
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

The Role Of Lnk Adaptor Protein In
Hematopoietic Stem Cell Genome Stability And
Self-Renewal
Joanna Balcerek
University of Pennsylvania, joannabk@mail.med.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Cell Biology Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2177
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Balcerek, Joanna, "The Role Of Lnk Adaptor Protein In Hematopoietic Stem Cell Genome Stability And Self-Renewal" (2017).
Publicly Accessible Penn Dissertations. 2177.
https://repository.upenn.edu/edissertations/2177

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=repository.upenn.edu%2Fedissertations%2F2177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2177?utm_source=repository.upenn.edu%2Fedissertations%2F2177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2177
mailto:repository@pobox.upenn.edu


The Role Of Lnk Adaptor Protein In Hematopoietic Stem Cell Genome
Stability And Self-Renewal

Abstract
Hematopoietic stem cells (HSCs) are rare cells that reside in bone marrow. HSCs function to give rise to all
blood cells through proliferation and differentiation, but also to HSCs in a tightly regulated process known as
self-renewal. It is for these abilities that stem cells stand out from progenitors and other short-lived cells and
which allows them to last a lifetime. Self-renewal remains mechanistically enigmatic but central to the biology
and long lifespan of HSCs. Because HSCs are so long-lived they face numerous genomic insults and therefore
mechanisms of genome stability are also central to HSC function throughout life.

This thesis examines the role of an adaptor protein known as LNK (SH2B3), which negatively regulates a
central cytokine signaling axis in HSCs, in regulating HSC self-renewal and genome stability. HSCs in Lnk-/-
mice are expanded, and endowed with enhanced proliferative and self-renewal capabilities. Given this
superiority, this thesis first investigates the impact of LNK deficiency in context of a bone marrow failure
syndrome, Fanconi Anemia (FA), where HSCs accumulate fatal levels of genomic insults and cannot function.
Superimposed on the deletion of a central gene in FA, FANCD2, Lnk deficiency rescues HSC function
through restoring genome stability at sites of stress encountered during DNA duplication.

Second, using a model that is capable of tracking HSC divisions in vivo, this thesis investigates the in vivo self-
renewal dynamics of Lnk deficient HSCs. On a population level, HSCs exist along a continuum of states
between fully functional HSCs and progenitors, and LNK deficiency tips the balance towards HSCs. This is a
cell-intrinsic process, and may be regulated by gene expression-dependent and –independent functions of
LNK.

Taken together, the data presented in this thesis describes a novel role for cytokine signaling in HSC genome
stability, and deepens our understanding of how LNK influences self-renewal and genome stability. Hopefully,
these findings can contribute to the foundation of work that may result in the development of novel
therapeutic approaches to treat bone marrow failure and genome instability in HSCs.
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ABSTRACT 
 

THE ROLE OF LNK ADAPTOR PROTEIN IN HEMATOPOIETIC STEM CELL GENOME 

STABILITY AND SELF-RENEWAL 

Joanna Balcerek 

Wei Tong 

 

Hematopoietic	stem	cells	(HSCs)	are	rare	cells	that	reside	in	bone	marrow.	HSCs	function	to	give	

rise	to	all	blood	cells	through	proliferation	and	differentiation,	but	also	to	HSCs	in	a	tightly	

regulated	process	known	as	self-renewal.	It	is	for	these	abilities	that	stem	cells	stand	out	from	

progenitors	and	other	short-lived	cells	and	which	allows	them	to	last	a	lifetime.	Self-renewal	

remains	mechanistically	enigmatic	but	central	to	the	biology	and	long	lifespan	of	HSCs.	Because	

HSCs	are	so	long-lived	they	face	numerous	genomic	insults	and	therefore	mechanisms	of	

genome	stability	are	also	central	to	HSC	function	throughout	life.	

	

This	thesis	examines	the	role	of	an	adaptor	protein	known	as	LNK	(SH2B3),	which	negatively	

regulates	a	central	cytokine	signaling	axis	in	HSCs,	in	regulating	HSC	self-renewal	and	genome	

stability.	HSCs	in	Lnk-/-	mice	are	expanded,	and	endowed	with	enhanced	proliferative	and	self-

renewal	capabilities.	Given	this	superiority,	this	thesis	first	investigates	the	impact	of	LNK	

deficiency	in	context	of	a	bone	marrow	failure	syndrome,	Fanconi	Anemia	(FA),	where	HSCs	

accumulate	fatal	levels	of	genomic	insults	and	cannot	function.	Superimposed	on	the	deletion	of	

a	central	gene	in	FA,	FANCD2,	Lnk	deficiency	rescues	HSC	function	through	restoring	genome	

stability	at	sites	of	stress	encountered	during	DNA	duplication.	



