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Leaving Home: Demographic, Endocrine, And Behavioral Correlates Of
Dispersal In Monogamous Owl Monkeys (aotus Azarae) Of Argentina

Abstract
Natal dispersal, the movement of individuals from their birthplace to new areas in which they may breed, is an
important aspect of life history that influences a variety of processes. Understanding dispersal not only
increases our theoretical knowledge of the evolution of mating systems and social dynamics, but also provides
insights essential for effective population management and for predicting the consequences that
environmental changes may have on species’ distributions. This dissertation takes a holistic approach to
explore natal dispersal at the level of the population, group, and individual in Azara’s owl monkey (Aotus
azarae), a social monogamous primate native to South America. All data presented in this dissertation were
collected at a long-term field site of the Owl Monkey Project in the Gran Chaco region of Formosa, Argentina.
Chapter two examines dispersal at the level of the community, by exploring how demographic changes and
environmental variables are associated with dispersal. The timing of dispersal was highly flexible, suggesting
that delaying dispersal may be an adaptive strategy that owl monkeys utilize to minimize dispersal costs and
maintain access to benefits provided by the natal group. Chapter three narrows the focus to the level of the
group, and finds that behaviors, particularly agonism among group members, may function to regulate
dispersal as well as mediate competition amongst adults and predispersed offspring. The next two chapters
narrow the focus even further, to the individual level. Chapter four, which examines hormonal correlates of
development and dispersal, finds that females experience the onset of sexual maturity prior to dispersing.
Chapter five follows dispersing individuals thorough the entire process of dispersal to investigate the ultimate
fates of dispersers. Dispersal strategies were highly variable, but individuals often prospected prior to
permanently dispersing and almost always spent time as solitary “floaters”. Together, these investigations
provide insight into both proximate and ultimate causes for dispersal and allow for the development of a
multifaceted understanding of dispersal patterns in a socially monogamous primate. The holistic approach to
understanding dispersal taken in this dissertation is one that could be useful for increasing our understanding
of dispersal in many other taxa.
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ABSTRACT 

LEAVING HOME: DEMOGRAPHIC, ENDOCRINE, AND BEHAVIORAL 

CORRELATES OF DISPERSAL IN MONOGAMOUS OWL MONKEYS (AOTUS 

AZARAE) OF ARGENTINA  

Margaret K. Corley 

Theodore G. Schurr 

 

Natal dispersal, the movement of individuals from their birthplace to new areas in 

which they may breed, is an important aspect of life history that influences a variety of 

processes. Understanding dispersal not only increases our theoretical knowledge of the 

evolution of mating systems and social dynamics, but also provides insights essential for 

effective population management and for predicting the consequences that environmental 

changes may have on species’ distributions. This dissertation takes a holistic approach to 

explore natal dispersal at the level of the population, group, and individual in Azara’s owl 

monkey (Aotus azarae), a social monogamous primate native to South America. All data 

presented in this dissertation were collected at a long-term field site of the Owl Monkey 

Project in the Gran Chaco region of Formosa, Argentina. Chapter two examines dispersal at 

the level of the community, by exploring how demographic changes and environmental 

variables are associated with dispersal. The timing of dispersal was highly flexible, 

suggesting that delaying dispersal may be an adaptive strategy that owl monkeys utilize to 

minimize dispersal costs and maintain access to benefits provided by the natal group. Chapter 

three narrows the focus to the level of the group, and finds that behaviors, particularly 
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agonism among group members, may function to regulate dispersal as well as mediate 

competition amongst adults and predispersed offspring. The next two chapters narrow the 

focus even further, to the individual level. Chapter four, which examines hormonal correlates 

of development and dispersal, finds that females experience the onset of sexual maturity prior 

to dispersing. Chapter five follows dispersing individuals thorough the entire process of 

dispersal to investigate the ultimate fates of dispersers. Dispersal strategies were highly 

variable, but individuals often prospected prior to permanently dispersing and almost always 

spent time as solitary “floaters”. Together, these investigations provide insight into both 

proximate and ultimate causes for dispersal and allow for the development of a multifaceted 

understanding of dispersal patterns in a socially monogamous primate. The holistic approach 

to understanding dispersal taken in this dissertation is one that could be useful for increasing 

our understanding of dispersal in many other taxa. 
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PREFACE 

This dissertation explores natal dispersal in Azara’s owl monkeys (Aotus azarae), a 

social monogamous primate native to South America.  

Chapter one provides an introduction to the study species and the topic of dispersal. It 

summarizes the theoretical frameworks that researchers have utilized to study and understand 

dispersal patterns, with a focus on primates and socially monogamous species in particular. 

Each subsequent chapter then describes an investigation into one or more aspects of natal 

dispersal in owl monkeys. First, chapter two examines dispersal at the level of the 

community, by exploring how demographic changes and environmental variables are 

associated with dispersal patterns and variation in the timing of dispersal. Chapter three 

narrows the focus to the level of the group, and investigates how behavior, particularly 

agonism, among group members may function to regulate dispersal. Chapters four and five 

narrow the focus even further, to the individual level. Chapter four examines hormonal 

correlates of development and dispersal in juvenile and subadult females and Chapter five 

follows individuals through the entire dispersal process and describes what we know about 

the ultimate fates of dispersers. 

Together, these investigations provide insight into both proximate and ultimate 

causes for dispersal patterns in this socially monogamous primate. Evolutionary theory has 

long recognized that addressing different types of questions, or “levels” of explanation, is 

essential for developing a comprehensive understanding of a behavioral trait [Mayr, 1961; 

Tinbergen, 1963]. While drawing a strict distinction between proximate and ultimate 

explanations is not always useful [Laland et al., 2011], an approach that investigates a 

behavior by addressing several or all of Tinbergen’s questions provides complementary 
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insights and leads to a more complete understanding [Barrett et al., 2013; Bateson and 

Laland, 2013; Holekamp and Sherman, 1989; Tinbergen, 1963].  

The work presented thus here takes a more holistic approach than many previous 

studies of dispersal, and aims to provide a template for a more integrative method of 

examining dispersal patterns. Specifically, this project evaluates mating and resource 

competition avoidance hypotheses for explaining the evolution and maintenance of dispersal 

patterns, examines endocrine and behavioral mechanism that may function to regulate 

dispersal, and explores the ontogeny of these mechanisms to provide a multifaceted 

understanding owl monkey dispersal. In addition to expanding our understanding of owl 

monkeys, it is my hope that the results will be utilized to refine hypotheses and stimulate 

additional empirical research into dispersal and provide a better understanding of dispersal 

patterns in socially monogamous species of primates and other organisms in general.  
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Chapter 1. Introduction 

 

What is dispersal and why is it important? 

Natal dispersal, the movement of individuals from their birthplace to new areas in 

which they may breed, is an important aspect of life history that influences a variety of 

processes at the level of the individual, group and population. From the perspective of an 

individual, it is a behavioral strategy that has consequences for health, reproductive 

opportunities, and fitness [Bonte et al., 2012; Clobert et al., 2001; Ekman, 2007; Ekman et 

al., 1999; Kesler et al., 2007]. Dispersal also influences group dynamics and social 

interactions among group members, which makes it essential for explaining the evolution of 

social monogamy and other mating systems [Dobson, 1982; Emlen, 1997; Greenwood, 1980; 

Lawson Handley and Perrin, 2007]. At a population level, patterns and sex-biases in dispersal 

impact gene flow and community dynamics [Clobert et al., 2009]. Understanding dispersal 

therefore not only increases our theoretical knowledge of the evolution of mating systems 

and social dynamics, but also provides insights essential for effective population management 

and predicting the consequences that environmental changes may have on species’ 

distributions [Cote et al., 2010; Flesch et al., 2010].  

While dispersal is important on many levels, I must first address the question of why 

individuals disperse. Leaving a natal group typically confronts dispersing offspring with a 

variety of potentially substantial costs, in terms of time, energy, and risk. Potential costs 

include decreased access to resources or foraging efficiency after leaving the natal territory, 

increased rates of aggression from unfamiliar conspecifics, social isolation and an increased 
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risk of predation (particularly if dispersal entails ranging solitary for a period of time), all of 

which may be associated with increased risk of mortality or delayed reproduction [Berger, 

1987; Bonte et al., 2012; Jones, 2003; Nishida et al., 2003]. Yet, in spite of these costs, natal 

dispersal by at least some individuals is a behavior common to many animals, including all 

primate taxa [Isbell and Van Vuren, 1996; Pusey and Packer, 1987]. If dispersal has evolved 

to be so widespread a phenomenon, then it must provide dispersers with benefits that 

outweigh the costs. Commonly proposed benefits of dispersal include decreasing the risks of 

inbreeding and avoiding competition for resources and/or mates [Dobson, 1982; Greenwood, 

1980; Isbell, 2004; Perrin and Mazalov, 1999; Pusey, 1987]. However, precisely which of 

these benefits are most important and how they co-vary with aspects of ecology and social 

systems remains a topic of ongoing research and debate. 

 

Explaining patterns of natal dispersal: Socioecological models and variation 

In many vertebrate taxa, only a portion of individuals disperse, while the rest remain 

in the natal group to breed. One factor that may determine the division of dispersers and non-

dispersers is sex. In fact, it has long been recognized that many species of birds and mammals 

exhibit sex-biases in dispersal, where one sex tends to disperse further or more frequently 

than the other. A tight link between dispersal patterns, mating systems, and life history traits 

has been proposed to explain how these sex-biased patterns have evolved [Dobson, 1982; 

Greenwood, 1983; Greenwood, 1980; Nagy et al., 2007; Trochet et al., 2016; Wolff, 1994]. 

The framework for our current understanding of how sex-biased dispersal patterns are 

related to mating systems originates primarily from work by Greenwood [1980, 1983] and 

Dobson [1982]. Greenwood [1980] predicted that dispersal is male-biased in female-defense 
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polygynous species (e.g., many mammals) and female-biased in mating systems associated 

with resource defense (e.g., many birds). These predictions are based on the idea that the sex 

that invests more in offspring care or the defense of a territory and other resources will be the 

one to stay, because individuals of that sex benefit the most from philopatry. Dobson [1982] 

expanded upon this link between mating system and sex-biases in dispersal to consider 

monogamous mammals. He proposed that, since competition for mates should be 

approximately equal for males and females in monogamous mating systems, both sexes 

should disperse at similar rates. 

Following this seminal work, numerous studies have utilized behavioral and/or 

molecular data to test the link between dispersal and mating system in a variety of avian and 

mammalian taxa [Lawson Handley and Perrin, 2007]. While the predicted relationships have 

been documented in many species [Clarke et al., 1997; Dobson, 1982], many other species do 

not conform to expected patterns [Clarke et al., 1997; Clutton-Brock, 1989; Moore, 1992]. 

Primates are an excellent example of a taxon in which variation in dispersal patterns does not 

fit traditional theoretical formulations. While the expected mammalian pattern of male-biased 

dispersal occurs in the majority of primates [Pusey and Packer, 1987], a substantial number, 

including chimpanzees and bonobos [Kano, 1992; Pusey, 1980], spider monkeys [McFarland 

Symington, 1987], and muriquis [Strier, 1996], typically exhibit female-biased dispersal 

[Furuichi et al., 2015]. In other polygynous primate species, both sexes may disperse (e.g., 

gorillas [Harcourt et al., 1976; Robbins et al., 2009; Stokes et al., 2003], hamadryas baboons 

[Hammond et al., 2006], howler monkeys [Clarke and Glander, 2008; Crockett and Pope, 

1993; Glander, 1992], woolly monkeys [Di Fiore et al., 2009], langurs [Stanford, 1991; 
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Sterck, 1998], colobus monkeys [Struhsaker, 2010; Teichroeb et al., 2009], golden snub-

nosed monkeys [Yan, 2012]). 

Bisexual dispersal appears to be common among socially monogamous species of a 

variety of mammals (Alabama beach mouse: [Swilling Jr and Wooten, 2002], titi monkey: 

[Bossuyt, 2002]; gibbon: [Brockelman et al., 1998; Reichard, 2003], Japanese serow: [Ochiai 

and Susaki, 2007]; owl monkey: [Fernandez-Duque, 2009], foxes and jackals: [Kapota et al., 

2016], beavers: [Mayer et al., 2017]). However, even when both sexes leave the natal group, 

it does not necessarily mean that all aspects of dispersal are similar for males and females. 

For example, while Sumatran siamangs (Symphalangus syndactylus) exhibit bisexual 

dispersal, genetic data suggest that males are more likely than females to disperse to areas 

adjacent to their natal groups [Lappan, 2007], whereas hamadryas baboon (Papio 

hamadryas) males are less likely than females to disperse out of social bands [Stadele et al., 

2015]. In contrast, males generally disperse further than females in mountain gorilla (Gorilla 

beringei beringei) [Roy et al., 2014] and tarsiers (Tarsius spectrum) [Gursky, 2010]. 

It is now evident that the relationship between dispersal patterns and mating systems 

is not a simple one, and there is no one “typical” primate dispersal pattern [Lawson Handley 

and Perrin, 2007; Strier, 1994]. It has been suggested that the evolutionary history of the 

taxon may be more useful than its mating system for predicting which sex disperses [Di Fiore 

and Rendall, 1994; Perrin and Mazalov, 1999]. While there is some evidence to support this 

view, sex-biases in dispersal do not strictly follow phylogenetic patterns, either [Mabry et al., 

2013], and different patterns can be found in closely related taxa [Blair and Melnick, 2012; 

Boinski et al., 2005]. Instead, a more detailed knowledge of the social and mating systems 

and the behavioral ecology of a species is typically important for predicting the sex that 
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disperses [Clobert et al., 2001]. For example, among polygynous mammals, factors such as 

the tenure length of adult males and patterns of relatedness within groups can help to explain 

which individuals will disperse [Clutton-Brock, 1989]. This observation highlights the 

importance of considering factors that may influence dispersal on an individual basis for each 

species of interest, rather than assuming that variation in sex-biased dispersal within taxa is 

necessarily caused by social mating system or phylogeny.  

Theoretical work has developed a variety of explanatory models that look beyond 

mating system to provide ultimate explanations for observed patterns of dispersal [Johnson 

and Gaines, 1990; Kokko and Lundberg, 2001; Perrin and Mazalov, 2000]. These are 

generally organized around three hypotheses related to the avoidance of either inbreeding, 

mate competition, or resource competition. The inbreeding avoidance hypothesis proposes 

that the evolution of dispersal from the natal group is driven by the risk of mating with close 

kin [Clutton-Brock, 1989; Dobson, 1982; Greenwood, 1980; Perrin and Mazalov, 1999; 

Pusey and Wolf, 1996; Pusey and Packer, 1987; Wolff, 1994]. Competition avoidance 

hypotheses propose that the evolution of dispersal is driven by a need to minimize the fitness 

detriments of competing with kin for mating opportunities or for food resources [Dobson, 

1982; Greenwood, 1980; Perrin and Mazalov, 2000].  

Socioecological models were essential in driving the development of our 

understanding of patterns of behavioral variation, and continue to inform our understanding 

of dispersal patterns. Despite this extensive theoretical work, evolutionary explanations for 

patterns of dispersal are still hotly debated. The relative importance of inbreeding, mate 

competition, and resource competition as factors driving the evolution of dispersal patterns 

likely vary from species to species, and consequently there remains a need to bridge the gap 



6 
 

between theory and empirical observations [Duputié and Massol, 2013; Jack and Isbell, 2009; 

Lawson Handley and Perrin, 2007; Taborsky, 2008].  

Researchers are now acknowledging more explicitly the importance of extensive 

intraspecific variation and flexibility in dispersal and other behaviors [Strier, 2017]. Sex 

biases in dispersal within a species may show geographical and/or temporal variation [Clarke 

et al., 1997], with primate dispersal strategies often varying from year to year or from site to 

site, based on local ecological or social conditions [Aureli et al., 2013; Minhos et al., 2013; 

Miyamoto et al., 2013]. Even within a relatively small geographic area, there may be 

variation among groups, as has been observed in colobus monkeys [Wikberg et al., 2012]. At 

an even smaller scale, variation can exist within a single group. For example, some 

chimpanzee females disperse while others forgo dispersal and breed in their natal community 

[Walker, 2015]. Individuals in some species may also disperse in parallel with other members 

of their natal group, potentially influencing patterns of relatedness among groups [Cheney 

and Seyfarth, 1983; Jack and Fedigan, 2004; Jones, 1983; Mitchell, 1994; Schoof et al., 2009; 

Teichroeb et al., 2009]. This variation in dispersal strategies among members of a single 

species suggests that many primate taxa can flexibly respond to signals in their social and 

physical environments, which in turn may help them minimize risks and optimize fitness 

[Strier, 2017]. 

As empirical evidence on widespread intraspecific variation among primates 

accumulates, much recent theoretical work has taken a more individual-based approach to 

studying dispersal [Bonte and Dahirel, 2016; Jack and Isbell, 2009; Murren et al., 2001]. 

Some of this work views dispersal as a multi-phase life-history process, consisting of 

departure from the natal area, a transient phase of movement while searching for a new place 
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to live, and finally settlement in a new area [Bonte et al., 2012; Clobert et al., 2009; Ronce, 

2007; Travis et al., 2012]. Each of these stages may be under selection to reduce the overall 

cost of dispersal [Bonte and Dahirel, 2016; Travis et al., 2012]. Unfortunately, empirical 

studies often do not distinguish between these three stages, and this omission can confound 

our understanding of the influences that social or ecological factors have [Cote et al., 2010].  

Explicitly incorporating dispersal into life-history theory can be valuable. 

Importantly, it allows researchers to understand the connection between dispersal and other 

life-history traits (i.e., “dispersal syndromes”) [Ronce and Clobert, 2012]. Viewing dispersal 

as a context-dependent dimension of life history that can be understood in terms of trade-offs 

can also aid in explaining variation in dispersal strategies among and within species, and help 

to integrate proximate and ultimate approaches [Stamps, 2001]. Some theoreticians even 

advocate placing dispersal at the center of a life-history theory approach, as a principle axis 

of variation influencing fitness, though a unifying theory describing how dispersal and other 

life-history traits change with local ecological conditions is presently lacking [Bonte and 

Dahirel, 2016]. 

 

Dispersal in “monogamous” primates 

Monogamous mammals are predicted to have bisexual dispersal. Both sexes are 

expected to disperse prior to reproducing because the only available members of the opposite 

sex present in the natal group are generally assumed to be close kin (parents or siblings) 

[Dobson, 1982]. However, in reality, both the composition of “monogamous” groups and 

patterns of dispersal among its members are more varied. 
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Monogamy, within non-human primates, has traditionally been defined as a 

prolonged association between one male and one female, characterized by exclusive mating 

[Wittenberger and Tilson, 1980]. While monogamy is a mating system, the terms 

“monogamous” and “socially monogamous” are often used to describe the social systems of a 

variety of taxa [Díaz‐Muñoz and Bales, 2016]. Monogamy has therefore come to be 

associated with several concepts and behaviors, such as pair-living, pair-bonding, and living 

in “nuclear family groups” consisting of closely related kin. While pair-living and family 

groups may sometimes be associated with monogamous mating systems, these are distinct 

phenomena that do not always come hand-in-hand with strict monogamy [Fuentes, 1998; 

Garber et al., 2016; Tecot et al., 2016].  

 Some pair-living species do mate monogamously and can be characterized as 

genetically monogamous (e.g., birds: [Goncalves da Silva et al., 2010; Morton et al., 1998; 

Piper et al., 1997; Quinn et al., 1999]; fish: [DeWoody et al., 2000; Taylor et al., 2003]; 

primates: [Huck et al., 2014a]). However, many other pair-living species live in social groups 

consisting of pairs in which either the male, the female, or both engage in mating behaviors 

with other individuals (i.e., extra-pair copulations) (e.g., birds: [Blomqvist et al., 2002; 

Brooker et al., 1990; Brouwer et al., 2011; Cockburn et al., 2003; Westneat and Sherman, 

1997]; primates: [Fuentes, 1998; Palombit, 1994; Reichard, 1995]; other vertebrates: [Bull et 

al., 1998; Cohas and Allaine, 2009; While et al., 2009]).  

Further complicating matters, some species that are generally referred to as socially 

monogamous may live in social groups with more than one adult male or female. Among 

primates, for example, social structures of gibbons and saki monkeys are more flexible than 

traditionally assumed [Norconk, 2011; Sommer and Reichard, 2000], with groups of white-



9 
 

faced sakis (Pithecia pithecia) and white-handed gibbons (Hylobates lar) at some sites 

frequently containing more than one adult male [Barelli et al., 2008; Reichard and Barelli, 

2008; Thompson and Norconk, 2011]. Many taxa categorized as “monogamous” would 

therefore be better described as pair-living [Fuentes, 1998; Palombit, 1994; Sommer and 

Reichard, 2000; Tecot et al., 2016], since they typically do not contain just one male, one 

female, and their genetically related offspring.  

Serial monogamy, or the replacement of one adult in a breeding pair, can also 

produce group structures that differ from the nuclear family groups commonly assumed for 

monogamous species. This is true even for genetically monogamous species in which extra-

pair copulations are rare or absent, such as owl monkeys (A. azarae) [Fernandez-Duque and 

Huck, 2013]. In addition to owl monkeys, the replacement of reproductive adults is also 

frequent in equatorial saki monkeys (Pithecia aequatorialis) [Di Fiore et al., 2007; Van Belle 

et al., 2016] and several species of gibbon [Brockelman et al., 1998; Koda et al., 2012; 

Palombit, 1994].  

The use of monogamy to refer to a range of social systems, behaviors, and a mating 

system makes it difficult to evaluate the selective pressures for these phenomena [Tecot et al., 

2016]. Likewise, explaining patterns of dispersal observed in socially monogamous taxa is 

complicated by the fact that “monogamous” species really encompass a variety of social and 

mating systems. The costs and benefits of philopatry and dispersal clearly differ between 

genetically and socially monogamous systems and between pair-living “family” groups and 

groups containing unrelated (extra-pair) adults. We thus might expect taxa with genetically 

monogamous mating systems to show different patterns of dispersal than pair-living taxa in 

which extrapair paternity is frequent. Under the consideration of strict monogamy, it is 
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hypothesized that offspring of both sexes must typically disperse prior to reproducing due to 

a lack of unrelated mates [Greenwood, 1980; Perrin and Mazalov, 1999; Pusey and Wolf, 

1996]. However, as discussed above, serial monogamy and extra-pair copulations often result 

in situations in which offspring in monogamous groups are residing with unrelated adults of 

the opposite sex. Lower levels of relatedness among groups members compared to what is 

traditionally expected under a strictly monogamous mating system could thus help to explain 

why evidence for some hypotheses, particularly the inbreeding avoidance hypothesis, has 

been inconsistent [Brooker et al., 1990; Brouwer et al., 2011]. 

 

Delayed Dispersal 

Dispersal is generally considered to be “delayed” when offspring remain with their 

natal group after they become physiologically capable of reproducing [Ekman et al., 2004]. 

In monogamous taxa, potential mating partners available in an individual’s natal group are 

often close relatives (e.g., parents or siblings). In such cases, individuals must disperse prior 

to reproducing if they are to avoid inbreeding. Even in taxa where unrelated mates may be 

available in the natal group, due to extra-pair copulations or serial monogamy, offspring 

frequently do not reproduce prior to dispersing [Fernandez-Duque, 2009; Palombit, 1995; 

Reichard and Barelli, 2008; Van Belle et al., 2016]. Since lifetime reproductive success can 

be increased by beginning reproduction early [Altmann et al., 1988], delayed dispersal in 

monogamous taxa seems somewhat counterintuitive. In spite of this seeming contradiction, 

offspring of many taxa delay dispersal, and thus delay opportunities to reproduce, by 

remaining in their natal groups even after they reach sexual maturity. The reasons why 
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individuals delay dispersal and, at least temporarily, forgo their own reproduction requires 

further explanation.  

One explanation is that delaying dispersal may benefit individuals by allowing them 

to eventually inherit natal territories [Koenig et al., 1992; Kokko and Johnstone, 1999; Wiley 

and Rabenold, 1984; Zack and Stutchbury, 1992]. This phenomenon, sometimes referred to 

as queuing, is “delayed” dispersal at its most extreme, as it allows an individual, who would 

otherwise need to disperse to avoid breeding with relatives, to avoid the costs of dispersing 

entirely. However, queuing carries its own risks. While queuing order may be relatively strict 

in some cases [Creel and Rabenold, 1994; East and Hofer, 2001; Field et al., 2006; Russell 

and Rowley, 1993; Wiley and Rabenold, 1984], the individual who fills a breeding vacancy 

in a territory is not necessary the one who has been queuing for it the longest, and individuals 

may be evicted by natal group members who inherit a breeding position ahead of them 

[Balshine-Earn et al., 1998; Cant et al., 2006]. Vacancies may also be filled by dispersing 

individuals from neighboring territories or by solitary “floaters” through scramble 

competition, rather than by those in the queue [Cant and English, 2006; Lazaro-Perea et al., 

2000; Stiver et al., 2006]. Thus, queuing can be a risky strategy that does not guarantee the 

inheritance of a breeding position.  

Another popular explanation is that individuals may receive indirect fitness benefits 

by remaining in their natal groups to care for younger siblings. In some taxa, individuals who 

delay dispersal become nonbreeding helpers in their natal group [Baglione et al., 2002; 

Brown, 1993; Cockburn, 1998; Ekman et al., 2004], even if they do not typically inherit natal 

territories [Baglione et al., 2003]. However, delayed dispersal and allocare do not always 

occur together [Kokko et al., 2001]. Even amongst cooperatively breeding taxa, helping 
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behavior may actually be an epiphenomenon of delayed dispersal, rather than the underlying 

cause or explanation for it [Cockburn, 1998; Dillard and Westneat, 2016; Ekman et al., 2001; 

Koenig et al., 1992]. 

While inheriting the natal territory and/or providing alloparental care may be 

sufficient for explaining delayed dispersal in some taxa, other taxa in which individuals 

frequently delay dispersal are not characterized by territorial inheritance or cooperative 

breeding. For example, in some species of birds, offspring delay dispersal from their natal 

territory, but do not provide help at the nest [Curry, 1988; Ekman et al., 1994; Gamero et al., 

2014; Gayou, 1986; Green and Cockburn, 2001; Strickland, 1991; Veltman, 1989]. Similarly, 

monogamous owl monkey offspring frequently delay dispersal without either providing 

allocare or inheriting breeding positions within their natal territory. For these taxa, 

researchers must seek other explanations for delayed dispersal. 

 Ecological constraints have often been proposed to explain the retention of offspring 

in natal groups [Emlen, 1982; Emlen, 1995; Koford et al., 1986; Stacey and Koenig, 1990; 

Walters et al., 1988], and there is evidence from some species of birds and reptiles to support 

this claim [Halliwell et al., 2017; Komdeur, 1992; Pruett-Jones and Lewis, 1990; Walters et 

al., 1992; Zeng et al., 2016]. However, there is also evidence from both quantitative modeling 

and empirical studies in a variety of taxa to suggest that attempts to explain delayed dispersal 

primarily through ecological constraints outside the natal territory (e.g., habitat saturation) 

are too simplistic [Ekman et al., 2002; Koenig et al., 2016; Kokko and Ekman, 2002; Stacey 

and Ligon, 1991]. 

Rather than ecological constraints, the benefits of philopatry have been posited as a 

force selecting for the retention of offspring in the natal group [Stacey and Ligon, 1991]. 
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Delaying dispersal can allow individuals to prolong their access to the benefits associated 

with living in their natal group, while postponing potential costs of dispersal until those costs 

are lessened or individuals become more equipped to handle them. For example, by 

extending their time in the natal group, offspring may maintain access to group-held 

resources or increase skills, such as foraging efficiency [Gamero and Kappeler, 2015].  

Prolonged access to natal group members may also provide offspring with benefits of 

social living, which would be eliminated if they dispersed to become solitary floaters [Ekman 

et al., 2004; Koenig et al., 2016]. Being part of a group provides a variety of benefits [Silk, 

2007]. Group-living may provide important thermoregulatory benefits, particularly in 

climates that have cold seasons or have large temperature fluctuations [Hayes, 2000; Weidt et 

al., 2004]. Being in a group can also increase vigilance for predator detection and avoidance, 

which can benefit individuals in both cooperative and non-cooperative breeding taxa [Caro, 

2005; Ebensperger and Wallem, 2002; Groenewoud et al., 2016; Lima, 1995; Tanaka et al., 

2016; Treves, 1998; Wrona and Dixon, 1991]. Social bonds within groups may further be 

important for the health and fitness of individuals [Seyfarth and Cheney, 2012]. Evidence to 

support this idea comes from baboons, in which social bonds in females have been shown to 

increase infant survival [Silk et al., 2003]. Among social species, departing from a group to 

range solitarily, even for relatively brief periods, can negatively impact individuals [Young 

and Monfort, 2009].  

Beyond the general benefits of group living, remaining in a natal group in which 

close kin are present may also provide offspring with “nepotistic benefits”, ranging from 

tolerance to pro-social behaviors, like cooperation and grooming [Ekman et al., 2000; Kokko 

and Ekman, 2002; Strier, 2008]. Both kin selection theory [Hamilton, 1964] and empirical 
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studies suggest that remaining with close kin in the natal group offers benefits that would 

likely be unavailable to dispersing individuals, even if they could forgo a solitary life-history 

stage and directly enter a new group with unrelated conspecifics.  

Explanations for delayed dispersal based on nepotistic benefits (i.e., the safe haven 

hypothesis) [Ekman et al., 2000; Kokko and Ekman, 2002], have received empirical support 

in a variety of taxa. Maintaining residence in a group that provides opportunities to cooperate 

with kin is linked to increased offspring survival in a variety of mammals [Arnold, 1990; Silk 

et al., 2009; Viblanc et al., 2010]. Nepotistic benefits other than increased survival are also 

possible. Among birds, experimental evidence from Siberian jays (Perisoreus infaustus) 

indicates fathers provide a safe haven in which offspring can take advantage of natal territory 

resources without serious competitive interference from extra-group individuals [Ekman and 

Griesser, 2002]. Western bluebird (Sialia mexicana) sons also receive access to space and 

resources by delaying dispersal when parents are present [Dickinson et al., 2014]. Among 

mammals, prairie dogs are less likely to disperse when their genetic mother and siblings, with 

whom they often cooperate, remain in the natal group [Hoogland, 2013]. Thus, the presence 

of parents or other close kin may frequently encourage individuals to delay dispersal and 

utilize their natal group as a safe haven while waiting for breeding opportunities to arise 

[Kokko and Ekman, 2002]. 

Delaying dispersal may also help offspring monitor conditions or reproductive 

opportunities in nearby territories, while still maintaining access to safe havens provided by 

their natal group. Separating from the natal group and exploring extra-territorial areas prior to 

permanently dispersing is commonly known as “prospecting”, and this behavior appears to 

be common in a variety of birds and mammals [Kingma et al., 2016; Mares, 2012; Raihani et 
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al., 2010; Reed et al., 1999; Ridley et al., 2008; Solomon, 2003]. The relative costs and 

benefits of remaining in a natal group versus dispersing typically vary over time as climatic 

conditions, environmental quality, and local reproductive opportunities fluctuate [Jones, 

2005]. Consequently, prospecting can benefit individuals by providing them with information 

about the quality of nearby territories or mates [Dittmann et al., 2005; Selonen and Hanski, 

2010]. It may also allow them to time their dispersal to coincide with periods of relatively 

low costs (e.g., when vacancies are available in neighboring groups), or allow males to 

engage in extra-group breeding prior to dispersing [Eikenaar et al., 2008; Griffin et al., 2003; 

Young et al., 2007]. 

While prospecting can allow individuals to gather information about breeding 

vacancies or the quality of nearby territories or potential mates, it often entails costs [Kingma 

et al., 2016; Young and Monfort, 2009]. Individuals may receive aggression from residents in 

whose territories they are prospecting [Doolan and Macdonald, 1996; Lazaro-Perea, 2001; 

Raihani et al., 2010], and prolonged prospecting expeditions may result in chronic stress 

[Young and Monfort, 2009]. Individuals may selectively time prospecting expeditions to 

minimize these costs, although the cues individuals utilize to make prospecting decisions are 

still unclear for most taxa [Mares et al., 2014]. 

In summary, delaying dispersal offers a variety of potential benefits that may 

outweigh the costs of delaying one’s own reproduction. Remaining in familiar natal group 

territories while monitoring reproductive opportunities via prospecting can allow individuals 

to minimize dispersal costs. The incentives for delaying dispersal may be particularly high 

when nepotistic benefits are available due to high relatedness within the natal group [Ekman 

et al., 2001; Kokko and Ekman, 2002]. To explain variation in age at dispersal and better 



16 
 

understand why individuals eventually stop delaying dispersal and finally leave the relative 

safety of their natal group requires closer examination of both the solitary stage of the 

dispersal process and the proximate mechanisms involved in dispersal decisions. These topics 

are discussed in the next two sections.  

 

The solitary stage of dispersal 

After dispersing, individuals of many group-living species spend time as solitaries, 

also frequently referred to as “floaters”, because they lack permanent association with a 

group or territory [Penteriani et al., 2011]. The ecological and social challenges faced by 

individuals during the solitary stage of dispersal can greatly impact a disperser’s ability to 

attain a breeding position, and thus have important consequences for their fitness and the 

inclusive fitness of their relatives. However, of the three stages of dispersal (emigrations 

from the natal group, solitary vagrancy, and immigration to a new group), the solitary stage is 

typically the least well-studied and least understood [Grabowska-Zhang et al., 2016; Ronce, 

2007].  

Spending time as a solitary floater is common for individuals in a variety of socially 

monogamous primates (owl monkeys [Huck and Fernandez-Duque, 2016], siamangs 

[Palombit, 1995], sakis [Soini, 1986; Thompson, 2015]), as well as some individuals in 

primate species with polygynous mating systems (e.g., howlers [Cuarón, 1997], macaques 

[Duboscq et al., 2016], baboons [Alberts and Altmann, 1995a]). Among socially 

monogamous primates, floating as a solitary may be an unavoidable part of dispersing, as it 

may be the only way for individuals to find a mate and reproduce.  
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Being a solitary can entail many costs. Floaters typically face mortality risks from 

increased predation, physical damage, and other physiological changes [Bélichon et al., 1996; 

Bonte et al., 2012; Ims and Andreassen, 2000; Yoder et al., 2004]. Empirical studies have 

demonstrated these costs in a variety of taxa. For example, in pied babblers (Turdoides 

bicolor), juveniles roaming alone spend less time foraging and experience a loss of body 

mass, which negatively impacts their ability to enter a new group in a breeding position 

(compared to individuals who do not spend time as solitaries) [Ridley et al., 2008]. In 

addition, solitary dispersing male baboons (Papio cynocephalus) have mortality rates at least 

twice as high as group-living males [Alberts and Altmann, 1995a]. 

Solitary floaters often face aggression from conspecifics in established groups.  

Among socially monogamous primates, resident saki males are aggressive towards floaters 

[Thompson, 2015], and gibbons exhibit intrasexual aggression towards floaters [Brockelman 

and Srikosamatara, 1985; Mitani, 1987]. Both male and female Azara’s owl monkeys also 

frequently interact aggressively with solitary floaters [Fernandez-Duque and Huck, 2013]. To 

deal with this aggression, floaters may develop strategies to minimize risk of agonistic 

encounters while maintaining access to information about breeding opportunities in nearby 

groups. For example, ranging patterns of owl monkey solitary floaters suggest that they stay 

relatively close to groups, but avoid groups’ core home ranges. This strategy likely allows 

them to monitor mating opportunities in groups, while also being able to escape aggression 

from residents if detected [Huck and Fernandez-Duque, 2016; Huck and Fernandez-Duque, 

in press].  

To better understand the costs of the solitary life-history stage, more data on the 

behavior of solitary floaters and their attempts to immigrate into established groups are 



18 
 

needed. To shed light on this issue, I discuss data from identified dispersing owl monkeys 

that spent time as solitary floaters in the final chapter of this dissertation. 

 

Proximate mechanisms: Hormones and behavior 

Socioendocrinological research in primates has offered insight into many key aspects 

of primate behavior and social systems. The relationship between hormones and social 

behavior is complex. The social environment both influences and is influenced by an 

individual’s sociosexual behavior and neuroendocrine mechanisms, which in turn interact 

with one another to influence reproductive success. Socioendocrinology thus provides a 

framework for understanding the factors that regulate differential reproductive success 

among individuals and provides a means of connecting reproductive endocrinology with 

evolutionary biology and behavioral ecology [Bercovitch and Ziegler, 1990]. 

 Studying hormonal and behavioral changes that occur during development and 

maturation is essential for understanding the mechanisms regulating natal dispersal. In 

addition to interacting with social behavior, hormones are associated with body condition and 

play a substantial role in determining the timing of sexual maturation, both of which have 

consequences for the costs and benefits of retaining relationships with natal group members 

as opposed to dispersing [Dufty and Belthoff, 2001; McShea, 1990; Monard et al., 1996]. 

To evaluate hypotheses proposed to explain dispersal, specifically the inbreeding and 

mate competition avoidance hypotheses, it is necessary to know when offspring develop 

interest in mating or become physiologically capable of reproducing. Specifically, the 

inbreeding avoidance hypothesis predicts that the onset of sexual maturity will not occur until 

after dispersal, while the mate competition avoidance predicts that sexual maturity will take 
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place prior to dispersal. Examining reproductive hormones, such as estrogens and androgens, 

allows researchers to identify when individuals undergo puberty, and evaluate how the timing 

of sexual maturity relates to dispersal or the onset of predispersal behavior, such as 

prospecting.  

Behavioral interactions with group members, particularly agonism and sexual 

interactions, can also provide valuable insight into the mechanisms of and hypotheses for 

natal dispersal. Specifically, sexual interactions between subadults and natal group members 

provide clear evidence for mate competition within the natal group, while the inbreeding 

avoidance hypothesis predicts that subadults will not engage in sexual behaviors with natal 

group members. Higher aggression and the overall deterioration of relationships between 

adults and predispersed, sexually mature subadults are also predicted by the mate competition 

avoidance hypothesis, particularly after the replacement of a genetic parent of the opposite 

sex [Emlen, 1997]. The resource competition avoidance hypothesis, on the other hand, 

predicts that agonistic behavior between adults and predispersing subadults will occur 

primarily in contexts of foraging rather than mating or socializing with potential mates.  

The remainder of this section will first outline and discuss how sex hormones, 

particularly estrogens and progesterone in females and testosterone in males, are involved in 

the onset of sexual maturity and sexual behaviors, and then explore how they relate to the 

social environment in the natal group and ultimately dispersal. Subsequently, it will discuss 

how behaviors, particularly aggression and sexual behavior, may function as proximate 

mechanisms regulating natal dispersal in primates.  

 

Hormonal correlates of sexual maturation 
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Primates undergo many physiological changes during adolescence. These include 

pubertal increases in the secretion of certain hormones (typically androgens such as 

testosterone in males, and estrogens and progesterone in females) and the development of 

secondary sexual characteristics [Dixson, 1994; Dixson and Nevison, 1997; Mann et al., 

1983; Martin et al., 1977; Muehlenbein et al., 2001]. While the timing of these changes is 

influenced by age, nutritional status, and physical condition [Cameron, 1996; Coe et al., 

1981], physical and hormonal changes experienced during reproductive maturation may also 

be influenced by the social environment.  

Among males, puberty may be delayed by exposure to adult male conspecifics 

[Bercovitch, 1993; Rose et al., 1978]. For example, evidence that the presence of adult males 

may delay development of secondary sexual characteristics and inhibit elevations of 

androgens in younger, more subordinate males comes from both mandrills [Wickings and 

Dixson, 1992] and orangutans. Among orangutans, the presence of adult males may delay the 

development of secondary sexual characteristics, such as cheek flanges and mature vocal sacs 

[Maggioncalda et al., 1999]. Some male orangutans remain in an adolescent-like form for a 

decade or more after the age of sexual maturity, and these arrested males have lower 

Testosterone levels, which they maintain throughout their lives, even years after developing 

into flanged males [Emery Thompson et al., 2012]. This observation suggests that early 

exposure to dominant adult males can have long-term organizational effects on male 

orangutan physiology. While it had been suggested that arrested development is the result of 

chronic stress from exposure to aggressive mature males, levels of urinary glucocorticoids 

and prolactin in arrested male orangutans support the hypothesis that arrested development is 
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actually an adaptation for stress avoidance during the adolescent period, rather than a result 

of stress itself [Maggioncalda et al., 2002]. 

 Exposure to adult conspecifics may also either hasten or decelerate the pace of 

reproductive maturation in females. Many female primates are characterized by a rather 

unique life history period of adolescent subfecundity [Dixson, 1998]. Socioendocrine factors 

may help to explain the delayed onset of adult-like reproductive function associated with this 

period [Bercovitch and Ziegler, 2002]. Exposing adolescent females to adult males stimulates 

changes in reproductive hormones and/or behavior in several species. For example, exposure 

to adult males stimulates increased estradiol production in squirrel monkeys [Mendoza and 

Mason, 1991] and hastens the onset of first estrus in galagos [Izard, 1990]. Female muriquis 

have been observed to commence cycling of ovarian hormones only after transferring out of 

their natal groups and into groups with unfamiliar adult males [Strier and Ziegler, 2000]. 

Similarly, young cotton-top tamarin females removed from their families and paired with an 

unfamiliar male were also observed to experience accelerated puberty [Widowski et al., 

1990; Ziegler et al., 1987].  

In light of this evidence, adolescent subfecundity could be a nonadaptive 

consequence of the need to fine-tune the coordination of various neuroendocrine system 

components. However, it could also be adaptive, by allowing females to postpone first 

conception until socioecological conditions are favorable [Bercovitch and Ziegler, 2002]. The 

proximate and ultimate causes of adolescent subfecundity are an area ripe for future research.  

 Dispersal is a major event that drastically alters both the physical and social 

environment that a dispersing individual experiences [Clobert et al., 2001]. It is thus 

unsurprising that hormonal changes are frequently associated with dispersal. Changes in 
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androgens and glucocorticoids are among those most commonly proposed to be associated 

with dispersal, but it is usually unclear whether hormonal changes are causal or a 

consequence of leaving the natal group [Dufty and Belthoff, 2001]. For most taxa, only 

correlational data are available (though spotted hyenas seem to increase testosterone as a 

result of dispersing to non-natal groups [Holekamp and Smale, 1998]). While changes in 

reproductive hormones may occur after dispersing, possibly as the result of exposure to new 

potential mates [Strier and Ziegler, 2000], in other cases, changes in hormones may occur 

prior to dispersal. These changes may influence predispersal behaviors, such as prospecting, 

and eventually trigger dispersal [Dufty and Belthoff, 2001]. Sexual maturation of 

predispersed subadults may also cue adults, or other natal group members, to alter their 

behavioral interactions with subadult individuals. All of this suggests that changes in 

endocrine function may be closely linked to behaviors associated with dispersal, such as 

increased aggression or decreased prosocial interactions among predispersed individuals and 

natal group members. 

 In sum, while both endogenous factors and cues from the physical environment may 

play major roles in determining the timing of sexual maturity [Bronson, 1989; Coe et al., 

1981], it is clear that socioendocrine factors also substantially contribute to the regulation of 

reproductive development in both male and female primates. The ability to flexibly respond 

to social conditions and adjust endocrine mechanisms and development accordingly is likely 

adaptive [Bercovitch and Ziegler, 1990]. However, defining exactly how delaying the onset 

of puberty or mating behavior translates into increased reproductive success requires further 

investigation. 
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Behaviors associated with dispersal 

Agonistic behavior may be an important mechanism driving dispersal. In particular, 

aggression seems to be a mechanism important in the peripheralization and eventual dispersal 

of young males in many species (e.g., baboons [Altmann and Altmann, 1970], howler 

monkeys [Crockett and Pope, 1988; Cuarón, 1997], langurs [Boggess, 1980; Mohnot, 1978; 

Rudran, 1973], macaques [Drickamer and Vessey, 1973; Pusey and Packer, 1987], etc.). 

