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ABSTRACT 

 

THE NETWORK STRUCTURE OF COLLECTIVE INNOVATION 

Devon Brackbill 

Damon Centola 

Prior research on how to design collaboration networks among scientists, engineers, and 

strategists surprisingly predicts that inefficient networks that slow down the rate of collaboration 

will lead to better performance on complex problems. However, empirical research has provided 

mixed evidence for these ideas. Here, we test this theory using an online Data Science 

Competition that experimentally manipulates the network efficiency of teams working on a 

complex problem. The results support the idea that less efficient collaboration networks increase 

collective performance on complex problems. The results have important implications for 

designing problem-solving teams in numerous domains. 
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PREFACE 

Do efficient communication networks increase collective intelligence? Scientists, 

engineers, and strategists all work within highly connected environments where each person’s 

solutions are used to inspire and inform the work of others. The communication networks 

between researchers can determine the rate at which new ideas and innovations reach the rest of 

the community, giving rise to better solutions to difficult problems. As the complexity of the 

problem increases, so does the putative need for more efficient collaboration networks. Firms, 

research organizations, and universities have all invested in developing network technology to 

improve communications between researchers trying to solve complex problems. However, 

recent theoretical evidence suggests that these efforts may be counterproductive. These theories 

suggest that when teams are solving the most complex problems, increasing network efficiency 

can actually reduce the overall progress of members of communication networks. 

Current empirical studies testing these theories have provided mixed support, with one initial 

study providing supportive evidence, and a second larger study providing contrary evidence. 

These studies have relied upon simplified games that are meant to capture the central elements 

of group problem-solving, and they have recruited subjects using convenience samples, such as 

Amazon Mechanical Turk or undergraduate populations. 

In order to address some of the concerns about external validity with previous research 

on this topic, this dissertation draws on research using “computational social science,” where the 

goal is to capture real world behavior while also maintaining precise causal control (Centola, 

2010; Lazer et al., 2009; Salganik, Dodds, & Watts, 2006; van de Rijt, Kang, Restivo, & Patil, 

2014). This dissertation tests these theories by gathering original data from an Internet-based 

experiment called the Annenberg Data Science Competition 

(https://www.datascience.upenn.edu). In order to recruit the subjects who solve these complex 

problems in the real world – statisticians and data scientists – I decided to build an online platform 

so that individuals could participate through their web browser from any computer with an Internet 

connection. I invited statisticians from across the country to solve complex statistical problems on 
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teams, and exogenously manipulated their collaboration network to see how it affected their 

ability to solve complex problems. The Annenberg Data Science Competition was modeled after 

crowd-sourced data science competitions, such as the Netflix Prize, the KDD Cup Challenge, and 

Kaggle.com, where data scientists from around the world compete to build the most accurate 

forecasting models from a data set. 

By building a platform that attracts the people in the real world who normally solve such 

complex problems and by situating them in a realistic environment, this design allows me to 

capture the actual problem-solving behavior of individuals working on highly complex problems. 

Additionally, the experimental design allows me to causally identify the effect of network efficiency 

on collective performance. 

The results support the idea that less efficient collaboration networks increase collective 

intelligence on complex problems. These results have important implications for the design of 

teams that are working on complex problems in design, engineering, and science. 

The dissertation consists of two sections. Chapter 1 (“The Network Structure of Collective 

Innovation: An Experimental Study”) is a concise presentation of the project for a general science 

audience who is interested in network theory and collective intelligence. It presents the main 

findings from the experiment, and defers further discussion of Design of the Experimental Study 

and Robustness Analyses to the end of this section. Chapter 2 (“Applications of Network 

Engineering to Team Problem-Solving”) reports the results for a more specialized audience in 

management, business, and organizational theory who would be interested in finding practical 

ways to make use of the study’s findings. I first present the original model, and then show 

experimental results supporting that model. Then, I revise the model with novel simulations to 

show that collaborative efficiency can be changed in other ways beyond rewiring networks, as the 

original theory presupposed. I conclude by discussing practical ways to slow down collaboration 

among problem-solving teams using the theoretical results from this section. 
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CHAPTER 1: THE NETWORK STRUCTURE OF COLLECTIVE INNOVATION: 

AN EXPERIMENTAL STUDY 

Abstract 

Prior research on how to design collaboration networks among scientists, engineers, and 

strategists surprisingly predicts that inefficient networks that slow down the rate of collaboration 

will lead to better performance on complex problems. However, empirical research has provided 

mixed evidence for these ideas. Here, we test this theory using an online Data Science 

Competition that experimentally manipulates the network efficiency of teams working on a 

complex problem. The results support the idea that less efficient collaboration networks increase 

collective performance on complex problems. The results have important implications for 

designing problem-solving teams in numerous domains. 

Introduction 

Do efficient communication networks increase the rate of innovation? In many complex problems, 

researchers, engineers, scientists, and designers face a tradeoff between exploring new 

possibilities by creating new solutions, or exploiting existing solutions by collaborating with others 

(Gupta, Smith, & Shalley, 2006; March, 1991). Theories from diffusion research suggest that 

when teams work to solve problems, more efficient collaboration networks would improve 

performance (Rogers, 2003; Strang & Soule, 1998). Such efficient networks would rapidly 

disseminate the most novel and high-quality solutions, which would improve group performance. 

However, recent theoretical work has indicated that excessive connectivity can undermine 

collective performance on complex problems (Fang, Lee, & Schilling, 2010; Lazer & Friedman, 

2007). These theories predict that inefficient networks promote collective innovation by preserving 

the group’s solution diversity, which prevents them from prematurely adopting a suboptimal 

solution. As a result, embedding teams in inefficient collaboration networks allows them to more 
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effectively navigate the large non-convex solution spaces that characterize many important 

problems in technology, science, and public policy (Kauffman, Lobo, & Macready, 2000; 

Kauffman & Macready, 1995; Lazer & Friedman, 2007).  

Despite the importance of understanding how to build teams to solve complex problems, 

existing empirical tests have not been able to consistently support one hypothesis over the other. 

An initial empirical study supported the idea that inefficient collaboration would increase collective 

performance (Mason, Jones, & Goldstone, 2008), but a second larger experiment found the 

opposite (Mason & Watts, 2012). Both studies involved recruiting convenience samples to 

participate in a stylized online game that had some similarities to real-world complex problems. 

Here, we provide novel evidence to address the empirical disagreement by examining how 

collaboration affects domain experts in a real-world complex problem. 

Methods 

To test the hypothesis that network efficiency decreases collective performance, we conducted a 

controlled experiment. Using a web-based platform, we recruited statisticians and data scientists 

from the World Wide Web to participate in a Data Science Competition (see Design of the 

Experimental Study). Individuals were given a regression problem where they needed to find the 

best predictive model, such as predicting the sales volume for a popular retailer. Subjects 

interacted with these data sets using a custom-built platform via their web browser that displayed 

their model performance on each round and allowed them to adjust their model. Models were 

scored based on a predictive accuracy metric (see Design of the Experimental Study). 

The competition lasted for 15 rounds, where each round required individuals to make a 

decision to either explore a new solution or exploit a neighbor’s solution. Exploration meant 

deciding to change their solution by adding or removing a single variable from their statistical 

model, which was meant to capture how individuals incrementally search from their current 

solutions (Cohen & Levinthal, 1990; March, 1991; March & Simon, 1958; Nelson & Winter, 1982; 

Stuart & Podolny, 1996) (see Design of the Experimental Study). In contrast, exploitation meant 
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copying an existing solution from one of their network neighbors. To copy a better solution, 

individuals saw the performance scores of their best network neighbors, and could choose to 

adopt a better solution. Additionally, individuals could maintain their current solution. 

Once a participant submitted a decision for the round, they received immediate feedback on the 

performance of their new solution. If the solution was better, they adopted it, and proceeded to 

the next round, and if the solution was worse, they were returned to their previous solution. Each 

round lasted for 1 minute. Individuals never knew if they had the best possible solution, and they 

were incentivized to find better solutions each round, and received financial rewards based on the 

quality of their final solution. 

 Individuals solved a complex combinatorial optimization problem that shares essential 

features with complex problems in design, engineering, and complex problem-solving (Kauffman, 

1993, 1995; Kauffman et al., 2000; Kauffman & Macready, 1995). Each solution was represented 

as a sequence of decisions to either include or exclude a variable in a statistical model. Each 

decision affected the overall fitness of the entire solution, and the problems were sufficiently 

complex so that there was a high degree of interdependency among the components of the 

solution (see Design of the Experimental Study), which is a hallmark of complex problems 

(Kauffman, 1993). This complex interdependency gave rise to solution “fitness landscapes” where 

teams could get caught on many locally optimal solutions (Kauffman, 1993; Wright, 1932). To 

ensure that our findings were general across numerous data science problems, we used several 

different problems across the experimental trials (see Design of the Experimental Study). 

 Participants in the study were randomly assigned to one of two collaboration network 

conditions – an efficient network with minimum possible average path length (L = 1), which was a 

fully connected network, or an inefficient network with higher average path length (L = 1.67 for N 

= 10, and L = 2.89 for N = 20), which was a ring lattice with average degree Z=4 (Fig. 1). To 

make each group in a trial as similar as possible, each participant was given a random starting 

solution that was matched with someone in the other condition (see Design of the Experimental 

Study). This allowed us to see how differences in network structure could affect two initially 
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similar populations. The design resulted in 14 independent networks, and seven matched pair 

trials. Population sizes were fixed within a given trial, and we ran six pairs with N=10 subjects in 

each network, and one pair with N = 20 subjects, comprising 160 participants in the study. 

Subjects were recruited based on their statistical ability (see Design of the Experimental Study). 

 

 

Fig. 1. Structure of the experiment. All experimental trials consisted of two networks, one 

efficient (L = 1), and one inefficient (L=1.67 or 2.89). In each of the seven trials, subjects were 

randomly assigned to one network condition, and then randomly assigned to a single node in the 

network. On the initial round of each trial, subjects received a random starting solution. On 

subsequent rounds, subjects saw the performance of their immediate network contacts and could 

copy these solutions. In a single trial, random initial solutions were matched across conditions, 

and groups faced the same data science problem. 

 

 Participants in the study were shown an identical user interface in both experimental 

conditions. Features of the social network, such as the average path length and the size of the 

population, were unobservable to participants (see Design of the Experimental Study). More 

generally, every aspect of the participants’ experience was equivalent across experimental 

conditions. The only difference was the structure of the social networks. Thus, any differences in 

collective performance may be attributed to the effects of network efficiency on the process of 

collective innovation (see Design of the Experimental Study). 
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Results 

The results show that the efficiency of the collaboration network had a significant effect on the 

quality of collective innovation. We find that inefficient networks discovered better solutions than 

efficient networks (P = 0.02, Wilcoxon signed-rank test). This effect was consistent across each 

of the seven trials (Fig. 2). On average, inefficient networks found solutions that were 21% better 

than those discovered by efficient networks. 

 

Fig. 2. Inefficient networks found better solutions than efficient networks. The maximum 

solution found by an individual in efficient (light) and inefficient (dark) networks is plotted across 

all seven trials. The performance of each solution is scaled based on the best possible solution 

on a given data set (=1) compared to the group’s average starting performance (=0). 

 

Initially, all inefficient networks had worse average solutions than their efficient network 

pairs, and on average their mean solutions were 30% worse than efficient networks (P < 0.05, 

Wilcoxon signed-rank). However, as the theory predicts (Lazer & Friedman, 2007), this 

suboptimal performance did not persist throughout the experiment (Fig. 3). By round 14, 

inefficient networks had significantly reversed the trend and were generating better average 

solutions than efficient networks (P < 0.05, Wilcoxon signed-rank). By the study’s conclusion, 

every inefficient network had a better mean solution than its efficient network pair. On average, 

efficient networks generated mean solutions that were 17% higher than efficient networks on the 

final round (P = 0.02, Wilcoxon signed-rank).  
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Fig. 3. Average performance in efficient and inefficient networks across time. Lines 

represent the average performance across all seven trials for efficient (light) and inefficient (dark) 

networks. Average performance was initially higher within efficient networks as compared to 

inefficient networks. However, by the study’s conclusion inefficient networks had a better average 

performance than efficient networks within each trial. 

