
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Genome Editing Approach To Uncover
Microtubule-Actin Crosslinking Factor (macf1)
Essential Domains In Establishing Oocyte Polarity
And Nuclear Positioning
Matias Escobar
University of Pennsylvania, matiesco28@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Cell Biology Commons, Developmental Biology Commons, and the Genetics
Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2271
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Escobar, Matias, "Genome Editing Approach To Uncover Microtubule-Actin Crosslinking Factor (macf1) Essential Domains In
Establishing Oocyte Polarity And Nuclear Positioning" (2017). Publicly Accessible Penn Dissertations. 2271.
https://repository.upenn.edu/edissertations/2271

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/11?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2271?utm_source=repository.upenn.edu%2Fedissertations%2F2271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2271
mailto:repository@pobox.upenn.edu


Genome Editing Approach To Uncover Microtubule-Actin Crosslinking
Factor (macf1) Essential Domains In Establishing Oocyte Polarity And
Nuclear Positioning

Abstract
The totipotent egg of most vertebrates is polarized in a so called animal-vegetal (AV) axis that is crucial for
early embryonic development. AV polarity is established during early oogenesis through the formation and
disassembly of the Balbiani Body (Bb) at the vegetal pole. The Bb is a non-membrane bound large mRNP
granule, conserved from insects to humans and composed of mitochondria, RNAs and proteins. The Bb
components, which include germ cell determinants, anchor to the vegetal cortex upon Bb dissociation in late
stage I oocytes. Importantly, Bb dissociation at the oocyte cortex defines the future vegetal pole of the egg.
Our lab discovered in zebrafish the only genes known to function in AV polarity formation in vertebrates:
bucky ball and macf1. On one hand, Bucky ball is required for Bb formation, and is thought to act by the
formation of amyloid-like fibers that capture Bb components. On the other hand, Macf1 is crucial for Bb
dissociation. Macf1 is a conserved and giant multi-domain cytoskeletal linker protein that can interact with
microtubules (MTs), actin filaments (AF) and intermediate filaments (IF). Macf1 is the only factor known to
regulate Bb dissociation, however the Macf1 and cytoskeleton-dependent mechanism by which Macf1
regulates Bb mRNP granule dissociation and, thus, defines AV polarity in the egg is unknown. Here, we
unravel Macf1 function via interrogating, for the first time, individual macf1-encoded domains from its
endogenous locus to determine their requirement in Bb dissociation and ultimately in egg polarity
establishment. Our results show that the Macf1 actin binding domain is essential for Bb dissociation, whereas
the Macf1 plakin repeat domain, which interacts with IF, is dispensable for Macf1 function in this context. The
method presented here is applicable to other cytolinkers involved in human diseases.
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ABSTRACT 

 

GENOME EDITING APPROACH TO UNCOVER MICROTUBULE-ACTIN 

CROSSLINKING FACTOR (MACF1) ESSENTIAL DOMAINS IN ESTABLISHING 

OOCYTE POLARITY AND NUCLEAR POSITIONING 

Matias Escobar -Aguirre 

Mary Mullins 

The totipotent egg of most vertebrates is polarized in a so called animal-vegetal 

(AV) axis that is crucial for early embryonic development. AV polarity is established 

during early oogenesis through the formation and disassembly of the Balbiani Body (Bb) 

at the vegetal pole. The Bb is a non-membrane bound large mRNP granule, conserved 

from insects to humans and composed of mitochondria, RNAs and proteins. The Bb 

components, which include germ cell determinants, anchor to the vegetal cortex upon 

Bb dissociation in late stage I oocytes. Importantly, Bb dissociation at the oocyte cortex 

defines the future vegetal pole of the egg. Our lab discovered in zebrafish the only genes 

known to function in AV polarity formation in vertebrates: bucky ball and macf1. On one 

hand, Bucky ball is required for Bb formation, and is thought to act by the formation of 

amyloid-like fibers that capture Bb components. On the other hand, Macf1 is crucial for 

Bb dissociation. Macf1 is a conserved and giant multi-domain cytoskeletal linker protein 

that can interact with microtubules (MTs), actin filaments (AF) and intermediate filaments 

(IF). Macf1 is the only factor known to regulate Bb dissociation, however the Macf1 and 
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cytoskeleton-dependent mechanism by which Macf1 regulates Bb mRNP granule 

dissociation and, thus, defines AV polarity in the egg is unknown.  Here, we unravel 

Macf1 function via interrogating, for the first time, individual macf1-encoded domains 

from its endogenous locus to determine their requirement in Bb dissociation and 

ultimately in egg polarity establishment.  Our results show that the Macf1 actin binding 

domain is essential for Bb dissociation, whereas the Macf1 plakin repeat domain, which 

interacts with IF, is dispensable for Macf1 function in this context. The method presented 

here is applicable to other cytolinkers involved in human diseases.  
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Chapter 1  : General Introduction 

 

 

Portions of this chapter were published in “Localization in Oogenesis of Maternal 

Regulators of Embryonic Development”, book: Vertebrate Development: 

Maternal to Zygotic Control. Escobar-Aguirre M, Elkouby YM, Mullins MC. Adv Exp Med 

Biol. 2017;953:173-207.  
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Cell polarity is a universal strategy for organizing the intracellular space to 

mediate cell function. Cell polarity in development often relies on mechanisms of RNA 

localization to specific subcellular domains to define the identity of future developing 

tissues. The totipotent egg of most animals illustrates in a grand way the importance of 

cell polarity and RNA localization in regulating multiple crucial developmental events. 

The polarization of the egg arises during its development in oogenesis. RNAs localize 

asymmetrically in the early oocyte defining its animal-vegetal (AV) axis, which upon 

further elaboration in mid- and late-oogenesis stages produces a mature egg with 

specific localized factors along its AV axis that will define the future anterior-posterior 

(AP) and dorsal-ventral (DV) axes of the embryo. Furthermore, AV polarity confines 

germ cell determinants to the vegetal pole, from where they redistribute to the cleavage 

furrows of the 2- and 4-cell stage embryo, ultimately specifying the primordial germ cells 

(PGCs). The sperm entry region during fertilization is also defined by the AV axis. In 

frogs and fish sperm enters through the animal pole, similar to the mouse where it enters 

predominantly in the animal half. Thus, AV polarity establishment and RNA localization 

are involved in all the major events of early embryonic development (Figure 1.1).  

Studies in Xenopus have identified many animally and vegetally localized factors 

that distribute either to the germ cells, the germ layers, or specify the axes in the early 

embryo (Bubunenko et al., 2002; Claussen and Pieler, 2004; Claussen et al., 2011; 

Cuykendall and Houston, 2010; Houston et al., 1998; Kaneshiro et al., 2007; Ku and 

Melton, 1993; Kwon et al., 2002; Rebagliati et al., 1985; Weeks and Melton, 1987). 



 

 

3 

Genetic screens in the zebrafish or knockdown approaches in Xenopus have revealed 

the function for some of these factors and discovered new ones. In the zebrafish, bucky 

ball (buc) and macf1 genes were identified in a maternal-effect mutant screen in 

zebrafish and provide the only known genetic entry points for studying the early events 

of AV polarity establishment during oogenesis (Bontems et al., 2009; Dosch et al., 2004; 

Gupta et al., 2010; Marlow and Mullins, 2008; Wagner et al., 2004). Vegetally-localized 

RNAs acting in DV axis formation include wnt8 in zebrafish (Erter et al., 2001; Lekven et 

al., 2001; Varga et al., 2007), and wnt11 in Xenopus (Cha et al., 2008; Cha et al., 2009; 

Ku and Melton, 1993; Tao et al., 2005), while vegetally-localized VegT in Xenopus 

functions in germ layer formation (Clements et al., 1999; Xanthos et al., 2001). Genetic 

screens in zebrafish also identified glutamate receptor interacting protein 2 (grip2a or 

hecate) (Ge et al., 2014) and syntabulin (tokkaebi) (Nojima et al., 2010) as key vegetally-

localized regulators of DV axis formation in the egg.  

Oocyte polarity regulates the localization of germ cell determinants  

Animals have developed two primary strategies to specify the germ line. In 

mammals, the germ cell lineage is induced in the epiblast by the action of BMP4 

produced in the extraembryonic ectoderm (Lawson et al., 1999). In other vertebrates, 

and in most insects, germ cells are specified by the inheritance of the germ plasm (GP), 

a cytoplasmic aggregate containing RNA and proteins sufficient to determine the 

primordial germ cell (PGC) fate (Kobayashi et al., 1994)(reviewed (Extavour and Akam, 

2003). In zebrafish and Xenopus, GP accumulates at the 2- and 4-cell stages at the 

ends of the cleavage furrows (Figure 1.1C)(Hashimoto et al., 2004; Kloc et al., 2001; 
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Yoon et al., 1997). Removal of GP diminishes or ablates PGC formation in fish and frogs 

(Ikenishi et al., 1974; Smith, 1966; Whitington and Dixon, 1975; Yoon et al., 1997; Zust 

and Dixon, 1975). Conversely, GP transplantation induces PGC formation (Kobayashi et 

al., 1994), thus providing compelling evidence for GP function in germ cell specification. 

In Xenopus the GP becomes localized during oogenesis to the oocyte vegetal 

cortex, where it remains localized in the egg (Figure 1.1A) (Heasman et al., 1984) 

(Houston and King, 2000; Kloc et al., 2002). In the Xenopus embryo the vegetal cells 

that inherit the GP then adopt the PGC fate (Houston, 2013; Whitington and Dixon, 

1975). In zebrafish it is more complex: some GP components localize to the oocyte and 

egg vegetal pole (e.g. dazl RNA) (Kosaka et al., 2007), whereas vasa RNA, for instance, 

is initially vegetally-localized in the oocyte, then becomes radially localized to the oocyte 

cortex, where it remains in the egg (Kosaka et al., 2007). After egg activation in 

zebrafish, the GP components from distinct locations accumulate at the cleavage 

furrows of the 2- and 4-cell stage embryo (Braat et al., 1999; Knaut et al., 2000; Riemer 

et al., 2015; Yoon et al., 1997).  The difference between frog and fish is likely due to the 

distinct architectures of these embryos. In zebrafish the yolk lies at the vegetal pole of 

the egg separate from the blastomeres that form in the animal half, whereas in frog the 

yolk and cytoplasm are not segregated from each other and blastomeres will comprise 

the entire AV extent of the egg. So in the zebrafish the GP must re-aggregate at the 

cleavage furrows at the yolk-cytoplasm interface at an animal-vegetal mid-region, 

whereas in the frog the vegetal-most blastomeres inherit directly the vegetal-oocyte 

localized GP to become the PGCs.  
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In both frogs and fish, the germ plasm components are first localized in stage I 

oocytes to a structure called the Balbiani body (Bb) (Figure 1.1 A,B) (Chang et al., 2004; 

Heasman et al., 1984; Kloc and Etkin, 1995; Kloc et al., 1998; Kloc et al., 1996; Kosaka 

et al., 2007; Schnapp et al., 1997; Wilk et al., 2005). Here I will generally use the 

zebrafish oocyte staging convention (Selman et al., 1993), which is slightly different to 

that in Xenopus. The Bb, also called the Mitochondrial Cloud in Xenopus, is a highly 

conserved structure present from insects to humans where specific RNAs, proteins and 

organelles, like mitochondria become localized (reviewed (Kloc et al., 2004). These 

RNAs and proteins, including GP components, passage via the Bb to the oocyte vegetal 

cortex (Figure 1.1 .1B) (Kloc and Etkin, 1995; Melton, 1987; Wilk et al., 2005; Yisraeli et 

al., 1989, 1990; Zhou and King, 1996b).  Later in this chapter, I will discuss in detail what 

is known about the Bb function in the oocyte.  

Determinants of the embryonic body axes originate in the polarized oocyte 

During gastrulation the main body axes are patterned in vertebrate embryos 

giving rise to a body plan displaying a dorsal-ventral (DV) and anterior-posterior (AP) 

axes.  The factors that guide this remarkable morphogenetic processes can be found 

polarized in the developing oocyte prior to the emergence of a competent zygote.  

Maternal factors that localizes to the vegetal pole in the oocyte, later act in the 

establishment of the DV axis of the embryo (Figure 1.1B) (De Robertis and Kuroda, 

2004; Langdon and Mullins, 2011). In both Xenopus and zebrafish, the dorsal 

determinants are localized in the oocyte and end up on the dorsal side of the embryo 

during gastrulation.  These dorsal determinants are Wnt ligands that in Xenopus 
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corresponds to a combination of Wnt11 and Wnt5a, whereas in zebrafish the ligand is 

Wnt8(Cha et al., 2008; Cha et al., 2009; Tao et al., 2005) (Lu et al., 2011)..  The 

activation of the Wnt pathway by these ligands induces β –catenin nuclear localization 

on the future dorsal side of the embryo that in combination with other morphogen 

signaling, like Nodal and FGF, activates the developmental program for the embryo 

dorsal identity (De Robertis and Kuroda, 2004; Langdon and Mullins, 2011).  

Despite using different Wnt ligands, dorsal determinant activity is regulated by 

similar principles in Xenopus and zebrafish. The wnt ligand mRNAs are initially localized 

to the vegetal pole of the egg and zygote (Figure 1.1 B) (Ku and Melton, 1993; Lu et al., 

2011; Nojima et al., 2010; Nojima et al., 2004). Upon fertilization in Xenopus and egg 

activation in zebrafish, microtubules reorganize to pave the way for these mRNAs to 

translocate asymmetrically in an animal direction, resulting in their new localization 

specifically on the future dorsal side of the embryo (Heasman, 2006; Ku and Melton, 

1993; Lu et al., 2011; Tao et al., 2005). Prior to this dorsal transport, these mRNAs are 

translationally silent. While wnt8 translation regulation has yet to be elucidated in 

zebrafish, wnt11 mRNA in Xenopus was shown to load onto polysomes only after 

detaching from the microtubules at its dorsal destination during cleavage stages 

(Schroeder et al., 1999). A similar mechanism is expected for zebrafish Wnt8. The 

coordinated localization and translation regulation of these mRNAs ensures their 

dorsally-localized activity, and results in a dorsal to ventral Wnt gradient (Figure 1.1B).  
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Two factors identified in maternal-effect screens in zebrafish, syntabulin 

(tokkaebi) and grip2a (hecate), are localized to the vegetal pole of the egg and play key 

roles in dorsal determinant translocation following egg activation (Ge et al., 2014; Nojima 

et al., 2010). Consistent with this role, females mutants for these genes produce 

ventralized embryos.  Syntabulin is a microtubule-motor linker protein that can bind the 

Kinesin I motor heavy chain, Kif5b (Nojima et al., 2010). Syntabulin protein localizes to 

the vegetal pole of the egg and translocates asymmetrically in a microtubule-dependent 

manner, consistent with it playing a role in translocating dorsal determinants on the 

microtubule array. The grip2a mRNA also localizes to the vegetal pole and itself is 

translocated asymmetrically like the wnt transcripts following egg activation (Figure 1.1B) 

(Ge et al., 2014). In eggs of grip2a mutant females, the vegetal pole microtubule network 

is compromised and the asymmetric translocation of wnt8 and grip2a itself fails (Ge et 

al., 2014). The vegetal localization of grip2a and syntabulin are conserved in Xenopus, 

as well as the function of Syntabulin (Colozza and De Robertis, 2014; Nojima et al., 

2010). Although, grip2a is later localized to PGCs in Xenopus (Ge et al., 2014; 

Kaneshiro et al., 2007; Kirilenko et al., 2008; Tarbashevich et al., 2007). 

