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Essays On Dynamic Incentive Design

Abstract
This dissertation consists of three essays that examine incentive problems within various dynamic
environments. In Chapter 1, I study the optimal design of a dynamic regulatory system that encourages
regulated agents to monitor their activities and voluntarily report their violations. Self-monitoring is a private
and costly process, and comprises the core of the incentive problem. There are no monetary transfers. Instead,
the regulator (she) uses future regulatory behavior for incentive provision. When the regulator has full
commitment power, she can induce costly self-monitoring and revelation of ``bad news'' in the initial phase of
the optimal policy. During this phase, the agent is promised a higher continuation utility (in the form of future
regulatory approval) each time he discloses ``bad news''. If the regulator internalizes self-monitoring costs, the
agent is either blacklisted or whitelisted in the long run. When she does not internalize these costs,
blacklisting is replaced by a temporary probation state, and whitelisting becomes the unique long run
outcome. This result suggests that whitelisting, which may appear to be a form of regulatory capture, may
instead be a consequence of optimal policy.

In Chapter 2, I study the dynamic pricing problem of a durable good monopolist with commitment power,
when a new version of the good is expected at some point in the future. The new version of the good is
superior to the existing one, bringing a higher flow utility. The buyers are heterogeneous in terms of their
valuations and strategically time their purchases. When the arrival is a stationary stochastic process, the
corresponding optimal price path is shown to be constant for both versions of the good, hence there is no
delay on purchases and time is not used to discriminate over buyers, which is in line with the literature.
However, if the arrival of the new version occurs at a commonly known deterministic date, then the price path
may decrease over time, resulting in delayed purchases. For both arrival processes, posted prices is a sub-
optimal selling mechanism. The optimal one involves bundling of both versions of the good and selling them
only together, which can easily be implemented by selling the initial version of the good with a replacement
guarantee.

Finally, Chapter 3 examines the question under what conditions can automation be less desirable compared to
human labor. We study a firm that has to decide between a human-human team and a human-machine team
for production. The effort choice of a human employee is not observed by the manager, therefore the
incentives need to be properly aligned. We argue that, despite the desirable benefits resulting from the partial
substitution of labor with automated machines such as less costly machine input and reduced scope of moral
hazard, the teams with only human employees can, under some conditions, be more preferred over the
human-machine teams. This stems from the fact that, in all-human teams, the principal, through the selection
of incentive scheme, can control the interaction among the agents and get benefit from the mutual monitoring
capacity between them. The automation, however, eliminates this interaction and shuts down a channel that
can potentially help to mitigate the overall agency problem.
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ABSTRACT

ESSAYS ON DYNAMIC INCENTIVE DESIGN

Mustafa Dogan

George J. Mailath

This dissertation consists of three essays that examine incentive problems within various

dynamic environments. In Chapter 1, I study the optimal design of a dynamic regulatory

system that encourages regulated agents to monitor their activities and voluntarily report

their violations. Self-monitoring is a private and costly process, and comprises the core of

the incentive problem. There are no monetary transfers. Instead, the regulator (she) uses

future regulatory behavior for incentive provision. When the regulator has full commitment

power, she can induce costly self-monitoring and revelation of “bad news” in the initial

phase of the optimal policy. During this phase, the agent is promised a higher continuation

utility (in the form of future regulatory approval) each time he discloses “bad news”. If

the regulator internalizes self-monitoring costs, the agent is either blacklisted or whitelisted

in the long run. When she does not internalize these costs, blacklisting is replaced by a

temporary probation state, and whitelisting becomes the unique long run outcome. This

result suggests that whitelisting, which may appear to be a form of regulatory capture, may

instead be a consequence of optimal policy.

In Chapter 2, I study the dynamic pricing problem of a durable good monopolist with

commitment power, when a new version of the good is expected at some point in the

future. The new version of the good is superior to the existing one, bringing a higher flow

utility. The buyers are heterogeneous in terms of their valuations and strategically time

their purchases. When the arrival is a stationary stochastic process, the corresponding

optimal price path is shown to be constant for both versions of the good, hence there

is no delay on purchases and time is not used to discriminate over buyers, which is in

line with the literature. However, if the arrival of the new version occurs at a commonly
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known deterministic date, then the price path may decrease over time, resulting in delayed

purchases. For both arrival processes, posted prices is a sub-optimal selling mechanism. The

optimal one involves bundling of both versions of the good and selling them only together,

which can easily be implemented by selling the initial version of the good with a replacement

guarantee.

Finally, Chapter 3, which is a joint work with Pinar Yildirim, examines the question

under what conditions can automation be less desirable compared to human labor. We

study a firm that has to decide between a human-human team and a human-machine team

for production. The effort choice of a human employee is not observed by the manager,

therefore the incentives need to be properly aligned. We argue that, despite the desirable

benefits resulting from the partial substitution of labor with automated machines such as

less costly machine input and reduced scope of moral hazard, the teams with only human

employees can, under some conditions, be more preferred over the human-machine teams.

This stems from the fact that, in all-human teams, the principal, through the selection

of incentive scheme, can control the interaction among the agents and get benefit from

the mutual monitoring capacity between them. The automation, however, eliminates this

interaction and shuts down a channel that can potentially help to mitigate the overall agency

problem.
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Chapter 1

Dynamic Incentives for Self-Monitoring

1.1 Introduction

The U.S. Environmental Protection Agency has an auditing policy that encourages compa-

nies to monitor their ongoing and planned activities that may fall within its authority, and

to voluntarily report their violations.1 This is an example of the framework that I explore

in this paper. I am interested in understanding the behavior of regulators in environments

where the regulated activity may result in bad outcomes and where there is significant un-

certainty. Agents have an advantage in acquiring information about these activities because

they have lower costs of monitoring. The regulator, in an efficient regulatory regime, would

like to use agents’ self-monitoring. I study how regulators can induce economic agents to

acquire and disclose costly information about the negative consequences of their activities

through the use of future regulatory behavior without resorting to monetary transfers.

I show that, when the regulator has full commitment power, the optimal policy can

induce self-monitoring only in an initial phase, which endures over a stochastic number of

periods. When it ends, a terminal phase of the policy is initiated and self-monitoring stops.

1The auditing policy is defined in Environmental Protection Agency (11 April 2000), titled “Incentives
for Self-Policing: Discovery, Disclosure, Correction and Prevention of Violations”.

1



The outcome in this terminal phase is history-dependent and involves either blacklisting the

agent or whitelisting him. When the regulator does not internalize self-monitoring costs,

blacklisting is replaced by a temporary probation state. The unique long-run outcome is

whitelisting in this case. This result suggests that whitelisting, which may appear to be a

form of regulatory capture, may instead be a consequence of optimal policy. I also analyze

the case in which the regulator’s commitment power is limited so that she cannot commit

to policies with negative continuation values. In this case, if the expected cost of the social

harm is larger than the economic benefits of the projects, then whitelisting never occurs

in an optimal policy. Moreover, self-monitoring is sustained over the long term when the

regulator does not internalize its costs.

In general, many enforcement authorities adopt self-monitoring practices for various

regulatory purposes.2 A specific practice is the process of issuing licenses for activities with

possible environmental consequences. A mining company, for example, in applying for a

mining license, may be asked to submit an Environmental Impact Statement and sometimes

other supplementary information that requires substantial and costly self-monitoring. The

grant of the license empowers the company to operate and contributes to the aggregate

economy. Yet, it may also cause some undesirable social consequences that the regulator

needs to take into account.3 To make matters worse, these undesired outcomes oftentimes

take a considerable amount of time to become apparent so that it is no more feasible to

take ameliorating action.4 Therefore, investigating these potential harms prior to making a

licensing decision is the only convenient policy for the regulator. And these investigations are

delegated to the applicant company through the request of Environment Impact Statement.

Incentive divergence is the most prominent feature of the aforementioned settings. The

agents prefer to avoid suspension of their activities and also generally prefer to avoid mon-

2Securities and Exchange Commission, U.S. Department of Agriculture, U.S. Department of Defense, and
Food and Drug Administration are examples.

3For example, the mining area may have invisible connections to groundwater resources, in which case
mining activities might lead to the production and the spread of hazardous material.

4There are many cases, in the mining industry, for example, where the actual damage become apparent
only decades after the operations took place.

2



itoring due to its costs and the possibility of unfavorable signals that it might reveal. On

the other hand, the regulators care about efficiency for which monitoring and suspending

harm-producing activities are essential. Therefore, the regulator has a complicated policy

problem that involves supervising the agents and at the same time incentivizing them to

self-monitor.

To study the regulator’s problem, I construct a dynamic principal-agent model in which

a stream of projects arrives over time, one for each period. The agent (he) wants to under-

take the projects, but needs the approval of the regulator (she), who is the principal. The

projects are ex-ante identical, yielding the same revenue for the agent. On the other hand,

a project might either be harmless or it might result in social costs which would outweigh

the value that the project generates. The agent can acquire information about whether the

project has social costs by costly self-monitoring, but the efforts spent on self-monitoring

are not directly observed by the principal. The principal has the objective of inducing

socially preferable outcomes. Her preferences involve the economic benefits as well as the

social costs resulting from these projects. Each period, the principal first decides whether

or not to ask for self-monitoring, and then chooses whether to approve the project. There

is no ex-post monitoring, and the realized harms are never observed. In many settings, the

harms occur, or become evident, with a significant lag compared to the economic yields

of the projects. To abstract from this reality, I analyze the case in which this lag goes to

infinity.

There are no monetary transfers. In many situations, regulatory agencies are limited in

their ability to use monetary transfers for various reasons. For example, in some industries

there is a legal limitation on the size of the monetary fines that regulators can levy.5 As

a result, monetary transfers are too weak to induce proper behavior, and the regulator

needs to use other tools for incentive provision. This paper focuses on the extreme case

5In the oil and gas industry of the U.S., there is a daily limit on the maximum amount of fines, and
this limit varies across states in the U.S. The total amount of fine the regulating authority collects is is
negligible compared to the economic benefit that the companies receive, see for instance E&E Publishing,
LLC (November 14, 2011).

3



of the regulators’ limited use of monetary transfers by ruling them out. In the absence of

monetary transfers, the regulator provides incentives by linking her decisions over time.

The information structure governing the self-monitoring process takes the form of ver-

ifiable “bad news” which are publicly observed. More precisely, there is a unique verifiable

signal perfectly revealing bad news and informing about the harm that will occur if the

project is undertaken. In case the agent performs self-monitoring in a particular period,

conditional on the project being harmful, the signal will be realized with some probability

and will be publicly observed. If there is no news, then there are two possibilities from the

principal’s perspective. First, the agent shirked and did not monitor. Second, the agent

acquired information; however, no signal was realized since the project is more likely not

to cause harm. There is no direct signal indicating good news. In most of the settings

that fit into this paper, the only good news is the absence of bad news. In other words,

certifiably disclosing good news is not possible. On the contrary, bad news, in general, pro-

vides concrete evidence and detailed description of the harm that will occur if the project is

undertaken. Conditional on this information structure, assuming that the signal is publicly

observed is without loss of generality. As long as the agent prefers to monitor himself, he

also prefers to disclose the signal in case it is realized. Otherwise, he could simply shirk in

the first place and eliminate the cost of monitoring. The incentives that induce information

acquisition automatically induces the disclosure contingent upon acquisition. Therefore,

the signal remains public throughout the discussion in the paper, and hence self-disclosure

exogenously occurs conditional on self-monitoring.

Initially, I study the case in which the principal has full commitment power. At the

beginning, she commits to history-contingent policy that specifies her decisions regarding

self-monitoring requests, and the approval of the projects in each period. I show that self-

monitoring is only induced in an initial phase of the optimal policy. During this initial

phase, the agent is promised a higher continuation utility (in the form of future regulatory

approval) each time he discloses bad news. His current project is less likely to get approved,
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but the regulator promises more frequent approval in the future. If he does not disclose

any signal, he is downgraded to a lower continuation utility. His current project has higher

chances of approval, yet he will be given less frequent approvals in the future. The duration

of this phase is stochastic; when it ends, the policy reaches a second phase in which there is

no more self-monitoring. The transitional dynamics between the phases and the long-run

outcome of the optimal policy depends on whether the principal internalizes the cost of

self-monitoring.

If the principal internalizes the costs of self-monitoring, the acquired information is

always used in the approval decision. The agent’s continuation utility eventually reaches

either its minimum or maximum and remains constant. In this stage, the principal perma-

nently rejects or permanently approves projects, that is, the agent is either blacklisted or

whitelisted in the long run.6

When the principal does not internalize the self-monitoring costs, the content of the

information is not always used in the current approval decision, in contrast to the previous

case. There is a probation state, which replaces blacklisting, wherein the agent acquires

information, but the project is rejected regardless of the outcome. The probation occurs

when the agent’s continuation utility reaches its minimum in consequence of the agent not

disclosing bad news frequent enough. After being initiated, this probationary state repeats

until the agent discloses some bad news. Leaving the probation state today does not rule out

the possibility of facing it again in the future. The agent’s continuation utility eventually

reaches its maximum which still puts permanent approval into action, in the long run, the

agent is always whitelisted.

The above-mentioned difference in the principal’s preferences alters the set of effec-

tive incentive devices she is willing to use. When she does not internalize its costs, self-

monitoring can purely be used to punish the agent. It is possible for the principal to use

6EPA blacklists companies at times, by labeling them as ineligible for federal contracts, subcontracts,
grants or loans. See Washington Post (February 5, 1977). The outcome permanent rejection can be consid-
ered as the counterpart of blacklisting. .
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self-monitoring as punishment, because verifiability ensures that monitoring effort is taken.

While the same channel was also feasible when the principal internalized the self-monitoring

costs, she preferred not to punish this way because she cared about the cost.

In this model, whitelisting is an outcome of the optimal regulatory policy. Hence, I do

not interpret it as a form of regulatory capture even though it shares some of its features.

My paper, therefore, suggests that what has been described as regulatory capture in some

cases may instead be an outcome of optimal regulatory policy.

Two situations give rise to inefficiencies in this framework. The first one occurs when

the agent forgoes information acquisition, and the second one arises when the content of the

information is not used efficiently. The first type only appears during the terminal phase

of the optimal policy where there is no more self-monitoring. The second type, appears in

the initial phase. Its occurrence triggers the terminal phase of the contract, when principal

internalizes self-monitoring costs. Therefore, the inefficiencies are back-loaded in this case.

However, when the principal does not internalize the self-monitoring costs, the second type

of inefficiency occurs in a non-consecutive stochastic order, and its occurrence does not

necessarily initiate the terminal phase. In this respect, efficiency will be lost and restored

stochastically throughout the optimal policy.

I also study the situation in which the principal has limited commitment power, in

that she cannot commit to a policy with a negative continuation value. The results change

remarkably. If the expected cost of a project is higher than its economic benefit, the

policy does not feature whitelisting. In this case, if the principal does not internalize self-

monitoring costs, the policy never reaches a stable outcome and fluctuates over time.

1.1.1 Literature Review

Kaplow and Shavell (1994) is the first study analyzing self-monitoring and self-reporting.

They introduce a self-reporting stage into the classical probabilistic law enforcement model
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of Becker (1968). By self-reporting a harmful act, the agent is granted a reduction in the

sanctions he faces. In contrast to my model, the agent in their paper is initially endowed with

the relevant information. Pfaff and Sanchirico (2000) introduce a more general framework

in which the agency problem has two tiers: testing for noncompliance and fixing it.7 There

is no information asymmetry to begin with, and the agent needs to exert effort to acquire

relevant information. Most of the papers in this literature focus on characterizing the

optimal incentive scheme in a static framework. My paper, however, studies the dynamics of

a regulatory regime incorporating self-monitoring. In a contemporaneous work, Wang et al.

(2016) also study a similar dynamic environment. The main distinction is that the harms

are already known to agent and monetary transfers are allowed in their framework. They

show that the optimal regime, in order to induce the agent to disclose harms, incorporates

a cyclical structure alternating between rewarding self-disclosure and initiating inspections.

Departing from theirs, my paper provides some explanation for practices such as blacklisting

which arise from dynamic consequences.

In its use of non-monetary intertemporal incentives as a disciplining device, this paper

relates to several different branches of literature. In mechanism design, Horner and Guo

(2015) (HG) analyze a dynamic allocation problem in the absence of monetary transfers.

The principal is interested in efficiency, which requires that the principal allocate the good

only if the agent has a high valuation. The optimal mechanism follows a history-dependent

rule which eventually converges to permanent allocation or permanent rejection of allo-

cation. In the literature on relational contracts, Li et al. (2015) analyze the evolution of

power inside organizations within the context of what they call a repeated trust game. The

efficient equilibrium has a structure similar to that of HG, incorporating a bipolar long run

outcome with permanent punishment and permanent rewards for the agent. Both of these

papers assumes that the agent is initially informed about the state variable. In my paper,

however, the state variable is initially unknown to both (the principal and the agent); but,

the agent can acquire information about it at some cost. The effort spent on information

7Also see Short and Toffel (2008), Innes (1999a), and Innes (1999b).
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acquisition is not observed by the principal, and the agency problem is moral hazard in-

stead of adverse selection unlike HG. The fact that the relevant information comes with a

cost changes the dynamic structure of the optimal contract/policy. More precisely, when

the principal does not internalize the cost of information acquisition, the long-run outcome

is unique, and permanent punishment is never a part of the optimal policy in contrast to

HG and (Li et al., 2015). Moreover, if the principal has a limited commitment power, the

optimal policy does not reach a stable outcome, instead it fluctuates over time.

Lipnowski and Ramos (2015) consider the repeated game version of HG. The efficient

equilibria in their framework have a unique long-run outcome featuring a permanent pun-

ishment for the agent, for much the same reason permanent does not occur in the limited

commitment section of my paper. In contrast to Lipnowski and Ramos (2015), I show

that the optimal policy does not necessarily reach a stable outcome in this case, when the

principal does not internalize the self-monitoring costs. Battaglini (2005) focuses on the

same allocation problem as in HG without ruling out monetary transfers. The principal is

a profit-maximizing monopolist. In this paper, the inefficiencies are entirely front-loaded.

The use of monetary transfers played an important role on this significant difference, as it

alters the natural way of providing incentives.

This paper also relates to the literature on relationship formation and trading favors.

Möbius (2001), Hauser and Hopenhayn (2008), and Abdulkadiroğlu and Bagwell (2013)

are examples. Within a repeated game setting, players facilitate cooperation by providing

favors to each other. The favor provision ability changes over time and is privately observed.

Inter-temporal incentives are utilized to elicit proper behavior and sustain cooperative gains.

Möbius (2001) suggests a simple chip mechanism which keeps track of the difference in the

number of favors provided. There is a maximum number of chips that can be maintained

in an equilibrium. Hauser and Hopenhayn (2008) improve on this by considering a more

general set of mechanisms. The optimal policy in my paper can also be interpreted as a

chips mechanism, in which several different factors affecting the amount of chips that the
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agent has for the next period. First, the quantity of the agent’s chips expands over time at

a constant rate that is equal to the inverse of the discount factor. Second, the amount of

chips that the agent has for the next period diminishes at an amount that is proportional

to the approval rate in the current period. Finally, the agent receives a fixed amount of

additional chips for each piece of bad news he discloses.

My paper also relates to the literature on linked decisions. Jackson and Sonnenschein

(2007), within a static environment, showed that linking multiple independent decisions can

help overcome incentive constraints. See also Cohn (2010), Hortala-Vallve (2010), and Fang

and Norman (2006).

1.2 Model

There is a principal (she) and an agent (he) interacting within a discrete time infinite horizon

setting, and δ is the common discount factor. A stream of projects arrives over time, one

for each period t = 1, 2, .....,∞. The agent would like to undertake each of these projects

for which he needs the approval of the principal.

Approving a project yields a positive value v ∈ (0, 1) to the agent. In addition to this

value, each project may cause a social harm depending on its type θ, which takes its values

from the binary space Θ = {θg, θb}. If θ = θb, then the project is “bad”, producing harm

with a magnitude normalized to 1. Otherwise, if θ = θg, then the project is “good”, and

does not produce any harm. The type of the project is initially unknown to the principal

and the agent, and µ = P (θ = θb) is the common prior about it. The project types

are independently and identically distributed over time; hence, the project arriving at the

beginning of each period is believed to be a bad one with probability µ ∈ (0, 1).

The principal is interested in efficiency, and wants to maximize the social surplus in

her decision. The surplus resulting from the approval of the project is equal to v or v − 1
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depending on whether the project is good or bad, respectively. The agent, on the other hand,

only cares about the value that the project generates for him, hence his utility increases by

v each time a project is approved irrespective of its type. Rejecting the project causes a

loss due to the forgone value v, yet, at the same time, prevents the production of probable

harms. Therefore, from an ex-post point of view, she wants to grant an approval for a

project only if it is a good one.

At each period, the agent can acquire information about the type of the project at cost

c prior to the principal’s approval decision. The information acquisition process, which is

also referred as self-monitoring, is governed by the following information structure. There

is a unique verifiable signal “s” which perfectly reveals “bad news” about the type of the

project. Conditional on the project being bad, the signal is realized with probability λ ≤ 1.

If the project is good, then the signal is never realized. More precisely:

P (s|θb) = λ, P (s|θg) = 0.

I assume that the signal is publicly observed whenever it is realized.8 Due to this pub-

licity, “self-reporting”, which refers to the event of signal realization, exogenously follows

conditional on self-monitoring.

The event of no signal realization following the information acquisition, besides being

informative, does not perfectly reveal the type of the project (unless λ = 1). Conditional on

information acquisition, the posterior beliefs after signal realization and no signal realization

8This publicity assumption is without loss of any generality. All of the results would also follow in a
more general framework, where the agent privately observes the signal and then decides whether or not to
disclose it to the principal. This stems from the fact that, as long as the agent prefers to monitor himself,
he also prefers to disclose the signal in case it is realized. Otherwise, he could simply shirk in the first place
and eliminate the cost of monitoring. Of course, this property crucially depends on the signal structure
governing the information acquisition.
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are denoted by µs and µns respectively, which satisfy:

µs = 1,

µns =
µ(1− λ)

1− µλ
.

In the ex-ante stage the expected cost of a project is equal to µ = µ1 + (1−µ)0. Therefore,

the ex-ante expected surplus that arises from the project approval is v − µ. There is no

assumption imposed on the sign of this value, hence both approval and rejection can be

the optimal uninformed decision. The assumptions on the parameters that are maintained

throughout the entire paper are defined as follows:

Assumption 1.1. The parameters of the model satisfies the following:

i) v > µns.

ii) (1− µλ)(v − µns)− c > max(v − µ, 0).

iii) δ > 1
1+µλv .

The first assumption states that, from the principal’s perspective, it is optimal to

approve the project in case no signal realization takes place as a result of information

acquisition. The second assumption states that the information acquisition is efficient,

hence the problem is not a trivial one. The third assumption states that the discount factor

is large enough and players are sufficiently patient.

The effort spent on self-monitoring is not observed by the principal, and this generates

the moral hazard component which constitutes the main source of the agency problem. If

the incentives are not provided properly, then the agent would shirk rather than monitoring

the projects. By this, the agent can get rid of the cost of self-monitoring, and at the

same time prevent the revelation of bad news and hence the suspension of his projects.

Nonetheless, because the information acquisition is efficient, the principal wants to design
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an incentive scheme to motivate the agent towards this end. Note that the verifiability of

the signal plays a crucial role. It would never be feasible to induce self-monitoring under

an information structure that comprises only non-verifiable soft information.

There are no monetary transfers. In many situations, regulatory agencies has limited

ability to use monetary transfers, which leads them to use other tools such as future reg-

ulatory behavior for incentive provision. In this framework, the principal would be able

to induce the first-best outcome under the presence of monetary transfers, by using a sta-

tionary payment scheme.9 Such a stationary scheme, however, would be insufficient to sort

out the extent to which the principal utilizes the continuation values arising from future

regulatory behavior as an incentive device. In order to analyze these dynamics, one should

either employ a more general framework incorporating additional aspects, or restrict the

existing one. To eliminate technical difficulties and maintain tractability, I follow the latter

and rule out the monetary transfers in the analysis.

There is no initial information asymmetry about the type of the project. This does not

rule out the possibility of an agent having superior information about other relevant issues.

For instance, as the owner of the project, the agent might be better informed about the

direction in which to search for “bad news”. This can be considered as the basis for agent’s

comparative advantage in terms of monitoring capability. This is effectively an information

asymmetry, yet it is not directly related to the type of the project.

Ex-ante monitoring is the only source of information on the type of the project. There

is no possibility of ex-post monitoring, and hence the realized harm is never observed. This

assumption reflects the fact that, in many circumstances, the harms take place with a

significant lag compared to the economic yields of the projects.

A later section of this paper analyzes a model where the principal can also monitor the

project with a higher cost. In that setting, in each period prior to making the approval

9The first-best scheme involves delegating monitoring to the agent and employing the efficient approval
decisions in every period.
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decision, the principal makes a decision regarding monitoring. She either monitors the

project on her own, or delegates monitoring to the agent, or completely avoids monitoring.

In the current model, requesting self-monitoring from the agent is not delegation since the

principal does not have an option to monitor the projects on her own. Nonetheless, for

notational ease, I will use the word delegation to refer to a self-monitoring request in this

section as well.

1.2.1 Actions and Preferences

For each period t, after a new project arrives, the principal first decides whether or not to

delegate monitoring to the agent. If delegation occurs, the agent moves and decides decides

either to shirk or to exert effort and monitor himself. Then, finally, the principal moves

again and decides whether or not to approve the project. This stage game is repeated

infinitely many times.

The scope of the conflict between the principal and the agent is not limited to the

social costs that the projects may generate. The monitoring costs that the agent assumes

is another factor contributing to the extent of the conflict. This paper studies two dif-

ferent specifications. Under the first specification, the principal internalizes the cost of

self-monitoring; in the second one, she does not internalize it. The conflict becomes more

intense under the second specification. The corresponding stage game, together with the

payoffs corresponding to the first specification, is illustrated in the following figure. Note

that the principal’s payoffs are in expectation terms except for those terminal nodes result-

ing from project rejections, and signal realization. The expectation is based on the belief

about the type of the project, which is either µ, if no information is acquired, or µns if

information is acquired but no signal is realized.
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Figure 1.1: The stage game between the principal and the agent. The principal internalizes
the cost of self-monitoring. All the terminal nodes, except those are reached by nature’s
move θb,s , and project rejections, are reflecting principal’s expected payoffs over the deter-
mination of the type of the project. µ is the unconditional probability of project being bad,
and µns is the probability of project being bad conditional on no signal is realized after
information acquisition.

1.2.2 An Alternative Interpretation

There is an alternative interpretation of the model. Suppose that there are some costly

precautionary measures that can be initiated by the agent if the principal forces him to do

so. From the principal’s point of view, these precautions are necessary in case the project

is bad since they completely eliminate the harms; otherwise, they are wasteful. The agent

wants to avoid these measures regardless of the type of the project, due to the costs. Let z

be the cost of these measures; then the corresponding ex-post payoffs are described in the

following table:
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Precautions No Precautions

Good v − z, v − z v, v

Bad v − z, v − z v − 1, v

Table 1.1: Description of the corresponding payoffs at the ex-post stage for the principal

and the agent respectively.

When z = v, the above description is equivalent to the baseline model, where forcing

the precautions corresponds to the rejection of the project, and vice versa. However, the

results of the paper also follow for a larger set of z values. One just needs to make sure

that z is not very different from v.10

1.2.3 Policy

The principal is endowed with the full commitment power, and, at t = 0, commits to a

dynamic policy that specifies delegation and approval decisions over time as a function of

the public history. The public history consists of information about the realized decisions

in the earlier periods as well as the self-monitoring outcomes for those periods in which the

monitoring is delegated to the agent.

For a given time period t, the corresponding delegation decision and the realized out-

come of the self-monitoring, if performed, are denoted together by rt ∈ {s, ns, n}. When

monitoring is delegated to agent, rt will be either “s”, if self-disclosure takes place; or will

be “ns”, if no self-disclosure takes place. If there is no delegation, then rt = n. Moreover,

the approval decision at time t is denoted by dt ∈ {0, 1}, where 0 and 1 indicates rejection

and approval respectively. Consequently, a within-period public history, at the end of the

period, which is denoted by ht, is of the following form:

ht = (rt, dt) ∈ {s, ns, n} × {0, 1},
10For instance, when z is sufficiently small, then the principal would always force these measures and avoid

costly information acquisition.
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for each t. At the beginning of a period t, a public history is defined as

ht = (h1, ......, ht−1).

The initial history is h1 = h0 = ∅, and Ht is the set of public histories at period t.

A policy Γ = {γt, xt}∞t=1 is then a sequence of functions which are defined as follows:

γt : Ht → [0, 1],

xt : Ht × {s, ns, n} → [0, 1].

The function γt is the probability of delegation. Because the delegation takes place at the

beginning of each period, it is a function defined over the set Ht. On the contrary, the

approval decision is also conditioned on the value of rt, hence the relevant domain for xt is

Ht×{s, ns, n}. For each possible value of rt, I use a separate notation for the approval rate,

i.e., xt = (xst , x
ns
t , x

n
t ). Note that, xst and xnst are well-defined as long as γ > 0; similarly xnt

is relevant when γ < 1.

For an incentive compatible policy Γ, the expected utilities of the principal and the

agent are denoted by V and U respectively, and are given by:

U = E
[
(1− δ)

∞∑
t=1

δt−1
[
γt{µλxstv + (1− µλ)xnst v − c}︸ ︷︷ ︸

Delegation

+ (1− γt)xnt v︸ ︷︷ ︸
No Delegation

]]

V = E
[
(1− δ)

∞∑
t=1

δt−1
[
γt{µλxst (v − 1) + (1− µλ)xnst (v − µns)− c}︸ ︷︷ ︸

Delegation

+ (1− γt)xnt (v − µ)︸ ︷︷ ︸
No Delegation

]]

The posterior beliefs about the type of the project affect only the principal’s utility.

The agent does not care about the project’s type. Another important point is that the

self-monitoring cost is included in the principal’s utility. As it was mentioned earlier, the
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other case will be analyzed later on.

1.2.4 Stationary Representation

Following Spear and Srivastava (1987), I express the principal’s problem within a stationary

form, in which the ex-ante expected utility of the agent is the state variable. In this form, the

interval [0, v] is the corresponding state space as it consists of all of the possible values that

the ex-ante expected utility of the agent can take. The agent’s utility cannot be negative,

because he can always guarantee a non-negative utility by shirking every time he is asked to

monitor. On the other hand, v is the maximum that the agent can receive in a policy. The

principal can grant this maximal utility to agent by approving all of the projects without

requesting self-monitoring.

State variable is updated over time depending on the realized public history. Within-

period decisions and the promised future continuation utilities of the agent, depend on this

state variable as well as the realized outcomes of the current period. An optimal policy

specifies a different continuation utility for each possible rt ∈ {s, ns, n} as in the case of the

approval probabilities. More precisely, the components of the policy are defined as:

γ, xs, xns, xn : [0, v]→ [0, 1],

Us, Uns, Un : [0, v]→ [0, v].

The delegation and the approval decisions consist, in essence, of probabilities; therefore,

the functions γ, xs, xns, xn take their values from the unit interval. The continuation utili-

ties, on the other hand, specify the state variable for the next period; hence, they are defined

as functions from the state space to itself. For a given policy, the functions Us, Uns, xs, and

xns are relevant only for those values of U ∈ [0, v] satisfying γ(U) > 0, whereas the functions

Un and xn are relevant only for those satisfying γ(U) < 1.
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The promised utility of the agent is calculated in ex-ante terms; hence, it will be granted

to the agent only in expectation. It aggregates the flow and continuation utilities of the

agent. Its transition is governed by the policy and the stochastic realizations. Starting

from U , the state variable of the next period becomes Un(U), or Us(U), or Uns(U) with the

corresponding probabilities 1− γ(U), γ(U)µλ and γ(U)(1− µλ) respectively.

In an optimal policy, the functions Un, Us, Uns, γ, xn, xs, xns are chosen to maximize the

principal’s objective function. There are two constraints that the principal needs to take

into account in this problem: incentive constraint and promise keeping constraint. More

precisely:

1.2.5 Principal’s Problem P

V (U) = max
γ,

xn,xs,xns,
Un,Us,Uns

γ
[
µλ
[
(1− δ)xs(v − 1) + δV (Us)

]
+ (1− µλ)

[
(1− δ)xns(v − µns) + δV (Uns)

]
− c
]

+(1− γ)
[
(1− δ)xn(v − µ) + δV (Un)

]

subject to the (PK) and (IC) respectively:

U = γ
[
µλ
[
(1− δ)xsv + δUs

]
+ (1− µλ)

[
(1− δ)xnsv + δUns

]
− c
]

+ (1− γ)
[
(1− δ)xnv + δUn

]
,

γ
[
µλ
[
(1− δ)xsv + δUs

]
+ (1− µλ)

[
(1− δ)xnsv + δUns

]
− c
]
≥ γ

[
(1− δ)xnsv + δUns

]
.

The first line of the principal’s objective function includes her utility contingent upon

self-monitoring request; hence, it is multiplied by the probability γ. The second line, on the

other hand, corresponds to the contingency of no self-monitoring; hence, it is multiplied by

1− γ.

The first constraint is the promise keeping constraint. It makes sure that the agent’s

expected utility is equal to U , the utility level promised to him. Likewise the principal’s
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utility, the agent’s utility also has two components depending on the principal’s delegation

decision.