 

 The performance of inefficient networks was heavily influenced by the speed of solution 

diffusion, both depressing the initial average performance, but also preserving diversity and 

allowing for better solutions to arise. Diffusion rates were significantly lower in inefficient networks 

than in efficient networks (P < 0.01, Wilcoxon rank sum test). When the top solution was found in 

efficient networks, 76% of individuals adopted it on the following round on average (Fig. 4). In 

contrast, only 32% of individuals adopted the best solution on the next round after its discovery in 

an inefficient network.  
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Fig. 4. Rate of solution diffusion. Proportion of individuals adopting the best solution after it 

was found at t=0 over the following 5 rounds. Efficient networks took on average 5 rounds to 

diffuse the solution to the entire population. In contrast, inefficient networks did not see universal 

diffusion of the solution on average across all trials in the observation window of the study. The 

figure shows the mean fraction who adopt a group’s best solution across seven trials. 

 

 The lower rate of solution diffusion in inefficient networks led to a greater diversity of 

solutions in these networks (Fig. 5). Inefficient networks discovered a larger portion of the solution 

space, on average successfully adopting 36% more distinct solutions across all time compared to 

efficient networks (P = 0.03, Wilcoxon signed rank test). Additionally, inefficient networks were 

significantly less likely to herd onto the most popular solution on each round (P < 0.05, Wilcoxon 

signed-rank test, for rounds 1 through 14) (Fig. 6). By maintaining more solution diversity, 

inefficient networks had a higher likelihood that additional explorations would find better solutions. 
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Fig. 5. Diversity of solutions. The cumulative number of distinct solutions discovered in efficient 

(light) and inefficient (dark) networks throughout time. 

 

Fig. 6. Fraction adopting most popular solution. The average fraction of the population who 

adopt the most popular solution on each round is plotted across 15 rounds. There were fewer 

cases of duplicated solutions in inefficient (dark) than in efficient (light) networks. 
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Discussion 

As with all experiments, design choices that aided the control of the study also put 

constraints on the behaviors that we could test. A limitation of the design is that the subjects were 

experts in statistics who received a single complex problem and had to solve it in a limited time. 

However, increasing the length of time would make no difference for the results because 

individuals in efficient networks converged on a single solution and were unable to move to a 

better solution even with more time. Many real world complex problems have a similar high level 

of interdependency where individuals can get stuck on local optima, including problems in 

engineering, technology, and public policy (Kauffman et al., 2000; Kauffman & Macready, 1995). 

Additionally, the experts used in this study have many similarities with problem-solvers in other 

real-world domains, including in terms of their experience, approaches to collaboration, and 

search strategies. While the design restricted individuals to incremental search, research has 

shown that when faced with complex problems, animals, individuals, and organizations search 

incrementally and do not abandon solutions, so our design captures the essential elements of 

collective innovation (Cohen & Levinthal, 1990; March, 1991; March & Simon, 1958; Nelson & 

Winter, 1982; Stuart & Podolny, 1996). Further, the results were similar when we allowed 

individuals to search in a non-incremental manner (see Robustness Analyses).  

 Additionally, this study focused on one aspect of collective problem-solving, namely 

solution discovery among problem-solvers working in parallel (Lazer & Friedman, 2007). There 

are many additional aspects to collective problem-solving, such as efforts to coordinate and 

motivate members of large teams. When the logistics of coordinating large groups is the most 

pressing issue, then efficient networks should be used because they are known to promote faster 

and more universal adoption of a norm or technological standard (Centola & Baronchelli, 2015). 

Many of the large gains in productivity that have resulted from investments in communication 

technology have helped organizations find better ways to coordinate their behavior. Consistent 

with theory, more efficient collaboration would allow groups to perform better on these simple 
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problems. However, the large gains that have resulted from increases in efficiency on these 

simple problems will be at odds with group performance when they face the most complex 

problems, as the findings from this study suggest. Engineers, designers, and scientists face both 

simple and complex problems, and as a result, organizations may need to find ways to flexibly 

change their network structures depending on the complexity of the problem they face (Shore, 

Bernstein, & Lazer, 2015). 

 In contrast to previous research, our results show no benefits to efficient networks over 

inefficient ones when groups face complex problems (Mason & Watts, 2012). Instead, our 

findings suggest that inefficient networks may be an important part of collective innovation on 

complex problems. This finding agrees with theoretical (Fang et al., 2010; Kim & Park, 2009; 

Lazer & Friedman, 2007) and empirical (Mason et al., 2008; Mason, 2014) research on complex 

problems that finds inefficient networks promote collective solution diversity, which in turn 

improves the best solution and the average group solution in the long run. Concerns about 

groupthink, production blocking, and the common knowledge effect appear to be well-found, and 

have the potential to prevent groups from finding the best solutions (Diehl & Stroebe, 1987, 1991; 

Janis, 1972, 1982). Surprisingly, finding ways to break ties, restrict information flow, and slow 

down collaboration may be an important way to increase the rate of discovery on the most 

complex problems. 

Supplementary 1: Design of the Experimental Study 

Experimental Design 

Each trial of the study consisted of a matched pair of networks, one efficient and one inefficient 

network. As subjects came into the study, they were randomized to one of the network conditions. 

The schema for this design is shown in Figure S1. Once subjects were randomized to a network 

condition, they were randomly assigned to one node in the network, and they maintained this 

position throughout the experiment. In each trial, both networks had the same size (either N=10 
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or N=20), but they differed in terms of their average path length. The networks also differed in 

terms of their degree, density, and diameter, but average path length is the central independent 

variable (Lazer & Friedman, 2007). Seven independent trials of the study were run. Across all 

seven trials, half of the subjects were randomly assigned to the efficient network condition and 

the remaining half were enrolled in the inefficient network condition. By holding all variables 

constant except network structure, we can identify how network efficiency affects collective 

problem-solving. 

 

 

Fig. S1. Schema of the experiment. Each subject is randomly assigned to a network condition, 

and then randomly assigned to a single node within the network. 

Subject Recruitment 

Participants in our study were recruited via online advertisements posted on the World Wide Web 

to participate in the “Annenberg Data Science Competition.” When subjects arrived to the study 

website, they registered to participate by completing a form that required them to submit their 

email address, and choose an avatar and a username. All participants were required to provide 

informed consent in order to complete the registration process. Advertisements were placed 

online and direct emails were sent to several thousand interested participants. This recruitment 
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campaign generated 1,182 unique registrations in the system. From this pool, we invited subjects 

back to participate in the competition on a specific date. By following a link that only became 

active shortly before the competition began, participants could access the online platform at the 

specified date and time. When participants arrived at a live competition, they viewed instructions 

on how the competition worked, and waited while other subjects arrived.  When a sufficient 

number of subjects arrived to conduct a single trial of the study (i.e. 20 individuals), all 20 

subjects were then randomized to experimental conditions as described above, at which point the 

trial would begin in both conditions. The study was run for a 113-day period, December 10, 2015 

through March 31, 2016 over which time online advertisements were posted to attract subjects to 

participate in the study. In total, 160 unique subjects were recruited to participate in the main 

study. Of the 160 individuals in the main study, 80 participated in inefficient networks, and 80 

participated in efficient networks. An additional 20 subjects were recruited for a robustness trial, 

which is reported below. 

Subject Pool 

Due to the complex nature of the problem, we recruited subjects who were specialists in 

statistics. We wanted individuals who actually work on these complex problems, so that we could 

capture the behavior of real world teams of problem-solvers. The subjects in the study were 

skilled in statistics and quantitative methods. In order to participate, subjects had to understand 

how to run a linear regression model, and how to interpret coefficients, p-values, and model 

performance. While subjects did receive an introductory video, this video only described how the 

platform interface worked, and it did not include instructions about statistics. As a result, subjects 

were informed that the competition would be demanding on their skills, and that they should only 

participate if they had the skills to understand the statistics problems used in the study. All 

recruitment efforts were directed toward forums where individuals with quantitative skills would 

visit. To assess the statistical skills of the sample, we provided a voluntary survey question that 
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asked how many statistics courses they had taken. Of the individuals who responded to this 

question, the participants took a mean of 3 (sd=3.6) college-level statistics courses. 

Subject Experience During the Experiment 

To isolate the causal effect of network structure, the interface in each condition was identical. 

Individuals began a trial with a randomized initial solution. Then, individuals decided whether they 

wanted to revise their current model by adding or removing a single variable, or copy a solution 

from one of their neighbors. For example, one data set required individuals to find the variables 

(such as age, pH, and acidity) that predict taste ratings for wines (Fig. S2). Subjects made the 

decision to explore or copy by clicking on a radio button on the right side of the interface that 

allowed them to select their own solution, or select another player’s solution (Fig. S2). The 

interface when subjects selected to revise their own solution is shown in Figure S2. Subjects 

could add or remove one variable by clicking the button with the variable’s name. When they had 

made their choice for the round, they had to press the red “Submit” button on the right side of the 

interface. When a better option was available to copy, subjects saw the interface in Figure S3, 

which included a pop-up to indicate the better model. To copy a neighbor’s model, individuals had 

to click on the radio button next to their model and then press the “Submit” button to end the 

round. The interface displayed the option to copy only when one of the individual’s neighbors had 

a better solution. On rounds where the individual had the best solution in their local 

neighborhood, the interface defaulted to showing the interface to explore their model in Figure 

S2. 

After submitting their decision to either copy or explore for the round, individuals received 

feedback based on the quality of their solution, and they waited while other players finished the 

round. When individuals found a better solution, they received a pop-up tracking their 

improvement as shown in Figure S4. When individuals tried a new solution, but it was not better 

than their previous solution, they received a notification that they would be returned to their 

previous solution as shown in Figure S5. If individuals decided to submit the same solution, they 
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received a notification indicating their choice as shown in Figure S6. Finally, if individuals made 

no choice before the timer ran out, they would remain at their previous model, and they received 

a notification as shown in Figure S7. 

This sequence was repeated for 15 rounds in total, and each round lasted for 1 minute. 

The entire experiment lasted 15 minutes with an additional instructional video prior to the 

competition. We registered every click on each round—either decisions to explore or copy—so 

we had complete records of individual decisions. To motivate subjects, rewards were based on 

the quality of their final solution with a maximum payout of $10. This design allowed us to 

examine the effect of network efficiency on the quality of group solutions. 

 

 

Fig. S2. Screenshot of the experimental interface when subjects explored their model. 
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Fig. S3. Screenshot of the experimental interface when a neighbor had a better solution. 
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Fig. S4. Screenshot of the experimental interface when a subject finished a round and 

adopted a better solution. 
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Fig. S5. Screenshot of the experimental interface when a subject finished a round and 

adopted a worse solution. 
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Fig. S6. Screenshot of the experimental interface when a subject finished a round and 

submitted the same solution. 
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Fig. S7. Screenshot of the experimental interface when a subject ran out of time on a round. 

 

Data Science Problems 

Each experimental trial involved a network of individuals who were invited to compete on a 

platform designed specifically to host a data science competition and to study this research 

question. Solutions were evaluated on each round based on the Bayesian Information Criterion 

(BIC) of their model, which provides continual feedback on their performance. The BIC is chosen 

because it is a good asymptotic measure of out-of-sample model performance and performs 

similarly to cross-validation predictive accuracy (Shao, 1997). The BIC rewards constructing 

sparse models that explain sufficient variance in the dependent variable. Individuals begin with a 

randomly assigned model and can explore from that point. 
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In order to ensure that the problem contains sufficient complexity, we used a method of creating 

data sets that draws directly on the NK model (Kauffman, 1993). The crucial feature of complex 

problems is that changing one dimension affects the fitness contribution from another dimension. 

