
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2007

The Immunological Contributions To Heterotopic
Ossification Disorders - Insights From
Fibrodysplasia Ossificans Progressiva
Michael Richard Convente
University of Pennsylvania, mconvente@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons,
Medical Immunology Commons, and the Molecular Biology Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2237
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Convente, Michael Richard, "The Immunological Contributions To Heterotopic Ossification Disorders - Insights From Fibrodysplasia
Ossificans Progressiva" (2007). Publicly Accessible Penn Dissertations. 2237.
https://repository.upenn.edu/edissertations/2237

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/681?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2237?utm_source=repository.upenn.edu%2Fedissertations%2F2237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2237
mailto:repository@pobox.upenn.edu


The Immunological Contributions To Heterotopic Ossification Disorders
- Insights From Fibrodysplasia Ossificans Progressiva

Abstract
The development of pathological bone outside the skeleton, termed heterotopic ossification (HO), is a
significant clinical complication that often greatly reduces mobility and diminishes overall quality of life for
affected individuals. Patients with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic
disorder of HO in which most affected individuals express a recurrent heterozygous gain-of-function
mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2, develop
episodes of HO formation frequently follow injury. Terminal HO formation in FOP occurs following a series
of lesion development stages, of which the first recognized is an inflammatory stage associated with immune
cell invasion. Of note, an early inflammatory response is a normal response to tissue injury, however in tissues
expressing the FOP mutation, the repair program rapidly diverges from a path leading to tissue repair and
instead forms ectopic cartilage and bone. I hypothesized that Acvr1R206H enhances the early inflammatory
response to injury in FOP and that immune cells promote a permissive microenvironment for the
downstream anabolic events that result in HO. Using a conditional knock-in Acvr1R206H mouse model
(Acvr1cR206H/+) to investigate the cellular and molecular inflammatory events in FOP Acvr1cR206H/+
and wild-type Acvr1+/+ mice following injury, I determined that the response to tissue injury is similar
between cohorts up to 48 hours post-injury, but then diverges toward a prolonged fibroproliferative stage,
then to chondrogenic, and osteogenic events in Acvr1cR206H/+ mice. This coincides with a significantly
elevated and prolonged pro-inflammatory cytokine expression in vivo and in vitro. I further investigated how
modulation of the inflammatory response controls the development of HO in FOP. Induction of the R206H
mutation exclusively in immune cells, by whole bone marrow transplant or LysM-Cre-induced myeloid-
lineage expression, or selective inhibition of the inflammatory response by Interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-α) neutralizing agents were insufficient to prevent HO formation. However,
depletion of mast cells and macrophages from Acvr1cR206H/+ mice dramatically impaired development of
HO, highlighting a direct immune cell contribution to HO formation.
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ABSTRACT 

THE IMMUNOLOGICAL CONTRIBUTIONS TO HETEROTOPIC 

OSSIFICATION DISORDERS – INSIGHTS FROM FIBRODYSPLASIA 

OSSIFICANS PROGRESSIVA 

 

Michael Richard Convente 

Eileen M. Shore 

 

The development of pathological bone outside the skeleton, termed heterotopic 

ossification (HO), is a significant clinical complication that often greatly reduces mobility 

and diminishes overall quality of life for affected individuals. Patients with fibrodysplasia 

ossificans progressiva (FOP; OMIM #135100), a genetic disorder of HO in which most 

affected individuals express a recurrent heterozygous mutation (R206H) in the bone 

morphogenetic protein (BMP) type I receptor ACVR1/ALK2, develop episodes of HO 

formation frequently follow injury. Terminal HO formation in FOP occurs following a 

series of lesion development stages, of which the first recognized is an inflammatory stage 

associated with immune cell invasion. Of note, an early inflammatory response is a normal 

response to tissue injury, however in tissues expressing the FOP mutation, the repair 

program rapidly diverges from a path leading to tissue repair and instead forms ectopic 

cartilage and bone. I hypothesized that Acvr1R206H enhances the early inflammatory 

response to injury in FOP and that immune cells promote a permissive microenvironment 

for the downstream anabolic events that result in HO. Using a conditional knock-in 



 

xii 

 

Acvr1R206H mouse model (Acvr1cR206H/+) to investigate the cellular and molecular 

inflammatory events in FOP Acvr1cR206H/+ and wild-type Acvr1+/+ mice following injury, I 

determined that the response to tissue injury is similar between cohorts up to 48 hours post-

injury, but then diverges toward a prolonged fibroproliferative stage, then to chondrogenic, 

and osteogenic events in Acvr1cR206H/+ mice. This coincides with a significantly elevated 

and prolonged pro-inflammatory cytokine expression in vivo and in vitro. I further 

investigated how modulation of the inflammatory response controls the development of 

HO in FOP. Induction of the R206H mutation exclusively in immune cells, by whole bone 

marrow transplant or LysM-Cre-induced myeloid-lineage expression, or selective 

inhibition of the inflammatory response by Interleukin-6 (IL-6) and tumor necrosis factor-

alpha (TNF-α) neutralizing agents were insufficient to prevent HO formation. However, 

depletion of mast cells and macrophages from Acvr1cR206H/+ mice dramatically impaired 

development of HO, highlighting a direct immune cell contribution to HO formation. 
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1.1 Bone Morphogenetic Protein (BMP) signaling 

1.1.1 TGF-β/BMP superfamily ligands and receptors 

 Bone morphogenetic proteins (BMPs) are a subset of extracellular signaling ligands 

belonging to the transforming growth factor-beta (TGF-β) superfamily [Miyazono et al. 

2010]. The TGF-β/BMP superfamily is composed of more than thirty signaling ligands, 

including TGF-βs, BMPs, activins, inhibins, growth differentiation factors (GDFs), nodal, 

myostatin, and anti-Müllerian hormone [Miyazawa et al. 2002, Derynck et al. 2003]. BMPs 

represent the largest subset of the TGF-β/BMP superfamily, with over twenty ligands 

identified [Bragdon et al. 2011]. BMPs were initially discovered as factors that stimulate 

production of new bone in demineralized bone matrix implants in vivo [Urist 1965]. BMPs 

and other TGF-β/BMP superfamily ligands have substantial roles in numerous biological 

systems, including stem cell renewal and differentiation, embryological development, 

immune cell development, iron homeostasis, skeletal muscle development and 

regeneration, cancer, and others [Elliott et al. 2005, Babitt et al. 2006, Watabe et al. 2009, 

Wu et al. 2009, Wu et al. 2012, Sartori et al. 2013, Hager-Theodorides et al. 2014, Martinez 

et al. 2015]. BMPs have a unique and crucial role during the earliest stages of 

embryological development. BMPs are required for patterning the dorso-ventral axis in 

both invertebrates and vertebrates [Little et al. 2006, Tucker et al. 2008, Ramel et al. 2013]. 

Later in vertebrate development, BMPs are required for all stages of endochondral long 

bone formation - mesenchymal condensation, chondrogenesis, and osteogenesis [Lim et al. 

2015, Salazar et al. 2016]. In the adult, BMPs are involved in skeletal homeostasis and 

normal bone turnover [Wu et al. 2016], as well as in many other biological systems [Babitt 
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et al. 2006, Shi et al. 2011, Choi et al. 2012, Wu et al. 2012, Brazil et al. 2015, Sartori et 

al. 2015, Salazar et al. 2016]. 

 The TGF-β/BMP superfamily receptors are grouped into two classes of 

transmembrane serine/threonine kinases, type I and type II [Shi et al. 2003, Miyazono et 

al. 2010] (Figure 1.1). Type I consists of seven receptors (ALK1/ACVR1L, 

ALK2/ACVR1, ALK3/BMPR1A, ALK4/ACVR1B, ALK5/TGFβR1, ALK6/BMPR1B, 

and ALK7/ACVR1C). Type II consists of four receptors (ACTR2A, ACTR2B, BMPR2, 

TGFβR2). The type I and type II receptors that preferentially mediate signaling in response 

to BMP ligands are ALK1, ALK2, ALK3, ALK6, ACTR2A, ACTR2B, and BMPR2; 

ALK4, ALK5, ALK7, and TGFβR2 mediate TGF-β signaling. Type I receptors contain 

several conserved domains – an extracellular ligand binding domain, a transmembrane 

domain, a glycine/serine (GS) rich domain, and a protein kinase domain [Yadin et al. 

2016]. Type II receptor structure is highly similar to type I receptors, except for an absent 

GS domain. BMPs bind as heterodimers to two type I extracellular ligand binding domains 

and facilitate recruitment of two type II receptors to form a tetrameric receptor signaling 

complex [Wrana et al. 1992]. Following BMP dimer binding and receptor complex 

formation, the constitutively active type II receptor kinase domain, now in proximity of the 

adjacent type I receptor via a conformational shift, phosphorylates serine residues within 

GS domain of adjacent type I receptors [Wrana et al. 1992]. This transphosphorylation 

event activates the kinase domain of the type I receptors, allowing for subsequent 

phosphorylation of downstream canonical and non-canonical signaling proteins [Salazar et 

al. 2016]. 
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 BMP signaling is tightly controlled by multiple antagonist proteins that act both 

extracellularly and intracellularly (Figure 1.1). The availability of BMP ligands is 

controlled by extracellular antagonists, including Noggin, Chordin, and Gremlin, that bind 

and sequester free BMPs to prevent their binding to receptors [Brazil et al. 2015]. 

Additionally, the decoy BMP and Activin Membrane Bound Inhibitor (BAMBI) receptor 

can bind BMPs and limit availability of ligand dimers for propagation of faithful BMP 

signaling [Brazil et al. 2015]. Intracellular antagonism of BMP signaling functions through 

an inhibitory mechanism that prevents promiscuous receptor activation in the absence of 

ligand. FKBP12 binds to type I BMP and TGF-β receptors in a leucine/proline motif within 

the GS domain and stabilizes the inactive confirmation of type I receptors. Upon ligand 

binding, FKBP12 dissociates from the receptor complex and allows signaling to advance 

[Wang et al. 1996, Chaikuad et al. 2012, Yadin et al. 2016]. 

 

1.1.2 Canonical and non-canonical signaling pathways 

TGF-β/BMP superfamily ligands can propagate signaling through canonical 

(Smad-dependent) and non-canonical (Smad-independent) mechanisms to regulate gene 

transcription (Figure 1.1). Pathway activation is dependent on available receptors and 

ligands, which have stronger binding affinities for preferred BMP or TGF-β receptor 

partners. 

Canonical TGF-β/BMP signaling is mediated by a consortium of Smad proteins 

that are classified into three groups: regulatory Smads (R-Smads), common Smad (co-

Smad), and inhibitory Smads (I-Smads). Five mammalian R-Smads participate in the 
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canonical signaling pathway. Smad1, Smad5, and Smad8 serve as signaling mediators 

induced primarily by BMPs, whereas Smad2 and Smad3 serve as signaling mediators 

induced primarily by TGF-βs and activins. The TGF-β and BMP signaling branches 

converge with the utilization of the co-Smad Smad4 by all R-Smads. Smad6 and Smad7 

function as I-Smads through Smad-receptor or Smad-Smad interactions that inhibit proper 

signaling [Katagiri et al. 2016]. 

The R-Smads contain three domains: the highly-conserved DNA-binding “Mad-

homology 1” (MH1) and type I receptor-activated MH2 domains, and a variable linker 

domain. The MH2 domain has a conserved C-terminal motif, Ser-X-Ser, that is 

phosphorylated by the activated type I receptor. Phosphorylation of R-Smad by the 

activated type I receptor induces translocation into the nucleus and Smad4 recognition of 

the phosphorylated R-Smad pSer-X-pSer motif. R-Smads bind to a specific 5’-GTCT-3’ 

DNA motif known as the Smad-binding element (SBE) through their MH1 domain [Shi et 

al. 1998]. Many Smad-responsive promoters contain one or more SBEs within their 

promoter sequence. The core R-Smad-Smad4 complex is most commonly a hetero-trimeric 

complex composed of two phosphorylated R-Smads and one Smad4 protein. However, due 

to relatively low DNA binding affinity, incorporation of different DNA-binding co-factors 

to the nuclear R-Smad-Smad4 complex via interactions with the “Smad4 activation 

domain” (SAD) present on Smad4 allows for enhanced DNA binding and gene target 

specificity. Many TGF-β/BMP responsive gene promoters contain SBEs and adjacent 

cognate co-factor binding motifs for targeted gene expression [Massagué et al. 2005]. 
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 Smad6 and Smad7 are I-Smads that function to inhibit TGF-β/BMP signaling. Both 

Smad6 and Smad7 are structurally similar to the R-Smads, however they lack a DNA-

binding MH1 domain and a C-terminal Ser-X-Ser motif. Smad6 targets BMP signaling by 

functioning as a competitive inhibitor preventing phosphorylated Smad1 from binding to 

Smad4 [Hata et al. 1998]. Smad7 interacts stably with activated BMP and TGF-β and 

functions as a competitive inhibitor of R-Smad phosphorylation [Hayashi et al. 1997, 

Nakao et al. 1997]. 

 TGF-β/BMP signaling can also be mediated by multiple non-canonical, Smad-

independent mechanisms. Receptor complex activation can propagate signaling through 

downstream signaling pathways such as extracellular signal-regulated kinase (ERK), p38 

map kinase, C-jun N-terminal kinase (JNK), and nuclear factor kappa beta (NF-κB). All 

are thought to be mediated by TGF-β activated kinase 1 (TAK1). Additional non-canonical 

signaling pathways include phosphoinositide 3-kinase (PI3K) and Protein Kinase A 

(PKA), the latter of which operates through cyclic AMP effector signaling [Taylor et al. 

2004, Bragdon et al. 2011]. 

 

1.2 The immune system and its role in injury repair 

1.2.1 Evolution and overview of the immune system 

 The immune system is a coordinated cellular and molecular system that first 

evolved as a defense against infectious species [Cooper et al. 2006, Dzik 2010, Flajnik et 

al. 2010, Horvath et al. 2010, Buchmann 2014, Rath et al. 2015]. The earliest appearance 

of a primitive immune system in prokaryotes was the evolution of the Clustered Regularly 
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Interspaced Short Palindromic Repeats (CRISPR) DNA region, first observed in 

Escherichia coli. In combination with CRISPR-associated (Cas) genes, the CRISPR/Cas 

system protects prokaryotes from viral genetic elements through a targeted process that 

results in permanent identification and destruction of foreign sequences [Horvath et al. 

2010, Rath et al. 2015]. 

Evolution of a more sophisticated “self vs. non-self” recognition system occurred 

simultaneously with emergence of increasingly complex multicellular eukaryotes during 

the Cambrian explosion starting 542 million years ago [Buchmann 2014]. This mechanism 

depended on evolution of appropriate molecules and cells that perform two functions in 

sequence: detection of non-self pathogens, and phagocytic lysis of identified pathogens. 

Recognition of pathogen-associated molecular patterns (PAMPs), such as 

lipopolysaccharides (LPS) and viral genetic elements, first evolved in multicellular 

sponges with the appearance of LPS-binding receptors. The emergence of intracellular 

receptors that can detect pathogens and foreign DNA, such as the nucleotide-binding 

oligomerization domain-like receptors (NOD-like receptors, or “NLRs”), further enhanced 

the ability of organisms to detect pathogens, including viruses, fungi, parasites, and their 

associated PAMP molecules [Takeuchi et al. 2010, Buchmann 2014]. Evolution of cells 

with phagocytic function occurred concurrent with the appearance of recognition receptors, 

with early multi-cellular species in the Porifera and Cnidaria phyla containing phagocytic 

amebocytes [Dzik 2010]. Cells with equivalent function are found throughout the 

invertebrates, with more sophisticated and diverse cell types, such as macrophages and 

granulocytes, first appearing in sea stars, sea urchins, tunicates, and others [Rhodes et al. 



 

8 

 

1982, Crivellato et al. 2010]. This system, classified today as innate immunity, relies on 

early detection of conserved PAMPs to trigger a first-wave inflammatory response to limit 

pathogen invasion [Akira et al. 2006]. 

A more targeted immune response, dependent on diversification of evolved 

antigen-receptor genes to initially and permanently recognize unique non-self molecules, 

defines the adaptive immune system. The primordial adaptive immune system was first 

observed in jawless invertebrates belonging to the Agnatha superclass of the Chordata 

phylum, which includes lampreys and hagfish among its members [Cooper et al. 2006]. 

Jawless fish possess a primitive mechanism for generating genetic diversity required for 

mounting antigen-specific immune responses. This mechanism depends upon use of 

variant leucine-rich repeats (LRRs) to form variable lymphocyte receptors (VLRs), 

generating clonal specificity through somatic recombination [Litman et al. 2010]. The 

appearance of an adaptive immune system most closely resembling its modern composition 

in mammals was first observed in jawed vertebrates, specifically jawed fish [Cooper et al. 

2006]. Detection of unique antigens required concurrent evolution of several genes and 

gene loci – the variable-diversity-joining rearrangement (VDJ) locus, the major 

histocompatibility complex (MHC) locus, and the set of recombination-activating genes 

(RAGs) [Flajnik et al. 2010]. In combination, all three components provided the parts and 

machinery for functional and lasting defense against unique antigens. A new diverse class 

of immune cells termed lymphocytes evolved in parallel and utilized the above genetic 

components to mount robust and efficient attacks against pathogens [Flajnik et al. 2010]. 
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The classic antigen recognition and clonal expansion of lymphocytes described above 

remains the foundation of adaptive immunity in modern vertebrates. 

 Hematopoietic stem cells (HSCs) are a multipotent, self-renewing cell population 

that resides in the bone marrow niche [Zon 2008]. HSCs are able to generate all transient 

and terminally differentiated immune cells [Benveniste et al. 2003], which are classified 

into two main groups: myeloid lineage and lymphoid lineage (Figure 1.2). HSCs are 

defined by a triple-labeling identification by the Lineage (Lin), stem cells antigen-1 (Sca-

1), and c-Kit proteins; HSCs are Lin-, Sca-1+, c-Kit+. HSCs are subdivided into two 

populations: a long-term (LT-HSC) population that can self-renew or asymmetrically 

divide to produce the other, a short-term (ST-HSC) population that retains multipotency 

while undergoing robust proliferation and differentiation toward the numerous transient 

and terminal immune cell lineages. ST-HSCs can differentiate into common myeloid 

progenitors (CMPs) or common lymphoid progenitors (CLPs), which serve as multipotent 

progenitor populations for all myeloid and lymphoid lineages, respectively [Challen et al. 

2009]. Cells derived from CMPs compose the innate immune system, and cells derived 

from CLPs compose the adaptive immune system. 

 

1.2.2 Innate immunity 

 The innate immune system functions as a first line of defense against infectious 

species, utilizing several families of pattern recognition receptors such as toll-like receptors 

(TLRs) or NLRs to provide a short-term barrier against pathogen invasion [Mogensen 

2009]. Cells of the innate immune system, such as neutrophils and macrophages, possess 
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the ability to attach to and digest pathogens, assisting with clearance of active infection. In 

species with a functional antigen-mediated immune system, innate immune cells also play 

a major role in presentation of digested pathogenic particles, activating and inducing clonal 

expansion of adaptive immune cells. 

 

Receptors and molecular pathways of innate immunity 

 Cells of the innate immune system, also known as leukocytes, express several 

families of receptors and signaling molecules that perform two functions in sequence: 

recognition of non-self pathogens, and presentation of antigens to cells of the adaptive 

immune system. Both of these functions use the complement system, which is composed 

of receptors and soluble proteins that function as a surveillance system against pathogens. 

Complement proteins include pattern recognition proteins like C1q, proteases that regulate 

the complement signaling cascade, opsonization proteins that increase detection of foreign 

species by host immune cells, and receptors that bind to opsonized pathogens to induce 

phagocytic destruction. The complement system is often the first to recognize pathogens 

and also functions to alert other immune cells to an ongoing infection [Ricklin et al. 2010]. 

Cells of the innate immune system also express a comprehensive panel of pattern 

recognition receptors that recognize conserved pathogen moieties, including 

lipopolysaccharides, peptidoglycans, flagellin, and others [Buchmann 2014]. Receptor 

families like the TLRs and NLRs alert the host of an active infection and induce 

inflammatory factor expression that amplifies the host immune response. 
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 The TLR family of pattern recognition receptors was initially discovered in 

Drosophila melanogaster and soon after confirmed to be expressed in vertebrates [Hansson 

et al. 2005]. TLRs recognize conserved moieties and genetic elements from pathogens, 

including LPS, double-stranded RNA, and bacterial flagella, among others [Kawai et al. 

2010]. TLRs are classified into two branches: cell-surface receptors and intracellular 

receptors. TLR1, TLR2, TLR4, TLR5, and TLR6 reside on the cell surface and detect 

PAMPs that primarily compose bacterial and fungi membrane moieties, such as lipids and 

lipoproteins. TLR3, TLR7, TLR8, TLR9, and TLR10 reside intracellularly within 

endosomes and detect microbial nucleic acids. All TLRs signal through the intracellular 

effector protein MyD88, except for TLR3, which signals downstream through the TIR-

domain-containing adapter-inducing interferon-β (TRIF) protein. Upon moiety binding, 

receptor activation, and signal propagation, the TLR family upregulates inflammatory 

signaling proteins, such as NF-κB, that potentiate a host inflammatory response [Kawai et 

al. 2010]. 

 The NLR and TLR families of pattern recognition receptors identify similar 

conserved pathogen moieties; however, NLRs propagate signaling through a TLR-

independent mechanism. NLRs primarily reside in the cytosol, although low cell-surface 

expression has been detected. NOD1 and NOD2 are the two major NLRs and both 

recognize peptidoglycan motifs present in bacterial cell walls [Shaw et al. 2008]. In 

addition to their pattern recognition function, NLRs can form inflammasomes, protein 

complexes composed of NLRs and other scaffold proteins, that activate caspase-1, a key 

step for processing pro-inflammatory cytokines [Martinon et al. 2002]. 
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Origin of innate immune cells 

 All myeloid lineage cells of the innate immune system are derived from a 

clonogenic common myeloid progenitor (CMP) [Akashi et al. 2000]. CMPs can 

differentiate into two distinct transient progenitor populations: megakaryocyte/erythrocyte 

progenitors (MEPs) and granulocyte/macrophage progenitors (GMPs). The MEP branch 

differentiates into all cells of the erythropoietic lineage, including erythrocytes, 

megakaryocytes, and platelets, and is not considered to have substantial inflammatory 

function. The GMP branch differentiates into granulocytes, which includes neutrophils and 

mast cells, as well as monocyte/macrophage lineages [Kolaczkowska et al. 2013, Dahlin 

et al. 2014]. 

 

Neutrophils 

 Neutrophils are the most abundant leukocyte in the blood and are the first 

responding cells during active pathogen infection [Witko-Sarsat et al. 2000]. Neutrophils 

defend against pathogen infection through several mechanisms, including phagocytosis, 

oxidative bursts, and neutrophil extracellular traps (NETs) [Brinkmann et al. 2004, de 

Oliveira et al. 2016]. The lifespan of neutrophils in circulation is relatively short, ranging 

from eight to twelve hours. Neutrophils in circulation migrate to localized sites of infection 

upon detection of cytokines and other inflammatory factors released by tissue-resident 

cells. Neutrophil migration from blood vessels to infection sites, termed extravasation, 

involves a cascade of events including cell rolling, adhesion, and transmigration through 

vessel endothelial cells [Phillipson et al. 2011]. Upon reaching a site of active infection, 



 

13 

 

neutrophils attack foreign species and secrete numerous pro-inflammatory cytokines and 

chemokines, including TNF-α, IL-1β, IL-6, among others, amplifying the local immune 

response [Witko-Sarsat et al. 2000, Kaplanski et al. 2003]. 

 

Monocytes/macrophages 

 Monocytes are leukocytes that participate in phagocytosis of pathogens. During 

active infection, monocytes are recruited to the site of pathogen invasion and convert into 

macrophages or dendritic cells [Ginhoux et al. 2014]. Monocytes survey the biological 

landscape via passage through the circulatory system, with reserve populations residing in 

the spleen primed for deployment [Swirski et al. 2009]. Macrophages derived from 

monocytes phagocytose pathogens and contribute to acute inflammatory events that defend 

against infection. Tissue resident macrophages, such as Kupffer cells, alveolar 

macrophages, and microglia, reside in numerous organs and provide local protection 

against pathogens and other functions. These cells, however, are derived from the 

embryonic yolk sac and are distinct from monocyte-derived macrophage populations 

[Epelman et al. 2014]. 

Macrophages that respond to infection or injury are broadly grouped into two 

branches: the pro-inflammatory M1 macrophages and the anti-inflammatory M2 

macrophages. M1 macrophages are first-responder macrophages that produce and secrete 

numerous pro-inflammatory cytokines and chemokines to sustain an ongoing acute 

inflammatory reaction. M1 macrophages communicate with adaptive immune cells via 

inflammatory factors including IFN-γ and TNF-α, leading to cytotoxic attacks pathogens 



 

14 

 

and damaged tissue. Following the initial pro-inflammatory response, M1 macrophages 

can class-switch into anti-inflammatory M2 macrophages, which participate in wound 

repair and final pathogen clearance [Italiani et al. 2014]. 