The second constraint is the incentive constraint, which is defined to make sure that

acquiring information is an optimal choice for the agent when he is asked to do so; hence,

it is relevant only if γ > 0. It guarantees that the utility the agent achieves from shirking

is no better than the promised utility. If he shirks, there is no self-disclosure; hence, the

current approval rate and the continuation utility will be equal to xns and Uns respectively.

Note that Blackwell’s sufficiency conditions, i.e., monotonicity and discounting, are

fulfilled. Therefore, the existence of a solution for the problem P is guaranteed.

1.3 Case 1: Principal Internalizes Cost

In this section, I study the optimal policy and its properties under the first preference

specification, i.e., when the principal internalizes the self-monitoring costs. First, I start

with a benchmark analysis.

1.3.1 Observable Information Acquisition

In this benchmark, I consider the case in which the agent’s self-monitoring costs are publicly

observed; hence, there is no agency problem. The natural question is whether the principal

can induce the first best outcome or not? The first best outcome involves information

acquisition and utilization of the optimal approval decision, i.e., approving the project if

no-signal is generated and rejecting it otherwise, in every period. The principal can simply

induce this first best outcome by punishing any deviation with permanent rejection of the

future projects. Such an incentive scheme is sufficient to induce the proper behavior; because

the agent has a positive utility from the first best outcome, whereas permanent rejection

leaves him a 0 payoff. The expected utilities of the agent and the principal are denoted by
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w and π respectively, and are given by:

w = (1− µλ)v − c,

π = (1− µλ)(v − µns)− c.

The optimal policy when the self-monitoring effort is observable induces the first best out-

come, which gives the maximum possible utility to the principal. What about the optimal

policy conditional on the agent receiving a certain utility U ∈ [0, v] when the effort is ob-

servable? To answer this question, one needs to solve the same problem P without including

the incentive constraint. This problem has a solution, and the value function arising from

its solution, which I denote by V ∗, is an upper-bound for the value function V .

To describe V ∗ and the corresponding “benchmark policy”, I will point out some initial

observations. First of all, the benchmark policy is stationary without loss of generality. The

expected utility of the agent stays constant throughout time; and hence, one just needs to

characterize the delegation and the approval decisions, which I denote by γ∗, x∗n, x
∗
s, x
∗
ns, as

functions of U ∈ [0, v].

Second, the information must be used efficiently. In other words, whenever the agent

is asked to monitor himself, the following approval decision must be efficient conditional

on the content of the resulting information. This is a direct implication of the fact that

the principal internalizes the self-monitoring costs. Rather than having x∗s > 0 or x∗ns < 1,

the principal could adjust the probability of delegation, γ∗, without hurting the promise

keeping constraint, and get strictly better off. To see this, first note that:

U = γ∗[µλx∗sv + (1− µλ)x∗nsv − c] + (1− γ∗)x∗nv.

Suppose, xs > 0 to get a contradiction, then it must be true that xns = 1; because,

otherwise, there is an immediate deviation that the principal can perform by decreasing x∗s

and increasing x∗ns. Then, consider decreasing xs ↓ by some ε > 0; and decreasing delegation
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probability to γ − ζ. Moreover assume that the principal employs a direct approval with

the remaining ζ probability. Then ζ satisfies:

γ∗[µλx∗sv + (1− µλ)v − c] = (γ∗ − ζ)[µλ(x∗s − ε)v + (1− µλ)v − c] + ζv.

Therefore:

ζ =
γµλvε

µλv(1− xn + ε) + c
.

Such a deviation is strictly better for the principal, because:

[
(γ∗−ζ)[µλ(x∗s−ε)(v−1)+(1−µλ)(v−µns)−c]+ζ(v−µ)

]
−
[
γ∗[µλx∗s(v−1)+(1−µλ)(v−µns)−c]

]
> 0.

A similar contradiction follows for the case x∗ns < 1.

Finally, upon not requesting self-monitoring, the principal either directly approves or

directly rejects the projects and not chooses a randomized approval decision. Instead of

choosing an x∗n ∈ (0, 1), she could increase the probability of delegation, γ∗, and adjust the

value of x∗n by respecting the promise keeping constraint. This increases the probability of

informed decision making and improves the principal’s objective.

By putting these observations in an order, one can easily specify the details of the

benchmark policy. When U ∈ [0, w), the agent is supposed to get a utility that is less

than the utility he would get in the first best outcome. Therefore, the principal randomizes

between the first best outcome and the direct rejection without information acquisition. On

the other hand, when U ∈ (w, v], the randomization occurs between the first best outcome

and the direct approval without information acquisition. In both cases, the probability of

delegation γ is chosen such that the agent gets the exact utility promised to him. More

precisely, an optimal policy in this benchmark is given by:
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γ∗(U) =


U
w if U ∈ [0, w]

v−U
v−w if U ∈ (w, v]

x∗s = 0, x∗ns = 1, ∀U ∈ (0, v)

x∗n(U) =


0 if U ∈ [0, w)

1 if U ∈ (w, v]

And the resulting value function is:

V ∗(U) =


U
wπ if U ∈ [0, w]

v−U
v−wπ + U−w

v−w (v − µ) if U ∈ (w, v]

The following figure illustrates the value function.

0 w v

v − µ

0

π

V
∗(U)

Figure 1.2: The benchmark value function V ∗, which consists of an upper bound for V .

The parameters used in the illustration assumes that v < µ.
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1.3.2 Moral Hazard and The Optimal Policy

The focus is now on the agency problem where the agent’s efforts spent on self-monitoring

are not observed by the principal. The interest is particularly on the characterization of

the value function V , within-period decisions γ, xn, xs, xns, and the promised continuation

utilities Un, Us, Uns, which are defined as functions of the ex-ante expected promised utility

U . The following lemma, which is proved in appendix, is a first step towards this goal.

Lemma 1.1. The value function, V is concave and hence differentiable almost everywhere.

Moreover its derivative is bounded and satisfies:

1− µλ

µλv + c
≤ V ′(U) ≤ 1− µ(1− λ)

(1− µλ)v − c
, ∀U ∈ [0, v]. (1.1)

Proof. See appendix A.1.

The concavity of the value function is a direct implication of the fact that the principal

can randomize between different utility levels while granting a specific promised utility to

agent. Since V is concave, it is almost everywhere differentiable, which can also be proved

by applying the result of Benveniste and Scheinkman (1979). The following observations

are sufficient to show the bounds of the derivative of V . First, for any promised utility U ,

V (U) cannot be larger than V ∗(U). Second, the values of V and V ∗ are equal to each other

at the boundaries of the state space, i.e., at 0 and v. These observations together with the

concavity require that the constant slopes of V ∗ over the intervals [0, w] and [w, v] are the

upper and the lower bounds of V ′ respectively.

In each period, the principal first makes her delegation decision. In case she randomizes

with some γ ∈ (0, 1), each possible outcome of this randomization may result with different

utility levels for the principal and the agent. This stems from the fact that the promised

utility of the agent is given only in expectation. The principal’s commitment power plays a

crucial role here. She can fulfill the exact randomization that the policy specifies, and keep
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her promises in expectation. Otherwise, the principal, in each period that she is supposed

to randomize, could pick the outcome that she prefers most instead of following the specified

randomization.

In this regard, one can represent the utility of the agent as a weighted average of two

components, one for each possible outcome of the delegation decision. Precisely, let UD and

UN be the resulting utilities of the agent after delegation and no delegation respectively.

More precisely:

UN = (1− δ)xnv + δUn

UD = µλ
[
(1− δ)xsv + δUs

]
+ (1− µλ)

[
(1− δ)xnsv + δUns

]
− c.

The promise keeping constraint imposes a restriction on the choices of UD, UN , and γ, so

that the equality U = γUD + (1 − γ)UN must hold. When the agent is delegated with

certainty, i.e when γ = 1, it must be U = UD; similarly, U = UN must hold when γ = 0.

1.3.3 Conditional Representation

In what follows, I will further exploit the above-mentioned observation, and rewrite the

principal’s problem P as a decomposition of two conditional sub-programs. These sub-

programs are defined conditional on the current delegation decision, and their task is to

characterize the approval decision in the current period as well as the continuation utilities

for the next period.

The first problem is defined conditional on principal delegating monitoring to the agent

in the current period. The solution to this problem characterizes the optimal values for xns,

xs, Uns, and Us depending on the value of UD. It incorporates the incentive constraint and

a promise keeping constraint. The promise keeping constraint here is defined to make sure

that the agent’s conditional expected utility is equal to UD.

24



The second program is defined conditional on agent not delegating monitoring to the

agent in the current period. Its solution characterizes the optimal values of xn and Un

depending on the value of UN . There is no incentive constraint in this problem, since there

is no request of self-monitoring. There is only a promise keeping constraint defined to make

sure that xn and Un are arranged so that the agent’s utility is equal to UN .

Conditional on no delegation, the agent’s utility can take all the values in the entire

state space, hence the range of UN is equal to [0, v]. However, this is not the case for UD.

It is defined conditional on an incentive compatible self-monitoring in the current period;

hence, the agent already assumes the cost c. This means that UD cannot be equal to v or

anything sufficiently close to v; therefore, the range of UD can only be a proper subset of

the state space. The exact range of UD will be discussed later on.

The corresponding value functions arising from these conditional programs are denoted

by VD and VN respectively. The unconditional value function, V , is then given by:

V (U) = γ(U)VD(UD) + (1− γ(U))VN (UN ),

where U = γ(U)UD + (1 − γ(U))UN . The following diagram illustrates this conditional

representation of the principal’s problem.

U

UD

UN

xs(UD)
Us(UD)

xns(UD)
Uns(UD)

xn(UN )
Un(UN )

Self-Disclosure

No Self-Disclosure

No Delegation

γ

Delegate

1− γ

Not Delegate

(µλ)

(1− µλ)

Figure 1.3: The principal’s problem is equivalent to solving for the optimal values of UD,
UN , and γ.
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This new form of the principal’s problem is denoted by P ′ and it is defined as follows:

V (U) = max
γ,UD,UN

γVD(UD) + (1− γ)VN (UN ),

s.t. U = γUD + (1− γ)UN .

The sub-program that is conditional on no delegation in the current period is denoted by

PN , and is defined as follows:

VN (UN ) = max
xn,Un

[(1− δ)xn(v − µ) + δV (Un)] ,

s.t. UN = (1− δ)xnv + δUn.

Finally, the sub-program that is conditional on delegation in the current period is denoted

as PD, and is defined as:

VD(UD) = max
xn,xs,xns,
Un,Us,Uns

[
µλ
[
(1− δ)xs(v − 1) + δV (Us)

]
+ (1− µλ)

[
(1− δ)xns(v − µns) + δV (Uns)

]
− c
]

subject to (PKD) and (ICD) respectively:

UD = µλ
[
(1− δ)xsv + δUs

]
+ (1− µλ)

[
(1− δ)xnsv + δUns

]
− c,

UD ≥ (1− δ)xnsv + δUns.

Thanks to this conditional formulation, it is possible to analyze the principal’s delega-

tion and approval decisions separately. First, I will consider the conditional problems in

isolation, and solve for the corresponding optimal approval decisions. Then, I will focus

on the unconditional problem P ′, and characterize the optimal delegation decision over the

state space.

There is a crucial observation that I make use of during the above-mentioned process.

If, for a given U , a randomized delegation decision, γ ∈ (0, 1), is optimal and randomization
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takes place between VD(UD) and VN (UN ), then V (UD) = VD(UD) and V (UN ) = VN (UN ).

In other words, γ = 1 is optimal at UD, and γ = 0 is optimal at UN . This observation is

based on the fact that the principal, in order to grant the agent his promised utility U , can

always randomize between V (UD) and VN (UN ). Therefore, V (UD) cannot be strictly larger

than VD(UD), as it would contradict with the optimality.

On account of this, characterizing the state variables that are featuring γ = 0 or

γ = 1 would be sufficient to pin down the optimal delegation decision. In other words,

the focus should be on the subsets of the state space over which either V (U) = VD(U) or

V (U) = VN (U) is satisfied. For the rest of the state space, there will be a randomized

delegation decision, and the corresponding values UD and UN will always be a part of the

subsets of [0, v] satisfying V = VD and V = VN respectively.

The discussion in the sequel will follow the plan descrived above. In order to carry

through the first step, I will first focus on the conditional problems in isolation.

1.3.4 The problem PD

An initial observation is that the incentive constraint is always binding. First of all, note

that the IC can be written as a restriction on the difference between the continuation utilities

Us and Uns:

Us − Uns ≥
1− δ
δµλ

c+
1− δ
δ

(xns − xs)v.

In case the difference between Us and Uns is larger than the value that is necessary to

maintain incentive compatibility, the principal can move them closer to each other without

violating the promise keeping constraint. More precisely, she can decrease Us by ε and

increase Uns by µλ
1−µλε. Such a modification is always feasible as long as ε > 0 is chosen

sufficiently small, since both of the constraints are respected. Moreover, it is preferred by
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the principal due to the concavity of the value function V . This is because the suggested

modification consists of a mean preserving contraction of the continuation utilities, hence

the expectation of V for the next period becomes larger. Therefore incentive constraint

is always binding, without loss of generality. Solving binding incentive constraint together

with the promise keeping constraint gives:

Us =
UD
δ

+
1− δ
δµλ

c− 1− δ
δ

xsv, (1.2)

Uns =
UD
δ
− 1− δ

δ
xnsv. (1.3)

These expressions suggest that the agent is compensated for the cost of information

acquisition only after the signal is realized. To see this more clearly, one can rewrite them

as follows:

(1− δ)xnsv + δUns = UD,

(1− δ)xsv + δUs = UD + 1−δ
µλ c.

Self-reporting increases the agent’s utility by a constant. Since the signal is verifiable, it

also serves as a proof of the effort spent on self-monitoring. Therefore, the most efficient

incentive provision scheme involves compensating the agent for the costs of monitoring only

after the realization of the signal. Another important aspect is that the continuation utility

in one contingency is independent of the approval rate in the other contingency. In other

words, Us is independent of the choice of xns, and Uns is independent of xs.

After figuring out the relation between approval probabilities and the continuation

utilities, it is now possible to discuss the domain of value function VD. By using the

equations (1.2), and (1.3), one can see that the maximum value that UD can take is equal

to δv+ (1−δ)c
µλ , which can be achieved by setting xs and Us equal to their maximum values,

1 and v respectively. Therefore, the domain of VD is the interval [0, δv + (1−δ)c
µλ ].
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To characterize the solution of the problem PD, one needs to use the equations (1.2), and

(1.3) that govern the trade-off between the continuation utilities and the current approval

rates for both contingencies, i.e., self-disclosure and no self-disclosure. The question is, to

what extent the principal would like to use efficient approval decisions, i.e. xns = 1 and

xs = 0? It turns out that the approval decisions will be set as close as possible to the

efficient ones. More precisely, xs = 0 and xns = 1 as long as the resulting continuation

utilities, i.e., Us and Uns, stays inside the state space [0, v]. This requires UD to be in an

intermediate range. When UD is sufficiently small, setting xns = 1 is not feasible, since the

resulting Uns would be negative. For these values, the approval rate xns will be chosen such

that the continuation utility Uns becomes 0. By the same logic, for those values of UD that

are sufficiently large, the approval rate xs will be chosen so that the continuation utility

Us takes its largest possible value v. The formal statement of the lemma is given by the

following lemma.

Lemma 1.2. There exists critical values
¯
U = (1− δ)v, and Ū = δv − (1−δ)c

µλ , such that the

solution to the problem PD satisfies:

(xs, xns) =


(0, UD

(1−δ)v ) if UD ≤
¯
U,

(0, 1) if UD ∈ (
¯
U, Ū),

(
UD+

(1−δ)c
µλ
−δv

(1−δ)v , 1) if UD ≥ Ū.

(Us, Uns) =


(UDδ + (1−δ)c

δµλ , 0) if UD ≤
¯
U,

(UDδ + (1−δ)c
δµλ , UD−(1−δ)v

δ ) if UD ∈ (
¯
U, Ū),

(v, UD−(1−δ)v
δ ) if UD ≥ Ū.

Proof. See appendix A.2.

Focusing on the approval rates in isolation, the principal prefers to increase xns and
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decrease xs as much as possible due to the efficiency concerns. However, these approval

rates also alters the continuation utilities, therefore there is a non-trivial tradeoff that the

principal needs to take into account. As can be seen from the equations (1.2), and (1.3), a

higher xns requires a lower Uns, and a smaller xs requires a higher Uns.

Lemma 1.2 proves that, even if there is a loss resulting from a lower Uns, the tradeoff

always favors a higher approval rate xns. Similarly, even if there is a loss resulting from

higher Us, the tradeoff always favors lower xs. The lower and upper bounds of the derivative

of the value function V , which are defined in lemma 1.1, are the main driving force behind

this result. Precisely, the upper and lower bounds of V ′ puts a limit on the maximum loss

that can arise, and this limit is always less than the gain from employing more efficient

approval decisions. Note that the U < Ū is always satisfied due to the restriction imposed

on the discount factor δ.

1.3.5 The problem PN

This problem is defined conditional on no delegation in the current period. Its solution

follows from straightforward arguments. The decision is mainly about how much of the

promised utility, UN , to provide the agent in the current period in the form of project

approval, and how much of it to leave as a continuation utility. The amount that is left as

a continuation utility will be granted to the agent starting from the next period without

any restriction on the delegation decision. The optimal choice of the approval rate follows

from the following maximization problem.

max
xn

(1− δ)xn(v − µ) + δV (UN−(1−δ)xnv
δ ).

The shape of the value function V plays a crucial on the optimal choice of xn and hence
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on Un. Let I = [
¯
a, ā] be an interval where the boundaries

¯
a and ā satisfy:

¯
a = inf{U ∈ [0, v] | V ′(U) ≤ v − µ

v
},

ā = sup{U ∈ [0, v] | V ′(U) ≥ v − µ
v
}.

In words, I is the interval over which the derivative of the value function V is equal

to v−µ
v . This interval resides in the interior of the state space [0, v]. This stems from the

fact that, the line that connects the points (0, V (0)) and (v, V (v)) has the slope v−µ
v , and

the graph of the value function V locates over this line.11 Then due to the concavity,

V ′(0) > v−µ
v > V ′(v), hence the interval I is in the interior of the state space [0, v].12 Then,

one can conclude that the optimal choice of xn satisfies the following:

xn(UN ) =


0 if UN ≤ δ

¯
a,

∈ (0, 1) if UN ∈ (δ
¯
a, δā+ (1− δ)v) ,

1 if UN ≥ δā+ (1− δ)v.

(1.4)

Intuitively, for smaller values of UN , the continuation value Un will be in a range where

the derivative of V is sufficiently large. In this region, it is better for principal to keep

the continuation utility as high as possible by setting xn = 0. On the contrary, for larger

values of UN , the value of V ′ becomes small, and increasing the continuation utility does

not benefit the principal. Therefore, she keeps the continuation utility of the agent as small

as possible by setting xn = 1.

In the intermediate range of UN , however, the value of xn is set so that the continuation

value lies in the interval I, and hence the value function has a derivative equal to v−µ
v . The

principal is indifferent between marginally increasing xn and Un. If the interval I consists

11The linear line can be achieved by an always feasible policy: randomizing between its extreme values.
Hence it is strictly dominated, and V stays on top of this line.

12The interval I can be a singleton.
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of a single point, then the optimal value of xn is also singleton. Otherwise, there is a

continuum of optimal values for xn in this intermediate range.

1.3.6 The problem P ′

From now on, the conditional problems PD and PN will be considered together in order

to characterize the solution of the unconditional problem. The task is to figure out the

optimal way to decompose U into UD and UN together with the the optimal choice of γ.

Completing these tasks will lead to the description of the value function V , which is equal

to the concavification of the functions VD and VN .13

The following lemma describes the set of state variables over which the equality V = VN

is satisfied. It further indicates that the corresponding approval rates at these state variables

must be either 0 or 1. In other words, having an interior probability of approval, i.e.

xn ∈ (0, 1), after avoiding self-monitoring never happens in an optimal policy.

Lemma 1.3. There are two critical values 0 <
¯
UN < ŪN < v, such that:

i) V (U) = VN (U) if and only if U ∈ [0,
¯
UN ] ∪ [ŪN , v]

ii) V is linear over [0,
¯
UN ] and [ŪN , v].

iii) The optimal approval decision xn satisfies:

xn(U) =


0 if U ∈ [0,

¯
UN ]

1 if U ∈ [ŪN , v]

Proof. See appendix A.3

13The value function V depends on VD and VN , which in turn depend on V . In this regard, V , VD, and
VN are the solutions of a complicated fixed point problem. However, a solution for this problem exists since
the existence of the solution for the problem P is guaranteed.
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Lemma 1.3 points out that making an uninformed decision without monitoring can

be optimal only if the promised utility is close to the boundaries of the state space. It is

already known that the equality V = VN holds at the extreme values of the state space,

i.e., at 0 and v. By using the comparison between the V ′N and V ′, which can be achieved

from the equation (1.4), one can show that the equality V = VN can hold only over the

union [0, δ
¯
a] ∪ [δā+ (1− δ)v, v]. Then by using the expression (1.4), one can conclude that

the approval probability xn must be either 0 or 1 for all the promised utilities at which

no-delegation is optimal. The second step of the proof shows the existence of the cutoffs

¯
UN , and ŪN , and also the fact that they reside in the interior of the state space.

This result is rather intuitive. When U is sufficiently low, it is not feasible to utilize a

large approval rate; similarly, when U is sufficiently large, it is not feasible to employ a large

rejection rate. Therefore, the principal can get only limited benefit from the information in

these state variables, and the extent of this benefit is not sufficient to compensate the cost

of acquisition. For this reason, she does not ask the agent to self-monitor at these promised

utilities as she also cares about the costs. Therefore, no-delegation is an optimal solution,

and hence V = VN holds.

The result is also informant about the shape of the value function over the lower and

upper ends of the state space, as it points out that the value function V is linear over the

intervals [0,
¯
UN ], and [ŪN , v]. Following some simple logic, one can see that the linearity is

not limited to these intervals. More precisely:

V (U) = VN (U) =


δV (Uδ ) if U ∈ [0,

¯
UN ]

(1− δ)(v − µ) + δV (U−(1−δ)v
δ ) if U ∈ [ŪN , v]

Then, by taking the derivative of both sides, one can get the following:
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V ′(U) = V ′N (U) =


V ′(Uδ ) if U ∈ [0,

¯
UN ]

V ′(U−(1−δ)v
δ ) if U ∈ [ŪN , v]

Since V ′(U) = V ′(Uδ ) for every U ∈ [0,
¯
UN ], and V is concave, the slope is constant over

[0,
¯
UN ]∪ [

¯
UN , ¯

UN
δ ]. Similarly, the slope of V is constant over [ ŪN−(1−δ)v

δ , ŪN ]∪ [ŪN , v]. Due

to the linearity of the value function, it is without loss of generality to assume that there is

a randomized delegation decision over the intervals (
¯
UN ,

¯
UD) and (ŪD, ŪN ).

The constant slopes, however, does not carry beyond the values ¯
UN
δ , and ŪN−(1−δ)v

δ .14

As a result, no randomized delegation decision can be optimal at these values, since they

do not have any neighborhood over which the slope of V stays constant. At these values,

γ = 0 can not be optimal either, because it is already known that VN < V for all of the

state variables that are outside of [0,
¯
UN ] ∪ [ŪN , v] form the previous lemma. As the only

remaining option, the equality V = VD must hold at these values. To this respect, one shall

define:

¯
UD = ¯

UN
δ

ŪD =
ŪN − (1− δ)v

δ

The values
¯
UD, and ŪD are the smallest and largest values of U satisfying V (U) = VD(U)

without loss of any generality. The interval (
¯
UD, ŪD) is the only remaining region where

the delegation decision is yet to be described. However, it is natural to expect that V = VD

and hence γ = 1 over (
¯
UD, ŪD).

Let U ∈ (
¯
UD, ŪD). From lemma 1.3, VN < V , and hence γ > 0 at this U . Moreover,

a randomized delegation decision cannot be optimal either. Suppose otherwise to get a

contradiction, and assume that a randomization takes place between VD(UD) and VN (UN ).

14If V ′ were to be constant on any neighborhood of ¯
U

δ
and ŪN−(1−δ)v

δ
, then the equality V = VN would

hold for a larger subset of [0, v], which contradicts with the definition of
¯
UN and ŪN .
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The corresponding value of UN must belong to either [0,
¯
UN ] or [ŪN , v]; without loss of gen-

erality assume the precedent. Then, the principal could rather randomize between VD(
¯
UD)

and VD(UD) and get strictly better off. The reason for this stems from the fact that slope

of V alters at
¯
UD, hence the line connecting the values VD(UD) and VD(

¯
UD) locates on top

of the line connecting VD(UD) and VN (UN ). Therefore, it is optimal to set γ = 1 and hence

V = VD in this region.

The optimal delegation decision for each possible promised utility U ∈ [0, v] is now

known, and summarized in the following diagram:

0 ¯
UN

¯
UD ŪD ŪN v

V = VN V = VNV = VD
Linear V Linear V

Figure 1.4: Partition of the state space depending on the optimal delegation decision.

To complete the characterization of the optimal policy, one should also describe the

approval decisions. Particularly, the description of xs and xns over the interval [
¯
UD, ŪD],

where delegation is the optimal choice, is incomplete.

The problem PD is analyzed in isolation, and its solution is provided in lemma 1.2.

The result asserts that the efficient decision making, i.e. xs = 0, and xns = 1 will take

place as long as the promised utility U is in between [
¯
U, Ū ]. For the rest of the state space,

making the efficient decisions is not feasible. Instead, the principal employs the decisions

that are closest to the efficient among the feasible ones. However, the problem PD is defined

conditional on delegation in the current period regardless of its optimality. Now, the focus

is on the interval [
¯
UD, ŪD], where delegating monitoring is optimal.

The question one shall inquire at this point is, how do the values of
¯
UD, and ŪD

compare to the values of
¯
U , and Ū respectively? The answer to this question is important
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as it indicates whether the approval decisions taking place in an optimal policy are always

efficient or not. This comparison will also be informative about the long-run outcome of

the optimal policy. It turns out that
¯
U ≥

¯
UD and Ū ≤ ŪD. Therefore, there are some

state variables over which the optimal policy employs an inefficient approval decision, i.e.

xns < 1 or xs > 0. The next lemma summarizes these findings:

Lemma 1.4. In an optimal policy, ∀U ∈ [
¯
UD, ŪD], V (U) = VD(U), and γ(U) = 1. More-

over,
¯
UD ≤

¯
U < Ū ≤ ŪD.

Proof. See appendix A.4

Now, the optimal delegation and approval decisions, and the transition rule over the

entire state space is known. Once the policy is initiated with an initial promised utility

for the agent, the rest follows immediately. The question is how to choose this initial state

variable. In other words, what is the utility level that the principal promises to the agent in

the beginning? To answer this question one shall look for the utility level that is maximizing

the value function V .

The value function V increases over [0,
¯
UD), as it has a positive constant slope; and

decreases over (ŪD, v]. The initial utility, which is denoted by U∗, must be an element of

the interval [
¯
UD, ŪD]. Due to the continuity, the existence of U∗ is guaranteed. Moreover, I

show that the value function V is strictly concave over [ŪD, ŪD], hence U∗ is unique. This

result, and the earlier findings are summarized in the following theorem; which, at the same

time, describes an optimal policy.

Proposition 1.1. The value function V is strictly concave over [ŪD, ŪD], and attains its

maximum at U∗ ∈ (ŪD, ŪD). At t = 0, the agent is promised an expected utility of U∗, and

delegated for self-monitoring.

As long as the promised utility stays in the interval (ŪD, ŪD), the monitoring is delegated

to agent, i.e. γ = 1. Moreover, the approval decisions and the transition rule for the state
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variable satisfies:

• xs(U) = max{0,
U+

(1−δ)c
µλ −δv

(1−δ)v }, and xns(U) = min{1, U
(1−δ)v}, ∀U ∈ [ŪD, ŪD].

• Us(U) = min{v, Uδ + (1−δ)c
δµλ }, and Uns(U) = max{0, Uδ −

(1−δ)v
δ }, ∀U ∈ [ŪD, ŪD].

When the state variable reaches to [0,
¯
UD), the monitoring is delegated to agent with prob-

ability γ = U

¯
UD

. If the realized delegation decision is:

• Delegation: (xs, xns) = (0, ¯
UD

(1−δ)v ), and (Us, Uns) =
(
U
δ + (1−δ)c

δµλ , 0
)

• No delegation: xn = 0, and Un = 0

When the state variable reaches to U ∈ (ŪD, v], the monitoring is delegated to agent with

probability γ = v−U
v−

¯
UD

. If the realized delegation decision is:

• Delegation: (xs, xns) = (
U+

(1−δ)c
µλ −δv

(1−δ)v , 1), and (Us, Uns) =
(
v, Uδ −

(1−δ)v
δ

)
• No delegation: xn = 1, and Un = v

Proof. See appendix A.5

All of the components of the above theorem, except the strict concavity, are already

discussed. Strict concavity of V over the interval [
¯
UD, ŪD] follows from technical arguments

that are depicted in the appendix. The following figure provides an illustration of the value

functions VD and VN . The unconditional value function, V , is the concavification of them.
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Figure 1.5: Illustration of conditional value functions VD and VN . The unconditional value

function V is the upper envelope of VD and VN . The equality V = VN holds over the

intervals [0, UN ] and [ŪN , v]. The equality V = VD holds over the interval [UD, ŪD]. For

the rest of the state space V is strictly larger than VN and VD.

The policy described in the theorem is an optimal policy, and it is not the only one.

There is a multiplicity originating from the linearity of the value function over the lower and

upper ends of the state space. One can come up with another optimal policy that employs

different policy specifications over these regions, where V is linear. For example, when

U ∈ [0,
¯
UN ], it is also optimal to set γ = 0, xn = 0, and Un = U

δ . Over the intermediate

region, however, the value function is strictly concave, and there is no such multiplicity.

The specific policy given in the theorem is easy to describe and has some substantiation

properties. It features a two-phase structure, in which all of the periods in which self-

monitoring takes place are front-loaded. The following corollary describes this in detail.

Corollary 1.1 (Two-Phase Structure). The optimal policy depicted above consists of two

consecutive phases:

i) The initial phase, starting at t = 0, is where all the information acquisition takes

place. The principal delegates monitoring to the agent as long as the policy stays in
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this stage. Efficient decision making will be employed as long as it is available. The

duration of this stage is stochastic and depends on the realized information outcomes.

ii) The terminal phase is no-delegation phase. Once it is reached there is no informa-

tion acquisition anymore, and all the remaining approval decisions are uninformed.

The projects are either always approved or always rejected depending on the realized

outcomes during the initial phase.

As long as the delegation takes place, the agent is promised a higher continuation utility

(in the form of future regulatory approval) each time he discloses bad news. His current

project is less likely to get approved but the regulator promises more frequent approval in

the future. If he does not disclose any signal, he is downgraded to a lower continuation

utility. His current project has higher chances of approval, yet he will be given less frequent

approvals in the future. The duration of this phase is stochastic; when it ends, the policy

reaches a second phase in which there is no more self-monitoring.

If the policy reaches to the minimum promised utility the agent is black-listed and

all of the projects will be directly rejected afterwards. On the contrary, if it reaches to its

maximum, the agent is whitelisted and all the projects will be directly approved afterwards.

Such a structure is also observed in the papers Horner and Guo (2015), and (Li et al.,

2015). The long run outcome consists of either a permanent rewarding or a permanent

punishment depending on the earlier course of the relation. As it will be apparent shortly,

this structure is not prevailing when the principal does not internalize the cost of information

acquisition.

Efficiency aspects of the optimal policy are also significant. Likewise the papers referred

in the previous paragraph, all the inefficiencies are back-loaded in the optimal policy that

is defined in theorem 1.1. In this framework, an inefficiency arises in two consequences:

first one arises if information acquisition is not requested, and the second one occurs due to
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inefficient use of the acquired information. Clearly, a first type inefficiency appears only in

the terminal phase of the policy. On the other hand, a second type inefficiency can occur

only the last period of the initial phase. When the promised utility is in the interval [
¯
UD,

¯
U),

which is sometimes an empty set depending on the parameter values, self monitoring takes

place, and the approval decision following a no self-disclosure is inefficient since xns < 1.

Right after this event, the state variable is downgraded to its minimum, hence the ultimate

stage with a permanent rejection starts. Analogous reasoning works for (Ū, ŪD] as well.

Therefore, all the second type of inefficiencies takes place right before the ultimate stage

starts. To this respect, all the inefficiencies are back-loaded.

Some of the properties mentioned above are specific to the policy depicted in the theo-

rem. The long run outcome, on the other hand, is independent of the policy choice. It always

features whitelisting or blacklisting. This stems from the fact that
¯
UD ≤

¯
U < Ū ≤ ŪD.15The

following result indicates this observation.

Corollary 1.2. If the principal cares about the cost of monitoring, the eventual outcome

features either permanent approval or permanent rejection in any optimal policy. Therefore,

in the long run, the agent is either blacklisted or whitelisted with probability 1.