Such synergies among the components produce many local maxima in the problem space so that 

incremental, local search can miss the global maximum. In contrast to , which will always 

improve with the addition of more variables, performance metrics such as BIC penalize variables 

that do not provide additional information. In a simple landscape, where variables do not interact, 

each predictor variable contributes statistically independent information that improves the quality 

of the model. When a variable explains no variance in the predictor variable, its contribution is 

clear because the BIC will decline. In contrast, in a complex landscape, there are correlations 

among the variables, which is common in real world data sets. Variables often contain redundant 

information that is already captured by another variables. As a result, adding redundant 

information to the model will result in a worse BIC score and worse out-of-sample performance 

because the model is effectively being fit to noise that is idiosyncratic to the training data set. 

To ensure that the data science problems in this study had this complex structure, we adopted 

existing data sets and increased the correlations among the variables. The procedure works by 

holding fixed the amount of variation in the dependent variable that is explained by all the 

predictor variables, but then shuffling that predictive variation among the predictor variables. By 

altering the correlation among the X’s, we can shift from a simple to a complex problem. In a 

complex problem, the contribution to the fitness of one variable depends on whether another 

variable is already included in the model or not. This interdependency among the components 

produces a complex fitness landscape. 

An example is shown in Figure S8. For example, imagine  and  are predictive of the 

dependent variable, , but both are correlated with each other. If  is already included in the 

model, the addition of  might result in a worse BIC, particularly if the portion of each variable 
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that is predictive of is shared among the two variables. However, if  had not previously been 

in the model, the addition of  might explain even more variation and result in a better BIC. In 

contrast, if  and  are independent, then their joint inclusion in a model will always improve 

the BIC (assuming both predict the dependent variable). When faced with a complex landscape 

with many correlated variables, as is common in many real world data problems, greedy 

optimization can result in settling on local peaks rather than finding the best model, which is a 

well-known problem for step-wise regression techniques (Friedman, Hastie, & Tibshirani, 2001; 

Sribney, 2011). 

 

 

Fig. S8. Schema of simple (A) and complex (B) data science problems. Each circle 

represents the variance in a variable, X1 and X2. The gray components within each variable are 

the portions or each variable that are predictive of the dependent variable, Y. Panel A: In simple 

problems, the “fitness” of a predictor variable in terms of explaining the dependent variable 

depends only upon that variable. This means that each variable is independent of all other 

variables. Panel B: In complex problems, the “fitness” of a predictor variable depends upon the 

presence of other variables that are correlated with it. Even if X2 predicts the dependent variable, 

it will only improve the BIC score if it provides sufficient independent variation that is not 

accounted for by another variable in the model, X1. Even though the entire variation predicted by 

X1 and X2 is the same as the simple problem, the “fitness” of adding new variables depends 
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upon how much additional variance explained beyond what is already explained by the existing 

variables. The red box represents covariation between X1 and X2 that is predictive of the target 

variable. Because this information is redundant, adding X2 to the model might not improve it any 

further. If the unique variance explained by adding X2 is too small (gray box within X2), then the 

BIC model performance will actually get worse by the addition of X2. 

 

We applied this procedure to three data sets to generate complex data science problems. 

To ensure that the problems were sufficiently complex, we ran all linear regression models, and 

then counted the number of local optima in the solution space. A solution was a local optima 

when adding or removing any single variable would result in a worse solution. A simple problem 

should have one local optima, whereas a complex problem has several. The data problems were 

large and complex, with 2,048 to 16,384 possible solutions and 9 to 16 local optima, as shown in 

Table S1. 

Trial Data Set Variables Solutions Local Optima 

1 Wine 11 2,048 11 

2 Viral News 14 16,384 9 

3 Viral News 14 16,384 9 

4 Sales Forecast 14 16,384 16 

5 Sales Forecast 14 16,384 16 

6 Sales Forecast 14 16,384 16 

7 Sales Forecast 14 16,384 16 

Table S1. Descriptive statistics of the data problems used in the study. 
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Network Metrics 

 Average path length (or characteristic path length) is the mean geodesic or shortest path 

connecting two pairs of vertices (Wasserman & Faust, 1994). It is defined as the following for 

undirected graphs: 
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where Li is the average distance between node i and all other nodes; di,j is the shortest path 

connecting nodes i and j; and n is the population size. It is a measure of the efficiency with which 

information can flow through a network. Higher path lengths indicate less efficient communication 

networks, and lower path lengths indicate more efficient information spread. We use the 

undirected, unweighted version of this metric because of the experiment’s design. 

Data Analysis 

The performance of each model was measured in terms of its Bayesian Information Criterion 

(BIC), which is also known as the Schwarz Criterion (Schwarz, 1978). The BIC is a measure of a 

model’s out of sample performance on a new data set that it has not been trained on. The BIC is 

a function both of the likelihood function and a regularization term that penalizes the addition of 

more parameters. The BIC is defined as: 

)ln(ˆln2 nkLBIC 
 

where L̂ is the maximum of the likelihood function of the model, k is the number of free 

parameters to be estimated, and n is the number of observations in the data set. In the case of a 

linear regression used in the experiment, k is the number of regressors including the intercept in 

the model. 

 To create a measure of group performance, we rescaled the BIC metric onto the range 

[0,1]. Since lower BIC indicates that a model is a better fit to the data, we created a measure of 

group top performance by transforming the BIC as follows: 
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where the numerator is the difference between group i’s average starting solution on the initial 

round (t=0) and the maximum solution on the current round t, and the denominator is the 

difference between the group’s average starting solution and the best possible solution. To 

capture average group performance, we use the following formula: 
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where the numerator is the difference between the group’s average solution at t=0 and the 

group’s average at time t, and the denominator is the same. Both metrics range from 0 (the 

group’s initial solution) to 1 (the best possible solution), and indicate how much groups have 

improved from their initial starting solution. The average initial starting solution was fixed between 

conditions within a given trial because we matched the same starting solutions between 

conditions, and the best possible solution was fixed for each data set. As a result, this metric is 

directly comparable between conditions so long as individuals started from the same solutions in 

both conditions and they used the same data problem. 

 To assess the performance of the best solution each group found, we compared Besti for 

each network structure in the seven trials using a Wilcoxon signed-rank test. This test is a non-

parametric test for matched pairs comparing the probability that observations from one condition 

will be greater than those from another condition. In essence, it tests whether it is more likely than 

chance within each matched pair that one group will consistently have a larger value than the 

other. It is very similar to the paired t-test, but it provides a more conservative estimate of 

significance because it does not assume a normal distribution. We found that the null hypothesis 

that there was no difference in the top solution across conditions could be accepted with a 

probability of P = 0.02. All statistical tests used a two-sided test of significance. 

To examine the average performance of groups, we compared Averagei in each 

condition using the Wilcoxon signed-rank test after the initial round. We also conducted this test 
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on the final round. To construct aggregate statistics across all seven trials, we also averaged 

across all efficient and inefficient networks. 

To examine the rate of diffusion of top solutions, we counted the fraction of individuals 

who adopted the best solution on every round following its discovery. Because the experiment 

only lasted for 15 rounds, there is some missing data because groups may have found their top 

solution very close to the end of the experiment. 

To examine the difference in diversity between conditions, we compared the set of 

unique solutions that were adopted in all fifteen rounds using a Wilcoxon signed-rank test. We 

tested differences between conditions using the Wilcoxon signed-rank test. To quantify herding, 

we calculated the proportion of individuals who adopted the most popular solution on each round, 

and then calculated the average across the seven trials. We tested differences in the herding rate 

using the Wilcoxon signed-rank test. 

Subject Retention 

The experiment had a high retention rate, with 86% of all subjects completing the final round. 

There was no significant difference in retention rates across conditions, with 85% of subjects 

finishing the study in inefficient networks, and 87% finishing in efficient networks (P = 0.75, 

Wilcoxon signed-rank test). The most common reasons for attrition were due to network 

connectivity issues, where the platform would disconnect a user if they closed their browser tab. 

We used the data from an individual until they left the study, or completed the final round. 

Ensuring Data Quality 

 We took several precautions in order to ensure that subjects did not violate the design of 

the experiment. Such precautions can be more difficult in online experiments because 

researchers may have less control over the behavior of the subjects than in traditional laboratory 

settings. We took several steps to ensure that the data was sound. In order to prevent individuals 

from participating in the study multiple times, we designed the system so that if a user tried to use 

a second browser tab to simultaneously participate, the system would produce an error, and only 
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allow one active browser tab to communicate on the same computer. Additionally, we required 

users to enter their email address before playing the game, and all payments were sent to these 

addresses, which made it more difficult for users to gain access to the system multiple times. To 

do so, a user would have had to enroll with multiple email addresses. Even if users were able to 

bypass these measures, each trial of the study used a new data problem so that repeat users 

would not have any advantage over new players. The interface was explained with a video 

instruction as users waited for the game to start, so there was very little reason to believe that 

there was any skill or learning that could occur from having played the game before. 

Robustness Analysis 

Individual Rate of Exploration 

Previous research has hypothesized that the mechanism through which inefficient networks 

promote better solutions is that individuals are incentivized to explore more in inefficient networks 

(Mason & Watts, 2012). This increased exploration is expected to decrease the likelihood that the 

collective will converge on a premature suboptimal solution. Our results do not support this 

hypothesis (Fig. S9). Instead, network structure did not affect the rate of exploration between 

condition (P = 0.93, Wilcoxon signed rank test). The rate of individual exploration was measured 

as the number of times an individual made a revision to their model and pressed the “submit” 

button. 
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Fig. S9. Attempts to explore new solutions. The average fraction of plays that were attempts 

to explore are plotted for each network across all trials. Error bars are two standard errors of the 

mean.  

 

Population Scaling Effects 

To examine how the results scale to large populations, we conducted simulations with increasing 

population size. The simulations use a data science problem that was used in the experiment, 

and allow agents to interact for 15 rounds. We used the exact starting solutions that were used in 

the experiment for this data science problem. We then test the differences between fully 

connected networks (Efficient) and lattices where every node has degree = 4 (Inefficient) for 

population sizes n = 10, 100, and 1,000. The average path lengths in the inefficient network 

increase from L = 1.7, to 12.9, to 125.2. 

The results for the best solution scale to larger populations (Fig. S10). As population size 

increases, inefficient networks perform better because it is more likely that the exploration in 

inefficient networks will find a better top solution. In contrast, in efficient networks performance 

does not increase because early copying has locked in efficient networks on suboptimal 

solutions.  
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To examine how the results vary with different assumptions about how frequently 

individuals prefer to explore even when a better solution is available to copy, we then vary how 

often individuals make this “error.” The bottom row of Fig. S10 shows the results when individuals 

see a better solution, but choose to explore instead of copying 25% of the time, which was the 

rate of exploration observed from the empirical data. The results are very similar for inefficient 

networks. In contrast, for efficient networks, performance increases because the greater diversity 

that results from additional exploration helps prevent groups from getting stuck on a local 

optimum. This improvement from individual exploration is not sufficient to equal the performance 

of inefficient networks, which indicates that the effect of network structure on group performance 

in this experiment is larger than the effect of individual preferences to explore. 
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Fig. S10.  Scaling effects of the best solution with population size. Performance of the best 

solution is plotted for 3 population sizes (10, 100, and 1000) with two levels of error (0, and 0.25). 

An error of 0 indicates that when an agent sees a better solution, it fails to copy that solution 0% 

of the time, and 0.25 indicates a 25% failure to copy a better solution. An error of 0.25 is similar to 

the effects observed in the empirical data. 100 simulations for each point. Simulations were run 

on a single data science problem from the experiment for 15 rounds. 