	

vi	
	

	

Second,	using	a	model	that	is	capable	of	tracking	HSC	divisions	in	vivo,	this	thesis	investigates	

the	in	vivo	self-renewal	dynamics	of	Lnk	deficient	HSCs.	On	a	population	level,	HSCs	exist	along	a	

continuum	of	states	between	fully	functional	HSCs	and	progenitors,	and	LNK	deficiency	tips	the	

balance	towards	HSCs.	This	is	a	cell-intrinsic	process,	and	may	be	regulated	by	gene	expression-

dependent	and	–independent	functions	of	LNK.	

	

Taken	together,	the	data	presented	in	this	thesis	describes	a	novel	role	for	cytokine	signaling	in	

HSC	genome	stability,	and	deepens	our	understanding	of	how	LNK	influences	self-renewal	and	

genome	stability.	Hopefully,	these	findings	can	contribute	to	the	foundation	of	work	that	may	

result	in	the	development	of	novel	therapeutic	approaches	to	treat	bone	marrow	failure	and	

genome	instability	in	HSCs.	
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CHAPTER 1  

Introduction 
	

The hematopoietic system is a highly proliferative organ, producing and replacing billions 

of hematopoietic cells every day. This is sustained through production of hematopoietic 

cells from a population of hematopoietic stem cells (HSCs). These are rare cells with the 

two defining properties: 1) being able to repopulate an entire hematopoietic system 

(multi-lineage repopulation capacity), and 2) being able to produce additional HSCs 

(self-renewal) (Fig 1.1). HSCs are long-lived and therefore how HSCs handle genotoxic 

insults is especially important to their longevity and health. This thesis focuses on 

understanding the role of cytokine signaling in genome protection through a model of 

augmented cytokine signaling. 

 

1.1 Hematopoietic stem cells 

1.1.1 Functional Identification of HSCs 
 

In order to study HSCs, it is essential to identify them. This has not been a trivial 

undertaking. HSCs reside primarily in the bone marrow, in specialized niches near slow-

flowing blood vessels with low oxygenation 1. HSCs were first described functionally, 

through the successful reconstitution of a recipient by transplant of donor bone marrow 

(BMT) 2 3 4. This revelation led to a field of study dedicated to unraveling the inner 

workings of HSCs and their roles in normal and malignant hematopoiesis.  
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The gold standard for functional identification of HSCs remains the BMT where an HSC 

is defined as a single cell capable of reconstituting a conditioned recipient indefinitely 5. 

To test for the total number of functional HSCs, total bone marrow is harvested from 

donors and injected into lethally irradiated recipients. HSC function is measured in the 

peripheral blood monthly for four months. Generally, HSC activity is scored if there is 

reconstitution above 1% across all lineages for the entire four month period 6 7 8 9. An 

expected ratio of lymphoid to myeloid production is produced based on whether the HSC 

is lineage-biased or balanced 10.  Several doses are tested and by this method, it is 

possible to quantitate the number of functional HSCs in bone marrow. Similarly, 

reconstitution by BMT is used to test whether HSCs are present in a specific population 

of interest.  

 

Transplantation is also used to directly test the second key aspect of HSC identity: self-

renewal. At the end of the first BMT, phenotypic HSC – assessed by surface marker 

profiles that have been correlated with functional HSCs – are enumerated in the BM. 

This provides a first-approximation estimate of the extent to which HSCs self-renewed 

over the course of the transplant. However, self-renewal is rigorously assessed by 

secondary transplant of BM from the recipients of the primary BMT 11 12 13 14.  

 

Self-renewal ensures a continued HSC pool throughout the lifespan of the organism. 