However, this pattern of aggression is not observed across all environmental conditions [e.g., 

long-tailed macaques Macaca fascicularis in anthropogenic environments [Lute et al., 

2014]], and appears to be absent or relatively unimportant in other species [e.g., capuchin 

monkeys [Jack and Fedigan, 2004], crab-eating macaques [Van Noordwijk and Van Schaik, 

1985; Van Noordwijk and Van Schaik, 2001], etc.). Thus, variation in the role that agonism 

plays in dispersal plainly exists even within related taxa. 

One well-described type of agonistic behavior that may be linked to dispersal in some 

taxa is “episodic targeting aggression”. The phrase episodic targeting aggression is used to 

describe aggression during which 1-2 individuals receive persistent attacks from other group 

members, generally until the victim or victims are forced to leave the group [Vick and 

Pereira, 1989]. Episodic targeting aggression was initially described after being observed in 

several species of lemur (Lemur spp.) in naturalistic captive settings [Digby, 1999; Vick and 

Pereira, 1989], although this behavior may also occur among lemurs in the wild [Jolly, 1998]. 

Episodic attacks can be carried out by individuals who are close kin, and targeted individuals 

are often severely injured and usually expelled from their groups [Vick and Pereira, 1989].  

There are similarities between episodic targeting in lemurs and patterns of aggression 

experienced by dispersing offspring in other taxa. For example, aggression similar to episodic 
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targeting in lemurs occurs in meerkats (Suricata suricatta), in which dispersing individuals 

are targeted and often injured or forced out of their groups [Doolan and Macdonald, 1996]. 

However, episodic targeting aggression in lemurs can be directed at almost any type of 

individual, including adults, which make it distinct from the aggression directed primarily 

toward adolescent or dispersing offspring in other taxa [Vick and Pereira, 1989]. Currently, 

the term “episodic targeting aggression” is generally reserved for descriptions of episodic 

aggression amongst all types of individuals in lemurs [Jolly, 1998]. Therefore, to avoid 

confusion, severe episodes of aggression targeted at dispersing individuals in other taxa 

should not be referred to as episodic targeting aggression. 

While intense aggression may be linked to dispersal in a variety of primate taxa, the 

causes and manifestation of this aggression vary. In some cases, a specific act of aggression 

from a natal group member can be linked directly to the onset of sexual behavior in a 

predispersed individual (e.g., genital inspections or copulations) [Huck and Fernandez-

Duque, 2012]. In most cases, the immediate cause of aggression is less clear, but rates of 

aggression directed at predispersed individuals may increase as individuals approach sexual 

maturity [Altmann and Altmann, 1970; De Benedictis, 1979; Drickamer and Vessey, 1973]. 

Dispersal events resulting from severe aggression are not always culminations of repeated 

agonism or received aggression that gradually increased over time. Intense aggressive events 

may occur without precedent, as the first instance of severe aggression observed between an 

offspring and its attacker(s). For example, in owl monkeys, a single bout of severe 

aggression, which includes biting and wounding, has been observed to occur on the same day 

that the recipient of the aggression permanently dispersed from their natal group [Corley, 

personal observation; Huck and Fernandez-Duque, 2012].  
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While agonistic behavior, particularly intense aggression, can trigger dispersal events, 

other times dispersal may not be associated with aggression of any kind [Ekernas and Cords, 

2007; Lute et al., 2014]. Even in taxa in which intense aggression frequently drives 

individuals from their natal groups, some individuals appear to leave voluntarily, particularly 

when presented with opportunities to join members of the opposite sex [Cant et al., 2001]. 

Thus, while aggressive behavior is an important factor to consider when examining dispersal 

patterns, it must be considered in the context of other social and ecological factors.  

 

Owl monkeys of the Argentinean Chaco: A model for understanding 

dispersal in monogamous species  

Owl monkeys (Aotus spp.) are small, arboreal New World primates, notable for their 

nocturnal activity patterns, pair-living social system, and biparental care [Fernandez-Duque, 

2011; Wright, 1994]. They are the only nocturnal anthropoids, although at least one species, 

Azara’s owl monkey (A. azarae), has evolved cathemeral activity patterns (i.e., is potentially 

active during the night and day) [Fernandez-Duque and Erkert, 2006; Tattersall, 1987]. A. 

azarae thus offers a unique opportunity for collecting data on owl monkeys during daylight, 

and most of what is known about wild owl monkey demography and behavior comes from 

observations of this species at a single location in Argentina. 

In the Argentinean Gran Chaco, Azara’s owl monkeys display both social and genetic 

monogamy [Fernandez-Duque and Huck, 2013; Huck et al., 2014a]. Groups consist of just 

one adult male, one adult female, and generally between one and four offspring who have yet 

to disperse [Fernandez-Duque et al., 2001; Huck et al., 2011]. Groups occupy home ranges of 

4-10 ha (mean = 6 + 2 ha), which they may defend aggressively from solitary floaters or 
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other social groups [Fernandez-Duque, 2011; Wartmann et al., 2014]. Social groups are very 

cohesive: the reproductive pair has a close socio-spatial relationship and all group members 

typically remain within 5-10 m from one another as they rest, move, and feed together [Huck 

and Fernandez-Duque, 2012]. Only the reproductive pair breeds, generally producing no 

more than one infant annually [Huck et al., 2014b]. Births are very seasonal, with 80% 

occurring in October or November [Fernandez-Duque et al., 2002]. 

Males provide intensive paternal care to offspring. Starting one week after a birth, 

males carry the infant 84% of the time [Juárez et al., 2003; Rotundo et al., 2002]. The adult 

male will also play, groom, and share food with offspring, even after infancy [Fernandez-

Duque, 2011; Rotundo et al., 2005; Wolovich et al., 2008]. Adult males will even provide 

care to offspring to whom they are not related; after an adult male replacement, the new male 

will take over carrying and interacting socially with the previous male’s infant [Fernandez-

Duque et al., 2008]. Unlike cooperatively breeding taxa, older offspring in the group do not 

carry infants or assist in providing care to their siblings [Rotundo et al., 2005].  

All offspring disperse from their natal groups prior to reproducing, typically 

sometime between two and five years of age. After dispersing, most individuals spend some 

time as solitary “floaters”, before becoming part of a reproductive pair in a non-natal group 

[Fernandez-Duque, 2009]. Solitary floaters represent intense intra-sexual competition for 

resident adults, who are regularly replaced by intruding floaters, leading to a social system 

that is best described as serial monogamy [Fernandez-Duque and Huck, 2013].  

The processes of leaving a natal group, ranging solitarily, and finding a reproductive 

position are vital to understanding monogamy in owl monkeys, yet they remain poorly 

understood phases of owl monkey life history. The following chapters in this dissertation 
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examine aspects of these dispersal processes by utilizing demographic, behavioral, and 

hormonal data. To place these chapters in context, the remainder of this section provides 

background information describing what we currently know about development and the onset 

of reproductive maturity in male and female owl monkeys and our ability to detect it using 

hormonal data.  

 

Owl Monkey Reproductive Endocrinology and Sexual Maturation 

Female reproductive endocrinology and sexual maturation 

Unlike some primate species, which have sexual swellings that advertise estrus, there 

are no visual signals that can be used to identify ovarian cycling in owl monkeys [Bonney et 

al., 1979; Dixson, 1994; Wolovich and Evans, 2007]. Therefore, changes in hormone levels 

must be utilized to ascertain the reproductive status of females.  

Ovarian cycles are characterized by fluctuations in ovarian hormones, specifically 

with peaks of estrogen and progesterone in the luteal phase. Peaks of progesterone in 

particular are typically considered to be evidence of ovulation, as progesterone is secreted by 

the corpus luteum formed in the ovarian follicle after an oocyte is released [Mayor et al., 

2015]. Owl monkeys excrete progesterone mainly as 6ß-hydroxy-pregnanolone, with 16a-

hydroxypregnanolone and pregnanediol also being important metabolites [Bonney and 

Setchell, 1980]. Measuring pregnanediol-3a-glucuronide (PdG) can therefore provide 

estimations of progesterone excretion during the ovarian cycle, and PdG levels can be 

monitored to detect ovarian cycling in owl monkeys [Bonney et al., 1979; Dixson, 1983; 

Fernandez-Duque et al., 2011]. 
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The age when female owl monkeys become sexually mature is not well-established. 

While ovarian hormones have been monitored in both captive and wild adults [Bonney et al., 

1979; Dixson, 1983; Fernandez-Duque et al., 2011], hormone profiles of younger females 

have not been systematically examined. Data on age at first birth and ovarian morphology of 

captive subadults suggest that females may reach sexual maturity between 2-3 years of age. 

The mean age at first birth for nine females living in a captive population in Iquitos, Peru, 

was 40.56 ± 7.82 (SD) months, with one female giving birth at the age of only 25 months 

[Gozalo and Montoya, 1990]. Additionally, ovaries from captive A. nancymaae and A. 

vociferans females as young as three years old showed formation of corpus lutea, indicating 

the presence of ovarian cycles [Mayor et al., 2015].  

However, the pace of development and reproductive maturation in captive and 

provisioned primates can be substantially different than in the wild [Alberts and Altmann, 

1995b; Altmann and Alberts, 1987; Altmann et al., 1981; Altmann et al., 1977; Dunbar, 

1990; Milton, 1981; Mori, 1979; Rowell and Richards, 1979]. In the wild, females must 

disperse and pair with an individual in a non-natal group before they can reproduce. Since 

dispersal does not typically occur until individuals are 2-5 years old, it is unsurprising that 

reproduction in individuals less than four years of age has not been observed in the wild 

[Huck et al., 2011]. Studies have not yet investigated hormone cycles in wild subadult owl 

monkeys, so it is unknown whether females begin to undergo sexual maturity before or after 

they disperse from their natal groups. 

 

Male reproductive endocrinology and sexual maturation 
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Studies examining the reproductive physiology or sexual development of wild male 

owl monkeys are lacking. Everything we know about this subject comes from studies done in 

captivity [Dixson et al., 1980; Dixson, 1983; Dixson, 1994; Gozalo and Montoya, 1990], thus 

we must rely on these studies to generate hypotheses and predictions for wild individuals.  

Data on age at first birth suggests that, like captive females, captive males may reach 

sexual maturity at 2-3 years of age. The mean age at first birth for 12 males living in a 

captive population in Iquitos, Peru, was 42.17 ± 10.73 (SD) months, and conception occurred 

in the partner of a male as young as 23.5 months [Gozalo and Montoya, 1990]. A 

longitudinal study examining increases in testosterone (T), growth, and development of other 

physiological characteristics to assess the onset of puberty indicates an even younger age of 

sexual maturity in males [Dixson et al., 1980]. Six captive Aotus griseimembra males showed 

increases in testosterone when males were less than one year old (median = 313 days, range 

211-337 days). The onset of puberty, as indicated by increases in testosterone, did not 

correspond to marked increased in body weight or testicular volume. In contrast, the onset of 

puberty was correlated with marked growth and development of the subcaudal scent-gland, 

which occurred when males were between 282 and 370 days old [Dixson et al., 1980; 

Dixson, 1994]. Administration of testosterone to a prepubertal male also stimulated the 

growth of the subcaudal gland prematurely, further suggesting a close link between 

testosterone and the development of this gland [Dixson et al., 1980].  

In free-ranging A. azarae in the Argentinean Gran Chaco, secretions from the 

subcaudal gland produce a stain visible to observers. The size of the subcaudal stain is 

positively associated with age in both wild males and females. Individuals <12 months do not 

have any subcaudal staining and some continue to have very little staining until they reach 
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subadulthood (24 months). Staining continues to increase until individuals reach about four 

years of age [Huck et al., 2011]. The hormonal correlates of subcaudal gland staining have 

not been investigated in A. azarae, nor in females of any owl monkey species. Thus, how 

observations of subcaudal gland development in the wild relate to sexual maturity, as 

indicated by increases in T, is unclear.  

The captive study of six A. griseimembra males also provides important insight into 

how social environment may influence the timing of male puberty. The timing of the 

hormonal and physiological changes associated with puberty was the same in three males 

which remained housed with their natal groups as in males that were removed from their 

natal group and housed solitarily [Dixson et al., 1980]. Thus, at least for captive individuals, 

there does not seem to be evidence that remaining in the natal group delays or suppresses the 

onset of sexual maturity in males. While the pace of growth and reproductive maturation in 

captive and provisioned primates is known to often differ substantially from individuals in 

the wild [Alberts and Altmann, 1995b; Altmann and Alberts, 1987; Altmann et al., 1981; 

Altmann et al., 1977; Dunbar, 1990; Milton, 1981; Mori, 1979; Rowell and Richards, 1979], 

being housed socially with natal group members did not retard the onset of adult-like 

androgen production and puberty, suggesting that males may be predicted to reach sexual 

maturity prior to dispersing in the wild as well. 

Unfortunately, there are several aspects of male owl monkey physiology and 

reproductive biology that make it difficult to assess sexual maturity in wild individuals using 

only levels of T. Owl monkeys have unusual testicular physiology, indicative of arrested 

spermatogenesis and/or low numbers of spermatozoa [Dixson, 1983]. However, captive adult 

males with this testicular physiology are still able to sire offspring. Exactly how testosterone 
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levels relate to sperm production and what minimum levels are necessary for male owl 

monkeys to conceive in the wild remain to be determined [Dixson, 1994]. It should also be 

noted that substantial variation among individuals in levels of circulating testosterone has 

been observed even with a relatively small sample of six captive males [Dixson et al., 1980]. 

These findings make utilizing testosterone, by itself, somewhat problematic for assessing 

reproductive function in owl monkeys. Data from five predispersed juvenile and two 

predispersed subadult males suggests that wild A. azarae males do not increase testosterone 

to levels similar to those of adult males prior to dispersing from their natal group [Corley et 

al., 2016]. Therefore, additional data on testosterone levels in wild adult males throughout the 

mating season is needed to assess whether testosterone levels found in wild subadult males 

may be sufficient for siring offspring.  

 

Using fecal samples to monitor steroid hormones: benefits and challenges  

Studying primates in the wild often requires the use of non-invasive sampling 

techniques, such as the collection of urine or feces. This approach provides the tremendous 

benefit of allowing researchers to regularly collect hormonal data without capturing or 

extensively disturbing their study subjects. While utilizing feces to obtain endocrine data is 

now a common practice among field primatologists, it can make analyses of hormones more 

complicated. The main reason is that mammals typically excrete primarily hormone 

metabolites rather than native hormone in their feces, and the specific metabolites excreted 

are variable from species to species and may be unknown for the taxa of interest [Higham, 

2016].  
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Enzyme immunoassays (EIAs) used to assess hormone concentrations in feces should 

therefore have specificity for a metabolite/form of the hormone that is known to be excreted 

in the feces of the study species. Previous studies have validated that progesterone 

metabolites (PdG) and secreted estradiol (E1G) can be detected in owl monkey feces and can 

be used to detect ovarian cycles and pregnancy [Fernandez-Duque et al., 2011]. Validations 

also indicate that testosterone is present, at least in small amounts, and detectable in owl 

monkey feces (C. Valeggia & T. Ziegler, personal communication). Furthermore, the cross-

reactivity of antibodies can be determined to assess what hormone or hormone metabolites an 

assay may be detecting. EIA manufacturers, such as Arbor Assays, typically evaluate and 

report the cross-reactivity of antibodies used in their commercially available assay kits, and 

this information has been used to ensure that the assays used to analyze owl monkey fecal 

samples are appropriate for assessing concentrations of the steroid hormones of interest (e.g., 

PdG, E1G, and androgens; Chapter 4).  

Collection methods and the conditions and duration of storage can also influence 

hormone concentrations [Khan et al., 2002; Lynch et al., 2003]. It is therefore necessary to be 

consistent in the methods and storage conditions utilized throughout a study. Fixing feces in 

alcohol immediately after collection is a common method utilized to preserve fecal 

hormones. In various studies, hormones in non-extracted feces stored in ethanol have been 

found to be relatively stable at ambient temperatures: glucocorticoid metabolites up to 28 

days [Shutt et al., 2012], cortisol up to 5 months [Cavigelli, 1999; Khan et al., 2002], and 

corticosterone and testosterone up to 180 days [Santymire and Armstrong, 2010]. Samples in 

ethanol can be stable for even longer periods of time when stored at -20˚C [PdG and E 

concentrations were still stable after 270 days [Daspre et al., 2009]].  
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  While storage conditions can influence the amount of detectable hormone in a 

sample, this is not necessarily a problem that needs to be overcome in order to compare 

concentrations among samples collected and stored in the same manner. In other words, 

while comparisons of hormone levels obtained from feces stored in different conditions or 

comparisons among samples that have been stored for substantially different durations before 

extraction should be treated with caution, samples that are processed and stored in similar 

conditions (as is the case in the data reported in this dissertation, Chapter 4) should produce 

results that can, at least, be compared to one another. Furthermore, overall patterns of 

hormone data may remain detectable even if the absolute values of hormone concentrations 

vary in different storage conditions. The assay results from feces stored in unfrozen 

conditions were found to be robust in terms of the general pattern of the data (e.g., estrogen 

levels could still be used to distinguish pregnant vs. non-pregnant females, GC profiles of age 

classes were similar to those obtained from samples frozen or processed immediately, etc.) 

[Lynch et al., 2003]. Thus, if consistency in storing and analyzing is maintained, feces remain 

a good non-invasive source of information about the endocrine function of primates.  
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Chapter 2. Patterns of dispersal in monogamous owl monkeys: an evaluation 

of demographic changes and environmental factors influencing natal 

dispersal 

 

Abstract 

The timing of natal dispersal may be highly flexible and dependent upon a variety of 

ecological and social factors. Delaying dispersal may be an adaptive strategy that individuals 

utilize to minimize dispersal costs and maintain access to benefits provided by the natal 

group. Understanding proximate factors that influence the timing of dispersal can provide 

insight into ultimate explanations of dispersal patterns in a species. We investigated social 

and ecological factors associated with the age and timing of natal dispersal in socially 

monogamous owl monkeys (Aotus azarae) in the Argentinean Gran Chaco. Specifically, we 

examined how proximate factors, such as adult replacements, births, group size, and rainfall 

(as a proxy of resource abundance) explained variation in the age and timing of dispersal. 

Owl monkey dispersal was highly flexible (age at dispersal ranged from 1.7-5.3 years), but 

all individuals dispersed prior to reproducing. Experiencing an adult replacement, particularly 

the replacement of a same sex adult as a subadult, was associated with dispersal. Dispersals 

occurred throughout the year, but were concentrated in the spring and early summer. 

Individuals were more likely to disperse outside of this preferred season if there had been a 

recent infant birth in their natal group and if there was less than average rainfall, and thus 

increased resource scarcity, during the fall/winter season. Our results suggest that inbreeding 

and competition avoidance may explain dispersal in different circumstances. Including 

individuals that disappeared produced somewhat different results from analyses limited to 

individuals with confirmed dispersals. Our findings suggest that researchers should be 

cautious when drawing inferences about dispersal from the disappearances of offspring. 
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Introduction 

Natal dispersal, the movement of individuals from their birthplace to new areas in 

which they may breed, is an important aspect of life history that influences a variety of 

processes. Taxa should evolve dispersal patterns that minimize the costs of dispersing and 

maximize fitness. Interspecific variation in which individuals disperse and when they 

disperse may be explained by differences in the social and ecological factors that influence 

the costs of benefits of dispersal for a particular species [Bonte et al., 2012; Jones, 2003]. 

Understanding proximate factors associated with dispersal decisions can therefore provide 

insight into ultimate explanations of dispersal patterns. Studies examining the influence that 

ecological and social factors have on individuals’ dispersal decisions are also crucial for 

developing an understanding of spatial structure and dynamics of populations, which has 

important implications for population management and conservation [Bowler and Benton, 

2005]. However, dispersal dynamics are complex, and there remains a need for empirical 

work to increase our understanding of dispersal, particularly in long-lived vertebrate species 

[Bowler and Benton, 2005; Ronce, 2007].  

Among primates, dispersal by at least some individuals is universal, and it is often 

essential for individuals to disperse before they can successfully reproduce [Pusey and 

Packer, 1987]. Yet, dispersal is also risky and poses many potential costs, such as increased 

risk of predation, decreased foraging efficiency, social isolation, and aggression from 

unfamiliar conspecifics [Bonte et al., 2012; Isbell and Van Vuren, 1996; Jones, 2003]. 

Additionally, postponing dispersal can allow individuals to increase foraging and other skills 

in the relative safety of a familiar home range and maintain access to nepotistic benefits by 



54 
 

remaining in close contact with kin in the natal group [Ekman and Griesser, 2002; Hamilton, 

1964]. 

Delaying dispersal may therefore be an adaptive strategy that individuals utilize to 

minimize dispersal costs [Ekman, 2007; Ekman et al., 2001; Ekman et al., 2004; Kokko and 

Ekman, 2002]. The timing of dispersal in a given taxa is expected to depend upon when an 

individual develops the body size, physical condition, and skills sufficient for withstanding 

the costs of ranging solitarily and finding a mate [Bowler and Benton, 2005; Tarwater and 

Brawn, 2010]. However, in some taxa, individuals may delay dispersal beyond the point 

when these conditions are met to maintain access to nepotistic benefits or to time dispersal to 

coincide with improved conditions anticipated to arise (e.g., when resources or mating 

opportunities are more abundant in the local environment) [Ekman et al., 2004; Kokko and 

Ekman, 2002].  

When individuals delay dispersal, and make dispersal decisions based on local 

conditions, it can result in a great deal of variation in dispersal within a species. While it has 

long been recognized that dispersal patterns vary among taxa [Trochet et al., 2016], more 

recently researchers have begun to explicitly acknowledge that there is often substantial 

heterogeneity in the timing of dispersal among individuals within species and populations, as 

well [Clobert et al., 2009; Strier, 2017]. Intraspecific variation in the timing of dispersal has 

been linked to many different factors, including intrinsic variables, like hormones, body 

condition, and personality and temperament, as well as extrinsic variables, such as ecology 

and the social environment in the natal group [Cote et al., 2010; Dufty and Belthoff, 2001; 

Ims and Hjermann, 2001]. When the timing of dispersal is highly variable within a species, as 

it is in many primate species [Alberts and Altmann, 1995; Cheney, 1983; Fernandez-Duque, 



55 
 

2009; Jack and Fedigan, 2004; Morelli et al., 2009], it is likely that a combination of social, 

ecological, and physiological variables are responsible for it [Jack et al., 2012].  

 The timing of dispersal has been linked to a variety of social factors. The size and 

composition of the social group is one factor that may influence dispersal decisions. As a 

larger group size entails more competition with kin in the natal group, increases in group 

size, through births or emigrations, may be predicted to trigger dispersal [Dobson, 1982]. 

Empirical support for this idea is mixed, as larger group size is associated with higher 

probability of dispersal in some cases [Clutton-Brock et al., 2008; Pope, 2000; VanderWaal 

et al., 2009], but not always [Teichroeb et al., 2009].  

The disappearance or replacement of a parent can also have enormous impacts on 

behavior, including dispersal decisions. The death or replacement of a parent removes a close 

kin member from the natal group, which may reduce the benefits of philopatry, particularly 

for taxa in which cooperation with close kin is common [Hamilton, 1964; Strier, 2008]. In 

some taxa, males whose mothers die disperse at younger ages [Alberts and Altmann, 1995]. 

Empirical evidence also suggests that take-overs or replacements of resident adults in the 

natal group often influence the timing of dispersal. For example, turn-overs in the adult male 

or males in the natal group appear to contribute to the dispersal of male offspring in several 

primate taxa [Ekernas and Cords, 2007; Jack et al., 2012; Morelli et al., 2009; Robinson and 

Janson, 1987; Rogers and Chism, 2009].  

Adult replacements can trigger offspring to disperse at times that are less than 

optimal for the survival and fitness of the offspring. Individuals that experience an adult 

replacement may disperse when they are too young or small or when their body condition is 

otherwise poor [Ims and Hjermann, 2001; Stamps, 2006]. Replacements may also influence 
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individuals to disperse during environmental conditions or times of the year when mates or 

resources are relatively scarce and their chances of survival may be lower. For example, 

among lions (Panthera leo), the arrival of an unfamiliar adult male to the natal group can 

trigger males with poor body condition and males who are too young to survive on their own 

to disperse. This leads to the deaths of many of these dispersing individuals and can be 

viewed as a type of “delayed infanticide” [Elliot et al., 2014]. Adult replacements may thus 

be associated with unsuccessful dispersals, and complicate attempts to explain the timing of 

dispersal based on other social and/or ecological factors.  

Among “family” living species, in which an adult pair resides with one or more 

young, the replacement of either adult can have profound effects on social relationships 

within the group [Emlen, 1995]. Parents may provide benefits to pre-dispersing offspring in 

the form of tolerance or protection. Removal of a genetic parent reduces nepotistic benefits, 

decreasing the value of the natal group as a “safe haven”, which can trigger dispersal if either 

parent is replaced [Ekman and Griesser, 2002]. Furthermore, replacement of the same sex 

parent may increase the chances of inbreeding (i.e., mating with the remaining opposite sex 

parent), leading to earlier dispersal. The replacement of an opposite sex parent is also 

predicted to influence dispersal decisions, as it introduces a potential mate to the natal group 

and increases mating competition with the same sex parent [Emlen, 1995; Emlen, 1997]. 

Adult replacements in socially monogamous groups could thus be expected to either delay or 

expedite dispersal, depending on the sex of the adult that is replaced relative to the sex of the 

dispersing offspring and the offspring’s age and level of sexual maturity at the time of the 

replacement. Empirical evidence from several socially monogamous taxa generally support 

the prediction that adult replacements will impact intragroup social dynamics, but the 
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influence of replacements on dispersal is not consistent [Eikenaar et al., 2007; Huck and 

Fernandez-Duque, 2012; Piper and Slater, 1993].  

In addition to the social environment, ecological factors and conditions outside of the 

natal group are predicted to impact dispersal decisions. Dispersing may impose costs on 

individuals in terms of decreased foraging efficiency in unfamiliar environments or 

competition for resources from aggressive conspecifics in non-natal territories [Jones, 2003; 

Pusey and Packer, 1987]. Individuals that disperse during periods of low resource availability 

may suffer mortality, and resource scarcity may thus act as a constraint on the timing of 

dispersal [Bonte et al., 2012]. Individuals may therefore be predicted to disperse during times 

when resources are relatively abundant, to buffer themselves from these costs while ranging 

solitarily after dispersing. There is empirical evidence from lions (P. leo) suggesting that 

individuals that time dispersals to coincide with favorable conditions may increase their 

chance of survival [Elliot et al., 2014]. On the other hand, competition with natal group 

members is typically highest during periods of resource scarcity, and individuals may be 

evicted or voluntarily disperse when resources are scarce in response to this heightened 

competition [Jones, 2003]. Therefore, individuals may be predicted to disperse during periods 

when resources are scarce and delay dispersal when they are abundant. Experimental 

evidence from carrion crows (Corvus corone) supports a link between increased resource 

abundance and prolonged natal philopatry [Baglione et al., 2006]. Whether individuals 

disperse during times of relative resource abundance or scarcity can provide insight into 

whether dispersal is influenced more by resource competition with natal group members or 

ecological constraints on ranging solitarily.  
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Abiotic factors, such as rainfall or extreme climatic events, may be useful proxies for 

determining relative resource abundance. Examining the timing of dispersal during years 

with very wet or dry periods versus “normal” years can provide insight into the ecological 

conditions that influence dispersal. Specifically, if individuals disperse in response to 

increased resource abundance, we would expect to see a greater number of dispersals occur 

during the season(s) typically marked by scarcity during years when climatic conditions 

increased resource abundance in these seasons. On the other hand, if resource competition 

during periods of scarcity primarily influences dispersal decisions, we would expect to see 

higher rates of dispersal during or following climatic events associated with decreased 

resource abundance. Natural disasters and extreme climatic events, like droughts or heavy 

rainfall associated with El Niño Southern Oscillation (ENSO) events, may provide “natural 

experiments” that provide clues as to how ecological conditions influence dispersal. For 

example, during a two-year drought, >80% of male ring-tailed lemurs (Lemur catta) 

disappeared or dispersed from their natal groups [Gould et al., 1999]. However, natural 

disasters and extreme climatic events can also effect mortality rates. Mortality events can be 

difficult to distinguish from dispersal if individuals that disappear are not followed after they 

leave the natal group [Fernandez-Duque and van der Heide, 2013]. Therefore, associations 

between disappearances and these kinds of events should be interpreted with caution.  

In many populations, ecological factors influence the times in which mating and 

births typically occur. Seasonality in dispersal may thus be linked to mating opportunities, 

rather than directly to the abundance of food resources. If mating opportunities play an 

important role in influencing dispersers’ decisions, then we expect the timing of dispersal to 

coincide with mating season. In support of this prediction, the timing of dispersal coincides 
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with the mating season in a variety of seasonally breeding primates [Borries, 2000; Cheney, 

1983; Drickamer and Vessey, 1973; Pusey and Packer, 1987; Sprague, 1992; Sussman, 

1992]. In other taxa, the timing of dispersal coincides with the birth season. For example, in 

Azara’s owl monkeys (Aotus azarae) both births and dispersal were concentrated in the 

spring through early summer [Fernandez-Duque, 2009; Fernandez-Duque et al., 2002].  

Multiple factors could explain why dispersals coincide with the birth season. It is 

possible that the addition of infants to the natal group triggers dispersal. Alternatively, rather 

than being directly influenced by births, dispersal and births may coincide with one another 

because they are both influenced by resource abundance. If the latter is true, then we expect 

individuals to disperse more frequently during the peak-resource season regardless of 

whether a birth recently occurred in their natal group. 

Azara’s owl monkeys (A. azarae) in the Argentinean Gran Chaco are socially and 

genetically monogamous primates that live in groups containing just one adult male, one 

adult female, and generally one to four offspring who have yet to disperse [Fernandez-Duque 

et al., 2001; Huck et al., 2014; Huck et al., 2011]. Almost everything we know about natal 

dispersal in owl monkeys comes from a population of A. azarae in Formosa, Argentina that 

the Owl Monkey Project has monitored since 1997. Observations from the first decade of this 

project (June 1997 - March 2008) indicate that all offspring disperse from their natal group 

prior to reproducing, and typically range solitarily after dispersing before finding a mate. 

However, the age at dispersal is variable (age range = 2-5 years) [Fernandez-Duque, 2009; 

Fernandez-Duque and Huntington, 2002]. Thus far, the proximate factors underlying this 

variation in age at dispersal remain unclear. The role that social factors, such as group size 
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and demographic changes (e.g., infant births and adult replacements), may contribute to the 

observed variation in dispersal age requires systematic examination.  

The timing of owl monkey dispersal throughout the year is also somewhat flexible 

and may be influenced by social or ecological conditions. Data on owl monkey dispersals 

that occurred prior to 2008 suggest that dispersal is seasonal, with a peak of dispersals (31%) 

occurring in October and 71% of offspring dispersing between September and February. 

However, dispersals also occurred in other months throughout the year [Fernandez-Duque, 

2009]. The peak in dispersals corresponds to several social and ecological factors. First, mid-

September through February corresponds to the spring and early summer in Argentina, a time 

when food resources are increasing or at their peak. This preferred dispersal season also 

overlaps largely with the birth season. Births at this site are highly seasonal, with almost all 

occurring between mid-September and mid-January and 80% occurring in October or 

November [Fernandez-Duque et al., 2002]. The higher rates of dispersal during the dispersal 

season require further examination to determine which proximate factor, resource abundance 

or infant births in the natal group, is primarily responsible for the observed seasonality in 

dispersal. 

In this study, we utilize 20 years of demographic data from a population of Azara’s 

owl monkey (A. azarae) in Formosa, Argentina. We use these data to thoroughly describe 

dispersal patterns and evaluate proximate factors that may be influencing variation in the age 

and timing of natal dispersal in this socially monogamous primate. Our specific objectives 

are to first determine the average dispersal age and the characteristics of the social groups 

from which offspring disperse, and quantify the extent of variation present in these variables. 

We then evaluate how social and ecological variables (group size, infant births, adult 
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replacements, rainfall, etc.) contribute to variation in the age and timing of dispersal to 

evaluate explanations for why some individuals delay dispersal. Finally, we discuss our 

results in the context of evolutionary explanations that have been advanced to explain 

dispersal patterns in pair-living monogamous primates and other taxa. Specifically, we assess 

the extent to which our results support inbreeding, mate competition, and resource 

competition avoidance hypotheses as explanations for dispersal.  

The correlational nature of data collected during observational field studies, such as 

ours, does not allow us to infer causality between proximate factors and dispersal. Rather 

than confirmatory testing, our goal is to examine which factors best explain variation in 

observed patterns of dispersal in order to evaluate which factors are most likely to influence 

dispersal decisions. Similarly, inbreeding, mate competition and resource competition 

avoidance hypotheses are broad and non-exclusive to one another, and multiple forces may 

work simultaneously to shape patterns of dispersal. Our goal in placing our results in the 

context of these hypotheses is therefore to evaluate the plausibility of each and the relative 

importance that they have in shaping owl monkey dispersal.  

 

Methods 

Study site, subjects, and data collection 

We conducted the study at the Reserva Mirikiná, a 1,500 ha reserve on the private 

cattle ranch, Estancia Guaycolec, in Formosa, Argentina (58˚13’W, 25˚54’S). This location is 

part of the humid portion of the South American Gran Chaco, which consists of a mosaic of 

gallery forest, grasslands, savannahs, and isolated patches of dry forest [Juárez et al., 2012; 

Placci, 1995; van der Heide et al., 2012]. Owl monkeys (A. azarae) in this area reside in both 
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gallery forest and forest patches, but the data reported here come from groups residing 

primarily in gallery forest. The climate in this area is highly seasonal, with a dry season 

(June-August) and peaks of rain in April and November. Temperature and food productivity 

also show substantial season variation, with maximum average temperatures in December-

March, and peaks of fruit occurring in November–December. Both the amount of insects and 

the percentage of tree species producing new leaves, fruits, or flowers are lowest in the 

fall/winter period, from April to August, and begin to increase in September [Fernandez-

Duque, 2003; Fernandez-Duque, 2009]. Additional details about climate and seasonality at 

the Reserva Mirikiná are described elsewhere [Fernandez-Duque, 2009; Fernandez-Duque et 

al., 2002; van der Heide et al., 2012]. 

Within the reserve, a 300 ha area of gallery forest along the banks of the Riacho 

Pilagá has been mapped and groups within this core area have been habituated and are 

monitored by the Owl Monkey Project (OMP) [Fernandez-Duque, 2016; Fernandez-Duque et 

al., 2001]. Since 2000, the OMP has also been capturing and fitting some individuals in this 

area with radiocollars, which allows researchers to consistently locate identified groups, and 

bead collars, which facilitate the reliable identification of specific individuals [Juárez et al., 

2011]. We collected all data reported here from habituated groups, in which members could 

be discriminated from one another by collars or natural distinguishing markings. When 

necessary, we utilized body size and the relative amount of subcaudal scent gland secretions 

to distinguish non-captured, and thus uncollared, subadults and juveniles from adults and 

from one another [Huck et al., 2011]. We classified individuals as infants (< 6 months), 

juveniles (6 < 24 months), subadults (predispersed individuals > 24 months), or adults 
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(dispersed individuals > 48 months), following the age categories recommended in Huck et 

al. [2011]. 

Continued and regular monitoring of identified, habituated individuals in our study 

population allowed us to determine demographic changes in groups. Since 1997, we have 

regularly contacted a core set of approximately ten groups, at least once every week or every 

second week. Groups within the reserve but outside of the core area are also contacted at 

least several times per year [Fernandez-Duque, 2016]. Every time we contacted a group, the 

observer recorded group size, age structure, the identities of previously identified individuals, 

and noted any changes to group composition since the previous sighting. This monitoring has 

allowed us to identify dates of births, deaths, and other demographic changes, such as 

dispersals and adult replacements, within a range of a few weeks in our core study area 

[Huck and Fernandez-Duque, 2012]. We entered all data on dates of births, deaths, 

disappearances, dispersals, and adult replacements into the Owl Monkey Project’s Microsoft 

Access database.  

We recorded the births of 253 individuals from 26 different social groups between 

September 1996 and September 2016 (Table 2.1). We did not include offspring that were 

already present at the onset of the study (births prior to 1996), since the year of birth for these 

individuals could only be estimated. We also did not include births that occurred in 

peripheral groups that we monitored for less than four consecutive years, as our ability to 

detect demographic changes (especially adult replacements) in these groups was diminished. 

When the exact date of a birth, disappearance, dispersal, or adult replacement could not be 

pinpointed, we estimated the event to have occurred on the average between the date on 

which the demographic change was first observed and the most recent date on which the 
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Table 2.1. Number of births and fates (disappearance, dispersal, death, still in natal group, or 

unknown) of offspring in each of 26 social group of owl monkeys between 1996 and 2015. 

Group 

Range of 
years with 
recorded 
births 

Births Offspring Fates 

Total 
births U M F 

Disa-
ppear
ances 

Disp-
ersals 

Dea-
ths 

Still in 
group 

Unkn-
own 

A500 1998-2012 8 8 0 0 5 0 0 1 2 

A900 1997-2012 10 8 2 0 5 1 2 1 1 

B68 1998-2014 11 10 0 1 5 1 4 1 0 

C0 1996-2015 10 6 2 2 6 1 1 2 0 

Camp 1997-2003 6 3 3 0 2 1 3 0 0 

CC 1996-2015 13 6 2 5 5 3 4 1 0 

Colman 1999-2015 15 8 3 4 5 3 6 1 0 

Corredor 1999-2015 11 9 0 2 4 1 4 2 0 

D100 1996-2004 4 3 0 1 3 0 1 0 0 

D1200 1996-2014 16 12 3 1 8 3 3 2 0 

D1400 2003-2011 5 4 0 0 0 0 0 1 4 

D500 1996-2015 15 8 3 4 3 5 6 1 0 

D800 1998-2015 9 7 2 0 3 1 3 2 0 

E350 1996-2015 13 7 3 3 3 2 5 3 0 

E500 1997-2015 13 7 3 3 5 2 4 2 0 

F1200 1997-2014 15 10 2 3 6 2 5 2 0 

F700 2000-2015 12 9 2 1 5 2 3 2 0 

Fauna 2001-2008 8 6 1 1 3 1 2 0 2 

G1300 2001-2014 9 8 0 1 1 1 5 2 0 

IJ500 1997-2014 10 9 1 0 3 1 4 2 0 

L100 1998-2014 9 8 1 0 4 0 0 2 3 

P300 2001-2015 10 9 0 1 5 1 3 1 0 

Parrilla 2001-2006 5 4 1 0 3 0 2 0 0 

Picada C. 2000-2008 4 3 0 1 1 0 0 0 3 

Soldado 2004-2008 4 4 0 0 0 0 0 0 4 

Veronica 2000-2013 8 7 0 1 3 1 1 2 1 

Total 1996-2015 253 183 34 35 96 33 71 33 20 

U = sex unknown, M = male, F = female.  

“Range of years with recorded births” is the span of years over which each social group was monitored and 

all births that occurred during this period were recorded. 

Disappearances and Dispersals are defined in the text. “Deaths” includes both confirmed and presumed 

deaths (all disappearances of individuals at < 19 months) 
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group had previous been sighted prior to that demographic change. We excluded all 

individuals (N=33) for which the date of birth, disappearance, or dispersal could not be 

estimated with an accuracy of at least six months. For analyses examining the seasonality of 

dispersal (part three, as described below; Table 2.2), we included only individuals for whom 

the date of the disappearance or dispersal could be determined to have occurred within a 

particular season (i.e., the range of all possible dates fell entirely within a single season) 

(N=121).  

For the purposes of this study, we use the term “dispersal” to refer only to a 

permanent departure of an individual from the group into which it was born. Thus, dispersals 

in our analyses exclude temporary departures or “prospecting” events [Danchin et al., 2001; 

Mares et al., 2014; Ponchon et al., 2013] and secondary dispersals of adults (which are rare in 

our population) [Fernandez-Duque and Huck, 2013].  

We classified all departures of offspring from their group between 1997 and 2016 as 

a “death”, a “disappearance”, or a “dispersal” (Table 2.1). We use the term “disappearance” 

to refer to any offspring that vanished from its natal group at the age of 20 months or older, 

but that we did not see again outside of the natal group. We reserve the term “dispersal” for 

an offspring that we observed ranging solitarily or as an adult in a new social group after 

leaving its natal group. We make this distinction because, while we generally presume the 

disappearance of any offspring > 20 months to be the result of dispersing, it is possible that 

some “disappearing” individuals died before leaving their natal groups.  

Including individuals who died prior to dispersing could skew estimates of the age at 

dispersal, so we analyzed our data in two ways. We first included dispersed and disappeared 

individuals together and then performed a more conservative analysis in which disappeared 
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individuals were censored. For all analyses, we presumed any offspring that vanished from 

its natal group at < 20 months to have died rather than dispersed. We chose 20 months as the 

minimum age for a potential dispersal because this is the youngest age at which any offspring 

in our study population has ever been confirmed to successfully disperse, and to be consistent 

with previous studies [Fernandez-Duque, 2009; Huck and Fernandez-Duque, 2012]. In the 

few cases when observers found the remains of an offspring within that offspring’s home 

range, we classified this as a death for that individual, as well.  

 

Data analyses 

To assess the potential influence of social and ecological factors on dispersal age and 

timing of dispersal, we organized our analyses into three major parts. Part one examines the 

relationship between variables associated with the social composition of the natal group and 

age at dispersal. In part two, we investigate in more detail the relationship between factors 

related to adult replacements and dispersal. In part three, we explore the relationships 

between social, abiotic/ecological factors known to vary seasonally and the time of year (i.e., 

season) in which an individual dispersed. We provide detailed descriptions of variables 

utilized in each of the three parts of our analyses in Table 2.2. 
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Table 2.2. List and description of variables utilized in each part of the analysis.  

Explanatory variables 

Variable 
name 

Type of 
variable 

Analyses 
used in 

Description  

Group size Count Parts 1, 3 Number of individuals in the group (range 2-6) at the time 
of the dispersal, not including the dispersing individual 

Time since 
last birth 

Continuous 
numerical 

Part 1 Number of months the dispersing individual was in the 
natal group since the last birth in the group (equal to the 
age of the dispersing individual if there were no younger 
offspring born prior to dispersal) 

Replacement Categorical Parts 1, 3 Whether a dispersing individual had experienced the 
replacement of an adult prior to the dispersal (yes or no) 

Sex  Categorical Parts 2 Sex of the dispersing individual (male, female or 
unknown) 

Age at 
replacement 

Continuous 
numerical 

Part 2 Age (in months) of the dispersing individual when the 
replacement occurred 

Same sex  Categorical Part 2 Whether the adult replaced was the same sex as the 
dispersing individual (yes or no) 

Dispersal age Continuous 
numerical 

Part 3 Age (in months) when the dispersal occurred  

Recent birth Categorical Part 3 Whether there was a birth in the natal group within the 
past 12 months (yes or no) 

High Rainfall Categorical Part 3 Whether the amount of rainfall between April and August 
was above average (“high”) in the year that an offspring 
dispersed 

Outcome (dependent) variables 

Age at 
dispersal 

Continuous 
numerical 

Part 1 Age (in months) when an individual permanently 
dispersed from the natal group 

Time to 
dispersal 

Continuous 
numerical 

Part 2 Time (in months) after a replacement that an individual 
remained in the natal group before dispersing 

Birth Season 
 

Categorical Part 3 Whether an individual dispersed between mid-September 
and early January (the birth season) 

Fall/Winter 
Season 

Categorical Part 3 Whether an individual dispersed between April and 
August (the period of low resource abundance) 
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We analyzed our data using an information theoretic approach [Burnham and 

Anderson, 2002; Symonds and Moussalli, 2011]. We first defined an a priori set of models 

for each of the three parts of our analysis (Cox regression models for parts 1-2; generalized 

linear regression models for part 3) based on our previous knowledge of dispersal in this 

population of owl monkeys [[Fernandez-Duque, 2009], personal observations]. We discuss in 

detail our reasoning for including each explanatory variable and methods for constructing 

these variables in the following section.  