 

 The average group performance is not affected by scaling to larger population sizes 

when individuals always copy the best solution (Fig. S11, top). However, when individuals have a 

25% preference to explore even when a better option exists to copy, the efficient network 

performs better in terms of its average (Fig. S11, bottom). At larger population sizes, the efficient 
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network is able to spread a good solution to more individuals in the population, thus lifting up the 

group’s average performance. 

 

 

Fig. S11. Scaling effects of the average (mean) solution with population size. Performance 

of the average solution is plotted for 3 population sizes (10, 100, and 1000) with two levels of 

error (0, and 0.25). An error of 0 indicates that when an agent sees a better solution, it fails to 

copy that solution 0% of the time; an error of 0.25 indicates the agent would fail to copy a better 

solution 25% of the time. 100 simulations for each point. Simulations were run on a single data 

science problem from the experiment for 15 rounds. 
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Robustness to Design Choices: Allowing Non-Incremental Search 

To examine the sensitivity of the results to design choices, we conducted a robustness 

experiment. Our original experiment allowed individuals to make a single revision each round 

(i.e., incremental search). We chose this design because we wanted to capture realistic search 

processes by individuals and organizations in high-risk situations, where there are strong 

incentives to add slowly to a solution that has received heavy investment (Cohen & Levinthal, 

1990; March, 1991; March & Simon, 1958; Nelson & Winter, 1982; Stuart & Podolny, 1996). In 

the robustness experiment, we permitted individuals to make as many changes to their model on 

each round before submitting their new solution and receiving feedback (i.e., non-incremental 

search). We ran a single trial, comparing an inefficient network to an efficient one. The results 

show that allowing individuals to search non-incrementally does not change the differences 

between conditions (Fig. S12). The inefficient network still performed better than the efficient 

network even when both were allowed to make non-incremental searches. 

 

Fig. S12. Robustness to allowing non-incremental search. The maximum solution found by 

an individual in an efficient (light) and inefficient (dark) network where subjects were allowed to 

make non-incremental searches on all rounds. The performance of each solution is scaled based 
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on the best possible solution on a given data set (=1) compared to the group’s average starting 

performance (=0). 

 

 At the individual level, individuals did attempt to explore more widely when given the 

option. Across all attempts to explore, 38% of attempts involved non-incremental search. 

However, a majority of these attempts were unsuccessful, and individuals were more successful 

when they explored incrementally. When incremental exploration was used, individuals 

successfully found a better solution 19.4% of the time, in contrast to a success rate of only 9.8% 

for attempts to change more than one element of their solution. This result confirms the intuition 

that incremental exploration is both preferred by individuals, and also represents a more 

reasonable choice because the quality of the solution will likely be more similar to the current 

solution, and will likely be better. 

Attempts to Reduce Within-Network Variability 

 Within a complex landscape like the ones used in this study, there is considerable 

variability in group performance throughout the search process. A decision by a single individual 

to revise one component of their solution can directly affect the diversity of the entire group and 

the direction that the group can explore. As a result, it is possible that the within-network variation 

might mask any between-network variability. 

We took several precautions to minimize the variation within each network. The 

experiment used a matched pair design, where each individual in the inefficient network was 

given the same starting solution as an individual in the efficient network. Additionally, we provided 

individuals with suggestive information about which solutions might be better. This information 

came in the form of added variable plots at the bottom of the interface, where individuals could 

see if adding another variable would likely improve or worsen their solution. This information 

allows search to be much more efficient than simple random changes to the solution string, which 

is how the theoretical model operationalizes search (Lazer & Friedman, 2007). Additionally, the 
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variable names were real, and had actual correlation with the dependent variable, so any 

intuitions that individuals had about the causal relationships would help them explore more 

effectively. These features are expected only to speed up the dynamics so that the differences 

between conditions become more quickly apparent. 

Individual preferences to explore even when a better solution is available could diminish 

the differences between the network conditions. At the extreme, if individuals always explore and 

never copy, there will be no difference between the efficient and inefficient collaboration 

structures. While this “failure to copy” is a function of individual preferences, designing an 

interface that clearly demarcates the options that a user faces can help decrease instances of 

failing to copy. We designed the system defaults in the interface so that the best choice on any 

given round was made immediately apparent to users via pop-up boxes and prompts so that 

decisions to explore their model or exploit an existing solution could be made efficiently without 

cognitive interference (Fig. S3). 

Power Analysis 

To examine the likelihood that the experiment would detect the effects of network efficiency on 

collective performance, we conducted numerous power tests using simulations. Traditional power 

analysis tests in individual-level experiments begin by specifying an assumption about the effect 

size of the experimental manipulation. This assumption is either based on past empirical studies 

in the same research topic, or from estimations and intuitions about the effect size from with 

related studies. This model of power analysis is not appropriate for collective-level experiments. 

Instead, we constructed agent-based simulations using the exact data science problems in the 

experiment to test if collective performance would emerge from different assumptions about 

individual-level behavior. 

 There are two individual-level parameters that affect the likelihood of detecting a 

difference between the network conditions at the collective level. First, individuals differ in terms 

of their willingness to explore even when a better solution exists. This “failure to copy” parameter 
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could affect the ability to detect network differences. At the extreme, if individuals always explore 

and never copy, there will be no difference between the efficient and inefficient collaboration 

networks. Second, individuals may differ in how skillful they are when they explore. Skill in 

exploration means that an individual is more likely than chance to choose a variable that will 

improve their model, either from intuition about what variables will be effective, or from an 

understanding of the statistical information presented to the user. If individuals are better than 

chance at exploring, then the timescale for the effects will be increased. 

 To measure the sensitivity of the results to these unknown parameters, we conducted 

agent-based simulations that varied the degree to which individuals “failed to copy.” In all of the 

simulations, we assumed that individuals were no better than chance when they explored, so 

these tests provided a conservative estimate of the timescales. The results reported here are for 

N=10, using the final data science problem, where agents begin on the exact starting locations 

used in the experiment. We ran 100 simulations for 15 rounds at each value of the Failure to 

Copy Rate. Similar results were found for all the other data science problems. 

The results show that as the rate of failing to copy increases, the differences between networks 

become smaller (Fig. S13). The effect is gradual, however, which indicates that for a large range 

of individual preferences to explore new solutions rather than exploit existing options we will be 

able to detect a significant difference between conditions. In the study, about 25% of individuals 

failed to copy the best solution in the efficient network on the round immediately following its 

discovery. Figure S13 indicates that even when individuals ignore better solutions 25% of the 

time, we can still expect the inefficient network to outperform the efficient network on a majority of 

the trials. This suggests that we have a high probability of observing the predicted effects in our 

empirical setting. 
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Fig. S13. Power tests for “failure to copy.” As rates of failing to copy increase, the ability of the 

experiment to detect differences between the network conditions diminishes. 
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CHAPTER 2: APPLICATIONS OF NETWORK ENGINEERING TO TEAM 

PROBLEM SOLVING 

Introduction 

Solving complex problems requires teams of researchers. Examples include physicians 

discovering a correct diagnosis and prescription (Coleman, Katz, & Menzel, 1957), 

pharmaceutical engineers refining drugs to slow cancer growth, software developers moving 

through cycles of design and testing to refine the efficiency of a new program (Graham & 

Sichelman, 2010), state governments crafting public policy based on information about past 

effectiveness (Walker, 1969), or financial analysts updating portfolio allocations based on 

previous performance (Pan, Altshuler, & Pentland, 2012). Successful performance on a complex 

problem depends crucially on a team achieving the correct balance between innovation and 

collaboration, or what the theoretical literature has called exploration and exploitation (Gupta et 

al., 2006; March, 1991). For each individual, the decision to pursue innovation, i.e., to 

independently explore the solution space, is risky and entails the costs of time and effort. 

However, it offers the potential rewards of discovery, where a new innovation could dramatically 

improve the group. Alternatively, individuals can choose to exploit the knowledge already existing 

in their networks. This strategy will not reveal any new solutions, but it could improve their relative 

performance on the problem and help spread known solutions to others. Individuals’ decisions to 

innovate or collaborate translate into group-level performance – either accelerating the process of 

collective discovery or hastening the diffusion of previous solutions.  

In order for an organization to survive, it must find a way to balance the tradeoff between 

innovation and collaboration (March, 1991). Numerous studies have suggested that an 

organization’s collaboration network can be used to balance the forces of innovation and 

collaboration (Benner & Tushman, 2003; Ethiraj & Levinthal, 2004; Fang et al., 2010; Mihm, Loch, 

Wilkinson, & Huberman, 2010; K. D. Miller, Zhao, & Calantone, 2006; O’Reilly & Tushman, 2004; 
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Raisch, Birkinshaw, Probst, & Tushman, 2009; Rivkin & Siggelkow, 2007; Siggelkow & Rivkin, 

2005, 2006; Taylor & Greve, 2006). In particular, theoretical findings suggest that well-designed 

research networks can improve the rate of scientific and technological discovery. However, 

existing empirical research provides conflicting evidence regarding what the ideal structure for 

collective problem-solving actually is. 

Research on diffusion provides one theory as to how to structure collaboration networks 

(Rogers, 2003; Strang & Soule, 1998). Fast and efficient communication networks have the 

potential to provide problem-solvers with the most recent information in their networks. A single 

breakthrough by one person will spread rapidly throughout the network, benefitting all. Studies on 

research and development networks have provided some evidence to support this view (Kim & 

Park, 2009). 

However, theoretical research has shown that excessive communication might inhibit 

collective problem-solving in the long run (Fang et al., 2010; Lazer & Friedman, 2007). If groups 

collaborate at the expense of searching, their information diversity declines. They will begin to 

focus on a sub-set of the solutions, ignoring other potentially beneficial options, which can lead to 

groupthink, production blocking, and the common knowledge effect (Diehl & Stroebe, 1987, 1991; 

Janis, 1982; Stasser & Titus, 1985). Since diversity is crucial to group performance (Hong & 

Page, 2004; Page, 2007), slowing down collaboration might be better. In particular, decentralizing 

communication into separate sub-units, such as separating research and development teams 

from the central organization, has been shown to be beneficial (Benner & Tushman, 2003; 

O’Reilly & Tushman, 2004). 

Experimental studies that have attempted to test these theoretical ideas have provided 

mixed support because they relied on small, highly stylized networks and used subjects from 

convenience samples to solve simple problems that do not capture the richness of experts 

solving real-world complex problems (Mason et al., 2008; Mason & Watts, 2012; Roberts & 

Goldstone, 2006; Wisdom, Song, & Goldstone, 2013). Existing theoretical results about the 

network structure of collective innovation suggest that managers and policymakers should take 
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the profoundly counter-intuitive action of reducing the efficiency of their collaboration networks. In 

a highly competitive market, such drastic institutional redesign requires clear evidence of the 

effect of collaboration networks on important problems. The existing empirical literature does not 

provide such clear guidelines. This paper examines the thesis that network efficiency has an 

inverse relationship to problem complexity using an online experiment where individuals must 

solve a complex problem, and it then applies these insights to management and organizational 

design to provide practical strategies to adjust collaborative efficiency to maximize collective 

innovation. 

Due to the difficulty of separating the causal effects of network structure from individual 

characteristics (Shalizi & Thomas, 2011), this study uses a controlled experiment to manipulate a 

group’s collaboration network, which identifies the causal effect of network structure on collective 

problem-solving (Centola, 2010, 2011; Centola & Baronchelli, 2015). This design allows me to 

test how network efficiency affects the ability of groups to solve complex problems.  