HSC self-renewal has been described at the moment of cell division as an inheritance of 

HSC fate in one or both daughter cells through asymmetric or symmetric division, 

respectively 15 16. However, HSCs are found to undergo division rarely, existing in a state 
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of quiescence 17 18 19. During hematopoietic depletion or immune challenge, HSCs 

respond to the stress by proliferating and differentiating to produce hematopoietic 

effector cells and then return to quiescence 20,21. However, the proliferative capacity of 

HSCs is also limited and prolonged stress results in bone marrow failure 22-24. Together 

self-renewal and reconstitution capacity constitute the definition of functional HSCs. 

 

1.1.2 Phenotypic Identification of HSCs 
To study HSCs, it is necessary to prospectively identify and isolate them from the 

progenitors and stromal cells that also reside in the bone marrow. One way to do so has 

been based on determining the surface marker expression profile of cells with 

reconstitution capacity by flow cytometry. Mature lineage-specific cells are excluded by a 

combination of empirically-determined surface markers associated with each of the 

lineages and includes Ter-119 (red blood cells), Gr-1, Mac-1 (myeloid), CD3, CD4, 

CD8a (lymphoid), and CD19 and B221 B cells), which are collectively termed Lin 

markers. The remaining cells are enriched for HSC and progenitors 25,26 . This population 

is further enriched for HSCs by selecting for cells expressing c-kit and Sca-1 27,28 29 25. 

Further separation between short-term repopulating cells and long-term repopulating 

HSCs (LT-HSCs) has been achieved by addition of other surface markers: CD48-

CD150+ (SLAM LSK) 11,30 or CD34-Flk2- 5,31, ESAM 32,33, side-population 34 or most 

recently Sca1hiEPCRhi LSK 35. These surface marker schemes are capable of enriching 

HSCs to 1 in every 3 cells, or 1 in 2 cells, respectively.  
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Though these surface markers do enrich HSCs, there are several important caveats 

about phenotypic HSC markers. The first is that any given surface marker of an HSC 

may or may not contribute to HSC function. For example, c-kit or Sca-1 ablation 

negatively impacts HSC function 28,29. Second, because not all surface markers are 

coupled to HSC function, there is not a perfect correlation between surface markers and 

functional HSCs. For example, some cells marked by CD150+ within CD48-LSK, are not 

functional HSCs, while some CD150- are 36. In this way, there are several distinct and 

partially overlapping surface marker schemes that enrich HSCs, and none can 

encompass all HSCs. Finally, the expression level of surface markers also correlates 

with function. High cell surface expression of either Sca1 or CD150 is associated with 

functional HSCs 35,37, while high expression of c-kit is associated with short-term HSCs 

38,39. Together these caveats contribute to the difficulty of phenotypic isolation of HSCs. 

 

1.2 Cytokine signaling in HSCs 
	

	

1.2.1 Cytokines involved in HSC self-renewal 
	

HSCs are regulated through multiple cell- autonomous and –nonautonomous 

mechanisms. One crucial cell-autonomous mechanism is through cytokines. Cytokines 

are short hydrophilic peptides that are recognized by cognate receptors on the cell 

surface and trigger a series of signaling events inside the cell. In general, cytokines 

trigger HSC and progenitor survival, proliferation, differentiation, and lineage 

commitment. Two cytokines have been shown to be essential to the maintenance of 

HSCs: stem cell factor (SCF) and Thrombopoietin (TPO) 27-29,40-42. 
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This thesis focuses on the contribution of TPO signaling to HSC maintenance. TPO 

binds and signals through its cognate receptor (TPOR). TPOR lacks intrinsic kinase 

activity, and is associated with the tyrosine kinase JAK2. TPO/TPOR/JAK2 signaling is 

essential to HSC survival, proliferation, and self-renewal 43 44. Mice deficient for TPO or 

TPOR have a contracted HSC compartment, and these HSCs are severely functionally 

impaired in transplant assays 41,45-47 48. Furthermore, JAK2 deficiency is embryonic lethal 

49 50. Therefore TPO/TPOR/JAK2 is an important pathway in the study of HSC self-

renewal. 

 

1.3 Role of Lnk deficiency in HSCs 
	

LNK is the third member in the SH2 domain containing family of adaptor proteins. This 

family of proteins function in a variety of cell contexts to curb cytokine signaling 

specifically in glucose metabolism and immune cell activation {Devalliere:2011fl} 51,52. 

LNK is the main member of this family to be expressed in HSCs. In HSCs, one of the 

main targets of LNK is JAK2. LNK directly binds to and inhibits the activity of JAK2, and 

therefore negatively regulates TPO/TPOR/JAK2 signaling 53. Consequently LNK 

deficiency increases TPO mediated cytokine signaling in cells (Fig 1.2). 

