mean 

fluorescence of three background regions in close proximity to the 5hmC measured 

(three regions were selected to improve accuracy). Each of the three background 

readings was multiplied by the area of the 5hmC tracing to give an integrated density of 

each of the three background readings dependent upon the size of the 5hmC tracing. 

These calculated integrated densities were then averaged and subtracted from the 

integrated density of the 5hmC tracing to get the corrected 5hmC fluorescence.  

Quantitative RT-PCR 

Total RNA was isolated using an AllPrep DNA/RNA Micro Kit (Qiagen) and 

treated with DNase (Qiagen). Total RNA (400 ng) was reverse transcribed by oligo-dT 

priming using SuperScriptIII reverse transcriptase (Invitrogen). Quantitative real-time 

PCR was performed on the resulting cDNA using Taqman Probes with primer pairs that 

are exon-spanning. All mRNA levels of genes of interest were normalized to Hprt mRNA 

levels. The sample size was 10 animals per group (see LC-MS/MS and MS/MS/MS 

methods section above for more details).  
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Mass spectrometry for the measurement of metabolites 

Concentrations of metabolites were determined blind to age and brain region by 

the Metabolomics Core at The Children’s Hospital of Philadelphia, using a previously 

described isotope dilution approach (Nissim et al., 1996; Weinberg et al., 2000).  Briefly, 

an aliquot of the sample was spiked with a mixture of 13C-labeled organic acids. GC-MS 

measurement of 13C isotopic abundance in each sample was then performed. 

Concentrations of metabolites in the sample were calculated as previously described 

(Nissim et al., 1996). 4 animals are in the young striatum group, 4 animals are in the 

young SN group, 6 animals are in the old striatum group, and 6 animals are in the old SN 

group. The striatum and SN samples were taken from the same animal, and therefore, 10 

animals in total were used for this analysis.  

Statistics 

Statistics were performed using Prism 6.0 (GraphPad Software) and RStudio. 

The D’Agostino & Pearson omnibus normality test was used to test normality (p > 0.05), 

and the F-test was used to test for equal variances (p > 0.05). The individual statistical 

tests performed for each experiment can be found in the figure legends
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Figures 
 

Figure 1 

 

Figure 1: Age-associated changes in global DNA methylation levels over 

aging in the substantia nigra, but not striatum. Measurement of global total 

methylated cytosine (5mC plus 5hmC; Kruskal-Wallis rank sum test) (A), 5mC (Kruskal-

Wallis rank sum test) (B), 5hmC (Kruskal-Wallis rank sum test) (C), the ratio of 5hmC to 

5mC (two-way ANOVA with pairwise comparisons with Bonferroni correction, **p<0.01) 

(D), 5mC percentage of total methylated cytosine (two-way ANOVA with pairwise 

comparisons with Bonferroni correction, **p<0.01) (E), and 5hmC percentage of total 

methylated cytosine (two-way ANOVA with pairwise comparisons with Bonferroni 

correction, **p<0.01) (F) by LC-MS/MS and LC-MS/MS/MS across aging in the two 

brain regions. Solid bars indicated the young cohort and dotted bars indicate the old 

cohort (mean ± SEM; n = 10 per group; dG, 2ʹ-deoxyguanosine; 5mC, 5-methylcytosine; 

5hmC, 5-hydroxymethylcytosine)
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Figure 2 

 

Figure 2: Selective increase in 5hmC over aging in tyrosine hydroxylase-

positive dopaminergic neurons, but not parvalbumin-positive neurons, of 

the substantia nigra. Immunohistochemistry in substantia nigral sections of young 

and old mice showing 5hmC (green) in tyrosine hydroxylase (TH)-positive, 

dopaminergic neurons (red) (A) and 5hmC in parvalbumin (PV)-positive neurons (red) 

(B). Cells that were analyzed are marked with an arrow. (C) Quantification of 5hmC 

fluorescence intensity in young and old PV-positive and TH-positive, dopaminergic 

neurons. Solid bars indicated the young cohort and dotted bars indicate the old cohort 

(mean ± SEM; n=152 neurons from 4 animals (38 neurons per animal) for TH-positive, 
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dopaminergic neurons per age group; n=60 neurons from 4 animals (15 neurons per 

animal) for PV-positive neurons per age group; ***p = 0.0003; Dunn’s multiple 

comparisons test; TH, tyrosine hydroxylase; PV, parvalbumin; 5hmC, 5-

hydroxymethylcytosine).
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Figure 3 

 

Figure 3: An age-dependent increase of Dnmt expression is specific to the 

striatum. Relative changes in mRNA levels of Dnmt1 (striatum, two-tailed t-test with 

Welch’s correction; SN, two-tailed t-test) (A), Dnmt3a (striatum, Mann-Whitney test; 

SN, two-tailed t-test with Welch’s correction) (B), Tet2 (two-tailed t-test) (C), and Tet3 

(striatum, two-tailed t-test; SN, two-tailed t-test with Welch’s correction) (D) as 

measured by quantitative RT-PCR with the young group serving as the reference for each 

brain region. Solid bars indicated the young cohort and dotted bars indicate the old 

cohort (mean ± SEM; n = 10 per group; *p < 0.05).
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Figure 4 

 

Figure 4: Decrease in the α-KG to succinate ratio in the substantia nigra, but 

not striatum, over aging. Quantification of lactate (two-tailed t-test) (A & G), citrate 

(two-tailed t-test) (B & H), fumarate (two-tailed t-test with Welch’s correction) (C & I), 

α-KG (two-tailed t-test) (D & J), succinate (two-tailed t-test)  (E & K), and α-KG to 

succinate ratio (two-tailed t-test) (F & L) as measured by mass spectrometry with 

isotope-labeled standards. Solid bars indicated the young cohort and dotted bars 

indicate the old cohort (mean ± SEM; n = 4 for young group and n = 6 for old group; *p 

< 0.05; α-KG, α-ketoglutarate)
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APPENDIX PART 2 
 

Tet and 5hmC in Neurodevelopment and the Adult Brain 
 

One Sentence Summary 
 

This review, which summarizes the importance of 5hmC and TETs in neuronal function, 

is a book chapter published in “DNA Modifications in the Brain: Neuroepigenetic 

Regulation of Gene Expression.” 

 

Keywords 
 

5-hydroxymethylcytosine, 5hmC, Tet, Tet1, Tet2, Tet3, neurodevelopment, adult, 

methylation, brain 

 

Abstract 
 

  Since the discovery in 2009 that 5-hydroxymethylcytosine (5hmC) is remarkably 

high in the brain, much effort has been put into understanding the role of this epigenetic 

mark in neuronal function. With the advent of various approaches for the detection of 

5hmC, in less than a decade, the field has gained invaluable insight into the role of 5hmC 

in gene regulation, neurodevelopment, neurogenesis, differentiation, and 

electrophysiological and circuit properties. Parallel to these advances has been the 

substantial gain of knowledge for the functional role of the enzymes that convert 5-

methylcytosine (5mC) to 5hmC, the ten-eleven translocation family of enzymes (Tet1, 

Tet2, and Tet3; Tets), in neuronal processes. Various knockout/knockdown and 

overexpression techniques have been employed against Tets, implicating these enzymes 

in maintaining and establishing 5hmC patterns, hippocampal function, differentiation, 

and electrophysiological properties. Here we summarize the current understanding of 

5hmC and Tets in the developing and adult brain.  
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Introduction 
 

DNA methylation at the 5-carbon of cytosine (C) is widely distributed throughout 

the mammalian genome, with 5% of all C and 85% of all cytosine-phosphate-guanine 

dinucleotides (CpGs) being methylated (Lister et al., 2013). Such methylation plays an 

essential role in various biological functions such as the regulation of gene transcription, 

establishment and maintenance of cellular identity, imprinting, silencing of transposons 

and repetitive elements, and X-chromosome inactivation (Jaenisch and Bird, 2003). 

Historically, DNA methylation of C was thought to be a stable covalent modification, 

existing exclusively as 5-methylcytosine (5mC). However, this view was challenged in 

2009 when two seminal papers published in parallel described another C modification, 

5-hydroxymethylcytosine (5hmC), which is formed from the oxidation of 5mC 

(Kriaucionis and Heintz, 2009; Tahiliani et al., 2009). Tahiliani et al. also described 

enzymes that were able to convert 5mC to 5hmC, the ten-eleven translocation family of 

enzymes, or Tet enzymes. These enzymes were found to be paralogues of the base J 

binding proteins (JBP) from the parasite Trypanosoma brucei.  However, instead of 

converting the base thymine to 5-hydroxymethyl-uracil, as JBP enzymes do, Tet enzymes 

convert modified cytosines to 5hmC (Tahiliani et al., 2009).  

Since its rediscovery in 2009, 5hmC has added an important dimension in 

understanding the epigenetic regulation of neuronal function (Kriaucionis and Heintz, 

2009; Penn et al., 1972; WYATT and COHEN, 1953). The particular importance of 5hmC 

in the brain is highlighted by the fact that while global 5mC levels are similar across 

different tissue types, levels of 5hmC are highly variable with the highest concentration 

in the central nervous system (CNS) (Globisch et al., 2010; Kriaucionis and Heintz, 

2009; Münzel et al., 2010). Notably, all mature neurons in the central nervous system 

are post-mitotic, meaning that they no longer divide. While it was previously known that 

5mC could be passively removed through cell division, the discovery of Tet enzymes 

meant that 5mC could be actively removed via oxidation of Tets to 5hmC, and this could 

occur in post-mitotic cells. Further, 5hmC can also be removed, completely reverting the 

base back to unmodified C. Removal of 5hmC occurs first via iterative oxidation by the 

Ten-eleven translocation family of proteins (Tet1, Tet2, and Tet3, collectively referred to 

as Tets) which convert 5hmC to 5-formylcytosine (5fC), and subsequently to 5-

carboxylcytosine (5caC) (Ito et al., 2011). Finally, 5caC is converted to C by thymine 
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DNA-glycosylase (TDG)-mediated base excision repair (BER) (He et al., 2011) (Figure 

1).  Therefore, it has been called into question whether 5hmC is a mere transient, 

uninformative byproduct of DNA demethylation or a stable, purposeful epigenetic mark 

with biological functional significance. Throughout this chapter, we will highlight recent 

findings that have greatly advanced our understanding of the role of 5hmC in brain.  

 

Global 5hmC and Tet expression throughout the adult brain 
 

         To gain a better understanding of the biological function of 5hmC, initial studies 

interrogated the levels of 5hmC in various tissues using isotope-based liquid 

chromatography-mass spectrometry (LC-MS). It has been unanimously found that 

although this mark is present throughout the body, 5hmC levels are markedly higher in 

the nervous system than other tissues. 5hmC concentrations in the central nervous 

system are brain region-specific: 5hmC constitutes 0.7% of cytosine (C) bases in the 

cortex and hypothalamus; 0.6% in the brainstem, olfactory bulb, and hippocampus; 

0.5% in the spinal cord; 0.4% in the midbrain; and 0.3% in the cerebellum (Globisch et 

al., 2010; Kriaucionis and Heintz, 2009; Münzel et al., 2010). For comparison, tissues 

with the next closest levels of 5hmC, ranging from 0.15-0.17%, are the kidney, nasal 

epithelium, bladder, heart, muscle, and lung. In the pituitary gland, a non-neuronal 

structure at the base of the brain, 5hmC constitutes only 0.06% of total C, which 

supports that high concentrations of 5hmC are specific to neural tissues, rather than 

topographic location (Globisch et al., 2010). Further support of high levels of 5hmC 

being specific to neurons comes from a comprehensive genome-wide study that found 

5hmC levels are higher in neuronal than in non-neuronal cell types within the frontal 

cortex (Lister et al., 2013).  

