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Continuity In Enriched Categories And Metric Model Theory

Abstract
We explore aspects of continuity as they manifest in two separate settings - metric model theory (continuous
logic) and enriched categories - and interpret the former into the latter. One application of continuous logic is
in proving that certain convergence results in analysis are in fact uniform across the choices of parameters:
Avigad and Iovino outline a general method to deduce from a given convergence theorem that the
convergence is uniform in a ``metastable'' sense. While convenient, this method imposes strict requirements
on the kinds of theorems allowed: in particular, any functions occurring in the theorem must be uniformly
continuous. In aiming to apply to a broader class of examples the Avigad-Iovino approach, we construct a
variant of continuous logic that is able to handle discontinuous functions in its domain of discourse. This logic
weakens the usual continuity requirements for functions, but compensates by introducing a notion of ``linear
structure'' that mimics e.g. the vector space structure of Banach spaces. We use this logic to apply the Avigad-
Iovino method to specific convergence results from functional analysis involving discontinuous functions, and
obtain uniform metastable convergence in those examples. This is the project of the first part of this thesis.

The second part of the thesis continues this study of continuity from a different angle, starting from where
Lawvere shows that enriching a category over R with the appropriate monoidal structure turns that category
into a metric space. He even muses on the notion of an ``R-valued logic'', but does not make the connection
to continuous logic (primarily because continuous logic did not yet exist). We introduce necessary structure
that enables us to have a notion of ``uniform continuity'' and ``continuous subobjects'' in an enriched
categorical setting, and use this to give an interpretation of continuous logic into a certain category of R-
enriched categories.
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ABSTRACT

CONTINUITY IN ENRICHED CATEGORIES AND METRIC MODEL THEORY

Simon Cho

Henry Towsner

Robert Ghrist

We explore aspects of continuity as they manifest in two separate settings - metric model

theory (continuous logic) and enriched categories - and interpret the former into the latter.

One application of continuous logic is in proving that certain convergence results in analysis

are in fact uniform across the choices of parameters: Avigad and Iovino [5] outline a general

method to deduce from a given convergence theorem that the convergence is uniform in a

“metastable” sense. While convenient, this method imposes strict requirements on the kinds

of theorems allowed: in particular, any functions occurring in the theorem must be uniformly

continuous. In aiming to apply to a broader class of examples the Avigad-Iovino approach,

we construct a variant of continuous logic that is able to handle discontinuous functions in

its domain of discourse. This logic weakens the usual continuity requirements for functions,

but compensates by introducing a notion of “linear structure” that mimics e.g. the vector

space structure of Banach spaces. We use this logic to apply the Avigad-Iovino method to

specific convergence results from functional analysis involving discontinuous functions, and

obtain uniform metastable convergence in those examples. This is the project of the first

part of this thesis.

The second part of the thesis continues this study of continuity from a different angle,

starting from [27] where Lawvere shows that enriching a category over R with the appropri-
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ate monoidal structure turns that category into a metric space. He even muses on the notion

of an “R-valued logic”, but does not make the connection to continuous logic (primarily

because continuous logic did not yet exist). We introduce necessary structure that enables

us to have a notion of “uniform continuity” and “continuous subobjects” in an enriched

categorical setting, and use this to give an interpretation of continuous logic into a certain

category of R-enriched categories.
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Part I

A variant of continuous logic
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Chapter 1

Introduction

Metric model theory is the study of the model-theoretic properties of metric spaces and

uniformly continuous maps between them, as compared to classical model theory, which is

the study of the model-theoretic properties of sets and set functions between them. There

are a few (essentially equivalent) formulations of the logic interpreted by metric model

theory, continuous logic being one such. We will explore how modifying certain continuity

requirements in continuous logic can broaden the applicability of metric model theory to

results in analysis.

Kohlenbach and others ([3], [4], [10], [16], [17], [19], [21]) have applied “proof mining”

techniques to various convergence and fixed point existence results found in e.g. func-

tional analysis to extract computable and uniform bounds from proofs that do not a priori

provide such information. Here “uniform” is taken to mean “uniform in the specific func-

tions/operators and the spaces on which they act”.

Motivated by these earlier approaches, Avigad (one of the authors of [3], [4]) and Iovino

used [5] the model-theoretic machinery of continuous first order logic, in which a metric on
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the space replaces the equality predicate, to show at least the existence of such uniformity

in many of the cases to which Kohlenbach’s proof mining technique applies.

On the one hand, the Avigad-Iovino approach is more conveniently accessible to math-

ematicians working in fields other than logic. On the other, the continuous logic framework

powering this elegant approach imposes rather stringent uniform continuity requirements

on its objects of discourse. Indeed, Kohlenbach notes (for example in [18]) two advantages

of his own method: one, that his proof mining is able to provide, in fact compute, the

actual uniform bound, and two, the proof mining method is in a sense more robust in that

it can treat cases in which the function or operator in question may have some desirable

properties but is possibly discontinuous.

It is this second point that we address: we construct a variant of continuous logic

(which we term geodesic logic) that weakens in a precise sense the continuity requirements

of continuous logic but introduces a formalized notion of “linear structure” which allows

us to sufficiently compensate for the resulting loss of control in the absence of continuity.

Using this new framework we are able to apply Avigad-Iovino’s method to a broader class

of examples, in particular cases ([9], [15], [34]) in which the function in question is allowed

to be discontinuous. These examples, successfully treated via the proof-theoretic approach

in [22], were previously out of reach of Avigad-Iovino’s model-theoretic approach.

1.1 The Avigad-Iovino method

In order to provide context for the specific applications of geodesic logic mentioned above,

we first consider the following illustration of the Avigad-Iovino method based on the usual

continuous logic:
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Example 1.1. Let B be a reflexive Banach space and consider an operator T : B → B.

For f ∈ B, we have its nth ergodic average Anf = 1
n

∑
m<n

Tmf .

A version of the mean ergodic theorem states that if T is power bounded (i.e. ∃M such

that ||Tn|| ≤ M for all n ∈ N), then given any element f of B, the sequence {Anf} of

ergodic averages converges.

(That is, there is some K : R<0 → N such that given any ε > 0, for all i, j ≥ K(ε), we

have that ||Aif −Ajf || < ε.)

1.1.1 Metastability

One might ask if there is some sense in which the above convergence is uniform across all

such spaces B, operators T , and elements f of B. If we are asking for uniformity in the sense

of Cauchy convergence, i.e. for a K (in the notation of Example 1.1) that is independent

of the specific choice of B, T , and f , the answer is a resounding no: it is known that

this convergence can be made arbitrarily slow [25]. However, we might ask for a weaker

uniformity, in the following sense:

Definition 1.2. Let {xn} be a sequence of points in a metric space (X, d).

Given a function F : N → N, we say that bF : R>0 → N is a bound on the rate of

metastability of {xn} with respect to F if for each ε > 0 there exists an n ≤ bF (ε) such that

for all i, j ∈ [n, F (n)], we have that d(xi, xj) < ε.

If such a bound bF exists, we say that {xn} converges metastably with respect to F .

Remark 1.3. The first explicit bounds on metastability were extracted in [20], after which

many other papers in proof theory on this topic were published, among them that of Avigad,

Gerhardy, and Towsner in [4]; the name “metastability” is due to Tao [36]. Logically
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speaking, metastability is a special case of Kreisel’s no-counterexample interpretation [23],

[24].

It is easy to verify that a sequence {xn} converges in the Cauchy sense if and only if it

converges metastably with respect to every F : N→ N:

Proposition 1.4. Let {xn} be a sequence of points in a metric space (X, d). The following

are equivalent:

(a) There exists some K : R+ → N such that for every ε > 0 and for all i, j ≥ K(ε), we

have that d(xi, xj) < ε.

(b) For each F : N→ N, {xn} converges metastably with respect to F .

Proof. (a) ⇒ (b): Given any F : N→ N, define bF by bF (ε) = K(ε).

(b) ⇒ (a): Assume that {xn} fails to be Cauchy convergent, i.e. there is some ε > 0

such that for every n ∈ N, we can find in, jn ≥ n such that d(xin , xjn) ≥ ε. Let us define

F : N → N as F (n) = max(in, jn). Then {xn} fails to be metastably convergent for this

F .

Therefore if a convergence result (e.g. the mean ergodic theorem) guarantees conver-

gence for a class C of pairs ((X, d), {xn}) satisfying certain conditions, then - despite not

having uniform Cauchy convergence in the sense of having a K (in the notation of Example

1.1 and Proposition 1.4 (a)) that is uniform across all members of C - we might ask that,

once we specify some F : N→ N, whether there is a bound bF on the rate of metastability

with respect to this F which is uniform across C.

In the case of the mean ergodic theorem, if we restrict to certain reasonable classes C

of Banach spaces B (e.g. the class of uniformly convex Banach spaces for a fixed modulus
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of uniform convexity) and ergodic averages of points in a uniformly bounded subset of each

B, the question above has a positive answer, as shown in [5] using continuous logic:

Theorem 1.5. ([5])

Let C be any class of Banach spaces with the property that the ultraproduct of any

countable collection of elements of C is a reflexive Banach space. For every ρ > 0, M , and

function F : N → N, there is a bound b such that the following holds: given any Banach

space B in C, any linear operator T on B satisfying ||Tn|| ≤ M for every n, any f ∈ B,

and any ε > 0, if ||f ||/ε ≤ ρ, then there is an n ≤ b such that ||Aif − Ajf || < ε for every

i, j ∈ [n, F (n)], where Ak = 1
k

∑
m<k

Tmf .

Notice, in particular, that the operator T : B → B above is uniformly continuous. This

allows for the problem to be formalized in continuous logic, and the additional conditions on

B, T , and f ∈ B then guarantee that the above particular sequence of iterations involving

T converges to a fixed point. One then finds via an argument that crucially utilizes the con-

tinuous ultraproduct (see Theorem 2.7) that there is a uniform bound on the metastability

of this convergence that is independent of the particular choice of B, T , and f .

1.1.2 Handling cases with possible discontinuity

In [9], [15], [34] one has a similar situation except that T is in general discontinuous, and so

prevents the problem from being formalized in continuous logic, which requires all functions

to come with moduli of uniform continuity. Specifically, consider the following:

Example 1.6. [9], [34]

(a) Let B be a Banach space, C ⊂ B a bounded convex subset, and T : C → C a function
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satisfying, for some fixed λ ∈ (0, 1),

∀x, y ∈ C, λ||x− Tx|| ≤ ||x− y|| ⇒ ||Tx− Ty|| ≤ ||x− y||.

Then [34] shows that given any x1 ∈ C, the sequence {xn} given by

xn+1 = (1− λ)xn + λTxn

satisfies d(xn, Txn)→ 0.

(b) If in addition to the above we also have that C is compact and, for some fixed µ ≥ 1,

∀x, y ∈ C, d(x, Ty) ≤ µd(x, Tx) + d(x, y),

then [9] shows that the sequence {xn} of (a) converges to a fixed point x of T .

One might ask for a uniform bound on the rate of metastability for the convergence

d(xn, Txn) → 0 of (a) and for the convergence {xn} → x of (b). However, this problem is

not formulable in continuous logic, because T is in general discontinuous; Example 2.8 gives

a simple instance of T : C → C satisfying both (a) (for λ = 1
2) and (b) (for µ = 3) [34].

The idea behind geodesic logic is first to notice that the analytic arguments in the proofs

of Example 1.6 all revolve around the construction and properties of the sequence {xn} of

“iterated linear interpolations”, which only relies on the underlying vector space structure.

Geodesic logic abstracts this vector space structure to a general “linear structure” defined on

(pseudo)metric spaces that interacts with the (pseudo)metric as expected, while dropping

the continuity requirement for functions (but not for predicates and connectives). In doing
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so, geodesic logic is able to (1) formalize classes of examples such as the above which depend

not on continuity of functions but rather an underlying linear structure on the space, while

(2) preserving all of the necessary properties of the usual continuous logic that enable the

Avigad-Iovino method to apply to such examples. In particular, we obtain (general versions

of) the following uniformization of Example 1.6:

Theorem 1.7.

(a) Let B be a Banach space, C ⊂ B a convex subset with diameter bounded above by

some fixed D, and T : C → C a function satisfying the condition of Example 1.6 (a).

Given any x1 ∈ C, let {xn} be the sequence defined by xn+1 = (1− λ)xn + λTxn.

Then given F : N→ N, there is a bound bF on the rate of metastability for the sequence

dn = d(xn, Txn), which is uniform across all choices of B, C, T , and x1 satisfying

the above conditions.

(b) If in addition to the above we have that C is totally bounded with some fixed modulus

of total boundedness β : N→ N and T satisfies the condition of Example 1.6 (b), then

given F : N→ N there is a bound bF on the rate of metastability for the sequence {xn}

which is uniform across all choices of B, C, T , and x1 satisfying the above conditions.

We describe geodesic logic in Chapter 3 after outlining the features of the usual continu-

ous logic and the Avigad-Iovino method in Section 2. We then describe in detail the analytic

aspects of the examples of [9], [15], [34] in Chapter 4. Finally in Chapter 5 we show that

geodesic logic is indeed able to handle the relevant features of such examples, thus enabling

the Avigad-Iovino approach to yield (Theorem 5.6 and Theorem 5.9) a uniform bound on

the rate of metastability for the sequences in question.
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We thus illustrate the applicability of geodesic logic with specific examples involving

iterated linear interpolation, and given the prevalence of linear interpolation arguments in

e.g. functional analysis, we expect this variant of continuous logic to meaningfully broaden

the scope of the applicability of metric model theory to such disciplines.
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Chapter 2

Preliminaries

2.1 Syntax and interpretation

We first describe the features of continuous first order logic relevant to our current interests:

more details can be found in e.g. [6].

Definition 2.1. ([6])

Let (X, d) be a complete, bounded metric space. We have the following definitions:

(a) (i) An (n-ary) function f on X is a uniformly continuous function f : Xn → X.

(ii) An (n-ary) predicate R (with range a) on X is a uniformly continuous function

R : Xn → [0, a].

(iii) A constant c on X is an element c ∈ X.

(b) Given some (possibly empty) distinguished family {fi, Rj , ck | i ∈ I, j ∈ J, k ∈ K} of

functions, predicates, and constants on X, we call this data

X = (X, d, fi, Rj , ck | i ∈ I, j ∈ J, k ∈ K)
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a metric structure.

In the above, we always consider Xn as equipped with the maximum metric, i.e.

dXn(x, y) = max
1≤m≤n

d(xm, ym) for x = (x1, . . . , xn) and y = (y1, . . . , yn).

Given such a metric structure X , we can talk about the signature corresponding to that

structure, which is the collection of names of the various objects that comprise the metric

structure:

Definition 2.2. ([6])

Let X = (X, d, fi, Rj , ck | i ∈ I, j ∈ J, k ∈ K). A signature S for X consists of:

(a) A symbol d corresponding to the metric d of X, and a nonnegative real number DX

specifying an upper bound for the diameter of X.

(b) For each function fi : Xn → X, a function symbol fi and a modulus of uniform

continuity δfi : R → R for fi (i.e. a function δfi such that dXn(x, y) < δfi(ε) implies

d(fi(x), fi(y)) < ε).

(c) For each predicate Rj : Xn → [0, aj ], a predicate symbol Rj (and a symbol for the

range aj of Rj) and a modulus of uniform continuity δRj : R→ R for Rj .

(d) For each constant ck ∈ X, a constant symbol ck.

Conversely, if S is some signature and X is some metric structure for whom the symbols

of S satisfy the above conditions, then X is called an S-structure.

Following the authors of [6], we will assume for simplicity’s sake that DX = 1 and aj = 1

throughout. Also, we reserve the right to abuse notation by reusing the index set I in other

contexts possibly unrelated to the above definitions.
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Given a signature S - which specifies the vocabulary of the language in which we can

speak - we can talk of (first-order) formulae and sentences in the language. First, we say

that the logical symbols of S include d (which plays the role of equality in classical first-

order logic, where d(x, y) = 0 is analogous to the classical statement x = y); an infinite set

VS = {xi | i ∈ I} of variables, for I some index set (a priori unrelated to the set indexing the

function symbols of S); a symbol u for each continuous function u : [0, 1]n → [0, 1] (which

plays the role of n-ary connectives); and the symbols sup and inf which are analogous to

the classical quantifies ∀ and ∃, respectively.

We then say that the nonlogical symbols of S are the function, predicate, and constant

symbols of S. The cardinality |S| of S is the smallest infinite number ≥ the cardinality of

the set of nonlogical symbols of S.

Definition 2.3. ([6])

Let S be a signature.

(a) A term for S is given by the following inductive description:

(i) Each variable and each constant is a term.

(ii) f(t1, . . . , tn) is a term when f is some (n-ary) function symbol and each ti is

itself a term.

(b) An atomic formula for S is given by an expression of the form P (t1, . . . , tn) where P

is some (n-ary) predicate symbol and each ti is a term. (The symbol d for the metric

is treated as a binary predicate symbol.)

(c) A formula for S is given by the following inductive description:
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(i) Each atomic formula is a formula.

(ii) u(φ1, . . . , φn) is a formula when u is some n-ary connective, i.e. a continuous

function [0, 1]n → [0, 1], and each φi is a formula.

(iii) sup
x
φ and inf

x
φ are each formulae when x is a variable and φ is a formula.

Many notions from classical first order logic carry over unmodified; subformulae of a

formula and substitution of a term for a variable are a few examples. We then say that if

a variable x occurs in a formula φ and x is not contained in any subformula of the form

sup
x
φ′ or inf

x
φ′ (i.e. x is not quantified over), then x is a free variable in φ. A formula φ

that has no free variables is called a sentence.

Often we will write a term t as t(x1, . . . , xn) to make it clear which (distinct) variables

occur in t. Similarly we write a formula φ as φ(x1, . . . , xn) to make it clear which are the

(distinct) free variables occurring in φ.

If φ is a formula with no free variables, then φ is called a sentence (also called an

S-sentence, when we are working within a signature S).

Given a signature S with its attendant logical and nonlogical symbols, and a corre-

spondence between S and a metric structure X , it is clear what the interpretation of each

term and formula should be, since they are built up inductively out of functions, predi-

cates, and constants, the interpretation of which is a priori given via the aforementioned

correspondence. For complete details, see [6].

It is straightforward to verify that, from the moduli of uniform continuity of all the

functions and predicates that occur in a given formula, we can find a modulus of uniform

continuity for that formula.

Given two S-formulae φ(x1, . . . , xn) and ψ(x1, . . . , xn), we define their logical distance
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|φ− ψ| as

|φ− ψ| = sup
X ;x1,...,xn∈X

|φ(x1, . . . , xn)− ψ(x1, . . . , xn)|

and φ, ψ are said to be logically equivalent when |φ− ψ| = 0.

It is possible to restrict our (a priori uncountable) set of logical connectives to a more

manageable, countable set of connectives with a very compact description using the above

notion of logical distance and density with respect to said distance, and then to talk about

“definable” predicates (and functions, subsets, etc.) - but we will not outline this direction

in this paper, and instead refer the interested reader to [6] for details.

In continuous logic, we call formulae (resp. sentences) of the form φ = 0 conditions (resp.

closed conditions). These play the same role that formulae and sentence play in the usual

first-order logic. If φ and ψ are formulae then we can regard formulae of the form φ = ψ

as shorthand for the condition |φ−ψ| = 0. We can thus regard formulae of the form φ = r

for r ∈ [0, 1] as a special case of this, by considering r as a 0-ary connective. In continuous

logic we are usually content with models satisfying “arbitrarily close” approximations to a

given condition φ = r, so it suffices to restrict the set of 0-ary connectives r to Q ∩ [0, 1].

Similarly, we can regard φ ≤ ψ as the condition φ .−ψ = 0, where t1
.−t2 = max(t1−t2, 0).

If Σ is a set of conditions, then we denote by Σ+ the set of conditions φ ≤ 1
n for each n ∈ N

and each formula φ such that φ = 0 is in Σ. If Σ is a set of closed conditions, then we

say that X is a model of Σ when X satisfies every condition in Σ, where the notion of

“satisfaction” of a condition by a structure X is the obvious analogue of “satisfaction” as

defined in usual first-order logic. Clearly X is a model of Σ if and only if it is a model of

Σ+.
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2.2 The continuous ultraproduct

We now describe ultraproducts (in the sense of [6]), as they occupy a central role in both

[5] and this paper. For completeness’ sake, we start by defining ultrafilters:

Definition 2.4. Let I be a set.

(a) A (proper) filter on I is a set F ⊂ P(I) (where P gives the powerset of its argument,

and so F ∈ P(P(I))) satisfying the following:

(i) ∅ /∈ F .

(ii) F is upward closed, i.e. if A ∈ F and A ⊂ B, then B ∈ F .

(iii) F is closed under finite intersection, i.e. if A,B ∈ F then A ∩B ∈ F .

(b) A (proper) filter F on I is an ultrafilter on I if for every A ∈ P(I), either A ∈ F or

I \A ∈ F .

The condition (b) of the above definition for a filter F to be an ultrafilter given above is

equivalent to F being a maximal filter, where P(P(I)) is partially ordered with respect to

inclusion. An ultrafilter F is called principal if it is the ultrafilter generated by a singleton

set, i.e. F = {A ∈ P(I) | i0 ∈ A} for some i0 ∈ I (and of course, F is called nonprincipal

if it is not principal). In all of our constructions involving ultrafilters, we will assume that

our ultrafilter is nonprincipal.

Sometimes it is more convenient to talk of a filter base, where we say that F ′ ⊂ P(I) is

a base for a filter F (or that F ′ generates F) if F ′ satisfies (a)(i) of the above definition,

and it is downward closed, i.e. for A,B ∈ F ′, there is some C ∈ F ′ such that C ⊂ A ∩ B.

F is then the minimal filter containing F ′, i.e. F = {A ∈ P(I) | A′ ⊂ A,A′ ∈ F ′}. A

15



popular example of a nonprincipal ultrafilter is any ultrafilter containing the cofinite filter

on N (that is, the filter generated by the base {A ∈ P(N) | N \A is finite}).

Before we actually define the ultraproduct construction, we should note a few facts

which we will require. Let X be a topological space, and {xi} some family of points on X,

indexed by a set I. Let F be an ultrafilter on I. We say that x = lim
i,F

xi or that x is a

F-limit of the family {xi} when for every neighborhood U of x, we have {i | xi ∈ U} ∈ F .

If X is Hausdorff, this limit must be unique.

Definition 2.5. ([6])

Let S be some signature, and Xi a family of S-structures, indexed by some set I. Let

F be an ultrafilter on I.

Let X̃ =
∏
i
Xi be the cartesian product of the underlying spaces of Xi. There is an

induced function d : X̃ × X̃ → [0, 1] given by d((xi), (yi)) = lim
i,F

di(xi, yi).

Let ∼F be the equivalence relation on X̃ given by x ∼ y ⇔ d(x, y) = 0, and let

X = X̃/ ∼F .

We call X the F-ultraproduct of the spaces Xi. If all the Xi are the same, then we also

call X their F-ultrapower.

For each function, predicate, and constant symbol in S in the above definition, we have

a family {fi}, {Ri}, {ci} of functions, predicates, and constants interpreting those symbols

in each Xi. For each such family of objects, the above construction induces a corresponding

ultraproduct object. That is, given a family {fi : Xi → Xi} of functions, we have a function

f : X → X defined as f(x) = [(fi(xi))]F where (xi) is a representative of the equivalence

class of x in X and [(fi(xi))]F is the equivalence class of (fi(xi)) ∈
∏
i
Xi. (That f is well-

defined follows from the fact that all the fi share the same modulus of uniform continuity
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and from the way ∼ is defined.) Note that this f shares the same modulus of uniform

continuity with each of the fi.

Similarly we have that the {Ri} define a predicate R in the ultraproduct, and that the

ci define a constant c in the ultraproduct. Thus given a family of structures {Xi}, we have

not only an ultraproduct of their underlying spaces, but an ultraproduct of S-structures,

which is itself an S-structure.