 

1.3.1 Lnk deficient HSCs 
	

In Lnk deficient animals, Lnk deficiency results in a progressive HSC expansion, such 

that the HSC compartment is 10-fold expanded in young adult animals. Furthermore, 
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Lnk deficient HSCs provide enhanced reconstitution in recipients 54-56. Importantly, Lnk-/- 

HSCs show enhanced self-renewal in vivo and in vitro 8,56. However, in contrast to the 

deleterious consequences observed in mice with activating mutations in components of 

TPO/TPOR/JAK2 signaling such as JAK2 V617F 57 58 59 or constitutive AKT activity 60, 

Lnk deficiency does not lead to premature depletion of HSCs 61 nor to uncontrolled 

proliferation and neoplasm. In fact, the expanded HSC compartment in Lnk-/- mice is 

mostly quiescent 56 (Fig 1.3).  Taken together, Lnk deficient HSCs show many 

enhancements in HSC function, rendering Lnk as a potentially valuable therapeutic 

target in the expansion and transplantation of HSCs.  

 

Though the immediate signaling consequences of Lnk deficiency on TPO signaling have 

been described, much of the downstream consequences of the augmentation in TPO 

signaling on HSC biology remain elusive.  

 

1.4 Fanconi Anemia 
	

1.4.1 Fanconi Anemia clinical manifestations 
	

Fanconi Anemia (FA) is a hereditary set of disorders that affect genome stability in cells, 

first described over 85 years ago 62. Though there is a spectrum of physical 

deformations and extent to which FA may affect an individual, a feature that is nearly 

ubiquitous among FA patients is bone marrow failure (BMF) 63. FA is the most commonly 

inherited BMF syndrome, and is universally associated with a shortened life span 64. FA 

is caused by a bi-allelic mutation in one of 21 Fanconi genes that cooperate to maintain 
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genome integrity and repair and include tumor suppressors Brca1 and Brca2 64,65. To 

date there is no cure for FA. 

 

However, the BMF in FA is now treatable. Until recently, there was no treatment for BMF 

in FA patients because of the risk of inducing cancerous mutations in other tissues by 

chemotherapeutics that would clear space for donor bone marrow. Recent advances in 

recipient conditioning through gentler agents has enabled bone marrow transplant 

(BMT), which allows for lifespan extension in FA patients 66-68. Nevertheless, FA patients 

are at a higher risk for developing leukemia and epithelial cancers 69-71. 

 

1.4.2 FA proteins; FANCD2 
	

FA family proteins function in a variety of roles. The best-known role of FA proteins is in 

context of DNA crosslink repair, in which a damaging agent covalently crosslinks two 

DNA strands 72,73. This is known as an interstrand crosslink (ICL). Upon replication, this 

crosslink halts DNA replication and is then recognized by the core complex, which 

ubiquitinates and activates FANCD2 (D2) in the FANCD2-FANCI (I-D2) recognition 

complex 74. The activated I-D2 complex then recruits downstream effectors that process 

the crosslink to a double stranded break (Fig 1.4A). This in turn activates strand repair 

machinery to repair the DSB through homologous recombination and ultimately, the 

resumption of replication 75. In the absence of a FA protein, this network falls apart and 

repair is diverted to error-prone processes such as non-homologous end joining, while 

genome instability is concurrently dramatically elevated 76 77. 
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If crosslinks are not resolved they are lethal to cells. Unsurprisingly, FA cells have a high 

level of genome instability and a hallmark aberrant chromosomal profile in metaphase 

spreads 64 78, a higher rate of spontaneous apoptosis in culture, and are extremely 

sensitive to crosslinking agents, such as Mitomycin (MMC) 78 72. Collectively, these 

defects result in apoptosis, shrinking of the HSC pool and ultimately BMF.  

 

1.4.3 FANCD2 role in maintaining replication fork stability 
	

In addition to the ICL repair complex, FANCD2 is a central component of a second FA 

complex, which is less extensively characterized. In this role, FANCD2 is recruited to 

stalled replication forks – due to any cause 79  – and is indispensible in maintaining the 

integrity of the stalled replication fork, preventing new origin firing during stalling, and 

ultimately, in restarting stalled forks 80 79. Among binding other effectors, FANCD2 binds 

RAD51, a DNA binding protein essential for replication fork stability 81-84 (Fig 1.4B). 