         It remains unknown what accounts for the high levels of global 5hmC within the 

brain as compared to other tissues. Since Tets are expressed at similar levels in other 

tissue with much lower 5hmC levels, overall expression levels of this family of proteins 

cannot account for the difference. It also remains to be determined what accounts for the 

differences in 5hmC levels across brain regions. Although the cortex, hippocampus, and 

cerebellum have vastly different 5hmC levels that range from 0.7-0.3% of total C, the 

regions have similar Tet expression levels (Szwagierczak et al., 2010). It’s possible that 

brain region-specific levels of 5hmC are dependent upon the relative levels of Tet-
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dependent cofactors, iron and alpha-ketoglutarate (a-KG) (Tahiliani et al., 2009), or 

other potential regulators, such as ascorbic acid, calpain, succinate, and fumarate. In 

embryonic stem cell (ESC) culture, supplementation of ascorbic acid decreased the levels 

of 5mC and increased levels of 5hmC (Blaschke et al., 2013; Wang and Zhang, 2014; Yin 

et al., 2013). This has unique implications for Tet activity in the brain, since the brain has 

the highest levels of ascorbic acid in the body, mostly due to high expression of the 

ascorbic acid-specific transporter SVCT2 (Lin JACS 135 2013). More research is this area 

is warranted to elucidate what controls the levels of 5hmC.  

         In addition to brain region-specificity, global 5hmC levels are also cell type-

specific and developmentally dependent. The cell type-specificity of 5hmC was noted in 

the paper that rediscovered it in 2009 with the description that 5hmC constitutes 0.6% 

of total CpGs in Purkinje neurons, but only 0.2% of granule cells (Kriaucionis and 

Heintz, 2009). This has been confirmed by an independent group that found that the 

levels and genomic distribution of 5hmC vary across Purkinje cells, granule cells, and 

Bergmann glia of the cerebellum (Mellén et al., 2012b). The establishment of these cell 

type differences in 5hmC levels in the brain occurs between embryonic day 12.5 and 13.5, 

which is the time at which active specification of neurons and glial cells commences, 

supporting that the 5hmC is important for neuronal identity (Wheldon et al., 2014). The 

rapid increase in global 5hmC during neuronal differentiation and synaptogenesis also 

highlights the developmental importance of this epigenetic mark in the brain (Hahn et 

al., 2013; Song et al., 2011; Szulwach et al., 2011). 

In the adult mouse (10-12 wk) brain, neuronal activity can also lead to changes in 

global 5hmC. When neuronal activity is increased via flurothyl induced seizures, there is 

a significant reduction in 5mC and 5hmC in area CA1 of adult mice at 24 hours after the 

occurrence of seizures (Kaas et al., 2013). This differs from the dentate granule cells in 

that synchronous activation of dentate granule cells in the adult mice by 

electroconvulsive stimulation or voluntary running does not lead to a global change in 

methylation, as there are similar number of CpGs that become methylated and 

demethylated under these conditions as assessed by methyl-sensitive cut counting 

(MSCC) method (Guo et al., 2011a).  

These findings on the global 5hmC patterns throughout the brain and other 

tissues suggest that 5hmC might be especially important in neuronal function and 

identity. However, to truly unravel the biology of 5hmC, determining the genomic 
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location of this epigenetic mark and its effect on gene expression is necessary, which will 

be discussed in the following section. 

 

The Genomic Distribution of 5hmC 
 

Recent advances in sequencing have allowed for the mapping of the genomic 

distribution of 5hmC in the brain, providing invaluable insight into the biological 

function of this epigenetic mark. Various affinity- and enzyme-based methods have been 

developed for profiling 5hmC genome wide, with the three most commonly used 

approaches. First is 5-hmC selective chemical labeling (5hmC-Seal) in which 5hmC is 

converted to biotin-N3-5-hydroxymethyl-cytosine (Biotin-N3-5-gmC) for affinity 

enrichment through a two step synthesis (Song et al., 2011). Second is 

hydroxymethylated DNA immunoprecipitation in which 5hmC is enriched via antibodies 

that specifically bind to 5hmC (Jin et al., 2011). The third is Tet-assisted bisulfite 

sequencing (TAB-Seq) in which 5hmC is exclusively protected via glycosylation and Tet-

mediated oxidation before bisulfite treatment (Yu et al., 2012b).  

With the employment of these approaches, general features have emerged. 

Quantitatively, intragenic and global 5hmC levels are equivalent across chromosomes in 

both human and mouse, except for the male ChrX, which has 22% lower enrichment 

(Lister et al., 2013; Mellén et al., 2012b; Szulwach et al., 2011). 5hmC is predominantly 

found in CpGs in both the human and mouse across development (Lister et al., 2013; 

Wen et al., 2014). In the fetal mouse brain, 5% of CpGs and 0% of non-CpGs (CH, where 

H = A, C, or T) are hydroxymethylated, whereas in the adult mouse frontal cortex (6 wk), 

hydroxymethylation occurs at 19% of CpGs and 0.02% of CHs. This epigenetic mark is 

found across transcriptional end sites, intragenic regions, DNaseI-hypersensitive sites 

(DHSs), and enhancers (Lister et al., 2013). It is present at both poised enhancers (solely 

marked by distal H3K4me1) and active enhancers (marked by distal H3K4me1 and 

H3K27ac), with poised enhancers constituting 32.6% of all 5hmC sites and active 

enhancers constituting 28.6%. Major satellite and promoter regions, on the other hand, 

are relatively devoid of 5hmC (Wen et al., 2014). Most 5hmC (71%) is found 

intragenically, with a much higher concentration at exons than introns (Szulwach et al., 

2011). These findings on the genomic distribution of 5hmC implicate that it may play a 

role in gene regulation.  
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Given the relatively high enrichment of 5hmC across exons, and the proposed 

hypothesis that methylation modulates alternative splicing (Maunakea et al., 2013), 

studies have evaluated the role of this epigenetic mark in splicing. 5hmC appears to play 

an important role in alternative exon usage in the mammalian brain, as there is a distinct 

pattern of methylation at exon-intron boundaries. Firstly, there is a sharp decrease in 

5hmC at the 5’ end of the intron at the exon-intron boundary. Secondly, across exons 

from 5’ to 3’, there is a substantial increase in 5mC levels and a less pronounced decrease 

in 5hmC (Khare et al., 2012b; Wen et al., 2014). Thirdly, 5hmC levels, but not 5mC 

levels, within 20 basepairs of the exon-intron boundary correlate with constitutively 

used exons relative to alternatively spliced exons. The importance of these features in 

alternative exon usage rather than general transcription is highlighted by the fact that 

first exons have much lower 5mC and 5hmC than internal exons and that exons of 

intron-less or single-exon genes have lower 5hmC than multiple-exon genes (Khare et 

al., 2012b). This feature seems to be specific to brain tissue since neither 5mC nor 5hmC 

correlate with exon usage in the liver. Thirdly, flanking the highly conserved “GT” splice 

site sequence at the 5’ splicing sites (5’ ss) of internal exons, at the -1 and -2 positions on 

the exon side and +4 and +5 positions of the intron side of the exon-intron boundary, are 

two prominent 5hmC peaks. 5mC, on the other hand, does not exhibit this type of 

pattern in the brain (Khare et al., 2012b; Wen et al., 2014). This patterning of 5hmC at 

the 5’ ss seems to brain-specific as 5mC, rather than 5hmC, marks exon-intron 

boundaries in the liver (Khare et al., 2012b). Further examination of alternatively spliced 

(AS) exons by RNA-seq, it was found that low or no methylation flanking the 5’ ss is 

associated with significantly more exon skipping than methylated or hydroxymethylated 

boundaries. This suggests that demethylation is associated with alternative splicing 

events, which is consistent with the idea that DNA 5hmC aids in exon recognition and 

inclusion (Khare et al., 2012b; Maunakea et al., 2013; Wen et al., 2014). 

In addition to the correlation of 5hmC in exon usage, there is also a stronger 

correlation between intragenic 5hmC levels and gene expression in both main cell types 

of the brain, neurons and glia (Lister et al., 2013; Mellén et al., 2012b; Song et al., 2011). 

5mC levels across the gene body, on the other hand, negatively correlate with gene 

expression (Lister et al., 2013; Mellén et al., 2012b; Wen et al., 2014). The best correlate 

with gene expression is the intragenic ratio of 5hmC to 5mC (5hmC/5mC). This 

correlation extends to the tissue-specific and cell subtype-specific level, with a relatively 
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high 5hmC/5mC ratio correlating with brain region-specific and cell type-specific 

differentially expressed transcripts (Lister et al., 2013; Mellén et al., 2012b). When the 

5hmC genomic distribution and expression profiles of three different cell types of the 

cerebellum (Purkinje cells, granule cells, and Bergmann glia) were compared, it was 

found that cell type-specific transcripts have higher intragenic 5hmC/5mC levels than 

the other cell types (Mellén et al., 2012b). This cell-type specific patterning also hold true 

across neuronal differentiation as cell type-specific genes that are developmentally 

regulated gain intragenic 5hmC and lose intragenic 5mC across differentiation (Colquitt 

et al., 2013).  

There is also a significant difference between 5hmC and 5mC for strand bias of 

expressed genes in both glia and neurons. When comparing the lowest to the highest 

expressed genes, there is a seven-fold bias in 5hmC enrichment on the sense strand and 

a five-fold bias in 5mC enrichment on the antisense strand. These findings suggest that 

5hmC enrichment on the sense strand is correlated with activation. In agreement with 

this is the finding that 5hmC is inversely related to two repressive histone modifications, 

H3K27me3 and H3K9me3. On the other hand, these two histone modifications correlate 

with 5mC (Wen et al., 2014). Genes enriched for 5hmC in the mammalian brain relative 

to other tissues are synapse-related (Khare et al., 2012b). These findings highlight the 

importance of 5hmC in the activation of genes specific to the brain, neuronal subtypes, 

and neuronal function. 

While 5hmC levels correlate highly with gene expression, it is unknown how this 

is accomplished. In other words, what are the mechanisms that allow 5hmC to influence 

or be influenced by gene expression? It is hypothesized that there are specific proteins 

that are able to bind 5hmC and influence gene expression through binding to additional 

protein complexes or initiating a signaling cascade(s). The first paper to inquire into 

what proteins can bind 5hmC used quantitative mass spectrometry (MS)-based 

proteomics. They used fragments of DNA that contained 5hmC to isolate interacting 

proteins from mouse ESCs and analyzed the resulting proteins using LC-MS/MS. They 

identified a large number of potential 5hmC interacting proteins, most notably Mpg and 

Neil3, DNA glycosylases that, like TDG, may participate in the active DNA demethylation 

pathway to convert 5hmC to unmodified C via BER. Interestingly, they found proteins 

that had previously been uncharacterized, such as Wdr76. By purifying Wdr76 they 

identified Wdr76-interacting proteins, including a DNA helicase that is thought to 
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regulate DNA methylation levels (Hells, or Lsh) and a protein that binds H3K4me3 

(OCR, or Spindlin-1). Looking at adult mouse brain cells, they confirmed the interaction 

of 5hmC with Wdr76 and Thy28. A brain-specific 5hmC interaction was found with 

Thap11 or Ronin, which is highly expressed in Purkinje cells. Additionally, they found 

that the proteins thymocyte nuclear protein 1 (Thy28), ubiquitin-like with PHD and Ring 

finger domains (Uhrf1), and methyl-CpG- binding protein 2 (MeCP2) bind to both 5mC 

and 5hmC, although MeCP2 binds to 5mC with much higher affinity. The authors 

conclude that 5hmC is an active intermediate in DNA demethylation and may be 

involved in global epigenetic regulation (Spruijt et al., 2013).  