We report all candidate models constructed in Tables 2.3-2.5. Within each of our 

three model sets, we calculated corrected Akaike information criteria (AICc) and utilized 

delta AICc and cumulative Akaike weights (AICc weights) to assess the plausibility of each 

candidate model [Burnham and Anderson, 2004; Long, 2012; Mazerolle, 2016]. Prior to 

fitting models, we set criteria for selecting the model(s) from each set that would be used in 

making inferences. We considered there to be a single best approximating model only if the 

model with the lowest AICc had an Akaike weight of > 0.9. Even if one best model was 

supported, in making inferences from our models we considered all those with a delta AICc < 

6 and report their results, following recommendations that models within this delta AICc 

range should not be completely discounted [Richards, 2005; Symonds and Moussalli, 2011]. 

When a single best approximating model could not be identified, we made our inferences 

utilizing multiple models by calculating model-averaged parameters [Burnham and 

Anderson, 2004; Symonds and Moussalli, 2011]. We report characteristics [e.g., number of 

parameters (K), AICc, delta AICc, cumulative Akaike weights, log likelihood] for all 

candidate models, so that readers can assess the plausibility of each of our candidate models 

for themselves (Tables 2.3-2.5).  
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We performed all statistical analyses in R 3.3.2 [R Core Development Team, 2016]. 

We utilized the package AICcmodavg (v. 2.1-0) to calculate AICc and other model 

characteristics, as well as for calculating model-averaged parameter estimates, their standard 

errors, and 95% unconditional confidence intervals [Mazerolle, 2016] (Tables 2.6-2.8). For 

descriptive statistics, we report the mean + one standard error, unless otherwise specified. 

 

Selection of response and explanatory variables and construction of candidate models 

The explanatory variables that we included in our models (Tables 2.3-2.5) were 

chosen by carefully considering which potential factors were likely to be biologically 

relevant, based on our previous knowledge of owl monkey dispersal and dispersal and social 

dynamics in other socially monogamous taxa [Eikenaar et al., 2007; Emlen, 1997; Huck and 

Fernandez-Duque, 2012; Piper and Slater, 1993]. For example, previous observations and an 

earlier analysis of dispersal data from the same population showed that both the median age 

and range of variation in dispersal age are extremely similar for males and females 

[Fernandez-Duque, 2009; Fernandez-Duque and Huntington, 2002]. The sex of dispersing 

individuals was also unknown for the majority of individuals in our data set (63%). 

Therefore, to maximize our sample size and to avoid overfitting our data, we did not include 

sex in our candidate models for analyses unless otherwise specified. 

In part one, to examine how factors associated with the social group may influence 

age at dispersal, we conducted statistical “survival” analyses that considered censored data 

using Cox-proportional hazard models. Variation in group size, which in monogamous 

groups is largely determined by the presence of infants or younger individuals, is likely to 

influence the amount of competition within a disperser’s natal group. Adult replacements 
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also are likely to influence social dynamics, particularly between adults and older individuals 

(juveniles and subadults) that are undergoing sexual maturity. Therefore, in this part, we 

included group size, time since last birth, and adult replacements as potential explanatory 

variables. We used these variables to construct eleven candidate models for explaining the 

variation of age at dispersal (Table 2.3). We first ran these eleven candidate models on our 

entire data set (n=138 individuals), censoring only individuals still in their natal groups 

(n=16). For comparison, we repeated our analyses using a more conservative definition of 

dispersal, which treated as confirmed dispersals only individuals seen as solitaries or in a new 

group after leaving the natal group (n=33). In this conservative analysis, we ran our eleven 

candidate models again, but this time censoring all individuals who disappeared (n=89), as 

well as those still in their natal groups.  

In part two, we utilized Cox-proportional hazard models to further investigate the 

potential influence of adult replacements on dispersal. We considered as potential 

explanatory variables the age at which an individual experienced a replacement and whether 

the sex of the adult replaced was the same as the disperser’s sex, since these factors are likely 

to influence social interactions between adults and offspring [Emlen, 1997]. There is 

preliminary evidence that females may begin to develop mature hormone profiles at a 

somewhat earlier age than males [Corley et al., 2016]. We therefore also included the 

disperser’s sex in interaction terms in candidate models. In total, we constructed nine 

candidate models (Table 2.4) to examine how these explanatory variables relate to how long 

an offspring remains in the natal group after experiencing a replacement (“time to dispersal”, 

Table 2.2). For these analyses, we utilized data only from the subset of individuals who 

experienced a replacement and met our criteria of having dates of birth and 
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disappearance/dispersal that could be estimated with an accuracy of at least six months. 

There were 50 individuals (28 disappeared, 21 dispersed, 1 still in the natal group) for 

analyses. Some offspring experienced more than one adult replacement. Since an individual 

can only disperse once, we only considered the most recent replacement (the one that 

occurred most immediately before dispersal). In the model set for part two, potential 

explanatory variables included the age at which an individual experienced a replacement and 

whether the sex of the adult replaced was the same as the disperser’s sex, since these factors 

are likely to influence social interactions between adults and offspring [Emlen, 1997]. There 

is preliminary evidence that females may begin to develop mature hormone profiles at a 

somewhat earlier age than males [Corley et al., 2016]. We therefore also included the 

disperser’s sex in interaction terms in candidate models. In total, we used these potential 

variables to construct nine candidate models (Table 2.4).  

We also performed a separate analysis that included only the subset of individuals in 

the data set for part two that were subadults (> 24 months old). One of the reasons that we 

predicted that the age at which an individual experienced an adult replacement would be 

important is that replacements would expose older offspring (e.g., subadults) to potential 

mating competition or opportunities to mate with an unrelated adult. We thus expected that 

adult replacements might influence subadults, who were approaching sexual maturity, 

differently than younger offspring. We had a relatively small number of individuals who had 

experienced replacements as subadults (N=7 with same sex replacements, N=9 with opposite 

sex replacements). To avoid overfitting our data, we did not create a full set of models for 

this small subset. Instead, we calculated the mean number of months that individuals who 

experienced the replacement of a same, or opposite, sex adult remained in the natal group 
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after a replacement. We used a non-parametric Wilcoxon rank-sum test to evaluate the 

statistical significance of the difference.  

In part three, we examined the potential influence of several explanatory variables on 

the seasonality of dispersal. Previous observations indicate that dispersals occur throughout 

the year, but are concentrated between September and January, with a peak in October 

[Fernandez-Duque, 2009]. This preferred dispersal period corresponds roughly to a period 

when group composition frequently changes (i.e., the season when births occur) and to a 

period of relative resource abundance (i.e., the spring/early summer). We thus defined 

seasonality in two ways and performed separate analyses on each. First, we constructed 15 

candidate models for which the outcome variable was whether dispersal occurred during the 

birth season (mid-September to early January) or another time of the year. In the birth season 

model set, potential explanatory variables included dispersal age, group size, adult 

replacement, and whether a birth had occurred in the natal group within the past year (Table 

2.2). We did not use time since last birth, as in parts one and two, because births are highly 

seasonal and thus correlated with our outcome variable.  

Next, we performed analyses in which we defined seasonality based on abiotic 

proxies of resource abundance. Specifically, we constructed 15 candidate models for which 

the outcome variable was whether dispersal occurred during the fall/winter, when resource 

abundance is relatively low, or another time of year. We chose this season to focus on 

because of our interest in examining which variables might explain the reason that 

individuals sometimes disperse during times when ranging solitarily is presumably most 

difficult (due to limited food resources and colder temperatures). The amount of rainfall 

during the fall/winter season is a relatively good proxy for food abundance during this 
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season. We know that“ wet” years, such as those related to El Niño Southern Oscillation 

(ENSO) events, are associated with heavy rain and higher fruit production in the region 

[Fernandez-Duque, 2009]. We divided the 20 years (1997-2016) in our study into two 

categories, based on the amount of rain that occurred between April and August. Specifically, 

we considered years with an amount of rainfall that was more than one standard error above 

the average fall/winter rainfall (>450 mm) to be “high rainfall” years (N=10), and we 

presumed that these years had relatively high fall/winter resource abundance. We considered 

years that had average or lower than average rainfall (<450 mm) to have relatively low 

fall/winter resource abundance (N=10). We did not include temperature as a variable because 

it is correlated with both the birth season and the fall/winter season [Fernandez-Duque, 

2009]. In the abiotic season model set, potential explanatory variables included whether there 

was high rainfall during the fall/winter season in the year in which the dispersal occurred, 

dispersal age, adult replacement, and whether a birth had occurred in the natal group within 

the past year (Table 2.2).  

Although many groups were represented more than once in our data set (i.e., 

observations of the same groups over many years), we did not include group ID as a random 

factor in any of our candidate models. The characteristics and composition of owl monkey 

groups are not stable over multiple years: the demographic structure frequently changes due 

to births and deaths, the identities of “parents” (due to adult replacements) often changes, and 

even the home ranges held by a particular group fluctuate over time. Thus, there are not 

strong reasons to include group ID in our models when considering 20 years of data. To 

provide support for this assumption, we re-constructed model set 1 to include Group ID as a 

random factor in each candidate model. Group ID did not improve our models or 
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substantially change our results; Group ID accounted for almost none of the variance in 

dispersal age (for each candidate model, all or almost all of the variance was in the residual 

for this variable). We therefore report only results from models that do not include Group ID 

as a random effect (Tables 2.3-2.5).  

 

Table 2.3. Models of age at dispersal, as explained by characteristics of the social group, 

ranked according to their AICc values (Part One).  

Model 
name Model parameters K AICc 

delta 
AICc 

AICc 
weight 

Cum. 
weight 

Log 
Like-
lihood 

M1.2 birth 1 967.78 0 0.40 0.40 -482.88 

M1.4 group size + birth 2 969.25 1.47 0.19 0.59 -482.58 

M1.1 group size 1 970.10 2.32 0.12 0.71 -484.04 

M1.10 birth * replacement 5 971.29 3.51 0.07 0.78 -480.42 

M1.8 group size * birth 3 971.34 3.55 0.07 0.85 -482.58 

M1.6 birth + replacement 3 971.69 3.91 0.06 0.90 -482.76 

M1.3 replacement 2 972.13 4.35 0.05 0.95 -484.02 

M1.7 group size + birth + replacement 4 973.24 5.46 0.03 0.97 -482.47 

M1.5 group size + replacement 3 974.19 6.41 0.02 0.99 -484.01 

M1.11 group size * birth + replacement 5 975.39 7.61 0.01 1.00 -482.47 

M1.9 group size * replacement 5 978.34 10.56 0 1.00 -483.94 

 

Model 
name Model parameters K AICc 

delta 
AICc 

AICc 
weight 

Cum. 
weight 

Log 
Like-
lihood 

C1.6 birth + replacement 2 229.93 0 0.44 0.44 -112.92 

C1.10 birth * replacement  3 231.79 1.85 0.17 0.61 -112.80 

C1.7 group size + birth + replacement 3 231.91        1.98 0.16 0.77 -112.87 

C1.11 group size * birth + replacement 4 232.99 3.05 0.09 0.86 -112.34 

C1.2 birth 1 234.45 4.52 0.05 0.91 -116.21 

C1.5 group size + replacement 2 235.82 5.88 0.02 0.93 -115.86 

C1.3 replacement 1 235.90 5.97 0.02 0.95 -116.94 

C1.4 group size + birth 2 236.23 6.29 0.02 0.97 -116.07 

C1.8 group size * birth 3 236.36 6.43 0.02 0.99 -115.09 

C1.9 group size * replacement 3 237.83 7.89 0.01 1.00 -115.82 

C1.1 group size 1 241.54 11.61 0.00 1.00 -119.76 

-Model names beginning with M (top) refer to models run using the full data set (n=138 individuals), while 

those beginning with C (bottom) refer to models run using the more conservative definition of dispersal 

(n=35 uncensored individuals). The model numbers (1.1 – 1.11) were randomly assigned to the 11 

candidate models in Part 1, and are used as shorthand throughout the results to refer to the models with the 

parameters specified here.  
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-Models with delta AICc > 6, which accounted for relatively little of the cumulative Akaike weight, are 

shaded in gray. 

-“K” = number of parameters contained in each model, as calculated by the AICcmodavg package 
[Mazerolle, 2016]. 

-“AICc weights”, also termed model probabilities [Anderson, 2008; Burnham and Anderson, 2002], 

indicate the level of support (i.e., weight of evidence) in favor of any given model within the candidate 

model set [Mazerolle, 2016]. 

 

 

 

 

Table 2.4. Models of time to dispersal after an adult replacement, ranked according to their 

AICc values (Part Two).  

Model 
name Fixed effects 

K AICc 
delta 
AICc 

AICc 
weight 

Cumul-
ative 
weight 

Log Like-
lihood 

M2.1 
 

age at replacement 
1 148.41 0.00 0.43 0.43 -73.14 

M2.3 
age at replacement + same sex 

replacement 
2 148.86 0.45 0.34 0.77 -72.22 

M2.4 
age at replacement * same sex 

replacement 
3 150.92 2.51 0.12 0.90 -72.03 

M2.5 
 

age at replacement * sex 
3 152.93 4.52 0.04 0.94 -73.04 

M2.9 
same sex replacement * sex + 

age at replacement 
4 153.61 5.20 0.03 0.97 -72.07 

M2.6 
age at replacement * sex + same 

sex replacement 
4 153.91 5.50 0.03 1.00 -72.21 

M2.7 
 

sex 
1 164.44 16.03 0 1.00 -81.15 

M2.2 
 

same sex replacement 
1 165.12 16.71 0 1.00 -81.49 

M2.8 
 

same sex replacement * sex 
3 169.00 20.59 0 1.00 -81.07 

-The model numbers (2.1 – 2.8) were randomly assigned to the eight candidate models in Part 2 are used as 

shorthand throughout the results to refer to the models with the parameters specified here.  

-Models with delta AICc > 6, which accounted for relatively little of the cumulative Akaike weight, are 

shaded in gray. 

-“K” = number of parameters contained in each model, as calculated by the AICcmodavg package 
[Mazerolle, 2016]. 

-“AICc weights”, also termed model probabilities [Anderson, 2008; Burnham and Anderson, 2002], 

indicate the level of support (i.e., weight of evidence) in favor of any given model within the candidate 

model set [Mazerolle, 2016]. 
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Table 2.5. Models of season of dispersal, ranked according to their AICc values (Part Three). 

Model 
name Model parameters K AICc 

delta 
AICc 

AICc 
weight 

Cumul-
ative 
weight 

Log Like-
lihood 

B3.9 
 

recent birth + adult replacement 3 165.24 0 0.27 0.27 -79.52 

B3.2 
 

recent birth 2 166.09 0.85 0.18 0.45 -81.00 

B3.11 
dispersal age + recent birth + 

adult replacement 4 166.97 1.73 0.11 0.56 -79.31 

B3.14 
recent birth + group size + adult 

replacement 4 167.37 2.13 0.09 0.65 -79.51 

B3.8 
 

recent birth + group size 3 168.00 2.76 0.07 0.72 -80.90 

B3.5 
 

dispersal age + recent birth 3 168.04 2.80 0.07 0.79 -80.92 

B3.4 
 

adult replacement 2 168.79 3.54 0.05 0.83 -82.34 

B3.15 
dispersal age + recent birth + 

group size + adult replacement 5 169.09 3.85 0.04 0.87 -79.29 

B3.3 
 

group size 2 169.82 4.57 0.02 0.90 -82.86 

B3.10 
 

group size + adult replacement 3 170.01 4.76 0.02 0.92 -81.90 

B3.13 
dispersal age + recent birth + 

group size 4 170.02 4.78 0.02 0.95 -80.84 

B3.7 
dispersal age + adult 

replacement 3 170.40 5.15 0.01 0.97 -82.10 

B3.1 
 

dispersal age 2 171.62 6.38 0.01 0.98 -83.76 

B3.6 
 

dispersal age + group size 3 171.84 6.59 0.01 0.99 -82.82 

B3.12 
dispersal age + group size + 

adult replacement 4 171.84 6.6 0.01 1 -81.75 
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Model 
name Model parameters K AICc 

delta 
AICc 

AICc 
weight 

Cumul-
ative 

weight 
Log Like-

lihood 

A3.1 
 

high rainfall 2 140.69 0.00 1.00 0.25 -68.29 

A3.6 
 

high rainfall + recent birth 3 140.73 0.04 0.98 0.49 -67.26 

A3.5 
 

high rainfall + replacement 3 142.76 2.07 0.36 0.57 -68.28 

A3.7 
 

high rainfall + dispersal age 3 142.79 2.10 0.35 0.66 -68.29 

A3.11 
high rainfall + replacement + 

recent birth 4 142.86 2.17 0.34 0.74 -67.26 

A3.13 
high rainfall + recent birth + 

dispersal age 4 142.87 2.18 0.34 0.82 -67.26 

A3.3 
 

recent birth 2 144.25 3.56 0.17 0.86 -70.07 

A3.12 
high rainfall + replacement + 

dispersal age 4 144.89 4.20 0.12 0.90 -68.27 

A3.15 
high rainfall + replacement + 
recent birth + dispersal age 5 145.03 4.34 0.11 0.92 -67.26 

A3.2 
 

replacement 2 145.88 5.19 0.07 0.94 -70.89 

A3.4 
 

dispersal age 2 145.89 5.20 0.07 0.96 -70.90 

A3.8 
 

recent birth + replacement 3 146.34 5.65 0.06 0.97 -70.07 

A3.9 
 

recent birth + dispersal age 3 146.35 5.66 0.06 0.99 -70.07 

A3.10 
 

replacement + dispersal age 3 147.97 7.28 0.03 0.99 -70.88 

A3.14 
replacement + recent birth + 

dispersal age 4 148.48 7.78 0.02 1.00 -70.07 

-Model names beginning with B (top) refer to models for which the outcome variable was whether or not 

dispersal occurred during the “birth season” (mid-Sep to early Jan), while those beginning with A (bottom) 

refer to models for which the outcome variable was whether or not dispersal occurred during the period of 

low resource abundance during the fall/winter (“abiotically defined season”). The model numbers 3.1 – 

3.15) were randomly assigned to the candidate models in Part 3 are used as shorthand throughout the 

results to refer to the models with the parameters specified here. 

-Models with delta AICc > 6, which accounted for relatively little of the cumulative Akaike weight, are 

shaded in gray. 

-“K” = number of parameters contained in each model, as calculated by the AICcmodavg package 
[Mazerolle, 2016]. 

-“AICc weights”, also termed model probabilities [Anderson, 2008; Burnham and Anderson, 2002], 

indicate the level of support (i.e., weight of evidence) in favor of any given model within the candidate 

model set [Mazerolle, 2016]. 
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Results 

Characteristics of the natal group and age at dispersal 

No individuals reproduced in their natal groups; all dispersed, disappeared, or died. 

Approximately one third of the offspring (70/220) with dates of birth and departure from the 

natal group known with an accuracy of < 6 months, died or were presumed to have died 

before they were old enough to disperse. Another 40% (N=89) disappeared, 15% (N=33) 

were confirmed to have dispersed, and 11% (N=25) were still living in their natal groups at 

the end of the study.  

At the time of dispersal the natal groups showed variation in the number of other 

group members present, whether there had been a replacement, and the time since the most 

recent infant birth. At the time of disappearance or dispersal, there was a mean of 3.3 other 

individuals present (range 2-6, Figure 2.1a), 40% of individuals had experienced an adult 

replacement (Figure 2.1b), and a mean of 11 + 1 months (range 0-46) had passed since the 

last infant was born in the natal group (Figure 2.1c). We report the characteristics of the natal 

group for individuals who disappeared and individuals who were confirmed to have dispersed 

separately, for comparison, in Figure 2.1.  

a.  
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b.       
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Figure 2.1. Characteristics of the natal groups from which individuals disappeared (N=89) or 

dispersed (N=33): a) Proportion of individuals leaving natal groups containing 2 to > 5 other 

individuals; b) Proportion of individuals leaving a natal group; c) Time since the most recent 

infant birth (in months) when an individual departed from its natal group. “X” indicates the 

mean. 

 

 There was substantial variation in the age when individuals disappeared and 

dispersed from the natal group. Offspring departed from the natal group when they were 

between 1.7 and 5.3 years old (i.e., 20-63 months; median = 35 months; mean + SE = 35 + 1 

months). Males and females had very similar ages of dispersal [median (mean + SE): males = 

37 (37 + 2) months, females = 37 (40 + 2) months], and had similar probabilities of 

dispersing at most ages (Figure 2.2a). There was a tendency for more females than males to 
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delay dispersal until 35 months of age. Of the 14 individuals of known sex that dispersed 

prior to reaching 35 months, ten were male and only four were female. However, after 35 

months, this sex difference tendency disappeared, and the age-specific probabilities of 

dispersing were otherwise similar for males and females (Figure 2.2a; G-rho test for 

differences in survival: X2 = 1.3, df = 1, p = 0.3). When we limited our analyses to individuals 

for which dispersal had been confirmed, the mean and median age at dispersal was higher 

than when we included individuals that had disappeared (Figure 2.2b; G-rho test for 

differences in survival: X2 = 14.9, df = 1, p < 0.01). Specifically, dispersed individuals’ 

median age at dispersal was 39 months, compared to 30 months for disappeared individuals 

(mean age = 42 + 2 months versus 32 + 1 months, respectively). For individuals with 

confirmed dispersals, age at dispersal was again similar for males and females [median (mean 

+ SE): 40 (41 + 2) and 38 (43 + 2) months, respectively). 

For models in part one, our results differed depending on whether we considered 

disappearances to be dispersals (Figure 2.2b). Our analyses utilizing the full data set (n=122 

uncensored individuals that either dispersed or disappeared) differed from those utilizing the 

more conservative data set (n=33 confirmed dispersals) (Tables 2.3 and 2.6). With the full 

data set, eight of our 11 models had a delta AICc of < 6, and together these accounted for 

97% of the cumulate weight (Table 2.3). However, for the full data set, none of our potential 

explanatory variables (adult replacement, birth, and group size) explained much of the 

variation in age at dispersal, and all model-averaged parameters had confidence intervals that 

included zero (Table 2.6).  
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a. 

 

b. 

 

Figure 2.2. Survival curves (i.e., age-specific probabilities of dispersal) for disappearing and 

dispersing offspring: a) survival curve for male (black; N=28) and female (gray; N=27) 

offspring; b) survival curve for offspring that disappeared (gray; N=89) and offspring 

confirmed to have dispersed (black; N=33). 
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On the other hand, results from our more conservative analyses suggested that adult 

replacement is an important factor for explaining age at dispersal. When we limited our 

definition of dispersal to include only confirmed dispersals, seven out of our 11 models had a 

delta AICc of < 6, and together these accounted for 95% of the cumulate weight (Table 2.3). 

Six of these seven best models (including the best model, C1.6, which alone accounted for 

59% of the cumulative weight) included adult replacement as a factor. Of the three 

explanatory variables included in our candidate models (adult replacement, time since a birth, 

and group size), having an adult replacement was the only one with a model-averaged 

parameter estimate whose confidence interval did not include zero (0.9 + 0.4, 95% CI = 0.2-

1.6). Specifically, an offspring had a hazard of dispersing 2.5 times greater (95% CI: 1.2-5.0) 

if they had experienced an adult replacement. Additionally, this parameter reached statistical 

significance at a level of p < 0.05 in all the candidate models in which it was included as a 

factor (Table 2.6). We present parameter estimates and standard errors for each model 

included in our model-averaged estimates for both full and conservative analyses in Table 

2.6. 
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Table 2.6. Details of the models used in multimodel inference for each model-averaged 

parameter in Part One (age at dispersal models). 

Parameter Model AICc 
AICc 

weight 
Estimate 
(Coeff.) SE 

Adult replacement 
 
  
  

M1.6 971.69 0.37 0.12 0.25 

M1.3 972.13 0.30 0.05 0.25 

M1.7 973.24 0.17 0.08 0.26 

M1.5 974.19 0.11 0.06 0.26 

M1.11 975.39 0.06 0.08 0.26 

Average = 0.08 + 0.26; 95% Unconditional confidence interval: -0.42 - 0.58 

Births 
 
 
 

M1.2 967.78 0.53 -0.01 0.01 

M1.4 969.25        0.26 -0.02 0.01 

M1.8 971.34 0.09 -0.02 0.04 

M1.6 971.69 0.08 -0.01 0.01 

M1.7 973.24 0.03 -0.02 0.01 

M1.11 975.39 0.01 -0.02 0.04 

Average = -0.02 +  0.02 (SE); 95% Unconditional confidence interval: -0.05 - 0.01 

Group size 
 
 
 

M1.4 969.25 0.44 -0.09 0.12 

M1.1 970.10 0.29 0.01 0.10 

M1.8 971.34 0.16 -0.10 0.15 

M1.7 973.24 0.06 -0.09 0.13 

M1.5 974.19 0.04 0.02 0.11 

M1.11 975.39 0.02 -0.10 0.15 

Average = -0.06 +  0.13 (SE); 95% Unconditional confidence interval: -0.32 - 0.20 
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Parameter Model AICc 
AICc 

weight 
Estimate 
(Coeff.) SE 

Adult replacement 
 
  
  

C1.6 229.93 0.59 0.89 0.35 

C.17 231.91 0.22 0.93 0.38 

C1,11 232.99 0.13 0.86 0.37 

C1.5 235.82 0.03 1.01 0.37 

C1.3 235.9 0.03 0.87 0.35 

Average = 0.90 + 0.36 (SE); 95% Unconditional confidence interval: 0.19 - 1.61 
Hazard ratio with 95% confidence interval = 2.46 (1.21-5.00) 

Births 
 
 
 

C1.6 229.93 0.56 -0.06 0.02 

C1.7 231.91 0.21 -0.06 0.03 

C1.11 232.99 0.12 -0.18 0.13 

C1.2 234.45 0.06 -0.06 0.02 

C1.4 236.23 0.02 -0.06 0.02 

C1.8 236.36 0.02 -0.23 0.14 

Average = -0.08 + 0.07 (SE); 95% Unconditional confidence interval: -0.22 - 0.06 

Group size 
 
 
 

C1.7 231.91 0.51 0.07 0.21 

C1.11 232.99 0.3 -0.19 0.35 

C1.5 235.82 0.07 0.28 0.19 

C1.4 236.23 0.06 -0.11 0.21 

C1.8 236.36 0.06 -0.43 0.34 

C1.1 241.54 0 0.14 0.18 

Average = -0.03 + 0.32 (SE); 95% Unconditional confidence interval: -0.65 - 0.59 
-Models beginning with M (top) refer to models run using the full data set (n=138 individuals), while those 

beginning with C (bottom) refer to models run using the more conservative definition of dispersal (n=35 

uncensored individuals) (see Table 3). 

-Only models containing the parameter of interest were utilizing in calculating the model-averaged 

parameters. All models utilized are ranked by AICc values. 

-Estimate = the coefficient for each model; SE = standard error for the estimate for each model 

 

 

Adult replacements and dispersal  

Of the 253 individuals born between 1996 and 2015 (Table 2.1), at least 63 (25%) of 

them experienced the replacement of a resident adult. When we exclude individuals still in 

their natal groups, who could potentially still experience a replacement before dispersing 

(N=32), 29% of dispersed/disappeared individuals experienced a replacement. Offspring 
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experienced the replacement of adults of both sexes with equal frequency: 36 experienced the 

replacement of an adult female and 36 experienced the replacement of an adult male. Some 

offspring experienced more than one adult replacement (mean = 2.3, range 2-4 

replacements). Nine individuals experienced the replacement of both a male and female 

adult, and eight experienced an additional replacement of an adult of the sex that had already 

been replaced earlier during the offspring’s lifetime (four experienced multiple replacements 

of the adult male, five experienced multiple replacements of the adult female). 

 Offspring experienced adult replacements at all ages (20.0 + 1.8 months; range 2 

months before birth to 57 months). On average, an offspring remained in the natal group for 

12.4 + 1.5 months after experiencing the replacement of an adult, and they remained in the 

natal group for a similar amount of time when the replacement involved an adult male (12.8 

+ 1.9 months) or an adult female (12.0 + 2.3 months; Wilcox Rank-Sum test: W = 478, p = 

0.4). However, there was much variation, with some individuals dispersing within a day of 

experiencing a replacement, while one remained in the natal group for 40 months after a 

replacement (Figure 2.3a). When we consider just individuals that experienced an adult 

replacement as older juveniles or subadults (i.e., >20 months, when they were old enough to 

potentially disperse; N=17), they remained in their natal group for 5.5 + 1.3 months. The time 

that older juveniles and subadults remained in their natal group was also similar after 

experiencing the replacement of an adult male (5.2 + 1.5 months) or an adult female (5.6 + 

1.9 months; Wilcox Rank-Sum test: W = 57.5, p = 0.6; Figure 2.3b). 
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a. 

 
 

b. 

  
Figure 2.3. Box plots showing the time (in months) that offspring remained in the natal 

group after experiencing the replacement of an adult male or adult female, for: a) all 

offspring who experienced replacements, and b) offspring who experienced replacements at 

an age when they were old enough to disperse (>20 months). “X” indicates the mean.   

 

Our part two models indicate that the age at which an offspring experienced an adult 

replacement was the most important factor for explaining the amount of time that an 
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individual remained in the natal group before dispersing. Six of our nine candidate models 

had a delta AICc of < 6, and together they accounted for 100% of the cumulate weight of our 

models (Table 2.4). Age at replacement was the only variable included in all six of these 

models, and it was the only variable included in the very best model (M2.1, which accounted 

for 43% of the cumulative weight). Specifically, an offspring had a hazard of dispersing 1.1 

times greater (95% CI: 1.0-1.1) for every month older they were at the time of an adult 

replacement. The variable “same sex as replacement” was in four of the six best models, 

suggesting that offspring who experienced a replacement of the adult that was the same sex 

as themselves had a somewhat increased risk of dispersing. However, this variable’s effect 

did not reach statistical significance at a level of p < 0.1 in any of the models in which it was 

included and the model-averaged parameter (0.53) had a 95% confidence interval that 

included zero (-0.2-1.3; Table 2.7). The sex of the dispersing individual did not explain much 

of the variance in age at dispersal either, and no interaction terms including sex were 

significant at a level of p < 0.1 in any of the four models in which they were included. We 

present details of our models and model-averaged parameters in Table 2.7.  

When we limited our analysis only to offspring who had experienced an adult 

replacement as a subadult (> 24 months), there was a difference in the amount of time they 

remained in the natal group, depending on whether the adult replaced was the same or 

opposite sex as themselves (Figure 2.4). Individuals who experienced the replacement of the 

same sex adult dispersed sooner after the replacement (mean time remained = 1.7 + 0.5 

months) than those that experienced the replacement of an opposite sex adult (mean time 

remained = 5.8 + 1.4 months), and this difference was statistically significant (Wilcoxon 

Rank-Sum: W = 12.5, p = 0.05). Furthermore, all seven individuals that experienced a same-
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sex replacement dispersed within four months, while more than half of the nine that 

experienced an opposite-sex replacement remained in the natal group for more than four 

months (Figure 2.4).  

 

Table 2.7. Details of the models used in multimodel inference for each model-averaged 

parameter in Part Two (time until dispersal). 

Parameter Model # AICc AICc weight Estimate 
(Coeff.) 

SE 

Age at 
replacement 

1 148.41 0.46 0.06 0.02 

3 148.86 0.37 0.07 0.02 

4 150.92 0.13 0.08 0.02 

9 153.61 0.03 0.07 0.02 

Average = 0.07 + 0.02 (SE); 95% Unconditional confidence interval: 0.03 - 0.10 
Hazard ratio with 95% confidence interval = 1.07 (1.03 - 1.1) 

Same Sex 3 148.86 0.93 0.53 0.39 

6 153.91 0.07 0.55 0.44 

2 165.12 0.00 0.14 0.38 

Average = 0.53 + 0.39 (SE); 95% Unconditional confidence interval: -0.24 - 1.30 

Sex 7 164.44 1 -0.33 0.36 

Estimate = -0.33 + 0.36; 95% Unconditional confidence interval: -1.04 - 0.38 
-Only models containing the parameter of interest were utilizing in calculating the model-averaged 

parameters. All models utilized are ranked by AICc values. 
-Estimate = the coefficient for each model; SE = standard error for the estimate in each model 
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Figure 2.4. Proportion of subadults that remained in the natal group after experiencing a 

replacement of the same sex (black) or opposite sex (gray) adult over one year.  

 

 

Timing of dispersal throughout the year 

Individuals disappeared and dispersed in all months, but these events were 

concentrated in the birth season: approximately 50% (60/121) occurred mid-September to 

mid-January. Since the birth season constitutes only four months of the year, 

disappearance/dispersal during the birth season occurred more frequently than expected by 

chance and this difference was statistically significant (50% observed versus 33% expected; 

X2 = 6.61, df = 1, p = 0.01). Disappearances/dispersals were most frequent during October 

(N=24) (20% observed versus 8% expected; X2 = 6.59, df = 1, p = 0.01), though many also 

occurred in November (N=14) and December (N=12). They were least frequent in April 
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(N=4; 3% observed versus 8% expected; X2 = 2.80, df = 1, p = 0.09; Figure 2.5a), and 

occurred much less frequently than expected by chance in the fall/winter season (N=33/121; 

27% observed versus 42% expected; X2 = 5.54, df = 1, p = 0.02).  

The annual distribution of dispersal was also more skewed towards the birth season 

when we considered only individuals with confirmed dispersals: 61% (20/33) occurred mid-

September to mid-January (61% observed versus 33% expected; X2 = 4.93, df = 1, p = 0.03). 

Dispersal were most frequent during October (30% observed versus 8% expected; X2 = 5.11, 

df = 1, p = 0.02), while none occurred during February or April (Figure 2.5b). Confirmed 

dispersals also occurred less frequently than expected by chance in the fall/winter season 

(N=7/33; 21% observed versus 42% expected; X2 = 3.20, df = 1, p = 0.07). 

Our part three models indicate that a recent birth in the natal group was the factor 

most important in explaining whether an individual dispersed during the birth season. Twelve 

of the 15 candidate models had a delta AICc of < 6, and these accounted for 97% of the 

cumulative weight of our models. The six models with the best AICc ranking all included 

recent birth as a factor and recent birth was the only model-averaged parameter whose 

confidence interval did not include 0. Specifically, the odds of dispersing during the non-

birth season increased by 2.6 (95% CI = 1.1-5.8) if there was a birth in the natal group within 

the past year. The model-average estimate for the effect of adult replacement was -0.7 + 0.4 

(SE), but the 95% confidence interval (-1.4-0.1) included zero (Table 2.8). However, the 

estimate for adult replacement was negative in all models in which it was included as a 

factor, and this parameter reached significance at the level of p < 0.1 in the five best models 

(Table 2.8). This suggests that experiencing an adult replacement may be associated with a 

somewhat decreased chance of dispersing outside of the birth/dispersal season (odds ratio = 
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0.5, 95% CI = 0.2-1.1). Neither group size nor dispersal age were important in explaining 

variation in season of dispersal (Table 2.8).  

a. 

 
 

b. 

 
Figure 2.5. a) Proportion of males (N=27), females (N=24), and offspring of unknown sex 

(N=70) dispersing or disappearing in each month. b) Proportion of confirmed dispersals 

(N=33) occurring in each month.  
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Rainfall was the factor most important in explaining whether an individual dispersed 

during the fall/winter season (Figure 2.6). Thirteen of the 15 candidate models had a delta 

AICc of < 6, and these accounted for 100% of the cumulative weight of our models (Table 

2.5). Eight of these models included high rainfall as a factor and this factor reached 

significance at level of p < 0.05 in all eight of the models in which it was included. Model 

averaging indicated that high rainfall decreased the odds of dispersing during the fall/winter 

season by a factor or 2.7 (odds ratio: 0.4, 95% CI = 0.2-0.9). Rainfall was the only model-

averaged parameter whose confidence interval did not include zero (model-averaged estimate 

= -1.0 + 0.5), indicating that recent births, adult replacements, and age at dispersal were 

relatively unimportant in explaining whether dispersal occurred during the fall/winter season 

(Table 2.8). We present details of our models for birth season and fall/winter season and their 

model-averaged parameters in Table 2.8.  
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a.  

 
b. 

 
 

Figure 2.6. Rainfall at Guaycolec Ranch between 1997 and 2016: a) Mean monthly rainfall 

(in mm) for all months of the year; b) Mean rainfall (mm) between April and August for 10 

“wet” years and 10 years with average or below average rainfall during the fall/winter (“dry 

years”). 
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Table 2.8. Details of the models used in multimodel inference for each model-averaged 

parameter in Part Three (season of dispersal). 

Parameter Model  # AICc AICc wt Estimate SE 

Adult replacement 
 
 
 
 
 

B3.9 165.24 0.44 -0.66 0.38 

B3.11 166.97 0.18 -0.69 0.39 

B3.14 167.37 0.15 -0.67 0.41 

B3.4 168.79 0.07 -0.65 0.38 

B3.15 169.09 0.06 -0.73 0.42 

B3.10 170.01 0.04 -0.54 0.39 

B3.7 170.40 0.03 -0.69 0.38 

B3.12 171.84 0.02 -0.58 0.40 

Average = -0.66 + 0.39 (SE); 95% unconditional confidence interval: -1.43 - 0.1 

Recent birth  
 
 
 
 
 

B3.9 165.24 0.32 0.95 0.41 

B3.2 166.09 0.21 0.94 0.40 

B3.11 166.97 0.13 0.94 0.41 

B3.14 167.37 0.11 0.97 0.45 

B3.8 168.00 0.08 0.86 0.44 

B3.5 168.04 0.08 0.94 0.40 

B3.15 169.09 0.05 0.99 0.45 

B3.13 170.02 0.03 0.87 0.44 

Average = 0.94  +  0.42 (SE); 95% unconditional confidence interval: 0.12 - 1.76 
Odds ratio with 95% confidence interval = 2.56 (1.13 - 5.81) 

Group size 
 
 
 
 
 

B3.14 167.37 0.31 -0.03 0.27 

B3.8 168.00 0.23 0.11 0.25 

B3.15 169.09 0.13 -0.07 0.27 

B3.3 169.82 0.09 0.32 0.23 

B3.10 170.01 0.08 0.22 0.24 

B3.13 170.02 0.08 0.10 0.26 

B3.6 171.84 0.03 0.31 0.23 

B3.12 171.84 0.03 0.20 0.24 

Average =  0.08 +  0.29 (SE); 95% unconditional confidence interval: -0.48 - 0.65 

Dispersal Age 
 
 
 
 

B3.11 166.97 0.38 0.01 0.02 

B3.5 168.04 0.23 0.01 0.02 

B3.15 169.09 0.13 0.01 0.02 

B3.13 170.02 0.08 0.01 0.02 

B3.7 170.40 0.07 0.01 0.02 

B3.1 171.62 0.04 0.01 0.02 

B3.6 171.84 0.03 0.01 0.02 

B3.12 171.84 0.03 0.01 0.02 

Average =  0.01 +  0.02 (SE); 95% unconditional confidence interval: -0.03 - 0.05 
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Parameter Model  # AICc AICc  wt.  Estimate  SE 

Adult replacement 
 
 
 
 
 

A3.5 142.76 0.32 -0.08 0.43 

A3.11 142.86 0.30 -0.05 0.43 

A3.12 144.89 0.11 -0.09 0.43 

A3.15 145.03 0.10 -0.05 0.43 

A3.2 145.88 0.07 -0.06 0.42 

A3.8 146.34 0.05 -0.05 0.42 

A3.10 147.97 0.02 -0.07 0.42 

A3.14 148.48 0.02 -0.05 0.42 

Average =  -0.06 + 0.43 (SE); 95% unconditional confidence interval:  - 0.9 - 0.77 

Recent birth  
 
 
 
 
 

A3.6 140.73 0.00 0.66 0.47 

A3.11 142.86 2.13 0.66 0.47 

A3.13 142.87 2.14 0.66 0.47 

A3.3 144.25 3.52 0.58 0.46 

A3.15 145.03 4.30 0.66 0.47 

A3.8 146.34 5.61 0.58 0.46 

A3.9 146.35 5.62 0.58 0.46 

A3.14 148.48 7.74 0.58 0.46 

Average =  0.65 + 0.47 (SE); 95% unconditional confidence interval:  - 0.28 - 1.58 

Rainfall 
 
 
 
 
 

A3.1 140.69 0.00 -0.98 0.45 

A3.6 140.73 0.04 -1.03 0.45 

A3.5 142.76 2.07 -0.98 0.45 

A3.7 142.79 2.10 -0.98 0.45 

A3.11 142.86 2.17 -1.03 0.45 

A3.13 142.87 2.18 -1.03 0.45 

A3.12 144.89 4.20 -0.98 0.45 

A3.15 145.03 4.34 -1.03 0.45 

Average = -1.00 + 0.45 (SE); 95% uncond. confidence interval: -1.88 - 0.13 
Odds ratio with 95% confidence interval = 0.37 (0.15-0.88) 

Dispersal Age 
 
 
 
 

A3.7 142.79 0.00 0.00 0.02 

A3.13 142.87 0.08 0.00 0.02 

A3.12 144.89 2.10 0.00 0.02 

A3.15 145.03 2.24 0.00 0.02 

A3.4 145.89 3.10 0.00 0.02 

A3.9 146.35 3.56 0.00 0.02 

A3.10 147.97 5.18 0.00 0.02 

A3.14 148.48 5.68 0.00 0.02 

Average =  0.00 + 0.02 (SE); 95% unconditional confidence interval: -0.04 - 0.04 
-Model names beginning with B (top) refer to models for which the outcome variable was whether or not 

dispersal occurred during the “birth season” (mid-Sep to early Jan). Model names beginning with A 
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(bottom) refer to models for which the outcome was whether dispersal occurred during the period of low 

resource abundance during the fall/winter (“abiotically defined season”).  

-Only models containing the parameter of interest were utilizing in calculating the model-averaged 

parameters. All models utilized are ranked by AICc values. 

-Estimate = the coefficient for each model; SE = standard error for the estimate for each model 
 

 

Discussion 

Owl monkey dispersal strategies are flexible: variation in age and timing of dispersal 

is explained by several proximate social and ecological factors. The flexibility in age at 

dispersal that we found is consistent with previous observations of dispersal in Azara’s owl 

monkeys [Fernandez-Duque, 2009], and is similar to that observed in a variety of other 

primate taxa [Alberts and Altmann, 1995; Cheney, 1983; Fernandez-Duque, 2009; Jack and 

Fedigan, 2004; Morelli et al., 2009]. Our results underscore the importance of incorporating 

intraspecific variation into descriptions of species’ dispersal patterns.  

In the remainder of this section, we first discuss our results related to the influence 

that social and ecological variables have on the age and timing of natal dispersal, and 

consider how these results inform our understanding of why some individuals delay 

dispersal. We then discuss our results in the context of evolutionary explanations for 

dispersal in pair-living monogamous taxa by assessing the extent to which our results support 

inbreeding, mate competition, and resource competition avoidance hypotheses. These 

hypotheses are broad and are not mutually exclusive, and the correlational nature of our data 

does not allow us to infer causality between proximate factors and dispersal. Therefore, what 

we do is evaluate how the associations between various factors and dispersal most likely 

influence dispersal patterns in owl monkeys, and evaluate which evolutionary explanations 

are most plausible, based on the associations we found.  
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Variation in the age at which owl monkeys dispersed was best explained by adult 

replacements. The replacement of a parent by an unrelated adult is expected to increase the 

chance of dispersal if access to nepotistic benefits is influencing dispersers’ decisions to stay. 