Ultraproducts feature prominently in [5] as well as this paper, in large part due to the

following variant of  Los’s theorem, the moral content of which is that “a statement is true

of the ultraproduct if and only if it is mostly true of its factors.”

Theorem 2.6. ([6])

Let S be a signature, and {Xi} an I-index family of S-structures. Let F be an ultrafilter

on I, and X the F-ultraproduct of the {Xi} having X as its underlying space.

Let φ(x) be an S-formula, with {ai} a family of elements of Xi. Let a be the correspond-

ing element in X. Then:

φ(a) = lim
i,F

φ(ai)

The proof of the above theorem, which is actually more general (it is true of formulae

φ depending on any number n of free variables), is through induction on the complexity of

formulae.

Our (and [5]’s) interest in Theorem 2.6 lies in leveraging it to obtain the following

theorem (due to [5] but rephrased slightly here to better reflect the underlying logical

machinery), which is the main ingredient of the proof of Theorem 1.5:

Theorem 2.7. ([5])

17



Let S be a signature, and let {tn} be a sequence of S-terms.

Let C be a collection of S-structures X , and for each X let {xn} denote the interpretation

in X of the sequence {tn}.

Finally, let F be an ultrafilter on N. Then the following are equivalent:

(a) For every ε > 0 and every F : N→ N, there is some b ≥ 1 such that the following holds:

for every X in C, there is an n ≤ b such that d(xi, xj) < ε for every i, j ∈ [n, F (n)].

(b) For any sequence {Xk} of elements of C, let X be their F-ultraproduct. Then for

every ε > 0 and every F : N → N, there is an n such that d(xi, xj) < ε for every

i, j ∈ [n, F (n)].

Proof. (a) ⇒ (b): For any fixed 1
2ε > 0 and any fixed F : N→ N, there is some b ≥ 1 such

that every member X of C satisfies the condition

min
n≤b

(
max

i,j∈[n,F (n)]
d(xi, xj)

)
≤ 1

2ε, or more formally,

min
n≤b

(
max

i,j∈[n,F (n)]
(d(xi, xj)

.− 1
2ε)

)
= 0.

Since every member of C is a model of the above condition, any ultraproduct of members

of C must again be a model of this condition.

(b) ⇒ (a): If for some ε > 0 and some F : N → N there is no bound b such as in (a),

then for each k ∈ N, there is some Xk ∈ C that is a counterexample to k being such a bound.

That is, for each Xk, there is an n ≤ k such that dk(x
k
i , x

k
j ) ≥ ε for some i, j ∈ [n, F (n)].

Let X be the F-ultraproduct of these structures Xk.

Given any n, since there are cofinitely many k ≥ n, there are cofinitely many k such that

there exist i, j ∈ [n, F (n)] with dk(x
k
i , x

k
j ) ≥ ε. It follows that there is some specific pair

i, j ∈ [n, F (n)] such that dk(x
k
i , x

k
j ) ≥ ε for F-many k, so that d(xi, xj) = lim

k,F
dk(x

k
i , x

k
j ) ≥ ε
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for that choice of i, j. Since n was arbitrary, we see that (b) fails.

2.3 The role of continuity

The starring role of the continuous ultraproduct in this crucial theorem illustrates why

uniform continuity is necessary in applying the Avigad-Iovino approach to obtaining uni-

formity. Let us consider a toy example due to [34] which shows what can happen in the

absence of uniform continuity:

Example 2.8. ([34])

Let T : [0, 3]→ [0, 3] be defined by Tx =


0 for x 6= 3

1 for x = 3

.

Let F be an ultrafilter containing the cofinite filter on N, and let ([0, 3])F denote the

ultrapower of [0, 3] with respect to this ultrafilter.

The sequence {an = 3} represents the same point in the ultrapower as the sequence

{bn = 3 − 1
n}, while the sequences {Tan = 1} and {Tbn = 0} represent different points.

That is, the ultrapower of the function T fails to be well-defined. (This kind of phenomenon

is precisely what having a uniform modulus of continuity would prevent.)

Although the function given in Example 2.8 is discontinuous, it is an instance of a

function that is well behaved in other ways:

Definition 2.9. ([34])

Let X be a Banach space and C a nonempty subset. A function T : C → X is said to

satisfy condition (C) when for all x, y ∈ C,

1
2 ||x− Tx|| ≤ ||x− y|| implies ||Tx− Ty|| ≤ ||x− y||.
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Any nonexpansive mapping satisfies condition (C), but condition (C) is clearly weaker.

For instance, it is easily verified that the function in Example 2.8 satisfies condition (C).

[9] and [34] show how this condition can be leveraged, in the presence of certain other

topological conditions, to yield the existence of a fixed point to which a certain kind of

iteration sequence converges - we will describe this in detail in Chapter 4. The point is

that a function might be discontinuous yet satisfy conditions that guarantee convergence

to a fixed point, and so we might ask if the Avigad-Iovino approach to showing that such

convergence is uniform (in the sense of Theorem 1.5) could be adapted to settings in which

the objects in question are allowed to be discontinuous yet are nevertheless “nice” in other

ways, given the relative convenience of said approach.

We will show that this is indeed possible, by making slight modifications to the frame-

work of continuous logic. One particular modification is to weaken the equivalence relation

we quotient by when taking the ultraproduct. The usual equivalence relation forces the

resulting ultraproduct to be a strict metric space (which leads to problems of the type we

have seen above), while our modification produces an ultraproduct which is only a pseu-

dometric space in general. In order that these modifications preserve the full strength of

the usual continuous logic e.g. in applications to fixed point theory of Banach spaces, we

must show that the relevant convergence proofs (which were given in the context of com-

plete normed vector spaces, which are in particular metric spaces with a kind of hyperbolic

linear structure) actually apply to the pseudometric case as well, in many cases with very

little or even no modification.
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Chapter 3

The general setup

We begin with a necessary definition:

Definition 3.1. Let X be a set. A function d : X × X → R≥0 is a pseudometric for X

when it satisfies the following conditions:

(a) ∀x ∈ X, d(x, x) = 0.

(b) ∀x, y ∈ X, d(x, y) = d(y, x).

(c) ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

By a pseudometric space we refer to a pair (X, d) where X is a set and d is a pseudometric

for X.

Remark 3.2. We will frequently have occasion to talk about bounded pseudometric spaces,

i.e. spaces (X, d) where the pseudometric d takes values in some bounded interval [0, D] for

some positive real number D. We call D a bound for the space X, and by abuse of notation

we may consider d : X ×X → R≥0 as instead a function d : X ×X → [0, D].
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Note that every pseudometric space is naturally a topological space (the set of ε-balls

{y | d(x, y) = ε} for each x ∈ X and each ε > 0 is a basis for the topology on X associated

with the pseudometric), and that pseudometric spaces are general enough to include normed

vector spaces (in particular, Banach spaces) as a special case.

3.1 Geodesic logic

As continuous logic is built upon the theory and properties of metric spaces as its foundation,

our modified continuous logic will have pseudometric spaces as its foundation. We will often

find that the pseudometric spaces we are interested in have additional structure (e.g. vector

space structure) which features meaningfully in our investigations of them. We note one

particular type of such structures, which is a generalization of the vector space structure of

a normed vector space.

Definition 3.3. A pseudometric space (X, d) is said to be equipped with a linear structure

L when there is a specified function L : X ×X × [0, 1]→ X satisfying the following:

(a) For each pair x, y ∈ X of points, the map L(x, y, 1
d(x,y)( · )) : [0, d(x, y)] → X is an

isometric embedding (i.e. a geodesic between x and y).

(b) d(L(x, y, t), L(y, x, 1− t)) = 0.

If (X, d) is a pseudometric space with linear structure L we will sometimes refer to it

as (X, d, L); and when the context is clear we might say that “X is a space with linear

structure.”

Given these notions, let us now describe the basics of our modified continous logic:
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Definition 3.4. Let (X, d) be a complete, bounded pseudometric space. We have the

following:

(a) (i) An (n-ary) function T on X is a (possibly discontinuous) function T : Xn → X.

(ii) An (n-ary) continuous function f on X is a uniformly continuous function

f : Xn → X.

(iii) An (n-ary) predicate R (with range a) on X is a uniformly continuous function

R : Xn → [0, a].

(iv) A constant c on X is an element c ∈ X.

(b) Given some (possibly empty) distinguished family

{Ti, fi′ , Rk, cl | i ∈ I, i′ ∈ I ′, j ∈ J, k ∈ K}

of functions, continuous functions, predicates, and constants on X, we call this data

X = (X, d, Ti, fi′ , Rj , ck | i ∈ I, i′ ∈ I ′, j ∈ J, k ∈ K) a pseudometric structure.

Again, as in Definition 2.1, we consider Xn in Definition 3.4 above as equipped with

the maximum pseudometric given by dXn(x, y) = max
1≤m≤n

d(xm, ym) for x = (x1, . . . , xn) and

y = (y1, . . . , yn).

Given a pseudometric structure X , we can talk of the corresponding signature:

Definition 3.5. Let X = (X, d, Ti, fi′ , Rj , ck | i ∈ I, i′ ∈ I ′, j ∈ J, k ∈ K). A signature S

for X consists of:

(a) A symbol d corresponding to the metric d of X, and a nonnegative real number DX

specifying an upper bound for the diameter of X.
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(b) For each function Ti : Xn → X, a function symbol Ti.

(c) For each continuous function fi′ : Xn → X, a continuous function symbol fi and

a modulus of uniform continuity δfi : R → R for fi (i.e. a function δfi such that

dXn(x, y) < δfi(ε) implies d(fi(x), fi(y)) < ε).

(d) For each predicate Rj : Xn → [0, aj ], a predicate symbol Rj (and a symbol for the

range aj of Rj) and a modulus of uniform continuity δRj : R→ R for Rj .

(e) For each constant ck ∈ X, a constant symbol ck.

Conversely, if S is some signature and X is some pseudometric structure for whom the

symbols of S satisfy the above conditions, then X is called an S-structure.

With the exception of the ultraproduct, everything else not specifically mentioned above

(e.g. terms, formulae, connectives, etc.) remains unchanged from the usual continuous

logic. We defer the description of the ultraproduct until Section 3.2. Let us call this

variant of continuous logic “optionally continuous logic” (OCL for short). OCL is not

very interesting, since although it is technically a generalization of continuous logic, it is

essentially a regression back towards classical (non-continuous) first-order logic.

However, we can introduce additional structure (namely, linear structure) to OCL to

compensate for the control that we lose by allowing for discontinuous functions. Let us call

the resulting variant geodesic logic:

Definition 3.6. Let X ′ = (X, d, Ti, fi′ , Rj , ck | i ∈ I, i′ ∈ I ′, j ∈ J, k ∈ K) be a pseudomet-

ric structure, and let L be a linear structure on (X, d).

For each t ∈ [0, 1], let Lt be the function X ×X → X defined by Lt(x, y) = L(x, y, t).

Call each Lt the t-value of the linear structure L.
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We call X = (X, d, Lt, Ti, fi′ , Rj , ck | t ∈ [0, 1], i ∈ I, i′ ∈ I ′, j ∈ J, k ∈ K) a geodesic

structure.

Furthermore, a (geodesic) signature S for X consists of:

(a) A symbol d corresponding to the metric d of X, and a nonnegative real number DX

specifying an upper bound for the diameter of X.

(b) For each t ∈ [0, 1], a t-linear structure symbol Lt corresponding to the t-value Lt of

the linear structure L of X.

(c) For each function Ti : Xn → X, a function symbol Ti.

(d) For each continuous function fi′ : Xn → X, a continuous function symbol fi and

a modulus of uniform continuity δfi : R → R for fi (i.e. a function δfi such that

dXn(x, y) < δfi(ε) implies d(fi(x), fi(y)) < ε).

(e) For each predicate Rj : Xn → [0, aj ], a predicate symbol Rj (and a symbol for the

range aj of Rj) and a modulus of uniform continuity δRj : R→ R for Rj .

(f) For each constant ck ∈ X, a constant symbol ck.

Conversely, if S is some geodesic signature and X is some geodesic structure for whom

the symbols of S satisfy the above conditions, then X is called an S-structure.

In what follows, we will assume as before, again following the authors of [6], that the

bound for our spaces and the codomains of predicates are just the interval [0, 1].

As was the case for OCL, with the exception of the ultraproduct (which again, we

will describe in Section 3.2), most concepts not specifically mentioned above carry over
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unchanged from continuous logic. However, for the sake of completeness, we describe terms

and formulae in geodesic logic:

Definition 3.7. Let S be a geodesic signature.

(a) A term for S is given by the following inductive description:

(i) Each variable and each constant is a term.

(ii) T (t1, . . . , tn) is a term when T is some (n-ary) function symbol and each ti is

itself a term.

(iii) f(t1, . . . , tn) is a term when f is some (n-ary) continuous function symbol and

each ti is itself a term.

(iv) For each t ∈ [0, 1], Lt(t1, t2) is a term when Lt is the t-linear structure symbol

and t1, t2 are terms. (That is, Lt is treated as a binary function symbol.)

(b) An atomic formula for S is given by an expression of the form P (t1, . . . , tn) where

P is some (n-ary) predicate symbol and each ti is a term. (The symbol d for the

pseudometric is treated as a binary predicate symbol.)

(c) A formula for S is given by the following inductive description:

(i) Each atomic formula is a formula.

(ii) u(φ1, . . . , φn) is a formula when u is some n-ary connective, i.e. a continuous

function [0, 1]n → [0, 1], and each φi is a formula.

(iii) sup
x
φ and inf

x
φ are each formulae when x is a variable and φ is a formula.
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Remark 3.8. The reason for treating the linear structure L : X × X × [0, 1] → X as

consisting of separate functions Lt : X ×X → X is that, due to the specific technicalities

of the geodesic ultraproduct (which will be addressed in Section 3.2), it is problematic to

regard L as simply another function symbol L of OCL. If we were to incorporate L itself as

a function symbol, the relationship between the symbol L and its interpretation as a linear

structure L on X would have to be distinct from that between some function symbol f and

its interpretation as a function f : X × X × [0, 1] → X, in precisely the manner that has

been built in to Definition 3.6 by considering the linear structure L as a family of functions

Lt, each of which then receives the same treatment (e.g. under ultraproducts) as the other

function symbols do under OCL.

However, when we speak informally of linear structures for geodesic structures and

there is no possibility for confusion, we will usually speak of L rather than the family Lt

for convenience.

We note that geodesic structures (with notation as Definition 3.6) can be characterized

in OCL by the following axioms:

(a) For each pair t, t′ ∈ [0, 1],

(i) sup
x

sup
y

(d(Lt(x, y), Lt′(x, y)) .− |t− t′| d(x, y)) = 0, and

(ii) sup
x

sup
y

(|t− t′| d(x, y) .− d(Lt(x, y), Lt′(x, y))) = 0

(b) For each t ∈ [0, 1], sup
x

sup
y

(d(Lt(x, y), L1−t(y, x))) = 0.

It is clear from Definition 3.7 that for S a geodesic signature, if φ is either an S-

term or S-formula containing only continuous function symbols and predicate symbols (and
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connectives, which we require to be the same as in continuous logic), then φ will also have

a modulus of uniform continuity.

A given t-value Lt of a linear structure L need not be continuous in its arguments.

However, there is an interesting particular class of spaces with linear structure satisfying a

different niceness condition, as an example of an axiomatizable class in geodesic logic:

Definition 3.9. ([11], [35]) A pseudometric space with linear structure (X, d, L) is of hy-

perbolic type when for each quadruple p, x, y,m ∈ X of points where m = L(x, y, t) for some

t ∈ [0, 1], we have that d(p,m) ≤ (1− t) d(p, x) + t d(p, y).

That spaces of hyperbolic type are axiomatizable in geodesic logic follows from the easy

observation below:

Let S be a geodesic signature, with linear structure L. Then an S-structure

X = (X, d, L, . . . ) is of hyperbolic type if and only if X satisfies, for each t ∈ [0, 1], the

S-condition

sup
p

sup
x

sup
y

((d(p, Lt(x, y)) .− (1− t) d(p, x)) .− t d(p, y)) = 0. (3.1)

This condition, as its name suggests, is a notion of hyperbolicity for pseudometric spaces

which is general enough to include e.g. CAT(0) spaces as a special case.

One should note that in general, a space may possess many different linear structures,

and specifying a geodesic structure on the space simply picks out a favored linear structure.

Being of hyperbolic type ensures that this linear structure is nice in the sense of Definition

3.9, but is a priori a property only of the specified linear structure. In particular, being of

hyperbolic type does not preclude the existence of other linear structures; thus it is a weaker
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condition than many other “versions” of hyperbolicity which either imply or explicitly

require unique geodesicity (i.e. uniqueness and existence of isometric embeddings of line

segments between points).

Indeed, every Banach space (with linear structure given by its vector space structure)

is a space of hyperbolic type, while there are many Banach spaces which are not uniquely

geodesic and therefore possess multiple linear structures:

Example 3.10. Consider R2 with the supremum (maximum) norm. Between the points

(0, 0) and (2, 0), there is the obvious geodesic t 7→ (t, 0). However, we can find another

geodesic between them given by the piecewise map t 7→ (t, t) for t ≤ 1 and t 7→ (t, 2− t) for

t > 1.

Thus this Banach space has at least two possible linear structures: one given by the

standard vector space structure (call it L), and another L′ defined by

L′(x, y, t) =



L(x, y, t) for x, y /∈ {(0, 0), (2, 0)}
(t, t) for t ≤ 1

(t, 2− t) for t > 1

for x = (0, 0), y = (2, 0)

(and L′(x, y, t) = L′(y, x, 1− t)).

Spaces of hyperbolic type therefore comprise a quite general class of spaces; we give an

example of a space with linear structure that fails to be of hyperbolic type:

Example 3.11. Consider S2 with its standard metric. Between any pair of non-antipodal

points there is a unique geodesic, and between any pair of antipodal points we can simply

pick a geodesic (subject to the symmetry condition of Definition 3.3 (b)), giving us a linear

structure on S2 considered as a pseudometric space.
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Fix a point p ∈ S2 as the “north pole”, along with a pair of (necessarily non-antipodal)

distinct points x, y ∈ S2 in the open southern hemisphere lying on the same latitude. Let m

be the point halfway on the geodesic between x and y. Then d(p,m) > 1
2d(p, x) + 1

2d(p, y)

since d(p, x) = d(p, y) and m lies on the great circle between x and y.

The phenomenon described in the example above must happen for any linear structure

on S2 with its standard metric (due to unique geodesicity between non-antipodal points);

thus S2 with its standard metric cannot possess any linear structure that makes it a space

of hyperbolic type.

The useful property of a space being of hyperbolic type is thus easily translated into the

framework of geodesic logic. There are, however, important properties involving the linear

structure of a space which are not as readily translated:

Definition 3.12. We say that a subset C ⊂ X is convex (with respect to the linear structure

L) when for all x, y ∈ C and for all t ∈ [0, 1], L(x, y, t) ∈ C.

The property of a subset being convex depends on the specific linear structure: let us

again consider the Banach space R2 of Example 3.10. Letting C = [0, 2]×{0} ⊂ R2, clearly

C is convex with respect to L but not with respect to L′.

This is not the only issue with the notion of convexity. Trying to formalize convexity

within the framework of continuous logic (of either the usual or our modified kind) leads

immediately to at least the following two questions: (1) how do we formalize the notion

of subset, and (2) how do we deal with implication, which is essentially a discontinuous

connective, in a logic that only allows uniformly continuous connectives?

The first question has the following answer:
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Let C ⊂ X be a closed subset of a pseudometric space X. We can consider a predicate

Ĉ : X → [0, 1] defined as Ĉ(x) = d(x,C) = inf
y∈C

d(x, y), so that C = {x | Ĉ(x) = 0}. It

turns out that these kinds of predicates have a nice characterization, the proof of which is

irrelevant to our purposes so we refer to interested reader to [6]:

Proposition 3.13. ([6])

If a predicate P : X → [0, 1] is of the form P (x) = d(x,C) for some subset C ⊂ X, then

it satisfies the following statements which we collectively refer to as subsets-as-predicates

axioms (or s.a.p. axioms for short):

(a) sup
x

inf
y

max(P (y), |P (x)− d(x, y)|) = 0

(b) sup
x
|P (x)− inf

y
min(P (y) + d(x, y), 1)| = 0

Conversely, if a given predicate P : X → [0, 1] satisfies the s.a.p. axioms, then it is of the

form P (x) = d(x,C) where C = {x | P (x) = 0}. Thus there is a one-to-one correspondence

between closed subsets of X and predicates on X satisfying the s.a.p. axioms.

This correspondence between closed subsets and predicates is what will allow us to (by

abuse of notation) speak of them interchangeably without confusion; frequently we will refer

to a (closed) subset C ⊂ X as a predicate C : X → [0, 1], and vice versa. The advantage of

speaking of subsets in terms of predicates is that we can speak of predicates in terms of a

given signature without needing to specify a specific structure for that signature. Whenever

we have some signature S with a predicate symbol C and some S-theory Σ containing the

s.a.p. axioms for C, we call C a subset predicate (with respect to Σ).

Returning to the issue of formalizing convexity, we might now ask ourselves how to deal
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with the implication in its definition: we need a continuous analogue of the expression

∀x,∀y (x ∈ C ∧ y ∈ C)→ L(x, y, t) ∈ C. (3.2)

While Proposition 3.13 gives us a way of finding predicates C : X → [0, 1] so that we

can transform (3.2) into

∀x,∀y (max(C(x), C(y)) = 0)→ C(L(x, y, t)) = 0, (3.3)

there is no completely satisfactory way to deal with the implication. For example, one

might require some (uniformly continuous, monotonically increasing) “modulus of convex-

ity” u : [0, 1]→ [0, 1] satisfying u(0) = 0 and translate (3.3) as

sup
x

sup
y

(C(L(x, y, t)) .− u(max(C(x), C(y)))) = 0 (3.4)

which is certainly a formula expressible in continuous logic. The problem is that (3.4)

is an a priori stronger condition than convexity, because even for pairs of points outside of

the subset C it requires the potential failure of convexity between those points to be “no

worse” than their failure to be inside of C, in the sense specified by the modulus u.

Indeed, from this we see that a faithful translation of convexity would actually be (3.4)

with u the discontinuous function given by u(0) = 0 and u(x) = 1 otherwise. But we cannot

allow discontinuous connectives (which is what such a u would be), because doing so would

mean that ultraproducts (modified or not) of models of some theory Σ would no longer

necessarily themselves be models of Σ.
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Another solution would be to work with multiple sorts and regard C as its own space

with its own linear structure LC alongside the space X with its linear structure LX , and

having an inclusion map i : C ↪→ X. We can then say that C is convex when the linear

structure of C coincides with that of X, i.e. i ◦LC = LX ◦ (i× i× 1[0,1]) since by default C

must be closed under its own linear structure.

A similar approach is to just regard the subset C as the whole space, and forget about

X and questions about the convexity of C; this is unproblematic if the behavior/properties

of the space X outside of the subset C happen to be unimportant. This is the approach we

will take in the applications later in this paper.

We take the last part of this section to address a minor subtlety resulting from our

change of setting from metric spaces to pseudometric spaces:

Definition 3.14. Let (X, d) be a pseudometric space and T : X → X some map. We say

that p is a fixed point of T when d(p, Tp) = 0.

That is, “fixed point” is understood to mean “a point that is mapped by T to some

(possibly distinct) point at distance 0”, a necessary weakening of the usual definition of

“fixed point” since we are working with pseudometrics instead of metrics. In general, this is

an ill-behaved notion in the context of pseudometric spaces and arbitrary maps, since then

we might have that d(x, Tx) = 0 but that possibly d(x, Tnx) > 0 for some n > 1. However,

in our applications we will see that the very conditions that guarantee the existence of a

fixed point in the above sense also ensure that d(x, Tx) = 0 implies d(x, Tnx) = 0 for all

n ≥ 1.