 

Mast cells 

 Mast cells are tissue resident granulocytes distributed throughout the vascularized 

tissues and serosal cavity. Mast cells were originally recognized for their roles in allergy 

response and anaphylaxis [Bischoff 2007]; however, they have recently been appreciated 

for having diverse biological roles, including wound repair, scar formation, fibrosis, pain 

pathophysiology, angiogenesis, and ectopic bone formation [Kalesnikoff et al. 2008, Kan 

et al. 2011, Thevenot et al. 2011, Gri et al. 2012, Frieri et al. 2013, Vincent et al. 2013, 

Douaiher et al. 2014, Convente et al. 2015]. Mast cells are the major inflammatory cell 

involved in allergenic responses, mediated by Immunoglobulin E (IgE) antibody response. 

During active bouts of allergy, IgE class antibodies bind to FcεRIα receptors present on the 

cell surface of mast cells, triggering an intracellular signaling cascade that results in 

degranulation and release of histamine, proteases, cytokines, and chemokines [Kalesnikoff 

et al. 2008, Crivellato et al. 2010]. Non-IgE-mediated stimulation of mast cells, induced by 

neuropeptides like Substance P, can also stimulate mast cell degranulation and release of 

inflammatory factors [Azzolina et al. 2003, O'Connor et al. 2004, Galli et al. 2005]. 
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Dendritic cells 

 Dendritic cells are defined as professional antigen presenting cells (APCs) that help 

direct the adaptive immune response. Classic dendritic cells are derived from CMPs and 

are thought to be appropriately classified as myeloid lineage cells, however some dendritic 

cells have also been identified having a CLP origin. Dendritic cells express MHC Class I 

and Class II receptors, which contribute to antigen presentation, however a subset of 

dendritic cells can also express putative T cell receptors like CD4 and CD8 [Merad et al. 

2013, Mildner et al. 2014]. Given their dual roles as APCs and T cell co-stimulatory cells, 

dendritic cells are considered the interface between innate and adaptive immunity. 

 

1.2.3 Adaptive immunity 

 The adaptive immune system provides long term defense against pathogens and 

other non-self particles, utilizing somatic gene rearrangement mechanisms to generate 

diverse and clonally expressed antigen receptors [Boehm 2011]. Cells of the adaptive 

immune system, such as T cells and B cells, possess the ability to recognize specific 

antigens and mount robust antigen-specific immune responses through use of T cell 

receptors (TCRs) and B cell receptors (BCRs). The adaptive immune system is unique in 

its ability to detect and respond to secondary waves of pathogen invasion derived from a 

set of mechanisms commonly termed as “memory” [Boehm 2011]. 
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The Variable-Diversity-Joining V(D)J locus and assembly of TCRs and immunoglobulins 

 Cells of the adaptive immune system, known as lymphocytes, initiate a functional 

antigen-mediated immune response through mechanisms that generate antigen-specific 

receptors that bind only to a single putative antigen. The variable-diversity-joining – also 

known as V(D)J – locus is a complex region of genes segments that serve as the foundation 

for TCR and immunoglobulin formation. During differentiation of T and B cells, single V, 

(D), and J segments from the V(D)J locus are randomly recombined to form a unique cell-

surface receptor [Schatz et al. 2011]. This process depends on a consortium of enzymes 

that work in tandem to faithfully complete receptor construction. The recombination-

activating genes (RAG1 and RAG2) function as endonucleases and recombinases that carry 

out faithful V(D)J recombination [Oettinger et al. 1990]. RAG1 and RAG2 are required 

for development of mature T and B cells, as mutations in either gene are known to cause 

severe immunodeficiency disorders [Notarangelo et al. 2016]. Additional receptor 

diversity is introduced by the terminal deoxynucleotidyl transferase (TdT) enzyme. TdT is 

a specialized DNA polymerase that adds two-to-five random N-nucleotides to linked V(D)J 

sites during recombination, substantially increasing genetic diversity capacity of formed 

receptors [Yamtich et al. 2010]. 

 

Origin of adaptive immune cells 

 All lymphoid lineage cells of the adaptive immune system are derived from a 

clonogenic common lymphoid progenitor (CLP) [Kondo et al. 1997]. CLPs can 

differentiate into three distinct populations – T cells, B cells, and natural killer cells. Both 
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T cells and B cells differentiate through a series of transient progenitor cells known as pro- 

and pre-stages that are accompanied with generation of their V(D)J-derived cell-surface 

receptors used for antigen-mediated immune function. 

 

T cells 

 T cells are derived from HSCs but mature within the thymus [Zuniga-Pflucker 

2004]. Multiple subpopulations of T cells exist, including helper T cells, cytotoxic (killer) 

T cells, and regulatory T cells, among others, that are defined by varied function and cell-

surface receptor expression [Broere et al. 2011]. The earliest T cell progenitors, also known 

as thymocytes, are double-negative for CD4 and CD8 receptors and migrate from the bone 

marrow to the thymus, where they undergo multiple checkpoints and differentiation stages, 

including two antigen evaluation checkpoints known as positive and negative selection 

[Starr et al. 2003], until they reach their mature state. Positive selection preferentially 

selects for developing thymocytes that can interact with MHC-presented antigens. At this 

stage, developing thymocytes express both CD4 and CD8 receptors. Developing 

thymocytes within an accepted range of peptide binding affinities receive a Wnt-dependent 

survival signal [Ioannidis et al. 2001] and proceed to negative selection, which ensures that 

thymocytes do not bind to self-peptides. Thymocytes that fail this checkpoint are removed 

by apoptosis [Starr et al. 2003]. Upon passing all developmental checkpoints, thymocytes 

are directed down a CD4 or CD8 lineage depending on their TCR binding affinity to MHC 

Class I or Class II peptides, respectively, where they are now defined as mature T cells. 
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 T cells circulate throughout the body in a naïve, unstimulated state until they 

encounter a putative antigen. Upon antigen binding, T cells require an additional co-

stimulatory signal mediated through the CD28 receptor for full activation [Chen et al. 

2013]. Once activated, the antigen-specific T cell clonally expands by several orders of 

magnitude and mediates a cytotoxic mechanism against pathogens expressing the putative 

antigen [Broere et al. 2011]. 

 

B cells 

 B cells are lymphocytes that act in humoral immunity by functioning as antibody-

producing cells. B cells undergo a similar developmental pathway as T cells, including 

V(D)J recombination of the immunoglobulin portion of the BCR and a positive/negative 

selection process [Pieper et al. 2013]. Naïve mature B cells express unique cell-surface 

immunoglobulin receptors mimicking the structure of an antibody. Upon binding of 

putative antigen, the unique B cell is activated, clonally expands, and differentiates into a 

plasma cell that secretes soluble antibodies against the antigen. A residual memory B cell 

subpopulation remains to recognize pathogen secondary responses and secrete antibodies 

accordingly [LeBien et al. 2008]. 

 

Natural killer (NK) cells 

 Natural killer (NK) cells are cytotoxic cells derived from CLPs [Kondo et al. 1997]. 

However, unlike CD8+ cytotoxic T cells, which require antigen-specific binding to initiate 

destruction mechanisms, NK cells are able to identify and destroy pathogens in absence of 
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any antigen-mediated process [Vivier et al. 2011]. Notably, NK cells are able to detect and 

destroy unhealthy host “self” cells, hence their eponym. Similar to dendritic cells, NK cells 

function as intermediaries between the innate and adaptive immune systems. 

 

1.2.4 Inflammatory contribution to injury and wound repair 

 A second, yet equally important function of the immune system is the ability to 

respond to tissue injury. The panel of pattern recognition receptors (PRRs) utilized for 

pathogen detection, such as TLRs and NLRs, also can bind to damage-associated molecular 

patterns (DAMPs) that are released from damaged cells following injury [Takeuchi et al. 

2010]. The DAMP family of molecules is extensive, composed of numerous proteoglycan, 

glycosaminoglycan, glycoprotein, nucleic acid, and inorganic phosphate molecules 

[Schaefer 2014]. DAMPs can be released by an injury force in tandem with cellular and 

nuclear membrane rupture, however DAMPs may also be released following early innate 

immunity responses to pathogens, such as neutrophil oxidative bursts that may 

indiscriminately damage host tissue [Brinkmann et al. 2004, Rubartelli et al. 2007, de 

Oliveira et al. 2016]. 

 The inflammatory response during tissue injury and wound repair can be grouped 

into two main phases – a pro-inflammatory phase that coincides with cytokine, chemokine, 

and immune cell propagation that functions to clear damaged tissue and resultant pathogen 

infection; and an anti-inflammatory phase that dampens the pro-inflammatory response and 

recruits progenitors cells to regenerate damaged tissue. 
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The cascade of pro-inflammatory and anti-inflammatory events in skeletal muscle 

injury and regeneration have been well characterized [Chargé et al. 2004, Philippou et al. 

2012]. Neutrophils are the earliest responding cells to skeletal muscle injury, functioning 

to digest damaged tissue and protect against pathogen invasion from open wounds 

[Philippou et al. 2012]. Neutrophils secrete numerous chemokines and cytokines, such as 

CXCL8, IL-8, TNF-α, IL-1β, and IL-6 [Witko-Sarsat et al. 2000, Kaplanski et al. 2003, de 

Oliveira et al. 2016], that recruit additional immune cells to the site of injury. Classically-

activated M1 macrophages, derived from migratory monocytes, are next to respond to 

injury. These cells phagocytose damaged tissue, secrete TNF-α and nitric oxide (NO), and 

perform anti-microbial functions [Murray et al. 2011]. As clearance of damaged tissue 

nears its completion, the pro-inflammatory response is dampened and replaced with an 

anti-inflammatory response that coincides with the transition of M1 to M2 macrophages 

[Arnold et al. 2007, Laskin et al. 2011]. M2 macrophages secrete anti-inflammatory 

proteins and growth factors, including IL-4, IL-10, TGF-β1, and platelet-derived growth 

factor (PDGF) to support myofibroblast differentiation and eventual restoration of 

damaged skeletal muscle [Murray et al. 2011]. 

 

1.3 Regulation of the immune system by BMP pathway signaling 

 Immune cells communicate primarily via inflammatory chemokine and cytokine 

pathway networks. However, the BMP signaling pathway also has significant roles in the 

development, recruitment, stimulation, and cross-talk of progenitor and terminally 

differentiated immune cell populations [Chen et al. 2016]. Adult human HSCs express 
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BMP type I receptors and BMP ligands, and maintain robust repopulation capacity when 

cultured with high BMP4 concentrations, indicating a significant role for BMP signaling 

in HSC self renewal [Bhatia et al. 1999]. Smad4 is required for HSC self-renewal, further 

demonstrating the importance of BMP/TGF-β signaling in HSC biology [Karlsson et al. 

2007]. In addition to its role in HSC self-renewal, BMP signaling also directs cell fate of 

HSCs toward myeloid or lymphoid lineages [Crisan et al. 2015].   

 

1.3.1 BMP signaling in the innate immune system 

 BMP ligands function as chemoattractant factors to recruit several innate immune 

cell populations to sites of infection or injury. Injection of recombinant human BMP-2B 

(later renamed BMP4) was demonstrated to induce monocyte migration in an in vitro assay 

[Cunningham et al. 1992]. Additionally, BMP4 was shown to recruit monocytes in pro-

atherogenic conditions [Simoes Sato et al. 2014], and BMP6 was shown to induce 

neutrophil migration into ovaries [Akiyama et al. 2014]. In human dendritic cells, BMP 

signaling promotes maturation from monocyte precursors, induces IL-8 and TNF-α 

secretion, and enhances T cell stimulatory capacity [Martinez et al. 2011]. BMP signaling 

also potentiates the inflammatory state of other innate immune cells, inducing IL-1β and 

NO production in macrophages and Substance P expression in mast cells [Kwon et al. 

2009, Salisbury et al. 2011]. 
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1.3.2 BMP signaling in the adaptive immune system 

 The BMP signaling pathway is active in multiple adaptive immune cells. BMP2 

and BMP4 are crucial signaling ligands for progression of CD4-/CD8- double-negative T 

cell precursors to CD4+/CD8+ double-positive cells [Hager-Theodorides et al. 2014]. In 

mature CD4 T cells, BMP receptors are upregulated during TCR antigen binding, and BMP 

signaling is required for production of the cell survival and homeostasis signals IL-7, 

CXCR4, and CCR9 [Martinez et al. 2015]. In contrast, BMP signaling was shown to 

decrease TH17 helper T cell and regulatory T cell differentiation, suggesting that not all T 

cell subsets respond identically to the BMP signaling pathway [Yoshioka et al. 2012]. 

BMPs generally have a suppressive effect on B cells, inhibiting IgM, IgG, and IgA 

production in naïve and memory B cells, although the effect was ligand-specific [Huse et 

al. 2011]. 

 

1.4 Fibrodysplasia ossificans progressiva 

1.4.1 Clinical features 

 Fibrodysplasia ossificans progressiva (FOP) is clinically defined by two 

characteristic features: 1) progressive formation of heterotopic ossification (HO), and 2) 

congenital malformations of the great toe (clinically termed “hallux valgus”) (Figure 1.3). 

 At birth, the only observable phenotype of FOP is the presence of hallux valgus, a 

deformity of the great toe that is present in nearly all FOP patients [Kaplan et al. 2009]. As 

the child ages, appearance of HO usually manifests within the first decade of life. HO 

develops progressively within soft connective tissues, including skeletal muscle, tendon, 
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and ligament, in a characteristic pattern that first impacts the cranial, axial, and dorsal 

regions, including the head, neck, shoulders, and back [Pignolo et al. 2016]. HO in FOP is 

often induced by tissue injury events, including intramuscular vaccination, contusion, blunt 

force trauma, and surgical removal of ectopic bone [Lanchoney et al. 1995, Glaser et al. 

1998, Scarlett et al. 2004]; however, HO can also form in the absence of overt injury 

[Cohen et al. 1993]. As HO progresses, patient mobility is increasingly diminished as joints 

ankylose and ectopic bone extends across adjacent tissues [Smith 1998, Kaplan et al. 2004, 

Pignolo et al. 2016]. 

 FOP patients frequently present with abnormalities in addition to the two classical 

features. Over half of patients with FOP have conductive hearing impairment, cervical 

spine fusions of the facet joints between C2 and C7, short, broad femoral necks, and tibial 

osteochondromas [Kaplan et al. 2005, Schaffer et al. 2005, Deirmengian et al. 2008]. 

Craniofacial alterations, including reduced mandible and low-set ears, have also been 

observed [Hammond et al. 2012]. Some FOP patients report multiple neurological 

complications, including recurrent severe headaches, neuropathic pain, and recurrent 

seizures [Kitterman et al. 2012]. Later in life, patients commonly develop thoracic 

insufficiency syndrome (TIS), a life-threatening cardiopulmonary condition that can cause 

pneumonia and right-sided heart failure, and is a common cause of death in FOP [Kaplan 

et al. 2010]. 
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1.4.2 Histopathology of FOP lesions 

 Following a conclusive diagnosis of FOP, biopsies are not recommended, as the 

accompanying tissue injury stimulates new HO formation at site of collection [Pignolo et 

al. 2016]. However, biopsies collected prior to diagnosis of FOP have revealed the 

histological sequence of catabolic and anabolic events throughout lesion development 

[Kaplan et al. 1993, Gannon et al. 1998, Gannon et al. 2001, Glaser et al. 2003, Hegyi et 

al. 2003] (Figure 1.4). The earliest stage of lesion development involves robust invasion of 

neutrophils, monocytes/macrophages, mast cells, and lymphocytes that accompany 

extensive connective tissue destruction [Gannon et al. 1998, Gannon et al. 2001, Kaplan et 

al. 2005]. Subsequently, fibroproliferative cells mark the transition from the catabolic to 

anabolic phase, which occurs with concomitant with angiogenesis [Gannon et al. 1998, 

Glaser et al. 2003]. Lineage tracing studies (Lounev 2009; Medici et al) suggest that the 

fibroproliferative cells transition to endochondral ossification with characteristic cartilage 

morphology and extracellular matrix composition [Kaplan et al. 1993, Gannon et al. 1998, 

Glaser et al. 2003]. A final osteogenesis stage occurs, resulting in mature heterotopic bone 

that may contain an active bone marrow niche [Kaplan et al. 1993]. The origin of cells that 

contribute to HO remains incompletely defined. Tie-2, Mx1, and Scx have been used as 

markers to identify lineages that contribute to HO development in vivo [Lounev et al. 2009, 

Wosczyna et al. 2012, Agarwal et al. 2016, Dey et al. 2016]. Of note, cells of hematopoietic 

or vascular smooth muscle origin were not represented in the fibroproliferative, 

chondrogenic, or osteogenic stages of HO [Kaplan et al. 2007, Lounev et al. 2009]. 
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1.4.3 Causative mutations in ACVR1 in FOP 

In 2006, ACVR1 was identified as the mutated gene in FOP [Shore et al. 2006]. 

ACVR1 encodes for the BMP type I receptor Activin-like kinase 2 (ALK2). FOP is 

inherited in an autosomal dominant pattern, although most cases of FOP arise from 

sporadic mutations with no associated family history [Shore et al. 2010]. Greater than 95% 

of patients express a specific heterozygous missense mutation, an arginine to histidine 

amino acid residue change at codon 206 (R206H) caused by a single nucleotide substitution 

(c.617G>A) (Figure 1.5) [Shore et al. 2006, Kaplan et al. 2009]. The R206H mutation is 

located within the GS domain of ALK2 and is predicted to impair salt bridge formation 

with a tertiary-adjacent aspartate residue at codon 269 [Groppe et al. 2007], reducing 

binding affinity for FKBP12, an inhibitory protein that stabilizes the inactive conformation 

of the receptor [Huse et al. 1999, Shen et al. 2009, Chaikuad et al. 2012]. 

 Additional causative mutations in ACVR1 have been identified in patients with FOP 

in combination with atypical features and/or more severe or mild FOP characteristics 

[Convente et al. 2017]. All identified classic and variant FOP mutations are single 

nucleotide substitutions within the GS or protein kinase domains of ALK2, except for a 

three-nucleotide deletion spanning two codons that results in replacement of a single amino 

acid residue (P197-F198 del ins L) (Figure 1.5) [Kaplan et al. 2009]. 

 

1.4.4 ACVR1R206H causes enhanced BMP signaling activity 

 In vitro studies using cells derived from human patients and various animal models 

have demonstrated elevated BMP pathway signaling caused by the ACVR1 R206H 
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mutation. Patient-derived lymphoblastoid cell lines (LCLs) exhibited enhanced 

phosphorylated-p38 MAPK levels and BMP target gene expression in the presence of 

BMP4 ligand [Fiori et al. 2006]. Upregulation of canonical BMP signaling by ALK2R206H 

was first observed using FOP patient-derived stem cells from human exfoliated deciduous 

teeth (SHED) [Billings et al. 2008]. Ligand-independent and ligand-dependent activation 

of ALK2R206H was also observed in SHED cells, and confirmed in chick limb bud 

micromass cultures and zebrafish embryonic development assays [Billings et al. 2008, 

Shen et al. 2009]. Increased signaling has also been observed in over-expression C2C12 

(mouse myoblast precursor line), COS-7 (monkey kidney cell line), and MC3T3-E1 

(mouse pre-osteoblast cell line) experiments, indicating the enhanced activity of 

ALK2R206H is not cell specific [Fukuda et al. 2009, Shen et al. 2009]. Notably, increased 

signaling conferred by ALK2R206H is not prevented by addition of extracellular BMP 

antagonists, such as noggin, further suggesting that the enhanced signaling activity is in 

part ligand-independent [Shen et al. 2009]. 

 The observed enhanced signaling activity in ALK2R206H is consistent with 

predictive structural modeling data [Groppe et al. 2007, Chaikuad et al. 2012]. The crystal 

structure of ALK2 [Chaikuad et al. 2012] indicates that FOP mutations may alter 

interactions that stabilize the inactive state of the kinase domain, leading to inappropriate 

activation. Furthermore, the ACVR1 R206H mutation is predicted to reduce binding of 

FKBP12, an intracellular regulatory protein that binds the GS domain of BMP/TGF-β type 

I receptors to prevent leaky receptor activation in absence of ligand binding [Wang et al. 

1996, Groppe et al. 2007]. Co-immunoprecipitation and size exclusion high-performance 
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liquid chromatography (HPLC) experiments have shown reduced FKBP12 binding affinity 

to ALK2R206H compared to wild-type ALK2 [Shen et al. 2009, Song et al. 2010, van Dinther 

et al. 2010, Groppe et al. 2011], matching structural homology predictions. 

  

1.4.5 Conditional-on knock-in mouse model of FOP 

 The need for high fidelity mouse models is essential to studying FOP, especially in 

light of the rarity of biopsy tissue. A knock-in mouse model was generated to carry the 

identical nucleotide substitution as in patients, c.617G>A;R206H in exon 5 at the 

endogenous Acvr1 locus [Chakkalakal et al. 2012]. Chimeric founder mice were viable, 

however germline transmission pups died perinatally. These mice phenocopied all clinical 

features of FOP, including the two characteristic features of disease – progressive HO and 

great toe malformation. An unexpected finding from the chimeric model is the presence of 

wild-type cells in ectopic bone, suggesting that although the ACVR1 R206H mutation is 

necessary to induce the bone formation process, the mutation is not necessary for 

differentiation of progenitor cells into cartilage and bone within maturing lesions. 

Histopathological analysis also demonstrated that lesion development in the knock-in 

mouse model progressed through all catabolic and anabolic stages seen in FOP. This mouse 

model was the first to demonstrate that the ACVR1 R206H mutation is sufficient to cause 

FOP [Chakkalakal et al. 2012]. 

 In order to study FOP etiology throughout neonatal development and adulthood, a 

conditional-on knock-in Acvr1R206H mouse was generated [Hatsell et al. 2015]. This mouse 

contains an engineered gene construct at the endogenous Acvr1 locus with the human wild-
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type exon 5 followed by downstream mouse R206H exon 5 in anti-sense orientation, with 

adjacent intron sequence and engineered LoxP sites in between. Upon Cre-recombinase-

mediated recombination, the human wild-type exon is deleted and the mouse R206H exon 

is flipped into sense orientation, generating a functional Acvr1R206H allele (Figure 1.6). The 

Acvr1R206H allele can be induced globally, or in specific cell populations induced by 

promoter-driven Cre recombinase expression. Several studies have used these mice for in 

vitro and in vivo experiments [Hatsell et al. 2015, Chakkalakal et al. 2016, Dey et al. 2016]. 

 

1.5 Project summary 

 Much has been learned about cellular and molecular mechanisms driving FOP 

pathology since the discovery of the gene mutation in 2006. Clinical evaluation, in 

combination with mouse model data, has vastly expanded the knowledge of disease, 

especially for the later chondrogenesis and osteogenesis stages. Previous work from our 

lab and others has demonstrated accelerated chondrogenesis as a consequence of the 

ACVR1 R206H mutation, and the first clinical trials for FOP are currently evaluating drug 

efficacy at inhibiting this stage of lesion progression. Despite the recent advances in 

understanding of FOP pathology, an area that remains unclear is the contribution of the 

immune system to disease initiation and progression. As outlined in the Introduction, BMP 

signaling is crucial for immune cell development and activation. This suggests that the 

increased activity conferred by Acvr1R206H would enhance the early inflammatory response 

stage of FOP disease progression, which occurs in episodes of HO even without an overt 

injury. In the case of tissue injury, an early inflammatory response is seen in both FOP 
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patients and unaffected individuals, yet the final outcome of the injury repair program is 

strikingly dissimilar, as FOP patients develop ectopic cartilage and bone in place of faithful 

tissue regeneration. Elucidating how the ACVR1 R206H mutation and the inflammatory 

response direct the divergence of repair events has not been determined and is a goal of 

this project. 

 I investigated two primary research questions for this project: 1) to determine the 

effect of Acvr1R206H on the cellular and molecular inflammatory response to tissue injury, 

and 2) to determine whether modulation of the immune system can control HO formation. 

The experimental results presented in this dissertation demonstrate an active role for 

Acvr1R206H in driving an elevated inflammatory response in FOP, and that inhibition of the 

immune system can impair HO development in an FOP genetic background. 
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Figure 1.1: BMP and TGF-β signaling pathways 
BMP and TGF-β signaling pathways (canonical and non-canonical) are shown. Extracellular, membrane-

bound, and intracellular antagonists are included. Abbreviations: EC = extracellular domain; TM = 

transmembrane domain; GS = glycine/serine domain; PK = protein kinase domain 
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Figure 1.2: Hematopoiesis differentiation chart 
Generalized hematopoiesis self-renewal and differentiation chart is shown. LT-HSCs self-renew or 

asymmetrically divide into ST-HSCs, which proliferate and differentiate into two branches – CLPs or CMPs. 

All lymphoid- and myeloid-derived precursor and terminally differentiated cells are derived from either CLPs 

or CMPs, respectively. Abbreviations: HSC = hematopoietic stem cell; LT-HSC = long-term HSC; ST-HSC 

= short-term HSC; CLP = common lymphoid progenitor; CMP = common myeloid progenitor; GMP = 

granulocyte/macrophage progenitor; MEP = megakaryocyte/erythrocyte progenitor 
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Figure 1.3: Clinical diagnostic features of FOP 
(A) Three-dimensional volume rendering demonstrating progressive HO observed in FOP. (B) Radiograph 

of feet showing the great toe malformation (“hallux valgus”) in FOP. 

