
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2016

The Software Vulnerability Ecosystem: Software
Development In The Context Of Adversarial
Behavior
Saender Aren Clark
University of Pennsylvania, saender@crypto.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Databases and Information Systems Commons, and the Engineering Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2233
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Clark, Saender Aren, "The Software Vulnerability Ecosystem: Software Development In The Context Of Adversarial Behavior" (2016).
Publicly Accessible Penn Dissertations. 2233.
https://repository.upenn.edu/edissertations/2233

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=repository.upenn.edu%2Fedissertations%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fedissertations%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2233?utm_source=repository.upenn.edu%2Fedissertations%2F2233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2233
mailto:repository@pobox.upenn.edu


The Software Vulnerability Ecosystem: Software Development In The
Context Of Adversarial Behavior

Abstract
Software vulnerabilities are the root cause of many computer system security fail- ures. This dissertation
addresses software vulnerabilities in the context of a software lifecycle, with a particular focus on three stages:
(1) improving software quality dur- ing development; (2) pre- release bug discovery and repair; and (3)
revising software as vulnerabilities are found.

The question I pose regarding software quality during development is whether long-standing software
engineering principles and practices such as code reuse help or hurt with respect to vulnerabilities. Using a
novel data-driven analysis of large databases of vulnerabilities, I show the surprising result that software
quality and software security are distinct. Most notably, the analysis uncovered a counterintu- itive
phenomenon, namely that newly introduced software enjoys a period with no vulnerability discoveries, and
further that this “Honeymoon Effect” (a term I coined) is well-explained by the unfamiliarity of the code to
malicious actors. An important consequence for code reuse, intended to raise software quality, is that
protections inherent in delays in vulnerability discovery from new code are reduced.

The second question I pose is the predictive power of this effect. My experimental design exploited a large-
scale open source software system, Mozilla Firefox, in which two development methodologies are pursued in
parallel, making that the sole variable in outcomes. Comparing the methodologies using a novel synthesis of
data from vulnerability databases, These results suggest that the rapid-release cycles used in agile software
development (in which new software is introduced frequently) have a vulnerability discovery rate equivalent
to conventional development.

Finally, I pose the question of the relationship between the intrinsic security of software, stemming from
design and development, and the ecosystem into which the software is embedded and in which it operates. I
use the early development

lifecycle to examine this question, and again use vulnerability data as the means of answering it. Defect
discovery rates should decrease in a purely intrinsic model, with software maturity making vulnerabilities
increasingly rare. The data, which show that vulnerability rates increase after a delay, contradict this. Software
security therefore must be modeled including extrinsic factors, thus comprising an ecosystem.
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Abstract

Software vulnerabilities are the root cause of many computer system security fail-

ures. This dissertation addresses software vulnerabilities in the context of a software

lifecycle, with a particular focus on three stages: (1) improving software quality dur-

ing development; (2) pre-release bug discovery and repair; and (3) revising software

as vulnerabilities are found.

The question I pose regarding software quality during development is whether

long-standing software engineering principles and practices such as code reuse help

or hurt with respect to vulnerabilities. Using a novel data-driven analysis of large

databases of vulnerabilities, I show the surprising result that software quality and

software security are distinct. Most notably, the analysis uncovered a counterintu-

itive phenomenon, namely that newly introduced software enjoys a period with no

vulnerability discoveries, and further that this “Honeymoon Effect” (a term I coined)

is well-explained by the unfamiliarity of the code to malicious actors. An important

consequence for code reuse, intended to raise software quality, is that protections

inherent in delays in vulnerability discovery from new code are reduced.

The second question I pose is the predictive power of this effect. My experimental

design exploited a large-scale open source software system, Mozilla Firefox, in which

two development methodologies are pursued in parallel, making that the sole variable

in outcomes. Comparing the methodologies using a novel synthesis of data from

vulnerability databases, These results suggest that the rapid-release cycles used in

agile software development (in which new software is introduced frequently) have a

vulnerability discovery rate equivalent to conventional development.

Finally, I pose the question of the relationship between the intrinsic security of

software, stemming from design and development, and the ecosystem into which

the software is embedded and in which it operates. I use the early development
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lifecycle to examine this question, and again use vulnerability data as the means

of answering it. Defect discovery rates should decrease in a purely intrinsic model,

with software maturity making vulnerabilities increasingly rare. The data, which

show that vulnerability rates increase after a delay, contradict this. Software security

therefore must be modeled including extrinsic factors, thus comprising an ecosystem.
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Chapter 1

Introduction

’In theory there is no difference between theory and practice. In
practice there is.’ (Yogi Berra)

1.0.1 Is Software Reliability The Same As Software

Security?

The software making up today’s computer systems does not exist in a vacuum.

Whether the purpose is to configure an FPGA, stream video on a smart-phone, or

provide virtual high-performance computation in the cloud, software is dependent

on and interacts with its environment in ways which are not well understood.

The root cause of many current computer and network security threats can be

traced to errors in software. As software is an engineered artifact, the discipline of

software engineering has emerged to model and manage such factors as cost and time

estimates, feature selection, code maturity and software quality (which has grown to

include software security). [BCH+95, Bro95b, CS97].

The software engineering community has devoted over three decades to designing

models and testing development methodologies for improving the quality of software,
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particularly for finding and removing software defects before release and for accu-

rately predicting runtime reliability.

This research has resulted in a widely accepted software quality standard, ISO/IEC

25010:2011 [fS11] with well tested Software Reliability Models (SRM) and recom-

mended best practices, including strong support for software reuse and multi-system

portability. [Ram12]

A major assumption made by Software Reliability Models (SRM) is that software

is released with some number of defects that can be categorized on the basis of how

easy each is to find. A further assumption is made that the easy-to-find defects

are discovered and fixed early in the software life-cycle, quickly leading to a state

where only difficult-to-find vulnerabilities are left and the software can be considered

reliable, and its quality is judged to be high. In fact, while software quality has come

to include such diverse elements as customer satisfaction and usability, nearly all

models and metrics for measuring software quality revolve around defect discovery

and removal. [IOfS01, ISO11, Gre01, Kan02]

This method for determining software reliability has proven to work so well that

the world has come to depend on it; digitizing everything from personal cars and

smart homes to national power grids and transport systems. Through the use of

SRMs, the software engineering community has been able to answer questions re-

garding functionality, such as (will my software dependably do X?) and reliability

(providing Mean Time To Failure (MTTF) guarantees). Today, ubiquitous intercon-

nectivity, the trend toward virtualization, network controlled systems management,

and the propensity to store even frequently accessed data remotely in ’the cloud’

has massively increased the complexity and the scale of damage that might result

from failure. This means that models for predicting reliability will continue to be

important for some time to come.

Reliability and functionality are not the only software engineering concerns. The

security of these systems is now also of paramount importance. When the software
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The Software Codebase

Software Defects

Vulnerabilities

Exploitable

Figure 1.1: In a software codebase, some subset of the defects may be vulnerabilities,
which may be found and exploited

ships with defects or bugs, some may be vulnerabilities, and some subset of these vul-

nerabilities will be discovered and further engineered into exploits (see Figure 1.1)

which may then be used, sold or saved for later use. Predicting, finding and re-

moving defects before or shortly after release has therefore, also been considered

essential for the security of the product. Unlike software reliability, software security

is much harder to measure. While there have been many attempts to adapt the

proven reliability models and methodology to predict and quantify software secu-

rity, they have met with limited success and there is, at present, no widely accepted

model. Vulnerability Discovery Models (VDM)s, the equivalent of SRMs for security

vulnerabilities, are unable to give answers to simple security questions such as one
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of the most frequently asked questions of software developers: “Is my code secure?”,

and the question most often asked by software users: “Is my system vulnerable to

a software exploit?” Likewise, while Software Engineering (SWE) community has

methodologies which provide confidence that a significant portion of functional de-

fects have been removed, and a timeframe of when the remaining defects are likely to

be discovered and even guarantee of reliability, software security has no methodology

which provides an equivalent metric.

1.1 Secure Software Development Theory vs.

Practice

Mainstream software engineering practice has development procedures intended to

produce secure systems. Examples of Secure Development Models (SDM)s include

Process Improvement Models, used in the ISO/IEC 21827 Secure Systems Engineering-

Capability Maturity Model SSE-CMM [Jel00], (originated by the U.S. National Se-

curity Agency, but now an international standard), Microsoft’s Secure Development

Lifecycle (SDL) [HL06], Oracle’s Software Security Assurance Process [Har14] and

the Comprehensive, Lightweight Application Security Process (CLASP) [Vie05]. The

goal of these models

is:

"To design, build, and deploy secure applications, [...] integrate security

into your application development life cycle and adapt your current soft-

ware engineering practices and methodologies to include specific security-

related activities”.

[MMW+05]

A major characteristic of these models is an emphasis on a significant investment

of resources devoted to security at each stage of the development life-cycle before
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initial product release. The expectation is that these models will help developers

create a high quality, i.e., highly secure finished product.

For today’s developers, the need to survive in a dynamic, rapidly changing, highly

competitive marketplace has forced many software vendors to shift their focus from

the high initial investment resource intensive, slow-moving secure development mod-

els to new highly adaptive, rapid-release cycle models and feature-driven development

strategies.

Even though security experts have long chastised software developers for favoring

adding new features over writing less vulnerable code, [MC09] the survival of a

product in competitive software markets requires the frequent introduction of new

features particularly for user-facing software systems such as web browsers embroiled

in features arms races.

It comes as no surprise then, that major web browser developers, Google (Chrome)

and Mozilla (Firefox), Apple (Safari), and Microsoft (Internet Explorer), have over-

hauled their development lifecycle, moving from large-scale, infrequent releases of

new versions with later patches as needed, to releases with new features at much

shorter, regular intervals. While software developed and released through these

Rapid Release Cycles (RRC)s may also include bug fixes in a release, Agile ap-

proaches to software development such as Extreme Programming (XP) [Con04],

Adaptive Software Development (ASD) [Hig13], and Feature Driven Development

(FDD) [CLDL99] are primarily intended to ensure customer satisfaction via rapid

feature delivery [BBvB+01] rather than to produce secure code [BK04], or improve

the quality of existing code. [Nig11, Laf10] 1

1New releases of Chrome and Firefox versions occur every six weeks. The primary intent of each
RRC iteration is to get new features to users as rapidly as possible.
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This practice stands in stark contrast to those recommended by the secure devel-

opment models. More importantly, several characteristics of the RRC program-

ming model strongly conflict with those considered necessary for developing se-

cure software. In fact, the U.S. Department of Homeland Security [oHS06] as-

sessed each of the fourteen core principles of the Agile Manifesto [BBvB+01] and

found six principles to have negative implications for security, with only two hav-

ing possible positive implications. Attempts to reconcile security with Agile devel-

opment [SBK05, WBB04, KMH08] have noted that many of the practices recom-

mended for security actually undermine the rapid iterations espoused by the Agile

Manifesto [BBvB+01] (see Section 2.4.1).

1.2 Software Security Models Theory vs. Practice

Software Vulnerability Discovery Models (VDMs) resemble Software Reliability

Models (SRMs), but instead of providing metrics from which to determine software

quality before release, VDMs focus predominantly on predicting attacks against ma-

ture software systems.

Unfortunately, VDMs do not adequately provide insight into the number of re-

maining exploitable vulnerabilities, or accurately predict the time to next exploit.

Problems with existing VDMs are discussed in detail in the next chapter.

I postulate several factors contributing to VDMs poor performance in predicting

number of attacks and time to exploit.

First, VDMs rely exclusively on the intrinsic qualities of the software for a mea-

sure of its initial security. Consequently, one expectation common to users of VDMs

is that the low-hanging fruit vulnerabilities are found quickly and patched. The re-

maining vulnerabilities (which are increasingly difficult to find) are presumed to take
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much longer to discover, which leads one to consider the software “secure”. 2 A VDM

with those expectations would predict that vulnerabilities are found fastest shortly

after the release of a product, with the rate of discovery decreasing thereafter.

The implications of such a VDM are significant for software security. It would

suggest, for example, that once the rate of vulnerability discovery was sufficiently

small, that the software is “safe” and needs little attention. It also suggests that

software modules or components that have stood this “test of time” are appropri-

ate candidates for reuse in other software systems. If this VDM model is wrong,

these implications will be false and may have undesirable consequences for software

security.

Second, the majority of VDMs assume that the software is a finished product at

the time of release, and it is expected that it will remain unchanged throughout its

lifetime. Thus the VDMs only consider static systems.

Third, VDMs assume that the security of the software they model is independent

of the larger system to which it belongs. The models assume that the operating

system (OS), architecture, hardware, network and other concurrent applications that

are part of the ecosystem in which it functions are static (unchanging), that problems

once solved never return and that problems (even security related issues) in other

parts of the ecosystem are outside the scope of the security of the software being

modeled.

1.3 Early In The Secure Software Lifecycle, Theory

Differs From Practice

The VDMs and the SDMs mentioned above and discussed in detail in Chapter 2 have

been in use for many years. In theory, they should provide developers with insight

into their software’s vulnerability life-cycle as well as a metric for determining the

2Similar to how software with its easy to find defects is considered ’reliable’.
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quantity or expected time to discovery of the vulnerabilities remaining to be found.

They are unable to provide any such assurance. The VDMs proposed to measure

or predict software security apply their attention to one of two areas of the software

lifecycle, focusing either on the period right before the product is released, or on the

stable period in the main part of its lifecycle. In both cases, all three assumptions

apply.

This dissertation is the first to investigate the relationship between the intrinsic

security of software and the environment in which it operates. I show that proper-

ties of the ecosystem in which the software functions may positively or negatively

affect the security of a member of that ecosystem, and further, the surprising result,

that the early vulnerability lifecycle is not captured when modeling the security of

software.

I present the results of an empirical analysis of vulnerability discovery in the early

lifecycle of a software release. I demonstrate a surprising and counter-intuitive find-

ing, that the likelihood of vulnerability discovery in the period immediately following

the release of new software is contrary to what the models would predict. Instead

of easy-to-find vulnerabilities being found and fixed quickly resulting in software be-

coming more and more secure a few months after release, the opposite appears to

be the case. Early in a release lifecycle, vulnerabilities appear to take time to find

and exploit. I call this newly discovered phenomenon the Honeymoon Effect and I

discuss this in detail in Chapter 3.

To validate the Honeymoon Effect, I analyze the early vulnerability lifecycle of

a single software product (Mozilla Firefox) developed under two distinct software

development processes. I show that even software developed using a methodology

inconsistent with secure software design best practises still experiences this phe-

nomenon.

My evidence suggests that the Honeymoon Effect is related to the attacker’s

learning curve. This characteristic is a property of the software’s ecosystem, not
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intrinsic to the software itself. It is extrinsic to the security properties of the software

that can be controlled by the developers.

I propose a new model to describe this relationship.

1.4 Research Questions

This dissertation explores the following research questions:

• Is Software More Vulnerable When It Is New? In Chapter 3, I present

the results of a large-scale data analysis of vulnerability discovery rates early

in the software lifecycle. I correlate the results with the vulnerability discovery

rates of later versions of the same software to determine when early in the

lifecycle software is the most vulnerable.

• Do Frequent Code Changes Result in Less or More Secure Software?

In Chapter 4 I analyze the likelihood of vulnerability discovery in a single

software product developed using the traditional, slow Waterfall development

methodology with the likelihood of vulnerability discovery in the same software

developed using an Agile methodology.

• What Role does Legacy Code Play in the Exploit Lifecycle In Sec-

tion 3.4 of Chapter 3, I analyze the density of vulnerabilities per lines of code

resulting from code carried over from a previous version compared to the den-

sity of vulnerabilities found in code new to that version. I also analyze the

number of legacy vulnerabilities that experience the Honeymoon Effect, and

compare the length of the Honeymoon Period of the vulnerabilities found in

legacy code to the length of the Honeymoon Period of vulnerabilities found in

new code.

• Do Simple Changes to Software From Version To Version Provide

Insight into the Early Vulnerability Lifecycle? I analyze the effect of a
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single intrinsic property, the magnitude of code changes, as a predictive metric

for the Honeymoon Effect. I present the results of this analysis in Chapter 5.

• Does Software Quality Equate to Software Security? In Chapters 3

and 4, I analyze the vulnerability discovery rates over several versions of dif-

ferent software products and demonstrate that early in the software lifecycle,

the results are not consistent with expectations of widely-regarded software

quality models.

1.5 Contributions

This dissertation makes the following contributions:

1. I discovered the Honeymoon Effect. I provide evidence that early in the soft-

ware vulnerability lifecycle the delay in the attacker’s learning curve appears

to benefit the defender. I explore this discovery in depth in Chapter 3.

2. I analyzed the rate and magnitude of vulnerability discovery of software de-

veloped using two contrasting design models. One methodology, the Waterfall

Model, adheres to traditional secure software development best practices, while

the other, the Rapid-Release Cycle or Agile Model, conflicts with many of the

recommended secure software development best practices. This analysis re-

sulted in several surprising findings:

• Frequent code changes do not result in an increase in easy-to-find vulner-

abilities, (i.e., low-hanging fruit). Rapid feature-driven development does

not benefit the attacker.

• Software designed according to Agile methodologies considered incom-

patible with secure software design best practises, still benefits from the

Honeymoon Effect
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• For code developed using Agile methodologies as well as for code devel-

oped using Waterfall methods, code the majority of vulnerabilities are

found in legacy code. Code reuse is bad for security.

These findings are presented in Chapter 4.

3. I correlated code change properties with subsequent vulnerability discovery

and discovered, surprisingly, that in the Mozilla Firefox software lifecycle, the

magnitude of coarse-grained code changes does not correlate with the length of

time before which a vulnerability was discovered. This suggests that existing

vulnerability discovery models that consider only intrinsic software quality are

not sufficient for predicting vulnerability discovery. I present these results in

Chapter 5.

4. I provide evidence that software security depends in part on properties extrinsic

to those that the developer can directly control. I demonstrate that current

software engineering security models fail to consider these extrinsic properties.

I explore this discovery throughout Chapters 2, 3, 4, and 5.

5. I propose a model of the intrinsic and extrinsic properties that influence whether

vulnerabilities will be found. Such a model could provide a framework for

building richer predictive models for evaluation of the interactions and en-

vironmental factors that affect the security of software systems in deployed

environments. In the concluding chapter, Chapter 6, I present this model,

demonstrate that it is both necessary and sufficient to describe the software

security ecosystem and further, provide a use case to illustrate its effectiveness.

Some of the research presented in this dissertation has been previously published

in peer-reviewed academic computer security conferences. The results presented in

Chapter 3 were published as Familiarity Breeds Contempt: The Honeymoon Effect

and the Role of Legacy Code and appear in the Proceedings of the 26th Annual
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Computer Security Applications Conference, ACSAC 2010. The results presented in

Chapter 4 were published as Moving targets: Security and rapid-release in firefox.

and appear in the Proceedings of the 2014 ACM SIGSAC Conference On Computer

And Communications Security, ACM, 2014. I first proposed the ecosystem model as a

framework for dynamic and adaptive security strategies at the Shmoocon Conference

2012 in a presentation called Inside the OODA Loop: Towards an Agressive Defense.

In all of these works, the ideas, research, direction and focus are my own.

1.6 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, I survey

prior work in software security metrics. I introduce the Honeymoon Effect in Chap-

ter 3. I analyze the Honeymoon Effect in different software development processes

in Chapter 4. I analyze the efficacy of simple intrinsic properties as metrics for the

Honeymoon Effect in Chapter 5. In Chapter 6, I propose the Dynamic/Adaptive Se-

curity Ecosystem Model (DASEM). I conclude with a discussion of promising future

directions for developing predictive and adaptive models for securing software in a

hostile ecosystem.
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Chapter 2

Related Work

"A science is as mature as its measurement tools" (Louis Pasteur)

2.1 Background

This chapter explores previous attempts to adapt software engineering models, such

as models for defect discovery and for quantifying system reliability, to software se-

curity. Such attempts looked closely at the life-cycle of exploited vulnerabilities,

testing whether intrusion discovery provides any predictive benefit, attempted to

determine what effect vulnerability density has on overall software quality, whether

newer additions to code had more or fewer vulnerabilities, and compared vulnera-

bility discovery models to see which, if any, best described the entire vulnerability

discovery process. I will show, none provide satisfactory metrics for predicting vul-

nerability discovery. This chapter also examines other different types of software

security models and their limitations.
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Figure 2.1: ISO-9126: The ISO/IEC 9126 Software Quality Model Categories and
Subcategories [IOfS01]

2.2 The Science of Software Quality Engineering

“One of the challenges in defining quality is that everyone believes they understand

it. ”(Quality is Free, by P. Crosby) [Cro79]

The Journal Software Engineering Insider considers software reliability an es-

sential characteristic of software quality. “Software engineering differs from other

branches of engineering in that professionals are building an intangible structure

and not a tangible one. Since software is embedded in the machines used in various

industries, though, malfunctioning software can actually have tangible effects. With

software used in everything from medical equipment to airplanes, the end result of

faulty software can indeed be loss of life.” [Ins11]

While software quality has been described as: “Quality consists of those product

features which meet the need of customers and thereby provide product satisfac-

tion.” [Jur98] It has also been described as “Quality consists of freedom from defi-

ciencies.” [Jur98] It is because of this need to build functional, reliable, dependable

and safe intangible systems that software engineering science has devoted much effort
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Figure 2.2: ISO-25010: The ISO/IEC 25010 Software Product Quality Model Cate-
gories and Subcategories [ISO11]

to understanding this aspect of software quality.

The question is, how does one recognize high or low quality software? In order

for software quality to be more than an abstract idea, there must be an agreement

on what properties constitute high quality software, and standardized methodolo-

gies by which to measure them. In 1999, the International Standards Organization

(ISO) published ISO-9126. [IOfS01] The standard set out a framework for evaluating

software products (see Figure 2.1). It defined six categories for software quality. In

2001 recognizing that ISO-9126 did not adequately cover the complexity of mod-

ern computer systems, the ISO observed: “Software products and software-intensive

computer systems are increasingly used to perform a wide variety of business and

personal functions. Realization of goals and objectives for personal satisfaction, busi-

ness success and/or human safety relies on high-quality software and systems. High-

quality software products and software-intensive computer systems are essential to

provide value, and avoid potential negative consequences, for the stakeholders.”(see

[fS11]) and withdrew ISO-9126, and replacing it with ISO-25010. [ISO11] As it can

be seen in Figure 2.2, the new model covers a larger scope. Importantly, ISO-25010

includes a separate category for software security.

The adoption of these software quality standards by the software engineering

community resulted in the development of software quality models and ways of mea-

suring their effectiveness. These metrics are predominantly concerned with software
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Figure 2.3: Estimated defect density from 3 different classes of defect prediction
models (reproduced from [FNSS99])

defects in a product before and after release and with accounting for its subsequent

software reliability. Although using defects as a measure for software quality pre-

dates the standards (see below), today’s models and best practices for the software

quality lifecycle continue to focus on finding and removing software defects as the

key to producing high quality software. [Kan02, Ada08]

There are two defect metrics most commonly employed by SRMs to reason about

software quality. The first measures the defect density (number of defects per lines

of code) and the second measures defect discovery rates. The focus of the former

is on measuring the software defect density to help eliminate defects before release

and is measure in number of bugs per lines of code (LOC), and the latter focus is

on developing models to predict software defect discovery rates to try to understand

when a product maybe considered “safe”, “reliable”, or “ready” i.e., how many bugs

are in the code, and how quickly can one depend on them being discovered. Discovery

rates are most often measured by number of defects found per defined time period.
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2.2.1 Defect Density Models

2.2.1.1 Defect Density and Module Size

In 1971 Akiyama published the first attempt to quantify software quality proposing a

regression-based model for defect density prediction in terms of module size. [Aki71]

Akiyama’s model used defects discovered during testing as a measure of system com-

plexity. This approach was later shown to be insufficient when N. Fenton [FNSS99]

compared various defect prediction models and demonstrated that some complex

systems have lower defect densities (see Figure 2.3 ). Fenton observed that the def-

inition of defects differed from study to study and that for models to accurately

predict defects, in addition to size, the models must also take into consideration key

factors such as:

• The unknown relationship between defects and failures.

• Problems of using size and complexity metrics as sole “predictors” of defects.

• False claims about software decomposition.