1.4 Case 2: Principal Does Not Internalize Cost

Now, the principal does not internalize the agent’s cost of information acquisition. In

this case, the optimal policy turns out to be remarkably different in terms of its long

run properties and the efficiency aspects. These discrepancies have their origins on the

principal’s richer capacity of providing incentives. From a technical point of view, principal

can use monitoring requests purely on the grounds of punishing the agent, as she does

not care about its cost. From time to time, the agent is asked to monitor himself, even

15If it was
¯
UD >

¯
U or Ū > ŪD, then it would be possible to specify an optimal policy that does not

feature blacklisting or whitelisting respectively.
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though the resulting information will be completely ignored in the approval decision. Such

a punishment scheme was feasible for the the previous case as well; however, as it also

punishes the principal, it is not used in the optimal policy. The verifiability of the “bad

news” plays a crucial role on this additional channel of incentive provision. Precisely, the

signal provides a hard evidence for the efforts the agent spent on self-monitoring; therefore,

the principal can make sure that the necessary punishment is executed.

The formal description of the principal’s problem is barely changed, with a minor

modification due to principal’s shifted preferences towards monitoring costs. The objective

function does not include the cost parameter, c, now. To recognize the differences, all of the

variables are denoted with a tilde now. More precisely, the policy consists of the functions

γ̃, x̃n, x̃s, x̃ns, Ũn, Ũs, Ũns.

1.4.1 Observable Information Acquisition

The initial focus is on the benchmark where the agent’s effort is observable. This will be

helpful to reveal how this case is different than the previous one. The first best policy is as

before, inducing the efficient outcome, i.e. monitoring and efficient decision making in each

period with a stationary payment scheme. The agent’s utility form this first best outcome

is the same as before, i.e. equal to w; yet, the principal has a different utility since she does

not care about the cost of monitoring. Her utility is denoted by π̃, and is equal to:

π̃ = (1− µλ)v − µ(1− λ).

The benchmark policy, which is defined conditional on the agent’s ex-ante expected

utility when effort is observable, is now different then the benchmark policy of the previous

case. The approval decisions employed after information acquisition are not always efficient.

The principal requests self-monitoring more often since she does not care about its costs.
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The benchmark policy is stationary as before, hence there is no need to define the con-

tinuation utilities. The benchmark policy only consists of delegation and approval decisions,

which are denoted by γ̃∗, x̃∗n, x̃
∗
s, x̃
∗
ns.

When U < w, the principal, while keeping her promise, cannot employ the efficient

scheme, because the agent is promised a utility that is less then the utility of the first

best outcome. She can decrease the probability of self-monitoring and employ the direct

rejection with positive probability instead. This was exactly what had been done in the

previous case. Alternatively, she can decrease the probability of approval without decreasing

the probability of delegation. Since she does not internalize the costs of self-monitoring, this

alternative method turns out to be better for the principal. First, note that the probability

of wrong approval, x̃∗s, is always 0. Therefore, the principal only needs to choose γ̃∗ and x̃∗ns

properly so that she keeps her promise. In doing so, her only concern is to maximize the

probability of true approval, x̃∗ns, since she does not care about the cost of self-monitoring.

And, the probability of true approval is maximized when the probability of delegation is at

its maximum, conditional on U being less than w. Therefore, the principal always delegates

the monitoring to agent and approves the project with some probability chosen specifically

to meet the promised utility U . In other words, x̃∗ns satisfies:

(1− µλ)x̃∗nsv − c = U.

Therefore, for every U < w, the benchmark policy is characterized by: γ̃∗ = 1, x̃∗s = 0, and

x̃∗ns =
U + c

(1− µλ)v
.

When U > w, the first best policy is exactly the same with the one depicted in the

previous case. The promised utility of the agent is higher than the utility of the first best

outcome. The optimal way to grant the promised utility to the agent requires to employ

the direct approval without delegation due to the same arguments provided in the previous
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section. Consequently, there is a randomization between first best outcome and the direct

approval without monitoring. The value function Ṽ ∗ over [w, v], is the linear line combining

the points (π̃, w) and (v, v − µ). Therefore, the benchmark policy can be summarized as

follows:

γ̃∗(U) =


1 if U ∈ [0, w)

U−w
µλv+c if U ∈ (w, v]

(x̃∗s(U), x̃ns(U)) =


(

0, U+c
(1−µλ)v

)
if U ∈ [0, w)

(0, 1) if U ∈ (w, v]

x̃∗n(U) =


Irrelevant if U ∈ [0, w)

1 if U ∈ (w, v]

Therefore the corresponding value function Ṽ ∗ is given by:

Ṽ ∗(U) =


w−U
w

c(v−µns)
v + U

w π̃ if U ∈ [0, w)

v−U
v−w π̃ + U−w

v−w (v − µ) if U ∈ (w, v]

The following figure illustrates the value function Ṽ ∗:
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Figure 1.6: The value function Ṽ ∗. The illustration assumes v < µ.

1.4.2 Moral Hazard and the Optimal Policy

Now, I revert back to the agency problem in which the self-monitoring efforts are not

observed by the principal. The observable effort benchmark is already informative about

how the optimal policy would be different from the optimal policy given in previous case.

As it will be clear shortly, the corresponding optimal delegation decision is different over

the lower end of the state space, and this will significantly alter the transitional dynamics

as well as the long-run outcome.

The description of the problem is barely changed. The cost is not included in the objec-

tive function; however, the incentive constraint and the promise keeping constraint remain

the same. Following the exposition of the previous section, the problem is decomposed

into two conditional sub-problems. The corresponding value functions are now denoted by

Ṽ, ṼN , and ṼN .

For the maximal possible promised utility of the agent, permanent approval without any

monitoring is still the only feasible policy, hence the optimal one. Therefore, Ṽ (v) = ṼN (v),

and γ̃(v) = 0. On the contrary, for the minimal expected utility of the agent, permanent
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rejection is not the optimal policy, unlike the previous case. The principal can do better by

requesting self-monitoring. To see this, note that the incentive constraint is still binding, and

the equations (1.3) and (1.2) are still valid. Then by plugging U = 0 into these equations,

one can get:

Ũns(0) = −(1− δ)v
δ

x̃ns(0),

Ũs(0) =
1− δ
δµλ

c− (1− δ)v
δ

x̃s(0).

Clearly, x̃ns is equal to 0, since the continuation utility Ũns(0) cannot be negative.

On the other hand, after a self-disclosure, one possible policy is to set x̃s(0) = 0 and

Ũs(0) = 1−δ
δµλ c.

16 Therefore:

ṼD(0) ≥ δµλṼ (
(1− δ)c
δµλ

) > 0

Therefore no delegation cannot be the optimal policy at the minimal promised utility,

as it would require V (0) = 0. This situation alters the structure of the optimal policy over

the lower end of the state space.

On the other hand, there is still a neighborhood of the maximal promised utility v over

which no delegation is an optimal policy. In the outside of this neighborhood, ṼN is always

strictly smaller than Ṽ , hence the probability of delegation is always strictly positive. In

other words, not requesting self-monitoring can be an optimal policy only if the promised

utility of the agent is sufficiently large. The following lemma summarizes these findings.

And its proof follows the same logic used in the proof of lemma 1.3.

Lemma 1.5. There is a critical value 0 < ŨN < v, such that:

i) Ṽ (U) = ṼN (U) if and only if U ∈ [ŨN , v], moreover x̃n = 1 in this region.

16Setting x̃s = 0 is optimal at U = 0 as it will become clear shortly.
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ii) Ṽ is linear over [ŨN , v].

Proof. See appendix A.6

Using the same arguments provided in the previous section, one can show that the

linearity of Ṽ carries over to a larger interval, which is denoted by [ŨD, v] where ŨD =

ŨN−(1−δ)v
δ . The slope of V changes at ŨD, and the equality Ṽ (ŨD) = ṼD(ŨD) holds.17

Over the interval [0, ŨD], delegation is optimal for the principal. It is already known

that this statement is valid for the boundaries of the interval, and the rest follows from the

same idea used in lemma 1.4. The following diagram summarizes the findings so far.

0 ŨD ŨN v

Ṽ = ṼNṼ = ṼD
Linear Ṽ

Figure 1.7: Illustration of the partition of the state space depending on the optimality of

the delegation decisions, when the principal does not care about monitoring costs.

Due to the linearity of the value function over the interval [ŨD, v], there are many

different possible ways to specify the optimal policy. The policy the paper focuses on

assumes that whenever the promised utility reaches to this region, the principal randomizes

between ṼN (v) and ṼD(ŨD) with a properly chosen delegation probability. This completes

the characterization of the optimal delegation decisions.

When it comes to the approval decisions, it is known that, if the agent is not asked to

monitor himself, the project will be approved directly, hence x̃n is equal to 1. To achieve a

17The reasons for the latter are twofold. First, it is already known that Ṽ (ŨD) > ṼN (ŨD) from the
previous result, hence γ̃ = 0 cannot be optimal. Second, there is no neighborhood of ŨD over which Ṽ ′ stays
constant, hence a randomization cannot be optimal either.
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complete characterization of the approval decisions, one also needs to describe the optimal

values of x̃s, and x̃ns. For this, it is sufficient to focus on the interval [0, ŨD], where γ̃ = 1

is the optimal decision.

Recall that the approval decision and the promised continuation utility are substitutes

of each other, after both self-disclosure and no self-disclosure. More precisely, ∀U ∈ [0, ŨD]:

(1− δ)x̃sv + δŨs = U +
(1− δ)c
µλ

(1− δ)x̃nsv + δŨns = U

In the previous section, it was asserted that the principal employs the efficient decision

making as long as the resulting continuation utilities are feasible. Bounds of the derivative

of the value function was the main driving force behind this result. It was shown that

the gain from increasing xns always dominates any possible loss due to the reduction on

Uns. Similarly, the gain from decreasing xs always dominates any possible loss due to the

amplification on Us.

Here in this case, there is an obvious lower bound for Ṽ ′, which is equal to the slope of

the benchmark value function Ṽ ∗ over [w, v]. And the logic given in the previous paragraph

leads to the same conclusion for x̃s. On the contrary, the slope of Ṽ ∗ over the region [0, w]

does not necessarily constitute an upper bound for Ṽ ′, since the equality Ṽ ∗(0) = Ṽ (0) does

not hold. As a result, it is not clear whether or not the principal always prefers to set x̃ns

as high as possible.

In principle, Ṽ ′ can be sufficiently large, when U is sufficiently close to 0; and, hence,

the gain from a higher continuation utility might dominate the gain from higher x̃ns. Yet,

it turns out that the trade-off is still in favor of x̃ns. In other words, as long as it is feasible,

setting x̃ns = 1 is optimal. Otherwise x̃ns will be set such that the continuation utility hits

its minimum.
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Finally, the value function Ṽ is strictly concave over the delegation region [0, ŨD].

Therefore there is a unique state variable Ũ∗ ∈ [0, ŨD] maximizing Ṽ . And the value of

ŨD is larger than Ū , hence incorrect approval following a self-disclosure takes place with

positive probability in the optimal policy. The following theorem, which constitutes the

main result of this section, summarizes these findings:

Proposition 1.2. The value function Ṽ is strictly concave over [0, ŨD], and attains its

maximum at some Ũ∗ ∈ (0, ŨD). At t = 0, the agent is promised the expected utility of Ũ∗,

and the monitoring is delegated to him.

As long as the state variable stays in the interval [0, ŨD], the principal requests self-

monitoring with probability 1. The approval decisions and the transition rule satisfies:

• x̃s(U) = max{0,
U+

(1−δ)c
µλ −δv

(1−δ)v }, and x̃ns(U) = min{1, U
(1−δ)v}, ∀U ∈ [0, ŨD].

• Ũs(U) = min{v, Uδ + (1−δ)c
δµλ }, and Ũns(U) = max{0, Uδ −

(1−δ)v
δ }, ∀U ∈ [0, ŨD].

When the state variable reaches to (ŨD, v], there will be a randomized delegation decision;

the monitoring is delegated to agent with probability γ̃ = v−U
v−ŨD

. If the realized randomized

decision is:

• Delegation: (x̃s, x̃ns) = (
U+

(1−δ)c
µλ −δv

(1−δ)v , 1), and (Ũs, Ũns) = (v, Uδ −
(1−δ)v
δ )

• No delegation: x̃n = 1, and Ũn = v

Proof. See appendix A.7.

The dynamic properties of this policy are remarkably different now. Particularly, there

is no permanent rejection state, and hence the agent is never blacklisted unlike the previous

case. Instead, there is a state of probation, which occurs when the agent’s promised utility

reaches to its minimum. At this state, the project will be rejected for sure, yet the agent

is still asked to monitor himself. This probation state keeps repeating itself until a self

disclosure takes place. After a self-disclosure the agent is promoted to a higher promised
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utility, and get out of probation for one period. Leaving the probation state today does not

rule out the possibility of facing it again in the future.

Eventually, a terminal phase will be reached where there is no information acquisition

anymore and all the projects are directly approved. This happens when the agent’s promised

utility reaches its maximum. The following corollary summarizes these implications of the

optimal policy.

Corollary 1.3. The optimal policy has a two-phase structure.

i) The initial phase is where the agent is always asked to monitor himself. Acquired

information is not always used for the current approval decision. The policy reaches

to a probationary state with positive probability during this phase. In this probationary

state, the content of the information will be completely ignored for the current approval

decision. This probation state keeps repeating itself until a self-disclosure takes place.

The duration of this stage is stochastic and depends on the outcomes of the self-

monitoring.

ii) The terminal phase is no-delegation phase. Once it is reached there is no informa-

tion acquisition anymore, and all the remaining approval decisions are uninformed.

Projects are directly approved in this phase. This phases starts when the promised

utility of the agent reaches its maximum.

The distribution of inefficiencies over time constitutes an important divergence from the

previous case, and from the existing papers. The inefficiencies are not entirely back-loaded

now. Especially, the second type of inefficiencies arise in a stochastic nonconsecutive order

until the second phase of the policy is reached. To this respect, the efficiency will be gained

and lost throughout time.

The eventual outcome described above is not specific to the policy that I focus. Since

the inequality Ū ≥ ŨD is satisfied, the permanent approval is the eventual outcome of all
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optimal policies. The following corollary points out this issue.

Corollary 1.4. In any optimal policy, there is a unique long-run outcome featuring per-

manent approval of the projects without any request of self-monitoring. Therefore, in the

long-run, the agent is whitelisted with probability 1.

1.5 Limited Commitment

So far,I assumed that the principal has full commitment power in that she can commit

to any incentive compatible policy. In this section I relax this assumption and consider a

case where the principal’s commitment power is limited. More precisely, I assume that she

cannot commit to any policy with a negative continuation value. Precisely, at the beginning

of each period, she needs to have a non-negative value in expectation. She still has within

period commitment power and can fulfill any specified within period randomization. In

other words, the limited commitment structure I impose does not rule out the possibility of

having a negative realized value for some periods. For expositional convenience, I will call

the model with full commitment power as the baseline model and denote the corresponding

value function by VB afterwards. Clearly, when the expected social cost of the projects is

less then their economic benefits, i.e. µ ≤ v, an optimal policy for the baseline model is

also optimal in this limited commitment environment. This stems from the fact that the

continuation valuation of the principal never becomes negative in this case, i.e. VB(U) ≥ 0

for every U ∈ [0, v].

On the contrary, when the expected cost is higher then the economic benefits, i.e.

µ > v, baseline policy can not be an optimal policy. Principal’s continuation value becomes

negative with positive probability, as in the outcome of whitelisting. She cannot promise

the maximal utility to agent in this limited commitment environment. As a result, the

optimal policy differs from the one of baseline model. From now on, the analysis will be

based on the case µ > v.
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For a given history, the continuation of an optimal policy must also be optimal con-

dition on the agent’s expected utility. Moreover it maintains a non-negative value for the

principal by definition. Therefore, it is still possible to represent principal’s problem within

a stationary form. The distinction is that the state space is endogenous and will be a proper

subset of [0, v]. In describing this endogenous state space, the most prominent property one

shall look for is the non-negativity of the corresponding value function for each value in-

side the state space. Indeed, the state space will be the maximum subset of [0, v] that is

satisfying this property. This is due to the fact that an optimal policy conditional on a

specific state space is also a feasible policy under any larger state space. Hence enlarging

state space without hurting the non-negativity can only improve the principal’s policy.

In this regard, it is not hard to conclude that the state space is an interval and contains

the utility level 0. Then, it is sufficient to find out the maximal utility Umax that the

principal can promise to the agent without violating the limited commitment constraint.

This would complete the characterization of the endogenous state space [0, Umax]. However,

one needs to be sure about the existence of such a value. To this end, I define some auxiliary

objects. First of all, for a given value W < v, it is known that the Bellman equation that is

defined over [0,W ] is guaranteed to have a solution since Blackwell sufficiency conditions are

satisfied. Let VW be the corresponding value function arising from the solution of Bellman

equation.

Lemma 1.6. When principal has a limited commitment power, there exists a utility level

Umax which is equal to the maximum utility that the principal can promise the agent in an

optimal policy. Its value is given by:

Umax = sup{W | VW (W ) ≥ 0}.

Moreover, the value function arising from an optimal policy satisfies:

V = VUmax , and V (Umax) = 0.
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The value of Umax strictly decreases with µ, conditional on having an optimal policy inducing

self-monitoring.

Proof. See appendix A.8

The proof of this result, first indicates that the existence of Umax is guaranteed. Then

it is argued that VW (W ) is continuous, and hence the resulting value function always takes

non-negative values over the interval [0, Umax]. The fact that the value of the principal at

the maximal promised utility is equal to 0 follows from the continuity of VW (W ). Finally,

the proof points out an important observation in order to conclude the monotonicity of

Umax with respect to µ. Incentive compatibility of an optimal policy is independent of

the prior belief. Therefore an optimal policy at the maximal utility for some prior is also

incentive compatible and brings a higher value to principal for any other smaller prior.

Then by using the arguments provided in the earlier sections one can conclude the

following result.

Proposition 1.3. When principal has a limited commitment power and the expected so-

cial cost of a project is larger than its value, whitelisting never appears in an equilibrium.

Conditional on having an informative optimal policy,

• If principal internalizes the cost of self-monitoring, then the agent gets blacklisted

eventually in the optimal contract.

• If principal does not internalize the cost of self-monitoring, then the optimal policy

never reaches to a stable outcome and fluctuates over time.
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1.6 Concluding Remarks

This paper studies a regulatory system that incorporates self-monitoring. More precisely, it

explores the behavior of regulators in environments where there is a significant uncertainty

about the activities that the regulated agent carries on. The regulator, in an efficient

regulatory regime, would like to use the information of the agent, who is superior in acquiring

information. In order to incentivize the agent to acquire unfavorable information about his

own activities, the regulator uses continuation values arising from future regulatory behavior

as an incentive device.

I show that, when the regulator has full commitment power, self-monitoring can only

be sustained in an initial phase of the optimal policy. During this phase, the agent is

promised a higher continuation utility (in the form of future regulatory approval) each time

he discloses “bad news”; otherwise, he is downgraded to a lower continuation utility in order

to encourage him to acquire information. The eventual outcome crucially depends on the

regulator’s preferences over the cost of self-monitoring. If she internalizes this cost, both

whitelisting and blacklisting are possible long-run outcomes; otherwise, whitelisting is the

only long run outcome.

When the regulator has limited commitment power in that she can only commit to

policies with non-negative continuation values, the results are remarkably different. When

the expected social costs of the projects are larger than their economic yields, the policy

does not feature whitelisting anymore. Furthermore, it is possible to sustain self-monitoring

over the long-run in this case.
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Chapter 2

Product Upgrades and Posted Prices

2.1 Introduction

The literature on durable good monopolies assumes a population of forward looking buy-

ers with heterogeneous valuations for a unique product that a monopolist sells over time.

Buyers, that are strategically timing their purchase decisions, have unit demand for the

product, and hence leave the market after purchasing. In this general framework, there are

two counterbalancing factors governing the pricing decision of the monopolist. First, to be

able to sell the product to the agents with lower valuations, the monopolist must decrease

the price of the good over time. Second, customers with high valuations might delay their

purchases since they predict that the monopolist will decrease the price over time. Hence,

decreasing prices is beneficial as it allows the firm to capture the surplus from the demand

of the agents with lower valuations, but at the same time it is costly as it causes a delay in

the purchases.

The pioneering paper of the literature, Stokey (1979), shows that, if the firm can commit

to a price path before starting to sell, then the optimal price path is constant and equal to

the static monopoly price. Consequently, all the purchases take place at the beginning of
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the sales and so there is no delay. This result is significant as it asserts that the time is not

used to discriminate over buyers with different valuations, which would have occurred with

a decreasing price path and delayed purchases.

In this paper, we turn our attention to the optimal pricing problem when a new version

of the existing good is expected to arrive at some point in the future. In contrast to

one of the main assumptions of the existing literature, durable goods, for many real life

examples, do not persistently stay in the market. Rather, newer and better functioning

versions are taking place of the older ones over time. Technology companies such as Apple,

Intel, Samsung, and Microsoft are good examples for this. This situation does not hurt the

durability of the product that is replaced as customers can still use it after the new version

is launched. However it alters the consumer’s preferences as the newer product might offer

more benefits. In such an environment, the structure of the buyers’ incentives would be

different than the ones in the classical framework. In particular, a buyer does not necessarily

leave the market after purchasing a version of the good. He may rather prefer to stay to

purchase the newer version as well when it is launched. Or he may abandon to purchase the

current version to purchase the newer one. That is to say that the price path of a version

of the good not only affects its own sales, but also the sales of the other versions.

We consider a monopolist which is selling two consecutive versions of the same good,

with a restriction that it only sells the most current version at a given period. We assume

that it has full commitment power, and can commit to a price path for both versions of the

good at the beginning. The monopolist is initially endowed with the first version and the

upgrade will take place over time. The timing of the upgrade is not a choice variable in this

paper, rather we take it as exogenously given.

The analysis is divided into two parts depending on the specification of the arrival

process of the new version of the good. In the first part, the arrival time is stochastic

and follows a Poisson process. The optimal price path is shown to be constant for both

versions of the good (at different levels) and the price level for the second version of the
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good is independent from the realized arrival time. Consequently, there are no delays in any

purchases. Any purchase of the first version occurs immediately at the beginning, and any

purchase of the second version occurs as soon as it arrives into the market. This result is in

line with Stokey (1979) as it also suggests that the time is not used as a tool to discriminate

over buyers with different valuations. Stationarity is the main reason for this result to carry

over to our setting.

In the second part, we considered the case in which the arrival of the newer version

occurs at a commonly known certain date. This non-stationary environment comes with

a cost of intractability, and to overcome this, we assume a binary type space for buyers’

valuations. It is shown that, in this case, a decreasing price path is possible for some

parameters and this gives rise to delayed purchases. That is to say that the time might be

used as a discriminatory tool when the arrival of the new version occurs at a commonly

known certain date.

Unlike the existing literature on durable good pricing with full commitment power, in

our environment, a sale mechanism with posted prices is not an optimal mechanism. Strictly

speaking, the anonymous structure of the posted prices (The sales of the new version of the

good cannot be conditioned on the first version sales under the regime of posted prices.),

comes at a cost for the monopolist. The optimal selling mechanism, on the other hand,

requires the monopolist to bundle both versions of the good and selling them only together.

More precisely, in this optimal sales mechanism there exists a group of consumers that are

purchasing both versions of the good, and the rest of the consumers does not purchase

anything. The resulting allocation of this policy cannot be implemented with posted price

path which is anonymous by definition.
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2.1.1 Literature Review

Our paper mainly fits into the literature of durable good pricing with full commitment

power. The classic reference is Stokey (1979), which shows that the optimal price path is

constant and equal to the static monopoly price.1 Therefore all the buyers either purchase

immediately or leave without any purchase, hence the time is not used by monopolist to

discriminate over buyers with different valuations.

In our paper, there are both favoring and contradicting results with this mainstream

result. We show that, under some circumstances, the optimal posted price path may be

decreasing over time. Some other papers have also shown that the optimal posted price

path, under full commitment power, may fluctuate over time. In particular, Board (2008)

shows that, in a setting with stochastic population, if there is demand heterogeneity over the

incoming population of buyers, then the optimal price path might fluctuate over time. This

leads some buyers to delay their purchases, hence time is an effective discriminatory tool

in such a situation. Another important paper showing a fluctuating price path is Garrett

(2012) in which the flow valuations of buyers are stochastic due to the private circumstances.

The environment is stationary, as neither the value distributions of the entering buyers nor

the stochastic process governing the valuations are time dependent, yet the optimal price

path is fluctuating over time. Like our paper, in Garrett (2012), the posted prices is not

an optimal selling mechanism. The optimal mechanism involves selling option contracts to

purchase the good at future dates. However, the source of the inefficiency regarding the

posted prices is different than the one in this paper.

In addition, our paper is also related to the literature on dynamic auctions.2 A common

feature of this literature is that there is a certain time period T, until when the seller

must sell his multi-unit indivisible goods. The buyers are entering into and leaving from

1Actually optimal price path is not unique, there are infinitely many price paths resulting with the same
allocation. The important thing is that the initial price level is equal to the static monopoly price and the
price level never falls below that.

2Bergemann and Said (2011) is a good survey about dynamic auctions.
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the market over time. Pai and Vohra (2008), also Board and Skrzypacz (2010) are good

examples. They first define the optimal allocations, which follows a simple index rule, and

then show how to implement this via monetary transfers. The main difference of our paper

from this literature is that, in ours, the number of goods that the seller can sell is not

limited whereas in dynamic auction literature the seller is endowed with a certain number

of goods.

There are couple of other topics incorporating some features that are conceptually

related to ours. The literature of planned obsolescence is one of them. The monopolist

that is selling a single good in a dynamic setting strategically arranges the lifetime of the

durable good. There are benefits from producing goods with a shorter lifetime as it leads

consumers to repurchase again. Bulow (1986) is a good example of this literature. There is

an old literature investigating the effect of vintage capital on the aggregate growth of the

economy. The basic story of these papers is that, in each period, the machines of production

are being improved because of technological progress. And firms are deciding how much

to invest in replacing old machines with the newer ones. An example of this literature is

Benhabib and Rustichini (1991). Finally, there is a literature regarding the R&D planning

of durable good monopolies, see for example Swan (1970), Fishman and Rob (2000). The

main concern of these papers is to understand the product development decisions of the

firms given a non-strategic buyers side, which is represented with a demand function on the

quality of the durable good.

2.2 Model

Time, t ∈ [0,∞), is continuous and r is the common discount factor. There is a monopoly

selling a durable good, an initial version of which exists in the marketplace at the beginning

of the time (t=0), and a newer version will eventually take the place of the existing one.

The process governing the arrival of the newer version will be described later. The firm

58



sells only the most current version of the good at a given time; in other words, when the

new version arrives the firm is no longer able to sell the earlier version. The cost of the

production is normalized to 0 for both versions of the good.

On the demand side, there is a unit mass of buyers that are heterogeneous in terms of

their valuations. They can consume at most one unit of the good at a time, and all of them

are having a higher value for the newer version of the good. Moreover, we assume that the

ratio of valuations for two versions of the good is same for all buyers. In particular, there

is a constant β > 1 such that, a type x buyer has a flow utility x and and a flow utility βx

from consuming the first and the second versions of the good respectively. Buyers’ types

follows a continuously differentiable distribution function F (x) over the unit interval [0, 1].

F (x) has full support and a corresponding continuous density functionf(x). The buyers are

strategically deciding the time of their purchase(s), and also which version(s) of the good

to buy. The good is durable and so a buyer may use it forever after purchasing. However,

since the flow utility of the newer version is higher, one may want to replace the old one

with the newer one. Therefore, buyers do not necessarily leave the market upon purchase,

unlike the existing literature. On the other hand, version-wise strategic delays of purchases

may appear.Precisely, a buyer might prefer to wait for the arrival of the new version rather

than buying the current version of the good.

The monopolist commits to a price path for both versions of the good at t = 0. The

price path is consisting of a price level for the first version of the good for each time until

the arrival of the new version and also a price level for the new version of the good for each

time after its arrival contingent on its arrival time. Note that a posted price that is defined

in this way indirectly implies anonymity: the monopolist has to charge the same price for

every buyer that is purchasing at the same. In other words, the possibility of conditioning

the new version sales to the buyers’ ownership status of the old version is ruled out. This

puts a restriction on the monopolist and hence the resulting optimal posted prices will

not be the optimal mechanism. Nevertheless, as a benchmark, we also analyzed the case
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without anonymity. The arrival process of the new version is modeled in two different ways:

2.2.1 Stochastic Arrival

The second version of the good arrives stochastically with a Poisson arrival process at rate

λ, the realized arrival time is denoted by T. The price path that the firm commits at t = 0

is contingent on T . More precisely, it is of the form:
(
{pt}t∈[0,∞),

{
{pTt }t∈[0,∞)

}
T∈[0,∞)

)
.

The first term is the single price path for the first good, since the arrival is stochastic it is

defined over t ∈ [0,∞). The second term is the price path for the newer version. Note that

there is a different price path for every possible arrival time. In particular, conditional on

the arrival time T, the term pTt is the price level of the second version of the good at T + t,

i.e. t period after the arrival T .

Each buyer decides whether and when to purchase the first version of the good, also

whether and when to purchase the second version of the good for each possible arrival time

T . More precisely, buyer x’s decisions are of the form:
(
tx, {tx,T }T∈(0,∞)

)
. The term tx

is the purchase time of the first version of the good; hence if realized T is less than tx,

then it means that the buyer does not buy the first version. Therefore, if tx = ∞, then

it means that the buyer never purchases the first version of the good. The term tx,T , on

the other hand, specifies how long after the realized arrival time T, buyer x purchases the

second version. Hence, the corresponding calendar time of the purchase is T + tx,T . Again

if tx,T =∞ then the agent does not purchase the second version if the arrival occurs at T .

The utility type x buyer, denoted by U(x):

U(x) =

∫ tx

0

e−λTλ

(∫ ∞
T+tx,T

e−rtβxdt− e−r(T+tx,T )pTtx,T

)
dT

+

∫ ∞

tx

e−λTλ

(∫ T+tx,T

tx

e−rtxdt+

∫ ∞
T+tx,T

e−rtβxdt − e−rtxptx − e−r(T+tx,T )pTtx,T

)
dT
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The first line captures the contingencies in which arrival occurs before tx. The utility

in these cases depends only on the timing of the purchase of the newer version. For each

arrival time T ∈ [0, tx], the corresponding utility is the expression inside the parenthesis.

Then, after weighting them with probability of arrival at T(i.e with e−λTλ), we integrate

it to get the expectation. The second line accounts for the arrivals occurring after the

purchase of the first version, where the expression inside the parenthesis represents the

utility corresponding to a specific arrival time T ∈ [tx,∞). In each contingency the agent

acquires a flow utility x until the purchase of the new version, and βx afterwards. We also

discount the payments and integrate them after weighting with the probability of arrival.

Note that, if tx = ∞, i.e the agent never purchases the first generation of the good, then

the second line is irrelevant; similarly if tx = 0 then the first line is irrelevant.

The profit of the firm, denoted by Π:

Π =

∫ 1

0

e−λtxe−rtxptxf(x)dx+

∫ ∞

0

e−λTλ

(∫ 1

0
e−r(T+tx,T )pTtx,T f(x)dx

)
dT.

First and second terms are the corresponding profits from the sales of first and second

versions of the good respectively. For the first term, the discounted payment of each type of

buyer is integrated over the type space. To discount the payment of type x buyer (i.e ptx),

we multiply it by e−rtx and also by the probability of the event that the arrival does not

occur until tx, which is e−λtx . For the second term, the inner integral is the level of profit

resulting from a specific arrival time T; and the outside integral takes their expectations

over possible arrival times.

2.2.2 Deterministic Arrival

In the second part of the paper, we assume that the arrival occurs at a certain time period

T , which is commonly known. In this case, the monopolist commits to a single price path:

{pt}t∈[0,∞), where pt is the price level of the first(second) version of the good at time t if
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t < T (t ≥ T ). To the sequel, we characterize the optimal posted prices for both of these

arrival processes.

2.3 Optimal Posted Prices: Stochastic Arrival

Before delving into the main concern of the paper, we consider some benchmarks to de-

velop a better understanding of the general framework. First we illustrate the canonical

durable good monopoly pricing problem, in which there is no product upgrade. The sec-

ond benchmark considers the case where there is a product upgrade but the monopolist is

not restricted to use posted prices. It can rather use any selling mechanism including the

non-anonymous ones.

2.3.1 Benchmark I: Canonical Durable Good Monopoly

This benchmark is analyzed in Stokey (1979).3 There is only one version of the durable

good staying in the market forever. It is a special case of our model in several directions. For

example, we can get this canonical model from ours by assuming that λ = 0, i.e. the newer

version of the good never arrives; or by assuming β = 1, i.e. there is no distinction between

the first and the second versions of the good for buyers. The monopolist chooses a unique

price path {pt}t∈[0,∞), and agents decide the timing of their purchases tx. Corresponding

utility of the agent x is:

U(x) =

∫ ∞
tx

e−rtxdt− e−rtxptx = e−rtx(
x

r
− ptx), (2.1)

3Here unlike the analysis presented in Stokey (1979) we follow the general mechanism design approach.
We first characterize the incentive constraints and then rewrite the firm’s problem as an optimal allocation
problem.
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and the profit of the firm is:

Π =

∫ 1

0
e−rtxptxf(x)dx.