However, the binding of MeCP2 to 5hmC is a contentious finding. Previous in 

vitro studies found that conversion of 5mC to 5hmC abolished binding of MeCP2 to 

oligonucleotide sequences (Valinluck et al., 2004). Another study compared the affinity 

of Uhrf1 and MeCP2 to modified DNA in vitro, and found that Uhrf1 had a similar 

affinity for 5mC and 5hmC, while MeCP2 had a greater affinity for 5mC, as Spruijt et al. 

showed (Frauer et al., 2011; Spruijt et al., 2013). Similarly, yet another independent 

group found that although MeCP2 is able to bind 5hmC, the affinity is 20 fold less than 

that of 5mC (Khrapunov et al., 2014). On the other hand, Mellén et al. reported that 

MeCP2 binds 5mC and 5hmC with similar affinity and that a Rett-associated mutation in 

MeCP2 causes the disruption of its binding preferentially to 5hmC in vitro (Mellén et al., 

2012a). Additionally, Baubec et al. found that MeCP2 localization correlates with 5hmC 

in embryonic stem cells (Baubec et al., 2013). Further confounding results come from 

two studies addressing the affects of MeCP2 on levels of 5hmC in vivo (Mellén et al., 

2012a; Szulwach et al., 2011). Szulwach et al. showed that decreased levels of MeCP2 

correlated with higher levels of 5hmC, and overexpression of MeCP2 revealed a decrease 

in 5hmC in the cerebellum (Szulwach et al., 2011). On the other hand, Mellén et al. 

reported that loss of MeCP2 results in a small, but significant, decrease in 5hmC levels 

(Mellén et al., 2012a). Together, these findings suggest that further research is warranted 

to determine whether MeCP2 is a bona fide binding partner of 5hmC in vivo. 

The Role of 5hmC in brain development  
 

Across brain development in both the human and mouse, 5hmC levels increase, 

with the adult human prefrontal cortex containing tenfold more 5hmC than the fetal 
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brain (Lister et al., 2013; Wen et al., 2014). In the adult (6 wk mouse), high levels of 

5hmC are found across enhancer, transcriptional end sites, intragenic, and DNaseI-

hypersensitive (DHS) regions. In the fetus, on the other hand, enrichment of 5hmC is 

primarily in DHS regions and enhancer regions that are unique to fetal development 

(Lister et al., 2013). Many of the gene bodies that gain 5hmC enrichment in the adult 

stage also have 5hmC present at the fetal stage, albeit at much lower levels. This implies 

that the cell type-specific increase in 5hmC observed over development occurs at 

intragenic regions that were partially established at the fetal stage. Although 5hmC levels 

of the fetal brain are much lower than those of the adult brain across all genomic 

features, there are numerous CpGs in which hydroxymethylation is higher in the fetal 

brain. These Fetal > Adult hydroxymethylated CpGs are enriched at enhancers (Lister et 

al., 2013; Wen et al., 2014). Developmentally downregulated genes have high levels of 

gene body 5hmC at the fetal stage, but not at the adult stage (Lister et al., 2013). Regions 

that have significantly higher hydroxymethylation in the fetal frontal cortex than the 

adult are dormant regions poised for demethylation and activation over development in 

both the mouse and human (Lister et al., 2013; Wen et al., 2014). Analysis of these 

developmentally-dependent, differentially hydroxymethylated regions in adult Tet2-/- 

mice revealed that these 5hmC-poised loci are dependent upon Tet2 activity (Lister et al., 

2013). These findings suggest a key role of 5hmC in brain development that is conserved 

across mammals.  

5hmC marks both developmentally dependent (P7, 6 wk, and 1 year mice) and 

brain region-specific (hippocampus compared to cerebellum) loci. When brain region-

specific differentially hydroxymethylated loci were evaluated across development, it was 

found that 5hmC marks region-specific genes during early development (at P7 or earlier) 

to facilitate in region-specific transcriptional programs. These tissue-specific 

differentially hydroxymethylated regions are enriched for a 21-nucleotide motif that 

might be critical for regulating specific gene expression programs. 5hmC regulated 

regions across development within mouse cerebellum and hippocampus revealed that 

some loci are stable (5hmC acquired during P7 and maintained through 1 year of age), 

whereas others are dynamic (5hmC is not present at all time points). When repeat 

elements were assessed across development, it was found that, in both mouse 

hippocampus and cerebellum, 5hmC enrichment increases at short interspersed nuclear 

elements (SINEs) and long tandem repeats (LTRs) and decreases in long interspersed 
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nuclear elements (LINEs) and satellites. In P7 cerebellum, but not adult, 5-hmC is 

associated with the transcriptional start site (TSS) of genes with low expression. This can 

be explained by the fact that at this stage, a significant amount of progenitors cells are 

present, which is in line with the finding in mouse and human ES cells in which 5hmC is 

enriched at the TSS of repressed, but developmentally poised, genes. At developmentally 

activated genes, there is an increase in intragenic 5hmC, while at developmentally 

repressed genes, there is only a small decrease in 5hmC across the gene body (Szulwach 

et al., 2011).  These findings highlight the importance of 5hmC in brain development.  

5hmC changes associated with neuronal differentiation 
 

In addition to developmentally-dependent changes in 5hmC, alterations in this 

epigenetic mark also occur across neuronal differentiation as assessed by comparing the 

genomic distribution of 5hmC in neural progenitor cells (NPCs) in the subventricular 

zone to that of maturing neurons of the cortical plate in E15.5 mice. In NPCs and 

maturing neurons alike, there is an absence of 5hmC at enhancers and enrichment at 

promoters and gene bodies. Over differentiation there is an increase in 5hmC (but not 

5mC), which is primarily intragenic. As typically found, intragenic 5hmC correlate 

transcription in both progenitors and mature neurons, however this association is more 

pronounced in maturing neurons.  Genes that gain intragenic 5hmC are associated with 

neuronal differentiation and axonogenesis. Genes with the highest increase in 5hmC 

over differentiation did not show an increase in demethylation, indicating the stability of 

this epigenetic mark. Concomitant with the increase in intragenic 5hmC during neuronal 

differentiation at activated genes, is a gain of H3K4me3 at the promoter and a loss of 

H3K27me3 in gene bodies and promoters. Tet2 or Tet3 may play a role in neurogenesis 

since knockdown of their expression via electroporation of shRNAs lead to defects in the 

progression of differentiation (Hahn et al., 2013).  

Similar changes in 5hmC over neuronal differentiation also occurs in the 

olfactory sensory neuron (OSN) differentiation as there is an increase in 5hmC from the 

horizontal basal cell (HBC) stage to the globose cell basal cell (GBC) to mature olfactory 

sensory neurons (mOSNs).  Similar to neuronal differentiation in the ventricular zone, 

the increase in 5hmC across OSN differentiation is primarily intragenic and associated 

with developmentally regulated genes. When Tet3 is overexpressed in mOSNs via a 

transgenic mouse model approach, genes with modest levels of 5hmC in the wild type 
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(WT) mice exhibit an increase in 5hmC levels, and subsequent increase in expression, 

whereas gene with high levels of 5hmC exhibit a loss of 5hmC, and subsequent decrease 

in expression. The downregulation of the most highly expressed mOSN-specific genes, 

such as olfactory receptors and guidance molecules, affects glomerular formation 

(Colquitt et al., 2013). These findings from two neurogenic regions of the brain support 

the role of 5hmC in neuronal differentiation.  

The Role of 5hmC in aging and neurodegeneration 
 

In light of the importance of 5hmC in neurodevelopment, researchers have 

investigated the role of 5hmC in aging and neurodegenerative diseases. The two studies 

conducted on aging (from 6 wk to 2 yr) have found that global 5hmC levels increase in 

the hippocampus as aging occurs (Chen, Dzitoyeva, & Manev, 2012; Chouliaras et al., 

2012). Given this finding, more research is warranted to determine whether 5hmC also 

increases in other brain regions, as well as the specific loci with 5hmC enrichment across 

aging. While there are not an expansive number of studies on neurodegeneration, several 

correlations have been found with 5hmC for both Huntington’s disease (HD) and 

Alzheimer’s disease (AD). In a mouse model of HD, a genome-wide decrease in 5hmC 

levels was found, correlating with decreases in gene expression (Wang et al., 2013). The 

differentially hydroxymethylated regions contained genes involved in neuronal 

development and survival, which could have an important affect on the 

neurodegeneration seen in this disease (Wang et al., 2013). Additionally, studies in AD 

patients have seen a decrease in 5hmC in the hippocampus, and 5hmC levels were 

negatively correlated with amyloid plaque load, a common marker of AD pathogenesis 

(Chouliaras et al., 2013; Condliffe et al., 2014). However, another study looking at 

preclinical stages of AD saw an increase in 5hmC in hippocampal regions of the brain 

(Coppieters, Dieriks, Lill, Faull, Curtis, & Dragunow, 2013; Sun et al., 2013).  While 

preliminary, these studies point to a potential role of 5hmC in neurodegeneration 

through deregulation of gene expression. Additionally, 5hmC may act as a biomarker for 

diagnosing and determining the stage of the disease. Further research is required to 

understand the role 5hmC plays in neurodegeneration.   
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The Role of Tet enzymes in brain function 
 

 The three Tet proteins, Tet1, Tet2, and Tet3, are members of the Fe(II)/α-

ketoglutarate (α-KG)-dependent dioxygenase family of enzymes. It has been proposed 

that the enzymes use molecular oxygen to catalyze oxidative decarboxylation of α-KG, 

creating a highly reactive intermediate that converts 5mC to 5hmC (Figure 2). This 

proposed mechanism is based off of other Fe(II)/α-KG-dependent dioxygenase family 

proteins, since a structure of mammalian Tet enzymes has not been solved. Each of the 

Tets contain a conserved catalytic domain (double-stranded β-helix fold (DSβH)) that 

contains the metal-binding residues required for the oxidation reaction (Figure 3) 

(Kohli and Zhang, 2013). Additionally, a cysteine-rich (Cys-rich) domain is found in all 

Tet proteins upstream of the catalytic domain and is thought to be required for activity 

(Iyer et al., 2009; Tahiliani et al., 2009). Tet1 and Tet3 contain a CXXC domain near the 

N-terminal end of the protein, which is known to bind to CpG sites (Kohli and Zhang, 

2013). While each of the human Tet enzymes only share ~18-24% sequence identity 

(UniProt Consortium, 2015), the catalytic and Cys-rich domains are highly conserved 

between the three enzymes (Figure 4). It is hypothesized that the remaining non-

conserved portions of the protein may serve as regulatory domains and convey different 

functionality between the three Tets. 