Fenton also suggested that factors such as code maturity, software reuse and op-

timal size of modules may affect the defect densities differently at various points in a

product’s lifecycle and noted that “most defects in a system are benign in the sense

that in the same given period of time they will not lead to failures” and therefore,

despite their usefulness from a developer’s perspective, (i.e., improving the quality

of software before release), “defect counts cannot be used to predict reliability be-

cause,...it does not measure the quality of the system as a user is likely to experience

it”. [FNSS99] (i.e., pre-release defect removal may not translate into post-release re-

liability).
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Number Hypothesis Case study evidence?
1a a small number of modules contain most of the total faults discovered during pre-release testing Yes evidence of 20-60 rule
1b if a small number of modules contain most of the faults discovered during pre-release testing

then this is simply because those modules constitute most of the code size
No -

2a a small number of modules contain most of the operational faults Yes evidence of 20-80 rule
2b if a small number of modules contain most of the operational faults

then this is simply because those modules constitute most of the code size
No strong evidence of a

converse hypothesis
3 Modules with higher incidence of faults in early pre-release

likely to have higher incidence of faults in system testing
Weak support -

4 Modules with higher incidence of faults in all pre-release testing
likely to have higher incidence of faults in post-release operation

No strongly rejected

5a Smaller modules are less likely to be failure prone than larger ones No -
5b Size metrics (such as LOC) are good predictors of number of prerelease faults in a module Weak support -
5c Size metrics (such as LOC) are good predictors of number of postrelease faults in a module No -
5d Size metrics (such as LOC) are good predictors of a moduleâĂŹs (pre-release) fault-density No -
5e Size metrics (such as LOC) are good predictors of a moduleâĂŹs (post-release) fault-density No -
6 Complexity metrics are better predictors than simple size metrics of fault and failure-prone modules No No (for cyclomatic complexity),

but some weak support
for metrics based on SigFF

7 Fault densities at corresponding phases of testing and operation
remain roughly constant between subsequent major releases of a software system

Yes -

8 Software systems produced in similar environments have broadly
similar fault densities at similar testing and operational phases

Yes -

Table 2.1: Results from testing fault metrics hypothesis (reproduced from [FNSS99])

2.2.1.2 Defect Density Over the Lifetime of the Code

Emphasis on reliability as a characteristic of overall quality led to the acknowledge-

ment of the need to distinguish between defects discovered at different life-cycle

phases. Table 2.1 lists the results of a case study testing the validity of many of

the hypotheses at the root of Software Reliability Engineering (SRE) metrics. Hy-

pothesis number 4 is particularly interesting, because the result from this study sug-

gests no clear evidence for the relationship between module complexity, pre-release

discovered defects, and post-release faults (resulting in failure). This and other ev-

idence [MD99, MCKS04] led to the current understanding that defect density as

a metric for software quality must be measured “holistically” [HR06] i.e., over the

entire lifetime of the software.

Studies looking at defect density over the code lifetime show that the most suc-

cessful models for predicting failures from defects are those which measure contri-

butions from LOC changes to a software module. These models show that large

and/or recent changes to a module or code-base result in the highest fault poten-

tial. [NB05, EGK+01]
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2.2.1.3 Defect Density and Software Reuse

The recognition that releasing new software or changing old software resulted in more

defects being discovered (presumably as a result of more defects being added), led

to one of the most widely recommended software quality maxims: Reuse software

whenever possible. The belief that old, already in use software is relatively free

of defects and the practice of reusing old code (whether it be lines, sections or

entire modules) soon became widespread, and there is much software engineering

evidence to support this belief. In fact, a meta-analysis looking at software reuse

from 1994-2005 found that “Systematic software reuse is significantly related to lower

problem (defect, fault, or error) density” [MCKS04]. As a result, even today the

current software engineering models, such as the Capability Maturity Model [Jel00],

strongly recommend software reuse, and the consensus is that the longer software

remains unchanged (the older it is) the fewer defects are likely to be found. The

longer software has stood the test of time the higher its apparent quality.

2.2.2 Defect Discovery Rate Models

Defect density is not the only way software quality is measured. An equally functional

metric is the rate at which defects are discovered. Defect discovery rates(DDR) are

used industry wide for two distinct purposes. Often this is a key indicator of when

to release software. The assumption is, that a sufficiently low defect discovery rate

indicates that (1) either few defects remain to be found, or (2) that what defects do

remain are harder to find, and therefore less likely to be found.

2.2.2.1 Defect Discovery Rates Before Release

Several models have been developed to try predicting the point when the percentage

of defects is likely to be under a required level (set by the developer).

The most commonly used model for DDR today is the Quantitative Software
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Management (QSM) Reliability Model, or Putnam model [Put78]. The QSM model

uses a probability density function 1 to predict the number of defects discovered over

time.

Figure 2.4: Sample Rayleigh Defect Estimate. This defect estimate is based on
project of 350,000 SLOC, a PI of 12 and a peak staffing of 85 people. From the QSM
Reliability Model [Put78]

Empirical research has shown that the concave curve resulting from this model

(see Figure 2.4) closely approximates the actual profile of defect data collected from

software development efforts. [BD01] In fact, an entire industry has sprung up around

using this model to help developers and vendors predict, find and remove defects

before release [Put78, Inc16]

2.2.2.2 Defect Discovery Rates After Release

The second purpose for which defect discovery rates are used is to predict failures

after a product has been released. This is particularly important for determining the

1Rayleigh distributions are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different fading characteris-
tics. In software this scatter is the predicted number of defects likely to occur in different phases
of development.
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Figure 2.5: Brooks Curve anticipating defect discovery rates after product release
from [Bro95a]

quality of safety critical systems where accurately predicting Mean Time To Failure

(MTTF) is needed for certification and resource allocation. [ISO07, JB11]

Brooks, in the Mythical Man Month, first surmised how a curve representing

the post-release DDR might look (see Figure 2.5). High numbers of defects are

found early on (the low-hanging fruit), and then as time goes by, fewer defects are

discovered over longer periods until the rate either reaches a constant state, or some

change to the system such as the addition of new features might cause the rate to

climb 2.

These models have proven to be surprisingly useful predictors over time. Fig-

ure 3.1 shows a graph from 2008 ( 30 years after the Mythical Man Month was

2Brooks notes that it was suggested that new users unfamiliar with software might break it in
new ways
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Figure 2.6: Graph comparing DDR models to defect discovery rates in popular
software. Courtesy of [JMS08]

published) comparing the model predictions to actual defect discovery rates in 3

widely used, popular software products. [JMS08] Though the actual numbers of de-

fects discovered were higher than the models predicted, the curves measuring the

defect discovery rates are extremely similar.

2.2.3 Removing Software Defects Improves Software Quality

The world is much more dependent on software today than when software reliability

models and metrics were first developed. Software is a necessary part of most main-

stream devices and activities, from self-driving cars to streaming media. The success
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of these tools in the SRE community is demonstrated daily, embedded medical de-

vices keep people alive, communications flow through networks, and e-commerce

works reliably.

Indeed, the quality of the transactions is considered so high and the failure rate

so low that much of the world’s industry and finance depend on software. The

SRE metrics proposed in the late 1970’s, which are still in use today, have aided in

engineering this dependability.

2.3 Software Security as a Characteristic of

Software Quality

“However beautiful the strategy, you should occasionally look at the
results” (Winston Churchill)

Many of the problems relating to software security result from the exploitation

of vulnerabilities in the system. To the extent that these vulnerabilities are a result

of defects in software, it is natural to assume that higher quality software, i.e.,

software with fewer defects, must also be more secure. This leads, naturally, to

the assumption, that the methods used so successfully to assure software quality

(defect density and defect discovery rates), apply equally to software security. A

further assumption is that the same metrics apply. This section examines some of

the attempts to quantify software security by adapting the models and metrics that

work so well for software quality, (that is defect density and defect discovery rates),

for vulnerability density (VDD) and vulnerability discovery rate (VDR).
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2.3.1 Vulnerability Discovery Rate Models

In late 2000 Arbaugh, et al., explored the merits of enumerating and modeling vul-

nerability discovery rates as a metric for software security [AFM00]. 3 Previously,

attempts had been made to estimate numbers of machines at risk of intrusion from

a known but unpatched vulnerability, [How97, Ken99], but this was the first study

attempting to determine when in the lifecycle intrusions occurred. Windows of Vul-

nerability focused on software flaws, i.e., defects. Using three case studies, the au-

thors measured the rates of intrusion reporting for well-known vulnerabilities. From

these intrusion reporting rates, they proposed a model for predicting vulnerability

discovery rates and the severity of infection.

2.3.1.1 Case Studies

Arbaugh et al., compiled a data set of all intrusion incidents submitted to the in-

cident report repository of the Computer Engineering Response Team (CERT) Co-

ordination Center. They chose the three case studies from the vulnerabilities with

the highest incidence rate. These were the Phf vulnerability [Mye96], the IMAP

vulnerability [UC97] and the BIND vulnerability [UC98]. From each incident, they

included only those reports resulting from a successful intrusion.

Phf

The first case study examined the intrusion reports surrounding the vulnerability

in Phf. Jennifer Myers found and disclosed the vulnerability on February 2nd 1996,

then March of that same year, CERT issued a security advisory. [Mye96, Ins96]

Figure 2.7 shows the rate of intrusions reported. The first known scripted attempts to

3A more detailed paper was published a few months later under the title: “A Trend Analysis of
Exploitations”. [WAMF01]

24



Figure 2.7: Phf Incident histogram. The rate of intrusions increased significantly six
months after the correction became available, then persisted for another two years.
- from [AFM00]

exploit this vulnerability appeared a few months later, in June, 1996. 4 The authors

observed that while some exploitation occurred prior to the vulnerability’s scripting,

the vast majority of the intrusions reported took place after scripting. They also

noticed that the rate of intrusion increased significantly in August of 1996. What

the authors did not mention, was that complete instructions on how to script this

vulnerability were published in PHRACK issue 49, in August of 1996 [One96]. This

tutorial no doubt contributed to the proliferation of incidents reported at that time.

One very surprising thing that can be seen in Figure 2.7 is the length of time a

vulnerability lived. Even though a patch was available before any intrusions were

reported to CERT, the effective lifetime of this exploit was more than two and one-

half years.

4This script only attempted to download the password file. It did not allow for arbitrary
command execution.
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IMAP

Figure 2.8: IMAP incident histogram. This study tracks two flaws, both of which
exploited buffer overflow vulnerabilities in the IMAP server. - from [AFM00]

The second case study looked at two buffer overflow vulnerabilities in the IMAP

mail server software. David Sacerdote of Secure Networks posted the first flaw to

Bugtraq on March 2, 1997. CERT issued an advisory with links to patches a month

later, and the first known scripted exploit appeared a month after that. However, the

software also contained a second buffer overflow that wasn’t discovered until almost

a full year later. This second flaw was posted, along with a link to the patch, to the

pine-announce email list in July of 1998, but the details of the vulnerability weren’t

disclosed. Six days later, an anonymous posting on Bugtraq provided the details and

included a scripted exploit.

Figure 2.8 shows the reported intrusions from these two vulnerabilities. The authors

stated that they combined the data of both vulnerabilities, because in most cases the
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incident report did not specifically list which flaw was exploited, making it difficult

to differentiate between them. However, the authors made a point of noticing that

the graph has two separate curves, which they claimed represents the intrusion rates

for each vulnerability. They also pointed out that both of the curves have the same

general shape as the Phf graph.

The authors also observed something interesting about the behavior of the at-

tackers using the IMAP vulnerability scripts. To a much larger degree than previ-

ously reported, “attackers used scanning or probing to identify potentially vulnerable

hosts. In several cases, incidents reported to CERT/CC involved large subnet scan-

ning, with some scans encompassing an entire Class A network, or several million

hosts.” The authors did not explore this any further, to see if such an increase in

vulnerability scanning resulted in a change to the VDR.

BIND

Figure 2.9: BIND Incident histogram. Part of the Internet’s infrastructure BIND
suffered attacks for a much shorter period of time than did phf and IMAP, thanks
to aggressive countermeasures. from [AFM00]
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The final case study examined a vulnerability in the BIND domain name system

implementation.

CERT disclosed the flaw on April 8, 1998 and the exploit was automated nearly

two months later. The authors claimed that though there were rumors that the flaw

had been known for months, they (the authors) were unable to substantiate any

of them. Figure 2.9 shows the histogram for the reported incidents exploiting this

vulnerability. The authors found it surprising that given how integral BIND was to

the Internet’s infrastructure, there were still reports of incidents six months later.

Yet, the authors also noted that the response to the BIND vulnerability was much

more “aggressive” than the responses IMAP and phf incidents. The lifetime of BIND

was six months, compared to a year or more for the others.

2.3.1.2 VDR Model

In their paper “A Trend Analysis of Exploitations” [WAMF01], the authors claimed

that all three exploits they studied could be modeled using the formula C = I + Sx
√
M ,

where C is the cumulative total of incidents, M the time since the first known ex-

ploit (the start of the exploit cycle) and I and S regression coefficients determined

by analysis of the report data. Regression analysis testing of their model on their

dataset, led to two conclusions: First, the model supported the hypothesis that there

was a relationship between the cumulative counts per month for individual incidents,

and therefore appeared to provide “very good predictive power for the accumulation

of security vulnerability incidents”, and second, there appeared to be no similarities

in the shapes of the slopes across incidents. They concluded that no one formula

allowed for the prediction of future incidents based on past incident behavior.

2.3.1.3 Discussion

The analysis presented here is one of the earliest attempts to model the behavior

of software vulnerabilities as separate from software defects. The study was limited
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in scope. It looked at only three vulnerabilities, and for each, they restricted their

dataset to self-reported breaches (intrusions). Though this data gave the authors in-

sight into factors affecting the lifetime of a vulnerability, such as automation (script-

ing) on the attackers’ side, and patching behavior on the defenders’ side, the authors

could say nothing about the overall quality of the software, about the vulnerabilities

that might remain to be found (quantity or severity), or about the rate at which new

vulnerabilities might be discovered in software. Nor could their model be applied

across incidents (new exploits). This limited their model’s overall applicability. How-

ever, this paper made some significant contributions to the field of security metrics

by providing new definitions for software and hardware vulnerabilities. They defined

security vulnerabilities as software flaws with distinct characteristics differentiating

them from functional defects, e.g., “A flaw in an information technology product that

could allow violations of security policy” [ [WAMF01], p. 52], as “A flaw or defect in

a technology or its deployment that produces an exploitable weakness in a system,

resulting in behavior that has security or survivability implications” [ [WAMF01],

p. 54], and considered for their analysis, a vulnerability to be a flaw that has been

discovered, deployed and “available for widespread use”. These definitions go beyond

typifying a flaw as a mistake in coding; by including deployment as a risk factor, and

by recognizing that the behavior of the technology and the behavior of attackers each

play a role in successful exploitation. Although, later work by Ozment claimed that

these definitions were too broad, since they failed to account for multiple vulnera-

bilities, and their definitions didn’t include the entire software lifecycle.“... a single

defect or flaw could result in multiple different vulnerabilities or "exploit instances"

and that a vulnerability could occur in any part of the development and deployment

process.” [Ozm07]

The authors claimed a major purpose of this study was to investigate the hy-

pothesis: Does poor system administration, specifically the failure to apply patches

in a “timely fashion” result in an “excessive window of vulnerability”. The authors
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stated that they “expected the rate at which exploits occur to be fairly small in the

period immediately following discovery and to increase as the vulnerability and its

associated exploit become more widely known”. Importantly, the authors also hy-

pothesized that an exploit would become “passe” as patches became available and

were widely deployed. Figure 2.10 shows the curve the authors assumed they would

see, a slow start, followed by a rapid increase in intrusions (accelerating as news of

the vulnerability reached a wider audience), followed by a steep decline as soon as

a patch was released. 5 This expectation wasn’t a new one, it had been proposed

before by Kendall and Schneier [Ken99, Sch00], but Arbaugh, et al., were among the

first to test it.

Figure 2.10: Intuitive life cycle of a system-security vulnerability. Intrusions increase
once users discover a vulnerability, and the rate continues to increase until the system
administrator releases a patch or workaround. (from [AFM00])

In their examination, they were surprised to find this assumption was wrong.

While it was commonly assumed that most attackers choose well known vulnerabil-

ities to exploit, it was also assumed that attackers would choose vulnerabilities for

which no patch existed. Surprisingly, their results demonstrated that the most com-

monly compromised vulnerabilities were for flaws for which patches were available.
5Notice the similarity in the expected model and the most popular of the SRMs, the QSM model.
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Their research implied that “deployment of corrections is woefully inadequate”. Thus,

this paper not only contributed one of the first vulnerability lifecycle models, and

provided hints that the vulnerability lifetime might be much longer than expected,

but it demonstrated that identification of a vulnerability and its exploitation are

both distinct actions and are separated by a window of time.

At the time this paper was written, there was much debate regarding the merits

of publicly disclosing vulnerabilities. [Sch04, Spa89], the authors concluded that open

disclosure “obviously works”, because patches for the vulnerabilities were available

before the rise in intrusions. Moreover, they were able to show that automation was

the key for mass intrusions. Particularly, since, in all cases they studied, patches were

so quickly available. Furthermore, their suggestion that active systems management

combining intrusion detection and patching would be the most cost-effective means

of securing a system has been proven correct. Today, nearly all major software

developers provide automated patching capability and automated patch management

is a thriving business [AKTY06]. “Windows of Vulnerability” was the first work

that demonstrated patterns of attacker behavior inside individual exploits and by

measuring this behavior they discovered that the defender’s actions may determine

the length of that vulnerable “window”.

2.3.2 Empirical Analysis of Vulnerability Density

A few years after “Windows of Vulnerability” was published, Andy Ozment and

Stuart Schechter examined a different metric for measuring the quality of software.

They looked at the number of vulnerabilities per lines of code. This was an attempt

to determine whether older software was more or less secure than newer software. In

their paper Milk or Wine: Does Software Security Improve With Age? [OS06], the

authors analyzed the code base of the OpenBSD operating system over a period of

7.5 years and attempted to answer five questions:

1. Has there been a decline in the rate at which vulnerabilities created in the
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originating version of the software (Foundational Vulnerabilities) in OpenBSD

are reported?

2. Do larger code changes have more vulnerabilities?

3. Does newer code contain fewer vulnerabilities per line of code than older code?

4. How much does legacy code influence security today?

5. What is the median lifetime of a vulnerability?

The authors chose OpenBSD for their analysis, because the entire source code

and all subsequent changes were readily available, and because they wanted to test a

system whose “developers focused on finding and removing vulnerabilities”. From the

public repository, the authors obtained the source code for versions 2.3-3.7. From

the CVS database they found each reported vulnerability. They then attempted

to determine the lifetime of each vulnerability. To do so, they found the earliest

reported dates for each, which they referred to as the date the vulnerability was

born, and correlated that birth date with the earliest time that a patch was available,

calling this the date the vulnerability died. Vulnerabilities that were remediated

with the same patch were grouped together as one. The authors noted that their

decision to bundle vulnerabilities was a result of their inability to obtain data to

differentiate between them, and that this “may result in an inflated perception of

security for the system”, particularly since it might cause models to assume fewer

vulnerabilities and demonstrate a rapid diminishing trend. Figure 2.11 show the

number of vulnerabilities reported and patched per OpenBSD version along with

total lines of code.

2.3.2.1 Q1: Are Vulnerability Discovery Rates declining?

Ozment and Schechter considered vulnerability discovery rates analogous to reliabil-

ity engineering’s MTBF (mean time between failures) metric. Thus, they felt they
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Figure 2.11: The OpenBSD version in which vulnerabilities were introduced into the
source code (born) and the version in which they were repaired (died). The final
row, at the very bottom of the table, shows the count in millions of lines of code
altered/introduced in that version. from [OS06]

could use the rate of vulnerability reporting to measure whether OpenBSD software

quality was improving.

Figure 2.12: The number of days between reports of foundational vulnerabilities.
from [OS06]
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Figure 2.12 shows the number of days between foundational vulnerability reports

in the first and second halves of the study. The authors claimed that their statistical

analysis on the direction of trend in the rate vulnerability reporting indicated a clear

decrease over time.

2.3.2.2 Q2: Does more code mean more vulnerabilities?

Noting that measuring defect density rates was proving useful for software engineers,

the authors looked at the number of vulnerabilities per millions of lines of code in

each version of the code to see if vulnerability density rates (VDR) would prove

beneficial for software security. Interestingly, they found that the vulnerability den-

sity of the foundational version was “right in the middle of the pack” compared to

the vulnerability densities of all of the versions studied. But, they did report that

vulnerability density was higher in versions that introduced new code if that code

provided security functionality. They gave as an example, version 2.4, which intro-

duced a new key management daemon and OpenSSL. The also authors reported that

they were unable find a significant correlation between new lines of code added and

the number of reported vulnerabilities.

2.3.2.3 Q3: Has software quality improved?

The authors then asked whether programmers had gotten better at writing code, i.e.,

by the time the study ended compared to when the first version was released, were

programmers producing code with fewer vulnerabilities? Looking at the vulnerability

density per 1000 LOC, they found that the density of all reported vulnerabilities fell

in a very narrow range 6 averaging 0.00657 across all versions. While they did find

that the addition of new security functionality, e.g., the addition of OpenSSL and key

management, did result in the introduction of new vulnerabilities, the authors did

not attribute this to problems of software quality, instead stating the belief that the

60-0.033
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new code added “may have drawn particular attention from vulnerability hunters”.

Thus, the authors drew no conclusions about improvements in the quality of the

later software.

2.3.2.4 Q4: The influence of legacy code on security

One of the most striking results of this study, was the effect of legacy code on

vulnerability discovery, and vulnerability density. During the period of study, the

authors found that 62% of the vulnerabilities reported had existed in the code since

its very first version. They proposed two possible explanations for this; that the

foundational code was of a lower quality than more recent code, or that foundational

code made up most of the code base regardless of version.

Figure 2.13: The composition of the full source code. The composition of each
version is broken-down into the lines of code originating from that version and from
each prior version. [OS06]

Figure 2.13 shows support for the latter hypothesis. The authors did note, that

they were surprised to see the amount of foundational code increased in some of
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the later versions. They attributed this to developers cutting and pasting legacy

code into new modules. They also noted that the largest numbers of reported vul-

nerabilities were in the sys/kern directory of which, 88% of the vulnerabilities were

foundational.

2.3.2.5 Q5: What is the lifetime of a vulnerability?

To calculate the median lifetime of a vulnerability, the authors used the time elapsed

between the release of a version and the death of half of the reported vulnerabilities.

Acknowledging that there was no way of determining whether all vulnerabilities in

any particular version had been found, (especially in the foundational version), they

presented their results as a lower-bound for this metric. Their analysis calculated

2.6 years as the median lifetime of foundational vulnerabilities (see Figure 2.14).

Figure 2.14: The median lifetime of foundational vulnerabilities during the study
period. from [OS06]

However, Ozment and Schecter admitted that because their analysis relied on

a “gross simplifying assumption”, the assumption that all vulnerabilities, (i.e., the

total sum of vulnerabilities contained in that software), were found within a 6 year
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Figure 2.15: Rescorla’s Whitehat vulnerability discovery process [Res05]

period, the fact that their data had examples of vulnerabilities reported outside that

period meant that their analysis was limited.

Still, this does not detract from the surprising discovery that the lifetime of a

vulnerability was so long.

The authors concluded that the rate of vulnerability reports decreased during

the period of their study. Further they estimated that by the end of their analysis,

67.6% of the vulnerabilities that originated in the foundational version of OpenBSD

had been found. 7

2.3.2.6 Discussion

The research reported in Milk or Wine was carried out largely in response to work

done by Eric Rescorla [Res05]. In Is finding security holes a good idea?, Rescorla

asked whether it was “... better for vulnerabilities to be found and fixed by good guys
7They base this estimation on the fact that the expected number of vulnerabilities reported per

day decreased from 0.051 at the start of the study, to 0.024.
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Figure 2.16: Rescorla’s Blackhat vulnerability discovery model [Res05]

than for them to be found and exploited by bad guys”. Rescorla presented models

for measuring the effect of disclosure by ’good guys’ or ’bad guys’ on overall software

quality, see Figure 2.15 and Figure 2.16, and argued that unless a vulnerability was

already being exploited, public disclosure of vulnerabilities was not cost effective and

further was actually dangerous. 8 Using data from ICAT [Rei02], and comparing

several statistical analysis methods, he was unable to show any “significant trend

towards increasing reliability” in the cohort data. He claimed to show that there

was little evidence to support the claim that active vulnerability discovery depletes

the pool of vulnerabilities and therefore, it was not cost effective for the good guys

to waste resources on finding vulnerabilities. He also claimed that vulnerability

disclosure did not provide an increase in security sufficient to offset the cost.

Ozment and Schechter believed his data was limited because his dataset did not

8Rescorla claimed slow patch rates would greatly magnify the damage malware developed after
disclosure could cause.
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reliably report the “birth” date of vulnerabilities, and so the subject warranted fur-

ther investigation. In looking at vulnerability discovery rates over time, Ozment and

Schechter claimed their results contradicted Resorla’s, showing a clear decrease in the

discovery rate. It is interesting to note, while history has proven most of Rescorla’s

conclusions about the benefits and costs of vulnerability discovery and disclosure

to be wrong [Mil07, FAW13], recent research has shown that vulnerability discov-

ery rates have actually increased [FM06], suggesting that Ozment and Schechter’s

conclusion cannot be widely applied.

This paper was one of the first to demonstrate that new code which involves

the addition of new security functionality increases the number of vulnerabilities

discovered. The authors attributed this to increased attacker attention. While they

did not consider the possibility that the new security functionality itself would add

new complexity and an increased possibility of unexpected interactions, this is still

one of the first glimpses that extrinsic properties (such as attacker interest) affect

software security.

Ozment and Schechter also demonstrated the security hazard resulting from

legacy code, noting in particular that many times code was copied from one part

of the operating system to another. However, they made no attempt to discover

whether any vulnerabilities in the code were also copied. As it will be seen in Chap-

ter 4, the high percentage of vulnerabilities found in legacy code suggests that

the weaknesses in code that might result in a vulnerability being exploited are also

copied.

The chief limitation of this work is that the authors chose to look at OpenBSD,

an OS which was never widely adopted. 9 This small userbase makes their model a

poor fit for other systems, precisely for the reasons they use to justify their results.

Moreover, their decision to group similar vulnerabilities reported closely in time

together into one, greatly reduced the size of their dataset. They failed to consider

9At the time of publication OpenBSD had fewer than 1500 servers instances, approximately
0.003% share of the server market.
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the possibility that OpenBSD usage declined as Microsoft Windows and Linux and

Apple OS adoption hugely increased during this period. So while they did entertain

the idea of attacker interest in vulnerability discovery, they did not recognize that

OpenBSD’s limited adoption would mean correspondingly little attacker interest and

result in a very small vulnerability dataset, making their contribution less valuable

in the long term.