Since the monopolist has full commitment power, his problem is a mechanism design

problem. Thanks to the revelation principle we can restrict attention to the direct mech-

anisms. In particular, the firm asks agents to report their types, and then decides their

allocations, i.e. a purchase time tx, and a payment level px in an incentive compatible way.

The payment for the agents that are purchasing the good at the same time must be the

same, otherwise truthful reporting would not be incentive compatibility. Therefore, for each

allocation time there is a corresponding payment level, i.e. we can denote the payments by

pt. The following Lemma, illustrating the nature of the incentive constraints, is an adapted

version of the fundamental IC Lemma corresponding to the durable good pricing framework.

Lemma 2.1. The direct mechanism is incentive compatible iff:

i) tx is non-increasing with x.

ii) U(x) = U(0) +
1

r

∫ x

0
e−rtx̃dx̃

Proof. See appendix B.1.

Lemma 2.1 states that a higher type will not purchase the good at a later time than

a lower type. It also asserts that the derivative of U(x) is proportional to the effective

discount (1
re
−rtx). Since these conditions are both necessary and sufficient for incentive

compatibility, the monopolist’s problem can be written as:

max
{pt}t∈[0,∞),{tx}x∈[0,1]

∫ 1

0
e−rtxptxf(x)dx s.t · tx is non-increasing with x.

· U(x) = U(0) +
1

r

∫ x

0
e−rtx̃dx̃ ∀x
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We can further simplify the above problem, and get rid of the price terms in it. To this

respect, by using equation (2.1) and Lemma 2.1 we get:

e−rtxptx = e−rtx
x

r
− 1

r

∫ x

0
e−rtx̃dx̃.4

Therefore, the profit of the firm is equal to:

Π =

∫ 1

0
e−rtxptxf(x)dx =

∫ 1

0

(−rtx x
r
− 1

r

∫ x

0
e−rtx̃dx̃

)
f(x)dx.

After integrating it by parts we get the new form of the problem as:

max
{tx}x∈[0,1]

1

r

∫ 1

0
e−rtx

(
x− 1− F (x)

f(x)

)
f(x)dx s.t tx is non-increasing. (2.2)

Note that, this problem consists of only the terms tx’s. Therefore, its solution gives us the

optimal allocations, and then by using the incentive constraints we get the corresponding

price path inducing the optimal allocations. The term (x− 1−F (x)
f(x) ) is referred as the virtual

value of type x, and as can be seen the monopolist’s problem boils down to maximization of

the integral of the discounted virtual valuations. The optimal solution of the above problem

is of the following form:

tx =

 0 if x ∈ [x?, 1]

∞ otherwise

In words, there is a threshold type x? such that all the buyers above this threshold are

acquiring the good immediately, and the rest of the buyers are never getting the good. If the

virtual valuation function, x− 1−F (x)
f(x) , is increasing in x, then the threshold x? would be the

minimum value of x at which the virtual value function is equal to 0. This is rather intuitive

since the monopolist’s problem boils down to maximization of the integral of discounted

virtual valuations. For a given type x, if the virtual value is positive(negative) then tx =

4In optimal mechanism U(0) = 0, hence we can omit it.
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0(tx = ∞) and this does not violate the monotonicity constraint. If virtual valuation

function is non-monotonic, the optimal allocations follows a cutoff rule with immediate

allocations as well. But in this case the monopolist will choose x? in such a way that the

integral of the virtual valuation function above x? is maximized. This does not mean that all

the buyers of a type higher than x? have a positive virtual valuation though. An important

thing to note here is that this allocation rule is exactly the same with the optimal allocation

rule of the static monopoly.

Now, we need to find an optimal price path inducing this optimal allocation rule. Since

U(0) = 0 in an optimal mechanism, U(x?) = e−rtx? (x
?

r − ptx? ) = U(0) + 1
r

∫ x?
0 e−rtx̃dx̃ = 0,

which requires ptx? = p0 = x?

r . Therefore an optimal price path to implement the optimal

allocation is a constant price path at level x?

r . The importance of this price level is that

the buyer with type x? is indifferent between purchasing and not.5 The significance of this

result is that, for the dynamic setting, the optimal price is constant and equal to the static

monopoly price. Therefore the monopolist does not use the time to discriminate over the

buyers with heterogeneous valuations.

2.3.2 Benchmark II: Product Upgrade without Anonymous Prices

In this benchmark, the arrival process is a stationary stochastic process, but the monop-

olist is not restricted to use posted prices as the selling mechanism. More precisely, the

monopolist can choose a mechanism in which he can condition the second version sales on

the sales of the first version. The direct mechanism, in this case, contains a joint allocation

rule for both versions of the goods and a corresponding payment for each type of buyer.

The payment rule is denoted by P (x) for a given reported type x and is to be paid at time

t = 0.6 Allocations for type x buyer are tx, and {tx,T }T∈[0,∞), which are defined in the same

5Even though the optimal allocation is unique, there are infinitely many price paths that can implement
it. The important thing is to fix the initial price level to x?

r
and always keep it above or equal to the initial

level.
6Any dynamic payment rule with a present value equal to P (x) would be an equivalent to this payment

rule. Hence there is no loss of generality here.
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way as before. Then the utility of the agent x, U(x), can be written as:

U(x) = Q(x)x− P (x).

where

Q(x) =

∫ tx

0

e−λTλ e−r(T+tx,T )dT +

∫ ∞
tx

e−λTλ

(∫ T+tx,T

tx

e−rtdt+ β

∫ ∞
T+tx,T

e−rtdt

)
dT

The term, Q(x), can be considered as the total allocation that is resulting from the al-

locations of both versions of the good, and it can only take values from [0, r+βλ
r(r+λ) ]. Its

maximum value is acquired by arranging tx = 0 and tx,T = 0 ∀T (immediate allocation of

both versions), and its minimum value is acquired by arranging tx = ∞ and tx,T = ∞ ∀T

(no allocation of any versions of the good). Following the same steps as in the previous

benchmark we get:

Lemma 2.2. The direct mechanism without anonymity restriction is incentive compatible

if and only if:

i) Q(x) is non-decreasing

ii) U(x) = U(0) +

∫ x

0
Q(x̃)dx̃

Proof. Follows exactly the same steps with the proof of lemma 2.1.

Then, the monopolist’s problem can be written as:

max
{Q(x)}x∈[0,1]

1

r

∫ 1

0
Q(x)

(
x− 1− F (x)

f(x)

)
f(x)dx s.t Q(x) is non-decreasing with x.

The solution will be analogous to the one of the previous benchmark. In particular, there

exists a threshold x?, which is equal to the threshold that is defined in the first bench-

mark, such that for all the buyers above(below) this threshold the value of Q(x) is maxi-
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mized(minimized). More precisely, the optimal allocation rule is:

i)tx = tx,T = 0 ∀x ∈ [x?, 1]

ii)tx = tx,T =∞ ∀x ∈ [0, x?)

In the optimal mechanism there is no buyer acquiring only one version of the good. In

other words, the monopolist is bundling two generations of the good and selling them only

together. This allocation rule resembles some selling strategies that we observe in real life.

For instance, some companies, like Microsoft, offer discounts to their customers in case they

have an old version and want to upgrade to a newer one. Here we see an extreme version

of this policy in the sense that the price of the second version for those who already own

the first version of the good is equal to zero.

The payment scheme inducing this allocation requires all the agents in [x?, 1] to pay

the same amount since all of them have the same Q(x). This payment is equal to x? r+βλ
r(r+λ) ,

which leaves the marginal agent x? indifferent between purchasing and not. This mechanism

is the optimal selling mechanism. However, it is impossible to implement this allocation

rule by using posted prices. To see this, suppose there is a contingent price path that

can implement it anonymously. Then, under these prices, marginal return from the second

version purchase for agent x? is larger than or equal to the price at the corresponding time

period. But since his marginal benefit is equal to (β−1)x?, the agent x?−ε, for ε sufficiently

small, would prefer to purchase the second version as well. Hence we get a contradiction.

2.3.3 Sales With Posted Prices: Anonymity

Here, the focus is on the characterization of the optimal posted prices, which is anonymous

by definition. In this case, buyer x that is owning the first version of the good and the buyer

(β−1)x that is not owning the first version of the good will have the same marginal benefit

from the newer version of the good. Therefore a mechanism corresponding to the posted
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prices must treat these buyers in the same manner for the allocation of the second version

of the good. Therefore a direct mechanism will have some further constraints in this case.

For this reason, we rather use a different approach, which we call as ”two-step mechanism”,

in which the allocations of each version of the good follows independent reporting stages.

First, we define the following concept:

Definition 2.1. The Effective type of buyer x at realized arrival time T, is equal to his

marginal flow utility from the purchase of the second version of the good. Particularly, it is

equal to βx if he does not own the first version and it is equal to (β − 1)x if he does.

The buyers can use at most one unit of the good at a time. Therefore a buyer, owning

both versions of the good, uses only the current one as it gives more flow utility. Alterna-

tively, we can think of these two versions of the goods as if they are two separate goods

where both can be consumed at the same time, yet the flow utility of the second good is

equal to the effective type that we described above. From this point on we exploit this

interpretation in our analysis, as it simplifies the exposition. The two-step mechanism is

defined as:

Definition 2.2. The two-step mechanism is a mechanism in which buyers are asked to

report twice. First, at t = 0, buyers are asked to report their types. Then the allocations

and payments for the first version of the good are decided according to the first step reports.

Second, at the realized arrival time T, buyers are asked to report their effective types and

the allocations and the payments of the second version of the good are decided according to

the second step reports independent from the first step reports.

Finding the optimal mechanism among this class of mechanisms will give us the optimal

posted prices that the monopolist can commit. The mechanism structure here is different

than a direct mechanism, hence we slightly modify the notation specified earlier. For the

second step allocations, contingent on the realized arrival time T , the amount of time after
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which the effective type x purchases the second version of the good is denoted by tTx and

so the corresponding purchase time is T + tTx . 7 For the first step allocations the relevant

information is the initial type hence we keep the old notation, where tx is the purchase time

for type x.

The utility of an agent is has two parts, one for each step of the mechanism. Starting

with the second step, contingent on the arrival time T , discounted expected utility of the

effective type x calculated at T , denoted by V T
x :

V T
x =

∫ ∞
tTx

e−rtxdt− e−rtTx pTtTx = e−rt
T
x

(x
r
− pTtTx

)
.

For the first step, the expected utility of buyer of type x, calculated at t=0, denoted by Vx:

Vx = e−λtx
∫ ∞
tx

e−rtxdt− e−(r+λ)txptx = e−(r+λ)tx
(x
r
− ptx

)
.

Note that this expression reflects the alternative interpretation mentioned earlier. In par-

ticular, first version of the good is used forever after the purchase. Total utility of buyer x,

which is denoted by U(x), can be written as:

U(x) = Vx +

∫ tx

0
e−(r+λ)TλV T

βxdT +

∫ ∞
tx

e−(r+λ)TλV T
(β−1)xdT.

There is a crucial point that we better to stress out here: depending on the realized arrival

time the effective type and hence the resulting second step utility of the buyer changes. If

the arrival occurs before (after) tx, then the effective type of the agent x is βx ((β − 1)x)

and the corresponding second step utility is V T
βx (V T

(β−1)x).

The profit of the firms , Π, has also two components:

Π =

∫ 1

0
e−rtxe−λtxptxf(x)dx +

∫ ∞
0

e−(r+λ)TλΠTdT. (2.3)

7Note that the previous notation was tx,T , for type x. We now take the effective types as our basis rather
than the initial type.
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The first and second terms are accounting for the expected profits from the first and second

steps of the mechanism respectively. The term ΠT is the expected profit (calculated at time

T) conditional on the arrival time T, and it is equal to:

ΠT =

∫ 1

0
e−rt

T
x pTtTx

fT (x)dx.

The density fT (.) is the distribution of the effective types at the realized arrival time T

and it is depending on the allocation time tx as well as the realized T . To this respect, the

monopolist by arranging the allocations of the first step of the mechanism, can also alter

the distribution of the buyers’ marginal flow benefits from the newer version of the good.

To characterize the incentive constraints of the buyers, we need to consider both re-

porting stages separately. Since buyers are forward looking, while reporting in the initial

stage they will internalize the effect of their report on the second stage of the mechanism.

Therefore, we start our characterization of incentive constraints from the second stage.

Lemma 2.3. The second step of the mechanism is incentive compatible if and only if, ∀T

i) tTx is non-incraeasing with x

ii) V T
x = V T

0 +
1

r

∫ x

0
e−rt

T
x̃ dx̃.

Proof. Follows from the same arguments with the proof of Lemma 2.1.

Assumption 2.1. λ ≤ r
β−1 .

Now we deal with the the incentive constraints of the first stage reports. Any deviation

from truthful reporting at this stage will also alter the optimal behavior in the second stage

as it changes the allocation time and hence the corresponding effective types.

Lemma 2.4. A two-step mechanism with an incentive compatible second stage, is also
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incentive compatible at the first stage only if:

i) tx is non-increasing with x

ii) Vx = V0 +
1

r

∫ x

0
e−(r+λ)tx̃d(x̃) − λ

∫ x

0
e−(r+λ)tx̃

∂tx̃
∂x

(
V tx̃
βx̃ − V

tx̃
(β−1)x̃

)
dx̃

Proof. See appendix B.2.

There are four conditions in total, which are defined in lemma 2.3 and lemma 2.4,

that the optimal two step mechanism needs to satisfy. Two conditions given in Lemma

2.3 are necessary and sufficient for the second step incentive compatibility, whereas two

conditions given in Lemma 2.4 are just necessary for the first step incentive compatibility.8

To the sequel, we define the problem of the monopolist by only taking these four conditions

into account. As the latter two conditions are not sufficient for the first stage incentive

compatibility, the solution of our problem does not necessarily be the optimal solution that

we are looking for. However, the solution of our problem is shown to be incentive compatible,

therefore it is also the optimal solution that we are looking for. By using lemma 2.3, and

the fact that the monopolists sets V T
0 = 0 in an optimal mechanism, we get:

e−rt
T
x pTtTx

= e−rt
T
x
x

r
− 1

r

∫ x

0
e−rt

T
x̃ dx̃.

Integrating this by parts gives us:

ΠT =

∫ 1

0
e−rt

T
x pTtTx

ft(x)dx =
1

r

∫ 1

0
e−rt

T
x (x− 1− FT (x)

fT (x)
)fT (x)dx.

By lemma 2.4, and the fact that V0 = 0 in an optimal mechanism, we get:

e−(r+λ)txptx = e−(r+λ)tx x

r
− 1

r

∫ x

0
e−(r+λ)tx̃d(x̃) + λ

∫ x

0
e−(r+λ)tx̃

∂tx̃
∂x

(
V tx̃
βx̃ − V

tx̃
(β−1)x̃

)
dx̃.

8Our conjecture is that they are also sufficient but since we do not need the sufficiency in the general
result we did not show it formally.
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Integrating this by parts gives us:

∫ 1

0
e−rtxe−λtxptxf(x)dx =

1

r

∫ 1

0
e−(r+λ)tx

(
x− 1− F (x)

f(x)

)
f(x)dx

+ λ

∫ 1

0
e−(r+λ)tx ∂tx

∂x
(1− F (x))

(
V tx
βx − V

tx
(β−1)x

)
dx

Therefore the monopolist’s optimization problem is:

max
{tx}x∈[0,1],{{tTx }x∈[0,1]}T>0

1

r

∫ 1

0
e−(r+λ)tx

(
x− 1− F (x)

f(x)

)
f(x)dx

+ λ

∫ 1

0
e−(r+λ)tx ∂tx

∂x
(1− F (x))

(
V tx
βx − V

tx
(β−1)x

)
dx

+
λ

r

∫ ∞
0

e−(r+λ)T
(∫ 1

0
e−rt

T
x

(
x− 1− FT (x)

fT (x)

)
fT (x)dx

)
dT

subject to · tx is non-increasing in x

· tTx is non-increasing in x, ∀T ∈ [0,∞) (2.4)

We know that fT (.) is a function of {tx}x∈[0,1] for each realized arrival time T . Therefore,

while finding the optimal mechanism, one must take this indirect effect into account. The

first line of the objective function is the sum of the discounted virtual valuations corre-

sponding to sales of the first version of the good, and the third line is the analogous of it

corresponding to the second version of the good with an important distinction that the vir-

tual valuations are now based on the effective types and their distributions for every possible

arrival time T. The second line, which is always non-positive due to the monotonicity of tx

on x, can be interpreted as the cost of the inter-versional incentives for the monopolist. A

buyer, while purchasing the first version of the good, considers the possibility of the arrival

of the newer version of the good at the very moment. If he decides to purchase, his effective

type and hence his marginal willingness to pay for the newer version will change. These

inter-versional incentives is reflected at the term (V tx
βx − V

tx
(β−1)x) appearing in the second

line of above program.
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Note that, when λ→ 0 the second and the third terms of objective function in (2.4) is

equal to 0, and hence the problem (2.4) is equivalent to the problem (2.2). This is rather

intuitive, because when λ approaches to 0 there is no upgrade, and hence we get back to the

canonical model. Proposition 2.1 characterizes the optimal allocation rule of the monopolist

problem.

Proposition 2.1. The optimal solution to (2.4) consists of two cutoff values x1, and x2

such that:
tx =

 0 x ≥ x1

∞ x < x1

tTx =

 0 x ≥ x2

∞ x < x2

∀T.

Proof. See appendix B.3.

To prove this result, we write an auxiliary optimization problem in which the second

line of the objective function is omitted. Then we show that the solution to this auxiliary

problem is also the solution to the problem 2.4. This follows from the fact that the second

line of the objective function is always non-positive due to the monotonicity of tx, and its

value is maximized, i.e. equal to 0, at the optimal solution of the auxiliary problem.

The important thing to note here is that introducing product upgrades into durable

good markets does not alter the main result of the canonical model, in the sense that the

monopolist still does not use time to discriminate over buyers. Even though the type of

buyers that are purchasing the good is different than the canonical durable good model,

we still have immediate allocations for both versions of the good. The optimal allocation

may incorporate different scenarios in terms of the version(s) of the goods that each type

of buyer is acquiring. The distribution function f(x) and the parameters β, λ, and r, are

crucial to decide the optimal values of x1, and x2, and hence on the individual allocations

of each buyer. However, here we do not precisely characterize the values of x1 and x2 for a

given set of parameters.

The monopolist can induce this allocation rule by setting a constant price level for
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both versions p1, and p2, since allocations are immediate.9 Note that the price of the newer

version of the good is independent from the arrival time T . and is given by pTt = p2 =

x2
r ∀T, t. At this price level, the buyer with the effective type x2 is indifferent between

purchasing and not purchasing the second version, so that V T
x2

= 0. On the other hand, p1

is the price level at which the agent of type x1 is indifferent on his purchase decision of the

first version. In particular, if (β−1)x1 ≥ x2, then he is indifferent between purchasing both

versions of the good and purchasing only the second version. And if (β − 1)x1 < x2, then

he is indifferent between purchasing only the first version and purchasing only the second

version.

Remark 2.1. As it is mentioned earlier the solution of the optimization problem 2.4 does

not necessarily be the optimal solution of the monopolist’s problem, since Lemma 2.4 is

an “only if ” statement. However, the optimal allocation and the price path inducing this

optimal allocation is obviously incentive compatible, therefore it is also the solution that we

are interested in.

2.4 Deterministic Arrival

Now, the arrival of the newer version of the good occurs at a certain time T which is

commonly known from all of the participants of the market. We will show that, in this

non-stationary environment, the monopolist, depending on the values of the parameters,

might use time to discriminate over buyers with heterogeneous valuations.

To show the possibility of a decreasing optimal price path, we simplify our model by

assuming a binary type space for buyers with types H (High) and L (Low), where H > L.10

9Version-wise constant price path is not the only price path to implement the optimal allocation rule.
In particular, any non-decreasing contingent price path, satisfying p0 = p1, and pT0 = p2, would also induce
the optimal allocation rule. A decreasing price path would only be optimal if the optimal allocation were to
occur throughout time.

10To omit the discount factor r that appears due to the integration of the flow utilities, say the types are
h, l, and we have H = h

r
, and L = l

r
.
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The buyers are still a continuum with a unit mass and the measure of the H-type buyers is

equal to µ ∈ (0, 1) while the measure of the L-type buyers is 1−µ. The flow utility acquired

from the second version of the good is still β times the flow utility acquired from the first

version of the good for both type of buyers.

To focus on the price path of the first version of the good, we further assume that the

price path for the second version is constant,and hence any purchase of the second version

occurs only at the arrival time T .11 The monopolist commits to a price path: {pt}t∈[0,T ],

where pt is the price level of the first version at t ∈ [0, T ), and pT is the price for the second

version good. The following assumption guarantees that the utility from purchasing only

the first good at t = 0 is higher than the utility from purchasing only the second version at

time T .

Assumption 2.2. βe−rT < 1.

To understand the incentive of the buyers, consider an arbitrary price path {pt}t∈[0,T ]

and say that a buyer finds it optimal to purchase the first version of the good at a time

t ∈ [0, T ) (he may or may not purchase the second version). Then it would also be an

optimal decision for this buyer to purchase the first version of the good at t ∈ [0, T ) in an

environment where there is only the first version of the good with the corresponding price

path: {pt}t∈[0,T ). To see this, suppose that there exists another time period t̃ ∈ [0, T ) that

strictly dominates purchasing at t. But for this to be correct, this buyer must purchase

the second version of the good as well, otherwise we get a direct contradiction. Then by

revealed preferences of type-X buyer:

e−rt̃(X − pt̃) > e−rt(X − pt)

X(e−rt + (β − 1)e−rT )− e−rtpt − e−rTPT ≥ X(e−rt̃ + (β − 1)e−rT )− e−rt̃pt̃ − e
−rTPT .

However the inequalities above are contradicting with each other, hence our claim is correct.

11We can rather think of this as a restriction so that the markets close down after T .
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This observation is crucial for the next lemma, which is showing that there exists a critical

time period, t? < T , such that before this t? the purchasing decisions for the first version

of the good is monotonic with respect to the buyers’ type. More precisely, if L-type buyers

purchase the first version of the good at a time t < tstar, then H-type buyers also purchase

the first version of the good and their purchase time is not later than t. On the contrary,

this monotonicity does not carry out to the purchases occurring after t?. This is because

of the fact that the arrival of the second version of the good becomes closer as time goes

on, and the incentive to wait for the newer version of the good becomes strengthened, and

these strengthened incentives is stronger for H-type buyers if the arrival time is sufficiently

close.

Lemma 2.5. For a given price path {pt}t∈[0,T ],

i If the L-type buyers purchase both versions of the good then the H-type buyers would

also purchase both versions of the good.

ii There exists a critical time period t?, that is defined by e−rt
?

= βe−rT , such that if

the L-type buyers purchase the first version of the good at a time t < t?, then H-type

buyers also purchase the first version of the good and their purchase time is not later

than t.12

Proof. See appendix B.4.

Now we can use this partial monotonicity result given in lemma 2.5 to show that in an

optimal price path the monopolist should allocate the first version of the good to H-type

buyers immediately, if the assumption 2.2 is satisfied. If the monopolist is not allocating

the first version of the good to H-type buyers at t = 0, then it must be the case that they

are only purchasing the second version of the good. Then L-type buyers are either only

purchasing the first version of the good after t?, or only purchasing the second version of

the good, and both of these allocations are dominated when assumption 2.2 is satisfied.

12The existence of this t? is guaranteed by the assumption 2.2
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Lemma 2.6. In an optimal posted price mechanism, H-type buyers purchase the first version

of the good immediately at t = 0

Proof. See appendix B.5

The optimal posted prices depends on the values of H and L. In particular, the relation

between (β − 1)H and βL is crucial. When (β − 1)H ≥ βL ((β − 1)H ≤ βL) the H-type

buyer owning the first version of the good gets more (less) additional utility from the second

version purchase compared to a L-type buyer that does not own the first version of the good.

From now on we will consider the case (β−1)H > βL. The analysis of the other case follows

from similar arguments.

Proposition 2.2 lists all of the possible optimal price paths that the monopolist can

commit. All of the price paths listed is an optimal one for some subset of parameter values.

As usual, the price path inducing the optimal allocation is not unique. However, we say

that the prices are constant for the first version of the good as long as all of the purchases

occurs at time t = 0. In this case time is not used to discriminate over buyers for the sale

of the first version of the good. On the other hand, if the optimal allocations for the first

version of the good occurs at different time periods for different type of buyers, then the

monopolist is using time to discriminate over buyers. In this case, the price path inducing

the optimal allocation is decreasing over time. The following proposition shows that for

some subset of the parameter space, it is possible to get a decreasing optimal price path

contrary to the case with stationary stochastic arrival.

Proposition 2.2. Suppose (β − 1)H > βL and the assumption 2.2 is satisfied. Then the

optimal posted prices and the corresponding purchase decisions of each type of buyer is one

of the following. Moreover, each policy is an optimal policy for a non-empty subset of the

parameter space

1) pt = H ∀t ∈ [0, T ), and pT > (β− 1)H. Only H-type buyers purchase the first version
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of the good, and no one purchases the second version.

2) pt = L ∀t ∈ [0, T ), and pT = (β − 1)H. Both type of buyers purchase the first version

of the good at t = 0, and only H-type buyers purchase the second version.

3) pt =

 (1− e−rT )H ∀t ∈ [0, t̄)

L ∀t ∈ [t̄, T )
and pT = (β − 1)H where t̄ satisfies e−rt̄ =

e−rT H
H−L . Both H-type and L-type buyers purchase the first version of the good at

times t = 0 and t = t̄ respectively. And only H-type buyers purchase the second

version.

4) pt = (1 − e−rT )H ∀t ∈ [0, T ), and pT = βL. Only H-type buyers purchase the first

version of the good, and both types purchase the second version.

5) pt = (1−e−rT )L ∀t ∈ [0, T ), and pT = (β−1)L. Both types purchase the first version

at t = 0 and they also purchase the second version of the good.

It is easy to calculate the corresponding profit of each policy for the monopolist. Then

we can see that each of these policies is the optimal one for some values of the parameters

of the model.13 In other words, for each policy there is a subset of parameters, which are

also satisfying the condition (β − 1)H > βL and assumption 2.2, such that the policy is

optimal. We are particularly interested on the third policy, because it displays a decreasing

price path for the first version of the good. In particular, the purchases of the first version

of the good occur throughout time and hence the corresponding price path implementing

this allocation must be decreasing.

The non-stationary environment, resulting from a certain arrival time for product up-

grades, strengthens the ability of the monopolist to sort out the buyers with lower valuations.

More precisely, unless the monopolist prefers to omit the second version sales by charging

a sufficiently high price pT , the H-type buyers that are purchasing the first version of the

13The parameters are µ, r, T , H, L.
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good at t = 0 has an additional option: purchasing only the second version of the good.

Therefore even for the case in which the monopolist allocates only the H-type buyers at

t = 0, H-type buyers have a positive utility, if the sales of the second version of the good

is not omitted by the monopolist. This in turn introduces the possibility of allocating the

first version of the good to the L-type buyers after t = 0 without hurting the incentives of

the H-type players on their purchases of the first version of the good. 14 The way that we

defined time period t̄ given in the third policy of proposition 2.2 exploits this possibility.

In particular selling the first version of the good to L-type of buyers at period t = t̄ with a

price equal to their maximum willingness to pay does not hurt the incentives of the H-type

players. And t̄ is the earliest among such time periods. The proof of proposition 2.2, given

in the appendix, follows a backward analysis. We first define the optimal sales of the first

version of the good for each value of pT , and then we optimize with respect to pT . Since the

main concern of this section is to show the possibility of a decreasing optimal price path,

the cumbersome details of the possible anonymous optimal sale mechanism are left to the

appendix and discussed in the proof of the proposition.

2.5 Conclusion

The optimal pricing problem of a durable good monopolist is analyzed. An upgraded and

a superior version of the durable good arrives and replaces the existing version of the good.

The main assumption is that the sales are anonymous, so that the seller cannot condition

the sale of the second version of the good on the sales of the first version. When the arrival of

the upgraded version follows a stationary stochastic process, the optimal price path is shown

to be constant for both versions of the good, hence all the purchases occurs immediately, i.e.

the monopolist does not use the time to discriminate over buyers. On the contrary, when

14This is not possible when there is no product upgrade; because in the canonical model, if the optimal
allocation rule allocates the good only to the H-type of buyers, then the optimal price path inducing this
allocation would leave 0 utility to the H-type buyers. Hence allocating the good to the L-type of buyers at
a lower price would hurt the incentives of the H-type buyers.
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the arrival occurs at a commonly known certain time period, it is shown that, depending

on the parameters of the model, the optimal price path might decrease over time,and hence

delayed purchases might occur. Hence the time might be a useful discriminatory tool for

the monopolist that is endowed with full commitment power.

For both cases the optimal selling mechanism, without the restriction of anonymity,

requires the monopolist to bundle both versions of the good and to sell them only together.

The corresponding allocations in this case cannot be implemented by posted prices which

is anonymous by definition.
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Chapter 3

Man vs. Machine: When is automa-
tion inferior to human labor?

This chapter is co-authored with Pinar Yildirim.

3.1 Introduction

The World Bank estimates that about 60% of jobs will be automated in the near future

(Frey and Osborne, 2017). The reasons for this expectation are relatively straightforward.

Machines, robots, and artificial intelligence technologies generally provide reliable and con-

sistent output, and do it at a lower cost compared to their human counterparts. Not sur-

prisingly, we are seeing increasing levels of adoption of automated technologies, and recent

studies document that these technologies can substitute human labor in many consumer

facing environments (Acemoglu and Restrepo, 2017).

In this study, we provide a counterargument for a manager’s adoption of automation by

showing that automated systems can result in less desirable outcomes compared to systems

that are operated by only humans. While gains from automation are indisputable, there
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are also clear reasons for why automation may not always result in the best outcome.

Specifically, we are concerned with two consequences of automation: loss of employees’

ability to closely monitor each other’s effort and the principal’s diminishing ability to detect

shirking behavior.

Automation may negatively influence the output in a workplace due to a host of factors.

Some of these may be behavioral reasons such as reduced morale, fear of losing employment,

feeling powerless, and loss of social interactions which lead to fewer learning opportunities

for the employees. In this paper, we abstract away from these behavioral explanations.

Our model instead focuses on the consequences of automation from a team perspective. We

consider firms where the output is created by the combined effort of agents working in teams.

When employees work in teams, they get a chance to closely monitor each other’s effort.

Monitoring of effort, however, is a problem for most managers since continuously auditing

and checking up on workers are too costly. When the employee pay incentives are set by the

principal in a way that they have an incentive to monitor their team member’s behavior,

the principal can take advantage of this to induce both individuals to exert high effort. On

the other hand, when one member of the team is replaced with automated machinery, the

principal’s monitoring capacity diminishes, because the human labor remains unmonitored.

While the machine effort (or input) is always high and its cost is always lower than its human

counterpart, in organizations with automation, to incentivize the employee to exert high

effort, the principal has to offer a lot more. As a result, in some environments, automation

becomes less desirable compared to all-human labor.

We develop a model based on Che and Yoo (2001) and study three possible incentive

schemes which can be offered to an employee: contracts that reward workers when their

peers also exert effort (joint performance evaluation or JPE in short), contracts that reward

workers when they perform better than their peers (relative performance evaluation or

RPE in short) and contracts that reward employees individually (independent performance

evaluation, or IPE). These represent the wage contracts we observe in real life, and cover
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the incentives based on both collaboration and on competition between employees in teams.

We model teams where a single member is replaced by automation and compare the

output of this team to that of a team with two human employees.1 We compare teams

with and without automation and allow the principal to consider a set of payment schemes

which reward an employee relative to, or jointly with his peer. While automation always

leads to deterministic high effort and cost savings, human-machine teams lose their strategic

component because a machine cannot retaliate against an employee that it is teaming with,

and cannot impose any peer-sanctions. We argue that this lack of strategic behavior can

reduce a principal’s ability of benefiting from the interaction between the agents and can

make human-teams more preferable over automated teams.

Our findings demonstrate three key insights. First, we show that adoption of automa-

tion to substitute human labor is not always preferable, even when automation implies

consistent high effort and low cost. This is because while teams of humans have the abil-

ity to monitor each other’s behavior and apply peer sanctions in case one deviates from

the optimal path of play, machines cannot act in the same strategic way. We show that

the human-machine teams can be more costly because the principal has to offer higher

incentives to motivate the human member of the team. Second, we show that adoption

of automation changes the wage contracts preferred by the managers in the marketplace.

While both JPE or RPE are preferred as an incentive scheme to induce effort from human

employees, adoption of automation makes JPE the less preferred incentive relative to RPE.

The rest of the paper is organized as follows. In Section 3.2 we provide a brief summary

of the literature on team incentives, automation, and human-machine teams. In Section 3.3,

we provide our model and lay out some key insights. In Section 3.4, we provide a summary of

the optimal regime. We follow up with a discussion of extensions in Section 3.5 to the model

to show robustness of the findings. Finally, in Section 3.6, we conclude with takeaways for

1We focus on teams of two for simplicity, however, the results can be extended to teams with higher
number of members.
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managers and policy makers.

3.2 Literature Review

Our study relates to the long tradition of study on employee contracts and team motivation.

Earlier works in economics focused on the comparison of incentive schemes in teams. In

a well-cited paper, Che and Yoo (2001) study the principal’s wage setting problem when

two agents are working together and the principal can only imperfectly monitor their effort.