 

The wnt8, wnt11, syntabulin, and grip2a mRNAs are all localized to the vegetal 

pole of the egg (Ge et al., 2014; Kirilenko et al., 2008; Ku and Melton, 1993; Lu et al., 

2011). Moreover, with the exception of wnt11 (Ku and Melton, 1993), their localization to 

the vegetal pole occurs early in oogenesis and is executed by the Balbiani body (Bb) 

(Kirilenko et al., 2008; Lu et al., 2011; Tarbashevich et al., 2007). These mRNAs localize 
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to the Bb and the future vegetal pole of the early oocyte, where they remain anchored 

throughout oogenesis and in the egg. Thus, the AV axis of the oocyte is key to forming 

the dorsal organizer and subsequently establishing the basic vertebrate embryonic body 

plan (Figure 1.1).  

Oocyte development and the formation of the Bb.  

Germline stem cells give rise to oogonial cells which are the oocyte precursors.  

The process of oocyte specification involves the successive mitotic divisions with 

incomplete cytokinesis that causes to oogonial cells to remain interconnected to their 

sister cells trough cytoplasmic bridges.  Thus, oogonia form a cyst in which the oocyte 

develops during early oogenesis and that is believed to allow for the exchange of factors 

that ensure synchronous progression.  The cyst will eventually breakdown and oocytes 

become surrounded by somatic follicle cells that proliferate, as the oocyte develop and 

grows, forming a multilayer in late stage oocytes. After the final mitotic division, oogonia 

enters meiosis I characterized by a long prophase I where it undergoes genetic 

recombination and cell growth.  Later in oogenesis, the first meiotic division is completed 

during oocyte maturation, whereas the second meiotic division will only take place after 

fertilization. 

Until recently, the first indication of polarity in the oocyte was the detection of the 

Balbiani body (Bb) at a mid-diplotene stage of prophase I or earlier asymmetric Bucky 

ball protein in zebrafish that was more dispersed (Heim et al., 2014; Riemer et al., 2015). 

It has now been shown in zebrafish that the first stages of Bb formation and oocyte 

polarization occur much earlier, at the onset of meiosis (Elkouby et al., 2016). In the pre-
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meiotic oogonial stages Bb precursor components, such as Bucky ball, GasZ and 

mitochondria, are distributed symmetrically in the perinuclear cytoplasm (Figure 1.2A). 

These Bb components initiate their specific and asymmetric localization at the early 

meiotic zygotene stage where a polarized nuclear configuration known as the 

chromosomal bouquet is established.  Here, the telomeres of the chromosomes move 

and rotate tethered to the nuclear envelope and become clustered to one pole.  The 

movement is mediated by microtubules along with the centrosome and ultimately 

facilitates chromosomal pairing and meiotic recombination. (Ding et al., 2007; Link et al., 

2014; Sato et al., 2009; Scherthan, 2001; Shibuya et al., 2014a; Shibuya et al., 2014b). 

Remarkably, Bb precursors initially localize to the cytoplasmic region that 

apposes the bouquet telomere cluster and contains the centrosome (Elkouby et al., 

2016).  Disruption of microtubules causes a loss of telomere clustering of the bouquet 

with a parallel loss of mitochondrial enrichment to form the Bb precursor aggregate, 

indicating that the pre-aggregation of mitochondria and the establishment of the bouquet 

configuration are coordinated (Elkouby et al., 2016).  Subsequent to the bouquet stage, 

the Bb precursor components aggregates within a nuclear cleft that gradually rounds up 

concomitantly with the pre- Bb aggregates appearing more condensed and spherical, 

displaying the typical mature Bb of mid-diplotene stages .  Altogether, centrosome and 

telomere cluster association at zygotene stages marks the site for Bb formation and, 

perhaps, also plays a role in predicting the site for Bb disassembly at late stage I that 

ultimately defines the oocyte vegetal pole (Elkouby et al., 2016). 
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The Bb after 170 years 

The Bb is a universally conserved structure first described in oocytes from 

insects around 170 years ago (Cox and Spradling, 2003; Jaglarz et al., 2003; WH, 

1845), present in arthropods (Jedrzejowska and Kubrakiewicz, 2007), zebrafish (Marlow 

and Mullins, 2008), frogs (Dumont, 1978), birds (Carlson et al., 1996; Rodler and 

Sinowatz, 2013; Ukeshima and Fujimoto, 1991), rodents (Pepling et al., 2007; Weakley, 

1967), primates (Barton and Hertig, 1972), to humans (Albamonte et al., 2013; Hertig, 

1968).  Across all these species, the Bb appears as an aggregate of mitochondria and 

electron-dense material adjacent to the nucleus.  Though the Bb is present in 

mammalian early oocytes, it is not known if it functions in early oocyte polarity or 

whether plays a role later, perhaps related to events like the asymmetric formation of the 

antral cavity.  

Bb function in RNA localization of germ cell and dorsal determinants.  

Throughout oogenesis, dorsal determinants and germ plasm components 

distribute within distinct compartments often reflecting the oocyte AV polarity. Early 

studies in Xenopus identified several vegetally-localized RNAs and determined their 

localization dynamics during oogenesis (Cuykendall and Houston, 2010; Houston et al., 

1998). Among them, Xcat/nanos (Forristall et al., 1995; Mosquera et al., 1993) and 

Vg1/gdf1 (Yisraeli and Melton, 1988) became models for unraveling RNA localization 

mechanisms. nanos RNA localizes to the Bb in stage I oocytes, then translocates via the 

Bb to the vegetal cortex, where it becomes docked during Bb disassembly at the end of 

stage I (stage II in frog) of oogenesis. On the other hand, Vg1 localization to the vegetal 
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pole begins during stage III and culminates anchoring to the vegetal cortex by stage VI 

in frog (Mowry and Cote, 1999). The localization patterns of nanos and Vg1 led to 

defining two pathways of RNA localization, an early pathway for RNAs that are 

transported via the Bb (also called the METRO pathway) (Kloc and Etkin, 1995; Wilk et 

al., 2005) and a later pathway for RNAs, like Vg1, that localizes at the vegetal cortex 

after the Bb has disassembled (Mowry and Cote, 1999). These two pathways are further 

distinct mechanistically in that the early pathway is believed not to require the 

cytoskeleton, whereas the late pathway requires microtubules for successful localization 

of RNAs to the vegetal pole.  

The delivery of the early pathway mRNAs to a restricted region of the oocyte 

cortex specifies this region as the vegetal pole, and the process is executed by the 

Balbiani body. In frogs and zebrafish, transcripts that are localized via the Bb will 

constitute the germ plasm during early development , such as dazl, vasa, and nanos 

(Kosaka et al., 2007; Mosquera et al., 1993; Zhou and King, 1996a); others mRNAs 

encode dorsal determinants and its localizing machinery (like wnt8, grip2a, and 

syntabulin) (Colozza and De Robertis, 2014; Ge et al., 2014; Kirilenko et al., 2008; Lu et 

al., 2011; Nojima et al., 2010; Tarbashevich et al., 2007). In addition, the Bb contains 

mRNA binding proteins (like Rbpms2 (Hermes) (Kosaka et al., 2007; Song et al., 2007)) 

and RNP scaffold proteins (like GasZ (Marlow and Mullins, 2008; Yan et al., 2004; Yano 

et al., 2004).  

In the late pathway, RNAs like Vg1 in frog (Cote et al., 1999), and bruno-like and 

mago nashi in zebrafish (Kosaka et al., 2007), localize to the vegetal pole in stage III of 
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oogenesis, at this stage the Bb has disassembled and its components were loaded to 

the vegetal cortex earlier. The late vegetal mRNA localization pathway during stages III-

V in Xenopus depends on microtubules (MTs) that radiate from a dense perinuclear 

array to the cortex in continuous filaments, and by stage VI oocytes display a perinuclear 

cap enriched in tubulin at the vegetal side of the nucleus (Gard, 1991). The molecular 

mechanisms that drive RNA localization are better understood for the late pathway, in 

particular for the Xenopus Vg1 RNA (Figure 1.2C). Interestingly, in zebrafish Vg1 (gdf3) 

RNA localizes to the animal pole, instead of the vegetal pole of stage III oocytes. Studies 

in frog oocytes show that a 340-nt localizing element (LE) in the 3’ UTR of Vg1 contains 

repetitive sequence motifs necessary for the vegetal localization of injected Vg1 RNA. 

These motifs are the sequences UUUCU (VM1) and UUCAC (E2) that are necessary 

also for localization of RNAs through the early pathway. The clustering of E2 and/or VM1 

motifs might be important for LE recognition (Betley et al., 2002; Choo et al., 2005; King 

et al., 2005).  

The current understanding of the RNA localization process in Xenopus oocytes 

suggests that early and late pathways may not represent two independent events, but 

rather a continuum mechanism of RNA localization though with differences in the role of 

MTs, which seem required only in the late pathway (chapter 2) (Chang et al., 2004) 

(Zhou and King, 1996b). Interestingly, when RNAs that localize through the early 

pathway are injected into stage III oocytes in Xenopus, they can still localize to the 

vegetal cortex (Choo et al., 2005; Claussen et al., 2004). Moreover, the late pathway 

Vg1-LE when injected into stage I oocytes, can localize to the Bb (Choo et al., 2005). 
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Importantly, these RNAs require the same motifs in their 3’UTRs for early and late 

pathway localization, suggesting that the RNA-protein machinery functioning in the late 

pathway may be similar to that used in the early pathway (Choo et al., 2005; Claussen et 

al., 2004). 

The Animal pole localization of RNAs 

At the animal pole, the egg is fertilized in frogs and fish and the blastodisc forms 

in zebrafish. Like at the vegetal pole, RNAs localize to the animal pole during oogenesis, 

though they localize after the Bb disassembles, suggesting that vegetal pole identity is 

acquired first. In zebrafish, RNAs like cyclin B1 (cycB) and pou5f3 (previously called 

pou2) localize to the animal pole in stage II and early stage III, respectively, remaining 

there in a cortical and tight distribution throughout oocyte maturation (Figure 1.2C) 

(Howley and Ho, 2000). Interestingly, Vg1 RNA in zebrafish localizes to the animal pole 

right below the micropyle (Marlow and Mullins, 2008), unlike in frogs where Vg1 localizes 

to the vegetal pole (Mowry and Melton, 1992). As stated earlier, the lack of vegetal pole 

identity in zebrafish buc mutants causes the formation of multiple micropyles and a radial 

animal identity with no recognizable blastodisc in the egg (Dosch et al., 2004) (Marlow 

and Mullins, 2008). Similarly, pou5f3 and cycB RNAs show a radial localization in buc 

mutant stage III oocytes, indicating that Buc defines the egg AV axis by also restricting 

the localization of animal RNAs in the oocyte.  

In stage IV, zebrafish oocytes undergo maturation. Through this process, oocytes 

progress from prophase of meiosis I (MI) to metaphase of meiosis II (MII), extruding the 

first polar body at the animal pole. Several changes occur during this process, including 
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GV migration to the animal pole and translation of RNAs promoting meiotic progression 

(Figure 1.2C). Before the oocyte matures, animally-localized RNAs like cycB, are 

translationally repressed. CycB protein is required during oocyte maturation, along with 

Cdc2 kinase, as part of the Maturation-Promoting Factor (MPF) that drives meiotic 

progression (Kondo et al., 1997; Masui, 1972; Nagahama and Yamashita, 2008). Thus, 

cycB mRNA localization to the animal pole is important for CycB localized translation 

and activity, which allows, in conjunction with other factors, oocyte meiotic progression 

and competence.  

Bb assembly and disassembly regulate AV polarity establishment 

Two maternal-effect mutants identified in zebrafish, bucky ball (buc) and macf1 

(microtubule crosslinking factor 1), have provided the only known genes required for AV 

polarity establishment in vertebrates (Figure 1.2B) (Bontems et al., 2009) (Marlow and 

Mullins, 2008) (Gupta et al., 2010). In contrast to a normal egg with cytoplasm in a 

distinct blastodisc at the animal pole and yolk at the vegetal pole, buc and macf1 mutant 

eggs show radially distributed cytoplasm around a centrally-localized yolk. Moreover, the 

primary defect in buc and macf1 mutants is evident much earlier, specifically during the 

early Bb localization pathway in stage I oocytes (discussed further in next section). buc 

mutant oocytes fail to form the Bb and RNAs that are normally vegetally localized are 

instead unlocalized and remain dispersed in the cytoplasm. In contrast, in macf1 

mutants the Bb forms and RNAs localize to it, however, they fail to anchor to the 

prospective vegetal cortex and instead they remain in an apparent persisting Bb (Gupta 
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et al., 2010). Thus, Buc and Macf1 provide a molecular link to the early processes by 

regulating Bb assembly and disassembly. 

Buckyball  

The buc transcript and protein localize to the Bb in zebrafish and, after Bb 

disassembly, to the oocyte vegetal cortex (Figure 1.2A,B) (Heim et al., 2014; Riemer et 

al., 2015). Furthermore, Buc protein localizes to the germ plasm in the early embryo 

(Figure 1.1C) (Riemer et al., 2015), where it can increase PGC number in 

overexpression experiments  (Bontems et al., 2009). So far, two Buc-interacting proteins 

have been reported: Rbpms2 (Hermes) (Heim et al., 2014) and Kinesin-1 (Campbell et 

al., 2015; Forbes et al., 2015). Rbpms2 is postulated to function with Buc in Bb 

formation, whereas Kinesin-1 plays distinct role in germ cell formation. Hence, Buc 

function connects the early stages of AV polarity and RNA localization with early 

developmental events of germ line specification.  

Studies of the buc gene structure show the importance of the introns and 3’ UTR 

to its function in AV polarity establishment. Several transgenes were generated 

containing either all or none of the buc gene introns (gbuc or intronless-buc, 

respectively), with a full-length or truncated 3’ UTR (Heim et al., 2014). Analysis of eggs 

from buc mutant females carrying a single copy of a transgene showed that the egg AV 

polarity defect is rescued in a higher ratio using gbuc containing the full-length 3’UTR 

than the truncated version. These results suggest that the buc-3’UTR plays a regulatory 

role, possibly in its localization or translation, however, it is not essential, since some 

embryos were rescued to wild type. In buc mutants, the buc-intronless transgenes either 
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with the full-length or truncated 3’UTR could not rescue egg or oocyte polarity. In fact, 

these buc-intronless transgenes induced a partially penetrant dominant-negative (DN) 

effect, producing oocytes or eggs with no AV polarity. This DN effect is observed in a 

buc heterozygous or wild type background, with either buc-intronless carrying the full-

length or truncated 3’UTR.  