2.3.3 Modeling the Vulnerability Discovery Process

The same year that Milk or Wine was published, another group attempted to deter-

mine whether models similar to those used for software reliability engineering could

be used to provide software security metrics [CA05, AMR05, AMR07]. Like Ozment

and Schechter, Alhazmi, et al., were interested in seeing whether vulnerability den-

sity was a useful metric for software security, and like Arbaugh, et al., the authors

looked at vulnerability discovery rates to determine whether models could be used to

predict trends. In addition, they also compared the ratio of known vulnerabilities to

known defects. Two years earlier, Anderson [And02], had proposed this as a metric

for software security, and guessed that the value might be around 1%, while similarly,

McGraw [McG03] suggested this ratio was probably higher, around 5%, but neither

actually measured it. Alhazmi, et al., hoped to determine which (if either) estimate

was correct, and hypothesized that if one were correct, this ratio could be used to

estimate the number of remaining undiscovered vulnerabilities. Their goal was to

develop a model for the entire vulnerability discovery process.

2.3.3.1 Windows VDD and VDR

For their analysis, the authors looked at different versions of the Microsoft Windows

and the Redhat Linux operating systems.

Table 2.2 shows their results for Microsoft WIndows. It displays the known defect
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Table 2.2: Vulnerability density vs. defect density for several versions of the Mi-
crosoft Windows operating system. - from [CA05]

density (DKD) and vulnerability density (here labeled VKD) and the ratio between

the two, for Microsoft Windows client operating systems Windows 95, 98 and XP

and Windows server operating systems Windows NT and 2000. Looking at the

client operating systems they noted that while the defect densities and vulnerability

densities were quite close for versions 95 and 98. For Windows XP the values were

much lower. They attributed this difference to the fact that their dataset included

the defects reported in the beta version, as well as the final release, resulting in a

much larger defect total. They also stated that their numbers represented only a

fraction of XP’s overall vulnerability density and therefore they expected this value

to “go up significantly, perhaps to a value more comparable to the two previous

versions.” (See Table 2.2) Interpreting their results, the authors observed that there

were several vulnerabilities shared between Win 98 and XP, and that the slope of

the XP graph shows almost no learning rate.

They also compared the vulnerability and defect densities for two versions of

Microsoft Windows Server: Windows NT and 2000. They were surprised to find

that the VKD is around three times higher for the server versions than for the client

versions. The authors offered two possible explanations: First, that a larger portion

of a server’s software is involved with functions requiring external access, which they

claimed made it more vulnerable, and Second, they asserted that server software
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Figure 2.17: Cumulative and Shared vulnerabilities between Windows 95 and Win-
dows 98. [CA05]

Figure 2.18: Cumulative and Shared vulnerabilities between Windows 98 and Win-
dows XP. [CA05]

must have undergone more stringent testing and therefore more vulnerabilities were

found and reported.

Figure 2.17 shows the cumulative vulnerabilities for Windows 95 and 98 as well as

the shared vulnerabilities. Figure 2.18 compares Windows 98 and XP and Figure 2.19

shows the same for Windows NT and 2000.
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Table 2.3: Vulnerability density vs. defect density for two versions of the Redhat
operating system. - from [CA05]

2.3.3.2 Linux VDD and VDR

After examining the various MS Windows operating systems, the authors were curi-

ous to see if an open source operating system displayed the same characteristics as

the closed source systems. They chose two versions of Redhat Linux for compari-

son. Table 2.3 shows their results for Redhat version 6.2 and 7.1. Figure 2.20 shows

the plot of cumulative vulnerabilities for both versions as well as the vulnerabilities

shared between them. Looking at the graph, they made the following observations:

While the code size for version 7.1 is twice as large as version 6.2, the VKD and

DKD) are similar. Additionally, the VKD for Red Hat Linux is in the same range

as that of Windows 2000. Looking at the ratio of VKD to DKD in Red Hat 7.1, the

authors state that they expected the VKD “to rise significantly in the near future”

and note that the value of the ratios for both Linux versions are close to the 5%

proposed by McGraw. [McG03] Here, as well as with MS Windows, they noted the

shared vulnerabilities between versions.

Figure 2.19: Cumulative and Shared vulnerabilities between Windows NT and Win-
dows 2000. [CA05]
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Figure 2.20: Cumulative and Shared vulnerabilities between Redhat Linux versions
6 and 7. [CA05]

2.3.3.3 A proposed model

Figure 2.21: Proposed 3-phase model. See [CA05]

Alhazmi, et al., found a common pattern across all the operating systems they

examined. Their plots of vulnerabilities discovered over time tended to show three
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phases. They claimed that these phases follow the s-shaped model they had proposed

in their earlier work. [CA05]

Figure 2.21 describes the proposed three phase model. According to their defini-

tions, Phase 1 is the phase where users begin to switch to the new operating system

and testers (both good and bad) gather knowledge about how to break it. In Phase

2, the time when the operating system usage gathers momentum and it reaches its

peak usage. The authors claimed that most vulnerabilities would be found in this

phase. Phase 3 begins as the system is replaced by a newer release and attention

shifts to the newer system. From this model, the authors claimed that the vulner-

ability discovery rate is controlled by two-factors, the momentum gained by market

acceptance, and saturation (defined as total vulnerabilities minus the cumulative

number of discovered vulnerabilities), and that the vulnerability discovery process

could be modeled by the following equation:

dy/dt = Ay(B − y) (2.1)

where t = calendar time, A = a constant of proportionality, y is the cumulative

discovered vulnerabilities and B = total number of vulnerabilities.

Fitting their data to the model, the authors applied a chi-squared goodness of

fit test to if this model applied. Figure 2.22 and Figure 2.23 show the results of

this fit and their corresponding P-values for Windows NT 4.0 and Figure 2.24 and

Figure 2.25 show the same for Red Hat Linux 7.1.

For most of the operating systems tested, the fit does appear to be statistically

significant and the authors concluded that like defect densities, vulnerability densities

fall seem to fall within a range, and that range appears to support the 1%-5% values

proposed by McGraw and Anderson. They claimed that vulnerability density is a

“significant and useful metric”, and further surmised that the ratio of VKD to VDD

over time could be used to predict remaining vulnerabilities. They also noted that
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Figure 2.22: Chi-squared test of the Alhazmi vulnerability discovery equation for
Windows NT. See [CA05]

Figure 2.23: Results of the Alhazmi model fit tests for vulnerability discovery equa-
tion for Windows NT. See [CA05]

shared code in a newer operating system can impact the VDR of a previous version

and stated that further research was warranted to model this impact.
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Figure 2.24: Chi-squared test of the Alhazmi vulnerability discovery equation for
RedHat Linux. See [CA05]

Figure 2.25: Results of the Alhazmi model fit tests for vulnerability discovery equa-
tion for Redhat Linux. See [CA05]

2.3.3.4 Discussion

In this paper, the authors proposed a 3-phase ’S’ curve model to describe vulnerabil-

ity discovery over the lifetime of a software product. Later work has confirmed that

the ’S’ curve does appear to describe the vulnerability lifecycle, however, the authors

stated that the discovery rate was governed by a finite number of vulnerabilities and

their market value, (which they referred to as ’market share’), and used the ratio of

vulnerabilities to defects to support their assumption. While research presented in

Chapter 3 suggest that market share does appear to play a role in the number of
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vulnerabilities discovered, especially in phase 2, my research also suggests that the

long slow rise (here described as phase 1), followed by the steep linear rise (phase 2)

is more likely the result of the attackers’ learning curve. [CFBS10, CCBS14] regard-

less of the ratio of vulnerabilities to software defects, or the number of remaining

undiscovered vulnerabilities.

Alhazmi, et al., go on to explain the shape of their model resulted from “the vari-

ability of the effort that goes into discovering vulnerabilities”. They believed that

the rise in phase 2 indicated a strong increase in effort devoted to finding vulnera-

bilities because this period was the one in which discovering vulnerabilities would be

“the most rewarding”. However, their only justification was that this was the period

where the operating system reaches its peak of popularity. In spite of observing that

legacy code carried over to a later version resulted in shared vulnerabilities between

versions and that some vulnerabilities found in the later version actually affected the

earlier version, they concluded that the cause of the increase resulted from increased

effort.

Although the authors mentioned the attacker learning process, code involved

in “external access” and the effects of shared code when discussing their results,

they did not consider these as important factors affecting the vulnerability discovery

process they were attempting to model. Instead, the authors considered the size

of the installed base and the time to saturation the most important drivers in the

vulnerability lifecycle. Since time to saturation is related to the vulnerability density

and the vulnerability to defect ratio, they even claimed that measuring vulnerability

density “allows us to measure the quality of programming in terms of how secure the

code is.” Research has shown that while vulnerability density may help determine

whether software quality is improving, it can say nothing about the security of the

code. [Gaf14, Bea16]
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2.4 Weaknesses of Software Engineering Models

Attempts to apply software quality models to software security have not resulted in

success. At the time of this writing, there is no generally accepted software security

model or metric that provides any level of assurance equivalent to that provided by

SREs for software reliability.

SREs were applied to security with the assumption that the factors which affect

the security of software on a system are analogous to the factors that determine

the reliability or quality of a software system. That these attempts met with such

limited success suggests that software security may be affected by factors that are

not related to software engineering.

For example, in ’Windows of Vulnerability’, the authors presented a table com-

paring the linear regressions on the plots of each of the vulnerabilities they studied.

They reported that the results “do not indicate any similarity in the shape across

the incidents”. It must be acknowledged that while Phf, IMAP and BIND are all

software programs and as such were affected by developer choices, the programs

themselves differed significantly in purpose and usage. Moreover, the characteristics

of the vulnerabilities themselves differed. 10 This suggests that properties extrinsic

to software affect vulnerability discovery. The Phf vulnerability affected an optional

phonebook feature of web servers, while the IMAP vulnerabilities affected file sys-

tem daemons integral to the server functionality, and while vulnerabilities in those

two programs might adversely affect individuals or small groups of users, the BIND

vulnerability affected a major part of the Internet’s infrastructure. The extrinsic

properties surrounding these software products are independent of each other and

therefore, it is completely understandable their growth rates would be dissimilar.

A focus on reported failure incidents is useful for reliability, but a similar focus on

intrusions and reported incidents provides little insight to developers attempting to
10The Phf vulnerability was an implementation error, while the IMAP and BIND vulnerabilities

were buffer overflows.
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predict the next vulnerability.

A second example of the inadequacy of applying SRE models to security comes

from ’Milk or Wine’. The authors claimed that SRE reliability growth models demon-

strated that the rate of vulnerability reporting, particularly the reporting of founda-

tional vulnerabilities, was declining. They also used these models to estimate that

67.6% of the total vulnerabilities in OpenBSD had been found. They claimed this

demonstrated that OpenBSD was becoming ’more secure’.

However, recent discoveries of critical vulnerabilities in widely deployed legacy

software has shown that a vulnerability model that relies on a decrease in the rate at

which vulnerabilities are reported can say nothing about the security of the software.

A closer look at one of these vulnerabilities serves to illustrate this point. Shellshock,

the name given to a class of Bash 11 vulnerabilities discovered on September 24, 2014,

was rated 10 out of 10 for severity, impact and exploitability, by NIST [NIS14].

Within hours there were compromise incidents reported. After two days, more than

17,400 attacks had been reported and after one week, attacks were averaging more

than 1800 per hour. [Gaf14]. These vulnerabilities affected all vendor implementa-

tions, all versions after 1.09 and multiple platforms and operating systems. It is

interesting to note that the NIST NVD database lists only one Gnu Bash vulnerabil-

ity that is not related to Shellshock. Moreover, it was reported two years earlier and

it was considered far less dangerous. [NIS08] 12. Even more importantly, the vulner-

able code was foundational code (It had been part of the software since 1989). The

vulnerabilities that resulted in Shellshock went undiscovered for nearly twenty five

years, thus the MTTF reliability growth models employed by Ozment and Schechter,

would not have been of any help in predicting their discovery, their severity or their

world-wide impact.

11A widely used Unix command-line interpreter.
12CVE-2012-3410 was rated 6.4 for impact, but only 3.9 for exploitability
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In Security Vulnerabilities in Software Systems: A Quantitative Perspective, Al-

hazmi, et al. claimed, “Vulnerability density is analogous to defect density. Vulnera-

bility density may enable us to compare the maturity of the software and understand

risks associated with its residual undiscovered vulnerabilities. We can presume that

for systems that have been in deployment for a sufficient time, the vulnerabilities

that have been discovered represent a major fraction of all vulnerabilities initially

present.”

They went even further, stating, “In the same manner, vulnerability density allows

us to compare the quality of programming in terms of how secure the code is.”

In fact, it does no such thing. The recent discovery of severe vulnerabilities

such as Heartbleed [Ltd14], Shellshock [Gaf14] and Poodle [TA14] are in widely

deployed systems, comprised of mature code as well as in shared code libraries. By

the accepted software quality metrics, based on the defect density and MTTF the

software could be considered of high quality, yet the severity of these long dormant

vulnerabilities had considerable impact. 13

It is clear from these studies that by adapting software quality models to security,

we can gain some insight into the lifetime of vulnerabilities after discovery, into the

benefits of automated patching and into measuring possible damage resulting from

exploit automation. It is equally clear that these models can not be used to determine

the security of a software product, or to provide any means to measure expectation

of risk (as measured by NIST’s severity, impact and exploitability metric) from

the remaining undiscovered vulnerabilities. The software security community needs

new models that consider the extrinsic properties such as market share, attacker

interest, exploit value, lifetime of the product, shared code (both between versions

and between products), repurposed code, reverse engineering and automated fuzzing

13OpenSSL is at the heart of much of the world’s internet communication. Heartbleed.com
reported that “the open source web servers like Apache and nginx. The combined market share of
just those two out of the active sites on the Internet was over 66% according to Netcraftś April 2014
Web Server Survey.” And that doesn’t include VPNs and Email servers that depend on OpenSSL
for protection.
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that affect vulnerability discovery in addition to defects in the code.

2.4.1 Software Engineering Models and New Software

Development Strategies

Programming strategies have changed considerably in the last few years from the

traditional design and requirements heavy methodology, (often referred to as the

Waterfall Method) [BBK78], to a strategy focused on rapidly programming new fea-

tures in the software and releasing them as quickly as possible.

This new methodology was proposed by a group of software developers unhappy

with the traditional software development methodology’s inability to respond to

market changes, meet customer demands, and the tendency of large scale software

projects to get mired in the requirements, architecture and design phases of de-

velopment, instead of producing working code. In 2001, they released The Agile

Manifesto [BBvB+01]. This interest in new approaches to software development,

(Extreme Programming, Crystal Methodologies, SCRUM, Adaptive Software Devel-

opment, Feature-Driven Development and Dynamic Systems Development Method-

ology, Rapid Release Cycles, etc.) formed the basis of a new Agile Software Devel-

opment Alliance [Bro14]

Since the manifesto, rapid release development lifecycles have become standard

for many of the major developers including Apple, Google, Facebook and Microsoft. [Sad13,

Alm13] With its focus on making “early and continuous delivery of valuable soft-

ware” on shorter timescales and on flexibility and swiftly incorporating new design

ideas rather than implementing pre-vetted, formalized top-down requirements, this

methodology is incompatible with many of the well-tested software quality best prac-

tices discussed earlier.

Bessey et al., discussed the prevailing attitudes towards software upgrades in

terms of the number of bugs generated by each release. [BBC+10] They asserted

that users want:
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"different input (modified code base) + different function (tool version)

= same result."

highlighting the delicate balancing act in traditional models of software development

between the users’ desire for new features and the impulse to squash as many bugs

as possible in existing code.

The mainstream movement of the software engineering community to these iter-

ative development models, raised concerns about the quality and reliability of the

code being produced. Mnkandla et al., introduced an innovative technique for eval-

uating agile methodologies and determined which factors of software quality were

improved. [MD06] Kunz et al., described a quality model, distinct metrics and their

implementation into a measurement tool for quality management [KDZ08]. Olaqgue

et al,. discussed the fault-proneness of object-oriented classes of highly iterative pro-

cesses [OEGQ07]. Roden et al., performed empirical studies and examined several

quality factor models. [RVEM07] A recent study [Rod08] focuses on the metrics and

maturity of iterative development. These studies provided a new viewpoint for evalu-

ating software quality and the advantages of agile methodologies were shown in their

experiment. However, noting that the results from applying these techniques did not

allow for comparison with earlier products developed by traditional methodologies,

Jinzenji,et al., introduced a methodology for applying traditional SWE metrics to

evaluate rapid release methodology. [JHWT13]

After Mozilla implemented a rapid release cycle development strategy for Firefox,

Almossawi used a similar method when he analyzed the effects of the change on

Firefox’s code quality. [Alm13] He found that despite high file interconnectivity, ac-

tual internal and external complexity decreased and he concluded that the switch to

rapid release had a positive impact on software quality.
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2.4.1.1 Secure Software Development Models Conflict With Agile

Methodologies

Mainstream software engineering practice resulted in development models intended

to produce secure systems. Examples include the Process Improvement Model from

ISO/IEC 21827, the Secure Systems Engineering-Capability Maturity Model (SSE-

CMM) [Jel00], originated by the U.S. National Security Agency, but now an interna-

tional standard), Microsoft’s Secure Development Lifecycle (SDL) [HL06], Oracle’s

Software Security Assurance Process [Har14] and the Comprehensive, Lightweight

Application Security Process (CLASP) [Vie05].
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The goal of these models is:

"To design, build, and deploy secure applications, [...] integrate security

into your application development life cycle and adapt your current soft-

ware engineering practices and methodologies to include specific security-

related activities”.

[MMW+05] In contrast, the Agile approaches to software development such as Ex-

treme Programming (XP) [Con04], Adaptive Software Development (ASD) [Hig13],

and Feature Driven Development (FDD) [CLDL99] are primarily intended to ensure

customer satisfaction via rapid feature delivery [BBvB+01] rather than to produce

secure code [BK04]. The U.S. Department of Homeland Security [oHS06] assessed

each of the 14 core principles of the Agile Manifesto [BBvB+01] and found 6 to have

negative implications for security, with only 2 having possible positive implications.

Attempts to reconcile security with Agile development [SBK05, WBB04, KMH08]

have noted that many of the practices recommended for security undermine the rapid

iterations espoused by the Agile Manifesto. These conflicts are clearly stated as part

of its intended purpose:

“We are uncovering better ways of developing software by doing it and

helping others do it. We value:”

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

“That is, while there is value in the items on the right, we value the items

on the left more.” [BBvB+01]
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Woody [Woo13] surveyed Agile developers about the impact of security engineer-

ing activities on software development within an Agile approach, notably, the survey

found that many industry-standard frameworks, including:

1. Design Requirements

2. Threat Modeling

3. Code Review

recommended practices in Microsoft’s SDL’s [Cor09], the risk analyses and ex-

ternal review recommended in Cigital Touchpoints [McG10], and the risk analyses,

critical assets and UMLSec in the Common Criteria for Information Technology Se-

curity [Cri12], are at least partially incompatible with the rapid delivery approach.

Seacord notes that the traditional model of patch-and-install is problematic as

“patches themselves contain security defects. The strategy of responding to security

defects is not working. There is a need for a prevention and early security defect

removal strategy.” [Sea08]

2.4.1.2 Secure Software Design has Significant Upfront Costs

Secure Software Engineering models, such as SSE-CMM [Jel00] and Microsoft’s

SDL [HL06], presume that heavy investment in preventing vulnerabilities early in

the software lifecycle is more cost effective, and that finding and removing vulner-

abilities early in the development cycle produces more secure code over its lifetime.

In 2010, Aberdeen Group published research [Bri] confirming that the total annual

cost of application security initiatives is far outweighed by the accrued benefits or-

ganizations implementing structured programs for security development and found

that they realized a 4x return on their annual investments in applications security.

Although security experts chastise software developers for favoring adding new

features over writing less vulnerable code, It is well understood that, the survival
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of a product in competitive software markets requires frequent introduction of new

features. [MC09] This is especially important for user-facing software systems such

as web browsers embroiled in features arms races. As a consequence, three major

web browser developers, Google (Chrome), Mozilla (Firefox) and Internet Explorer

(Microsoft), overhauled their development lifecycle, moving from large-scale, infre-

quent releases of new versions with later patches as needed, to releases with new

features at much shorter, regular intervals. [Cor13].

New releases of Chrome and Firefox versions occur every six weeks. The primary

intent of each RRC iteration is to get new features to users as rapidly as possible,

though they may also include bug fixes in the release. [Nig11, Laf10]

In contrast to SSE models, ’Agile’ programming models, with their focus on

frequent change and rapid delivery of software, cannot afford to spend the extensive

time required to do risk analysis, threat modeling and external review [Woo13] in the

development phase. Therefore, with Chrome, Firefox and Microsoft [Cor13] releasing

new features at a much faster rate, one might expect to see increases, both in the

number of vulnerabilities and the rate at which they are discovered and disclosed.

2.5 An Alternative Software Security Metric:

Attack Surface Models

A different method for measuring software and system security which does not con-

sider vulnerabilities resulting from software defects has been proposed as an alterna-

tive to VDMs. This model focuses on enumerating attack vectors or attack surfaces.

An Attack Surface is any combination of methods, channels, ports, interfaces, sys-

tem calls, etc. by which the software, (or individual processes within software )

communicates outside itself. The first attack surface models attempted to model

the path an exploit might take and measure the likelihood of success for each attack
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vector. [How03, HPW05] After applying this methodology to measure the attack sur-

faces of four versions of linux [MW04], Manadhata and Wing, found that the model

while promising was too informal and undependable, since it relied on the subjective

analysis of a security expert to determine the attack vectors. They proposed a more

formal approach, with a formal model and a standard Attack Surface Metric (ASM)

to address these issues. Their model defined an attack surface as a triple composed

of a system’s set of entry and exit points for each method, communication channels

and untrusted data items. It defined the value measured as the ratio between a

to-be-determined damage potential value and damage effort value. The final attack

surface metric is the sum of these ratios. In An Attack Surface Metric [MW08] the

authors recommended using call graphs to define entry and exit points, and privilege

and access rights as parameters for the damage potential and effort ratio. Testing

their model on Firefox, they analyzed the source code of vulnerability patches to

quantify changes in attack surface measurements. After identifying seven types of

vulnerabilities as relevant to attack surface measurements 14 they found 12 of the

48 vulnerability patches analyzed to be relevant, and of those relevant patches 8

reduced the attack surface. Interestingly, they found that 3 out 4 of the Cross-Site

scripting patches did not reduce the attack surface at all. 15

Attack surface metrics are being used by developers to prioritize testing, code

analysis resource deployment and patch management, i.e., ensuring that patches do

not increase the attack surface. However, the damage potential to effort ratio clas-

sification used is often subjective, the attack surface enumeration is not automated,

and tends to be prohibitively time consuming on large codebases. This model also

cannot account for side channel, covert channel and multi-layered attacks and stack

14the relevant types are: Authentication Issues; Permissions, Privileges, and Access Control;
Cross-Site Scripting; Format String Vulnerability; SQL Injection; OS Command Injection; Infor-
mation Disclosure.

15The authors note that they ’do not expect XSS patches to always’ reduce the attack surface’,
but do not explain why.
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pivoting attacks. [LS13] 16 This seems to negate the authors claim that their model

“entirely avoids the need to identify the attack vectors” and that it “does not require a

security expert”. [MW04] [MW08] Chapter 6 addresses the limitations of this model.

2.6 Defensive Models From Outside Of Software

Engineering

Computer Scientists use many real world analogies to describe patterns in computer

security. Scientists often use epidemiological and biological terminology, e.g.,: “com-

puter viruses” and “anti-viruses”, etc and use the mathematics of infectious disease

to describe virus propagation. [SZ03, Som04] At the same time, they also talk about

computer security in military terms, referring to the security arms race, and offensive

and defensive strategies “cyber warfare”, etc. [MMRJ+05, And01]

These analogies not only give people familiar ways to frame and discuss security

problems, the strategies used by these two groups to solve real world problems and

try to develop the means to apply analogous real world solutions to computer security

problems.

2.6.1 Dynamic Defensive Strategies from Nature:

One area of the biological sciences from which software security may draw is the

field of evolutionary biology. Evolutionary biology models describe the growth and

interactions between competing and cooperating organisms within a defined envi-

ronment.

To adapt such a model to software security, the “environment” would be the

system in which the software operates, including the hardware and firmware, and

16A pivot attack is a common technique used in Return-oriented Programming (ROP) exploita-
tion [Ros11]. By pointing the stack pointer to an attacker-owned buffer, such as the heap, pivoting
can provide more flexibility for the attacker to carry out a complex ROP exploit.
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the “organisms” the programs, libraries, processes and interfaces running on the

system. Similar to the behavior of living organisms in biological models, software

organisms compete for system resources, share space and communicate with each

other. In such a model, defects could be considered detrimental to the health of the

software and vulnerabilities especially harmful to the ’survival’ of the software. It is

important to recognize, that evolutionary biology models cannot be strictly applied

to software security. In the real world, evolution is dependent on forces of nature and

random mutations. In the computer security ecosystem, mutations are not random,

but directed by intelligence. [SLF08].