All three Tet family members, Tet1, Tet2, and Tet3, are expressed in the brain, 

with Tet3 having the highest expression, followed by Tet2, and Tet1 having much lower 

expression levels than the other two family member (Szwagierczak et al., 2010). 

Knockout, loss of function, and overexpression studies have revealed diverse functions of 

these enzymes, and the importance of 5hmC, in neuronal function.  

 

Tet1 

 

 Currently, Tet1 is the most well-studied Tet family member in the brain, most 

likely due to the fact that Tet1 was the first enzyme discovered to convert 5mC to 5hmC 

(Tahiliani et al., 2009). Although Tet1 expression is markedly lower than Tet2 and Tet3 

in the brain, various studies have demonstrated the importance of Tet1 in neuronal 

function.  
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Tet1 whole-body knockout (KO) mice are viable and fertile without apparent 

health deficits, albeit a smaller body weight and litter size than WT animals (Dawlaty et 

al., 2011; Rudenko et al., 2013; Zhang et al., 2013). Additionally, there are no obvious 

brain morphological or developmental brain abnormalities (Rudenko et al., 2013; Zhang 

et al., 2013). In agreement with the importance of Tet1 in the generation of 5hmC, there 

is a small, but significant reduction of 5hmC in the brains of Tet1 KO mice, but no change 

in 5mC. The fact that the change is small is likely due to presence of Tet2 and Tet3, the 

other members of the Tet family that are endogenous expressed much higher than Tet1 

in the brain. There also are no apparent deficits in synaptic connectivity as measured by 

Synapsin I, a marker of synaptic abundance (Rudenko et al., 2013). This compensation 

effect is supported by the deficits and abnormalities observed in Tet1 and Tet2 double 

KO (DKO) mice. DKO die perinatally, although a small percentage survive without gross 

abnormalities. When compared to WT mice, DKO adult mice (2.5 mo) have reduced 

5hmC levels (34%) and increased 5mC levels (~5%) in the cerebrum and cerebellum. 

Although these are appreciable changes in methylation, a large portion of 5hmC remains 

intact, suggesting that Tet3 plays a critical role in its maintenance (Dawlaty et al., 2013). 

Behaviorally, adult Tet1 single KO mice (4 mo) do not show deficits in 

locomotion, anxiety, fear memory acquisition, or depression-related behaviors. Multiple 

groups have observed memory deficits, however, there is not a consensus as to the 

specific type of memory deficit. According to one group, Tet1 KO mice have impairments 

in short-term memory and spatial learning, but normal long-term memory, as assessed 

by Morris water maze (MWM) (Zhang et al., 2013). Another group reported normal 

short-term memory and spatial learning, but impaired spatial memory extinction, in the 

MWM and classical Pavlovian fear conditioning (Rudenko et al., 2013). When Tet1 is 

overexpressed in the CA1 region of the hippocampus, long-term memory was affected 

(fear conditioning), but not locomotion, anxiety, or short-term memory. This deficit in 

long-term memory formation was observed for both catalytically active and inactive 

forms of TET1, suggesting that TET1’s role in memory formation is independent of its 

catalytic activity. Tet1 expression, but not Tet2, Tet3, or other proteins involved in the 

demethylation pathway, is significantly downregulated in the dorsal CA1 of mice after 

fear learning (Kaas et al., 2013). These findings support that Tet1 contributes to basal 

neuronal 5hmC levels that are potentially important for neuronal function. The 
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behavioral effects of Tet1 in the brain still warrant further investigation seeing as though 

there are confounding results.  

At the cellular and molecular level, evidence suggests that Tet1 is important in 

neurogenesis and hippocampal function. When Tet1 KO mice were bred with Nestin-GFP 

transgenic mice, the number of GFP-positive cells in the subgranular zone (SGZ) in adult 

mice was dramatically reduced by 45% when compared to WT animals (Zhang et al., 

2013). This is different from two other non-neurogenic brain regions examined, the 

cingulate cortex and hippocampus CA1 (Rudenko et al., 2013). The reduction in 

proliferation potential of neural progenitor cells (NPCs) is likely to underlie this deficit as 

evidenced by a reduction in neurospheres isolated from Tet1 KO mice, the decrease in 

bromodeoxyuridine (BrdU, which marks dividing cells) positive neurons in Tet1-dentate 

gyrus-knockdown in adult mice, and the 35% decrease in BrdU positive neurons in 

animals in which Tet1 is specifically deleted in neural progenitors at 2 mo of age. 

Examination of the gene expression and methylation changes in Tet1 KO mice revealed 

that the decreased expression of a cohort of genes involved in neurogenesis was 

associated with an increase in 5mC at their promoters, suggesting that Tet1 positively 

regulates adult neurogenesis through the oxidation of 5mC to 5hmC at these genes 

(Zhang et al., 2013).  

Tet1 overexpression in the dentate gryus (DG) or cornus ammonis 1 (CA1) region 

of the hippocampus of mice results in a dramatic increase in 5hmC and decrease in 5mC, 

providing evidence that Tet1 in vivo oxidizes 5mC to 5hmC (Guo et al., 2011b; Kaas et al., 

2013). The overexpression of Tet1 in the DG led to a significant decrease in methylation 

at promoter IX of Bdnf (Bdnf IX) and the brain specific promoter of Fgf1 (Fgf1B), and a 

concomitant increase in the expression of these two genes, supporting the role of Tet1 in 

the demethylation pathway, and subsequent gene activation (Guo et al., 2011b). Tet1 

overexpression in area CA1 or DG of the hippocampus leads to the increased expression 

of various activity dependent genes (Fos, Arc, Egr1, Homer1, and Nf4a2), as well as 

genes downstream of the Tet mediated oxidation (Tdg, Apobec1, Smug1, and Mbd4) 

(Kaas et al., 2013). In the DG, the increased expression of these genes is dependent upon 

the catalytic domain TET1, as evidence by the fact that only the expression of human 

TET1 catalytic domain, but not expression of the catalytically inactive version of TET1; 

however, in the CA1 region, either the catalytic active or inactive TET1 leads to increase 

in expression of majority of these genes. This implies that TET1 acts via region-
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dependent mechanisms (Guo et al., 2011b; Kaas et al., 2013). Furthermore, Tet1 is 

required for neuronal activity-induced active DNA demethylation and gene expression 

since short-hairpin mediated knockdown of endogenous Tet1 in the DG completely 

abolished electroconvulsive stimulation (ECS)-induced demethylation of Bdnf IX and 

Fgf1B promoters. These in vivo findings are in agreement with in vitro work that has 

shown that Tet1 knockdown in hippocampal neuron leads the hypermethylation of 

promoter IV of Bdnf and subsequent decreased expression from this promoter (Yu et al., 

2015). Given that demethylation at these promoters is similar completely abolished after 

ECS with knockdown of Apobec1, this suggests that Tet1 and Apobec1 work together 

through oxidation-deamination to achieve active demethylation in the adult mouse brain 

(Guo et al., 2011b).  

Loss of Tet1 causes electrophysiological deficits in the hippocampus. Tet1 KO 

mice have normal basal synaptic transmission and intrinsic neuronal properties, as 

measured by paired-pulse facilitation and presynaptic excitability, respectively. 

However, long-term potentiation (LTP), assessed in the Schaffer collateral-CA1 pathway, 

is attenuated, and long-term depression (LTD) is amplified. These in vivo 

electrophysiological findings confirm what is found in vitro. Overexpression of the 

catalytically active form of Tet1 prevents TTX-induced scaling-up, and knockdown of 

Tet1 leads to synaptic scaling-down that is unaltered by bicuculline treatment (Yu et al., 

2015). Further analysis in vivo has demonstrated that alterations in metabotropic 

glutamate receptor (mGluR)-dependent form of LTD is not affected, therefore suggesting 

that a deficit in NMDAR-dependent LTD. Neuronal activity-regulated genes, including c-

Fos, Egr2, Egr4, Arc, and Npas4, are affected in Tet1 KO mice. Analysis of the Npas4 

promoter-exon 1 region confirmed a decrease of 5hmC and an increase in 5mC, which 

could explain the downregulation of this group of genes. After memory extinction in Tet1 

KO mice (but not after fear memory acquisition), the Npas4 and c-Fos genes exhibit a 

decrease in 5hmC and an increase in 5mC, concomitant with a decrease in mRNA and 

protein expression levels in both brain regions assessed, the cortex and hippocampus. 

Since Tet1/Tet2/Tet3 expression does not increase during either fear memory extinction 

or acquisition, the activity of these proteins change, rather than absolute levels (Rudenko 

et al., 2013). 

This body of work on Tet1 function in the brain suggests that Tet1, although 

expressed at much lower levels in the mammalian brain than the other Tet family 
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members, plays an important role in maintaining 5hmC levels, and subsequent gene-

expression levels, at basal and activity-induced conditions.   

 

Tet2 

 

 Despite it’s high level of expression, Tet2 is presently the least well-studied Tet 

family member in the brain, but the limited studies conducted thus far have 

demonstrated the importance of Tet2 in brain function. There are no reported brain 

abnormalities or dysfunction in Tet2 knockout mice (Ko et al., 2011; Li et al., 2011). 

However, when Tet2 is knocked down in hippocampal neurons in vitro, there is an 

increase in miniature glutamatergic excitatory postsynaptic currents (mEPSC) 

amplitudes compared to controls (Yu et al., 2015). This implies that neuronal function 

may be impaired in the absence of Tet2.  

Tet2 is also thought to play a role in the demethylation of developmentally 

dependent genomic loci. With the use of Tet2 knockout mice, it was found that this 

member of the Tet family is responsible for the oxidation of large fraction (19.7%) of CpG 

genomic regions that gain hydroxymethylation status over development. On the other 

hand, CpG regions with higher 5hmC in the adult than fetal stage are largely unaffected 

in Tet2 knockout mice. Across development and aging (6 wk, 10 wk, and 22 mo) in Tet2 

knockout mice, there are over fourfold more hypermethylated CpG regions (14,000 CpG 

regions in total) than hypomethylated region, suggesting that Tet2 plays a role in the 

demethylation over development and aging (Lister et al., 2013). Tet2 may also play a role 

in neurogenesis since the knockdown of Tet2 and Tet3 via electroporation of shRNAs 

into the cortex lead to defects in the progression of differentiation from the 

subventricular zone (Hahn et al., 2013). These Tet2 findings suggest that Tet2 plays an 

important role in regulating developmentally dependent, differentially 

hydroxymethylated regions.  

 

Tet3 

 

Various studies on Tet3 function in the brain have confirmed that this most 

highly expressed brain Tet family member is essential in regulating neuronal activity. 

When mice undergo extinction training, there is a significant increase in Tet3 mRNA in 
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the cortex. Tet3 knockdown via lentiviral plasmids in the infralimbic prefrontal cortex 

(ILPFC) have normal fear memory acquisition but impaired fear memory extinction.  