In another transgene construct where buc-intronless carries the original bucp106 

mutation (bucp106-intronless) (Bontems et al., 2009; Marlow and Mullins, 2008), it fails 

to rescue buc mutants (Heim et al., 2014), as expected. However, unexpectedly this 

transgene, when homozygous, induces a DN effect in females. Furthermore, a buc-

intronless transgene in a wild-type background can cause oocyte polarity defects and 

formation of what appears to be supernumerary Bbs (Heim et al., 2014). The protein and 

RNA constituents of these Bbs has not yet been determined but they look like typical 

Bbs by histological analysis. Additional studies will be needed to determine the nature of 

these ectopic Bbs: for example, if they arise due to incomplete coalescence of Bb 

precursors, to formation of new Bbs at distinct time points, or to fragmentation of a Bb. It 

will also be interesting to determine if these supernumerary Bbs disassemble at the 

cortex as in wild-type oocytes or if some or all do not, or do so abnormally leading to the 

AV egg defects observed in these mutants. If these supernumerary Bbs can 

disassemble and dock their contents to the cortex, one would expect it to lead to an 

expansion of vegetal pole identity, possibly at the expense of animal identity, the 

opposite phenotype to a buc loss-of-function mutant oocyte.  
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It is tempting to speculate that Buc may function and be regulated by 

mechanisms similar to those for the GP and oocyte posterior pole regulator Oskar (Osk) 

in Drosophila. In flies, osk mutant females produce embryos that lack PGCs and fail to 

form abdominal segments (Ephrussi et al., 1991). Like many other localized mRNAs, osk 

RNA relies on 3’UTR motifs for its proper localization, as well as a unique stem-loop 

sequence within the coding region, and splicing of the first intron. The first intron splicing 

assembles the exon junction complex (EJC) next to the stem-loop, which together are 

required for osk mRNA transport and posterior pole localization (Ghosh et al., 2012). 

The buc-intronless transgenes suggest the importance of the introns in buc regulation or 

function.  However, additional studies will be required to determine the nature of the 

intron requirement, whether it be for buc RNA localization via EJC assembly as with osk, 

or instead due to transcriptional regulatory elements localized within an intron, or to 

facilitate mRNA transport out of the nucleus, or another mechanism.  

Osk and Buc may have some homologous functions in GP assembly. In 

Drosophila at the oocyte posterior pole, osk RNA is translated, where accumulation of 

Osk protein enhances the recruitment of GP components that specify the germ line 

(Ephrussi and Lehmann, 1992; Glotzer et al., 1997; Jenny et al., 2006; Markussen et al., 

1995; Staudt et al., 2005). Heim et al 2014, proposed a similar mechanism in zebrafish 

for Buc, whereby asymmetric/localized translation of buc leads to the recruitment of Bb-

localized RNAs, including buc RNA, which further produces Bb-localized Buc protein in a 

positive feedback mechanism of Bb component entrapment and hence Bb formation. 

One major difference between Osk and Buc is that Osk can bind GP RNA components 
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directly, whereas Buc appears unable to do so and may rely on other interacting proteins 

to assemble RNA into the GP, like Rbpms2.  Alternatively or in addition, a critical step in 

oocyte polarity may be Buc protein aggregation. In early stage I oocytes Buc protein is 

asymmetrically localized but not yet in a single aggregate (Elkouby et al., 2016; Heim et 

al., 2014 ), suggesting that a factor may mediate Buc aggregation or that Buc must 

accumulate to a particular level before it aggregates into a single bolus as the Bb.  

The Bb is a large RNP granule that resembles other similar structures; like P-

granules in C. elegans, polar granules in Drosophila, germ granules in germ cells and 

stress granules.  RNP granules are non-membrane bound compartments that isolates its 

components from the cytoplasm.  The Bb tightly aggregates RNAs- like germ cell 

determinants, proteins and mitochondria in the oocyte.  How does Buc regulates Bb 

assembly? Its becoming more apparent that intrinsically disordered proteins (IDP), that 

lack a defined tertiary structure, bear properties that serve the assembly of the RNP 

granules.  The MEG family of proteins, for instance, are IDPs that regulate the assembly 

of P-granules in C. elegans (Wang et al., 2014). Similarly, Buc and the frog homolog 

Xvelo, are both IDPs that regulates the assembly of the Bb RNP granule.  Xvelo is highly 

concentrated in the Bb and assembles an amyloid like matrix in which Bb components 

are contained. Moreover, Xvelo contains a prion-like domain (PLD) within the N-terminal 

disordered region that is required for Xvelo localization to the Bb and assembly (Boke et 

al., 2016).  The signals that drive the early Bb assembly by regulating Bux/Xvelo remain 

to be determined, however, like in P-granules assembly, where dephosphorylation of 
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MEG-1 and MEG-3 is the key event (Wang et al., 2014), it is possible that in zebrafish 

changes in the phosphorylation state of Buc/Xvelo regulates Bb formation. 

Macf1: A cytolinker regulates Bb dissociation  

Macf1 is the only factor known to regulate Bb disassembly.  Macf1 is a conserved, giant 

cytolinker that can interact with all cytoskeleton components and functionally integrate 

them.  In the absence of Macf1, the Bb fails to disassemble and, as a consequence, AV 

polarity is not established. In addition, the nucleus displays an acentric position in 

macf1a mutants.  Thus, Macf1 functions in Bb RNP granule disassembly ensuring the 

establishment of AV polarity in the egg.  Macf1 conserved function suggests a major role 

for the cytoskeleton in this process.  

Macf1 is modular; it is expressed as multiple isoforms with distinct arrays of 

domains. For instance, Macf1 binds actin through its amino-terminal actin binding 

domain (ABD) that is composed of two calponin-homology (CH) domains; CH1 and CH2. 

Certain Macf1 isoforms contain only the CH2 domain and consequently bind actin with 

lower affinity (Bernier et al., 1996). Another mammalian isoform, Macf1b, is the only 

isoform that contains a Plakin repeat domain (PRD) for interaction with intermediate 

filaments (IF) (Lin et al., 2005). On the other hand, most macf1 isoforms contain a 

Microtubule binding domain (MTBD) that associates with and stabilizes MTs 

(Karakesisoglou et al., 2000; Kodama et al., 2003; Subramanian et al., 2003). Macf1 

domains operate as independent functional units to provide a range of actions in 

cytoskeleton integration. In addition to the cytoskeleton binding domains, Macf1 contains 

several spectrin repeats (SRs) that form linear rods ultrastructurally, giving length and 
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some flexibility to spectraplakins(Grum et al., 1999), and separating their functional 

domains, Macf1 also contains a Plakin domain that mediates interaction with 

desmosomes (Styers et al., 2006) (Smith and Fuchs, 1998) and a EF-hands (Ca2+ 

binding motif) that facilitates MT binding (Bottenberg et al., 2009).  

In general, loss of Macf1 in different cell types, including zebrafish oocytes 

(Gupta et al., 2010), causes disorganized MTs (Karakesisoglou et al., 2000; Lee et al., 

2000). In mice, Macf1 is essential for early development and mutant embryos die at 

gastrulation stage (Chen et al., 2006). In mammalian cells, Macf1 acts as a plus (+) tip 

MT-binding protein and mediates MT and actin integration at the cell cortex (Kodama et 

al., 2003; Wu et al., 2008). Keratinocytes require Macf1 for cell migration, where Macf1 

integrates MTs and actin cables to maintain focal adhesions (Wu et al., 2008). In 

invertebrates, the macf1 homologs shot (fly) and VAB-10 (worm) have diverse functions 

in axon targeting, nuclear migration, epidermal attachment, and germ cell maintenance 

(Bosher et al., 2003; Bottenberg et al., 2009; Kim et al., 2011; Lee et al., 2000; Lee and 

Kolodziej, 2002a, b; Roper and Brown, 2004; Sanchez-Soriano et al., 2009; 

Subramanian et al., 2003). While the loss of macf1 affects a variety of tissues and 

processes in different species, all share failures in cytoskeletal integration that disrupt 

cellular function.  

In the Drosophila ovary, Shot, the Macf1 homolog in flies, is required for the 

organization of the fusome and for oocyte progression. The fusome is a membranous 

structure that extends between the cytoplasmic bridges of the 16 cells of the oogonial 

cyst and which functions in oocyte specification (Roper and Brown, 2004). Shot localizes 
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to the fusome, and functions to recruit MT for the transport of factors, including 

centrosomes, towards the oocyte. Shot in Drosophila probably acts much earlier during 

oogenesis than Macf1 in zebrafish, since the macf1 mutant phenotype is visible only 

around mid-stage I of oogenesis, long after the oogonial cyst stage (Gupta et al., 2010). 

In vertebrate oocyte development, microtubules (MT), actin, and intermediate-

filament (IF) cytoskeletal components are all detected in different regions of the oocyte. 

Cytokeratins-a type of intermediate filament, for instance, is first detected  in the Bb 

(Gard et al., 1997), and in the cytoplasm as oogenesis progresses in Xenopus. On the 

other hand, polymerized MT are not detected in the Bb and show intricate cytoplasmic 

networks in early and late stage Xenopus oocytes (Gard, 1991, 1992, 1999; Gard et al., 

1995b). Actin distributes cortically and is present also intranuclearly (Gard, 1999; Gupta 

et al., 2010; Marlow and Mullins, 2008), (Figure 1.2B) (Gupta et al., 2010). Paradoxically, 

disruption of MT and actin filaments in early stage I oocytes does not affect Bb structure, 

nor the localization of RNAs to the Bb through the early localization pathway. 

Nevertheless, Macf1 function suggests that the cytoskeleton is relevant for the early 

pathway of RNA localization that includes the anchoring of RNAs to the vegetal cortex 

after Bb disassembly.  While phoshorylation of MEG1 and 3 by kinases leads to P-

granules disassembly, the signals that trigger Bb disassembly and ultimately define the 

vegetal pole of the oocyte are still unknown.  Thus, elucidating Macf1 function in Bb 

disassembly will shed light into the unknown processes of cytoskeleton integration that 

are required for oocyte polarity establishment (Gard et al., 1997).  
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Macf1 functions in positioning the nucleus of the oocyte in a function that may 

also involve the cytoskeleton. Nesprins that reside in the outer NE also function in 

positioning the nucleus in diverse cellular contexts by interacting with the cytoskeleton.  

Nesprin 1 and 2 can directly interact with the cytoskeleton through their ABD, whereas 

the Nesprin-3α isoform lacks the ABD and instead interacts in vitro with the ABD of 

Plectin and Macf1 (Wilhelmsen et al., 2005) (Postel et al., 2011).  Nesprin interacts with 

the inner nuclear membrane Sun protein, which interacts with the nuclear lamina. Sun-

Nesprin establish bridges spanning the nuclear envelope, connecting the nucleoskeleton 

with the cytoskeleton, referred to as the LINC (Linker of nucleo- and cyto-skeleton) 

complex (Mellad, Warren et al. 2011, Sosa, Rothballer et al. 2012, Sosa, Kutay et al. 

2013)(Crisp et al., 2006; Meinke et al., 2011). The LINC complex is important for nuclear 

anchorage, nuclear migration, anchoring the MTOC to the nucleus, among other 

functions (Starr and Fridolfsson, 2010), suggesting that they may act similarly in the 

oocyte, which is also supported by the Macf1-ABD and Nesprin-3 interaction.  Whether 

Macf1 and the LINC complex acts together in positioning the nucleus remains to be 

determined. 

Spectraplakins are difficult to address functionally, since they are large proteins 

encoded by long transcripts with a variety of isoforms that challenge traditional cloning 

and transgenic techniques. Moreover, their function relies on the presence of specific 

functional domains that are cell type and context dependent. Fortunately, genome-

editing approaches offer new possibilities to study them, including in zebrafish, where 

macf1 loss of function does not cause embryonic lethality like in mammals (Kodama et 
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al., 2003). Thus, zebrafish oocytes offer a unique possibility to interrogate the 

requirement of Macf1 single modules in cell polarity. Such studies will help to understand 

the relationship between the cytoskeleton, the Bb and the RNA localization machinery 

that together drive AV polarity establishment during early oogenesis.  
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Figure 1.1: Function of localized maternal products. 

Establishment of the AV axis in the egg defines the: A) sperm entry region, B) dorsal-ventral 

(DV) axis, and C) the location of the germ plasm, which specifies the PGCs. A) In frog, fish, 

and mouse, the oocyte nucleus migrates to the animal pole during oocyte maturation and 

extrudes the first polar body. Frog and fish eggs are fertilized in the animal half, and in 

zebrafish the sperm enters through the micropyle that forms at the animal pole.  Following 

fertilization, the second polar body is also extruded at the animal pole. At the egg vegetal pole, 

the germ plasm (red) and dorsal determinants (green) are localized. B) Upon fertilization, 

dorsal determinants are transported from the vegetal pole to the future dorsal side of the 

embryo. Here, activation of the Wnt pathway specifies the dorsal fate. C) The germ plasm, 

including Bucky ball, accumulates at the cleavage furrows of the 2- and 4-cell stage embryo, 

illustrated for the zebrafish embryo here. 
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Figure 1.2: RNA localization and AV axis establishment during oogenesis. 
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A) In pre-meiotic oogonia, Bb precursors are distributed radially in the cytoplasm, 

telomeres are scattered intranuclearly, and the centrosome (yellow) is at a perinuclear 

position, possibly positioned facing the cytoplasmic bridge of the last mitotic division. 