 
Figure panels (A) and (B) from Shore E.M., Xu, M., Feldman, G.J., Fenstermacher, D.A., Cho, T.J., Choi I.H., Conner, J.M., Delai P., 
Glasser, D.L., LeMerrer, M., Morhart R., Rogers J.G., Smith R., Triffitt J.T., Urtizberea, J.A., Zasloff, M., Brown, M.A., Kaplan, F.S. 

“A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva.”  

Nature Genetics. 2006 May, 38(5):527-527. 
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Figure 1.4: Histopathology of FOP lesion 
(A) Schematic representation of lesion progression in FOP. In response to injury, skeletal muscle destruction 

occurs followed by robust immune cell invasion. As these catabolic events conclude, an anabolic stage begins 

with recruitment of fibroproliferative progenitor cells that condense and differentiate to chondrocytes, 

ultimately resulting in mature bone with an active marrow niche. (B) Histological section from Acvr1cR206H/+ 

mouse containing all sections of lesion. (C) Histological section from FOP patient biopsy containing 

comparable stages of lesion to mouse. Scale bar = 100 μm. Abbreviations: DM = damaged muscle; FP = 

fibroproliferation; C = chondrocytes; B = bone. 
 

Figure panel (C) from Kaplan, F.S., Pignolo, R.J., Shore, E.M. “The FOP metamorphogene encodes a novel type I receptor that 
dysregulates BMP signaling.” Cytokine & Growth Factor Reviews. 2009 20(5-6):399-407. 
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Figure 1.5: ALK2 classical and variant mutations in FOP 
ALK2, the BMP type I receptor mutated in FOP, consists of four domains: an extracellular ligand binding 

domain (EC), a transmembrane domain (TM), a glycine/serine domain (GS), and a protein kinase domain 

(PK). A total of 12 mutations have been identified, all present within the GS or PK domains. Over 95% of 

patients possess the classical R206H mutation. 

 

Based on figure from Convente M, Towler O, Stanley A, Brewer N, Allen R, Kaplan F, Shore E. "Chapter 

30: Fibrodysplasia (Myositis) Ossificans Progressiva." In: Thakker R, Whyte M, Eisman J, Igarashi T, 

editors. Genetics of Bone Biology and Skeletal Disease: 2nd Edition (in press). 2: Elsevier; 2017. 
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Figure 1.6: Conditional-on knock-in Acvr1R206H mouse 
(A) Sequence of Acvr1 exon 5, with the nucleotide substitution c.617G>A shown. (B) Structure of the 

Acvr1[R206H]FIEx allele. The wild-type human exon 5 region is in sense orientation, followed downstream by 

the R206H mouse exon 5 region in antisense orientation; both regions are flanked by two pairs of loxP sites 

arranged so that the wild-type region is deleted and the R206H region is flipped into sense orientation upon 

recombination. (C) Structure of R206H allele post-recombination. 

 
Figure panels (A), (B), and (C) from Hatsell, S. J., Idone, V., Wolken, D. M., Huang, L., Kim, H. J., Wang, L., Wen, X., Nannuru, K. 

C., Jimenez, J., Xie, L., Das, N., Makhoul, G., Chernomorsky, R., D'Ambrosio, D., Corpina, R. A., Schoenherr, C. J., Feeley, K., Yu, 
P. B., Yancopoulos, G. D., Murphy, A. J., Economides, A. N. “ACVR1R206H receptor mutation causes fibrodysplasia ossificans 

progressiva by imparting responsiveness to activin A.” Science Translational Medicine. 2015 October, 7(303):303ra137. 
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Chapter Two 

Materials and Methods 
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2.1 Study Animals 

 All procedures were reviewed and approved by the Institutional Animal Care and 

Use Committee at University of Pennsylvania. 

 

2.1.1 Knock-in Acvr1R206H/+ mouse colony 

 A conditional knock-in Acvr1R206H/+ mouse was previously generated [Hatsell et al. 

2015]. Mice were crossed into two different induction systems – ERT2-Cre tamoxifen 

induction, and R26-rtTA; TetO-Cre doxycycline induction. 

Our lab obtained B6.129-Gt(ROSA)26Sortm(cre/ERT2)Tyj/J mice from the Jackson 

Laboratory (Stock #008463; hereafter referred to as “ERT2-Cre”). These mice express Cre 

recombinase under the presence of tamoxifen. ERT2-Cre mice were mated with 

Acvr1cR206H/+ mice to generate ERT2-Cre; Acvr1cR206H/+ mice that express the mutant 

Acvr1cR206H after administration of tamoxifen (200 μL of 10 mg/mL concentration 

dissolved in corn oil). This FOP mouse is referred to as ERT2-Cre; Acvr1cR206H/+ and was 

only used for our bone marrow transplant experiment. 

 Acvr1[R206H]FlEx/+ mice with mice double transgenic for R26-rtTA and tetO-Cre 

(heterozygous Gt(ROSA)26Sortm1(rtTA_M2)Jae and hemizygous Tg(tetO-Cre)1Jaw; (Jackson 

Laboratory) were mated to generate doxycycline-inducible global allele expression 

Acvr1[R206H]FlEx/+; Gt(ROSA)26Sortm1(rtTA_M2)Jae; Tg(tetO-Cre)1Jaw mice. This FOP mouse 

is hereafter referred to as Acvr1cR206H/+ and was used for all experiments unless otherwise 

noted. 
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2.1.2 c-KitW-sh/W-sh mast cell-deficient mouse colony 

 Our lab obtained heterozygous B6.Cg-KitW-sh/HNihrJaeBsmGlliJ from the Jackson 

Laboratory (Stock #012861, “White Sash”). To generate mast cell-deficient Acvr1cR206H/+ 

mice, I mated Acvr1cR206H/+ mice with heterozygous White Sash B6.Cg-KitW-

sh/HNihrJaeBsmGlliJ) to generate compound heterozygous Acvr1cR206H/+; B6.Cg-KitW-

sh/HNihrJaeBsmGlliJ mice. Offspring from this parental generation cross were mated to 

generate homozygous mast cell-deficient Acvr1cR206H/+; B6.Cg-KitW-sh/W-

sh/HNihrJaeBsmGlliJ mice (hereafter referred to as Acvr1cR206H/+; c-KitW-Sh/W-sh). 

 

2.1.3 B6.SJL CD45.1 mice for allogenic bone marrow transplant 

 B6.SJL CD45.1 mice were obtained from the National Cancer Institute and used as 

recipients for allogenic bone marrow transplant from CD45.2 donor bone marrow (ERT2-

Cre; Acvr1cR206H/+ or Acvr1+/+ mice). Donors and recipients expressed different isoforms 

of CD45 to quantify engraftment and reconstitution of donor bone marrow into recipients. 

 

2.1.4 LysM-Cre mouse colony 

 LysM (also known as Lyz2) encodes the sequence for the Lysozyme M protein, a 

glycoside hydrolase enzyme that is expressed in myeloid lineage cells, including 

monocytes and macrophages [Cross et al. 1988, Faust et al. 2000]. Our lab obtained 

B6.129P2-Lyz2tm1(cre)Ifo/J mice from the Jackson Laboratory (Stock #004781; hereafter 

referred to as LysM-Cre) To induce expression of Acvr1cR206H exclusively in myeloid 
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lineage cells, I mated heterozygous Acvr1cR206H/+ with heterozygous LysM-Cre/+ mice to 

generate LysM-Cre/+; Acvr1cR206H/+ mice. 

 

2.2 PCR Genotyping 

2.2.1 Extraction of genomic DNA 

 Tail snips were collected from 3 week mice and processed using the KAPA Express 

Extract Kit (KAPA Biosystems). Tissue was placed in 100 μL digestion buffer (88 μL PCR 

grade water 10 μL KAPA Express Extract Buffer, 2 μL KAPA Express Extract Enzyme (1 

U/μL) and lysed at 75°C for 10 minutes, and inactivated at 95°C for 5 minutes. 

 

2.2.2 Preparation of PCR reaction 

 A master-mix containing 12.5 μL KAPA2X Robust HotStart ReadyMix, 1.0 μL of 

forward and reverse primer solution (200 μM final concentration), 1.0 μL genomic DNA, 

and 10.5 μL PCR grade water (total volume of 25 μL) was made for each reaction. 

 

2.2.3 PCR protocol for genotyping doxycycline-inducible Acvr1cR206H/+ mice 

 Acvr1cR206H/+ mice require expression of three transgenes for doxycycline-inducible 

expression of the Acvr1cR206H allele - R26-rtTA, tetO-Cre, and Acvr1[R206H]FlEx. Expression 

of all three amplicons for a single mouse indicates a positive Acvr1cR206H/+ animal. Primer 

pair sequences targeting each transgene, thermocycler method, and agarose gel 

composition are listed in Table 2.1. 
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2.2.4 PCR protocol for genotyping tamoxifen-inducible ERT2-Cre; Acvr1cR206H/+ mice 

 Acvr1cR206H/+ mice require expression of two transgenes for tamoxifen-inducible 

expression of the Acvr1cR206H allele – ERT2-Cre and Acvr1[R206H]FlEx. Expression of both 

amplicons for a single mouse indicates a positive ERT2-Cre; Acvr1cR206H/+ animal. Primer 

pair sequences targeting each transgene, thermocycler method, and agarose gel 

composition are listed in Table 2.2. 

 

2.2.5 PCR protocol to confirm Acvr1cR206H recombination and expression 

 Expression of the Acvr1cR206H allele is confirmed by detecting presence of amplicon 

32 bp greater in length compared to unrecombined allele from genomic DNA sample post-

induction. Primer pair sequences, thermocycler method, and agarose gel composition are 

listed in Table 2.3. 

 

2.2.6 PCR protocol for genotyping mast cell-deficient c-KitW-Sh/W-sh mice 

 c-KitW-Sh/W-sh mice require homozygous expression of the mutant c-KitW-Sh allele for 

full mast cell deficiency. Primer pair sequences, thermocycler method, and agarose gel 

composition are listed in Table 2.4. For additional genotype confirmation, in a C57BL/6J 

background, c-KitW-Sh/+ mice have a patch of white fur around the abdomen and back; c-

KitW-Sh/W-sh mice have entirely white fur [Grimbaldeston et al. 2005]. 
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2.2.7 PCR protocol for genotyping LysM-Cre mice 

 Heterzygous and hemizygous expression of LysM-Cre and Acvr1cR206H/+, 

respectively, will activate the Acvr1cR206H allele exclusively in myeloid lineage populations. 

Primer pair sequences, thermocycler method, and agarose gel composition are listed in 

Table 2.5. 

 

2.3 Cross-sectional injury experimental design 

 Skeletal muscles of Acvr1cR206H/+ and Acvr1+/+ mice (4 weeks of age) were injured 

by injecting 50 μL of 20 μM cardiotoxin from Naja mossambica mossambica (Sigma-

Aldrich) into hamstring muscles of the hind limbs. Mice were euthanized by CO2 

asphyxiation and whole hind limbs were collected at days 0, 1, 2, 3, 4, 5, 6, 7, 10, and 14 

post-injection. Day 0 samples were collected without cardiotoxin injection. Acvr1cR206H/+ 

mice were placed on a doxycycline chow diet (625 mg/kg doxycycline chow) for 5 days 

prior to cardiotoxin injection to induce mutant gene expression. 

 

2.4 Isolation and culture of primary murine immune cells 

2.4.1 Isolation of murine bone marrow 

 Whole bone marrow was collected from femurs and tibias of Acvr1cR206H/+ and 

Acvr1+/+ mice. Skeletal muscle was removed from femurs and tibias, and the bones were 

cut at the diaphyseal midshaft, with approximately 0.5 mm of each epiphysis removed. 10 

mL D-MEM was aspirated through each hollow cortical bone piece using a 27G needle 

into a 15 mL conical tube. Cells were spun and plated fresh in appropriate 
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maturation/growth medium, or resuspended in 95% : 5% ratio; FBS : DMSO freeze 

medium and kept for long term storage in liquid nitrogen. 

 

2.4.2 Maturation of primary murine mast cells from whole bone marrow 

 Whole bone marrow was cultured in suspension for 6 weeks in mast cell maturation 

medium (RPMI 1640, 10% FBS, 1X Penicillin/Streptomycin, 25 mM HEPES, 1X MEM 

Non-Essential Amino Acids, 1X GlutaMAX, 100 mM Sodium pyruvate, 50 μM β-

mercaptoethanol) with added recombinant murine Stem Cell Factor (Peprotech; 15 ng/mL 

final concentration) and recombinant murine Interleukin (IL)-3 (Peprotech; 12 ng/mL final 

concentration) [Jamur et al. 2011]. Mast cell purity was determined via flow cytometry and 

gating for c-kit receptor/CD117 and FcεRIα receptor double-positive cells [Weller et al. 

2005]. 

 

2.4.3 Isolation of primary murine macrophages by thioglycollate elicitation 

 To obtain primary murine macrophages, 1.5 mL aged 4.0% thioglycolate solution 

(Sigma-Aldrich) was injected intraperitoneally into Acvr1cR206H/+ and Acvr1+/+ mice 

[Zhang et al. 2008]. After 5 days, mice were euthanized by CO2 asphyxiation and peritoneal 

exudate was collected using 10 mL PBS. Cells were centrifuged at 300 x G for 5 minutes 

and plated in 100 cm plates in macrophage growth medium (RPMI 1640, 5% FBS, 10 mM 

HEPES, 1X Penicillin/Streptomycin, 1X GlutaMAX, 23.3 mM Sodium bicarbonate, 50 

μM β-mercaptoethanol). 
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2.5 BMP ligand and inflammatory stimulation of immune cells 

2.5.1 BMP ligand stimulation of immune cells 

 1 X 106 mast cells or 5 X 105 macrophages were plated in Tyrode’s solution for 

overnight or 2 hours, respectively, and then treated with increasing concentrations of 

recombinant human BMP4 for 1 hour.  

 

2.5.2 Mast cell inflammatory stimulation with Substance P 

1 X 106 cells were plated in 1 mL Tyrode’s solution overnight, and then stimulated 

with 100 μM Substance P (Sigma-Aldrich) plus 15 ng/mL of recombinant human BMP4 

for 1 hour. 

 

2.5.2 Mast cell degranulation assay 

Mast cell degranulation was assayed using a Mast Cell Degranulation Assay Kit 

(EMD Millipore). 1.5 X 106 cells were plated in 1 mL Tyrode’s solution overnight, and 

then stimulated with 100 μM Substance P, plus 15 ng/mL of recombinant human BMP4 

for 1 hour. Cells were spun and 180 μL of conditioned medium was added to 20 μL tryptase 

substrate in a 96 well plate for 2 hours in an incubator at 37°C and 5% CO2. The assay 

detects the chromophore p-nitroanaline (pNA) after tryptase-mediated cleavage of the 

labeled substrate tosyl-gly-pro-lys-pNA. The free pNA is quantified using a microplate 

reader at a wavelength of 405 nm. 
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2.5.2 Macrophage inflammatory stimulation with lipopolysaccharides 

For macrophage inflammatory stimulation, 5 X 105 cells were plated in 1 mL 

Tyrode’s solution for 2 hours, and then stimulated with 1 ng/mL lipopolysaccharides 

(Sigma-Aldrich) plus 15 ng/mL of recombinant human BMP4 for 1 hour. 

 

2.6 Gene and protein expression analysis 

2.6.1 Gene expression analysis 

RNA was isolated from mast cells and macrophages using TRIzol (Thermo Fisher 

Scientific) and quantified using a Nanodrop instrument. 1.0 μg cDNA was synthesized 

using High Capacity RNA-to-cDNA reagents (Applied Biosystems). Real-time 

quantitative PCR reactions contained forward/reverse primers (0.37 μM), cDNA (1:5 

dilution), and 1X Fast SYBR Green PCR Master Mix (Applied Biosystems) for a final 

volume of 13 μL; each sample was analyzed in triplicate. Target gene mRNAs were 

quantified from standard curves and normalized to Gapdh. Forward and reverse primers 

are listed in Table 2.6. 

 

2.6.2 Protein expression analysis 

Total cell protein was recovered using RIPA lysis and extraction buffer (Thermo 

Fisher Scientific) containing Halt Protease and Halt Phosphatase Inhibitor Cocktails 

(Thermo Fisher Scientific) and quantified using Pierce BCA Protein Assay Kit (Thermo 

Fisher Scientific). 30 μg protein were electrophoresed through 4-12% Bolt Bis-Tris 

polyacrylamide gels (Thermo Fisher Scientific) and transferred to nitrocellulose 
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membranes using a Bio-Rad Trans Blot Turbo instrument (Bio-Rad). Membranes were 

blocked in 5% Bovine Serum Albumin and incubated with primary antibody against 

Phosphorylated Smad 1/5/8 (Cell Signaling Technology, 1:750 dilution) at 4°C overnight. 

Membranes were then incubated with primary antibody against GAPDH (Cell Signaling 

Technology, 1:5000 dilution) at room temperature for 1 hour. Bound primary antibodies 

were detected with anti-rabbit horseradish peroxidase-conjugated secondary antibody (Cell 

Signaling Technology, 1:10,000 dilution) at room temperature for 1 hour. Detected 

proteins were imaged with WesternSure PREMIUM Chemiluminescent Substrate (LI-

COR) using a LI-COR C-DiGit Blot Scanner, and quantified using LI-COR Image Studio 

software. 

 

2.7 In vivo heterotopic ossification experiments 

2.7.1 Injury-induced heterotopic ossification assay 

 Skeletal muscles of Acvr1cR206H/+ and Acvr1+/+ mice (4 weeks of age) were injured 

by injecting 50 μL of 20 μM cardiotoxin from Naja mossambica mossambica (Sigma-

Aldrich) into hamstring muscles of the hind limbs. Heterotopic ossification develops by 14 

days post-injection with 100% consistency. 

 

2.7.2 Targeted depletion of mast cells and macrophages in vivo 

 Three immunodeficient Acvr1cR206H/+ transgenic mice were generated: mast cell-

deficient Acvr1cR206H/+; c-KitW-Sh/W-sh mice, a macrophage-depleted Acvr1cR206H/+; Clo. 

mice, and combined mast cell-deficient and macrophage-depleted Acvr1cR206H/+; c-KitW-
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Sh/W-sh; Clo. mice. Heterotopic ossification was initiated by injury as in 2.7.1, except that 

duration of experiment was 17 days post-injury. 

 

2.7.3 Clodronate-liposome mediated macrophage depletion 

 To deplete macrophages from mouse cohorts [van Rooijen et al. 1984, Van Rooijen 

1989], clodronate-liposomes (100 μL / 10 g bodyweight) were injected intraperitoneally 

using a 27G needle into appropriate mouse cohorts. Clodronate-liposomes were obtained 

from the lab of Dr. Nico van Rooijen (http://www.clodronateliposomes.com, The 

Netherlands). 

 

2.7.4 Bone marrow transplant of Acvr1cR206H/+ bone marrow into recipient mice 

 Whole bone marrow from donor mice was collected from femurs and tibias. 

Recipient mice were irradiated with 1000 rads, allowed to recover, and then injected with 

5 X 106 bone marrow cells by tail vein injection. Engraftment of donor bone marrow and 

immune cell reconstitution occurred for 8 weeks. Donor mice expressed the CD45.2 

isoform, recipient mice expressed the CD45.1 isoform; this allows for detection of 

engraftment and reconstitution by flow cytometry. 

  

2.7.5 Injection of neutralizing agents as a method for inhibiting heterotopic 

ossification development 

 To neutralize the pro-inflammatory cytokines TNF-α and IL-6, I injected etanercept 

(targets TNF-α), mouse-anti-IL-6 antibody, or etanercept and mouse-anti-IL-6-antibody 

http://www.clodronateliposomes.com/
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via retro-orbital delivery into Acvr1cR206H/+ mice. The first experiment utilized the 

following dosing regimens: etanercept (4.0 mg/kg, 3X week; targets TNF-α), mouse-anti-

IL-6 antibody (150 mg per mouse, 3X week) or etanercept and mouse-anti-IL-6-antibody 

(previous concentrations). The second experiment utilized the following dosing regimens: 

etanercept (4 mg/kg, 2X week; 2 mg/kg, 2X week; 4 mg/kg, 3X week). 

 

2.7.6 Retro-orbital blood collection for detection of serum cytokines 

 Mice were anesthetized by 3% isoflurane gas. Blood (no more than 150 μL) was 

collected by retro-orbital bleeding using heparinized micro-hematocrit capillary tubes 

(Fisher Scientific). After conclusion of blood collection, mice were blotted with gauze to 

stop bleeding, returned to their cage and monitored for several minutes to ensure return to 

normal activity. Blood was collected at Day 0, Day 7, and Day 14 during course of two-

week experiment; if blood collection and antibody injection days overlapped, blood was 

collected before antibody injection. Collected blood was centrifuged in Microvette 

Capillary Blood EDTA collection tubes (Kent Scientific) at 14 X G for 20 minutes at 4° C. 

Serum was collected and stored in separate tubes at -80°C before analysis. 

 

2.7.7 Micro Computed Tomography (μCT) analysis 

High-resolution, cross-sectional images of hind limbs were obtained using a 

VivaCT 40 (Scanco Medical AG) at a source voltage of 55 kV, a source current of 145 μA, 

and an isotropic voxel size of 19.0 μm. A three-dimensional (3D) rendering was 

reconstructed using Scanco microCT V6.1 software. Thresholding values for heterotopic 
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ossification detection ranged from 240 – 1,000 Hounsfield units. Detected heterotopic 

ossification was quantified using Scanco microCT V6.1 software. 

 

2.8 Flow Cytometry 

2.8.1 Confirming primary murine mast cell purity 

 Mast cells were incubated with c-Kit-APC (BioLegend, 1:150 dilution) and FcεRIα-

PE (BioLegend, 1:150 dilution) antibodies for 30 minutes and then run on a BD 

FACSCalibur instrument (BD Biosciences). Double-positive cells expressing c-Kit and 

FcεRIα receptors were gated as mast cells. 

 

2.8.2 Confirming clodronate-liposome-mediated macrophage depletion 

 Whole bone marrow was collected at sacrifice from clodronate-liposome-injected 

cohorts and stained with F4/80-PE (BD Pharmingen), CD11b-PerCP/Cy5.5 (BD 

Pharmingen), and MHC Class II-APC antibodies (BD Pharmingen). Cells were run on a 

BD FACSCanto instrument (BD Biosciences). Triple-positive cells expressing F4/80, 

CD11b, and MHC Class II receptors were gated as macrophages. 

 

2.8.3 Confirming allogenic hematopoetic engraftment and immune cell reconstitution 

 Whole bone marrow and spleens were collected from bone marrow transplant 

recipient mice and analyzed by flow cytometry to determine engraftment of donor CD45.1 

bone marrow and reconstitution of five immune cell populations: B cells, CD4 T cells, 

CD8 T Cells, neutrophils, and natural killer cells. Cell expressing the following receptors 
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were used to detect listed immune cell populations and gated as indicated: CD45.1+, 

CD45.2+, CD19+ (B cells), CD3e+ / CD4+ (CD4 T cells), CD3e+ / CD8a+ (CD8 T cells), 

CD11b+ / Gr-1+ (neutrophils), CD3e- / CD49b+ / NK1.1+ (natural killer cells). 

 

2.9 Histological analysis 

2.9.1 Sample preparation 

 Hind limb samples were collected at sacrifice and fixed in 4% paraformaldehyde 

for 24 hours. Samples were decalcified in Immunocal (Decal Chemical Corporation) for 3 

days, embedded in paraffin blocks, and sectioned serially at 5 μm. 

 

2.9.2 Gross morphology histological stain 

 Deparaffinized sections were stained with combined Alcian Blue / Orange G / 

Hematoxylin / Eosin stain to detect glycosaminoglycans (GAG), bone, nucleated cells, and 

skeletal muscle, respectively. 

 

2.9.3 Mast cell detection via combined eosinophil and mast cell (C.E.M.) stain 

 Deparaffinized sections were stained with C.E.M. stain (American Master Tech) to 

identify mast cells. 

 

2.9.4 Immunohistochemstry 

Deparaffinized sections were treated for antigen retrieval with 10 mM Sodium-

Citrate buffer (pH 6.0) at 95°C for 20 minutes (for cytokine and chemokine detection) or 
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Digest-All 2 Trypsin (Thermo Fisher Scientific) at 37°C for 10 minutes (for immune cell 

detection). Endogenous peroxidase activity was quenched with 3% hydrogen peroxide 

solution. Sections were blocked using Background Buster (Innovex Biosciences) and 

incubated with primary antibodies overnight at 4°C. Sections were then incubated with 

appropriate host secondary antibody and developed using SuperPicture Polymer DAB 

Detection Kit (Thermo Fisher Scientific) and counterstained with haematoxylin. Primary 

antibodies used were: Phosphorylated Smad 1/5/8 (Cell Signaling, 1:50 dilution), 

Myeloperoxidase (Abcam, 1:200 dilution), F4/80 (Abcam, 1:500 dilution), CD3 (Abcam, 

1:50 dilution), TNF-α (Abcam, 1:100 dilution), IL-6 (Abcam, 1:400 dilution), IL-1β 

(Abcam, 1:400 dilution), MCP-1 (Abcam, 1:200 dilution), IL-13 (Abcam, 1:400 dilution), 

Activin A (LS Bio, 1:400 dilution). 