Furthermore, inhibiting NMDAR activity blocked the increase in Tet3 expression 

associated with fear memory extinction, suggesting that the rise in Tet3 occurs via an 

NMDAR-mediated pathway. Fear acquisition and fear extinction result in genome-wide 

differences of 5hmC at locations that contain CA or CT dinucleotide repeats instead of 

CpGs. Additionally, there is a reduction in 5hmC at intronic and intergenic sites and an 

increase in 5hmC enrichment at distal promoters, 5’-UTR, 3’-UTR, exonic sequences, 

and DNaseI-hypersensitive regions. Gene ontology analysis revealed that 16% genes 

enriched for 5hmC after extinction learning are involved in synaptic signaling. When one 

of these genes, gephyrin, was evaluated, it was found that there was enrichment for 

5hmC, co-occurring with decrease in 5mC, within one intron. Moreover, in response to 

extinction, there was an increase Tet3 occupancy at the gephyrin gene, as well as an 

increase in specificity protein 1 (Sp1), a transcription factor that activates gene 

expression by preventing the active loci from becoming methylated. The observed 

reduction in transient H3K9me3 and increase in H3K27ac, p300, H3K4me1, and 

dimethyl H3 arginine 2 (H3R2me2s), which is crucial for maintaining a euchromatic 

state, all support the role of Tet3 in extinction-induced gene expression changes. These 

changes are specific to fear extinction, and do not occur during fear acquisition. All of 

these changes at the gephyrin gene are blocked with the use of a Tet3 shRNA (Li et al., 

2014).  

Tet3 expression levels correlate with neuronal activity in vitro as well; an 

increase in synaptic transmission correlates with an increase in Tet3, but not Tet1 or 

Tet2. When Tet3 is knocked down from hippocampal neurons in culture, mEPSC 

amplitudes are significantly larger than controls, and the reciprocal effect occurs when 

Tet3 is overexpressed. Notably, knockdown of either Tet1 or Tet2 also increases mEPSC 

amplitudes, but not as drastically as Tet3 knockdown. Tet3 is also essential for the 

maintenance of homeostatic synaptic plasticity since knockdown of Tet3 leads to 

synaptic scaling-up that is unaltered by tetrodotoxin (TTX) or retinoic acid (RA) 

treatment; knockdown of Tet3 leads to synaptic scaling-down that occludes further 

alterations with bicuculline treatment; and Tet3 overexpression prevents TTX-induced 

synaptic scaling-up or bicuculline-induced scaling-down. Given that a similar effect on 

mEPSC amplitudes and synaptic scaling occurs when poly (ADP-ribose) polymerase 
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(PARP) or the apurinic/apyrimidinic endonuclease is inhibited, two major components 

of the BER pathway, these data suggest that excitatory synaptic transmission is regulated 

by the oxidation of DNA through Tet, followed by BER (Yu et al., 2015).  

The molecular mechanism through which Tet3 causes these effects is likely 

through the regulation of surface GluR1 receptors. Knockdown of Tet3 leads to an 

increase in surface GluR1 receptors that is resistant to a further increase or decrease in 

surface GluR1 receptors, which occurs in control neurons treated with TTX or 

bicuculline. When gene expression changes were assessed in Tet3 knockdown neurons, 

GO term enrichment revealed expression changes of genes involved in synapse and 

synaptic transmission. Genes with differential expression due to TTX or bicuculline 

treatment in control neurons lost responsiveness in Tet3 knockdown neurons. A very 

similar effect was observed for bicuculline in Tet3 knockdown neurons. In Tet3 

knockdown neurons, promoter IV of the brain-derived neurotrophic factor (Bdnf) is 

hypermethylated, and there is a decrease in expression from this promoter. The 

bicuculline-induced hypomethylation, as well as the TTX-induced hypermethylation, of 

Bdnf promoter IV are occluded in Tet3 knockdown neurons. ChIP-PCR revealed that 

Tet3 binds to the Bdnf promoter IV (Yu et al., 2015).   

The importance of Tet3 in neural function is conserved across vertebrates, as 

knockdown of Tet3 in Xenopus by morpholino antisense oligonucleotide leads to marked 

developmental abnormalities, including malformation of the eye, small head, and early 

death. At the molecular level, Tet3 depletion causes a reduction in expression of master 

eye developmental genes (pax6, rx, and six3), primary neuronal markers (ngn2 and 

tubb2b), neural crest markers (sox9 and snail), and major shh signaling components 

(shh and ptc-1). Additionally, Tet3 chromatin immunoprecipitation (ChIP) assays 

confirm the binding of Tet3 to the promoters of pax6, rx, six3, ptc-1, ptc-2, sox9, and 

ngn2. Furthermore, at the promoters of some of these target genes, there was found to 

be a developmental increase in 5hmC and decrease in 5mC from stage 10 to 19 in 

Xenopus development, which is perturbed when Tet3 is knockdown. These findings 

suggest that Tet3 acts as an upstream activator of key neural developmental genes (Xu et 

al., 2012). Furthermore, these studies suggest that Tet3 plays an important role in brain 

function that is conserved across animals. 
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Conclusion 
 

Despite it’s recent rediscovery in 2009, major advances have been made 

regarding our understanding of the DNA modification 5hmC. 5hmC is now known to be 

an intermediate of active DNA demethylation in neurons. However, the biological role of 

5hmC in the brain is still up for debate. It is known that even within defined brain 

regions, such as the cerebellum, there are a multitude of cell types that have vastly 

different functions, gene expression patterns, and 5mC and 5hmC levels. While studies 

have shown 5hmC distribution in different brain regions throughout development, it is 

still not understood what happens to 5hmC in specific cell types as an animal ages. 

Investigating 5hmC distribution in a heterogeneous brain region is likely to mask 

important cell-type specific features and reveal false patterns due to the multitude of cell 

types in the sample. Looking at 5hmC and Tet enzymes in specific cell types is crucial for 

our understanding of how DNA demethylation and 5hmC affect neural functions.   

 In the search for the biological role of 5hmC, it is also imperative to know what 

proteins bind to the modified base, and the cellular consequences of the interactions. 

While a variety of putative 5hmC binding partners have been identified, the potential 

interactions have not been confirmed in vivo, and the functions of 5hmC-protein 

interactions have not been established. Studies addressing the binding partners of 5hmC 

will greatly advance our understanding of 5hmC not just as a demethylation 

intermediate, but also as an essential epigenetic mark.   
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Figures  
 

Figure 1 

 

 Figure 1. Cytosine modification cycle. Unmodified cytosine (C) is converted to 5-

methylcytosine (5mC) by DNA methyltransferase enzymes (DNMTs) DNMT1, DNMT3a, 

or DNMT3b. 5mC can then be iteratively oxidized by Tet enzymes Tet1, Tet2, or Tet3, to 

become 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC). Thymine DNA glycosylase (TDG) can recognize the bases 5fC 

and 5caC and excise them from the DNA, leaving an abasic site. An abasic site triggers 

the base excision repair pathway (BER) which restores the base to cytosine.  
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Figure 2 

 

Figure 2. 5mC to 5hmC conversion by Tet enzymes. Tet enzymes oxidize the 5-

methyl group of 5mC. With cofactors alpha-ketoglutarate (α-KG) and molecular oxygen, 

Tet oxidizes the 5-methyl carbon, adding a hydroxyl group, yielding 5-

hydroxymethylcytosine (5hmC). Other byproducts of the enzymatic reaction include 

carbon dioxide and succinate.  
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Figure 3 

 

 

Figure 3. Schematic of Tet enzymes. Tet1, Tet2, and Tet3 all share a conserved 

catalytic double-stranded β-helix fold (DSβH) domain at the C-terminal end of the 

protein. Additionally, a conserved cysteine-rich (Cys-rich) domain is found at the N-

terminal portion of the catalytic domain. Tet1 and Tet3 contain an additional CpG-

binding CXXC domain at the N-terminal end of the protein. 
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Figure 4 

 

Figure 4. Sequence conservation of Tet domains. (a) The cysteine-rich (Cys-rich) 

domain is almost fully conserved between the Tet enzymes. (b) The catalytic double-

stranded β-helix fold (DSβH) domain is also highly conserved between the three Tet 

enzymes, even though the proteins only share 18-24% sequence identity. The remaining 

non-conserved domains are hypothesized to serve as regulatory domains.  
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APPENDIX PART 3 

 

Locus- and cell type-specific epigenetic switching during cellular 

differentiation in mammals 

 

One Sentence Summary  

 

This story, which found that the loss of DNA methylation is accompanied by the gain of 

different histone modifications in a locus- and cell type-specific manner over cellular 

differentiation, is published in Frontiers in Biology.   

 

Abstract 

 

BACKGROUND: Epigenomic reconfiguration, including changes in DNA methylation 

and histone modifications, is crucial for the differentiation of embryonic stem cells 

(ESCs) into somatic cells. However, the extent to which the epigenome is reconfigured 

and the interplay between components of the epigenome during cellular differentiation 

remain poorly defined. METHODS: We systematically analyzed and compared DNA 

methylation, various histone modification, and transcriptome profiles in ESCs with those 

of two distinct types of somatic cells from human and mouse. RESULTS: We found that 

global DNA methylation levels are lower in somatic cells compared to ESCs in both 

species. We also found that 80% of regions with histone modification occupancy differ 

between human ESCs and the two human somatic cell types. Approximately 70% of the 

reconfigurations in DNA methylation and histone modifications are locus- and cell type-

specific. Intriguingly, the loss of DNA methylation is accompanied by the gain of 

different histone modifications in a locus- and cell type-specific manner. Further 

examination of transcriptional changes associated with epigenetic reconfiguration at 

promoter regions revealed an epigenetic switching for gene regulation—a transition from 

stable gene silencing mediated by DNA methylation in ESCs to flexible gene repression 
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facilitated by repressive histone modifications in somatic cells. CONCLUSIONS: Our 

findings demonstrate that the epigenome is reconfigured in a locus- and cell type-

specific manner and epigenetic switching is common during cellular differentiation in 

both human and mouse.  

 

Introduction    

  

    Cellular differentiation is a precisely regulated process by which hundreds of 

morphologically and functionally distinct cell lineages are derived from the same origin, 

embryonic stem cells (ESCs). Given that ESCs and somatic cell types share an identical 

genome, a fundamental question is how lineage-specific gene expression patterns are 

established and maintained. Accumulating evidence supports that two epigenetic 

mechanisms, DNA methylation and histone modifications, are crucial in this process 

(Reik, 2007).   

    DNA methylation at the fifth carbon position of cytosine is an abundant covalent 

modification that primarily occurs in CpG dinucleotides (mCpGs), with 80% of CpGs 

being methylated in mammals. DNA methylation affects DNA-protein interactions and 

therefore influences transcription in various physiological processes, such as imprinting, 

X-inactivation, tumorigenesis, and embryogenesis (Jaenisch and Bird, 2003). In cellular 

differentiation, DNA methylation plays a critical role as the loss of enzymes responsible 

for establishing or removing methylation in embryos or ESCs results in skewed lineage 

specification and transdifferentiation (Jackson et al., 2004; Koh et al., 2011; Tsumura et 

al., 2006). Similar to DNA methylation, covalent modifications on histone tails play an 

imperative role in cellular differentiation and modulate transcription by altering DNA 

accessibility. Altering the activity of histone modifying enzymes, such as 

methyltransferases and acetyltransferases, diminishes the differentiation potential of 

ESCs (Margueron and Reinberg, 2011). Therefore, although histone modifications and 

DNA methylation are required for successful differentiation, the precise function of each 

in determining cell fate decisions is unknown. 