When meiosis initiates, specifically during zygotene stages, Bb precursors (red) localize 

around the centrosome and adjacent to the telomere cluster (cyan) of the zygotene 

bouquet configuration. Thus, the nuclear axis of the bouquet configuration predicts the 

AV axis of the oocyte. At this stage, acetylated tubulin cables (dark green) form and 

may connect sister oocyte pairs through the cytoplasmic bridges of the last mitotic 

oogonial division (a pair is shown). B) At the subsequent pachytene stage, a nuclear 

cleft forms at the centrosome position where Bb precursors aggregate. The nuclear cleft 

remains throughout pachytene and early diplotene. In mid-diplotene, the nuclear 

envelope rounds out and the mature spherical Bb forms marking the position of the 

prospective vegetal pole of the oocyte. The formation of the Bb and its disassembly 

requires Bucky ball and Macf1 function, respectively. Hence, Bucky ball and Macf1 

regulate RNA localization to the vegetal pole through the early pathway and are also 

required for AV polarity establishment. C) At stage II, Bb RNAs are localized to the 

vegetal pole (red). Distinct RNAs localize to the animal pole (light blue) and cortical 

granules (white ovoid) are formed. vasa RNA is broadly localized at the vegetal pole 

(pink) and expands radially cortically at subsequent stages. At stage III, previously 

unlocalized RNAs (yellow) are transported to the vegetal pole on microtubules tracks 

(brown) by the action of molecular motors (late pathway). Thus, at this stage early and 

late localized RNAs reside at the vegetal cortex (orange). During this stage, additional 

mRNAs (e.g. Vg1 in zebrafish) are localized animally (light blue) and the micropyle 

becomes evident at the animal pole. In stage IV, the oocyte matures, the nucleus 

migrates to the animal pole and the nuclear envelope disassembles in frogs, fish, and 

the mouse. At this stage, the oocyte transitions from diplotene of meiosis I to 

metaphase of meiosis II, extruding the first polar body at the animal pole in all 3 

species.   
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Summary   

Animal-vegetal (AV) polarity of most vertebrate eggs is established during early 

oogenesis through the formation and disassembly of the Balbiani Body (Bb). The Bb is a 

large mRNP granule, conserved from insects to humans, composed of mitochondria, 

mRNA, and proteins. The components of the Bb, which have amyloid-like properties, 

include germ cell and axis determinants of the embryo that anchor to the vegetal cortex 

upon Bb disassembly. Our lab discovered in zebrafish the only gene known to function in 

Bb disassembly, microtubule-actin crosslinking factor 1a (macf1a). Macf1 is a 

conserved, giant multi-domain cytoskeletal linker protein that can interact with 

microtubules (MTs), actin filaments (AF), and intermediate filaments (IF). In macf1a 

mutant oocytes the Bb fails to dissociate, the nucleus is acentric, and AV polarity of the 

oocyte and egg fails to form.  The cytoskeleton-dependent mechanism by which Macf1a 

regulates Bb mRNP granule dissociation was unknown. We found that disruption of AFs 

phenocopies the macf1a mutant phenotype, while MT disruption does not. We 

determined that cytokeratins (CK), a type of IF, are enriched in the Bb.  We found that 

Macf1a localizes to the Bb and the nucleus, indicating a direct function in their 

regulation. We thus tested if Macf1a functions via its actin binding domain (ABD) and 

plectin repeat domain (PRD) to integrate cortical actin and Bb CK, respectively, to 

mediate Bb dissociation at the oocyte cortex. We developed a CRISPR/Cas9 approach 

to delete the exons encoding these domains from the macf1a endogenous locus, while 

maintaining the open reading frame.  Our analysis shows that Macf1a functions via its 
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ABD to mediate Bb mRNP granule dissociation and nuclear positioning, while the PRD 

is dispensable. We propose that Macf1a does not function via its canonical mechanism 

of linking two cytoskeletal systems together in dissociating the Bb. Instead our results 

suggest that Macf1a functions by linking one cytoskeletal system, cortical actin, to 

another structure, the Bb, where Macf1a is localized. Through this novel linking process, 

it dissociates the Bb at the oocyte cortex, thus specifying the AV axis of the oocyte and 

future egg. To our knowledge, this is also the first study to use genome editing to unravel 

the module-dependent function of a cytoskeletal linker. 

Introduction 

Cellular polarity is the organization of intracellular space into cytoplasmic 

domains, and mediates cellular function across diverse cell types.  For instance, oocytes 

are polarized in many species with the formation of the Balbiani Body (Bb) adjacent to 

the nucleus. The Bb is a large RNP granule conserved from insects to mammals that 

tightly aggregates RNAs, proteins and mitochondria. Like other RNPs, the Bb in 

vertebrates is a non-membrane bound compartment that isolates its content from the 

cytoplasm. In the early stage I oocyte, the Bb forms through the assembly of Bucky ball 

amyloid-like fibers that capture Bb components and give rise to a large Bb RNP granule 

(Boke et al., 2016; Bontems et al., 2009; Marlow and Mullins, 2008).  Later, by the end of 

stage I, the Bb dissociates at the oocyte cortex and its components become docked at 

the now defined oocyte vegetal pole, thus, establishing the animal-vegetal (AV) axis of 

the oocyte and future egg, which in turn defines the anterior-posterior axis of the embryo 

(Escobar-Aguirre et al., 2016).  Hence, elucidating the mechanism of Bb disassembly is 
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relevant to understanding two conserved and linked processes; the establishment of cell 

polarity and the disassembly of an amyloid-like structure such as the large Bb RNP 

granule.  

The two proteins known to be necessary for Bb function in zebrafish, Bucky ball 

(Buc) and Microtubule-actin crosslinking factor 1a (Macf1a), were discovered via a 

zebrafish maternal-effect mutant screen in our lab. In eggs from buc or macf1a mutant 

females, the cytoplasm fails to segregate to form the blastodisc at the animal pole, and 

instead is radially distributed around the yolk (Dosch et al., 2004). Lacking AV polarity, 

development aborts shortly thereafter (Dosch et al., 2004).  During early stage I of 

oogenesis, Bucky ball is required for Bb formation, and the Xenopus Buc ortholog, 

Xvelo, is the most abundant protein in the frog Bb (Boke et al., 2016). buc mutant 

oocytes lack a Bb and RNAs normally carried within the Bb are dispersed throughout the 

cytoplasm and never localize to the vegetal pole (Bontems et al., 2009; Heim et al., 

2014; Marlow and Mullins, 2008). Xvelo self-aggregates in vitro and in vivo forming a 

matrix of amyloid-like fibers that is thought to entrap mitochondria to create the Bb.  

These amyloid-like aggregates are very stable and difficult to disrupt (Boke et al., 2016). 

However, the Bb naturally disassembles by the end of stage I of oogenesis. Macf1 is the 

only known functional player in this process. In macf1a mutant oocytes the Bb forms and 

accumulates RNA normally, however, the Bb becomes enlarged and never 

disassembles (Gupta et al., 2010).  macf1a mutant oocytes also display an acentric 

nucleus phenotype. It is unknown if this phenotype is functionally linked to AV polarity 

and Bb disassembly. Understanding the role of Macf1 in Bb dissociation could provide 
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insight into the dissociation of similar amyloid-like aggregations in pathological 

conditions.   

Macf1 is a conserved, giant cytolinker that can interact with all cytoskeleton 

components: microtubules (MTs), actin filaments (AF) and intermediate filaments (IF). 

Macf1 is modular in that distinct domains can interact with each of these cytoskeleton 

components, and it is expressed as multiple isoforms with diverse arrays of domains 

(Karakesisoglou et al., 2000; Kodama et al., 2003; Lin et al., 2005). Macf1 functions in a 

variety of tissues and processes in different species, all integrating the cytoskeleton in 

cellular functions. In mice, Macf1 is essential for early development and mutant embryos 

die during gastrulation (Chen et al., 2006). In mammalian cells, Macf1 acts as a plus (+) 

tip MT-binding protein and mediates MT and actin integration at the cell cortex (Kodama 

et al., 2003; Wu et al., 2008). Keratinocytes require Macf1 for cell migration, where 

Macf1 integrates MTs and actin cables to maintain focal adhesions (Wu et al., 2008). In 

invertebrates, the macf1 homologs, shot (fly) and VAB-10 (worm), have diverse 

functions in axon targeting, nuclear migration, epidermal attachment, and germ cell 

maintenance (Bosher et al., 2003; Bottenberg et al., 2009; Kim et al., 2011; Lee et al., 

2000; Lee and Kolodziej, 2002a, b; Roper and Brown, 2004; Sanchez-Soriano et al., 

2009; Subramanian et al., 2003).  

How Macf1 interacts with the cytoskeleton to disassemble the Bb and establish 

oocyte polarity remains undetermined (Chang et al., 2004; Gard et al., 1997; Messitt et 

al., 2008). Technical constraints have restricted the study of macf1, since it is a large 

gene spanning ~300 kb of the zebrafish genome, with the longest predicted ORF of ~25 
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kb (NCBI: XP_001920094.1). Using transgenes for such large transcripts is difficult and 

subject to variable expression due to heterogeneous insertion sites. Thus, to 

unambiguously determine how Macf1 acts in AV polarity establishment, we targeted the 

macf1 endogenous gene to address Macf1 domain function in its normal physiological 

context.  

Here we investigated the localization and function of Macf1 and the cytoskeleton 

in regulating the Bb and oocyte nucleus positioning. We found that Macf1 and 

cytokeratins (a type of IF) localize to the Bb, and that Macf1 associates with actin at the 

cortex upon Bb disassembly. Disruption of cortical actin in late stage I oocytes causes 

detachment of Bb components from the cortex, partially phenocopying the macf1 

mutant. In contrast, disruption of MTs does not affect the Bb or nuclear positioning. 

Based on these results, we tested the hypothesis that Macf1 functions via its ABD and/or 

PRD (IF binding domain) to regulate Bb disassembly at the cortex. To test this, we used 

CRISPR/Cas9 genome editing technology to delete these domains by targeting the 

macf1 endogenous gene.  The method harnesses the modular structure of the Macf1 

cytoskeleton-binding domains to specifically interrogate single Macf1 domain functions in 

Bb disassembly and nucleus positioning.  Our results reveal that the Macf1 ABD is 

essential for Bb disassembly and correct nuclear positioning. Surprisingly, we found that 

the Macf1 PRD domain is dispensable for both of these processes. To our knowledge, 

this is the first study to use genome editing to precisely target the module-dependent 

function of a cytoskeletal linker.  
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Material and Methods 

Ethics Statement 

All animal studies were approved by the University of Pennsylvania Institutional 

Animal Care and Use Committee (Protocol number 804214). Animal care and use 

adhered to the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals. 

Fish lines  

Ovaries were collected from 3 to12 month old adult fish of TU wild type, 

macf1ap6cv (Gupta et al., 2010), macf1asa12708 (Sanger Center Mutation Resource), 

bucp106 (Bontems et al., 2009; Marlow and Mullins, 2008), Tg(ef1a:dclk-GFP) (Tran et al., 

2012), Tg(actb1:lifeact-GFP) (Behrndt et al., 2012) and Gt(macf1a–citrine)ct68a (Trinh le 

et al., 2011). For genotyping we used the following primers and PCR conditions:    

macf1ap6cv  For: GCCGACGACCACTTTTAGAG Rev: CCTGTCTGCCATCCTCAAAC. 

Denaturing: 94°C, 1:00 min. Annealing: 58°C, 45 sec. Extension: 72°C, 45 sec. X 30 

cycles. PCR product wild type: 201bp, macf1ap6cv: 170bp. Run in 3% agarose gel.  

macf1asa12708  KASParTM genotyping following protocol of LGC Genomics (Smith and 

Maughan, 2015).  

Gt(macf1a–citrine)ct68a F: ACGTAAACGGCCACAAGTTC Rev: 

AAGTCGTGCTGCTTCATGTG. Denaturing: 94°C, 1:00 min. Annealing: 60°C, 45 sec. 

Extension: 72°C, 30 sec. X 30 cycles.  
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Fluorescence immunolabeling and RNA in situ hybridization  

Ovaries were dissected from euthanized females and digested with 1.5 mg/ml   

collagenase I (Sigma-Aldrich) for 15 minutes in L-15 Medium (Sigma-Aldrich). Ovaries 

were fixed according to the acid fixation method (Fernandez and Fuentes, 2013) and 

kept overnight in 4% formaldehyde. Following washes in PBS, ovaries were kept in cold 

methanol at  -20oC for at least 6 hours before use. For immunostaining, ovaries were 

washed and rehydrated in decreasing methanol percentages (75%, 50%, 25%) and 

washed finally in PBS 3 times (x).  Ovaries were incubated in blocking solution 

containing PBS (0.3% Triton X-100, 1% BSA) for 1.5 to 2h. Primary antibodies were 

diluted in blocking solution and incubated overnight at 4oC.  Ovaries were washed in 

blocking solution 4x15min and incubated with secondary antibodies in blocking solution 

for 90 min. Ovaries were washed in PBT (0.1% Triton) 4x15min and lastly incubated in 

PBT with DAPI (1:1000) and DiOC6 (1ug/ml) (Calbiochem) for 1-2 h. Then they were 

washed in PBT 4x10min, transferred into vectashield (Vector labs) and mounted for 

imaging.  

Antibodies 

Buc antibody was developed by YenZym (San Francisco, CA, USA).  Buc 

epitope: residues 1-15 MEGINNNSQPMGVGQ were used to generate rabbit polyclonal 

antibodies as described (Heim et al., 2014). Primary antibodies used were Buc (1:500), 

Macf1/ACF7 (1:100) (Karakesisoglou et al., 2000), CK type II (1:50) (Progen) and GFP 

(1:500) (Life Technologies) for staining of Gt(macf1a–citrine)ct68a ovaries . Secondary 



 

 

35 

antibodies used were anti-rabbit IgG, or anti-mouse IgG1, Alexa 488, Alexa 594, Alexa 

633 (all 1:1000, Molecular Probes). 

In situ hybridization  

Whole mount in situ hybridization was performed using the RNA-HCR method 

(Choi et al., 2010) following the company protocol (Molecular Instruments).  

Confocal microscopy and image processing 

Images were acquired on a Zeiss LSM 710 confocal microscope using a 40X 

lens. The acquisition setting was set between samples and experiments to: 

XYresolution= 512x512 pixels pinhole adjusted to 1.1μm of Z thickness, increments 

between stack images were 1μm, laser power and gain were set for each antibody. 

Acquired images were adjusted only in contrast/brightness. All Figure were made using 

Adobe Photoshop and Illustrator CC 2014. 

Image quantification 

Buc Bb/Buc Total ratio 

We acquired confocal z-stacks encompassing the entire Buc signal and observed 

that Buc localized to the Bb showed greater signal intensity than Buc relocalizing to the 

cortex upon Bb disassembly. Using built-in filters in imageJ software we were able to 

segment the total Buc signal (Buc in the Bb and relocalized to the cortex) and separately 

the more intense Buc signal in the Bb only.  Buc z-stack images were acquired as 

explained above and processed by subtracting background and applying a median filter 

(5 pixel radius). Then, we used imageJ software to create a z-projection of the images. 
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In these conditions, we applied the threshold check from the BioVoxxel toolbox and 

chose the Otsu and Intermode algorithms as the most accurate thresholds in 

segmenting total Buc and Buc in the Bb, respectively.  Next, we measured the area 

segmented by each filter to calculate Buc Bb/Total Buc ratio.  The oocyte area was 

calculated by segmenting the whole oocyte surface using the percentile algorithm in the 

DAPI channel. DAPI labels the follicle cell nuclei that surround the oocyte, and thus 

outline the oocyte, which was used to calculate the oocyte diameter.  Due to the 

consistent, quality labeling of Buc, only when necessary were the thresholds adjusted 

manually.  

Cytokeratin puncta measurements 

Cytokeratin puncta were quantified using a MATLAB (Version 8.2.0.701 R2013b 

64-bit, MathWorks) script. All images were pre-processed to reduce noise and to 

separate each oocyte into a single image. Cytokeratin positive puncta were identified 

using a simple threshold. The oocytes were sectioned into three regions (cytoplasm, 

nucleus, and Balbiani body) according to the intensity of DiOC6 staining. Additionally, a 

region of just the perimeter of the cytoplasm was defined as any cytoplasm within one 

Balbiani-body-diameter of the cytoplasmic membrane.  Puncta density was calculated as 

puncta per area for each region. 

Live imaging of whole ovaries and isolated oocytes 

Ovaries were dissected from adult fish (3 to 12 months) in L-15 media (60% in 

Hanks solution with gentamycin (50µg/ml) (Gibco)) supplemented with FBS (10%) and 

insulin (15µg/ml) at 28°C.  In the media, further dissection of the ovary was performed to 
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isolate small pieces containing mainly stage I oocytes.  The ovaries were placed in a 

glass bottom dish and embedded in low-melt agarose (0.5%) prepared in the media 

solution.  The dish was filled with media solution containing MitoTracker (500 nM, 

Molecular Probes) for 2-3 hours, then the media was replaced once and ovaries kept in 

the media throughout the imaging.  