 

2.10 Statistical analysis 

Data obtained were analyzed statistically using GraphPad Prism 7 software 

(unpaired, two-sided, equal variance Student’s t test; two-way ANOVA with Sidak’s 

multiple comparisons test; two-way repeated measures ANOVA with Holm-Sidak’s 

multiple comparisons test; one-way ANOVA with Tukey’s multiple comparisons test); 

values are expressed as the mean ± SEM. Statistical significance was p < 0.05. 
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Table 2.1: PCR protocol for genotyping doxycycline-inducible Acvr1cR206H/+ mice 

 

 Acvr1[R206H]FlEx 

Forward 

primer 

5'-AACCAACATTGCCTGCTGCCCA-3' 

(ES3350) 

5'-GCGCGTTAGCTTAGCTCTGT-3' 

(ES3748) 

Reverse 

primer 

5'-GCAGCCTCGTGGATTCACGCT-3' 

(ES3351) 

5'-ACTCACATGAAGGGCAGCAA-3' 

(ES3750) 

  

Denature 94°C; 30 seconds 

Anneal 65°C; 45 seconds 

Extension 72°C; 35 seconds 

Cycles 35 

Agarose Gel 2.0% 

Amplicon 

length 

650 bp (ES3350/3351) 

or 

280 bp (ES3748/3750) 

PCR protocol for genotyping doxycycline-inducible Acvr1cR206H/+ mice 

 R26-rtTA TetO-Cre 

Forward 

primer 

5'-GCGAAGAGTTTGTCCTCAACC-3' 

(ES3356) 

5'-ATTCTCCCACCGTCAGTACG-3' 

(ES2856) 

Reverse 

primer 

5'-AAAGTCGCTCTGAGTTGTTAT-3' 

(ES3357) 

5'-CGTTTTCTGAGCATACCTGGA-3' 

(ES2857) 

   

Denature 95°C; 15 seconds 95°C; 15 seconds 

Anneal 60°C; 15 seconds 60°C; 15 seconds 

Extension 72°C; 15 seconds 72°C; 15 seconds 

Cycles 35 35 

Agarose Gel 2.0% 2.0% 

Amplicon 

length 

350 bp 500 bp 
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Table 2.2: PCR protocol for genotyping tamoxifen-inducible ERT2-Cre;Acvr1cR206H/+ mice 

 

 

 

 Acvr1[R206H]FlEx 

Forward 

primer 

5'-AACCAACATTGCCTGCTGCCCA-3' 

(ES3350) 

Reverse 

primer 

5'-GCAGCCTCGTGGATTCACGCT-3' 

(ES3351) 

  

Denature 94°C; 30 seconds 

Anneal 65°C; 45 seconds 

Extension 72°C; 35 seconds 

Cycles 35 

Agarose Gel 2.0% 

Amplicon 

length 

650 bp 

PCR protocol for genotyping tamoxifen-inducible ERT2-Cre;Acvr1cR206H/+ mice 

 ERT2-Cre mutant ERT2-Cre wild-type 

Forward 

primer 

5'-AAAGTCGCTCTGAGTTGTTAT-3' 

(ES3718) 

5'-AAAGTCGCTCTGAGTTGTTAT-3' 

(ES3718) 

Reverse 

primer 

5'-CCTGATCCTGGCAATTTCG-3' 

(ES3720) 

5'-GGAGCGGGAGAAATGGATATG-3' 

(ES3719) 

   

Denature 95°C; 60 seconds 95°C; 60 seconds 

Anneal 58°C; 60 seconds 58°C; 60 seconds 

Extension 72°C; 60 seconds 72°C; 60 seconds 

Cycles 35 35 

Agarose 

Gel 

2.0% 2.0% 

Amplicon 

length 

825 bp 650 bp 
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Table 2.3: PCR protocol for detecting recombination of Acvr1cR206H allele 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR protocol for detecting recombination of Acvr1cR206H allele 

 Acvr1cR206H recombination 

Forward 

primer 
5'-TGTATTGCAGGACGCTGAAG-3' 

 (ES2935) 

Reverse 

primer 
5'-CCCCTGAAGTGGAATAACCA-3' 

(ES2936) 

  

Denature 94°C; 30 seconds 

Anneal 55°C; 45 seconds 

Extension 72°C; 35 seconds 

Cycles 35 

Agarose 

Gel 

4.0% 

Amplicon 

length 

Recombination = 370 bp and 336 bp 

No recombination = 336 bp 
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Table 2.4: PCR protocol for genotyping mast cell-deficient c-KitW-Sh/W-sh mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR protocol for genotyping mast cell-deficient c-KitW-Sh/W-sh mice 

 c-KitW-Sh mutant c-Kit wild-type 

Forward 

primer 

5'-AGGCTTGCAGCGCATTAT-3' 

(ES3755) 

5'-TTTGCACGTGCTAGTTACAC-3' 

(ES3753) 

Reverse 

primer 

5'-GAGGATTCATAGTTGTTCAATGTCC-3' 

(ES3756) 

5'-TTAAGATGGCACCCTGCTG-3' 

(ES3754) 

   

Denature 95°C; 30 seconds 94°C; 60 seconds 

Anneal 57°C; 60 seconds 57°C; 60 seconds 

Extension 72°C; 60 seconds 72°C; 60 seconds 

Cycles 35 35 

Agarose 

Gel 

2.0% 2.0% 

Amplicon 

length 

165 bp 650 bp 



 

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2.5: PCR protocol for genotyping LysM-Cre mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR protocol for genotyping LysM-Cre mice 

 LysM-Cre 

Forward 

primer 
5'-CCCAGAAATGCCAGATTACG-3' 

 (ES4018) 

Reverse 

primer 
5'-CTTGGGCTGCCAGAATTTCTC-3' 

(ES4019) 

  

Denature 95°C; 15 seconds 

Anneal 60°C; 15 seconds 

Extension 72°C; 15 seconds 

Cycles 35 

Agarose 

Gel 

2.0% 

Amplicon 

length 

700 bp 
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Target Full Transcript 

Name 

Forward Primer Reverse Primer Stock  

Number 
Actr2a Activin receptor type 

2a 

GAACATGATGGAGGCGGCAGCAG 

 

GACCCCGTCCAATCAGCTCCA 

 

ES3318/ 

3319 

Actr2b Activin receptor type 

2b 

CCTACTCAAGACCCAGGACCACC 

 

GAGCAACTGGGCTTTCCAGACAC 

 

ES3320/ 

3321 

Acvr1 Activin A receptor 

type 1 

TGGTACAGAGAACGGTGGCT 

 

ACTTCTCCATACCGGCCCTTC 

 

ES3213/ 

3217 

Acvrl1 Activin A receptor 

Like type 1 

ACACCCACCATCCCTAACC 

 

ACCAGCACTCTCTCATCATCTG 

 

ES3306/ 

3307 

Acvr1b Activin A receptor 

type 1B 

GCGGCGGTTACTATGGCGGA 

 

CGCACACAGCAGAGCCTGGAT 

 

ES3310/ 

3311 

Acvr1c Activin A receptor 

type 1C 

GCTCTGGGACCCCGAAGCCTTG 

 

ACACACACACTTCAGTCCTGCCGCA 

 

ES3316/ 

3317 

Bmpr1a Bone morphogenetic 

protein receptor type 

1A 

AGCGATGAATGTCTTCGAGCAGTT 

 

TCAAAGCTGTGAGTCTGGAGGCT 

 

ES3308/ 

3309 

Bmpr1b Bone morphogenetic 

protein receptor type 

1B 

CCTCCCTCTGCTGGTCCAAAGGA CCTCGCCATAGCGGCCTTTTCC 

 

ES3314/ 

3315 

Bmpr2 Bone morphogenetic 

protein receptor type 

2 

GAACATGATGGAGGCGGCAGCAG 

 

GACCCCGTCCAATCAGCTCCA 

 

ES3322/ 

3323 

Il1b Interleukin 1 Beta GCCAAGCTTCCTTGTGCAAGTGT 

 

GCCCTTCATCTTTTGGGGTCCG 

 

ES3443/ 

3444 

Il6 Interleukin 6 TCGGAGGCTTAATTACACATGTT 

 

TGCCATTGCACAACTCTTTTCT 

 

ES3479/ 

3480 

Gapdh Glyceraldehyde 3-

phosphate 

dehydrogenase 

CAAGGTCATCCATGACAACTTT 

 

GGCCATCCACAGTCTTCTGG 

 

ES2452/ 

2453 

Tgfb1 Transforming growth 

factor beta 1 

GGACACACAGTACAGCAAGGTCC 

 

CTCCACCTTGGGCTTGCGAC 

 

ES3439/ 

3440 

Tgfbr1 Transforming growth 

factor beta 2 

GGCAGAGCTGTGAGGCCTTGAGA 

 

ATGCCTTCCTGTTGGCTGAGTTGTG 

 

ES3312/ 

3313 

Tgfbr2 Transforming growth 

factor beta receptor 2 

CGCACGTTCCCAAGTCGGATGT 

 

TCGCTGGCCATGACATCACTGT 

 

ES3465/ 

3466 

Tnf Tumor Necrosis 

Factor 

CCCACGTCGTAGCAAACCAC 

 

AGGTACAACCCATCGGCTGGC 

 

ES3449/ 

3450 

 

Table 2.6: Quantitative real-time RT-PCR primers 
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Figure 2.1: Genotyping of Acvr1cR206H/+ mice by PCR 
DNA isolated from mouse tail snips was amplified with primers specific to Acvr1[R206H]FlEx, R26-rtTA, and 

TetO-Cre. Lower bands <100 bp in Acvr1[R206H]FlEx gel are non-specific primer dimer amplicons and do not 

reflect genotype. Lanes marked with an asterisk indicate Acvr1cR206H/+ mice. 
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Figure 2.2: Genotyping of ERT2-Cre mice by PCR 
DNA isolated from mouse tail snips was amplified with primers specific to ERT2-Cre. Lanes marked with 

an asterisk indicate ERT2-Cre mice. 
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Figure 2.3: Detection of recombined and expressed Acvr1cR206H allele in mice by PCR 
DNA isolated from mouse tail snips was amplified with primers specific to recombination of Acvr1[R206H]FlEx 

amplicon (370 bp) and Acvr1+/+ control amplicon (336 bp), indicating active Acvr1cR206H allele expression. 

Lanes marked with an asterisk indicate recombined DNA and active Acvr1cR206H allele expression. 
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Figure 2.4: Genotyping of c-KitW-sh/W-sh mice by PCR 
DNA isolated from mouse tail snips was amplified with primers specific to c-KitW-sh and c-Kit+ alleles. Lanes 

are marked with mouse genotypes. Non-specific bands for the c-Kit+ PCR do not reflect genotype. 
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Figure 2.5: Genotyping of LysM-Cre;Acvr1[R206H]FlEx mice by PCR 
DNA isolated from mouse tail snips was amplified with primers specific to LysM-Cre and Acvr1[R206H]FlEx 

alleles. Lanes marked with an asterisk indicate LysM-Cre;Acvr1[R206H]FlEx mice. 
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Chapter Three 

 
Acvr1R206H amplifies and prolongs the cellular and molecular 

inflammatory response to injury 
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3.1 Summary 

 An early inflammatory response is observed in all HO episodes occuring in FOP, 

whether induced by tissue trauma or without overt injury. In either scenario, patients often 

report swellings, tissue stiffness, sensations of warmth, and pain – termed “flare-ups” – 

that indicate the onset of localized disease. Although some flare-ups resolve without 

progression to HO, many continue through the characterized catabolic and anabolic events 

of lesion formation. The presence of immune cells has been noted in biopsies from human 

patients, however the limited availability of samples has hindered further in vivo 

investigation. Given the role of BMP signaling in hematopoietic development and immune 

cell activation, I hypothesized that the ACVR1 R206H mutation amplifies the 

inflammatory response to tissue injury, establishing a supportive microenvironment for the 

subsequent fibroliferative, chondrogenic, and osteogenic stages that result in terminal HO 

and mature bone tissue. 

 I used a recently available conditional-on knock-in Acvr1R206H mouse (hereafter 

referred to as Acvr1cR206H/+) to investigate the cellular and molecular inflammatory 

response to injury by examining levels of secreted inflammatory factors. I show that 

Acvr1cR206H causes early divergence from the normal skeletal muscle repair program, 

however, surprisingly, the earliest events are histologically indistinguishable between 

Acvr1cR206H/+ and control Acvr1+/+ mice during the first 48-hours post-injury. As lesions 

progress, the cellular and molecular inflammatory responses are not only amplified in 

Acvr1cR206H/+ mice, but also persist over time. At the cellular level, Acvr1cR206H/+ expression 

in primary mast cells potentiated their inflammatory activation. These results suggest that 
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the ACVR1 R206H mutation produces an inflammatory response to tissue injury that 

mimics chronic inflammation. 
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3.2 Introduction 

3.2.1 The inflammatory response to tissue injury in FOP 

 Patient biopsies show tissue destruction and an influx of immune cells at the earliest 

stage of lesion progression in FOP [Kaplan et al. 1993]. Histological analysis revealed the 

presence of neutrophils, macrophages, mast cells, and lymphocytes [Kaplan et al. 1993, 

Gannon et al. 2001, Kaplan et al. 2005]. Mast cell involvement in FOP patient lesions was 

particularly remarkable, with mast cell density reaching peak levels unseen in any other 

inflammatory myopathy [Gannon et al. 2001]. The same early inflammatory response 

(Figure 1.4) has been shown in chimeric Alk2R206H/+ mice, the first FOP mouse model 

expressing the Acvr1 R206H mutation [Chakkalakal et al. 2012]. It is important to note, 

however, that immune cell invasion is a characteristic feature of the normal tissue injury 

program, and the early response is qualitatively similar to what occurs in FOP [Chargé et 

al. 2004, Bentzinger et al. 2013]. 

Following normal tissue injury by cardiotoxin (CTX), a snake venom commonly 

used to study skeletal muscle damage and repair [Couteaux et al. 1988], a cascade of early 

inflammatory events activates a localized immune response. In response to tissue damage, 

tissue resident macrophages and mast cells detect DAMPs and release pro-inflammatory 

cytokines, including TNF-α, IL-1β, IL-6, and Activin A, that recruit neutrophils to the 

localized site of injury [Galli et al. 2011, Hedger et al. 2011]. Neutrophils are the first 

migratory responding cell to tissue damage and further potentiate the ongoing 

inflammatory response [Phillipson et al. 2011, Kolaczkowska et al. 2013] via secretion of 

their own TNF-α, IL-1β, and IL-8 [Witko-Sarsat et al. 2000]. Monocytes and mast cell 
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progenitors then migrate to the injury site and differentiate into macrophages and mature 

mast cells. These mature immune cells clear damaged debris and secrete chemokines 

necessary for recruitment of fibroproliferative cells that act as scaffold intermediaries while 

the skeletal muscle regeneration program augments [Murray et al. 2011, Duchesne et al. 

2013, Wynn et al. 2013]. Within 1-2 weeks, skeletal muscle is fully restored through a 

well-characterized regeneration program initiated by muscle stem cell activation [Karalaki 

et al. 2009, Bentzinger et al. 2013]. 

The normal skeletal muscle injury and repair program establishes a baseline cellular 

and molecular response that can be used to compare to injured Acvr1 R206H tissue. 

Despite ongoing interest in the early inflammatory events during FOP lesion formation, 

few studies have directly quantified any immune cell populations in lesion tissue [Gannon 

et al. 2001, Chakkalakal et al. 2016], and none have investigated the molecular 

inflammatory response. Our conditionl-on knock-in Acvr1cR206H/+ mouse model 

recapitulates features of FOP [Hatsell et al. 2015, Chakkalakal et al. 2016] and is a key tool 

that can be used to investigate the inflammatory response to injury. These mice 

reproducibly develop HO two weeks following CTX injection, establishing a reliable and 

genetically high fidelity model to study the inflammatory response in FOP. 

 

3.2.2 BMP pathway control of inflammatory activation 

 The BMP signaling pathway has well-defined roles in hematopoesis and 

inflammatory activation of numerous immune cell populations [Starr et al. 2003, Karlsson 

et al. 2007, Huse et al. 2011, Yoshioka et al. 2012] (also see Chapter 1.3). In the clinic, use 
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of recombinant BMPs as treatment for fractures is commonly associated with 

inflammation, soft tissue edema, and radiculitis [MacDonald et al. 2010, Lee et al. 2012, 

Villavicencio et al. 2016]. Notably, edema is a common feature of flare-ups as reported by 

FOP patients, and often precedes the catabolic lesion events [Pignolo et al. 2016]. Soft 

tissue swelling has also been observed in chimeric Alk2R206H/+ mice [Chakkalakal et al. 

2012]. Current therapies for FOP, while palliative, predominantly target edema, pain, and 

other inflammatory symptoms [Kaplan et al. 2016, Pignolo et al. 2016], although the 

pursuit for therapeutics that pause or even reverse symptoms is ongoing. Previous 

observations suggest that BMP signaling has distinct cellular and molecular functions 

within the immune system, and given the R206H mutation present in FOP, the dysregulated 

BMP signaling may be an appealing therapeutic target. 
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3.3 Results 

3.3.1 The Acvr1 R206H mutation causes early divergence from the normal skeletal 

muscle repair program 

 I conducted a cross-sectional injury study to investigate the histological events 

throughout lesion development in Acvr1cR206H/+ and Acvr1+/+ mice, specifically focusing 

on the cellular and molecular inflammatory response. To induce conditional expression of 

the Acvr1cR206H allele, I administered doxycycline to Acvr1cR206H/+ mice for five days prior 

to injury; this amount of time is sufficient to induce Cre-recombinase-mediated 

recombination of the Acvr1cR206H allele (Figure 2.3). Hamstring muscles of Acvr1cR206H/+ 

and Acvr1+/+ mice were injured by CTX injection, and sacrificed at various time points 

over two-weeks; day 0 samples (without injury) were collected (Figure 3.1). 

Uninjured Acvr1cR206H/+ skeletal muscle has normal skeletal muscle morphology 

(Figure 3.2A). The early tissue destruction and immune cell influx events are 

indistinguishable between Acvr1cR206H/+ and Acvr1+/+ lesion through 2 days post-injury 

(days 1-2; Figure 3.2B, C). As the lesions progress, mutant tissue exhibits robust immune 

cell invasion (days 3-4; Figure 3.3A, B) and progressive accumulation of 

glycosaminoglycan (GAG), an extracellular matrix component associated with 

chondrogenesis [San Antonio et al. 1987] (days 5-6; Figure 3.3C, D). In contrast, the 

immune cell invasion in control tissue peaks at day four, but then clears from the injury 

site. 

By day 7 post-injury, Acvr1+/+ lesions exhibited further immune cell clearance and 

presence of regenerating muscle (Figure 3.4A), however Acvr1cR206H/+ lesions showed a 
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persistence of fibroproliferative cells together with ectopic pre-hypertrophic chondrocytes 

(Figure 3.4A). By day 10, immune cells were absent from Acvr1+/+ tissue, with skeletal 

muscle repair reaching near completion at day 14 (Figure 3.4B, C). Myocentric nuclei, 

which denote ongoing skeletal muscle repair, were observed in late-stage Acvr1+/+ tissue 

(Figure 3.5). By contrast, heterotopic endochondral ossification had significantly 

progressed from day 6 to day 7 (Figure 3.4A) in Acvr1cR206H/+ tissue, with abundant 

hypertrophic chondrocytes and bone matrix present at day 10 (Figure 3.4C) and more 

mature heterotopic bone at day 14 (Figure 3.4C). These results suggest that the ACVR1 

R206H mutation disrupts the normal skeletal muscle repair program, driving heterotopic 

endochondral ossification in place of normal skeletal muscle regeneration. 

 

3.3.2 BMP signaling is upregulated in Acvr1cR206H/+ post-traumatic lesions 

 Upregulated BMP signaling has been observed in late-stage lesions from our 

previous chimeric Alk2R206H/+ mouse model, as detected by enhanced levels of nuclear 

phosphorylated-Smad 1/5/8 (p-Smad 1/5/8) protein in tissue [Chakkalakal et al. 2012]. I 

investigated the levels of p-Smad 1/5/8 by immunohistochemistry (IHC) throughout lesion 

progression in our Acvr1cR206H/+ mouse model. Levels of p-Smad 1/5/8 were higher in 

Acvr1cR206H/+ mice compared with controls at all stages examined - the early tissue 

destruction stage, intermediate fibroproliferative stage, and late ectopic cartilage and bone 

stage (Figure 3.6). p-Smad 1/5/8 was detected within the cell nuclei, consistent with the 

expected localization of p-Smad 1/5/8 protein following BMP pathway activation (Figure 

1.1). Elevated p-Smad1/5/8 protein was most prominent in the nuclei of fibroproliferative 
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cells and pre-hypertrophic chondrocytes, consistent with accelerated chondrogenesis 

resulting from the ACVR1 R206H mutation [Culbert et al. 2014]. 

Because the Acvr1cR206H/+ mouse model globally expresses the R206H mutant 

allele, I examined BMP signaling levels at other tissue sites. I investigated the levels of p-

Smad 1/5/8 protein at the endogenous knee joint growth plate and femoral bone marrow 

niche and detected higher p-Smad1/5/8 expression at both sites in Acvr1cR206H/+ mice 

(Figure 3.7AB), confirming that activation of the conditional Acvr1cR206H allele occurs 

widely and is active in cell types known to be responsive to BMP signaling. Enhanced 

BMP pathway signaling in the bone marrow is of particular interest since bone marrow is 

the primary adult hematopoietic tissue and source of hematopoietic stem cells from which 

mature immune cell populations are derived [Zhao et al. 2012] (Figure 1.2). 

 

3.3.3 The cellular and molecular pro-inflammatory response is amplified and 

prolonged in Acvr1cR206H/+ mice following tissue injury 

 Previous studies using patient biopsies and FOP mouse models observed that 

multiple immune cell types are present in developing HO lesions, with most attention given 

to cells of the innate immune system such as neutrophils, macrophages, and mast cells 

[Gannon et al. 1998, Gannon et al. 2001, Kaplan et al. 2005, Chakkalakal et al. 2012, 

Chakkalakal et al. 2016]. However, these studies were limited to the earliest stages of lesion 

progression and most did not quantify immune cells nor investigate cytokine and 

chemokine contributions. To examine the immunological contributions to HO 

development in FOP in detail, I investigated the cellular and molecular inflammatory 
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response to skeletal muscle injury through lesion progression to HO formation. I first 

quantified cell density of four immune cells known to reside within lesion tissue – 

neutrophils, macrophages, mast cells, and T cells [Chakkalakal et al. 2012]. 

 Neutrophils are recruited within hours after tissue injury in response to damage-

associated molecular pattern (DAMP) pathway activation [Phillipson et al. 2011] and then 

release proteases that degrade damaged tissue in preparation for clearance by macrophages 

[Tidball 2005]. Neutrophil numbers were significantly elevated in early Acvr1cR206H/+ 

lesions compared to Acvr1+/+ (Figure 3.8A), reaching peak density at day 2 and persisting 

at higher levels at day 4. 

 Macrophages rapidly respond to neutrophils, phagocytosing damaged tissue and 

debris generated by neutrophils and secreting cytokines and chemokines that recruit 

progenitor cells to facilitate wound healing [Laskin et al. 2011]. Macrophages were 

significantly increased in early- and intermediate-stage (days 2-6) Acvr1cR206H/+ lesions 

compared to Acvr1+/+ (Figure 3.8B). While numbers of macrophages in control tissue 

returned to pre-injury levels by day 6, these cells persisted in Acvr1cR206H/+ lesions. 

Mast cells contribute to diverse biological processes, including wound repair, 

fibrosis, pain pathophysiology, and allergy [Bischoff 2007, Thevenot et al. 2011, Heron et 

al. 2013, Douaiher et al. 2014], and have been previously reported in biopsy samples from 

FOP patients [Gannon et al. 2001] and in FOP mouse models [Chakkalakal et al. 2012, 

Chakkalakal et al. 2016]. Consistent with previous studies, I determined that mast cell 

density was significantly greater in Acvr1cR206H/+ lesions, and that elevated levels of mast 
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cells became evident by day 4 following injury and persisted at high levels through day 14 

and heterotopic bone formation (Figure 3.8C). 

In addition to cells of the innate immune system, T cells have also been reported in 

FOP lesions [Gannon et al. 1998, Chakkalakal et al. 2012], and a BMP4 over-expression 

mouse model that lacked mature lymphocytes formed reduced HO [Kan et al. 2009]. At 

day 3 post-injury, T cell density was more than 2-fold higher in Acvr1cR206H/+ lesions 

compared to Acvr1+/+, similarly to myeloid lineage cells, and higher numbers of T cells 

persisted through the progression to heterotopic bone (Figure 3.8D). 