That said, two popular evolutionary models appear useful for thinking about the

behaviors of attackers finding and exploiting vulnerabilities and developers creating

and maintaining software. The first model describes the behaviors of predator vs.

prey and the second that of parasite vs. host. A major component of these models

is that change on the part of one of the organisms results in a corresponding change

in the competitor. In fact, these models portray cycles of adaptation. This factor

seems particularly apt for software security. One has only to look at the history

of exploitation techniques and corresponding mitigations in Microsoft Windows to

see the patterns[Sot09]. Moreover, we can look to competing malware development

platforms Zeus and Spy-eye or the enhancements of Duqu that came out of the

Stuxnet virus to see competition for resources driving evolution. [Wil10, Ula10]

Looking first at predator vs. prey, one finds definite analogues to computer

security. Attackers are predators, programs are prey. Attackers actively search for

new weaknesses similar to predators searching for the weakest animal in the herd.

Natural selection favors more effective predators and stronger defenses in prey. Weak,

easy to exploit prey is quickly exploited. Very secure software demands much greater

investment in time and resources of the predator, and so may cause predators to ply

their attacks elsewhere.

However, there are some aspects of the common predator vs. prey models that
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seem to have no software security analogues. In evolutionary biology predator vs.

prey models, the size of population of one side is dependent on the size of the pop-

ulation of the other. Weaknesses can be fatal. Yet, an increase in the number of

attackers doesn’t kill off a software product, and vendors do not go out of busi-

ness just because vulnerabilities in their code are exploited. The software security

ecosystem does not see the same rise and fall of interdependent population cycles

that is seen in the biological ecosystem. Instead, attempts to measure the attacks

and corresponding defenses show a steady increase in both rate of exploitation and

corresponding increase in patch availability rate, (though the latter continues to lag

behind the former) [Fre09].

If we look closely at the patterns in attacks and defenses, we see a cycle of

vulnerability discovery, exploit released into the wild, and subsequent vulnerability

patch released. However many vulnerabilities are found and exploited, the host is

never actually destroyed, so the prey population density doesn’t change, and unlike

an environment where prey is unable to fight back, big changes on the defenders side,

such as stack randomization, have measurable adverse affects on attackers’ ability to

successfully develop exploits [Mil08]. The victim also has the ability to actively force

the attackers to adapt in order to survive. This is a life-cycle that follows much more

closely the model of parasites and their hosts. In evolutionary biology, the parasite

vs. host hypothesis that most closely describes what we see in computer security is

called the Red Queen hypothesis.

The Red Queen hypothesis, first proposed by biologist L. van Valen in 1973, is

a model that tries to explain the evolutionary dynamics between competing species

and the interactions of tightly co-evolving species. It proposes that an evolutionary

change by one species in a parasite/host relationship results in corresponding change

in the other. The name comes from Lewis Carroll’s “Through the Looking Glass”

where the Red Queen says "It takes all the running you can do, to keep in the same

61



Figure 2.26: Center for Disease Control Model of the Malaria Parasite Lifecy-
cle [fDCP16]

Figure 2.27: Anderson and May Model: Microparsitic infections as regulators of
natural populations. Taken from [AG82]

place". Current research seems to support this hypothesis. For example, the Red

Queen hypothesis applied to a predator vs. prey model, research shows that exposure

to parasites makes organisms results in changes to the hosts (in particular, it makes

them more resilient). [SKVL14].
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Models of this relationship between parasite host show the feedback loop and

changes to the defender (host) and the attacker (parasite) systems as new information

is received and processed. For example, Figure 2.26 shows the Center for Disease

Control’s model of the lifecycle of a very common parasite, the organism which causes

malaria, while Figure 2.27 shows a more general model for microparasites.

This model has been shown to explain escalations of insurgent activity in Faluja, [JCB+11],

economic and political choices in China [BM11], and the success or failure of biotech

companies [Oli00]

This perspective was formally acknowledged by the Department of Homeland

Security (DHS) in 2011. In the paper Enabling Distributed Security in Cyberspace

Building a Healthy and Resilient Cyber Ecosystem with Automated Collective Ac-

tion [oHS11b] and in their publication Blueprint for a Secure Cyber Future [oHS11a]

DHS identified what they consider the fundamental elements of the cyber security

ecosystem; describing it as analogous to natural ecosystems. Their proposed de-

fensive strategies for a “healthy ecosystem” were explained in terms of the human

immune system and the public health system (the Centers for Disease Control and

Prevention (CDC)).

2.6.2 Dynamic Defensive Strategies from the Military:

Military terminology has become one of the most common ways to talk about vul-

nerabilities in computer systems. It seems appropriate that military strategy models

might prove equally useful for thinking about software security. One common model

is known as the OODA Loop (see Figure 2.28) OODA stands for Observe, Orient,

Decide and Act. [Boy76] The OODA Loop is a decision-making model developed

by U.S. Air Force pilot and military strategist John Boyd that has become impor-

tant in the design of government, military, corporate and even courtroom strate-

gies. [Lin03, Kot02, Ric04, Dre04]
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Figure 2.28: The OODA Loop, John Boyd
[Boy95]

The loop is a continuous feedback cycle with 4 primary stages, Observe, Orient,

Decide and Act. Boyd first proposed the concept as a means to clarify his “Energy-

Maneuverability Theory” [BP66] for achieving success in air-to-air combat. Referring

to Goedel’s incompleteness theorem, Boyd believed that “One cannot determine the

character or nature of a system within itself. Moreover, attempts to do so lead to

confusion and disorder.” He claimed that “The ability to shift or transition from one

maneuver to another more rapidly than the adversary enables one to win in air-to-air

combat” and the key to success were the ability to “diminish the adversary’s capacity

for independent action”, and also “diminish the adversary’s ability to communicate or

interact with his environment while sustaining or improving ours.” The game Boyd

maintained was “a see-saw of analysis and synthesis across a variety of domains, or

across competing/independent channels of information.” [Boy06]

In developing his theory, Boyd drew deeply from a number of scientific fields. In

particular, evolutionary biology, complexity theory and the science of how people

learn. Boyd looked toward evolutionary biology for models of active defense in

nature. Organisms competing for resources drive changes in the ecosystem and

the result is survival of the fittest. He was extremely interested in adaptation for
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survival and emergent behaviors in complex systems. He believed that successful

organisms were those that were most aware and best able to adapt to changes in

their environment. [Osi06] As he distilled this concept into the OODA Loop, he

understood that tying his ideas together was a central theme. Fast and correct

processing of information was key to winning. In a letter to his wife he wrote, “I

may be on the trail of a theory of learning quite different and - it appear now more

powerful than methods or theories currently in use.” [Boy72]

While the common perception of this model is that it represents the ’need for

speed’, that is, the one who moves that fastest wins, 17 [Hil15] Boyd preferred the

term “tempo” and to him it meant more than speed. It meant processing the new

information and synthesizing the correct choices so that the adversary would be

forced to react instead of acting. “In order to win, we should operate at a faster

tempo or rhythm than our adversaries–or, better yet, get inside [the] adversary’s

Observation-Orientation-Decision-Action time cycle or loop.” [Cor04] Correct tempo

required the correct strategic decision making process. In fact, in his presentations

he often tried to bring his listeners through the steps themselves so that like he,

their thought process would be to “...observe, analysis, synthesis, hypothesis and

test”, and he strongly emphasized, that the first two must lead to the most imporant

synthesis. [Boy95]

This emphasis is strongly apparent in his drawing of the OODA Loop (see Figure

2.28). Most of the detail is in the Observe and Orient stages, with by far the

most attention spent on Orientation. Boyd frequently repeated, “we must effectively

and efficiently orient ourselves; that is, we must quickly and accurately develop

mental images, or schema, to help comprehend and cope with the vast array of

threatening and non-threatening events we face.”, “Adaptability is the power to adjust

or change in order to cope with new and unforeseen circumstances.” [Boy95] and later

stated that, “Orientation is the schwerpunkt. It shapes the way we interact with the

17"Time is the dominant parameter.
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environment[...].” [Boy87]

According to Boyd, “variety/rapidity/harmony/initiative (and their interaction)

seem to be key qualities that permit one to shape and adapt to an ever changing

environment”[Ang86].

2.6.3 Dynamic Models From Industry

(b)reaking a whole into its parts is analysis. You gain knowledge by
analysis. Building parts into wholes is synthesis. You gain

understanding through synthesis. When you take a system apart and
analyze it, it loses its properties. To understand systems you need to

look at them as wholes. (John Boyd, expanded by O’Connor &

McDermott) [OM97]

A key characteristic of both the Red Queen hypothesis and the OODA Loop mod-

els is that they describe a learning process which ultimately results in an adaptation.

In Learning in Action Garwin delineates the characteristics necessary for learning to

take place in complex systems, stating: “learning is defined as the process by which

knowledge about action-outcome and relationships between the organization and the

environment is developed” [Gar00]

Modern business strategies intent on benefiting from this process in the corporate

environment focus primarily on enhancing learning in the early part of the cycle, and

success is commonly measured by a Learning Curve. [Wri36, Gro70]

2.6.3.1 The Learning Curve

Learning curves, also called experience curves, have long been used to measure the

increase in learning that results from repeated experience, or from increased knowl-

edge over time. First employed to measure production costs in the aircraft industry,

their usage has expanded to multiple industries including economics, machine learn-

ing and software development. [Rac96, HT81, Gal86] In these fields, the focus is on
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’development’, where development is defined as “whole system learning process with

varying rates of progression.” [Ger91]

When these learning processes are modeled, most complex systems exhibit a

“Sigmoid” or “S” shaped curve, slower at the start, accelerating and finally plateau-

ing. [HM95, San95, Mit97]

The “S” learning curve shape is a measure of the increase in proficiency as result

of repeated exposure. As I will show in chapters 3 and 4, this characteristic can

also be found in the early vulnerability lifecycle.

2.6.4 The Learning Curve in Vulnerability Discovery

Jonsson and Olovsson [JO97] tested the effect an attacker’s knowledge and expe-

rience had on successfully compromising a system. Assigning students to attack a

University computer system, they measured number of successful breaches, rate of

breach and experience level. They concluded that there appears to be a learning

curve that disadvantages the less experienced attacker.

Gopalakrishna and Spafford [GS05] presented a trend analysis of vulnerabilities

reported on Bugtraq, CVE and ICAT. They speculated that the increased rate of

discovery of vulnerabilities of the same type in a piece of software was the result

of a learning period. They reasoned that this ’learning’ was the period of time

required for a given piece of software to gain a "critical-mass" of users before bugs

are discovered.

However, as Ozment [Ozm07] points out, this incorrectly assumes that some fixed

proportion of the total user population are looking for vulnerabilities. Ozment con-

jectured scenarios in which an attacker discovers a vulnerability or reads about the

details of one, and applies these “lessons learned” to a similar domain by attempting

an attack of a similar type. This observation is the contrapositive to the benefits of

rapid releases we have proposed in this dissertation: the usefulness of these “lessons
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learned” is minimized as the section of the codebase relevant to the type of vulnera-

bility in question may have already been deprecated by the time the attacker applies

this learning. Indeed, this is further supported by the Bug Bounty findings presented

by Coates [Coa11], wherein the vast majority of flaws reported fall into a small set

of classes (e.g., CSRF and XSS bugs account for 70% of those reported).
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Chapter 3

The Honeymoon Effect

“Vitality shows in not only the ability to persist but the ability to start
over.” (F. Scott Fitzgerald)

3.1 Properties of the Early Vulnerability Life Cycle

Existing approaches to understanding the vulnerability life cycle focus on attempting

to measure the lifetime of vulnerabilities in long standing systems. These are systems

that are assumed to have ’stood the test of time’ in that their easy to find defects

(and the resulting vulnerabilities) have been discovered and patched. [OS06, AFM00,

Ran10]

The focus of these studies is on the vulnerability of software relatively late in its

life cycle. In this chapter, I examine the characteristics of the first vulnerabilities

found in software while it is new, and I present the results of the first study to

look at the intervals from genesis to initial vulnerability discovery and from initial

vulnerability discovery to second.

To understand the early vulnerability life cycle, I analyzed the vulnerabilities of

several versions of the most popular software products, Operating Systems, server
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applications and user applications, I measured the time between the official release

date of the version and the disclosure dates of the vulnerabilities. Surprisingly I found

that, in the majority of cases, the average period between release date of a software

product and its very first vulnerability, (often referred to as a Zero-day or 0-day),

is considerably longer than the mean time between first vulnerability and second or

between the second and the third. A similar, although slightly less pronounced effect

is present when minor version releases are considered.

I call this unexpected grace period the Honeymoon Effect, alluding to the bliss-

ful state newlyweds experience in the first days of marriage, and believe it to be

important, because this new quantitative analysis challenges the expectations and

intuition of the software engineering community about the effect of software quality

on security. The results suggest that early in the system life cycle, when new software

is first deployed, factors other than intrinsic quality of the software can dominate the

question of how likely a system is to be attacked. For the purpose of this discussion,

I define an Intrinsic Property as any property or characteristic of a software prod-

uct that can directly controlled by the developer, such as, programming language,

addition of features, patch release rate, etc. An Extrinsic Property is defined as

a characteristic of the environment in which the software operates (lives). Extrin-

sic properties are properties of components that may be essential to the program’s

functionality, such as the operating system needed by the software to function, or

ancillary such as other applications on the system, firmware, networking protocols,

shared libraries, etc., that are not under the direct control of the software program

developer.

Interestingly, I found that on newly deployed systems, that is, those that have

not yet had the "easy" bugs fixed and patches made available, often enjoy a longer

"honeymoon" period (before the first zero-day attack occurs) than they will enjoy

later in their life.
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The Honeymoon Effect also illustrates a tension between current software engi-

neering practices and security: the effect of code reuse. “Good programmers write

code, Great programmers reuse ” is an often quoted aphorism. [Ray99] An implicit

assumption made is that reusing code not saves effort, but as the code has been

deployed and is in service, it is both more reliable and more secure. While reliability

in the absence of an adversary may result from code reuse, the addition of an adver-

sary completely changes the observables as I will show in subsequent sections of this

chapter of the thesis.

3.2 Methodology and Dataset

I began by compiling an empirical dataset of more than 30,000 vulnerabilities dis-

closed between January 1999 and January 2008. The analysis focused on the number

and time of vulnerability disclosures on a per vendor, per product and per version

basis. Only publicly available information from Secunia [Seca], the National Vul-

nerability Database (NVD) [NIS08] and the Common Vulnerabilities and Expo-

sures (CVE) [CVE08] initiative that feeds NVD was used. For every vulnerability

NVD provides the publication date, a short description, a risk rating, references

to original sources, and information on the vendor, version and name of the prod-

uct affected. Defining the disclosure date as the earliest calendar day on which

information on a specific vulnerability is made freely available to the public in a

consistent format by a trusted source. [Fre09] The information of over 200,000

individual security bulletins from several Security Information Providers (SIP) was

downloaded, parsed, and correlated. 1 Thus, all security advisories from the fol-

lowing eight SIPs: Secunia, US-CERT, SecurityFocus, IBM ISS X-Force, Vupen,

SecurityTracker, iDefense’s (VPC), and TippingPoint’s Zero Day Initiative (ZDI)

were processed. [Seca, UC, Sec08, XF, Vup16, Secb, iDe, Tip] To ensure accuracy,

1The set of SIPs was chosen based on criteria such as independence, accessibility, and available
history of information
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over 3,000 instances of software version information for the products subject to this

analysis were manually checked to account for inconsistencies in NVD’s vulnerability

to product mapping.

The majority of the existing vulnerability lifecycle and VDM research which

makes use of the NVD dataset focused primarily on a small number of operating

systems or a few server applications and only examined a single version or compared

a small set of versions (e.g., Windows NT, Solaris 2.5.1, FreeBSD 4.0 and Redhat

6.2, or IIS and Apache).

As I was concerned with understanding the properties of vulnerability discovery

early in the post-release vulnerability lifecycle, this dataset contained many types

of mass market software, including operating systems, web clients and servers, text

and graphics processors, server software, and so on.

My analysis focused on publicly distributed software released between 1999 and

2007. (2007 is the latest date for which complete vulnerability information was

reliably available from various published data sources during the time-frame of this

analysis). I included both open and closed source software.

To encompass the most comprehensive possible range of relevant software re-

leases, I collected data about all released versions of the major operating systems

(Windows, OS X, Redhat Linux, Solaris, FreeBSD), all released versions of the ma-

jor web browsers (Internet Explorer, Firefox, Safari), and all released versions of

various server and end user applications, both open and closed source. The server

and user applications were based on the top 25 downloaded, purchased, or favorite

applications identified in lists published by ZDNet, CNet, and Amazon, excluding

only those applications for which accurate release date information was unavailable

or that were not included in the vulnerability data sources described below. In total,

I was able to compile data about 38 of the most popular and important software

packages.[Ama08, CNE08]

For each software package and version during the period of our study, I examined
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public databases, product announcements, and published press releases to assign each

version a release date. For the period of versions (1990-2007) and for the period of

vulnerabilities (1999-2008), I identified 700 distinct released versions (’major’ and

’minor’) of the 38 different software packages.

While it is not possible to measure the amounts of legacy code from version to

version in closed source products in contrast with open source products, it is possible

to measure the numbers of legacy vulnerabilities. Vulnerabilities from legacy code

are those bugs which are not found through normal regression testing and may

lie dormant through more than one version release. By comparing the disclosure

date of a vulnerability with the release dates and product version affected, it is

possible to determine which vulnerabilities result from earlier versions. For example,

a vulnerability which affects versions (k,...N) (0<k<N) of a product, but not versions

(1,...,k-1) and was disclosed after the release date of version N, indicates that the

vulnerability was introduced into the product with version k, and that it stayed

dormant until its discovery after the release of version N. On the other hand, a

vulnerability only affecting version N but not any earlier versions indicates that the

vulnerability was introduced with the new version N. I used this method to find the

legacy vulnerabilities for all the versions of the products in our analysis.

Next, I determined which vulnerabilities resulted in the Honeymoon Effect by

finding the very first vulnerability disclosed (hereafter referred to as the Founda-

tional vulnerability). For each version of each product in the analysis the number of

days from the release of that version to the disclosure date of its foundational vul-

nerability were measured. Where possible, I also calculated the number of days from

foundational vulnerability until the disclosure date of the second earliest vulnerabil-

ity and from second to third earliest and from third to fourth earliest vulnerability.

A Honeymoon vulnerability is defined as either Regressive if it results from a vul-

nerability in legacy code or Progressive if it was found in code new to this version.

Regressive vulnerabilities are those vulnerabilities which are discovered and disclosed
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in code after the version in which it was introduced has been obsoleted by a more

recent version. For example, a vulnerability disclosed in version 13 that also affects

versions 10, 11 and 12 would be classified as regressive.

Finally, to ascertain whether regressive vulnerabilities could be the result of code

reuse rather than configuration or implementation errors, I manually checked the

NVD database description and the original disclosure sources for information re-

garding the type of vulnerability. I found that 92% of the regressive vulnerabilities

were the result of code errors (buffer overflows, input validation errors, exception

handling errors) which strongly indicates that a vulnerability that affects more than

one version of a product is most likely a result of legacy code shared between versions.

I removed the vulnerabilities which are the result of implementation or configuration

errors from the dataset and focused exclusively on code errors.

For this chapter, I define the following terms. A zero-day or 0-day vulnerability 2

is a security threat that is known to an attacker which may or may not be known to a

defender and for which no patch or security fix has been made available. A zero-day

or 0-day attack is an attack which exploits a zero-day vulnerability. A window of

vulnerability [AFM00] exists during the period of time between the discovery of the

zero-day vulnerability and the release of the security fix.

3.3 The Early Vulnerability Life Cycle

Virtually all mass-market software systems undergo a lengthy post-release period,

during which users discover and report bugs and other deficiencies. Most software

suppliers (whether closed-source or open-source) build into their life-cycle planning

a mechanism for reacting to bug reports, repairing defects, and releasing patched

versions at regular intervals. The number of latent bugs in a particular release of a

given piece of software thus tends to decrease over time, with the initial, unpatched,

2The terms zero-day or 0-day will be used interchangeably
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release suffering from the largest number of defects. In systems where bugs are fixed

in response to user reports, the most serious and easily triggered bugs would be

expected to be reported early, with increasingly esoteric defects accounting for a

greater fraction of bug reports as time goes on.

As was discussed in Chapter 2, empirical studies in both the classic [Bro95b]

and the current [JMS08] software engineering literature have shown that, indeed,

this intuition reflects the software life-cycle well (see Figure 3.1). Invariably, these

and other software engineering studies have shown that the rate of bug discovery

is at its highest immediately after software release, with the rate (measured either

as inter-arrival time of bug reports or as number of bugs per interval) slowing over

time.

Note that some (but not all) of the bugs discovered and repaired in this process

represent security vulnerabilities; in security parlance a vulnerability that allows an

attacker to exploit a newly discovered, previously unknown bug is called a 0-day

vulnerability. Virtually all software vendors give high priority to repairing defects

once a 0-day exploit is discovered.

It seems reasonable, then, to presume that users of software are at their most

vulnerable, with software suffering from the most serious latent vulnerabilities, im-

mediately after a new release. That is, one would expect attackers (and legitimate

security researchers) who are looking for bugs to exploit to have the easiest time of it

early in the life cycle. This, after all, is when the software is most intrinsically weak,

with the highest density of "low hanging fruit" bugs still unpatched and vulnerable

to attack. As time goes on, after all, the number of undiscovered bugs will only go

down, and those that remain will presumably require increasing effort to find and

exploit.

In other words, to the extent that security vulnerabilities are a consequence of

software bugs, our intuition, based on conventional software engineering wisdom

tells us to expect the discovery of 0-day exploits to follow the same pattern as other
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Figure 3.1: The highly regarded Brooks software engineering defect predictive model
and actual defect discovery metrics thirty years later. [JMS08]

reported bugs. The pace of exploit discovery should be at its most rapid early on,

and slowing down as the software quality improves and the "easiest" vulnerabilities

are repaired.

But my analysis of the rate of the discovery of exploitable bugs in widely-used

commercial and open-source software, tells a very different story than what the

conventional software engineering wisdom leads us to expect. In fact, new software

overwhelmingly enjoys a honeymoon from attack for a period after it is released.

The time between release and the first 0-day vulnerability in a given software release

tends to be markedly longer than the interval between the first and the second

vulnerability discovered, which in turn tends to be longer than the time between the

second and the third. That is, when the software should be at its weakest, with the

"easiest" exploitable vulnerabilities still unpatched, there is a lower risk that this

will be discovered by an actual attacker on a given day than there will be after the

vulnerability is fixed! We expect to see something like the top graph in Figure 3.2

and instead we find something much more similar to the bottom graph in that same

Figure 3.2.
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Figure 3.2: Toy Graph: The top graph displays an expected vulnerability discovery
timeline according to software engineering models. The bottom graph displays an
expected vulnerability discovery timeline resulting from the Honeymoon Effect.

3.3.1 The Honeymoon Effect and Mass-Market Software

Remember, the first (publicly reported) exploitable vulnerability is defined as the

Foundational vulnerability, and a software release experiences a Positive Honeymoon

if the interval p0 between the (public) release of the software and the foundational

vulnerability in the software is greater than the interval p0+1 between the founda-

tional vulnerability and the second(publicly reported) vulnerability.(see Figure 3.3)

We will refer here to the interval p0 as the Honeymoon Period and the ratio p0/p0+1

as the Honeymoon Ratio. By definition, a software release has experienced a positive

honeymoon when its honeymoon ratio > 1.

For this analysis, I examined 700 software releases of the most popular recent
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Figure 3.3: The Honeymoon Period, both Positive and Negative time-lines

mass-market software packages for which release dates and vulnerability reports were

available. In 431 of 700 (62%) of releases, the Honeymoon Effect was positive. Most

notably, the median overall honeymoon ratio (including both positive and negative

honeymoons) p0/p0+1 was 1.54. That is, the median time from initial release to

the discovery of the foundational vulnerability is 1 1/2 times greater than the time

from the discovery of the foundational vulnerability to the discovery of the second

vulnerability. The Honeymoon Effect is not only present, it is quite pronounced, and

the effect is even more pronounced when the minor version updates are excluded

and the analysis is limited the set of major releases. For major releases only, the

honeymoon ratio rises to 1.8. 3

Remarkably, positive honeymoons occur across the entire dataset for all classes

of software and across the entire period under analysis. The Honeymoon Effect is

strong whether the software is open- or closed- source, whether it is an operating

system, web client, server, text processor, or other application, and regardless of the

year in which the release occurred.(see Table 3.1)

Although the Honeymoon Effect is pervasive across the entire dataset, one factor

appears to influence its length more than any other: the re-use of code from previous

3This includes both positive and negative honeymoons.
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Table 3.1: Percentages of Honeymoons by Year

Year Honeymoons
1999 56%

2000 62%

2001 50%

2002 71%

2003 53%

2004 49%

2005 66%

2006 58%

2007 71%

releases, which, counter-intuitively, shortens the honeymoon. Software releases based

on "new" code have longer honeymoons than those that re-use old code.

3.3.2 Honeymoons in Different Software Environments

The number of days in the honeymoon period varies widely from software release

to software release, ranging from a single day to over three years in the dataset.

The length of the honeymoon presumably varies due to many factors, including

the intrinsic quality of the software and extrinsic factors such as attacker interest,

familiarity with the system, and so on.

To "normalize" the length of the honeymoon for these factors in order to enable

meaningful comparisons between different software packages, the honeymoon ratio

which is defined as the ratio of the time between the product or version release and

the discovery of the first exploit and the time between the discovery of the first

vulnerability and the second, may be more revealing. This is because time to the

second vulnerability discovery occurs in exactly the same software and this analysis

was interested in understanding the mechanism behind the rate of discovery within

an individual release and not between products. Moreover, because this analysis
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comprises an extremely diverse set of software packages, with widely differing devel-

opment methodologies, marketshare, attacker interest, size of code-bases, etc. The

use of the honeymoon ratio gives a relative or self-normalized value for comparison.