Nocodazole, Latrunculin A and cold treatment 

Nocodazole (50µM )(EMD Milipore) and latrunculin A (Sigma-Aldrich) (20µg/ml) 

were used to destabilize MTs and actin, respectively. When live imaging began, ovaries 

had been exposed to the drugs in the incubation media for no longer than 15-20 min. 

The control group was treated with DMSO in the same conditions. We used Mitotracker 

staining to monitor oocyte health and viability during the treatment.  

For analysis of LatA treatment in fixed samples, ovaries from the same fish were 

divided into Latrunculin A (Sigma-Aldrich) (20µg/ml) and DMSO treated groups with two 

replicates for each condition. We tested incubation times of 6, 12 and 20 hours. After the 

treatment, ovaries were fixed as above and stained for Buc.  We measured the oocyte 

diameter and analyzed the effect of LatA treatment only in stage I oocytes.  

For cold treatment, ovaries were dissected as explained previously; ovaries were 

kept in culture media, and divided in tubes placed in ice in a cold room (4°C) and 

incubator at 28°C for 120min, then ovaries were fixed and processed for 

immunostaining.  
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macf1a cDNA sequencing 

To generate macf1a cDNA we used the Superscript First-cDNA synthesis system 

(Invitrogen).  First, using the macf1a predicted sequence (~25 kb) (NCBI: 

XP_001920094.1), primers were designed to amplify a large piece of macf1a cDNA (~19 

kb) made from ovary RNA.   Forward: CCACCGAAAAACAGGAGAACAC; Reverse: 

GCTCCACTTGAAACCTCTTCGC. Instead a ~6.5 kb product was obtained that was 

cloned into pCR-XL-TOPO (Invitrogen) (kindly provided by Tripti Gupta).  We sequenced 

the 6.5 kb cDNA and found that it contained three regions from the macf1a predicted 

cDNA sequence: bp 3767- 4482, 12314-15370 and 20453-23180.  The 4482-12314 gap 

corresponds to exon 35-39; exon 35 contains the Macf1a PRD (~7 kb) domain.  We 

amplified from ovary cDNA ~1.5 kb of exon 35 (NCBI:XP_001920094.1) using primers 

from exon 35 and flanking exon 34. We also amplified and sequenced exon 39, but we 

did not test exons 36-38.  In the ~25 kb predicted transcript (NCBI: XP_001920094.1), 

29 spectrin repeats are predicted. We identified 13 spectrin repeats in the 6.5 kb cDNA 

spanning sequences 12314-15370, and another 13 were identified in cDNA by 

sequencing the gap in the 6.5 kb cDNA between 15370-20453 bp, corresponding to 

exons 57-75, for a total of 26 spectrin repeats.  To complete the macf1a cDNA, we 

performed 5’ RACE, amplifying overlapping fragments upstream of 3955 bp of the 25 kb 

predicted transcript (NCBI:XP_001920094.1) to assemble a fragment containing the 

macf1a ABD and Plakin domains. Using 3’ RACE from the 23,180 bp position, we 

assembled a fragment containing the MTBD (~3 kb).  
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CRISPR/Cas9 Genome editing 

macf1a deletion mutants were created using CRIPSR-Cas9 mediated 

mutagenesis.  The intron targets selected conserved the macf1a ORF and contained a 

PAM sequence for Cas9 targeting. The sgRNAs to target macf1a introns were 

purchased from the University of Utah Mutation Generation and Detection Core, which 

cloned them into plasmids containing an upstream T7 promoter and flanked by a DraI 

restriction site.  To synthesize sgRNAs, we used the T7 MEGAshortscript kit (Ambion) 

and a clean-up step with MEGAclear kit (Ambion), following the manufacturer’s protocol.  

For injections, we mixed sgRNAs (Table 1) and Cas9 protein (180-200 pg) (purchased 

from the University of Utah Mutation Generation and Detection Core for Crispr reagents) 

and injected 1.2-1.5 nl of the CRISPR mix into one-cell stage zebrafish embryos.  At 24 

to 48 hpf, a fraction (~25%) of the injected embryos were euthanized and DNA was 

extracted.  We performed HRMA analysis on single embryos using MeltDoctor HRM 

Master Mix (Applied Biosystems) to determine the mutation rate, and PCR analysis to 

detect genomic deletions.  When a high (~80-100%) mutation rate was obtained, the 

remaining injected embryos were raised to adulthood and then outcrossed to screen for 

germline transmission of deletion mutations by PCR analysis.  

HRMA primers:  

Intron 3.  Product: 120bp.  

Forward (For) AACCTGTTGGTTCCATTTGAAGTAT 

Reverse (Rev) GATTTGCTCAACCCCTTGCTCA 

Intron 5.  Product: 132bp 
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For TGCAGCAGACTGGAGATGAA  

Rev GGATAGAGAGGAAGCCCGGA 

Intron 8.  Product: 127bp 

For CCAGAGCAGAACAAACCCTA 

Rev TGAACAAATCATTGCAGATG 

Intron 34.  Product: 109bp 

For AGTCAGTTCCGGGCAGCATA 

Rev ACACACTGATCGAGGTTTCGG 

Intron 38.  Product: 167bp 

For GCATACGTGGACATACGTGA 

Rev GTCCAGGTTCTGATTGGCTG 

For PCR deletion analysis, we combined three primers to amplify the wild type and 

mutant alleles.  PCR conditions:    

Denaturing: 94°C, 1:00 min 

Annealing: Primers 1) and 2) 59°C, 45 sec; 3) 58°C, 1 min.  

Extension: 72°C, 45 sec  

X 30 cycles.  

1) Deletion ABD (CH1) primers:  wild type: 420bp; deletion: 520bp.  

Intron 3 For TTCCACATCTGGGTTTGTGT 

Intron 3 Rev TCTCAGGCTGAAACACATCTGA 
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Intron 5 Rev CTGGATGAGGACAGGAGGGA 

2) Deletion ABD (CH1-CH2) primers:  wild type: 420 bp; deletion: 505 bp.  

Intron 3 For TTCCACATCTGGGTTTGTGT 

Intron 3 Rev TCTCAGGCTGAAACACATCTGA 

Intron 8 Rev CATACAGCCTCTTCACCACTGT 

3) Deletion PRD primers:  wild type: 420 bp; deletion: 505 bp.  

Intron 34 For CTAACAGCTGCCGGGAGAAA 

Intron 34 Rev ACACACTGATCGAGGTTTCGG 

Intron 38 Rev AATAGTGCCTCTGCTCTGGC 

sgRNA scaffold sequence: 

[GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAA

AGTGGCACCGAGTCGGTGCT] 

Target site sequences: 

macf1 Intron 3: [GACATGGACTTCTTACATGG] 

macf1 Intron 5: [GTGTCTACCAGTGAGAGCAG] 

macf1 Intron 8 (reverse strand): [TACAGATGGCCACAGGTAAG] 

macf1 Intron 34 (reverse strand): [GGTGCGATAGGGTGAGAAGC] 

macf1 Intron 38 (reverse strand): [GGTCGTGGAGAGCTATAACA] 
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Results 

In the zebrafish genome two paralogs of macf1 are present, macf1a and macf1b.  

macf1a is expressed during oogenesis and a mutation in macf1a causes the AV oocyte 

and egg polarity phenotype reported previously (Gupta et al., 2010) and is the focus of 

this study. The largest predicted macf1a open reading frame (ORF) in zebrafish is very 

large: ~25 kb, encoding a protein of ~8,000 amino acids (NCBI: XP_001920094.1). To 

determine the domain composition of macf1a transcripts in oogenesis, we sequenced 

macf1a cDNA from the ovary.  We detected all predicted cytoskeleton interaction 

domains and other conserved domains typical of Macf1 in macf1a ovary cDNA, including 

the N-terminal ABD followed by the Plakin domain, 29 Spectrin repeats, and at the C-

terminus, two EF-hands (Ca2+ binding motif) and a GAS2 MTBD for MT interaction 

(Figure 2.1A). 

The predicted ORF (NCBI: XP_001920094.1) of gene macf1a also contains the 

PRD domain between the Plakin domain and the Spectrin repeats, similar to the macf1b 

isoform in the mouse (Lin et al., 2005) (Figure 2.1A). Like the mouse macf1b isoform, 

the PRD domain in zebrafish is contained in one large exon (exon 35) of ~7 kb. Since it 

is challenging to isolate 7 kb cDNA products without amplifying genomic DNA for this 

large exon, we instead used a primer in flanking exon 34 and an exon 35 primer to 

amplify part of exon 35 from ovary cDNA. We sequenced ~2 kb from each side of the 

PRD showing that it is expressed during oogenesis (Figure 2.1A). Importantly, we also 

sequenced a cDNA that lacks the PRD and 13 Spectrin repeats; in this transcript exon 

34 is joined to exon 40, as well as 56 to 76, indicating that alternative splicing generates 
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a transcript lacking exons 35-39, and 57-75 (Figure 2.1A, transcript variant).  This 

indicates that more than one macf1a isoform in the ovary is generated, as also reported 

in the mouse (Karakesisoglou et al., 2000; Lin et al., 2005). Altogether, we detected all 

Macf1a functional domains in macf1a cDNA, including the PRD, encompassing 94 of the 

98 predicted exons (Figure 2.1A) of the longest macf1a ORF.  

We previously isolated the macf1ap6cv allele (Dosch et al., 2004), which is a 31 bp 

deletion causing a frameshift in the ORF (Gupta et al., 2010). For this allele, the C-

terminal half of the protein is predicted to be truncated at amino acid 5315  of the longest 

predicted zebrafish Macf1a isoform (>8000 amino acids) by a premature stop codon 

(Figure 2.1A, p6cv (stop)) (Dosch et al., 2004; Gupta et al., 2010) (NCBI: 

XP_001920094.1). We obtained a second macf1a mutant allele from the Sanger 

Zebrafish Mutation Project (http://www.sanger.ac.uk/science/collaboration/zebrafish-mutation-

project), macf1asa12708, which shows an indistinguishable phenotype to macf1ap6cv 

mutants, including Bb enlargement, failure of Bb disassembly, and acentric positioning of 

the nucleus (Figure 2.1B). The new allele is a nonsense point mutation affecting codon 

553 near the N-terminus of Macf1a (Figure 2.1A, sa12708 (stop)). These two alleles 

contain premature stop codons at very different locations in the ORF and yet display the 

same defects, which provides strong evidence that both are strong loss-of-function or 

null alleles.  

Macf1a is essential in Buc relocalization from Bb to oocyte cortex  

The Bb progresses during stage IB of oogenesis from its initial location adjacent 

to the nucleus, to the oocyte cortex by late stage IB where it disassembles. To 
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characterize this process in macf1a mutants, we followed protein and RNA markers of 

the Bb in mutant and wild type (WT) stage IB oocytes ranging from ~50 to 140 µm in 

diameter (Selman et al., 1993). The Bb markers we selected were Buc, the only protein 

known to be required for Bb formation in vertebrates, and dazl, an mRNA component of 

the germ plasm (Figure 2.1B-D). To examine dazl RNA localization, we used the highly 

sensitive hybridization chain reaction (HCR) method that allows detection of low RNA 

concentrations with minimal background (Choi et al., 2010). We observed that Buc is 

recruited to the Bb in the absence of Macf1a (Figure 2.1D’-D’’), similar to dazl and other 

previously examined Bb components (Ge et al., 2014; Gupta et al., 2010) (Figure 2.1B).  

Unlike in WT, in macf1a mutants Buc and dazl fail to localize to the vegetal cortex and 

instead remain in a persistent and enlarged Bb (Figure 2.1B-D).  

We used the Buc immunofluorescence localization pattern to quantify the 

progression of Bb disassembly during stage I of oogenesis in WT and macf1a mutant 

oocytes (Figure 2.1C-D”). In late stage IB WT oocytes, as the Bb disassembles at the 

cortex (Figure 2.1C’), Buc dissociates from the Bb and localizes to the vegetal cortex 

(Figure 2.1C’’). To quantitatively evaluate Bb disassembly, we identified the Bb by Buc 

immunostaining, then compared the signal intensity of Buc within the Bb (Figure 2.1E) 

versus outside the Bb (Figure 2.1E’) during disassembly (see methods). We measured 

the total Buc immunofluorescence area versus Buc localized to the Bb to estimate a Bb 

disassembly ratio (Bb Buc/Buc total) along with oocyte diameter throughout stage I 

(Figure 2.1F). In 60 micron (µm) early stage IB oocytes (Figure 2.1C) when the mature, 

compact Bb has formed (Elkouby et al, 2016), the Buc disassembly ratio is ~1. This ratio 
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decreases to ~0 towards the end of stage I when the Bb disassembles and Buc is 

unloaded at the cortex (Figure 2.1F).  

Using this method, we found that the Bb disassembles progressively and 

reached the midway point (0.6 to 0.4 Buc disassembly ratio) in oocytes 115 to 125 µm in 

diameter (Figure 2.1F). In the largest WT IB oocytes (135 to 160 µm in diameter) the 

disassembly ratio was 0.15.  In contrast, the Bb disassembly ratio in macf1ap6cv and 

macf1sa12708 mutant oocytes of a similar diameter range did not appreciably decrease 

below 1 (Figure 2.1F, red squares and green triangles). These results demonstrate that 

Macf1a is essential to dissociate the Bb RNP granule and relocalize Buc, the essential 

Bb-forming protein, from the Bb to the cortex to establish AV oocyte polarity. 

Furthermore, this analysis indicates that the Bb does not dissociate during a short 

window of time, but rather disassembles over a period of oocyte growth that corresponds 

to an almost 2-fold increase in volume (from 120 µm to 145 µm diameter). 

Macf1a functions independently in Bb disassembly and nucleus positioning 

Mutant macf1a oocytes display both an asymmetrically positioned nucleus and a 

Bb dissociation defect. These defects may represent two independent functions of 

Macf1a, one in Bb disassembly and one in nuclear positioning, or one of the defects may 

be a secondary effect caused by the other defect.  For example, the enlarged, persistent 

Bb of macf1a mutants could displace the nucleus, causing it to become acentric. To 

determine if the Bb defect causes the nucleus to become asymmetric, we generated 

double mutants of macf1a and the buc mutant, which never forms a Bb. We 

hypothesized that if Macf1a functions independently in Bb disassembly and nuclear 
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positioning, then a buc p106re ;macf1a p6cv double mutant should display an absence of the 

Bb and a nuclear positioning phenotype. However, if the Bb is absent and the nucleus is 

no longer acentric in the double mutant, then the nuclear defect can be considered a 

secondary effect of the Bb defect in macf1a mutants. We analyzed buc;macf1a double 

mutant oocytes and found that the Bb was absent, while the acentric nuclear phenotype 

remained (Figure 2.2A-H). These results strongly support Macf1a functioning 

independently in Bb disassembly and nuclear positioning.  