This is because adult replacements reduce potential nepotistic benefits available to offspring 

in the natal group [Ekman and Griesser, 2002]. Models using data from individuals with 

confirmed dispersals found that, at a given age, individuals that experienced an adult 

replacement had an increased risk of dispersing approximately 2.5 times higher than those 

who did not experience a replacement (Table 2.6). Our results are consistent with the “safe 

haven”  hypothesis, which suggests that offspring delay dispersal when their natal group 

consists of close kin, to maintain access to nepotistic benefits [Kokko and Ekman, 2002].  

The proportion of offspring experiencing adult replacement was higher for 

individuals with confirmed dispersals compared to individuals that disappeared (Figure 2.1b). 

This is likely a consequence of our enhanced ability to detect adult replacements in groups 

that were more closely monitored. We capture individuals from our core study groups, which 

we contact almost every week, much more frequently than individuals in non-core groups. 

Individuals with confirmed dispersals had all been captured and radiocollared prior to their 

dispersal, and generally came from one of our core groups. Owl monkeys are sexually 

monomorphic and lack obvious distinguishing markings, and it is not typically possible to 

distinguish one adult from another adult, unless the individuals have been captured and 

collared or marked [Fernandez-Duque and Rotundo, 2003; Juárez et al., 2011]. We suspect 

that our detection rate for replacements in core groups, and thus for individuals with 

confirmed dispersal, was higher than for non-core groups. The difficultly in detecting adult 

replacements in groups in which one or both adults have not been captured and identified 
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likely resulted in us underestimating the proportion of offspring in these groups that 

experienced an adult replacement. This may, at least in part, explain why we did not find that 

adult replacement explained a significant amount of variation in our part one models that 

included disappeared individuals (Table 2.6). However, it is also possible that some of the 

disappearances that we observed were due to deaths, and thus should not be considered 

dispersals at all. This may also have contributed to the differences between our analyses that 

used disappeared individuals and our more conservative analyses.  

Variation in the amount of time that an individual remained in the natal group after 

experiencing a replacement was best explained by the offspring’s age (Table 2.7). This is 

unsurprising as the costs of dispersal and benefits of philopatry are expected to depend on 

characteristics of the predispersing offspring that change with age, such as size and physical 

condition, foraging skills and competitive ability, and sexual maturity [Bonte et al., 2012]. It 

follows that the benefits of remaining in the natal group after a replacement likely also 

change with age. Four of our six best models also contained the variable “same sex as 

replacement”, suggesting that offspring who experienced a replacement of the adult that was 

the same sex as themselves had a somewhat increased risk of dispersing. The effect of the 

same sex variable was not statistically significant in our models that included individuals of 

all ages, but subadults who experienced the replacement of the same sex adult remained in 

the natal group for less time than those that experienced the replacement of an opposite sex 

adult (Figure 2.4). The fact that this effect was stronger in subadults, who had likely already 

experienced the onset of sexual maturity at the time of the replacement [Corley et al., 2016; 

Chapter 4], suggests that mating competition with the new same sex adult may increase the 

costs of delaying dispersal. 
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Variation in the timing of dispersal during the year was not well-explained by adult 

replacements. According to our models, individuals did not have a decreased chance of 

dispersing outside of the preferred dispersal season if they had experienced an adult 

replacement nor did they have an increased chance of dispersing during the fall/winter season 

(Table 2.8). One might expect that replacements could force individuals to disperse at a non- 

preferred time, when the relative costs of dispersal were high. In fact, our previous 

examination of owl monkey dispersal provided preliminary support for this prediction 

[Fernandez-Duque, 2009]. However, our models were not consistent with this prediction: the 

data actually suggest that there was a slight (though non-significant) decreased chance of 

dispersing during a non-preferred season for individuals that had experienced a replacement 

(Table 2.8). While replacements were associated with an increased risk of dispersing at a 

given age, the factors that influence offspring to remain in the natal group until the preferred 

dispersal season may outweigh the costs of delaying dispersal after a replacement. This 

“benefit” could prevent replacements from having a substantial effect on the time of year at 

which a dispersal occurs. Thus, the benefits of delaying dispersal until the preferred dispersal 

season may be more important than the costs of remaining in the natal group (whether due to 

risk of inbreeding or risk or aggression related to mating competition in the natal group). 

Other demographic factors, particularly infant births, were also important in 

explaining variation in the timing of dispersals. Specifically, individuals were more likely to 

disperse outside of the preferred dispersal season if a birth had taken place within that past 

year. If infant births were a mechanism for triggering dispersal, we would expect dispersals 

to be more likely immediately or shortly after the birth of an infant. In other words, we would 

expect recent births to be associated with increased odds of dispersing during the preferred 
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dispersal season, since it overlaps with the birth season. Our results do not support this 

expectation. Furthermore, time since the most recent infant birth also did not explain much 

variation in the age at dispersal (Table 2.6). Together, these results suggest that infant births 

in the natal group do not immediately trigger dispersals. Instead, it is possible that the 

presence of an infant or young juvenile (< 1 year old) alters social interactions within the 

natal group in a way that decreases potential nepotistic benefits available to the dispersing 

offspring. Decreased benefits from philopatry that begin to manifest in the months after an 

infant birth could explain why individuals had increased chances of dispersing outside of the 

preferred dispersal season if a birth had occurred in their natal group within the past year. 

The precise mechanisms that underlie this increased risk of dispersing at non-preferred times 

of the year require investigations into how social interactions may differ during times when 

infants are present compared to when they are not. 

The distribution of dispersals throughout the year was also explained by ecological 

factors. Specifically, increased rainfall, which is linked to increased resource availability, 

during the fall/winter months was associated with a decreased chance of dispersing during 

the fall/winter (Table 2.8). Our results thus suggest an association between increased resource 

availability during periods typically marked by relative scarcity and delaying dispersal until 

the preferred dispersal season. The inverse of this finding is that individuals are more likely 

to disperse during the fall/winter when conditions are relatively harsher (e.g., drier years with 

lower resource availability). Years during which fall/winter season resources are more scarce 

likely correspond to higher resource competition within the natal group. This may influence 

social interactions between adults and dispersers and reduce the value of the natal group as a 

safe haven [Kokko and Ekman, 2002]. Our results are therefore again consistent with the 
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“safe haven” hypothesis, as they suggest that offspring will continue to utilize their natal 

groups as safe havens while resources are relatively abundant, but may disperse when 

increased scarcity or resource competition reduces the benefits of philopatry.  

Our results provide limited support for the inbreeding avoidance hypothesis. 

Replacement of the same sex parent is predicted to increase the chances of inbreeding (i.e., 

mating with the remaining opposite-sex parent), potentially leading to earlier dispersal. 

Consistent with this idea, we found that subadults who experienced a replacement of the 

same sex adult did disperse sooner than subadults who experienced an opposite sex adult 

replacement. However, inbreeding avoidance is not the only possible explanation for this 

difference. Replacement of the opposite sex parent also introduces an unrelated potential 

mate to the natal group. The fact that subadults who experienced an opposite sex adult 

replacement remained in the natal group longer could suggest that these individuals delayed 

dispersal due to interest in the new opposite sex adult as a potential mate.  

Our results cannot distinguish between these two alternatives, but we can gain insight 

by considering behavioral observations. Over 20 years we have observed almost no sexual 

interactions between predispersing individuals and adults, even unrelated adults who have 

entered the group as the result of an opposite sex replacement (Huck et al., 2012; personal 

observations). These observations suggest that inbreeding avoidance may be a more 

important than mating competition avoidance as a force underlying dispersal in owl 

monkeys, at least for dispersals associated with adult replacements.  

If inbreeding avoidance is the mechanism primarily driving natal dispersal, then 

individuals should disperse around the time of sexual maturation. The median age at dispersal 

for both sexes was 37 months. On average, females begin to establish ovulatory cycles at 36 



102 
 

months of age (median 32 months), though they may undergo at least several months of 

adolescent subfecundity (Corley et al., 2016, Chapter 4). Based on the median ages alone, the 

age at sexual maturation and the age at dispersal are similar, which would support the 

inbreeding avoidance hypothesis. However, both male and female owl monkeys dispersed at 

a wide range of ages, both before and after the likely onset of sexual maturity. It is possible 

that some of the variation in age at dispersal may be associated with intra-individual variation 

in the timing of sexual maturation. However, behavioral observations suggest that at least 

some individuals achieve sexual maturity prior to dispersing and are capable of being 

perceived as potential mates by others in the natal group. For example, we observed an adult 

male mount a four-year-old predispersed female after we had tranquilized her with a dart 

during an attempt to capture her. This male was the putative father of the female, and we had 

not observed any previous sexual interactions between the two of them prior to this event 

[Fernandez-Duque, 2009]. In another case, on the first day after a male replacement occurred, 

we observed a four-year-old predispersed female being mounted multiple times by the new 

male that had replaced her putative father. We did not observe any additional instances of 

mounting between the new male and the subadult female after this initial day, and this is the 

only case in which we have observed an adult male copulating with an individual other than 

the adult female after a replacement (Corley personal observation, Chapter 5). While the 

anesthetic likely played a role in the first incident described, together these examples indicate 

that subadult females can be perceived as potential mates by adult males in the natal group, 

even their own fathers, at least under certain circumstances.  

The fact that some offspring remained in the natal group after the onset of sexual 

maturity is consistent with the mating competition avoidance hypothesis. However, the 
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mating competition hypothesis predicts that dispersals will more frequently occur during the 

mating season (April-July/August), when mating competition is most intense [Fernandez-

Duque, 2009]. Our results did not support this prediction, as dispersals were actually least 

frequent during the mating season (Figure 2.5). Furthermore, as discussed in the previous 

paragraph, sexual interactions between predispersing offspring and adults in the natal group, 

such as mountings, are rare [Huck and Fernandez-Duque, 2012; Chapter 5]. This suggests 

that behavioral or other mechanisms may typically be in place to prevent predispersed 

offspring from mating with adults in the natal group, even though they may be sexually 

mature. Thus, mating competition seems unlikely to be the primary force driving dispersal. 

Subadults remained in the natal group for less time after experiencing the replacement of a 

same sex adult compared to an opposite sex adult. This finding might implicate a role for 

mating competition in regulating natal dispersal. However, an increased risk of inbreeding 

with the remaining opposite sex parent could also explain this finding. 

Our results do not generally support the resource competition avoidance hypothesis, 

but there is evidence that resource abundance may influence dispersal under certain 

circumstances. The resource competition avoidance hypothesis predicts that dispersals should 

occur during or shortly after periods of food scarcity and that there should be an increased 

chance of dispersal in larger groups, where competition is presumably higher. In 

disagreement with these predictions, neither age at dispersal nor timing of dispersal was well-

explained by the size of the natal group (Tables 2.6 and 2.8). Most offspring dispersed during 

the spring or early summer, when resources abundance is generally increasing or at its peak. 

This contrasts with predictions of the resource competition hypothesis, and suggests instead 

that individuals may time dispersals to take advantage of relatively high resource abundance 
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during the time that the disperser is adjusting to ranging solitarily and searching for a new 

group to join. This strategy may help newly solitarily individuals buffer the costs of ranging 

solitarily [Bonte et al., 2012]. However, our results suggest that this preference for dispersing 

during times of relative abundance may be over-ridden during times of very low resource 

availability (i.e., when conditions are relatively dry during the already generally resource-

poor fall/winter season). Individuals were 2.7 times more likely to disperse during the 

fall/winter season if there was lower than average rainfall, and thus likely lower resource 

abundance, during the fall/winter of the year in which they dispersed (Table 2.8).  

There is more than one plausible explanation for why dispersal during the fall/winter 

was most likely during years with lower resource abundance. Competition for resources with 

natal groups members could intensify the costs of philopatry by increasing the amount of 

aggression offspring receive during foraging. Alternatively, offspring may leave on their own 

accord in order to seek out habitats with higher resource availability [Kennedy and Ward, 

2003; Schneider et al., 2003]. Whether individuals that disperse during resource-poor periods 

leave voluntarily or are expelled by adults remains unclear, and additional behavior data is 

needed to explore this question (Chapter 3). Nonetheless, from the evidence currently 

available, resource competition seems to be the most likely explanation for increased 

dispersal during the fall/winter during years with lower resource availability. One important 

caveat is we did not measure resource abundance directly during all 20 years of our study, 

and we thus used rainfall as a proxy. While there is evidence to support the link between high 

amounts of rain and higher forest productivity [Fernandez-Duque, 2009], a better 

understanding of exactly how resource availability changes with rainfall and other factors 

would improve our ability to investigate how dispersal is related to resource abundance. 
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In summary, multiple hypotheses about dispersal patterns are supported to some 

extent. As mentioned previously, our goal in placing results in the context of these 

hypotheses is to evaluate the plausibility of each and the relative importance that they have in 

shaping owl monkey dispersal patterns. Just as variation in the age and timing of dispersal 

exists in owl monkeys, the proximate mechanisms and evolutionary forces shaping dispersal 

patterns are also varied, and different mechanisms seems to operate in different situations. 

Our results support the “safe haven” hypothesis as a general explanation for much of the 

variation in the age and timing of dispersal in owl monkeys. While inbreeding avoidance 

seems to be the most likely force driving dispersal after the replacement of the same sex 

adult, variation in the age at dispersal means that some individuals remain in the natal group 

with genetic parents of the opposite sex after reaching sexual maturity. This finding suggests 

that inbreeding avoidance alone cannot explain the timing of dispersal under all 

circumstances. Resource competition avoidance is implicated as a force underlying the 

increased likelihood of dispersing during years when there is higher intragroup competition 

during the fall/winter seasons due to lower rainfall and resource abundance.  

Our results highlight the importance that close, long-term monitoring of wild 

populations has for developing a detailed understanding of dispersal patterns. The age-

specific probabilities of survival differed for individuals that were confirmed to have 

dispersed and those that disappeared (Figure 2.2b). This may explain why the results of our 

models in part one differed, depending on whether we included disappeared individuals in 

our analyses (Table 2.6). The fact that individuals that disappeared were, on average, younger 

than those that dispersed suggests that it is likely that at least some individuals that 

disappeared died rather than successfully dispersed. Our results suggest that claims about 
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dispersal based on data primarily from disappeared individuals should be interpreted with 

care.  
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Chapter 3. The role of intragroup agonism in parent-offspring relationships 

and natal dispersal in monogamous owl monkeys (Aotus azarae) of Argentina 
 

Abstract 

Agonistic behaviors are common in many group-living taxa and may serve a variety of 

functions, ranging from regulating conflicts over reproduction to defending food resources. 

However, high rates of agonism are not expected to occur among close relatives or 

individuals in established mating relationships, which are characteristics of monogamous 

groups. To contribute to our understanding of agonism within socially monogamous groups, 

we collected behavioral and demographic data from Azara’s owl monkeys (Aotus azarae) in 

the Gran Chaco of Argentina over 14 years. We examined factors related to age, sex, kinship, 

and behavioral context to evaluate predictions of the hypotheses that agonism functions to 

regulate dispersal and that it mediates competition for food and/or mates. Intragroup agonism 

was relatively rare, with the group rate being approximately one event every three and a half 

hours. Rates of agonism were generally similar for both sexes, although there were marked 

differences among age categories. Agonism was most frequently performed by adults and 

directed at offspring, particularly subadults. In contrast, agonistic interactions involving 

infants were very rare. Subadults also received more agonism in the six months immediately 

preceding dispersal than they did prior to this peri-dispersal period, suggesting that agonistic 

interactions may regulate natal dispersal patterns. Agonistic events were most frequent during 

foraging, but also regularly occurred during non-foraging contexts, particularly during bouts 

of social behavior. In owl monkey groups agonism seems to serve as an important 

mechanism for regulating dispersal, and possibly also plays a role in mediating mating and 

feeding competition amongst adults and subadults. 
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Introduction 

Agonistic interactions are a part of social life for all group-living taxa, and primates 

are no exception. All primates are known to engage in overt aggression against conspecifics, 

at least on occasion [Bernstein, 1976; Holloway, 1974; Sussman and Garber, 2004; Sussman 

et al., 2005; Wrangham and Peterson, 1996; Zinner and Wheeler, 2012]. What constitutes 

agonistic behavior may vary from species to species [Klein, 1974], but agonism is generally 

considered to encompass behaviors ranging from aggressive physical contact to more passive 

actions, such as displacements. Often resulting from competition for limited resources, 

agonism has important consequences for dominance [Drews, 1993], and thus fitness 

[Cowlishaw and Dunbar, 1991; Fedigan, 1983; Harcourt, 1987; Majolo et al., 2012; Pusey, 

2012]. Therefore, explaining patterns of agonism is important for understanding the 

mechanisms regulating primate societies [Sterck et al., 1997; van Schaik, 1989; Wheeler et 

al., 2013; Wrangham, 1980]. 

Rates of agonism vary substantially among primate species [Sussman et al., 2005]. 

There is both theoretical and empirical work suggesting that variation in agonism rates may 

be best explained by factors such as resource distribution, social organization, or kinship 

[Isbell, 1991; Koenig, 2002; Koenig et al., 2013; Vehrencamp, 1983; Wheeler et al., 2013]. 

For example, female agonism rates are positively correlated with the number of adult female 

primates in a group when examined across taxa [Wheeler et al., 2013].  

Among monogamous taxa, agonism towards extra-pair adults has been proposed to 

be a proximate mechanism that maintains the relationship between pair-mates [Kleiman, 

1977]. Supporting this hypothesis, studies of socially monogamous species suggest that 

paired individuals commonly display agonistic behavior towards unfamiliar conspecifics, 
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particularly strangers of the same sex (e.g., titi monkeys (Callicebus spp.): [Fisher-Phelps et 

al., 2015; Mason and Mendoza, 1998]. In captive owl monkeys (Aotus lemurinus), most 

aggression occurred when “intruders” were introduced to established groups, or when 

unfamiliar individuals of the same sex were introduced to one another. In these cases, 

aggression was sometimes extreme, resulting in injury or even death if individuals were not 

separated [Evans et al., 2009; Hunter and Dixson, 1983]. 

The extreme aggression towards extra-group individuals in captivity is concordant 

with observations of monogamous owl monkeys in the wild. Encounters between 

neighboring groups are often characterized by agonistic behaviors, such as vocalizations and 

displays, sometimes chasing, but rarely fighting [Fernandez-Duque, 2011; Wright, 1994]. On 

the other hand, both male and female reproductive adults experience intense intra-sexual 

aggression in interactions with solitary floaters [Fernandez-Duque, 2004; Fernandez-Duque 

and Huck, 2013]. Data from other free-ranging socially monogamous species are limited, but 

pairs of dusky titi monkeys (Callicebus moloch) have also been observed to engage in 

aggressive interactions with extra-group conspecifics [Mason, 1966]. Likewise, black-fronted 

titi monkeys (Callicebus nigrifrons) respond agonistically to playbacks of both simulated 

solitary and paired intruders in a manner consistent with joint territorial defense [Caselli et 

al., 2015]. Several species of gibbon respond to conspecifics’ calls in ways that suggest that 

both sexes defend territories from intruders (Bornean gibbons: Hylobates muelleri [Mitani, 

1984]; Agile gibbons: H. agilis [Mitani, 1988]). The majority of intergroup encounters 

among white-handed gibbons (H. lar) also involve at least some agonistic behaviors, such as 

chasing [Bartlett, 2003; Reichard and Sommer, 1997]. 

 In addition to agonism towards extra-group individuals, agonistic interactions also 
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occur within groups in taxa where there is only one reproducing pair (i.e., monogamous) or 

one pair of adults that monopolizes most of the mating (e.g., callitrichids). In the latter case, 

this behavior is often directed towards same-sex individuals in the group (cooperative 

breeding callitrichids: e.g., [Abbott, 1984; Baker et al., 1993; Ferrari, 2009; Rothe, 1975; 

Soini, 1987], sakis: [Thompson, 2013; Thompson, 2015], siamangs: [Morino, 2015]). In 

some cases, aggression from the dominant, reproductive female may even induce 

reproductive suppression in subordinate females [Abbott and Hearn, 1978; Abbott, 1993; 

Wasser and Barash, 1983; Young, 2009].  

While competition for mating opportunities can explain intragroup agonism in groups 

with multiple mature animals of the same sex, such as cooperative breeders, it cannot readily 

explain why it occurs in monogamous species in which groups consist of only an adult male, 

an adult female, and their putative offspring. Yet, among monogamous taxa, intragroup 

agonism has been described for captive [Dixson, 1983; Evans et al., 2009] and wild owl 

monkeys [Huck and Fernandez-Duque, 2012], wild titi monkeys (Callicebus discolor) 

[Mason, 1966; Spence-Aizenberg et al., 2016], and titi monkeys housed in a one-hectare field 

enclosure [Menzel, 1993].  

In Azara’s owl monkeys (Aotus azarae), intense intrasexual competition with solitary 

floaters results in relatively frequent adult turn-overs [Fernandez-Duque and Huck, 2013]. 

Adult replacements are predicted to have social consequences for offspring, as replacements 

introduce a “step-parent”, who may represent either a competitor or a potential breeding 

partner [Emlen, 1995; Emlen, 1997]. Indeed, among callitrichids, changes in group 

composition, such as the loss of the breeding female, were found to be associated with 

increased rates of intragroup agonism [Lazaro-Perea et al., 2000]. Data on inter-individual 
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distances and identity of the nearest neighbor further provided some evidence that the quality 

of the relationship between owl monkey parents and their same-sex offspring may deteriorate 

prior to dispersal, particularly after the replacement of the opposite-sex adult [Huck and 

Fernandez-Duque, 2012]. 

The Azara’s owl monkey (A. azarae) [Huck et al., 2014] constitutes a well-suited 

model for exploring hypotheses about the function of within group agonism in monogamous 

taxa. In the Gran Chaco region of Argentina, groups consist of one pair of reproductive adults 

and their putative offspring (mean group size = 4, range: 2-6) [Fernandez-Duque et al., 2001]. 

Owl monkeys display remarkably little sexual dimorphism: male and female adults are 

similar in size, coloration, and markings, and male and female offspring develop at similar 

rates and both disperse at similar ages [Chapter 2, Fernandez-Duque, 2009; Fernandez-

Duque, 2011; Fernandez-Duque, 2016; Huck et al., 2011]. While offspring do not typically 

participate in sibling care, adult males engage in high levels of paternal care and often behave 

affiliatively towards offspring [Fernandez-Duque, 2011; Rotundo et al., 2005]. Unlike the 

strictly nocturnal tropical species of owl monkeys, A. azarae is cathemeral [Fernandez-

Duque and Erkert, 2006], and its activity patterns allow for detailed behavioral data to be 

collected from identified individuals during the daytime.   

In this study, we quantified intragroup agonism in wild Azara’s owl monkeys to 

examine three main hypotheses that explain its potential functions (Table 3.1). We first 

examined the general hypothesis that agonism between adults and offspring, particularly 

older offspring (i.e., subadults), acts as a dispersal mechanism. We then explored two more 

specific hypotheses related to within-group competition. The “food competition hypothesis” 

proposes that the primary function of agonism is resolving conflicts over food resources 
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among adults and offspring. The “mate competition hypothesis” suggests that it allow adults 

to avoid competition over mates with offspring in the group. We considered factors related to 

age, kinship, sex, and behavioral context to construct predictions for these three hypotheses. 

These hypotheses are not mutually exclusive, as agonism may function, to some extent, for a 

variety of purposes simultaneously. We distinguished between them primarily as a heuristic 

to assess the potential relative importance of various functions of agonism. 

Table 3.1. Hypotheses1 and predictions. 

Hypotheses Prediction Description 

1. Dispersal P1.1 If adults minimize competition by 

expelling/encouraging subadults to disperse from their 

natal group, the frequency at which subadults are 

engaged in agonistic behaviors will be higher in the 

period just prior to dispersal, than at younger ages.  

 P1.2 Within agonistic events involving both adults and 

subadults, adults will be the actors (and subadults the 

recipients) more frequently than subadults will be the 

actors. 

      P1.3 If adults are less tolerant of unrelated offspring (i.e., 

step-offspring) than their own offspring, there will be 

higher rates of agonism between adults and their step-

offspring than between adults and their own offspring. 

2. Food competition P2.1 Assuming that food is a resource over which 

individuals compete, agonistic behaviors will occur 

more frequently in feeding contexts (i.e., while 

individuals are foraging) than expected based on the 

proportion of time individuals spend foraging.  

 P2.2 As offspring of both sexes likely present equal levels 

of competition for food resources, adults will direct 

agonistic behavior towards males and females at 

similar rates. 

3. Mate competition P3.1 Adults will engage in agonistic behaviors more often 

with subadults than younger offspring, since the 

former represent potential competitors for mates. 

      P3.2 Adults of both sexes will direct agonistic behavior 

primarily towards subadults of the same sex as 

themselves. 
1As noted in the text, these hypotheses are not mutually exclusive: the removal of a subadult offspring from 

the group via dispersal can potentially reduce both feeding and mating competition. We distinguish 

between them as a heuristic and to assess the relative contributions of food competition or mating 

competition to explaining patterns of intragroup agonism. 
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Methods 

Study site and subjects 

Our study was conducted at the Reserva Mirikiná, a 1500 ha reserve of gallery forest 

in the ranch Estancia Guaycolec, in Formosa, Argentina (58˚13’W, 25˚54’S). The region is 

part of the South American Gran Chaco, a mosaic of gallery forest, grasslands, savannahs, 

and isolated patches of dry forest [Placci, 1995; van der Heide et al., 2012]. Climate and 

seasonality at this site have been described previously [Fernandez-Duque, 2009].  

Within the reserve, a 300 ha area of gallery forest along the banks of the Riacho 

Pilagá has been mapped. Groups within this core area have been habituated and monitored by 

the Owl Monkey Project (OMP) since 1997 [Fernandez-Duque, 2016; Fernandez-Duque et 

al., 2001]. All data we report here were collected from habituated groups, in which members 

could be discriminated from one another by collars or natural distinguishing markings. When 

necessary, we utilized body size and the relative amount of subcaudal scent gland secretions 

to distinguish non-captured, and thus uncollared, subadults and juveniles from adults and 

from one another [Huck et al., 2011]. We classified individuals as infants (< 6 months), 

juveniles (6 < 24 months), subadults (> 24 months), or adults (dispersed individuals > 48 

months), following Huck et al. [2011]. 

 

Data collection 

Demographic changes in groups were determined through close monitoring of the 

study population. Since 1997, a core set of approximately 10 groups has been regularly 

contacted, at least once every week or every second week. Every time that a group was 

contacted, the observer recorded the presence of identified individuals and noted any changes 

to group composition since the previous sighting. This monitoring has allowed us to identify 
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dates of births, deaths, dispersals, and adult replacements within a range of a few weeks 

[Huck and Fernandez-Duque, 2012]. In the rare cases when the exact date of a birth, 

disappearance, dispersal, or replacement could not be determined to have occurred within a 

period of < 30 days, we estimated the event to have occurred on the average between the date 

on which the demographic change was first observed and the most recent date on which the 

group had previous been sighted. 

Behavioral data were collected following research protocols (available in English and 

Spanish upon request) that are utilized for comparative purposes in studies of owl monkeys in 

Argentina [Fernandez-Duque and Huck, 2013; Fernandez-Duque and van der Heide, 2013; 

Huck and Fernandez-Duque, 2012; Huck and Fernandez-Duque, 2013], as well as studies of 

titis (C. discolor) and sakis (Pithecia aequatorialis) in Yasuní National Park in Ecuador 

[Porter et al., 2015; Spence-Aizenberg et al., 2016; Van Belle et al., 2016]. In brief, each 

focal sample consisted of a 20-minute period during which all behavioral events (e.g., 

movements, social interactions, foraging) were recorded and the behavioral state of the focal 

individual (resting, foraging, moving, socializing, other, or out of view) was recorded every 

two minutes (i.e., focal sampling point). Additionally, after every four minutes, the 

instantaneous behavioral state and distance to the focal individual were recorded for each 

non-focal member of the group. 

Focal samples utilized in this study were collected, by trained observers, over 14 

years (August, 2001 to August, 2015). To ensure the quality of behavioral observations, all 

new observers were trained by experienced observers and inter-observer reliability was 

regularly evaluated. Behavioral data were only collected by observers who worked in the 

field for longer than two months, usually only by those who stayed at least four months.  
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Each observer goes through a period of training during which they collect “practice” focal 

samples, not used in analyses, simultaneously (i.e., standing side by side) with the staff 

member for later comparison. For analyses, we excluded the first 20 focal samples collected 

by each trained observer, as we deemed this to be the amount of practice needed for 

observers to become sufficiently familiar with the protocol and reliably identify behaviors at 

levels similar to more experienced observers.  

 

Data analyses 

We considered a behavior to be agonistic if it fell into one of the following behavioral 

categories listed in the protocol’s ethogram: aggression, food robbing, chasing, or displacing 

(Table 3.S1). These behaviors may not represent equivalent magnitudes of agonism. For 

example, displacing another individual could be considered a milder form than aggression 

involving biting or shoving. However, displacements have been useful for determining 

dominance hierarchies, particularly when other forms of agonism are rare [Borries et al., 

1991; Sterck and Steenbeek, 1997], and are typically included in analyses for other primates 

[Erhart and Overdorff, 2008; Koenig et al., 2004; Ramanankirahina et al., 2011; Sussman et 

al., 2005; Wheeler et al., 2013]. 

 Since the goal of our study was to examine rates and potential functions of 

intragroup agonism, we excluded behaviors that were observed in the context of intergroup 

encounters, or encounters between groups and solitary individuals. Additionally, to determine 

if we should exclude milder types of agonism (food robbing and/or displacing), we 

performed analyses that included only what we considered to be the most extreme forms 

(aggression and chasing). The pattern of results from analyses that excluded milder behaviors 
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were similar to those from analyses that include all agonistic behaviors. For that reason, and 

to produce results more comparable to the existing literature, our analyses pooled all four 

categories of agonism. 

We extracted all data from the Owl Monkey Project Database stored in Microsoft 

Access, and organized and cleaned the data in Microsoft Excel. We performed all statistical 

analyses in R version 3.0.2 [R Development Core Team, 2008]. We only included in analyses 

groups with more than 20 focal samples. The resulting dataset included 15 groups, 169 

individuals, and 6430 focal samples collected during 2124 hours of focal behavioral 

observations (Table 3.2). Some individuals contributed data to multiple age categories, as 

they aged over the course of the study.  

 

Table 3.2. Number of individuals and observation effort for 15 groups of owl monkeys 

observed in the Reserva Mirikiná in Formosa, Argentina between 2001 and 2015. 

Group 

Name 

Total 

Indiv-

iduals 

Adult 

males 

Adult 

females 

Male 

off-

spring 

Female 

off-

spring 

Off-

spring 

sex un-

known 

Focal 

samp-

les 

Samp-

ling 

points 

B68 10 2 3 0 1 4 36 360 

C0 12 2 2 2 2 4 456 4511 

CC 18 4 5 2 5 2 741 7360 

Colman 14 1 2 3 4 4 495 4950 

Corredor 6 1 1 0 2 2 170 1654 

D100 8 3 2 0 2 1 326 3258 

D1200 12 1 2 3 1 5 153 1524 

D500 17 2 3 3 4 5 1170 11612 

D800 11 2 4 1 0 4 611 5925 

E350 14 2 3 3 3 3 687 6776 

E500 18 2 4 2 3 7 1094 10887 

F1200 10 1 1 2 3 3 218 2180 

F700 14 4 2 2 1 5 100 989 

G1300 8 2 3 0 1 2 130 1300 

P300 4 1 1 0 1 1 43 428 

Total 1761 30 38 23 33 52 6430 63714 
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“Individuals” indicates the total number of unique owl monkeys observed in each group over the entire 

study period. Group composition changed during the study and only 2-6 individuals were present in a group 

at any given time.  

“Focal samples” refers to the number of 20-minute focal samples collected on individuals in each group. 

“Sampling points” refers to the number of times that 2-minute instantaneous behavioral states of 

individuals were recorded during focal samples in each group. 
1Seven individuals transferred from one group to another during the observing periods and are counted 

twice in the table (once in each group). There were 169 distinct individuals. 

 

We did not find a strong relationship between the number of focal sampling points 

for each group and the mean individual rate of agonism in groups (Figure 3.S1; r = 3.03x10-5, 

P = 0.98). We did not control for group size in any of the analyses because there was no 

strong relationship between group size and the proportion of focal samples containing 

agonistic events (Figure 3.S2; b = -2.59x10-6, t = -1.16, Adjusted R2 = 0.01, F(49) = 1.34, P = 

0.25). While this was unexpected, the small amount of variation in group size (2-6) and the 

relatively few groups with more than four individuals may have prevented any strong, 

detectable correlation. 

We calculated an individual rate of agonism for each of the 169 individuals. We first 

computed the proportion of two-minute intervals during which the animal was engaged in 

agonism (as actor or recipient), within 20-minute focal samples, and then used this per focal 

sample estimate to produce an individual rate per hour. We used the estimates of individual 

rates for all members in a group to calculate an average rate for each group. Using the 

individual rates, we also calculated the mean rate of agonism for each age-sex category and 

used Wilcoxon rank-sum tests to assess the statistical significance of the differences found.  
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Table 3.3. a) Candidate model set for explaining the variation in rates of agonistic behavior 

(as an actor/initiator); b) Comparison of all models for explaining the variation in rates of 

agonistic behavior (as an actor/initiator); c) Full results of best model (Model 1) for rate of 

agonism as actor). 

a. 

Candidate 

model 

Fixed and Random effects  

Model 1 Age category + (1|Group/Individual ID) 

Model 2 Age category + sex + (1|Group/Individual ID) 

Model 3 Age category * sex + (1|Group/Individual ID) 

Age category = infant, juvenile, subadult, adult (classified as described in the text). 

 
b. 

  K AICc Delta AICc AICc Wt Cum. Wt 
Conditional 

R2 

Model 1 7 -468 0 1 1 0.1 

Model 2 9 -452 15 0 1 0.1 

Model 3 15 -41 52 0 1 0.1 

AICc, rather than AIC, was utilized to select the best approximating model due to our relatively small 

sample size (Burnham and Anderson 2002). 

K = number of estimated parameters; AICc Wt = AICc weight, Cum. Wt = cumulative weight.  

 
c. 

Random effects Variance Standard 

Deviation 

   

ID: Group (Intercept) 0.00 0.00    

Group (Intercept)   0.00  0.01    

Residual 0.01 0.08    

Fixed effects Estimate Std. Error df t value Pr(>|t|) 

(Intercept)  0.08 0.01 30.30 7.71 <0.01 

  Infant -0.06     0.02 219.21 -4.16 <0.01 

  Juvenile  -0.04     0.01 216.7 -2.68 <0.01 

  Subadult  -0.05     0.02 225.06 -3.09 <0.01 
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To examine the potential influence of age and sex on the rate of being an actor (i.e., 

initiator) in agonism, while also accounting for dependence among observations from the 

same group and subject, we constructed three linear mixed models with age, or age and sex, 

as fixed effects, and individual identity nested within group identity as random effects (Table 

3.3a). We calculated corrected Akaike information criterion (AICc) and utilized delta AICc 

and cumulative Akaike weights (AICc weights) to assess the plausibility of each of our three 

candidate models (Burnham and Anderson 2004; Mazerolle 2016; Symonds and Moussalli 

2011). The model containing only age as a fixed effect was far better than those containing 

only sex or an interaction between age and sex (AICc weight = 1; Delta AICc from second 

best model = 15.4; Table 3.3). Therefore, we report full results of only this best 

approximating model (Burnham and Anderson, 2002).  

To further assess the relative frequency at which individuals were the actors in 

agonistic behavior, we calculated the mean proportion of agonistic events in which an 

individual was an actor (as opposed to recipient) for individuals in each age-sex category. 

Since variances within each age-sex category were relatively homogenous across groups 

(Bartlett's K-squared = 6.28, df = 3, P = 0.10), a one-way ANOVA was used to test for 

statistical significance. We then pooled individuals in each age-sex category for dyad-based 

analyses, and determined the frequency and the proportion of events in which individuals 

were actors between each pair of age categories.   

To evaluate the potential relationship between adult replacements and rates of 

agonism, we compared the rates among each offspring and the adult(s) with which it had co-

resided since the time of its birth (“adults and own-offspring” dyads) with the rates among 

each offspring and any adult(s) that had entered the offspring’s natal group since its birth 
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(“adults and step-offspring” dyads). Due to the relative rarity of agonism (see results), and 

the short time that many adults resided in groups with step-offspring, there were no agonistic 

events for most adult-step-offspring dyads. Thus, we limited our analyses to those dyads for 

which the particular offspring and adult had been observed together during at least 10 focal 

samples (N=25). The differences in rates were evaluated statistically using a Wilcoxon rank-

sum test. 

We classified each event as occurring during a foraging, non-foraging related 

moving, resting, socializing, or other context (Table 3.S1) by assigning each event to the 

behavioral category in which the actor was engaged immediately preceding the agonistic act. 

If the behavioral category could not be determined, the context was categorized as 

“unknown". We also calculated the number of all two-minute focal sampling points in which 

the behavioral state of the focal animal could be characterized as foraging, moving, resting, 

socializing, or other. Since behavioral contexts were not observed at equal frequencies, we 

determined the proportion of sampling points in which agonism occurred for each context. 

We also determined the proportion of sampling points for the subset of agonistic events that 

occurred between adults and offspring and between adults and subadults in each context. We 

then compared the proportion of agonistic events that occurred during each behavioral 

context to the proportion of total focal data points within each behavioral context. For each 

context, differences were evaluated statistically using non-parametric two-sample χ2 tests for 

equality of proportions.  

To assess the frequency of agonism during periods preceding dispersals, we 

compared each individual’s rates during two periods: 1) the six months immediately 

preceding the date of natal dispersal (“peri-dispersal period”), and 2) the time as a juvenile or 
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subadult prior to the “dispersal period” (“pre-dispersal period”). We chose six months as the 

peri-dispersal period because it allowed us to maximize the number of focal samples per 

individual, while still limiting observations to a relatively brief window preceding dispersal, 

during which events were most likely to influence dispersal decisions. For this analysis, we 

included only individuals who had been observed for at least 10 focal samples during each of 

the two time periods (N=18).   

All behavioral observations, as well as protocols for the capturing and collaring of 

owl monkeys, were approved by the ethics committees (IACUC) of the Zoological Society of 

San Diego (2000-2005), the University of Pennsylvania (2006-2014), Yale University (2014-

2015), and the National Wildlife Directorate in Argentina. All research adhered to the 

American Society of Primatologists’ Principles for the Ethical Treatment of Non-Human 

Primates and the Argentine Society for Mammalian Studies guidelines [Giannoni et al., 

2003]. 

 

Results 

Rate and distribution of agonistic behavior among age and sex categories 

 On average, there was an agonistic event in a group about once every three and a half 

hours (group rate of agonism + SE: 0.3 + 0.1 events per hour, N=15 groups) and in only 5.7 + 

0.01% of focal samples (492/6430 focal samples, 614/63714 two-minute sampling points). 

About half of the individuals (56%, 95/169) engaged in agonism at least once. With one 

exception, individual rates of agonism were fairly similar across groups (Table 3.4, Figure 

3.1): the mean rate across groups was 0.11 ± 0.03 times/hr (95% CI = 0.09-0.18 time/hr, or 

approximately once every 9 hours [95% CI: 5.5 – 11.5 hours]). Group P300 had a rate that 

was more than twice that of any other group. However, this group was unusual in that it had 
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only 43 focal samples, which were collected from three individuals over three months. Most 

agonistic events (71%) in this group occurred within a single week, four weeks before the 

dispersal of a subadult.   

 

Table 3.4. Number of agonistic events and hourly rates of agonism in 15 groups of owl 

monkeys observed in the Reserva Mirikiná in Formosa, Argentina between 2001 and 2015. 

Group 

Name 

Agonistic 

events 

Sampling 

points 

with > 1 

agonistic 

events 

Group 

rate  

(per hour) 

Mean 

individual 

rate (per 

hour) 

SE of 

individual 

rate (per 

hour) 

B68 0 0 0.00 0.00 0.00 

C0 29 25 0.17 0.10 0.02 

CC 96 78 0.32 0.15 0.04 

Colman 10 9 0.05 0.03 0.01 

Corredor 32 25 0.45 0.17 0.06 

D100 11 11 0.10 0.06 0.02 

D1200 8 8 0.16 0.03 0.01 

D500 164 138 0.36 0.13 0.04 

D800 58 52 0.26 0.12 0.02 

E350 87 75 0.33 0.12 0.03 

E500 175 151 0.42 0.14 0.03 

F1200 9 8 0.11 0.07 0.03 

F700 18 12 0.36 0.09 0.05 

G1300 10 10 0.23 0.06 0.03 

P300 14 12 0.84 0.42 0.16 

Total/ 

Mean 
721 614 0.28 0.11 0.03 

“Group rate (per hour)” indicates the number of sampling points containing agonistic events that took place 

among individuals in a particular group per hour of focal sample observation time for that group.  

 “Mean individual rate (per hour)” indicates the number of agonistic events in which an individual was 

involved (as either actor or recipient) per hour of focal observations in which that particular individual was 

observed (group means calculated for all 177 individuals in the data set). 

The mean values listed in the bottom row are the means of the 15 group means (of individual rates/SEs). 

No agonistic events were observed in group B68 so it was excluded from subsequent analyses.  
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Figure 3.1. Variation in the individual rates of agonism for all members of 15 groups of owl 

monkeys. Horizontal black lines indicate medians, boxes indicate the interquartile range, and 

dotted lines span from the minimum values, at the bottom, to the maximum values (or 

maximum values of the third quartiles plus 1.5 times the interquartile range, whichever is 

smaller) at the top. 

 

 

The most frequent type of agonism was overt aggression (number of events, mean 

percentage across groups + SE: N=306, 51 + 5.9%), followed by displacing (N=208, 26 + 

3.5%), chasing (N=78, 16 + 4.5%), and food robbing (N=67, 7.8 + 2.6%) (Table 3.S2).  

 The rate of agonism differed between age groups (Tables 3.5, 3.S3). Infants (N=55) 

were rarely involved, with a rate of about one event every 24 hours (0.04 + 0.02 events/hr), 

which was much lower than the rates of other age groups (Wilcoxon rank-sum tests: W = 

140, P = 0.05 [Juvenile]; W = 177, P < 0.01 [Subadult]; W = 178, P < 0.01 [Adult]). 

Subadults had the highest mean rate (0.17 + 0.05 events/hr): 44% higher than for adults (0.12 

+ 0.03 events/hr) and 116% higher than juveniles (0.08 + 0.02 events/hr). Differences among 
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subadults and adults or juveniles were not statistically significant (Wilcoxon rank-sum tests: 

W = 91, P = 0.38 [Subadult-Adult]; W = 129, P = 0.15 [Subadult-Juvenile]; W = 117, P = 

0.38 [Adult-Juvenile]). 

 

Table 3.5. Mean + SE individual hourly rates of involvement in agonistic events, mean + SE 

percent of agonistic interactions in which the focal owl monkeys were actors, comparison of 

males and females, and results of Wilcoxon Rank-sum tests for all four age categories of owl 

monkeys. 

 Individual Hourly Rates of 

Agonism 

Percent of Agonistic Interactions as Actor 

Age 

group 

Female Male Stat-

istic 

(W) 

P All 

Individ

uals1  

Female Male Stat-

istic 

(W) 

P 

Infant 0.02 ± 

0.01 

0.09 ± 

0.06 

30 0.73 36% + 

12% 

50% ± 

29%   

42% ± 

30% 

5 1.00 

Juvenile 0.07 ± 

0.02 

0.12 ± 

0.04 

53 0.56 42% + 

7% 

46% ± 

13%   

51% ± 

8% 

53 0.64 

Subadult 0.19 ± 

0.05 

0.13 ± 

0.06 

47 0.44 23% + 

5% 

30% ± 

7%   

12% ± 

7% 

73 0.15 

Adult 0.12 ± 

0.04 

0.12 ± 

0.03 

121 0.72 62% + 

4% 

65% ± 

7%   

54% ± 

4%   

292 0.72 

1The “All Individuals” column includes those classified as females, males, or unknown sex.  
We classified individuals following the age categories defined in Huck et al. [2011]: infants (< 6 months), 

juveniles (6 < 24 months), subadults (>24 months), or adults (individuals > 48 months who had dispersed 

from their natal group). Some individuals contributed data to multiple age categories (as they aged over the 

years of observation included in our results).  