    Investigating the role of these epigenetic mechanisms has recently become possible 

with the construction of single base-pair resolution profiles of DNA methylation 
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(methylomes) and genome-wide histone modification profiles in multiple cell types, 

tissues, and organisms (Lister and Ecker, 2009; Rivera and Ren, 2013). Comparison of 

methylomes across cellular differentiation has revealed both de novo methylation (Reik, 

2007; Smith and Meissner, 2013) and de novo demethylation (Hon et al., 2012; Lister et 

al., 2009; Xie et al., 2013; Ziller et al., 2013). These findings raise the possibility that 

mCpG is more dynamic than previously thought. Indeed, literature supports that mCpG 

undergoes a demethylation process mediated by the TET family of proteins that oxidize 

mCpG to hydroxymethyl-CpG (Tahiliani et al., 2009). The acquisition of methylomes 

and histone modification profiles from multiple cell types also provides an opportunity 

to examine the interplay between these two epigenetic mechanisms. Increasing evidence 

supports that the loss of DNA methylation is coupled to the gain of histone 

modifications, such as H3K27me3 and H3K9me3 in tumorigenesis (Hon et al., 2012); 

H3K27me3, H3K9me3, and H3K4me1 in differentiation (Gifford et al., 2013; Hawkins et 

al., 2010); and H3K27ac and H3K4me1 in development (Lister et al., 2013). However, 

the interplay between these two epigenetic mechanisms has only been observed for a 

limited number of histone modifications, leaving the large scope of DNA-histone 

modification interactions to be explored.   

 In this study, we systematically integrated DNA CpG methylation, various histone 

modification, and transcriptome profiles in ESCs and two somatic cell types in both 

human and mouse. With the use of our novel unbiased, enrichment based statistical 

approach, we found that both DNA methylation and histone modifications are 

considerably altered during cellular differentiation. Approximately 70% of the 

reconfigurations in DNA methylation and histone modifications are cell type-dependent 

and locus-specific. Additionally, integrative analyses of these epigenomic 

reconfigurations revealed a widespread locus-specific switching from DNA methylation 

to histone modifications during cellular differentiation in both species. Furthermore, 

when these epigenetic changes at promoter regions were correlated with gene 

transcription, we found that the switching at promoter regions implicates a transition 

from stable gene silencing mediated by DNA methylation to flexible gene repression 

facilitated by histone modifications. Our study provides a comprehensive insight into the 

role of epigenomic reconfiguration in cellular differentiation.  
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Materials and methods  

 

Bioinformatics analyses 

 

All analyses in this study were processed in the MAC terminal window. Perl was used to 

do in-house programming. R (http://www.r-project.org/) and Bioconductor libraries 

(http://www.bioconductor.org) were used to do all statistical analyses. Integrative 

Genomics Viewer (IGV, version 2.2.4) (Robinson et al., 2011; Thorvaldsdottir et al., 

2013) was used as the local genome browser in this study. The first replicate of each 

histone modification (ChIP-seq) and gene expression (mRNA-seq) data set was used in 

the browser representation for all the figures (Table S1). Samtools version 0.1.18 (Li et 

al., 2009) was used to convert sam files to bam files and to sort the bam files by name. 

Sorted bam files were converted to tdf files by igvtools version 2.2.1 using parameters “-z 

5 -w 25 -e 250” for ChIP-seq files and “-z 5 -w 25 -e 250 --strands read” for strand-

specific mRNA-seq files. The track scales for ChIP-seq and mRNA-seq were normalized 

to the total number of uniquely mapped reads.  

ChIP-seq_scale = (TDF_scale / Total_number_uniquely_mapped_reads) * 10,000,000 

mRNA-seq_scale = (TDF_scale / Total_number_uniquely_mapped_reads) * 

20,000,000  

 

Obtaining the raw data and FASTQ files 

 

The SRA raw data files for whole-genome bisulfite sequencing (WGBS), ChIP-seq, and 

mRNA-seq were downloaded from NCBI Sequence Read Archive database 

(http://www.ncbi.nlm.nih.gov/Traces/sra) under the accession numbers listed in Table 

S1. The SRA Toolkit version 2.1.7 (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view 

=software) was used to obtain the FASTQ files from the SRA files. The command used 

was “fastq-dump”.  
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Genomic sequences and annotations 

 

The reference genomic sequences used in this study were hg19 for the human and mm9 

for the mouse. The genomic annotations, human GRCh37 and mouse NCBIM37 that 

were based on Ensembl release 66, were downloaded from Illumina iGenome database 

(http://cufflinks.cbcb.umd.edu/igenomes.html). The distal 5ʹ end of a gene was defined 

as the transcription start site (TSS). The exonic region was defined as all exons of a gene. 

The region from the 500 bp downstream of TSS to the distal 3ʹ end of a gene was defined 

as the gene body. Intergenic regions were downloaded from UCSC Genome Browser 

using Table Browser function (http://genome.ucsc.edu/cgi-

bin/hgTables?command=start). Intergenic regions with at least 1 kb in length were 

included in subsequent analyses.  

 

WGBS data mapping and methylation calling 

 

The FASTQ raw data files were first processed by Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove adaptor 

contamination, to trim lower-quality sequences, and to discard sequences shorter than 

36 nucleotides. The Trim Galore parameters used were “-s 2 -length 36”. Bismark v0.7.4 

(Krueger and Andrews, 2011) was used to map the WGBS data to the hg19 and the mm9 

genomes. We used “-n 2 -l 40” and default parameters in Bismark. We excluded reads 

that had three or more methylated cytosines in non-CpG contexts or had cytosine in the 

reads but thymine in the corresponding location of the reference genomes. For mapped 

reads from a library of the same PCR reaction with identical 5′ sites, the one with highest 

average phred quality score was kept and the others were discarded to get rid of possible 

PCR amplification artifacts. Libraries from multiple PCR reactions and from different 

replicates for each cell line were merged together. SNPs between C57BL/6 and 129 were 

downloaded from the Mouse Genome Project of the Sanger Institute (ftp://ftp-

mouse.sanger.ac.uk/REL-1003/SNPs/20100310-all-snps.tab.gz). For the mouse 

methylomes, CpGs that overlapped with known SNPs were excluded from subsequent 

analyses. The methylation status of both strands of a CpG pair were merged together. 
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CpGs with 10 or more read coverage were included in subsequent analyses. The 

methylation level for each CpG was calculated as follows: 

                               
 

where 

           is the number of reads with C mapped to the sense strand of a CpG,  

           is the number of reads with T mapped to the sense strand of a CpG, 

           is the number of reads with C mapped to the antisense strand of a CpG, 

            is the number of reads with T mapped to the antisense strand of a CpG. 

 

Genome-wide and locus-specific comparisons of DNA methylation levels 

 

For genome-wide analysis, the two-tailed Fisher’s exact test was used to compare the 

methylomes between two cell lines at single-CpG resolution. The p-value for each CpG 

was calculated as follows:  

p-value

 

where 

          is the binomial coefficient, 

          !     is the factorial operator,  

           is the number of methylated reads that covered this CpG in ESCs,  

            is the number of non-methylated reads that covered this CpG in ESCs,   
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          is the number of non-methylated reads that covered this CpG in somatic cells.  

Raw p-values were adjusted using the Benjamini and Hochberg method (Benjamini and 

Hochberg, 1995) to control the False Discovery Rate (FDR). CpGs with an adjusted p-

value (FDR) less than 0.05 were defined as differentially methylated CpGs.  

For locus-specific analysis, we developed an enrichment-based statistical approach to 

compare and identify differentially methylated genomic regions (Figure 2A). We defined 

promoter regions using stringent criteria (Figure S2A) and analyzed them in parallel.  

To determine the distribution of CpGs and mCpGs at promoter regions (Figure 5A), 

the region 5 kb upstream and 1 kb downstream of TSS for each gene was dissected into 

600 bins with 10 bp in length. For each bin, we calculated the total number of genomic 

CpGs, the ratio between the total number of mCpGs versus the total number of genomic 

CpGs, the ratio between the total number of diff-mCpGs and the total number of mCpGs, 

respectively.  

 

ChIP-seq data mapping, peak calling, and sliding-window analysis 

 

Bowtie version 0.12.7 (http://bowtie-bio.sourceforge.net/index.shtml) (Langmead et al., 

2009) was used to map the FASTQ files of ChIP-seq data to the genomes. “-v 2 -m 1 -p 10 

” and default parameters were used. The mapping results for each replicate were merged 

together.  

FindPeaks in Homer version 4.2 (http://biowhat.ucsd.edu/homer/ngs/) (Heinz et 

al., 2010) was used for peak calling using “-style histone” and default parameters. If the 

region 1 kb upstream and 1 kb downstream of the TSS for a gene overlapped with 

H3K27me3 or H3K9me3 peaks, we defined this gene as marked by that histone 

modification. 

All replicates for each histone modification in each cell type were merged together. 

The total number of uniquely mapped reads was normalized to 40 million. For sliding 

window analysis, the human and mouse genomes were partitioned into 1 kb sized 

windows, and the number of normalized reads for each window was calculated. The fold 

enrichment score for each histone modification at each window between ESCs and 

somatic cells was calculated as follows: 

SomaticT
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where  is the number of normalized reads in this window for somatic cells and 

 is the number of normalized reads in this window for ESCs.  

Based on the fold enrichment score for each window, we classified all windows into 

three categories: those in which histone modifications are gained, lost, or remained. The 

gain windows were defined as those that have higher read numbers in somatic cells than 

in ESCs (fold enrichment score > 1), whereas the lose windows were defined as those that 

have lower read numbers in somatic cells than in ESCs (fold enrichment score < 1). We 

then obtained the top 2000 gain windows and the top 2000 lose windows based on their 

fold enrichment scores, and termed them as the highly dynamic regions. Only those 

dynamic regions with greater than or equal to 2 fold enrichment or depletion were 

included in subsequent analyses. The DNA methylation change associated with each 

highly dynamic region was calculated as follows:   

                              
 

where n is the total number of CpGs with 10 or more read coverage in both cells in this 

region,  is the methylation level of the number i CpG in somatic cells, and  is the 

methylation level of the number i CpG in ESCs.  

 

mRNA-seq data mapping and differential expression analysis 

 

The mRNA-seq data for mouse frontal cortex were mapped to mouse NCBIM37/mm9 

genomes by TopHat version 2.0.6 (Trapnell et al., 2009) using parameters “--bowtie1 --

color --quals -p 5 -g 1 --no-coverage-search --no-novel-juncs --library-type fr-

secondstrand -G UCSC_mm9.gtf mm9_c”. The other mRNA-seq data in FASTQ files 

were mapped to human GRCh37/hg19 or mouse NCBIM37/mm9 genomes by STAR for 

MAC version 2.2.1d (Dobin et al., 2013). We used STAR parameters “--
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outFilterMultimapNmax 1 --outFilterMismatchNmax 3” to only report uniquely mapped 

reads with no more than three mismatches.  