To study this question, we examine the problem of statisticians and data scientists solving 

complex statistical problems. Participants are invited to a data science competition where they 

must solve a statistical problem by choosing which predictor variables among a large number of 

options should be included in a statistical model, and by collaborating with other competitors. In 

order to recruit the subjects who solve these complex problems in the real world, we built an 

online platform that participants could access through their web browser from any computer with 

an Internet connection. This design allows us to capture the real-world problem-solving behavior 

of individuals working on highly complex problems. This design builds on much research in 

computational social science that emphasizes precise causal control while also allowing 

generalizability in terms of the situation and the individuals performing the behavior (Centola, 

2010; Lazer et al., 2009; Salganik et al., 2006; van de Rijt et al., 2014). This study is an attempt to 

find the people in the real world who normally solve such complex problems and test theoretical 

ideas about network efficiency. 
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To do this, we built upon a movement around crowd-sourced data science, which is a 

well-established implementation of collective intelligence that frequently delivers on the promise 

that the crowd can beat the experts (Aldhous, 2012). In one competition, crowdsourced users 

improved upon an insurance company’s risk model by 270% (“Kaggle Winners Tapped As Data 

Analytics Consultants,” n.d.), and one machine learning competition platform reports that in every 

competition with an industry benchmark, the crowd has produced a better model (Byrne, n.d.).  

The data science problem that participants face involves issues of variable selection and feature 

engineering, which are perhaps the most important aspects of data analysis, especially in the era 

of “big data” that are “wide,” in the sense of having a large number of predictor variables (Kuhn & 

Johnson, 2013). As a result, selecting an appropriate subset of predictor variables is an 

increasingly challenging problem for data scientists and researchers, and detecting feature 

importance and generating new features are processes at the frontiers of data science because 

they cannot always be automated and require creative human input. 

The goal of this study is to evaluate the thesis that network efficiency has an inverse 

relationship to problem complexity. As the problem complexity increases, reductions in network 

efficiency promote more effective problem-solving. This study examines these dynamics among 

human problem-solvers who are solving a realistic complex problem. The assumptions about 

agents embedded in current theoretical models that make these counter-intuitive predictions 

about network efficiency and collective performance might depart significantly from the behavior 

of humans, so testing how humans solve complex problems as part of a larger collaboration 

network is important. Additionally, due to the uncertainty arising from previous experimental 

studies, this study seeks to provide clear causal evidence about whether communication structure 

is an effective tool for managing information diversity and group performance in technological and 

scientific problems. I rely on a model of technological and scientific innovation rather than search 

across one- and two-dimensional problem spaces. As a result, this study seeks to generalize to a 

wider branch of complex, high-dimensional problems, such as biomedical research, technological 

innovation, and software design, as opposed to only a domain of problems involving search 
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across low-dimensional spaces. In order for significant resources to be invested in restructuring 

collaboration networks, it must first be made clear that the effects hold up consistently in a 

representative problem in science and technology and second that these effects are substantively 

large and consistent. 

This paper is divided into three sections. The first section examines the Basic Theory 

and Model and presents the theoretical prediction that inefficient networks are better for complex 

problems. The second section examines results from an Experimental Study to test these ideas. 

And the third section expands the theoretical scope of these ideas by considering a Revised 

Model that examines ways managers can manipulate collaborative efficiency beyond network 

structure. The original theory considered only the possibility of rewiring network ties in an 

undirected, unweighted network. But I extend the theory by considering how managers might be 

able to reduce collaborative efficiency in other ways by considering weighted and dynamically 

evolving networks. This expanded theoretical model offers more practical ways that managers 

can adjust the efficiency of their collaboration networks in order to increase collective 

performance. 

Basic Theory and Model 

Exploration-Exploitation Tradeoff 

The complex problems studied here are members of a well-defined class of problems in which 

agents receive a reward signal based on their current state and attempt to adjust their policy, or 

behavior, in an attempt to maximize their utility (Sutton & Barto, 1998). In these reinforcement 

learning problems, individuals can repeatedly submit solutions and receive ongoing feedback 

from the environment informing them of their performance. These problems often require 

individuals to navigate through a large, high-dimensional space to find globally optimal solutions 

in the face of uncertain payoffs. Additionally, individuals typically operate in parallel, meaning all 

the agents are working on the same problem and their payoffs do not affect each other (Lazer & 
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Friedman, 2007). Examples include physicians discovering a correct diagnosis and prescription 

(Coleman et al., 1957), pharmaceutical engineers refining drugs to slow cancer growth, software 

developers moving through cycles of design and testing to refine the efficiency of a new program 

(Graham & Sichelman, 2010), state governments crafting public policy based on information 

about past effectiveness (Walker, 1969), financial analysts updating portfolio allocations based on 

previous performance (Pan et al., 2012), or data scientists revising their predictive models in a 

machine learning contest. In such problems, individuals face a tradeoff between exploiting 

already existing solutions in the network and exploring new options, which are risky and 

uncertain, but offer the possibility for breakthroughs that improve the entire group (Gupta et al., 

2006; March, 1991; Sutton & Barto, 1998). Maintaining the correct balance between exploration 

and exploitation is crucial to group performance, and changing the network structure is a central 

theorized way to achieve an optimal balance (Lazer & Friedman, 2007; March, 1991). 

Efficiency and Performance 

Theoretical models of the effect of collaboration structure on group performance on complex 

problems have been developed using simulations from agent-based models (ABMs). For 

example, theoretical work has examined how individual decision rules for innovation versus 

imitation affect the group’s performance (Rendell et al., 2010; Roberts & Goldstone, 2006). More 

relevant to this study, two ABMs have examined the importance of collaboration structure (Fang 

et al., 2010; Lazer & Friedman, 2007), and this study works from the model of Lazer and 

Friedman (L&F), detailed below (Lazer & Friedman, 2007). 

Model 

In the L&F model, agents search across a complex, high-dimension problem space. Each 

solution is a bit string (a sequence of 0’s and 1’s) that indicates a binary decision in each 

dimension. On each round, individuals behave according to the following rules. First, they check if 

any of their network neighbors have a better solution than their current solution. If there is a better 

one, they copy the max solution from their neighbors. If none of their neighbors have a better 
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solution, they change their current solution by randomly altering one element of their solution bit 

string. If that change is better then, their current solution, they adopt it, and if it is no better, then 

they return to their previous solution. Agents behave deterministically in this fashion, but due to 

the randomness inherent in the search process, different collective outcomes can emerge for the 

identical starting positions. 

L&F examine the effect of efficient versus inefficient networks on a group’s performance 

when solving such a complex problem. Efficiency was measured as the average path length in 

each network.
1
 The higher the average path length, the less efficient the network was. On each 

round, agents searched across a complex, high-dimensional problem space, either by exploring a 

new option or by copying a solution from one of their neighbors in the network. They find that on 

complex problems, efficient networks allowed groups to perform better in the short-term because 

information about initially promising solutions was disseminated rapidly. However, efficient 

networks performed worse in the long-run compared with inefficient networks because early 

copying prematurely restricted the efficient network’s search to a smaller portion of the 

landscape. This reduction in information diversity made it less likely that they would find the 

globally optimal solution. These findings reversed for simple problems: efficient networks 

performed better in both the short- and long-term because there was no possibility of getting 

stuck on suboptimal solutions in a simple problem. 

Previous Results 

While theoretical models provide a clear series of results on the effect of network structure on 

collective problem-solving (Fang et al., 2010; Lazer & Friedman, 2007), experimental studies 

have provided conflicting evidence in support of the hypotheses. One initial study found 

supporting evidence for the theory, while a second larger follow-up study found disconfirming 

evidence (Mason et al., 2008; Mason & Watts, 2012; Wisdom et al., 2013). The conflicting 

                                                           
1 Average path length is the average number of steps along the shortest paths for all possible 
pair of nodes. 
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experimental evidence can be resolved by designing an experiment that draws from the 

theoretical research. In particular, experimental studies need to use models of complex problems 

that capture the interdependencies among high-dimensional options in technological and 

scientific problems. 

The theoretical studies provide agents with a complex problem that draws deeply from 

models of technological and scientific innovation. In contrast, experimental tests have tended to 

simplify the problem to searching across one- or two-dimensional landscapes. This abstraction 

and simplification does not capture the richness of scientific innovation. The theoretical work 

conceives of complex problems as requiring optimization along numerous dimensions (Kauffman, 

1995; Lazer & Friedman, 2007; Levinthal, 1997; Levinthal & March, 1981; J. Miller & Page, 2009; 

Siggelkow & Levinthal, 2003). Complex problems have a high level of interdependency among 

their parts. One dimension may interact with others in surprising and unpredictable ways, 

producing non-monotonic relationships among the dimensions and making the direction of future 

innovation uncertain (Fleming & Sorenson, 2001; Kauffman, 1993; Kauffman et al., 2000; 

Kauffman & Macready, 1995). 

Most real technological innovations have such complex interdependencies. For example, 

research on semiconductors has shown the crucial interdependence between temperature and 

the amount of impurity in silicon. Small changes in impurity levels have drastic effects on a 

semiconductor’s resistance to electrical current at certain temperatures, such that at many levels 

the semiconductor fails. However, at other levels of interaction, the system provides valuable 

electrical properties (Millman, 1979). 

These complex problems in science and technology are often conceptualized as 

movement across a “fitness landscape,” which is a term originating in biology to refer to the 

distribution of fitness values for all combinations of a genotype (Wright, 1932). In technology, a 

fitness landscape refers to the performance of a solution on some dimension as a function of the 

solution, where each solution is a decision across numerous dimensions. I use the NK model to 

capture the interdependency among each component, following theoretical studies of complexity 
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(Kauffman, 1993, 1995; Lazer & Friedman, 2007; Valente, 2008). The primary benefit of the NK 

model as a representation of complex problems is that it offers a parameter to directly manipulate 

complexity. Additionally, its statistical properties are well understood (Kauffman, 1993). The 

model is often used to understand technological and scientific innovation (Fleming & Sorenson, 

2001; Kauffman et al., 2000; Kauffman & Macready, 1995; Lazer & Friedman, 2007; Levinthal, 

1997; March, 1991). 

Two parameters control the NK model. N indicates the dimensionality of the problem, 

where a problem space is modeled as a bit string of length N with a 1 indicating that a component 

has been activated, and a 0 indicating a component’s deactivation.
2
 From the perspective of the 

agent, the goal is to determine which combination of 0’s and 1’s will make the best solution. 

Calculating the “fitness” of a solution depends upon the second parameter, K, which determines 

the level of interdependence between each dimension. When K = 0, each bit contributes to the 

fitness independently. But when K > 0, the components interact, and the fitness contribution of 

each element depends on K other components. 

While it is impossible to plot high-dimensional problem spaces, Figure 1 shows a one-

dimensional stylization of the difference between a simple problem space when K = 0 (panel A) 

and a complex one when K > 0 (panel B). Simple problems have an easily identifiable global 

maximum. When agents adjust their input along the x-axis by continually searching across and 

updating their position along their local environment, they will eventually reach the peak. In 

contrast, complex landscapes have many local maxima. Since individuals and organizations 

typically search incrementally (Cohen & Levinthal, 1990; March, 1991; March & Simon, 1958; 

Nelson & Winter, 1982; Stuart & Podolny, 1996), they tend to get caught on local maxima in 

complex landscapes. Complex problems are thus rugged, multi-peaked fitness landscapes in 

                                                           
2 A third parameter, A, allows each dimension to have more than two options, and numerous 
models have expanded upon this idea (Li et al., 2006; Valente, 2008), but the central statistical 
properties of NK landscapes are invariant to these changes (Kauffman, 1993). 
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numerous dimensions, where “rugged” refers to the number of local maxima where agents can 

get stuck.  

 

Fig. 1. Simple and complex landscapes in one dimension. 