In this setting, the authors study both a static and dynamic game environment, and show

that (1) in a static setting, RPE is the optimal incentive scheme to induce effort while (2)

in a repeated interaction environment, JPE or IPE could also be preferred. Our results

are largely in comparison to this earlier paper. Unlike the previous paper, we focus on the

strategic choice of adopting automation and how this changes which incentives are preferred

by the principal.

Others have also contrasted the RPE and JPE incentive schemes and pointed out to

their desirable and undesirable properties as wage contracts. JPE can promote coopera-

tion since an agent is rewarded only if his peers perform well (Holmstrom, 1982). But it

also creates an environment open to free riding (Alchian and Demsetz, 1972; Holmstrom,

1982). Che and Yoo (2001) show that when agents interact repeatedly, JPE can become

the preferred incentive.

Holmstrom (1982) argues that RPE helps the principal to reward an agent based on

his effort rather than luck - i.e., the exogenous shocks that influence his output partly

independent of his effort. Further, it is argued that in rank-order RPE incentives, agents

are completely insulated from the risk of common negative shocks (Lazear and Rosen, 1981;

Nalebuff and Stiglitz, 1983). Carmichael (1983) argued that RPE may dominate IPE, even

in the absence of common shocks. The issues with the RPE scheme is that it is conducive

to collusion (Mookherjee, 1984) and sabotage as well as discouraging cooperation (Lazear,
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1989).

More recently, scholars in both economics and marketing started to focus on automa-

tion, robots, and artificial intelligence (Moriarty and Swartz, 1989; Venkatraman, 1994;

Brynjolfsson and McAfee, 2012). A significant majority of these studies focused on whether

new technologies and automation eliminate the jobs or create new ones. Studies support

both sides of the argument. Acemoglu and Restrepo (2016) argue that automation will

replace some jobs while creating others, and the rate of production can exceed that of de-

struction. Bessen (2016) investigated the relationship between technology and occupations

and looks at occupations since 1980 to explore whether adoption of computers is related to

job losses. Bessen (2016) argues that occupations using computers grow faster, even for the

highly routine and mid-wage occupations. Acemoglu and Restrepo (2017), in a follow up

empirical study demonstrated that automation resulted in the loss of about 670,000 manu-

facturing jobs between 1990 and 2007. Sachs et al. (2015) studied the impact of robotization

and found that a rise in robotic productivity is more likely to lower the welfare of young

workers and future generations when the saving rate is low.

In marketing, scholars have studied the impact of technology adoption and automation

in consumer service environments (Speier and Venkatesh, 2002; Jayachandran et al., 2005).

However, these studies do not focus on how to optimally integrate automation to teams.

This is how our study contributes the literature. We demonstrate the conditions under

which automation is preferable and we also demonstrate the payment incentive that is best

suited to maximize the output of employees.

Finally, our paper also relates to the literature on collusion and renegotiation-proofness

in repeated games. First introduced by Farrell (1983), a renegotiation-proof equilibrium,

is a sub-game perfect equilibrium in which there is no continuation play that is Pareto

dominated by another sub-game perfect equilibrium. Van Damme (1989) demonstrates

that, in a repeated prisoners’ dilemma game, it is possible to sustain every feasible and
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individually rational payoff outcome by means of a renegotiation-proof equilibrium.2 In

contrast to this literature, we follow Che and Yoo (2001), and impose restrictions to rule

out collusive-outcomes only on the equilibrium path. Despite this difference, we show that,

the resulting optimal scheme induces the desired outcome also by means of a renegotiation-

proof equilibrium as in the literature.

3.3 Model

Consider a firm which will make a decision on whether or not to initiate partial substitution

of labor with automated systems. This choice makes up two possible production regimes.

The first regime is without automation, and the production is purely based on labor force.

The second regime, on the other hand, incorporates automation, and the production is

based on labor as well as automated machinery. In order to examine this choice, we study a

dynamic framework within a discrete time setting, and set δ as the common time discounting

rate. In what follows, we will describe these production regimes in more detail.

3.3.1 No-Automation Regime

The framework is borrowed from Che and Yoo (2001). Suppose a firm hires two identical

agents to perform a task in each period.3 Each agent makes a binary effort choice in each

period. The agent can either “work” by setting his effort level to e = 1, or can “shirk”

by setting it to e = 0. There is a discomfort, or cost, of high level effort, e = 1, which is

denoted by c > 0. The cost of shirking is normalized to 0.

The agents’ effort choices are not directly observed by the principal, instead she ob-

serves two distinct informative signals about the effort exerted by each agent. The signals,

similar to the effort choices, are binary and can be either “favorable” or “unfavorable”,

2See also Farrell and Maskin (1989).
3We will refer to the human employees as agents or workers interchangeably throughout the document.
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i.e., s = 1, or s = 0. The signal of an agent is independent of the effort choice of the

other, however, there is an underlying common component influencing the realizations of

both signals. This common component may, for instance, indicate the state of the economy

or a particular industry which influences both workers in a similar way. More precisely,

there is an aggregate shock which can either be “good” or “bad” with probabilities σ and

1 − σ respectively, where σ < 1. If the shock is good, then the signals of both agents are

favorable regardless of their effort choice. If the shock is bad, then the signal depends on

the effort choice of a worker. In particular, if he chooses to put effort (e = 1), then his

performance signal will be favorable with probability p1, and if he chooses to shirk (e = 0)

then his performance signal will be favorable with probability p0, where 1 > p1 > p0 > 0.

Put differently, when the aggregate shock is bad, the probability that an agent will receive

a more favorable evaluation is higher if he chooses to put in effort. The joint distribution

of the signals is summarized in the Table 3.1.

Signal Pairs
(1,1) (1,0) (0,1) (0,0)

E
ff

or
t

P
ai

rs (1,1) σ + (1− σ)p21 (1− σ)p1(1− p1) (1− σ)(1− p1)p1 (1− σ)(1− p1)2

(1,0) σ + (1− σ)p1p0 (1− σ)p1(1− p0) (1− σ)(1− p1)p0 (1− σ)(1− p1)(1− p0)
(0,1) σ + (1− σ)p0p1 (1− σ)p0(1− p1) (1− σ)(1− p0)p1 (1− σ)(1− p0)(1− p1)
(0,0) σ + (1− σ)p20 (1− σ)p0(1− p0) (1− σ)(1− p0)p0 (1− σ)(1− p0)2

Table 3.1: The joint distribution of the signals conditional on the effort profile of the agents.

The workers observe the effort choice of each other as they work closely. This introduces

a capacity of mutual monitoring that the principal can exploit in order to mitigate the

agency problem. We will demonstrate that this mutual monitoring is a key characteristic

in a principal’s preference for all-human teams, particularly when her capacity to detect

shirking is lower.
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3.3.2 Automation Regime:

In this regime, we consider the case of partial substitution of labor with automation. We

assume that the principal hires one employee and replaces the other with a machine. We

also assume that the machine introduces some efficiency to the principal: it operates at a

capacity that is equivalent to the high level effort of the agent but at a lower operating

cost, which is assumed to be αc, where α ∈ (0, 1). Thus, substituting one of the employees

with machinery has two direct benefits: reduction in operating costs and the scope of

the moral hazard problem since there is only one agent now with an unobservable effort

choice. Nevertheless, this replacement exterminates the interaction among the agents; hence

diminishes the potential benefit that the principal may receive due to the agents’ mutual

monitoring capacity. The latter accounts for the indirect cost of partial substitution of

human labor with machines. The trade-off between the direct and indirect effects comprise

the core of the discussion of this paper.

Similar to the no-automation regime, the employee’s effort choice is not directly ob-

served by the principal. She observes a binary performance signal, which has the same

distribution as before. In this case there is only one signal since there is only one agent.

3.4 Optimal Incentive Contract

Throughout this section, we maintain the assumption that the high level effort (i.e., work)

is sufficiently valuable for the principal such that her central focus is to find an optimal

incentive scheme inducing high effort, e = 1, in every period. We restrict our attention

to constant incentive schemes where the payment that an agent receives is time-invariant

and depends on the performance measure(s) realized within the current period. It is also

assumed that the agents have limited liability and the payments are non-negative after each

possible contingency.
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We first analyze the optimal production in all-human (i.e., human-human) and human-

machine teams individually. Next we compare the expected cost of performing the task in

both cases to determine the optimal scheme.

3.4.1 Optimal Incentive Scheme Under Automation

We start the analysis with investigating the optimal incentive for a human-machine team.

With partial substitution of labor, the principal’s problem is to set the incentive scheme to

induce high effort from the employee. An incentive scheme, in this case, is a two dimensional

vector specifying the amount of pay the agent receives after each possible performance

measure. More precisely, w = (w1, w0) is the wage scheme where w1 and w0 represent the

amount paid to agent if his performance signals are s = 1, and s = 0, respectively. In each

period, conditional on the wage scheme set by the principal, the agent determines the level

of effort he puts in. To induce high effort from the agent, the principal has to take the

following incentive constraint into account while setting the wages:

(σ + (1− σ)p1)w1 + (1− σ)(1− p1)w0 − c︸ ︷︷ ︸
Utility from working

≥ (σ + (1− σ)p0)w1 + (1− σ)(1− p0)w0.︸ ︷︷ ︸
Utility from shirking

The left hand side of the inequality is the agent’s utility from working, and the right side

is his utility from shirking. After some simplification, this constraint boils down to the

following expression:

(1− σ)(p1 − p0)(w1 − w0) ≥ c. (IC)

Then the principal’s problem is the following:

min
w1,w0

[σ + (1− σ)p1]w1 + (1− σ)(1− p1)w0 s.t. IC (P)

It is straightforward to see that under the optimal incentive scheme, the agent receives

89



a positive payment only after a favorable performance signal, therefore w0 = 0. Moreover,

the incentive constraint is binding, therefore we can derive the optimal value of w1. The

following proposition provides the optimal incentive scheme when the task is performed by

a human-machine team.

Proposition 3.1. The optimal incentive scheme that induces the agent to work in every

period is given by w = (ĉ, 0), where ĉ = c
(1−σ)(p1−p0) .

The expression for the optimal value of wage w1 conveys that when agents work in a

more favorable economy (as σ increases) or when the returns from putting a high effort

under a bad shock decreases (as the difference between p1 and p0 gets smaller) it becomes

harder for the principle to detect an agent when he shirks. Therefore, the pay needed to

incentivize him to exert effort becomes larger.

3.4.2 Optimal Incentive Scheme Under No-Automation

Our discussion in this section follows the model and the derivations in Che and Yoo (2001),

however, complementing the earlier work, we provide the complete description of the optimal

incentive schemes here. This extends the analysis provided in the earlier work.

With all-human teams, there are two agents employed and they observe the effort choice

of each other since they work closely. The principal has to provide incentives for both to

motivate them to work. To this end, she can condition the payment of one agent on the

realized performance of the other. More precisely, she can set the payment scheme as a

four dimensional vector w = (w11, w10, w01, w00) where wsisj is the amount paid to agent i

when his signal is si and his teammate’s signal is sj .
4 The structure of wage scheme, w,

plays a crucial role in shaping the inherent features of the team interaction. This in turn

allows the principal to manipulate this interaction in his benefit and to mitigate the overall

4Note that this formulation restricts the wage structure to be symmetric for the agents. This restriction,
however, is innocuous given that the agents are identical.
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agency problem.

Similar to Che and Yoo (2001), we characterize the wage schemes based on how an

agent’s payment is determined depending on the other agent’s performance. An agent can

be rewarded or punished when his teammate performs well. More specifically, following Che

and Yoo (2001), if a wage scheme rewards an agent for a good performance of his teammate,

we refer to this scheme as the “joint performance evaluation” (JPE, in short). JPE satisfies

(w11, w01) >> (w10, w00),

implying that w11 ≥ w10, w01 ≥ w00, and at least one of the constraints has to be strict.

So an agent is paid more when his partner has a favorable evaluation.

On the contrary, if a wage scheme punishes an agent for the good performance of his

teammate, we refer to it as “relative performance evaluation” (RPE, in short). RPE satisfies

(w10, w00) >> (w11, w01).

High level effort is sufficiently valuable for the principal. Thus, she wants to choose

an incentive scheme that induces effort pair (e1, e2) = (1, 1) in every period as a sub-game

perfect equilibrium outcome. Given such an incentive scheme, however, there may exist

multiple sub-game perfect equilibria with different outcomes. In such a circumstance, the

game may proceed with an outcome other than the one the principal prefers. In this respect,

the principal needs to choose an incentive scheme so that the repeated play of (work, work)

is the best outcome, that can be supported by a sub-game perfect equilibrium, in terms of

maximizing the agents’ total payoffs. This restriction allows us to draw a unique prediction

regarding the outcome of the agents’ repeated interaction. Moreover, it also allows us to

address and eliminate the possibility of a collusion between the agents. This restriction

rules out such a possibility at any period in time on the path of play.5 As in Che and

5This differs from the standard formulation of collusion and renegotiation in the literature, see for instance
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Yoo (2001), we call such an equilibrium a “team equilibrium” throughout the rest of the

analysis.

Based on what we presented until now, for a given wage scheme w, and the effort profile

(ei, ej), the expected payment that agent i receives is denoted by πi(ei, ej ,w):

πi(ei, ej ,w) =[σ + (1− σ)peipej ]w11

+(1− σ)[pei(1− pej )w10 + (1− pei)pejw01 + (1− pei)(1− pej )w00]

3.4.3 Static Environment

We first analyze the problem considering a static, one period version of the game. In the

absence of repeated interaction between the agents, the principal cannot fully benefit from

their mutual monitoring capacity. This stems from the fact that the agents cannot use peer

sanctions against each other as the team interaction takes place only once.

First, note that, for a given wage scheme, w, the effort profile (e1, e2) = (1, 1) is a Nash

equilibrium if and only if the payoff from working exceeds the payoff from shirking:

π(1, 1,w)− c ≥ π(0, 1,w) (ICS)

This incentive constraint constitutes a necessary condition for the team equilibrium. In this

respect, the following problem comprises a relaxed version of the principal’s problem in the

static setting.

min
w

π(1, 1,w) s.t. ICS . (PS)

The principal wants to find an optimal incentive scheme that supports both agents working

(i.e., (work, work)) as a team equilibrium outcome. Under the solution to the above problem,

Van Damme (1989). The effects of this difference on the optimal incentive scheme will be discussed later on
in the paper.
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however, (work, work) is only guaranteed to be a Nash equilibrium. Therefore the solution

of PS does not necessarily coincide with the solution of the principal’s problem. Yet, it

turns out that (work, work) is the unique equilibrium under the incentive scheme ws that

solves PS . Therefore, ws is the optimal incentive scheme.

As depicted in the following statement, the optimal incentive scheme displays an ex-

treme form of RPE. More precisely, the agent receives a positive payment only when his

performance measure is more favorable compared to the other agent. In all the other re-

maining contingencies, the amount of payment he receives is zero.

Proposition 3.2. The optimal incentive scheme in the static setting displays an extreme

form of RPE, and is given by ws = (0, ws10, 0, 0), where ws10 = ĉ
(1−p1) .

Proof. See appendix C.1.

Proposition 3.2 states that when agents’ performance measures have a common com-

ponent, a relatively more favorable signal is a stronger indication of an agent’s high level

effort. Therefore, paying the agents only in such a circumstance is the cheapest way to

provide incentives for inducing high level effort. When the agents’ interaction takes place

only once, the optimal incentive scheme requires to pay each agent only when he receives a

relatively better performance measure. This effectively puts the agents into a competition,

in which the amount of payment is set so that each agent is indifferent in his effort choice,

conditional on the other agent exerting high level effort. When we move into the dynamic

setting, we will see how this incentive scheme is vulnerable to collusion.

3.4.4 Dynamic Environment

We next study the dynamic setting, where the agents repeatedly interact with each other

over an infinite time horizon. Repeated interaction introduces the threat of peer sanction

that was not present in the static version of the game. It also implies that the possibility
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of collusion is now a more important concern for the principal. There is an opportunity of

mutual monitoring as the agents observe the actions of each other. This allows them to

sustain outcomes favoring mutual benefit by means of using credible threats. We will see

that, in a dynamic environment, RPE incentive schemes are more vulnerable to collusion

in comparison to the static setting, and JPE may become the optimal way of incentive

provision depending on the parameter range.

A strategy for an agent is a mapping from the set of histories to the set of actions at

every period. A relevant history includes the realized performance measures as well as the

effort choices of the agents in the earlier periods. The principal is interested in choosing an

optimal incentive scheme inducing high level of effort in every period as a team equilibrium

outcome. The following lemma asserts that, in an optimal incentive scheme, an agent

receives a positive payment only if he receives a favorable performance signal. In other

words, the optimal values of w01, and w00 is equal to 0. As a result, the principal’s problem

boils down to finding out the values of w11, and w10.

Lemma 3.1. In a human-human team, an optimal incentive scheme always satisfies w10 =

w00 = 0.

Proof. See appendix C.5.

Paying a positive amount to an agent when he has a poor performance evaluation makes

it more difficult to induce high effort. The lemma presents this intuition. Thanks to this

result, we now know that an optimal incentive scheme has to be either JPE, RPE, or IPE,

depending on how the values of w11, and w10 compare to each other. 6 If w11 > w10, then

w is a JPE; and if w11 < w10, then w is a RPE. In the case when w11 = w10, the incentive

scheme is an IPE.

In order to describe the optimal values of w11 and w10, first, consider the following

6Note that these three categories do not cover the whole space of possible incentive schemes. For instance,
an incentive scheme satisfying w11 > w10, and w01 < w00 is neither JPE nor RPE nor IPE.
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inequality which comprises a necessary condition.

π(1, 1,w)− c ≥ (1− δ)π(0, 1,w) + δmin{π(0, 0,w), π(0, 1,w)} (ICD)

LHS of the inequality is the resulting payoff of each agent from repeated joint work. If this

value is lower than the RHS of the inequality, then the agents would receive a higher utility

from any deviation. As a result, it would be impossible to sustain repeated joint work as

a sub-game perfect equilibrium outcome. This constraint does not constitute a sufficient

condition for a sub-game perfect equilibrium since the implied continuation play following a

deviation does not necessarily have to be self-enforcing. Therefore it cannot be a sufficient

condition for a team equilibrium either. In this regard, the following problem, which takes

only this constraint into account, is just a relaxed version of the principal’s problem.

min
w11,w10

π(1, 1,w) s.t. ICD. (PD)

Solving PD is an important step towards the characterization of the optimal incentive scheme

in an all-human team. The following lemma demonstrates the solution of the problem PD.

Lemma 3.2. Define a level of discount factor δ̂(σ) = σ
(1−σ)p1p0

. Then

(i) If δ > δ̂(σ), then a JPE scheme wj = (wj11, 0, 0, 0) with wj11 = ĉ
p1+δp0

solves PD.

(ii) If δ ≤ δ̂(σ), then the solution to the static problem (ws) also solves the problem PD

optimally. In this case, the solution is an RPE scheme.

Proof. See appendix C.2.

Lemma 3.2 states that the solution of the problem PD displays either an extreme form

of JPE or an extreme form of RPE. For this solution to coincide with the optimal solution

of the principal’s problem, it must induce both agents to choose high effort in every period,

as a team equilibrium outcome.

The JPE incentive scheme, wj possesses all the required properties. More precisely,
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when the pay scheme is wj , the repeated joint work is a sub-game perfect equilibrium out-

come. Furthermore, wj does not create any collusive outcome. To see this, first note that,

when the pay scheme is wj , the interaction between the agents is equivalent to a Prisoner’s

Dilemma game in which (shirk, shirk) is the unique stage game Nash equilibrium. Agents’

payoff increases with the performance of their teammates, i.e, π(0, 1,wj) > π(0, 0,wj), and

ICD boils down to:

π(1, 1,wj)− c ≥ δπ(0, 1,wj) + (1− δ)π(0, 0,wj).

Therefore, initiating (shirk, shirk)∞ can deter unilateral deviations from the desired out-

come, (work, work)∞. Such a punishment is self-enforcing, since repetition of (shirk, shirk)

is self-enforcing. As a result, (work, work)∞ can be sustained as a sub-game perfect equi-

librium outcome. Moreover, the effort pair (work, work) maximizes the agents’ total payoff.

Precisely,

2π(1, 1,wj)− 2c︸ ︷︷ ︸
Total payoff from (work, work)

≥ π(1, 0,wj)− c+ π(0, 1,wj)︸ ︷︷ ︸
Total payoff from (work, shirk)

,

and

2π(1, 1,wj)− 2c︸ ︷︷ ︸
Total payoff from (work, work)

≥ 2π(0, 0,wj)︸ ︷︷ ︸
Total payoff from (work, work)

.

Thus, wj induces (work, work)∞ as a team equilibrium outcome, and hence is the optimal

incentive scheme for principal, whenever it is a solution for the problem PD. Under this

incentive scheme, what happens as a matter of course is the following. The principal benefits

from the agents’ mutual monitoring capacity by asking them to impose peer sanctions to

each other in case they observe any shirking behavior. The agents have enough incentive

to do this since they do not want their teammates to shirk as it hurts them as well.

Such a scheme becomes optimal for sufficiently large values of the discount factor. This

is rather intuitive. When the agents are more patient, the repeated play of (shirk, shirk)

becomes a more severe punishment. The agents are more willing to exert high level effort in
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order to avoid the punishments imposed by their teammates, and hence the amount of the

payment, wj11, that is needed to convince them to work is lower. As a result, it is natural

to have a JPE scheme as an optimal pay scheme when the agents are sufficiently patient.

The fact, that a JPE incentive scheme may be optimal, comprises the main divergence

between the static and the dynamic settings. When agents repeatedly interact with each

other over an infinite time horizon, the principal can convince them to monitor and discipline

each other by using peer sanctions through the help of JPE.

In contrast to the JPE scheme wj , the RPE scheme ws does not possess all the desired

properties. In particular, it is susceptible to collusion hence cannot be the optimal pay

scheme of the dynamic setting. It supports (work, work)∞ as a sub-game perfect equilib-

rium since (work, work) is the unique stage game Nash equilibrium. However, the agents

can sustain better payoff outcomes by coordinating over the strategy profiles that include

unilateral or bilateral deviations from (work, work) on the path of play. For instance, con-

sider a strategy profile with an outcome in which the agents alternate between (work, shirk),

and (shirk, work). The corresponding expected payoffs of the agents from this play is equal

to:

1

1 + δ
(π(1, 0,ws)− c) +

δ

1 + δ
π(0, 1,ws),

and

δ

1 + δ
(π(1, 0,ws)− c) +

1

1 + δ
π(0, 1,ws)

for the first and the second agents respectively. Note that each of these are larger than

the payoff π(1, 1,ws)− c. Moreover, this outcome can be supported in a sub-game perfect

equilibrium in which the deviations trigger the repeated play of (work, work), which is self-

enforcing. Conditional on this punishment, even the agent shirking in the current period,

who has a stronger incentive to deviate, does not want to deviate. More precisely:

δ

1 + δ
(π(1, 0,ws)− c) +

1

1 + δ
π(0, 1,ws) ≥ π(1, 1,ws)− c.
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Consequently, under ws, collusion is a real concern, hence it cannot be an optimal incentive

scheme. The principal has to account for such possibilities of collusion and preclude them

all.

The solution to the problem PD characterizes the optimal incentive scheme for the case

in which the principal is able to select the equilibrium in her interest. Yet, she can not

observe the agents’ effort choices, hence she has to incentivize them properly in order to

make sure that they do not collude. This concern becomes particularly relevant when ws

is the solution, and overall PD provides only a partial characterization.

Then, what is the optimal incentive scheme when ws is the solution of the problem PD?

In order to answer this question, we focus on the the principal’s problem by restricting her

choice into the set of incentive schemes satisfying w11 ≤ w10. We already know her optimal

choice under the restriction w11 ≥ w10.7 By this approach, we reach a characterization of

the optimal incentive scheme in two different subsets, the union of which covers the entire

space of incentive schemes. After completing this step, finding the global optimal is just a

matter of a simple comparison.

First, note that the constraint ICD is still a necessary condition, and is equivalent to

ICS when w11 ≤ w10. On top of this constraint, the principal has to account for additional

one(s) in grounds of preventing collusion. This is a difficult task as there are plenty of

potential outcomes that the agents can collude upon. We, however, focus on a specific

outcome, “alternated unilateral shirking”, in which the agents alternate between (shirk,

work) and (work, shirk) over time. We define some necessary conditions to prevent this

outcome from being a possible collusion threat. This constraint then will turn out to be

also sufficient in preventing all the collusive outcomes.

In alternated unilateral shirking, each agent provides a favor to his teammate on ex-

change of receiving another in the next period. Precisely, shirking in a period while his

7Among the set of incentive schemes satisfying, w11 ≥ w10, the optimal one is either wj , or wI =
(ĉ, ĉ, 0, 0). The latter is the optimal IPE, in which the agents’ compensations are independent from each
other, hence it is trivially collusion-proof.
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teammate is working hurts the agent and favors his teammate. The principal has to choose

a payment scheme such that either this outcome cannot be supported as a sub-game per-

fect equilibrium outcome, or the corresponding total utility of the agents is not any better

than the one resulting from repeated joint work. The latter translates into the following

condition:

π(1, 0,w)− c+ π(0, 1,w) ≤ 2(π(1, 1,w)− c). (IC′′R)

On the other hand, to prevent this from being a sub-game perfect equilibrium outcome, the

pay scheme has to be arranged in a way that at least one of the agents prefers to deviate

from the corresponding path of play. We assume that the deviations trigger a continuation

play of (work, work)∞, which is self-enforcing as inducing it in a self-enforcing manner is

the principal’s main objective.8 Then the conditions we are looking for translate into the

following constraints for the shirking and the working agents respectively:

1

1 + δ
π(0, 1,w) +

δ

1 + δ
(π(1, 0,w)− c) < π(1, 1,w)− c. (ICR)

1

1 + δ
(π(1, 0,w)− c) +

δ

1 + δ
π(0, 1,w) < (1− δ)π(0, 0,w) + δ(π(1, 1,w)− c) (IC′R)

Overall, the incentive scheme has to satisfy at least one of the the constraints ICR, IC′R,

and IC′′R. To this respect, we can define a comprehensive constraint that encompasses all

of these.

Definition 3.1. An incentive scheme satisfies is said to satisfy ÎCR if and only if it satisfies

at least one of ICR, IC′R, and IC′′R.

Then we can define a relaxed version of the principal’s problem, when her choice is

8Note that, we want alternated unilateral shirk to not be a sub-game perfect equilibrium outcome. But
we consider just a specific strategy profile in which the deviations from this outcome lead to repeated play
of (work,work). Precluding this strategy profile from being an SPE, does not necessarily be sufficient for
ruling out all other possible SPE that in which the corresponding outcome is alternated unilateral shirking.
Nevertheless, it turns out to be sufficient.
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restricted to satisfy w11 ≤ w10, as follows:

min
w11,w10

π(1, 1,w) s.t. ICS , ÎCR, w11 ≤ w10. (PR)

This is just a relaxed version of the principal’s problem, as it only takes a specific form

of collusion into account. The next result provides a characterization of the solution to

this problem. Moreover, it asserts that the constraints that are taken into account in the

problem PR are sufficient to preclude all the collusive outcomes when the incentive scheme

satisfies w11 ≤ w10.

Lemma 3.3. The solution to the problem PR must be one of the following.

• wr = (0, wr10, 0, 0), where wr10 = ĉ
1−(1+δ)p1

.9

• wI = (ĉ, ĉ, 0, 0).

Moreover, when the incentive scheme is restricted to satisfy w11 ≤ w10, the solution of the

problem PR coincides with the solution of the principal’s problem.10

Proof. See appendix C.3.

Remarkably, solving the problem PR gives us the optimal incentive scheme among the

ones satisfying w11 ≤ w10. In other words, the resulting solution of PR is always collusion-

proof. PR accounts for a specific form of collusion, prevention of which turns out to be

sufficient for precluding all the others. Collusion-proofness is an obvious property of wI

as the agents are getting paid depending on their own performance measures only. In wr,

9Note that, when (1 + δ)p1 ≥ 1, wr10 is not well defined. In such a circumstance, wI is the solution of the
problem PR.

10When wr solves the problem PR, the constraint ICR is binding. However, notice that ICR is based
on a strict inequality. As a result, the actual value of wr10 is infinitesimally larger than ĉ

1−(1+δ)p1
. To this

regard, one can either discretize the choice set and let principal to choose the minimum value larger than
ĉ

1−(1+δ)p1
for wr10. In case we allow for arbitrarily fine choices, the principal’s problem does not always have

a solution, in the sense that there does not exist an incentive scheme maximizing her objective. However for
a given ε > 0, we can find an incentive scheme in which the principal can get a payoff in the ε-neighborhood
of his value.
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which is the other possible solution of PR, we have an RPE scheme. The payment the

agents receive after receiving a relatively better performance signal, wr10, is set sufficiently

large so that the agents do not want to collude.The optimal RPE of the static setting, ws,

on the other hand, did not have this property as the agent could always collude by following

alternated unilateral shirking. In this regard, the difference between the payments wr10 and

ws10, can be thought as the cost of precluding collusion in RPE schemes for the principal.

Under wr, the corresponding team equilibrium features repetition of (work, work) on

and off the equilibrium path. This comprises a sub-game perfect equilibrium, because (work,

work) is an equilibrium of the stage game. The agents always prefer to exert high effort

and compete with each other in order to receive a better performance signal.

Based on these discussions, we now know that the optimal incentive scheme has to be

either wj , or wr, or wI . The principal either puts agents into a competition via a collusion-

proof RPE pay scheme, and require a relatively better performance signal for a positive

payment. Or, she may choose a JPE scheme, and take advantage of the mutual monitoring

capacity between the agents by asking them to impose peer sanctions in case they observe

a shirking behavior. Finally, she can also choose to incentivize the agents separately by

selecting the optimal IPE scheme, which would exterminate all the possible within-team

interaction. The following theorem illustrates how the parameter space is partitioned into

three sub-spaces depending on the corresponding optimal incentive schemes.

Proposition 3.3. There are two critical values of the discount factor δj = σ(1−p1)
(σ+(1−σ)p1)p0

,

and δr = σ(1−p1)
(σ+(1−σ)p1)p1

, such that for a human-human production team the optimal incentive

scheme is given by:

w =


wj if δ > δj

wI if δ ∈ (δr, δj ]

wr if δ ≤ δr.

As all the incentive schemes induces the desired path of play as a team equilibrium out-
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come, the statement of the above proposition immediately follows from a simple comparison

between the expected costs of the incentive schemes wj , wI , and wr. By comparing this

result with lemma 3.2, one can see how the agents’ ability of collusion alters the principal’s

optimal decision. When the agents cannot collude, the principal can select the equilibrium

in her best interest. As a result, the optimal incentive scheme is either wj , or ws as it

is depicted in Lemma 3.2. When the agents can collude, however, the cost of motivating

agents with an RPE scheme becomes larger, and ws cannot be optimal anymore. This

expands the region in which the wj is optimal as it can also be seen from the fact that

δj < δ̂. The optimal collusion-proof RPE scheme, wj , is sufficiently costly for the principal,

so that for some set of parameters using the IPE scheme wI becomes optimal.

As δ gets large, it becomes easier to motivate agents with a JPE scheme. This stems

from the reason that the peer sanctions that the agents can impose each other become more

deterrent so that the amount of payment that is needed to motivate agents to work is smaller.

For smaller values of δ, on the other hand, we are getting closer to the static setting as the

value of future diminishes. The possibility of collusion becomes a less important concern,

and the gap between the optimal RPE schemes of the static and the dynamic settings is

reduced. As a result, wr is optimal.

3.4.5 Collusion and Renegotiation-proofness

Agents’ ability to collude leads the principal to look for collusion-proof incentive schemes

for all-human teams. In defining collusion-proofness, we follow Che and Yoo (2001), and

require incentive schemes to not to give rise to a sub-game perfect equilibrium outcome

that brings a higher total payoff to agents in comparison to the repeated play of joint

work. In other words, throughout the interaction that they involve, the agents do not

want to renegotiate and coordinate over some other equilibrium outcome. This is a bit

different from the conventional definition of collusion-proofness (or renegotiation-proofness)

that exists in the literature, for instance Farrell (1983), and Van Damme (1989). Our
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definition restricts the strategy profile only on the equilibrium path, while the conventional

definition puts restrictions both on and off the path of play. Despite this difference, under

the optimal incentive schemes we propose, there exist other outcome equivalent equilibria

satisfying the conventional renegotiation-proofness criteria.

We know that, the optimal scheme in an all-human team has to be one of wj , wr, or wI .

For wr, repetition of the unique stage Nash equilibrium, (work,work), comprises the unique

sub-game perfect equilibrium. This strategy profile already satisfies the renegotiation-

proofness criteria. When the incentive scheme is wI , the agents’ compensations are in-

dependent from the effort choice of each other. In this respect, collusion is not a relevant

concern, and hence the renegotiation-proofness criteria is automatically satisfied.