To minimize the effect of skew and to see overall trend in the data, the graphs in this

chapter are presented in log-scale. For reference, the same data plotted in linear-scale

can be found in appendix B.

The median number of days in the honeymoon period across all 700 releases in

the dataset was 110. The median honeymoon ratio across all releases is 1.54. 4

The honeymoon ratio remained positive in virtually all software packages and

types. The effect is weaker, but also occurred, between the foundational and second

and second and third reported vulnerabilities, depending on the particular software

package.

Figure 3.4 shows the median honeymoon ratio (and the median ratios for the

intervals between the second, third and fourth vulnerabilities) for each operating

system in the dataset. Figure 3.5 shows the median honeymoon ratio of servers, and

Figure 3.6 shows end-user applications.

3.3.3 Open vs. Closed Source

The Honeymoon Effect is strong in both open- and closed-source software, but it

manifests itself somewhat differently.

Of the 38 software systems we analyzed, 13 are open-source and 25 are closed-

source. But of the 700 software releases in the dataset 171 were for closed-source

systems and 508 were for open source. Open-source packages in the dataset issued

new release versions at a much more rapid rate compared to their closed source

counterparts.
4There was a high variance in the time to first vulnerability between products. Additional
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information can be found in Appendix B.
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Table 3.2: Median Honeymoon Ratio for Open and Closed Source Code

Type Honeymoon Days Ratios
Open Source 115 1.23

Closed Source 98 1.69

Yet in spite of its more rapid pace of new releases, open source software releases

enjoyed a significantly longer median honeymoon before the first publicly exploitable

vulnerability was discovered: 115 days, vs. 98 days for closed-source releases.(see

Table 3.2)

The median honeymoon ratio, however, is shorter in open-source than in closed.

The median ratio for all open-source releases was 1.23, but for closed source it was

1.69. Figure 3.7 shows the median honeymoon ratios for various open-source systems,

and Figure 3.8 shows the median ratios for closed-source systems.
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Figure 3.7: Ratios of p0/p0+1 to p0+1/p0+2 and p0+2/p0+3 for open source applications

The longer honeymoon period with a shorter honeymoon ratio for open-source

software suggests that it not only takes longer for attackers to find the initial bugs

in open-source software, but that the rate at which they "climb the learning curve"

does not accelerate as much over time as it does in closed-source systems. This may

be a surprising result, given that attackers do not have the opportunity to study the

source code in closed-source systems, and suggests that familiarity with the system

is related to properties extrinsic to the system and not simply access to source code.

3.4 The Honeymoon Effect and Foundational

Vulnerabilities

To more fully understand the factors responsible for the Honeymoon Effect, I ana-

lyzed the attributes of a particular set of foundational vulnerabilities. I compared

the duration of the Honeymoon Periods of the software in the data set and found
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Figure 3.8: Ratios of p0/p0+1 to p0+1/p0+2 and p0+2/p0+3 for closed source applica-
tions

that foundational vulnerabilities are not a result of the first vulnerabilities being

easy to find, i.e., “low-hanging fruit”, and that other extrinsic property or properties

must apply.

It is well known that as complex software evolves from one version to the next,

new features are added, old ones deprecated and changes are made, but throughout

its evolution much of the standard code base of a piece of software remains the same.

One reason for this is to maintain backward compatibility, but an even more prevalent

reason is that code re-use is a primary principle of software engineering [McI68,

Bro95b].

As discussed in Chapter 3, in “Milk or Wine” [OS06] Ozment et al., measured the

portion of legacy code in several versions of OpenBSD and found that 61% of legacy

(their term is ’foundational’) code was still present 15 releases (and 7.5 years) later.

This legacy code accounted for 62% of the total vulnerabilities found. While it is

not possible to measure the amounts of legacy code from version to version in closed
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source products as it is for open source, it is well known that the major vendors

strongly encourage code re-use among their collaborating developers [Mic10], and

more importantly, it is possible to measure the numbers of legacy vulnerabilities. By

comparing the disclosure date of a vulnerability with the release dates and product

version affected, it is possible to determine which vulnerabilities discovered in the

current release result from earlier versions. For example, if a vulnerability V affects

versions (k,...N) (0<k<N) of a product, but not versions (1,...,k-1) and was disclosed

after the release date of version N, we know that the vulnerability was introduced

into the product with version k, and that it stayed hidden until its discovery after the

release of version N. These regressive vulnerabilities are those vulnerabilities which

are not found through normal regression testing and may lie dormant through more

than one version release (sometimes for years).1 Remember, a regressive vulnerability

is defined as a foundational vulnerability that was discovered to affect not only

version N in which it was found, but also affect one or more earlier versions (versions

N-1, N-2,...,1.0)

Figure 3.9: Regressive Vulnerability timeline

On the other hand, a progressive vulnerability is defined as a foundational vulner-

ability which is discovered in version N and does not affect version N-1 or any earlier

versions. A progressive vulnerability indicates that the vulnerability was introduced

with the new version N. (see Figure 3.9)

1In OpenBSD, Ozment et al states "It took more than two and a half years for the first half of
these ... vulnerabilities to be reported." [OS06].
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Figure 3.10: Proportion of legacy vulnerabilities in Windows OS

Figure 3.10 shows that legacy vulnerabilities2 make up a significant percentage

of vulnerabilities across all products, e.g. 61% of the Windows Vista vulnerabili-

ties originate in earlier versions of the OS, 40% of which originate in Windows 2000

released seven years earlier. This analysis shows that vulnerabilities are typically

long-lived and can survive over many years and many product versions until discov-

ered.

3.4.1 Regressive Vulnerabilities

If factors such as code reuse or an attacker’s familiarity with the system has an effect

on the rate of vulnerability discovery, then when upon analysis of the foundational

vulnerabilities, one would expect to see that regressive vulnerabilities make up a

significant percentage of them. And indeed, after examining all the foundational

vulnerabilities in the data set, I found that 77% of them are regressive. (ie, 77% of

the foundational vulnerabilities were found to also affect earlier versions). Table 3.3

2including both regressives and progressives
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lists the percentages of regressives for all, open source, closed source foundational

vulnerabilities. Table 3.3 also shows that the percentage of regressive vulnerabilities

is even higher for the foundational vulnerabilities found in open source software

(rising up to 83%), and lower for those found in closed source software (59%). The

high percentage of regressive vulnerabilities is surprising, because it shows that the

majority of foundational vulnerabilities, (the first vulnerability found after a product

is released), are not the easy to find “low-hanging fruit” one would expect from

conventional software engineering defects, instead these regressive vulnerabilities lay

dormant throughout the lifetime of their originating release (and possibly several

subsequent releases). If these vulnerabilities had been easy to find, then presumably,

they would have been found in the version in which they originated.

Table 3.3: Percentages of Regressives and Regressive Honeymoons for all Founda-
tional Vulnerabilities

Type Total Regressives Total Regr. Honeymoons
ALL 77% 63.4%

Open Source 83% 62%

Closed Source 59% 66%

3.4.2 The Honeymoon Effect and Regressive Vulnerabilities

Another unexpected finding is that regressive vulnerabilities also experience the Hon-

eymoon Effect. Because regressive vulnerabilities have been lying dormant in the

code for more than one release, and because the attackers have had more time to

familiarize themselves with the product, it seems reasonable to presume that the

first of these vulnerabilities would be found in a shorter amount of time than time to

find the second vulnerability (whether regressive or progressive). But, our analysis

shows this isn’t the case. The second column of Table 3.3 lists the percentages of

regressive vulnerabilities that were also positive Honeymoons. In each case whether
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my analysis looked at all regressive vulnerabilities combined, at only open source

regressive vulnerabilities or those only in closed source software, the percentages of

positive Honeymoons is in the low to mid 60th percentile - almost the same as the

total Honeymoon Effect for all regressive and progressive vulnerabilities combined.

Closed source software does exhibit a slightly longer Honeymoon Effect, but not

significantly so. The existence of regressive positive Honeymoons, especially in such

high proportions indicates that properties extrinsic to the quality of the code, in

particular an attacker’s familiarity with the system may play a much greater role

early on in the life-cycle of a release than previously expected.
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3.4.3 Regressives Vulnerabilities Experience Shorter

Honeymoons

The strong presence of the Honeymoon Effect even among regressive vulnerabilities

led me to wonder what if any effect regressives might have on the length of the Hon-

eymoon Period. Yes, regressive vulnerabilities experience a positive Honeymoon, but

is the time interval for a regressive Honeymoon longer or shorter than the honey-

moon for progressive vulnerabilities? The Honeymoon Ratio provides insight into

the length of the Honeymoon Period. Figure 3.11 shows the median Honeymoon

Ratios for regressives (all, open and closed), progressives (all, open and closed), for

the vulnerabilities p0/p0+1, through p0+2/p0+3. The median Honeymoon Ratio for

regressive vulnerabilities is lower than that for progressives. In fact, the Honeymoon

Ratio for progressive vulnerabilities is almost twice as long. This strongly suggests

that familiarity with the system is a major contributor to the time to first vulner-

ability discovery. Interestingly, it doesn’t seem to have a significant effect on open

source code, but closed source does seem to have a longer Honeymoon Period, even

for regressives. In other words, these results suggest that familiarity shortens the

honeymoon.

3.4.4 Less than Zero Days

Table 3.4: Percentages of foundational vulnerabilities that are Less-than-Zero (re-
leased vulnerable to an already existing exploit) and the new expected median time
to first exploit, for all products, Open source and Closed Source

Type Percentages Median Honeymoon Period
ALL 21% 83

Open Source 18% 89

Closed Source 34% 60
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Dormant vulnerabilities are not the only cause of zero-days. Legacy vulnerabil-

ities result in a second category of regressive vulnerabilities for which there can be

no Honeymoon Period. These Less-than-Zero days occur when a new version of a

product is released vulnerable to a previously disclosed vulnerability. For example,

the day Windows 7 was officially released, it was discovered that it was vulnera-

ble to several current prominent viruses, in the form of widely circulated malware

which had originally been crafted for Windows XP. [Wis09] My research shows that

less-than-zero days account for approximately 21% of the total legacy vulnerabilities

found, with closed source code containing the most (34%)(see Table 3.4). In all cases

the median number of days to first exploit is reduced by approximately 1/3 and the

median Honeymoon Ratio drops from 1.54 to 1.0. This leads one to the obvious

conclusion that not patching known vulnerabilities has a significant negative effect

on the Honeymoon Period. Of course there is no way to measure exactly when an

attacker is likely to test an existing exploit against a newly released product however,

the Sophos Labs report is indicative of how quickly a vendor might expect attackers

to act.

3.5 Discussion and Analysis

The software lifecycle has been repeatedly examined, with the intent of understand-

ing the dynamics of software production processes, most particularly the arrival

rate of software faults and failures. These rates decrease with time as updates

gradually repair the errors as they are found, until an acceptable error rate is

achieved. There is an interesting dynamic at work in finding and patching soft-

ware defects versus finding and patching software vulnerabilities. With non-security

bugs, there is little or no learn time required to find them. The software simply

doesn’t work as it is expected to. With regression testing, automated defect discov-

ery and patch generation the developers tend to be intimately involved with finding
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as well as fixing defects, while in the case of vulnerability discovery, the developers

are not the same people finding vulnerabilities, crafting exploits and attacking their

code. [WFLGN10, SLP+09, Sch09, OCJ09, SIK+13]

The software vulnerability lifecycle has been less extensively studied, with most

attention paid to the period after an exploit has been discovered. In attempting

to understand the properties of vulnerability discovery, there are two approaches I

might have taken. One approach would have been to study a single software system

in depth, over an extended period, draw detailed conclusions, and perhaps generalize

from them. Indeed, several of the related works mentioned in Chapter 2 try to do

just that for the middle and end phases of the lifecycle. But, another approach is to

examine a large set of software systems and try to find properties that are true over

the entire set and over an extended period.

I chose the latter approach for an number of reasons, which include the following:

This approach allowed me to incorporate both open and closed source systems in

my analysis, this approach also allowed me to analyze several different classes of

software (Operating Systems, Web Browsers User applications, Server applications,

etc), and this approach allowed me to discover general vulnerability properties, e.g.

the Honeymoon Period, independent of the type of software, and without requiring

a detailed analysis of the properties of each specific, individual vulnerability.

It might appear that given so many changes in tools, utilities, methodologies and

goals used by both attackers and defenders over the last decade, a long term analysis

would be inconsistent. To mitigate this each analysis was broken down by year and

from version to version. These are much shorter time intervals, and the results have

demonstrated the consistency of this approach over time.

I also analyzed the role of legacy code in vulnerability discovery and found sur-

prisingly, based on a detailed study of a large database of software vulnerabilities,

that software reuse may be a significant source of new vulnerabilities. I determined

that the standard practice of reusing code offers unexpected security challenges. The
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very fact that this software is mature means that there has been ample opportunity

to study it in sufficient detail to turn vulnerabilities into exploits.

There are multiple potential causal mechanisms that might explain the existence

of the Honeymoon Effect and the role played by familiarity. One possibility is that

a second vulnerability might be of similar type to the first, so that finding it is

facilitated by knowledge derived from finding the first one. A second possibility is

that the methodology or tools developed to find the first vulnerability lowers the

effort required to find a subsequent ones. A third possible cause might be that a

discovered vulnerability would signal weakness to other attackers (ie, blood in the

water), causing them to focus more attention on that area. [CBS10]

The first two possible causes require familiarity with the system, while the third

is an example of properties extrinsic to the quality of the source code that might

affect the length of the Honeymoon period.

The dynamics of the Honeymoon Effect suggest an interesting tradeoff between

decreasing error rate necessary for software reliability and increasing familiarity with

the software by attackers. This basic result has important implications for the arms

race between defenders and attackers.

First, it suggests that a new release of a software system can enjoy a substantial

Honeymoon Period without discovered vulnerabilities once it is stable, independent of

security practices. Second, this Honeymoon Period appears to be a strong predictor

of the approximate upper bound of the vulnerability arrival rate. Third, it suggests

that attacker familiarity is a key element of the software process dynamics, and this

is a contraindication for software reuse, as the greater the fraction of software reuse,

the smaller the amount of study required by an attacker. Fourth, it suggests the

need for new approaches to securing software systems than simply trying to create

defect-free code.

In particular, research into alternative architectures or execution models which

focuses on properties extrinsic to software, such as automated diversity, redundant
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execution, software design diversity might be used to extend the Honeymoon period

of newly released software, or even give old software a second honeymoon. [CEF+06,

WFLGN10]
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Chapter 4

Exploring The Honeymoon Effect in

Different Development Methodologies

“In art there are only fast or slow developments. Essentially it is a
matter of evolution, not revolution.” (Bela Bartok)

4.1 Introduction

Secure Software Development Models such as those discussed in Chapter 2 have

long been the recommended best practices for improving security in software. At

the time these models were created the predominant methodology for designing se-

cure software was a highly structured, top down process requiring intensive upfront

resource investment, particularly in the conception, specifications and requirements

stages. Today, however, the most common software development method is one

which spends minimal time in pre-coding stages. The specifications and require-

ments evolve as the software is being written with the goal of delivering new features

to the customer as quickly as possible. In this Chapter, I present the results of
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Figure 4.1: The Waterfall Software Development Model. [Hau09]

an analysis of the effect of this rapid software development methodology on the

likelihood of experiencing the Honeymoon Effect compared to that same product

developed under the more traditional design process.

4.1.1 Secure Software Development Best Practices and

Popular Development Methodologies

The most common traditional software development model is known as the Waterfall

Model (see Figure 4.1), because the process flows in one direction from initial to final

phase. The recommended secure software design models, such as those discussed in

Chapter 2 are based on these waterfall models. The process begins with the definition

of requirements and specifications, which are expected to be strictly adhered to,

continues through to exhaustive testing, ending with product release. There is even
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(a) Iterative Software Development
Methodology

(b) Individual Iterations in the Agile
Methodology

Figure 4.2: Models of the Agile Software Development Process.

a stage for formalizing documentation. 1 This highly structured methodology is

considered an essential part of the development of secure system. Software developed

under a traditional SSDMs requires an extensive investment of resources upfront,

particularly as the product must pass through a strict testing phase which must

include all aspects of the specifications and requirements as well as the security

infrastructure before a product can be considered ready for release. [Cor08, oHS06,

Woo13] For products developed under this process, both the development lifecycle

and the post-release lifetime tend to be quite long (often lasting years).

Over the last decade however, the approach of the software development commu-

nity has changed radically. Overwhelmingly, developers large and small, including

such companies as Apple, Facebook, Google, Microsoft, Firefox, and Amazon, have

moved away from traditional Waterfall models to rapid release cycles and Agile

methodologies. The Waterfall model could be thought of as a monolithic approach

to software development, while the Agile approach could be considered iterative.

Such Agile development processes are not sequential, but cyclic, (see Figure 4.2).

The requirements evolve in conjunction with feature development, readying code for

1In fact, for mission critical software it has been noted that “within some Traditional Methods,
writing documentation is considered paramount to the quality, maintainability, reliability, and
safety of mission critical systems such as aviation electronics.” [Ric08]

96



release, incorporating customer feedback and integrating with previous iterations.

Rapid Release Cycle (RRC) development models have no formalized set of initial

requirements, and the only requirement that must be strictly adhered to are release

deadlines. These models also promote a much shorter development lifecycle (usually

6 weeks) as well as a much shorter effective lifetime.

The focus of Agile methods on customer collaboration, feature implementation

and rapid delivery of working software is intended to create timely business value, not

to meet initial design requirements or provide long term maintainability and reliabil-

ity. These goals often conflict with the recommended security best practices. [Cor09]

As stated in Chapter 2, the DHS found six of Agile programming’s core principles

to have “negative implications” [oHS06] for security. Moreover, of the fifteen security

touch points listed as necessary in Microsoft’s SDL, a survey of Agile developers

found seven of them to be “Detrimental” or “Very Detrimental” to their development

process.

4.1.2 Evaluating the Early Vulnerability Lifecycle of Agile

Programming Models

The Honeymoon Effect described in the previous chapter, was discovered while ana-

lyzing the early vulnerability lifecycle of software that was largely developed before

the wide-scale adoption of Agile methods, i.e., software that was developed using the

traditional method designed to be compatible with the recommended security best

practices.

It is worthwhile exploring whether this phenomenon is also present in software

developed using a process that finds certain of those recommended security activi-

ties “detrimental”. Is the Honeymoon Effect a product of the software development

methodology?

To test this, an experiment would need to compare vulnerability discovery rates

in the early lifecycle of both programming methods. One way might be to assign

97



a software project to two separate groups of programmers (perhaps as a classroom

exercise). One group would complete the assignment using the traditional SSDL

methodology, and the other would complete it using an Agile methodology.

Unfortunately, there are a number of issues with this scenario that make it un-

suitable for studying the early vulnerability lifecycle. As, the goal of this experiment

is to compare the likelihood of software vulnerability discovery in the period immedi-

ately following a release, across several releases for both development strategies. To

justify generalizing the results to real world software, the complexity of the assigned

project would need to be sufficiently large and several versions would need to be

developed. The scale and timeframe necessary to accomplish this is unrealistic for a

classroom exercise.

Another possibility would be to compare the early vulnerability discovery lifecycle

of two publicly available commercial software products, where one is developed using

the traditional model and the other using the Agile model. Again, such an analysis

is less than ideal. To justify comparison, the products would need to fulfill the same

purpose, have similar usage, and similar features including such properties as market-

share and attacker interest, yet come from completely different development models.

This could prove very difficult to find, as most companies in competitive markets

tend to use the same development methodologies as their competitors. For example,

between 2010 and 2011, all of the main web-browser companies had committed to

some form of Agile development. [Sad13, Cor09, Bak]

Comparing two different types of software products such as a web-browser to a

word processor would introduce too many variables to be certain that any differences

found were the result of the development process.

I chose a third possibility, examining the effects of both development models

within a single specific software product. While this approach is also limited, in that

it only looks at one software product, it has the advantage of narrowing the exper-

iment to the analysis of a single variable; the software development methodology.
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For this analysis, I chose Mozilla’s Firefox web-browser.

4.1.3 Why Firefox?

Desiderata for a system to study include:

1. Open source

2. A frequent target of attack

3. A broad user base, and

4. A statistically significant population of publicly disclosed vulnerabilities.

The Firefox web browser proved to be an ideal system for analysis, for four pri-

mary reasons. First, and most important, Firefox was originally designed using a

traditional development model. Released in November of 2004, it proved to be ex-

tremely popular, with over 100 million downloads in less than a year. Mozilla released

a new version approximately once a year. Each new version included significant de-

sign changes, the addition of numerous new features and major bug fixes. [Moz04]

Then, in June of 2011, Mozilla Firefox underwent a significant change in its

development process. In a post by Mozilla Chief Mitchell Baker arguing for the

change, [Bak] Baker said “If we want the browser to be the interface for the Internet,

we need to make it more like the Internet," Baker wrote. "That means delivering

capabilities when they are ready. That means a rapid release process.” and further

added: “Before Mozilla instituted the rapid release process, we would sometimes

have new capabilities ready for nearly a year before we could deliver them to people.

Web developers would have to wait that year to be able to make their applications

better... Philosophically, I do not believe a product that moves at the speed of

traditional desktop software can be effective at enabling an Internet where things

happen in real time.” [Bak]
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Mozilla’s developers acknowledged the switch to RRC “involved changing a num-

ber of our processes. It’s also raised some new issues.”. [Bak] The midstream intro-

duction of RRC provides the basis for a sui generis analysis of the effect of changing

a single variable. That is, a “before and after” comparison of security properties in

light of a significant change in software development practices. Because of the need

to support large organizations, such as corporations and governments Mozilla also

maintains a second non-Agile Firefox development track for its Extended Support

Release (ESR) version which continued to be developed and maintained according

to the traditional model. So, Firefox has documented history using both develop-

ment models at the same time. The concurrent release processes for RRC and ESR

(discussed below and displayed in Tables 4.1 and 4.2), effectively tab provide two

versions of the same software differing only by a single variable, the release cycle.

Thus, this dual-track Firefox release strategy provides a unique analytic framework

for a data-driven examination of RRC methodologies. Moreover, Mozilla because

syncs the two platforms approximately once a year, so code developed in RRC could

adversely affect the ESR versions as well. This created the opportunity to also study

the effects of code reuse.

Second, since its initial release, all Firefox source code has been open source and

freely available. Pre-RRC source code is available in a CVS repository. To prepare

for the switch to RRC, Mozilla moved what was then the current source 3.6.2 and 4.0a

to be the foundation of the first RRC version (5.0) into a new Mercurial repository.

Since then all changes for each subsequent new RRC version have been added to

this repository. This analysis, used Firefox version 4.0 as the ’baseline’ version of

all subsequent RRC versions, and covered versions 5-20. Version 20 had just been

released when the data collection was complete and the analysis begun; version 23

was available by the time the analysis was complete.

Third, Firefox has a well maintained and freely available bug database, Bugzilla [Moz13a],

containing detailed information on all bugs, including patched vulnerabilities. Mozilla
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does not openly list the details of the most recent, unpatched security vulnerabilities

in Bugzilla, but they do publish timely and somewhat detailed references to the latest

security bugs on the Mozilla Foundation Security Advisory (MFSA) site [Moz13b]

and the relevant details are made public in Bugzilla sometime thereafter.

It is important to note that all acknowledged bugs (defects and vulnerabilities)

reported in Firefox are given a Bug ID before being assigned to be patched, so all

known vulnerabilities are associated with some Bugzilla Bug ID. In addition, the MF-

SAs are linked to relevant references in the NIST National Vulnerability Database

(NVD) [NIS08] which contains an entry for each known vulnerability, including ver-

sions affected, criticality and date released. For this dissertation, all Firefox vulner-

abilities from the NVD database were collected and each vulnerability disclosed was

cross-referenced with its corresponding MFSA to find each Bug ID issued. There

is some overlap, as a single NVD Common Vulnerability Enumeration (CVE) en-

try may contain several Firefox Bugzilla Bug IDs, and a single Bug ID may link to

multiple NVD (CVE) entries. [CVE08]

Fourth, Firefox is a frequent target of attackers. As such, Mozilla recognized very

early on the benefits of the “many eyes” approach to vulnerability discovery, and in

2004 Mozilla started the first ’Bug Bounty’ program. Mozilla has a long history of

purchasing vulnerability information from researchers and rewarding those who find

and report vulnerability. Recent research [FAW13] on the efficacy of Bug Bounty

programs suggests that 25% of Firefox’s vulnerabilities are discovered through its

bug bounty program. Mozilla does not announce each purchase, but Coates [Coa11]

showed that, on average, Mozilla purchases six new vulnerabilities per month. While

one must recognize that it is impossible to know anything about the number of private

or undisclosed vulnerabilities that may have been discovered in Firefox, and that

this is a potential source of error, this comparison found the number of Bug Bounty

purchases consistent with the dataset compiled from MFSAs, Bugzilla, and the CVE

database. Also, while it may be argued that some RRC code might lack critical
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functionality, the data shows that RRC code does contain critical vulnerabilities, and

as Mozilla synchronizes the two Firefox development tracks annually, new features

added to the RRC versions become part of the next ESR version. Thus RRC does

modify some of the core code base. Further, this data set was cross-referenced

with the MFSA [Moz13b] security advisories, vulnerabilities it contains references

for those vulnerabilities which Mozilla considers important enough to issue a public

advisory. Using this standard as a measurement for severity avoids any risk of bias

in the results due to a bespoke metric for severity.