A maximal inflammatory response depends on the synthesis and secretion of pro-

inflammatory cytokines and chemokines that amplify and sustain an ongoing immune 

response and act as chemoattractant molecules for progenitor cells that participate in tissue 

repair [Ishida et al. 2007, Fong et al. 2011, Halova et al. 2012, Turner et al. 2014]. To 

determine whether the elevated and prolonged immune cell response in Acvr1cR206H/+ 

lesions (Figure 3.8) is accompanied by general or specific differences in pro-inflammatory 

cytokines and chemokines, I examined expression in early-, intermediate-, and late-stage 

Acvr1cR206H/+ and Acvr1+/+ lesions. The pro-inflammatory cytokines TNFα, IL-1β, and IL-

6 were detected at higher levels in Acvr1cR206H/+ lesions compared to Acvr1+/+ throughout 

lesion progression (Figure 3.9 and 3.10). TNFα and IL-6 were robustly present and detected 

as early as day 2 post-injury in Acvr1cR206H/+ lesions (Figure 3.9AB), while IL-1β more 

slightly increased (Figure 3.10). These cytokines were detected throughout the injured 

tissues. 
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Monocyte chemoattractant protein-1 (MCP-1) is a chemokine abundantly produced 

by white adipose tissue [Fasshauer et al. 2015] that functions to recruit monocytes and 

other immune cells [Deshmane et al. 2009], and was previously proposed as a predictive 

biomarker for blast injury patients who developed HO [Evans et al. 2012]. In both 

Acvr1cR206H/+ and Acvr1+/+ lesions, MCP-1 was mainly localized to white adipose adjacent 

to skeletal muscle, with generally low detection in the lesions throughout their progression 

(Figure 3.11A). 

IL-13 is a pro-inflammatory cytokine that is expressed in many fibrosis pathologies 

[Wynn et al. 2012, Borthwick et al. 2013] and, like MCP-1, was suggested as a predictive 

biomarker for blast injury patients who developed HO [Forsberg et al. 2014]. IL-13 

expression was relatively low and equivalent in Acvr1cR206H/+ and Acvr1+/+ lesions (Figure 

3.11B). 

Activin A is a TGF-β superfamily ligand involved in inflammatory stimulation and 

regulation of several immune cell populations [Aleman-Muench et al. 2012]. Recently, 

Activin A was reported to aberrantly activate BMP pathway signaling through Acvr1R206H 

and contribute to HO progression in FOP [Hatsell et al. 2015]. I detected higher Activin A 

expression in intermediate- and late-stage Acvr1cR206H/+ lesions relative to controls (Figure 

3.12A), with Activin A expression in fibroproliferative regions as well as in ectopic 

chondrocytes (Figure 3.12B). 

These results suggest that although the inflammatory response is substantially 

upregulated in Acvr1cR206H/+ mice, the response is not a total upregulation of all 

inflammatory mediators. 
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3.3.4 Increased BMP signaling conferred by Acvr1cR206H/+ in mast cells enhances 

inflammatory activation 

The ACVR1 R206H mutation confers increased BMP pathway signaling in 

numerous cell types, including fibroblastic cells such as patient-derived SHED cells and 

mouse-derived MEFs [Culbert et al. 2014, Wang et al. 2016]. Expression of Acvr1R206H 

potentiates cell-autonomous differentiation programs of these tri-potent mesenchymal 

cells, accelerating their differentiation toward chondrogenic and osteogenic fates. 

However, despite the cell-autonomous effects of the ACVR1 R206H mutation in these 

mesenchymal cells, the mutation alone does not appear to be sufficient to promote 

spontaneous cell differentiation [Culbert et al. 2014], as is supported by the episodic nature 

of HO formation in FOP patients. Rather, an additional stimulus appears to trigger onset 

of bone formation. I considered that immune cells could play such a role and investigated 

whether increased BMP signaling conferred by Acvr1cR206H  in immune cells could 

upregulate their inflammatory activation. 

To examine the effect of enhanced BMP signaling conferred by the ACVR1 R206H 

mutation on the inflammatory potential of immune cells, I examined primary murine mast 

cells and macrophages in vitro. I collected primary mast cells by harvesting whole bone 

marrow from Acvr1cR206H/+ and Acvr1+/+ mice and culturing cells in suspension for 6 weeks 

in mast cell maturation medium. Mast cell purity was verified by flow cytometry, gating 

for c-kit receptor/CD117 and FcεRIα receptor double-positive cells [Weller et al. 2005] 

(Figure 3.13). Macrophages were collected by intraperitoneal injection of 1.5 mL aged 

4.0% thioglycolate solution into Acvr1cR206H/+ and Acvr1+/+ mice [Zhang et al. 2008]. After 



 

75 

 

5 days, peritoneal exudate was collected from euthanized mice and plated in macrophage 

growth medium. 

 I examined BMP pathway signaling competency in mast cells and macrophages, 

detecting expression of a broad panel of BMP/TGF-β type I and II receptor mRNAs, 

including Acvr1, the type I receptor mutated in FOP [Shore et al. 2006], in both cell types 

(Figure 3.14A). BMP pathway activity, quantified by p-Smad1/5/8 protein levels, was 

increased in both mast cells and macrophages expressing the Acvr1cR206H allele compared 

with Acvr1+/+ (Figure 3.14B, C, D) with relative levels of p-Smad1/5/8 between 

Acvr1cR206H/+ and Acvr1+/+ similar to that reported previously [Culbert et al. 2014]. 

BMP pathway activation has been previously reported to enhance the inflammatory 

state of multiple immune cell populations [Hong et al. 2009, Lee et al. 2011, Martinez et 

al. 2011, Martinez et al. 2015]. To investigate whether expression of the Acvr1cR206H allele 

in mast cells and macrophages confers enhanced inflammatory signaling, I examined pro-

inflammatory cytokine expression. Acvr1cR206H/+ mast cells exhibited significantly elevated 

mRNA expression of TNFα and IL-6 and a trend toward elevated IL-1β compared with 

Acvr1+/+ mast cells (Figure 3.15A). No significant differences in cytokine expression 

between Acvr1cR206H/+ and Acvr1+/+ macrophages were detected (Figure 3.15B). 

Degranulation is a directed response to inflammatory stimulation in granulocytes, 

including mast cells [Kulka et al. 2008], releasing numerous inflammatory mediators, 

including TNFα and other cytokines [Moon et al. 2014]. Quantification of degranulation 

showed elevated activity in Acvr1cR206H/+ mast cells compared to controls (Figure 3.15C). 
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These data reveal an elevated and prolonged pro-inflammatory response in 

Acvr1cR206H/+ tissues in response to injury, as well as in Acvr1cR206H/+ mast cells, with higher 

expression of multiple, but not all, pro-inflammatory cytokines and chemokines 

investigated. 
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3.4 Discussion 

3.4.1 Acvr1R206H disrupts the normal skeletal muscle regeneration program, favoring 

heterotopic endochondral ossification 

 Skeletal muscle regeneration is a well-characterized process that faithfully restores 

tissue to its pre-injury state. Shortly after tissue injury and immune cell influx, a skeletal 

muscle-resident stem cell population known as muscle stem cells (or satellite cells) is 

activated from its quiescent state and begins the muscle regeneration process [Wang et al. 

2012]. Muscle stem cells are identified through their expression of Pax-7, and are 

indispensible for adult skeletal muscle regeneration [Sambasivan et al. 2011]. Following 

muscle stem cell activation, clonal expansion and migration to the injury site occurs, after 

which a self-renewing pool of quiescent muscle stem cells is restored, with the remaining 

daughter cells cells continuing the regeneration process assisted by myogenic regulatory 

factors (MRFs) [Schultz et al. 1985]. The pool of proliferated muscle stem cells is now 

referred to as myogenic precursor cells (MPCs) that are characterized by upregulation of 

two MRFs, Myf5 and MyoD [Cooper et al. 1999]. Expansion of MPCs is followed by their 

upregulation of MRF4 and myogenin, the later of which is associated with terminal 

differentiation of myoblasts into myocytes and fusion of these cells to new or existing 

fibers [Karalaki et al. 2009]. The final result is regenerated skeletal muscle that is 

indistinguishable from its pre-injury state [Bentzinger et al. 2013]. 

 As observed in Figures 3.3, and 3.4, the normal skeletal muscle regenerative 

program in the Acvr1cR206H/+ group is disrupted, instead replaced by the metamorphosis of 

damaged tissue with fibroproliferative cells and eventual ectopic cartilage and bone. In 
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contrast, the repair mechanism is fully functional in the Acvr1+/+ group, with the cellular 

events matching the previously established regeneration timeline (Figures 3.2, 3.3, 3.4, 3.5) 

[Bentzinger et al. 2013]. It is known that elevated BMP signaling prevents myogenic 

differentiation of satellite cells [Ono et al. 2011], suggesting a negative feedback 

mechanism that limits skeletal muscle regenerative capacity may exist in FOP. 

Additionally, MEF cells expressing Acvr1R206H were shown to be primed toward 

chondrogenic differentiation in vitro, [Culbert et al. 2014], which may suggest a similar 

mechanism in vivo that may compensate for any regenerative deficiency existing in muscle 

stem cells or their subsequent myogenic populations. Strikingly, despite the progressive 

divergence in response to injury between Acvr1cR206H/+ and Acvr1+/+ cohorts, the tissue 

morphology is equivalent up to 48 hours post-injury (Figure 3.2). This suggests that the 

early repair stages of damaged tissue turnover, mediated in part by active caspase-3 

[Chakkalakal et al. 2012], may be unaffected by the ACVR1 R206H mutation. However, 

an alternative possibility is that inflammatory gene expression changes as a consequence 

of the R206H shortly after tissue injury, but histological changes in tissue composition are 

not observable until 2-3 days post-injury. This can be addressed using the same cross-

sectional injury protocol as indicated in Figure 3.1. Injured skeletal muscle could be 

collected and digested, and immune cells could be quantified and collected using 

fluorescence-activated cell sorting (FACS). Collected immune cell populations could then 

be investigated for inflammatory gene expression by qRT-PCR or microarray, as well as 

inflammatory factor secretory potential by ELISA. 
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3.4.2 The inflammatory response following skeletal muscle injury in an Acvr1R206H 

background mimics chronic inflammation 

 An important question addressed in our experiments is how does Acvr1R206H affect 

the cellular and molecular inflammatory response to tissue injury. An inflammatory phase 

is part of the normal tissue injury response, with influx of immune cells and upregulation 

of pro-inflammatory cytokines and chemokines observed [Tidball 2005, Philippou et al. 

2012]. Neutrophils, macrophages, and mast cells all release pro-inflammatory cytokines 

that promote clearance of damaged muscle and upregulate growth factors that promote 

regenerative events. Neutrophils release nitric oxide (NO), which aids in digesting injured 

tissue for subsequent phagocytosis by macrophages [Nguyen et al. 2003]. Neutrophils, 

macrophages, mast cells, and damaged muscle fibers all release TNFα, IL-1β, and IL-6 

[Smith et al. 2008], pro-inflammatory factors that are involved in the destruction of skeletal 

muscle following injury. Many of these factors are linked in inflammatory networks that 

cyclically upregulate each other and potentiate the pro-inflammatory response [Panzer et 

al. 1993, Gallucci et al. 1998]. However, eventually the pro-inflammatory response is 

dampened and is replaced by anti-inflammatory cytokines, including IL-4, IL-10, and 

TGF-β, factors that promote tissue regeneration [Philippou et al. 2012]. 

 The key cellular event that initiates the anti-inflammatory response during tissue 

injury is the transition from classically-activated M1 macrophages, which are involved in 

pathogen and damaged tissue phagocytosis, to anti-inflammatory M2 macrophages, which 

promote tissue healing [Laskin et al. 2011, Murray et al. 2011]. M2 macrophages secrete 

known anti-inflammatory factors, including IL-4, IL-10, IL-13, and TGF-β, as well as 
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respond to these same factors [Gordon 2003, Arnold et al. 2007, Barron et al. 2011]. In 

concert with IL-4 and IL-10 activity that promotes myoblast fusion and muscle 

regeneration [Horsley et al. 2003, Arnold et al. 2007], M2 macrophages also secrete a 

consortium of growth factors, including platelet-derived growth factor (PDGF) [Murray et 

al. 2011], that facilitate tissue repair. Failing to transition to an M2 macrophage state 

impairs wound healing via a TNFα mechanism [Sindrilaru et al. 2011]. Overall, proper 

skeletal muscle regeneration depends on appropriate balance and timing of the M1 and M2 

macrophage response [Arnold et al. 2007]. 

 The density of neutrophils, macrophages, mast cells, and T cells was significantly 

increased in the Acvr1cR206H/+ cohort following injury, compared to Acvr1+/+, and 

macrophage and mast cell density remained elevated as the lesion progressed (Figure 3.8). 

These data were the first to quantify the density of multiple immune cells throughout lesion 

progression, an important finding that supports the hypothesis of an elevated immune 

response in FOP. However, there are some limitations with this experiment, as well as 

additional approaches that could further improve the dataset. Quantification of immune 

cells was performed via IHC of paraffin-embedded histological sections and manual cell 

counting. This approach is not easily conducive to multiple cell labeling, which is 

important for identifying immune cell subtypes, such as CD4 vs. CD8 T cells. Using 

cryosections to avoid paraffin auto-fluorescence image artifacts, allows for multiple cell 

marker labeling by different fluoro-tagged antibodies. For even greater immune cell 

subtype identification and quantification, injured skeletal muscle can be collected and 

digested, after which immune cells can be quantified using multi-laser flow cytometry and 
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multiple cell labeling that is required to indentify certain immune cell populations (such as 

double-positive c-Kit and FcεRIα for mast cells [Weller et al. 2005]). 

 Although neutrophil density was robustly increased in early Acvr1cR206H/+ lesions 

compared to Acvr1+/+ lesions, the first time point investigated for injured mice was two 

days post-injury. Neutrophils are known to respond rapidly to injury, with first populations 

appearing as early as one hour post-injury [Tidball 2005]. Additional experiments 

examining neutrophil density at earlier time points following injury, such as 3, 6, 12, and 

24 hours post-injury, will provide further clarification of the neutrophil response in early 

FOP lesions. 

 Mast cell density was equivalent between cohorts up to 3 days post-injury, after 

which the numbers of these cells were significantly elevated in Acvr1cR206H/+ lesions 

(Figure 3.8). This trend matches mast cell quantification of early- and intermediate-stage 

human biopsy samples [Gannon et al. 2001]; however, mast cell density was observed to 

decrease in late-stage human samples, while we found mast cells remained elevated in 

mouse samples through day 4-14 time points (Figure 3.8C). TNFα is a known mast cell 

chemoattractant factor [Halova et al. 2012], suggesting that elevated TNFα present in 

Acvr1cR206H/+ lesions may enhance mast cell recruitment to the site of injury. 

 Given the role of BMP signaling in hematopoietic development and immune cell 

activation, I hypothesized that the ACVR1 R206H mutation amplifies the inflammatory 

response to tissue injury, establishing an appropriate microenvironment for the subsequent 

fibroliferative, chondrogenic, and osteogenic stages that result in terminal HO. The robust 

increase in TNFα, IL-1β, and IL-6 levels in vivo and in vitro in an Acvr1cR206H/+ background 
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suggests a setting that mimics chronic inflammation, maintaining a microenvironment 

conducive to continued tissue destruction at the expense of skeletal muscle regeneration. 

These cytokines are involved in the normal tissue injury response, which is replicated in 

our Acvr1+/+ cohort (Figures 3.10 and 3.11); however, they are amplified in the 

Acvr1cR206H/+ cohort and persist for much longer in the injury lesion. IL-1β inhibits satellite 

cell differentiation, IL-6 may precede myofiber rupture, and TNFα induced muscle wasting 

and prevented muscle regeneration in a chronic pulmonary inflammation mouse model 

[Allen et al. 1989, Tomiya et al. 2004, Langen et al. 2006]. These same cytokines also 

enhance proliferation of recruited fibroblasts [Mast et al. 1996] and macrophage secretion 

of matrix metalloproteinase (MMP) enzymes [Murray et al. 2011] that contribute to HO 

formation [Rodenberg et al. 2011, Davis et al. 2016]. TNFα has been shown to promote 

osteogenic differentiation of human mesenchymal stem cells via the NF-κB [Hess et al. 

2009]. Furthermore, fracture healing was significantly impaired in separate TNF receptor 

and IL-6 knock-out mice, demonstrating major roles for these cytokines in the bone 

formation process [Gerstenfeld et al. 2003, Yang et al. 2007]. Our data and supporting 

references suggest that prolonged expression of pro-inflammatory cytokines may actively 

suppress muscle repair and regeneration. 

I also identified an elevated pro-inflammatory response in Acvr1cR206H/+ mast cells 

(Figure 3.15), as mRNA expression of TNFα and IL-6 are significantly upregulated, with 

a trend toward increased IL-1β expression. Although mast cell density is significantly 

increased in Acvr1cR206H/+ lesions (Figure 3.8C), the massive increase in pro-inflammatory 
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cytokine levels observed in vivo is likely caused by multiple cell types secreting these 

factors. 

I examined Activin A expression in vivo and demonstrated increased levels in 

intermediate- and late-stage Acvr1cR206H/+ lesions (Figure 3.12A). Presence of Activin A in 

Acvr1cR206H/+ lesions, particularly within fibroproliferative cells and chondrocytes (Figure 

3.12B) is notable given the recent finding that Activin A can induce HO formation through 

a gain-of-function sensitivity conferred by the ACVR1 R206H mutation [Hatsell et al. 

2015, Hino et al. 2015]. Activin A skews macrophage polarization toward pro-

inflammatory M1 populations [Sierra-Filardi et al. 2011] and recruits mast cell progenitors 

to sites of inflammation [Funaba 2003], suggesting it may have broader pro-inflammatory 

functions in FOP beyond the specific Acvr1R206H receptor sensitivity.  

Although the pro-inflammatory response induced by Acvr1cR206H is comprehensive 

and robust, not all inflammatory factors are upregulated. MCP-1 and IL-13 expression was 

relatively mild and equivalent in Acvr1cR206H/+ and Acvr1+/+ lesions (Figure 3.11). IL-13 is 

expressed in many fibrosis pathologies [Kaviratne et al. 2004, Wynn 2008, Wynn et al. 

2012], suggesting that although there is a substantial fibroproliferative response in FOP, 

the disease should not be classified as fibrosis. 

Overall, a plentiful body of literature suggests that a prolonged pro-inflammatory 

response following tissue injury suppresses proper regeneration. In context with our results 

showing an amplified and prolonged inflammatory response in Acvr1cR206H/+ mice post-

injury, this strongly suggests that the ACVR1 R206H mutation induces a chronic 
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inflammatory state following injury that establishes a permissive microenvironment for the 

subsequent heterotopic endochondral ossification events. 

 

 
 

Figure 3.1: Cross-sectional injury study experimental design 
Acvr1cR206H/+ mice were placed on doxycycline chow (625 mg / kg) for five days prior to injury to induce 

expression of the conditional Acvr1cR206H allele. Hamstring muscles of Acvr1cR206H/+ and Acvr1+/+ mice were 

injected with cardiotoxin (50 μL of 20 μM concentration) and samples were collected at day 0 (uninjected 

controls); and days 1, 2, 3, 4, 5, 6, 7, 10 and 14 post-injury. n = 4 for each genotype, per day. 

 

Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.2: The early response to injury in Acvr1cR206H/+ and Acvr1+/+ mice is indistinguishable 
Skeletal muscle tissue sections from Acvr1cR206H/+ and Acvr1+/+ mice from indicated days following 

cardiotoxin injury were detected for cartilage (Alcian Blue), bone (Orange G), cell nuclei/immune cells 

(Haematoxylin), and skeletal muscle (Eosin). (A) Skeletal muscle histology is similar in mutant and control 

mice before injury (day 0). (B, C) Skeletal muscle degradation and increasingly abundant immune cells are 

present by days 1-2 in both mutant and control mice. Scale bar = 100 μm for all images. Dotted lines indicate 

tissue areas as noted. n = 4 for each genotype, per day. Representative images are shown. Abbreviations: M 

= skeletal muscle, I = immune infiltration 

 

Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.3: Extensive fibroproliferation and glycosaminoglycan accumulation in Acvr1cR206H/+ 

lesions 
Skeletal muscle tissue sections from Acvr1cR206H/+ and Acvr1+/+ mice from indicated days following 

cardiotoxin injury were detected for cartilage (Alcian Blue), bone (Orange G), cell nuclei/immune cells 

(Haematoxylin), and skeletal muscle (Eosin). (A) At day 3, immune cells increased further, but to a greater 

extent in Acvr1cR206H/+ tissue. (B, C, D) In control tissue, muscle repair progresses through the 

fibroproliferative stage and clearance of immune cells (days 4-6), however GAG proteins are detected (Alcian 

Blue) in Acvr1cR206H/+ tissue. Dotted lines indicate tissue areas as noted. n = 4 for each genotype, per day. 

Representative images are shown. Abbreviations: FP = fibroproliferation 

 

Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” JBMR. 
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Figure 3.4: Heterotopic endochondral ossification in Acvr1cR206H/+ lesions 
Skeletal muscle tissue sections from Acvr1cR206H/+ and Acvr1+/+ mice from indicated days following 

cardiotoxin injury were detected for cartilage (Alcian Blue), bone (Orange G), cell nuclei/immune cells 

(Haematoxylin), and skeletal muscle (Eosin). (A, B, C) In control tissue, skeletal muscle repair continues and 

is completed over days 7-14. (A, B) In Acvr1cR206H/+ lesions, endochondral ossification proceeds with 

maturation to hypertrophic chondrocytes and mineralized bone. (C) Ectopic bone with adjacent regions of 

mature cartilage and remaining fibroproliferation at day 14 is shown. n = 4 for each genotype, per day. 

Representative images are shown. Dotted lines indicate tissue areas as noted. Abbreviations: M = skeletal 

muscle, FP = fibroproliferation, C = chondrocytes, B = bone 

 
Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.5: Presence of myocentric nuclei indicates ongoing muscle regeneration in Acvr1+/+ 

lesions 
Histological representative Acvr1+/+ skeletal muscle section at 200X magnification is shown, with dotted 

rectangle indicating further magnification at 400X. Myocentric nuclei, indicating ongoing muscle 

regeneration, is shown (white arrowhead). Note presence of uninjured tissue (freehand dotted region) and 

normal peripheral myonucleus location (black arrow). Scale bar = 100 μm for 200X, 50 μm for 400X 
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Figure 3.6: BMP signaling is upregulated in Acvr1cR206H/+ post-traumatic lesions 
Sections from early- (day 2), intermediate- (day 6), and late-stage (day 14) Acvr1cR206H/+ and Acvr1+/+ lesions 

were immunostained for expression of p-Smad 1/5/8 protein. No haematoxylin counterstain was performed 

in order to enhance contrast of nuclear p-Smad 1/5/8 stain. n = 3 for each genotype, per day. Representative 

images are shown  Scale bar = 100 μm for all images 

 
Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.7: BMP signaling is upregulated in the Acvr1cR206H/+ endogenous knee joint growth 

plate and femoral bone marrow niche 
Sections from early- (day 2), intermediate- (day 6), and late-stage (day 14) Acvr1cR206H/+ and Acvr1+/+ (A) 

endogenous knee joint growth plates and (B) femoral bone marrow niches are shown. No haematoxylin 

counterstain was performed in order to enhance contrast of nuclear p-Smad 1/5/8 stain. n = 3 for each 

genotype, per day.  Representative images are shown. Scale bar = 100 μm for all images 

 
Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.8: Immune cell density is elevated and prolonged in Acvr1cR206H/+ lesions. 
Specific immune cell populations were detected and quantified in injured Acvr1cR206H/+ and Acvr1+/+ skeletal 

muscle over time; early- (day 2), intermediate- (day 6), and late- (day 14) stages after injury are shown. (A) 

Neutrophils were detected by myeloperoxidase IHC. (B) Macrophages were detected with F4/80 IHC. (C) 

Mast cells were detected by C.E.M. stain kit, and indicated by black arrows. (D) T cells were detected with 

CD3 IHC. Cells were quantified from three fields of view per independent sample; n = 3 for neutrophils, 

macrophages, T cells; n = 4 for mast cells. Representative images are shown. Scale bar = 50 μm. Data shown 

are mean values ± SEM; two-way ANOVA with Sidak’s multiple comparisons test comparing Acvr1cR206H/+ 

versus Acvr1+/+ per day was performed; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

 

Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.9: TNFα and IL-6 expression is robustly elevated and prolonged in Acvr1cR206H/+ 

lesions 
Specific pro-inflammatory cytokines were detected by immunostaining of injured tissues from early- (day 

2), intermediate- (day 6), and late- (day 14) stage Acvr1cR206H/+ and Acvr1+/+ lesions: (A) TNFα, (B) IL-6.  

n = 3 for each genotype, per day. Representative images are shown. Scale bar = 100 μm for all images. 
 
Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.10: IL-1β expression is moderately elevated and prolonged in Acvr1cR206H/+ lesions 
IL-1β was detected by immunostaining of injured tissues from early- (day 2), intermediate- (day 6), and late- 

(day 14) stage Acvr1cR206H/+ and Acvr1+/+ lesions. n = 3 for each genotype, per day. Representative images 

are shown. Scale bar = 100 μm for all images. 

 
Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.11: Variable MCP-1 and IL-13 expression in Acvr1cR206H/+ and Acvr1+/+ lesions 
Sections from early- (day 2), intermediate- (day 6), and late-stage (day 14) Acvr1cR206H/+ and Acvr1+/+ lesions 

were immunostained for expression of: (A) MCP-1, (B) IL-13. n = 3 for each genotype, per day. 