This is not a coincidence; fixed point results are commonly obtained through metric

arguments that show that the distances between successive terms in a given kind of sequence
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converge to 0, and in the presence of the conditions that enable such arguments, we should

reasonably expect that d(x, Tx) = 0 implies d(x, Tnx) = 0.

Remark 3.15. Note that the above definition of fixed point does not affect the usual

definition of a convergent sequence, which is already defined only in terms of the values of

the pseudometric; a sequence converges to a point p if and only if it converges to any other

point q with d(p, q) = 0, i.e. convergence of a sequence only matters “up to distance 0”. In

a complete space this is of course equivalent to the sequence being Cauchy.

3.2 The modified ultraproduct

We assume the setting of “optionally continuous logic” (OCL) described in Chapter 3.

Let S be a signature of OCL. Let I be some index set and Xi some collection, indexed

by I, of S-structures, each with underlying pseudometric space (X, d). As usual we assume

that our spaces be bounded in diameter by 1 (if one wants to work with unbounded spaces,

one can use sorts to stratify the spaces into bounded spaces of increasing diameter with

inclusion maps between them).

Let F be some ultrafilter on I. We take X = (
∏
i∈I

Xi)/ ∼F where we declare that

(xi) ∼F (yi) when {i ∈ I|xi = yi} ∈ F . We denote by (xi)F the equivalence class in X

represented by (xi). We still define the pseudometric d on X to be the same as in the usual

continuous logic, i.e. d((xi)F , (yi)F ) = lim
i,F

di(xi, yi).

The rest follows naturally: if in addition we are also given (possibly discontinuous)

functions fi : Xi → Yi, then it is clear what f : X → Y should be, and that it is well-

defined. If we are given predicates Ri : Xi → [0, 1], then we define R : X → [0, 1] as

R((xi)F ) = lim
i,F

Ri(xi).
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Now let us assume the setting of geodesic logic, so that S is now a geodesic signature.

The above construction of the ultraproduct in OCL carries over wholesale to this setting;

so now we need only to treat the linear structures Li on Xi. If we treat the Li like (the

interpretations of) any other function in our signature, we see that the ultraproduct of the

Li gives a map X×X×([0, 1]I)/ ∼F→ X. That is, the ultraproduct of the linear structures

Li does not specify a linear structure on X, and so we see that linear structures must be

treated differently under the ultraproduct.

Therefore, given a family Li of linear structures corresponding to a family of S-structures

Xi, we do not define (the interpretation of) L to be the function

L̂ : X ×X × ([0, 1]I)/ ∼F→ X

that arises as the ultraproduct of the linear structures Li considered as functions, but

rather its restriction across the natural embedding iF : [0, 1] ↪→ ([0, 1]I)/ ∼F . That is,

L = L̂ ◦ (1X , 1X , iF ) : X ×X × [0, 1] → X. This way, an ultraproduct of spaces equipped

with linear structures itself has a linear structure.

It is easy to see that, defined in this way, for each t ∈ [0, 1] the t-value Lt of the

ultraproduct linear structure L is exactly the ultraproduct of the t-values Lit treated as

binary functions.

Theorem 2.6 - and therefore also Theorem 2.7 - is still valid in this setting (with the

same proof). It is then immediate that the ultraproduct defined in this way is of hyperbolic

type if all of its factors are.
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Chapter 4

Fixed point results in analysis

The definitions and proofs in this section can be found in [9], [34] in the context of Ba-

nach spaces, but we will present them here in the context of spaces of hyperbolic type,

where in many cases no alteration is required, and in some cases only slight adjustments to

definitions/proofs are necessary.

Going forward, unless otherwise stated, we denote by (X, d, L) a pseudometric space of

hyperbolic type, by C ⊂ X a (nonempty) subset of X, and by T : C → X a function from

C into X with a priori no special properties (such as continuity).

4.1 Condition (Cλ) and Condition (Eµ)

Definition 4.1. A sequence {xn} of points of C is said to be an almost fixed point sequence

(or a.f.p.s., for short) for T when {xn} satisfies d(xn, Txn)→ 0.

Definition 4.2. ([9])

Given µ ≥ 1, we say that T satisfies condition (Eµ) when ∀x, y ∈ C we have that

d(x, Ty) ≤ µd(x, Tx) + d(x, y).
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We have the following obvious consequence of Definition 4.2:

Proposition 4.3. ([9])

If T : C → X satisfies condition (Eµ), and if x0 ∈ C is a fixed point of T , then for every

x ∈ C we have that d(x0, Tx) ≤ d(x0, x).

The importance of condition (Eµ) is that, in the presence of compactness, it guarantees

an equivalence between having a fixed point and having an a.f.p.s.:

Theorem 4.4. ([9])

If C is compact and T : C → X satisfies condition (Eµ), then T has a fixed point if and

only if T admits an a.f.p.s.

Proof. Given an a.f.p.s. {xn}, pick a subsequence {xnk} converging to some x ∈ C. We

have:

∀k, d(xnk , Tx) ≤ µd(xnk , Txnk) + d(xnk , x), and

∀k, d(x, Tx) ≤ d(xnk , Tx) + d(xnk , x)

which together imply that d(x, Tx) = 0.

It turns out that if C and T : C → X are nicer (but T still possibly discontinuous), we

can actually guarantee the existence of an a.f.p.s. for T :

Definition 4.5. [34]

Given λ ∈ [0, 1), we say that T : C → X satisfies condition (Cλ) when ∀x, y ∈ C, we

have that λ d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y).
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From the above definition, we see that nonexpansive mappings T are exactly the ones

which satisfy condition (Cλ) for λ = 0. Also, note that if λ ≤ λ′, condition (Cλ) implies

condition (Cλ′). Therefore, in what follows, we will assume w.l.o.g. that λ > 0.

Theorem 4.6. ([9], [11])

Let C be a bounded convex subset of X, with T : C → C satisfying condition (Cλ). Then

there exists an a.f.p.s. for T , namely:

Let x1 be any point in C, and let xn+1 = L(xn, Txn, λ). Then the sequence {xn} is an

a.f.p.s. for T .

The sequence defined above is called a Mann iteration for T (starting at x1). To em-

phasize the role of λ, we will call it a λ-Mann iteration for T (starting at x1).

The key point to proving this is the following useful lemma, which was originally proven

by [11] for metric spaces of hyperbolic type and then applied to the case of Banach spaces in

[34] - and which we now observe actually applies to the more general case of pseudometric

spaces of hyperbolic type:

Lemma 4.7. ([11], [34])

Let {xn} and {yn} be bounded sequences in a pseudometric space X of hyperbolic type,

and let λ ∈ (0, 1), such that xn+1 = L(xn, yn, λ) and d(yn+1, yn) ≤ d(xn+1, xn) for all n.

Then lim
n→∞

d(xn, yn) = 0.

The original proof of Lemma 4.7 applied to metric spaces of hyperbolic type, but the

unmodified proof also applies to pseudometric spaces of hyperbolic type. We give the proof,

copied essentially verbatim from [11], in the Appendix so that the reader may verify this

assertion for themselves.
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The point is that once we are given the linear structure L on our pseudometric space X

which satisfies the hyperbolicity condition, the proof, which is a lengthy string of inequal-

ities, follows entirely mechanically. This is not to say that the proof does not make use of

clever manipulations - only that, once the value λ and the sequences {xn} and {yn} are

specified as in the statement of the Lemma, the proof depends purely on algebraic manipu-

lation of inequalities involving those objects that result from X being a pseudometric space

of hyperbolic type, and not, say, any argument that requires points at distance 0 to be the

same point.

Proof of Theorem 4.6. If we can show that d(Txn, Txn+1) ≤ d(xn, xn+1) for each n, then

the rest is immediate from Lemma 4.7 by letting {yn} = {Txn}.

Let n ≥ 1. By construction we have λ d(xn, Txn) = d(xn, xn+1), so by condition (Cλ)

we have that d(Txn, Txn+1) ≤ d(xn, xn+1).

We have the following fixed point result as a corollary to Theorem 4.4 and Theorem 4.6:

Corollary 4.8. ([9])

If C is a compact, convex subset of X, and T : C → C satisfies condition (Cλ) for some

λ ∈ (0, 1) and condition (Eµ) for some µ ≥ 1, then T has a fixed point.

We have so far looked at properties of maps T satisfying condition (Cλ) and condition

(Eµ). To summarize, Theorem 4.6 shows that condition (Cλ) along with certain conditions

on the domain/codomain of the map T guarantees a sequence which is nice in some asymp-

totic sense (i.e. is an a.f.p.s.), and then Theorem 4.4 along with compactness of the domain

guarantees a fixed point of T to which a subsequence of this a.f.p.s. converges.
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Considering that Theorem 4.6 obtains this a.f.p.s. as a λ-Mann iteration for T for some

λ ∈ (0, 1), we see that in fact that the entire sequence must converge:

Proposition 4.9. Let C ⊂ X and T : C → C fulfill the conditions of Theorem 4.4 and

Theorem 4.6 (with some value λ ∈ (0, 1)).

Let {xn} be a λ-Mann iteration for T , as given in Theorem 4.6. Then {xn} converges

to the fixed point x guaranteed by Theorem 4.4.

Proof. We have that xn+1 = L(xn, Txn, λ). Then by hyperbolicity we have

d(x, xn+1) ≤ (1− λ) d(x, xn) + λ d(x, Txn).

By Proposition 4.3 we have that d(x, Txn) ≤ d(x, xn) so that d(x, xn+1) ≤ d(x, xn). Since

by Theorem 4.4 a subsequence of {xn} converges to x, we must have that {xn} itself must

converge to x.

4.2 A generalization of Condition (Cλ)

We briefly look at a related property of maps T : C → C on C ⊂ X, which will serve to

illuminate further discussion of condition (Cλ):

Definition 4.10. ([15])

For C ⊂ X, a map T : C → C is directionally nonexpansive if, for all λ ∈ [0, 1] and all

x ∈ C, we have that d(Tx, TL(x, Tx, λ)) ≤ λ d(x, Tx).

The moral content of the above definition is that a directionally nonexpansive map T is

one that is nonexpansive on the line segment between x and Tx.
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Furthermore in [15] Kirk cites [8] in defining asymptotic regularity of f : C → C as the

condition that for all x ∈ C, lim
n→∞

d(fn(x), fn+1(x)) = 0. With this, he proves the following

theorem which bears striking resemblance to Theorem 4.6:

Theorem 4.11. ([15])

Let C be a bounded convex subset of X, and let T : C → C be directionally nonexpansive.

Fix λ ∈ (0, 1), and define fT : C → C by fT (x) = L(x, Tx, λ). Then fT is asymptotically

regular, and this convergence is uniform with respect to the choice of x and T .

Note that this theorem does not give uniformity with respect to C (however, such

uniformity, along with even stronger results about the rate of convergence, is obtained

in [21]). Given x1 ∈ C and fT as above, the sequence {fnT (x1)} is precisely the λ-Mann

iteration for T starting at x1. Furthermore, asymptotic regularity of fT is exactly equivalent

to the λ-Mann iteration {xn} = {fnT (x1)} being an a.f.p.s. for every starting point x1, since

d(xn, xn+1) = λd(xn, Txn).

Remark 4.12. The connection just described actually runs deeper. In the proof of The-

orem 4.6, we take a λ-Mann iteration {xn} and use condition (Cλ) to conclude, since

λ d(xn, Txn) = d(xn, xn+1), that d(Txn, Txn+1) ≤ d(xn, xn+1); then we simply apply

Lemma 4.7 to get that {xn} is an a.f.p.s.

Since by construction we have that xn+1 = L(xn, Txn, λ), it suffices to forget about

condition (Cλ) and simply require that d(Tx, TL(x, Tx, λ)) ≤ d(x, L(x, Tx, λ)) = λ d(x, Tx)

for all x ∈ C - call this condition (Dλ) - to ensure that the proof of Theorem 4.6 nevertheless

goes through.

Although condition (Dλ) simply assumes the conclusion of condition (Cλ) in the case

of e.g. λ-Mann iterations, condition (Dλ) is actually weaker than condition (Cλ). Indeed,
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for any x ∈ C we always have that λ d(x, Tx) = d(x, L(x, Tx, λ)) so that having condition

(Cλ) would imply that condition (Dλ) holds.

In light of Definition 4.10, we see that condition (Dλ) is also a weak form of directional

nonexpansiveness. Indeed, T : C → C is directionally nonexpansive precisely when it

satisfies condition (Dλ) for every λ ∈ [0, 1].

We formalize this discussion as follows:

Definition 4.13. Given λ ∈ [0, 1], we say that T : C → X satisfies condition (Dλ) when

∀x ∈ C, we have that d(Tx, TL(x, Tx, λ)) ≤ λ d(x, Tx).

Proposition 4.14.

(a) Given λ ∈ [0, 1), if T : C → X satisfies condition (Cλ) then it satisfies condition

(Dλ). Furthermore, the conclusion of Theorem 4.6 remains true if we require that

T : C → C satisfy condition (Dλ) instead of condition (Cλ) (with the other conditions

unchanged).

(b) T : C → C is directionally nonexpansive if and only if it satisfies condition (Dλ) for

every λ ∈ [0, 1].

We note that any other result that we mention that refers to the conclusion of Theorem

4.6 also remains true if we replace condition (Cλ) with condition (Dλ).

One point of caution, however, is that for λ < λ′ we do not necessarily have that

condition (Dλ) implies condition (Dλ′). We will nevertheless restrict ourselves to the cases

where λ ∈ (0, 1), since those are the cases of interest, i.e. the ones to which Theorem 4.6

applies.
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Chapter 5

Closure under ultraproducts

Thus far, we have reformulated the definitions and results of [9], [11], [34] (and [15] to a

lesser extent), which were given in terms of metric/Banach spaces, in terms of pseudometric

spaces of hyperbolic type.

We must now formalize all of this in the language of geodesic logic, which will allow us

to use (the geodesic analogue of) Theorem 2.7, and thus obtain the existence of a uniform

bound on the rate of metastable convergence in the results of e.g. Theorem 4.4 and Theorem

4.6.

Since the argument of Theorem 2.7 crucially requires passing to the ultraproduct, our

approach to formalizing the objects and properties discussed in Chapter 4 in the framework

of geodesic logic will follow the guiding principle that said properties should be preserved

under taking ultraproducts.

As with [5], whenever we speak of ultrafilters/ultraproducts henceforth, we will assume

that the set over which we are taking the ultrafilter is N, and that the ultrafilter is non-

principal.
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We have already seen, via the expression (3.1), how to formalize the property of a space

being of hyperbolic type.

5.1 Compactness

We must currently address two issues which will turn out to have the same solution. The

first is that the functions T : C → C that we are interested in are only partially defined on

X (i.e. they are not functions T : X → X), and so without further modification cannot be

considered honest interpretations of function symbols. The second issue is that, if we are

to have a class, closed under taking ultraproducts, of (structures on) spaces X specifying a

special subset C ⊂ X of each space, each of which is required to be convex, then we must

formulate some notion of convexity that the subsets C must obey in a manner which is

somehow uniform across the members of the class.

The solution is simply to note that the results we are interested in (e.g. Theorem 4.4

and Theorem 4.6) and their proofs concern themselves only with the features of the subset

C ⊂ X. Since we will require C to be convex anyway (so that the linear structure on

X restricts to give a linear structure on C), we can simply regard C as the entire space.

Therefore, in what follows, when we refer to structures X and the spaces X associated with

them, it should be understood that we intend them to play the role of the subsets C ⊂ X

from the results of Chapter 4. In this way we get convexity automatically from simply

having a linear structure.

Now we would like our ultraproduct to inherit properties such as compactness (which

Theorem 4.4 requires) from its factors. More precisely, if we have a family Xi of compact

spaces then we would like the ultraproduct X to inherit those properties. This is unfortu-
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nately not the case in general. However, in the case of pseudometric spaces, compactness

is equivalent to being complete and totally bounded.

We have already started out assuming that our “base” spaces will be complete. That

their ultraproducts are again complete is simple: ultraproducts are ω1-saturated, which

among other things guarantees Cauchy completeness [12].

For total boundedness, we borrow Kohlenbach’s idea [17] of specifying a modulus of

total boundedness, which is a way to ensure that a family of structures with that modu-

lus is totally bounded in some uniform way. We also give an alternative notion of total

boundedness which is equivalent (as Proposotion 5.2 will show) yet easier to work with.

Definition 5.1. Let (X, d) be a pseudometric space.

(a) We say that X is totally bounded when, for every K ∈ N, there is some α(K) ∈ N such

that there exist points x0, . . . , xα(K) such that min(d(x, x0), . . . , d(x, xα(K))) <
1

K+1 .

This function α : N→ N is called a modulus of total boundedness for X.

(b) We say that X is approximately totally bounded when, for every k ∈ N, there is some

β(k) ∈ N such that the following holds:

inf
x0
· · · inf

xβ(k)
sup
x

(min(d(x, x0), . . . , d(x, xβ(k)))) ≤
1

k + 1
(5.1)

This function β : N→ N is called a modulus of approximate total boundedness for X.

Note that the condition given by (5.1) in Definition 5.1 (b) can be restated as follows:

inf
x0
· · · inf

xβ(k)
sup
x

(min(d(x, x0), . . . , d(x, xβ(k)))
.− 1

k + 1
) = 0. (5.1′)
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So a pseudometric space X is totally bounded if and only if it has some modulus of

total boundedness, and approximately totally bounded if and only if it has some modulus

of approximate total boundedness. We now show that these two conditions are actually

equivalent:

Proposition 5.2. Let (X, d) be a pseudometric space. The following are equivalent:

(a) X is totally bounded.

(b) X is approximately totally bounded.

Proof. It is clear that X being totally bounded implies that X is approximately totally

bounded: if α is a modulus of total boundedness for X, β = α is a modulus of approximate

total boundedness for X.

Conversely, let β : N→ N be a modulus of approximate total boundedness. We need to

produce a function α : N → N such that for each K ∈ N, there exist finitely many points

x1, . . . , xα(K) such that for each x ∈ X, we have that min(d(x, x0), . . . , d(x, xα(K))) <
1

K+1 .

So given K ∈ N, choose k ∈ N to be such that 2
k+1 <

1
K+1 . Then by assumption there exist

points x0, . . . , xβ(k) such that for each x, we have that

min(d(x, x0), . . . , d(x, xβ(k))) <
2

k + 1
<

1

K + 1
.

Then α : N→ N defined by this assignment K 7→ k 7→ β(k) is a modulus of total bounded-

ness for X.

The advantage of working with approximate total boundedness is that, as (5.1′) shows,
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the notion of approximate total boundedness is easily formalized in our logic. In fact, since

it neither requires a linear structure nor refers to any discontinuous functions, it is also

formalizable in the usual continuous logic - but here we will restrict our discussions to

geodesic logic, which is the one we need to use for our applications.

Definition 5.3. Let S be a geodesic signature, and X an S-structure.

We say that X is totally bounded when there is a function β : N → N such that for all

k ∈ N, X satisfies the S-condition

inf
x0
· · · inf

xβ(k)
sup
x

(min(d(x, x0), . . . , d(x, xβ(k)))
.− 1

k + 1
) = 0.

We call this β a modulus of total boundedness for X .

By Proposition 5.2, X is totally bounded in the above sense if and only if the underlying

space X is totally bounded in the sense of Definition 5.1.

It is clear from Definition 5.3 that if β : N → N is a modulus of total boundedness for

a family Xi of S-structures, then β is a modulus of total boundedness for the ultraproduct

X of the Xi.

Remark 5.4. Note that even in the absence of total boundedness, any family of S-

structures for a given signature S automatically shares a bound on the diameters of their

underlying spaces, by Definition 3.6.

5.2 Formalization into geodesic logic

So far we have seen how to incorporate notions of hyperbolic type, convexity, and compact-

ness into the framework of our logic. It remains to express condition (Eµ) and condition
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(Dλ) in geodesic logic. It is here that the importance of choosing condition (Dλ) over condi-

tion (Cλ) becomes clear; while Proposition 4.14 justifies why we can do so, the reason why

we want to is that condition (Dλ) is much simpler to formalize, because it does not contain

any implications (refer to the discussion occurring after Definition 3.12 for why implications

are problematic in our logic).

Definition 5.5. Let S be a geodesic signature with a unary function symbol T , and let X

be an S-structure.

(a) Let µ ≥ 1. We say that X satisfies condition (Eµ) when X satisfies the S-condition

sup
x

sup
y

((d(x, Ty) .− µd(x, Tx)) .− d(x, y)) = 0.

(b) Let λ ∈ (0, 1). We say that X satisfies condition (Dλ) when X satisfies the S-condition

sup
x

(d(Tx, TLλ(x, Tx)) .− λ d(x, Tx)) = 0.

Letting X be the underlying space of X and T : X → X the interpretation of the

function symbol T , it is straightforward to see that X satisfies Definition 5.5 (a) if and only

if T : X → X satisfies condition (Eµ) in the sense of Definition 4.2, since

∀x, y ∈ X, d(x, Ty) ≤ µd(x, Tx) + d(x, y)

⇐⇒ sup
x

sup
y

((d(x, Ty) .− µd(x, Tx)) .− d(x, y)) = 0.
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Similarly, we see that X satisfies Definition 5.5 (b) if and only if T : X → X satisfies

condition (Dλ) in the sense of Definition 4.13, since

∀x ∈ X, d(Tx, TL(x, Tx, λ)) ≤ λ d(x, Tx)

⇐⇒ sup
x

(d(Tx, TL(x, Tx, λ)) .− λ d(x, Tx)) = 0.

From this we see that an ultraproduct of structures satisfying condition (Dλ) (resp.

condition (Eµ)) itself satisfies condition (Dλ) (resp. condition (Eµ)).

5.3 The main results

We are now ready to apply the Avigad-Iovino approach to Theorem 4.6.

Theorem 5.6. Let S be a geodesic signature with a unary function symbol T and a constant

symbol x1.

Let λ ∈ (0, 1) be given, and let C be the class of S-structures of hyperbolic type satisfying

condition (Dλ).

For each X ∈ C, let {xn} be the sequence defined by xn+1 = Lλ(xn, Txn). Then we have

the following:

(a) Letting dn = d(xn, xn+1), we have that lim
n→∞

dn = 0. Equivalently, {xn} is an a.f.p.s.

for T .

(b) Given any function F : N → N, there is a bound on the rate of metastability of the

above convergence with respect to F , which is uniform in X ∈ C.

49



Remark 5.7. Recall from Definition 1.2 that, given F : N → N, a bound on the rate of

metastability for a sequence {dn} is a function bF : R>0 → N such that for each ε > 0 there

exists some n ≤ bF (ε) such that for all i, j ∈ [n, F (n)], we have that d(di, dj) < ε. (In the

specific case of Theorem 5.6, d(di, dj) = |di − dj |.)

Theorem 5.6 is a simultaneous generalization of Theorem 4.6 and Theorem 4.11, since

condition (Dλ) is a weaker condition than both condition (Cλ) (used in Theorem 4.6) and

directional nonexpansiveness (used in Theorem 4.11).

Furthermore, since the data of each structure X includes not only the space X but also

the function T : X → X as well as the choice of starting point x1 ∈ X, Theorem 5.6 (b)

guarantees a bound on the “metastable asymptotic regularity” of the λ-Mann iterations

that is uniform in X, functions T : X → X, and starting points x1 ∈ X.

Proving Theorem 5.6 will involve the following lemma which is a variant of Theorem

2.7:

Lemma 5.8. Let S be a geodesic signature, and let {tn} be a sequence of S-terms.

Let C a class of S-structures. For each X ∈ C, let {xn} denote the interpretation in X

of the sequence {tn}, and let dn = d(xn, xn+1).

Finally, let F be an ultrafilter. Then the following are equivalent:

(a) For every ε > 0 and every F : N → N, there is some b ≥ 1 such that the following

holds: for every X in C, there is an n ≤ b such that di < ε for every i ∈ [n, F (n)].