Rates were calculated as follows: Individual rates were found by dividing the number of focal sampling 

points in which a particular individual engaged in agonism by the number of focal sampling points during 

which that individual was observed. Then the mean individual rate was determined for each age-sex 

category and used to find the overall mean rates (“All individuals”). 

 

The probability of an individual being an actor in an agonistic event also varied with 

age (Figure 3.2, Table 3.5, One-way ANOVA: F = 9.19, num df = 3, denom df = 18, P < 

0.05). Adults tended to be the initiators more often than other age groups (62 + 4%). 

Specifically, the proportion of times that adults were actors was 72% higher than infants, 

48% higher than juveniles, and 170% higher than subadults. Subadults were initiators in a 
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lower proportion (23 + 5%) than infants or juveniles (57% and 83% lower, respectively), 

(Figure 3.2, Table 3.5). 

 

 

Figure 3.2. Percentage of agonistic events in which individual owl monkeys in each age and 

sex category were actors/initiators in agonistic interactions. Error bars represent one standard 

error (SE) from the mean.  

 

Males and females, of all ages, showed similar rates of agonism. The proportion of 

events in which individuals were actors was also similar for males and females within each 

age category (Tables 3.5, 3.S3). Likewise, male and female offspring in each age category 

received similar rates of agonism from adult males and adult females, and were the actors in 

a similar proportion of interactions with adults of each sex (Table 3.6). Subadult females 

received slightly higher rates of agonism from adult females than from adult males, but the 

difference was not statistically significant (Table 3.6, Wilcoxon rank-sum tests: W = 244, P = 

0.29). Further suggesting that sex does not explain much of the variance in the rate of being 

an actor in agonism, comparisons of our candidate models using AICc indicated that the 
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model that included only age as a fixed effect was substantial better than either of the models 

that included sex as a factor. According to this best model (Model 1), the rate as an actor was 

0.04-0.06 events per hour lower (about 1 less event per day) for offspring compared to adults. 

However, the R2 for this “best” model was relatively small (Table 3.3).  

Adult agonism towards juveniles and subadults was the most frequent type (Table 

3.6). When interacting with subadults, adult males were actors 4.9 times more often than 

recipients [83% of 87 interactions] and adult females 4.0 times more [80% of 85 

interactions]. There was a similar pattern between adults and juveniles, with adults behaving 

agonistically towards juvenile males 1.3 times more and toward juvenile females 2.6 times 

more frequently than juveniles towards adults. Both sexes of offspring received aggression 

from adult males and females at similar frequencies (Table 3.6). Agonistic interactions 

between adult pairmates were not symmetrical; males were actors 1.8 times more frequently 

than females. In interactions between adults, males were actors 63% of the time, and an exact 

binomial test indicated that this differed statistically from the expected 50% (71/112 events; 

P = 0.01; 95% CI: 0.54-0.72; Table 3.6). 

Agonism among adults and step-offspring (N=25 dyads) was more frequent than 

among adults and their own offspring (N=78 dyads). Adults and step-offspring interacted 

agonistically about once every seven hours, while adults and their own offspring interacted 

only once every 18 hours (Table 3.7; adults and step-offspring: 0.14 + 0.04 vs adults and 

their own offspring: 0.06 + 0.01 times per hour; Effect Size: theta = 0.32; Wilcoxon Rank-

Sum test: W = 89, P = 0.07).  
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Table 3.6. a) Percentage and number of agonistic events for each dyad of age categories in 

which individuals were the actors and recipients. b) Mean hourly rate of agonism (+ SE) 

received from adult males and adult females for each age-sex category of offspring and 

percentage and number of agonistic events in which individuals in each age-sex category 

were the actors. 

a. 

 Recipients 

Inf Juv Sub AF AM 

 

 

A

c

t

o

r

s 

Infant 
NA  

(3) 

0%  

(0) 

33% 

(1) 

18% 

(2) 

30% 

(3) 

Juvenile 
100% 

(1) 

NA  

(7) 

54% 

(14) 

30% 

(34)* 

47% 

(47) 

Subadult 
67% 

(2) 

46% 

(12) 

NA  

(0) 

20% 

(17)* 

17% 

(15)* 

Adult 

Female 

82% 

(9) 

70% 

(81)* 

80% 

(68)* 

NA  

(0) 

37% 

(41)* 

Adult 

Male 

70% 

(7) 

53% 

(54) 

83% 

(72)* 

63% 

(71)* 

NA  

(0) 

 
b. 

  N 

Rate of 

agonism 

received from 

AM 

Rate of 

agonism 

received from 

AF 

Proportion 

Actor with 

AM 

Proportion 

Actor with AF 

Inf M 8 0 0.01 + 0.01 100% (1) 0% (0) 

Inf F 13 0.01 + 0.01 0.01 + 0.01 50% (1) 0% (0) 

Juv M 18 0.03 + 0.02 0.03 + 0.01 47% (16) 41% (11) 

Juv F 24 0.02 + 0.01 0.02 + 0.01 38% (9) 30% (9)* 

Sub M  17 0.03 + 0.01 0.02 + 0.01 20% (8)* 26% (7)* 

Sub F 24 0.04 + 0.01 0.08 + 0.03 18% (6)* 18% (9)* 
Inf = Infant, Juv = Juvenile, Sub = Subadult, AF = Adult Female, AM = Adult Male.  

Number of interactions observed (as actor) is listed in parentheses after the %.  

“*” signifies that an exact binomial test indicated that the proportion of interactions as actors 

differed from the 0.5 expected by chance at P < 0.05.  

N = number of offspring in each age-sex category.  

Part a shows results for males, females, and offspring of unknown sex combined within each 

age category of offspring. Part b includes data only from offspring whose sex could be 

determined.  
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Table 3.7. Mean hourly rates of agonism for adult male and female owl monkeys with their 

own offspring and step-offspring for each of 12 social groups. 

Group 

Number 

of adult-

offspring 

dyads 

Mean 

Rate for 

AMs and 

step-

offspring 

Mean 

Rate for 

AMs and 

their 

own 

offspring 

AM-

offspring 

dyads: 

time 

observed 

(step/ow

n) 

Mean 

Rate for 

AFs and 

step-

offspring 

Mean 

Rate for 

AFs and 

their 

own 

offspring 

AF-

offspring 

dyads: 

time 

observed 

(step/ 

own) 

C0 7 0.00 0.07 

110/ 

2083 0.15 0.05 

1373/ 

790 

CC 15 0.21 0.01 

1596/ 

10004 0.13 0.04 

897/ 

9897 

Colman 10 NA 0.05 

NA/ 

3180 NA 0.03 

NA/ 

3180 

D100 5 NA 0.03 

NA/ 

2870 0.00 0.04 

30/ 

2430 

D500 21 0.04 0.07 

2420/ 

15323 0.15 0.04 

5907/ 

11836 

D800 8 NA 0.06 

NA/ 

6346 0.10 0.09 

4539/ 

1807 

E350 8 NA 0.06 

NA/ 

7206 NA 0.13 

NA/ 

7206 

E500 14 0.35 0.10 

868/ 

11627 0.00 0.07 

1369/ 

8293 

F700 2 0.17 NA 

130/ 

862 NA NA 

NA/ 

NA 

F1200 8 NA 0.01 

NA/ 

2880 NA 0.03 

NA/ 

2880 

G1300 3 0.00 0.06 

110/ 

980 0.14 NA 

1070/ 

NA 

P300 2 0.21 NA 

428/ 

NA 0.49 NA 

428/ 

NA 

Mean 8.6 0.14 0.05 809/5760 0.15 0.06 
1952/536

9 

SE 1.65 0.05 0.01 338/1446 0.05 0.01 743/1331 

“AM” = Adult males, “AF” = Adult females. “NA” indicates that there were no well-sampled dyads. 

“Well-sampled” refers to adult-offspring pairs that were observed in >100 sampling points (i.e., 10 focal 

samples) together in this group. 

“Own Offspring” refers to young that were born while the adult was present in the group. “Step-offspring” 

refers to young that had already been born before the adult joined the group.  

“Offspring dyads: time observed” refers to the total amount of focal sampling points during which the 

dyads of adults and their step or own offspring were observed together/had the opportunity to interact. 

These were used to calculate the rate or agonism for each type of dyad in the group. 
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Context of agonism 

Agonistic events were most frequent during foraging, but also regularly occurred 

during non-foraging contexts, particularly during bouts of social behavior with other group 

members. Agonism occurred more frequently in the context of social behavior (two-sample 

χ2 test for equality of proportions, % + SE observed vs expected: 23 + 4 vs 3 + 0.4; χ2 = 

755.54, df = 1, P < 0.001) and during foraging contexts (39 + 4 vs 29 + 2; χ2 = 64.17, df = 1, 

P < 0.001), but less frequently during resting (17 + 3 vs 29 + 2; χ2 = 86.66, df = 1, P < 0.001) 

and moving (13 + 2 vs 18 + 1; χ2 = 14.34, df = 1, P < 0.001) (Table 3.8, Figure 3.3).  

Agonistic events between adults and young and between adults and subadults showed 

a pattern similar to that observed when agonistic events among all individuals were 

considered. Agonism between adults and young occurred more frequently while foraging (% 

+ SE observed vs expected: 47 + 4 vs 29 + 2) and socializing (19 + 3 vs 3 + 0.4), and less 

frequently while resting (17 + 3 vs 29 + 2) and moving (11 + 1 vs 18 + 1). Adult-subadult 

agonism showed a similar pattern, with agonism being more likely while foraging and 

socializing (35 +  8 and 30 + 7, respectively) than while resting and moving (18 + 5 and 13 +  

4, respectively; Table 3.8).  
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Figure 3.3. Proportion of all agonistic events observed in each context (light) compared to 

proportion of focal sampling points observed in each context (dark), shown with standard 

error bars. Expected: proportion of sampling points in which the behavioral state was 

observed; Observed: proportion of agonism occurring in each behavioral context. 
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Table 3.8. Number and mean proportion + SE of agonistic events in focal samples during 

each category of behavioral context. 

Context Foraging Moving Resting Social Other 

 

Total # of agonistic events 327 95 92 157 50 

Total # of behavioral states in 

focals 20011 11936 18170 2025 11695 

Mean (+ SE) proportion of 

sampling points in which the 

behavioral state was observed 

0.29  

(+ 0.02) 

0.18 

(+ 0.01) 

0.29 

(+ 0.02) 

0.03 

(+ 0.004) 

0.21 

(+ 0.04) 

Mean (+ SE) proportion of 

agonism occurring in each 

behavioral context 

0.39 

(+ 0.04) 

0.13 

(+ 0.02) 

0.17 

 (+ 0.03) 

0.23 

(+ 0.04) 

0.08 

(+ 0.02) 

# of agonistic interactions 

between adults and offspring1 225 51 57 92 22 

      

     Adults  offspring 170 30 43 63 15 

      

     Offspring  adults 55 21 14 29 7 

Proportion of agonism occurring 

in each context for adult-

offspring interactions 

0.47 

(+ 0.04) 

0.11 

(+ 0.01) 

0.17 

(+ 0.03) 

0.19 

(+ 0.03) 

0.04 

(+ 0.02) 

# of agonistic interactions 

between adults and subadults 95 18 23 40 12 

      

     Adult  subadult 83 10 20 31 8 

      

     Subadult  adult 12 8 3 9 4 

Proportion of agonism occurring 

in each context for adult-subadult 

interactions 

0.35 

(+ 0.08) 

0.13 

(+ 0.04) 

0.18 

(+ 0.05) 

0.30 

(+ 0.07) 

0.04 

(+ 0.02) 
1.“Offspring” refers to young in all age-categories other than adults (infants, juveniles, and subadults), 

regardless of whether the individual was a “step-offspring” or “own offspring”.  

“Total # of events” is the number of times an agonistic event was observed during the context. The “Total # 

of behavioral states in focals” is the number of two-minute focal sampling points (over all 6430 focal 

samples) in which the behavioral state of the focal animal could be characterized as each context. 

The proportions listed in the table are the means (with standard errors) calculated for the 14 groups in which 

agonism occurred (we excluded group “B68”, since no agonism was observed in this group).  

Results of two-sample test for equality of proportions for the proportion of adult-offspring agonistic 

interactions in each context and the proportion of focal data in which each context was observed are as 

follows: Foraging: χ2 = 74.202, df = 1, P < 2.2e-16; Moving: χ2 = 15.543, df = 1, P = 8.064e-05; Resting: χ2 

= 53.939, df = 1, P = 2.068e-13; Socializing: χ2 = 422.45, df = 1, P < 2.2e-16; Unknown: χ2 = 53.464, df = 

1, P = 2.634e-13. 

Results of two-sample test for equality of proportions for proportion of adult-subadult agonistic events in 

each context and the proportion of focal data in which each context was observed are as follows: Foraging: 

χ2 = 32.027, df = 1, P = 1.52e-08; Moving: χ2 = 10.274, df = 1, P = 0.001349; Resting: χ2 = 24.271, df = 1, 

P = 8.367e-07; Socializing: χ2 = 196.84, df = 1, P < 2.2e-16; Unknown: χ2 = 17.876, df = 1, P = 2.357e-05.  
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Agonism and dispersal 

Subadults were involved in agonism at higher rates in the six month peri-dispersal 

period than they were in the pre-dispersal period. For the 18 well-sampled offspring included 

in the analysis, individuals engaged in an agonistic event approximately once every 2.8 hours 

(mean: 0.35 + 0.14) during the six-months immediately preceding their dispersal, compared 

to only once every 8.2 hours (0.12 + 0.03) at other times (Table 3.9; Effect Size: theta = 0.36; 

Wilcoxon Rank-Sum test: W = 114, P = 0.1). It should be noted that, while there was an 

overall trend for more agonism to occur within the six months immediately preceding natal 

dispersal, there was also considerable variation among groups. Of the 18 offspring analyzed, 

13 had higher rates of agonism during the six months immediately preceding dispersal, while 

five actually had somewhat higher rates of agonism before the six-month period preceding 

dispersal (Table 3.9).  
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Table 3.9. Number of agonistic events, sampling points, and hourly rates of agonism for each 

dispersing owl monkey offspring in two periods prior to natal dispersal 

Group 

 

 

 

Individual 

 

 

 

Sex 

 

 

 

Pre-

disper-

sal 

period 

(# of 

agon-

istic 

events) 

Pre-

disper-

sal 

period 

(# of 

samp-

ling 

points) 

Peri-

Disper-

sal 

period 

(# of 

agon-

istic 

events) 

Peri-

Disper-

sal 

period 

(# of 

samp-

ling 

points) 

Hourly 

rate in 

pre-

disper-

sal 

Period 

 

Hourly 

rate in 

peri-

disper-

sal 

period 

 

C0 Celeste F 7 1093 1 260 0.19 0.12 

CC Cata F 0 130 9 1030 0.00 0.26 

CC CC_06 U 5 1720 1 290 0.09 0.10 

Colman Andre M 0 130 1 500 0.00 0.06 

Colman Colman_09 U 0 270 1 480 0.00 0.06 

Corredor Betty F 0 964 12 170 0.00 2.12 

D500 Diafano M 0 120 4 890 0.00 0.14 

D500 Dionisio M 5 1010 3 710 0.15 0.13 

D500 Diosa F 0 1180 3 380 0.00 0.24 

D500 Discoteca F 22 1352 25 1838 0.49 0.41 

D500 Diuresis F 0 2850 1 360 0.00 0.08 

D500 Dixi M 7 1100 13 1042 0.19 0.37 

D800 Donovan M 32 3359 4 720 0.29 0.17 

E350 Eusebia F 10 2127 0 639 0.14 0.00 

E500 E500_11 U 5 540 26 458 0.28 1.70 

E500 E500_08 U 6 1050 3 959 0.17 0.09 

F1200 Fuerte M 0 190 2 610 0.00 0.10 

G1300 Gargara F 6 840 3 310 0.21 0.29 

Mean 5.83 1113 6.22 647 0.12 0.36 

Standard Error 2.01 217 1.87 95 0.03 0.14 
Pre-dispersal period = The time post-infancy (as juvenile and/or subadult) prior to the six months 

immediately preceding an individual’s natal dispersal.  

Peri-dispersal period = The time period starting six months prior to an individual’s dispersal through the 

date of natal dispersal.  

F = Female, M = Male, U = Sex unknown.  
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Discussion 

Intragroup agonistic behavior is not very common in wild Azara’s owl monkeys at 

our site. Agonistic events occur in a variety of contexts and can involve any member of the 

social group, but our data distinctly show that age is an important factor influencing the 

distribution of agonistic events. First, as an example, infants experienced very low rates of 

agonism compared to other age categories. This is consistent with the absence of reported 

infanticide and intense paternal care observed in owl monkeys [Fernandez-Duque, 2011; 

Rotundo et al., 2005]. Second, within interactions between adults and subadults, subadults 

were much more frequently the recipients than the actors. This pattern held across contexts, 

with subadults receiving agonism from adults more frequently than initiating it towards them 

whether they were foraging, moving, resting, socializing, or engaged in any other behavior. 

Third, subadults were initiators in a lower proportion of events than younger offspring 

(juveniles or infants).  

Taken together, our results strongly suggest that adults are utilizing agonism to 

mitigate competition with older offspring (i.e., subadults approaching adulthood/maturity). 

These findings are consistent with our first hypothesis, that agonism directed at subadults is a 

mechanism regulating dispersal. While juveniles and subadults did not differ much in the 

overall frequency at which they received agonism from adults, subadults did initiate agonistic 

interactions with adults less frequently than did juveniles (Table 3.6). This is not the pattern 

expected if agonistic behavior towards adults increased as offspring aged. This could indicate 

that older offspring (subadults) are avoiding agonism with adults more than younger 

offspring, possibly due to decreased tolerance by adults that subadults may face. Some of the 

most severe instances of intragroup aggression that we have observed involved adults 

attacking and expelling subadults [Huck and Fernandez-Duque, 2012]. Reduced initiation of 



140 
 

agonism may be a strategy that subadults use to minimize the likelihood that they will 

become involved in severe aggression with adults. This may allow them to delay dispersal 

and maintain access to philopatric benefits that the natal group may provide (Kokko and 

Ekman, 2002). 

Our results differ from observations of captive owl monkeys, in which male subadult 

owl monkeys (Aotus spp.) were often the aggressors, and no adult males were observed 

acting aggressively toward their male offspring (Evans et al 2009). It is possible that the 

subadult-driven agonism observed in captivity may be a consequence of the captive setting, 

which may prevent offspring from maintaining their desired distances from adult group 

members. Additional data on patterns of social behavior in captivity are needed to provide 

insight into this apparent difference in agonism between individuals in the wild and in 

captivity.  

Subadults experienced more agonism with adults in the six months prior to dispersing 

than they did at younger ages. This provides further support for a prediction of our first 

hypothesis (P1.1). This trend was observed for the majority, but not all, subadults in the 

study. It may be that the large amount of variation among groups during the six months 

preceding dispersals, and the relatively small number of groups from which we had sufficient 

focal data both before and after the time surrounding dispersal prevented us from detecting a 

more pronounced increase in agonism prior to dispersal. It is also possible that a severe bout 

of aggression (rather than a general increase in agonism) may trigger natal dispersal. This 

would be consistent with extremely aggressive behaviors, from adults to subadults, 

sometimes observed once the predispersing individual had begun to range independently for 

hours or days at a time [Corley and Fernandez-Duque, personal observations; Huck and 
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Fernandez-Duque, 2012].  

Our results provide mixed support for the mating competition hypothesis. The finding 

that subadults are recipients of agonism from adults in a higher proportion of events than are 

younger offspring is consistent with the hypothesis that agonism functions to minimize 

mating competition (P3.1). Importantly, wild owl monkey subadult females begin 

experiencing sporadic ovulatory cycles at two to three years of age, while still in their natal 

group [Chapter 4, Corley et al., 2016]. The fact that hormonal sexual maturity seems to 

coincide with an increase in an offspring’s rate of agonism and an increase in the proportion 

of events in which subadults receive agonism from adults suggests that, when offspring reach 

sexual maturity, adults begin to perceive them as potential mating competitors. 

In contrast to age, sex does not appear to be strongly related to patterns of agonism. 

Within each age category, males and females participated in events at similar rates, and the 

proportion of agonistic events initiated by offspring were similar for both sexes. This is 

consistent with what we might expect for a largely monomorphic socially monogamous 

species. However, these data do not support our second prediction of the mating competition 

hypothesis (P3.2), that adults will be more aggressive towards offspring of the same sex as 

themselves. 

Sex differences were only prominent in agonistic interactions between adults. 

Between adults, males were more often the actor and females the recipient. Buffy-headed 

marmosets (Callithrix flaviceps) showed a similar, but more pronounced, pattern, with male 

to female aggression being five times more frequent than female to male aggression [Ferrari, 

2009]. Additional research is required to elucidate the potential function of this higher rate of 

male agonism within monogamous pairs.   
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Our results also provide some support for the idea that patterns of agonism are related 

to food competition. The facts that sex was not strongly related to patterns of agonism among 

offspring and adults and that agonism was more frequent during foraging are both consistent 

with predictions of the food competition hypothesis (P2.1 and P2.2). More than half of the 

agonistic interactions between subadults and adults took place during foraging. However, 

agonism also occurred more frequently than expected in non-foraging contexts, especially 

while socializing. Thus, while agonistic events may sometimes be motivated by competition 

or conflict over food resources, food competition alone cannot explain patterns of agonism.  

The relationship between agonism and age is somewhat difficult to interpret in the 

context of the food competition hypothesis. While it could be argued that older, and larger, 

offspring may pose somewhat greater competition for food resources than smaller, younger 

infants or juveniles, the consistent pattern of agonism being directed by adults towards 

subadults across all contexts (socializing, resting, moving, etc.) suggests that this trend 

cannot be attributed exclusively to direct competition over food. Dispersal reduces the 

number of group members, and thus, ultimately intragroup competition for resources. 

Agonism in any context, if it encourages dispersal, could therefore be viewed as an indirect 

means of reducing feeding competition. While some of our data, which show a relationship 

between agonism and age, more directly support the mating competition avoidance 

hypothesis, it remains possible that mitigating food competition also contributes to the 

patterns of agonism observed. 

Our data suggest that parent-offspring relatedness may also be an important factor 

influencing intragroup agonism. Kinship is known to influence many aspects of social 

behavior, and relationships between close kin are often characterized by increased 
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cooperation and reduced agonism due to inclusive fitness benefits [Hamilton, 1964]. In our 

population, owl monkey offspring are typically born into groups in which the adults present 

are their genetic parents [Huck et al., 2014]. However, due to frequent replacements of 

adults, offspring may often reside in a group, for some period before they disperse, in which 

one or both adults are “step-parents” [Fernandez-Duque and Huck, 2013; Huck and 

Fernandez-Duque, 2012]. The Evolutionary Theory of the Family [Emlen, 1995; Emlen, 

1997] predicts that relationships between offspring and adults, particularly the same-sex 

adult, will tend to deteriorate after an adult replacement occurs. Consistent with this 

prediction, there were higher rates of agonism between adults and their step-offspring than 

between adults and their own offspring in groups in which a replacement had occurred. 

While we did observe an overall trend for adults to have higher rates of agonism with 

step-offspring, there was variation in this behavior among individuals, with particularly high 

amounts of variation observed among the rates from step-parents to step-offspring. The high 

variation in rates with step-offspring may stem from the fact that adults may interact more 

agonistically with step-offspring of specific age or sex classes, although our data set was not 

large enough for us to formally consider these factors. There was also no strong evidence that 

experiencing a parental replacement influenced an offspring’s rate of agonism, or the 

proportion of interactions in which an offspring was the actor. Overall, our results indicate 

that adult replacement does not have a consistent effect on rates across all circumstances. We 

suggest that rates of agonism between offspring and their step-parents likely depend on a 

variety of factors (e.g., age of offspring at time of the replacement), and may only be elevated 

in certain cases, such as when a sexually maturing subadult experiences a replacement [Huck 

and Fernandez-Duque, 2012].  
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Inclusive fitness theory predicts that “families” of closely related individuals will 

differ from other forms of social groups [Emlen, 1997]. Specifically, kinship could be 

expected to mediate agonism such that taxa living in groups composed primarily of closely 

related kin (e.g., owl monkeys) behave agonistically towards one another less frequently than 

taxa that commonly reside in groups containing many individuals to which they are not 

closely related. Our results are consistent with this general prediction: a group rate of 0.3 + 

0.1 agonistic events/hr is relatively low when compared to the average rate of 0.6 events/hr 

estimated for mostly non-monogamous New and Old World monkey species overall 

[Sussman et al., 2005]. 

Whether it is related more to competition over food or mates, agonism appears to be 

an important mechanism for regulating natal dispersal. This differs somewhat from what has 

been found among cooperative breeders. In captive cotton-top tamarins (Saguinus oedipus), 

most fights occur between siblings, and parent-offspring conflict is rare [Snowdon and 

Pickhard, 1999]. In wild buffy-headed marmosets (C. flaviceps), intragroup agonism also 

does not appear to be associated with dispersal [Ferrari, 2009]. However, since cooperative 

breeding is thought to mediate tolerance of mature, non-reproductive “helpers” in social 

groups, the finding that adults do not frequently behave aggressively towards helpers or 

utilize agonism to encourage individuals to disperse is not necessarily unexpected. Owl 

monkey groups do not contain “helpers”: offspring care is typically provided exclusively by 

the reproductive pair (the putative parents) [Fernandez-Duque, 2011; Rotundo et al., 2005]. 

Thus, because adults are not relying on subadult group members to provide infant care, adult 

owl monkeys may not be constrained from acting agonistically towards mature offspring.  

There is evidence from other pair-living primates without “helpers” that agonistic 



145 
 

behavior from adults may sometimes assist in regulating dispersal. For example, though a 

variety of mechanisms appear to be involved in the peripheralization and eventual dispersal 

of subadult gibbons (Hylobates klossii), the rate of aggression from adults towards their 

same-sex offspring was observed to increase prior to dispersal in at least some groups 

[Tilson, 1981]. Similarly, aggression between adults and subadults was sometimes observed 

prior to dispersal in flexibly pair-living white-handed gibbons (Hylobates lar) [Brockelman 

et al., 1998].  

It is important to acknowledge the limitations of our study when attempting to make 

generalizations. Collecting behavioral data from Azara’s owl monkeys is challenging: they 

are relatively small and arboreal primates with cathemeral habits, which means that detailed 

focal data can only be collected during relatively short bouts of activity when there is 

adequate light. Additionally, males and females are not conspicuously different to the 

observer, and adult males and females can only be unequivocally identified after they have 

been marked/collared. The result of this work is a 14-year data set which, although rather 

unique for the number of groups, individuals, and years sampled, still has limitations for 

examining all of the factors that could be informative for assessing hypotheses for the 

function of intragroup agonism.  

In summary, our results indicate that intragroup agonism likely serves multiple 

functions within groups of wild owl monkeys, but frequently it is associated with conflicts 

between adults and offspring. While intragroup agonism appears to play a role in mediating 

competition among group members for food resources, the overall trend for offspring to 

experience increased agonism as they age and mature is also consistent with the mating 

competition hypothesis. To an extent, our results could be considered consistent with the 
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hypothesis that adults use agonism to expel sexually maturing subadults in order to avoid 

inbreeding. However, the fact that subadults received agonism from unrelated step-parents, as 

well as putative genetic parents, suggests that mitigating mating competition is likely an 

important function of agonism, as well. Ultimately, adults seem to utilize agonism to 

encourage subadults to disperse, thus eliminating competition, of all types, with their older 

offspring.  

While we did not find support for just one of our hypotheses, this is likely a reflection 

of the multifaceted role that intragroup agonism plays in owl monkey social life. Our study 

highlights the fact that agonism can play diverse and important roles, even in a monogamous 

taxon like owl monkeys, in which aggression is typically considered to be rare.  

 

Acknowledgements 

My co-authors for the version of this paper submitted for publication in the American 

Journal of Primatology were Siyang Xia and Dr. Eduardo Fernandez-Duque of Yale 

University. I received support from the National Science Foundation (BCS/DDIG-1540255), 

L.S.B. Leakey Foundation, Penn Museum of Archaeology and Anthropology, University of 

Pennsylvania, and the Nacey-Maggioncalda Foundation. EFD acknowledges support for the 

Owl Monkey Project (OMP) from the Wenner-Gren Foundation, L.S.B. Leakey Foundation, 

National Geographic Society, National Science Foundation (BCS-1503753, 0621020, 

1219368 and 1232349; REU 0837921, 0924352 and 1026991), National Institutes of Aging 

(P30 AG012836-19, NICHD R24 HD-044964-11), University of Pennsylvania Research 

Foundation, and Zoological Society of San Diego. Research by the OMP has been approved 

by the University of Pennsylvania, Yale University, the Formosa Province Council of 

Veterinarian Doctors, the Directorate of Wildlife, the Subsecretary of Ecology and Natural 



147 
 

Resources and the Ministry of Production. We thank Bellamar Estancias and Fundación 

E.C.O. for the continued support of the OMP and the researchers who assisted in the field, 

especially V. Dávalos, M. Huck, C. Juárez, and M. Rotundo. We would also like to thank two 

anonymous reviewers for comments on a previous version of the manuscript. The authors 

have no conflict of interest to declare.  

 

References 

Abbott D, Hearn J. 1978. Physical, hormonal and behavioural aspects of sexual development in 

the marmoset monkey, Callithrix jacchus. Journal of Reproduction and Fertility 53(1):155-

166. 

Abbott DH. 1984. Behavioral and physiological suppression of fertility in subordinate marmoset 

monkeys. American Journal of Primatology 6(3):169-186. 

Abbott DH. 1993. Social conflict and reproductive suppression in marmoset and tamarin 

monkeys. In: Mason WA, Mendoza SP, editors. Primate Social Conflict. Albany: SUNY 

Press. p 331-372. 

Baker AJ, Dietz JM, Kleiman DG. 1993. Behavioural evidence for monopolization of paternity in 

multi-male groups of golden lion tamarins. Animal Behaviour 46(6):1091-1103. 

Bartlett TQ. 2003. Intragroup and intergroup social interactions in white-handed gibbons. 

International Journal of Primatology 24(2):239-259. 

Bernstein IS. 1976. Dominance, aggression and reproduction in primate societies. Journal of 

Theoretical Biology 60(2):459-472. 

Borries C, Sommer V, Srivastava A. 1991. Dominance, age, and reproductive success in free-

ranging female Hanuman langurs (Presbytis entellus). International Journal of Primatology 

12(3):231-257. 

Brockelman WY, Reichard U, Treesucon U, Raemaekers JJ. 1998. Dispersal, pair formation and 

social structure in gibbons (Hylobates lar). Behavioral Ecology and Sociobiology 

42(5):329-339. 

Burnham KP, Anderson D. 2002. Model selection and multi-model inference. New York: 

Springer. 

Caselli CB, Mennill DJ, Gestich CC, Setz EZ, Bicca-Marques JC. 2015. Playback responses of 

socially monogamous black-fronted titi monkeys to simulated solitary and paired intruders. 

American Journal of Primatology 77(11):1135-1142. 

Corley M, Fernandez-Duque E, Valeggia C. 2016. Hormonal correlates of maturation and 

dispersal in wild owl monkeys (Aotus azarae). Joint meeting of the International 

Primatological Society and the American Society of Primatologists. Chicago, IL. 

Cowlishaw G, Dunbar RI. 1991. Dominance rank and mating success in male primates. Animal 



148 
 

Behaviour 41(6):1045-1056. 

Dixson AF. 1983. The owl monkey (Aotus trivirgatus). In: Hearn J, editor. Reproduction in New 

World Primates. Lancaster, England: HTP Press Limited. p 69-113. 

Drews C. 1993. The concept and definition of dominance in animal behaviour. Behaviour 

125:283-313. 

Emlen ST. 1995. An evolutionary theory of the family. Proceedings of the National Academy of 

Sciences 92(18):8092-8099. 

Emlen ST. 1997. Predicting family dynamics in social vertebrates. In: Krebs JR, Davies NB, 

editors. Behavioural Ecology: An Evolutionary Approach. Malden, MA: Blackwell 

Sciences. p 228-253. 

Erhart EM, Overdorff DJ. 2008. Rates of agonism by diurnal lemuroids: implications for female 

social relationships. International Journal of Primatology 29(5):1227-1247. 

Evans S, Wolovich C, Herrera J. 2009. Aggression in captive owl monkeys (abstract). American 

Journal of Primatology: Wiley Liss. p 97. 

Fedigan LM. 1983. Dominance and reproductive success in primates. American Journal of 

Physical Anthropology 26(S1):91-129. 

Fernandez-Duque E. 2004. High levels of intra-sexual competition in sexually monomorphic owl 

monkeys. International Journal of Primatology. p 260. 

Fernandez-Duque E. 2009. Natal dispersal in monogamous owl monkeys (Aotus azarai) of the 

Argentinean Chaco. Behaviour 146(4):583-606. 

Fernandez-Duque E. 2011. Aotinae: Social monogamy in the only nocturnal haplorhines. In: 

Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK, editors. Primates in 

Perspective. New York: Oxford University Press. 

Fernandez-Duque E. 2016. Social monogamy in wild owl monkeys (Aotus azarae) of Argentina: 

the potential influences of resource distribution and ranging patterns. American Journal of 

Primatology 78(3):355-371. 

Fernandez-Duque E, Erkert HG. 2006. Cathemerality and lunar periodicity of activity rhythms in 

owl monkeys of the Argentinian Chaco. Folia Primatol (Basel) 77(1-2):123-38. 

Fernandez-Duque E, Huck M. 2013. Till death (or an intruder) do us part: intrasexual-competition 

in a monogamous primate. PLoS One 8(1):e53724. 

Fernandez-Duque E, Huntington C. 2002. Disappearances of individuals from social groups have 

implications for understanding natal dispersal in monogamous owl monkeys (Aotus azarai). 

American Journal of Primatology 57(4):219-25. 

Fernandez-Duque E, Rotundo M, Sloan C. 2001. Density and population structure of owl 

monkeys (Aotus azarai) in the Argentinean Chaco. American Journal of Primatology 

53(3):99-108. 

Fernandez-Duque E, van der Heide G. 2013. Dry season resources and their relationship with owl 

monkey (Aotus azarae) feeding behavior, demography, and life history. International 

Journal of Primatology 34(4):752-769. 

Ferrari SF. 2009. Social hierarchy and fispersal in free-ranging buffy-headed marmosets 

(Callithrix flaviceps). In: Ford SM, Porter LM, Davis LC, editors. Smallest Anthropoids: 



149 
 

Marmoset/Callimico Radiation. New York: Springer. p 155-165. 

Fisher-Phelps ML, Mendoza SP, Serna S, Griffin LL, Schaefer TJ, Jarcho MR, Ragen BJ, Goetze 

LR, Bales KL. 2015. Laboratory simulations of mate-guarding as a component of the pair-

bond in male titi monkeys, Callicebus cupreus. American Journal of Primatology 78:573-

582. 

Hamilton W. 1964. The genetical evolution of social behaviour. I. Journal of Theoretical Biology 

7:1-16. 

Harcourt AH. 1987. Dominance and fertility among female primates. Journal of Zoology 

213:471-487. 

Holloway RL. 1974. Primate aggression, territoriality, and xenophobia. New York: Academic 

Press. 

Huck M, Fernandez-Duque E. 2012. Children of divorce: effects of adult replacements on 

previous offspring in Argentinean owl monkeys. Behavioral Ecology and Sociobiology 

66(3):505-517. 

Huck M, Fernandez-Duque E. 2013. When dads help: male behavioral care during primate infant 

development. In: Clancy KBH, Hinde K, Rutherford J, editors. Building Babies. New 

York: Springer. p 361-385. 

Huck M, Fernandez-Duque E, Babb P, Schurr T. 2014. Correlates of genetic monogamy in 

socially monogamous mammals: insights from Azara's owl monkeys. Proceedings of the 

National Academy of Sciences B: Biological Sciences 281(1782):20140195. 

Huck M, Rotundo M, Fernandez-Duque E. 2011. Growth and development in wild owl monkey 

(Aotus azarai) of Argentina. International Journal of Primatology 32:1133-1152. 

Hunter A, Dixson A. 1983. Anosmia and aggression in male owl monkeys (Aotus trivirgatus). 

Physiology & Behavior 30(6):875-879. 

Isbell LA. 1991. Contest and scramble competition: patterns of female aggression and ranging 

behavior among primates. Behavioral Ecology 2(2):143-155. 

Juárez CP, Rotundo MA, Berg W, Fernandez-Duque E. 2011. Costs and benefits of radio-

collaring on the behavior, demography, and conservation of owl monkeys (Aotus azarai) in 

Formosa, Argentina. International Journal of Primatology 32(1):69-82. 

Kleiman DG. 1977. Monogamy in mammals. Quarterly Review of Biology 52(1):39-69. 

Klein L. 1974. Agonistic behavior in neotropical primates. New York: Academic Press. p 77-122. 

Koenig A. 2002. Competition for resources and its behavioral consequences among female 

primates. International Journal of Primatology 23(4):759-783. 

Koenig A, Larney E, Lu A, Borries C. 2004. Agonistic behavior and dominance relationships in 

female phayre's leaf monkeys–preliminary results. American Journal of Primatology 

64(3):351-357. 

Koenig A, Scarry CJ, Wheeler BC, Borries C. 2013. Variation in grouping patterns, mating 

systems and social structure: what socio-ecological models attempt to explain. 

Philosophical Transactions of the Royal Society B: Biological Sciences 

368(1618):20120348. 

Kokko H, Ekman J. 2002. Delayed dispersal as a route to breeding: territorial inheritance, safe 



150 
 

havens, and ecological constraints. The American Naturalist 160(4):468-484. 

Lazaro-Perea C, Castro CSS, Harrison R, Araujo A, Arruda MF, Snowdon CT. 2000. Behavioral 

and demographic changes following the loss of the breeding female in cooperatively 

breeding marmosets. Behavioral Ecology and Sociobiology 48(2):137-146. 

Majolo B, Lehmann J, de Bortoli Vizioli A, Schino G. 2012. Fitness-related benefits of 

dominance in primates. American Journal of Physical Anthropology 147(4):652-660. 

Mason WA. 1966. Social organization of the South American monkey, Callicebus moloch: A 

preliminary report. Tulane Studies in Zoology 13:23-28. 

Mason WA, Mendoza SP. 1998. Generic aspects of primate attachments: parents, offspring and 

mates. Psychoneuroendocrinology 23(8):765-778. 

Menzel CR. 1993. Coordination and conflict in Callicebus social groups. In: Mason WA, 

Mendoza SP, editors. Primate Social Conflict. Albany: SUNY Press. p 253-290 

Mitani JC. 1984. The behavioral regulation of monogamy in gibbons (Hylobates muelleri). 

Behavioral Ecology and Sociobiology 15(3):225-229. 

Mitani JC. 1988. Male gibbon (Hylobates agilis) singing behavior: natural history, song 

variations and function. Ethology 79(3):177-194. 

Morino L. 2015. Dominance relationships among siamang males living in multimale groups. 

American Journal of Primatology 78:288–297. 

Placci LG. 1995. Estructura y comportamiento fenológico en relación a un gradiente hídrico en 

bosques del este de Formosa: Facultad de Ciencias Naturales y Museo. 

Porter AM, Grote MN, Isbell LA, Fernandez-Duque E, Di Fiore A. 2015. A saki saga: dynamic 

and disruptive relationships among Pithecia aequatorialis in Ecuador. Folia Primatologica 

86:455-473. 

Pusey A. 2012. Magnitude and sources of variation in female reproductive performance. In: 

Mitani J, Call J, Kappeler P, Palombit R, Silk J, editors. The Evolution of Primate 

Societies. Chicago: University of Chicago Press. p 343-366. 

Ramanankirahina R, Joly M, Zimmermann E. 2011. Peaceful primates: affiliation, aggression, 

and the question of female dominance in a nocturnal pair-living lemur (Avahi occidentalis). 

American Journal of Primatology 73(12):1261-1268. 

Reichard U, Sommer V. 1997. Group encounters in wild gibbons (Hylobates lar): agonism, 

affiliation, and the concept of infanticide. Behaviour 134(15):1135-1174. 

Rothe H. 1975. Some aspects of sexuality and reproduction in groups of captive marmosets 

(Callithrix jacchus). Zeitschrift für Tierpsychologie 37(3):255-273. 

Rotundo M, Fernandez-Duque E, Dixson AF. 2005. Infant development and parental care in free-

ranging Aotus azarai azarai in Argentina. International Journal of Primatology 26(6):1459-

1473. 

Snowdon CT, Pickhard JJ. 1999. Family feuds: Severe aggression among cooperatively breeding 

cotton-top tamarins. International Journal of Primatology 20(5):651-663. 

Soini P. 1987. Sociosexual behavior of a free-ranging Cebuella pygmae (Callitrichidae, 

Platyrrhini) troop during postpartum estrus of its reproductive female. American Journal of 

Primatology 13:223-230. 



151 
 

Spence-Aizenberg A, Di Fiore A, Fernandez-Duque E. 2016. Social monogamy, male–female 

relationships, and biparental care in wild titi monkeys (Callicebus discolor). Primates 

57:103-112. 

Sterck EH, Steenbeek R. 1997. Female dominance relationships and food competition in the 

sympatric Thomas langur and long-tailed macaque. Behaviour 134(9):749-774. 

Sterck EHM, Watts DP, vanSchaik CP. 1997. The evolution of female social relationships in 

nonhuman primates. Behavioral Ecology and Sociobiology 41(5):291-309. 

Sussman RW, Garber PA. 2004. Rethinking sociality: Cooperation and aggression among 

primates. In: Sussman RW, Chapman AR, editors. Origins and Nature of Sociality. New 

York: Aldine de Gruyter. p 161-190. 

Sussman RW, Garber PA, Cheverud JM. 2005. Importance of cooperation and affiliation in the 

evolution of primate sociality. American Journal of Physical Anthropology 128(1):84-97. 

Thompson CL. 2013. Non-monogamous copulations and potential within-group mating 

competition in white-faced saki monkeys (Pithecia pithecia). American Journal of 

Primatology 75(8):817-824. 

Thompson CL. 2015. To pair or not to pair: Sources of social variability with white‐faced saki 

monkeys (Pithecia pithecia) as a case study. American Journal of Primatology 78:561–572. 

Tilson RL. 1981. Family formation strategies of Kloss's gibbon. Folia Primatologica 35:259-287. 

Van Belle S, Fernandez‐Duque E, Di Fiore A. 2016. Demography and life history of wild red titi 

monkeys (Callicebus discolor) and equatorial sakis (Pithecia aequatorialis) in Amazonian 

Ecuador: A 12-year study. American Journal of Primatology 78(2):204-215. 

van der Heide G, Fernandez-Duque E, Iriart D, Juárez CP. 2012. Do forest composition and fruit 

availability predict demographic differences among groups of territorial owl monkeys 

(Aotus azarai)? International Journal of Primatology 33(1):184-207. 

van Schaik CP. 1989. The ecology of social relationships amongst female primates. In: Standen 

V, Foley RA, editors. Comparative socioecology. Oxford: Blackwell. p 195-218. 

Vehrencamp SL. 1983. A model for the evolution of despotic versus egalitarian societies. Animal 

Behaviour 31(3):667-682. 

Wasser SK, Barash DP. 1983. Reproductive suppression among female mammals: implications 

for biomedicine and sexual selection theory. Quarterly Review of Biology 58(4):513-538. 

Wheeler BC, Scarry CJ, Koenig A. 2013. Rates of agonism among female primates: a cross-taxon 

perspective. Behavioral Ecology 24(6):1369-1380. 

Wrangham RW. 1980. An ecological model of female-bonded primate groups. Behaviour 

75(3):262-300. 