Though it is unclear how FANCD2 and RAD51 interact, RAD51 overexpression is 

sufficient to overcome the fork replication associated defects in FancD2 deficient cells 80, 

underscoring both the essential role of RAD51 and the importance of further dissection 

into the regulation of this interaction. 

 

In FANCD2 deficient cells, upon stalling, replication forks are extensively resected by the 

nuclease MRE11 85, which also plays a role in normal fork restarting 86 87. This 

progresses to a double stranded break, which then must be repaired by an error prone 
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mechanism. Though not the most commonly mutated gene in FA, mutations in FANCD2 

are associated with the most severe FA and the earliest onset BMF in patients. 

Moreover, Fancd2 deficient cells have more genome instability in mice than FANCC or 

FANCG deletion 88.  Additionally, there is never complete absence of FANCD2 protein in 

patient cells 75, underscoring the importance of FANCD2 to cell survival. Additionally, in 

context of BRCA1 or BRCA2 deficiency, FANCD2 deletion dramatically increases 

genome instability 89,90. Undoubtedly, FANCD2 is central to genome stability and HSC 

survival. 

 

1.4.4 Mouse models of FA 
	

FA has been modeled in mice and there exists a few germline deleted lines of FA genes: 

Fanca 91, Fancc 92 93 94, Fancg 95 and FancD2 96-98. These mouse models recapitulate the 

cellular hallmarks associated with FA: sensitivity to MMC, high spontaneous rate of 

apoptosis, and genomic instability. Additionally, in FancD2-/- mice the HSC and 

progenitor compartment – LSK – is two-fold contracted relative to normal mice, and 

there is evidence of accelerated neoplasia 99,100. 

 

However, the hematological manifestations of FA are not observed in mice. FA mice do 

not develop spontaneous BMF, and rarely spontaneous leukemia. It is speculated that 

given the short lifespan of mice, their clean housing conditions and limited exposure to 

hematopoietic stressors such as infection, there is simply no opportunity to develop BMF 

spontaneously 63.  
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Which functions of FA proteins contribute to maintenance of BM is still an active area of 

investigation (Fig 1.5). For FANCD2, studies have revealed an important relationship: 

both roles of FANCD2 are known to contribute towards preventing BMF. Several studies 

have shown that the role of FANCD2 in crosslink repair is essential: FancD2-/- mice in 

combination with deletion of Aldehyde dehydrogenase 2 or Alcohol dehydrogenase 5 

(Aldh2, Adh5, respectively) do spontaneously develop BMF or leukemia 101 102 103 104. 

Equally importantly, prolonged stress hematopoiesis also induces BMF in FancD2-/- 

mice 105 106, especially chronic proliferation induced by the pro-inflammatory double 

stranded DNA mimic polyiosinic:polycytidylic acid (pI:pC) 105. Here, in contrast to 

crosslink- induced damage, BMF occurs as a result of proliferation-induced RNA 

damage in LT-HSCs, which are repeatedly forced into cell cycle by the injections and 

accrue damage over time.  

 

In this study, we have chosen to use FancD2-/- mice as a model for FA diseases 

because of its centrality to FA roles with demonstrated roles in maintaining HSC 

integrity.  

 

1.5 Scope and findings of this thesis 
	

The main purpose of this thesis is to explore how LNK deficiency confers enhanced 

stem cell properties to HSCs. This functionality is explored in two ways: first, by its role 
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in ameliorating hematopoietic defects in FANCD2 deficient mice, and second in its role 

in regulating self-renewal in HSCs. 

 

1.5.1 To define mechanism by which LNK deficiency rescues HSPC function in FA 
 

There have been a few reports suggesting that control over inflammatory signaling via 

TGFb attenuation 107 can ameliorate FA in mice. Notwithstanding, there are no curative 

interventions for FA. However, given the sufficiency of RAD51 overexpression in 

correcting FancD2-/- cells 80, it is clear that FANCD2 deficiency can be overcome 

molecularly.  