The number of mapped reads in the exonic region of each gene was calculated using an 

in-house Perl program. All replicates for each cell type were calculated separately. Reads 

that overlapped with the exonic regions of multiple genes were excluded. The edgeR 

Bioconductor package (Robinson et al., 2010) was used to perform the differential 

expression analysis. The classic edgeR method, which is negative binomial model based 

exact test, was used. For differential expression analysis, we only included genes with a 

count per million (CPM) larger than 1 in at least two of the data sets. Genes with adjusted 

p-values less than 0.05 were defined as differentially expressed. Gene Ontology 

enrichment analysis was performed using DAVID v6.7 (http://david.abcc.ncifcrf.gov/) 

(Huang da et al., 2009a, b).  

 

Results  

 

Global DNA hypomethylation in somatic cells  

 

    Given the essential role of DNA methylation in cellular differentiation, we first 

examined global DNA methylation in terminally differentiated somatic cells compared to 

ESCs using raw data from the NCBI GEO database (Hon et al., 2012; Lister et al., 2009; 

Mann et al., 2013; Stadler et al., 2011; Xie et al., 2012). Thus, we compared the 

methylomes from human H1 ESCs (hESC) and two distinct types of human somatic cells, 

IMR90 fetal lung fibroblasts (hFB) and mammary epithelial cells (hEP)(Figure S1A). To 

evaluate DNA methylation changes in a different species, we also compared the 

methylomes of mouse ESCs (mESC), mouse primary dermal fibroblasts (mFB), and 

mouse frontal cortex tissue (mFC)(Figure S1A).  

  We found that global mCpG levels are significantly lower in somatic cells 

compared to ESCs (Figure 1). In human, 93% of the differentially methylated CpG sites 

(diff-mCpGs) exhibit a decrease in methylation in hFB compared to hESC and 89% of 

diff-mCpGs show a decrease in hEP (Figure 1A-B, two-tailed Fisher’s exact test, 
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Benjamini and Hochberg (B-H) correction). Global DNA hypomethylation was also 

found in mouse somatic cells (Figure 1A-B). Moreover, we found that hypomethylated 

diff-mCpGs are evenly distributed across all autosomes in both species, indicating 

widespread genome-wide DNA hypomethylation in somatic cells compared to ESCs 

(Figure S1C). Of note, global mCpG levels are not significantly different across somatic 

cell types (Figure S1B), suggesting that hypomethylation is found upon lineage 

commitment, rather than across cell types.  

 

DNA hypomethylation is locus- and cell type-specific 

 

    Next, we investigated whether changes in DNA methylation occur at particular 

genomic features: intergenic regions, gene body, and promoter regions. To do so, we 

developed an enrichment based statistical approach for identifying genomic regions in 

which the ratio of diff-mCpGs is statistically higher than the ratio expected by chance 

(Figure 2A). Thus, we were able to identify genomic regions that are differentially 

methylated between different cell types.  

    Consistent with our finding of global hypomethylation, a significantly larger portion of 

the differentially methylated regions is hypomethylated in somatic cells compared to 

ESCs in both human and mouse (Figure S2A-C, FDR<0.0001, Hypergeometric test, B-H 

correction). For example, >90% of differentially methylated promoter, gene body, and 

intergenic regions are hypomethylated in hFB compared to hESC (Figure S2A-C).  

Notably, approximately 60-80% of the identified differentially methylated genomic 

regions are unique to that specific somatic cell type regardless of being in the promoter, 

gene body, or intergenic region (Figure 2B; Figure S2D). Genomic feature-specific 

alterations of DNA methylation are illustrated in the promoter regions of cell type-

specific genes, including LHX8, SH3TC1, COL6A3, and FOXI2 (Figure 2C). Only 30% of 

the genomic regions identified in hFB and hEP share the same changes in DNA 

methylation when compared to hESC (Figure 2B), such as the promoter regions of 

TMEM173 and TRIM4 (Figure 2C). Furthermore, we found that the changes in DNA 

methylation are strictly confined in a locus-specific manner, as surrounding regions do 

not show similar alterations (Figure 2C; Figure S2E-F). Together, these results 
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demonstrate that the decrease in DNA methylation across cellular differentiation is 

lineage-specific and restricted to particular loci. 

 

Locus- and cell type-specific alterations of histone modifications in human 

 

    Modification of histone tails, such as methylation, acetylation, ubiquitination or 

phosphorylation, is an evolutionarily conserved epigenetic mechanism crucial for gene 

regulation in many biological processes (Berger, 2007; Jenuwein and Allis, 2001). 

Characteristic histone modification features include H3K9me3 and H3K27me3 marks in 

transcriptionally silent loci and H3K4me3 and H3K27ac in transcriptionally active 

promoters (Turner, 2007). Moreover, genes that show transient transcriptional changes 

in response to environmental stimuli versus genes that are persistently transcribed are 

marked by distinct types of histone modifications (Metivier et al., 2003). Given the 

importance of histone modifications in regulating cellular processes, we next analyzed 

the extent to which histone modifications are altered in somatic cells compared to ESCs. 

We acquired all publicly available ChIP-seq data sets for histone modifications in hESC 

(26 data sets in total), hFB (26 data sets), and hEP (11 data sets) and compared the 

enrichment profiles for each modification across cell types.  

    We found that 70-80% of the enriched sites for each of the 26 histone modifications 

are altered in hFB compared to hESC and 60-90% of the 11 histone modifications are 

altered between hEP and hESC, indicating a widespread epigenetic reorganization in 

human somatic cells (Figure 3A). Comparison of histone modification profiles between 

the two somatic cell types revealed that alterations of histone modifications are 

predominately cell type-specific (Figure 3B). For example, 70% of the identified H2A.Z 

sites that change during cellular differentiation are unique to each somatic cell type 

(Figure 3B). Consistent with previous findings (Hawkins et al., 2010), we also found that 

repressive histone modifications, such as H3K27me3 and H3K9me3, are markedly 

enriched, including an increase in the total number of sites (Figure 3A) as well as a 

significant expansion of occupancy for most of the enriched sites across cellular 

differentiation (Figure 3 C-D, p<2.2×10-16, Student’s t-test). These results show that 



	
186	

regions of histone modification occupancy change dramatically in a cell type-specific 

manner across cellular differentiation. 

 

Epigenetic switching from DNA methylation to histone modifications  

 

    We next examined whether changes in histone modifications are associated with 

changes in DNA methylation across differentiation. To this end, we focused on genomic 

regions in somatic cells that exhibited the most dynamic changes in histone 

modifications relative to hESC. For each histone modification, these regions were 

defined as those with an enrichment score ≥ 2, and we limited our analyses to the top 

4,000 dynamic regions (2,000 gain and 2,000 loss).  

    We found that the majority of regions with increased histone modifications in somatic 

cells also exhibited decreased DNA methylation levels compared to hESC (Green boxes 

in Figure 4A-B). This correlation occurred for 85% of the histone modifications in hFB 

and 73% of modifications in hEP (Green boxes in Figure 4A-B). Moreover, we observed 

that many of the identified epigenetic switching from DNA methylation to histone 

modifications during cellular differentiation are specific to each cell type (Gray regions in 

Figure 4D; Gray regions in Figure S3C). For example, two sites in the RIN2 gene locus 

with specific loss of DNA methylation in hEP, but not in hFB, are accompanied by an 

increase in histone modifications in hEP, but not in hFB (Gray regions in Figure 4D). 

Similarly, when we analyzed the relationship between DNA methylation and histone 

modifications in mouse mESC and mFC, we found that gains of H3K4me3 and H3K27ac 

are associated with a decrease in DNA methylation, while the loss of H3K4me3 and 

H3K27ac are coupled with an increase in DNA methylation (Figure 4C). This epigenetic 

switching is not found between regions exhibiting decreased histone modifications and 

DNA methylation for the majority of regions (Figure S3A-B). Together, these data 

demonstrate a cell type-dependent and locus-specific switching from DNA methylation 

to histone modifications over cellular differentiation in both species. 

 

Epigenetic switching at promoters is associated with distinct gene regulation 
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    We next set out to determine how switching from DNA methylation to histone 

modifications during cellular differentiation affects gene expression. We focused on 

promoter regions since changes in DNA methylation and histone modifications at 

promoter regions are correlated with changes in transcription relative to other genomic 

features (Ball et al., 2009). We found that proximal promoters, regions 0.5kb upstream 

and downstream of transcriptional start sites (TSSs), have a higher CpG density and are 

more dynamically methylated than distal promoter regions, defined as regions from 0.5-

5kb upstream and 0.5-1kb downstream of TSSs (Figure 5A; Figure S4A). Given this 

finding, we identified differentially methylated proximal promoters over differentiation 

with the use of our enrichment-based statistical approach (Figure 2A). Compared to 

ESCs, we found that the majority of differentially methylated promoters were 

hypomethylated: 88% of the promoters in hFB, 82% of the promoters in hEP, 77% of the 

promoters in mFB, and 65% of the promoters in mFC. Therefore, we focused on 

hypomethylated promoters for subsequent analyses. Interestingly, gene ontology (GO) 

analysis of genes with hypomethylated proximal promoters revealed significant 

enrichment in processes characteristic of each somatic cell type as well as pathways 

responsive to environmental signals (Figure S4B, Fisher′s exact test, B-H correction). 

For example, many of the significant GO terms for hFB were related to cell adhesion, 

which is an essential characteristic of hFB, and injury response, a pathway highly 

dependent on external cues (Figure S4B). These findings suggest that hypomethylation 

at promoter regions in somatic cells is important for defining cellular identity and 

rendering them responsive to environmental cues.   

    Examination of transcriptional changes of genes with hypomethylated promoters 

revealed that 25% of genes showed an increase in expression in hFB compared to hESC 

(Red regions in Figure 5B). This is consistent with the prevailing model that a decrease 

in DNA methylation at promoters correlates with an increase in gene expression (Ball et 

al., 2009). However, 65% of genes identified in hFB did not exhibit changes in 

transcription despite a significant decrease in DNA methylation at their promoters 

(Black regions in Figure 5B, FDR<0.0001, Hypergeometric test, B-H correction), with 

78% of these genes are transcriptionally silent in both hESC and hFB (RPKM<1).  

Alternative promoter usage (Maniatis and Reed, 2002) may account for some of the 
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genes in which promoter hypomethylation is associated with a decrease in gene 

expression in hFB (Green regions in Figure 5B; Figure S5A). Similar percentages of 

genes with hypomethylated promoters show an increase (34%), no change (50%), or 

decrease (16%) in gene expression in hEP compared to hESC (Figure 5B). In mice, 

promoter hypomethylation had similar effects on gene expression with the majority of 

genes with hypomethylated promoters either showing an increase in gene expression, 

47% in mFB and 67% in mFC, or no change in gene expression, 46% in mFB and 26% in 

mFC, while only a small percentage exhibited a decrease in gene expression, 7% in mFB 

and 7% in mFC)(Figure 5B). These data suggest that promoter hypomethylation during 

cellular differentiation is not only important for increasing lineage specific transcripts, 

but also for flexible gene repression facilitated by repressive histone modifications in 

somatic cells. 