Wrangham RW, Peterson D. 1996. Demonic males: Apes and the origins of human violence: 

Houghton Mifflin Harcourt. 

Wright PC. 1994. The behavior and ecology of the owl monkey. In: Baer JF, Weller RE, Kakoma 

I, editors. Aotus: The Owl Monkey. San Diego: Academic Press. p 97-112. 

Young A. 2009. The causes of physiological suppression in vertebrate societies a synthesis. 

Cambridge: Cambridge University Press. 



152 
 

Zinner D, Wheeler BC. 2012. Aggression in humans and other primates: biology, psychology, 

sociology. In: Kortüm H-H, Heinze J, editors. Aggression in Humans and Other Primates: 

Biology, Psychology, Sociology. Berlin: de Gruyter. p 41-86. 

 



153 
 

Supplementary Tables and Figures for Chapter 3 

Table 3.S1. Ethogram used by the Owl Monkey Project for the collection of agonistic 

behavioral data (2001-2015). 

Behavior Definition 

Aggression Actor 
The focal individual is grabbing, hitting or biting another individual, 

it can include vigorous grasping, pulling or slapping at another, 

this may occur together with biting. 

Aggression Recipient 
Another individual is grabbing, hitting or biting the focal, it can 

include vigorous grasping, pulling or slapping at the focal, this 

may occur together with biting. 

Aggression Mutual The focal individual is aggressive and receives aggression 

simultaneously. 

Aggression Undetermined It is not known whether the focal individual gives or receives 

aggression. 

Food Rob Actor Successful 
The focal grabs a piece of food from another individual with the other 

individual offering resistance or trying to keep the food away from 

the focal with some form of aggression.  

Food Rob Actor 

Unsuccessful 

The focal tries, but fails, to grab a piece of food from another 

individual with the other individual offering resistance or trying to 

keep the food away from the focal with some form of aggression.  

Food Rob Recipient 

Successful 

Another individual grabs a piece of food from the focal with the focal 

offering resistance or trying to keep the food away from the 

individual with some form of aggression.  

Food Rob Recipient 

Unsuccessful 

Another individual tries, but fails, to grab a piece of food from the 

focal with the focal offering resistance or trying to keep the food 

away from the individual with some form of aggression. 

Chase Actor 
The focal moves rapidly (i.e., runs) reducing the distance between 

itself and another animal which at the same time runs away 

increasing the distance between itself and the first animal. 

Chase Recipient 
Another individual moves rapidly (i.e., runs) reducing the distance 

between itself and the focal which at the same time runs away 

increasing the distance between itself and the first animal. 

Displace Actor The focal moves to within 0.5 m of another animal and stays put 

while the other animal moves to more than 0.5m within 3 sec. 

Displace Recipient Another animal moves within 0.5 m of the focal and stays put and the 

focal moves to more than 0.5 m within 3 sec. 
Ethogram is based on the Monogamous Primates Protocol: 

http://www.sas.upenn.edu/~eduardof/Protocols%20English/Protocols%20Main%20Menu.htm  
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Table 3.S2. Number of events of each type of agonistic behavior observed in each group of 

owl monkeys and mean proportion of them across groups. 

Group Aggression Chase 

Food 

Rob Displace 

B68 0 0 0 0 

C0 14 1 5 8 

CC 36 10 8 35 

Colman 6 0 0 3 

Corredor 10 1 9 6 

D100 7 1 0 3 

D1200 8 0 0 0 

D500 77 13 6 57 

D800 18 10 5 22 

E350 44 9 11 14 

E500 70 18 22 51 

F1200 4 4 0 0 

F700 0 7 1 5 

G1300 6 2 0 2 

P300 6 2 0 2 

Total 306 78 67 208 

Mean 

Proportion 

of events 0.51 0.16 0.08 0.26 

SE of 

Mean 

Proportion 0.06 0.05 0.03 0.04 
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Table 3.S3. Mean hourly rates, standard errors (SE) and 95% confidence intervals (CI) of 

involvement in agonistic events for each age-sex category of owl monkeys. 

Sex Age Individuals1 Rate2 SE 

Lower limit 

of 95% CI 

Upper limit 

of 95% CI 

Female Infant 16 0.02 0.01 0.00 0.05 

Male Infant 14 0.08 0.05 0.00 0.19 

Unknown Infant 26 0.05 0.03 0.01 0.11 

Female Juvenile 21 0.14 0.05 0.06 0.26 

Male Juvenile 22 0.33 0.10 0.15 0.54 

Unknown Juvenile 25 0.06 0.02 0.02 0.11 

Female Subadult 23 0.31 0.07 0.17 0.46 

Male Subadult 18 0.19 0.08 0.06 0.35 

Unknown Subadult 11 0.18 0.11 0.02 0.42 

Female Adult 33 0.16 0.04 0.09 0.25 

Male Adult 25 0.15 0.04 0.09 0.24 

Unknown Adult 2 0.00 0.00 0.00 0.00 
1 Number of distinct individuals in each age-sex category 
2 Mean individual rates of agonistic events per hour for each age-sex category 
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Figure 3.S1. Relationship between the mean individual rate of agonism (+ SE) and the 

number of sampling points for each of the 15 owl monkey groups considered. Bars represent 

standard errors1.  

1,See text for discussion of the outlying point (group P300) in the upper left of the figure. 
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Figure 3.S2. Relationship between the proportion of focal samples containing one or more 

agonistic events and group size. Since group composition changed during the period of study, 

most of the 15 groups in the study appear more than once in the figure.  
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Chapter 4. Hormonal correlates of development and natal dispersal in a 

socially monogamous primate, Aotus azarae 
 

Abstract 
 
Reproductive suppression is a means through which intragroup conflict over reproduction 

may be resolved. Pair-living and socially monogamous primates typically do not reproduce 

before dispersing, but unlike cooperatively breeding taxa, neither inclusive fitness benefits 

nor inbreeding avoidance hypotheses can adequately explain their lack of reproduction prior 

to leaving the natal group. Examining the mechanisms underlying reproductive suppression 

in pair-living primates is important for understanding the evolution and functioning of this 

phenomenon in these taxa. In this study, we determined whether wild Azara’s owl monkeys 

(Aotus azarae) in the Argentinean Chaco establish reproductive maturity prior to dispersing. 

We utilized 635 fecal extracts to characterize reproductive hormone profiles of 11 wild 

juvenile and subadult females using enzyme immunoassays. Subadult females showed 

hormone profiles indicative of ovulatory cycling and had mean PdG and E1G concentrations 

approximately five times higher than juveniles. Contrary to the inbreeding avoidance 

hypothesis, female owl monkeys do not delay puberty, but rather commence ovarian cycling 

while residing in their natal group. Even so, subadults appear to have a period during which 

they experience irregular, non-conceptive cycles prior to reproducing. Commencing these 

irregular cycles in the natal group may allow them to develop a state of suspended readiness, 

which could be essential to securing a mate, while avoiding the costs of ranging solitarily. 

Our results indicate that reproductive suppression in female owl monkeys is not due to 

endocrine suppression, and suggest that adults likely use behavioral mechanisms to prevent 

subadults from reproducing with unrelated adult males in their natal group. 
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Introduction 

Any time that multiple individuals of the same sex co-reside within the same group, 

conflicts over which member(s) of a group will reproduce may arise. Both the degree to 

which group members partition reproduction and the mechanisms regulating reproductive 

partitioning appear to vary widely among taxa [Hager and Jones, 2009; Johnstone, 2000; 

Keller and Reeve, 1994]. For example, high reproductive skew, when one or a few 

individuals monopolize reproduction in a group, occurs in diverse taxa, ranging from eusocial 

insects to brown jays (Cyanocorax morio) to meerkats (Suricata suricatta) [Bell et al., 2014; 

Reeve and Keller, 2001; Williams, 2004]. On the other hand, similar levels of skew may be 

the result of vastly different mechanisms (e.g., worker caste sterility vs. behavioral inhibition) 

[Heinze, 2004], and the degree of skew can vary vastly even among related species with 

similar ecologies [e.g., dwarf mongooses (Helogale parvula) vs. banded mongooses (Mungos 

mungo)] [Cant, 2000; Johnstone and Cant, 2009].  

A potential means through which intragroup conflict over reproduction may be 

resolved, is reproductive suppression. It has been proposed that suppressing subordinates’ 

reproduction benefits dominants in some way [Hodge, 2009; Vehrencamp, 1983], though few 

studies have tested this assumption empirically [though see [Bell et al., 2014; Cant et al., 

2010]]. Lifetime reproductive success can be increased by beginning reproduction early 

[Altmann et al., 1988]. It is therefore expected that suppression must negatively impact 

subordinates. While forgoing reproduction may at first seem counter to maximizing fitness, it 

can be an adaptive strategy [Beehner and Lu, 2013]. Among cooperatively breeding species, 

explanations for why subordinates forgo their own reproduction have historically been based 

on kin selection arguments; providing allocare to dominant relatives allows subordinate 
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helpers to maximize their inclusive fitness [Emlen, 1995; Hamilton, 1964]. In fact, high 

levels of average relatedness between group members have been hypothesized to play 

important roles in the evolution of reproductive suppression of subordinates and cooperative 

breeding [Lukas and Clutton-Brock, 2012].  

Alternatively, rather than benefitting dominants or providing inclusive fitness 

benefits to subordinates, suppression of reproduction may be a mechanism to avoid 

inbreeding [Hamilton, 2004]. Inbreeding avoidance is likely to be important in taxa where 

social groups have high degrees of average relatedness, such as socially monogamous or 

cooperatively breeding species. This seems to be the case among cooperatively breeding 

mole-rats (Cryptomys damarensis) [Bennett et al., 1996; Clarke et al., 2001; Cooney and 

Bennett, 2000] and meerkats (S. suricatta) [O’Riain et al., 2000]. Inbreeding avoidance 

mediated by reproduction suppression can be enforced or self-imposed. Self-imposed 

suppression may occur when group members are closely related, the opportunities for 

independent breeding are poor, the costs of assessing reproductive status and eviction are 

relatively high, and the chance of being detected when cheating is high [Hamilton, 2004]. 

The mechanisms underlying reproductive suppression vary across taxa. In some 

cases, reproductive suppression may be mediated by the induction of physiological changes, 

such as the endocrine inhibition of gonadal function [Hamilton, 2004; Wasser and Barash, 

1983; Wasser and Starling, 1988]. In other cases, non-breeding individuals may be physically 

capable of reproducing, but still forgo their own reproduction through the influence of 

behaviors directed at them (e.g., mate guarding, agonism, or eviction) by reproductive 

individuals in the group [Cant et al., 2010; Hager and Jones, 2009; Kutsukake and Nunn, 

2006]. 
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Much of our knowledge about the hormonal suppression of reproduction in primates 

comes from studies of captive, cooperatively breeding callitrichids [Abbott et al., 1990; 

Saltzman et al., 2009; Ziegler et al., 1990]. In captive marmosets and tamarins, generally only 

one dominant female reproduces, while the gonadal function of other females in the group, 

including the offspring of the dominant female, is suppressed and non-dominant females do 

not ovulate [Abbott and Hearn, 1978; Abbott, 1993; Ziegler et al., 1987]. However, this 

mechanism of ovulatory inhibition does not always occur among all subordinate females in 

captivity [Abbott, 1984; Hubrecht, 1989; Smith et al., 1997; Ziegler and Sousa, 2002] and it 

may not consistently occur in wild populations [Albuquerque et al., 2001; Digby and Ferrari, 

1994; French et al., 2003; Lottker et al., 2004; Savage et al., 1997]. Fertility in female 

callitrichid offspring is regulated by a complex combination of behavioral and endocrine 

factors [Albuquerque et al., 2001; Smith et al., 1997; Ziegler et al., 1990]. The higher 

frequency of inhibition of gonadal function observed in subordinate females in captivity 

compared to the wild may be a consequence of specific social conditions, such as forced 

close proximity to (dominant) female conspecifics or a lack of access to unrelated males, 

which frequently occur in captive settings [French et al., 2003; Lottker et al., 2004; 

Widowski et al., 1990]. Given that their social and mating system is neither pair-living nor 

primarily monogamous [Garber et al., 2016], studying reproductive suppression in 

callitrichids may not be particularly useful when trying to understand pair-living and socially 

monogamous taxa. 

Reproductive suppression of female primates has also been documented in pair-living 

taxa without cooperative breeding. In both captive and wild pair-living primates, females 

typically do not reproduce while in their natal groups. For example, among wild New World 
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primates, neither red titi monkeys (Callicebus discolor) nor Azara’s owl monkeys (Aotus 

azarae) have ever been observed to breed prior to dispersing [Fernandez-Duque, 2009; Van 

Belle et al., 2016], and captive dusky titi monkey (Callicebus moloch) females do not breed 

while in their natal groups, even after reaching sexual maturity [Valeggia et al., 1999; 

Valeggia, 1996; Van Belle et al., 2016]. Suppression is not restricted to New World primates 

though, as data from pair-living lemurs [Tecot et al., 2016], wild siamang (Symphalangus 

syndactylus), and white-handed gibbons (Hylobates lar) also suggest that females must 

typically disperse from their natal groups before they reproduce [Palombit, 1995; Reichard 

and Barelli, 2008].  

Socially monogamous groups are usually defined as containing one adult male, one 

adult female, and their offspring, and have been historically been referred to as “family 

groups”. Under these considerations, it is hypothesized that females in monogamous taxa do 

not reproduce prior to dispersal due to a lack of unrelated males. However, in the last two 

decades, a number of studies have challenged the notion that pair-living taxa live in “nuclear 

family groups” in which parents and offspring are always genetically related [Fuentes, 1998; 

Garber et al., 2016]. For a variety of reasons, and in a range of socially monogamous taxa, 

offspring often encounter situations in which they are residing in their natal groups with 

unrelated adults of the opposite sex. It is now clear that several taxa categorized as 

“monogamous” would be better described as serially monogamous or pair-living [Fuentes, 

1998; Palombit, 1994; Sommer and Reichard, 2000; Tecot et al., 2016]. In support of this, the 

replacement of reproductive adults is frequent in owl monkeys (A. azarae) [Fernandez-Duque 

and Huck, 2013], equatorial saki monkeys (Pithecia aequatorialis) [Di Fiore et al., 2007], 

and several species of gibbon [Brockelman et al., 1998; Koda et al., 2012; Palombit, 1994]. 
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Social structures among gibbons and sakis are also more flexible than traditionally viewed 

[Norconk, 2011; Sommer and Reichard, 2000], with groups of white-faced sakis (Pithecia 

pithecia) [Thompson and Norconk, 2011] and white-handed gibbons (H. lar) at some sites 

frequently containing more than one adult male [Barelli et al., 2008; Reichard and Barelli, 

2008].  

The presence of unrelated adults in these groups makes the inbreeding avoidance 

hypothesis for reproduction suppression unlikely. These pair-living primate taxa are also 

characterized by the absence of alloparental care; nonreproductive individuals do not assist in 

the care of the young. Thus, the absence of cooperative breeding makes the inclusive fitness 

hypothesis for reproductive suppression unlikely, as well. Generating and evaluating 

alternative explanations for the widespread presence of reproductive suppression in these 

taxa and the mechanisms underlying it thus require empirical investigations of wild pair-

living primates.  

Azara’s owl monkey (A. azarae) provides a good model to examine reproductive 

suppression in wild pair-living primates. Owl monkeys are a pair-living, serially and 

genetically monogamous taxon [Huck et al., 2014] in which predispersing non-reproducing 

individuals do not provide infant care. Adults reside with their offspring for several years (2-

5) before the offspring disperse from their natal groups, allowing the potential for conflicts 

over reproduction, particularly when the replacement of a genetic parent has occurred 

[Fernandez-Duque, 2009; Huck and Fernandez-Duque, 2012]. Since offspring never 

reproduce in their natal group, dispersal is an extremely important step towards achieving 

reproductive success. Once offspring disperse, individuals of both sexes become solitary 

“floaters” for a variable period. Floaters typically need to fight with members of established 
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social groups in order to gain a reproductive position. While severe intragroup aggression is 

not frequent, adults of both sexes frequently act aggressively towards intruding floaters. 

These aggressive encounters can be deadly, and eviction from the group is likely highly risky 

for the evicted individual [Bonte et al., 2012; Fernandez-Duque and Huck, 2013].   

To better understand reproductive suppression and how it relates to natal dispersal in 

owl monkeys and other pair-living primates, it is essential to determine the mechanisms 

through which reproduction is inhibited. As explained above, the richest literature on 

reproductive suppression of primates is based on studies of captive individuals, where 

predispersing individuals obviously cannot disperse, nor distance themselves from 

reproducing adults more than one or two meters. There is currently very limited evidence 

with which to evaluate whether suppression of reproduction in wild pair-living primates may 

result from inhibition of endocrine function. For pair-living socially monogamous taxa, 

urinary hormone profiles of captive titi monkeys (C. moloch) indicate that females 

experience occasional adult-like ovarian cycles while residing with parents in their natal 

groups [Valeggia, 1996]. In a study utilizing fecal samples from wild white-faced saki 

monkeys (P. pithecia), at least one subadult began cycling while in her natal group 

[Thompson et al., 2011]. In contrast, fecal samples from three wild subadult white-handed 

gibbons (H. lar) did not show progesterone profiles indicative of ovulatory cycling [Barelli et 

al., 2007]. Thus, for pair-living primates, evidence for the inhibition of endocrine function in 

predispersed females is mixed. 

 Little is known about the development and sexual maturation of wild predispersing 

owl monkeys, though ovulatory cycles of wild adult females have been described 

(Fernandez-Duque et al., 2011). In captivity, conception leading to successful offspring 
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production occurred in a 20.5 month old female, and also following mating with a 23.5 

month old male [Gozalo and Montoya, 1990]. However, the pace of growth and reproductive 

maturation in captive and provisioned primates is substantially different than in the wild 

[Alberts and Altmann, 1995; Altmann and Alberts, 1987; Altmann et al., 1981; Altmann et 

al., 1977; Dunbar, 1990; Durgavich, 2013; Milton, 1981; Mori, 1979; Rowell and Richards, 

1979]. 

Our objectives in this study were to determine the age at which wild female owl 

monkeys typically experience the onset of reproductive maturity and establish whether this 

typically occurs prior to dispersing from the natal group. By reproductive maturity, we are 

referring to an individual being physiologically capable of reproducing (e.g., increases in 

levels of reproductive hormones and establishment of ovulatory cycles similar to reproducing 

adults), not the first successful copulation or parturition. We characterized the reproductive 

hormone profiles of wild juvenile and subadult female owl monkeys to 1) determine the 

mean concentrations of female reproductive hormones (PdG and E1G) in feces of juvenile, 

predispersed subadult, and solitary dispersed subadult females; 2) describe patterns of 

fluctuations in reproductive hormones and determine if they constitute evidence for ovulatory 

cycling; and 3) compare profiles of reproductive hormones detected in juveniles or subadults 

to those previously described for wild adult owl monkeys.  

 

Methods 

Study site and subjects 

We conducted this study at the Reserva Mirikiná, a 1500 ha reserve of gallery forest 

within the private cattle ranch Estancia Guaycolec, in Formosa, Argentina (58˚13’W, 
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25˚54’S). Owl monkeys (A. azarae) at this site, which is within the South American Gran 

Chaco region, reside in both gallery forest and forest patches, which are separated from one 

another by grasslands and savannahs [Juárez et al., 2012; Placci, 1995; van der Heide et al., 

2012]. We have described climate and seasonality in the area previously [Fernandez-Duque, 

2009]. 

Within the Reserva Mirikiná, the Owl Monkey Project (OMP) has mapped a 300 ha 

area of gallery forest along the banks of the Riacho Pilagá, and established a system of 

intersecting transects. Groups within this mapped area were habituated and are monitored 

consistently (contacted at least once every week or every second week) since 1997 

[Fernandez-Duque, 2016; Fernandez-Duque et al., 2001]. This monitoring has allowed us to 

identify dates of births, deaths, and other demographic changes, such as dispersals, within a 

range of a few weeks [Huck and Fernandez-Duque, 2012]. Reproduction is highly seasonal: 

almost all births occur between late September and December, and 80% occur in either 

October or November [Fernandez-Duque, 2012; Fernandez-Duque et al., 2002].  

The Owl Monkey Project (OMP) also captures and fits some individuals with radio-

collars, which allows us to consistently locate identified groups, and bead collars, which 

facilitate the reliable identification of specific individuals [Juárez et al., 2011]. We collected 

all data reported here from individuals in well-habituated groups within the mapped area. It 

was possible to discriminate all group members from one another by collars or natural 

distinguishing markings. We classified individuals as infants (< 6 months), juveniles (6 < 24 

months), subadults (> 24 months), or adults (a dispersed individual which has become a 

member of a reproductive pair in group), following the age categories defined in Huck et al. 
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[2011]. We classified subadults as predispersed or solitary, based on whether they had 

permanently dispersed from their natal group (Table 4.1).  

Table 4.1. Juvenile, predispersed subadult, and solitary dispersed subadult owl monkey 

females sampled in Formosa, Argentina between 2011 and 2015. 

Category Age Group Individual 
ID 

Year 
Sampled 

Adult Male 
Replacement 

juvenile <1 yr Corredor Bella 2014 No 

juvenile <1 yr E350 Estupenda 2014 Unknown 

juvenile <2 yrs C0 Cebollita 2015 No 

juvenile <2 yrs Corredor Bella 2015 No 

juvenile <2 yrs D500 Discoteca 2013 No 

juvenile <2 yrs E350 Eusebia 2014 Unknown 

juvenile <2 yrs E350 Estupenda 2015 Unknown 

subadult <3 yrs C0 Celeste 2011 No 

subadult <3 yrs D500 Discoteca 2014 No 

subadult <3 yrs E350 Eusebia 2015 Unknown 

subadult <3 yrs F700 Felicia 2013 Yes 

subadult <3 yrs P300 Petisa 2013 Yes 

subadult <4 yrs CC Cordelia 2013 Yes 

subadult <4 yrs Corredor Betty 2014 No 

solitary subadult <4 yrs NA Cansada 2011 No 

solitary subadult <4 yrs NA Discoteca 2015 No 

solitary subadult <5 yrs NA Betty 2014 No 

solitary subadult <5 yrs NA Celeste 2013 No 

Italics indicate that the individual was sampled previously in another (younger) age category as well.  

“Adult Male Replacement” refers to whether or not the individual had experienced the replacement of the 

reproductive adult male in their group prior to being sampled (i.e., their genetic father had been replaced by 

an unrelated male). “Unknown” indicates that the identity of the male present at the time of the individual’s 

birth was unknown, and thus it could not be determined whether a replacement had occurred.  

 

Owl monkeys do not show obvious visual signals of ovulatory cycling, so changes in 

reproductive hormone levels must be monitored in order to determine reproductive status 

[Bonney et al., 1979; Bonney et al., 1980; Wolovich and Evans, 2007]. We utilized feces to 

monitor reproductive hormones, because feces are the only medium that we can reliably 

obtain from wild individuals without repeated captures [Fernandez-Duque et al., 2011]. We 
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collected fecal samples systematically from five juveniles, seven subadults that had not yet 

dispersed from their natal groups, and four subadults that had dispersed from their natal 

groups within the previous 12 months and were ranging solitarily. These represent 11 unique 

individuals, as some were sampled in multiple categories over several years (Table 4.1). We 

used a fecal sample to confirm the genetic sex of each of our subjects prior to conducting 

hormone analyses, following established methods [Di Fiore, 2006].  

We followed a sampling schedule previously utilized to monitor the reproductive 

status of adult female owl monkeys at our field site [Fernandez-Duque et al., 2011]. Under 

this schedule, we sampled each female, on average, every 3.5 days (typically 2-4 days (85% 

of samples), absolute range: 5-7 days). We monitored individuals an average of 129 + 16 

consecutive days (range: 31-220 days) between May and December in three consecutive 

years (2013, 2014, 2015), with the exception of two females who were sampled during July 

and August in 2011 (Table 4.1). The average cycle length for wild adult reproductive A. 

azarae females is approximately 22 ± 3 days (range 18–25 days) when computed using 

consecutive peaks in E1C from 12 cycles, and 24.0 + 1.6 days (range 20–26 days) when 

computed using E1C nadirs from 10 cycles [Fernandez-Duque et al., 2011]. Thus, the time 

when each female was monitored encompassed at least one full potential ovulatory cycle. In 

sum, we collected 635 fecal samples, and analyzed an average of 33 + 5 SE samples per 

female.  

 

Fecal sample processing 

We obtained fecal samples non-invasively through the collection of feces from the 

forest floor immediately after the target individual defecated. For each sample, we placed the 
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fecal material directly into an 8 mL screw-cap tube containing 5 mL of a 1:1 solution of 

ethanol and deionized (DI) water, secured the cap with a Parafilm® strip, and then shook the 

tube for one minute to homogenize the sample. We transferred the sample tubes from the 

field site to a freezer in the city of Formosa as soon as possible (within 5 days during the 

winter, within 1-2 days during periods of warm weather). For each fecal sample collected, we 

recorded the date, time, and GPS location of collection, as well as the group, identity, and sex 

of the animal sampled. We transported samples back to the US following all shipping 

regulations and immediately placed tubes in a -20˚C freezer once they reached the laboratory. 

We transported samples collected prior to 2013 to the Reproductive Ecology Lab at the 

University of Pennsylvania (Penn REL) and extracted them there before shipping them to the 

Yale Reproductive Ecology Laboratory (YREL) for analysis. We transported samples 

collected in 2013 or later directly from Argentina to the YREL. We followed all necessary 

local, national, and international regulations for the collection and transportation of biological 

samples and obtained all necessary permits.  

We utilized the same protocols for samples processed at both the Penn REL and 

YREL. To extract samples, we allowed sample tubes to stand undisturbed overnight, and then 

centrifuged them if necessary, to separate the solid fecal material portion from the liquid 

portion in each tube. We set aside a 1 mL aliquot of the liquid portion for subsequent 

hormone extraction, and then transferred the remaining liquid to 1 mL tubes, which we stored 

at -20˚C in a YREL freezer as backups. We then air-dried the fecal material portion of each 

sample and recorded the dry weight to the nearest 0.001 gram.   

We performed diethyl ether extractions on all samples using established methods 

[Fernandez-Duque et al., 2011; Strier and Ziegler, 1994]. Briefly, we transferred 1 mL of the 
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liquid portion of each sample into a glass culture tube and then added 1 mL of DI water and 5 

mL of diethyl ether to the tube. We vortexed tubes for 1 minute and then left them 

undisturbed for 5 minutes to allow for separation into aqueous and ether layers. We used a 

Pasteur pipette to decant the top ether layer into a clean glass tube, in which we completely 

evaporated the ether. We then re-suspended the sample in 2 mL of phosphate buffer and froze 

1 mL aliquots of the extracts at –20°C. 

 

Pregnanediol-3-Glucuronide (PdG) and Estrone-3-Glucuronide (E1G) assays  

We assayed all fecal extracts for progesterone metabolites (PdG) and secreted 

estradiol (E1G), in order to determine whether females showed hormone profiles indicative 

of ovulatory cycling. PdG assays are a reliable means of monitoring progesterone excretion 

during the ovulatory cycle in owl monkeys [Dixson, 1983]. Fecal PdG levels have also 

previously been used to successfully monitor ovarian cycles in adult females from the same 

population of wild A. azarae sampled in this study [Fernandez-Duque et al., 2011].  

We used DetectX Enzyme Immunoassay (EIA) kits from Arbor Assays (K037-H5 

and K036-H5, Ann Arbor, MI) to measure the levels of PdG and E1G. These kits have been 

validated by the manufacturer for use on fecal extracts. The PdG kits have cross reactivity of 

100% for PdG, 44.8% for 20a-hydroxyprogesterone, and <4% with other reactants at the 50% 

binding point. The E1G kits have cross reactivity of 100% for E1G, 238% for estrone, 66.6% 

for estrone-3-sulfate (E1S), 7.8% with 17ß-Estradiol, and <4% with other reactants at the 

50% binding point, as determined by the manufacturer. Thus, we can say with certainty that 

our assay results truly reflect levels of PdG and E1G, or closely related metabolites. We 

performed all hormone assays at the YREL following the manufacturer’s protocols.  



171 
 

We diluted all extracts at least 1:8 with assay buffer and assayed in duplicate. We 

express the mean concentration of each set of duplicates as micrograms of PdG per gram of 

feces and nanograms of E1G per gram of feces. As quality control measures, we reran all 

samples for which the difference between duplicates was > twice the amount of non-specific 

binding (NSB) and we re-diluted and re-assayed samples for which binding was >90% or 

<20% of the maximum binding. Mean inter-assay coefficients of variation (CVs) were 15.6% 

for PdG (15.3 + 0.25% SD = high control; 15.8 + 0.15% SD = low control) and 10.4% for 

E1G (10.7 + 0.06% SD = high control; 10.1 + 0.11% = low control). The mean intra-assay 

CVs were 11.6 + 3.1% SD for PdG and 9.5 + 3.4% SD for E1G. 

 

Data Analyses 

We determined the mean concentration of each hormone for each individual and then 

used these means to calculate mean hormone levels for each category of individuals 

(juvenile, predispersed subadult, and solitary dispersed subadult). We used Wilcoxon rank-

sum tests to assess the statistical significance of differences between categories. We visually 

inspected the hormonal profile of each individual to identify the possible presence of ovarian 

cycles. For each cycling individual, we also calculated the mean concentration of each 

hormone during peaks and the mean concentration of each hormone during troughs between 

peaks (baseline levels). We calculated baseline levels as the mean PdG or E1G levels during 

the follicular phase(s) (i.e., the parts of the profile without a clear PdG peak). We report the 

mean + standard error (SE) unless otherwise noted.  

In addition to considering mean PdG levels in each broad category, we examined the 

potential influence of age (in days), season (mating vs. birth), and year of sampling on the 
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mean monthly PdG concentrations through the evaluation of GLM models. We defined four 

candidate models, with mean monthly PdG level as the outcome variable. Each model 

contained a random intercept for subject ID and one or more fixed effects/predictor variables: 

Model 1 contained just the predictor variable age, Model 2 contained age and year, Model 3 

contained age and season, and Model 4 contained all three variables. We provide details of 

candidate model sets in the Supplementary Information (Table S4.1). All GLMMs were 

estimated with restricted maximum likelihood, using the function lmer in R (ver. 3.2.3) 

[Bates et al., 2014; R Core Development Team, 2016], and we chose the best approximating 

models on the basis of AICc [Mazerolle, 2016] and parsimony (Table S4.2). 

To identify ovulatory cycles, we used the criteria of progesterone-defined ovulation. 

A previous study on adult owl monkeys considered any rise in PdG that was 50% above 

baseline follicular levels to be indicative of ovulatory peaks [Fernandez-Duque et al., 2011]. 

Since it was vital to our objective to be able to distinguish between PdG increases indicative 

of ovulation and non-cyclic fluctuations, we chose to use an even stricter criterion for 

classifying ovulatory peaks. We considered a cycle to be ovulatory only when PdG peaks 

reached a level at least two standard deviations higher than the individual’s mean PdG level. 

Thus, if juveniles or subadults in our study showed peaks using this more conservative 

criterion, we considered them to have experienced the onset of reproductive maturity. 

Captive owl monkeys, like some other New World monkeys, have profiles of 

progesterone and estrogen that are nearly superimposed [Bonney et al., 1979; Preslock et al., 

1973]. In concordance with this, we observed more or less concurrent rises in fecal PdG and 

E1G in samples from wild adult owl monkeys (Fernandez-Duque et al., 2011). Following 

previous studies, we utilized E1G profiles to estimate cycle length. Specifically, we estimated 
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cycle length by counting the days between 1) two consecutive E1G peaks, and 2) the lowest 

points in the profile (the nadir). We considered cycles to be consecutive if peaks occurred 

within 25 days of one another (based on estimates of cycle lengths of adult owl monkeys), 

and excluded from our calculations of cycle length any peaks that occurred more than 25 

days apart. We then computed the average cycle length over all individuals that had more 

than one peak. These methods are consistent with the way that a previous study determined 

ovulation and cycle lengths for adult female owl monkeys [Fernandez-Duque et al., 2011]. 

Thus, our methods allow us to compare cycle lengths of subadult females to those previously 

established for wild adults.  

 We also determined the age when each female showed evidence for the onset of PdG 

peaks indicating ovulation. For all individuals, dates of birth were either known exactly or 

could be estimated to have occurred within a period of + 22 days.  

Ovulatory cycles of wild adult owl monkeys seem to lack strong seasonality. Females 

may resume cycling as soon as three months after giving birth, and may cycle for several 

months prior to the mating season and for at least four months before conceiving [Fernandez-

Duque et al., 2011]. To examine the potential influence of season on reproductive hormones 

of female subadults and juveniles, we determined the mean PdG and E1G levels for 

individuals and number of PdG peaks that occurred during each of two seasons: the 

mating/pregnancy season (May-August) and the birth season (September-December).  

 

Ethical statement 

The ethics committees (IACUC) of the University of Pennsylvania (2006-2014), Yale 

University (2014-2015), and the National Wildlife Directorate in Argentina approved all 



174 
 

behavioral observations, sample collection, and protocols for the capturing and collaring of 

owl monkeys for identification. All research also adhered to the American Society of 

Primatologists’ Principles for the Ethical Treatment of Non-Human Primates and the 

Argentine Society for Mammalian Studies guidelines [Giannoni et al., 2003]. 

 

Results 

Solitary dispersed and predispersed subadults had very similar mean PdG and mean 

E1G levels (Figure 4.1, Wilcoxon Rank Sum Test: W = 15, p = 0.93). In contrast, juveniles 

had mean levels of both hormones that were substantially lower than those of predispersed 

and solitary dispersed subadults. Specifically, the mean PdG value in juveniles was only 20% 

and 22% of the values of solitary and predispersed subadult levels, respectively. Similarly, 

the mean E1G value in juveniles was only 19% and 21% of the values of solitary and 

predispersed subadult levels, respectively (Figure 4.1). The differences were statistically 

significant between solitary subadults and juveniles (Wilcoxon Rank Sum Tests: W = 19, p = 

0.03 for PdG, W = 19, p = 0.03 for E1G) and between predispersed subadults and juveniles 

(Wilcoxon Rank Sum Tests: W = 33, p = 0.01 for PdG, W = 35, p < 0.01 for E1G).  

Age was the most important factor for explaining mean PdG in our models. The 

variation in mean PdG was best explained by the approximating model that contained only 

age and sampling year as explanatory variables (Model 2). The AICc for this model was only 

marginally lower than for the more parsimonious model which contained only age (Model 1) 

(Delta AICc = 1.41; Supplementary Information: Table S4.2), so we report parameters from 

both models (Table 4.2). Season was not contained in either of these two models. Both of our 

best models estimated mean PdG increases of 0.004 + 0.001 mg/g for each day that an 
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individual ages, which is equivalent to an increase of 1.5 + 0.4 mg/g PdG per year. This 

estimate is fairly consistent with the mean PdG concentrations observed in 1-2 year-old 

subjects vs. 4-5 year-old subjects (0.7 + 0.2 and 3.8 + 1.0 mg/g in juveniles and solitary 

dispersed subadults, respectively; Figure 4.1). 

 

Figure 4.1. Mean levels of PdG (top) and E1G (bottom) in solitary and predispersing 

subadult and juvenile owl monkeys’ fecal samples, shown with standard error bars. 
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Table 4.2. Summary table of the two (out of four models in the a priori set) best-approximate 

generalized linear mixed-effects models for mean monthly PdG concentration.  

Parameter Estimate Std. Error 95% CI 

Model 2   
  

 

Fixed Effects        

  Intercept   0.561 1.772 -1.978- 4.850 

  Age (in days)   0.004  0.001 0.002-0.006 

  Year 2013 -1.6953 1.607 -4.758-1.353 

  2014 -1.480 1.648 -4.548-1.740 

  2015 -2.416 1.650 -5.499-1.742 

Random Effects        

  ID Intercept 1.197 1.094  

  Residual 3.894 1.973  

Marginal R2 = 0.34  

Conditional R2 = 0.49  

Model 1        

Parameter        

Fixed Effects        

  Intercept   -0.749 0.941 -1.755-2.377 

  Age (in days)   0.004 0.001 0.002-0.005 

Random Effects        

  ID Intercept 1.381 1.175  

  Residual 3.885 1.971  

Marginal R2 = 0.24 
Conditional R2 = 0.44 

 

 

Both solitary and predispersed subadults showed clear peaks of PdG and E1G during 

the luteal phase consistent with ovulatory cycling (Figure 4.2). Fecal PdG and E1G followed 

similar patterns, rising almost in parallel with one another during peaks. Peaks were generally 

separated by spans of consistently low levels (troughs) for both hormones, though 

intermediate activity was observed in some individual’s profiles (Figure 4.2). Peaks were 

typically represented by 1-3 consecutive samples with relatively higher PdG and E1G levels, 

before hormone levels returned to baseline (Figure 4.2). Subadults’ mean PdG levels varied 

between 16.8 + 2.4 mg PdG/g feces during peaks and 2.0 + 0.4 (SE) mg PdG/g feces in  
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Figure 4.2. Sample profiles of PdG (black) and E1G (gray) levels. Top: Example of a typical 

profile with ovulatory peaks from a solitary dispersed subadult (Betty, sampled 1 month). 

Middle: Example of a typical profile with ovulatory peaks from a predispersed subadult 

(Betty, sampled >2.5 months).  Bottom: Example of a typical profile, lacking substantial 

hormonal peaks, from a juvenile (Bella, sampled >4 months). 

 

   
 

Figure 4.3. PdG (black) and E1G (gray) profiles from a four-year old predispersed subadult 

to illustrate sporadic ovulatory peaks that were present in five of six subadults.  

 

 

troughs, and mean E1G levels varied between 410.9 + 73.7 ng E1G/g feces during peaks and 

69.0 + 11.0 ng E1G/g feces in troughs (Table 4.3).  

We observed 21 distinct peaks in total (mean = 2.1 peaks per individual, range 1 - 4). 

All seven predispersed subadults showed at least one set of correlated PdG and E1G peaks (n 

= 18 total peaks). Similarly, all but one of the solitary dispersed subadults showed a PdG 

peak. The solitary dispersed subadult for which no peak was detected (Cansada, Table 4.1) 

was sampled only during 16 consecutive days (a much shorter period than other individuals), 

still her PdG and E1G baseline levels were within the range of other cycling solitary 

subadults (Table 4.3).  



179 
 

While the general appearance of peaks was similar among all subadult individuals, 

there was substantial interindividual variation in the absolute concentrations of PdG 

(maximum during peaks ranged from 5.3-31.7 mg/g) and E1G (maximum during peaks 

ranged from 181.3-841.8 ng/g) (Table 4.3). One solitary dispersed subadult had a maximum 

PdG level during a peak that was relatively low compared to other subadults’ peak levels 

(“Discoteca” in Table 4.3). However, this peak met our strict criteria (>100% higher than SD 

from the baseline mean), and the peak PdG level was six times higher than mean trough 

levels, suggesting that this individual may have experienced an ovulatory cycle even though 

her PdG and E1G levels were relatively low compared to other subadults. 

 

Table 4.3. Mean PdG and E1G concentrations (+ SD) in peaks and troughs and the number 

of samples used to calculate means for each cycling owl monkey. 
  PdG E1G 

ID Category 

# of 
PdG 

peaks 
mean PdG + 
SD in peaks 

N for 
peaks 

mean PdG 
+ SD in 
troughs 

N for 
troughs 

mean E1G + 
SD in peaks 

N for 
peaks 

mean E1G + 
SD in troughs 

N for 
troughs 

Betty predispersed 3 18.2 + 6.9 8 3.9 + 2.0 20 350.3 + 191.7 6 73.7 + 45.1 22 

Celeste predispersed 1 31.7 1 2.1 + 1.9 7 528.1 + 318.9 2 142.2 + 126.6 6 

Cordelia predispersed 2 16.4 + 7.1 4 2.0 +1.6 53 266.4 + 94.9 4 78.0 + 59.7 53 

Discoteca predispersed 3 16.9 + 4.0 3 0.6 + 0.8 70 695.5 + 224.4 4 30.0 + 36.6 67 

Eusebia predispersed 4 9.9 + 2.5 6 1.9 + 1.5 46 250.2 + 113.9 5 68.2 + 54.8 47 

Felicia predispersed 2 13.8 + 1.1 2 0.9 + 1.1 39 841.8 + 709.7 2 80.8 + 96.9 39 

Petisa predispersed 3 13.8 + 3.5 3 1.1 + 1.6 44 572.9 + 250.6 4 67.7 + 76.0 44 

Betty dispersed 1 15.7 1 3.6 + 3.8 8 205.6 + 66.2 4 28.1 + 15.4 5 

Celeste dispersed 1 26.1 1 3.3 + 2.4 11 181.3 + 28.4 3 92.3 + 55.1 8 

Discoteca dispersed 1 5.3 1 0.9 + 0.8 32 217.1 1 28.6 + 26.5 32 

Cebollita juvenile 4 8.7 + 2.9 4 0.8 + 1.3 41 269.0 + 90.5 5 16.1 + 31.8 40 

N = the number of samples used to calculate the mean hormone concentration.  

PdG values are in mg/g feces. E1G values are in ng/g feces.  

Italics indicate that the individual’s hormone profile had one of more sections that qualified as peaks under 

our criteria (2 SD higher than the mean), but the maxima of these peaks were relatively low and they 

should not necessarily be interpreted as evidence of ovulation.  
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 Six predispersed or solitary dispersed subadults showed multiple PdG peaks. All but 

one of these six individuals had at least one gap longer than 25 days between the peaks of 

two or more of their cycles (Figure 4.3). In three cases, an individual’s peaks occurred 

several months apart (up to 167 days between peaks). We monitored one solitary, Discoteca, 

who had previously cycled while in her natal group, for three months before we detected 

another ovulatory peak in her profile. Using distances between consecutive cycles without 

large gaps (>25 days) between peaks, the average number of days between E1G peaks was 

16.5 + 3.6 (range 14-25 days, n= 4 subadults, 8 peaks) and the average number of days 

between E1G nadirs was 17.9 + 2.4 (range 15-22 days, n=4 subadults, 7 nadirs).  

 On average, subadults were approximately 36 months (1080 + 70 days) old when we 

detected their first PdG peak indicative of ovulatory cycling. The youngest predispersed 

subadult was 31 months (953 days) old at the time of her first peak. The mean age at first 

peak was virtually the same for the three females who had experienced adult male 

replacements and the three who had not (1100 + 93 and 1098 + 142 days, respectively). 

There was one individual, Cebollita, whose profile indicated several relatively small peaks in 

PdG, starting when she was still a juvenile (610 days of age). The mean maximum value of 

this individual’s PdG peaks was considerably lower than the average of PdG during 

subadults’ peaks (8.7 + 2.9 vs. 16.8 + 2.4 mg PdG/g feces), so it is unclear whether these 

“peaks” can be considered equivalent to the ovulatory peaks observed in subadults. None of 

the other four juvenile females showed evidence of PdG or E1G peaks. No females showed 

any evidence of conception (as suggested by sustained increases in PdG) in their hormone 

profiles. 
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The distribution of PdG peaks over time does not suggest that ovulation was 

seasonal. Peaks occurred in all months during which sampling occurred (June-December). Of 

the 21 peaks, 10 occurred during the mating/pregnancy season (May-August) and 11 during 

the birth season (September-December), and the median concentrations were similar in both 

seasons for PdG and for E1G (Figure 4.4). The mean monthly PdG in both seasons was also 

similar (3.5 + 0.5 vs. 2.9 + 0.3 mg PdG/g feces in mating and birth season, respectively; 

Wilcoxon Rank Sum test: W = 919, p = 0.7). Mean monthly E1G was slightly higher in the 

mating season compared to the birth season (98.4 + 35.9 vs. 68.0 + 10.6 ng E1G/g feces), but 

the difference was not statistically significant (Wilcoxon Rank Sum test: W = 888, p = 0.9). 
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Figure 4.4. Box plots showing median of PdG and E1G concentrations during the birth and 

mating season (based on monthly means) in solitary and predispersed female owl monkeys’ 

fecal samples.  
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Discussion 

This study provides the first description of reproductive hormone profiles and 

reproductive capacity in wild subadult owl monkeys. Female Azara’s owl monkeys 

consistently experienced the onset of reproductive maturity prior to dispersing. Our results 

suggest that the reproductive suppression observed in female owl monkeys while in their 

natal group is not due to an inhibition of ovarian function. 