 

This thesis presents compelling evidence that Lnk deficiency ameliorates HSC function 

in FancD2-/- mice. Lnk deficiency does not impact crosslink repair in FancD2-/- cells, but 

does completely rescue instability in stalled replication forks. This process is JAK2 and 

TPOR –dependent, demonstrating for the first time a direct role for cytokine signaling in 

genome stability. 

 

1.5.2 To deepen the understanding by which Lnk deficiency modulates HSC self-
renewal 
	

Second, this thesis presents a model in which to study the enhanced HSC self-renewal 

conferred by LNK deficiency in vivo using the H2B-GFP mouse model. Phenotypic HSCs 

show stratification in HSC function based on division history in vivo, and therefore this 



	

12	
	

model provides a functional way to prospectively examine HSC function. Our in vivo and 

in vitro data show that a gradual cell-intrinsic change in HSCs takes place with each in 

vivo division.  Our genome wide expression profiling further corroborates these findings 

and offers insight into potential pathways that may be affected by LNK deficiency.   
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1.8 Figure Legends 
	

	

 

Figure 1.1: HSCs give rise to all hematopoietic cells and self-renew. HSCs sit atop the 

hematopoietic hierarchy, producing all hematopoietic cells. Arrows indicate cell identity 

transitions, which are not exhaustively drawn. Curved arrow indicates self-renewal. 

 

 

Figure 1.2: TPO signaling is enhanced in absence of LNK. (A) shows a model of TPO 

signaling in HSCs, and the inhibitory effect of LNK. Signal transduction is depicted by arrows. 

Phosphorylations are represented as red circles. (B) shows augmented signaling in Lnk deficient 

cells, as indicated by thickened arrows. Thickness is not directly proportional to signal 

augmentation.  

 

Figure 1.3: Several HSC properties are enhanced in Lnk deficient mice. 

 

Figure 1.4: FA proteins play two distinct roles in protecting genome stability. (A) shows the 

FA proteins involved in ICL repair. FA proteins are noted by the single-letter code of their 

complementation groups. (B) shows the FA proteins involved in stalled replication fork repair. The 

hovering traffic light indicates stalled replication fork conditions. 

 

Figure 1.5: Relative importance of the two roles of FA complex in HSC survival.
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2.1 Abstract 
	

Fanconi Anemia (FA) is an inherited bone marrow failure syndrome that arises due to 

mutations in a network of FA genes. FA proteins cooperate in a genome stability 

pathway that is essential for repair of DNA interstrand crosslinks (ICL) and tolerance of 

replication stress. Mutations in FA genes severely compromise hematopoietic stem cell 

(HSC) capacity, culminating in bone marrow failure and cancer predisposition. 

Importantly, interventions to mitigate HSC defects in FA do not exist, aside from 

allogeneic stem cell transplantation. Remarkably, we show here that loss of the negative 

regulator of JAK2 kinase, Lnk (Sh2b3), restores HSC function in Fancd2 knockout mice 

without further accelerating neoplastic transformation.  Lnk deficiency did not directly 

impact ICL repair but instead ameliorated replication stress by stabilizing replication 

forks in a manner dependent on cytokine-mediated JAK2 signaling. Lnk deficiency 

restored cell proliferation and survival of Fancd2-deficient HSCs to wildtype levels, while 

reducing replication stress and genomic instability associated with FA. These findings 

reveal coordination between extracellular/cytoplamic signals and processes that 

converge on replication associated genome maintenance. They also illuminate the 

diversity of mechanisms underlying the origin of bone marrow failure in FA patients and 

have implications for therapeutic strategies to treat FA associated bone marrow failure. 
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2.2 Introduction 
 

Hematopoietic stem cells (HSCs) are characterized by their ability to self-renew and 

differentiate into multilineage blood cells1,2. They are the source of all circulating blood 

cells throughout life, and disruption of HSC homeostasis is associated with a variety of 

human disorders1,2. Faithful maintenance of genome integrity in hematopoietic stem and 

progenitor cell (HSPC) populations is crucial to hematopoiesis and suppression of blood-

derived cancers. In humans, DNA repair deficiency, prominently illustrated by Fanconi 