We next tested if Macf1a regulates Bb disassembly and nucleus positioning 

directly by associating with the Bb and nucleus or if it acts via an indirect mechanism, for 

example, by localizing to the oocyte cortex and regulating these processes. To 

investigate this question, we examined the intracellular localization of Macf1a protein in 

stage I WT oocytes using an antibody against mouse Macf1 (Karakesisoglou et al., 

2000) and took advantage of a zebrafish gene trap line, Gt(macf1a-citrine)ct68a, inserted 

in a macf1a intron between exon 57 and exon 58 (Figure 2.1A) (Trinh le et al., 2011).  

Using the Macf1 antibody, we found that Macf1a localizes to the Bb and intranuclearly 

(Figure 2.3A). Importantly, no immunostaining was observed in the macf1asa12708 mutant 

allele, indicating the specificity of the antibody to Macf1a (Figure 2.3D). In later stage I 

oocytes, Macf1a localization recapitulated the dynamics of Bb disassembly at the 

vegetal cortex, progressively dissociating from the Bb and localizing to the oocyte cortex 

(Figure 2.3A-C). The Citrine insertion into Macf1a also showed similar localization to the 

Bb and followed its dynamics (Figure 2.3E-G), though seems not to recapitulate the 

nuclear distribution we observed with Macf1 antibody. It is possible that certain Macf1 
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isoforms localize to the nucleus and those, among others, splice out the citrine exon. 

Importantly, these results support a model where Macf1a functions directly in the Bb to 

regulate its dissociation and anchoring to the oocyte cortex.  Macf1a localization to the 

nucleus suggests a direct role for it in positioning the nucleus.  

Actin required for Bb cortical attachment and nuclear positioning, whereas MTs 

dispensable 

Macf1a contains binding domains for several different cytoskeletal elements and 

acts to integrate cytoskeletal systems in other models, thus we expect that Macf1a 

interacts with the oocyte cytoskeleton to regulate Bb dissociation and nuclear 

positioning. To determine which cytoskeletal components interact with Macf1a, we 

examined the distribution of actin and MTs in stage I oocytes. With this purpose, we 

performed live imaging experiments using the transgenes Tg(actb1:lifeact-GFP) 

(Behrndt et al., 2012) and Tg(ef1a:dclk-GFP) (Tran et al., 2012) to visualize actin and 

MTs, respectively. Actin appeared as a thick cortical layer and intranuclearly, as shown 

in live and fixed samples (Figure 2.4A-B; 2.5 A-B) (Gupta et al., 2010). In agreement 

with previous reports on fixed tissue in Xenopus (Gard, 1991), MT networks in live 

oocytes were present throughout the cytoplasm and were enriched perinuclearly (Figure 

2.5 G-L). However, neither actin (Figure 2.5A) nor MTs (Figure 2.5 G-L) appeared 

enriched in the Bb in stage IB oocytes, though we detected stable MTs (acetylated) 

(Figure 2.5O) in the Bb (10/25 oocytes), they did not distribute preferentially in the Bb. 

We then tested the function of cytoskeletal components in stage I oocytes using 

pharmacological inhibitors. To test actin function, we disrupted actin filaments with 
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Latrunculin A (LatA) and evaluated whether this affected the Bb and/or nuclear 

positioning.  We determined that after 6 hours (h) (Figure 2.4C, G) actin filaments were 

moderately affected, and only after 10-12h of LatA treatment (Figure 2.4A-B, D, I), were 

actin filaments greatly reduced.  We treated ovaries with LatA for 12h and a longer 

treatment of 20h, then fixed and stained for Buc. After 12h of LatA treatment (Figure 

2.4F, J), we observed in a few oocytes an effect in which Buc appears detached from 

the oocyte cortex (Figure 2.4J) (4/22 oocytes) and some oocytes displayed an acentric 

nucleus (3/22 oocytes). However, after 20h of LatA treatment these effects are stronger, 

while in control conditions the Bb remains at the cortex (Figure 2.5C-D), in LatA treated 

oocytes the Bb appears closer to the nucleus as in a pre-disassembly stage (Figure 

2.5E-F). Additionally, the nucleus was acentric in many oocytes (15/40 oocytes) (Figure 

2.5F).  Thus, disruption of actin partially phenocopies the macf1a mutant phenotype, 

suggesting that Macf1a may interact with cortical actin to mediate Bb disassembly and 

nuclear positioning. 

We addressed MT function in live imaging by treating ovaries with nocodazole for 

2 (Figure 2.5 G-H) and 10 h (h) (Figure 2.5 I-L) and by incubating them at 4°C to also 

depolymerize stable MTs (Figure 2.5 M-T). In both cases, we found that 

depolymerization of MTs did not affect the Bb or nuclear positioning. This suggests that 

MTs do not play a role in regulating the Bb structure, nuclear positioning or in cortical 

attachment like we observed for actin.  

Finally, we examined the distribution of IF using a Pan-Cytokeratin (CK) type II 

antibody.  We found that CK was distributed in a punctate pattern in the Bb and cortically 
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in stage 1B oocytes (Figure 2.6A). We quantified the CK distribution using a custom 

MATLAB program and found that CK puncta density is significantly enriched in the Bb 

(3-fold increase) compared to the cytoplasm (Figure 2.6C-D). Interestingly, in macf1a 

mutants CK puncta were still detected in the Bb (Figure 2.6B-C). However, CK and the 

Bb were not present at the cortex, and instead CK accumulated around the nucleus, 

similar to the detachment of other components from the cortex in macf1a mutants 

(Figure 2.6B). Thus, Macf1a may function in Bb disassembly via integrating CK in the Bb 

to actin at the cortex.  

Genome editing approach to interrogate Macf1a functional domains  

The modular domain structure of Macf1a allows us to interrogate Macf1a by 

targeting specific cytoskeleton-binding functions.  We postulated that Macf1a mediates 

Bb disassembly by binding cortical actin via its Actin binding domain (ABD) and by 

binding CK within the Bb via its Plectin repeat domain (PRD), integrating the cortical 

actin and CK and therefore disassembling the Bb at the oocyte cortex. Results 

supporting this hypothesis are that CK and Macf1a are both enriched in the Bb and actin 

depolymerization disrupts Bb cortical anchoring. In addition, because we observed 

Macf1a localized to the nucleus and disruption of actin causes acentric nuclear 

positioning, the Macf1a-ABD may be required to position the nucleus in the oocyte. To 

interrogate Macf1a-ABD and -PRD function in oocyte polarity, we developed a 

CRISPR/Cas9 approach to make large deletions in the endogenous macf1a gene.  We 

designed sgRNAs targeting the introns flanking the ABD and the PRD encoding exons to 

remove each domain (Figure 2.8, and see methods). Importantly, the deleted exons did 
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not alter the reading frame of the macf1a ORF. Our strategy (Figure 2.7) was to first 

inject each sgRNA singly with Cas9 protein into 1-cell stage embryos to confirm high 

frequency cutting.  Cutting efficiency was assayed by PCR amplification of genomic DNA 

spanning the target site, followed by high resolution melt analysis (HRMA) of the PCR 

product (Dahlem et al., 2012). We increased the amount of sgRNA injected until every 

embryo showed CRISPR-induced HRMA shifts (Table1).  Then we targeted specific 

macf1a domains by simultaneously injecting two sgRNAs with Cas9 into 1-cell embryos.  

We optimized the sgRNA concentration to obtain high frequencies of deletions without 

embryo abnormalities. We detected the deletions by PCR analysis of genomic DNA, 

then sequenced the PCR products to confirm that deletions were consistent with our 

predictions. We raised F0 injected fish and tested for germline transmission in F1 

embryos (Table 1, Figure 2.7).  

The Macf1a-ABD is composed of two calponin-homology (CH) domains: CH1 

and CH2.  Macf1a isoforms can contain either the full ABD with CH1-CH2 or the CH2 

domain alone (Bernier et al., 1996), so we designed CRISPR deletions of the CH1 

domain and both CH1-CH2. To delete macf1a-ABD(CH1) we targeted introns 3 and 5, 

deleting exons 4 and 5, which spans 70% of the CH1 coding sequence (Figure 2.8B).  

To delete macf1a-ABD (CH1-CH2) we targeted introns 3 and 8, removing exons 4-8, 

which encompass 85% of the entire macf1a-ABD (Figure 2.8B). We succeeded in 

deleting 10.3 kb and 17.8 kb of genomic DNA to remove the Macf1a-ABD(CH1) and the 

Macf1a-ABD(CH1-CH2) through germ line transmitted mutations (Figure 2.8 A-C). 
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The Macf1a-PRD is entirely contained within exon 35 (NCBI: XP_001920094.1).  

We targeted the immediately preceding intron 34; however, due to the small size of 

introns 35-37, and to preserve the transcript ORF, we chose intron 38 as the second 

CRISPR target for deleting the PRD (Figure 2.8C). Importantly, the 174 amino acid 

region encoded by exons 36-38 that were targeted for deletion does not appear to 

include key components of Macf1a functional domains (based on a SMART domain 

prediction). We succeeded in deleting 9.1 kb of genomic DNA to remove the Macf1a-

PRD in a germ line transmitted allele (Figure 2.9).  

From the macf1DABD mutant we sequenced ovary cDNA spanning exons 3 to 8 

that encode the ABD and confirmed the lack of the intended exons in macf1DABD (CH1) 

and macf1DABD (CH1-CH2) (Figure 2.8A, B, 2.9A). For the PRD, we detected in both 

WT and macf1aDPRD mutant oocytes a small RT-PCR band (~750 bp) (Figure 2.9C) 

that sequence analysis showed corresponds to an alternatively spliced transcript that 

does not include exons 35-39, as discussed above (macf1a cDNA results). In addition, 

we detected a larger band (970bp) only present in the macf1DPRD mutant that 

sequence analysis showed is generated by the deletion of exons 35 (PRD) to 38. We 

amplified ~1.5 kb from the flanking exon 34 into exon 35 in WT (confirmed by sequence 

analysis), which was absent in macf1aDPRD -/- mutants (Figure 2.9C). Together, these 

results confirmed that we deleted the PRD from the macf1a endogenous locus and, 

generated a transcript lacking the Macf1a-PRD. 

In summary, we deleted the exons encoding the Macf1a ABD and PRD from the 

macf1a gene by using CRISPR/Cas9 technology. The transcript produced from the 
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genome-edited mutants lack these specific domains but preserve the macf1a transcript 

ORF.  

Macf1a-ABD is essential for Bb disassembly and nuclear positioning 

To determine the role of the Macf1a ABD in Bb progression and nuclear 

positioning, we analyzed the ovaries of macf1aDABD deletion mutants. To be able to 

examine the phenotype in the F1 generation, we crossed macf1a deletion mutant 

heterozygous females to macf1asa12708  heterozygous mutant males to obtain 50% 

transheterozygous (Figure 2.7) ovaries expressing Macf1a mutant protein lacking the 

CH1 domain (macf1aDABD(CH1)/macf1asa12708) or the entire ABD (CH1-CH2) 

(macf1aDABD(CH1-CH2)/macf1asa12708). We found that in both cases the oocytes display 

a fully penetrant macf1a null mutant phenotype; the nucleus is acentric and the Bb fails 

to disassemble (Figure 2.10A). In the next generation (F2), the macf1aDABD(CH1-CH2) 

homozygous mutant shows a macf1a null phenotype in the ovary, whereas in 

macf1aDABD(CH1) homozygous the macf1a null phenotype is not fully penetrant in the ovary 

(Figure 2.10A).  Importantly, the Macf1a mutant protein (Macf1aDABD(CH1)) is localized to 

the Bb in the mutant as in WT, and it shows similar levels of expression in 

immunostaining (Figure 2.10B).  

Similar to the macf1asa12708  mutant phenotype, Buc remains localized in the 

persisting, enlarged Bb of macf1aDABD(CH1)/macf1asa12708 , macf1aDABD(CH1)  , 

macf1aDABD(CH1-CH2)/macf1asa12708 and macf1aDABD(CH1-CH2) oocytes (Figure 2.10A).  AV 
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polarity establishment is also affected in these mutants (2.11) (Table 2). The incomplete 

penetrance of the mutant phenotype in macf1aDABD(CH1)  ovaries is consistent with that 

observed in the eggs phenotype, and suggest that in certain conditions Macf1a with only 

the CH1-ABD is not sufficient for Macf1 function in the oocyte and egg (see 

discussion)(Figure 2.10C, table2). These findings showing the requirement of Macf1 

ABD support a mechanism of Macf1 mediating Bb RNP granule dissociation at the 

cortex, nuclear positioning, and that is essential for defining the AV axis (Figure 2.12 

model).  

Unexpectedly, when we analyzed the ovaries of the macf1aDPRD /macf1asa12708 

and macf1aDPRD deletion mutants, which lack the domain that can interact with IF, Bb 

disassembly was not affected (Figure 2.10A).  In macf1aDPRD mutant oocytes, Buc 

localizes to the Bb normally and the nucleus is centrally located as in WT.  Furthermore, 

eggs from macf1aDPRD /macf1asa12708 and macf1aDPRD mutant females (2.11B, table 2) 

display normal AV polarity and development. These results show that the Macf1a-PRD 

is not required to localize Macf1a to the Bb or to disassemble the Bb RNP granule.  Thus 

the Macf1a-PRD is dispensable for Macf1a function in AV polarity and nuclear 

positioning.  
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Discussion 

Macf1a may function as a non-canonical linker  

Macf1a is a cytolinker that integrates cytoskeleton components in different 

cellular contexts (Alves-Silva et al., 2012; Karakesisoglou et al., 2000; Kodama et al., 

2003; Sanchez-Soriano et al., 2009; Wu et al., 2008); however, a function for Macf1a in 

dissociating a large mRNP granule like the Bb is unprecedented, and so it is unclear 

how it may integrate MTs, actin, or IFs in Bb disassembly. Here, we developed a novel 

approach to unravel Macf1a domain-dependent function by interrogating, for the first 

time, the very large endogenous macf1a gene through CRISPR-Cas9 mediated exon 

deletions (Figure 2.8).  We found that the Macf1a ABD is essential for Bb disassembly, 

whereas the IF interacting domain of Macf1a, the PRD, is dispensable. Since we did not 

detect MT enrichment in the Bb, nor a defect when MTs were depolymerized (Figure 

2.5I-V), it is possible that Macf1a does not function as a cytoskeletal linker in this 

context. Rather it may link Bb components to the oocyte cortex through its ability to bind 

cortical actin and localize to the Bb (Figure 2.12). Thus, it may function to link two 

structures together, but not through its canonical cytoskeletal specific cross-linking 

function.  

Macf1a in Bb disassembly, IDPs, and P granules 

C. elegans P-granules have become an excellent model for studying the 

assembly/disassembly dynamics of RNP granules. P granules form via the assembly of 

MEG proteins, which are intrinsically disordered proteins (IDPs) acting like a scaffold for 

P granule condensation (Wang et al., 2014). MEG is the target of kinases and 
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phosphatases that regulate the disassembly and assembly of P granules, respectively, 

and are crucial in establishing the anterior-posterior axis of the embryo (Brangwynne et 

al., 2009; Wang et al., 2014). Similarly, Buc and its ortholog in Xenopus Xvelo are IDPs 

functioning in Bb RNP granule formation. The N-terminal region of Xvelo contains a 

prion-like domain required for Xvelo assembly in an amyloid-like matrix that can enclose 

Bb components (Boke et al., 2016).  In zebrafish oocytes, Bb cortical disassembly 

defines the future oocyte and egg vegetal pole, and Macf1a is the only known factor to 

function in this process. Our data show that Buc remains localized in a persistent Bb in 

macf1a mutants, suggesting that Macf1a either directly triggers Bb disassembly at the 

cortex or is required to mediate Bb component interaction with cortical factors that trigger 

Bb disassembly.  