 

In contrast to the rich models of complexity used in the theoretical studies, the 

experiments that have attempted to test this theory have tended to simplify the task to search 

across one- (Mason et al., 2008) and two-dimensional spaces (Mason & Watts, 2012). For 

example, in Mason and Watts (M&W) (Mason & Watts, 2012), subjects played an online game 

called “Wildcat Wells,” where they searched across a desert landscape to find the best locations 

to drill an oil well. The underlying landscape was a hilly space with multiple peaks, or locally 

optimal drilling locations. Such spaces allow generalization to an important domain of problems, 

including search and rescue operations, but they do not capture the multi-dimensionality of 

technological and scientific innovation. 

Such simplification is concerning because the theory stresses an interaction between 

problem complexity and network structure. As problem complexity increases, reductions in 

network efficiency will promote more effective problem solving. But when problems are very 

simple, increases in network efficiency will lead to the best results (Lazer & Friedman, 2007). 

These theoretical ideas help explain why M&W found that efficient networks were always better 

on a two-dimensional problem space—a finding that runs contrary to the theoretical predictions. 
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But it is doubtful that the findings from M&W generalize to technological and scientific search on 

more complex problems. Having the proper model of a complex problem is thus crucial. The 

primary benefit of the NK model as a representation of complex problems is that it offers a 

parameter to directly manipulate complexity so that the modeler can rapidly tune a multi-

dimensional problem space between simple and complex (Kauffman, 1993). The model of 

complex problems used in this study (the NK Model) allows me to more precisely test hypotheses 

about the interaction between problem difficulty and network structure than previous experiments 

have allowed. 

Additionally, the individuals in M&W likely did not explore incrementally, as individuals 

were free to jump throughout the problem space to very distant regions, and most of the users in 

the study appeared to explore in a random, global manner. In contrast, most research on 

scientific, technological, and organizational innovation stresses that groups explore myopically by 

making incremental changes to existing practices and methods (Cohen & Levinthal, 1990; March, 

1991; March & Simon, 1958; Nelson & Winter, 1982; Stuart & Podolny, 1996). Such incremental 

movements are a rational response when exploring is costly or when organizations are in a highly 

competitive environment where the risk of moving far away from an existing solution could result 

in institutional failure. The ability and incentives to explore non-incrementally meant that getting 

caught on locally optimal solutions was unlikely because subjects could simply look at other 

solutions and search close to them. 

Further, M&W provided the visual position of other players and then allowed users to 

either directly copy that location or explore. However, users could use information about the 

position of others when forming their decision to explore. Users could explore close to other 

users, meaning that they were receiving a social signal and combining it with their exploration. 

For example, participants rarely directly copied each other, but instead explored similar locations 

based on social information. This popularity effect results in a mixture between pure copying and 

pure exploration that is outside of the theoretical model. It likely reduced the amount of pure 

copying that players used in the experiment. Such a strong reduction in direct, measured copying 
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would weaken the effects of the collaboration network manipulations and would make it more 

likely for the efficient network to perform well. I have conducted simulations that show that 

reductions in the amount of actual copying behavior could eliminate the differences between 

conditions. 

A more recent paper explores the effect of network structure on the ability of groups to 

solve a whodunit problem, such as playing the game of Clue (Shore et al., 2015). The problem 

was meant to have a higher degree of verisimilitude and involved gathering information about a 

terrorist plot and formulating theories based on how the plot occurred. The study found supportive 

evidence for the theorized inverse relationship between network efficiency and collective 

performance. This problem offers substantial improvements upon search across a two-

dimensional map. The multiple dimensions of the problem (Who would carry out the attack? What 

would be the target? Where would the attack take place? And when would it occur?) generalize to 

a broader space of realistic problems. Additionally, they produce dynamics where individuals are 

resistant to random global search and instead search incrementally, which is more realistic. 

However, this problem departs significantly from the theoretical NK model, as it offers no way to 

directly manipulate the problem complexity and instead only produces a large problem space 

without any guarantees about complexity. In fact, complexity in this area simply means the size of 

the problem space, which is a product of the size of the four dimensions (Who? What? Where? 

When?). This paper supports the theorized inverse relationship between network efficiency and 

group performance, but it is unclear whether whodunit problems can map onto an important 

domain of problems involving technological and scientific innovations. 

Taken together, the existing empirical results provide conflicting evidence about whether 

managers and policymakers should reduce the efficiency of their collaboration networks in order 

to increase collective performance. We currently do not know if taking such profound actions 

would be beneficial for structuring scientific or corporate collaboration networks. Before funding 

agencies incentivize different collaboration structures or corporate research divisions restructure 
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their organizations, it is important to know whether these effects exist and how large the effect 

sizes are when groups solve complex problems. 

Experimental Design 

Task 

To causally identify the relationship between network efficiency and collective performance, I 

developed a complex task that had several important properties: (1) maximum problem realism, 

which means that the task was a particular real-world complex problem that shared similar 

features to other complex problems; (2) maximum subject realism, which means that the subjects 

we recruited should be the people who actually work on these complex problems in the real 

world, not just convenience samples; and (3) maximum accuracy of data collection, which means 

that we could capture as much behavioral data as possible without relying on any self-report 

measures. 

To satisfy these three criteria, the experiment consisted of a Data Science Competition 

where experts in statistics were recruited from the World Wide Web to solve a complex problem. 

Statistics and data science competitions have become increasingly popular online, where 

individuals compete to build the best statistical forecast model that makes the most accurate 

predictions (criteria 1). For example, one of the data problems in our study required subjects to 

predict sales volumes at a retailer as a function of economic variables. I built an online platform 

that allowed us to recruit interested and motivated individuals online who have quantitative skills 

(criteria 2). The structure of the competition was round-based, which allowed us to unobtrusively 

measure subjects’ decisions to either explore new solutions or exploit existing ones over 15 

distinct rounds in the competition (criteria 3). 

Subjects interacted with the competition using a custom-built platform that displayed their 

model performance on each round and allowed them to revise their solution (Fig. 2). The 

competition lasted for 15 rounds. In each round, individuals decided either to explore or exploit.  
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Exploration meant changing their solution by adding or removing a single variable from their 

statistical model. To search incrementally for a better solution, individuals could select a single 

variable to add or remove from their current model (Cohen & Levinthal, 1990; March, 1991; 

March & Simon, 1958; Nelson & Winter, 1982; Stuart & Podolny, 1996). Exploiting meant coping 

an existing solution from a network neighbor. Additionally, individuals could maintain their current 

solution. To copy a better solution, individuals saw the performance scores of their best network 

neighbors, and could choose to adopt a better solution. 

 

 

Fig. 2. Screenshot of the experimental interface. To explore their model, individuals could 

interact with their current solution by changing a variable in the top left panel. To exploit 

neighboring solutions, participants could select a better model from their network neighbor in the 

top right panel. When individuals had a made a selection for that round, they pressed the 

“Submit” button, and then proceeded to the next round. The bottom panel contained plotting 

information about their current model solution. 
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Once a participant submitted a decision for the round, they received immediate feedback 

on the performance of their new solution. If the solution was better, they adopted it, and 

proceeded to the next round, and if the solution was worse, they were returned to their previous 

solution. Each round lasted for 1 minute. Individuals never knew if they had the best possible 

solution, and they were incentivized to find better solutions each round, and received financial 

rewards based on the quality of their final solution. 

Models were scored based on the Bayesian Information Criterion (BIC). The BIC is a 

good asymptotic measure of out-of-sample model performance and performs similarly to cross-

validation predictive accuracy (Shao, 1997), so it captures the ability of the model to predict 

unseen data. The BIC rewards constructing sparse models that explain sufficient variance in the 

dependent variable. 

The forecasting problems were sufficiently complex, and involved subjects solving a high-

dimensional combinatorial optimization problem. Complex problems have high interdependency 

among the components of the solutions such that changing one dimension affects the fitness 

contribution from another dimension (Kauffman, 1993; Kauffman et al., 2000; Kauffman & 

Macready, 1995). Such synergies among the components produce many local maxima in the 

problem space so that incremental, local search can miss the global maximum. Performance 

metrics such as BIC penalize variables that do not provide additional information. In a simple 

landscape, where variables do not interact, each predictor variable contributes statistically 

independent information that improves the quality of the model. When a variable explains no 

variance in the predictor variable, its contribution is clear because the BIC will decline. In contrast, 

in a complex landscape, there are correlations among the variables, which is common in real 

world data sets. Variables often contain redundant information that is already captured by another 

variables. As a result, adding redundant information to the model will result in a worse BIC score 

and worse out-of-sample performance because the model is effectively being fit to noise that is 

idiosyncratic to the training data set. 
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To ensure that the data science problems in this study had this complex structure, I 

adopted existing data sets and increased the correlations among the variables. The procedure 

works by holding fixed the amount of variation in the dependent variable that is explained by all 

the predictor variables, but then shuffling that predictive variation among the predictor variables. 

By altering the correlation among the X’s, we can shift from a simple to a complex problem. In a 

complex problem, the contribution to the fitness of one variable depends on whether another 

variable is already included in the model or not. This interdependency among the components 

produces a complex fitness landscape. 

To ensure that the results did not depend upon a single problem, I used three data sets 

to generate complex data science problems. The data problems contained numerous locally 

optimal but globally suboptimal solutions, ranging from 9 to 16 local optima, and the number of 

possible solutions ranged from 2,048 to 16,384. 

Recruitment 

 In order to recruit subject who were specialized in statistics and quantitative methods, I 

contacted individuals in quantitative departments of several universities, and advertised in several 

online forums that are frequented by individuals with interest in statistics and data science. 

Individuals had taken a mean of 3 (sd=3.6) upper-level statistics courses. 

Experimental Treatments 

 The structure of the collaboration network determined which solutions an individual could 

see and choose to copy. Subjects were randomly assigned to one of two collaboration networks 

(Fig. 3). In the efficient network, the structure was a fully connected network, which has the 

minimum possible average path length (L = 1). In the inefficient network, the structure was a ring 

lattice, where each individual was connected to their nearest four neighbors, which has a larger 

average path length (L = 1.67 for N = 10, and L = 2.89 for N = 20). In total, 14 independent 

networks were run, with seven matched pair trials. In the first six trials, populations of size N = 10 

were used in each condition, and in the final trial, the population sizes were increased to N = 20. 
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In total, there were 160 unique participants in the study. To make each group in a trial as similar 

as possible, each participant was given a random solution that was matched with an identical 

initial solution in the other network within a given trial. 

 

 

Fig. 3. Network structures in the experiment. Each experimental trial consisted of two 

networks, one efficient (PL = 1), and one inefficient (PL=1.67 or 2.89). In each of the seven trials, 

subjects were randomly assigned to one network condition, and then randomly assigned to a 

single node in the network. On the initial round of each trial, subjects received a random starting 

solution. On subsequent rounds, subjects saw the performance of their immediate network 

contacts and could copy these solutions. In a single trial, random initial solutions were matched 

across conditions, and faced the same data science problem. 

 

 Participants in the study were shown an identical user interface in both experimental 

conditions. Features of the social network, such as the average path length and the size of the 

population, were unobservable to participants. More generally, every aspect of the participants’ 

experience was equivalent across experimental conditions. The only difference was the structure 

of the social networks. Thus, any differences in solution quality may be attributed to the effects of 

network efficiency on the process of collective innovation. 



53 
 

Measures 

Diversity 

 Group-level solution diversity was measured in two ways. The first considered the 

number of unique solutions. Several different units of time were considered, including each round 

as well as cumulatively across the entire experiment. The second measure attempted to quantify 

the magnitude of diversity beyond a simple count of the number of unique solutions. The 

Hamming distance is defined as the number of differences in the elements of two strings. We 

took the average Hamming distance of a group’s solutions, comparing each individual to every 

other individual and then averaging across the entire group.  

Diffusion and Convergence Speed 

 Diffusion speed was measured as the fraction of individuals who adopted the best 

solution on the rounds following its discovery by a member of that group. The convergence speed 

measured the number of rounds until an individual adopted the solution that was best in that 

network.  