Representative images are shown. Scale bar = 100 μm for all images 

 

Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.12: Elevated Activin A protein in intermediate- and late-stage Acvr1cR206H/+ lesions 
Sections from early- (day 2), intermediate- (day 6), and late-stage (day 14) Acvr1cR206H/+ and Acvr1+/+ lesions 

were immunostained for expression of: (A) Activin A. (B) Higher magnification insets demonstrating 

fibroblast and chondrocyte Activin A expression in Acvr1cR206H/+ lesions are shown, indicated by dotted 

rectangles in (A). n = 3 for each genotype, per day. Representative images are shown. Scale bar = 100 μm 

for all images in (A); scale bar = 50 μm for all images in (B). 

 

Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.13: Confirmation of primary mast cell purity by flow cytometry 
Whole bone marrow was collected from Acvr1cR206H/+ and Acvr1+/+ mice and grown in suspension in mast 

cell maturation medium for 6 weeks. Mast cells were stained with fluoro-tagged primary antibodies (or “no 

antibody control”) against c-Kit and FcεRIα, cell surface receptors that in combination identify mast cells. 

Mast cells were gated as double-positive cells (upper right quadrant). Numbers listed are cell percentages per 

gating. 

 
Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

97 

 

 
 
Figure 3.14: BMP signaling is increased in Acvr1cR206H/+ mast cells and macrophages 
(A) Quantification of BMP/TGF-β type I and II receptor mRNAs in Acvr1+/+ mast cells and macrophages. 

Note expression of Acvr1, the receptor mutated in FOP (rectangle). (B) Mast cells treated with BMP4 ligand 

show dose responsive increases in p-Smad1/5/8 protein levels with enhanced pSmad1/5/8 detected in mutant 

cells. Quantified p-Smad1/5/8 protein relative to untreated control cells is shown. Quantification of (C) mast 

cell and (D) macrophage p-Smad 1/5/8 levels. n = 4; data shown are mean values ± SEM in A. 
 

Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 3.15: Enhanced pro-inflammatory activation in Acvr1cR206H/+ mast cells 
mRNA expression of specific pro-inflammatory cytokines in (A) mast cells and (B) macrophages was 

detected by qRT-PCR following mast cell treatment with 100 μM Substance P or macrophages treatment 

with 1 ng/mL lipopolysaccharides, then 15 ng/mL BMP4 for 1 hour. Data were normalized to Gapdh and are 

shown as mean values ± SEM; Student’s t-test compared expression in Acvr1cR206H/+ vs. Acvr1+/+; * p < 0.05; 

ns = not significant. n = 6 per gene, per genotype. (C) Mast cells were treated with 100 μM Substance P, plus 

15 ng/mL BMP4, for 1 hour. Cells were spun down and conditioned medium was collected and added to 

tryptase substrate for 2 hours. Free pNA, indicating degranulation activity, was quantified using a microplate 

reader at a wavelength of 405 nm. n = 5; data shown are mean values ± SEM; Student’s t-test comparing 

Acvr1cR206H/+ versus Acvr1+/+ was performed; **** p < 0.0001 

 
Figure panel modified from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, 

Kaplan FS, Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic 

Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Chapter Four 

 
Modulation of the immune system to control heterotopic ossification 
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4.1 Summary 

 Current treatments for FOP are mostly ineffective at preventing disease progression 

to HO. Pre-clinical therapeutics targeting the endochondral ossification stage of FOP have 

shown promise in mouse models and are under clinical trial investigation; however, there 

still is an unmet need of effective therapies. The immune system is an appealing therapeutic 

target for FOP, as inflammation is the earliest stage of disease progression, therefore 

treating FOP at its earliest phase may provide optimal disease management. A precise 

understanding of the cellular and molecular inflammatory response, in context with the 

ACVR1 R206H mutation, is key to developing novel and effective methods of inhibiting 

HO formation. 

 I investigated whether expression of Acvr1cR206H restricted to immune cell lineages 

is sufficient to produce HO in Acvr1+/+ mice. I performed two experiments to address this 

question – a bone marrow transplant (BMT) of Acvr1cR206H/+ whole bone marrow into 

Acvr1+/+ recipients, and Cre-recombinase-mediated expression of the Acvr1cR206H allele in 

myeloid lineage cells via use of the Lysozyme M (LysM-Cre) promoter. I additionally 

investigated whether blocking the cellular and molecular inflammatory response could 

impair HO formation in Acvr1cR206H/+ mice; this was examined via two approaches: 

administration of two neutralizing agents against pro-inflammatory cytokines, and 

development of immunodeficient Acvr1cR206H/+ mice. Our results suggest that while 

immune cells expressing Acvr1cR206H are alone insufficient to induce HO formation, 

depleting mast cells and macrophages dramatically impaired HO development in 

Acvr1cR206H/+ mice, highlighting their necessity for HO formation in vivo. 
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4.2 Introduction 

 Modulation of the immune system to control disease progression in FOP has been 

an approach of significant interest. The most noteworthy attempt to treat FOP in this 

manner involved a single patient who, in addition to FOP, presented with aplastic anemia 

[Kaplan et al. 2007]. This patient underwent two allogeneic HLA-matched bone marrow 

transplants (BMT) from his sister, who did not have FOP, as treatment for aplastic anemia. 

Complete engraftment and reconstitution of donor bone marrow was confirmed by genetic 

analysis of short tandem repeats. Following successful BMT, the patient developed acute 

and chronic graft-versus-host disease and was treated with prednisone, cyclosporine, and 

methotrexate for fourteen years. During this time period, FOP disease progression was 

halted, with no advancement of HO observed. After discontinuation of the 

immunosuppressive regimen, the patient’s FOP symptoms rapidly rebounded, with new 

HO developing in previously unaffected areas [Kaplan et al. 2007]. This case report 

suggested two significant findings: a wild-type immune system in an ACVR1 R206H 

background is insufficient to prevent disease progression, and suppressing the immune 

system may be an effective method to halt FOP disease progression. 

 To further enhance our understanding of the cellular inflammatory contribution to 

HO, I investigated the converse question: are immune cells expressing the R206H mutation 

sufficient to develop HO in an Acvr1+/+ genetic background? Although previous studies 

have shown that cells of hematopoietic origin do not directly contribute to the 

fibroproliferative, chondrogenic, and osteogenic stages of heterotopic endochondral 

ossification [Kaplan et al. 2007, Kan et al. 2009], I hypothesized that the upregulated 
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inflammatory activation present in Acvr1cR206H/+ mast cells (Figure 3.15A, C) and possibly 

other immune cell lineages may suggest that hematopoietic lineages alone are sufficient to 

induce HO formation in FOP. Notably, cells that do not express Acvr1R206H are capable of 

contributing to the chondrogenic and osteogenic stages of lesion formation [Chakkalakal 

et al. 2012], suggesting that expression of Acvr1R206H restricted to hematopoietic cells may 

be able to induce an HO response with the participation of Acvr1+/+ fibro-progenitor cells. 

To investigate the above hypothesis, I performed two experiments: a BMT of Acvr1cR206H/+ 

whole bone marrow into Acvr1+/+ recipient mice, and a genetic approach of myeloid-

specific Acvr1cR206H expression via generation of LysM-Cre;Acvr1cR206H/+ mice. For both 

experiments, I challenged skeletal muscle with cardiotoxin injury and quantified HO 

development. These experiments would improve our understanding of the cell-autonomous 

effects of the ACVR1 R206H mutation in immune cells toward directing chondro-

/osteogenesis. 

 The observation that global immunosuppresive medicines can suppress HO 

formation suggests the immune system as an appealing therapeutic target [Kaplan et al. 

2007]. HO development in a ligand-independent, constitutively-active Acvr1Q207D mouse 

model of HO required an inflammatory millieu, and dexamethasone treatment impaired 

HO development [Yu et al. 2008], providing a proof-of-principle experiment that 

inflammatory inhibition may be an effective treatment approach in FOP. Despite the 

promise of global immunosuppressive therapies, these compounds must be used with 

caution and are generally not recommended for systemic use in pediatric FOP patients due 



 

103 

 

to adverse events, such as increased propensity for infection, myopathies, and other 

complications [Poetker et al. 2010]. 

 Targeted immunosuppression of specific immune cells and inflammatory mediators 

may impair HO formation while also maintaining substantial immune function. I designed 

two immunosuppressive experiments based on results detailed in Chapter 3, which 

demonstrated robust upregulation of TNFα and IL-6 in Acvr1cR206H/+ lesions and mast cells 

(Figures 3.9 and 3.15A) and significantly increased macrophage and mast cell density in 

Acvr1cR206H/+ lesions (Figure 3.8B, C). I hypothesized that systemic neutralization of TNFα 

and IL-6 would inhibit HO formation in Acvr1cR206H/+ mice. I also hypothesized that 

depletion of mast cells and macrophages in Acvr1cR206H/+ mice would inhibit HO formation. 

These in vivo experiments provide key insight into the direct immune cellular and 

molecular contributions to HO formation. 
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4.3 Results 

4.3.1 Reconstitution of an Acvr1cR206H/+ hematopoietic system in Acvr1+/+ recipient 

mice is insufficient to induce HO formation 

 An unresolved research question is whether expression of the ACVR1 R206H 

mutation restricted to hematopoietic lineages is sufficient to induce HO formation in an 

Acvr1+/+ genetic background. I first investigated this question by conducting a BMT of 

donor Acvr1cR206H/+ whole bone marrow into Acvr1+/+ recipient mice. For this experiment, 

I used tamoxifen-inducible ERT2-Cre;Acvr1cR206H/+ mice as donors. Because of unknown 

effects of Acvr1cR206H/+ increased BMP signaling on hematopoietic survival, engraftment 

potential, and reconstitution, I used two groups of donor ERT2-Cre;Acvr1cR206H/+ mice: a 

cohort in which I induced Acvr1cR206H allele expression by tamoxifen administration in 

donor cells prior to transplant, and a cohort in which I induced Acvr1cR206H in recipient 

mice post-transplant after engraftment and reconstitution. I also included two control 

Acvr1+/+ donor cell groups; cells that received tamoxifen injections prior to BMT, and cells 

that received tamoxifen injections post-transplant in recipients. Tamoxifen is not expected 

to affect Acvr1+/+ allele expression, nor are these control mice expected to develop HO 

(Table 4.1). To detect donor marrow engraftment and reconstitution in recipients, I took 

advantage of murine CD45 receptor biology in which two CD45 isoforms – CD45.1 and 

CD45.2 – can be used to lineage trace the sources of bone marrow cells [Spangrude et al. 

1988]. All donor ERT2-Cre;Acvr1cR206H/+ mice express the CD45.2 isoform, and all 

recipient B6.SJL mice express CD45.1 [Waterstrat et al. 2010], allowing for flow 

cytometry detection of donor cell engraftment and reconstitution efficiency post-BMT. 
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Expression of the Acvr1cR206H allele in donor cells prior to BMT was confirmed by PCR 

(Figure 4.1). 

 A catalog of all recipient mice, and source/genotype of donor bone marrow, can be 

found in Table 4.1. Six week old B6.SJL recipient mice were irradiated with 1000 rads and 

then injected with 5 X 106 whole bone marrow cells from donor mice via tail vein injection 

(tamoxifen-treated or non-tamoxifen-treated; see Table 4.1). Engraftment and 

reconstitution occurred over 8 weeks. Following this 8 week period, appropriate cohorts 

were adminsistered tamoxifen by intraperitoneal injection for four consecutive days. All 

recipient mice were injured by cardiotoxin injection (100 μL of 10 μM) into right hamstring 

muscles; contralateral hamstring muscles were injected with PBS. All mice were sacrificed 

at 21 days post-injury, after which mice were assessed for HO formation by X-ray and 

μCT. At sacrifice, bone marrow was collected to confirm donor CD45.1 cell reconstitution, 

as well as to confirm Acvr1cR206H allele recombination. 

 Data analysis suggested that the BMT experiment produced inconclusive results. 

Mouse #9 received Acvr1cR206H/+ donor bone marrow, but did not receive tamoxifen 

injections as a control against possible leaky Acvr1cR206H expression. Detection of the 

recombined Acvr1cR206H allele occurred only in three of seven recipients that received 

Acvr1cR206H/+ donor bone marrow and tamoxifen injections: mice #11, #12, and #305. 

Detection of the recombined Acvr1cR206H allele was also expected in mice numbers 6, 7, 8, 

and 10, however these amplicons were not detected (Figure 4.2). Of all Acvr1+/+ recipient 

mice that received Acvr1cR206H/+ donor bone marrow, only one developed any HO, and this 

amount was very small (Figure 4.3). Engraftment and reconstitution of donor CD45.1+ 
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bone marrow was variable across individual recipients, suggesting that irradiation may 

have been incomplete in some recipients; however, mature immune cells were detected in 

all mice analyzed (Table 4.2 and Figure 4.4). Importantly, as a positive control, I included 

an Acvr1cR206H/+ recipient mouse that received Acvr1cR206H/+ donor bone marrow (mouse 

#305). Although this mouse expressed Acvr1cR206H/+ globally, and mature mutant immune 

cells were detected (Table 4.2 and Figure 4.4), no HO was observed (Figure 4.3). These 

results suggest that Acvr1cR206H/+ hematopoietic cells are unable to induce HO formation in 

an Acvr1+/+ background, however possible experimental design limitations and technical 

issues may prevent conclusive data interpretation (see Chapter 4.4 Discussion). 

 

4.3.2 Myeloid-restricted Acvr1cR206H expression is insufficient to induce HO formation 

 Based on potential experimental design limitations and technical issues with our 

BMT experiment, I next used a genetic approach to address the same question: whether 

expression of the ACVR1 R206H mutation restricted to hematopoietic lineages is sufficient 

to induce HO formation in an Acvr1+/+ genetic background. 

Lysozyme M (encoded by the Lyz2 gene, also referred to as LysM) is a glycoside 

hydrolase enzyme that is expressed in almost all myelomonocytic lineages, including 

mature neutrophil granulocytes and macrophages [Cross et al. 1988, Faust et al. 2000]. I 

generated LysM-Cre;Acvr1cR206H/+ mice (Figure 2.5) in which recombination and 

expression of the Acvr1[R206H]FlEx
 allele occurs exclusively within myelomonocytic 

lineages. I injected cardiotoxin into the right hamstring muscles into LysM-

Cre;Acvr1cR206H/+ mice and grouped mice into two cohorts: 2 weeks post-injury and 4 
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weeks post-injury. Two global knock-in Acvr1cR206H/+ mice were injected using same 

protocol and served as positive controls. 

No HO was detected in any LysM-Cre;Acvr1cR206H/+ mice, either at 2 weeks or 4 

weeks post-injury. HO was detected in both globally-expressing Acvr1cR206H/+ positive-

control mice at 2 weeks post-injury (Figure 4.5 A, B). 

 

4.3.3 Systemic neutralization of TNFα and IL-6 reduces inflammation but is 

insufficient to prevent HO formation in Acvr1cR206H/+ mice 

 Immunosuppressive corticosteroid therapy has proven effective at halting disease 

progression in a single FOP patient and in a constitutively-active Acvr1Q207D FOP mouse 

model [Kaplan et al. 2007, Yu et al. 2008]. However, the former data represents only a 

single adult human patient and has not been extensively evaluated in other FOP patients. 

Global immunosuppresive regimens are risky for use in pediatric FOP patients due to 

infectious disease vulnerability, and long-term use of these therapeutics may increase the 

prevalence of adverse events, such as increased propensity for infection, myopathies, and 

other complications [Poetker et al. 2010]. 

Immunomodulary biologics are a class of extremely effective therapeutics used in 

the clinic for treatment of inflammatory disorders [Sathish et al. 2013]. Biologics are most 

commonly recombinant DNA-based monoclonal antibodies or decoy fusion receptors that 

bind and sequester soluble cytokines and chemokines. Due to their target specificity, 

biologics are remarkably effective and have limited off-target effects. 
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 Based on results from Chapter Three showing that Acvr1cR206H/+ mice express 

significantly higher and persistent levels TNFα and IL-6 following skeletal muscle injury 

(Figure 3.9A, B), I considered the use of biologics as an approach to reduce cytokine levels 

in Acvr1cR206H/+ mice. I hypothesized that systemic neutralization of TNFα and IL-6 would 

inhibit HO formation. 

 Acvr1cR206H/+ mice were injected with cardiotoxin (50 μL of 20 μM concentration) 

into the gastrocnemius muscle of both hind limbs, with mouse sacrifice and sample 

collection at 2 weeks post-injury. I neutralized TNF-α and IL-6 using specific neutralizing 

agents. I neutralized TNF-α via etanercept, a soluble fusion protein of the TNF-α receptor 

and the IgG1 constant region that binds TNF-α and confers long-term neutralization of 

TNF-α [Peppel et al. 1991, Kolls et al. 1994]. I neutralized IL-6 using a custom produced 

mouse-anti-IL-6-antibody. Our experimental design included four Acvr1cR206H/+ cohorts: 

PBS vehicle control, etanercept (4.0 mg/kg, 3X week), mouse-anti-IL-6 (150 mg per 

mouse, 3X week), or etanercept plus mouse-anti-IL-6-antibody (previous concentrations). 

Neutralizing agents were delivered via retro-orbital delivery into Acvr1cR206H/+ mice. To 

confirm efficacy of cytokine neutralization, I quantified serum levels of C-reactive protein 

(CRP), a pan-inflammatory marker [Pepys et al. 2003], from serum collected throughout 

the experiment. 

 Our results show that both etanercept and mouse-anti-IL-6 were effective at 

reducing systemic inflammation in Acvr1cR206H/+ mice post injury, with the greatest down-

regulation of serum CRP at the intermediate fibroproliferative cell stage (Figure 4.6A). In 

contrast, vehicle-treated Acvr1cR206H/+ mice exhibited a 40% increase in serum CRP levels 
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over baseline measurements. By day 14, CRP levels were equivalent among all groups. 

Intramuscular mineral content and HO volume were significantly reduced in the etanercept 

cohort, compared to the anti-IL-6 cohort (Figure 4.6B, C). HO volume was also 

significantly reduced in the combined etanercept plus anti-IL-6 cohort, compared to the 

anti-IL-6 cohort (Figure 4.6C). Despite the reduction in ectopic bone parameters in the 

etanercept cohorts, there was considerable variability in the vehicle positive control mice 

that prevented conclusive interpretation of results; however, I concluded that mouse-anti-

IL-6 is ineffective at preventing HO formation. 

Due to the promising etanercept results, I conducted a second experiment of 

etanercept experimental groups. The second experiment utilized the following dosing 

regimens: etanercept (4 mg/kg, 2X week; 2 mg/kg, 2X week; 4 mg/kg, 3X week). I 

quantified HO volume at 2 weeks post-injury and in contrast to the first experiment, HO 

volume was not reduced in any etanercept-treated Acvr1cR206H/+ cohort (Figure 4.6D). 

Based on the results of both neutralizing agent experiments, I concluded that systemic 

neutralization of TNF-α and IL-6, while efficiently reducing systemic cytokine levels, is 

insufficient to inhibit HO formation in Acvr1cR206H/+ mice. 

 

4.3.4 Depletion of mast cells and macrophages significantly impairs injury-induced 

heterotopic ossification development in Acvr1cR206H/+ mice 

Two immune cell populations previously implicated in HO development are mast 

cells and macrophages [Gannon et al. 2001, Kan et al. 2009, Kan et al. 2011, Salisbury et 

al. 2011]. Given the increased cell density and prolonged presence of mast cells and 
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macrophages in FOP lesions (Figure 3.8B, C), as well as their relevance in multiple HO 

disorders [Convente et al. 2015], I investigated the contribution of mast cells and 

macrophages to injury-induced HO by generating immunodeficient Acvr1cR206H/+ mice. 

The homozygous mutant White Sash c-KitW-sh/W-sh mouse fully lacks mast cells due 

to a 3 mb inversion in the upstream regulatory region of the c-Kit transcriptional start site 

[Nagle et al. 1995, Grimbaldeston et al. 2005]. The heterozygous mutant c-KitW-sh/+ mouse 

exhibits partial mast cell deficiency [Grimbaldeston et al. 2005]. Importantly, the c-KitW-

sh/W-sh mouse exhibits no other immune cell deficiencies [Grimbaldeston et al. 2005]. To 

deplete mast cells in the context of global expression of the R206H mutation, I generated 

Acvr1cR206H/+;c-KitW-sh/W-sh and Acvr1cR206H/+;c-KitW-sh/+ mice. To deplete macrophages, 

Acvr1cR206H/+ mice were injected with clodronate liposomes (Clo), which selectively induce 

apoptosis in mature macrophages [van Rooijen et al. 1984, Van Rooijen 1989] (Figure 4.7). 

This pharmacological approach allowed generation of combined mast cell- and 

macrophage-deficient mice by injecting Acvr1cR206H/+;c-KitW-sh/W-sh mice with clodronate 

liposomes. Macrophage depletion was confirmed via flow cytometry (Figure 4.8) and mast 

cell depletion was confirmed via histological detection (Figure 4.9). 

Compared to Acvr1cR206H/+ mice, heterozygous Acvr1cR206H/+;c-KitW-sh/+ mice 

consistently had a moderate, but statistically insignificant, decrease in HO volume (Figure 

4.10A, B). However, fully mast cell-deficient Acvr1cR206H/+;c-KitW-sh/W-sh mice exhibited a 

~50% decrease in HO volume relative to Acvr1cR206H/+ mice. Macrophage-deficient 

Acvr1cR206H/+;Clo-treated mice had a similar ~50% decrease in HO. Combined deficiency 

of mast cells and macrophages (Acvr1cR206H/+;c-KitW-sh/W-sh;Clo) resulted in a further 
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reduction in HO, with a ~75% decrease relative to Acvr1cR206H/+ mice (Figure 4.10A, B). 

These results show that both mast cells and macrophages contribute to HO initiation and 

development. 
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4.4 Discussion 

4.4.1 Acvr1R206H cells of hematopoietic origin are insufficient to induce heterotopic 

ossification 

 The origin of the progenitor cells that differentiate to form heterotopic 

endochondral ossification in FOP is a major ongoing question of investigation. In vitro 

studies using fibroblastic mesenchymal cells from both human sources and mouse models 

have demonstrated chondro-/osteogenic potential that is further accelerated with 

expression of Acvr1R206H, providing initial clues about the properties of cells directly 

contributing to HO [Billings et al. 2008, Culbert et al. 2014]. Additional in vivo studies 

have further expanded information about the identity of cells that directly participate in HO 

formation, including cells expressing Tie-2, PDGFRα, Mx1, and Scx [Lounev et al. 2009, 

Wosczyna et al. 2012, Agarwal et al. 2016, Dey et al. 2016]. Although previous work has 

shown that hematopoietic cells do not participate directly to form ectopic bone [Kaplan et 

al. 2007], an unresolved question was whether Acvr1R206H hematopoietic cells could induce 

HO formation in an otherwise Acvr1+/+ background via recruitment of chondro-/osteo-

progenitor cells to the site of tissue injury.  

I showed in Chapter Three that Acvr1cR206H/+ mast cells exhibit an upregulated 

inflammatory response (Figure 3.15A, C), and mast cells are known to recruit fibroblasts 

to sites of injury and biomaterial implants [Tang et al. 1998, Zhao et al. 2008, Levick et al. 

2009, Thevenot et al. 2011]. Additionally, Acvr1+/+ chondro-/osteo-progenitor cells 

participate in ectopic skeletogenesis in the presence of Acvr1R206H cells [Chakkalakal et al. 

2012]. Our results from Chapter 3 and supporting literature suggested a hypothesis that 
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enhanced inflammatory signaling present in Acvr1cR206H/+ immune cells may be sufficient 

to recruit Acvr1+/+ fibroblastic progenitor cells and induce HO formation. 

 The results from our Acvr1cR206H/+ BMT and LysM-Cre;Acvr1cR206H/+ experiments 

strongly oppose our hypothesis. HO formed in only one Acvr1+/+ recipient mouse (#12) 

that received Acvr1cR206H/+ donor bone marrow (in which Acvr1cR206H expression was 

confirmed; Figure 4.2). Experimental design and technical issues limit conclusive 

interpretation of the BMT experiment. I did not fractionate donor bone marrow into a 

hematopoietic-specific pool; whole bone marrow is a heterogeneous mixture that also 

contains mesenchymal stromal cells with chondro-/osteogenic potential [Reagan et al. 

2016]. Given that Acvr1cR206H/+ donor engraftment and reconstitution was reasonably high 

in mouse #12 (Figure 4.4), it is possible that some bystander Acvr1cR206H/+ stromal cells 

were also transplanted and contributed to the development of low HO volume in that 

mouse. Additionally, our experience with Acvr1cR206H/+ mice suggests that HO is unable to 

form if the ACVR1 R206H mutation is induced in mice older than ~7-8 weeks of age. 

Given the 8 week duration for engraftment and reconstitution of donor bone marrow, 

recipient mice were ~14 weeks of age at time of injury. This length of time (compared to 

the 4 week old mice used in our standard experimental protocal of HO induction) may 

explain why our positive-control Acvr1cR206H/+ mouse (#305) did not develop HO (Figure 

4.3), even though it received Acvr1cR206H/+ syngeneic CD45.2 donor bone marrow (Figures 

4.2 and 4.4). 