Our results show that deletion of the Macf1a (CH1) domain in an otherwise intact 

Macf1a protein that localizes to the Bb causes a failure in Bb RNP granule dissociation. 

These defects are indistinguishable from those of the two macf1a nonsense alleles A 

macf1a mutant lacking the CH1 binding domain, leaving intact the CH2 domain in 

macf1aDABD(CH1)/macf1asa12708  transheterozygotes also exhibits a fully penetrant mutant 

phenotype, however,  the phenotype shows incomplete penetrance in macf1aDABD(CH1)  

homozygous mutants. This suggests that macf1aDABD(CH1)  is an hypomorphic allele; 

unable to restore function over the null allele (transheterozygous) but partially restoring 

function in a homozygous condition. Interestingly, Macf1 and other Spectraplakins 

generate isoforms lacking the ABD (CH1) that bind actin with less affinity 
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(Karakesisoglou et al., 2000; Leung et al., 1999). This suggests that in the oocyte, the 

Macf1a CH1 ABD is frequently not sufficient for linking the Bb to cortical actin.  

These results indicate that the Macf1a-ABD interacts with cortical actin to anchor 

the Bb to the oocyte cortex where it undergoes dissociation.  Consistently, actin 

disruption phenocopied some aspects of the macf1a mutant phenotype, causing the 

detachment of the Bb from the cortex.  It is possible that Macf1a interaction with actin is 

sufficient to trigger Bb disassembly, or that other factors are required in addition to 

Macf1a.  P granules, for instance, disassemble upon phosphorylation of structural 

components (Wang et al., 2014), thus, Buc may be phosphorylated at the cortex in a 

Macf1a-ABD dependent manner.  

Our analysis shows that the Bb does not disassemble all at once, but instead 

dissociates progressively during a period of about two-fold growth in oocyte volume.  

During this period the Bb becomes progressively smaller, although remains largely 

spherical, with Macf1a, Buc and other Bb components relocating as puncta to the oocyte 

cortex. We hypothesize that the Bb dissociates progressively with peripheral regions 

dissociating prior to more internal regions.  During this process, it remains unclear 

whether Bb components fully dissolve at the cortex upon disassembly and then 

reassemble in aggregates that are docked cortically in a two- step process, or if the Bb 

fragments into smaller granules, with each granule anchored in a single step to the 

oocyte cortex. Either way, the Macf1a-ABD is a key activity in the process, which could 

be accompanied with modifications to Buc and/or other Bb components that act in Bb 

dissociation at the cortex.  
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Drosophila Macf1 ortholog Shot and MTs 

Shot, the Macf1 ortholog in Drosophila, also plays a key role in establishing 

oocyte polarity. Shot is required for anchoring MTs to the anterior and lateral oocyte 

cortex by interacting with the MT minus-end binding protein Patronin, which together 

with Shot functions as a noncentrosomal MT organizing center (Nashchekin et al., 

2016). The Shot-ABD is required for its localization to cortical actin and to bring Patronin 

to the oocyte cortex.  The MT network organized by Shot/Patronin is key to setting up 

anterior-posterior polarity of the Drosophila oocyte.  Both Macf1a and Shot function 

through their ABDs and localize with actin at the oocyte cortex, however, the 

mechanisms by which they act are likely distinct. In Drosophila, the assembly of MTs is 

downstream of Shot polarized cortical localization, which is regulated by Par-1, whereas 

Macf1a localizes at the oocyte cortex after Bb disassembly. Nevertheless, a role for 

Macf1a more broadly in linking MTs to the cortex is consistent with an absence of MTs 

at the cortex in zebrafish macf1a mutant oocytes (Gupta et al., 2010), where it could act 

with Patronin to organize the MT network at a stage when the centrosome is absent 

(Elkouby et al., 2016).  

Our live imaging data suggest that disruption of MTs does not affect the Bb.  In 

keratinocytes and fibroblasts Macf1a localizes to MTs, and can function as a plus tip 

binding protein, stabilizing them (Karakesisoglou et al., 2000; Kodama et al., 2003).  

However, MTs are not enriched in the Bb and disruption of the MT network with 

nocodazole and cold treatment does not affect Bb morphology, RNA localization or 

cortical attachment (Figure 2.5I-V) (Chang et al., 2004; Gard, 1991; Gard et al., 1995a; 
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Gard et al., 1997; Kloc and Etkin, 1995). Thus, we do not consider a role for MTs or the 

Macf1a-MTBD currently in Bb disassembly. Nevertheless, since Macf1a stabilizes MTs 

and connects them to cortical actin in other cell types (Karakesisoglou et al., 2000; 

Kodama et al., 2003; Wu et al., 2008), we cannot rule out a contribution of MTs, until the 

conditions for culturing zebrafish oocytes allow in vivo visualization of Bb disassembly 

dynamics and the role of MTs in the process can be addressed. Future studies 

interrogating the Macf1a-MTBD will also clarify its contribution in oogenesis. 

Macf1a in nuclear positioning 

We found here that Macf1a localizes perinuclearly in the oocyte, suggesting that 

Macf1a plays a direct role in positioning the nucleus centrally in the oocyte. Further 

evidence from the macf1a;buc double mutant that lacks a Bb but displays an acentric 

nucleus, shows that the macf1a mutant nuclear localization defect is not caused by the 

Bb defect (Figure 2.2).  Macf1a may interact with proteins residing in the nuclear 

envelope (NE) to connect the nucleus to the cytoskeleton.  Although Nesprins residing in 

the outer NE interact with MTs to regulate nuclear positioning (Brosig et al., 2010; Crisp 

et al., 2006; Laporte et al., 2003; Link et al., 2014; Lombardi and Lammerding, 2011; 

Meinke et al., 2011; Sosa et al., 2012), our data indicate that disruption of MTs does not 

affect nuclear positioning. Rather, we found that actin disruption often leads to acentric 

nuclear positioning (Figure 2.5H), albeit we did not detect actin filaments around the 

nucleus and instead as an intranuclear mesh. Considering that the Macf1a ABD is 

required for nuclear positioning, it is possible that the Macf1a ABD interacts with 

cytoplasmic or perinuclear actin filaments that are undetectable in our conditions or, 
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alternatively, that the Macf1a ABD interacts with a yet unknown partner in positioning the 

nucleus. Future studies will be required to deduce the mechanism. 

In summary, we developed a genome editing approach using CRISPR-Cas9 to 

interrogate the cytolinker function of Macf1a. With this approach, we identified the 

Macf1a ABD as essential for Bb RNP granule disassembly and, thus, for establishing AV 

polarity of the oocyte and egg. The Macf1a ABD is also required for centric nucleus 

positioning in the oocyte. Moreover, we determined that the Macf1a PRD is dispensable 

for Macf1a function in oogenesis indicating that Macf1a does not interact with CKs to 

regulate Bb dissociation or nucleus localization. This is the first study to address Macf1a 

functional domains by targeting its endogenous locus. Although the use of CRISPR 

technology is widespread nowadays, applications like the one presented here take a 

step further in developing more powerful and elegant genome editing approaches than 

solely generating null alleles, to reveal a deeper understanding of basic cellular 

mechanisms.  We expect that applying similar strategies will be valuable to understand 

the function of other modular proteins like Macf1, including the related genes dystonin 

(Guo et al., 1995), dystrophin (Koenig et al., 1987) and plectin (Bouameur et al., 2014), 

which like macf1 (Jorgensen et al., 2014) can lead to complex human diseases



60 

 

 



 

 

61 

Figure 2.1: Macf1a is essential in relocalizing Buc from the Bb to the oocyte cortex. 

macf1a ovary cDNA from zebrafish was sequenced to determine the Macf1a domains that 

are expressed. CH= calponin-homology domain (yellow); PRD= Plectin repeat domain 

(pink); EF= Ca+2 binding domain (brown); Gas2: MT binding domain (red); IF= 

Intermediate filament. The exons are numbered and color-coded according to the domains. 

The premature stop codon locations in mutant alleles, macf1asa12708 and macf1ap6cv, are 

shown. B) DiOC6 staining (mitochondria, green) and dazl in situ (green) in early and late 

stage I oocytes, labeling in WT the Bb prior to disassembly (early stage I) and the 

disassembled Bb at the cortex (late stage I). macf1ap6cv and macf1asa12708 mutant 

oocytes display a normal Bb in early stage I, but in late stage I the Bb enlarges and never 

disassembles. In addition, macf1a mutants show an acentric nuclear position compared to 

WT. DiOC6: N > 5 ovaries, >30 WT, macf1ap6cv, and macf1asa12708 oocytes. dazl in situ:  

N= 5 ovaries, >30 WT, 25 macf1ap6cv and 35 macf1asa12708 oocytes. C-D) Buc staining 

(green) to visualize Bb disassembly in stage I oocytes in WT and macf1a mutants (C-D, 

images correspond to different oocytes).  E) Quantification method for Bb disassembly 

during stage I. The two images (E-E’) correspond to a Z-stack from C’’ where green 

represents the areas of Buc Bb and Buc total of oocytes that were segmented according to 

Buc signal intensity (see methods). The yellow circle marks the oocyte perimeter, which 

was used to estimate the oocyte diameter. F) Bb disassembly versus oocyte size (60 µm 

early stage I to 160 µm late stage I) in WT (blue), macf1ap6cv and macf1asa12708 mutants 

(green). Buc Bb: Total Buc (a quantitative measure of Bb disassembly) decreases as 

oocyte diameter (µm) increases in WT (R2 = 0.732), but not in macf1ap6cv (R2= 0.03) and 

macf1asa12708 (R2= 0.17). N> 3 ovaries, WT and mutant oocytes. DAPI staining labels DNA 

(blue or magenta) and marks follicle cells. Images are single optical sections, except for E-

E’. Arrowheads indicate Bb and N the nucleus. Scale bar: 20µm. All images are 

representative from at least 3 experiments. 
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Figure 2.2: Epistasis of buckyball and macf1a in nuclear positioning. 

A-D) DiOC6 staining (mitochondria, green) and dazl in situ (E-H, red) in stage I 

oocytes label the Bb. (A, E) WT with centered nucleus and Bb present.  (B, F) 

buc mutant with centered nucleus, absent Bb, and unlocalized dazl.  (C, G) 

macf1a mutant with acentric nucleus and Bb enlarged.  (D, H) macf1ap6cv; buc 

double mutant with acentric nucleus, absent Bb, and unlocalized dazl.  DAPI 

(blue) stains DNA (A-D).  DiOC6: N> 3 ovaries; >30 WT, >30 macf1ap6cv, 15 

bucp106 ,24 macf1ap6cv; buc p106 oocytes.  dazl in situ N= 3 ovaries; 10 bucp106 , 7 

macf1ap6cv, 14 macf1ap6cv; buc p106 oocytes.  Representative images from 2 

experiments. Dotted white lines outline the nucleus. Images are a sum of 3 

single optical confocal sections. Arrowheads indicate the Bb. Scale bar: 20µm 

(C-D). 
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Figure 2.3: Localization of Macf1a in stage I oocytes. 

A-C) Macf1a immunostaining (green) in stage I oocytes shows localization 

perinuclearly and within the Bb (50µm), and later at the cortex during Bb 

disassembly (B, C).  D) In a macf1asa12708 mutant oocyte Macf1a staining was 

negative.  E-G) GFP staining in Gt(macf1a–citrine)ct68a line also shows Macf1a-

citrine localization to the Bb and at the cortex during disassembly. DAPI 

(blue/magenta) stains DNA. A-D) N> 5 ovaries, 53 WT and 18 macf1asa12708 

oocytes.  E-G) 3 ovaries, 44 oocytes of Gt(macf1a–citrine)ct68a/+.Representative 

images from 3 experiments.  Dotted white lines outline the nucleus. Images are 

a sum of 3 single optical confocal sections. Arrowheads indicate the Bb. Scale 

bars: 20µm. 
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Figure 2.4: Latrunculin A treatment in stage I oocytes 

A-B). Stills from live imaging of Tg(actb1:lifeact-GFP) oocytes showing actin filaments 

(green) before and after treatment with DMSO(A) or LatA (B). N= 3 ovaries; 11 DMSO 

and 23 LatA oocytes. After 10 h of treatment with LatA, Lifeact-GFP fluorescence 

decreases (B).   C-F) Ovaries treated with DMSO or LatA (G-J), then fixed and stained 

for Buc (red) (E,F, H, and J) and phalloidin (magenta) (C, D, G and I). Arrowheads 

point to Buc in Bb and cortex. 6h, 18 DMSO and 22 LatA treated oocytes were 

analyzed finding no effect in Bb or nucleus.  After 12h, 19 DMSO and 22 LatA treated 

oocytes were analyzed, with 4/22 showing Buc cortical detachment and 3/22 acentric 

nucleus. N > 5 ovaries. Scale bar: 20µm. 
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Figure 2.5: Effect of disrupting actin and MTs on the Bb and nuclear 

positioning. 

A) Macf1 (green) and phalloidin staining in WT (A) and phalloidin in 

macf1ap6cv mutant (B) oocytes labeling cortical and intranuclear actin. A) 

Macf1a is at the cortex upon Bb disassembly in WT and actin is absent 

from the Bb. N= 3 ovaries, 5 WT and 10 macf1ap6cv mutant oocytes.  A’, 
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B’) WT (A’) and macf1ap6cv mutant (B’) live stage I oocytes stained with 

MitoTracker to visualize the cortical detachment of mitochondria in 

macf1a mutant. N= 3 ovaries, 22 WT and 7 macf1ap6cv oocytes. C-F) 

Ovaries treated with DMSO (C-D) or LatA (E-F) for 20 h, then fixed and 

stained for mitochondria (DiOC6, green) and Buc (red). Asterisks and red 

dotted line mark the cortical detachment of mitochondria and Buc in LatA 

treated oocytes (E,-F). The number of oocytes imaged that showed the 

mitochondrial cortical detachment in DMSO and LatA treated was 3/25 

and 25/40, respectively. F) The oocytes that displayed an acentric 

nucleus after LatA treatment was15 of 40 oocytes. N > 5 ovaries.  G-H) 

Stills from live imaging of Tg(ef1a:dclk-GFP) to visualize MTs (green) and 

Mitotracker (mitochondria, red) to visualize the Bb. Time series of live 

stage I oocytes treated with DMSO (G, control) or nocodazole (H) .  N>5 

ovaries, 75 DMSO and 73 nocodazole treated oocytes. I-L) Ovaries from 

Tg (EMTB-3GFP) treated with DMSO (I, J) and nocodazole (K, L) for 

10h, and stained for MTs (GFP) and mitochondria (DiOC₆). M-T) Cold 

treatment (4°C) for 120min to depolymerize stable MTs.  Incubation at 

28°C (M-P) or 4°C (Q-T) of  Tg(ef1a:dclk-GFP) (M, N; Q, R) and wild type 

ovaries stained for acetylated tubulin (O, P; S, T) to visualize MTs.  N>5  

ovaries, 53 (28°C) and 50 (4°C) oocytes. Arrowheads indicate the Bb. 