Rate of Exploration 

 On each round, individuals could either choose to explore by submitting a new solution, 

copy by selecting another participant’s solution, or maintain their current solution. This mutually 

exclusive division between exploration and exploitation reflects the way that these problems have 

been conceptualized in theoretical and empirical research (Lazer & Friedman, 2007; March, 

1991; Mason & Watts, 2012; Shore et al., 2015). Explorations were registered within the 

database when individuals selected to add or remove a model component and pressed the 

submit button. The rate of exploration simply measured the proportion of all submissions that 

involved a decision to revise an existing solution. 
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Performance 

Performance was measured in two ways to capture different utility functions that groups might 

have. The maximum performance captured the best solution that was found in each group. This 

metric is of interested in group-problem solving situations where an organization will only 

implement a single solution, such as among a team of engineers designing a new product. In 

contrast, the average performance took the arithmetic mean across all the individual solutions 

within a group. This metric is of interest when the utility function of a group depends upon all 

members, such as among a team of salespeople who have different strategies for pursuing leads 

and who ultimately generate the total sales revenue for a company. 

The performance of each model was measured in terms of its Bayesian Information 

Criterion (BIC), which is also known as the Schwarz Criterion (Schwarz, 1978). The BIC is a 

measure of a model’s out of sample performance on a new data set that the model has not seen 

before. The BIC is a function both of the likelihood function and a regularization term that 

penalizes the addition of more parameters. The BIC is defined as: 

)ln(ˆln2 nkLBIC 
 

where L̂ is the maximum of the likelihood function of the model, k is the number of free 

parameters to be estimated, and n is the number of observations in the data set. In the case of a 

linear regression used in the experiment, k is the number of regressors including the intercept in 

the model. In short, the BIC metric rewards models that fit the data closely, while penalizing 

models that are overly complex and rely on many parameters. 

 To create a measure of group performance, I rescaled the BIC metric onto the range 

[0,1]. Since a lower BIC indicates that a model is a better fit to the data, I created the following 

measure of group performance by transforming the BIC as follows: 
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where the numerator is the difference between group i’s average starting solution on the initial 

round (t=0) and the maximum solution on the current round t, and the denominator is the 

difference between the group’s average starting solution and the best possible solution. To 

capture average group performance, I use the following formula: 
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where the numerator is the difference between the group’s average solution at t=0 and the 

group’s average at time t, and the denominator is the same. Both metrics range from 0 (the 

group’s initial solution) to 1 (the best possible solution), and indicate how much groups have 

improved from their initial starting solution. The average initial starting solution was fixed between 

conditions within a given trial because I matched the same starting solutions between conditions, 

and the best possible solution was fixed for each data set. As a result, this metric is directly 

comparable between conditions only if individuals started from the same solutions in both 

conditions and they used the same data problem. 

Statistical Analysis 

Analysis 

 The analysis is conducted at the group level because the network structure treatment is 

applied to the group as a whole. As a result, an individual-level analysis would violate 

assumptions about independence. At the individual-level, I had 160 unique subjects, but at the 

group level, I had only 14 groups. To ensure that the analysis was conservative with such a small 

sample size of groups, I used the nonparametric Wilcoxon signed rank test to make paired 

comparisons between trials, and the nonparametric Wilcoxon rank sum test to make comparisons 

between the distributions of both conditions. These tests were used to evaluate the hypotheses 

about solution diversity, speed of diffusion, rates of exploration, and performance. Additionally, a 
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Cox proportional hazards model was constructed to test how the time to convergence differed 

between conditions.   

Attrition 

 There was a low attrition rate for the entire experiment: 14% of subjects did not complete 

all rounds of the competition. There was no significant difference in attrition rates between 

conditions (P = 0.75, Wilcoxon signed-rank test). Data was used from individuals until they left the 

study, or finished the final round. 

Experimental Results 

 Our results provide support for the proposition that slow collaboration as manipulated 

through inefficiency in the network structure promotes collective diversity, which improves 

collective performance. 

Solution Diversity 

 Inefficient networks had more group-level diversity of solutions than efficient networks 

(Fig. 4). Inefficient networks explored a larger portion of the solution space, on average exploring 

36% more distinct solutions throughout the experiment compared to efficient networks (P = 0.03, 

Wilcoxon signed rank test) (Fig. 4A). On every round, inefficient networks had more unique 

solutions (Fig. 4B), averaging 72% more distinct solutions at each time point in inefficient 

networks compared to efficient networks (P < 0.001, Wilcoxon rank sum test). On average, 

inefficient networks were 55% more diverse in terms of the Hamming distance of the solutions 

offered as compared to efficient networks (p = 0.03 Wilcoxon signed rank test) (Fig. 4C). 

Individuals in inefficient networks had solutions that were on average 4.4 steps away from the 

other members of the group, as compared to only 2.8 changes in efficient networks. 



57 
 

 

Fig. 4. Diversity of solutions. Panel A: The average number of distinct solutions in efficient and 

inefficient networks across all trials. Panel B: Average number of distinct solutions on each round. 

Panel C: Average Hamming distance of all solutions in efficient and inefficient networks. Error 

bars show 1 standard error of the mean. 

 

Speed of Diffusion 

 Networks with higher path lengths were less efficient in terms of the speed of diffusing 

good solutions. When an individual found the solution that would be the best in the efficient 

network, an average of 76% of individuals adopted it on the following round (Fig. 5). In contrast, 

only an average of 32% of individuals adopted the best solution on the next round after its 

discovery in an inefficient network, which was significantly lower than efficient networks (P < 0.01, 

Wilcoxon rank sum test). 
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Fig. 5. Rate of solution diffusion. Mean proportion of individuals adopting the top solution on 

the round after it was found (t+1). Error bars show two standard errors of the mean. 

 

Speed of Convergence 

Efficient networks were more likely to converge prematurely on an early solution than inefficient 

networks. Figure 6 shows the Kaplan-Meier plot of the survival time until individuals adopted the 

solution that was best in their network. On average across all trials, the hazard of adopting the 

best solution was 83% higher in efficient networks as compared to inefficient networks (P < 0.01, 

Cox proportional hazards model), which indicates that individuals were quicker to adopt in 

efficient networks. 
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Fig. 6. Kaplan-Meier survival plot of the time until adoption of the top solution. Survival 

indicates an individual has not adopted the best solution. Efficient networks adopted their best 

solution earlier and more quickly than inefficient networks. 

 

Rate of Exploration 

In contrast to the significant differences in diffusion rates and speed of convergence, there were 

no difference in decisions to explore new solutions between conditions. Network structure did not 

affect the rate of exploration among subjects (P = 0.93, Wilcoxon signed rank test) (Fig. 7). This 

finding differs from previous studies that have found significant increases in exploration when 

teams were embedded in more efficient networks (Mason & Watts, 2012). 
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Fig. 7. Attempts to explore new solutions. The average fraction of plays that were attempts to 

explore a new solution are plotted for each network across all trials. Error bars are two standard 

errors of the mean. 

 

Performance 

 Inefficient networks led to better performance at the collective level. Inefficient networks 

discovered better top solutions than efficient networks in every trial (P = 0.02, Wilcoxon signed-

rank test) (Fig. 8). On average, inefficient networks found solutions that were 21% better than 

those discovered by efficient networks. Additionally, in three out of the seven trials, inefficient 

networks discovered the best possible solution, which was verified after an exhaustive search of 

the entire solution space. 
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Fig. 8. Difference in performance between inefficient and efficient networks. The difference 

between the maximum solution found by an individual in inefficient and efficient networks is 

plotted across all seven trials. Inefficient networks found better top solutions than efficient 

networks in all trials.  

 

Average Group Performance 

The results for the average group performance confirm the theoretical prediction that in the short-

term efficient networks will diffuse better solutions and perform better, but in the long-term, 

inefficient networks will find better solutions and improve the group’s average (Fig. 9). After the 

first round of the competition, inefficient networks had average solutions that were 30% worse 

than efficient networks (P < 0.05, Wilcoxon signed-rank). However, by the final round, every 

inefficient network had a better average solution than its efficient network pair. On average, 

inefficient networks generated mean solutions that were 17% higher than efficient networks by 

the end of the study (P = 0.02, Wilcoxon signed-rank). 
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Fig. 9. Average performance in efficient and inefficient networks across time. Lines 

represent the average performance across all seven trials for efficient (light) and inefficient (dark) 

networks. Average performance was initially higher within every efficient networks as compared 

to inefficient networks. However, by the study’s conclusion inefficient networks had a better 

average performance than efficient networks within each trial. 

 

Cumulative Performance of the Average 

 Investing in inefficient networks requires a tradeoff between the short-term, where 

average solutions are worse than efficient networks, and the long-term, where eventually better 

solutions are found and diffused to the entire population. To understand these tradeoffs, the 

cumulative performance of each group’s performance across all trials is plotted in Figure 10. In 

short time frames, inefficient networks have a large cost in comparison to efficient networks (Fig. 

10A). However, after round 13, inefficient networks have recovered this cost, and cumulatively 

outperform efficient networks, a trend that will continue indefinitely because the efficient networks 

have gotten stuck on a suboptimal solution. More striking is the results for top performance, 

where inefficient networks consistently offer better solutions for all time (Fig. 10B). 
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Fig. 10. Payoff to investing in inefficient networks relative to efficient networks. Panel A: 

Difference in cumulative average performance over time (inefficient minus efficient). Red line 

indicate times where it is better to invest in efficient networks, whereas black line indicates where 

the cumulative return is higher to inefficient networks. Panel B: Difference in top performance 

over time (inefficient minus efficient). 

 

Robustness to Non-Local Exploration 

To examine the sensitivity of the results to design choices, I conducted a robustness experiment 

with N=10 individuals in an inefficient and efficient network. The main experiment allowed 

individuals to make a single revision each round (i.e., incremental search). This design captured 

realistic search processes by individuals and organizations in high-risk situations, where there are 

strong incentives to add incrementally to a solution (Cohen & Levinthal, 1990; March, 1991; 

March & Simon, 1958; Nelson & Winter, 1982; Stuart & Podolny, 1996). To examine if the results 
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are robust to this design constraint, I permitted individuals to make as many changes to their 

model on each round before submitting their new solution and receiving feedback. Allowing this 

non-incremental search might affect the results by preventing efficient networks from getting 

stuck on suboptimal solutions because an individual could get lucky and find another peak even 

though the group had converged on an initial solution. 

I ran a single efficient network and allowed individual to make non-incremental searches, 

and compared the performance of this efficient network to the inefficient networks that were 

restricted to only incremental search. I expect that allowing non-incremental search will increase 

performance. The results show that allowing individuals to search non-incrementally did not 

substantively change the results in any way. The inefficient network still performed 11% better 

than the efficient network, and there were very little differences between the efficient network with 

incremental search and prior trials that allowed only non-incremental search. 

 

Fig. 11. Performance differences between conditions was robust to allowing non-

incremental search. 
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 At the individual level, participants did attempt to explore more widely when given the 

option to conduct non-incremental search. Across all attempts to explore, 38% of attempts 

involved non-incremental search. However, a majority of these attempts were unsuccessful, and 

individuals were more successful when they explored incrementally. When incremental 

exploration was used, individuals successfully found a better solution 19.4% of the time, in 

contrast to a success rate of only 9.8% for attempts to change more than one element of their 

solution. This result suggests that incremental exploration is both preferred by individuals, and 

also represents a more informed choice because the quality of the solution will likely be more 

similar to the current solution. 