Anemia (FA) syndromes, results in multiple congenital anomalies, progressive bone 

marrow failure (BMF) and cancer susceptibility3,4.  Mutations within nineteen genes have 

been identified as causative for FA. These genes cooperate in a genome stability 

network that is essential for repair of DNA interstrand crosslinks (ICLs) and relief of 

replication stress5. Cells derived from FA patients are hypersensitive to ICL-inducing 

agents such as Mitomycin C (MMC) and cisplatin, and exhibit DNA damage checkpoint 

and mitosis defects5. Unrepaired DNA damage in FA HSPCs increases genome 

instability and leukemia/cancer. The loss of HSPCs in FA is a consequence of multiple 

mechanisms, including impaired HSPC function, genotoxicity from the endogenous ICL 

agent, aldehydes6,7, physiological proliferative stress8, elevated p53 levels9, 

hypersensitivity to inflammatory cytokines10,11, oxidative stress12, and a hyperactive 

TGFbeta pathway13. However, how the FA pathway controls HSPC function remains 

enigmatic. Importantly, other than allogeneic transplantation, therapeutic interventions 

that mitigate the HSPC defects in FA do not exist.  
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The FA pathway involves monoubiquitination of FANCD2-FANCI proteins by the FA core 

complex in addition to a parallel or downstream function of homologous recombination 

(HR) proteins, including the breast cancer suppressor BRCA2 and BRCA114. In addition 

to their established roles in DNA repair of ICL-damage, the FA/BRCA protein network is 

also highly activated by replication stalling from depletion of nucleotide pools, such as 

from hydroxyurea (HU).  Work by Dr. Maria Jasin has uncovered a DNA repair-

independent requirement for FA proteins, including FANCD2 and BRCA1,2 in protecting 

stalled replication forks from degradation15,16.  These additional functions of the 

FA/BRCA proteins also play a critical role in preventing genomic instability and 

suppressing tumorigenesis 17. However, it remains to be determined if their roles in 

protecting stalled replication fork contribute to HSC attrition or BMF in FA.  

 

HSPC homeostasis is under the control of cytokine signaling pathways. One such 

important signaling axis is initiated by thrombopoietin (TPO) and its receptor, MPL that 

activates the JAK2 tyrosine kinase signaling pathway18. Tpo-/- and Mpl-/- mice exhibit 

marked reduction in HSC activity in supporting HSC self-renewal19,20. Patients with 

congenital amegakaryocytic thrombocytopenia (CAMT), many of whom have MPL loss-

of-function mutations, progress into BMF in childhood 21, indicating the crucial role of the 

TPO/MPL pathway in HSC homeostasis in humans.  

 

A critical negative regulator of the TPO/MPL pathway in HSCs is the adaptor protein 

LNK (or SH2B3)22-24. Lnk deficiency leads to a >10-fold increase in HSC numbers owing 

to superior HSC self-renewal23,25. Furthermore, Lnk deficiency strongly mitigates HSC 
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aging and delays HSC exhaustion in serial transplants26. We reported that LNK directly 

interacts with phosphorylated JAK2 in a TPO-dependent manner, and Lnk deficiency 

potentiates JAK2 activation and signaling in HSPCs22.  

 

In this work, we set out to test if Lnk deficiency ameliorates HSC defects associated with 

FA by generating mice double nullizygous to Fancd2 and Lnk. Remarkably, we found 

that loss of the adaptor protein Lnk restores HSC function in Fancd2-/- mice without 

accelerating neoplastic transformation. Our results indicated that LNK does not play an 

overt role in ICL repair. Instead, Lnk deficiency notably reduces spontaneous DNA 

damage and genome instability. Strikingly, we demonstrated that Lnk deficiency 

mitigates replication stress by stabilizing stalled replication forks, and that this effect is 

dependent upon cytokine-mediated JAK2 signaling. Hence, our studies shed light on the 

underlying origin of BMF in FA patients and have implications for new therapeutic 

strategies.  
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2.3 Methods and Materials 
Mice 

Fancd2-/- mice were generous provided by Dr. Alan D’Andrea (Dana Farber Cancer 

Institute) 27 and Lnk-/- mice by Dr. Tony Pawson 28 (Samuel Lunenfeld Research Institute, 

Canada), respectively. All mice were on C57/B6J background (CD45.2). Transplant 

competitor cells were from SJL (CD45.1) mice and transplant recipients were progeny of 

SJL x C57/B6J (F1). Both sexes mice of age 2-6 months old were used in the studies. 

The protocol (#2016-7-781) for this work is approved by Institutional Animal Care and 

Use committee (IACUC) of Children’s Hospital of Philadelphia (CHOP).  