    To gain an insight into the mechanism by which genes with hypomethylated promoters 

remain transcriptionally silent in human somatic cells, we examined the profiles of two 

repressive histone modifications, H3K27me3 and H3K9me3, at the promoter regions of 

these silent genes in hFB and hEP. We found that, 77% of these genes in hFB and 45% in 

hEP are marked by one or both of H3K27me3 and H3K9me3 at their promoter regions 

(Figure 5C-D; Figure S5B). Furthermore, these repressive histone modifications at the 

promoter regions are either established de novo during cellular differentiation, such as 

at the promoter regions of KBTBD5, ZPBP2, and VMO1 (Figure 5D), or inherited from 

hESC, such as at the promoter region of LHX8 (Figure 5D). Given that DNA methylation 

is known to be a stable repressive mechanism (Bird, 2002; Jones, 2012), the epigenetic 

switching at the promoter regions of these genes during cellular differentiation may 

allow them to be dynamically expressed in response to external cues in somatic cells 

(Figure 5E). Together, these results uncover a potential role for epigenomic 

reconfiguration in facilitating gene regulation, by which genes stably silenced by DNA 

methylation in ESCs switch to flexible repression mediated by repressive histone marks 

in somatic cells. 

Discussion 

 

    Two longstanding questions in cellular differentiation are how ESCs maintain 

pluripotency and how they give rise to a multitude of diverse types of somatic cells. 
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Given that ESCs and somatic cells share identical genomic sequences, the establishment 

and maintenance of each somatic cell identity has been attributed to epigenetic 

modifications. This has led to an appealing model in which a flexible epigenome in ESCs 

allows for a multitude of genes to be transiently activated or repressed to support 

pluripotency. 

    In support of this model, studies have found an increase in DNA methylation at the 

critically important pluripotency gene Oct4 (Ben-Shushan et al., 1993; Deb-Rinker et al., 

2005). Additionally, the promoters of key developmental regulators are enriched with 

histone modifications, such as H3K27me3 or H3K4me3, rather than more stable DNA 

methylation in ESCs compared to somatic cells (Azuara et al., 2006; Bernstein et al., 

2006; Pan et al., 2007). A limitation of these studies is the biased focus on loci involved 

in pluripotency and development. Therefore, to fully understand the role of the 

epigenome in differentiation, we took advantage of publicly available data sets from 

ESCs and distinct types of somatic cells in both human and mouse and performed an 

unbiased, genome-wide analysis of DNA methylation, histone modifications, and 

transcription across differentiation. Our data provides evidence against the prevailing 

model in which ESCs have a more flexible epigenome than somatic cells and instead 

supports that somatic cells have a more adaptable epigenetic landscape. 

    By analyzing two components of the epigenome, DNA methylation and histone 

modifications, across cellular differentiation in two somatic cell types in human and 

mouse, we found extensive, cell type-specific changes. Global analysis of DNA 

methylation revealed that millions of CpGs are differentially methylated across 

differentiation, with 90% of these differentially methylated CpGs being hypomethylated. 

Additionally, we found that 70% of these differentially methylated CpGs across 

differentiation are unique to each somatic cell type, which is in agreement with a recent 

finding of tissue-specific methylation patterns in mouse (Hon et al., 2013). Strikingly, we 

found that genomic regions that are hypomethylated in somatic cells are accompanied by 

a gain of 22 different histone modifications in a cell type-specific manner. This suggests 

that the switching from DNA methylation to histone modifications is an important 

epigenetic event for differentiation and lineage specification.  

    The association between DNA hypomethylation and the gain of histone modifications 

has been suggested for only a few histone modifications, such as H3K27me3, H3K9me3, 
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and H3K4me1 (Gifford et al., 2013; Hawkins et al., 2010; Lister et al., 2009). Our results 

have identified 18 new histone modifications that correlate with hypomethylation. We 

found that genes repressed in both ESCs and somatic cells are held silent in ESCs by 

DNA methylation, a more permanent epigenetic modification, whereas in somatic cells 

genes are repressed by histone modifications, a more transient modification. This 

switching from DNA methylation to histone modifications at repressed genes across 

differentiation supports that the epigenome is more flexible in terminally differentiated 

cells than in ESCs.  

    Our finding that epigenomic reconfiguration occurs in a cell type-dependent and 

locus-specific manner raises the importance of profiling epigenomic information in 

homogeneous cell populations. Although cellular heterogeneity has been difficult to 

address, especially for complex tissues such as the brain, advanced technology in 

combination with newly designed approaches should make this feasible in the near 

future. The data processing pipelines developed in this study can allow us to address the 

extent of reconfiguration, and interplay with histone modifications, including recently 

discovered hmCpG and non-mCpG, once genomic data for these modifications in 

different cell types become available.   
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Figures  

 

Figure 1 

 

Figure 1 Global DNA hypomethylation in somatic cells in both human and 

mouse. (A) Methylation levels (ML) of differentially methylated CpGs (diff-mCpGs) 

between ESCs and two somatic cell types in human and mouse. Each circle represents a 

CpG. The deeper the shade of blue, the higher the point density (number of CpGs). (B) 

The percentage of diff-mCpGs (FDR<0.05, two-tailed Fisher’s exact test, B-H correction) 

that are hypomethylated or hypermethylated during cellular differentiation. Confident 

CpGs are those with 10 or more read coverage in both ESCs and somatic cells.   
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Figure 2 

 

Figure 2 DNA hypomethylation during cellular differentiation is locus- and 

cell type-specific. (A) A schematic of the enrichment-based statistical approach used 

to identify differentially methylated genomic regions (e.g. promoters). Confident CpG, 

CpGs with 10 or more read coverage in both data sets; diff-mCpGs, differentially 

methylated CpGs. (B) Heat maps of differentially methylated genomic regions between 

hESC and the two human somatic cell types after clustering analysis. (C) Browser 

representation of methylation profiles of the genes with changes in methylation levels at 

their promoter regions during cellular differentiation. Each green vertical bar represents 

a CpG, and the height of the bar represents its methylation level (from 0 to 100%). Grey 

arrows indicate the transcriptional orientation of each gene. Regions marked by orange 

bars indicate the locus- and cell type-specific DNA methylation changes.
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Figure 3 

 

Figure 3 Changes in histone modifications during cellular differentiation 

are locus- and cell type-specific. (A) The percentage of enriched sites for each 

histone modification that were gained (gain), lost (lose), and remained (remain) during 

differentiation of hESC to hFB and hEP. (B) Heat maps of changes of enriched sites for 

11 histone modifications during cellular differentiation in human after clustering 

analysis. (C) The width of H3K27me3 and H3K9me3 enriched sites in hESC and hFB. 

★★★, p-value < 2.2×10-16, Student’s t-test. (D) Browser representation of two regions 

with H3K27me3 and H3K9me3 expansion during cellular differentiation in human.   
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Figure 4 

 

Figure 4 A switching from DNA methylation to histone modifications during 

cellular differentiation. (A) DNA methylation changes in the highly dynamic regions 

that gain histone modifications during the differentiation of hESC to hFB. Green regions, 

histone modifications that are associated with a decrease in DNA methylation; Gray 

regions, histone modifications that are not associated with a change in DNA methylation; 

Red regions, histone modifications that are associated with an increase in DNA 

methylation. (B) DNA methylation changes in the highly dynamic gain regions during 

the differentiation of hESC to hEP. (C) DNA methylation changes in the highly dynamic 

regions that gain or lose H3K4me3 and H3K27ac during the differentiation of mESC to 

mFC. Enrichment score for each region was calculated by dividing the number of 

normalized reads aligned in a particular region in mFC by that in mESC. (D) Browser 

representation of three regions that exhibit switching from DNA methylation to histone 

modifications during cellular differentiation in human. Regions marked by grey bars 

indicate the cell type-specific switching. The track scale for all histone modifications is 

from 0 to 50 normalized reads.   
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Figure 5 

 

Figure 5 Switching from DNA methylation to repressive histone 

modifications at promoter regions uncovers a change of gene regulation 

from ESCs to somatic cells. (A) Scatter plots of the number of genomic CpGs, the 

ratio of mCpG, and the ratio of diif-mCpG in 10 bp bins within the region 5 kb upstream 

and 1 kb downstream of known transcription start site (TSS). (B) Heat map-pie charts of 

the expression changes of the genes with hypomethylated promoters. FC, fold change, 

gene expression levels in somatic cell types divided by that in ESCs. (C) Pie charts of 

percentages of genes, which are hypomethylated at the promoter regions but with no 

expression changes during cellular differentiation, marked by H3K27me3 or H3K9me3 

or both in somatic cells. (D) Browser representation of four genes with epigenomic 
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reconfiguration at their promoter regions. These genes were silent in both hESC and 

somatic cell types. The track scale for all mRNA-seq is from 0 to 45 normalized reads. 

The track scale for all histone modifications is from 0 to 50 normalized reads. (E) A 

model depicting gene regulation changes during cellular differentiation.   
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Supplemental Materials 

Figure S1. Global DNA methylation levels decrease during cellular differentiation in 

both human and mouse. (A) Distributions of CpG methylation levels in hESC, hFB, hEP, 

mESC, mFB, and mFC. M, million. (B) The percentage of diff-mCpGs that are 

hypomethylated or hypermethylated between somatic cells. (C) The percentage of diff-

mCpGs that are hypomethylated or hypermethylated on each autosome during cellular 

differentiation. 

Figure S2. The decrease in DNA methylation levels during cellular differentiation is 

locus- and cell type-specific. (A) Different promoter definitions used in this study and 

the percentage of differentially methylated promoter regions that are hypomethylated or 

hypermethylated during cellular differentiation. Red rectangle indicates the 

transcription start site (TSS). (B) The percentage of differentially methylated gene body 

regions that are hypomethylated or hypermethylated during cellular differentiation. (C) 

The percentage of differentially methylated intergenic regions that are hypomethylated 

or hypermethylated during cellular differentiation. (D) Heat maps of differentially 

methylated genomic regions between mESC and the two mouse somatic cell types after 

clustering analysis. (E,F) Browser representation of methylation profiles of the genes 

with changes in methylation levels at their promoter regions during cellular 

differentiation. Each green vertical bar represents a CpG, and the height of the bar 

represents its methylation level (from 0 to 100%). Red arrow indicates the 

transcriptional orientation of each gene.  

Figure S3. A switch from DNA methylation to histone modifications during cellular 

differentiation in human.  (A) DNA methylation changes in the highly dynamic lose 

regions that lose histone modifications during the differentiation of hESC to hFB. (B) 

DNA methylation changes in the highly dynamic lose regions during the differentiation 

of hESC to hEP. (C) Browser representation of regions that switch from DNA 

methylation to histone modifications during cellular differentiation in human. The track 

scale for all histone modifications is from 0 to 50 normalized reads.  

Figure S4. Epigenomic reconfiguration at promoter regions. (A) Scatter plots of the 

number of genomic CpGs, the ratio of mCpG, and the ratio of diff-mCpG in 10 bp bins 

within the regions of 5 kb upstream and 1 kb downstream of known transcription start 
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site (TSS). (B) Top 10 enriched GO terms of genes with hypomethylated promoters. ★ 

indicates GO terms with Benjamini-corrected p-values < 0.05.  

Figure S5. Epigenomic reconfiguration at promoter regions. (A) Browser 

representation of six genes with alternative promoter usage. Red arrow indicates the 

transcriptional orientation of each gene. The track scale for all mRNA-seq is from 0 to 45 

normalized reads. (B) Browser representation of twelve genes with epigenomic 

reconfiguration at their promoter regions during cellular differentiation. The track scale 

for all mRNA-seq was from 0 to 45. The track scale for all histone modifications is from 

0 to 50 normalized reads. 
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