(b) For any sequence Xk of elements of C, let X be their F-ultraproduct. Then for every

ε > 0 and every F : N→ N, there is an n ∈ N such that di < ε for every i ∈ [n, F (n)].
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Proof. The proof is essentially the same as for Theorem 2.7.

(a) ⇒ (b): For any fixed 1
2ε > 0 and any fixed F : N → N, there is a b ≥ 1 such that

every member of C satisfies the condition

min
n≤b

(
max

i∈[n,F (n)]
(di

.− 1
2ε)

)
= 0.

Thus any ultraproduct of members of C must again be a model of this sentence.

(b) ⇒ (a): Assume that (a) fails. That is, for some ε > 0 and some F : N→ N, for each

k ∈ N there is a member Xk of C such that for every n ≤ k and for some i ∈ [n, F (n)], we

have dki ≥ ε. Let X be the F-ultraproduct of the sequence Xk thus obtained.

Given any n, since there are cofinitely many k ≥ n, it is also true for cofinitely many

k that there is some i ∈ [n, F (n)] with dki ≥ ε. It follows that there is some specific

i ∈ [n, F (n)] such that dki ≥ ε for F-many k, so that di = lim
k,F

dki ≥ ε for that i. Since n was

arbitrary, we see that (b) fails.

Proof of Theorem 5.6.

(a): For each X ∈ C, {xn} is the λ-Mann iteration for T starting at x1. By having

specified a geodesic signature S we automatically have that the underlying space X is

bounded and convex with respect to the linear structure. Since X is of hyperbolic type and

T : X → X satisfies condition (Dλ), we can use Proposition 4.14 to apply Theorem 4.6 and

conclude that {xn} is an a.f.p.s. for T . And since dn = λ d(xn, Txn), we equivalently have

that lim
n→∞

dn = 0.

(b): For each X ∈ C, the sequence {xn} is the interpretation in X of the sequence of

S-terms {tn} where t1 = x1 and tn+1 = Lλ(tn, T tn).

Furthermore, given an ultrafilter F , for any sequence Xk of elements of C, their F-
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ultraproduct X is again an S-structure (so bounded and convex) of hyperbolic type satisfy-

ing condition (Dλ), so that lim
n→∞

dn = 0. By Proposition 1.4, we see that part (b) of Lemma

5.8 is satisfied, so that we have part (a) of that lemma as well, which gives us Theorem 5.6

(b).

Now that we have obtained a uniform version of Theorem 4.6, we now consider the case

where we also have compactness (total boundedness) and condition (Eµ):

Theorem 5.9. Let S be a geodesic signature with a unary function symbol T and a constant

symbol x1.

Let λ ∈ (0, 1), µ ≥ 1, and β : N→ N be given.

Let C be the class of S-structures of hyperbolic type which have β as a modulus of total

boundedness, and which satisfy condition (Dλ) and condition (Eµ).

Finally, for each X ∈ C, let {xn} be the sequence defined by xn+1 = Lλ(xn, Txn). Then

we have the following:

(a) T has a fixed point toward which {xn} converges.

(b) For each F : N → N, there is a bound on the rate of metastability for the above

convergence which is uniform in X ∈ C.

Proof. (a): For each X ∈ C, we have that {xn} is the λ-Mann iteration for T starting at x1.

The underlying space X is convex and compact, X is of hyperbolic type, and T : X → X

satisfies condition (Dλ) and condition (Eµ), so {xn} is an a.f.p.s. for T , which then converges

to a fixed point x by Theorem 4.4 and Proposition 4.9.
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(b): As in the proof of Theorem 5.6 (b), for each X the sequence {xn} is the interpre-

tation of the sequence {tn} of S-terms where t1 = x1 and tn+1 = Lλ(tn, T tn).

All of the relevant conditions - convexity, compactness, hyperbolic type, condition (Dλ),

and condition (Eµ) - are preserved under ultraproducts. Thus given an ultrafilter F and

any sequence Xk of elements of C, the F-ultraproduct X of the Xk is again in C, so that the

sequence {xn} associated with X converges. Thus by Theorem 2.7 (which, as we observed

at the end of Section 3.2, is still valid for geodesic logic) we have Theorem 5.9 (b).

Remark 5.10. As in Theorem 5.6, the bound on the rate of metastability guaranteed by

the theorem above is uniform in the spaces X, functions T : X → X, and choices of starting

point x1 ∈ X for the λ-Mann iterations.
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Appendix to Part I

Here we supply the proof of Lemma 4.7, to make it clear that the entire proof is valid,

unmodified from [11], within the context of pseudometric spaces of hyperbolic type.

Lemma 4.7. ([11], [34])

Let {xn} and {yn} be bounded sequences in a pseudometric space X of hyperbolic type,

and let λ ∈ (0, 1), such that xn+1 = L(xn, yn, λ) and d(yn+1, yn) ≤ d(xn+1, xn) for all n.

Then lim
n→∞

d(xn, yn) = 0.

Proof. The first claim is that, for all i, n ∈ N:

(1 + nλ) d(xi, yi) ≤ d(xi, yi+n) + (1− λ)−n(d(xi, yi)− d(xi+n, yi+n)) (5.2)

If n = 1, then (5.2) simplifies to (1+λ) d(xi, yi) ≤ d(xi, yi+1)+
1

1−λ(d(xi, yi)−d(xi+1, yi+1)),

which we can manipulate as follows:

(1 + λ) d(xi, yi) ≤ d(xi, yi+1) +
1

1− λ
(d(xi, yi)− d(xi+1, yi+1))

⇐⇒ d(xi+1, yi+1) ≤ (1− λ)d(xi, yi+1) + λ2 d(xi, yi)

= (1− λ)d(xi, yi+1) + λ d(xi, xi+1)
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where we have used the fact that d(xi, xi+1) = λ d(xi, yi). But we know that

d(xi+1, yi+1) ≤ (1 − λ)d(xi, yi+1) + λ d(xi, xi+1) by hyperbolicity, so (5.2) holds for n = 1

and all i ∈ N.

So let us assume by induction that (5.2) is true for some n, and all i. By replacing i

with i+ 1, we get:

(1 + nλ) d(xi+1, yi+1) ≤ d(xi+1, yi+n+1)

+ (1− λ)−n(d(xi+1, yi+1)− d(xi+n+1, yi+n+1))

(5.3)

while from hyperbolicity and the rest of our assumptions we get:

d(xi+1, yi+n+1) ≤ (1− λ) d(xi, yi+n+1) + λ d(yi, yi+n+1)

≤ (1− λ) d(xi, yi+n+1) + λ
i+n∑
k=i

d(yk, yk+1)

≤ (1− λ) d(xi, yi+n+1) + λ
i+n∑
k=i

d(xk, xk+1)

(5.4)

It is easy to check that our assumptions imply that d(xk, yk) ≤ d(xk+1, yk+1) for all

k. We use this fact and the aforementioned assumptions in the following derivation which

55



combines (5.3) and (5.4):

d(xi, yi+n+1) ≥ (1− λ)−1d(xi+1, yi+n+1)− λ(1− λ)−1
i+n∑
k=i

d(xk, xk+1)

≥ (1− λ)−1(1 + nλ) d(xi+1, yi+1)

+ (1− λ)−n−1 (d(xi+n+1, yi+n+1)− d(xi+1, yi+1))

− λ(1− λ)−1
i+n∑
k=i

d(xk, xk+1)

= (1− λ)−1(1 + nλ) d(xi+1, yi+1)

+ (1− λ)−n−1 (d(xi+n+1, yi+n+1)− d(xi+1, yi+1))

− λ2(1− λ)−1
i+n∑
k=i

d(xk, yk)

≥ (1− λ)−1(1 + nλ) d(xi+1, yi+1)

+ (1− λ)−n−1 (d(xi+n+1, yi+n+1)− d(xi+1, yi+1))

− λ2(1− λ)−1(n+ 1) d(xi, yi)

= (1− λ)−n−1 (d(xi+n+1, yi+n+1)− d(xi, yi))

+ (1− λ)−1
(
(1 + nλ)− (1− λ)−n

)
d(xi+1, yi+1)

+
(
(1− λ)−n−1 − λ2(1− λ)−1(n+ 1)

)
d(xi, yi)

From e.g. the expression of each 1
1−λ as a power series, we have that (1+nλ) ≤ (1−λ)−n,
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so the last inequality above remains true when we replace d(xi+1, yi+1) by d(xi, yi):

d(xi, yi+n+1) ≥ (1− λ)−n−1 (d(xi+n+1, yi+n+1)− d(xi, yi))

+ (1− λ)−1
(
(1 + nλ)− λ2(n+ 1)

)
d(xi, yi)

= (1− λ)−(n+1) (d(xi+n+1, yi+n+1)− d(xi, yi))

+ (1 + (n+ 1)λ) d(xi, yi)

which completes the induction.

Having proven (5.2), we now show that lim
n→∞

d(xn, yn) = 0.

Assume otherwise, i.e. that there is some r > 0 such that lim
n→∞

d(xn, yn) = r. Let D

denote a bound for the sequences {xn} and {yn}.

We can pick ε > 0 such that ε exp
(
(1− λ)−1(r−1D + 1)

)
< r.

Choose i so that for all n ≥ 1, d(xi, yi) − d(xi+n, yi+n) ≤ ε, and choose N so that

λr(N − 1) ≤ D ≤ λrN . Then we have that λrN < D + r (⇒ Nλ < r−1D + 1).

We also have:

(1− λ)−N = (1 + (1− λ)−1)N

= exp
(
N log(1 + λ(1− λ)−1)

)
≤ exp

(
Nλ(1− λ)−1

)

So that we get the following contradiction:
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D + r ≤ (1 +Nλ)r ≤ (1 +Nλ)d(xi, yi)

≤ d(xi, yi+N ) + ε exp
(
Nλ(1− λ)−1

)
≤ D + ε exp

(
(1− λ)−1(r−1D + 1)

)
< D + r
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Part II

Continuous logic and enriched

category theory
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Chapter 6

Introduction

In his influential work [27], Lawvere demonstrated the conceptual power of enriching cate-

gories in categories other than that of Set; he exhibited a R-enriched category as a (gen-

eralized) metric space while hypothesizing what an R-valued logic look like, though neither

quite arriving at the not-yet-existent continuous logic, nor capturing uniform continuity in

his constructions (although he does so for Lipschitz continuity).

Now there is a well-developed interaction between classical model theory and category

theory, which has its roots in Lawvere’s thesis [26] on a categorical interpretation of algebraic

theories. A mature form of this interaction can be found in [33], in which categorical

interpretations of the features of classical first order logic are given. A yet more developed

connection between model theory and category theory is found in the framework of abstract

elementary classes and accessible categories (see e.g. [28], [32]).

The connection between metric model theory and category theory has developed in re-

verse chronological order: relatively recent work [13] introduces “metric abstract elementary

classes” whose connection to accessible categories is developed in [29], and yet more recent
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work [1] elegantly describes the continuous analogue of the framework presented in [33].

In more detail, [1] defines “continuous syntactic categories”, to be thought of as algebras

of continuous functions into the interval [0, 1] (i.e. continuous predicates) compatible with

the algebra of continuous functions [0, 1]n → [0, 1], and then gives conditions ensuring that

such categories may be interpreted as (basically) honest metric spaces; in this setting the

various continuous analogues of results in [33] are proven.

Our main project in the second part of this thesis fits into the above program by ex-

hibiting a category of R-enriched categories for which a suitable notion of “continuous”

subobject naturally allows for an interpretation of continuous predicates and behaves like

objects of the continuous syntactic categories above; in fact we are able to exhibit (the

symmetric version of) R as a “continuous subobject classifier” in a precise sense analogous

to the role of Ω = {0, 1} as a subobject classifier in Set. We arrive at these notions by

first defining the framework to describe uniform continuity categorically, and then showing

that this is sufficiently well-behaved as to ultimately allow for the above constructions and

therefore an organic interpretation of continuous logic. Thus our present work should also

be understood as an exploration of how the categorical structures required by [1] might

arise “in the wild”.
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Chapter 7

Basics of categorical logic

We now recall some of the framework relevant to interpreting (classical, i.e. non-continuous)

many-sorted first order logic in categories.

7.1 Syntax of first order logic

We begin with the basic syntactic notions of first order logic, gliding over technical subtleties

when they are not relevant to our purposes and doing so would not result in confusion; the

interested reader can find a more detailed treatment in [33].

Definition 7.1. A signature S consists of:

(a) A set S of sort symbols si, containing ∗ (the “terminal sort”).

(b) A set F of function symbols fj , such that for each f ∈ F we have data (n, s1, . . . , sn, s),

where n is a natural number and each si is an element of S. In this case we say that f

is an n-ary function (symbol) of type (s1 × · · · × sn)→ s, or of type

( ∏
1≤i≤n

si

)
→ s.

We may also write f : (s1 × · · · × sn)→ s or f :

( ∏
1≤i≤n

si

)
→ s.

62



(c) A set R of predicate symbols Rk, such that for each R ∈ R we have data (n, s1, . . . , sn)

where n is a natural number and each si is an element of S. In this case we say that

R is an n-ary predicate (symbol) of type s1 × · · · × sn, or of type
∏

1≤i≤n
si. We may

also write R ⊂ s1 × · · · × sn or R ⊂
∏

1≤i≤n
si.

In specifying the type of a symbol,
∏
∅
si is to be understood as ∗. We will frequently

refer to a 0-ary function symbol c of type ∗ → s as a constant symbol c of type s.

We do not allow 0-ary predicate symbols R (we could, but they necessarily end up

having trivial interpretations).

In addition to the symbols provided by our signature S (the nonlogical symbols), we

also have the logical symbols: we have the equality symbol =, connectives {∧,∨,⇒, ∀, ∃},

and for each s ∈ S we have an infinite set {xi} of variables of type s.

Now we briefly review the inductive constructions of terms and formulas given a signa-

ture S:

Definition 7.2. Let S be a signature.

(a) A term for S is given by the following inductive description:

(i) Each variable x of type s is a term of type s, with free variable x.

(ii) Each constant symbol c of type s is a term of type s, with no free variables.

(iii) Let t1, . . . , tn be terms where tk is of type sk, and f :
∏

1≤k≤n
sk → s.

Then f(t1, . . . , tn) is a term of type s, with free variables given by the union over

k of the free variables of each tk (in particular we only count each distinct free

variable once).
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(b) Let t1, . . . , tn be terms where tk is of type sk, and R ⊂
∏

1≤k≤n
sk.

Then R(t1, . . . , tn) is an atomic formula with free variables given by the union of k of

the free variables of each tk. (The logical symbol = is treated as a binary predicate

symbol of type s× s, where s can be any sort.)

(c) A formula for S is given by the following inductive description:

(i) Each atomic formula is a formula.

(ii) If φ and ψ are formulas then so are φ∧ψ, φ∨ψ, and φ⇒ ψ, with free variables

given by the union of the free variables of φ and ψ.

(iii) If φ is a formula and x is a free variable of φ then ∀xφ and ∃xφ are formulas

with free variables equal to the free variables of φ omitting x.

(iv) If φ is a formula with no free variables, then φ is called a sentence.

An S-theory Σ is then just a set of sentences of S.

Briefly, a model of the language S is just an assignment of a set JsK to each sort symbol

s, a set function JfK : (
∏
i
JsiK) → JsK to each function symbol f :

∏
i
si → s, and a subset

JRK ⊂
∏
i
JsiK to each predicate symbol R ⊂

∏
i
si. Such a collection of assignments then

induces an assignment of a set function to each S-term and a subset to each S-formula.

A model of an S-theory Σ is such an assignment for which the interpretation “makes each

φ ∈ Σ true”. We will describe all of this more precisely in a more general setting in the

following sections.
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7.2 Basic categorical notions

Before we can actually describe how to interpret the terms and formulas of a signature S

into a category C, we must first recall some basic constructions in category theory. For the

most part we will not prove in detail (or sometimes at all) the results in this section, as

they can be found in standard references such as [31]. We assume a rudimentary knowledge

of categories, e.g. at the level of limits and adjunctions, for which the canonical reference

is [30].

Definition 7.3. Let C be a category, and X an object of C.

By a subobject ι of X we mean the isomorphism class (fixing X) of a monomorphism

ι : A ↪→ X. If there is a commutative triangle

A ⊂ - B

X

�

ι′
⊃

⊂
ι

-

then we say that ι ≤ ι′ as subobjects of X.

By the nature of monomorphisms, the class of subobjects SubX of a given object X ∈ C

forms a poset, so in particular a category. If the category C has extra structure, then so

does the poset SubX (see Proposition 7.4 below). Note that 1X is the terminal object of

SubX, and if C has an initial object such that any morphism out of the initial object is

monic then it is also an initial object in SubX. (Henceforth we make this assumption about

every category C that we mention.)

Although objects of SubX are, strictly speaking, isomorphism classes of monomorphisms

ι : A ↪→ X, for convenience we will usually refer to a subobject ι by the domain of a
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representing monomorphism when there is no chance for confusion. Thus if ι : A ↪→ X

represents the subobject ι then we may refer to ι by A.

Proposition 7.4. Let C be a category, and X an object of C.

(a) If C has finite limits, then SubX has products (meets).

(b) If C also has finite colimits, then SubX has coproducts (joins).

For more details, the reader is referred to [31]. Roughly, given A ↪→ X and B ↪→ X in

SubX, the meet A ∧B of A and B in SubX is given by the pullback

A ∧B - B

A
?

- X
?

while the join A ∨B is induced from the pushout

A ∧B - B

A
?

- A ∨B
?

Thus for each X ∈ C, SubX has the structure of a lattice.

Example 7.5. When C = Set and X ∈ Set then the powerset P(X) of X considered as a

poset is isomorphic to SubX.

If we have f : X → Y in C, then “pullback across f” gives a functor (i.e. an order-
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preserving poset map) f∗ : SubY → SubX:

f∗A - A

X
?

∩

- Y
?

∩

Example 7.6. When C = Set with f : X → Y in Set, then the pullback functor

f∗ : P(Y )→ P(X) is given by f∗A = f−1(A) ⊂ X for a subset A ⊂ Y .

For categories C with sufficient structure, for each f : X → Y we have a left (resp. right)

adjoint ∃f (resp. ∀f ) : SubX → SubY to the pullback functor f∗. These functors play a

central role in interpretations of logic into these categories, as we will see in detail shortly.

Moreover, for such categories C with extra structure it may be the case that for each

X ∈ C, SubX is in fact a Heyting algebra. That is, not only does SubX possess the structure

of a lattice, but also for every A,B ∈ SubX, there is (A ⇒ B) ∈ SubX (“implication”)

such that for every C ∈ SubX, we have that C ≤ (A⇒ B) iff C ∧A ≤ B.

It is not true in general that a category C admits such extra structure. This is the case,

however, if C is a topos, which is a category satisfying some strong conditions; Set, for

example, is a topos. We will not delve into topos theory in this thesis, for we will construct

what we need by hand.

7.3 The categorical interpretation

Let us consider the syntactic framework as described in Section 7.1.

Definition 7.7. Let S be a signature as in Section 7.1.

Let C be a category with finite limits and colimits. Furthermore for each X ∈ C let
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SubX possess the structure of a Heyting algebra (whose lattice structure is given as in

Proposition 7.4), and for each X,Y ∈ C and f : X → Y let there be a left (resp. right)

adjoint ∃f (resp. ∀f ) : SubY → SubX.

An interpretation of S in C is given by the following:

(a) For each sort symbol s ∈ S, an object JsK ∈ C, such that J∗K is the terminal object of

C.

(b) For each function symbol f :
∏
i
si → s, a morphism JfK :

∏
i
JsiK→ JsK.

(c) For each predicate symbol R ⊂
∏
i
si, a subobject JRK ↪→

∏
i
JsiK.

(In the above we have implicitly made a choice of products, and monomorphisms rep-

resenting subobjects.)

The above data then determine the interpretation of all S-terms and S-formulas, as

follows. Any time we have a tuple ~x = (x1, . . . , xn) of distinct variables of types s1, . . . , sn

(respectively), we set J~xK =
∏

1≤i≤n
JsiK. In particular, if a variable x is of type s then JxK is

JsK, and if ~x is empty then J~xK = J∗K.

If t is a term of type s with free variables among ~x, then JtK~x is defined as a morphism

JtK~x : J~xK→ JsK given by the following inductive description:

If t = xi then JtK~x : J~xK→ JxiK is just the projection map.

If t = f(t1, . . . , tn) with each ti of type si, with each JtiK~x already defined, then

JtK~x : J~xK→ JsK is given by the composition JfK ◦ (Jt1K~x, . . . , JtnK~x).

Now if φ is a formula with free variables among ~x, then we interpret it as a subobject

JφK~x ↪→ J~xK, given by the following:

68



If φ is the atomic formula t1 = t2, with both t1 and t2 are terms of type s, then JφK~x is

given by the equalizer JφK~x J~xK JsK.
Jt1K~x

Jt2K~x

If φ is an atomic formula R(t1, . . . , tn) where ti has sort si, then JφK~x is given by the

pullback

JφK~x - JRK

J~xK
? (Jt1K, . . . , JtnK) -

∏
i

JsiK
?

Given interpretations JφK~x and JψK~x of φ and ψ, we set Jφ ∧ ψK~x = JφK~x ∧ JψK~x,

Jφ ∨ ψK~x = JφK~x ∨ JψK~x, and Jφ⇒ ψK~x = JφK~x ⇒ JψK~x.

Given an interpretation JφK~x,y of φ, we set J∃y φK~x = ∃π (JφK~x,y) and J∀y φK~x = ∀π (JφK~x,y),

where π : (
∏
i
J~xK)× JyK→

∏
i
J~xK is the obvious projection.

This completes the interpretation of all S-terms and S-formulas into the category C.

From the above, we see that if φ is a sentence, then JφK∅ ↪→ J∗K is a subobject of the terminal

object. We say that φ is true in C if this arrow JφK∅ ↪→ J∗K is in fact an isomorphism, i.e.

JφK∅ is itself the terminal object.

Then if Σ is a collection of S-sentences, we say that an interpretation of S into C is a

model of Σ if the interpretation makes each φ ∈ Σ true in C.

7.4 Some extras about the category Set

One observation about the category Set is that, given X ∈ Set, each A ∈ P(X) corresponds

uniquely to a map f : X → {0, 1} where A = f−1({0}). We can generalize this to general

categories:
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Definition 7.8. For C a category with finite limits (and therefore a terminal object ∗ ∈ C),

we say that ∗ ↪→ Ω (for some Ω ∈ C) is a subobject classifier when for each ι : A ↪→ X there

is a unique morphism f : X → Ω such that the following is a pullback diagram:

A - ∗

X
?

∩

f
- Ω
?

∩

So for C = Set we have (∗ ↪→ Ω) = ({0} ↪→ {0, 1}). This correspondence between

subobjects and maps to the subobject classifier is what allows us to consider formulas

φ as either subsets JφK~x ⊂ J~xK or as functions φ : J~xK → {0, 1}. Furthermore we can

consider an ordering on Ω, namely 0 < 1, so that given functions f1, f2 : X → Ω we have

max(f1, f2) : X → Ω and min(f1, f2) : X → Ω.

Proposition 7.9. In the category Set, let φA and φB be interpreted as JφAK~x ⊂ J~xK and

JφBK~x ⊂ J~xK, respectively.

Denote J~xK by X, and let A ↪→ X and B ↪→ X represent JφAK ⊂ X and JφBK ⊂ X,

respectively.

Let A ↪→ X and B ↪→ X correspond to fA : X → Ω and fB : X → Ω, respectively.

(a) JφA ∧ φBK ⊂ X is represented by A ∩B ↪→ X, which corresponds to

max(fA, fB) : X → Ω.

(b) JφA ∨ φBK ⊂ X is represented by A ∪B ↪→ X, which corresponds to

min(fA, fB) : X → Ω.

With the above we have described how acting on formulas by connectives affects their
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interpretations into Set, either as subsets or as maps to {0, 1}. We wish to do the same for

quantification.