Females were, on average, 36 months old when they experienced the onset of PdG 

peaks, which is substantially older than the onset of reproductive maturity observed in 

captive Aotus females [Gozalo and Montoya, 1990]. However, this finding is consistent with 

a later onset of reproductive maturity typically observed in wild primates when compared to 

captive ones [Dunbar, 1990]. Since we did not continuously monitor all individuals from 

birth, there is a possibility that some subadults may have begun cycling prior to the age when 

we first detected hormonal peaks. The fact that one juvenile (Cebollita, Table 4.3) may have 

had cyclic increases in PdG and E1G when she was 20 months suggests that our estimate of 

36 months may be an overestimate. However, none of the other four individuals sampled as 

juveniles (<2 years of age) showed evidence of cycling, indicating that reaching sexual 

maturity prior to 2.5 years of age is likely atypical.  

The hormone cycles in subadults were generally similar to those described for wild 

adult females at our field site [Fernandez-Duque et al., 2011]. That previous study of adults 

performed hormone assays at a different laboratory and utilized slightly different protocols 

than we employed in this study. We therefore refrained from making formal statistical 

comparisons of our data to adult hormone concentrations. However, it is worth noting that 

subadults in our study had mean PdG peak concentrations similar to those found in wild 
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adults (17.3 + 6.9 vs. 18.1 + 9.1 mg PdG/g feces). The general pattern for E1G, which 

typically rose and fell in parallel with PdG in subadults, was also similar to the pattern 

observed for estrone conjugates (E1C) in adult females’ cycles [Fernandez-Duque et al., 

2011].  

The average cycle length for subadults was somewhat shorter than expected. We 

anticipated that subadults’ cycle lengths would be similar to those previously estimated for 

five wild adult A. azarae females, which had an average cycle length between 22.2 + 2.7 and 

24.0 + 1.6 days [Fernandez-Duque et al., 2011]. Average cycle length in captive owl 

monkeys of Colombian origin is somewhat shorter, at 16.09 + 0.15 days (range 13-19 days) 

when computed using consecutive troughs of urinary PdG from 11 cycles in four adults 

[Bonney et al., 1979], and 15.5 + 0.6 days when computed using consecutive peaks in 

estradiol in four adults [Bonney et al., 1980]. Cycles of subadult owl monkeys thus seem to 

be of lengths intermediate (16.5 + 3.6 -17.9 + 2.4 days) to the average cycle lengths of wild 

and captive individuals. 

Our estimates of cycle length are not as precise as those that could be computed from 

daily monitoring. Our sampling method did not necessarily allow us to detect the date of the 

absolute maximum or minimum hormone concentration reached in each ovulatory cycle. 

Since we collected feces only every 2-4 days, it is likely that for some cycles the days of the 

true maximum peak in PdG and E1G were often not sampled. This may account for the 

relatively wide range of days between consecutive cycles that we detected and for the 

somewhat shorter average cycle length compared to the previous estimates for adults at our 

study site.  
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The apparent brevity of the PdG peaks is also likely a consequence of our sampling 

paradigm, and should not be taken as evidence that subadults had an extremely short luteal 

phase. Peaks typically consisted of elevations in PdG in just one to three consecutive 

samples. It is possible that elevations in progesterone and its metabolites persist for a 

relatively short period during the ovulatory cycle of owl monkeys [Bonney et al., 1979]. 

However, we want to emphasize that while PdG peaks are sometimes represented by 

substantial elevations of PdG in just one sample, this does not necessarily imply that PdG (or 

E1G) levels are elevated for just one day. With gaps between samples averaging 3 days (with 

longer lapses on a few occasions), elevations in PdG lasting up to 6-7 days could be 

detectable in only one sample. It is possible that, if we had been able to sample individuals 

more frequently, we would have detected a more sustained elevation in luteal PdG.  

Subadults displayed peaks in PdG somewhat irregularly, indicating that their cycles 

may be less regular than those of adults. One explanation for this observation is that our 

sampling schedule resulted in an inability to detect all peaks that occurred. However, our data 

strongly suggest that at least some individuals did not consistently ovulate after their first 

detected ovulatory cycle. For example, one predispersed subadult female, Discoteca, 

demonstrated hormone peaks consistent with ovulation at the age of 953 days (47 months). 

We subsequently monitored her consistently, without a gap of more than two days between 

any two samples, and she did not show any peaks in PdG or E1G until 40 days later (Figure 

4.3). This inconsistent cycling suggests that owl monkey subadults may undergo a period of 

adolescent subfecundity, during which they may have irregular cycles and ovulate 

sporadically for several months or longer. This pattern is similar to what has been observed in 

captive adolescent titi monkeys (C. moloch), whose first cycles were typically followed by an 



186 
 

anovulatory period, ranging 2-4 months, before the next cycle was observed [Valeggia, 

1996]. Irregular cycle lengths occurred in owl monkey subadults both before and after 

dispersal, suggesting that females may not establish more regular cycles until after pairing 

with an adult male in a non-natal group. At the very least, we can conclude that the 

development of fully mature ovarian function in wild owl monkeys generally takes at least 

several months, and may continue after dispersal.  

Our results suggest that owl monkeys have a period of adolescent subfecundity, like 

that reported to occur in humans and some non-human primates, such as apes and macaques 

[Bercovitch and Ziegler, 2002; Metcalf et al., 1983; Nishida et al., 2003; Resko et al., 1982; 

Wallis, 1997; Young and Yerkes, 1943]. Hormone data from humans and captive macaques 

[Foster, 1977; Metcalf et al., 1983; Resko et al., 1982] indicate that adolescent subfecundity 

is typically characterized by a combination of anovulatory and ovulatory cycles [Vihko and 

Apter, 1984]. However, in wild primates, the presence of adolescent subfecundity is almost 

always inferred from observations of a delay between the onset of sexual behavior or sexual 

swellings and first conception, rather than from a direct examination of hormonal data 

[Knott, 2001]. The physiological basis for this delay in wild primates is often proposed to be 

hormonal, but is rarely verified. Our results support the suggestion that hormonal patterns of 

wild subadult owl monkeys may be consistent with patterns characteristic of adolescent 

subfecundity in human and captive non-human primates.  

Season did not substantially influence the mean monthly levels of PdG or E1G 

(Figure 4.4). Subadults appeared to cycle in both the mating/pregnancy and birth seasons. We 

cannot say with certainty if subadults cycle throughout the entire year, since we did not 

sample individuals from January to April. Births are very seasonal at our field site, and we 
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have observed no successful pregnancies that could have resulted from cycles occurring 

outside of the mating season [Fernandez-Duque et al., 2002]. Thus, it is unclear why females 

would cycle in other seasons. However, wild adult females experienced non-conceptive 

cycles before becoming pregnant and at least one adult cycled outside of the mating season 

[Fernandez-Duque et al., 2011]. Given that subadults seem to require at least several months 

to establish consecutive regular cycles, it is possible that sporadically cycling throughout the 

year allows subadults time to fully establish adult-like, consistent reproductive cycles by the 

time the mating season arrives. This may allow them to be physiological ready to mate and 

conceive if an opportunity to do so arises (i.e., if they have successfully dispersed and 

established themselves as part of a pair in a new group by the next mating season). The 

extension of cycling outside of the mating season in adult females is something that requires 

further investigation.  

Our findings do not support the inbreeding avoidance hypothesis [Pusey and Wolf, 

1996]. Remaining in the natal group with reproductive adults, including the presumed father, 

does not appear to suppress ovulation in subadults over the age of 2.5-3 years. Yet, while 

subadult females apparently have the capacity to reproduce, we have never observed them to 

do so before dispersing. This is true even for subadults residing in natal groups with unrelated 

step-fathers, as three of our predispersed subadults were (Table 4.1).  

Replacements of adult males did not appear to influence the timing of sexual 

maturity. If predispersing subadult females refrain from mating with the adult male in their 

natal group due to inbreeding avoidance, rather than behavioral inhibition by the adult female 

or other mechanism, we would not expect suppression of reproduction to continue once an 

unrelated male is introduced through an adult replacement. In some species, the introduction 
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of an unfamiliar adult male to the natal group may be associated with earlier onset of 

reproductive maturity [Cooney and Bennett, 2000; Hanby and Bygott, 1987; Wolff, 1992] 

and can stimulate predispersed females to breed [Saltzman et al., 2004]. However, we did not 

find any evidence to suggest that females residing in groups with step-fathers matured any 

earlier than females in groups that had not experienced an adult male replacement. To the 

contrary, the youngest predispersed subadult observed to cycle and the only juvenile that 

showed evidence of PdG peaks both resided in stable groups that had not experienced an 

adult male replacement (Discoteca and Cebollita, Table 4.1).  

The mechanisms that prevent predispersed subadult females from reproducing with 

unrelated males in their natal groups remain unclear. One caveat is that, while subadults 

appear to have ovulatory cycles like those of adult females, we cannot say with certainty that 

cycling predispersed subadults are physiologically capable of sustaining a pregnancy even if 

they were to mate with an unrelated male. However, 20 years of observations of wild owl 

monkey behavior suggest that there are likely behavioral mechanisms that prevent cycling 

subadults from reproducing. Owl monkey groups are small and highly cohesive [Fernandez-

Duque et al., 2001], which provides very few opportunities for individuals to copulate or 

reproduce without attracting the attention of other group members. Furthermore, neither 

juvenile nor female subadults typically engage in copulations with males in their natal 

groups, whether they are related or not (authors’ personal observation). While adults 

generally tolerate sexually mature subadults in the natal group, they do target agonistic 

behavior at predispersed subadults more frequently than at younger offspring or pair-mates, 

and a subadult may be violently expulsed if they attempt to copulate with a natal group 

member [Corley et al., in review; Huck and Fernandez-Duque, 2012]. Together, these 
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observations suggest that agonism may play a role in inhibiting sexually mature predispersed 

subadults’ reproduction. 

Our results raise questions as to why females would invest energy into developing 

and maintaining reproductive capacity prior to dispersal if they have no chance of 

reproducing until after they disperse and secure a mate. As has been suggested for titi 

monkeys [Valeggia, 1996], subadult wild owl monkeys may be developing a state of 

reproductive “suspended readiness”, which could enable them to conceive upon entering the 

appropriate social environment (i.e., finding an available mate in a non-natal group).  

Behavioral observations from our field site support this explanation. We have 

observed predispersed subadults temporarily separating from other members of their natal 

group to range solitarily, also known as “prospecting” [Mares et al., 2014; Reed et al., 1999], 

for several hours or even days. One function of these prospecting excursions may be for 

predispersed subadults to monitor the composition of neighboring social groups and evaluate 

potential opportunities for reproductive openings [Fernandez-Duque, 2009]. The relatively 

large amount of variation in the age at which individuals disperse and the variation in the 

amount of time that individuals may spend as solitaries after dispersing suggest that it is 

likely difficult for predispersed subadults to anticipate when mating opportunities will arise. 

Difficultly in anticipating reproductive opportunities is likely exacerbated by the fact that 

solitary floaters often need to engage in fights with adults in established social groups, the 

outcomes of which may be unpredictable, in order to gain a reproductive position 

[Fernandez-Duque and Huck, 2013]. Achieving reproductive maturity prior to dispersal may 

therefore physiologically prepare female subadults to reproduce whenever they are finally 

successful in securing a reproductive position. 
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It is also possible that establishing mature reproductive function could be a quality 

that is important in mate choice. For genetically monogamous species, like owl monkeys at 

our site, an individual may frequently only produce offspring with one mate, with whom they 

remain until their either die or are expelled by a solitary individual (after which they most 

likely will expire without gaining another opportunity to mate or reproduce) [Fernandez-

Duque and Huck, 2013]. Obtaining a high-quality mate rapidly after dispersing from their 

natal group allows individuals to minimize the costs of dispersal and likely has an immense 

impact on lifetime fitness [Bonte and Dahirel, 2016; Bonte et al., 2012]. Traits that allow 

subadults to acquire a high-quality mate and reproduce earlier will be selected for, as long as 

the benefits of early reproduction are not outweighed by costs [Altmann et al., 1988]. 

Ovulatory cycling may be a prerequisite to females gaining a reproductive position, if males 

can detect signals of ovulation and prefer to pair with already cycling females. In support of 

this view, there is emerging evidence that captive owl monkey males can detect if a female is 

sexually mature and cycling through olfactory mechanism (Spence-Aizenberg et al., in prep). 

Therefore, readying their reproductive systems (i.e., commencing ovulatory cycles) before 

dispersing may allow females to take advantage of unpredictable mating opportunities in 

their community. Mate selection, specifically the traits and signals preferred by each sex, is a 

topic on which further investigation is needed in owl monkeys and other monogamous 

species, to evaluate this hypothesis.  

In summary, female owl monkeys do not delay puberty, but rather commence ovarian 

cycling as predispersed subadults, while still residing in their natal group. Subadults appear 

to have a period during which they experience irregular, non-conceptive cycles prior to 

reproducing. Commencing these irregular cycles while still in the natal group may allow 
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subadults to develop a state of suspended readiness, which may be essential to securing a 

mate, while avoiding the costs of ranging solitary. Our results indicate that reproductive 

suppression in owl monkeys is not due to a lack of reproductive capacity, although the 

specific mechanisms that prevent females from reproducing with unrelated adult males in 

their natal group require further investigation.  
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Supplementary Tables for Chapter 4 

Table S4.1. Candidate model set for mean monthly PdG concentrations. Age = average age 

(in days) of the individual during the month she was sampled; Season = mating/pregnancy 

(May-Aug) vs. birth (Sep-Dec), Year = year in which sampling occurred (2011, 2013, 2014 

or 2015). 

Candidate model Fixed and Random effects  

Model 1 Age + (1|ID) 

Model 2 Age + Year + (1|ID) 

Model 3 Age + Season + (1|ID) 

Model 4 Age + Season + Year + (1|ID) 

 
 
Table S4.2. Comparison of the four candidate models for explaining variation in monthly 

PdG concentrations (most parsimonious best approximating models are highlighted in grey).  

 K 
AICc 

Delta 
AICc 

AIC 
weight 

Cumulative 
Weight 

Model 2 7 383.11 0 0.59 0.48 

Model 1 4 384.52 1.41 0.29 0.71 

Model 4 8 384.98 1.86 0.19 0.90 

Model 3 5 386.23 3.11 0.12 1 
K = number of parameters in the model 

AICc = Akaike information criteria corrected for small sample size.  

AICc weights, also termed model probabilities, indicate the level of support (i.e., weight of evidence) in 

favor of any given model within the candidate model set. 

 

 

Table S4.3. Number of fecal samples, mean PdG (mg/g) and E1G (ng/g) values, and number 

of solitary dispersed subadults, predispersed subadults and juvenile female owl monkeys 

from which we collected samples in Formosa, Argentina between 2011 and 2015. 

Category N samples Mean PdG + SE E1G Mean + SE N individuals 

Solitary Dispersed 
Subadult 58 3.79 + 0.98 134.42 + 51.83 4 

Predispersed 
Subadult 305 3.44 + 0.91 120.30 + 21.35 7 

 
Juvenile 268 0.74 + 0.20 24.85 + 5.41 5 

 
TOTAL 631 1.87 + 0.15 65.25 + 4.88 11* 
*Number of unique individuals. This is less than the sum of the number of individuals in each category 

because some individuals were sampled in multiple categories, as explained in Table 4.1.  
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Chapter 5. Variation in dispersal strategies and the fates of dispersing 

individuals 
 

Abstract 

Dispersal is a key life-history stage, and understanding the factors that influence individuals 

to disperse from their natal groups is essential for evaluating hypotheses for the evolution of 

dispersal patterns. However, the complete process of dispersal involves more than leaving the 

natal group. Dispersal also entails a transient phase of movement, while searching for a new 

place to live, followed by settlement in a new area. Fully understanding the evolutionary 

forces that drive dispersal strategies requires data on the ultimate outcomes of dispersal 

decisions (e.g., mortality and reproductive success of dispersing individuals). In this study, I 

review what we have learned about the fate of dispersing individuals from observing a 

community of owl monkeys for over 20 years in the Argentinean Chaco. We observed 36% 

(21/58) of identified predispersed offspring prospecting at least once. Of the 34 individuals 

that we followed after dispersal, we observed 88% of them ranging solitarily at least once. 

Only ten individuals paired with an adult in a new group, and only seven of these remained in 

their new breeding positions for more than a year. Case studies of dispersing individuals, 

based on ad libitum observations, suggest that dispersal is an extremely varied process in owl 

monkeys. Both males and females follow a variety of strategies, which may involve 

prospecting and/or forming temporary associations with individuals outside of their natal 

groups before ultimately disappearing from the study area or finding a breeding position. Our 

data highlights the degree of heterogeneity among individuals within a single community and 

emphasizes the need to consider all stages of the dispersal process.  
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Introduction 

Natal dispersal is a multi-phase life-history process that can be classified into three 

main stages. These stages are departure from the natal area, a transient phase of movement 

while searching for a new place to live, and finally settlement in a new area [Bonte et al., 

2012; Clobert et al., 2009; Ronce, 2007; Travis et al., 2012]. Each of these stages may be 

under selection to reduce the overall cost of dispersal [Bonte and Dahirel, 2016; Travis et al., 

2012]. Unfortunately, empirical studies often do not investigate all stages or distinguish 

between stages, which can confound our understanding of the influences that social or 

ecological factors have on dispersal [Cote et al., 2010]. 

Documenting the entire process of natal dispersal may be difficult for many reasons. 

The first stage, leaving the natal group, is typically a one-time event that researchers may 

easily miss, even if they are frequently monitoring a group. Even when researchers do 

witness an individual leave its natal group, they often have not been monitoring the group 

long enough to know the identity or date of birth of the dispersing individual [Jack and Isbell, 

2009]. Dispersed individuals often range solitarily during the transient phase, which may 

make them difficult to find or follow. Researchers may also feel that their efforts and 

resources are better spent on observing groups, from which data on multiple individuals can 

be collected simultaneously. As a result, animals leaving their natal groups are rarely 

followed, unless dispersal is the primary focus of the study. This means that when an 

individual disappears from their natal group it is usually difficult to determine whether that 

individual has died or truly dispersed [Waser et al., 1994]. When researchers do attempt to 

follow individuals during the transient phase of dispersal, they may be unable to follow them 

outside of the study area, which limits their ability to determine the distance travelled during 
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dispersal and the ultimate fates of dispersing individuals [Clutton-Brock and Lukas, 2012; 

Koenig et al., 1996]. Studying long-lived animals, such as primates, which are generally slow 

to develop and mature, only increases the challenges associated with observing the entire 

dispersal process [Jack and Isbell, 2009]. 

Developing a better understanding of how long individuals spend ranging solitarily 

and what challenges they face while doing so is essential for understanding the costs of 

dispersal. Of the three stages of dispersal, the solitary transient phase is typically the least 

well-studied and least understood in most taxa [Grabowska-Zhang et al., 2016; Ronce, 2007]. 

Being a solitary transient individual, or “floater”, presents individuals with many ecological 

and social challenges, which can have important consequences for their survival and fitness 

[Bélichon et al., 1996; Bonte et al., 2012; Ridley et al., 2008; Yoder et al., 2004]. For 

example, solitary dispersing male baboons (Papio cynocephalus) have mortality rates at least 

twice as high as group-living males [Alberts and Altmann, 1995]. In additional to mortality 

costs, floaters may have decreased foraging efficiency and experience a deterioration in body 

condition which may impede their ability to find a breeding position [Ridley et al., 2008]. A 

better understanding of the costs of the solitary life-history stage requires more data on the 

behavior of solitary floaters and their attempts to immigrate into established groups. 

One way that individuals may reduce the costs of ranging solitarily is through 

“prospecting”. Prospecting is when an individual separates from its natal group and explores 

extra-territorial areas prior to permanently dispersing. This behavior appears to be common 

in a variety of birds and mammals, and may provide predispersed individuals with 

information that helps them time their dispersal to coincide with conditions favorable for 

ranging solitarily or finding a breeding position [Kingma et al., 2016; Mares, 2012; Raihani 
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et al., 2010; Reed et al., 1999; Ridley et al., 2008; Solomon, 2003]. For example, prospecting 

may allow individuals to gather information about the availability of potential mates or assess 

the quality of nearby territories [Dittmann et al., 2005; Selonen and Hanski, 2010]. In some 

taxa, it can also provide males with opportunities to engage in extra-group breeding prior to 

dispersing [Eikenaar et al., 2008; Griffin et al., 2003; Young et al., 2007]. Collecting data on 

prospecting or tracking prospecting movements can thus provide insight into dispersal 

decisions [Ponchon et al., 2013]. 

Taxa may often display intraspecific variation in both dispersal and pre-dispersal 

behaviors, like prospecting. For example, the frequency of prospecting may vary from year to 

year or from site to site, as environmental variables change [Quinn et al., 2011]. It may also 

vary from one individual to another, based on underlying differences in personality and the 

willingness to engage in exploratory behavior [Cote et al., 2010]. Understanding intraspecific 

variation is important not only for developing and evaluating theoretical frameworks, but also 

for assessing population viabilities and informing conservation management programs 

[Strier, 2017]. A better understanding of dispersal and its consequences therefore requires 

assessing variation during each of the three stages of dispersal.  

In Azara’s owl monkeys (Aotus azarae) in the Argentinean Gran Chaco, all offspring 

leave their natal groups prior to reproducing. Both males and females disperse between the 

ages of 2 and 5, and typically spend some time ranging solitarily before becoming a breeding 

adult in a non-natal group [Chapter 2; Fernandez-Duque, 2009]. Predispersed owl monkeys 

sometimes engage in prospecting [Fernandez-Duque, 2009]. While engaging in prospecting 

events and while ranging solitarily after dispersal, individuals will sometimes make 

vocalizations, known as hoots (Moynihan 1964; personal observations). Hoots are low-
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frequency calls that convey information over long distances [Wright, 1989]. There is sexual 

dimorphism in the hoot-call vocalizations given by males and females (males produce deeper 

dog-like bark/”gruff” hoots, while females produce higher-pitched “tonal” hoots), which 

suggests that hoot calls may play an important role in mate attraction [Depeine et al., 2008]. 

Almost everything we know about owl monkey dispersal comes from studies of Azara’s owl 

monkeys in the Gran Chaco of Argentina conducted by the Owl Monkey Project. While we 

have previous reported anecdotal observations of prospecting in owl monkeys [Fernandez-

Duque, 2009], we have not quantified the prevalence of prospecting nor have we 

systematically reported the behaviors and other social interactions displayed by prospecting 

individuals. Similarly, while we have investigated various social and ecological factors 

associated with the timing of natal dispersal [Chapter 2; Fernandez-Duque, 2009], we have 

not previously provided detailed data on the entire dispersal process for individual owl 

monkeys. 

This chapter provides an individual-based perspective on dispersal, by describing the 

entire dispersal process for a subset of identified owl monkeys. I have examined the social, 

hormonal, and ecological variables associated with dispersal in the other chapters of this 

dissertation. Here, I review what we have learned about all three stages of dispersal and the 

fates of dispersing individuals from observing a community of owl monkeys over 20 years in 

the Argentinean Chaco. I first present the frequencies at which we have observed prospecting 

and dispersal events, and provide details about the individuals that we have been able to 

follow after they dispersed from their natal groups. I then summarize the data that we have 

collected by following individuals during the solitary transient stage, and report the 

frequency at which we observed various fates (dying, disappearing, or becoming part of a 
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breeding pair). I then present a series of seven detailed case studies based on ad libitum 

observations, which describe the entire process of dispersal for individuals. Finally, I 

synthesize these data to identify common tendencies in dispersal in owl monkeys and discuss 

the variability of individual dispersal strategies. I also assess the limitations of our methods 

and suggest directions that future research should explore to enhance our understanding of 

owl monkey dispersal.  

 

Methods 

The Owl Monkey Project (OMP) has been collecting data from a population of 

Azara’s owl monkeys (Aotus azarae) at the Reserva Mirikiná, in the Argentinean Gran 

Chaco, since 1997. This site is located on Guaycolec Ranch, 25 km from the city of Formosa, 

and consists of 1500 ha of gallery forest along the Riacho Pilagá (58°11 W, 25°58 S). We 

closely monitor groups within a core area of this site (central groups) by contacting them at 

least once every week or second week and recording all changes in group composition (e.g., 

births, deaths, dispersals, adult replacements). The exact number of central groups that we 

monitor closely varies from year to year, but typically includes at least 10 groups. An 

additional 10-15 peripheral groups are contacted monthly to semi-annually (see Table III in 

[Fernandez-Duque, 2016] for a full report of our monitoring effort). Every time a group is 

contacted, observers record the presence of identified individuals and note any changes to 

group composition. Observers also collect ad libitum records on extreme aggression among 

group members, intergroup encounters, and interactions between social groups and solitary 

individuals. We enter all data into the Owl Monkey Project database, a Microsoft Access file.  
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Since 2000, the OMP has been capturing animals and fitting them with radio or bead 

collars to facilitate locating and identifying individuals [Fernandez-Duque and Rotundo, 

2003; Juárez et al., 2011]. When capturing, we never target infants (< 6 months) or small 

juveniles, so the only animals routinely captured are adults and adult-sized (or nearly adult-

sized) subadults (> 24 months) and older juveniles (>18-24 months). The priority during 

most years of the study has been to target resident adults, who will not disperse, so that we 

can employ radiotelemetry to consistently locate and monitor the demographic changes 

within social groups. As a result of these practices, most offspring disappear or disperse from 

their natal groups without being captured, and we have only been able to follow a relatively 

small subset of offspring after they dispersed (25% of the 84 offspring that survived infancy 

in central groups from 1997-2014 [Fernandez-Duque, 2016]).  

We report data here only on identified (i.e., captured) offspring who were wearing 

functioning radio-collars at the time they dispersed from a central or peripheral group (N = 

34, Table 5.1). We were unable to follow the post-dispersal movements of any uncollared 

individuals. For each of these collared individuals, the sex, date of birth, and date of dispersal 

(with an accuracy of + 40 days) were known, unless otherwise specified in Table 5.1. This 

allowed us to estimate the age at dispersal for each individual. We also recorded the 

composition of the natal group at the time of dispersal (e.g., number of other individuals of 

each age and sex category present) and noted if either of the resident adults in the natal group 

had been replaced at any point between the disperser’s birth and date of dispersal. We then 

calculated summary statistics (e.g., average age at dispersal, percent of individuals dispersing 

from natal groups with a step-parent present, etc.) over all subjects. We report the mean + 

one standard error unless otherwise indicated.  
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We also quantified the number of times that we observed individuals “prospecting” 

prior to permanently dispersing. We quantified prospecting events for each of the 58 

individuals that were captured and radio-collared while still in their natal group: the 34 

individuals that we followed after dispersal and 23 additional individuals that we captured, 

but were unable to follow after they dispersed (e.g., individuals that died or disappeared from 

the natal group). We calculated the proportion of individuals of each sex that prospected and 

the mean number of prospecting events per individual (Figure 5.1). In our analysis of 

prospecting events, we included all instances when we observed a predispersed individual 

ranging solitarily, apart from all other members of their natal group. We also included all 

instances in which observers confirmed that the predispersed individual was absent from its 

natal group (Table 5.2). We considered an individual to be missing from its natal group only 

in cases in which an observer stayed with the group for at least half an hour and noted in the 

database’s comments or demography section that they could clearly see and identify all other 

members of the natal group. This means that we excluded all instances in which the observer 

noted that an individual appeared to be missing, but could not say with certainty which 

individuals in the group were present. Also excluded are all instances in which a group was 

observed for only a brief amount of time (< 30 minutes), because it is possible that during a 

brief observation period the observer may have overlooked a predispersed individual that 

may have been temporarily out of sight, but nearby. Thus, the absences from the natal group 

that we report are likely to represent true instances in which predispersed individuals were 

missing because they were ranging solitarily (i.e., prospecting). When we refer to 

“prospecting events”, we are referring to the number of observed solitary and missing events 

combined, unless otherwise specified.  
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For those individuals that we observed ranging solitarily after dispersing, we 

recorded the number of times that we observed the individual as a solitary and calculated the 

length of time that they spent as a solitary. We categorized each dispersing individual as 

having one of three ultimate dispersal outcomes: “paired”, “died” or “unknown” (Table 5.1). 

In many cases, we lost contact with an individual suddenly, because its radio-collar fell off or 

we could no longer detect a signal from the collar anywhere in or around our study area. If 

our last observation of an individual was as a solitary, we considered the outcome of that 

individual’s dispersal to be “unknown”, because we had no way of knowing whether the 

individual eventually died or joined a group after we lost track of it. For those individuals 

that became part of a pair in a non-natal group, we calculated the length of time that they 

spent in the new group (Table 5.1). When an individual was still solitary or still paired in its 

new group at the time when we last observed it, we report the length of time as being > the 

number of months we observed it in this state. We then calculated the average length of time 

individuals of each sex spent as solitaries and in a pair in a non-natal group (Figures 5.2 and 

5.3).  

To develop a more detailed understanding of the entire natal dispersal process, we 

utilized notes collected ad libitum to compile descriptive “case studies” for dispersed 

individuals. In each case study of a dispersing individual we include a description of 1) all 

instances of “prospecting” and all interactions with individuals outside of the natal group 

prior to permanently dispersing, 2) all instances of social interactions with adults that 

involved extreme aggression or copulations that occurred within the six months immediately 

preceding the dispersal, and 3) all changes in group composition (e.g., adult replacements, 

births, other dispersals) that occurred within the six months immediately preceding the 
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dispersal. We then describe any interactions with social groups or other solitaries that the 

individual had once they were a solitary, and describe the circumstances in which they joined 

a new group. While we provide information on the fates all 34 individuals followed after 

dispersal (Table 5.1), we do not report detailed descriptions of the full dispersal process for 

each of these individuals. Instead, the seven case studies that we present represent a subset of 

these individuals, which we selected because they covered a range of dispersal experiences. 

The individuals described in case studies are thus representative of the diversity in 

experiences that individuals faced before, during, and after dispersing.  

The ethics committees (IACUC) of the Zoological Society of San Diego (2000-

2005), the University of Pennsylvania (2006-2014), Yale University (2014-2015), and the 

National Wildlife Directorate in Argentina approved all capturing and data collection 

protocols. All research adhered to the American Society of Primatologists’ Principles for the 

Ethical Treatment of Non-Human Primates and the Argentine Society for Mammalian 

Studies guidelines [Giannoni et al., 2003]. 

 

Results 

Age at dispersal and characteristics of the natal group 

We observed 34 identified individuals after they dispersed from their natal groups (17 

males, 17 females). The mean age at dispersal for these 34 individuals was 41.3 + 1.5 months 

(40.8 + 2.2 for males, 41.8 + 2.1 for females). Unsurprisingly, all individuals dispersed from 

groups that contained one adult male and one adult female. Individuals’ natal groups 

contained a mean of 3.4 + 0.1 other individuals at the time that they dispersed. Natal group 



212 
 

size was similar for dispersers that joined a non-natal group and dispersers that did not (mean 

= 3.1 + 0.9 and 3.4 + 0.6 individuals, respectively; median for both groups = 3 individuals).  

Most individuals dispersed from a group in which at least one other offspring was 

present: 35% contained two or more younger offspring, while only two contained no other 

offspring. Half (50%) of individuals left natal groups in which one or both adults were a step-

parent (i.e., had been replaced during the disperser’s lifetime). Dispersers that joined a non-

natal group (paired) were approximately equally likely to have experienced an adult 

replacement prior to dispersing (50%, 5/10 individuals, experienced a replacement) when 

compared to dispersers whose fates were unknown (54%, 13/24 individuals, experienced a 

replacement). Details of natal group compositions at the time of dispersal are reported in 

Table 5.1. Additional data on characteristics of the natal group from which offspring 

disappeared or dispersed are reported in chapter 2 of this dissertation (Figure 2.1).  

 

Table 5.1. Sex, age and natal group composition at time of dispersal, time spent as solitary 

and/or in a new group after dispersal, the ultimate outcome of dispersal, and the dates of 

observation for 34 owl monkeys that we followed after they dispersed.  
Group Disperser S

e
x 

Dis. 
Age 

Natal group 
composition 

Time as 
solitary 
(mo.) 

N as 
solit. 

Observation 
period after 
dispersing 

Out-
come 

Time in 
new 
group 

A900 Apolo M 40 AM, AF, SM, 
IU 

> 7 6 23-Apr-04 – 
11-Nov-04 

Unk NA 

B68 Mony F 43 AM, AF < 1 
week 

0 31-Jul-02 – 
9-Jun-11 

Paired 
(CC) 

107 

C0 Celeste F 45 AM, AF*, JU > 13 31 19-Sep-12 – 
16-Oct-13 

Unk NA 

Camp Camilo M 48 AM, AF, IU > 4 10 12-Oct-03 – 
13-Apr-04 

Unk NA 

CC Cansada F 43 AM, AF*?, JF > 3 27 29-Jun-11 – 
23-Sep-11 

Unk NA 

CC Cata F 46 AM*, AF, JF, 
JU  

> 10 4 6-Aug-08 – 
24-Jun-09 

Unk NA 

CC Conchita F 35 AM, AF*, 
JM, JF 

> 11 45 1-Oct-02 –  
26-Sep-03 

Unk NA 

Colman Andre M 36 AM, AF, SU, 
JF, IU 

> 4 7 21-Nov-11 – 
30-Mar-12 

Unk NA 
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Colman Anibal M 36 AM, AF, SF 3 17 3-Nov-03 –
10-Feb-04 

Paired 
(P300) 

74 

Colman Anita F 36 AM, AF, JM, 
JU 

> 1 2 8-Oct-08 – 
7-Nov-08 

Unk NA 

Corredor Betty F 47 AM, AF, JF  < 2 32 24-Oct-14 – 
30-Dec-14 

Paired 
?1 

5 

D1200 Dante M 48 AM, AF*, JU > 1 3 28-Oct-04 – 
1-Nov-04 

Unk NA 

D1200 Dardo M 43 AM, AF, SM, 
JM, JU 

5 29 16-Jul-02 – 
7-Nov-16 

Paired 
(F1200) 

> 1712 

D1200 Dartagnan M 41 AM, AF*, SM > 1 7 1-Apr-03 – 
29-May-03 

Unk NA 

D500 Dionisio M 35 AM*, AF, IU < 1 
 

0 19-Nov-05 – 
23-Dec-16 

Paired 
(D800) 

> 1352 

D500 Diosa F 35 AM*, AF, JM < 1 
week 

0 6-Sep-04 – 
24-Jun-05 

Paired3 
(D800) 

< 10 

D500 Discoteca F 36 AM, AF*, IU > 9 59 3-Nov-14 – 
13-Aug-15 

Unk NA 

D500 Diuresis F 58 AM*, AF, SF, 
JM 

< 15 0 18-Aug-04 – 
23-Mar-15 

Paired 
(G1300) 

> 1132 

D500 Dixi M 39 AM, AF*, SF, 
IU 

> 14 58 7-Jan-14 – 
20-May-15 

Unk NA 

D800 Donovan M 47 AM, AF*, JU < 3 3 29-Sep-15 – 
23-Dec-16 

Paired 
(D500) 

> 122 

E350 Eusebia F 36 AM, AF, SF, 
IU 

> 9 2 10-Nov-15 – 
10-Aug-16 

Unk NA 

E350 Evaristo M 46 AM, AF, JF > 9 28 11-Nov-07 – 
21-Aug-08 

Unk NA 

E500 Elino3 M 60 AM*, AF*  13 55 11-Oct-02 – 
20-Apr-04 

Paired4 
(D500) 

5 

E500 Emma F 37 AM, AF, SM, 
IU 

> 7 25 21-Jan-08 – 
13-Aug-08 

Unk NA 

E500 Enrique M 51 AM, AF, JU < 9 (3 + 
< 6)5 

19 25-Mar-10 – 
21-Jun-10 & 
10-Sep-10 – 
8-Mar-11 

Died NA 

F1200 Fulera F 33 AM, AF, JF > 1 2 8-Oct-09 – 
13-Oct-09 

Unk NA 

F1200 Fugado M 31 AM, AF, 2 JF > 2 5 18-Nov-08 – 
16-Jan-09 

Unk NA 

F700 Felicia F 35 AM*, AF, SM > 1 7 8-Nov-13 – 
27-Nov-13 

Unk NA 

F700 Felix  M 26 AM, AF, IU < 10 2 25-Dec-02 – 
23-Nov-11 

Paired 
(L100) 

98 

Fauna Fidel M 24 AM, AF, JF > 2 3 19-Oct-03 – 
11-Dec-03 

Unk NA 

G1300 Gargara F 48 AM*, AF*, 
IU 

> 4 7 27-Oct-05 – 
14-Mar-06 

Unk NA 

IJ500 Idiota M 42 AM*, AF*, 
IU  

> 1 1 18-Apr-056 – 
08-Sep-05 

Unk NA 
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P300 Petisa F 36 AM*, AF*, 
IU 

> 1 2 29-Oct-13 – 
7-Nov-13 

Unk NA 

Veronica Vilma F 62 AM, AF, JU, 
IU 

> 6 4 10-Dec-057 – 
10-Aug-06 

Unk NA 

Age categories are abbreviated as A = Adult, S = subadult, J = juvenile, I = infant. Sexes are abbreviated as 

M = male, F = female, and U = sex unknown.  

“Dis. Age” is the age (in months) of the individual at the time of natal dispersal. 

“Natal group composition” is a list of the individuals present in the disperser’s natal group at the time of 

dispersal (not including the disperser). * indicates that the adult present at the time of dispersal had 

replaced the presumed genetic parent of the dispersing individual. 

“Time as solitary” is the length of time the disperser spent as a solitary prior to dying, disappearing, or 

pairing/joining a group (in months, unless otherwise indicated). 

“Observation period” is the range of dates for which an individual was observed after dispersing from their 

natal group. 

“Outcome” after dispersing is whether the individual was confirmed to have died, become a resident adult 

in a group (“Paired”), or was still solitary when last sighted (“Unk.”). If paired, the group in which it took 

up residence as an adult is reported in parentheses. 

“Time in new group” is the number of months the dispersing individual was observed to reside a non-natal 

group as a paired adult.  
1See Case study 2 for description of Betty’s fate. 
2Still paired in group at time of last sighting before the study ended (31 December, 2016) 
3Elino was already present when we first started observing the group E500 and he was not captured until he 

was an adult-sized individual. Observers assigned him an estimated date of birth as October 1997, but we 

cannot be 100% certain if this was his natal group or whether he was the adult male who later underwent 

secondary dispersal. 
4Paired after dispersing, but expelled from new group before reproducing.  
5See Case study 7 for a description of Enrique’s two dispersals and times as a solitary. 
6Idiota’s natal group was not well-monitored at the time he dispersed. The estimated date of dispersal is the 

average between the day last seen in natal group and the day first seen as solitary (uncertainty of + 125 

days). 
7The individual was seen solitarily or with an unknown adult several times prior to this date of permanent 

dispersal (see Case study 7 for details).  

 

 

Prospecting behavior of predispersed individuals  

We observed evidence of prospecting for approximately 36% of predispersed 

individuals. Of the 58 individuals that were radio-collared while still in their natal groups, we 

observed 16 predispersed individuals ranging solitary at least once and 11 missing from their 

natal groups at least once. We observed six predispersed individuals both ranging solitarily 

and missing from their natal groups on different occasions, meaning that 21 unique 

individuals (36%) prospected or were presumed to prospect (Table 5.2).  
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Table 5.2. Number of observations, age, and time before dispersal/disappearance (in months) 

for all 21 individuals that exhibited prospecting behavior.  

Name Group Sex 

# of 
times 

S 

# of 
times 

M 

# of 
times 

P 

Age 
at 

first 
S 

Age 
at 

first 
M 

Age 
at 

first 
P 

Months 
before 

dispersal 
first S 

Months 
before 

dispersal 
first M 

Months 
before 

dispersal 
first P 

Apolo/ A900 M 1 0 1 36.8 na 36.8 4.3 na 4.3 

Celedonio/ C0 M 0 1 1 na 30.3 30.3 na 0.9 0.9 

Camilo/ Camp M 1 0 1 28.1 na 28.1 20.6 na 20.6 

Cata/ CC F 0 1 1 na 36.8 36.8 na 9.0 9.0 

Constanza/ CC F 1 1 2 20.5 20.5 20.5 0.0 <0.1 <0.1 

Cordelia/ CC F 8 1 9 41.7 42.3 41.7 na na na 

Andre/ Colman M 1 0 1 33.7 na 33.7 2.1 na 2.1 

Angelita/ Colman F 2 0 2 24.7 na 24.7 na na na 

Anita/ Colman F 0 2 2 na 23.2 23.2 na 13.3 13.3 

Betty/ Corredor F 5 1 6 45.2 44.7 44.7 2.6 3.1 3.1 

Duana/ D100 F 5 3 8 39.5 43.6 39.5 21.1 17.1 21.1 

Dante/ D1200 M 1 0 1 36.2 na 36.2 12.5 na 12.5 

Diuresis/ D500 F 5 2 7 46.3 46.3 46.3 12.6 12.6 12.6 

Emilia/ E350 F 1 0 1 28.1 na 28.1 na na na 

Eusebia E350 F 0 1 1 na 25.1 25.1 na 10.3 10.3 

Evaristo/ E350 M 0 1 1 na 26.8 26.8 na 20.2 20.2 

Enrique/ E500 M 1 0 1 36.2 na 36.2 20.5 na 20.5 

Fugado/ F1200 M 1 0 1 30.0 na 30.0 1.0 na 1.0 

Fuxia/ F1200 F 1 0 1 37.1 na 37.1 1.2 na 1.2 

Gargara/ G1300 F 4 0 4 27.1 na 27.1 22.1 na 22.1 

Vilma/ Veronica F 9 1 10 26.5 27.8 26.5 36.1 34.8 36.1 

“S” = solitary ranging, “M” = missing from the natal group, and “P” = presumed prospecting (sum of the 

times observed either ranging solitarily or missing from the natal group) 

“# of times” refers to the number of observations in each of the three categories (S, M, and P). 

“Age at first” refers to the age (in months) at which the individual was first observed to engage in 

prospecting behavior. 

Italics indicate that the individual died while still in the natal group, and thus no estimate for “months 

before dispersal” could be determined.  

 

Of these 21 individuals, 13 were females and eight were males, and we observed more 

females (N=9) than males (N=2) missing from their natal groups (Figure 5.1a). When we 

combined observations of solitary ranging and absences from natal groups, a somewhat 
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larger proportion of females (43%, 13/30) prospected than males (29%, 8/28), but this 

difference was not statistically significant (2-sample test for equality of proportions: X2 = 0.8, 

df = 1, p = 0.4; Figure 5.1a). When we limited analysis to the 34 predispersed individuals that 

were confirmed to have eventually dispersed, 41% (14 unique individuals) prospected on at 

least one occasion: ten were observed ranging solitarily, seven were observed to be missing 

from their group, and three were observed both solitarily and missing. We observed more 

males than females ranging solitarily (6 vs. 4) and more females than males missing from 

their natal groups (6 vs. 1), but overall the same number of females (7/17) and males (7/17) 

prospected (Figure 5.1b).  