When it comes to the JPE scheme wj , the suggested strategy profile is not renegotiation-

proof as it requires to punish all the deviations with a repeated play of (shirk, shirk). The

team interaction is equivalent to a prisoner’s dilemma game in which exerting the high level

effort is the cooperative action. Thus, action pair (shirk, shirk) is Pareto dominated, and

having it, even off the path of play, violates the conventional renegotiation-proofness criteria

that has been proposed in the literature. Nevertheless, by following the logic suggested by

Van Damme (1989), one can see that the outcome (work,work)∞ can also be supported by

means of another equilibrium satisfying this criteria. Precisely, consider the strategy profile

in which the agents start with exerting high level effort and continue to do so as long as

there is no deviation; if the agent i deviates at time t, then starting from period t+ 1, the

other agent shirks until player i works. As soon as the agent i works, the play reverts back

and the agents continue to exert high level effort afterwards. Given this strategy profile,

conditional on agent i deviating at time t, he prefers to exert high effort level at time t+ 1

so that the game reverts back to repeated joint work at t + 2. This stems from the fact

that:

(1− δ)(π(1, 0,wj)− c) + δπ(1, 1,wj − c) ≥ π(0, 0,wj).
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Also, the agents do not want to deviate from exerting high level effort, since:

π(1, 1,wj − c) ≥ (1− δ)π(0, 1,wj) + (1− δ)δ(π(1, 0,wj)− c) + δ2(π(1, 1,wj)− c).

Moreover, none of the continuation plays arising on and off the equilibrium path are Pareto

dominated. Therefore, this strategy profile comprises a renegotiation-proof sub-game per-

fect equilibrium with the desired outcome.

3.4.6 The Optimal Regime

Finally, we can talk about the principal’s decision on whether or not to initiate the par-

tial replacement of the labor with automated machinery. This decision is an immediate

implication of the previous findings. One just needs to compare the expected costs of the

corresponding optimal production plans in all-human and human-machine teams to reach

the conclusion. Obviously the principal never prefers to keep an all-human team in produc-

tion when IPE is optimal. This stems from the fact that when the principal compensates the

agents based on their individual performance measures, there is no team interaction, and

she cannot benefit from their mutual monitoring capacity. In this case, using automated

machinery and partial elimination of agency costs is the best option for her.

Using an all-human team becomes valuable if the principal can exploit the interaction

between the employees with an incentive scheme that falls within the category of JPE and

RPE. With a JPE scheme the principal directly benefits from the agents’ mutual monitoring

capacity as she pays them only when they both receive a favorable performance measure.

This leads them to monitor each other and impose peer sanctions to deter shirking. Or she

can use RPE, and put the agents into a race by paying them only when their performance

measures are relatively better compared to each other. The next proposition demonstrates

how the principal’s optimal team choice varies across the parameter space.

Proposition 3.4. There are two critical values
¯
δ < δ̄ such that, the principal initiates a
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partial substitution of labor force with automated machinery if and only if δ ∈ [
¯
δ, δ̄]. When

δ <
¯
δ, and δ > δ̄ she prefers human-human teams for production and uses RPE and JPE

incentive schemes for compensation, respectively.

Proof. See appendix C.4.

Proposition 3.4 points out that automation is optimal only over a portion of the pa-

rameter space. The all-human regime can be preferred over the automation regime, and it

is likely depending on the parameter values that the principal utilizes both the JPE and

the RPE schemes. Human-machine teams become particularly valuable for an intermediate

range of discount factors. In this range, the principal has a limited benefit from employing

a human-human team. This is mainly due to two reasons. The advantage of using the opti-

mal JPE scheme is higher for large values of the discount factor as it has a lower expected

cost. On the other hand, using a collusion-proof RPE scheme is more advantageous for

low values of the discount factor, since then collusion is a weaker concern, and the cost of

precluding it is lower.

Figure 3.1 demonstrates how the optimal choice of the regimes and incentive schemes

change as σ and δ changes. As the discount rate increases, for low σ, JPE becomes more

preferable over automation. For low discount rates, as σ increases, the principal’s ability to

detect shirking agents narrows down. In this case, having a relatively better performance

measure than the other member of the team is a very strong indication of high level effort

for an agent. So in this range, we find that setting a collusion-free RPE incentive with

all-human teams is preferred over automation.

The critical values defining the region of automation,
¯
δ and δ̄, also depend on the other

parameter values. For instance, when α gets smaller, the cost of operating machine becomes

smaller, and as a result, the region featuring automation expands.
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Figure 3.1: Optimal Regime and Incentive Scheme vs. σ and δ. The figure is produced
under p1 = 0.7, p0 = 0.3, α = 0.9.

3.4.7 Human teams survive under costless automation

Finally, we discuss a special case in which the automation is costless, i.e., α = 0. As

technology progresses, we expect that automation will become more effective because of

its decreasing cost. It is reasonable to question whether the automation will be the only

preferred regime as α approaches to zero. We find that this is not the case, as illustrated

in Figure 3.2. This is a striking result as it suggests that even if automation was costless,

principal may still prefer human labor over adopting it under some parameter regions.

Figure 3.2 shows that when α is equal to 0, the value of δ̄ is equal to 1. As a result, the

region featuring a human-human team together with a JPE incentive scheme disappears.

This result is not specific to the parameter values used in Figure 3.2. A human-human team

together with the JPE incentive scheme wj can never be better than a human-machine team

when α = 0. In other words, when α = 0, the expected cost of wj is larger than the expected

cost of inducing agent to work in a human-machine team, i.e., the inequality

2(σ + (1− σ)p2
1)

ĉ

p1 + δp0
> (σ + (1− σ)p1)ĉ
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Figure 3.2: Costless Automation (α = 0) and Optimal Regime. The figure is produced
under p1 = 0.6, p0 = 0.4, α = 0.

holds, regardless of the values of the parameters p1, p0, δ, and σ. In this respect, the idea

that the JPE schemes are particularly valuable in exploiting agents’ mutual monitoring

abilities, which is one of the main conclusions of Che and Yoo (2001), is not likely to

survive the technological progress towards reaching costless automation.

The situation is different for RPE. As it is illustrated in the figure, there is always a

region featuring human-human team together with an RPE scheme even when the cost of

automated machinery is 0. For this to happen, the value of σ has to be sufficiently large.

In such a circumstance, the probability of aggregate shock, and hence the probability of

receiving a favorable performance signal is sufficiently large. A good performance signal in

itself is not a very strong indication of high level effort. As a result, the principal has a low

ability to detect shirking agents. This increases the expected cost of human-machine teams

as the principal has to pay the agent every time he receives a good performance signal in

order to convince him to work. This means that the agent is getting paid with an excessive

probability. The principal can instead hire a human-only team, and receive two signals,

and strengthen her ability to detect shirking agents. This allows her to better identify the

source of a favorable performance signal. She can adapt a collusion-proof RPE scheme, and
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pay the agents only after they have a better performance signal than their teammates. This

allows her to avoid the excessive probability at which the agents receive a positive payment.

3.5 Extensions

One of the most crucial components of our discussions so far is the fact that the partial

substitution of labor with automated machinery, besides altering the structure of produc-

tion, changes the extent of available information for principal. Machines, in contrast to

their human counterparts, does not have a performance measure, and partial substitution

of labor force eliminates a signal that carries information about the aggregate stance of the

economy as well.

In this section, we study a model in which the production, in every period, results

in a stochastic outcome with a distribution purely depending on the effort choices. The

realization of this stochastic outcome comprises the only source of information available

to principal. In this regard, the automation does not have a direct effect on available

information.

We show that our main result follows here as well, i.e., a human-human team may

be preferable to a human-machine team even though machine has a lower cost compared

to human effort. As it was in the main model, within-team interaction and the principal’s

ability to exploit this interaction in her best interest via the choice of compensation scheme,

comprises the main driving force behind this result. In this regard, this section can be

considered as a robustness check with the main conclusion that our key insight is robust to

model selection.
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3.5.1 Heterogeneous Effort Decision

The employees determine their effort levels from a continuum, i.e., ei ∈ [0, 1], ∀i ∈ {0, 1}.

The cost of effort is convex, and is assumed to be a quadratic function of the effort level,

i.e., ci(e) = c
2e

2, ∀i ∈ {0, 1}. If the principal decides to adapt automation, she also decides

at which capacity to operate the machine. This is modeled as a choice of effort from a

continuum, i.e., em ∈ [0, 1], with the cost function cm(em) = αc
2 e

2
m, where α ∈ [0, 1]. The

cost of operating machinery is assumed by the principal.

We assume that the effort choices of the agents remain unobservable to principal. A

stochastic outcome is realized in each period, and its distribution is determined by the

joint effort of the employees, or the employee and the machine depending on the produc-

tion regime. The principal can evaluate the agents’ performance based on this stochastic

outcome. Formally, this production outcome, in each period, results in a “success” or a “fail-

ure”. In an all-human team, the probability of achieving success is equal to f(e1, e2) = pe1e2

for a given effort profile (e1, e2). Similarly, in a human-machine system, the probability of

success is given by f(e, em) = peem.

The functional form that we assume for the probability of success has some important

implications that are worth mentioning. First, there is a complementarity between the

effort choices of each team member. More precisely, the marginal return from an agent’s

effort increases in the effort of his teammate. Second, effort of both agents are crucial in

production. In other words, the probability of success is equal to 0 in case one of the agents

exerts 0 effort, regardless of the other agent’s choice.

The values of success and the failure for the principal are normalized to 1 and 0,

respectively, and she chooses the production regime and the compensation schemes in order

to maximize her expected profit. In contrast to our main model, here in this section, the

principal also decides what effort level to induce the agents to choose, rather than directly

inducing the maximal effort level. Before delving into the agency problem, we focus on the
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first best scheme which provides a useful benchmark for the general analysis.

3.5.2 First Best Benchmark

Assume that there is a social planner who can set the level of effort for each agent. This

social planner is interested in efficiency and would like to maximize total surplus. Then,

the corresponding problem is given by:

max
e1,e2

pe1e2 −
c

2
e2

1 −
c

2
e2

2.

Due to increasing marginal returns and symmetric cost structure, the solution to this prob-

lem features either maximal or minimal effort for both agents. The ratio between the

productivity and cost parameters, κ ≡ p
c , is crucial for the solution. A higher κ indicates a

higher effective productivity, hence requires both agents to work at the maximal capacity.

Similarly, a lower κ indicates a lower effective productivity and hence requires both agents

to not work at all. The critical value of κ at which this switch takes place is equal to 1.

Therefore, the solution to the first best problem, (e∗1, e
∗
2), is given by the following:

(e∗1, e
∗
2) =


(1, 1) if κ > 1

(0, 0) if κ ≤ 1.

In the rest of the analysis we assume that κ > 1 so that we have a non-trivial problem.

When it comes to the social planner’s problem for a human-machine team, the situation

is a bit different due to the asymmetric cost structure. The problem is the following:

max
e,em

peem −
c

2
e2 − αc

2
e2
m.

From the first order conditions, one can easily see that as long as the production goes on,
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the social planner always set em = 1, and e = min{κ, 1}.11 Comparing the corresponding

profit with the one from shutting down the production, 0, gives us the first best solution:

(e∗, e∗m) =


(0, 0) if κ <

√
α

(κ, 1) if κ ∈ [
√
α, 1]

(1, 1) if κ > 1.

3.5.3 Human-Machine Team

Now, we focus on the agency problem starting with human-machine teams. The principal

specifies an amount w to pay the agent in case of a success, and also chooses at what level

to operate the machine, i.e, em. Given the values of w and em, the agent decides his effort

level e. Proposition 3.5 characterizes the optimal production plan in this regime.

Proposition 3.5. In a human-machine team, the optimal production plan, i.e., the wage,

the capacity at which the machine operates, and the induced effort level of the agent, is

characterized by:

(e, em) =


(0, 0) if κ <

√
2α

(κ2 , 1) if κ ∈ [
√

2α, 2]

(1, 1) if κ > 2

w =


1
2 if κ ≤ 2

1
κ if κ > 2

Proof. See appendix C.6.

This statement indicates that, when the effective productivity, κ, falls below a certain

threshold, i.e.,
√

2α, which is larger than the threshold of the first best benchmark due to

the agency problem, the principal shuts down the production. Otherwise, she has a positive

11The reasons are twofold. First, em cannot be strictly lower then e as it is cheaper. Second, we cannot
have an interior solution for both em, and e. To see the latter note that if some e, em ∈ (0, 1) brings a
positive social surplus, then multiplying them with 1 + ε increases the surplus.
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profit and production continues. Likewise the first best benchmark, it is always optimal

to operate the machine at its maximal capacity conditional on positive production. The

induced effort from the agent, however, is not always at its maximal level due to the agency

problem as well as the asymmetric cost structure. Since the principal does not observe the

effort choice of the employee, she has to leave a positive rent to motivate him to work. This

rent increases with the induced effort level. When κ is large, the effort is productive enough

to compensate this rent, hence the principal induces the maximal effort. As κ decreases, the

effort becomes less productive, and the principal is less willing to pay rent, hence she induces

a lower effort level. Finally, as the value of κ becomes sufficiently small, the productivity

is not large enough to compensate the cost of production and the agency anymore, and the

principal shuts down the production.

3.5.4 Human-Human Team

Let the production be governed by an all-human team. The principal sets a wage w to pay

each of the agents if success is achieved as the output. Given the value of w, the strategy

profile that the agents follow comprises a team equilibrium, where the team equilibrium is

defined as it was in the benchmark model. To this respect, the principal, by her choice

of w, decides what effort levels to induce agents to exert. The next result establishes an

important step towards the goal of characterizing the optimal payment scheme and the

resulting team equilibrium.

Lemma 3.4. For a given value of the wage w, a team equilibrium outcome has to be in one

of the following forms:

i) Agents choose (e1, e2) = (1, 1) in all periods.

ii) Agents choose (e1, e2) = (0, 0) in all periods.

Proof. See appendix C.7.
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This statement indicates that the principal either shuts down the production or spec-

ifies a wage level that induces both agents to choose their maximal effort level as a team

equilibrium outcome. It is not possible to have a team equilibrium outcome in which the

agents choose an interior effort level. The intuition behind this based on the fact that, if

the agents were to choose an interior effort level at some period, they could do better by

jointly increasing their efforts at the same rate. One shall refer to appendix for more formal

discussion.

In a team equilibrium inducing the outcome (1, 1)∞, deviations trigger a continuation

play in which the agents choose their minimal efforts forever. Such a punishment is self-

enforcing as the effort profile (e1, e2) = (0, 0) is always a stage game Nash equilibrium,

hence can be a part of the team equilibrium.12 This is the most extreme punishment that

the agents can impose to each other as it brings the minimum possible continuation utility

to both.

Let ei(w, ej) be the best response of agent i, conditional on wage w and the effort choice

of his teammate ej , which follows from the following problem:

max
ei

peiejw −
c

2
e2
i .

The first order condition lead to ei(w, ej) = min{1, κwej}. Due to the symmetry we can

further suppress the notation, and use e(w, e) instead. In an optimal production plan that

keeps the production open, the following condition must be satisfied:

wp− c

2
≥ (1− δ)[wpe(w, 1)− c

2
(e(w, 1))2].

This incentive constraint ensures that the agents do not want to deviate from exerting

maximal effort. The left hand side of the inequality is the expected utility of an agent on the

12Such a punishment violates the renegotiation-proofness criteria proposed in the literature. In contrast to
our benchmark model, here it is not possible to find another equilibrium inducing the same outcome under
the same pay scheme without violating this criteria. This stems from the fact that it is impossible to deter
deviations without hurting Pareto efficiency in this framework with the functional form we assume.
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equilibrium path, whereas the right hind side is his expected payoff resulting from deviation.

In the current period, the agent deviates to his best response, and receives a positive payoff.

In the remaining periods, he gets punished and receives a 0 payoff. If the best response

effort level is equal to 1, then this incentive constraint is automatically satisfied. Therefore,

for this condition to be non-redundant, we must have e(w, 1) = min{1, κw} = κw, and the

above incentive constraint boils down to:

wp− c

2
≥ (1− δ)w

2p2

2c
.

Then, the principal’s problem can be written as follows:

max
w

(1− 2w)p s.t. wp− c

2
≥ (1− δ)w

2p2

2c

The objective function is equal to (1−2w)p, because both agents will get paid w if a success

takes place. From this problem, it is evident that the principal chooses the minimum wage

level satisfying the incentive constraint. If this wage level brings her a positive profit, she

keeps the production running and induces the maximal effort from the agents; otherwise

she closes the production. The next proposition formalizes this intuition.

Proposition 3.6. The optimal production plan, i.e., the optimal wage and the induced

effort levels of agents, in a human-human team is given by:

(e1, e2) =


(0, 0) if κ ≤ 2

1+
√
δ

(1, 1) if κ > 2
1+
√
δ

w =


0 if κ ≤ 2

1+
√
δ

1
κ(1+

√
δ)

if κ > 2
1+
√
δ

Proof. See appendix C.8.

From Lemma 3.4, we already knew that the principal either shuts down the production

or induces both agents to choose their maximal effort levels as a team equilibrium outcome.

Proposition 3.6 characterizes the critical value of the effective productivity below which
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shutting down the production is the optimal choice for principal. The value of this threshold

decreases with the value of δ. Intuitively this stems from the fact that as the agents become

more patient, the punishment that they impose each other becomes more deterrent. As

a result, principal can convince the agents to exert maximal effort with a lower payment,

hence she is willing to keep the production open even for lower levels of κ.

Now, we know the optimal production plans for both human-human and human-

machine teams. Thus, we can figure out the corresponding profit levels, which we denote

by πhh, and πhm respectively.

πhm =


0 if κ <

√
2α

pκ
4 −

αc
2 if κ ∈ [

√
2α, 2]

p− (2+α)c
2 if κ > 2

πhh =


0 if κ ≤ 2

1+
√
δ

p− 2c
(1+
√
δ)

if κ > 2
1+
√
δ

It is evident from these expressions that an all-human team may generate a higher profit

for the principal depending on the parameter values. To illustrate this, suppose that the

effective productivity is sufficiently large, i.e., κ > 2, so that the principal optimally induces

the maximal effort level from the agents regardless of whether or not she initiates partial

automation. In this case, if the discount factor is greater than (2−α)2

(2+α)2 , the principal prefers

a human-human team over a human-machine team. The agents are sufficiently patient,

as a result, the punishment that the agents impose on each other in case of a deviation,

exerting minimal effort afterwards, is more deterrent. Consequently, the principal can take

advantage of the mutual monitoring capacity between the agents at a larger scale. Another

important thing to point out is that as the cost parameter of operating machinery increases,

the cutoff value of δ at which the above switch takes place becomes smaller. Machinery

is more costly, as a result, the principal is more willing to have an all-human team in

production.
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3.6 Conclusions

In this paper, we ask a simple question: “Is it possible that partial subtitution of employees

with automation results in inferior outcomes for principals?” We find that the answer is

yes. Specifically, we extend our investigation to question how when some of the employees

in an industrial or service environment are replaced by machines, the interaction between

the members of a system changes. We show that replacing human labor with machines can,

in some cases, be suboptimal because it can make the remaining agents more expensive.

More specifically, we demonstrate in this paper that automation has both desirable and

undesirable properties. Most examples of automation introduces efficiencies in cost while

reducing the uncertainty in the quality of output. Moreover, as we argue in the extensions

to our model, automation can complement human output. Many examples where human

employees are partially replaced by their machine counterparts exist in consumer facing

environments. For instance, call center employees are replaced by automated answering

systems, cash registerers are replaced by self-check out counters, ticket salespersons are

replaced by kiosks, bank tellers are replaced by ATMs (Autor et al., 2002). Partial substi-

tution of labor with machines might result in lower productivity of the remaining workers

for behavioral reasons such as the fear of loss of employment in the future, boredom, losing

interest in jobs due to lower social interactions, or the inability to learn from peers. All of

these constitute as the undesirable effects of adopting automation at work.

In this study, we took a different approach to studying the negative impact of automa-

tion and demonstrated a reason for lower productivity under automation. Our explanation

is simple yet powerful: in the absence of human team members, the principle’s capacity

to monitor agents’ effort diminishes. This is because all-human teams have the ability to

monitor each other’s effort choices more closely compared to the principal can monitor their

work. This close monitoring results in them imposing peer sanctions on each other when a

party deviates from the optimal path of play.

116



In specific, we show that adopting a regime that includes partial automation does two

things. The type of incentive scheme chosen by the principle (rewarding performance of

agents relative to each other or jointly) depends on the automation regime adopted. We

show that human teams can be incentivized based on rewarding cooperation or competi-

tion in output, conditional on the values of the discounting and common environmental

shock. Importantly, considering various payment schemes, there is a parameter region un-

der which automation is better, but also there are regions where all-human machines are

more preferable. When we contrast our results to the earlier literature, we are not only

looking at the outcome of automation (Acemoglu and Restrepo, 2017), but we consider the

strategic decision of adopting automation. Our study, to our knowledge is the first to argue

that while automation is expected to substitute labor, this is not unconditionally true the

despite the benefits from reduced costs lower uncertainty in output. It is also the first to

study automation in the context of teams.

When the discount rates and the degree of dependency in exogenous shocks to pro-

ductivity between the workers are low, principals prefer to introduce joint performance

evaluation (JPE) or automated systems over a relative performance evaluation (RPE). At

high discount rates and low likelihood of a good common shock (low σ), the peer sanction

by a team member is an effective disciplining device to punish the shirking member, and the

manager can induce both workers to work through JPE. In this case, as members will only

receive a wage when they both work, they can effectively monitor each other. If the dis-

count rates decreased, this makes the punishment less costly, and reduces the effectiveness

of JPE. Similarly, if the common shock is higher, the probability that an agent will receive

a favorable outcome when he shirks is higher. So under automation, the principal’s ability

to detect shirking is lower. She prefers RPE over automation when the common shock is

sufficiently high, because an RPE scheme without collusion motivates agents to choose to

work.

An important second insight coming from our research is that automation is likely to
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change the degree to which existing incentive schemes are used. The research by Che and

Yoo (2001) suggests that, in the δ - σ space, JPE is more often preferred than RPE.Indeed,

many firms hire individuals with contracts the employee is rewarded based on the perfor-

mance of others in the same team or department. In a world where automation is an option

for managers, JPE is preferred less often than RPE. In fact, if automation becomes sig-

nificantly cheaper than human work, JPE is the incentive that will cease to be effective.

While automation replaces some human labor, within the remaining all-human teams, RPE

is more common than JPE. Broadly, this implies that as technology evolves and the cost

of automation becomes cheaper, the remaining human systems are more likely to be paid

based on a relative evaluation scheme. While we do not expect human teams to be obsolete

in the near term, we expect that the payment schemes of employees in automated environ-

ments will be more competitive rather than collaborative. These can both be desirable and

undesirable for the future of human labor.

As automated systems are gradually replacing human labor in manufacturing and ser-

vice environments, managers are naturally concerned about the morale of the remaining

employees. The World Bank estimates that about %60 of jobs will be automated in the

near future (Frey and Osborne, 2017).

So what could the principals do to prepare for automation? First automation is likely

to bring significant cost savings compared to human operators. But we show that principals

should not expect to adopt automation under all conditions. In fact, automation can be

more expensive compared to human labor when the principal has the ability to detect

employee shirking or when the agents in a team have incentives to monitor each other’s

behavior.

Our findings help managers to think about how to set employee contracts to increase

the efficiency of their systems. For policy makers or social planners, the concerns span

beyond higher efficiency in workplaces. It is important that humans obtain and maintain

employment and do not lose a significant income to maintain quality of life. While our
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findings show that automation is indeed set to replace jobs, this may not necessarily be the

outcome in all environments. Particularly when humans value their future earnings highly,

and in economies where individuals are more likely to observe favorable outcomes, automa-

tion may be less preferred by the principles. This statement, however, should be taken

with a grain of salt since out study only applies to environments with partial substitution.

When full substitution is possible, then a manager could always yield higher benefits. Full

automation in all work environments or may happen in the not so near future. Until then,

there are reasons to believe that human teams will not become obsolete.

For future research, we leave many interesting questions. Many service robots in prac-

tice are installed in consumer facing environments (ATM machines, automatized call centers,

recommendation and information kiosks in stores). Moreover, robots, machines and smart

technologies are also helping consumers to go through their days, sometimes partially re-

placing human work (e.g., Roomba replacing cleaning services, Alexa replacing personal

shopping assistants, etc.). As consumers are becoming more dependent on these new tech-

nologies, this opens up a whole new area of research for marketers.

In marketing, for example, retail sales personnel are beginning to be replaced by ma-

chines that provide information about products, check availability of products in the inven-

tory, or make recommendations based on what the consumer is searching for. One relevant

question is how to set the salesforce incentives when they are working in such partly auto-

mated retail environments so that they still engage in informing and educating consumers

about the products and not simply rely on the consumers to obtain that information from

the machines.
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Appendix A

Appendix to Chapter 1

A.1 Proof of Lemma 1.1

The principal can always randomize over different values of U with a restriction that the

expectation resulting from the randomization is exactly equal to the promised utility. This

immediately requires the concavity of the value function V , and then the almost everywhere

differentiability directly follows.1

To see the bounds indicated in expression (1.1), first note that V (0) = V ∗(0) = 0 and

V (v) = V ∗(v) = v − µ. We also know that V (U) ≤ V ∗(U) for every U ∈ [0, v], since the

value function V ∗ is defined by an optimization problem with a smaller set of constraints

compared to the one of the value function V . Moreover, V ′ is decreasing over the state

space as it is a concave function. Therefore its derivative cannot be larger than the slope

of V ∗ at 0 and cannot be smaller than the slope of V ∗ at v. But we know that the value

function V ∗ is piece-wise linear, and its slope is 1− µλ
µλv+c over the interval [0, (1−µλ)v−c),

and equal to 1− µ(1−λ)
(1−µλ)v−c over the interval ((1− µλ)v − c, v]. This concludes our proof.

1One can also apply the result of Benveniste and Scheinkman (1979), to show the differentiability of the
value function. To see how their result can be applied in this context see for example (Horner and Guo,
2015).
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A.2 Proof of Lemma 1.2

The continuation utilities are given in the equations 1.2 and 1.3. By utilizing these expres-

sions, it will be shown that the approval probabilities xs and xns will be set equal to their

efficient levels, 0 and 1 respectively, as long as this does not violate the promise keeping

constraint.

To this end, assume that xns(UD) < 1 for some value of UD. Then consider the

following deviation that is acquired by increasing xns by ε and decreasing Uns by (1−δ)v
δ ε for

a sufficiently small ε. Note that this change is respecting the constraint PK. In consequence,

the principal’s utility increases by:

∆ = (1− µλ)

[
(1− δ)ε(v − µ(1− λ)

1− µλ
) + δ

(
V (Uns)− V (Uns −

(1− δ)v
δ

ε)

)]

Moreover, from lemma 1.1, it is known that V ′ ≤ 1 − µ(1−λ)
(1−µλ)v−c . Then by using the

fundamental theorem of calculus, one can get:2

∆ ≥ (1− δ)ε(1− µλ)

[
v − µ(1− λ)

1− µλ
v − µ(1− λ)v

(1− µλ)v − c

]
> 0.

Therefore this deviation, in case if it is feasible, strictly benefits the principal. The

suggested deviation would not be feasible if Uns = 0, which occurs when UD < (1 −

δ)v. Therefore, when U <
¯
U = (1 − δ)v the approval rate xns will be set such that the

continuation utility Uns = 0, otherwise xns = 1. This proves the lemma for xns and Uns.

Now suppose that xs > 0 for some value of U. Then consider decreasing xs by ε and

hence increasing Us by (1−δ)v
δ ε for a sufficiently small ε. This results with a change ∆ that

2The concavity of the value function V is sufficient for utilizing the fundamental theorem.
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is equal to:

∆ = µλ

[
−(1− δ)ε(v − 1) + δ

(
V (Us)− V (Us +

(1− δ)v
δ

ε)

)]

Again from lemma 1.1, we know that V ′ ≥ 1− µλ
µλv+c , therefore:

∆ ≥ (1− δ)εµλ
[
1− v + v − µλv

µλv + c

]
> 0.

Therefore this deviation, as long as it is feasible, strictly benefits the principal. The sug-

gested deviation would not be feasible if Us = v, which occurs when UD > δv − (1−δ)c
µλ .

Therefore when U > Ū = δv − (1−δ)c
µλ the approval rate xs will be set such that the contin-

uation utility Us = v, otherwise xs = 0. This proves the lemma for xs and Us.

A.3 Proof of Lemma 1.3

First remember that V (0) = VN (0) and V (v) = VN (v). Moreover, from the optimal choice

of xn which is indicated in (1.4), it is known that:

V ′N (U) =


V ′(Uδ ) if U ≤ δ

¯
a

v−µ
v if U ∈ (δ

¯
a, δā+ (1− δ)v)

V ′(U−(1−δ)v
δ ) if U ≥ δā+ (1− δ)v
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Then by the concavity, the comparison of V ′ and V ′N satisfies:

V ′N (U) ≤ V ′(U) if U ∈ [0, δ
¯
a]

V ′N (U) < V ′(U) if U ∈ (δ
¯
a,

¯
a)

V ′N (U) = V ′(U) if U ∈ [
¯
a, ā]

V ′N (U) > V ′(U) if U ∈ (ā, δā+ (1− δ)v)

V ′N (U) ≥ V ′(U) if U ∈ [δā+ (1− δ)v, v]

But this requires that:

VN (U) ≤ V (U) if U ∈ [0, δ
¯
a]

VN (U) < V (U) if U ∈ (δ
¯
a, δā+ (1− δ)v)

VN (U) ≤ V (U) if U ∈ [δā+ (1− δ)v, v]

Otherwise it would not be possible to have V (0) = VN (0) and V (v) = VN (v). Therefore,

the equality V = VN can only arise in [0, δ
¯
a] ∪ [δā + (1 − δ)v, v], and this in turn implies

that xn ∈ {0, 1} in the optimal policy.

Focusing on the interval [0, δ
¯
a] first, from the solution of the problem PN , it is known

that xn = 0 and V ′N ≤ V ′. Then due to the fact V (0) = VN (0), it immediately follows that

there must exists a critical value
¯
UN , satisfying the following:

¯
UN = sup{U ∈ [0, v] | V = VN over [0, U ]}

Since VN < V over the interval (δ
¯
a, δā+ (1− δ)v), we must have UN ≤ δ

¯
a. In principle UN

might be 0 so that [0, UN ] = {0}. However, we will show that
¯
UN > 0.

Suppose
¯
UN = 0 to get a contradiction, and hence VN (U) < V (U) for each U sufficiently

close to 0. However, when U is sufficiently close to 0, the solution to the problem PN implies
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that xs = 0, xns = U
(1−δ)v , Uns = 0, and Us = U

δ + (1−δ)c
δµλ , therefore:

VD(U) = (1− δ)
[
(1− µλ)

U

(1− δ)v
(v − µ(1− λ)

1− µλ
)− c

]
+ δµλV (Uδ + (1−δ)c

δµλ )

Then from the upper bound of V ′, it is known that:

V (Uδ + (1−δ)c
δµλ ) ≤

(
U

δ
+ (1−δ)c

δµλ

)(
1− µ(1− λ)

(1− µλ)v − c

)
.

Thus, VD(U) < 0 for sufficiently small U . Which suggests that VD(U) < V (U), as well as

VN (U) < V (U), when U goes to 0.

Consequently, there must be a randomization, i.e. γ ∈ (0, 1), for the values of U that

are close enough to 0. This in turn, requires that V is linear in this region, with a slope m.

Then in this region, VN (U) = δV (Uδ ) = δmU
δ = V (U), and this gives us a contradiction as

we assumed that VN < V . Therefore UN > 0.

To show the linearity of V , and hence VN , over [0, UN ], note that V ′(U) = V ′N (U) =

V ′(Uδ ) in this region. However, since V is concave, the derivative is weakly decreasing.

Hence the derivative must be constant, i.e the value function is linear.

The proof for the other end of the state space follows from analogous arguments.

A.4 Proof of Lemma 1.4

Refer to the main text for the proof of the first part, i.e. V (U) = VD(U), and γ(U) = 1 for

every U ∈ [
¯
UD, ŪD].

To show the second part of the result, i.e the inequality
¯
UD ≤

¯
U < Ū ≤ ŪD, I focus

on the comparison between
¯
UD and

¯
U . To get a contradiction, suppose that the inequality
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¯
UD >

¯
U holds, and hence:

V (
¯
UD) = (1− δ) [(1− µλ)v − µ(1− λ)− c] + δ

[
µλV ( ¯

UD
δ + (1−δ)c

δµλ ) + (1− µλ)V ( ¯
UD−(1−δ)v

δ )
]

= m
¯
UD

where m is the constant slope of V over [0,
¯
UD]. Then, consider some U =

¯
UD − ε for a

sufficiently small ε > 0 satisfying U >
¯
U . Clearly:

VD(U) = (1− δ) [(1− µλ)v − µ(1− λ)− c] + δ
[
µλV (Uδ + (1−δ)c

δµλ ) + (1− µλ)V (U−(1−δ)v
δ )

]
> V (

¯
UD)−mε.

The strict inequality stems from the fact that:

V ( ¯
UD
δ + (1−δ)c

δµλ )− V (Uδ + (1−δ)c
δµλ ) < m

ε

δ

V ( ¯
UD−(1−δ)v

δ )− V (U−(1−δ)v
δ ) = m

ε

δ
.

But this consists of a contradiction, since

VD(U) > V (
¯
UD)−mε = m(

¯
UD − ε) = V (U)

Therefore the inequality
¯
UD ≤

¯
U holds. By analogous arguments one can also show that

ŪD ≥ Ū , hence the proof is complete.

A.5 Proof of Proposition 1.1

To complete the proof, one just needs to show that the value function V is strictly concave

over the interval [
¯
UD, ŪD].