Proposition 7.10. Let φ be a formula with free variables among ~x, y, and denote X = J~xK

and A = JφK~x,y ⊂ X × JyK. We have the projection π : X × JyK → X. Furthermore, let φ

correspond to fA : (X × JyK)→ Ω.

(a) J∀y φK~x is given by the set {x | (π)−1({x}) ⊂ A} ⊂ X, which corresponds to the

function (∀π f) : X → Ω given by a 7→ sup
b∈JyK

fA(a, b).

(b) J∃y φK~x is given by the set π(A) ⊂ X, which corresponds to the function

(∃π f) : X → Ω given by a 7→ inf
b∈JyK

fA(a, b).
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Chapter 8

Some features of enriched

categories

Ultimately our goal is to give a categorical interpretation of continuous first order logic in

an analogous manner to that described above for classical first order logic. Our approach to

this is inspired by Lawvere, who in [27] investigates various logically relevant properties of

enriched categories and how the enriching category affects the nature of those properties. A

reference for enriched category theory is e.g. [14]. However, for our purposes we will need to

suitably tailor the theory of enriched categories to fit our needs. As the currently existing

framework of enriched category theory is vast, it falls outside the scope of this thesis to track

every consequence of these modifications throughout the entirety of the existing framework;

we will therefore flesh out in complete detail only those parts of enriched category theory

that we require for our current objectives, and how those parts of the theory are affected

under our modifications.

For the most part we will sweep under the rug issues of size, as we will assume we are
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working in a Grothendieck universe of sufficient size to accomodate the constructions we

need. More precisely, we potentially need up to two inaccessible cardinals κ < κ′, when

we work with such constructions as “the category of the κ′-small categories of κ-small

V-enriched categories”.

Section 8.1 recalls some standard notions in enriched category theory, while also in-

troducing some natural but non-standard definitions that we will utilize: we take care to

distinguish in each case whether it is a standard concept or our own addition to the theory.

Section 8.2 uses the material introduced in Section 8.1 to note some relevant properties

of enriched categories that are analogous to those of ordinary categories. Section 8.3 il-

lustrates how, as a special case, the category of sets may be considered as a category of

enriched categories, to suggest how the material of this chapter will (after suitable modi-

fication) be utilized in the following chapter in pursuing the goal of interpreting logic into

enriched categories.

8.1 Preliminaries

We briefly recall some standard notions concerning enriched categories that we will use:

Let (V,⊗, I) be a symmetric closed monoidal category that is complete (has all limits)

and cocomplete (has all colimits); for convenience we call such a category a cosmos. We

additionally assume that I is the terminal object for V (which is usually the case).

A V-category X is given by specifiying, for every three objects a, b, c ∈ X, a morphism

µXa,b,c : X(b, c)⊗X(a, b)→ X(a, c) in V, and also for each a ∈ X a morphism
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ηXa : I → X(a, a) in V such that the following diagram commutes:

X(a, b)
'
- X(a, b)⊗ I

X(a, b)⊗ ηa- X(a, b)⊗X(a, a)

I ⊗X(a, b)

'

?

X(b, b)⊗X(a, b)

ηb ⊗X(a, b)

? µa,b,b - X(a, b)

µa,a,b

?

1
X(a,b)

-

That V is closed means that we have a functor HomV : Vop×V → V such that there is a

bijection between the set V0(b⊗a, c) of V-morphisms b⊗a→ c and the set V0(a,HomV(b, c))

of V-morphisms a → HomV(b, c) which satisfies the evident naturality conditions in a, b, c.

This makes V itself into a V-category, by setting V(a, b) = HomV(a, b).

Given a V-category X we can take Xop to be the V-category with the same objects and

Xop(a, b) = X(b, a). We call X symmetric when X = Xop. Given an arbitrary V-category

X we can always symmetrize it to get Xsym, the V-category with the same objects and

Xsym(a, b) = X(b, a)⊗X(a, b).

Remark 8.1. If V is a linear order then the definition of V as a V-category necessarily

implies that Vsym(a, b) = V(a, b)⊗V(b, a) = V(a, b)×V(b, a) since at least one of V(a, b) or

V(b, a) must be equal to I.

We now give a definition that is (to the best of the author’s knowledge) is not standard,

but is a natural generalization of its counterpart in ordinary category theory:

Definition 8.2. Given a V-category X, we say that two objects a, b ∈ X are V-isomorphic

when there are V-morphisms ia,b : I → X(a, b) and ib,a : I → X(b, a) such that the following
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diagram commutes:

X(b, a)⊗X(a, b)
µa,b,a - X(a, a)

I

η a

-
�

ib,a ⊗
ia,b

X(a, b)⊗X(b, a)

'

?

µb,a,b
-

�

i a,
b
⊗ i

b,a

X(b, b)

η
b

-

where the leftmost isomorphism is the symmetry of the monoidal structure in V.

It follows easily that if a, b ∈ X are V-isomorphic then X(c, a) ' X(c, b) and

X(a, c) ' X(b, c) in V for all c ∈ X.

The following is a standard notion in enriched category theory:

If X and Y are V-categories, then by a V-functor F : X → Y we mean an assignment

of a Y -object Fa to each X-object a along with a V-morphism Fa,b : X(a, b)→ Y (Fa, Fb)

for each pair of X-objects a, b such that the following diagrams commute:

X(a, b)⊗X(b, c)
µXa,b,c - X(a, c)

Y (Fa, Fb)⊗ Y (Fb, Fc)

Fa,b ⊗ Fb,c

? µYFa,Fb,Fc- Y (Fa, Fc)

Fa,c

?

X(a, a)

I

η
X
a
-

Y (Fa, Fa)

Fa,a

?η Y
Fa

-
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A short diagram chase shows that F must take V-isomorphic objects in X to V-

isomorphic objects in Y .

A V-functor F is called V-f.f. (for “V-full and faithful”) when Fa,b : X(a, b)→ Y (Fa, Fb)

is an isomorphism in V for each a, b ∈ X. If F is also injective on objects then we call it an

embedding of V-categories, and if F is furthermore a bijection on objects then we call it an

isomorphism of V-categories, or a (V-Cat)-isomorphism.

We call a V-functor F : X → Y saturated when for every x ∈ X and every y ∈ Y such

that y is V-isomorphic to Fx in Y , there is some x′ ∈ X such that Fx′ = y.

Keeping in mind that our approach is to combine the Makkai-Reyes categorical inter-

pretation of logic [33] with Lawvere’s method of enriching the interpreting category in a

suitable poset of truth values [27], we now make the significant assumption that our enrich-

ing category V is in fact also a poset category. This will not be a hindrance for us since we

would have ended up specializing to V a poset category anyway, and this assumption makes

some parts of the machinery we need considerably simpler to develop and use.

As a first consequence of this assumption, note that for X a V-category we have that

a, b ∈ X are V-isomorphic iff X(a, b) = I.

In what follows, recall that we are assuming up to two inaccessible cardinals κ < κ′;

when we speak of such things as categories of small categories, we mean a κ′-small category

of κ-small categories, justifying the use of set-theoretic language at our convenience.

Consider V-Cat, the category of small V-enriched categories, where the objects are

V-categories and morphisms V-functors between them. V-Cat is a priori just an ordinary

category: for X,Y ∈ V-Cat we have V-Cat0(X,Y ) given by the set of V-functors from X to

Y . However there is a standard end formula that endows V-Cat0(X,Y ) with the structure
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of a V-category; specifically, for F,G ∈ V-Cat0(X,Y ), we can take V-Cat(X,Y )(F,G) to

be the end
∫
a Y (Fa,Ga) ∈ V.

Explicitly,
∫
a Y (Fa,Ga) is obtained as the equalizer

∏
a
Y (Fa,Ga)

∏
b,c

HomV(X(b, c), Y (Fb,Gc))
α

β

where α is induced from the morphisms

Y (Fc,Gc)⊗X(b, c)→ Y (Fc,Gc)⊗X(Fb, Fc)→ Y (Fb,Gc)

and β from the morphisms

X(b, c)⊗ Y (Fb,Gb)→ Y (Gb,Gc)⊗ Y (Fb,Gb)→ Y (Fb,Gc)

via the tensor-hom adjunction in V.

Since we are assuming V is a poset category, the equalizer above simplifies to a product,

and V-Cat(X,Y )(F,G) =
∏
a
Y (Fa,Ga).

The tensor product on V-Cat is inherited from that of V: for X,Y ∈ V-Cat one takes

X ⊗ Y to be the V-category with objects (a, b) where a ∈ X and b ∈ Y , and

(X ⊗ Y )((a1, b1), (a2, b2)) = X(a1, a2)⊗ Y (b1, b2).

The monoidal unit of V-Cat is the category I with one object ∗ where I(∗, ∗) = I.
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For X,Y, Z ∈ V-Cat, we clearly have the composition map

V-Cat0(Y,Z)× V-Cat0(X,Y )→ V-Cat0(X,Z)

at the set level. It turns out that this is the “underlying set” of a V-functor V-functor

V-Cat(Y,Z)⊗ V-Cat(X,Y )→ V-Cat(X,Z):

Proposition 8.3. Let X,Y, Z ∈ V-Cat.

The set map V-Cat0(Y,Z) × V-Cat0(X,Y ) → V-Cat0(X,Z) given by composition of

V-functors is the underlying object function of a V-functor

V-Cat(Y, Z)⊗ V-Cat(X,Y )→ V-Cat(X,Z).

Remark 8.4. This proposition, as well as its proof, is surely known; however the author

has not been able to find it in the literature, so we record it here for completeness.

Proof. Let F1, F2 ∈ V-Cat(X,Y ) and G1, G2 ∈ V-Cat(Y,Z). For simplicity denote

V-Cat(X,Y ) by Ω1, V-Cat(Y,Z) by Ω2, and V-Cat(X,Z) by Ω. We wish to give a mor-

phism

Ω2 ⊗ Ω1((F1, G1), (F2, G2)) = Ω2(G1, G2)⊗ Ω1(F1, F2)→ Ω(G1F1, G2F2)

in V. This means that we need to give a morphism

(∏
y

Z(G1y,G2y)

)
⊗

(∏
x

Y (F1x, F2x)

)
→
∏
x

Z(G1F1x,G2F2x)
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in V. Let Y ′ denote the set of objects of Y that are not of the form F2x for any x ∈ X, and

let X ′ denote a set of objects of X on which F2 is a bijection onto its whole image. Then

we have that
∏
y
Z(G1y,G2y) =

( ∏
y∈Y ′

Z(G1y,G2y)

)
×
( ∏
x∈X′

Z(G1F2x,G2F2x)

)
. However,

since V is a poset we have that for any a ∈ V, a '
∏
i∈J

a for any nonempty index set J , so

that
∏
x∈X′

Z(G1F2x,G2F2x) '
∏
x
Z(G1F2x,G2F2x).

Then we have the following morphisms in V:

∏
y∈Y ′

Z(G1y,G2y)

×(∏
x

Z(G1F2x,G2F2x)

)
π2−→
∏
x

Z(G1F2x,G2F2x)

∏
x

Y (F1x, F2x)

∏
x
(G1)F1x,F2x

−−−−−−−−−→
∏
x

Z(G1F1x,G1F2x)

Now for each x ∈ X we have a map

∏
x

Z(G1F2x,G2F2x)⊗
∏
x

Z(G1F1x,G1F2x)
πx⊗πx−−−−→Z(G1F2x,G2F2x)⊗ Z(G1F1x,G1F2x)

µZ−−→Z(G1F1x,G2F2x)

which gives us a morphism

∏
x

Z(G1F2x,G2F2x)⊗
∏
x

Z(G1F1x,G1F2x)→
∏
x

Z(G1F1x,G2F2x) = Ω(G1F1, G2F2)

Putting all of the above together gives us the required V-morphism

V-Cat(Y,Z)⊗ V-Cat(X,Y )((F1, G1), (F2, G2))→ V-Cat(X,Z)(G1F1, G2F2)

for each F1, F2 ∈ V-Cat(X,Y ) and G1, G2 ∈ V-Cat(Y,Z). V-functoriality is immediate
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since V is a poset, so that we have a V-functor

V-Cat(Y,Z)⊗ V-Cat(X,Y )→ V-Cat(X,Z)

which agrees at the object level with the set function

V-Cat0(Y,Z)× V-Cat0(X,Y )→ V-Cat0(X,Z)

In particular, V-Cat can be considered as enriched over itself.

In light of this, for any V-Cat-enriched category A and X,Y, Z ∈ A, if we have

F ∈ A(X,Y ) and G ∈ A(Y,Z) then we will write GF ∈ A(X,Z) for the image under

composition map of the object G⊗ F ∈ A(Y, Z)⊗A(X,Y ).

An important consequence of the composition map being a V-functor is that precom-

posing or postcomposing (by any V-functor) preserves the relation of two V-functors being

V-isomorphic.

We can now define the following, which - like the notion of being V-isomorphic - is not

entirely standard to the best of the author’s knowledge, but is a natural enriched version

of its counterpart in ordinary category theory:

Definition 8.5. Given X,Y ∈ V-Cat, we say that X,Y are V-equivalent when there

are V-functors F : X → Y and G : Y → X such that GF is V-isomorphic to 1X in

V-Cat(X,X) and FG is V-isomorphic to 1Y in V-Cat(Y, Y ). We may denote this situation

as X Y.
F

G
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In general, we will call V-functors F,G : X → Y V-isomorphic when they are V-

isomorphic as objects of the V-category V-Cat(X,Y ). Moreover, if we have X X ′
F

F ′

and Y Y ′
H

H′
then we have that for G : X → Y , G is V-isomorphic to H ′HGF ′F .

This motivates the following convention, that when we say two V-functors G : X → Y

and G′ : X ′ → Y ′ are V-equivalent, we mean that there is a V-equivalence X X ′
F

F ′
and

a V-equivalence Y Y ′
H

H′
such that G′ is V-isomorphic to HGF ′ (⇔ G is V-isomorphic

to H ′G′F ⇔ HG is V-isomorphic to G′F ⇔ GF ′ is V-isomorphic to H ′G′). If we take

F = F ′ = 1X then we say that this V-equivalence of functors fixes X, while if G = G′ = 1Y

then we say that the V-equivalence fixes Y .

Although V-Cat is the main example of a (V-Cat)-enriched category, the above defini-

tions generalize easily to any (V-Cat)-enriched category A: instead of V-functors

F : X → Y we have objects F ∈ A(X,Y ) (with the identity V-functor 1X being replaced

by the object of A(X,X) given by the unit I → A(X,X)), and instead of the compo-

sition V-functor V-Cat(Y, Z) ⊗ V-Cat(X,Y ) → V-Cat(X,Z) we consider the V-functor

A(Y,Z)⊗A(X,Y )→ A(X,Z).

8.2 Subobjects of V-categories

We now define what it means to be a subobject:

Definition 8.6. Let X be a V-enriched category. By a subobject of X we mean the equiv-

alence class of a saturated embedding ι : A→ X, where ι : A→ X is considered equivalent

to ι′ : A′ → X when there is an isomorphism of V-categories given by F : A→ A′ such that

ι is V-isomorphic to ι′F .

We will often refer to a subobject of X by (the domain of) one of its representatives, i.e.
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“ι : A→ X is a subobject of X” or “A is a subobject of X” when no confusion will result.

We will also need to talk of “subcategories” in V-Cat, so we introduce the following

terminology:

Definition 8.7. Let A and B be κ′-small (V-Cat)-enriched categories, then we say that A

is a subcategory of B if there is a (V-Cat)-functor i : A → B that is injective on objects,

such that for each X,Y ∈ A the V-functor iX,Y : A(X,Y )→ B(i(X), i(Y )) is an embedding

of V-categories. If each such iX,Y is in fact an isomorphism of V-categories then we call A

a full subcategory of B.

An important example when B = V-Cat isA = (V-Cat)sym, the full subcategory of sym-

metric V-categories. Tracing the argument of Theorem 8.3 shows us that (V-Cat)sym is not

just enriched over V-Cat but that this enrichment restricts to the subcategory (V-Cat)sym.

This is a regularly occurring theme: all of the results below that reference V-Cat should

be understood as also applying to the full subcategory (V-Cat)sym (with the same proofs),

unless stated otherwise.

8.2.1 Limits and factorization in V-Cat

We now need an appropriate notion of limits in V that generalizes the notion of limits in

an ordinary category. There is already a sophisticated tool that does this, called weighted

(co)limits; however, to apply this theory to limits in V-Cat would require us to talk of hom

objects in (V-Cat)-Cat, the construction of which only considers the ordinary categorical

structure of V-Cat and moreover complicates matters more than is necessary. Therefore, we

take a more elementary approach that nevertheless specializes appropriately to the familiar

notion of limits in the case of ordinary categories.
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Definition 8.8. Let A,B be κ′-small (V-Cat)-enriched categories, and let D : A → B be

a (V-Cat)-functor, which we call a diagram.

By a cone λ over D we mean an object X ∈ B along with, for each A ∈ A, an object

λA ∈ B(X,DA) such that for every F ∈ A(A1, A2), we have that (DA1,A2F )λA1 is V-

isomorphic to λA2 in B(X,DA2). We may also call λ a cone from X to D.

By a limit of D we mean an object limD ∈ B along with a cone λ from limD to D such

that for any X ∈ B and a cone µ from X to D, there is some L ∈ B(X, limD), unique up

to V-isomorphism, such that for each A ∈ A, we have that µA is V-isomorphic to λAL in

B(X,DA).

If there is a choice of limD along with a choice of limit cone λ satisfying the commuta-

tivity conditions strictly and not only up to V-isomorphism; and further if for each X ∈ B

with a cone µ from X to D there exists an L ∈ B(X, limD) for each A ∈ A we have that

µA = λAL strictly, then we say that this choice of limD has the strict universal property.

Cocones and colimits are defined dually.

We note that, with notation as in the above definition, limD must be unique up to

V-equivalence (if it exists). Also, if the image of some D′ : A → B is V-equivalent to the

image of D in the sense that for each A1, A2 ∈ A and each F : A1 → A2 we have that

DF : DA1 → DA2 is V-equivalent to D′F : D′A1 → D′A2, then limD is V-equivalent to

limD′.

However, we should be careful to note that V-equivalence does not preserve the strict

universal property, although isomorphisms of V-categories do.

Furthermore, if A is the empty (V-Cat)-category and B = V-Cat then we can take

limD = I; thus the monoidal unit of V-Cat is also its terminal object.
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If A is taken to be the (V-Cat)-enriched category with three objects A1, A2, A3 with

A(A1, A1) = A(A2, A2) = A(A3, A3) = A(A1, A3) = A(A2, A3) = I and empty hom-objects

otherwise, then limD is also called a pullback. (A is illustrated by the diagram below, where

we have omitted the “identity V-functors”.)

A1

A2
- A3

?

If X is a V-category, there is a V-category X0 with a V-equivalence X X0
π

i
such

that every x ∈ X0 is the only member of its V-isomorphism class; we call this the reduction

of X, and π the reduction map. Explicitly, X0 has as objects the V-isomorphism classes of

objects in X, and π is the V-f.f. V-functor that sends each object in X to its V-isomorphism

class.

Proposition 8.9. V-Cat has pullbacks.

Proof. Let X,Y, Z ∈ V-Cat and let F : X → Z and G : Y → Z be V-functors fitting into

the below diagram:

X

Y
G
- Z

F

?

We construct a V-category A and V-functors U : A → X and V : A → Y that satisfy

the conditions for being a limit of the above diagram.
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First note that if Z = I then we can take A to be the product X ×Y , which has objects

pairs of the form (x, y) for x ∈ X and y ∈ Y , with X×Y ((x, y), (x′, y′)) = X(x, x′)×Y (y, y′)

(where the product is taken in V). Then U and V are just the obvious projections pX and

pY .

Let Z0 denote the reduction of Z and π : Z → Z0 the reduction map.

The set of objects of A is given by the set
∐
z∈Z0

(
(πF )−1(z)× (πG)−1(z)

)
. This is clearly

a subset of the set of objects of X×Y , so that every a ∈ A is uniquely of the form (x, y) for

x ∈ X and y ∈ Y . Then for a = (x, y), a′ = (x′, y′) in A, we set A(a, a′) = X(x, x′)×Y (y, y′)

(where the product is taken in V). U and V are simply the restrictions of the projections

pX and pY to A.

Proposition 8.10. Let X,Y, Z ∈ V-Cat.

Given the diagram

X

Y
G
- Z

F

?

if F is a saturated embedding then there is a choice of pullback (i.e. of A, U , and V

fitting into the diagram below)

A
U
- X

Y

V

? G
- Z

F

?
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such that V is also a saturated embedding and FU = GV strictly. Moreover, this square

has the strict universal property.

Proof. Let the objects of A be the set
∐
z∈Z

(
F−1(z)×G−1(z)

)
. Let U and V be the restric-

tions to A of the projections pX and pY .

We now make some observations that are relevant to the behavior of subobjects; we

omit proofs that are trivial.

Proposition 8.11. For X,Y ∈ V-Cat and F : X → Y a V-functor, there is X ′ ∈ V-Cat

and F ′ : X → X ′, G : X ′ → Y such that G is a saturated embedding and F = GF ′ strictly.

Furthermore, we can pick X ′ and G : X ′ → Y to satisfy the following property:

If F = G′F ′′ strictly for some F ′′ : X → X ′′ and G′ : X ′′ → Y such that G′ is a

saturated embedding, then there exists a H : X ′ → X ′′ such that G = G′H strictly and H

is a saturated embedding. X ′ is unique up to isomorphism of V-categories, and G up to

precomposition by such an isomorphism. We call G the image of F .

If F : X → Y is V-f.f. then F ′ : X → X ′ above is part of a V-equivalence X X ′.
F ′

F̃

Proof. Let the objects of X ′ consist of all the objects of Y which are V-isomorphic to some

object in the image of F . Then for a, b ∈ X ′, X ′(a, b) is determined up to isomorphism by

the requirement that G : X ′ → Y be V-f.f. The inclusion on objects thus gives a saturated

embedding G : X ′ → Y . This determines F ′ via the requirement that, for each x ∈ X,

we must set F ′x equal to the unique x′ ∈ X ′ with Gx′ = Fx. Uniqueness of X ′ up to

V-Cat-isomorphism is clear.

If F is V-f.f. then there is clearly always a (noncanonical) choice of V-functor F̃ : X ′ → X
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such that we have X X ′.
F ′

F̃

Proposition 8.12. Let X,Y, Z be V-categories fitting into the below diagram

X
F
- Y

Z

�

G

H

-
which commutes up to V-isomorphism.

(a) If both G and H are V-f.f. then so is F .

(b) If both G and H are saturated embeddings, then there is a unique F ′ which is V-

isomorphic to F such that F ′ is a saturated embedding and GF = H strictly.

(c) If the diagram commutes strictly and both G and H are saturated embeddings, then F

is also a saturated embedding.

Proposition 8.13. Let X,Y, Z be V-categories fitting into the below diagram

X Y Z
F

G

H

which commutes up to V-isomorphism, i.e. HF is V-isomorphic to HG.

(a) If H is V-f.f. then F is V-isomorphic to G.

(b) If the diagram commutes strictly and if H is an embedding then F = G strictly.

As a first application, Proposition 8.12 allows us, in the definition of a subobject, to

consider ι : A→ X and ι′ : A′ → X to represent the same object iff there is an isomorphism

of V-categories F : A→ A′ such that ι = ι′F strictly.
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8.2.2 The poset of subobjects

Let X be a V-category. We now define the category SubX of subobjects of X as follows:

The objects of SubX are the subobjects of X.

Given V-functors F : A → B and F ′ : A′ → B′, we consider them equivalent when

there is a V-Cat-isomorphism G : A → A′ witnessing the equivalence of ι : A → X and

ι′ : A′ → X as subobjects of X, along with a V-Cat-isomorphism H : B → B′ witnessing

the equivalence of θ : B → X and θ′ : B′ → X as subobjects of X, such that the diagram

below commutes up to V-isomorphism:

A
F

- B

I
�

θι

-

A′

G

?