Discussion of Experimental Results 

 Slowing down the rate of collaboration increased the performance of groups of 

statisticians and data scientists when they solved a complex problems. Inefficient networks with 

higher average path length restricted the diffusion of solutions, which led to more diversity. In 

contrast to previous empirical results, I find no evidence that efficient networks provide a benefit 

to collective performance (Mason & Watts, 2012). Instead, the results agree with previous 

theoretical (Lazer & Friedman, 2007) and empirical research (Mason et al., 2008) showing that 

slowing down collaboration can prevent groupthink and premature adoption of suboptimal 

solutions. 

 While previous research found higher rates of exploration in efficient networks as 

compared to inefficient networks (Mason & Watts, 2012), we find no differences between 

conditions in the rate of exploration. This difference can be explained because their design 

allowed for partial copying where individuals could explore close to the previous solutions that 

others had offered. Such social influence and popularity effects can profoundly alter the collective 

dynamics when searching across 2-dimensional landscapes, which can create particle swarm 

dynamics (Eberhart & Kennedy, 1995; Eberhart, Shi, & Kennedy, 2001). In contrast, this study 

assumed that individuals were either exploring or copying, and that these were categorically 



66 
 

distinct from one another, which is in line with previous research on the exploration–exploitation 

tradeoff (Lazer & Friedman, 2007; Shore et al., 2015). By not confounding the results with social 

influence and popularity, this study showed no difference in individual exploration across 

conditions. This is because the original theory actually predicts no difference in individual 

exploration on average across conditions for rates of exploration. 

Revised Model 

The experiment was able to confirm the theoretical model, which posits that increasing 

inefficiency in terms of network average path length increases a group’s solution quality when 

they are solving a complex problem. This has important implications for how managers establish 

ties among the members of an organization, such as the connections among members of a 

research and development arm of an organization (Kim & Park, 2009). However, there are many 

situations where managers cannot add or remove the ties in a network, such as when individuals 

have the ability to choose their own ties. Additionally, even if managers have the ability to rewire 

a network to maintain a desired collaborative inefficiency, these rewired networks can be fragile. 

The addition of a single long tie that spans the network can dramatically increase the 

collaborative efficiency of the network and undermine attempts to maintain inefficient 

collaboration as determined by high average path lengths (Watts & Strogatz, 1998). As a result, 

even though the effects in this study are substantively important, they may be difficult to 

practically implement as currently theorized. 

The theoretical literature has developed the idea that network slowness can be 

manipulated by the average path length of the network. Research has focused on undirected, 

unweighted graphs. Here, I develop the idea that “collaborative slowness” can be manipulated in 

other ways, namely weighted path length (e.g., communication costs) and temporal networks that 

delay communication and prevent premature convergence. 

The central idea is that longer average path lengths slow down collaboration. The insight 

that inefficiency or slowness might promote collective problem-solving immediately suggests two 
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alternative ways to improve collective problem-solving that draw on recent work in network 

science. First, communication costs, or the costs to form a tie or use an existing tie, can slow 

down collaboration (Goyal & Vega-Redondo, 2005; Jackson, 2005; Slikker & van den Nouweland, 

2000). These communication costs can be conceptualized as placing weights on each tie so that 

individuals pay different attention to each of their neighbors based on the strength of the network 

tie. By adjusting the weights on these ties, it is possible for a manager to tune the weighted 

average path length of a network. 

Second temporal networks can manipulate the speed and frequency of collaboration. 

Temporal or dynamic networks involve changes in the network structure over time (Gloor, 2005; 

Holme & Saramäki, 2012; Juszczyszyn, Musial, Kazienko, & Gabrys, 2012). Networks that 

dynamically rewire over time, perhaps from influence by managers, offer the possibility of fine-

tuning the collaboration structure to account for the unfolding process of collective exploration 

over time. In initial discovery phases, groups might collaborate less frequently to increase the 

diversity of solutions. However, later in the process, the network structure might be made more 

efficient so that the best solutions are rapidly diffused to the population. 

In this section, I explore theoretically how these two manipulations of collective efficiency affect 

the dynamics of group problem-solving. 

Simulation Results 

To examine the effect of these additional manipulations of collaborative slowness, I conduct a 

series of agent-based models using the same basic model as L&F (2007). The simulations then 

examine how variations in collaboration structure affect the group’s performance. Figure 12, 

Panel A replicates the basic finding from L&F: making a network more inefficient by increasing its 

path length leads to better collective performance in the long run. The most efficient network (red) 

performs worse in the long-run in comparison to the least efficient network (blue). 
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Fig. 12. The effects of network efficiency on collective performance. Panel A replicates L&F 

by considering the probability of rewiring ring lattices using the small worlds model (Watts & 

Strogatz, 1998). Probabilities include p = 0.01, 0.1, and 0.3, which are equivalent to average path 

lengths of 8.6, 4.2, and 3.6. As path length increases, the average performance increases. Panel 

B examines communication costs for copying a neighbor’s solution in a fully connected network. 

As costs increase, the network performance increases. Panel C examines the timing of meetings 

in a fully connected network. As the meeting time is delayed from round 1, to 5, and to 10, 

performance increases. Within a single replication of each simulation, agents begin at the same 

locations, thus allowing for within-subjects confidence intervals, which are very small in the 

figures. All panels use 1,000 simulations with 100 agents in each network. 

 

To examine how performance is affected by communication costs, I revise the basic 

model in the following way. Instead of always copying a neighbor’s solution if it is better than their 

own, agents must pay a tax for copying another solution. Agents will only copy if the neighbor’s 

solution minus a tax is better than their current solution. This manipulation can also be 

understood as imposing switching costs for adopting a radically new solution. In contrast to the 

intuition that communication costs might harm a collective’s performance, the simulations in 

Figure 12, Panel B show that as communication costs increase, groups perform better in the long 

run. Networks with the most efficient communication (red) perform worse than networks with 

higher communication costs (blue). The intuition is that these costs will encourage agents to 
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search more widely, but when a far better solution is found, it will still be able to diffuse across the 

network. 

The simulations for temporal networks alter the baseline model by considering the effect 

of meeting time on performance (Figure 12, Panel C). Meetings are defined as a fully connected 

network. On times where there are no meetings, agents search in isolation. The effect of 

meetings is consistently large for all times, as it improves average performance. However, the 

largest absolute performance comes from delaying the meeting time (blue) as opposed to 

meeting early in the design process (red). Each additional round that a meeting is delayed 

increases the likelihood that a superior solution is found. 

Discussion of Simulation Results 

Collectively, these theoretical models expand the scope of the theory involving collective problem 

solving by examining alternative mechanisms that slow down a group’s exploitation of known 

solutions. In addition to the theoretical results, these findings have important policy benefits. For 

example, maintaining a network structure with a high path length might be difficult for a manager 

or policymaker, especially with decentralized agents. When a network with long path length, such 

as a ring lattice, adds only a few random ties, its path length rapidly diminishes. In other words, if 

even a few individuals within an organization build long ties, the benefit from high path length can 

be rapidly erased. Maintaining this high path length can be a difficult problem that requires 

repeated, costly intervention on the part of managers and policymakers. While managers and 

policymakers may have little control over the network structure, they often do have control over 

communication costs or the timing of meetings and conferences. In what follows, I expand on the 

policy actions that might arise from this research. 

 Research into communication costs has revealed several ways that they can be used to 

increase performance in organizations. One proposals to address communication overload has 

been to increase the cost of email, which would reduce collaborative efficiency and encourage 

individuals to only share information that is extremely important (Newport, 2016; “To Make Email 
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Easier We Must Make it Harder - Study Hacks - Cal Newport,” n.d.). Another way that 

communication costs might be harnessed is through the geographic costs associated with 

physical distance. Managers might physically position research divisions at geographically distant 

regions to make it more costly in terms of time and effort for individuals to communicate, while still 

allowing these ties to exist (Benner & Tushman, 2003; O’Reilly & Tushman, 2004). Additionally, 

corporate trends toward creating virtual teams that are geographically dispersed, which has 

traditionally been seen as a problem, may actually have the benefit of increasing the costs of 

collaboration and thus lowering collaborative efficiency (Maznevski & Chudoba, 2000). Finally, 

organizations might use desk and office layouts to structure more effective collaborate 

environments so that it would be more difficult for some individuals to communicate, using 

physical distance as a cost on tie maintenance (Malone, 1983).  

 Insights into temporal networks could be used by organizations to decrease collaborative 

efficiency and thus increase collective innovation. Managers often face an important dilemma in 

structuring meetings. Should teams of engineers meet early and discuss initial solutions to their 

problems, or should they schedule meetings later after each individual has had a chance to 

explore the problem independently? Initial brainstorming sessions might lead to early 

convergence on suboptimal solutions, whereas delaying collaboration might result in wider 

individual search. Research on groupthink, production blocking, and the common knowledge 

effect has indicated that slowing down collaboration in problem-solving groups might prevent a 

premature consensus on a suboptimal solution (Diehl & Stroebe, 1987, 1991; Janis, 1972, 1982). 

Additionally, corporate boards need to make incredibly complex decisions about an organization’s 

future, and reducing the frequency of board meetings can have a strong effect on increasing firm 

value (Vafeas, 1999). Finally, increasing research has focused on the declines in job satisfaction 

that result from numerous meetings (Rogelberg, Leach, Warr, & Burnfield, 2006). If such research 

is incorporated into management decisions, it could have the effect of reducing the frequency of 

meetings, which could slow down collaboration, and thus increase collective performance on 

complex problems. 
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Discussion 

 Experimental and theoretical results confirm the central idea that network slowness 

increases collective performance by increasing a group’s solution diversity. Simulations on 

varying the group’s initial diversity show a clear increase in performance to having more diversity 

because such groups will be more likely to avoid settling on premature suboptimal solutions, and 

they will be more likely to search a wider portion of the solution space. Groups that were more 

diverse were able to find better average solutions and better top solutions. 

Diversity is frequently recommended as an important method for building competitive and creative 

teams (Page, 2007), so the results of this study have a familiar resonance. However, the 

mechanism as to why diversity is important here is different. In Hong and Page (Hong & Page, 

2004), diversity is useful because different problem-solving approaches can allow groups to 

remain robust to different problems. In this study, diversity has a temporal element, where 

premature convergence of the group onto a small subset of solutions prevents them from 

searching more widely in the solution space. 

 While the experimental control in this study allowed us to test the effects of network 

structure on how groups solve a complex problem, we had to restrict our study to a single 

problem in statistics, namely variable selection in a complex regression. There might be elements 

of this problem that do not generalize to other complex problems. For example, our interface gave 

individuals suggestive variables that might improve their model if they decided to explore. This 

feature captures some elements of real-world problem solving where experts have an indication 

about which way to improve next. However, many complex problems are highly uncertain and 

individuals may have no prior information about which direction would be best to explore. The 

problem was chosen in part because its structure (i.e., a high-dimensional optimization problem 

with high levels of interdependency) matches many real-world problems in science, technology, 

and design (Kauffman et al., 2000; Kauffman & Macready, 1995). In order to ensure the 

generalizability of these findings, it may be important to test these results in other problem 

domains. 
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 A central assumption of this project was that individuals were working in parallel, which 

means that each individual was maximizing their own private utility function by submitting a 

solution, receiving feedback from the environment, and deciding to collaborate with others. There 

are many collective problems where individuals are not working in parallel, but rather in tandem. 

Examples include engineering problems where each individual works on a separate aspect of the 

problem, or web site design where each team is responsible for a different part of the page. 

Understanding how to structure collaboration for large, distributed teams when there is a 

significant amount of division of labor is an important area for future research. 

 The results in this study reveal the dangers inherent in over-connectedness. While there 

have been many benefits from increasing connectivity historically (Gertner, 2012), the theory 

presented here indicates that efficient networks will improve performance only on simple 

problems. Instead, on the most complex problems that we face, this trend toward increased 

connectivity will harm our performance. Finding ways to break down collaboration, either by 

altering the communication network, making communication more costly, or delaying the time of 

collaboration, may increase the performance of teams in engineering, design, business, and 

research. 
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