It is already shown that
¯
UD ≤

¯
U < Ū ≤ ŪD. Moreover, the description of the optimal

125



approval decisions (xs, xns), and the continuation utilities (Us, Uns) are provided in lemma

1.2. Then, by using the fact that V = VD over [
¯
UD, ŪD], one can get:

V (U) =


(1− δ)(1− µλ) U

(1−δ)v (v − µns) + δµλV (Us) if UD ∈ [
¯
UD,

¯
U)

(1− δ)π + δ[(1− µλ)V (Uns) + µλV (Us)] if UD ∈ [
¯
U, Ū ]

(1− δ)[π + µλ(
U+

(1−δ)c
µλ
−δv

(1−δ)v )(v − 1)] + δ(1− µλ)V (Uns) if UD ∈ (Ū, ŪD]

Where the continuation utilities are given by:

Us =
U

δ
+

(1− δ)c
δµλ

and Uns =
U

δ
− (1− δ)v

δ
.

Hence the derivative of V over [
¯
UD, ŪD] satisfies:

V ′(U) =


(1− µλ)(v−µnsv ) + µλV ′(Us) if UD ∈ (

¯
UD,

¯
U ]

(1− µλ)V ′(Uns) + µλV ′(Us) if UD ∈ [
¯
U, Ū ]

(1− µλ)V ′(Uns) + µλ(v−1
v ) if UD ∈ (Ū, ŪD]

I want to show that, there does not exist an interval in [
¯
UD, ŪD] over which the value

function is linear. Suppose not in order to get a contradiction. Let I be the largest interval

with a linear V .

First, note that v−µns
v > s̄, and (v−1

v ) <
¯
s, where s̄ and

¯
s are the upper and lower

bounds for V ′ respectively.3 Therefore, V ′ cannot stay constant in any neighborhoods of

¯
U and Ū . As a result, there are three possible cases: i)I ⊂ [

¯
UD,

¯
U), ii) I ⊂ (Ū, ŪD], iii)

I ⊂ [
¯
U, Ū ].

For the first case, due to the concavity of V , V ′ must be constant over Us|I =

(Us(inf(I)), Us(sup(I))). Moreover, due to the lower bound on δ, Us(inf(I)) < Ū , hence

Us|I ⊂ [
¯
UD, ŪD]. This gives an immediate contradiction with the definition of I, since the

3See lemma 1.1.
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length of Us|I is larger than the length of I. An analogous contradiction carries over the

second case.

For the last case, V ′ must be constant along the intervals Us|I and Uns|I , due to the

concavity of V . Moreover, either Us(inf(I)) < Ū or Uns(sup(I)) > Ū must be correct,

because both of them cannot be wrong at the same time due to the lower bound on δ.

Therefore, either Us|I or Uns|I must be the subset of [
¯
U, Ū ] ⊂ [

¯
UD, ŪD], which contradicts

with the definition of I, because both of these intervals have a larger length than I.

A.6 Proof of Lemma 1.5

Define:

¯
b = inf{U ∈ [0, v] | Ṽ ′(U) ≤ v − µ

v
},

b̄ = sup{U ∈ [0, v] | Ṽ ′(U) ≥ v − µ
v
}.

Then the optimal approval decision conditional on no self-monitoring satisfies:

x̃n(UN ) =


0 if UN ≤ δ

¯
b

∈ (0, 1) if UN ∈
(
δ
¯
b, δb̄+ (1− δ)v

)
1 if UN ≥ δb̄+ (1− δ)v

. (A.1)

Therefore:

Ṽ ′N (UN ) =


Ṽ ′(Uδ ) if UN ≤ δ

¯
b

v−µ
v if UN ∈ (δ

¯
b, δb̄+ (1− δ)v)

Ṽ ′(U−(1−δ)v
δ ) if UN ≥ δb̄+ (1− δ)v

Clearly ṼN (v) = Ṽ (v), since there is only one possible way to provide the maximal

utility to the agent. However, unlike the previous case, the equality ṼN (0) = Ṽ (0) does

not hold. To see this, first observe that ṼN (0) = 0. Then, in order to examine the value of
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ṼD(0), by using the fact that the incentive and the promise keeping constraints are binding,

we get:

Ũns(0) = −(1− δ)v
δ

x̃ns(0),

Ũs(0) =
1− δ
δµλ

c− (1− δ)v
δ

x̃s(0).

Obviously, x̃ns = 0 since the continuation utility Ũns(0) cannot be negative. Moreover,

Ũs(0) = 1−δ
δµλ c, since the optimal choice of x̃s(0) is 0.4 As a result, ṼD(0) = δṼ ( (1−δ)c

δµλ ),

which is strictly positive. Therefore we must have ṼN < Ṽ (0) = ṼD(0). Then by using this

and fundamental theorem of calculus together with the following

Ṽ ′N (U) ≤ Ṽ ′(U) if U ∈ [0, δ
¯
b]

Ṽ ′N (U) < Ṽ ′(U) if U ∈ (δ
¯
b,

¯
b)

Ṽ ′N (U) = Ṽ ′(U) if U ∈ [
¯
b, b̄]

Ṽ ′N (U) > Ṽ ′(U) if U ∈ (b̄, δb̄+ (1− δ)v)

Ṽ ′N (U) ≥ Ṽ ′(U) if U ∈ [δb̄+ (1− δ)v, v]

we can conclude that there exists ŨN such that Ṽ (U) = ṼN (U) if and only if U ∈ [ ˜̄UN , v].

In addition, the facts that ŨN is strictly smaller than v, and Ṽ is linear over [ ŨN−(1−δ)v
δ , v]

follow from exactly the same arguments provided in the proof of lemma 1.3. On the other

hand, since ˜̄UN ∈ [δb̄+ (1− δ)v, v], it immediately follows that x̃n = 1 over [ ˜̄UN , v].

A.7 Proof of Proposition 1.2

Initially note that it is already known that the equality Ṽ = ṼD holds at 0 and ŨD, Then

the same logic that is used in lemma 1.3, it immediately follows that the equality Ṽ = ṼD

holds for each U ∈ [0, ŨD].

4Refer to earlier discussions to see why it is optimal to set x̃s equal to 0.
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When it comes to the approval decisions, the case for x̃s has already been discussed.

Here the focus will be on the contingency of no self-reporting, i.e the choice variables x̃ns,

and Ũns. Since these variables are isolated from the other contingency, their choice satisfy

the following local problem:

max
x̃ns

(1− δ)x̃ns(v − µ(1−λ)
1−µλ ) + δṼ (Ũns)

s.t. (1− δ)vx̃ns + δŨns = U

From the constraint, it is possible to substitute between x̃ns and Ũns at a rate 1 to (1−δ)v
δ ;

moreover their marginal returns for the principal are (1 − δ)(v − µ(1−λ)
1−µλ ), and δṼ ′(Uns)

respectively. Therefore, showing that Ṽ ′ < 1− µ(1−λ)
(1−µλ)v , would be sufficient to complete the

proof. Suppose not to get a contradiction, and define:

¯
d = inf{U ∈ [0, v] | Ṽ ′(U) ≤ 1− µ(1− λ)

(1− µλ)v
},

d̄ = sup{U ∈ [0, v] | Ṽ ′(U) ≥ 1− µ(1− λ)

(1− µλ)v
}.

From the hypothesis it is known that d̄ > 0. Moreover, x̃ns(U) = 0, Ũns(U) = U
δ , and

x̃s(U) = U
δ + (1−δ)c

δµλ , ∀U ∈ [0, δ
¯
d]. This would require that Ṽ ′ = (1−µλ)Ṽ ′(Ũns)+µλṼ ′(Ũs),

i.e the derivative of the value function is equal to the the expectation of the derivative over

the continuation values. This in turn requires Ṽ ′ to be constant over [0,
¯
d + (1−δ)c

δµλ ], due

to the concavity together with the fact that Ũs(U), Ũns(U) > U , for every U ∈ [0, δ
¯
d].

Therefore
¯
d must be equal to 0.

Now it is known that, Ṽ ′(U) = 1 − µ(1−λ)
(1−µλ)v , for every U ∈ [0, d̄]. Then again from the

same logic, this constant slope must carry over to a larger region, and hence constitutes a

contradiction with the definition of d̄, as it requires that V ′(Ũs(U)) = 1− µ(1−λ)
(1−µλ)v , x̃s = 0,

∀U ∈ [0, d̄]. This stems from the fact that Ṽ ′ = (1− µλ)
(

1− µ(1−λ)
(1−µλ)v

)
+ µλṼ ′(Ũs), as the
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principal is indifferent between the marginal increase on x̃ns and Ũns in this region. As a

result we have Ṽ ′ < 1− µ(1−λ)
(1−µλ)v , and the result immediately follows.

Finally the strict concavity, and the inequality ŨD > Ū follows from the identical

arguments presented in the previous case, hence not repeated here.

A.8 Proof of Lemma 1.6

First of all, Umax = sup{W | VW (W ) ≥ 0} exists since W takes its values from a bounded

interval. Therefore, to complete the proof, one just needs to show that VUmax(U) ≥ 0 for each

U ∈ [0, Umax]. Suppose not to get a contradiction, and assume that VUmax(Umax) < 0. Then

the definition of Umax implies that ∀ε > 0, ∃Uε ∈ [Umax − ε, Umax], such that VUε(Uε) ≥ 0.

However, it is known that VW (U) is continuous on U and W , therefore VW (W ) must be

continuous in W . Therefore ∃ε∗ > 0 such that ∀W ∈ [Umax−ε∗, Umax], VW (W ) < 0. Which

is a contradiction. Therefore VUmax(Umax) ≥ 0.

To show that the last inequality holds with equality, suppose that VUmax(Umax) > 0.

Then the principal could grant the agent a utility level that is slightly higher than Umax

due to the continuity of VW (w), and this contradicts with the definition of Umax.

Finally, in order to show that increasing µ strictly decreases Umax, let µ and µ′ are two

values with µ > µ′. Note that, an incentive compatible policy when the prior is equal to

µ is also incentive compatible when prior is µ′ and vice versa. This stems from the fact

that the agent does not care about the type of the project. Let Umax be the corresponding

maximal state variable when prior is µ. Take an optimal policy when the agent is given

Umax. It is clear that this policy would bring a strictly positive value to principal when the

prior is µ′, therefore the corresponding maximal state variable, U ′max must be strictly larger

than Umax.
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Appendix B

Appendix to Chapter 2

B.1 Proof of Lemma 2.1

The “only if part” of the statement follows directly from revealed preferences. In other

words, if the mechanism is incentive compatible, then the buyer of type x does not want to

mimic type x′ and vice versa. More precisely take x > x′, then:

U(x) ≥ e−rtx′ (
x

r
− ptx′ ) = U(x′) + e−rtx′ (

x

r
− x′

r
)

U(x′) ≥ e−rtx(
x′

r
− ptx) = U(x)− e−rtx(

x

r
− x′

r
)

Then we get,

e−rtx

r
≥ U(x)− U(x′)

x− x′
≥ e−rtx′

r
(B.1)

which requires tx ≤ tx′ . Therefore we get i). Now, since tx is monotone it is differentiable

and continuous almost everywhere. Therefore e−rtx is differentiable and continuous a.e. and

hence, limx′→x
e−rtx′

r = e−rtx
r a.e. We also know that U(x) is continuous and differentiable
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a.e so by taking the limit of the expression (B.1), when x′ → x, we get

∂U(x)

∂x
=

1

r
e−rtx a.e.

Hence, ii) follows immediately.

For the “if” part, suppose for a given mechanism conditions i) and ii) are satisfied,

and we want to show that this mechanism is incentive compatible. Take any two arbitrary

types x, and x′ and WLOG assume x > x′. First, we want to show that x does not want

to report his type as x′. In other words the following must be true

U(x) ≥ e−rtx′ (
x

r
− ptx′ ) = U(x′) + e−rtx′ (

x

r
− x′

r
). (B.2)

However by ii) we know that

U(x)− U(x′) =
1

r

∫ x

x′
e−rtx̃dx̃.

Hence, expression (B.2) boils down to:

∫ x

x′
e−rtx̃dx̃ ≥ e−rtx′ (x− x′).

But this is correct given monotonicity in i). Similar arguments follow for the reports of x′

as well. Hence the statement is true.

B.2 Proof of Lemma 2.4

i) Monotonicity: Take arbitrarily two agents of type x, and x′, where x > x′ without loss

of generality, we want to show that tx ≤ tx′ . Showing that purchasing the good at time

t > tx′ is worse then purchasing it at tx′ for agent x is sufficient to prove monotonicity. To

this end, take an arbitrary t satisfying t > tx′ . We know by revealed preferences of agent
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x′ that:

U(x′) ≥ e−(r+λ)t (
x′

r
− pt) +

∫ t

0
e−(r+λ)TλV T

βx′dT +

∫ ∞
t

e−(r+λ)TλV T
(β−1)x′dT

Then we get:

x′

r
(e−(r+λ)tx′ − e−(r+λ)t)− (e−(r+λ)tx′ptx′ − e

−(r+λ)tpt) ≥
∫ t

tx′

e−(r+λ)Tλ(V T
βx′ − V T

(β−1)x′)dT

We want show that the symmetric version of the above expression holds for agent x as well.

Hence we need show

x− x′

r
(e−(r+λ)tx′ − e−(r+λ)t) ≥

∫ t

tx′

e−(r+λ)Tλ
(
(V T
βx − V T

(β−1)x)− (V T
βx′ − V T

(β−1)x′)
)
dT.

(B.3)

Now to show the inequality above is correct we need to consider two cases.

• Case 1 : [x′ < β−1
β x]

Incentive compatibility in the second step is satisfied by hypothesis. Therefore, by the

second condition in Lemma 2.3 we know that the highest possible value of
(
(V T
βx−V T

(β−1)x)−

(V T
βx′−V T

(β−1)x′)
)

can be attained by arranging tTz = 0, for all z ∈ [(β−1)x, βx], and tTz =∞,

for all z ∈ [0, (β − 1)x). Therefore

(
(V T
βx − V T

(β−1)x)− (V T
βx′ − V T

(β−1)x′)
)
≤ x

r
,

which leads to

∫ t

tx′

e−(r+λ)Tλ
(
(V T
βx − V T

(β−1)x)− (V T
βx′ − V T

(β−1)x′)
)
dT ≤ x

λ

r(r + λ)
(e−(r+λ)tx′ − e−(r+λ)t).
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However, since x′ < β−1
β x, and λ < r

β−1 , we know that

x− x′

r
(e−(r+λ)tx′ − e−(r+λ)t) > x

λ

r(r + λ)
(e−(r+λ)tx′ − e−(r+λ)t).

Therefore equation (B.3) is satisfied and we are done for this case.

• Case 2 : [x′ ≥ β−1
β x]

Again by Lemma 2.3 the highest possible value of
((

(V T
βx − V T

(β−1)x) − (V T
βx′ − V T

(β−1)x′)
)

can be attained by arranging tTz = 0, for all z ∈ [βx′, βx], and tTz = ∞, for all z ∈ [0, βx′).

Therefore,

(
(V T
βx − V T

(β−1)x)− (V T
βx′ − V T

(β−1)x′)
)
≤ (x− x′)β

r
.

Hence

∫ t

tx′

e−(r+λ)Tλ
(
(V T
βx − V T

(β−1)x)− (V T
βx′ − V T

(β−1)x′)
)
dT ≤ (x− x′) βλ

r(r + λ)
(e−(r+λ)tx′ − e−(r+λ)t).

However, since λ < r
β−1 , we know that

x− x′

r
(e−(r+λ)tx′ − e−(r+λ)t) > (x− x′) λβ

r(r + λ)
(e−(r+λ)tx′ − e−(r+λ)t).

So equation (B.3) is valid for this case as well. Hence we are done to show monotonicity.

ii) Derivative of Vx: By truthfully reporting, agent get the utility

U(x) = Vx +

∫ tx

0
e−(r+λ)TλV T

βxdT +

∫ ∞
tx

e−(r+λ)TλV T
(β−1)xdT.

Now, for a given type x′ with x > x′, what would happen if the agent x reports his type

as x′ at first stage reports? He would be allocated the first version of the good at time

tx′ rather than tx where, from from part i), we know that tx ≤ tx′ . This deviation from

truth-telling will affect his utility via two different channels. The first channel is a direct
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effect as he now acquires the first version at a different time.1 The second channel is an

indirect effect due to the change on second stage utility.

We know that the second step of the mechanism is incentive compatible and so the agent

x reports his effective type truthfully in the second stage. Because of this, misreporting in

the first stage alters the reports of the second stage only if it alters the effective types at

the realized arrival time. This happens only if the arrival occurs between tx and tx′ . In

particular, after truthful reporting, the effective type of agent x would be (β − 1)x inside

the time interval (tx, tx′), and it would be βx if he deviates and misreports its type as x′.

Therefore, the incentive constraint of agent x preventing him to not to mimic x′ is

U(x) ≥ e−(r+λ)tx′
(x
r
− ptx′

)
+

∫ tx′

0
e−(r+λ)TλV T

βxdT +

∫ ∞
tx′

e−(r+λ)TλV T
(β−1)xdT

= Vx′ + e−(r+λ)tx′
(x− x′)

r
+

∫ tx′

0
e−(r+λ)TλV T

βxdT +

∫ ∞
tx′

e−(r+λ)TλV T
(β−1)xdT.

The incentive constraint of the agent x′ preventing him to mimic x is a symmetric version

of the above expression. Then by combining these two inequalities we get

e−(r+λ)tx

r
+

∫ tx′
tx

e−(r+λ)Tλ(V Tβx′ − V T(β−1)x′)dT

x− x′ ≥ Vx − Vx′
x− x′ ≥

e−(r+λ)tx′

r
+

∫ tx′
tx

e−(r+λ)Tλ(V Tβx − V T(β−1)x)dT

x− x′ .

First of all, we know tx is monotone. Therefore it is continuous almost everywhere, and so

when x′ → x, e−(r+λ)tx′

r → e−(r+λ)tx

r , almost everywhere. Moreover, when x′ → x, by using

Leibniz Rule, L’Hopital’s Rule, almost everywhere continuity of tx and incentive constraints

of second step reports which we have proven in previous Lemma 2.3, we get the following :

limx′→x

∫ tx′
tx

e−(r+λ)Tλ(V T
βx′ − V T

(β−1)x′)dT

x− x′
= limx′→x

∫ tx′
tx

e−(r+λ)Tλ(V T
βx′ − V T

(β−1)x′)dT

x− x′

= −λ e−(r+λ)tx ∂tx
∂x

(V tx
βx − V

tx
(β−1)x) a.e

1If tx = tx′ then we do not need to worry about first stage incentive constraints.
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Therefore we can conclude that

∂Vx
∂x

=
e−(r+λ)tx

r
− λ e−(r+λ)tx ∂tx

∂x
(V tx
βx − V

tx
(β−1)x) a.e

Then by integrating it we get the result ii).

B.3 Proof of Proposition 2.1

For now, rather than the problem in (2.4), we consider an auxiliary problem in which the

second term of the objective function is omitted. Precisely

max
{tx}x∈[0,1],{{tTx }x∈[0,1]}T>0

1

r

∫ 1

0
e−(r+λ)tx

(
x− 1− F (x)

f(x)

)
f(x)dx

+
λ

r

∫ ∞
0

e−(r+λ)T
(∫ 1

0
e−rt

T
x

(
x− 1− FT (x)

fT (x)

)
fT (x)dx

)
dT

subject to • tx is non-increasing in x

• tTx is non-increasing in x, ∀T ∈ [0,∞) (B.4)

In this problem, the contingent allocation terms {tTx }x∈[0,1], for the second version of the

good, appear only on the last term of the objective function. Then the optimal {tTx }x∈[0,1]

for this problem will be similar to the one of the canonical model. Therefore it follows a

cutoff rule, where the value of the cutoff is a function of the distribution fT (.). Hence we

denote the cutoff value by x?(fT ), and its value is exactly the same as the value of the cutoff

for the static monopoly with distribution fT (.). So that for a given fT the allocations are

of the form:

tTx =

 0 x ≥ x?(fT )

∞ x < x?(fT )
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On the other hand, the first version allocations {tx}x∈[0,1] are affecting both lines of the

objective function as they alter the distribution functions fT (.) of the effective types. If

this indirect effect did not exist, then the optimal allocation rule would be the immediate

allocation for those agents having a type higher then x? i.e the static monopoly allocation.

Despite this additional effect, the optimal allocations have a similar structure to the one of

the static monopoly in the sense that it also follows a cutoff rule. This is because of the

stationary structure of the environment

Claim: There is a cutoff value x̂, depending on the values of λ, α, r, such that the

optimal solution of the program (B.4) satisfies:

tx =

 0 x ≥ x̂

∞ x < x̂

Proof of the Claim: This is due to the stationary structure resulting from the Poisson

arrival process. In particular, if at t 6= 0 an agent is allocated the first version of the good

then it must be the case that the total effect of allocating the first version to this agent

on the objective function is positive. But then it must be positive t=0 as well since the

environment is stationary. Therefore it is better for the monopolist to allocate the good to

this agent at the beginning t = 0. Hence we know that the term tx must be either 0 or ∞

for every x. Furthermore, since tx is restricted to be monotone with respect to x, optimal

solution must incorporate a structure as given above. �

Then we have the solution of the problem (B.4), as:

tx =

 0 x ≥ x̂

∞ x < x̂
∀T, tTx =

 0 x ≥ x?(x̂)

∞ x < x?(x̂)

Since the allocation of the first version only occurs at t = 0, the distribution of the
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effective types is independent of the realized arrival time T, and just depending on the

cutoff of the first version allocations. Moreover, the allocation of the second version is same

with the static monopoly allocations corresponding to the effective type distribution.

Turning back to the original problem of the monopolist as defined in (2.4) we know that

the second term, which is omitted in the relaxed problem, would be equal to zero under

the allocation rule that is specified above. This is because of the fact that ∂tx
∂x = 0 almost

everywhere. Furthermore, we also know that the highest possible value of this term is also

zero, since tx must be non-increasing and hence its derivative is never strictly positive.

Therefore the solution of program (B.4), which is defined as above, is also the solution for

the original problem (2.4) as it is maximizing the second term as well. Then we have x1 = x̂,

and x2 = x?(x̂).

B.4 Proof of Lemma 2.5

To start with the first part suppose that the L-type buyers purchase both versions, hence

pT < (β − 1)L. Then the H-type buyers purchase the second version as well, since pT <

(β−1)H. Moreover, since purchasing the first version conditional on purchasing the second

version has a positive return for the L-type buyers, it must have a positive return for the

H-type buyers as well hence H-type buyers also purchase the first version.

For the second part, suppose the L-type buyers purchase the first version at t < t?.

Then, to prove the statement, we just need to show that the H-type buyers purchase the

first version of the good, thanks to our observation given before. Suppose not to get a

contradiction. Then it must be the case that the L-type buyers are only purchasing the first

version of the good while H-type buyers are only purchasing the second version, because

otherwise if the L-type buyers were purchasing the second version, then, from the first part

of the lemma, the H-type buyers would purchase both versions of the good. Also, if a H-type

buyers is not purchasing the second version, then it means that he is not purchasing any
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versions of the good which would also be a contradiction. Then by the revealed preferences:

e−rt(L− pt) ≥ e−rT (βL− pT )

e−rT (βL− pT ) ≥ e−rt(H − pt)

Which is a direct contradiction since H > L and e−rt > e−rt
?

= βe−rT .

B.5 Proof of Lemma 2.6

Showing that under the optimal price path there must be an agent of some type that is

purchasing at t = 0 would be sufficient to prove this lemma due to the second part of

Lemma 2.5.

Assume that nobody purchases at t=0 to get a contradiction. There must be a sale

of the first version at some time before T, because otherwise, if there is a sale of only the

second version good, we would get a contradiction immediately, as the monopolist could

deviate and sell only the first version of the good at t = 0 to the agents that are purchasing

the second version. This is better for the firm as it can get a higher discounted payment

due to assumption 2.2.

Denote the earliest time period at which a sale of the first version occurs by t. We want

to show that it is equal to 0. Suppose t > 0 to get a contradiction. Then there must be a

sale of the second version of the good, because otherwise there exists an obvious profitable

deviation, which is selling at t = 0 with the price level pt. If the agent purchasing the first

version at t also purchases the second version, then it must be a H-type from lemma 2.5.

Then the monopolist can be made better off by changing the price level at t = 0 so that

the H-type is indifferent between purchasing at 0 and t as that does not alter the incentives

of the L-type buyers. We get a similar contradiction for the other case in which the agent

purchasing the first version at t is not purchasing the second version.
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B.6 Proof of Proposition 2.2

To prove the proposition, we first treat the price of the second version of the good as a fixed

value. We then find the corresponding optimal price path {pt}t∈[0,T ) of the first version of

the good for any given value of pT and we finally optimize pT at the end. There are 5 cases

to consider for pT .

i) βH < pT .

In this case there is no sale of the second version of the good. We know that in an optimal

policy H-type buyers purchase the first version at t=0, and the maximum amount that they

are willing to pay at t=0 is H. On the other hand, at any time t > T , the L-type buyers

are willing to pay at most L (given that there is no sale of the second version). Therefore,

if the monopolist is going to sell the first version of the good to L-type buyers at a time t,

then he should arrange the price as pt = L. However this will affect the incentives of the

H-type buyers that are purchasing at t = 0. Given that pt = L for some t, the maximum

amount that the H-type buyers are willing to pay at t = 0, which we denote by p̄, satisfies

H − p̄ = e−rt(H − L)

p̄ = (1− e−rt)H + e−rtL

And the corresponding profit of the monopolist, when L-type buyers purchase at time t, is

Πt = µ((1− e−rt)H + e−rtL) + (1− µ)e−rtL. (B.5)

Note that the expression above is linear in e−rt, hence it is maximized either at t = 0 or

at t = ∞2. If t = 0 is optimal, then both types purchase the good at t = 0 and the price

level is equal to L. On the other hand, if t = ∞ is optimal, then only the H-type buyers

2It is also possible have that any t > 0 is a maximizer of the expression B.5. In such a case restricting t
to be either 0 or ∞ is wlog.
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purchase the good (at t = 0) at price H.

Therefore, for the first case there are two candidates of the optimal policy.

• A1: Sell the first version of the good to agents of both types at t=0 at a price level L

and have no sales of the second version.

• A2: Sell the first version only to the H-types at t=0 at a price level H, and have no

sales of the second version.

Actually, this is analogous to the result of Stokey (1979) and intuitively follows because if

there is no sales of the second version, we turn back to canonical model.

ii) (β − 1)H < pT ≤ βH.

At the optimal policy, the marginal benefit from the second version of the good is (β− 1)H

for H-type buyers since they purchase the first version at t = 0. Therefore, there is no

sale of the second version in this case as well. However, the situation is different than

the previous case in the sense that now there is an additional option for H-type buyers.

In other words, by purchasing only the second version of the good, they can guarantee a

non-negative utility. As a result, the maximum amount that H-type buyers are willing to

pay at t=0 is less than H. Denote this maximum price level by p̄, which satisfies:

H − p̄ = e−rTβH − e−rT pT .

p̄ = (1− βe−rT )H + e−rT pT

Where the LHS of the first line is the utility from the purchase of the first version of the

good, and the RHS is from the purchase of the second version. Similar to the previous case,

a candidate optimal policy is selling the first version good at t=0, to both types of agents

at a price L3. However, the corresponding policy would be equivalent to A1, so that we do

3Note that L is less than p̄, since pT ≤ βH, βe−rT < 1, and (β − 1)H > βL. Therefore H-type buyers
are willing to buy at this price level.
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not write it again here.

We can think of another candidate, which is a modified version of the policy A2, that

is selling version 1 at t=0 only to the H-type buyers but now with a payment p̄, rather than

H. However, this policy is strictly dominated since the payment is less than the one of A2.

Finally, in policy A2, there is no sale of the first version to the L-types, which is due to

the fact that the monopolist needs to decrease the price level at t = 0 (which was equal to

H) to be able to sell to the L-type buyers at any time. However, in this case, by departing

from the case 1, there may exists a time period earlier than T, at which selling the good to

the L-type buyers at the maximum price that they are willing to pay (which is equal to L)

does not hurt the incentives of the H-types. Hence it does not require to decrease the price

at t=04, because, now H-type buyers are having a positive utility from the first version

purchase at price p̄. Nevertheless, even if such a period of time exists, doing any better

than both of the policies A1 and A2 is not possible due to the fact that the resulting policy

would be equivalent to one of the intermediate policies in the expression B.5. Therefore,

the firm cannot do any better here in this case.

iii) βL < pT ≤ (β − 1)H.

In this case, H-type buyers purchase the second version of the good, since pT is always

smaller then their marginal benefit and L-type buyers do not purchase. The maximum

amount that H-type buyers are willing to pay at t=0 for the first version of the good, p̄, in

this case satisfies the following:

H − p̄+ e−rT ((β − 1)H − pT ) = e−rT (βH − pT )

p̄ = (1− e−rT )H

where the LHS of the first line is the utility of the H-type buyers from purchasing both

4We can find such a time period by finding a t so that the H-type buyers are indifferent between purchasing
at t at price L and purchasing at time 0 with price p̄. Time period t satisfying this indifference condition
should be less than T.
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versions of the good, and the RHS is the utility from purchasing only the second version

of the good. Note that p̄ is higher than L.5 Hence the L-type buyers are not willing to

purchase at t=0 with price p̄. Then the monopolist should either set a smaller price than

p̄ at t = 0 to be able to sell the L-type buyers at t = 0, or he can sell it at a later time to

them. Note that, at any time t, the highest amount that L-type buyers are willing to pay

for the first version of the good is L as they do not purchase the second version of the good

in this case. Like in the previous cases, charging a price level that is equal to L will affect

the incentives of the H-type buyers.

One possible optimal policy here is to sell the first version of the good at t=0 to both

types of buyers at a price L, and set pT = (β − 1)H. Another possibility is to sell the first

version of the good to the H-type buyers at a price p̄ at t = 0, and to the L-type buyers at a

later time (before T) without hurting the incentives of the H-type buyers. As we discussed

in case 2, finding such a time period is possible here, because H-type buyers are having a

positive utility from purchase of the first version of the good. To find this time period, let’s

denote pHt as the price level, which leaves the H-type buyers indifferent between purchasing

good at t=0 with payment p̄, and purchasing at t with payment pHt . In particular

H − p̄ = e−rt(H − pHt )

pHt =
(e−rt − e−rT )H

e−rt

Then we can find the earliest possible time period t̄ at which the firm can sell the first

version of the good to the L-type buyers at price L without hurting the incentives of the

H-type by using the equality pHt̄ = L. In particular,

(e−rt̄ − e−rT )H = e−rt̄L

e−rt̄ = e−rT
H

H − L
5This is because βe−rT < 1, and (β − 1)H > βL.
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Note that t̄ < T is always satisfied due to assumption 2.2 and βL < (β−1)H. Hence selling

the first version of the good to the L-type buyers at t̄ at a price L is a feasible policy. To

sum up, we have the following two candidates for this case.

• A3: Sell the first version to both type of buyers at t=0 at price L, and sell the second

version to only to the H-type buyers at a price (β − 1)H.6

• A4: Sell the first version of the good to the H-type buyers at t=0 with price p̄ =

(1 − e−rT )H, and also sell to L-type buyers at t = t̄ with payment pHt̄ = L. Sell the

second version to H-type buyers at price (β − 1)H.

Note that, in this case there can not be any better policy then these two due to the linearity

of the profit function as we have discussed in case 1. For instance, take the policy A4, if it

is better to decrease the price at t=0 to sell to the L-type buyers earlier than t̄, then the

monopolist should continue to decrease price level at 0 until it reaches L at which L-type is

willing to buy; and this corresponds to the policy A3.

iv) (β − 1)L < pT ≤ βL.

In this case, the H-type buyers always purchase the second version of the good while L-type

buyers purchase the second version only if they have not purchased the first one. We can

easily see that the maximum amount that the H-type buyers are willing to pay at t = 0 for

the first version of the good is same as in case 3 and so it is equal to p̄ = (1− e−rT )H.

There are three candidates for the optimal policy in this case. The first one is to sell the

first version of the good to both types of buyers at t=0 at a price level that leaves the L-type

buyers indifferent between purchasing only the first version and purchasing only the second

version, and to sell the second version only to the H-type buyers. However, this policy is

strictly dominated by A3. In particular, the maximum amount of the payment that L-type

buyers are willing to pay at t = 0 is less than L, and the amount charged for the second

version of the good at time T is strictly less than the one of A3. The second policy, is to sell

6Note that this policy is strictly dominating the policy A1.

144



the first version of the good to the H-type buyers at t=0 with price p̄ = (1−e−rT )H, and to

the L-type buyers at a later time, and to sell the second version only to the H-type buyers.

This is dominated by the policy A4 for the same reason above. Then the final candidate is:

• A5: Sell the first version of the good only to the H-type buyers at t=0 at the price

p̄ = (1− e−rT )H, and sell the second version of the good to both at the price βL.

v) pT ≤ (β − 1)L.

In this case, both types of the buyers purchase the second version of the good regardless of

their decision on the first version sales. From the same reasoning as above the maximum

amount that the H type buyers are willing to pay at t=0 is p̄ = (1 − erT )H, and he is

indifferent between purchasing the first version at t = 0 with payment p̄ and purchasing at

t with payment pHt = (e−rt−e−rT )H
e−rt . Similarly, the maximum amount that the L-type buyers

can are willing to pay for the first version of good at time t is pLt = (e−rt−e−rT )L
e−rt .