F ′
-

ι
′

-

B′

H

?

�

θ ′

Then given ι : A → X and θ : B → X representing subobjects [ι] and [θ] of X, a

morphism between these two subobjects is given by an equivalence class [F ] of a V-functor

F : A→ B such that ι is V-isomorphic to θF .

In this situation, if we hold A and B fixed then by Proposition 8.12 we have a unique

representative F : A → B which is a saturated embedding such that ι = θF strictly. This

process is natural in A and B by uniqueness.

By the above, and by Proposition 8.13 we have that SubX is in fact a poset category.

Let F : X → Y . From the above observations and by Proposition 8.10 we get a functor
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F ∗ : SubY → SubX which acts on (representatives of) subobjects of X by pullback.

For ι : A → X representing an object of SubX, we can factor Fι into HG where

G : A→ ∃FA is some V-functor and H : ∃FA→ Y is the image of Fι. From the properties

of the image and by Proposition 8.12 it follows that this process is well-defined on SubX

and functorial, yielding a functor ∃F : SubX → SubY . It is easily checked that ∃F is left

adjoint to F ∗.

We can construct a right adjoint ∀F : SubX → SubY to F ∗ by hand. Given ι : A→ X

and the reduction map π : Y → Y0, take the objects of ∀FA to be the set

{y ∈ π−1(y0) | if πFx = y0, then there is some a ∈ A such that ιa = x}.

That is, it is the set of all objects of Y which are V-isomorphic to some object y ∈ Y

satisfying the condition that every x for which Fx is V-isomorphic to y is also “in A”, i.e.

of the form ιa for some a ∈ A. The inclusion into Y on the objects of ∀FA extends to a

saturated embedding ∀F ι : ∀F : A→ Y .

Now let θ : B → X represent another subobject in SubX. Then ∀FB has as objects

the set {y ∈ π−1(y0) | if πFx = y0, then there is some b ∈ B such that θb = x}.

If there is a (representative of a) morphism in SubX given by G : A → B where G is

a saturated embedding and ι = θG strictly, then by construction we have that the set of

objects of ∀FA is a subset of the set of objects of ∀FB, so that the inclusion extends to a

saturated embedding ∀FG : ∀FA → ∀FB such that ∀F ι = (∀F θ)G strictly. This process is

well-defined and functorial on SubX, so that we have a functor ∀F : SubX → SubY . As

with ∃F , it is easy to check that ∀F right adjoint to F ∗.

We record these results as a proposition:
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Proposition 8.14. For X,Y ∈ V-Cat and a V-functor F : X → Y , the functor

F ∗ : SubY → SubX has both left and right adjoints, given by ∃F and ∀F , respectively.

The lattice structure of SubX for X ∈ V-Cat shall not be explored here, for reasons of

efficiency: meets and joins are constructed easily enough in analogy with Proposition 7.4,

and implications, when they are relevant, may be constructed “by hand” in our cases of

interest.

8.3 Set as a category of enriched categories

As before, we will use the category Set to guide our intuition. The rough idea is that, just

as a collection of sets and functions between them serve as models of a given language of

classical first order logic, with Set as the ambient category; for some appropriate choice

V of enriching category we will regard a collection of V-categories and morphisms between

them (V-functors) as potential models of a given language for a different kind of logic (thus

the category V-Cat of V-categories will serve as the ambient category in which to interpret

such a logic).

To properly ground our intuition, then, it is appropriate to regard Set as a category

of enriched categories, i.e. to regard each set X ∈ Set as a category enriched over an

appropriate enriching category V.

Remark 8.15. This basic idea of regarding Set as (a subcategory of) a category of enriched

categories is a philosophically useful perspective for the project of interpreting different kinds

of logic into categories. While the author has arrived independently at this idea (as well

as the recognition of its usefulness as a perspective for our purposes) starting from [27],

and while we were unable to find it in published literature, we are certainly not the first
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to conceive of it; for example the rough idea behind the material of this section is briefly

discussed in the comments section of a post on the n-Category Café [2].

Let 2 denote the category (⊥ → >), i.e. the poset category with two objects (labeled

by ⊥ and >) and ⊥ → > the only non-identity morphism. There is a monoidal closed

structure on 2, with tensor product (denoted by ∧) given by > ∧ > = >, and a ∧ b = ⊥

for all other pairs (a, b). The monoidal identity is >. We then have Hom2(a, b) (which we

suggestively denote by a ⇒ b) given by (> ⇒ ⊥) = ⊥ and (a ⇒ b) = > for all other pairs

(a, b).

By (2-Cat) denote the category of κ-small 2-enriched categories, and by (2-Cat)sym

denote the full subcategory of symmetric 2-enriched categories. We may think of (2-Cat)sym

as the category of sets each equipped with an equivalence relation, and functions between

them which respect equivalence classes. Two 2-functors F,G : X → Y are 2-isomorphic iff

they are the same when regarded as functions between equivalence classes, or equivalently iff

2-Cat(X,Y )(F,G) = >. As is true for general V, (2-Cat)sym is closed under the monoidal

structure of 2-Cat, so that (2-Cat)sym can itself be considered a monoidal category, with the

inclusion (2-Cat)-functor (2-Cat)sym → 2-Cat strictly preserving the monoidal structure

of (2-Cat)sym.

We can regard each X ∈ Set as a (symmetric) 2-category, by setting X(a, a) = >

and X(a, b) = ⊥ for a 6= b. This assignment takes the monoidal closed structure of Set

to that of 2-Cat; in particular there is a natural (in X and Y ) bijection between the set

of functions Set(X,Y ) and the set of 2-functors between X and Y such that for two set

functions F,G : X → Y regarded under this bijection as objects F,G ∈ 2-Cat(X,Y ), F

and G are the same as set functions iff we have 2-Cat(X,Y )(F,G) = > (i.e. F and G are
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2-isomorphic). In this way we can consider Set to be a full subcategory of (2-Cat)sym with

the inclusion (2-Cat)-functor Set → 2-Cat strictly preserving the monoidal structure of

Set.

Remark 8.16. From this perspective, we see that the definitions given in Section 8.1 reduce

to the usual familiar notions:

(a) A 2-functor F between X,Y ∈ Set is just a set function F : X → Y . F is 2-f.f. iff it

is a saturated embedding iff it is an injective set function.

(b) For X,Y ∈ Set, X is 2-equivalent to Y iff X is (2-Cat)-isomorphic to Y iff X and

Y are isomorphic as sets.

(c) If A and B are ordinary categories, i.e. categories enriched over Set (so in particular

enriched over 2-Cat), then the notion of limits given in Definition 8.8 reduces to the

usual notion of limits in a category. (And all limits have the strict universal property.)

We make the conceptual equivalence between (2-Cat)sym and Set precise:

Proposition 8.17. There is a (2-Cat)-functor Q : (2-Cat)sym → Set such that for each

X ∈ (2-Cat)sym, we have that X is 2-equivalent to QX.

Proof. We first define Q on objects. Given X ∈ (2-Cat)sym, let QX be the 2-category

with objects qx the 2-isomorphism classes of objects x in X. Let QX(qx, qx) = > and

QX(qx, qy) = ⊥ for qx 6= qy. QX is then an object of Set. (So QX is actually just the

reduction X0.)

Now given X,Y ∈ (2-Cat)sym, consider (2-Cat)sym(X,Y ). There is clearly a 2-functor
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Q̄X,Y : (2-Cat)sym(X,Y )→ (2-Cat)sym(X,QY ) given on objects by

(F : x 7→ y) 7→ (Q̄X,Y F : x 7→ qy).

Now every object of (2-Cat)sym(X,QY ) maps each 2-isomorphism class in X to a single

object in QY since each object of QY is its own 2-isomorphism class, and so descends to

an object of (2-Cat)sym(QX,QY ), which gives an evident 2-functor

PX,Y : (2-Cat)sym(X,QY )→ (2-Cat)sym(QX,QY ) = Set(QX,QY ).

We set QX,Y = PX,Y Q̄X,Y . This construction is natural in X and Y , so that we have a

(2-Cat)-functor Q : (2-Cat)sym → Set, as desired.

Given X ∈ (2-Cat)sym, there is evidently a 2-f.f. 2-functor QX : X → QX that takes

objects x ∈ X to their 2-isomorphism class qx ∈ QX. Conversely, for each a ∈ QX

there is some xa ∈ X such that a = qxa. Then a 7→ xa becomes the object function of

a 2-f.f. 2-functor RX : QX → X. We have that QXRX = 1QX : QX → QX and that

RXQX : X → X is 2-isomorphic to 1X : X → X.

The interpretation of classical logic into Set extends easily to an interpretation into

(2-Cat)sym, and it is then straightforward to generalize to V to give an interpretation of

“V-valued” (in general intuitionistic) logic into (V-Cat)sym, using the machinery we have

set up so far. However, since our goal is to give an interpretation of continuous logic, we

will continue with developing the necessary categorical framework.

93



Chapter 9

Continuity in enriched categories

So far we have mostly adhered to the existing framework of enriched category theory, and

exhibited Set as a kind of category of enriched categories, thereby motivating some intuition

of what an interpretation of a logic into such a category should look like. Our goal is to

exhibit the category of (extended pseudo-)metric spaces and uniformly continuous maps as

such a “category of enriched categories”, and then use this description to give a categorical

interpretation of continuous logic. The notions introduced in this chapter are new (unless

specifically mentioned otherwise), but are designed to yield properties analogous to those

of the existing theory of interpreting logic into categories.

We must generalize the notion of a V-functor, but first we need the following construc-

tion:

Definition 9.1. Given V, let E be a κ-small collection of endofunctors ε : V → V such that

each ε is cocontinuous at I, i.e. whenever we have a diagram D : J → V whose colimit is

colimD ' I, we have that ε(colimD) ' I is the colimit of the diagram εD. In particular

ε(I) ' I.
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Let E be closed under composition, i.e. if ε1, ε2 ∈ E then ε2 ◦ ε1 ∈ E, and also let E

contain the identity endofunctor 1V : V → V.

Furthermore, for any ε1, ε2 ∈ E, let there be ε ∈ E such that for every a, b ∈ V, there is

a V-morphism ε(a⊗ b)→ ε1(a)⊗ ε2(b). We say that ε splits tensors for ε1 and ε2.

We call E a category of V-moduli, and each ε ∈ E a V-modulus.

If, furthermore, every ε ∈ E is actually a monoidal functor V → V (so that ε also comes

with a specified V-morphism ε(r) ⊗ ε(s) → ε(r ⊗ s) for each r, s ∈ V), then we call E a

category of monoidal V-moduli and each ε a monoidal V-modulus.

For example, E0 = {1V} is trivially a category of (monoidal) V-moduli. There is also

Em, the maximal category of (not necessarily monoidal) V-moduli, where for ε1, ε2 ∈ E we

have that ε = ε1 ⊗ ε2 splits tensors for ε1 and ε2.

When it is clear from context that E is a category of V-moduli but we wish to emphasize

that it is in fact a category of monoidal V-moduli, we may simply say “E is monoidal”.

Given V-categories X and Y and a category of monoidal V-moduli E, define a (V, E)-

functor (F, ε) to be an assigment of a Y -object Fa to each X-object a, along with a V-

morphism (F, ε)a,b : ε(X(a, b)) → Y (Fa, Fb) for each pair of X-objects a, b such that the

following diagrams commute:

ε(X(a, b))⊗ ε(X(b, c)) - ε(X(a, b)⊗X(b, c))
ε(µXa,b,c)- ε(X(a, c))

Y (Fa, Fb)⊗ Y (Fb, Fc)

(F, ε)a,b ⊗ (F, ε)b,c

? µYFa,Fb,Fc - Y (Fa, Fc)

(F, ε)a,c

?
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ε(X(a, a))

I

ε(η
X
a

) -

Y (Fa, Fa)

Fa,a

?η Y
Fa

-

If (F, ε) : X → Y and (F, ε′) : X → Y are equal on objects then we call them essentially

equal.

Note that if E = E0 then we recover the usual notion of a V-functor.

We may refer to a (V, E)-functor (F, ε) as simply F if the V-modulus ε is either clear

from context or unimportant.

Example 9.2. As in [27], let V = R where by R we mean the monoidal closed poset

category with objects given by the nonnegative real numbers, morphisms given by a→ b iff

a ≥ b, and the tensor product given by addition. Then the monoidal unit is given by I = 0

and the internal hom by HomR(a, b) = max(b− a, 0).

If X is a symmetric R-category (that is, for each a, b ∈ X we have X(a, b) = X(b, a)),

then the R-category structure on X makes it into a metric space (where by “metric” we

actually mean “extended pseudometric”, meaning that distances between distinct points

can be 0, and distances are allowed to be infinite).

Depending on our choice of E, the definition of (R, E)-functors gives us different notions

of maps between metric spaces. If E = E0 then an (R, E0)-functor is just an ordinary R-

functor, giving a distance nonincreasing map between metric spaces. If E is instead the

collection of all ελ : R→ R given by r 7→ λr for each λ a nonnegative real number, then the

collection of (R, E)-functors is precisely the collection of Lipschitz maps.
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The above example with V = R already gives us a way to talk about Lipschitz maps

between metric spaces as certain functors, but since ultimately our goal is to be able to talk

about the still more general notion of uniformly continuous maps, we will need an even less

restrictive notion of a V-functor, which we define below. Recall that we are assuming that

V is not only a cosmos with monoidal unit given by the terminal object, but also a poset

category.

Definition 9.3. Let E be a category of (not necessarily monoidal) V-moduli.

Given V-categories X and Y , define a loose (V, E)-functor (F, ε) : X → Y to be an

assigment of a Y -object Fa to each X-object a, along with a V-morphism

(F, ε)a,b : ε(X(a, b)) → Y (Fa, Fb) for each pair of X-objects a, b such that the following

diagram commutes:

ε(X(a, a))

I

ε(η
X
a

) -

Y (Fa, Fa)

Fa,a

?η Y
Fa

-

The composition of two loose (V, E)-functors is again a loose (V, E)-functor, since E

is closed under composition. Thus we denote the κ′-small category with objects κ-small

V-categories and morphisms loose (V, E)-functors by (V, E)-Cat.

As in the non-loose case, we call two loose (V, E)-functors (F, ε) : X → Y and

(F, ε′) : X → Y essentially equal when they are equal on objects.

Note that a loose (V, E)-functor is just the same as a (V, E)-functor where we have

discarded the functoriality (!) conditions. We will see that it is still possible to develop
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a coherent theory in such a relaxed setting, in large part because V satisfies quite strong

conditions and because the categorical structure we are interested in is that of (V, E)-Cat

and not so much that of individual V-categories themselves.

Indeed, in the case that V = R and E = Em, (R, Em)-Cat will essentially be the

category (pMet∞)u, the category of metric spaces and uniformly continuous maps, so that

a (R, Em)-functor (F, ε) : X → Y may be thought of as a uniformly continuous map F with

modulus of uniform continuity ε. Morphism composition in an R-category simply amounts

to witnessing the triangle inequality, so the abandonment of the functoriality condition for

loose R-functors corresponds in this case to the fact that the triangle inequality in the

domain of a uniformly continuous map is not what guarantees the triangle inequality in the

image; the triangle inequality is separately enforced on the codomain simply by virtue of

the codomain being a metric space. That the notion of a uniformly continuous map may be

carried over wholesale to the setting of semimetric spaces (i.e. ones in which the triangle

inequality does not hold) suggests that we in fact should not expect a categorical formulation

of “uniformly continuous map” to be compatible with rigid functoriality properties.

The reason, then, that we expend the effort of constructing (V, E)-Cat only to later

specialize to the case of an already known ordinary category is that the morally 2-categorical

perspective of treating (V, E)-Cat as a category of (enriched) categories naturally yields the

correct formulations of the various constructions we will need. For example, we will need

to speak of isometric embeddings, but objects (pMet∞)u are considered isomorphic when

they are uniformly homeomorphic, which is too coarse a notion of isomorphism. (From

the (V, E)-Cat perspective, such objects will be considered equivalent but not necessarily

isomorphic.)
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9.1 Some features of (V , E)-Cat

We now give the “loose” versions of the definitions and results that we will need, adapted

from Chapter 8. Some notions, for example what it means for a V-category to be symmetric

or for two objects a, b of a V-category X to be V-isomorphic, do not reference the notion

of a functor and therefore remain entirely unchanged. In all that follows, when we say

“(V, E)-functor” we will mean “loose (V, E)-functor”.

Definition 9.4. Let E be a category of V-moduli, ε ∈ E a V-modulus, and X,Y V-

categories.

Let (F, ε) : X → Y be a (V, E)-functor.

(a) We say that (F, ε) is V-f.f. when there is an essentially equal (F, 1V) : X → Y such

that (F, 1V)a,b : X(a, b)→ Y (Fa, Fb) is an isomorphism in V for each a, b ∈ X.

(b) If in addition to being V-f.f. F is also injective on objects then we call it an embedding

of V-categories.

(c) If in addition to being V-f.f. we have that F is a bijection on objects, then we call it

an isomorphism of V-categories.

(d) We say that (F, ε) is saturated when for every x ∈ X and every y ∈ Y such that y is

V-isomorphic to Fx in Y , there is some x′ ∈ X such that Fx′ = y.

9.1.1 A notion of enrichment for (V , E)-Cat

As is the case with V-Cat, for eachX,Y ∈ (V, E)-Cat we can give the set ((V, E)-Cat)0(X,Y )

the structure of a V-category by exactly the same process. Namely, for

F,G ∈ ((V, E)-Cat)0(X,Y ), we let (V, E)-Cat(X,Y )(F,G) =
∏
a
Y (Fa,Ga).
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Also as is the case with V-Cat, we can specify a tensor product on (V, E)-Cat in the

same way: for X,Y ∈ (V, E)-Cat we define X ⊗ Y to be the V-category with objects

(a, b) where a ∈ X and b ∈ Y , and (X ⊗ Y )((a1, b1), (a2, b2)) = X(a1, a2) ⊗ Y (b1, b2). The

monoidal unit is the same as with V-Cat, i.e. it is the category I with one object ∗ where

I(∗, ∗) = I.

This allows us to say that two (V, E)-functors (F, ε), (G, η) : X → Y are V-isomorphic

when they are V-isomorphic as objects of (V, E)-Cat(X,Y ). Note that the relation of being

V-isomorphic does not depend on V-moduli. Relatedly, if (F, ε) and (G, η) are V-isomorphic

then we can take η to be a V-modulus for F and ε to be a V-modulus of G, so that we have

that (F, η) and (G, ε) are (V, E)-functors. Also note that two functors which are essentially

equal are automatically V-isomorphic.

Moreover, for a given ε ∈ E and X,Y ∈ (V, E)-Cat we can speak of the “full subcat-

egory” ((V, E)-Cat)ε(X,Y ), whose set of objects is given by the set of all (V, E)-functors

(F, ε′) : X → Y such that there exists a natural transformation ε → ε′ in the (ordi-

nary) functor category [V,V], i.e. for all a ∈ V there is a morphism ε(a) → ε′(a). For

F,G ∈ ((V, E)-Cat)ε(X,Y ) we set ((V, E)-Cat)ε(X,Y )(F,G) = (V, E)-Cat(F,G).

Theorem 9.5. Let E be a category of V-moduli, and X,Y, Z ∈ (V, E)-Cat. Fix some

ε′ ∈ E.

The set map ((V, E)-Cat)0(Y,Z) × ((V, E)-Cat)0(X,Y ) → ((V, E)-Cat)0(X,Z) given

by composition of (V, E)-functors restricts to the underlying object function of a (V, E)-

functor ((V, E)-Cat)ε′(Y, Z)⊗ (V, E)-Cat(X,Y )→ (V, E)-Cat(X,Z).

Proof. Let (F1, εF1), (F2, εF2) ∈ (V, E)-Cat(X,Y ) and (G1, εG1), (G2, εG2) ∈ ((V, E)-Cat)ε′(Y,Z).

For simplicity denote (V, E)-Cat(X,Y ) by Ω1, ((V, E)-Cat(Y, Z))ε′ by Ω2, and (V, E)-Cat(X,Z)
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by Ω. We wish to give a V-morphism

ε (Ω2 ⊗ Ω1((F1, G1), (F2, G2))) = ε (Ω2(G1, G2)⊗ Ω1(F1, F2))→ Ω(G1F1, G2F2)

for some ε ∈ E.

This means that we need to find some ε ∈ E and a morphism

ε

((∏
y

Z(G1y,G2y)

)
⊗

(∏
x

Y (F1x, F2x)

))
→
∏
x

Z(G1F1x,G2F2x)

in V.

Let ε ∈ E be a V-modulus that splits tensors for 1V and ε′, so that we have

ε

((∏
y

Z(G1y,G2y)

)
⊗

(∏
x

Y (F1x, F2x)

))
→
∏
y

Z(G1y,G2y)⊗ ε′
(∏

x

Y (F1x, F2x)

)

Let Y ′ denote the set of objects of Y that are not of the form F2x for any x ∈ X, and

let X ′ denote a set of objects of X on which F2 is a bijection onto its whole image. Then

we have that
∏
y
Z(G1y,G2y) =

( ∏
y∈Y ′

Z(G1y,G2y)

)
×
( ∏
x∈X′

Z(G1F2x,G2F2x)

)
. However,

since V is a poset we have that for any a ∈ V, a =
∏
i∈J

a for any nonempty index set J , so

that
∏
x∈X′

Z(G1F2x,G2F2x) =
∏
x
Z(G1F2x,G2F2x).
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Then we have the following morphisms in V:

∏
y

Z(G1y,G2y) =

∏
y∈Y ′

Z(G1y,G2y)

×(∏
x

Z(G1F2x,G2F2x)

)

π2−→
∏
x

Z(G1F2x,G2F2x)

ε′

(∏
x

Y (F1x, F2x)

)
→ εG1

(∏
x

Y (F1x, F2x)

)
→
∏
x

εG1(Y (F1x, F2x))

∏
x
(G1)F1x,F2x

−−−−−−−−−→
∏
x

Z(G1F1x,G1F2x)

Now for each x ∈ X we have a map

∏
x

Z(G1F2x,G2F2x)⊗
∏
x

Z(G1F1x,G1F2x)
πx⊗πx−−−−→Z(G1F2x,G2F2x)⊗ Z(G1F1x,G1F2x)

µZ−−→Z(G1F1x,G2F2x)

which gives us a morphism

∏
x

Z(G1F2x,G2F2x)⊗
∏
x

Z(G1F1x,G1F2x)→
∏
x

Z(G1F1x,G2F2x) = Ω(G1F1, G2F2)

Putting all of the above together gives us the required ε ∈ E and a V-morphism

ε(((V, E)-Cat)ε′(Y, Z)⊗ (V, E)-Cat(X,Y )((F1, G1), (F2, G2)))

→ (V, E)-Cat(X,Z)(G1F1, G2F2)

for each F1, F2 ∈ (V, E)-Cat(X,Y ) and G1, G2 ∈ ((V, E)-Cat)ε′(Y,Z).

V-functoriality is immediate since V is a poset,
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so that we have a V-functor

((V, E)-Cat)ε′(Y, Z)⊗ (V, E)-Cat(X,Y )→ V-Cat(X,Z)

which agrees at the object level with (the restriction of) the set function

((V, E)-Cat)0(Y,Z)× ((V, E)-Cat)0(X,Y )→ ((V, E)-Cat)0(X,Z)

The fact that for (F, ε) : X → Y and (G, η) : Y → Z we have

(GF, ηε) : X → Z gives us, via the above, that “composition of (V, E)-functors” yields

a (V, E)-functor ((V, E)-Cat)η(Y,Z)⊗ ((V, E)-Cat)ε(X,Y )→ ((V, E)-Cat)ηε(X,Z), with

some V-modulus ζ ∈ E.