 To address the experimental design concerns of the BMT, I utilized an alternative, 

genetic approach to selectively express Acvr1cR206H in cells of hematopoietic lineage. I 
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induced Acvr1cR206H expression in myeloid lineage cells due to their significant presence 

and contribution to FOP and other HO disorders [Convente et al. 2015]. This genetic 

approach improves the BMT experimental design in two ways: Acvr1cR206H expression is 

restricted to myeloid lineages without bystander stromal cell expression, and this model 

removes potential mouse age restrictions that impede HO formation. However, I did not 

detect HO in any LysM-Cre;Acvr1cR206H/+ mice, even at 4 weeks post-injury (Figure 4.5), 

which is double the normal time needed for HO development. 

 Based on the results of the BMT and LysM-Cre;Acvr1cR206H/+ experiments, I 

conclude that Acvr1R206H cells of hematopoietic origin are insufficient to induce heterotopic 

ossification. These data are corroborated by a recent publication that reported no HO 

development in Vav1-Cre;Acvr1Q207D mice that express constitutively-active Acvr1Q207D in 

all hematopoietic lineage cells [de Boer et al. 2003, Dey et al. 2016]. 

 

4.4.2 Neutralization of TNFα and IL-6 is insufficient to inhibit heterotopic ossification 

 Targeting a subset of the immune system to treat HO is an appealing approach due 

to potentially reduced adverse events and off-target effects that often results with global 

immunosuppressive regimens such as corticosteroids. I specifically targeted TNFα and IL-

6 for neutralization due to their robust upregulation in Acvr1cR206H/+ lesions and mast cells 

(Figures 3.9A, B and 3.15A), as well as their role in chronic inflammatory myopathies 

[Karalaki et al. 2009, Philippou et al. 2012], a microenvironment mimicked in Acvr1cR206H/+ 

lesions (Figure 3.9). 
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 Systemic neutralization of TNFα and IL-6 was effective at reducing inflammation 

in Acvr1cR206H/+ mice post-injury (Figure 4.6A), but over the course of two independent 

experiments, was ineffective to reduce HO. Results from the first experiment were 

promising; however, HO volume was far lower than normally seen in positive-control 

Acvr1cR206H/+ (Figure 4.6C). On our second attempt, HO volume returned to consistent 

amounts and all regimens of etanercept showed no efficacy at reducing HO (Figure 4.6D). 

 It is possible that neutralization of TNFα and/or IL-6 is insufficient to reduce HO 

formation due to compensating effects from other cytokines and enzymes, such as IL-1β, 

IFN-γ, MCP-1, MMP-9, and chymase, among numerous other candidates. Pro-

inflammatory cytokines induce substantial concentrations of chemokines and growth 

factors that support tissue remodeling and restoration [Karalaki et al. 2009, Philippou et al. 

2012], suggesting a more comprehensive anti-inflammatory therapeutic regimen may be 

necessary to inhibit HO formation. 

 

4.4.3 Depletion of immune cells dramatically impairs heterotopic ossification 

development 

 Immune cells are sources of numerous inflammatory mediators that direct a potent 

inflammatory response to tissue injury. Myeloid-lineage cells including neutrophils, 

macrophages, and mast cells are known to express and secrete dozens of cytokines, 

chemokines, enzymes, and other inflammatory small molecules that amplify and sustain 

an inflammatory response and participate in tissue regeneration [Mosser et al. 2008, 

Murray et al. 2011, Kolaczkowska et al. 2013, Wynn et al. 2013, Moon et al. 2014, de 



 

116 

 

Oliveira et al. 2016, Vukman et al. 2017]. Given that immune cells are the primary source 

of inflammatory factors, depleting immune cells is a proof-of-principle approach that may 

reduce overall inflammation and impair HO development. 

 Several previous studies have demonstrated that immuno-ablating select immune 

cells impairs HO development [Kan et al. 2009, Kan et al. 2011]. Our study is the first to 

investigate the requirement of mast cells and macrophages for HO formation in the 

Acvr1cR206H/+ mouse model. Our in vivo results suggest that mast cells and macrophages 

are key cells for HO progression in FOP (Figure 4.10). I found that ablation of only mast 

cells or only macrophages reduced HO formation significantly but not completely, while 

ablating both resulted in enhanced inhibition, indicating that a single target may be 

insufficient to completely prevent HO. These data, in combination with our neutralization 

data, suggest that the inflammatory HO initiation mechanism by mast cells and 

macrophages may be due to factors not investigated in this project, such as the 

aforementioned chemokines and growth factors. 

Importantly in the context of developing therapeutics to inhibit HO formation in 

FOP, multiple methods that block mast cell inflammatory signaling, including targeting the 

Substance P neuroinflammatory pathway, all inhibited HO formation in a BMP2-implant 

model of HO [Kan et al. 2011, Salisbury et al. 2011]. Macrophages have been shown to 

produce osteoinductive signals [Champagne et al. 2002], promote osteogenic 

differentiation of mesenchymal stem cells [Tu et al. 2015], inhibit osteoclastogenesis 

[Jacquin et al. 2009], and promote fracture repair [Alexander et al. 2011], highlighting their 

potential relevance to HO development. Our data and these supporting literature suggest 
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that depleting mast cells and macrophages may severely limit their comprehensive 

inflammatory, pro-fibrotic, and pro-osteogenic functions, ultimately restricting the cascade 

of events that result in heterotopic endochondral ossification. 
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Donor 

Marrow 

Source 

Tamoxifen 

in donor or 

recipient 

Recipient 

Mice 

Genotype 

Recipient 

Mouse 

Number 

HO 

Response 

Acvr1+/+ Donor Acvr1+/+ 1 - 

Acvr1+/+ Donor Acvr1+/+ 2 - 

Acvr1+/+ Recipient Acvr1+/+ 3 - 

Acvr1+/+ Donor Acvr1+/+ 4 - 

Acvr1+/+ Donor Acvr1+/+ 5 - 

Acvr1cR206H/+ Recipient Acvr1+/+ 6 - 

Acvr1cR206H/+ Recipient Acvr1+/+ 7 - 

Acvr1cR206H/+ Donor Acvr1+/+ 8 - 

Acvr1cR206H/+ None Acvr1+/+ 9 - 

Acvr1cR206H/+ Donor Acvr1+/+ 10 - 

Acvr1cR206H/+ Donor Acvr1+/+ 11 - 

Acvr1cR206H/+ Donor Acvr1+/+ 12 + 

Acvr1cR206H/+ Recipient Acvr1cR206H/+ 305 - 
 

Table 4.1: Bone marrow donors and recipients table 
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Figure 4.1: Detection of recombined and expressed Acvr1cR206H allele in donor bone marrow 

pre-BMT 
DNA isolated from donor bone marrow or tail snip was amplified with primers specific to recombination of 

Acvr1[R206H]FlEx amplicon (and Acvr1+/+ control amplicon), indicating active Acvr1cR206H allele expression; 

Lane A was bone marrow sample from ERT2-Cre; Acvr1[R206H]FlEx + Tam.; Lane B was bone marrow sample 

from ERT2-Cre;Acvr1+/+ mouse + Tam; Lane C was bone marrow sample from ERT2-Cre;Acvr1[R206H]FlEx 

mouse without Tam; Lane D was tail snip from same mouse as in A; Lane E was tail snip from same mouse 

as in B. H2O indicates “water, no DNA control” lane. Abbreviation: Tam. = Tamoxifen-treated. 
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Figure 4.2: Detection of recombined and expressed Acvr1cR206H reconstituted bone marrow in 

Acvr1+/+ post-BMT recipients 
DNA isolated from reconstituted recipient bone marrow was amplified with primers specific to 

recombination of Acvr1[R206H]FlEx amplicon (and Acvr1+/+ control amplicon), indicating active Acvr1cR206H 

allele expression. Lane numbers correspond to mice indicated in Table 4.1. H2O indicates “water, no DNA 

control” lane. 
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Figure 4.3: Acvr1cR206H/+ whole bone marrow is insufficient to generate HO in Acvr1+/+ 

recipients 
Six week old Acvr1+/+ recipient mice (and a positive-control Acvr1cR206H/+ mouse #305) were irradiated with 

1000 rads and injected with 5 X 106 Acvr1cR206H/+ whole bone marrow cells by tail vein injection. Donor 

marrow engraftment and reconstitution time was 8 weeks. Recipient mouse hamstring muscles were injected 

with cardiotoxin (100 μL of 10 μM) and sacrificed at 3 weeks post-injury. Hind limbs were analyzed by μCT 

for visualization of HO. Only recipient #12 developed a small volume of HO (red arrow). The global knock-

in Acvr1cR206H/+ recipient mouse #305 (positive control) did not develop HO. 
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 B cells  CD4 

T cells 

 CD8  

T cells 

 

Mouse 

Number 

CD45.1 

% 

CD45.2 

% 

CD45.1 

% 

CD45.2 

% 

CD45.1 

% 

CD45.2 

% 

1 0.4 95 7.5 92 8.2 92 

2 0.99 96 7.3 92 6.9 93 

3 2.0 94 13 85 10.1 90 

4 91 0.54 95 0.051 99 0.019 

5 5.8 91 37 60 36 64 

6 31 63 71 27 45 54 

7 91 0.35 97 0.016 99.2 0 

8 90 0.39 89 1.2 96 0.23 

9 85 0.71 87 1.1 94 0.43 

10 66 28 64 33 70 30 

11 2.2 95 10 89 13 87 

12 65 4.2 35 7 46 51 

305 0 92 0.35 99 0.23 99.7 

 

 

 

 

 

 

 

 

Table 4.2: Donor CD45.2 bone marrow engraftment and reconstitution table 
Mice numbers 1-5 received Acvr1+/+ donor bone marrow. Mice numbers 6-12 and 305 received Acvr1cR206H/+ 

donor bone marrow. 

 

 

 

 

 

 
 

 NK 

cells 

 Neutrophils  

Mouse 

Number 

CD45.1 

% 

CD45.2 

% 

CD45.1 

% 

CD45.2 

% 

1 0.16 99.7 4.7 92 

2 0.69 99 0 95 

3 0.73 99.1 0 98 

4 100 0 96 0.22 

5 5.1 95 0.22 93 

6 90 9.7 46 48 

7 99 0 95 0.24 

8 89 2.0 94 0.35 

9 92 1.6 90 1.7 

10 56 41 57 34 

11 5.3 95 2.6 91 

12 52.4 43.3 96 0.48 

305 0.94 99 0 94 
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Figure 4.4: Variable efficiency of CD45.2 donor bone marrow engraftment and 

reconstitution in recipients 
Bone marrow was collected from recipient mice at sacrifice for quantification of donor bone marrow 

engraftment and reconstitution. Bone marrow was incubated with primary antibodies against CD45.1, 

CD45.2, and a panel of fluoro-tagged antibodies to detect specific immune cell populations (see Chapter 

2.8.3). Percentages of donor reconstituted immune cells (CD45.2) and host residual immune cells (CD45.1) 

are listed for each recipient mouse. Mice numbers 1-5 received Acvr1+/+ donor bone marrow. Mice numbers 

6-12 and 305 received Acvr1cR206H/+ donor bone marrow. 
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Figure 4.5: Myeloid-restricted Acvr1cR206H expression is insufficient to induce HO formation 

following skeletal muscle injury 
Four week old LysM-Cre;Acvr1cR206H/+ mice (and Acvr1cR206H/+ positive controls) were injected with 

cardiotoxin (60 μL; 8 μg total peptide) into right hamstring muscles. (A) Hind limbs were analyzed by μCT 

for visualization of HO. No HO was detected in any LysM-Cre;Acvr1cR206H/+ mouse; HO was detected in both 

Acvr1cR206H/+ mice (red arrow). Representative μCT 3D volume renderings per cohort are shown. (B) 

Quantification of HO for each cohort. n = 4 for each LysM-Cre;Acvr1cR206H/+ cohort, n = 2 for Acvr1cR206H/+ 

cohort. Data shown are mean values ± SEM; one-way ANOVA with Tukey’s multiple comparisons test 

compared Acvr1cR206H/+ vs. other cohorts; * p < 0.05 
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Figure 4.6: TNFα and IL-6 neutralization is insufficient to inhibit HO formation 
Four week old Acvr1cR206H/+ mice were injected with cardiotoxin (50 μL of 20 μM) into the gastrocnemius 

muscle of both hind limbs. Four experimental groups: PBS vehicle, mouse-anti-IL-6, etanercept, mouse-anti-

IL-6 + etanercept. Mice were sacrificed at 2 weeks post-injury. Hind limbs were scanned by μCT for HO 

quantification. (A) CRP levels were quantified at the beginning, middle, and end of 2-week experiment. n = 

8 for all cohorts except etanercept (n = 6). Data shown are mean values ± SEM; two-way repeated measures 

ANOVA with Holm-Sidak’s multiple comparisons test compared values to baseline measurements; * p < 

0.01 versus Day 1 within treatment. (B) Intramuscular mineral content was quantified. (C) HO volume was 

quantified. n = 8 for all cohorts except etanercept (n = 6). Data shown are mean values ± SEM; one-way 

ANOVA with Tukey’s multiple comparisons test was performed. (D) HO volume was quantified. n = 10 for 

all groups, except etanercept, 4mg/kg; 3X (n = 2). Data shown are mean values ± SEM; one-way ANOVA 

with Tukey’s multiple comparisons test was performed. Abbreviation: CRP = C-reactive protein 
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Figure 4.7 Clodronate-liposome-mediated macrophage depletion experimental design 
Acvr1cR206H/+ mice were placed on doxycycline chow (625 mg / kg) for five days prior to injury to induce 

expression of the conditional Acvr1cR206H allele. Clodronate-liposomes (100 μL / 10 g bodyweight) were 

injected intraperitoneally into appropriate mouse cohorts at days indicated; an injection was performed 3 

days prior to cardiotoxin injection in order to deplete macrophages at the time of injury. Clodronate-

liposomes were injected every 3 days following this first injection to maintain macrophage depletion 

throughout study. Hamstring muscles were injected with cardiotoxin (50 μL of 20 μM) and samples were 

collected at Day 17 post-injury. Abbreviation: Clo. = clodronate-liposomes 
 

Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 4.8: Confirmation of macrophage depletion in clodronate-liposome mice 
(A) Whole bone marrow was collected from Acvr1cR206H/+ mice injected with Clo. or PBS and stained with 

fluoro-tagged primary antibodies against F4/80, CD11b, and MHC Class II, cell surface receptors that in 

combination identify macrophages. Cells were first gated for F4/80 and CD11b expression, and then double-

positive cells were gated for MHC Class II expression. Numbers listed are cell percentages per gating. (B) 

Bone marrow macrophage percentages in PBS versus Clodronate-liposome-injected mice. n = 18 for PBS, n 

= 16 for Clo.; data shown are mean values ± SEM. Abbreviation: Clo. = clodronate-liposomes 

 

Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 4.9: Confirmation of mast cell deficiency in c-KitW-Sh/W-sh mice 
Mast cells were quantified by C.E.M. stain kit in sections obtained at sacrifice from all cohorts analyzed in 

Figure 4.10. Representative images at 200X magnification of each cohort are shown, with dotted rectangles 

indicating further magnification at 400X. Mast cells are indicated by black arrows. Note absence of mast 

cells in Acvr1cR206H/+;c-KitW-Sh/W-sh and Acvr1cR206H/+;c-KitW-Sh/W-sh;Clo. mouse cohorts. Scale bar = 100 μm for 

200X, 50 μm for 400X. Abbreviation: Clo. = clodronate-liposomes 

 

Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Figure 4.10: Mast cell and macrophage depletion impairs formation of heterotopic 

ossification in Acvr1cR206H/+ mice. 
Cardiotoxin-injured skeletal muscles of Acvr1cR206H/+ mice with intact or depleted mast cells and/or 

macrophages were examined by μCT to detect heterotopic ossification after 17 days. Mast cells were 

genetically ablated in Acvr1cR206H/+;c-KitW-sh/W-sh mice or partially ablated in Acvr1cR206H/+;c-KitW-sh/+ mice. 

Macrophages were chemically depleted Clo. Data are compared to Acvr1cR206H/+ (positive HO control) and 

Acvr1+/+ (negative control). (A) Representative μCT 3D volume renderings showing mean HO volume per 

hind limb are shown. (B) Quantification of HO for each cohort (n = 5-20); HO per hind limb was added for 

total HO per mouse. Data shown are mean values ± SEM; one-way ANOVA with Tukey’s multiple 

comparisons test compared Acvr1cR206H/+ vs. other cohorts; * p < 0.05, ** p < 0.01, ns = not significant. 

Abbreviation: Clo = Clodronate-liposomes. 
 

Figure panel from Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, 

Shore EM. (submitted). “Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an 

Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva” 
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Chapter Five 

 
Discussion 
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5.1 Summary 

 Inflammation is the earliest recognized event of HO formation. Long before the 

publication reporting the identification of the FOP gene in spring 2006 [Shore et al. 2006], 

the presence of an inflammatory component was thought to be an essential feature of 

disease etiology. Identification of the mutation that causes FOP rapidly expanded the 

knowledge and research tools that enabled investigation of how HO forms in FOP. Studies 

using the in vitro and in vivo FOP model systems that followed discovered that the ACVR1 

R206H mutation confers increased BMP pathway signaling and accelerates 

chondrogenesis of fibroblastic progenitor cells. However, similar substantial advances in 

knowledge regarding the inflammatory role in HO formation remained limited. 

 In this thesis research, I have conducted the first in-depth investigation on the 

effects of Acvr1R206H on the inflammatory response in FOP. I focused specifically on the 

impact of Acvr1R206H on the cellular and molecular inflammatory response to skeletal 

muscle injury, including the tissue regeneration program. I also investigated whether 

Acvr1R206H hematopoietic cells are sufficient to induce HO formation in genetically normal 

backgrounds. Lastly, I examined whether immune cells play a significant role in inducing 

HO formation via mast cell- and macrophage-depleted Acvr1cR206H/+ mouse experiments. 

Given the shared immunological features of ectopic bone formation in FOP and non-

genetic HO disorders, our studies bring new insight into the immunological contributions 

to HO disorders. These data also support consideration of novel treatment approaches for 

both FOP and more common non-hereditary forms of HO, potentially benefiting a wide 

range of patients. 
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5.2 Discussion 

5.2.1 The effect of Acvr1R206H on the inflammatory response to tissue injury 

 An inflammatory milieu is the earliest recognized phase of lesion formation in FOP, 

as discussed in Chapter One (Figure 1.4). The response of immune cell influx and cytokine 

upregulation is qualitatively mirrored in the normal response to tissue injury, however, as 

discussed in Chapter One (Figure 1.4) and shown in Chapter Three (Figures 3.2, 3.3, 3.4), 

Acvr1cR206H mutant tissue does not appropriately repair and regenerate skeletal muscle to 

its pre-injury state, but instead progresses toward heterotopic endochondral ossification. 

Previous clinical reports and mouse model studies have demonstrated the importance of 

active inflammation for HO disease progression [Kaplan et al. 2007, Yu et al. 2008], yet 

no group conclusively demonstrated that the immune response is amplified in FOP. Given 

the established participation of BMP signaling in activating an inflammatory state [Mohler 

et al. 2001, Kwon et al. 2009, Lee et al. 2011, Lee et al. 2012, Martinez et al. 2015, 

Villavicencio et al. 2016], I hypothesized that the enhanced BMP pathway activation by 

Acvr1cR206H amplifies the inflammatory response to tissue injury beyond the normal cellular 

and molecular response. To address this hypothesis, I performed a cross-sectional injury 

experiment (Chapter Three), comparing the inflammatory response and tissue repair 

programs between Acvr1cR206H/+ and Acvr1+/+ mice. I observed that mutant tissue and 

normal tissue are indistinguishable up to 2-3 days post-injury; however, Acvr1cR206H/+ 

lesions progressively diverged toward terminal heterotopic endochondral ossification 

instead of appropriately regenerating skeletal muscle, as occurred in Acvr1+/+ controls. I 

showed that the cellular and molecular inflammatory response is robustly amplified in 
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Acvr1cR206H/+ mice and persists into the late-stage lesion phase, as opposed to returning to 

pre-injury levels. Furthermore, I showed that Acvr1cR206H exhibits cell-autonomous pro-

inflammatory effects in mast cells, as Acvr1cR206H/+ mast cells exhibited increased pro-

inflammatory mRNA expression and degranulation. 

During the normal skeletal muscle repair program, the early pro-inflammatory 

response dampens and transitions into an anti-inflammatory response, mediated primarily 

by M2 macrophages, that facilitates wound repair and tissue regeneration via secretion of 

IL-4, IL-10, and growth factors [Tidball 2005, Karalaki et al. 2009, Murray et al. 2011, 

Philippou et al. 2012]. Disruption of this pro-inflammatory to anti-inflammatory transition 

leads to chronic inflammation and deficient tissue regeneration. Our in vivo and in vitro 

data reflect a chronic inflammatory scenario in the presence of the ACVR1 R206H 

mutation. 

The overall amplified and prolonged immune response in FOP could be, at least in 

part, the result of deficient MSC immunomodulatory function. Upon inflammatory 

stimulation by lymphocytes and secreted factors such as IFN-γ, IL-1β, and TNFα, MSCs 

subsequently suppress prolonged inflammation through production of indolamine 2,3-

dioxygenase (IDO) and Treg induction in humans, and nitric oxide (NO) via expression of 

inducible nitric oxide synthase (iNOS) in mice [Shi et al. 2010]. MSCs are able to suppress 

T and B cell proliferation via cell-cell contact through the programmed death-1 (PD-1) 

signaling pathway [Augello et al. 2005], NK cell proliferation [Sotiropoulou et al. 2006], 

and dendritic cell maturation [Zhang et al. 2004]. MSCs are also capable of reduction T 

cell and monocyte production of  IFN-γ and TNFα [Ben-Ami et al. 2011]. Notably, IL-6 
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produced by MSCs protects lymphocytes and neutrophils from apoptosis [Xu et al. 2007, 

Raffaghello et al. 2008]. IL-6 is robustly expressed in Acvr1cR206H/+ lesions (Figure 3.9), 

which may contribute to significantly elevated neutrophil and lymphocyte density (Figure 

3.8A, C). Investigation of MSC immunomodulary function in FOP could be accomplished 

via co-culture experiments combining MSCs and immune cell populations, with immune 

cell proliferation and activation as the primary data point. Assessing MSC 

immunomodulary function in FOP is a novel area for future investigation. 

Our findings show for the first time that the ACVR1 R206H mutation amplifies and 

prolongs the usual inflammatory response present in tissue injury, mimicking a chronic 

inflammatory state. 

 

5.2.2 The role of immune cells and inflammatory activation in heterotopic ossification 

formation 

 The origin of the progenitor cells that directly differentiate to ectopic bone is a 

major ongoing research question. Much progress has been made, as several chondro-

/osteogenic populations have been suggested to directly contribute to HO in vivo. [Lounev 

et al. 2009, Wosczyna et al. 2012, Agarwal et al. 2016, Dey et al. 2016]. Other work has 

also conclusively eliminated the hematopoietic cell lineage as contributing cells to 

fibroproliferative, chondrogenic, and osteogenic stages of HO [Kaplan et al. 2007]. Given 

this supporting literature, an unresolved question is what is the role of immune cells in the 

etiology of HO development, particularly within the context of FOP. 
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 Lesion development in FOP occurs through a series of progressive inflammatory, 

fibroproliferative, and chondro-/osteogenic cellular and tissue events that results in mature 

HO. One possibility is that Acvr1R206H/+ immune cells are sufficient to initiate and support 

all stages of lesion formation, from immune cell influx to mature HO. This is an appealing 

mechanism given that immune cells secrete numerous chemokines and growth factors that 

support recruitment and proliferation of muscle tissue fibroblasts [Karalaki et al. 2009, 

Philippou et al. 2012], as well as previous work showing that Acvr1+/+ cells can participate 

in heterotopic endochondral ossification in a mouse model that contains both Acvr1+/+ and 

Acvr1R206H cells [Chakkalakal et al. 2012]. One specific cytokine secreted by activated 

macrophages is PDGF [Karalaki et al. 2009, Philippou et al. 2012], which is notable given 

that PDGFRα receptor and cells within muscle tissue exhibit robust BMP-induced 

osteogenic capacity and participated in HO formation following intramuscular transplant, 

even in the absence of the ACVR1 R206H mutation [Wosczyna et al. 2012]. Increased 

activation of PDGFRα disrupts connective tissue development and drives systemic fibrosis 

[Olson et al. 2009], and a recent publication reported that expression of an endogenous 

kinase-inactivated decoy PDGFRα receptor during tissue repair attenuates muscle fibrosis 

[Mueller et al. 2016]. Given previous data and supporting literature, I hypothesized that an 

Acvr1R206H/+ hematopoietic system is sufficient to induce HO formation in an Acvr1+/+ 

background. 

 Our results from Chapter Four oppose the hypothesis that Acvr1R206H hematopoietic 

cells alone are sufficient to induce HO formation in a normal background. My bone marrow 

transplant (BMT) experiment was the most direct approach to address this question, 
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however this experiment was inconclusive due to experimental design limitations (as 

discussed in Chapter 4). Bone marrow is a hetergeneous mixture comprised of HSCs, 

various precursor and mature immune cells, stromal cells, and fat cells [Reagan et al. 2016]. 