Since pLt < pHt , there does not exist a time period in which the monopolist can sell the

first version of the good tothe L-type buyers at price pLt without hurting the incentives of

the H-type buyers when they are purchasing at t = 0 with price p̄. Therefore the monopolist

must decrease the initial price to be able to sell the L-type agents at any time. Then, again

due to the linearity of the monopolist profit, there are two possibilities for the optimal

policy in this case. However one of them, which is selling the first version of the good only

to the H-type buyers with price p̄ and selling the second version of the good to both types

with a price (β−1)L is strictly dominated by the policy A5. Therefore the only option that

we are left with is:

• A6: Sell the first version of the good to both type of buyers at t=0 at a price (1 −

e−rT )L, and sell the second version of the good to both types of buyers at a price

(β − 1)L.

We have considered all of the possible optimal policies for the monopolist. First note
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that the policy A1 is strictly dominated by the policy A3, (hence we omit A1). Then the

corresponding profit level for each are listed below as follows:

Table B.1: Sale Policies and Corresponding Profits.

Policy Profit

A2 µH

A3 L+ µe−rT (β − 1)H

A4 µ[1 + e−rT (β − 2)]H + (1− µ)e−rT LH
H−L

A5 µ(1− e−rT )H + e−rTβL

A6 [1 + e−rT (β − 2)]L

Each of these 5 policies may be the optimal one depending on the values of β, µ, H, L

and r. All the policies except A4 involves immediate allocations like in the stochastic arrival

case. Hence time is not used to discriminate over people in those policies. On the contrary,

in policy A4 the price of the first version of the good is decreasing over time. As a result,

purchase times of agents for the first version of the good are different for L and H-types of

buyers. More precisely, the H-type buyers purchase at the beginning, whereas the L-type

buyers purchase at a later time (before T). The reason for such a pattern is based on the

anonymous structure of the posted prices for the second version sales. The existence of the

second version puts a restriction on the amount that a H-type buyer is willing to pay for

the first version of the good since it is possible for him to give up from the purchase of the

first version of the good and purchase only the second one. As a result there exists a time

period so that the monopolist can sell the first version of the good to the L-type buyers

without hurting the incentives of the H-type buyers. This is not possible in the canonical

durable good monopoly model.
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Appendix C

Appendix to Chapter 3

C.1 Proof of Proposition 3.2

One can rewrite the incentive constraint ICS as follows:

(1− σ)(p1 − p0)[p1(w11 − w01) + (1− p1)(w10 − w00)] ≥ c

Then, it is straightforward to see that ws solves the problem PS . Moreover, when the

incentive scheme is ws, (work, work) is a Nash equilibrium since ICS is satisfied under ws.

Next, we argue that (work, work) is indeed the unique Nash equilibrium, hence comprises a

team equilibrium as well. Suppose that the agent j chooses high level effort with probability

ej . Then, under the incentive scheme ws, the expected payment of agent i from working

and shirking are given by:

π(1, ej ,w
s) = (1− σ)p1[ej(1− p1) + (1− ej)(1− p0)]ws10,

π(0, ej ,w
s) = (1− σ)p0[ej(1− p1) + (1− ej)(1− p0)]ws10,
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respectively. After plugging the value of ws10, the difference between these expected pay-

ments, which we denote by ∆π(ej ,w
s), becomes:

∆π(ej ,w
s) = [ej(1− p1) + (1− ej)(1− p0)]

c

(1− p1)
.

Note that, ∆π(ej ,w
s) > c as long as ej < 1. Therefore, (work, work) is the unique Nash

equilibrium, and also the team equilibrium. Therefore ws is the optimal incentive scheme

in the static setting.

C.2 Proof of Lemma 3.2

We examine the problem PD by considering it as a nested optimization problem. More

precisely, we divide the entire space of incentive schemes into two sub-spaces, depending on

the comparison between the values of w11, and w10. Then we characterize the solution of

PD in these two sub-spaces separately. Getting the general solution is then just a matter

of a simple comparison between these two local solutions.

First, we analyze the case in which w11 ≤ w10. The incentive constraint ICD boils down

the incentive constraint of the static setting, i.e., ICS . Therefore, under the restriction

w11 ≤ w10, PD is equivalent to PS , hence ws is the solution.

On the other hand, when w11 ≥ w10, the incentive scheme is a JPE, since w01 = w00 = 0,

and ICD is equivalent to:

π(1, 1,w)− c ≥ (1− δ)π(0, 1,w) + δπ(0, 0,w). (ICJ )

Therefore, one can write the conditional problem in this case as follows:

min
w

π(1, 1,w) s.t. ICJ , w11 ≥ w10. (PJ )
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Due to the linearity of the objective function and the constraints, the optimality requires

either to increase or to decrease w11 as much as possible. If latter is the case, then we must

have w11 = w10, due to the condition w11 ≥ w10. Moreover we know that the incentive

constraint ICJ can be rewritten as:

(p1 + δp0)w11 + [1− (p1 + δp0)]w10 ≥ ĉ

As a result, the solution to this auxiliary problem must be either wj = ( ĉ
p1+δp0

, 0, 0, 0), or

wI = (ĉ, ĉ, 0, 0), where ĉ = c
(1−σ)(p1−p0) .

Finally, in order to get the general solution of the problem PD, one just needs to compare

the expected costs of the incentive schemes wj , ws, and wI . The statement follows from

this comparison immediately.

C.3 Proof of Lemma 3.3

The problem PR is defined as follow:

min
w11,w10

[σ + (1− σ)p1]w11 + [(1− σ)p1(1− p1)]w10 s.t. ICS , ÎCR, w11 ≤ w10.

In order to solve this problem, we need to have a precise comprehension of its constraints.

First note that, we can rewrite ICS , ICR, and IC′′R respectively as follows:

w10 + p1(w11 − w10) ≥ ĉ (ICS)

w10 + (1 + δ)p1(w11 − w10) > ĉ (ICR)

w10 + 2p1(w11 − w10) > ĉ (IC′′R)
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The constraint IC′R, on the other hand, is given by:

(
(δ + δ2)p1 − (1− δ2)p0

)
w11 +

(
(δ + δ2 − 1)− (δ + δ2)p1 + (1− δ2)p0

)
w10 > (δ + δ2 − 1)ĉ.

As we can see from this expression, the structure of IC′R crucially depends on the value

of δ. In particular, when δ + δ2 = 1, this constraint boils down to w11 − w10 > 0, which

can never be satisfied since the problem is defined conditional on w11 ≤ w10. In such a

circumstance, to satisfy the constraint ÎCR, the incentive scheme has to satisfy either ICR,

or IC′′R. When δ + δ2 6= 1, we can express IC′R more explicitly as follows:

IC′R =


w10 +

(
1−δ2

1−δ−δ2 p0 − δ+δ2

1−δ−δ2 p1

)
(w11 − w10) < ĉ if δ + δ2 < 1

w10 +
(

δ+δ2

δ+δ2−1
p1 − 1−δ2

δ+δ2−1
p0

)
(w11 − w10) > ĉ if δ + δ2 > 1

The focus is on the incentive schemes satisfying w11 ≤ w10. Thus, the optimal values of

w11, and w10 must belong to the dashed region of the figure C.1.

w11

w10

w11 = w10 = ĉ

(0,0)

Figure C.1: The region satisfying w11 < w10, together with w11 ≥ 0, and w10 ≥ 0.
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The linear lines describing the constraints ICS , ICR, IC′R, IC′′R pass through the point

w11 = w10 = ĉ. Moreover, these lines never intersect again as they have different slopes.

As a result, there are two possibilities for the optimal solution: i) Increase w11 as much as

possible and set it equal to w10. ii) Decrease w11 as much as possible and set it equal to 0.

If precedent is the case, then we have w11 = w10 = ĉ. The corresponding incentive scheme

is an IPE, and the agents’ payments are independent from the performance measure of each

other. Such a scheme is obviously collusion-proof, and hence satisfies the constraints.1

The analysis is more tricky when the optimality requires to decrease w11 = 0. It turns

out that, ICR is the essential constraint to satisfy for fulfilling the comprehensive constraint

ÎCR. In other words, IC′R, and IC′′R are redundant. The redundancy of IC′′R is rather

obvious, because it is always harder to satisfy in comparison to ICR since 2p1 > (1− δ)p1.

To see the redundancy of IC′R, we consider two cases separately. When δ + δ2 > 1, IC′R

is always harder to satisfy in comparison to ICR, because
(

δ+δ2

δ+δ2−1
p1 − 1−δ2

δ+δ2−1
p0

)
> (1 +

δ)p1 in this case. On the other hand, when δ + δ2 < 1, the direction of the inequality

is reversed. In this case, if IC′R was the relevant constraint for fulfilling ÎCR, then the

incentive scheme would satisfy ICS , and IC′R at the same time. But this is impossible as

we have w11 = 0. This stems from the fact that the constraint IC′R, which is equivalent

to
(

1− 1−δ2

1−δ−δ2 p0 + δ+δ2

1−δ−δ2 p1

)
w10 < ĉ in this case, is always violated, even for the smallest

value of w10 satisfying the constraint ICS , i.e., c
1−p1

, regardless the value of δ.

To sum up, when it is optimal to set w11 = 0, the value of w10 must be the minimum

amount fulfilling ICR, and ICS . Therefore, w10 is equal to ĉ
1−(1+δ)p1

.2

Now we would like to show that, when the incentive scheme is restricted to satisfy

w11 ≤ w10, the solution of the problem PR coincides with the solution of the principal’s

problem. We already argued that the incentive scheme wI is free from collusion, and induces

(work,work)∞ as a team equilibrium. This suggests that whenever wI solves PR, it also

1The constraint ÎCR is satisfied as IC′′R is satisfied.
2Since the constraint ICR is based on a strict inequality, the actual optimal value of w10 is infinitesimally

larger than ĉ
1−(1+δ)p1

.
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solves the principal’s problem conditional on w11 ≤ w10.

In order to complete the proof, one needs to show that, wr is also free from collusion.3

To this end, we argue that, (work,work)∞ is the unique sub-game perfect equilibrium when

the incentive scheme is wr; hence it is also the unique team equilibrium.

First step: There is no loss of generality by restricting attention into the strategy profiles

in which the agents condition their effort choices only to the realized effort decisions in the

previous periods. Generally speaking, the agents can condition their effort choices on the

realized performance signals as well. However, for a given sub-game perfect equilibrium of

this sort, one can find another sub-game perfect equilibrium in which the strategy profile

is just a function of the effort decisions of the earlier periods. This stems from the fact

that, the agents can use a public randomization device to coordinate over all the possible

probability distributions over the action profiles that they can reach by conditioning their

efforts on the realized signals. Moreover, modifying a given strategy profile by using such

public randomization would not alter the incentives as the agents only care about their

continuation utilities while choosing their actions.

Second step: When the incentive scheme is wr, the agents never shirk together in a

sub-game perfect equilibrium. Note that, in order to convince an agent to stick with (shirk,

shirk) at some period, his continuation utility must be at least equal to U00, which is defined

by:

(1− δ)π(0, 0,wr) + δU00 = (1− δ)π(1, 0,wr) + δπ(1, 1,wr).

However, when the incentive scheme is wr, there does not exist a strategy profile delivering

an expected utility that is higher than or equal to U00 to both agents at the same time.

To see this, consider a strategy profile, and let λe1e2 be the discounted probability that

the effort pair (e1, e2) being chosen following this initial period at which the agents play

(shirk, shirk). For instance, if the agents alternate between (work, shirk), and (shirk, work)

3Throughout the entire proof, we assume that [1− (1 + δ)p1] > 0, so that wr10 is well defined. Otherwise,
wI would always be the optimal solution of PR, and the statement would be trivially correct.
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afterwards, then we have λ11 = 0, λ10 = 1
1+δ , λ01 = δ

1+δ , and λ00 = 0. It is crucial to note

that, λ11 + λ10 + λ01 + λ00 = 1, since all the terms are multiplied with 1 − δ. Then the

expected continuation utilities of the agents satisfy:

U1 = λ11[π(1, 1,wr)− c] + λ10[π(1, 0,wr)− c] + λ01π(0, 1,wr) + λ00π(0, 0,wr)

U2 = λ11[π(1, 1,wr)− c] + λ01[π(1, 0,wr)− c] + λ10π(0, 1,wr) + λ00π(0, 0,wr)

By using the fact that, λ00 = 1− λ11 − λ10 − λ01, and plugging in the values, one can get:

U1+U2−2U00 =
2c

(p1 − p0)(1− (1 + δ)p1)

[
λ11(δp1−p0)+(λ10+λ01)[(1+δ)p1−2p0]−2(p1 − p0)

δ

]
.

The value of U1 + U2 − 2U00 is strictly negative regardless of the choices of λ11, λ10, and

λ01. Therefore, there does not exist a strategy profile delivering a continuation utility that

is higher than Us to both agents at the same time, hence they never shirk together when

the incentive scheme is wr.

Third step: Unilateral shirking can not be supported in a sub-game perfect equilibrium

either, when the incentive scheme is wr. To prove this, one needs to show that the action

pair (work, shirk) never appears in an equilibrium. From the incentive constraint ICR, we

know that in order to convince the first agent to stick with (shirk, work) when the incentive

scheme is wr, his continuation utility must be set larger than U01, where:

U01 =
1

1 + δ
[π(1, 0,wr)− c] +

δ

1 + δ
[π(0, 1,wr)].

To complete this step of the proof, we will mainly argue that, while providing an expected

utility that is larger than U01 to an agent, it is impossible to not to violate the other agent’s

incentive constraints. First notice that, by the the definition of wr, we know that:

π(1, 1,wr)− c =
δ

1 + δ
[π(1, 0,wr)− c] +

1

1 + δ
[π(0, 1,wr)].4

4Since there is an ε term in the value of wr, there is an arbitrarily small difference between the values of
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Then by using the facts λ00 = 0, and λ11 = 1− λ10 − λ01, we can get:

U1 =
δ + λ10 − δλ01

1 + δ
[π(1, 0,wr)− c] +

1− λ10 + δλ01

1 + δ
π(0, 1,wr)

U2 =
δ + λ01 − δλ10

1 + δ
[π(1, 0,wr)− c] +

1− λ01 + δλ10

1 + δ
π(0, 1,wr)

Thus, in order to keep the first agent’s expected utility higher than U01, we need to have

λ10 − δλ01 > 1− δ. As a result, if an agent’s utility is larger than U01, then his teammate’s

payoff must be smaller than π(1, 1,wr) − c. This stems from the fact that the maximum

value of U2, conditional on λ10−δλ01 ≥ 1−δ, can be achieved when λ10 = 1
1+δ , λ(0, 1) = δ

1+δ ,

and λ11 = 0.

Suppose that the agents play (shirk, work) at period 1 without loss of any generality.

Let λ2
e1,e2 be the corresponding probability of agents playing (e1, e2) at t = 2. Similarly, let

λte1,e2 , be the probability of agents playing (e1, e2) at time t conditional on having played

(shirk, work) in all the previous periods. If probability of always playing (shirk, work) at

periods 1, 2, ...., t− 1 is 0, then λte1,e2 is equal to 0 as well.

Now, we will show that there does not exist a continuation play supporting (shirk, work)

as a sub-game perfect equilibrium. First, there is no loss of generality to assume that, once

the agents play (work, work) in a period, they continue to work together afterwards. By

modifying a given strategy profile, without altering the incentives, one can reach to another

strategy profile that satisfies this condition. Moreover, from the previous paragraph, we

know that, once (work, shirk) is played, the first agent’s continuation utility must be lower

than π(1, 1,wr) − c. Then by putting all these together, we know that the first agent’s

right and left sides of the equlity. However, this does not effect our arguments.
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continuation utility starting from t = 2 satisfies:

U1 <
∞∑
t=2

Λt−1
01 δt−2λt11[π(1, 1,wr)− c] +

∞∑
t=2

Λt−1
01 δt−2λt01(1− δ)π(0, 1,wr)

+
∞∑
t=2

Λt−1
01 δt−2λt10[(1− δ)(π(1, 0,wr)− c) + δ(π(1, 1,wr)− c)],

where Λt01 =
t∏

k=1

λk01 is the probability of having (0, 1)t on the path of play starting from

the first period.5 Then by using the facts, λt10 = 1 − λt11 − λt01, and π(1, 1,wr) − c =

δ
1+δ [π(1, 0,wr)− c] + 1

1+δ [π(0, 1,wr)], one can rewrite the above inequality as follows:

U1 <
∞∑
t=2

Λt−1
01 δt−2

(
1

1 + δ
− 1− δ

1 + δ
λt11 −

1

1 + δ
λt01

)
[π(1, 0,wr)− c]

∞∑
t=2

Λt−1
01 δt−2

(
δ

1 + δ
+

1− δ
1 + δ

λt11 +
1− δ2 − δ

1 + δ
λt01

)
π(0, 1,wr)

However, we know that Λt01 = Λt−1
01 λt01, therefore:

U1 <

(
1

1 + δ
− 1− δ

1 + δ
λ2

11 −
∞∑
t=3

Λt−1
01 δt−2

(
1− δ
δ(1 + δ)

+
1− δ
1 + δ

λt11

))
[π(1, 0,wr)− c]

+

(
δ

1 + δ
+

1− δ
1 + δ

λ2
11 +

∞∑
t=3

Λt−1
01 δt−2

(
1− δ
δ(1 + δ)

+
1− δ
1 + δ

λt11

))
π(0, 1,wr)

The right side of the inequality is maximized by setting λ2
11 = λ2

01 = 0, and is equal to

U01.6 Therefore, it is not possible to convince the first agent to stick with (shirk, work)

at t = 1, while respecting the other agent’s incentives for the future periods. To sum

up, (work,work)∞ is the unique sub-game perfect equilibrium, hence the team equilibrium,

when the incentive scheme is wr.

5Note that Λ1
01 = 1.

6Since λ2
01 = 0, Λt01 = 0 for each t ≥ 2.

155



C.4 Proof of Proposition 3.4

This immediately follows from the comparison between the optimal production plans for

human-human and human-machine production teams.

C.5 Proof of Lemma 3.1

So far, all the proofs are based on the assumption that w01 = w00 = 0.7 Here, we will show

that this assumption is correct. The proof is based on showing that all the “corresponding

problems” that one can define without w00 = w01 = 0 boil down to their counterparts

assuming w00 = w01 = 0. While defining these ”corresponding problems”, we take all the

consequences of not having w00 = w01 = 0 into account.

We examine the principal’s problem by means of two conditional problems as before.

More precisely, we divide the entire space of incentive schemes into two, the ones satisfying

w11 ≥ w10, and w11 ≤ w10 respectively. We focus on characterizing the optimal scheme in

these two sub-spaces separately. We then show that it is optimal to set w01 = w00 = 0 in

both cases.

First step: We, first, limit our attention into the incentive schemes satisfying w11 ≥ w10.

The arguments here basically follow the same steps with the proof of lemma 3.2 without

having any restriction on the values of w01, and w00. We have the following problem:

min
w

(σ + (1− σ)p2
1)w11 + (1− σ)p1(1− p1)(w10 + w01) + (1− σ)(1− p1)2w00

s.t. ICD, w11 ≥ w10.

In the absence of the restrictions imposed on the values of w01, and w00, the condition

7Note that the proof of this lemma is presented after the proofs of lemma 3.2, and lemma 3.3. The reason
to follow this expositional order is due to the fact that this proof uses the notation and the definitions (of
problems and constraints) that are described after lemma 3.1 in the main text.
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w11 ≥ w10 does not directly imply that the incentive scheme is a JPE. In this regard, ICD

may be equivalent to ICS , or ICJ .

p1w11 + (1− p1)w10 − p1w01 − (1− p1)w00 ≥ ĉ, (ICS)

(p1 + δp0)w11 + (1− p1 − δp0)w10 + (δ − p1 − δp0)w01 − (1 + δ − p1 − δp0)w00 ≥ ĉ.

(ICJ )

Obviously, the solution to above problem requires to set w00 = 0, since the coefficients of

w00 are negative in the constraint functions, and positive in the objective function. On the

other hand, the variables w10, and w01 have the same coefficients in the objective function,

while the latter has a smaller coefficient in the constraints. Thus, it is also optimal to set

w00 = 0. As a result, conditional on the incentive scheme satisfying w11 ≥ w10, it is always

optimal to set w01 = w00 = 0.

Second step: Now, we limit our attention into the set of incentive schemes satisfying

w11 ≤ w10. We focus on a variant of the problem PR which arises in the absence of the

assumption w01 = w00 = 0. This problem, which we denote by P ′R, is defined as follows:

min
w

(σ + (1− σ)p2
1)w11 + (1− σ)p1(1− p1)(w10 + w01) + (1− σ)(1− p1)2w00 (P ′R)

s.t. ICD, ÎCR, w11 ≤ w10.

In the absence of w01 = w00 = 0, the condition w11 ≤ w10 is not sufficient to conclude

that the incentive scheme is RPE. To this respect, the problem P ′R accounts for the general

constraint ICD, which may be equivalent to ICS , or ICJ .

In order to figure out how things are different here in comparison to proof of lemma 3.3,

which characterizes the optimal solution of PR, we need to have a better understanding of

the constraints. The corresponding expressions for ICS , ICJ are already given in the first
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step. The constraints ICR, and IC′′R are given by:

w10 + (1 + δ)p1(w11 − w10)− w00 + (δ − (1 + δ)p1)(w01 − w00) > ĉ, (ICR)

w10 + 2p1(w11 − w10)− w00 + (1− 2p1)(w01 − w00) ≥ ĉ. (IC′′R)

Furthermore, we can write IC′R, depending on the value of δ, as follows:

IC′R =


w10 + (1−δ2)p0−(δ+δ2)p1

1−δ−δ2 (w11 − w10)− w00 + (δ+δ2)p1−(1−δ2)p0−δ2

1−δ−δ2 (w01 − w00) < ĉ, if δ + δ2 < 1,

(p1 − δp0)(w11 − w10) + (δ2 + δp0 − p1)(w01 − w00) > 0, if δ + δ2 = 1,

w10 + (δ+δ2)p1−(1−δ2)p0

δ+δ2−1
(w11 − w10)− w00 + δ2+(1−δ2)p0−(δ+δ2)p1

δ+δ2−1
(w10 − w00) > ĉ, if δ + δ2 > 1.

In what follows, we will argue that the solution of P ′R satisfies w01 = w00 = 0, and

conclude that P ′R is equivalent to PR. Suppose not to get a contradiction, i.e., we have either

w01 6= 0, or w00 6= 0. Then, the comprehensive constraint ÎCR must have been fulfilled by

means of satisfying IC′R. Otherwise, if ÎCR was carried through ICR, or IC′′R, then we would

have w01 = w00 = 0. The reasons for this are twofold. First, the constraints ICS , ICJ ,

ICR, and IC′′R increase with the variable w00, yet the objective function decreases. Second,

in all these constraints, the coefficients of w10 are weakly larger than the ones of w01; while

their coefficients are same in the objective function. Therefore, if IC′R was redundant, then

the solution of the problem P ′R would satisfy w01 = w00 = 0. For this reason, conditional

on the hypothesis, IC′R and ICD are the relevant constraints. Next, we separately examine

the three cases that define IC′R.

The case: δ + δ2 > 1. In this case, all the constraints IC′R, ICS , and ICJ increase with the

variable w00, yet the objective function decreases. Moreover, in all these constraints, the

coefficients of the variable w10 are weakly larger than the ones of w01; while they have the

same coefficients in the objective function. Therefore it is optimal to set w01 = w00 = 0,

which gives us a contradiction.

158



The case: δ + δ2 = 1. In this case, the sign of the term (δ2 + δp0 − p1) is crucial for the

analysis, hence we further separate the discussion into three sub-cases.

If δ2 + δp0 − p1 < 0 : IC′R requires w00 > w01 as we already have w11 ≤ w10. Then

the incentive scheme is an RPE, and ICD is equivalent to ICS . Increasing w01, or w00

always hurt the objective function as well as the constraint ICS . Therefore, the only reason

to assign a positive value for w01, or w00 is to fulfill IC′R. Then one can easily see that

w00 must be set infinitesimally larger than p1−δp0

p1−δ2−δp0
(w10 − w11), while w01 is equal to

0. Consequently, the values of w11, and w10 must be arranged in a way to minimize the

objective function, conditional on the corresponding value of w00 and the constraint ICS .

This choice can be seen in the following problem more explicitly.

min
w11≤w10

(σ + (1− σ)p2
1)w11 + (1− σ)p1(1− p1)w10 + (1− σ)(1− p1)2 p1−δp0

p1−δ2−δp0
(w10 − w11)

s.t. p1w11 + (1− p1)w10 − (1− p1) p1−δp0

p1−δ2−δp0
(w10 − w11) ≥ ĉ

Due to the linearity of this problem, w11 is either equal to w10, or equal to 0. The latter

cannot be the case, because the constraint would be violated as it features a negative

coefficient for w10. If precedent is the case, then we have w11 = w10 = ĉ, which also brings

us a contradiction as it requires w01 = w00 = 0.8

If δ2 + δp0 − p1 > 0 : The contradiction follows here as well from similar arguments to

those provided in the previous sub-case.

If δ2 + δp0 − p1 = 0 : We have an immediate contradiction here. Because, it is impos-

sible to satisfy IC′R as it boils down to w11 − w10 > 0, in this case.

The case: δ + δ2 < 1. In this case, the direction of the constraint IC′R is reversed. In contrast

to the previous cases, it now introduces a positive upper bound for an affine function of the

choice variables. From the earlier discussions, we know that fulfilling the constraint IC′R

is the only reason to assign a positive value for w01, and w00. Due to the linearity of the

8This choice satisfies IC′′R, therefore IC′R becomes redundant.
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problem, w11 is either equal to w10, or equal to w00. If the precedent is the case, then the

best we can do is to set w11 = w10 = ĉ. This gives rise to a contradiction as it requires

w01 = w00 = 0. If, on the other hand, it is optimal to set w11 = 0, then the value of w10

must be sufficiently large so that we need to assign a positive value for w01, or w00 in order

to fulfill the constraint IC′R. More precisely, we need w10 = 1−δ−δ2

1−δ−δ2−(1−δ2)p0+(δ+δ2)p1
ĉ+ A,

for some positive A. Moreover, from linearity, it is without loss of generality to assume

that only one of w01, and w00 is positive. Here we will discuss the case where w00 > 0,

and the other case follows from similar arguments. The value of w00 will be just enough to

satisfy IC′R, i.e., w00 = A 1−δ−δ2

1−δ−2δ2−(1−δ2)p0+(δ+δ2)p1
+ ε for some infinitesimally small ε > 0.9

Note that the incentive scheme is RPE in this case, hence ICD is equivalent to ICS . Then,

to satisfy ICS , we must have w00 ≤ A −
p1−(1−δ2)p0

1−p1
1−δ−δ2−(1−δ2)p0+(δ+δ2)p1

ĉ. Summing up these,

we get A (δ+δ2)p1−(1−δ2)p0−δ2

1−δ−2δ2−(1−δ2)p0+(δ+δ2)p1
> ĉ

p1−(1−δ2)p0
1−p1

1−δ−δ2−(1−δ2)p0+(δ+δ2)p1
.10 This condition basically

defines a lower bound for the value of A. Then by using this lower bound, we get that

w10 >
1−δ2+(δ+δ2)p1−(1−δ2)p0

(1−p1)((δ+δ2)p1−(1−δ2)p0−δ2)
. But then there is no need to have a positive value for

w00, because the value of w10 is sufficiently large so that ICR is satisfied at this value when

w00 = 0. Therefore, we can decrease w00 to 0 and improve the objective function without

hurting ICS . As a result IC′R become redundant, and we get a contradiction.

To sum up, the solution to problem P ′R coincides with the solution of PR, which induces

repeated joint work as a team equilibrium outcome. As a result, conditional on the incentive

scheme satisfying w11 ≤ w10, it is always optimal to set w01 = w00 = 0. And this completes

our proof.

9We must have 1− δ − 2δ2 − (1− δ2)p0 + (δ + δ2)p1 > 0, otherwise a contradiction follows immediately
since increasing w00 would not help to meet IC′R.

10We must have (δ + δ2)p1 − (1− δ2)p0 − δ2 > 0; otherwise A would be negative, which contradicts with
our assumption.
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C.6 Proof of Proposition 3.5

For given w and em, the agent has the following problem:

max
e

pweem −
c

2
e2.

The solution to this problem gives us his best response function:

e(w, em) = min{1, κwem}.

Then we can write the principal’s problem as follows:

max
w,em

(1− w)pe(w, em)em −
αc

2
e2
m.

The net value of the success is now equal to 1 − w, since the principal pays w to agent

in case of a success. This term is multiplied with the probability of success, pe(w, em)em.

Finally, since the principal assumes the cost of operating machinery, we subtract it from

her revenue.

We first figure out the optimal plan to induce the maximal effort, e = 1, from the agent.

The wage must be set w = 1
κem

, and hence the principal’s problem boils down to:

max
em

(1− 1

κem
)pem −

αc

2
e2
m.

The first order condition with respect to em is given by:

∂

∂em
= p− αcem.

which is always positive, hence em = 1, and w = 1
κ .

If principal induces agent to choose an effort level e < 1, from his best response function,
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we know that e = κwem, and hence the wage must be set w = e
κem

. Then, we can rewrite

the principal’s problem as follows:

max
w,em

(1− w)wpκe2
m −

αc

2
e2
m.

The first order condition with respect to em is given by

∂

∂em
= 2(1− w)wpκem − αcem,

which is linear in em. Therefore it is optimal to set em at its maximum capacity unless the

principal would like to shut down the production. Then by plugging in em = 1, and taking

the first order condition with respect to w, one can see that it is optimal to set w = 1
2 . This

in turn induces agent to set his effort level to e = κ
2 .

Putting these all together, there are three possibilities for the principal: i) Shutting

down the production. ii) Inducing agent to choose e = κ
2 < 1 with em = 1, and w = 1

2 . iii)

Inducing agent to exert maximal effort e = 1 with em = 1, and w = 1
κ . The corresponding

profit levels of these are 0, pκ
4 −

αc
2 , and p− c− αc

2 respectively. Then the statement of the

proposition immediately follows from a simple comparison between these profit levels.

C.7 Proof of Lemma 3.4

Choosing (0, 0) in every period is a sub-game perfect equilibrium. Therefore, it is natural

to expect to see this to be a team equilibrium when w is not sufficiently large to provide

incentives.

Now assume that for some w, there is a corresponding team equilibrium that induces

positive effort at least for some periods. We want to show that, in this team equilibrium,

the agents choose their maximal effort levels in every period. First note that, there is at

least a period in which the agents receive a positive payoff. This, however, requires that
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the effort pair (e1, e2) = (1, 1) maximizes the agents’ total payoffs in the stage game due to

the increasing marginal returns. Therefore, showing that the repetition of this effort pair

in every period can be sustained as a sub-game perfect equilibrium would be sufficient to

complete our proof. This stems from the fact that there cannot be any other SPE bringing a

higher total payoff to agents. To get a contradiction, suppose that choosing (e1, e2) = (1, 1)

in every period cannot be sustained even with the most sever punishment, i.e., exerting

minimal effort in all the remaining periods. Thus, deviating to the best response in a

period is a profitable deviation for agent i. In other words:

wp− c

2
< (1− δ)[wpe(w, 1)− c

2
(e(w, 1))2].

It must be e(w, 1) = min{1, wκ} = wκ, because otherwise the agents are already best

responding to each other and do not want to deviate. Therefore, we must have

wp <
c

2
+ (1− δ)w

2p2

2c
.

However, we already know that the team equilibrium, that we have started with, induces

an effort profile (e1, e2) >> (0, 0) at least for some periods. Therefore this profile must

also be sustained as a SPE with the most sever punishment. In other words, the following

incentive constraints for agent 1 and 2 must be satisfied respectively.11

wpe1e2 −
c

2
e2

1 ≥ (1− δ)[w
2p2

2c
e2

2]

wpe1e2 −
c

2
e2

2 ≥ (1− δ)[w
2p2

2c
e2

1]

By reorganizing these two inequalities one can get get:

wp ≥ c

2

(
e2

1 + e2
2

2e1e2

)
+ (1− δ)w

2p2

2c

(
e2

1 + e2
2

2e1e2

)
11These expressions are based on the fact that ei(w, e1) = min{1, wκej} = wκej . The second equality

follows from the fact that e(w, 1) = min{1, wκ} = wκ.
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But this contradicts with wp < c
2 + (1− δ)w

2p2

2c , because e1, e2 ≤ 1, and hence
e21+e22
2e1e2

≥ 1.

C.8 Proof of Proposition 3.6

The optimal plan either induces the maximal effort in every period, or shuts down the

production. The incentive constraint will be relevant only if it induces effort. Denoting

x = wp, one can rewrite the incentive constraint as follows:

−(1− δ)x2 + 2cx− c2 ≥ 0

The principal will choose the minimum possible value of w satisfying the above condition.

We know that x = c
1+
√
δ

is the minimum value of x at which the above inequality is satisfied.

Therefore it is optimal to set w = c
p(1+

√
δ)

. Thus, the principal has a positive profit only if

κ ≥ 2
1+
√
δ
, where κ = p

c . Otherwise it is optimal to shut down the production.
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