Scale bar: 20µm. 
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Figure 2.6: Distribution of cytokeratin in stage I oocytes. 

A-B) Cytokeratin (CK, green) immunostaining and DiOC6 labeling (Bb, red) 

in ovary tissue sections. A) In WT, CK puncta are distributed within the Bb 

(arrowhead) and cortically, whereas in a macf1ap6cv and macf1asa12708 

mutant oocyte (B-C) CKs are devoid from the cortex (white outline) and are 

around the nucleus. C-D) Quantification of CK enrichment in the Bb. C) 

DiOC6 staining pattern was used to segment the oocyte into regions of 

interest (ROI). Outlines show identified plasma membrane (green), nucleus 

(yellow) and Bb (orange).  All cytoplasm defined by the area between 

yellow and green lines, and outer cytoplasm is between cyan and green 

lines.  White circles around identified CK puncta. CK puncta density was 

measured in each region of interest (ROI).  D) Graph of CK enrichment (CK 

puncta/mm2) in All cytoplasm, outer cytoplasm, and Bb. Points represent 

single oocytes. Black bar shows the mean. p-values, *,** <0.01. DAPI (blue) 

stains the follicle cell nuclei (A-B). Images are single optical sections. Scale 

bar: 20µm. N > 5 ovaries, > 30 WT and > 20 macf1ap6cv oocytes. N= 2 

ovaries and 10 oocytes macf1asa12708 7 oocytes were used for 

quantification. Images are representative of 3 experiments. 
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Figure 2.7: Pipeline for the generation of macf1aDABD(CH1) , macf1aDABD(CH1-ch2) 

and macf1aDPRD-/- mutants.  
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Figure 2.8: CRISPR/Cas9 deletions of Macf1a ABD and PRD. 

A) Illustrates the Macf1a protein generated by the genomic deletions and the 

nomenclature to refer to each deletion mutant. Exons encoding the ABD are 
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highlighted in yellow and the PRD in pink, whereas the absent domains are in 

gray.  B-C) Schematizes the CRISPR/Cas9 approach to delete the ABD and 

PRD, showing the targeted introns, the size of the genomic deletion, and the 

deleted exons from the coding sequence (cDNA). B) Sequencing of cDNA 

confirmed deletion of intended exons coding for 70% of the CH1 ABD and 85% 

of the full CH1-CH2 ABD. C) Illustrates the deletion of exon 35, coding for the 

PRD, and exons 36-38.  
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Figure 2.9: Molecular characterization of macf1a domain deletion 

mutants. 

A) Detection of macf1a-ABD (CH1) and (CH1-CH2) deletions in the macf1a 

gene and cDNA. Scheme indicates intron targets for deleting macf1a ABD 

(CH1) and (CH1-CH2). Partial genomic sequence of introns 3 and 5 in WT 

and the genomic size between the selected CRISPR target sites is 

indicated. In green the predicted Cas9 cut site and the underlying gray line 

marks the joined sites of introns after Cas9 cutting and repair.  Below is the 

cDNA sequence for macf1aDABD(CH1) and macf1aDABD(CH1-CH2). The exon 

composition (only the first few amino acids are shown) in WT compared to 

mutants confirms the intended exon deletions in macf1aDABD(CH1) and 

macf1aDABD(CH1-CH2). The primer locations for amplifying macf1a cDNA are 

indicated.  B) Detection of macf1a-PRD domain deletion in the macf1a gene 

and cDNA. Scheme indicates intron targets for deleting the macf1a-PRD. 

Partial genomic sequence of introns 34 and 38 in WT indicating the genomic 

size between the selected CRISPR target sites, in green the predicted Cas9 

cut site, and the underlying gray line marks the joined sites of introns 34 and 

38 after Cas9 cutting and repair.  Below is the deleted genomic DNA and 

cDNA sequence for macf1aDPRD. The primer locations for amplifying macf1a 

cDNA are indicated. The exons 36-39 in lighter tone have not been 

sequenced. C) PCR products from ovary cDNA amplifying macf1a ABD and 

PRD. Primer combinations and expected PCR product sizes are shown 

along with the bands detected in WT and mutants (lanes 1-3, ABD; 4-9, 

PRD). Arrowheads (black and red) indicate the mutant bands at the 

expected size and asterisks indicate the WT bands. 
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Figure 2.10: Phenotypic characterization of macf1aDABD(CH1) , macf1aDABD(CH1-CH2) 

and macf1aDPRD mutants. 

A) DiOC6 (mitochondria, green) and Buc (red) staining in early and late stage I 

oocytes. macf1aDABD(CH1) ovaries display wild type and macf1a null phenotype due to 

incomplete penetrance. In macf1a null phenotype the Bb is normal in early stage I, 

but in late stage I oocytes the Bb enlarges and never disassembles at the cortex. In 

addition, mutants show an acentric nucleus in late stage I oocytes, like null mutants. 

macf1aDABD(CH1) /macf1asa12708, macf1aDABD(CH1-CH2) /macf1sa12708 and macf1aDABD(CH1-

ch2) ovaries display macf1a null phenotype, whereas macf1aDPRD / macf1sa12708 and 

macf1aDPRD homozygous mutant oocytes show no phenotype; the Bb disassembles 

normally at the cortex and the nucleus is centrally positioned.  DiOC6 and Buc; N> 3 

ovaries, > 31 macf1aDABD(CH1 >25 macf1aDABD(CH1)/macf1asa12708, 11 macf1aDABD(CH-

CH2)/ macf1asa12708 , 22 macf1aDABD(CH1-ch2), 15 macf1aDPRD / macf1sa12708  and 24 

macf1aDPRD-/- oocytes.  B-B’) Macf1a immunostaining (red) in wild type and 

macf1aDABD(CH1)/macf1asa12708 (N> 3 ovaries, 20 oocytes).  

 

 

Figure 2.11: AV polarity establishment in macf1a mutants. 
 



 

 

74 

 AV polarity in wild type, and lack of polarity in macf1asa12708, 

macf1aDABD(CH1)/macf1asa12708 and macf1aDABD(CH1-CH2) /macf1sa12708 mutant eggs, where 

the cytoplasm (arrowheads) surrounds the yolk instead of forming the blastodisc.  In 

macf1aDABD(CH1) mutants the egg phenotype shows incomplete penetrance. Late 

blastula embryos from macf1aDPRD / macf1sa12708  and macf1aDPRD mutant females 

displays normal AV polarity and development. DAPI (blue) stains the DNA. Dotted 

white lines outline the nucleus. Images are single optical sections. Arrowheads in (A-B, 

for Buc, Macf1a) indicate the Bb. Scale bar: (A-B) 20µm and (C) 100 µm.. Scale bar: 

100µm. 

 

 

 

Figure 2.12: Model of Macf1a function in Bb dissociation at the cortex.  

In early stage I oocytes, Bb precursors first aggregate in a nuclear cleft around the 

centrosome. As stage I progresses the centrosome is lost and the Bb rounds up into a 

mature Bb (Elkouby et al 2016).  From this position next to the nucleus the Bb will later 

reach the oocyte cortex.  The mature Bb contains Buc and Macf1a that regulate Bb 
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Table 2.1. Generation of macf1a deletion mutants  

 

 

 

 

 

formation and disassembly, respectively.  We postulate that Macf1a in the Bb does not 

function as a cytolinker linking two cytoskeletal systems together. Instead, Macf1a 

links the Bb to the oocyte cortex via its localization to the Bb and by interaction with 

cortical actin via the Macf1a ABD. The Bb dissociates progressively during a period of 

about two-fold growth in oocyte volume.  During this period the Bb becomes 

progressively smaller, although remains largely spherical, with Macf1a, Buc and other 

Bb components relocating as puncta to the oocyte cortex. We hypothesize that 

Macf1a acts directly in this relocalization process, which may occur via dissolution and 

reaggregation or via the Bb fragmenting and relocalizing to the oocyte cortex in a 

Macf1a-dependent manner. In either case, the Bb would dissociate progressively over 

time with peripheral regions dissociating prior to more internal ones. Once the Bb 

dissociates at the cortex, the oocyte vegetal pole is defined.   
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Table 2.2: Egg phenotype of macf1a mutant females  
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Table 2.3. List of macf1a cDNA primers 
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Chapter 3  : Future Directions  
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A few years ago, Buckyball and Macf1 emerged as novel factors regulating the 

establishment of oocyte cell polarity, via the assembly and disassembly of the Bb mRNP 

granule, respectively. More recently, Buc was shown to contain a prion-like domain that 

induces the formation of amyloid like fibers in the process of Bb assembly (Boke et al., 

2016). These findings situated the Bb as an emerging model to study physiological 

association and dissociation of amyloid-like aggregates.  

Currently, Macf1a is the only known factor required for Bb mRNP granule 

dissociation (Gupta et al., 2010) and we determined that Macf1-ABD is essential for Bb 

dissociation at the oocyte cortex. In macf1 mutants, the Bb persists in the cytoplasm and 

never disassembles, thus, suggesting that Bb anchoring to the cortex is key in the 

dissociation process.  For the future, it is important to address how is Bb dissociation is 

triggered, whether the Macf1-ABD and actin directly mediates Bb dissociation, or 

additional factors are required in the oocyte cortex or cytoplasm.  

From all Macf1 functional domains, we determined that in establishing oocyte 

polarity the Macf1-ABD is essential, while the Macf1- PRD is dispensable, and the 

MTBD may not be required since MT disruption does not affect the Bb. However, it is 

unknown if the Macf1 long rod domain, composed of 29 SRs, is essential for Macf1 

function. Moreover, is unclear the requirement of the rod domain in other cell types is 

unclear (Applewhite et al., 2010; Karakesisoglou et al., 2000; Kodama et al., 2003; Lee 

and Kolodziej, 2002b). Thus, addressing the requirement of the Macf1a rod domain in 

Bb dissociation will contribute to fill a gap in the knowledge of the requirement for Macf1 

SRs.  



 

 

80 

Is Macf1 and actin interaction directly or indirectly mediating Bb disassembly? 

A remaining question is whether the Macf1a-ABD and actin cortical association is 

sufficient to drive Bb dissociation or, instead, if other factors are required to act 

downstream of Macf1a. One hypothesis is that the Macf1a-ABD and actin are only 

required to anchor the Bb, with an additional or no role in Bb dissociation, whereas a 

cortical or cytoplasmic factor acts on the Bb to initiate its full dissociation.  Such factor(s) 

could be present in the oocyte cytoplasm or cortex and act from mid-stage I onwards 

since at that point the Bb is dissociating.  Alternatively, no other factors are required and 

Macf1a in the Bb through its association with cortical actin is sufficient to drive Bb 

dissociation.  

Although the current methods in zebrafish (chapter 2) and Xenophus (Chang et 

al., 2004) are unable to recapitulate the dynamics of Bb dissociation in vivo, recent 

advances from our lab and others (Boke et al., 2016) have shown that the Bb can be 

isolated from stage I oocytes to study it in vitro. Moreover, the cytoplasm and cortices 

can also be extracted from Xenophus oocytes and eggs (Field et al., 2014; Sive et al., 

2007). Hence, a new approach that combines isolated Bbs and cellular fractions from 

oocytes, may be able to recreate Bb dissociation in vitro without the constrains of Bb 

progression in vivo.  

The incubation of isolated Bbs with actin filaments should reveal whether it is 

sufficient to drive Bb dissociation, or only to attach the Bb.  The effect of incubating Bbs 

with cytoplasmic and cortical fractions will address if additional factors are required to 

trigger Bb dissociation. Based on our findings (chapter 2) showing that macf1a mutants 
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(macf1a sa12708, macf1a p6cv and macf1a DABD) fail to disassemble the Bb and persist in the 

cytoplasm, it seems unlikely that a cytoplasmic factor triggers Bb dissociation. Rather, 

Bbs are expected to associate with oocyte cortices in an actin and Macf1dependent 

manner and induce Bb dissociation.  

The effect of the different extracts on isolated Bbs from wild type and macf1aDABD 

mutants can be evaluated by live imaging using tagged Buckyball (Riemer et al., 2015), 

or in fixed and stained samples with Buc antibody (chapter2). The parameters to 

evaluate are: Bb dissociation rate (method in chapter 3) at different time points, and the 

colocalization with actin filaments.  Results from these experiments in isolated Bbs will 

address whether Macf1-ABD and actin interaction is mediating or driving Bb 

dissociation. 

Is the rod domain (spectrin repeats) required in establishing oocyte polarity? 

Macf1 belongs to the Spectrin family of proteins, characterized by containing a 

spectrin repeats (SRs) module (chapter 1) forming a linear rod that is believed to provide 

length, flexibility and space between functional domains (Grum et al., 1999).  Dystrophin 

is also a member of this family and its critical for muscle function, connecting via the N-

terminal ABD the cytoskeleton to the plasma membrane trough the C-terminal b-

Dystroglycan, with the N-term and C-term separated by 24SRs (Ervasti, 2007). Similarly, 

Macf1 contains 29 SRs (chapter 2) spacing the N-terminal ABD and C-terminal MTBD.  

Macf1a and Dystrophin have analogous structures and functions, linking large 

cytoplasmic structures; the Bb and contractile apparatus to the cell cortex, respectively. 

Thus, despite acting in different cell types, SRs function may be similar in both.  



 

 

82 

Dystrophin loss of function leads to Duchene muscular Dystrophy (DMD) in 

humans, characterized by severe and progressive muscle degeneration. Though most 

mutations causing DMD are null, in some cases, mutations produce in frame deletions 

that generate smaller Dystrophin versions and associate with milder forms of the disease 

(Kerr et al., 2001) known as Becker Muscular Dystrophy (BMD). A particular case of 

BMD contains an in-frame mutation in dystrophin that deletes ~30 exons in the rod 

domain, generating a Dystrophin lacking ~70% of the rod domain that is unable to 

completely restore protein function (Palmucci et al., 1994). Though the exact mechanism 

is unknown, it suggests that SRs number and length may be critical for Dystrophin 

function. 

It remains unclear the contribution of the rod domain to Macf1 function, since 

variable results are obtained in different biological contexts (see chapter 1).  Based on 

our data (chapter 2), showing that Macf1a-ABD is required for Bb dissociation, it is 

tempting to speculate that a long rod domain may facilitate the linking of the Bb to the 

cortex.  Future experiments should address the Macf1a-rod domain requirement by 

deleting SRs from the macf1a endogenous locus and examining the resulting oocyte 

phenotype.   

We expect that deleting most or all SRs will cause Bb and nuclear positioning 

defects, although they may not be fully penetrant defects.  If only Bb or nuclear 

positioning are affected, it would suggest that Macf1a may have different SRs 

requirement for these two processes.  We expect that deleting only a few (~30-40%) 

Macf1 SRs will function normally since it will still contain most of the spectrin rod domain. 
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However, If we observed otherwise, and the mutant displays a Bb or nucleus defect, 

then it would suggest that the length of the rod domain is critical for Macf1a function in 

oocyte polarity.  
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