The frequency and timing of prospecting behaviors were very variable. Individuals 

who prospected did so an average of three times (range 1-10), but most individuals were 

observed prospecting just once (median = 1). We first observed individuals prospecting at a 

mean age of 32.3 + 1.6 months (range 20.5-46.3 months). Prospecting events occurred a 

median of 11 months prior to the date on which an individual permanently dispersed or 

disappeared from the natal group (range 1 day to 36 months). The median time before 

dispersal that we first observed individuals prospecting was similar whether evidence of 

solitary ranging or absences from the natal group were considered (median = 8 vs. 10 months 

prior to dispersing, respectively).  
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Figure 5.1. Proportion of males (dark bars) and females (light bars) observed prospecting, for 

a) 58 individuals captured and identified while in their natal groups (28 males, 30 females), 

and b) a subset of 34 of these 58 individuals with confirmed dispersals (17 males, 17 

females). “Proportion solitary” refers to those observed ranging solitary, “proportion 

missing” refers to those observed to be missing from their natal group, and “proportion 

prospecting” refers to those who were observed either ranging solitarily or missing from their 

natal group, at least once prior to permanently dispersing.  
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Solitary ranging and fates of individuals after dispersal  

After dispersal, all but four subjects were observed as solitaries on at least one 

occasion (30/34 individuals, 88%). The remaining four were observed already paired in a 

new group by the first time that we observed them after their dispersal (1 male, 3 females). 

For those individuals that spent time as solitaries, we observed each a mean of 17 + 3 times, 

and the mean length of time observed as a solitary was 5.4 + 0.8 months (5.2 + 1.1 for males, 

for 5.5 + 1.2 females, Figure 5.2). However, there was substantial variation in the number of 

months that we observed individuals as solitaries (from < 1 month to more than 14 months; 

Table 5.1). 

 
Figure 5.2. Mean number of months that we observed males and females ranging solitary 

after they permanently dispersed. Error bars show standard errors. 

 

Ten of the 34 individuals paired with another adult after permanently dispersing (6 

males, 4 females). Of these ten, nine paired with an adult in a group that our project was 

already monitoring. Five of these nine joined a group that was immediately adjacent to their 
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natal territory. We observed the tenth individual, Betty, with an unknown individual in the 

periphery of our study area. Since we were not monitoring this area before we followed Betty 

to it, we cannot say whether this individual was a resident adult with a territory or another 

solitary with which Betty was temporarily associating. We therefore report results for paired 

individuals both including and excluding Betty’s case (Figure 5.3). 

 

 
Figure 5.3. Number of months that we observed males and females paired with a resident 

adult in a non-natal group after dispersing, for: top = ten individuals (6 males, 4 females), and 

bottom = nine individuals, excluding Betty (6 males, 3 females). The “X” indicates the mean 

and the vertical line indicates the median.  
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We observed the ten individuals that paired in their new groups for a mean of 73 + 19 

months (males = 83 + 27, females = 59 + 30 months; Figure 5.3). When we exclude Betty, 

the length of time that we observed females paired in their new group (77 + 33 months) was 

more similar to the length of time that we observed males (Figure 5.3). Seven of the nine 

individuals that joined a monitored group remained in their new group for at least 1 year, 

with one remaining as the resident adult for over 14 years (Dardo, Table 5.1). The remaining 

two subjects (1 male and 1 female) underwent a secondary dispersal from the group that they 

had joined after their natal dispersal. These two individuals maintained residence in their new 

group for only 5-10 months and did not reproduce. Both of these individuals were observed 

as solitaries after leaving or being expelled from their non-natal group and one (Elino) was 

eventually found dead. On several occasions, we have observed a resident adult that departed 

a monitored group find a second breeding position in a new group [Fernandez-Duque and 

Huck, 2013], but this was not the case for either of the two individuals that underwent 

secondary dispersal in this study.   

 

Case studies 

Case 1. Ranging solitarily shortly after experiencing an adult replacement 

Cansada (female, dispersed at age 43 months, from group “CC”, in June 2011) 

We never witnessed Cansada prospecting or missing from her natal group, CC, prior 

to dispersal. Three days before Cansada dispersed, the adult female (Cansada’s genetic 

mother), disappeared from CC. For two days after this, the group consisted of just Cansada, 

her presumed genetic father, and her 18-month-old female sibling (Cordelia). On the third 

day after her mother’s disappearance, a new adult (presumably a female) joined CC. Later 
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that same day, Cansada dispersed and was never seen with her natal group again. Observers 

were not with CC after 10:00 am the day of her dispersal, so we do not know the exact 

circumstances of Cansada’s departure from her group (e.g., whether or not the new adult or 

her father aggressively expelled her). She did not have any visible injuries when she was 

sighted alone at 17:00 later that day, but the following day we observed both adults in CC 

acting aggressively towards Cordelia, the juvenile female that remained in the group. 

Cansada spent the next three months ranging solitarily as a floater within the study area. We 

did not observe her interacting with any groups or other solitaries during this time. After 

three months, observers were no longer able to detect her radio-collar’s signal and did not see 

her again. Her ultimate fate is unknown.  

 

Case 2. Prospecting, ranging solitarily, and affiliatively associating with other individuals 

Betty (female, dispersed at age 47 months, from group “Corredor”, in October 2014) 

We first observed Betty missing from her natal group, Corredor, in July of 2014, 3.1 

months before she dispersed. After this, she made at least five solitary expeditions away from 

her natal group during the three months immediately preceding her dispersal (Table 2). On 

two of these occasions, observers found Betty alone at dusk near the edge of her natal 

group’s home range making vocalizations (tonal hoots). On another occasion, two months 

before she dispersed, we observed her moving in the direction of gruff hoots, but she did not 

leave her natal territory and rejoined the other members of her natal group after a few 

minutes. Sixteen days before her dispersal, we found her alone over 1 km away from her 

natal group in the morning, but she returned to Corredor’s home range by that evening. The 

following morning we found her again in her natal group’s home range, resting in contact 



222 
 

with the 12-month-old juvenile female from Corredor, but neither the adult male nor female 

were observed nearby. Betty and the juvenile female remained alone together, resting and 

foraging within Corredor’s home range, for five hours before the adult pair from Corredor 

joined them. Two days later, we observed Betty ranging alone within her natal home range 

for > 5 hours. She remained with all three members of her natal group during all sightings for 

the next 12 days, and then permanently dispersed on October 22, 2014. We did not witness 

her leave her natal group, so we do not know if she left voluntarily or was aggressively 

expelled. There were no demographic changes in the six months leading up to her dispersal.  

We found Betty ranging solitarily in the periphery of our core study area four times in 

the first week after she dispersed. After this, we observed her interacting with other 

individuals on at least six occasions. First, eight days after her dispersal, we observed her 

within the home range of group P300, resting in contact with an unknown individual that was 

carrying a small infant. Three days after this we found her resting in contact with a different 

individual, an unidentified adult with a torn left ear, across the river from group P300’s home 

range. The very next day, we once again found Betty within P300’s home range and observed 

her playing, sniffing, and resting with a juvenile-sized individual (believed to be the 1-year 

old juvenile from group P300) for about six minutes. She fled when two adult-sized 

individuals (presumed to be the adults from P300) entered the area. The next day we found 

her again with an unidentified adult with a torn left ear, which we believe was the same adult 

with whom she was observed two days prior. During the next week, we observed Betty 

ranging solitarily twice, and then observed her vocalizing (making tonal hoots) in the 

presence of an unidentified individual that observers could not see clearly. We then observed 

her ranging solitarily on six occasions over the next two weeks, before finding her once again 
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with an unidentified adult across the river from our study area, near P300’s home range. We 

detected her signal in this same area six times over the next six months (until 9 June, 2015), 

which suggests that she may have established herself as a resident female in a group in this 

area. However, we were not able to get close enough to see her or any other individual(s) that 

she may have been with during this time due to flooding in the area. We tentatively classify 

her as paired, but we do not know how long she remained with the adult with whom we last 

observed her. 

 

Case 3. Temporarily associating with solitary and other group members after dispersing 

Evaristo (male, dispersed at 46 months, from group “E350”, in October 2007) 

Evaristo dispersed from his natal group, E350, sometime between 13 October and 11 

November, 2007. Prior to this, we never observed him prospecting or missing from E350. We 

did not witness his departure from the natal group, so we do not know if he departed 

voluntarily or was aggressively expelled. There were no demographic changes in the group in 

the six months leading up to his dispersal.  

We observed Evaristo ranging solitarily nine times over the next five months. Then 

on 6 April, 2008, we observed him with an unidentified individual, presumably another 

solitary. They rested and foraged together all morning, but separated by that afternoon. The 

entire time that they were together, they remained within the home range of E500, a group 

that neighbors Evaristo’s natal group (E350). We observed Evaristo ranging solitarily in the 

study area ten more times before 26 July, when we observed him running away from group 

CC, after he had been resting in their home range. He continued ranging solitarily until 5 

August, when we found him with an unknown female, again presumed to be a solitary. We 
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do not know if this was the same solitary with whom we observed him previously, but we 

found him resting with her within the home range of E500, not far from where we had 

observed him interacting with the solitary four months prior. On this occasion, we observed 

him mounting the solitary female and inspecting her genital area. About 30 minutes later, she 

acted aggressively towards him and then moved away to feed in another tree. However, he 

followed her, and we observed them resting in contact and tail twining with her for several 

more hours after this. In total, we observed them together for over six hours on this day.  

When the solitary female left Evaristo, she twice made tonal hoot vocalizations as she 

moved away. Three and a half hours after she separated from Evaristo, around dusk, we 

heard tonal hoots coming from the direction in which the female solitary was last seen 

travelling. Evaristo moved towards the directions of the hoots, but stopped to forage after a 

few minutes, and we did not observe him approaching any closer to the source of the hooting 

after this. Evaristo was observed alone twice during the next two days, but on the third day 

after this, he was observed once again resting in contact with an unknown individual within 

D500’s home range (a group that neighbors both E500’s and his natal group’s home range). 

After about an hour, group D500 approached and chased the unknown individual away. 

Evaristo remained in D500’s home range and we briefly observed him resting within 5 m of 

group D500 as they rested in contact with one another. After several minutes, members of 

D500 chased Evaristo out of the tree in which they had been resting, but he remained in the 

area and rested on a branch only a few trees away from D500 for the next four hours, before 

departing from their home range. We saw Evaristo twice more as a solitary, but he did not 

interact with any other groups or solitaries on these occasions. His ultimate fate is unknown.  
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Case 4. A case of (almost) inheriting the natal territory 

Cordelia (female, died at 49 months, before dispersing from group “CC”, in December 

2013) 

Cordelia’s case is difficult to classify. Although she never permanently dispersed 

from her natal group’s home range, she was residing alone with an unrelated adult male at the 

time of her death. She also engaged in many pre-dispersal behaviors that we believe are 

worth describing here.  

We first observed Cordelia prospecting seven months before her death. We observed 

her missing from CC once, on 24 June, 2013, and as a solitary seven times between 4 June 

and 8 August, 2013. On both 3 July and 14 July, we observed an adult in CC chasing 

Cordelia, but outside of these two events she continued to act affiliatively with all members 

of her natal group (engaging in grooming and huddling on many occasions). 

Up until 25 July, group CC consisted of Cordelia, an adult male (her presumed 

genetic father), an adult female (her step-mother), and an 8-month-old juvenile male. On 26 

July, we observed that Cordelia’s father was missing from the group, and for almost two 

weeks the only individuals observed in CC were Cordelia, the adult female, and the juvenile 

male. On 8 August, we followed Cordelia at dusk as she rapidly moved more than 0.5 km 

away from her natal group, while making tonal hoot vocalizations. On this occasion, Cordelia 

was moving in the direction of gruff hoots being made by an unseen male when it became too 

dark for the observer to follow her. The next morning, we observed both Cordelia and a new 

adult male back in CC's home range, socializing with the adult female and male juvenile. On 

this morning (9 August), we observed the new male mounting/attempting to copulate with 

Cordelia six times within one hour. In the afternoon, we observed him mounting Cordelia 
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once again and the adult female in CC once. He also inspected the genital regions of both 

Cordelia and the adult female several times. Twice during the following week, we observed 

the new adult male and the adult female chasing and fighting with one another. We did not 

observe either Cordelia or the juvenile male participating in these aggressive interactions.  

 We observed all four individuals in CC (Cordelia, the new male, the adult female, 

and the juvenile) together until 10 December, 2013. On this day, we observed the adult male 

chasing another adult-sized individual, but observers could not determine whether it was 

Cordelia or the adult female. On 11 December, Cordelia and the adult male were found 

together within CC’s home range, without the adult female or the juvenile male. We never 

observed the adult female or juvenile with the group again. Over the next week, we observed 

Cordelia and the adult male consistently together and observed no aggressive interactions 

between them during the four times that we observed them. After 19 December, 2013, we 

were unable to contact the group. We detected a mortality signal from Cordelia’s radio-collar 

on 7 January, 2014, and found her remains this same day within CC’s home range. The adult 

male from CC was never captured or marked, so we do not know his fate. 

   

Case 5. Siblings reunited, as solitaries, after dispersing 

Dixi (male, dispersed at age 39 months from “D500”, in January 2014) 

Discoteca (female, dispersed at age 36 months from “D500”, in November 2014) 

Dixi and Discoteca were born to the same parents in group D500, approximately one 

year apart from one another, and are presumed to be full siblings. A new adult female 

replaced their genetic mother when Dixi was 23 months and Discoteca was 10 months old. 

We did not observe either Dixi or Discoteca missing from D500 nor did we observe either of 
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them prospecting prior to their permanent dispersals. The only demographic change that 

occurred in the six months prior to Dixi’s dispersal was the birth of an infant (19 September, 

2013). We did not witness Dixi leaving his natal group, so we cannot say whether he 

dispersed voluntarily or was aggressively expelled. After Dixi dispersed, on 7 January, 2014, 

we observed him ranging solitarily 56 times during the next year. Once, about ten months 

after he dispersed, we observed him running away from the adults in group CC, after he had 

been resting alone within their home range. We did not observe him interacting with any 

other groups or solitaries in 2014.  

Ten months after Dixi dispersed from D500, Discoteca was expelled from the group. 

The only demographic change that occurred in the six months prior to her expulsion was the 

birth of an infant, on 1 October, 2014. On 3 November, 2014, we witnessed Discoteca 

receiving extreme aggression from the adult female in D500 (her step-mother). The adult 

female chased and fought with Discoteca, repeatedly forcing her to retreat low to the ground 

many times over the course of one hour. The adult male (her father, carrying an infant) joined 

the adult female in attacking her on one occasion, about 30 minutes into the aggressive 

incident. The female eventually knocked Discoteca to the ground, shortly after which 

Discoteca separated from the D500 adults. Discoteca was never observed with the group 

D500 again after this incident. After dispersing, we observed Discoteca ranging solitarily 37 

times over the next 6.5 months. About two weeks after her dispersal we observed adults in 

group CC chasing her out of their home range. This is the only time we observed Discoteca 

interacting with any other solitaries or groups during these 37 sightings.  

On 20 May, 2015, we found Discoteca resting in contact with Dixi. Dixi’s radio-

collar had stopped functioning several months prior, but had not yet detached, which allowed 
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us to identify him. The two stayed together all day, for > 9 hours, during which we observed 

them resting in contact and occasionally grooming one another. At dusk, both individuals left 

the area rapidly, when the group in whose home range they had been resting, IJ500, 

approached. After this incident, we never saw Dixi again, but we observed Discoteca ranging 

solitarily an additional 20 times over the next 12 months. Only once during this time did we 

see her interact with any other individuals: she ran away when the group CC entered the area 

in their home range in which she had been resting. She was still solitary when we last 

detected a signal from her radio-collar (3 May, 2016). Her ultimate fate is unknown.  

 

Case 6. Related individuals disperse to a neighboring group: adult turn-overs prevent them 

from inbreeding 

Diosa (female, dispersed at age 35 months, from “D500” to “D800”, in September 2004) 

Dionisio (male, dispersed at age 35 months, from “D500” to “D800”, in October 2005) 

Donovan (male, dispersed at age 47 months from “D800” to “D500”, in September 2015) 

Diosa and Dionisio were born to the same parents in group D500, approximately one 

year apart from one another, and were confirmed to be genetic full siblings [Huck et al., 

2014]. Less than one year apart, both of them dispersed from D500 and became a resident 

adult in the group D800, which has a home range adjacent to their natal group. Ten years 

later, Dionisio’s son, Donovan, dispersed from D800 into his father’s natal group, D500. 

However, both adults in D500 had been replaced since Dionisio’s birth. 

We never observed either Diosa or Dionisio prospecting or missing from their natal 

group prior to permanently dispersing. In the six months leading up to Diosa’s dispersal there 

were several demographic changes to her natal group. About 4.5 months before her dispersal, 
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the D500 adult male (Diosa’s step-father) disappeared. Then just two weeks before her 

dispersal, Diosa’s older genetic sister (who was 58 months old at the time) dispersed from 

D500.  

Between 27 August and 6 September, 2014, Diosa dispersed from D500 and replaced 

the former resident adult female in D800. We did not observe her depart from her natal 

group, so we do not know whether she left voluntarily or was expelled. We also did not 

observe her ranging solitarily: she was already with her new group, D800, the first time we 

saw her after dispersing. She remained in D800 with an adult male, Donatello, and a juvenile 

that had been born in October 2003 (J03), for 6.5 months. Sometime between 15 March and 9 

May, 2005, an unidentified male with a short tail replaced Donatello as the resident male in 

D800. We observed this male together with Diosa and the J03 until the end of May. By 23 

June, 2005, the short-tailed adult male had disappeared from the group, and only Diosa and 

the J03 remained together. On 24 June, 2005, Diosa was observed ranging alone within 

D800’s home range. The next day, June 25, 2005, we observed two unidentified adults with 

the J03 in D800’s home range, indicating that Diosa had been replaced/expelled from D800. 

We only observed her ranging solitarily after this date. We observed her as a solitary 20 

times before we lost contact with her in March, 2006, but her fate after this point is unknown.  

Sometime between 18 October and 10 November, 2005, Dionisio dispersed from 

D500 and replaced the unidentified adult male in D800. As in Diosa’s case, we did not 

observe him depart from his natal group, so we do not know whether he left voluntarily or 

was expelled. We also did not observe him ranging solitarily: he was already with his new 

group, D800, the first time we saw him after dispersing. The only demographic change in the 

six months before Dionisio’s dispersal was the birth of an infant, 1.5 months prior to his 
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dispersal. His new mate in D800, was captured and identified as “Doly” two weeks after 

Dionisio entered the group. Thus, while he dispersed to the same group as his genetic older 

sister, we can confirm that the two siblings were never present in group D800 at the same 

time. Dionisio has remained the resident adult male in D800 since this time and was still 

paired with an adult female in this group at the end of our study period. Six infants have been 

born during his tenure, thus far.    

Dionisio’s presumed genetic son, Donovan, dispersed from group D800 between 21 

and 29 September, 2015. We never observed Donovan missing from his natal group or 

prospecting. However, we did observe him interacting with an individual from the 

neighboring group D500, about 11 months before he dispersed (22 October, 2014). During an 

intergroup encounter at the border between their groups’ home ranges, Donovan approached 

the subadult female in D500, Discoteca, and followed her repeatedly, such that he remained 

within three meters of her for about five minutes. We observed Donovan and Discoteca 

vocalizing, but observed no aggression or physical contact between them. There were no 

demographic changes to D800 in the six months before Donovan dispersed. We did not 

witness Donovan depart from his natal group, so we do not know if he left voluntarily or was 

expelled. After dispersing, we observed Donovan ranging solitarily three times between 29, 

September and 14 October, 2015. The next time we found him, Donovan had replaced the 

adult male in D500. At the end of our study period Donovan was still paired with an adult 

female in D500, “Dilema”, but this pair had not yet produced any offspring. Dilema is not the 

same adult female that was present when his father, Dionisio, dispersed from this group.  

 

Case 7. Returning to the natal group after “dispersing”  
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Vilma (female, dispersed at age 62 months from group “Veronica”, in December 2005) 

Enrique (male, dispersed at 51 and again at 57 months from “E500”, in March and 

September 2010) 

Vilma and Enrique represent the only two cases that we have observed in which an 

individual appeared to permanently disperse, but then returned to the natal group before 

dispersing again. Unlike typical cases of prospecting, during which predispersed individuals 

are observed ranging solitarily for a few hours to one day, both Vilma’s and Enrique’s 

excursions outside of their natal groups lasted three or more days, so we consider them to be 

distinct from other prospecting events that we have witnessed and report their cases in detail. 

Before permanently dispersing, Vilma repeatedly spent time socializing with 

individuals outside of her natal group. On 11 August, 2005, four months before her 

permanent dispersal, we observed Vilma alone outside of her natal group’s home range. She 

was vocalizing (tonal hoots) and moving in the direction of hooting vocalizations being made 

by an unseen male at dusk when we lost sight of her. She returned to her natal group by the 

following day. Less than one month later, on 2 September, we again observed Vilma ranging 

solitarily while hooting, but she returned to her natal group within three days and remained 

with them during all sightings until 23 September, when we again found her ranging 

solitarily. The next time we saw her, on 26 September, Vilma was still apart from her natal 

group, but this time, she was with an adult-sized individual not from her natal group. She 

remained with this individual throughout the day, and we observed her grooming, exchanging 

food, and sniffing this other individual. However, the next day we observed her back with her 

natal group. We consistently observed her with her natal group through early November. On 

28 November, we again observed her with an unidentified adult-size individual that was not 
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from her natal group. She returned to her natal group again by 8 December, but after this 

date, we only observed her ranging solitarily. In the six months prior to the final time Vilma 

was sighted with her natal group, the only demographic change that occurred was the birth of 

an infant, about two months prior. We did not witness Vilma depart, so we do not know if 

she left voluntarily or was expelled. We last observed Vilma as a solitary on 10 August, 

2006, after which we could no longer locate a signal for her radio-collar. Her ultimate fate is 

unknown. 

Enrique is the only owl monkey that we have observed returning to the natal group 

after ranging solitarily for approximately three months. On 28 December, 2008, 20 months 

prior to his initial dispersal, we first observed Enrique ranging solitarily. We did not observe 

him prospecting or missing from his natal group again until two days prior to his initial 

dispersal, when he was not seen with the other members of E500. The day after this (one day 

before his dispersal), we observed him in his natal group with his father and 18-month-old 

younger sibling. His presumed genetic mother, Estrella, was not seen with the group at this 

time and we never saw her again after this date. Other than the disappearance of Estrella, 

there were no demographic changes in the six months prior to Enrique’s initial dispersal. On 

26 March, 2010, we found him ranging solitarily and presumed him to have permanently 

dispersed. We did not see him depart from the natal group, so we are unsure whether he left 

voluntarily or experienced aggression before dispersing. After his initial dispersal, we 

observed him ranging solitarily six times, during which he never interacted with his natal 

group or any other individuals. Then, on 22 June, 2010 we observed him back with his natal 

group, E500.  
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The details of Enrique’s return to his natal group have been previously described 

[Huck and Fernandez-Duque, 2012]. Briefly, Enrique’s presumed genetic mother, Estrella, 

was replaced by a new female during his three-month absence. After he returned to E500, he 

remained there for three additional months. At the end of this time, we observed Enrique 

copulating with his step-mother twice, on two successive days. After the second copulation, 

his father attacked him (biting, wounding, and chasing him to the ground). Enrique departed 

from E500 on this same afternoon (10 September, 2010), and we never observed him 

interacting with members of his natal group after this second dispersal. We observed Enrique 

ranging solitarily 13 more times after he was expelled from E500, the last of which was on 25 

November, 2010. He ultimately died before joining a new group: we found his remains, 

within E500’s home range, on 10 March, 2011.  

 

Discussion 

There are a variety of potential strategies available to owl monkeys across all stages 

of natal dispersal. Consistent with previous findings, which suggest that owl monkeys follow 

flexible dispersal strategies [Fernandez-Duque, 2009], our results confirm that variation is 

present in the behavior of individuals before and after dispersal, in the amount of time spent 

as a solitary, and in the ultimate fate of dispersing individuals. 

Males and females had relatively similar propensities to prospect (Table 5.2, Figure 

5.1). We observed only 36% of radio-collared predispersed offspring engaging in prospecting 

behavior. However, this number should be considered an estimate of the minimum percentage 

of individuals that prospected. We did not attempt to contact or follow each predispersing 

individual every day. We also typically only attempted to contact groups and individuals 
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between dawn and dusk, and were thus unable to detect any instances of prospecting that 

occurred during the night. Azara’s owl monkeys are cathemeral and have substantial amounts 

of activity during the nighttime, particularly during the full moon phase of the lunar cycle 

[Fernandez-Duque and Erkert, 2006]. Therefore, it is extremely likely that observers were not 

present during all instances of prospecting. We also have very limited data on where 

individuals who prospected went during prospecting expeditions. On multiple occasions, we 

observed predispersed offspring embarking on prospecting expeditions at dusk, but were 

unable to follow these individuals after the sun set (e.g., Case studies 2 and 4). Without 

detailed data on ranging behavior during prospecting events, we can only speculate about 

how far away from their natal home ranges individuals may travel and what kind of 

information about the availability of mates and/or resources they might obtain during 

prospecting.  

Knowing the areas in which individuals spent time during all prospecting expeditions 

would allow us to evaluate potential functions of prospecting behavior in owl monkeys. For 

example, researchers were able to gain insight into how flying squirrels (Pteromys volans) 

utilize comparative decision rules during short-distance dispersal, by quantifying how 

frequently the squirrels revisited sites in which they previously prospected [Selonen and 

Hanski, 2010]. Methods that would allow us to track predispersed offspring at all times, such 

as fitting individuals with GPS-equipped collars, would enable us to carry out a much more 

thorough assessment of prospecting behavior and improve our understanding of how 

prospecting relates to dispersal decisions and outcomes.  

While our data on prospecting behaviors are limited, we can draw a few tentative 

conclusions from the patterns we observed. We never witnessed any prospecting individual 
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engage in mating behavior with any other solitary or non-natal group member. Combined 

with genetic data, which revealed no cases of extrapair paternity among the 35 infants 

sampled [Huck et al., 2014], we can rule out the possibility that predispersed individuals 

frequently prospect to engage in extra-group breeding, as individuals do in some other taxa 

[Eikenaar et al., 2008; Griffin et al., 2003; Young et al., 2007]. However, we frequently 

observed prospecting individuals either making hooting vocalizations or moving in the 

direction of hoots being made by an unseen individual of the opposite sex (Case studies 2, 3, 

4, 7). Hoot calls are one of the few sexually dimorphic characteristics displayed by owl 

monkeys and are hypothesized to serve an important role in mate attraction [Depeine et al., 

2008]. The occurrence of hoots during prospecting suggests that one function of prospecting 

may be to provide predispersed individuals the opportunity to assess the local availability of 

potential mates.  

Individuals did not begin prospecting until they were old enough to disperse (> 20 

months old). This implies that prospecting is related, at least in some way, to dispersal. 

Individuals of some taxa, like meerkats (Suricata suricatta), are more likely to prospect when 

they are older and have stronger body condition [Mares et al., 2014]. This may be because 

prospecting is costly; in some taxa it can decrease body mass and negatively affect endocrine 

state [Young et al., 2005; Young and Monfort, 2009]. The timing of prospecting events may 

also vary with season and other ecological factors, like food availability [Mares et al., 2014]. 

Since our observations of prospecting were opportunistic and our observation efforts varied 

with season, we are unable to assess correlations between prospecting and ecological 

conditions in our dataset. Tracking individuals with GPS-collars could supply data on 
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correlations between these factors and prospecting, providing insight into how ecological and 

social factors influence prospecting and dispersal decisions.  

Individuals sometimes began to prospect long before they dispersed. On average, we 

observed the first evidence of prospecting almost one year before an individual permanently 

left their natal group (Table 5.2). This indicates that while individuals may begin prospecting 

once they reach the minimum age of dispersal, few actually disperse around the time these 

prospecting forays commence. This makes sense if individuals are utilizing prospecting 

expeditions to gather information about local ecological and/or social conditions. If favorable 

conditions are not encountered, we expect individuals to return to their natal groups and 

remain there until subsequent prospecting events reveal improved conditions or mating 

opportunities. Even though we observed the majority of individuals prospecting only once, as 

discussed in the paragraphs above, the events that we observed represent the bare minimum 

frequency of prospecting. We observed ten individuals prospecting multiple times and three 

of these individuals prospected eight or more times (Table 5.2). Our data are thus consistent 

with the supposition that some predispersed owl monkey offspring may prospect repeatedly, 

and disperse opportunistically, when prospecting reveals a potential mating opportunity or 

conditions relatively favorable for ranging solitarily.  

Overall, our data do not suggest strong sex differences in dispersal strategies or 

distances. The amount of time that we observed males and females ranging solitarily after 

dispersing was similar (Figure 5.2). Males and females also had relatively similar likelihoods 

of pairing in a non-natal group in our study area and spent similar amounts of time in their 

new groups after pairing (Table 5.1, Figure 5.3). When we exclude the one individual, Betty, 

that appeared to pair with an adult outside of our regularly monitored study area, only three 
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females, compared to six males, paired in a group within our study area. We avoid drawing 

conclusions about the mean dispersal distance of male and female owl monkeys in general 

based on our small sample, but it is possible that males may have somewhat shorter mean 

dispersal distances than females. On the other hand, ranging patterns of solitary dispersed 

individuals seem to be similar for both sexes [Fernandez-Duque, 2009; Huck and Fernandez-

Duque, in press]. Genetic data from males and females in our population could be used to test 

this hypothesis in future studies. If verified, a sex-difference in mean dispersal distance could 

be a mechanism that allows related individuals dispersing from the same group (e.g., siblings 

and half-siblings) to avoid inbreeding [Kappeler et al., 2002; Wimmer et al., 2002]. 

Our data suggest that other mechanisms for inbreeding avoidance are likely operating 

in our population. Whether or not males disperse further than females on average, our 

observations provide evidence that both sexes may, at least on occasion, disperse to groups 

that share a border with their natal group. Even in our small sample of ten individuals, a male 

and female sibling both dispersed to the same neighboring group within a year of one another 

(Diosa and Dionisio, Case study 6). Rapid turn-over in the adults of this group prevented 

these siblings from having an opportunity to risk inbreeding. Additionally, the only time that 

we observed two siblings interacting after dispersal (Dixi and Discoteca, Case study 5), they 

did not engage in any sexual behaviors (e.g., genital inspections, copulations, etc.) with one 

another. In fact, we have never seen closely related individuals from the same natal group 

pair with one another in a residential group or behave in a way that suggests they perceive 

each other as potential mates. This suggests that owl monkeys may have mechanisms that 

allow them to recognize kin or familiar individuals from their natal group if they encounter 

them again after dispersal. The basis of these mechanisms may be olfactory, as family groups 
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of captive owl monkeys have been found to have distinct scent profiles unique from other 

families [Macdonald et al., 2008]. Additional research utilizing genetic and scent-gland data 

could provide insight into the mechanisms the prevent dispersing owl monkeys from pairing 

with close relatives.  

 Dispersed solitaries sometimes sought out social contact with other floaters or 

members of non-natal social groups (Cases 2, 3, 5, 7). Our observations indicate that while 

some social interactions may be related to finding a potential mate (e.g., Evaristo, Case 3), at 

other times floaters engaged in affiliative social interactions with individuals who were 

juveniles (Betty, Case 2) or relatives (Dixi and Discoteca, Case 5), and thus could not be 

potential mates. In great tits (Parus major), solitary floaters that were siblings associated 

more frequently than expected by chance [Grabowska-Zhang et al., 2016]. We only once 

observed siblings associating with one another as floaters, but taken together our case studies 

suggest that “solitary” floaters may actually engage in social behaviors more frequently than 

we have previously recognized. Dispersed individuals sought out social contact, even though 

they sometimes received aggression during these social interactions (Cases 2, 3). Evidence 

from ranging patterns of floaters indicates that they typically attempt to maintain relatively 

close proximity to groups while avoiding their core home ranges [Huck and Fernandez-

Duque, in press]. This may allow individuals to opportunistically interact with individuals in 

groups that may be less likely to act aggressively towards them (e.g., juveniles or members of 

the opposite sex), while avoiding or being able to escape from resident adults that act 

aggressively towards them. Our data do not allow us to assess the reasons why solitaries may 

sometimes seek out social contact with individuals other than potential mates. Tracking 

multiple floaters and social groups at the same time would allow us to determine how 
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frequently dispersing individuals engage in social interactions during the otherwise “solitary” 

transient stage, and assess the costs and benefits associated with these social interactions.  

 We never observed a dispersing individual permanently pair with another solitary 

individual. While floaters sometimes formed temporary associations with other solitaries that 

lasted less than one day (Cases 2, 3, 5, 7), the only way in which dispersing individuals 

successfully mated and reproduced was by replacing a same-sex adult and pairing with a 

mate who was already part of a group with an established home range. Our observations are 

consistent with previous studies suggesting that floaters constitute intense mating competition 

for resident adults [Fernandez-Duque and Huck, 2013]. Monitoring the floater population 

more closely could supply valuable information on the local operational sex-ratio, and 

provide insight into competition in owl monkeys and other monogamous taxa [Fernandez-

Duque and Huck, 2013; Huck and Fernandez-Duque, in press]. 

Predispersed owl monkeys do not reproduce and typically do not engage in any 

sexual behaviors while in their natal groups [Chapters 2, 3, 4; Fernandez-Duque, 2009]. We 

observed two exceptions in which individuals interacted sexually with a resident adult in 

their natal group (Cordelia and Enrique, Cases 4 and 7). In the case of Enrique, who we 

observed copulating with his step-mother after he returned to his natal group, there were 

immediate severe negative consequences (i.e., his father violently expelled him from the 

group). We did not observe Cordelia experiencing aggression immediately after copulating 

multiple times with the new male in her natal group. However, she did ultimately die prior to 

dispersing from her group’s home range. In fact, both Cordelia and Enrique died before 

reproducing, which suggests that attempting to mate with an adult in the natal group is a rare 

strategy that is generally unsuccessful.  
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Our data make it clear that owl monkeys can follow a variety of different strategies 

throughout the dispersal process. The opportunistic nature of our observations limits our 

ability to draw firm conclusions about the frequency of different dispersal strategies. 

However, we can infer that substantial variation exists and that individuals seem to respond 

flexibly to the specific set of conditions with which they are presented. Individuals may 

prospect once or many times prior to permanently dispersing. They may leave voluntarily or 

be forced to leave after experiencing severe aggression from adult(s) in their natal group. Sex 

differences in dispersal are not prominent and it seems likely that factors other than sex, such 

as individual body condition and/or the local social and ecological environment, influence 

aspects of all stages of dispersal.  

The complete process of dispersal entails a lot more than just leaving one group for 

another [Bonte et al., 2012; Clobert et al., 2009; Ronce, 2007; Travis et al., 2012]. Very few 

owl monkeys transfer directly to a new group; most spend time as solitary floaters. Floaters 

may interact with other solitaries or members of non-natal social groups. They may end up as 

the resident adult in a social group bordering their own natal group or they may leave the 

study area altogether. Many questions remain about the factors underlying the variation in 

dispersal that we observed. Nonetheless, our descriptions of pre-dispersal and dispersal 

behaviors provide insight into the variety of different strategies available to owl monkeys. 

They also provide a basis for generating hypotheses that can be tested in future studies to 

increase our understanding of dispersal in owl monkeys and socially monogamous taxa in 

general.  
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Chapter 6. Summary and Conclusions 
 

This dissertation has explored natal dispersal in socially monogamous Azara’s owl 

monkeys (Aotus azarae) in the Argentinean Gran Chaco. After summarizing the theoretical 

frameworks that researchers have utilized to study and understand dispersal patterns, each 

subsequent chapter described an investigation into one or more aspects of natal dispersal. 

Together, these investigations provide insight into both proximate and ultimate causes for 

dispersal, and allow for the development of a multifaceted understanding dispersal patterns in 

this socially monogamous primate species. 

Chapter two examined dispersal at the level of the community by exploring how 

demographic changes and environmental variables are associated with dispersal patterns. In 

this chapter, I investigated the social and ecological factors associated with the age and 

timing of natal dispersal in owl monkeys. Specifically, I examined how proximate factors, 

such as adult replacements, births, group size, and rainfall (as a proxy of resource 

abundance), explained variation in the age and timing of dispersal. The timing of owl 

monkey dispersal was highly flexible, but all individuals dispersed prior to reproducing. Both 

demographic changes and ecological factors explained variation in dispersal to some extent. 

Experiencing an adult replacement, and especially the replacement of a same sex adult, was 

associated with subadult dispersal. In general, dispersals were concentrated in the spring and 

early summer. However, individuals were more likely to disperse outside of this preferred 

season if there had been a recent infant birth in their natal group and if there was less than 

average rainfall, and thus increased resource scarcity, during the fall/winter season.  
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The results from Chapter two implicate both resource competition and inbreeding 

avoidance as forces influencing dispersal under different circumstances. Additionally, the 

variation in timing of dispersal suggests that delaying dispersal may be an adaptive strategy 

that owl monkeys utilize to minimize dispersal costs and maintain access to benefits provided 

by the natal group. These findings differed somewhat when we included individuals who 

disappeared from the natal group, but were not confirmed to disperse, in analyses. This 

finding suggests that disappearances of dispersal-aged individuals should not necessarily be 

assumed to be the result of dispersal, and results from analyses that include data on 

disappeared individuals should be interpreted with caution. 

Chapter three narrowed the focus to the level of the group, and investigated how 

behavior, particularly agonism, among group members may function to regulate dispersal.  

High rates of agonism are not expected to occur amongst close relatives or individuals in 

established mating relationships, which are characteristics of monogamous groups. Using 14 

years of owl monkey behavioral data, I examined factors related to age, sex, kinship, and 

behavioral context to evaluate predictions of the hypotheses that agonism functions to 

regulate dispersal and that it mediates competition for food and/or mates. As expected, 

intragroup agonism was relatively rare and rates of agonism were generally similar for both 

sexes. However, there were marked differences among age categories. Agonism was most 

frequently performed by adults and directed at offspring, particularly subadults. In contrast, 

agonistic interactions involving infants were very rare. Agonistic events were most frequent 

during foraging, but also regularly occurred during non-foraging contexts, particularly during 

bouts of social behavior. Finally, subadults also received more agonism in the six-month 
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period immediately preceding dispersal, further suggesting that agonistic interactions are a 

mechanism regulating natal dispersal. 

Results from Chapter three suggest that, in owl monkeys, agonism appears to serve as 

an important mechanism for regulating dispersal, but it also serves other functions. 

Specifically, agonistic behaviors are also utilized in conflicts over food resources and may 

play a role in mediating mating competition amongst adults and subadults. 

Chapter four narrowed the focus even further, to the level of the individual. This 

chapter examined hormonal correlates of development and dispersal in juvenile and subadult 

females to evaluate potential proximate mechanisms regulating reproductive suppression in 

owl monkeys. Since owl monkeys are not cooperative breeders, neither inclusive fitness 

benefits nor inbreeding avoidance hypotheses can adequately explain their lack of 

reproduction prior to leaving the natal group. In this chapter, I analyzed hormonal extracts 

from fecal samples in juvenile and subadult females to determine whether wild Azara’s owl 

monkeys typically establish reproductive maturity prior to dispersing. Subadult females 

showed hormone profiles indicative of ovulatory cycling and had mean reproductive 

hormone concentrations much higher than juveniles.  

The results from Chapter four indicate that reproductive suppression in female owl 

monkeys is not due to endocrine suppression. Contrary to the inbreeding avoidance 

hypothesis, female owl monkeys do not delay puberty while in their natal groups. However, 

subadults appear to have a period during which they experience irregular, non-conceptive 

ovarian cycles prior to reproducing. Commencing these irregular cycles in the natal group 

may allow them to develop a state of suspended readiness, which could be essential to 

securing a mate, while avoiding the costs of ranging solitary. It is likely that adults use 
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behavioral mechanisms to prevent subadults from reproducing with unrelated adult males in 

their natal group. 

Finally, Chapter five kept the focus on the individual level by following individuals 

through the entire dispersal process, and describing what we have learned about the ultimate 

fates of dispersers. The complete process of dispersal entails a transient phase of movement, 

while individuals search for a new place to live, followed by settlement in a new area. In this 

chapter, I reviewed data on the outcomes of dispersal decisions (e.g., the mortality and 

ultimate fates of dispersing individuals). We observed 36% of identified predispersed 

offspring prospecting at least once, and 88% of dispersed individuals ranging solitarily at 

least once. Case studies of dispersing individuals, based on ad libitum observations, suggest 

that dispersal is an extremely varied process in owl monkeys. Both males and females follow 

a variety of strategies that may involve prospecting and/or forming temporary associations 

with individuals outside of their natal groups before ultimately disappearing from the study 

area or finding a breeding position. Results from Chapter five highlight the high degree of 

variation among individuals within a single community and emphasize the need to consider 

all stages of the dispersal process to develop a more complete understanding of dispersal.  

Each of the preceding chapters took a different approach to studying dispersal. While 

each approach informs our understanding of dispersal in its own way, this dissertation has 

demonstrated that combining multiple types of data is necessary for developing a deeper 

understanding of owl monkey dispersal. For example, information about behavior, 

specifically the general absence of sexual behaviors between adults and predispersed 

subadults, is essential for interpreting findings from hormonal analyses. Similarly, 

information about the timing of sexual maturity, which was provided by hormonal data, is 
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essential for evaluating findings related to agonistic behavior and the potential effects of 

demographic changes, such as adult replacements, on dispersal.  

Nonetheless, developing a complete understanding of owl monkey dispersal still 

requires additional research. Investigations into prospecting behavior and the solitary 

itinerant stage of dispersal would be particularly useful, as these remain relatively poorly 

understood aspects of this process. Individuals who can use information about their local 

environments to inform dispersal decisions should be favored by natural selection [Bowler 

and Benton, 2005; Clobert et al., 2009]. Chapter five demonstrated that owl monkey 

offspring often engage in prospecting behavior, but the type of information that individuals 

gather during prospecting expeditions and the way this information influences when and to 

where they disperse requires further examination. Tracking the prospecting movements of 

predispersed individuals and comparing them to post-dispersal ranging patterns could 

increase our understanding of the means by which dispersing individuals utilize information 

from their environment to make dispersal decisions [Selonen and Hanski, 2010]. 

All data presented in this dissertation were collected at a long-term field site of the 

Owl Monkey Project (OMP) in the Gran Chaco region of Formosa Province, Argentina. 

Continuous monitoring of wild primate populations can provide indispensable information on 

the behavior of a species that is impossible to get from short-term studies or captive research 

[Kappeler and Watts, 2012]. However, focusing in depth on one population typically requires 

sacrificing breadth. While long-term studies of a single site can reveal temporal variation in 

dispersal and other behaviors, these studies do not reveal variation that may exist across 

populations [Strier, 2017]. Examining owl monkey populations at other locations would 

therefore provide valuable insight into how aspects of the social and ecological environment 
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are associated with dispersal patterns and pre-dispersal behaviors. For example, at the OMP 

site, evidence suggests that the habitat is more or less “saturated” and competition for 

reproductive positions is likely high [Fernandez-Duque and Huck, 2013]. There is empirical 

evidence from a variety of taxa which indicates that dispersal decisions may depend on 

population density [Matthysen, 2005; Nowicki and Vrabec, 2011; Poethke et al., 2016], and 

density may also affect aggression [Knell, 2009]. Examining dispersal at additional sites, 

where population density and other factors differ from those at the OMP’s site, would thus 

provide insight into the degree of inter-population variation in dispersal behavior, and 

contribute to our general understanding of spatial variation in dispersal patterns.  

 In conclusion, this dissertation has investigated dispersal at population, group, and 

individual levels. The holistic approach to understanding dispersal taken in this project is one 

that could be useful for increasing our understanding of dispersal in many other taxa. This 

approach allowed me to develop a multifaceted exploration owl monkey dispersal, which 

provides insight into the role of various proximate mechanisms as well as evolutionary 

explanations for dispersal patterns. The data presented in this dissertation can also be utilized 

to refine hypotheses and stimulate additional empirical research, which is needed to provide a 

better understanding of dispersal in primates and other organisms.  
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