Mozilla’s change in Firefox software development and release strategy raised three

security research questions that are addressed in detail in Section 4.3:

1. Does a switch to Agile RRC development introduce large numbers of new

vulnerabilities into software, given that the focus is on new features, rather

than on improving existing code?

2. Where in the code base are vulnerabilities being discovered? (i.e., are they

in code written prior to the switch to RRC, are they in code introduced in

previous iterations of RRC or are they in code added in the current version?)

3. Are vulnerabilities being discovered more quickly since the switch to RRC?

This investigation gave some surprising results:

1. Quantitative evidence that:

• The rate of vulnerability disclosure has not increased substantially since

the start of Firefox RRC

• The overwhelming majority of vulnerabilities discovered and disclosed are

not in the new code

• Vulnerabilities originating in Firefox RRC versions are almost all not dis-

closed until that version has been obsoleted by newer versions

• Firefox RRC does not appear to produce demonstrably more vulnerable

software
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2. A data-inspired observation that frequent releases of high volumes of new code,

due its relative unfamiliarity to attackers, may provide some protection for

frequently targeted software; and

3. Further supporting evidence for an exploit-free “honeymoon” or “grace period”[CFBS10]

provided by the attacker’s learning curve.

4.2 Methodology

4.2.1 Assumptions

When analyzing the security of software over its lifecycle, there are three assump-

tions, researchers commonly make:

• First, that with each addition of new code, a number of new software defects

are also added;

• Second, that (to the extent that security vulnerabilities are a consequence

of software defects), that new vulnerabilities are also introduced and will be

discovered and disclosed; and

• Third, that attackers are analyzing code bases searching for weaknesses in both

old and new code.

4.2.2 Vulnerability Taxonomy

For the purposes of this analysis it is necessary to differentiate among three types of

vulnerabilities:

1. Foundational vulnerabilities: Vulnerabilities that affect the original codebase

on which RRC was based.
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2. Regressive vulnerabilities: Defined in Chapter 3,

3. New vulnerabilities: Vulnerabilities that affect the current version of code at

the time of disclosure but that do not affect previous versions.

There are also two different states of vulnerabilities:

1. Active vulnerabilities: Vulnerabilities that affect a given version of software

while that version is the most current available,

2. Inactive vulnerabilities: Vulnerabilities which once the most recent version

which it affects has been obsoleted by a more recent version, are no longer

exploitable.

For example, a regressive vulnerability disclosed in version 20, but introduced in

version 18, is said to be active until it is patched in either version 20 or some later

version.

Finally, there are Unknown vulnerabilities: Vulnerabilities in a given version of

software that have not yet been publicly found or disclosed.

4.2.3 Firefox RRC

Mozilla began the Firefox RRC development process in June of 2011 with the release

of version 5.0 as the first rapid release version. The Firefox RRC is structured such

that new code actually goes through three 6-week phases before being released. The

code spends 6 weeks in development, 6 weeks being stabilized in what is referred

to as the Aurora phase and 6 weeks being beta-tested. The code is freely available

at any of these phases. Thus, at the time of release of version n, versions n+1

through n+3 are in the Beta, Aurora and development phases, respectively. This

schedule allows Mozilla to release a new version regularly every 6 weeks. Prior to

the inception of RRC, a version of Firefox would spend as long as a year in an alpha

pre-beta phase, and a further year in beta, undergoing several revisions. Meanwhile,
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the current release would be patched as needed. Between major version releases,

Mozilla introduces point releases only if a critical vulnerability has been found to

affect it. In practice, there are only one or two of these between each version.

At the start of RRC, the then current stable version of Firefox code, which

had been developed using the traditional Waterfall methodology, (version 3.6.2) was

cloned to become the base of the new RRC code. That same code became the first

Extended Support Release (ESR). The ESR software is intended for mass deployment

in organizations. ESR releases are maintained for a full year or longer, with point

releases containing security updates coinciding with new RRC Firefox releases. A

new ESR version is released (essentially) by rolling the features of the current RRC

version into the new ESR version. At the time this analysis was performed, Mozilla

had done this twice: for versions 10 and 17, both of which were released at the same

time as the corresponding RRC versions. This analysis looked at RRC versions 5

through 20, but compared RRC to ESR, it was important to be careful to compare

only concurrent versions: RRC versions 10.0-20.0 to ESR versions 10.0-10.0.12 and

17.0-17.0.6 (See Table 1).

4.2.4 Data collection

This analysis was concerned specifically with vulnerabilities disclosed in software

developed and released under a 6-week Rapid Release Cycle (RRC).

From the inception of RRC up to the time of this writing, 617 new Bug IDs were

issued, corresponding to new vulnerabilities reported in the MFSAs [Moz13b] and

CVE [CVE08] database, providing sufficient volume of data for empirical study.

Line of code (LOC) and file counts in this dissertation are derived from the

Mercurial repositories hosted by Mozilla and are filtered to account for a subset of

file types that account for almost all of the code relevant to this dissertation [Alm13].

Specifically, I included files with the extensions: .c, .C, .cc, .cpp, .css, .cxx, .h,

.H, .hpp, .htm, .html, .hxx, .inl, .js, .jsm, .py, .s, and .xml; test cases and
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harness code have been excluded, as well as code comments and whitespace. LOC

counting for this dissertation is conservative and may understate changes to the

Firefox codebase between versions.

For this dissertation I also examined Firefox’s Extended Support Releases (ESR).

These long-term support releases still follow essentially the traditional release-and-

patch model that preceded the transition to RRC, with the same code base as RRC

versions 10 and 17 covered by in this analysis; the next ESR release was version

24. ESR is an effective point of comparison when examining the impact of RRC on

security.

4.2.5 Limitations

As noted earlier, unknown vulnerabilities exist, and this makes the date that any

given vulnerability was initially discovered hard to obtain. One can only know

with certainty when the vulnerability was first reported. For the purposes of this

analysis I used the disclosure date as an approximation for the discovery date. The

disclosure date, while later than the discovery date, is workable for these purposes,

since the analysis is concerned with large-scale phenomena and inter-arrival times

for vulnerability discoveries.

Notably, as Firefox is a frequent attack target and Mozilla responds quickly, by

issuing inter-cycle point releases for critical and severe vulnerabilities, this error is as

small as it can be without omniscience of undisclosed vulnerabilities attackers might

have "on the shelf".
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4.3 Security Properties of RRC

4.3.1 Code Bases: RRC versus ESR

Mozilla’s RRC reflects the principles of Agile programming. For example, Nightin-

gale states:

“Rapid release advances our mission in important ways. We get features

and improvements to users faster. We get new APIs and standards out

to web developers faster.” [Nig11]

While security patches are also included in each new release, the focus of the program

is to deliver new features, not patch vulnerabilities. In contrast, ESR versions are

intended to remain stable and unchanged after release, except for required security

patches:

“Maintenance of each ESR, through point releases, is limited to high-

risk/high-impact security vulnerabilities and in rare cases may also in-

clude off-schedule releases that address live security vulnerabilities.” [Fou14]

Table 4.1 lists the release dates of the RRC versions. Table 4.2 lists the corresponding

ESR point releases. While both RRC and ESR started from the same codebase, they

soon differ substantially.

New features and new APIs mean new code, which can affect functionality and

maintainability, as well as security. How many lines of new code are pushed out

in Firefox’s RRC? In Table 4.1 are listed the number of lines of code added, and

removed, the total numbers of files changed between versions, and the total number

of LOC per version since RRC was instituted. Since the start of RRC, Firefox has

added a minimum of 100k LOC per version, and averages 290k LOC added, 160k
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LOC removed, and 3,475 files changed per version. There is a wide variance, but the

median LOC added is 249k. This amounts to an average of 10% of the code-base

changing in some way every 42 days.

These changes are not isolated, but rather appear to have wide-reaching effects.

In a study to determine the maintainability of the Firefox codebase since RRC,

Almossawi [Alm13], found that 12% of files in Firefox are highly interconnected.

Almossawi also found that making any change to a randomly selected file can, on

average, directly impact eight files and indirectly impact over 1,500 files. This means

that on average each new RRC version could potentially impact as many as 30,000

files.

The difference between this and the ESR versions is substantial. Only two of

the point releases add more than 10k LOC and only changes to version 17.0.5 reach

anywhere near the average of the RRC versions (see Tables 4.1 and 4.2).

Does the modification of such large amounts of new code result in a less secure

product? If so, there are three things we would expect to see:

1. An increase in the number of vulnerabilities affecting each new release (active

vulnerabilities);

2. The scope of vulnerabilities should change. That is, the vulnerabilities discov-

ered should be primarily new and should affect only the current (and possibly

subsequent) versions; and

3. The regular introduction of such code should increase the rate of vulnerability

discovery and disclosure.

In other words, if the current models for general software defects apply here, the new

code should be more vulnerable than the old code.

108



Table 4.1: RRC changes from the previous version

RRC
Release LOC LOC LOC Total Files

Version Date Added Removed ∆ LOC ∆

4 - 157.4k 710k 230k 362.1k 5300
5 - 164k 161k 325k 362.4k 1700
6 - 142k 164k 306k 360.6k 2100
7 - 124k 120k 243k 361.0k 2000
8 - 109k 90k 199k 363k 1700
9 - 159k 90k 250k 368.7k 2100
10 1/31/12 491k 282k 773k 386k 4000
10.0.1 2/10/12 - - - - -
10.0.2 2/16/12 - - - - -
11 3/13/12 254k 203k 457k 390.2k 2000
12 4/24/12 245k 190k 436k 395k 2500
13 6/5/12 133k 85k 218k 399.1k 2300
13.0.1 6/15/12 - - - - -
14 7/17/12 265k 88k 354k 414.6k 2200
14.0.1 7/17/12 - - - - -
15 8/28/12 383k 280k 664k 422.6k 9000
15.0.1 9/6/12 - - - - -
16 10/9/12 608k 85k 693k 467.5k 2800
16.0.1 10/11/12 - - - - -
16.0.2 10/26/12 - - - - -
17 11/20/12 271k 177k 448k 475.3k 5400
17.0.1 11/30/12 - - - - -
18 1/8/13 820k 385k 120.4k 512k 7700
18.0.1 1/18/13 - - - - -
18.0.2 2/5/13 - - - - -
19 2/19/13 193k 146k 339k 515.6k 3700
19.0.1 2/27/13 - - - - -
19.0.2 3/7/13 - - - - -
20 4/2/13 252k 163k 415k 523.2k 2700
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Table 4.2: Total LOC changes per version

ESR
Release LOC LOC LOC Total

Version Date Added Removed ∆ LOC
4 - - - - -
5 - - - - -
6 - - - - -
7 - - - - -
8 - - - - -
9 - - - - -
10 1/31/12 - - - 386k
10.0.1 2/10/12 29 7 36 386k
10.0.2 2/16/12 7 3 10 386k
10.0.3 3/13/12 2,510 1,782 4,292 386k
10.0.4 4/24/12 12,314 7,066 19,380 386.4k
10.0.5 6/5/12 1,070 528 1,598 386.4k
10.0.6 7/17/12 1,182 514 1,696 386.5k
10.0.7 8/28/12 605 216 821 386.5k
10.0.8 10/9/12 535 165 700 386.6k
10.0.9 10/12/12 23 10 33 386.6k
10.0.10 10/26/12 124 20 144 386.6k
10.0.11 11/20/12 1,151 316 1,467 386.7k
17.0 11/20/12 - - - 475.3k
17.0.1 11/30/12 126 27 153 475.4k
10.0.12 1/8/13 2,585 260 2,845 386.8k
17.0.2 1/8/13 2,092 1,076 3,168 475.4k
17.0.3 2/19/13 1,204 440 1,644 475.5k
17.0.4 3/7/13 4 4 8 475.5k
17.0.5 4/2/13 67,142 61,198 128,340 475.7k

4.3.2 Rapid Release and Software Quality

In this section, I address the three questions on software quality raised in Section

4.1.
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4.3.2.1 Does the addition of 250K+ lines of code every 42 days

markedly increase the number of vulnerabilities discovered and

disclosed?

Almossawi’s research [Alm13] indicated that the defect density remains constant for

releases 5-9 and then rises by a factor of two in release 12. This finding is consistent

with the current defect discovery models: the new code does indeed result in more

defects, but not out of proportion to the LOC added. Certainly this means that

the quality of the code is not getting worse. But what about vulnerabilities? Has

the switch to RRC increased the vulnerability density? How does the vulnerability

density compare to the defect density?

Figure 4.3 is a plot of the vulnerability density against the defect density for RRC

versions 5-20. Looking at the different distributions, it can be seen that there is no

noticeable or significantly out of proportion increase in the vulnerability density.

Figure 4.4 is a plot of the ratio of the vulnerability and defect densities shown in

Figure 4.3. Looking at it, it is clear that the proportion of vulnerabilities to defects

for the different releases is well within the 1%-5% values proposed by McGraw and

Anderson and confirmed by Alhazmi, et al., in their analysis of the Windows and

Linux operating systems developed which were developed according to traditional

Waterfall methods.(See Chapter 2)

It is interesting to compare the number of vulnerabilities discovered over time

before the switch to RRC to those found after. Figure 4.5 shows the number of

vulnerabilities disclosed in buckets of 16 6-week periods preceding the switch to

RRC and 16 6-week periods following the switch. There is no predictable pattern

to be seen for values from pre-RRC to post-RRC. In both categories, the totals for
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Figure 4.3: The Density of Defects and Vulnerabilities per 100,000 LOC in Firefox
RRC Versions.

Figure 4.4: The Ratio of Vulnerabilities to Defects per 100,000 LOC in Firefox RRC
Versions.
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Figure 4.5: Plot of the total vulnerabilities disclosed during the 16 6-week periods
preceding RRC and the 16 6-week periods following RRC.

Figure 4.6: Cumulative total vulnerabilities binned into an equal number of 6-week
periods preceding and following Mozilla’s implementation of RRC in Firefox.
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Figure 4.7: Result of T-Test Comparing the Slopes of the Cumulative Totals of Vul-
nerabilities Disclosed During 16 6-Week Periods Leading Up To And After Mozilla’s
Implementation of RRC For Firefox

one release appear to show no correlation to the earlier releases or the later ones.

Moreover, the plots show no correlation between the values for releases before and

after RRC.

Figure 4.6 provides even more insight. It displays the cumulative total of the same

vulnerabilities seen in Figure 4.5. A two-tailed T-test (also known as a Student’s

T-test) was performed to determine if the slopes of the regression lines fitted to the

cumulative plots were similar. The results of the test can be found in Figure 4.7.

The null hypothesis for this test was that the means of the slopes are equal. Since

the test resulted in a t-value of 0.46 which is far below critical value of 2.05, one

must fail to reject the null hypothesis. Therefore, one must conclude that there
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Figure 4.8: Cumulative total vulnerabilities affecting RRC and corresponding ESR
versions during the same 6-week period

is not sufficient evidence to support a conclusion that the slopes of lines fitted to

the pre-RRC and post-RRC cumulative plots differ significantly. Similar to what

Almazawi found with regard to the software defects, there is no significant jump in

the number of vulnerabilities disclosed.

Additionally, looking at the ratio of total vulnerabilities between versions (see

Figure 4.9) for RRC one can see that much of the graph is nearly flat and it is only

going up by less than a factor of two at its maximum. Overall, the total number of

active vulnerabilities disclosed per LOC in each Firefox version since the advent of

rapid release mirrors the defect discovery.
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Table 4.3: Counts of vulnerabilities by type affecting RRC (correspondence between
RRC versions 10+ and ESR versions 10 and 17 is given in Table 4.4). Totals are not
unique, as a single vulnerability may affect multiple versions

Version Total Foundational Regressive New
4 476 292 184 -
5 432 261 171 -
6 418 255 149 14
7 403 246 146 11
8 385 240 144 1
9 358 240 118 -
10 271 223 47 1
11 312 223 89 -
12 270 213 55 2
13 255 213 42 -
14 159 159 - -
15 159 159 - -
16 127 126 - 1
17 65 65 - -
18 35 35 - -
19 101 1 65 35
20 65 - 65 -
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Table 4.4: Counts of vulnerabilities by type affecting ESR. Totals are not unique, as
a single vulnerability may affect multiple versions

Version Total Foundational Regressive New
10 351 286 64 1
10.0.1 318 318 - -
10.0.2 360 360 - -
10.0.3 335 335 - -
10.0.4 294 294 - -
10.0.5 268 268 - -
10.0.6 237 237 - -
10.0.7 188 188 - -
10.0.8 163 163 - -
10.0.9 162 162 - -
10.0.10 139 139 - -
10.0.11 98 98 - -
10.0.12 - - - -
17 170 135 35 -
17.0.1 145 110 35 -
17.0.2 114 79 35 -
17.0.3 96 61 35 -
17.0.4 81 47 34 -
17.0.5 46 30 16 -
17.0.6 28 28 - -

4.3.2.2 Are the RRC vulnerabilities easier to find?

With traditional defect and vulnerability discovery models, the expectation is that

the ‘low-hanging fruit’ vulnerabilities in new code are found and patched quickly. [Ozm07,

AM08]

Looking at traditional non-RRC software et al., I suggested in Chapter 3 that

these models do not accurately represent the early lifecycle of vulnerability disclosure.

Instead, there appears to be a relatively long period before the first vulnerability in

new software is disclosed, after which the rate of vulnerability disclosure in that

version of code increases. I speculated that this period corresponds to the attacker’s

learning curve.

If new code, released without a traditionally long code review process (as is

common with RRC) is bad for security, then the vulnerabilities disclosed should not

only be new, but found quickly. (i.e., they should be the expected low-hanging fruit.)
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One would also expect to see the rate of vulnerability disclosure for vulnerabilities

introduced in the new code to increase in proportion to the volume of LOC added.

If, on the other hand, it takes time for an attacker to become familiar with the new

code, then the vulnerabilities should take longer to find and those disclosed will be

primarily from code introduced in older versions.

Table 4.3 lists the total number of vulnerabilities disclosed that affect each rapid

release version. For each version, the table lists the total number of vulnerabilities

that affect the foundational version, the total number that are regressive, (also af-

fect earlier versions), and the total number newly introduced. Table 4.4 lists the

corresponding data for the ESR versions.

On average, across all the RRC versions (5-20), approximately 75% of the vul-

nerabilities affecting each RRC version are foundational. A further 22% of them are

regressive.
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This means that for any version, on average, 97% of the vulnerabilities disclosed

since RRC was implemented were not found in the new code while it was the current

version.

Accounting for the fact that RRC versions 5.0-9.0 were released before the re-

lease of the first ESR version, from the release of version 5.0 up to 20.0, a total of

617 active vulnerabilities were disclosed. Only 16% of those are new vulnerabilities

(ones which originate in RRC source code) across all 15 versions studied. Look-

ing only at these new vulnerabilities, we see that fewer than half (41.5%) of them

were disclosed during the current lifetime of the originating version. In other words,

while vulnerabilities are found in the code that is introduced each RRC iteration,

the overwhelming majority of them are not found during the 6-week period following

their initial release. At the time this analysis was performed, even in the worst case,

version 19, which had 32 vulnerabilities disclosed during its active lifetime, 70% of

those were not disclosed until version 21, which was released 12 weeks later. As

shown above, the number of active vulnerabilities found affecting RRC (465) and

ESR (420) during the same period suggests this is not the case. The newly discov-

ered vulnerabilities are not found in new RRC code, but in older code that has been

reused from version to version and has existed at minimum, since the time of the

ESR release. It is surprising to note how close the totals are, because the magnitude

of code changes in RRC is so much greater than the code changes in ESR in the

same time frame. Overwhelmingly, the vulnerabilities are found in the code shared

between the two development platforms. This is code that is not changing as new

RRC versions are being released.

It is important to note that, although code developed using RRC does contain

its share of vulnerabilities, as Table 4.3 shows, most of the RRC vulnerabilities are

either foundational or regressive, and therefore were found in code that had been

available for a longer period of time than a single release cycle.
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A look at the trend in the cumulative plot (see Figure 4.8) shows an S-Curve,

similar to that seen by Alhazmi, et al. (see Chapter 2) and further supporting the

hypothesis of vulnerability discovery depending in part on the learning curve of an

attacker. [JO97, GS05, CFBS10].

Table 4.5: Count by type of RRC vulnerabilities that do not affect ESR (correspon-
dence between RRC versions 10 or greater and ESR versions 10 and 17 is given
in Tables 4.3 and 4.4). Totals are not unique, as a single vulnerability may affect
multiple versions

Version Total Foundational Regressive New
5 38 19 19 -
5.0.1 38 19 19 -
6 38 19 19 -
6.0.1 37 18 19 -
6.0.2 37 18 19 -
7 37 18 19 -
7.0.1 15 12 3 -
8 37 18 19 -
8.0.1 36 18 18 -
9 36 18 18 -
9.0.1 14 12 2 -
10 13 12 1 -
10.0.1 13 12 1 -
10.0.2 13 12 1 -
11 14 12 2 -
12 13 10 1 2
13 11 10 1 -
13.0.1 8 8 - -
14 9 9 - -
14.0.1 8 8 - -
15 9 9 - -
15.0.1 4 4 - -
16 2 2 - -
16.0.1 2 2 - -
16.0.2 2 2 - -
17 2 2 - -
17.0.1 1 1 - -
18 1 1 - -
18.0.1 1 1 - -
18.0.2 - - - -
19 4 - 1 3
19.0.1 4 - 4 -
19.0.2 1 - 1 -
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These results show that Mozilla’s Firefox RRC development process did not in-

crease the rate of vulnerability discovery. Moreover, the vulnerabilities found in a

particular RRC version while it was current were any easier to find than those re-

maining in older code. This suggests that during the RRC lifecycle, the time to

find vulnerabilities and learn how to exploit them in new code compensates for the

presumed increase in the density of vulnerabilities in immature code.

4.3.2.3 Is the scope of disclosed vulnerabilities confined to RRC?

If the vulnerabilities found in the current RRC version result from new code added,

one ought to find that most of these are new vulnerabilities and therefore ones that

do not affect code shared with ESR versions. However, this is not the case. As

stated above, during the active lifetimes of ESR versions 10 and 17, only a few

new RRC vulnerabilities were disclosed, but, more importantly, if one compares the

465 total RRC vulnerabilities to the 420 in ESR, all but 45 have the same BugID

affecting both RRC and ESR. In other words, the overwhelming majority of active

vulnerabilities disclosed in Firefox RRC also affect ESR. This means that the 24

ESR point releases, which average 4,700 LOC code added per release, are affected

by nearly 90% of the vulnerabilities that affect the concurrent RRC versions which

average more than 290K LOC added per release!

This does not mean that the new code in RRC does not contain new vulnera-

bilities, but rather, that 90% of the vulnerabilities disclosed in the RRC versions

released during the lifetime of each ESR version must be in the older, shared code.

As we can see in Table 4.3 very few vulnerabilities affecting each RRC version actu-

ally originate in those RRC versions. Moreover, of the 617 vulnerabilities disclosed

in Firefox since the inception of RRC, 32 of them do not affect any of the RRC

versions. These vulnerabilities only affect the foundational code originating in or

before version 4, but were not found until after RRC was adopted.

But what about those vulnerabilities that were introduced by new code added
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each RRC cycle? That is, vulnerabilities that do not affect the corresponding, con-

temporary ESR version. These vulnerabilities, if not found and fixed, may affect

a later ESR version, because the new RRC features are rolled into the next ESR

release. How quickly were they discovered and disclosed? As one can see in Ta-

ble 4.5, of the 45 vulnerabilities that affect only RRC versions and do not affect the

corresponding ESR versions, only 5 actually originate in the newly released versions.

More importantly, only these 5 were disclosed during the 6 weeks that that version

was current. 2 While the new code does indeed contain vulnerabilities those vulner-

abilities are not being found and disclosed while the version in which they originate

is the current version.

The implications of this for ESR, and software engineering more generally, are

highly significant. The effective lifetime of the ESR versions is four times longer than

for RRC. No new features are added after its initial release. It is only changed to

patch critical security bugs. Yet, it is still vulnerable to 90% of the same vulnerabil-

ities that affect the RRC versions. This raises concerns about the security of code

over time, as well as the impact of code reuse on security. Particularly as many of

the new features developed for each RRC version are eventually rolled into the next

ESR version. This strongly suggests that the slower changing ESR versions may not

experience any benefit from the Honeymoon Effect. By the time RRC code is rolled

into ESR, the adversary may have already climbed the learning curve.

4.4 Discussion

Intuition, gleaned from decades of secure software engineering best practices, sug-

gests a tension between the rapid deployment of new software features and the avoid-

ance of software defects, particularly those affecting security.

2Two in version 12.0 and three in version 19.0
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The rapid release employed by Mozilla for Firefox, in which new software releases,

with new features, are rolled out on an aggressive schedule, seems as if it could only

come at the expense of security. Users concerned with security, one might assume,

would be better off eschewing the latest features in favor of the more mature, stable

ESR releases. Agile programming methodology, particularly in an application as

exposed as a web browser, should be a security disaster.

At least with respect to vulnerabilities disclosed during the lifecycle of each Fire-

fox release, my results suggest that this intuition appears to be wrong. Vulnerabilities

are disclosed in the older code at least as often as they are in the newer code. This

is both surprising and encouraging news. It suggests that during the active lifecycle,

the adversary’s ability to discover security defects is dominated less by the intrin-

sic quality of the code and more by the time required to familiarize themselves with

it. It suggests that the Firefox rapid-release cycles expose the software to a shorter

window of vulnerability. [AFM00] Frequent releases of new features appear to have

provided the Firefox developers with new grace periods or second honeymoons (using

terminology I coined in [CFBS10]). While there may also be other factors affecting

vulnerability discovery which are changing over the duration of software evolution

I studied, it is clear that the net effect of RRC, seen in the data, has been the

attenuation of the attacker.