Now if for ε1, ε2, η1, η2 ∈ E we have ε2 → ε1 and η2 → η1 in [V,V], then for

X,Y, Z ∈ (V, E)-Cat we have embeddings of V-categories

((V, E)-Cat)η1(Y, Z)→ ((V, E)-Cat)η2(Y, Z)

and

((V, E)-Cat)ε1(X,Y )→ ((V, E)-Cat)ε2(X,Y ).

Clearly the composition (V, E)-functor

((V, E)-Cat)η1(Y,Z)⊗ ((V, E)-Cat)ε1(X,Y )→ ((V, E)-Cat)η1ε1(X,Z)
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agrees with the restriction of the composition functor

((V, E)-Cat)η2(Y, Z)⊗ ((V, E)-Cat)ε2(X,Y )→ ((V, E)-Cat)η2ε2(X,Z).

This suggests a way we can consider (V, E)-Cat to be enriched over itself. As we have

seen, E has a poset structure inherited from the poset structure of [V,V], and the above dis-

cussion shows that for each X,Y ∈ (V, E)-Cat there is a functor Wa,b : Eop → (V, E)-Cat

given by ε 7→ ((V, E)-Cat)ε(X,Y ). Furthermore, there is an associative composition oper-

ation comp : Eop ×Eop → Eop given by (η, ε) 7→ ηε that respects the poset structure of E,

i.e. a functor Eop × Eop → E between poset categories. For technical reasons, we consider

E′, the full subcategory of E with only the objects ε for which there exists an arrow ε→ 1V .

(Then (E′)op is the full subcategory of Eop with only those ε for which there exists an arrow

1V → ε.) Since comp : Eop × Eop → Eop is in particular a poset map it restricts to a map

comp : (E′)op × (E′)op → (E′)op.

Definition 9.6. Let C be a category equipped with a bifunctor comp : C × C → C which is

associative, i.e. satisfies comp ◦ (1C × comp) = comp ◦ (comp× 1C).

Let W be a monoidal category equipped with an equivalence relation ∼ on each of its

homsets. Then for any category B, there is an induced equivalence relation ∼ on morphisms

of the functor category [B,W] given by µ ∼ ν whenever µ(b) ' ν(b) for all b ∈ B. Denote

the monoidal unit of W by I, and for B a category denote by IB the functor constant at I.

We say that A is a C-indexed W-category (or W(C)-category, for short) when we are

given the following data:

(a) A set A0 of objects;
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(b) For each pair a, b of objects, a functor Wa,b : C → W;

(c) For each triple a, b, c of objects, a natural transformation

µa,b,c : ⊗ ◦ (Wb,c ×Wa,b)→Wa,c ◦ comp

(i.e. a morphism in the functor category [C × C,W]) that satisfies the following asso-

ciativity condition:

For a, b, c, d ∈ A0, the composite natural transformation

(µa,c,d ◦ (1C × comp)) · (⊗ ◦ (1Wc,d
× µa,b,c))

is equivalent under ∼ to the composite

(µa,b,d ◦ (comp× 1C)) · (⊗ ◦ (µb,c,d × 1Wa,b
))

(modulo the canonical associativity isomorphisms in W and Cat).

(d) For each a ∈ A0, a natural transformation ηAa : IC → Wa,a satisfying the necessary

unital conditions.

Given W(C)-categories A and B, a W(C)-functor F : A → B between them is given by

the following data:

(a) A functor M : C → C and a natural transformation m : M ◦ comp→ comp ◦ (M ×M)

in [C × C, C].

(b) For each a, b ∈ A, a natural transformation Fa,b : Wa,b → WFa,Fb ◦M satisfying,
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for each a, b, c ∈ A, the evident functoriality conditions with respect to µAa,b,c and

µBFa,Fb,Fc.

(c) For each a ∈ A, Fa,a · ηAa ∼ ηBFa ◦M .

Note that if we set C equal to the terminal category (with one object and one identity

morphism), then we recover the usual notion of a W-enriched category and W-functors

between them.

Then we set C = (E′)op; W = (V, E)-Cat; and ∼ to be the relation of (V, E)-functors

being essentially equal. For X,Y ∈ (V, E)-Cat we let WX,Y be as in our discussion above,

and for each ε ∈ (E′)op and X,Y, Z ∈ (V, E)-Cat we have that

µX,Y,Z :WY,Z⊗WX,Y →WX,Z is just the (V, E)-functor giving composition in (V, E)-Cat.

Then for each ε ∈ (E′)op, ηAX(ε) is given by the (V, E)-functor I → ((V, E)-Cat)ε(X,X)

sending ∗ 7→ 1V .

Thus (V, E)-Cat is a (E′)op-indexed ((V, E)-Cat)-enriched category. Although in gen-

eral (E′)op does not contain the supremum (colimit) over all of its objects, it is clear that

for each X,Y ∈ (V, E)-Cat we have that the colimit colim(WX,Y )0 exists in Set, and is

in fact the underlying set of (V, E)-Cat(X,Y ); this gives us a way in which to consider

(V, E)-Cat as morally a ((V, E)-Cat)-enriched category.

Denote by C = (E′)op and consider the above setup. For V-categories X and Y ,

ε, ε′ ∈ C, and F ∈ WX,Y (ε) and G ∈ WX,Y (ε′), there is an ε′′ ∈ C with i : ε → ε′′

and i′ : ε′ → ε′′ (by the tensor splitting property of E, which makes C a directed poset)

such that WX,Y (i)(F ) ∈ WX,Y (ε′′) is essentially equal to F ∈ WX,Y (ε) as elements of

(V, E)-Cat(X,Y ) and WX,Y (i′)(G) ∈ WX,Y (ε′′) is essentially equal to G ∈ WX,Y (ε′).

Thus we say that F and G are V-isomorphic (resp. essentially equal) “as elements of
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(V, E)-Cat(X,Y )” if WX,Y (i)(F ) and WX,Y (i′)(G) are as elements of WX,Y (ε′′).

Henceforth, for any A which we declare to be a ((V, E)-Cat)(C)-category, for X,Y ∈ A

and ε ∈ C we denote WX,Y (ε) by Aε(X,Y ), and we make the assumption that for all

X,Y ∈ A we have that the colimit colimC(Aε(X,Y )) in Set is the underlying set of some

V-category which we denote by A(X,Y ). This is natural, in the following sense: for Z ∈ A

we have that the underlying set of A(Y, Z)⊗A(X,Y ) is

colimC(Aε(Y, Z))0 × colimC(Aε(X,Y ))0 ' colimC ((Aε(Y,Z))0 × (Aε(X,Y ))0)

(since C is directed and directed colimits commute with finite limits).

Furthermore, we require that for each i : ε → ε′ in C, i∗ : Aε(X,Y ) → Aε′(X,Y ) is an

embedding, which is certainly the case when A = (V, E)-Cat.

Note that all of the above can be repeated verbatim if we replace every occurrence of

(V, E)-Cat above with ((V, E)-Cat)sym, the full subcategory of (V, E)-Cat with objects

only the symmetric V-categories. That is, ((V, E)-Cat)sym is a ((V, E)-Cat)(C)-category,

and the inclusion on objects extends to a ((V, E)-Cat)(C)-functor from ((V, E)-Cat)sym

to (V, E)-Cat; on the other hand there is clearly a ((V, E)-Cat)sym(C)-enrichment of

((V, E)-Cat)sym. These enrichments are compatible in the sense that the ((V, E)-Cat)(C)-

enrichment of ((V, E)-Cat)sym naturally restricts along the inclusion to give the

((V, E)-Cat)sym(C)-enrichment of ((V, E)-Cat)sym.

We have constructed the above notion of a “C-indexed” enrichment to enable us to

speak of diagrams in (functors into) (V, E)-Cat and ((V, E)-Cat)sym. However, when we

are working within (V, E)-Cat and ((V, E)-Cat)sym, it is mostly harmless to forget the

C-indexing; when this is the case we will do so to avoid notation overload.
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We now continue to give the “loose” adaptations of the features of V-Cat. For the most

part the adaptations are straightforward; for the sake of efficiency we will cover only those

notions directly relevant to our objective of interpreting continuous logic into (R, Em)-Cat.

Furthermore, unless otherwise stated, every construction and result below for (V, E)-Cat

should be understood as also applying to ((V, E)-Cat)sym, with the same proofs.

Definition 9.7. Given X,Y ∈ (V, E)-Cat, we say that X,Y are (V, E)-equivalent when

there are (V, E)-functors F : X → Y and G : Y → X such that GF is V-isomorphic to 1X

in (V, E)-Cat(X,X) and FG is V-isomorphic to 1Y in (V, E)-Cat(Y, Y ). We may denote

this situation as X Y.
F

G

If furthermore we have that GF is essentially equal to 1X and FG is essentially equal to

1Y then we say thatX and Y are strongly (V, E)-equivalent, and denote this as X Y.
F

G

As for V-Cat, we adopt the following convention, that when we say two (V, E)-functors

G : X → Y and G′ : X ′ → Y ′ are (V, E)-equivalent, we mean that there is a (V, E)-

equivalence X X ′
F

F ′
and a (V, E)-equivalence Y Y ′

H

H′
such that G′ is V-

isomorphic to HGF ′ (⇔ G is V-isomorphic to H ′G′F ⇔ HG is V-isomorphic to G′F ⇔ GF ′

is V-isomorphic to H ′G′). If we take F = F ′ = 1X then we say that this (V, E)-equivalence

of functors fixes X, while if G = G′ = 1Y then we say that the (V, E)-equivalence fixes Y .

We repeat the above with all (V, E)-equivalences replaced with strong (V, E)-equivalences

and “V-isomorphic” with “essentially equal” to say when G and G′ are strongly (V, E)-

equivalent.

Because the notion of subobject is central, we restate the definition of a subobject below.

We omit mentions of V-moduli below for convenience, and because all the (V, E)-functors

in question can be taken to have V-modulus 1V .
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Definition 9.8. Let X be a V-enriched category. By a subobject of X we mean the equiv-

alence class of a saturated embedding ι : A→ X, where ι : A→ X is considered equivalent

to ι′ : A′ → X when there is an isomorphism of V-categories given by F : A→ A′ such that

ι is V-isomorphic to ι′F .

We will often refer to a subobject of X by (the domain of) one of its representatives,

i.e. “ι : A → X is a subobject of X” or “A is a subobject of X” when no confusion will

result. As we have done implicitly, we will often neglect to mention V-moduli for these

(V, E)-functors , since we can always take them to have V-modulus 1V .

Definition 9.9. Let A,B be ((V, E)-Cat)(C)-categories, and let D : A → B be a

((V, E)-Cat)(C)-functor, which we call a diagram.

By a cone λ over D we mean an object X ∈ B along with, for each A ∈ A, an εA ∈ C and

an object λA ∈ BεA(X,DA) such that for every F ∈ A(A1, A2), we have that (DA1,A2F )λA1

is V-isomorphic to λA2 in B(X,DA2). We may also call λ a cone from X to D.

By a limit of D we mean an object limD ∈ B along with a cone λ from limD to D such

that for any X ∈ B and a cone µ from X to D, there is some L ∈ B(X, limD), unique up

to V-isomorphism, such that for each A ∈ A, we have that µA is V-isomorphic to λAL in

B(X,DA). Note that limD is unique up to (V, E)-equivalence.

If B = (V, E)-Cat and there is a choice of limD along with a choice of limit cone

λ satisfying the commutativity conditions up to essential equality and not only up to V-

isomorphism; and further if for each X ∈ B with a cone µ from X to D there exists an

L ∈ B(X, limD) for each A ∈ A we have that µA is essentially equal to λAL, then we say

that this choice of limD has the strict universal property. Such a choice of limD is unique

up to strong (V, E)-equivalence.
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Cocones and colimits are defined dually.

Furthermore, if A is the empty ((V, E)-Cat)(C)-category and B = (V, E)-Cat then we

can take limD = I; thus the monoidal unit of (V, E)-Cat is also its terminal object.

If A is taken to be the ((V, E)-Cat)(C)-category with three objects A1, A2, A3 with

A(A1, A1) = A(A2, A2) = A(A3, A3) = A(A1, A3) = A(A2, A3) = I and empty hom-objects

otherwise, then limD is also called a pullback. (A is illustrated by the diagram below, where

we have omitted the “identity V-functors”.)

A1

A2
- A3

?

Proposition 9.10. (V, E)-Cat has pullbacks.

Proof. The proof is essentially the same as for V-Cat.

Let X,Y, Z ∈ (V, E)-Cat and let F : X → Z and G : Y → Z be (V, E)-functors fitting

into the below diagram:

X

Y
G
- Z

F

?

We construct a V-category A and (V, E)-functors (U, ε) : A → X and (V, η) : A → Y

that satisfy the conditions for being a limit of the above diagram.

First note that if Z = I then we can take A to be the product X ×Y , which has objects
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pairs of the form (x, y) for x ∈ X and y ∈ Y , with X×Y ((x, y), (x′, y′)) = X(x, x′)×Y (y, y′)

(where the product is taken in V). Then U and V are just the obvious projections pX and

pY .

Let Z0 denote the reduction of Z and π : Z → Z0 the reduction map.

The set of objects of A is given by the set
∐
z∈Z0

(
(πF )−1(z)× (πG)−1(z)

)
. This is clearly

a subset of the set of objects of X×Y , so that every a ∈ A is uniquely of the form (x, y) for

x ∈ X and y ∈ Y . Then for a = (x, y), a′ = (x′, y′) in A, we set A(a, a′) = X(x, x′)×Y (y, y′)

(where the product is taken in V). U and V are simply the restrictions of the projections

pX and pY to A, both with V-moduli given by 1V .

Note that, for B ∈ (V, E)-Cat, a cone µ from B to the above diagram is given by two

(V, E)-functors (µX , εX) : B → X and (µY , εY ) : B → Y such that FµX is V-isomorphic

to GµY . The above construction of A as the limit of the diagram (i.e. the pullback of F

and G) induces an obvious map L0 : B0 → A0 on the level of objects which extends to a

(V, E)-functor (L, εB) : B → A where we can take εB to be a V-modulus that splits tensors

for εX and εY .

Proposition 9.11. Let X,Y, Z ∈ (V, E)-Cat.

Given the diagram

X

Y
G
- Z

F

?

if F is a saturated embedding then there is a choice of pullback (i.e. of A, U , and V
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fitting into the diagram below)

A
U
- X

Y

V

? G
- Z

F

?

such that V is also a saturated embedding and FU is essentially equal to GV . Moreover,

this square has the strict universal property.

Proof. Let the objects of A be the set
∐
z∈Z

(
F−1(z)×G−1(z)

)
. Let U and V be the restric-

tions to A of the projections pX and pY , with V-moduli given by 1V .

In (V, E)-Cat, if E contains 1V ⊗ 1V , then we have that X × Y is strongly (V, E)-

equivalent to X ⊗ Y .

Remark 9.12. Note that, by essentially the same argument as in ordinary category theory,

pulling back across G and then across F gives a pullback across GF (the “composite pull-

back”). In (V, E)-Cat, if both of the individual pullbacks have the strict universal property

then so does their composite.

9.1.2 Factorization in (V , E)-Cat

We now make some observations that are relevant to the behavior of subobjects in (V, E)-Cat.

Again, we omit proofs when they are obvious.

Proposition 9.13. For X,Y ∈ (V, E)-Cat and (F, ε) : X → Y a (V, E)-functor, there

is X ′ ∈ (V, E)-Cat and (F ′, ε) : X → X ′, (G, 1V) : X ′ → Y such that G is a saturated

112



embedding and F = GF ′ strictly (in particular up to essential equality).

Furthermore, if F is essentially equal to G′F ′′ for some F ′′ : X → X ′′ and G′ : X ′′ → Y

such that G′ is a saturated embedding, then there exists a (H, 1V) : X ′ → X ′′ such that

G = G′H strictly with H a saturated embedding. We call this the image of F .

If F : X → Y is V-f.f. then F ′ : X → X ′ above is part of a (V, E)-equivalence

X X ′.
F ′

F̃
through V-f.f. (V, E)-functors.

Proof. The construction is the same as in Proposition 8.11.

Proposition 9.14. Let X,Y, Z be V-categories fitting into the below diagram (of (V, E)-

functors)

X
F
- Y

Z

�

G

H

-

which commutes up to V-isomorphism.

(a) If both G and H are V-f.f. then so is F .

(b) If both G and H are saturated embeddings, then there is a F ′, unique up to essential

equality, which is V-isomorphic to F such that F ′ is a saturated embedding and GF

is essentially equal to H.

(c) If the diagram commutes up to essential equality and both G and H are saturated

embeddings, then F is also a saturated embedding.
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Proposition 9.15. Let X,Y, Z be V-categories fitting into the below diagram (of (V, E)-

functors)

X Y Z
F

G

H

which commutes up to V-isomorphism, i.e. HF is V-isomorphic to HG.

(a) If H is V-f.f. then F is V-isomorphic to G.

(b) If the diagram commutes up to essential equality and if H is an embedding then F is

essentially equal to G.

As with the case for V-Cat, Proposition 9.14 allows us, in the definition of a subobject,

to consider ι : A → X and ι′ : A′ → X to represent the same object iff there is an

isomorphism of V-categories F : A→ A′ such that ι is essentially equal to ι′F .

9.1.3 Subobjects in (V , E)-Cat

Let X ∈ (V, E)-Cat. We now define the category SubX of subobjects of X as follows:

The objects of SubX are the subobjects of X.

Given (V, E)-functors F : A→ B and F ′ : A′ → B′, we consider them equivalent when

there is an isomorphism of V-categories G : A→ A′ witnessing the equivalence of ι : A→ X

and ι′ : A′ → X as subobjects of X, along with an isomorphism of V-categories H : B → B′

witnessing the equivalence of θ : B → X and θ′ : B′ → X as subobjects of X, such that the
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diagram below commutes up to V-isomorphism:

A
F

- B

I
�

θι

-

A′

G

?

F ′
-

ι
′

-

B′

H

?

�

θ ′

Then given ι : A → X and θ : B → X representing subobjects [ι] and [θ] of X, a

morphism between these two subobjects is given by an equivalence class [F ] of a (V, E)-

functor (F, 1V) : A→ B such that ι is V-isomorphic to θF .

In this situation, if we hold A and B fixed then by Proposition 9.14 we have a unique

representative (F, 1V) : A → B which is a saturated embedding such that ι is essentially

equal to θF . This process is natural in A and B by uniqueness.

By the above, and by Proposition 9.15 we have that SubX is in fact a poset category.

Let (F, ε) : X → Y . From the above observations and by Proposition 9.11 we get

a functor F ∗ : SubY → SubX which acts on (representatives of) subobjects of X by

pullback.

For ι : A → X representing an object of SubX, we can factor Fι into HG where

G : A→ ∃FA is some V-functor and H : ∃FA→ Y is the image of Fι. From the properties

of the image and by Proposition 9.14 it follows that this process is well-defined on SubX

and functorial, yielding a functor ∃F : SubX → SubY . It is easily checked that ∃F is left

adjoint to F ∗.
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We can construct a right adjoint ∀F : SubX → SubY to F ∗ by hand. Given ι : A→ X

and the reduction map π : Y → Y0, take the objects of ∀FA to be the set

{y ∈ π−1(y0) | if πFx = y0, then there is some a ∈ A such that ιa = x}.

That is, it is the set of all objects of Y which are V-isomorphic to some object y ∈ Y

satisfying the condition that every x for which Fx is V-isomorphic to y is also “in A”, i.e.

of the form ιa for some a ∈ A. The inclusion into Y on the objects of ∀FA extends to a

saturated embedding ∀F ι : ∀F : A→ Y .

Now let θ : B → X represent another subobject in SubX. Then ∀FB has as objects

the set {y ∈ π−1(y0) | if πFx = y0, then there is some b ∈ B such that θb = x}.

If there is a (representative of a) morphism in SubX given by G : A → B where G is

a saturated embedding and ι = θG strictly, then by construction we have that the set of

objects of ∀FA is a subset of the set of objects of ∀FB, so that the inclusion extends to a

saturated embedding ∀FG : ∀FA → ∀FB such that ∀F ι = (∀F θ)G strictly. This process is

well-defined and functorial on SubX, so that we have a functor ∀F : SubX → SubY . As

with ∃F , it is easy to check that ∀F right adjoint to F ∗.

We record these results as a proposition:

Proposition 9.16. For X,Y ∈ (V, E)-Cat and a V-functor F : X → Y , the functor

F ∗ : SubY → SubX has both left and right adjoints, given by ∃F and ∀F , respectively.
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9.2 Generalized subobjects

Although our current notion of subobject suffices to capture the nature of predicates in the

case of Set (or more generally (V-Cat)sym for V = 2), we need to generalize the notion of

subobject in order to accurately interpret predicates of continuous logic as “subobjects” in

((R, Em)-Cat)sym. We examine the case of (2-Cat)sym in further detail as a guide for our

intuition.

First note that all of our generalizations from V-Cat to (V, E)-Cat do not affect the case

when V = 2. That is, we get the same collection of (2, E)-functors whether our category of

V-moduli E is the trivial one (E0 = {12}) or the maximal one (Em = {12,>}); since also

2 is a poset, the definition of a (2, E)-functor then coincides with that of a 2-functor.

Now subobjects of X ∈ (2-Cat)sym are given by saturated embeddings ι : A → X, i.e.

by the commutative triangle

A - X

X

�

1 X

ι

-

Now recall that 1X : X → X is (represents) the terminal object of SubX. Since > is the

initial object of the ordinary category 2 (and therefore the terminal object of 2op), objects

of SubX are equivalently objects of the (ordinary) functor category [2op, SubX] preserving

products (in particular terminal objects).

Consider the subobject classifier ∗ → Ω of Set: in (2-Cat)sym this is a 2-functor

I 0−→ Ω where Ω is the symmetric 2-category with objects {0, 1} and Ω(0, 1) = ⊥. That is,

Ω = 2sym ∈ (2-Cat)sym. Equivalently, I 0−→ Ω is the element P ∈ [2op,Sub2sym] where Pa
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is the saturated embedding into 2sym on the objects {x | x→ a in 2
op}.

That Ω is a subobject classifier is expressed by the fact that P is the universal sub-

object, in the following sense: for any X ∈ (2-Cat)sym and R ∈ SubX ' [2op,SubX],

there is a unique 2-functor F : X → 2sym such that R = F ∗P , where F ∗ is the functor

[2op,Sub2sym]→ [2op,SubX] induced by the pullback functor F ∗ : Sub2sym → SubX.

In particular, for any F : X → 2sym we get a subobject F ∗P ∈ [2op,SubX]. We wish

to repeat this for general ((V, E)-Cat)sym. Henceforth when we say “V-category” we mean

“symmetric V-category”.

We will call each R ∈ [Vop,SubX] (where Vop is considered as a poset category) for

which R preserves products a V-indexed subobject of X (or V-subobject of X, for short),

and denote [Vop,SubX] by SubV X. Let P ∈ SubV Vsym (where Vsym is considered as a

V-category) be given on the objects of Vop as follows: for a ∈ Vop, let Pa be the saturated

embedding into Vsym on the objects {x ∈ Vsym | x → a in Vop}. For any (V, E)-functor

F : X → Vsym we get an induced F ∗P ∈ SubV X. More generally, for a (V, E)-functor

F : X → Y we have F ∗ : SubV Y → SubV X. It is easy to see that the left (resp. right)

adjoint ∃F (resp. ∀F ) : SubX → SubY extends (through pointwise application) to a left

(resp. right) adjoint ∃F (resp. ∀F ) : SubV X → SubV Y to F ∗.

Definition 9.17. Given X a V-category and R ∈ SubV X, define R̄ ∈ SubV X as follows:

For each a ∈ Vop, set R̄a to be the saturated embedding into X on the objects

{x ∈ X |
∐
y∈Ra

X(x, y) = I} (where the coproduct is taken in V). This is natural in a, giving

R̄ ∈ SubV X. We call R̄ the closure of R in X.

By construction, we have that R→ R̄ in SubV X; if R = R̄ then we say that R is closed.