The donor bone marrow sample used for the BMT experiment was not fractionated into an 

HSC-pure CD34-positive population [Challen et al. 2009] prior to injection. This allows 

for the possibility of bystander stromal and/or fat cells with chondro-/osteogenic potential 

being transplanted simultaneously as HSCs, which may contribute to HO formation when 

expressing Acvr1R206H [Augello et al. 2005]. 

Therefore, I conducted an alternate genetic approach to address the sufficiency of 

hematopoietic cells for Acvr1R206H/+-mediated HO, generating LysM-Cre;Acvr1cR206H/+ 

mice that express Acvr1cR206H exclusively within myeloid lineages. The results are 

corroborated by an independent group that recently reported no HO formation in mice 

expressing the constitutively-active Acvr1Q207D receptor in all hematopoietic lineages (as 

well as endothelial cells) driven by the Vav1-Cre promoter [Dey et al. 2016]. 

 Our finding that HO formation was dramatically reduced in mast cell-deficient and 

macrophage-depleted Acvr1cR206H/+ mice (Chapter Four) suggests that immune cells are 

necessary participants for HO formation, even if they are alone insufficient to induce HO. 

Previous studies have reported similar results in non-FOP mouse models of HO [Kan et al. 

2009, Salisbury et al. 2010, Kan et al. 2011, Salisbury et al. 2011], bolstering the 

importance of mast cells and macrophages in HO pathology. 

 In the context of FOP and HO formation, what are the functions of mast cells and 

macrophages? During the normal skeletal muscle regeneration program, these cells 
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potentiate an inflammatory microenvironment, produce enzymes that digest damaged 

tissue, and recruit fibroproliferative cells that act as intermediaries during normal tissue 

regeneration [Tidball 2005, Karalaki et al. 2009, Galli et al. 2011, Murray et al. 2011, 

Philippou et al. 2012, Wynn et al. 2013]. During chronic inflammatory myopathies, the 

resident inflammatory response is exaggerated, leading to disrupted tissue regeneration and 

macrophage- and mast cell-mediated fibrosis [Gallant-Behm et al. 2008, Zhao et al. 2008, 

Levick et al. 2009, Wynn et al. 2010, Philippou et al. 2012, Hugle 2014]. In a non-FOP 

context, the terminal result of chronic inflammatory myopathy is fibrosis [Wynn 2008, 

Wynn et al. 2012], however in the context of FOP, the enhanced BMP pathway signaling 

conferred by Acvr1R206H re-directs the tissue response toward ectopic cartilage and bone 

[Shen et al. 2009, Culbert et al. 2014]. Our findings from Chapter Three suggest that the 

amplified and prolonged inflammatory response in an Acvr1cR206H/+ background mimics 

chronic inflammatory myopathy and establishes a conducive microenvironment for the 

pro-chrondrogenic and pro-osteogenic effects of Acvr1R206H to manifest. Depleting mast 

cells and macrophages from Acvr1cR206H/+ mice may simultaneously reduce levels of 

multiple inflammatory cytokines, chemokines, and fibroblast growth factors that in unison 

arrest HO formation (discussed further in Future Directions). 

 The data presented in this thesis and supporting literature allow consideration of 

the inflammatory role in FOP disease pathology. The LysM-Cre;Acvr1cR206H/+ data showing 

no HO response, in combination with the report that no HO was detected in Vav1-

Cre;Acvr1Q207D mice, and additional studies that investigated lesion development at 

different stages, can help direct several remaining questions for FOP etiology, including: 
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what cell types have the potential to contribute to ectopic cartilage and bone, what cell 

types require the ACVR1 R206H mutation for participation in lesion development, what 

are the contributions of tissue-resident vs. migratory progenitor cells, and what is the 

overall immune system role in disease progression. 

 Several cell populations with the capacity to contribute to ectopic cartilage and 

bone have been identified. Our group identified Tie-2+ cells within the fibroproliferative, 

cartilage, and bone stages of lesion progression in vivo [Lounev et al. 2009]. Double-

positive Tie-2+/PDGFRα+ cells were shown to contribute to HO in response to BMP2 

stimulation [Wosczyna et al. 2012]. Two additional cell populations that can contribute to 

HO formation have also been identified: Mx1+ muscle-resident interstitial cells, and Scx+  

tendon-derived progenitor cells [Agarwal et al. 2016, Dey et al. 2016]. Both Mx1+ and Scx+ 

cells that participated in HO expressed an Acvr1 mutation, R206H or Q207D; however, 

Tie-2+ and Tie-2+/PDGFRα+ cell participation in HO was in a BMP2 stimulation model, 

and these cells did not express an Acvr1 mutation, but showed enhanced osteogenesis in 

response to BMPs [Lounev et al. 2009, Wosczyna et al. 2012]. 

 Fibro/adipogenic progenitors (FAPs) are muscle-resident cells that support proper 

skeletal muscle regeneration following damage [Joe et al. 2010]. FAPs are defined by a 

Lin-/Sca-1+/α7 integrin-/CD34+ expression profile, with over 85% of cells in undamaged 

muscle and up to 98% of cells in damaged muscle also expressing PDGFRα [Joe et al. 

2010]. In response to muscle damage, FAPs expand and provide important pro-

differentiation signals for proliferating myogenic precursors. Although initially recognized 

for their ability to differentiate toward fibrogenic and adipogenic lineages, in addition to 
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their primary supportive role for myogenic differentiation, FAPs have recently been 

appreciated for their role in ectopic bone formation. FAPs express alkaline phosphatase, a 

key enzyme for mineral deposition during osteogenesis, following stimulation with BMP7 

[Uezumi et al. 2010]. Additionally, the muscle-resident Tie-2+/PDGFRα+ cells that can 

contribute to HO formation in response to BMP2 stimulation, described above [Wosczyna 

et al. 2012], may be classified as FAPs. The R206H mutation has been shown to accelerate 

chondrogenic differentiation in MEF cells [Culbert et al. 2014], and it is possible that the 

mutation may also alter the cell fate of FAPs toward a fibrogenic and heterotopic 

endochondral ossification differentiation program [A. Bonomi, personal communication]. 

 The above data suggest that while certain cell populations are able to contribute to 

HO when expressing Acvr1R206H, and that the R206H mutation is required for initiation of 

HO in FOP [Chakkalakal et al. 2012], the R206H mutation may not be required in all cell 

types that particpate in lesion development, including immune cells and fibroblast-like 

cells that form ectopic cartilage and bone. This was also demonstrated in a chimeric 

Acvr1R206H/+ mouse model where ~50% of cells in endochondral bone lesions expressed 

Acvr1+/+ [Chakkalakal et al. 2012]. This surprising result suggests that there may be a 

threshold percentage and/or lineage subset requirement of cells expressing Acvr1R206H in 

order to support HO formation. Mice expressing Acvr1R206H in mesodermal lineage cells 

using a Prrx1-Cre driving system developed robust HO in limbs [Chakkalakal et al. 2016], 

supporting the possibility of a threshold percentage and lineage restriction of cells with the 

capacity to form ectopic cartilage and bone. 
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 An ongoing question is the location origin of cells that participate in ectopic 

cartilage and bone formation. Tissue-resident cells, such as FAPs and other fibroblast-like 

cells that have been shown to have chondrogenic and osteogenic potential, are prime 

candidates for cells that form HO. However, there also have been migratory cell 

populations shown to participate in HO formation. Cells from the endoneurium, which line 

the myelin sheath of nerves, were observed migrating toward an implanted matrigel BMP2 

source and forming HO at their new location in a mouse model of HO formation [Olmsted-

Davis et al. 2017]. These cells expressed osterix, a transcription factor that functions as a 

master regulator of osteoblast differentiation. Additionally, osterix+ cells were observed in 

proximity to ectopic bone in human patients with HO [Olmsted-Davis et al. 2017]. Immune 

cells, through chemokine ligand and receptor signaling pathways, have significant roles in 

recruiting cells to participate in wound healing and immunoprotection of multiple tissues, 

including skin [Ishida et al. 2007], skeletal muscle [Warren et al. 2005], and lung [Mikhak 

et al. 2013]. Mast cells contribute to activation of the sympathetic nervous system via 

degranulation [Salisbury et al. 2011], and mast cells and macrophages control early 

neutrophil recruitment via the chemokines CXCL1 and CXCL2  [De Filippo et al. 2013]. 

Given the increased and prolonged immune cell density and activation observed in 

Acvr1cR206H/+ samples, it is possible that the amplified immune response may induce 

fibroblast-like cell migration, or amplify the migration rate over the normal repair program. 

Although Acvr1R206H expression restricted to hematopoietic lineages is insufficient 

to cause HO, soft connective tissue repair programs may still be disrupted in this setting. 

Elevated inflammatory factor expression caused by the R206H mutation in the above 
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setting may still disrupt the normal skeletal muscle regeneration program, but instead of 

progressing to mature HO, the tissue morphology only advances to a fibrotic stage, 

mimicking events that occur in chronic inflammatory myopathies [Mann et al. 2011]. 

Consideration of the data presented in this thesis, in combination with supporting literature, 

may explain how the response to skeletal muscle injury may differ depending on the 

inflammatory reaction and whether the R206H mutation is present. 

During the normal skeletal muscle regeneration program, pro-inflammatory 

activation induces a cellular and molecular response that results in immune cell recruitment 

and macrophage phagocytosis of damaged tissue and transient accumulation of collagen 

fibers [Mann et al. 2011]. An anti-inflammatory response, mediated primarily by the class-

switching from M1 to M2 macrophages, dampens the pro-inflammatory response and 

supports myogenic differentiation to restore muscle function. In individuals with chronic 

inflammatory myopathies, excessive pro-inflammtory activation and elevated numbers of 

M1 macrophages cause an overabundance of collagen accumulation and impede myogenic 

differentiation, resulting in fibrosis [Wynn et al. 2010, Mann et al. 2011]. However, since 

these individuals do not possess the R206H mutation, fibrotic tissue does not progress to 

ectopic cartilage and bone. In patients with FOP, the R206H mutation amplifies and 

prolongs the pro-inflammatory response to muscle injury, mimicking chronic 

inflammation. This overactive immune response may stimulate tissue-resident progenitor 

cell proliferation, and may recruit additional fibroproliferative cells to the site of injury. 

These fibroproliferative cells, also expressing Acvr1R206H, have the capacity to aberrantly 

differentiate into ectopic cartilage and bone, resulting in mature HO [Culbert et al. 2014]. 
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Mast cells expressing Acvr1R206H exhibit an increased pro-inflammatory response, 

and other immune cells may have a similar inflammatory response. Immune cells 

expressing Acvr1R206H can further amplify the immune response to injury, but cell(s) with 

chondro-/osteogenic potential must also express the R206H mutation in order for 

chondrogenesis and osteogenesis to form, as Acvr1R206H expression restricted to 

hematopoietic lineages is insufficient for HO formation (Figure 4.5; [Dey et al. 2016]). 

Additionally, Acvr1R206H expression in immune cells is not required for HO to develop, as 

has been observed in a Prrx1-Cre;Acvr1cR206H/+ mouse model and a human patient who 

received an BMT of Acvr1+/+ donor marrow for treatment of aplastic anemia [Kaplan et al. 

2007]. The above literature and data from this thesis suggest that while an immune system 

expressing Acvr1R206H may support a more robust HO response in a global R206H 

background, a wild-type immune system is also sufficient for HO formation in the same 

genetic background. Based on this paradigm, the importance of the immune response in 

FOP may reside in secreted inflammatory factors from immune cells, more so than whether 

immune cells express the R206H mutation. This is further supported given that non-

hereditary HO can form in absence of any causative ACVR1 mutation, but is often 

associated with a robust inflammatory phase. 

 

5.2.3 The shared inflammatory features of FOP and non-hereditary heterotopic 

ossification disorders 

An inflammatory component is associated with almost all forms of HO [Convente 

et al. 2015], including non-hereditary HO disorders associated with severe trauma such as 
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invasive arthroplasties [Pignolo et al. 2005, Cohn et al. 2011, Bedi et al. 2012], combat 

blast injuries, and other traumatic wounds [Potter et al. 2010, Alfieri et al. 2012]. Although 

FOP is an extremely rare genetic disorder, the prevalence of HO in the above scenarios is 

common, approaching 30% following hip replacement surgery and 65% following combat 

blast injuries [Neal et al. 2002, Potter et al. 2010]. Strikingly, non-hereditary HO disorders 

and FOP share immunological mediators. Serum levels of IL-6 were significantly elevated 

in combat blast injury patients who developed HO [Evans et al. 2012, Forsberg et al. 2014], 

which is notable given the robust increase in IL-6 in Acvr1cR206H/+ lesions and Acvr1cR206H/+ 

mast cells (Chapter Three). MCP-1 was identified as a biomarker that predicted HO 

development in combat blast injury patients [Evans et al. 2012]. Although MCP-1 

expression was equivalent between Acvr1cR206H/+ and Acvr1+/+ lesions (Chapter Three), its 

presence in the FOP setting could contribute to the chronic inflammatory response. 

An influx of immune cells is also observed in non-hereditary HO disorders. A 

robust T- and B-cell influx to sites of injury was shown in a burn injury HO mouse model. 

In this same study, ablation of mature lymphocytes using Rag1 knock-out mice caused a 

60% decrease in bone compared to immunocompetent controls, demonstrating a prominent 

role for the adaptive immune system in burn injury HO formation [Ranganathan et al. 

2016]. Additionally mast cells have been observed in cardiac valve bone formation as well 

as in BMP ligand-induced HO episodes [Mohler et al. 2001, Kan et al. 2011, Salisbury et 

al. 2011]. 

While there may be unique inflammatory contributions to FOP, such as a gain-of-

function Acvr1R206H sensitivity to Activin A [Hatsell et al. 2015], common inflammatory 
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mediators across HO disorders establish the immune system as an appealing treatment 

target that may benefit large numbers of patients (to be discussed in Future Directions). 
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5.3 Future Directions 

5.3.1 Identifying additional immune cells and inflammatory factors involved in 

heterotopic ossification etiology 

 The immune system is an incredibly rich and complex network of cells and factors 

that act in concert to direct inflammatory responses. There exists dozens of hematopoietic 

subtypes, interleukins, chemokines, and other mediators that function in response to 

pathogen invasion and tissue damage [Charo et al. 2006, Akdis et al. 2011, Turner et al. 

2014, de Graaf et al. 2016, Vukman et al. 2017]. Our data show upregulation of major pro-

inflammatory cytokines in Acvr1cR206H/+ mice following injury, including TNFα, IL-1β, IL-

6, and Activin A. I also show increased neutrophil, macrophage, mast cell, and T cell 

density in Acvr1cR206H/+ lesions (Chapter Three). However, there are additional immune 

cells yet to be investigated that may contribute to HO formation, such as T cell subsets (T 

helper 1 cells, T helper 2 cells, T helper 17 cells, and others), B cells, dendritic cells, and 

NK cells. I showed that mast cell and macrophage depletion reduced HO by ~75% in 

Acvr1cR206H/+ mice (Chapter Four), suggesting that other inflammatory cells and mediators 

may have a role in HO development. T cells and B cells have been observed in FOP patient 

biopsies and in cardiac valve HO [Mohler et al. 2001, Kaplan et al. 2005], and our results 

have demonstrated a significant role for myeloid lineage cells in HO formation (Chapters 

Three and Four). These data and supporting literature suggest that dendritic cells and NK 

cells, which function as intermediaries between the innate and adaptive immune system, 

may be an appealing area of future investigation. 
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I focused on investigating the well-defined major pro-inflammatory cytokines 

TNFα, IL-1β, IL-6, given their significant roles in mediating positive-feedback 

inflammatory responses [Akdis et al. 2011, Turner et al. 2014] and known involvement in 

tissue injury response [Gallucci et al. 1998, Luo et al. 2003, Karalaki et al. 2009, Philippou 

et al. 2012]. Appealing future experiments could investigate a broader profile of 

inflammatory mediators, including interferons, chemokines, and mast cell-released 

compounds such as histamine and chymase, that may be involved as part of the total 

inflammatory contribution to HO formation. The chemokine CX3CR1 is involved in skin 

wound repair via recruitment of fibroblasts [Ishida et al. 2007], and CXCR6 recruits bone 

marrow-derived fibroblast precursors that increase susceptibility to renal fibrosis [Xia et 

al. 2014], highlighting the role of chemokines as potent chemotactic factors for fibro-

progenitor cells in injury settings. CX3CR1 is produced by macrophages and CXCR6 is 

produced by CD4+ and CD8+ T cells [Charo et al. 2006], two immune cell lineages present 

in FOP lesions. 

 

5.3.2 Investigating the role of Acvr1R206H on anti-inflammatory responses during 

tissue injury 

 The normal inflammatory response to tissue injury involves an early phagocytic 

pro-inflammatory phase that eventually transitions into a subsequent regenerative anti-

inflammatory phase. Our results from Chapter Three demonstrate that the cellular and 

molecular pro-inflammatory response in FOP is amplified and prolonged, mimicking 

chronic inflammatory myopathies. 
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 A major event that directs the transition of pro-inflammation to anti-inflammation 

is the class-switching of M1 macrophages to M2 macrophages [Italiani et al. 2014]. M2 

macrophages appear subsequent to early-responding M1 macrophages during the normal 

tissue repair program. M2 macrophages secrete anti-inflammatory factors, including IL-4, 

IL-10, TGF-β1, and tissue inhibitors of metalloproteinases (TIMPs), as well as growth 

factors that suppress fibrosis and mediate tissue regeneration [Mosser et al. 2008, Wynn et 

al. 2012]. In chronic inflammatory myopathies, the transition of M1 to M2 macrophages is 

disrupted, maintaining the pro-inflammatory microenvironment that promotes fibrosis at 

the expense of appropriate tissue regeneration [Wynn et al. 2012]. 

 Our macrophage depletion experiment via clodronate-liposomes depleted 

macrophages prior to injury and throughout the response and repair program (Chapter 

Four). An appealing future experiment would be to adjust the timing of macrophage 

depletion so as to specifically target early M1 or late M2 macrophages for depletion, and 

examine how that impacts HO formation. Previous work in the musculoskeletal field 

showed that pro-inflammatory M1 macrophages are essential for skeletal muscle 

regeneration [Arnold et al. 2007]. However, this study also showed that selectively 

depleting M2 macrophages after the M1 response resulted in diminished muscle fiber 

diameter, suggesting that both populations are essential for proper skeletal muscle 

regeneration [Arnold et al. 2007]. A preliminary experiment quantifying specific M1 and 

M2 macrophage populations in Acvr1cR206H/+ and Acvr1+/+ lesions using well-defined 

markers [Jablonski et al. 2015] would provide initial insight about a more detailed 

macrophage phenotype in FOP. 
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 A key lymphoid cell involved in dampening inflammation is the regulatory T cell 

(Treg). Tregs are derived from CD4+ T cells and depend on the forkhead transcription factor 

FoxP3 for specification and function [Josefowicz et al. 2012]. Tregs are major sources of 

IL-10 and IL-2R that function to suppress T cell activation and maintain immune 

homeostasis in part by inducing CD4+ T cell apoptosis [Pandiyan et al. 2007, Josefowicz 

et al. 2012]. In the context of muscular disorders, Tregs suppress muscle inflammation and 

injury in the mdx mouse model of Duchenne Muscular Dystrophy [Villalta et al. 2014], 

highlighting a potential role for Tregs reducing inflammation in other muscular injury 

settings, such as occurs in HO disorders. 

 Future work could also quantify levels of anti-inflammatory cytokines, such as IL-

4, IL-10, and TGF-β1. This could be done in primary mast cell and macrophage cultures, 

as well as serum enzyme-linked immunosorbent assay (ELISA) quantification from new 

in vivo samples. IHC using sections from the cross-sectional injury study. I quantified 

TGF-β1 mRNA expression in Acvr1cR206H/+ and Acvr1+/+ mast cells and macrophages, but 

found no differences in expression (Figure 3.15A, B). These preliminary data suggest that 

the anti-inflammatory response may be unaffected by the ACVR1 R206H mutation, but 

much additional work must be done for conclusive interpretation. 

 

5.3.3 Targeting the immune system as a novel approach to inhibit heterotopic 

ossification 

There is a pressing need for therapeutics that prevent HO formation in FOP and 

non-hereditary HO disorders, as current treatments are palliative [Pignolo et al. 2016]. 
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Palovarotene, a retinoic acid receptor-gamma (RARγ) agonist that potently inhibits HO 

formation in Acvr1cR206H/+ mice by disrupting chondrogenesis [Chakkalakal et al. 2016], is 

currently being investigated in a clinical trial for FOP patients. This represents a major 

milestone in the search for an effective treatment or cure for FOP. Efforts to find additional 

treatments for HO are ongoing, and targeting the immune system is an appealing approach 

given that it is the earliest phase of lesion formation. 

Blocking mast cell and macrophage signaling may be an effect method to inhibit 

HO formation, both in FOP and non-hereditary HO disorders. Multiple methods that block 

mast cell inflammatory signaling, including targeting the Substance P neuroinflammatory 

pathway, all inhibited HO formation in a BMP2-implant model of HO [Kan et al. 2011, 

Salisbury et al. 2011]. An additional option targeting mast cells is the use of imatinib, a c-

Kit tyrosine kinase inhibitor that induces mast cell apoptosis. Imatinib has been shown to 

reduce rheumatoid arthritis inflammation [Juurikivi et al. 2005] and decreased HO in an 

Achilles tendon injury model of HO [Werner et al. 2013]. Our group showed that imatinib 

reduced hypoxia-induced HO formation, further bolstering the use of imatinib as an 

effective HO therapeutic, as well as highlighting the role of hypoxia in HO pathology 

[Wang et al. 2016]. Notably, imatinib robustly decreases PDGFR phosphorylation and 

PDGF effector signaling [van Steensel et al. 2009], suggesting its inhibitory effect may be 

through downregulating the PDGF signaling pathway, and also highlighting PDGF as a 

potential key factor in HO development. 

An additional approach to inhibit mast cell activation is via administration of mast 

cell stabilizers that block degranulation and release of inflammatory factors. Cromolyn, 
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quercetin, and other small molecules that block degranulation may be effective and 

inhibiting HO by preventing the release of cytokines, chemokines, and enzymes that 

participate in fibrosis during chronic inflammatory myopathies [Galli et al. 2008, Weng et 

al. 2012, Vukman et al. 2017]. 

Macrophages have been shown to produce osteoinductive signals [Champagne et 

al. 2002], promote osteogenic differentiation of mesenchymal stem cells [Tu et al. 2015], 

inhibit osteoclastogenesis [Jacquin et al. 2009], and promote fracture repair [Alexander et 

al. 2011], highlighting their potential relevance to HO development. I utilized clodronate-

liposomes to transiently deplete macrophages in our immunodeficient Acvr1cR206H/+ mouse 

studies. Although this approach is normally used only for proof-of-principle animal 

experiments, at least one attempt in humans has been reported [Barrera et al. 2000]. Patients 

scheduled for knee joint replacement received a single intra-articular injection of 

clodronate-liposomes into the knee synovium. Biopsy analysis post-surgery showed 

significantly decreased numbers of CD68+ macrophages, demonstrating drug efficacy. 

However, this study has significant limitations, as it included only 10 patients receiving a 

single clodronate-liposome injection. Due to hematopoietic replenishment of depleted 

macrophages, clodronate-liposomes would have to be administered regularly to maintain 

cell depletion if used as treatment for HO. Therapeutics that target macrophage activation 

and inflammatory signaling are a much preferred approach. 

Overall, targeting the immune system for treatment of HO in an appealing approach 

due to early intervention in disease, offering the possibility of halting lesion progression 

long before maturation into chondro-osseous tissue. Additionally, considering the shared 
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immunological contributions among FOP and many HO disorders, advancements in this 

area may provide benefits for FOP and more common non-hereditary forms of HO, which 

could significantly benefit a wide range of patients. 
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5.4 Concluding Remarks 

 In this thesis, I elucidated the pro-inflammatory role of Acvr1R206H in response to 

skeletal muscle injury and demonstrated via in vivo and in vitro experiments an amplified 

and prolonged cellular and molecular inflammatory response that mimics chronic 

inflammation. I also demonstrated that Acvr1cR206H/+ hematopoietic cells, via BMT and 

myeloid-specific Acvr1cR206H/+ expression experiments, are insufficient to induce HO 

formation in an Acvr1+/+ background. Finally, I showed that mast cell and macrophage 

depletion significantly reduces HO development in Acvr1cR206H/+ mice. In total, these data 

suggest a role for Acvr1R206H in upregulating the inflammatory response in damaged tissue 

and recruited immune cells, which supports a comprehensive and chronic inflammatory 

microenvironment conducive to subsequent fibroproliferative, chondrogenic, and 

osteogenic events. 

 Although FOP is a rare disease, non-hereditary HO is fairly common [Neal et al. 

2002, Potter et al. 2010]. One of the most remarkable findings of this thesis work is the 

discovery of shared inflammatory mediators among FOP and many other HO disorders. 

The work detailed in this dissertation will serve as a foundation for future studies 

investigating the immunological contributions to HO disorders, which will hopefully 

uncover new advances in knowledge that facilitate drug discovery efforts to treat HO in 

FOP and related HO disorders. 
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