Even while generalization remains an open question, in Firefox, the unexpected

benefit of frequent large code releases appears to be a lengthening of the attacker’s

learning curve. The findings reported in this chapter further support the ideas

that familiarity with a codebase is a useful heuristic for determining how quickly

vulnerabilities will be discovered and, consequently, that software reuse (exactly

because it is already familiar to attackers) can be more harmful to software security

than beneficial.

These results are consistent with a “Honeymoon Effect”, and suggest that the

pattern exhibited by vulnerability disclosure in Firefox could result from would-be
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attackers having to re-learn and re-adapt their tools in response to a rapidly chang-

ing codebase. [CFBS10] These results should lead software developers to question

conventional software engineering wisdom when security is the goal.

The “S” learning curve shape seen in Figure 4.8 could be construed as a measure

of the increase in proficiency as result of repeated exposure. In other words, a

measure of the skill and expertise resulting from increased familiarity over time.

As demonstrated by the Honeymoon Effect presented in Chapter 3, this learning

curve appears to play a significant role in the software vulnerability lifecycle. As

demonstrated above, rapid code changes may affect an adversary’s familiarity with

the codebase, resulting in a longer, or even a second honeymoon.

I chose Firefox software as the basis for analysis, as it was originally architected

using the traditional development model and switched to rapid-release midstream.

It will be interesting to see if other software systems, including those that have been

designed and developed using only Agile methods share the same properties. It will

also be interesting to see what effect the switch to silent auto-updates has had on

the vulnerability life-cycle. The dataset that I integrated for Firefox with its large

code-base, and large user-base, coupled with its prominence as an attack target is

strongly suggestive that the rapid release strategy has significant and unexpected

security advantages in real world systems.
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Chapter 5

Testing the Effect of a Single

Intrinsic Property

“The only relevant test of the validity of a hypothesis is comparison of
prediction with experience.” (Milton Friedman)

5.1 Introduction

Recall that each time Mozilla releases a new version of Firefox, hundreds of thou-

sands of LOC were being added, modified or removed and thousands of files were

affected.(see Tables 4.1 and 4.2 )

Because these changes are primarily the result of adding new features and not

merely fixing defects, it is important to recognize that each time a new version is

released, its substance has altered in some way. Whether it is measured as lines of

code, or numbers of files, these changes are in effect altering some of the intrinsic

properties of the product as a whole.

At the same time, it was demonstrated in the previous chapter, that even after

Mozilla moved from a traditional development model to a rapid release development
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cycle, the Honeymoon Effect is still predominant. New Firefox versions are likely to

experience a positive Honeymoon twice as often as not.

This begs the question, do releases with more changes directly correlate with

an increase in the time from release until the first vulnerability is discovered and

exploited?

This chapter explores whether coarse-grained changes to intrinsic software prop-

erties are the sole cause of the Honeymoon Effect and attempts to answer the fol-

lowing questions:

• Can the Honeymoon Effect be directly correlated with the total LOC or file

changes? That is, does the addition, modification or removal of code alone

account for the increased likelihood of having a positive Honeymoon?

• Is there a minimum number of files that must be changed in order for the

Honeymoon Effect to appear?

• If either of the above is true, how large a change is required?

• Does one type of change matter more than another? (i.e., adding new code,

modifying existing code, or removing old code)

• Do code changes in one type of programming language affect the Honeymoon

more than another?

• Does the frequency of file changes matter?

5.2 Dataset and Methodology

Mozilla relies on a Mercurial repository for Firefox source code management and

control. Changes to the repository are logged and each change has a unique id.

Mercurial provides tools for cloning, searching, logging, and comparing changes by
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revision id. Table 5.1 lists the Firefox repository revision ids that correspond to the

version releases used in this analysis.

The first step was to collect the overall file changes between versions to see if

there were meaningful correlations to the Honeymoon Effect. I first attempted to

use Mercurial’s built-in ’hg diff’ tool for the analysis. Hg diff can provide users with

per version totals of files added, files removed, files modified, as well as information

about total LOC added and lines of removed. Each pair of consecutive major version

releases, excluding all blank lines, comments and test files, (e.g. 4.0-5.0 or 19.0-20.0)

was ’diffed’ to find all lines added or removed, and all the files added, removed and

modified from all Firefox source code files. Unfortunately, the hg diff tool does not

offer fine enough granularity, for a detailed analysis of lines of cod e, as it cannot

differentiate between LOC modified and LOC added or removed. Fortunately, there

is a widely used open source code counter CLOC written by Al Danial which provides

this feature. [Dan16] CLOC was employed to find LOC modified, added and removed,

both in total for all source code files listed above, and per file by file type. CLOC

was also used to calculate total LOC per file type and total LOC unchanged by file

type. Similar to the analysis presented in the previous chapter, the results were

filtered to include only files with the extensions: .c, .C, .cc, .cpp, .css, .cxx, .h,

.H, .hpp, .htm, .html, .hxx, .js, .jsm, .py, .s; test cases and harness code, code

comments and whitespace were excluded. LOC counting for the research presented

here, is conservative and may understate changes to the Firefox codebase between

versions.

The numbers of Firefox files unchanged, modified, added and removed, are listed

in Table 5.2 and the counts of the files and LOC changes for C, JavaScript can be

found in Tables 5.5, 5.3 and 5.4

In my analysis, each RRC release was considered an independent event. As in the
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earlier studies, The date of the first vulnerabilities disclosed affecting each release,

was determined by correlating data from Mozilla’s MFSA with the CVE database

and with Bugtraq. [Sac97] This date was used to determine if there was a positive

or negative Honeymoon for that release.

Once the file and line counts were completed, the totals were plotted, evaluated

and various statistical analysis applied to see if there were patterns in the distribu-

tions that might answer the questions listed above.

5.2.1 Limitations

The analyses discussed in the next section are high level studies, seeking only to de-

termine whether the simple property, changes in magnitude of files or LOC, increases

the likelihood of a release incurring a positive Honeymoon. Do these changes alone

account for a lengthening of the time to first vulnerability discovery compared to sub-

sequent ones? While there may be many other properties that affect the attacker’s

learning curve, their contribution is left for future research.

5.3 Is it Really so Simple? Answer: No

5.3.1 File Type Changes

The first property to examine was whether there is a correlation between the number

of files being changed, and the honeymoon effect.

In Table 5.2 one finds the total numbers of source code files found in Firefox

versions 4.0-40.0. The numbers are shown for files unchanged from the previous

version, modified, added (new), and removed for each version. The types of files

counted include all c, cpp, header files, objective-c, Java, JavaScript, JSM, Assembly,

S, and Python files combined.
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Figure 5.1: Graph of total files changed per version for Mozilla Firefox source code

Figure 5.2: Graph of the delta between total files changed and unchanged per version
for Mozilla Firefox source code

At first examination, there seems little evidence that the magnitude of file changes

has any effect on whether a new release benefits from a positive honeymoon. If the

simple magnitude of file changes were the sole cause of an increase in time to first

exploit, one would expect to see at least a low positive correlation with the magnitude
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of LOC changes and the likelihood of a positive honeymoon.

But, this isn’t the case, as one can see from Figure 5.1, there is no obvious pattern

where fewer file changes result in either a majority of non-honeymoons or a majority

of honeymoons. There is no definitive pattern to file change totals in consecutive

releases with honeymoons or without. There is no pattern to file change totals where

a honeymoon release is followed by a non-honeymoon release, or vice versa. This

observation is consistent for different subsets of the data as well, there appears to

be no significant difference when comparing the versions with positive honeymoons

to those with negative honeymoons, looking at only the numbers of files added, only

the numbers of files modified, or only the numbers of files removed. Nor is there any

more clarity if we examine the difference between total files changed and total files

untouched.

What about for individual programming languages? Perhaps the time to first

disclosed vulnerability is dependent on magnitude of one type of file being changed

rather than the changes to the total numbers of files changed in the source code com-

bined. Table 5.5 lists the total numbers of files changed for C and JavaScript files in

Firefox versions 5.0-40.0. Just as with total number of files changed, separating total

changes by programming language type provides little insight. In comparing releases

with positive honeymoons to those without there does not appear to be any major

difference seen when looking at the total numbers of file changes for individual types

of code. There are wide variances from release to release, even between consecu-

tive releases where both show a positive honeymoon, the total number files changed

varies widely and the same for consecutive non-honeymoon releases. Nor does is

seem that there is anything to be learned from comparing at the total files changes

of one language or another. Additionally, there isn’t any clear pattern evident when

the file counts are binned by type of change. Analyzing the total files changed, even

if separated by type of change or programming language does not provide any infor-

mation that can be used to predict the likelihood of a release experiencing a positive
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honeymoon.

5.3.2 LOC Changes

Figure 5.3: Graph of total LOC changes for C and Javascript code (normalized for
readability) for Mozilla Firefox source code

Figure 5.4: Graph of frequency of total files changed for Mozilla Firefox source code

131



Figure 5.5: Graph of frequency of total files changed by file age for Mozilla Firefox
source code

Since it appears that gross file changes do not correlate with the Honeymoon

Effect, perhaps analyzing the lines of code changed from version to version may

provide more information.

Here too, there doesn’t seem to be any obvious set of characteristics that separate

releases with positive honeymoons from those without. Looking at Tables 5.4 and 5.3

one observes the wide variations in LOC changed per release. Whether a release has

a positive Honeymoon, does not appear to correlate with a positive Honeymoon in

the immediately previous release (see Figure 5.6).

Neither is there any more clarity to be found from looking at the total counts of
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Figure 5.6: Graph of LOC modified per version for Mozilla Firefox source code

LOC by type of code changed.

5.3.3 Question: Given these results, does changing files or

LOC matter at all?

Does this lack of any obvious correlation mean that magnitude, frequency or type of

file and LOC changes are completely irrelevant to the Honeymoon Effect?

Further examination into the frequency of file changes, and the lifetime of legacy

code may provide some insight.

5.3.4 Frequency of change and legacy code

It is only when one compares the density of the distribution of file and LOC changes

for releases with positive Honeymoons to releases without that one finds any dif-

ferences. Looking at the density of total files changed (see Figure 5.4) and the

density of total LOC added, modified and removed (see Figure 5.3) it can be seen
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that in all cases the largest changes occur more frequently in releases with a posi-

tive honeymoon. The most frequent file changes cluster around the median for both

Honeymoon and non-Honeymoon releases, but there are no non-Honeymoon releases

where 10,500 or more files have changed, while 18% of the Honeymoon releases have

greater than 11,000 files changed. Similarly, while there isn’t much to be gleaned

from the LOC added or removed graphs, one sees the same longer right tail in the

frequency plot of LOC modified. 21% of the releases with positive Honeymoons

have LOC modified counts greater than 300k while only 7% of the non-Honeymoon

releases do.

Moreover, Figure 5.5 shows that releases with positive Honeymoons contain larger

numbers of younger file changes. That is, the versions of the files remain unchanged

for a shorter period of time. Releases that didn’t experience positive honeymoons

have greater numbers of files that remained unchanged from the previous version.

Thus it appears that legacy code, does indeed negatively affect the honeymoon pe-

riod.

5.4 Discussion

The Honeymoon Effect is a measurement of the attacker’s learning curve when sub-

jected to unfamiliar code. A release experiences a positive honeymoon when the

time it takes to discover the first vulnerability is longer than the time to discover

subsequent vulnerabilities.

While it would seem, at first blush, that simply adding or changing code, regard-

less of any other security conditions should be sufficient to account for this effect,

analysis shows that it is not that simple. However, it must be acknowledged that

this analysis is limited by the number of Firefox RRC releases available for analysis.

This relatively small sample size makes it impossible to truly confirm or eliminate

the property of code change on the steepness of the attacker’s learning curve.
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Moreover, it is important to remember, that there is a definite Honeymoon Effect

present in two thirds of Mozilla’s Firefox RRC releases. Lack of any direct correlation

between the addition or modification of files or LOC does not invalidate this, but

instead appears to show that the simplest metric for measuring the attacker’s learning

curve, many new files, or many new unfamiliar LOC is not sufficient to predict the

likelihood of a positive Honeymoon.

Consistent with observations about the Honeymoon Effect, when looking at the

frequency distribution of changes overall, there is some indication that larger quan-

tities of file or code changes, particularly with regard to legacy code does show some

correlation with a positive Honeymoon. Clearly, though, this single intrinsic property

is insufficient to explain the phenomenon.

If extending the attacker’s learning curve was entirely dependent on throwing

lots of changes (files or LOC) into each new release, the solution to making secure

software would be trivial. The magnitude of file or LOC changes is an intrinsic

property of the source code controlled entirely, and it might be argued, easily, by the

developers. Instead, the Honeymoon Effect appears to result from more complex or

subtle interactions of software’s intrinsic properties, and those extrinsic properties

of the larger ecosystem in which it lives.
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Version Revision:Hash
40.0 275544:84e0a4087157
39.0 267811:d3b3e57e8088
38.0 260428:4c4dc6640c7e
37.0 252119:29182ac68a26
36.0 245425:88c5342693e3
35.0 235743:32e36869f84a
34.0 227446:456394191c90
33.0 218077:1f22a8cc7aa5
32.0 209473:44234f451065
31.0 200814:32dddf30405a
30.0 193465:529a45c94e5a
29.0 184811:f60bc49e6bd5
28.0 176480:5f7c149b07ba
27.0 168007:b8896fee530d
26.0 162111:39faf812aaec
25.0 155154:d86ad7db1de3
24.0 149404:7c3b0732e765
23.0 144004:5efffaf39814
22.0 138619:0d4b9c74be55
21.0 133508:30ec6828d10e
20.0 128557:c90d44bfa96c
19.0 123486:20238b786063
18.0 118275:8efe34fa2289
17.0 110374:919435c6f654
16.0 105367:10fe550fadc6
15.0 101019:450143d2d810
14.0 96695:f0f78d96f061
13.0 92652:2b643ea8edf9
12.0 89093:a294a5b4f12d
11.0 85921:b967d9c07377
10.0 81941:baefae4b6685
9.0 79326:34852484d0ae
8.0 76675:d03b51a9b2bd
7.0 73377:273977a2c0ea
6.0 70736:218ed8178b1e
5.0 68331:7b56ff900c2a
4.0 68309:fca718600ca0
3.6a1 31196:da7fbe8a24dd

Table 5.1: Firefox versions included in this analysis, with Revision Number and
Repository Tag
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Files Files Files Files Total
Version Unchanged Modified Added Removed Files
4 3398 4133 3932 1146 6184
5 9607 1494 278 362 9523
6 8917 1908 257 554 8620
7 9163 1731 168 188 9143
8 9386 1498 118 178 9326
9 8966 1900 192 136 9022
10 6908 3781 1396 369 7935
11 10108 1767 1126 210 11024
12 10307 2165 635 529 10413
13 10897 2093 254 117 11034
14 11225 1887 650 132 11743
15 5626 7960 695 176 6145
16 11749 2433 1613 99 13263
17 10521 5177 378 97 10802
18 10011 5437 2068 628 11451
19 14295 3095 229 126 14398
20 14793 2391 463 435 14821
21 13144 3019 1801 1484 13461
22 14342 3237 1406 385 15363
23 14927 3865 428 193 15162
24 15834 2964 475 422 15887
25 12804 5207 1963 1262 13505
26 14589 4021 1596 1364 14821
27 15565 4006 868 635 15798
28 15799 4245 1155 395 16559
29 16450 4108 901 641 16710
30 16135 3660 2161 1664 16632
31 17195 4639 368 122 17441
32 18023 3970 729 209 18543
33 16994 4730 1350 998 17346
34 17251 4898 1589 925 17915
35 19548 3710 576 480 19644
36 18482 3540 2068 1812 18738
38 19861 3673 309 556 19614
38 16877 6215 1338 751 17464
39 20726 3663 261 41 20946
40 19098 5152 443 400 19141

Table 5.2: Firefox File Changes Per Version
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JavaScript Files
Version Unchanged Modified Added Removed Total
4 1843041 111028 157441 710761 1289721
5 2778955 12835 73863 95171 2757647
6 2816139 14466 77077 108090 2785126
7 2820412 12271 69486 74999 2814899
8 2838015 8532 46049 55622 2828442
9 2759489 18641 76164 42397 2793256
10 2724589 64733 315079 141152 2898516
11 2991415 21929 96141 91057 2996499
12 2889768 17376 154851 126161 2918458
13 3081803 20676 64557 38928 3107432
14 3033314 14317 103481 39993 3096802
15 3057403 27245 153096 66464 3144035
16 3181652 15272 424556 40820 3565388
17 3573051 94503 91447 36385 3628113
18 3428683 35459 556319 212400 3772602
19 4029538 17710 70775 51766 4048547
20 3878192 21454 99207 70946 3906453
21 3772293 23402 401788 367113 3806968
22 4021347 22675 416017 71483 4365881
23 4468126 24468 112996 49981 4531141
24 4306513 22795 167375 193746 4280142
25 4205431 56625 438377 318753 4325055
26 4346186 31743 352658 322504 4376340
27 4548025 33567 130880 64869 4614036
28 4574197 32977 286237 105298 4755136
29 4727059 37653 171861 128699 4770221
30 4604540 24764 479633 307269 4776904
31 5030799 25150 103343 140993 4993149
32 5138201 46131 179988 63550 5254639
33 5004576 38795 287442 232359 5059659
34 5083155 32034 286487 215624 5154018
35 5310695 39734 192941 141205 5362431
36 5030940 35538 460516 386934 5104522
37 5409425 33650 114804 175538 5348691
38 5234463 53789 269840 178008 5326295
39 5603301 22272 65789 25886 5643204
40 5546367 28932 144225 116063 5574529

Table 5.3: JavaScript LOC Changed Per Firefox Version
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C Files
Version Unchanged Modified Added Removed Total
4 99256 4777 70746 25391 144611
5 161126 343 28497 13310 176313
6 184432 841 12475 4693 192214
7 194767 1023 3536 1958 196345
8 197172 543 9582 1611 205143
9 199090 746 6514 7461 198143
10 186883 845 14886 18622 183147
11 181378 805 40902 20431 201849
12 220232 476 9064 2377 226919
13 223198 1928 11432 4646 229984
14 224003 1240 27391 11315 240079
15 231052 2040 70562 19542 282072
16 300320 1180 14861 2154 313027
17 309500 1774 12370 5087 316783
18 302641 3385 31972 17618 316995
19 328052 5041 43360 4905 366507
20 370500 1575 10578 4177 376901
21 372564 1880 40398 8209 404753
22 381117 3215 16737 30510 367344
23 379019 2935 23919 19115 383823
24 388409 3436 25018 14028 399399
25 404085 2968 23948 9810 418223
26 381117 3878 61782 46006 396893
27 422741 2603 135189 21433 536497
28 537666 3813 19466 19054 538078
29 534139 4455 33440 22351 545228
30 556747 4631 31498 10656 577589
31 528701 5228 31376 6107 553970
32 604823 2367 29806 9525 625104
33 613394 3161 407433 20441 1000386
34 683626 4093 68654 62011 690269
35 676821 2880 89898 76672 690047
36 757032 3384 17774 9020 765786
37 753065 3728 25796 21397 757464
38 707120 34435 45448 41034 711534
39 760328 14596 25106 12079 773355
40 738530 22103 30266 39397 729399

Table 5.4: C LOC Changed Per Firefox Version
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JavaScript Files C Files
Version Unchanged Modified Added Removed Version Unchanged Modified Added Removed
4 186 155 252 62 4 3191 3968 3644 1067
5 493 73 85 27 5 9075 1411 193 317
6 526 122 20 3 6 8375 1767 220 537
7 543 120 5 5 7 8573 1607 163 182
8 546 113 15 9 8 8797 1377 103 169
9 534 109 24 31 9 8389 1783 166 105
10 503 91 33 73 10 6359 3684 1361 295
11 449 96 130 82 11 9615 1661 287 128
12 598 71 42 6 12 8969 2071 592 523
13 581 113 25 17 13 9684 1857 178 91
14 581 121 62 17 14 9978 1636 544 105
15 161 590 94 13 15 4965 7034 570 159
16 663 177 57 5 16 10335 2143 1527 91
17 663 217 47 17 17 9114 4814 313 77
18 567 319 88 41 18 8631 5024 1951 586
19 795 179 25 0 19 12655 2831 192 120
20 864 129 21 6 20 13091 2160 423 427
21 816 180 228 18 21 11493 2727 1550 1454
22 849 279 61 96 22 12774 2752 1299 244
23 863 255 61 71 23 13198 3508 319 119
24 909 246 48 24 24 14021 2616 398 388
25 889 282 83 32 25 10981 4829 1874 1225
26 894 326 96 34 26 12759 3616 1451 1309
27 1001 263 50 52 27 14062 3663 331 101
28 1004 298 21 12 28 13883 3829 1064 344
29 944 329 97 50 29 14553 3643 669 580
30 1010 339 119 21 30 14056 3176 1978 1633
31 1120 343 55 5 31 14964 4132 291 114
32 1240 268 81 10 32 15643 3553 625 191
33 941 594 129 54 33 14870 4020 1190 931
34 1226 362 123 76 34 15284 3972 1074 824
35 1358 338 56 15 35 16830 3053 477 447
36 1297 422 59 33 36 15663 2921 1983 1776
38 1464 284 53 30 38 16774 3269 245 524
38 1316 424 105 61 38 13960 5647 1165 681
39 1490 341 62 14 39 17466 3280 158 26
40 1295 462 80 136 40 16033 4611 360 260

Table 5.5: C and JavaScript Files Changed Per Firefox Version
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Chapter 6

Conclusion: Toward A New Model

“Il faut regarder la configuration ensemble pour déterminer le
comportement des parties et non l’inverse.”(Paul Weiss) 1

6.1 Introduction

The results in the earlier chapters are evidence that early in the lifecycle of large

scale systems such as Firefox, the likelihood of a vulnerability being discovered and

exploited fits a learning curve. This appears to be the case even for software where

development and release strategies may not be compatible with the recommended

secure software development best practices.

It may seem surprising, but even new releases of entire computer systems such as

operating systems (and consequently those applications running on them), seem to

experience a learning curve early in their lifecycle. This phenomenon can be clearly

seen by examining the effects of changes made to the Windows Operating System

in 2012. These changes resulted in a quantifiable Honeymoon Effect for software
1Translation: We must look at the overall configuration to determine the behavior of the parties

and not the reverse.
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products that ran on the system.

In October of 2012 Microsoft released the Windows 8 Operating System. Mi-

crosoft had focused significant effort on securing the system and the OS contained

several built-in exploit mitigations. [JM12] Exploit developers and security researchers

analyzing the new OS simultaneously praised the new mitigations, and bemoaned

the loss of their previously successful exploitation techniques.

In an analysis of the new Windows 8 Heap Internals at the BlackHat Briefings

in 2012 Chris Valasek(Coverity) and Tarjei Mandt(Azimuth) reported that “All of

the attacks that have been demonstrated on Windows 7 have been pretty much ad-

dressed in Windows 8” [VM12], and shortly after release, Alex Ionescu (CrowdStrike)

reported: “Windows 8 was the subject of the most intensive and well-thought-out ex-

ploit mitigation and security hardening process ever attempted by Microsoft... And

it delivered.” [Ion12]

These new exploit mitigations did not make Windows 8 invulnerable, or even free

of exploitable vulnerabilities. Shared libraries and legacy code contained vulnera-

bilities that were outside the new protections. [Mic12] and within a month, Vupen

Security claimed to have chained together multiple vulnerabilities attacking Internet

Explorer 10 to gain remote execution on Windows 8. 2

The mitigations did make many of the widely used attacker tools and techniques

unusable, and resulted in attackers having to develop new exploitation method-

ologies obsolete. And, importantly, the mitigations reset the attacker’s learning

curve! It took three months for a scripted attack against legacy kernel code to

be released [OSC13], and four months for the first proof of concept demonstrating

a successful bypass of some of the newly implemented protections. [Tea11, SF12,

Che13, Ros11, E.10] Compare that to the release of Windows 7 which was found to

be vulnerable to several known exploits the very day it was released. [Wis09]

2The attack was demonstrated at CanSecWest in Jan. 2013
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Of course, these new attacks were addressed by Microsoft in their next few re-

leases. Security fixes in Windows 8.1 made ASLR unique across devices eliminating

predictable address space mappings, increasing the amount of entropy that exists in

the address space, additionally, the ability to execute code was removed from the

working set memory pages. [Mic13]. Again forcing attackers to learn new ways to

bypass these new mitigations. [WRI13, Fra15, Yun15] Additionally, non-Microsoft

applications appeared to receive an unexpected second honeymoon from these miti-

gations without having to update or alter their own code. [Sar13]

Unfortunately, while these examples provide evidence that changes to software

can result in a positive Honeymoon, the research presented in Chapter 5 suggests

that predicting whether a release will experience a Positive Honeymoon, i.e., that

the attackers will experience a long learning curve, is not as simple as measuring the

magnitude of changes in files or LOC. Rather, that changes to the system, extrinsic

to any particular software product can result in a Positive Honeymoon. Overall, this

is evidence that there are extrinsic properties which have an impact on the robustness

of the system against attack. 3

This leads me to make the following observations:

• Observation: Any individual piece of software (P1) functions as part of a

complex system comprised of any number of other objects (P2..Pn) not under

the control of the developers of P1.

• Observation: The properties of P2..Pn are extrinsic to P1 and any changes

to them occur independently of P1 and at any time during the lifecycle of P1.