Note that ¯̄R = R̄, so that R̄ is closed. Furthermore we have that if R→ R′ in SubV X then
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R̄ → R′ so that R 7→ R̄ extends to a functor (−) : SubV X → SubV X, which is in fact an

idempotent monad on SubV X. Equivalently, the full subcategory of SubV X on the closed

V-subobjects is reflective.

For convenience, we may also say that some individual subobject R ∈ SubX may be

closed if the obvious constant-on-Vop V-subobject R ∈ SubV X that it defines is closed.

Proposition 9.18. For a (V, E)-functor (F, ε) : X → Y and R ∈ SubV Y , we have that

F ∗R→ F ∗R̄ in SubV X.

Proof. Since (F ∗R)a = F ∗(Ra), it suffices to check that F ∗Ra → F ∗(R̄a) in SubX for

given a ∈ Vop. By the nature of SubX it suffices to check this on the sets of objects, which

by abuse of notation we also denote by F ∗Ra and F ∗(R̄a).

F ∗(R̄a) is given by the set {x | Fx ∈ R̄a} = {x |
∐
y∈Ra

Y (Fx, y) = I}.

F ∗Ra is given by the set {x |
∐

x′∈F ∗Ra
X(x, x′) = I}.

Let x ∈ F ∗Ra. Then
∐

x′∈F ∗Ra
X(x, x′) = I. Since by assumption ε preserves I as a

colimit, we have that
∐

x′∈F ∗Ra
ε(X(x, x′)) = I.

We have ε(X(x, x′)) → Y (Fx, Fx′) for each x, x′ and x′ ∈ F ∗Ra iff Fx′ ∈ Ra, so that

we have
∐

x′∈F ∗Ra
ε(X(x, x′))→

∐
x′∈F ∗Ra

Y (Fx, Fx′)→
∐
y∈Ra

Y (Fx, y). Since V is a poset and

I is the terminal object, this implies
∐
y∈Ra

Y (Fx, y) = I. Thus x ∈ F ∗(R̄a).

The above implies the analogue of the familiar result from basic analysis that if R is

closed, then so is F ∗R.

If P ∈ SubV Vsym is closed (which it certainly is in our cases of interest), each (V, E)-

functor X → Vsym then determines a closed V-subobject F ∗P ∈ SubV X. We want to
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determine the extent to which each closed V-subobject of X determines a (V, E)-functor

X → Vsym.

The answer to our question will depend on our choice of V and E; to make the problem

tractable, we specialize to our case of interest, namely V = R and E = Em. Then every

ε ∈ Em is a function [0,∞] → [0,∞] that fixes 0 and is continuous at 0, so that (R, Em)-

functors are exactly uniformly continuous functions. In this case, A ∈ SubX being closed

is exactly the same as A being closed as a subspace of the metric space X. For each a ∈ R,

Pa = [0, a] ↪→ [0,∞] = R. (We will henceforth refer to (R, Em)-functors F : X → Y

interchangably as uniformly continuous functions X → Y .) Then if R is a R-subobject of

X that can be obtained as F ∗P for some uniformly continuous F : X → Rsym then for each

a ∈ Rop the set of objects of Ra is of the form F−1([0, a]). Clearly not all R ∈ SubRX can

be obtained as F ∗P for a uniformly continuous F : X → Rsym, since we may imagine that

some R ∈ SubRX may give the “sublevel sets” of a discontinuous function f : X → [0,∞].

9.2.1 Compactness in (R, Em)-Cat

As is done for the metric spaces considered in continuous logic, we will require that the R-

categories in our domain of discourse satisfy a compactness property. First note that for our

metric spaces, which are actually extended pseudometric spaces, there are two competing

notions of compactness, metric and topological. X as an extended pseudometric space is

metrically compact when it has the property that for any sequence {xn} of points of X,

there is some x ∈ X such that lim
n→∞

d(x, xn) = 0. This is certainly not equivalent to

topological compactness, which is the usual notion applied to X viewed as a topological

space; a sequence that converges metrically converges topologically, while the converse fails
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in general. These two notions of course coincide when X is an ordinary (non-extended)

metric space, but for our purposes we will need metric compactness, which is equivalent to

being Cauchy complete and totally bounded.

Now from [7] we know that for any R-category X, R-Cat(Xop,R) is Cauchy complete

as a metric space. Now for any E, R-Cat(Xop,R) is just the quotient of

((R, Em)-Cat)1R(Xop,R) by the relation of being essentially equal, which yields a (R, E)-

equivalent R-category. Thus R-Cat(Xop,R) being Cauchy complete implies that

((R, Em)-Cat)1R(Xop,R) is also.

For any X ∈ (R, Em)-Cat, we know (say from [27]) that it embeds isometrically into

((R, Em)-Cat)1R(Xop,R) via the Yoneda embedding. In more detail,

(Y, 1R) : X → ((R, Em)-Cat)1R(Xop,R)

given by a 7→ (X(−, a), 1R) is R-f.f. By Proposition 9.13 we can replace this by a (unique

up to strong equivalence fixing the codomain) saturated embedding

Y ′ : X ′ → ((R, Em)-Cat)1R(Xop,R),

with X equivalent to X ′ through R-f.f. functors. Then X is Cauchy complete as a met-

ric space iff X ′ is, and Cauchy completeness of X ′ is equivalent to X ′ being closed in

((R, Em)-Cat)1R(Xop,R).

Henceforth we require all R-categories X in our domain of discourse to satisfy the condi-

tion that X ′ (with notation as above) be closed as a subobject of ((R, Em)-Cat)1R(Xop,R).

In particular, this implies that for each X, each A ∈ SubX that is closed is also Cauchy
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complete as a metric space.

It is possible for us to state the condition of being totally bounded in categorical lan-

guage, but for our purposes it is a condition most naturally stated in the analytic lan-

guage of metric spaces. This is unproblematic since the objects of our study - objects

of the category ((R, Em)-Cat)sym - are actual metric spaces. Thus we require that all

X ∈ ((R, Em)-Cat)sym in our discourse to satisfy the condition that every sequence in X

has a Cauchy subsequence.

The above conditions are equivalent to requiring that all R-categories X are metri-

cally compact when viewed as metric spaces; we will therefore call them compact as ob-

jects of ((R, Em)-Cat)sym. Thus all the usual results from analysis that apply to compact

(pseudo)metric spaces apply to the R-categories that we will consider (such as the property

of compactness being closed under finite products).

In particular, we consider the following: for any X ∈ ((V, E)-Cat)sym we have the

(V, E)-functor d = X(−,−) : X ⊗X → Vsym given on objects by d(a1, a2) = X(a1, a2). If

E contains 1V ⊗ 1V then pulling back across the strong equivalence X ×X → X ⊗X gives

us d : X×X → Vsym. In the case that V = R and E = Em this is just the distance function

on X.

Since all R-categories X in our consideration are metrically compact, they are certainly

bounded as metric spaces, and thus for each such X there is some a 6= ∞ in Rop such

that d∗Pa is the terminal object (i.e. the whole space X × X) of Sub (X × X) (which is

equivalent to having ∃d(X ×X)→ Pa in SubRsym).
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9.3 The main results

As one consequence of our assumptions, every (F, ε) : X → Rsym factors as i ◦ (F, ε,B)

for (F, ε,B) : X → PB = [0, B] and i : [0, B] ↪→ Rsym, for some B 6= ∞. Thus any

(F, ε) : X → Rsym may equivalently be considered as (F, ε) : X → [0, B]. We will consider

the datum B to be part of background bookkeeping; when relevant we will mention it

explicitly.

Proposition 9.19. Let A,X be R-categories. For any uniformly continuous

F : A×X → Rsym, we have the following:

(a) For each a ∈ Rop, the set of objects of ∃πXF ∗Pa ∈ SubX is equal to

{x ∈ X | inf
y∈A

F (y, x) ≤ a}

(b) For each a ∈ Rop, the set of objects of ∀πXF ∗Pa ∈ SubX is equal to

{x ∈ X | sup
y∈A

F (y, x) ≤ a}

Proof. With notation as above, our construction of ∃πX , F ∗, and P gives us that the set

of objects of ∃πXF ∗Pa ∈ SubX is given by {x ∈ X | ∃y ∈ A such that F (y, x) ≤ a}. By

compactness of A we have that this last set is equal to {x ∈ X | inf
y∈A

F (y, x) ≤ a}.

The proof for ∀πXF ∗Pa is obvious.

Remark 9.20. The above shows that subobjects of the form ∃πXF ∗Pa and ∀πXF ∗Pa are

closed.
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Given A ∈ SubRX, each a ∈ Rop determines an element DA(a,−) ∈ SubRX as follows.

Denote by ia : Aa×X → X ×X the obvious inclusion. Then (d ◦ ia)∗P ∈ SubR (Aa ×X).

Letting πX : Aa ×X → X denote the projection onto X, define

DA(a,−) = ∃πX (d ◦ ia)∗P ∈ SubRX.

For each δ ∈ Rop, DA(a, δ) ∈ SubX is the subspace of X consisting of the points x ∈ X

for which inf
y∈Aa

X(y, x) ≤ δ. This is natural in a, so that DA ∈ [Rop × Rop,SubX]. For

each ε ∈ Em there is another element Aε ∈ [Rop × Rop,SubX] determined by A, given by

(a, δ) 7→ Aa+ε(δ).

9.3.1 A subobject classifier

We are now ready to give the main statement of the correspondence between SubRX and

functors (F, ε) : X → Rsym, which exhibits P ∈ SubRRsym as a kind of subobject classifier,

analogous to the way that > → Ω is the subobject classifier for Set.

Theorem 9.21. Let X be a R-category.

Given (F, ε) : X → Rsym, we have that DF ∗P → (F ∗P )ε in [Rop × Rop,SubX].

Conversely, for any A ∈ SubRX, if there is some ε ∈ Em such that DA → Aε in

[Rop × Rop,SubX], there is some (F, ε) : X → Rsym (necessarily unique up to essential

equality) for which A = F ∗P . We denote this F by A∗.

Proof. Let (F, ε) : X → Rsym be given. For each (a, δ) ∈ Rop × Rop,

DF ∗P (a, δ) = {x ∈ X | inf
y∈F ∗Pa

X(x, F ∗Pa) ≤ δ}.
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F ∗Pa is closed in X so it is compact, and so there is some x′ ∈ F ∗Pa for which X(x, x′) ≤ δ.

Now Fx′ ≤ a in Rsym and must have that Rsym(Fx, Fx′) ≤ ε(δ), so Fx ≤ a + ε(δ). Thus

x ∈ (F ∗P )ε(a, δ), and we must have DF ∗P → (F ∗P )ε.

Now let A ∈ SubRX be given, along with some ε ∈ Em such that DA → Aε in

[Rop × Rop, SubX]. Define, for each x ∈ X, Fx = inf{a ∈ Rop | x ∈ Aa}. We must exhibit

ε as a R-modulus for F , i.e. we must verify for each x, x′ ∈ X that

ε(X(x, x′)) → Rsym(Fx, Fx′) in R. Assume w.l.o.g. that Fx ≤ Fx′ in Rsym. Then

Rsym(Fx, Fx′) = Fx′ − Fx = inf{a ∈ Rop | x′ ∈ Aa} − inf{a ∈ Rop | x ∈ Aa}.

Let X(x, x′) = δ. Now for every c > 0, there is some ac such that x ∈ Aac and

inf{a ∈ Rop | x′ ∈ Aa} − inf{a ∈ Rop | x ∈ Aa} < inf{a ∈ Rop | x′ ∈ Aa} − ac + c. Since

x ∈ Aac implies x′ ∈ Aac+ε(δ), we have that inf{a ∈ Rop | x′ ∈ Aa} − ac + c ≤ ε(δ) + c.

Letting c→ 0, we get Rsym(Fx, Fx′) ≤ ε(δ), i.e. ε(X(x, x′))→ Rsym(Fx, Fx′) in R.

Fix a ∈ Rop. F ∗Pa as given above is {x ∈ X | inf{a′ ∈ Rop | x ∈ Aa′} ≤ a}. Clearly

Aa → F ∗Pa in SubX. Now for any c > 0 we have that F ∗Pa → Aa+c in SubX. By

assumption we have that lim
c→0

Aa+c = Aa in SubX, so that F ∗Pa → Aa in SubX, so that

F ∗Pa = Aa.

Given A ∈ SubRX satisfying the hypothesis of the second part of the above theorem, we

can require that the ε guaranteed by the theorem be part of the data specifying A ∈ SubRX

(its ”R-modulus”), so that we write (A, ε) ∈ SubRX. We call (A, ε) a continuous R-

subobject of X; thus when we write (A, ε) it is implied that it is a continuous R-subobject

with R-modulus ε.

For any such (A, ε) ∈ SubRX we have that A∗ (which has R-modulus given by the same
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ε) is not only unique up to essential equality, but (A∗)
∗∃A∗A = A since A = (A∗)

∗P and

∃A∗ , (A∗)∗ give a (covariant) Galois connection.

Now by compactness of X we have that the image of A∗ in Rsym factors through [0, a]

for some a 6=∞. This is equivalent to A ∈ SubRX satisfying Aa′ = X for every a→ a′ in

Rop (we call this a the (a) predicate bound of A). We may also require that this be part of

the data specifying A, so that we write (A, ε, a) to specify a continuous R-subobject of X,

with predicate bound a.

We give one final construction before giving the interpretation of continuous logic into

((R, Em)-Cat)sym:

Definition 9.22. Let a1, a2 ∈ [0,∞).

( .−, 1R) : [0, a1] × [0, a2] → Rsym is defined by (x, y) 7→ max(x − y, 0). We write this as

x .− y. Clearly the image of .− restricts to [0, a1], so that we may consider it as a function

( .−, 1R) : [0, a1]× [0, a2]→ [0, a1].

Let X,Y ∈ ((R, Em)-Cat)sym. Given R ∈ SubRX and R′ ∈ SubR Y with corresponding

R∗ : X → Rsym and R′∗ : Y → Rsym, we can form R∗
.−R′∗ = .−◦ (R∗×R′∗) : X×Y → Rsym.

9.4 Interpreting continuous logic into ((R, Em)-Cat)sym

9.4.1 Syntax of continuous logic

Recall from Part I the basic syntax of single-sorted continuous logic. This generalizes

straightforwardly to the many-sorted case, which we describe now explicitly.

Definition 9.23. A continuous signature S consists of:

(a) A set S of sort symbols si (containing ∗, the terminal sort), each with:
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(i) A corresponding metric symbol di;

(ii) A corresponding bound Bi, a nonnegative finite real number;

(b) A set F of function symbols fj , such that for each f ∈ F we have the following data:

(i) A natural number n and an (n+ 1)-tuple (s1, . . . , sn, s) of elements of S;

(ii) A modulus of uniform continuity ε, i.e. a monotonic function ε : [0,∞]→ [0,∞]

which is continuous at 0 and has ε(0) = 0; with the above we say that (f, ε) is an

n-ary function symbol of type

( ∏
1≤i≤n

si

)
→ s, or write (f, ε) :

( ∏
1≤i≤n

si

)
→ s

(c) A set R of predicate symbols Rk, such that for each R ∈ R we have the following data:

(i) A positive natural number n and an n-tuple (s1, . . . , sn) of elements of S;

(ii) A modulus of uniform continuity ε, i.e. a monotonic function ε : [0,∞]→ [0,∞]

which is continuous at 0 and has ε(0) = 0;

(iii) A predicate bound, i.e. a nonnegative (finite) real number a; with the above we

say that (R, ε, a) is an n-ary predicate symbol of type
∏

1≤i≤n
si, or write

(R, ε, a) ⊂R
∏

1≤i≤n
si.

In addition to the symbols provided by our signature S, we have, for each natural

number n and an (n+ 1)-tuple (a1, . . . , an, a) of nonnegative finite real numbers, a symbol

and corresponding modulus of uniform continuity for each continuous function

(u
(ai)
a , ε) :

( ∏
1≤i≤n

[0, ai]

)
→ [0, a], which we call a connective. Definition 9.22 therefore

defines a binary connective.

As previously, the empty product
∏
∅
si is understood to be ∗. A 0-ary function symbol

c : ∗ → s is also called a constant symbol of type s.
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A 0-ary connective r is simply a constant nonnegative (finite) real number r, which we

call just that.

Furthermore, for each s ∈ S we require an infinite set {xi} of variables of type s.

The construction of terms and formulas for a signature S is done analogously to single-

sorted continuous logic:

Definition 9.24. Let S be a continuous signature.

(a) A term for S is given by the following inductive description:

(i) Each variable x of type s is a term of type s and modulus 1R, with free variable

x.

(ii) Each constant symbol c of type s is a term of type s, with no free variables.

(iii) Let t1, . . . , tn be terms where tk is of type sk and modulus εk, and

(f, ε) :
∏

1≤k≤n
sk → s.

Then f(t1, . . . , tn) is a term of type s, with free variables given by the union over

k of the free variables of each tk, and modulus ε ◦ (max
k

(εk)).

(b) Let t1, . . . , tn be terms where tk is of type sk, and (R, ε, a) ⊂R
∏

1≤k≤n
sk.

Then R(t1, . . . , tn) is an atomic formula with free variables given by the union over k

of the free variables of each tk, and has modulus ε ◦ (max
k

(εk)) and predicate bound

a. (For each s ∈ S, the distance symbol ds is treated as a binary predicate symbol of

type s× s, with modulus 1R and predicate bound Bs.)

(c) A formula for S is given by the following inductive description:

(i) Each atomic formula is a formula.
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(ii) If φ1, . . . , φ2 are formulas with respective moduli ε1, . . . , εn, and predicate bounds

a1, . . . , an; and if u :
∏

1≤i≤n
[0, ai] → [0, a] is a connective with modulus ε, then

u(φ1, . . . , φn) is a formula with modulus ε◦ (max
i

(εi)) and predicate bound a. Its

free variables are given by the union of the free variables of φ1, . . . , φn.

If n = 2 and u is the connective .− as defined in Definition 9.22, then we write

u(φ1, φ2) as φ1
.− φ2 or as φ1 ≤ φ2.

(iii) If φ is a formula with modulus ε and predicate bound a, and x is a free variable

of φ, then sup
x
φ and inf

x
φ are formulas, each with modulus ε and predicate bound

a, with free variables equal to the free variables of φ omitting x.

(iv) A formula with no free variables is called a sentence.

(d) A condition for S is a formula of the form φ = 0 (which may be given as φ ≤ 0).

(e) A condition with no free variables is called closed.

An S-theory Σ is a set of closed S-conditions.

9.4.2 The interpretation

Given a continuous signature S, we give its interpretation into ((R, Em)-Cat)sym, which

will formally resemble the interpretation of classical logic into Set; we have designed our

framework with this intention. Recall that by P ∈ SubRRsym we mean the distinguished

R-subobject of Rsym given by Pa = [0, a]. We will abuse notation by using P to also denote

i∗P ∈ SubR Pa where i : Pa→ Rsym is the inclusion.

Definition 9.25. Given a continuous signature S, an S-structure is given by the following:
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(a) For each sort symbol s ∈ S, a compact object JsK ∈ ((R, Em)-Cat)sym, such that

J∗K = I.

(a) We require that the distance function dJsK = JsK(−,−) : JsK× JsK→ Rsym factors

through dJsK : JsK× JsK→ [0, Bs] (i.e. that JsK is bounded in diameter by Bs).

(b) For each function symbol (f, ε) :
∏
i
si → s, an (R, E)-functor (JfK, ε) :

∏
i
JsiK→ JsK.

(c) For each predicate symbol (R, ε, a) ⊂R
∏
i
si, a R-subobject (JRK, ε, a) ∈ SubRX.

For s ∈ S, its corresponding metric symbol ds is treated as a binary predicate symbol

(ds, 1R, Bs) where Bs is the corresponding bound for S.

Where in the above we have implicitly made a choice of products. The data then

determine the interpretation of all S-terms and S-formulas, as follows. As before, any time

we have a tuple ~x = (x1, . . . , xn) of distinct variables of types s1, . . . , sn (respectively), we

set J~xK =
∏

1≤i≤n
JsiK. In particular, if a variable x is of type s then JxK is JsK, and if ~x is

empty then JxK = J∗K.

If t = xi then (JtK~x, 1R) : J~xK→ JxiK is the projection map.

Let f be some n-ary function symbol with modulus ε. If t = f(t1, . . . , tn) with each ti of

type si, with each JtiK~x already defined with modulus εi, then (JtK~x, ε ◦max
i

(εi)) : J~xK→ JsK

is given by the composition JfK ◦ (Jt1K~x, . . . , JtnK~x).

We interpret each formula φ with free variables among ~x as a R-subobject

JφK~x ∈ SubR J~xK, given by the following:

If φ is the atomic formula ds(t1, t2) with both t1 and t2 terms of type s and respective

moduli ε1 and ε2, then (JφK~x,max(ε1, ε2), Bs) ∈ SubR J~xK is given by
(
dJsK ◦ (Jt1K, Jt2K)

)∗
P .
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Let R be some n-ary predicate symbol with modulus ε and predicate bound a. If φ is

an atomic formula R(t1, . . . , tn) where each ti has sort si and modulus εi, then

(JφK~x, ε◦(max
i
εi), a) ∈ SubR J~xK is given by (JRK∗ ◦ (Jt1K, . . . , JtnK))∗ P = (Jt1K, . . . , JtnK)∗JRK.

Given interpretations (JφiK~x, εi, ai)~x for 1 ≤ i ≤ n and a n-ary connective
(
u
(ai)
a , ε

)
, we

set

(
Ju(φ1, . . . , φn)K, ε ◦max

i
(εi), a

)
∈ SubR J~xK as (u ◦ (Jφ1K∗, . . . , JφnK∗))∗ P .

Given an interpretation (JφK~x,y, ε, a) of φ, we set (Jinf
y
φK~x, ε, a) ∈ SubR J~xK as ∃πJφK~x and

(Jsup
y
φK~x, ε, a) ∈ SubR J~xK as ∀πJφK~x, where π : J~xK× JyK→ J~xK is the obvious projection.

Remark 9.26. It is straightforward to check, for example using Proposition 9.19 and the

proof of Theorem 9.21, that Jinf
y
φK = (inf

y
φ(−, y))∗P , where φ(−,−) = JφK∗.

This completes the interpretation of all S-terms and S-formulas given an interpretation

of the signature S into ((R, Em)-Cat)sym. If φ is a sentence, then JφK∅ ∈ SubR J∗K is an

R-subobject of I. If φ is a closed condition then we say that φ is true in this interpretation

if JφK∅ is the terminal object in SubR J∗K.

If Σ is a collection of S-conditions, we say that an interpretation of S is a model of Σ if

the interpretation makes each φ ∈ Σ true in that interpretation.
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Chapter 10

Future directions

10.1 Ultraproducts

Continuous logic, as with classical logic, makes extensive use of ultraproducts in both theory

and practice. There already exists a notion of taking ultraproducts in topoi that corresponds

to the classical ultraproduct (the “filter-quotient construction” [31]); extending such a con-

struction to this continuous setting that corresponds to the continuous ultraproduct would

be an interesting and potentially fruitful endeavor.

10.2 W(C)-enrichment

The notion of (V, E)-Cat being ((V, E)-Cat)(C)-enriched naturally extends to the question

of what it means for (V, E)-Cat to be “closed” with respect to this enrichment. In par-

ticular, the ordinary category (pMet∞)u (which is morally the same as ((R, Em)-Cat)sym)

fails to be cartesian closed, but it may be the case that (R, Em)-Cat (or ((R, Em)-Cat)sym)

is closed with respect to its “C-indexed” enrichment.
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10.3 Generalize to ((R, Em)-Cat)sym(C)-categories

In a different direction, just as the logic corresponding to that of Set, which is enriched

over itself, may be interpreted in other categories (which are still enriched over Set) that

bear specific structural similarities to Set, we may ask to what extent continuous logic may

be interpreted into general (((R, Em)-Cat)sym)(C)-categories, and what kinds of conditions

such categories would need to satisfy.
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