• Observation: The security of P1 appears to be dependent on both the intrinsic

and the extrinsic properties of its containing system.

The existence of these extrinsic properties may help explain why traditional soft-

ware engineering models have failed to provide insight for predicting and measuring
3N.B., This impact can be both positive or negative
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the vulnerability lifecycle. While a software product’s intrinsic properties are de-

termined by software engineering, properties such as attacker motivation, skill level,

and the attacker’s learning curve, are not. Instead, these are properties of the larger

software ecosystem in which that product functions.

Note that, if the security of any individual piece of a system is dependent on

other pieces of the system over which it has no control, then any changes to the

extrinsic properties of P2..Pn can affect the security of P1 (positively or negatively.)

Strictly software engineering models tend to consider the environment a blackbox

and thus inadequately account for the effects which may come from changes to those

extrinsic properties. Additionally, strictly software engineering models are intended

to describe a static products or systems and as such insufficiently explain the effects

which have been observed to come from changes to those extrinsic properties.

The results in this dissertation suggest a relationship between a product and the

other members of its ecosystem. One that changes dynamically throughout its entire

lifecycle. This relationship is missing from exclusively secure software engineering

models.

This suggests that approaches to understanding the security of an individual

software product must broaden their scope beyond pure software engineering mod-

els to include the properties of the entire ecosystem and their relationship to each

other. Furthermore, this strongly suggests that the security of software systems is

not a strictly software engineering problem, and that a new conceptual framework is

necessary to fully describe this relationship.

6.2 Examining The Problems With Strictly Secure

Software Engineering Models

VDMs and ASMs have proven useful for thinking about weaknesses in the software

ecosystem. VDMs focus on finding and removing exploitable defects. ASMs focus
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on the processes and communication channels used to exploit a vulnerability. Both

types of models attempt to help developers predict, find or eliminate mechanisms

for exploiting software.

Yet, in spite of these improvements, the rate of vulnerability discovery in software

does not appear to be decreasing. A recent report on vulnerability trends showed

that the year 2015 broke the previous all-time record for the highest number of

reported vulnerabilities. The report also stated that 20.5% of reported vulnerabilities

received CVSS scores between 9.0 and 10.0 and the number of vulnerabilities and

the CVSS scores were both trending higher over the last four years. [Sec15] Many of

these vulnerabilities have been lying dormant in the code for decades. [Ltd14, Gaf14,

NIS14, Bea16]

Not only are more vulnerabilities being reported now than in previous years,

systems are being exploited in much greater numbers. Analysts reported record

numbers of large company security breaches and referred to 2015 as “The Year of the

Breach”. [Gre15, Loh15, Hol16, Har15, Mar15, Whi16]. Moreover, given the trends,

the expectation among the security community at the time of this writing is that

2016 will be most exploited year yet. [(RB16, Kou16, Sym16] It is apparent from

these reports, that current models for developing secure software, for finding and

removing vulnerabilities, and even for enumerating and minimizing attack vectors,

however useful, are not sufficient to model the security of a software product as it

interacts with its environment over its entire lifecycle.

The research presented in Chapters 3 - 5 suggests that these models have limi-

tations that prevent them from recognizing and capturing the interactions between

intrinsic and extrinsic properties of members of the system.
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6.2.1 Current Models are Constrained by Their

Assumptions

VDMs, for example, are concerned with finding vulnerabilities remaining in the

software, and predicting when (or if) they are likely to be discovered. The two

primary assumptions of these models, one, that the majority of the vulnerabilities are

found early in the lifecycle, so that the only remaining vulnerabilities are assumed to

be difficult to find, and two, that the older the software is, the higher its quality and

therefore the higher its security, are assumptions based exclusively on the intrinsic

properties of the software. There is no mechanism for modeling the interactions and

complexity that extrinsic properties add to the security of the system.

Similarly, although ASMs do include a definition of the environment in their

description, the intent of the model is to make it completely independent of any

factors in its environment. The assumption is that the rest of the ecosystem is

irrelevant to the model. Moreover, the model assumes that the Damage Potential

and the Damage Effort variables can be calculated without considering the attacker

at all. The Damage Effort metric is of particularly questionable value when isolated

this way, because it has been frequently demonstrated that attackers are willing

to expend enormous effort developing a successful exploit. E.g., since in 2015 and

early 2016, every successful compromise of the browsers Chrome, Safari, Internet

Explorer and Firefox combined vulnerabilities in the browser with vulnerabilities

of third-party objects in the ecosystem to gain root access to the machine (either

in the operating system or third-party products running on the machine, or both).

See [Bea16] for a very recent example as well as [Tre16a, Tre16b].

6.2.1.1 These Models Assume a Static Product

An important limitation of both VDMs and ASMs is that the models assume that

product being modeled is part of a static ecosystem. Both types of models lack any
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sort of feedback loop for receiving new information from the environment. Nor do

they contain any mechanism for recalculating metrics or adapting to new or outside

information.

This is quite understandable, because one major assumption made by these mod-

els is that the software they model is a finished product. i.e., complete and ready

for release, or nearly so.

Therefore, the lack of any feedback loop in VDMs and ASMs means that any

defensive strategy based on them is one that relies on patching each individual vul-

nerability as it is discovered. Consequently, instead of taking advantage of knowledge

gained from analyzing a newly discovered exploit, and prophylactically removing not

yet discovered vulnerabilities that could potentially be exploited by the same method

or with the same tools, the software will continue to be vulnerable to any exploitation

techniques introduced after its release. See [Ltd14, Gaf14]

The assumption that legacy code has passed “the test of time” is also of particular

concern. It means that ASMs and VDMs tend to be applied to the newly developed

code, not to the old existing, already tested, legacy code. Hence, code carried over

from earlier versions which may be vulnerable any newly discovered exploitation

techniques, would remain untested. The recent discoveries of Heartbleed and Shell-

shock and others [Ltd14, NIS14, Gaf14] speak to how inimicable vulnerabilities in

long forgotten libraries can be.

6.2.1.2 These Models Assume a Product in Isolation

A significant limitation of these models is their narrow scope. VDMs and ASMs focus

only on the software itself and omit any mechanism for modeling the role played by

the attacker(s).

Both VDMs and ASMs quantify security by measuring the intrinsic properties

of the software itself. Neither VDMs or ASMs capture the complexity involved in

exploiting software today wherein attackers chain together multiple vulnerabilities
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from different parts of the system in order to subvert protections. [OS12a, OS12b].

VDMs try to find the software defects that may become exploitable vulnerabil-

ities. This meant that VDMs are blind to any type of exploitation that does not

manifest as a fault during execution. Testing platforms that rely on such models

are likely to find violations of memory handling, such as buffer overflows and use

after free errors, but are not well suited for finding weaknesses that result in hidden

functionality or information leakage. [The16]

6.2.1.3 Corollary: These Models Ignore the Ecosystem

The flipside of a model’s focus being limited to intrinsic properties is that there is

little or no focus on the extrinsic properties. That is, those characteristics of the rest

of the system that may affect whether a vulnerability is found and exploited.

With VDMs, the density of vulnerabilities, or the rate vulnerability discovery

is measured entirely by examining the source code itself, there is no mechanism to

account for any additional variables that may affect the security of the product (or

release) that come from its interaction with its environment, (e.g., the Honeymoon

Effect, exploit market value, product market share, attacker interest, scripted tools,

etc.).

With ASMs, the environment is defined as external to the software being modeled.

In fact, the software’s attack surfaces are isolated to the subset of the system that

have direct input to the software. [MW08]

Yet, by its very nature, no piece of software operates in isolation. Software by

one vendor is often dependent on hardware and firmware and software developed by

others, including shared libraries, APIs and other second and third party applica-

tions. Simply put, software functions as part of a complex ecosystem. Moreover,

in today’s increasingly interconnected world, a single software application is likely

to be running on a device which is connected to any number of other devices and
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Figure 6.1: The Environment pictured as external to the system in Attack Surface
Models. Courtesy of [MW04]

systems. 4 This complex relationship results in unexpected interactions that are not

addressed by the models.

6.2.2 These Models Limit the Investment of Resources to

Only One Stage of the Software Lifecycle

The result of these models is that limited to a particular release, their benefit is only

applicable at one stage in that release’s lifecycle. That is, these models expect high

resource investment either early in the software planning and development stages or

after completion in the software testing phase.
4such connections include networks, servers, printers...

149



VDMs are in the latter category. Like defect discovery models, VDMs can be

useful for determining product readiness to release, but most can be applied to data

acquired only after a vulnerability has been reported, in the hopes of determining

the total number of remaining vulnerabilities or the likelihood of those remaining

being exploited. Such passive strategies are not well suited for an environment with

a fast moving, intelligent adversary. Additionally, these models offer little insight to

help vendors protect software already released.

The ASMs fall into the first category. An ASM require significant analysis of the

source code and its communication channels and call graph to determine values for

its variables. Damage potential and damage effort must be estimated well in advance

of product release, thus unable to incorporate new information from the constantly

changing computer security environment. Additionally, ASMs high upfront resource

investment conflicts with the current trend toward Agile programming methodology.

The difficulty of isolating software from its environment has long been recognized

as a primary source of software compromise. [oHS06, Gur15] A model which can

capture this behavior, must necessarily think of a product’s security in relation to

its ecosystem.

6.3 Introducing A Framework For A

Dynamic/Adaptive Software Ecosystem Model

(The DASEM Model)

“The excessive increase of anything causes a reaction in the opposite
direction.” (Plato)
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6.3.1 The Requirements of a Security Ecosystem Model

If strictly software engineering models are not sufficient to describe the software

security ecosystem, what characteristics must a model have to be useful in a complex

and dynamic security ecosystem?

Observe that implicit in any ecosystem model, are four key concepts.

1. An organism in an ecosystem interacts in some way with its environment and

with any (or all) other member organisms.

2. The system is dynamic, subject to change, (possibly disruptive), by any or-

ganism in the ecosystem, and that organisms within the ecosystem are acted

upon by and affected by other members of the system.

3. Throughout its lifecycle, an organism competes for resources. This competition

results in cycles. An organism can undergo any number of cycles. These cycles

result in an “evolutionary arms race” between organisms in the ecosystem. We

note that in the software security ecosystem, there are intelligent adversaries

with competing goals, which adds complexity.

4. Changes to independent organisms in the ecosystem can result in alterations

of the system that can be harmful or beneficial to any other member organism.

In order to address these concepts, a descriptive model of the software security

ecosystem must have the following features:

• Mechanisms for monitoring the environment to detect and recognize attacks.

Many useful tools are available such as, IDSes, Honeypots, Antivirus, some of

the latest versions of these incorporate adaptive machine learning algorithms to

speed response time, but as many of the extrinsic properties affecting whether

a vulnerability will be found and exploited are still not well understood, much

more research needs to be done.
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• Mechanisms to detect extrinsic beneficial ecosystem changes.

• Analysis tools and models to understand the properties and effects of these

changes. This includes, learning from new attacker techniques, determine viril-

ity(likelihood of spread), changes to attack surfaces, fuzzing for new similar

vulnerabilities, criticality, cost to patch. Such tools include Attack Surface

Metric models and Vulnerability Discovery models, Fuzz-testing. (N.B., al-

though these models have limitations, they can still be valuable tools employed

as part of a larger defensive strategy.)

• Mechanisms and Tools for Risk, ROI and Cost-benefit analysis. To adapt ef-

ficiently and economically to changes in the environment, it is necessary to

answer questions such as where to place resources, (e.g., in fuzz-testing, patch-

ing, defect/vulnerability discovery), or patch design, e.g., should a patch fix

a specific vulnerability, or should a full rewrite of modules be carried out to

eliminate this class of attack from all future releases (examples of this include

ASLR, Heap randomization and stack canaries.) [Mic16]

• Mechanisms for adaptation. Such methods should include Rapid-Release Cy-

cles, and Continuous Patching or Update Cycles which operate without cus-

tomer interaction. [Laf10, Cor13, Bak]

6.3.2 Is There A Model To Use As A Template?

Boyd’s OODA Loop [Boy95] model appears to have many of the characteristics

our model requires. Indeed, it has been shown to be quite useful when applied

to the security of computer systems. Recent research in areas such as malware

detection[Bra12, Pad16, Bil08], threat modeling[HAK07], metrics for security deci-

sion making[PR12] and designing dynamic security protocols[CBS12] have attempted

to incorporate Boyd’s active defensive strategy to preemptively predict and remove
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vulnerabilities before they can be exploited, to contain an attacker, or to channel a

successful attack to a lesser target to mitigate damage.

However, the OODA Loop model as specified by Boyd is not a plug-and-play fit

to model the computer security ecosystem for a number of reasons.

First: Boyd applied his original model to a particular type of war fighter ex-

perience: Combat between fighter pilots. In fact, the OODA Loop model assumes

scenarios where the attacker and defender can switch places., i.e., where the de-

fender can attack back. There is no similar situation in the computer security world.

Instead, the computer security ecosystem divides into strictly offensive and strictly

defensive sides.

Second: The OODA Loop model is designed for a simple system. Combat be-

tween fighter planes is one on one or few on few. This is not the case in the computer

security ecosystem. Unknown attackers, (i.e., the hostile organisms), are numerous.

The computer security ecosystem is asymmetric.

Third: The OODA Loop models a competition between equals or at the very

least against a known and well understood opponent. The attacker/defender arms

race faced by any organism in the ecosystem of a software product is anything but

a fight between equals. Attackers vary in resources, goals, abilities. The computer

security ecosystem is diverse and heterogeneous.

Fortunately, with a few additions, the four stages of the OODA Loop model can

be adapted to fit a dynamic computer security ecosystem. Starting with this as a

framework, the top-level view of the model would seem to need only the addition of

feedback loops returning to each of the intermediate stages, and the addition of a

conduit for new information to pass directly into the third stage. Nonetheless, the

model also needs some conceptual modifications to capture the interactions between
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The Computer Security Ecosystem
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Figure 6.2: The Computer Security Ecosystem; Any system is vulnerable not just
to external attack, but to attack by any compromised member of the ecosystem.

the hostile and benign organisms in the system.

Figure 6.2 describes the ecosystem of a typical software product. Note that

in this model, a system is vulnerable to attack not just from external malicious

organisms, but by compromised benign external organisms, and compromised third-

party resources that may be considered part of the system itself and therefore allowed

inside the security perimeter of the system. Figure 6.3 introduces a framework for

a new type of model, a Dynamic/Adaptive Security Ecosystem Model (DASEM)

and shows the modifications that would be necessary to make to the OODA Loop

in order to capture the interactions of these extrinsic properties with the system.

For clarity, the 4 stages have been renamed to fit their commonly used computer
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Monitor Analyze Trade-Offs Implement

Adapting the OODA Loop for the 
Computer Security Ecosystem: The 

DASEM Model
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Results
Results
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System S1

Figure 6.3: The addition of feedback loops between internal stages, the encapsula-
tion of the Monitor and Analyze stages and the recognition that the encapsulated
stages occur concurrently with the other stages in each iteration, rather than consec-
utively, are necessary to adapt the OODA Loop into a model to adequately describe
a dynamic software security ecosystem.

security analogues. The Monitor (equivalent to Boyd’s Observe) stage, the Analyze

(equivalent to the Orient) stage, the Trade-Offs (equivalent to the Decide) stage,and

the Implement (equivalent to the Act) stage. The additions to the model are not

large, but they are significant in making it fit reality.

The first set of changes needed are the addition of feedback loops between the

internal stages of the model. Specifically, these are new lines of communication

necessary to provide information flow to the Analysis and Trade-Offs stages as well

as the Monitor stage. This is necessary because in the security ecosystem, attacker
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and defender interaction is not a one-on-one competition between relative equals.

In computer security, systems are constantly under attack from varied and multiple

sources simultaneously.

The next change is in how the ’loop’ of the model functions. The chief character-

istic of this model, unlike the OODA Loop, where the adherent moves sequentially

through the model from the first stage to the last, the DASEM model does not

operate as a closed loop.

Instead, the Monitor and Analyze stages actually operate simultaneously and

concurrently with the Trade-Offs and Implement stages. After all, a software system

shouldn’t turn of its IDS or stop fuzz-testing for new vulnerabilities while it has

reached the Trade-Off stage with regard to a vulnerability discovered in an earlier

iteration.

The last important change is illustrated in Figure 6.4. In computer security, sys-

tems use many defensive tools to find vulnerabilities, and recognize attacks. The set

of tools is made up of applications and devices that monitor intrinsic properties such

as software testing scripts, and others that are focused on properties extrinsic to the

system, such as IDSes and antivirus programs. These tools tend to be independent of

each other, thus they provide an incomplete picture of the ecosystem. The increased

information flow between the Monitor and Analyze stages provides for correlation

between the information gleaned from disparate detection and the results obtained

from the analyzation tools. The DASEM model allows for this by encapsulating

the Monitor and Analysis stages together. This encapsulation signifies the biggest

change to the original OODA Loop. The concurrent operation and intercommunica-

tion between the activities of these two stages increases the likelihood of recognizing

whether the threat results from extrinsic or intrinsic properties. It also captures po-

tentially malicious communication between hostile and trusted third-party members

of the ecosystem that would be missed by typical detection tools.
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Figure 6.4: Close-up view of the Extrinsic Interactions of the Ecosystem with the
Dynamic/Adaptive Security Ecosystem Model Monitor and Analysis Stages
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Figures 6.5 and 6.6 illustrate the details of the individual Monitor and Analyze

stages. Additional important features to note are that in both the Monitor and

the Analysis stages, a developer needs to make use of as many of the current tools

for attacker identification, vulnerability detection, vulnerability removal and system

protection available to her. This includes keeping abreast of current research includ-

ing an awareness of vulnerabilities found in other developer’s products (the product

modeled may be similarly vulnerable, or a compromise of that other developer’s

product may be used to attack this one).

In the Trade Offs stage, shown in Figure 6.7, not only should risks vs. benefits

be studied, resources should be allocated, and decisions about what tools to retire

or add to the toolboxes of the Monitor and Analyze stages should be made. The

decisions made in this stage result in a set of change or actions to be taken.

Finally, Figure 6.8 shows the Implement stage. The important feature of this

stage, is that what ever the set of actions that result from the Trade-offs stage, they

should be executed with alacrity. Recognizing that an ecosystem is never static,

it is obvious that adaptation needs to be done as soon after the decision to act as

possible.

6.4 Discussion

“All have their worth and each contributes to the worth of the others.”
(J.R.R. Tolkien, The Silmarillion)

A key concept behind DASE is not to model every single possible interaction

between all members of the ecosystem for each iteration of the model. That is

impossible even for any moderately complex system. The intention isn’t to predict

every possible vulnerability, or to identify every possible attack vector. Instead, the

DASE model seeks to enhance communication and information flow to facilitate the

best use of available resources. Such a framework would make it possible to decide
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quickly whether a threat comes from an extrinsic or intrinsic property, to determine

the characteristics of that threat, and to provide the data necessary to evaluate risk.

The framework illustrated by the DASE model is designed to magnify the chances

of recognizing the relationship between extrinsic and intrinsic properties, to analyze

their effects singularly and in combination with other members of the ecosystem,

and especially to make it possible to adapt quickly, implementing changes, making

minimal and cost-effective trade-offs for negative properties and taking advantage of

beneficial ones. The DASE model has not been validated, and is not expected to

have predictive power, but any model capable of describing a computer ecosystem in

the face of an (or possibly many) intelligent adversary, as well as providing insight

into timely, low-cost adaptation must, at a minimum, possess these properties.

6.5 Final Thoughts

The limitations of prior models share a predominant characteristic, namely the pre-

sumption that the environment containing the software is static. That is, that the

surrounding system in which the software functions and on which it may depend

(such as hardware, firmware, communications buses or shared libraries), is fixed and

unchanging, a blackbox about which the model makes a single, definite assumption.

(e.g., in the case of ASMs: ’This is not a security risk’, or ’This is an attack vec-

tor with a fixed potential-effort value’; in the case of VDMs: The environment is

irrelevant to the model.)

This is understandable, since the software engineering models that measure func-

tionality and reliability consider each developer’s software product, even those incor-

porating open source and GPL licensed code in their product, independently of each

other, regardless of how many of these products may be in operation on a single sys-

tem at any given time. In these static models, only intrinsic properties matter. But
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the phenomenon of the Honeymoon Effect describes an extrinsic property. Its exis-

tence suggests that the presence of living, intelligent adversaries in the environment

means the software security ecosystem is dynamic, not static. The results of this

dissertation provide evidence that there exists at least one extrinsic property that

affects the robustness of the security of a software system. 5 This strongly suggests

that the problems cannot be solved exclusively through software engineering means,

and that Software Quality != Software Security.

“If you know your enemy and you know yourself you need not fear the
results of a hundred battles. If you know yourself but not the enemy for
every victory gained you will also suffer a defeat. If you know neither
the enemy nor yourself you will succumb in every battle.” (Sun Tzu, The

Art of War: Chapter III - Strategic Attack)

5There may be many others, but one is sufficient to prove my point.
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Appendix A

Glossary

Active Vulnerability: Vulnerability that affects a given version of software while

that version is the most current available.

ASLR: Address Space Layout Randomization.

BUGID: Mozilla Firefox Defect Identifier.

CVE: Common Vulnerability Enumeration - Vulnerability numbering system em-

ployed by NVD.

DASEM Model: Dynamic/Adaptive Software Ecosystem Model.

DDR: Defect Density Rate.

DHS: Department of Homeland Security (USA).

DkD: Known Defect Density Measure.

ESR: Mozilla Firefox Extended Support Release

Extrinsic Property: Any characteristic of the environment in which the software

operates (outside of the control of the product developer).
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Foundational Version: The originating version of a software product.

Foundational Vulnerability: Vulnerability which affects the original codebase on

which subsequent versions were based.

Honeymoon Effect: The unexpected grace-period wherein the time to discover

and exploit vulnerabilities in new code appears to be dependent on the at-

tacker’s familiarity with the code.

Honeymoon Period: The time between release of software and the first discovery

vulnerability.

Honeymoon Ratio: The ratio between the intervals of the Honeymoon Period and

the period of time between first and second vulnerabilities.

Inactive Vulnerability: Vulnerability no longer exploitable as a result of being

obsoleted by a new code release.

Intrinsic Property: Any property or characteristic of a software product that can

directly controlled by the developer, such as, programming language, addition

of features, patch release rate, etc.

ISO: International Standards Organization.

LOC: Lines of Code.

MFSA: Mozilla Firefox Security Advisory.

MTTB: Mean Time to Breakdown.

MTTF: Mean Time to Failure.

Negative Honeymoon Period: When the time to discovery of first vulnerability

for a release is shorter than the time to discovery of subsequent vulnerabilities.
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New Vulnerability: Vulnerability that affect the current version of code at the

time of disclosure but that do not affect previous versions.

NVD: NIST National Vulnerability Database.

Positive Honeymoon Period: When the time to discovery of first vulnerability

for a release exceeds the time to discovery of subsequent vulnerabilities.

Progressive Vulnerability: Vulnerability discovered and disclosed in new (non-

legacy) code.

Regressive Vulnerability: Vulnerability discovered and disclosed in code after the

version in which it was introduced has been obsoleted by a more recent version.

RRC: Rapid-Release Cycle Development Methodology; Also Mozilla Firefox Rapid-

Release Versions.

SDL: Microsoft Security Development Lifecycle.

SDM: Software Defect Model.

SRM: Software Reliability Model.

SWE: Software Engineering (Model).

VDD: Vulnerability Density Discovery (Model).

VDR: Vulnerability Discovery Rate (Model).

VkD: Known Vulnerability Density Measure.

Vulnerability: a security flaw, glitch, or weakness that permits an attacker to re-

duce security assurance.

Zero-Day Vulnerability: A security threat that is known to an attacker which

may or may not be known to a defender and for which no patch or security fix

has been made available (also known as an 0-day).
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Appendix B

Supplemental Data for the

Honeymoon Effect

The results shown in chapter 3 display the data graphed on a log-scale. This appendix

contains graphs of the same data displayed on a true-scale to provide readers with

additional means to interpret the results. This appendix also contains additional

statistical data concerning the days to first vulnerability.

Figure B.1 show OS honeymoon ratios on linear scale. Compare this to Fig-

ure 3.4.

Figure B.2 the Server applications honeymoon ratios on linear scale. Compare

this to Figure 3.5.

Figure B.3 the User applications honeymoon ratios on linear scale. Compare

this to Figure 3.6.

Figure B.4 the Open Source honeymoon ratios on linear scale. Compare this to

Figure 3.7.
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Figure B.1: Honeymoon ratios of p0/p0+1, p0+1/p0+2 and p0+2/p0+3 for major oper-
ating systems. (Note that a figure over 1.0 indicates a positive honeymoon).

 0

 5

 10

 15

 20

 25

 30

 35

 40

Apachehttpserver

Apachetomcat

Asterisk

Bind
Firefox

Rsync
Openldap

Php
Postgresql

WinWebServer2003

Medians of Ratios of Primal to Subsequent for Server Applications

Days to Zero:Days to Second
Days to Second:Days to Third
Days to Third:Days to Fourth

Figure B.2: Honeymoon ratio of p0/p0+1, p0+1/p0+2 and p0+2/p0+3 for common server
applications
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Figure B.3: Honeymoon ratios of p0/p0+1, p0+1/p0+2 and p0+2/p0+3 for common user
applications
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Figure B.4: Ratios of p0/p0+1 to p0+1/p0+2 and p0+2/p0+3 for open source applications

US

Figure B.5 the Closed Source honeymoon ratios on linear scale. Compare this
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to Figure 3.8.
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