 

Genotyping 

Mice were genotyped by PCR of genomic DNA from tail snips of weanling mice. Tails 

were digested at 55°C overnight in buffer containing 100mM Tris pH 8.0, 5mM EDTA pH 

8.0, 0.2% SDS and 200mM NaCl. DNA was precipitated in propanol and washed in 70% 

EtOH and then resuspended in water. Mice were genotyped for Lnk (wild-type: 5’-

gtccgactctctggctatgtggta-3’, neo insertion: 5’- cgcatcgccttctatcgcct-3’, common: 5’- 

gaagaggagtccatgtcatagtcc-3’) or FancD2 (FancD2 2F: 5’-catgcatataggaacccgaagg-3’, 

FancD2 2R: 5’caggacctttggagaagcag-3’, V76F: 5’-cttgcaaaatggcgttacttaagc-3’). 

 

Antibodies  

Antibodies used for HSC FACS and sorting were: Lineage (biotin-conjugated anti-Gr-1 

(RB6-8C5), -Mac1 (M1/70), -B220 (RA3-6B2), -CD19 (eBio1D3), -Ter110 (TER-119), -
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CD5 (53-7.3), -CD4 (GK1.5), -CD8 (53-6.7)), -c-kit (2B8), -Sca1 (E13-161.7 or D7) -

CD48 (HM48-1), -CD150 (TC15-12F12.2), -CD34 (RAM34) and –Flk2 (A2F10.1). 

Peripheral blood was analyzed using anti-CD45.1 (A20), -CD45.2 (104), -CD19 

(eBio1D3), -CD3e (145-2C11), -Gr-1 (RB6-8C5), and –Mac1 (M1/70). Cell cycle was 

assessed by Ki67 (SolA15). FACS antibodies were purchased from eBioscience, BD 

Biosciences or BioLegend. BrdU analog CldU was detected by anti-BrdU (Abcam 

BU1/75) and AF488 goat anti rat (Life Tech), and IdU by anti-BrdU (BD B44) and AF568 

goat anti mouse (Life Tech). Full antibody information is listed in Supplementary Table 1. 

 

Flow Cytometry and Cell Sorting 

For peripheral blood analysis, 50µL of peripheral blood was collected by retro-orbital 

bleed in heparinized microcapillary tubes (Drummond 1-000-7500-HC/5). Red blood 

cells were lysed with ACK lysis buffer (0.8% ammonium Chloride, 10 µM EDTA, pH 7.5 

with sodium bicarbonate). Cells were stained for donor reconstitution (CD45.1, CD45.2) 

in myeloid (Gr-1, Mac1) or lymphoid (CD19, CD3) lineages. All peripheral blood data 

was acquired using BD Canto flow cytometer and FACS DiVa software. At least 20k live 

events were recorded for each sample. APC-Cy7-conjugated anti-CD45.1, Lineage 

(biotin-Ter-119, -Mac-1, -Gr-1, -CD4, -CD8α, -CD5, -CD19 and -B220), and the HSPC 

panel: -c-kit-APC, -Sca1-PE, -CD150-PE-Cy7, -CD48-FITC, followed by staining with 

streptavidin-PE-TexasRed.  Data for bone marrow analysis was collected on the BD 

Fortessa flow cytometer and FACS DiVa software. For HSPC subset analysis, CD45.1 

was omitted and anti- CD34, and –Flk2 antibodies were added to the FACS panel. All 

flow cytometry data was analyzed using FlowJo v8.7 for MAC. 
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For sorting, HSPCs were pre-enriched using a lineage depletion kit (Miltenyi, 130-090-

858) and magnetic separation column (Miltenyi, 130-042-401) following manufacturer’s 

instructions. Briefly, bone marrow from individual mice was resuspended in 150µL of 

2mM EDTA 0.5% BSA PBS pH 7.2 (depletion buffer) and 40µL of Lineage antibody 

cocktail. Cell were incubated at 4°C for 15 minutes, then washed in 10 mL of the 

depletion buffer. Cells were resuspended in 250µL depletion buffer and 70µL Biotin 

conjugated microbeads, and incubated and washed again. Cells were resuspended in 1 

mL depletion buffer and passed through a 30µm nylon mesh into the separation column. 

Columns were washed with 3x3mL depletion buffer. LT-HSCs (SLAM LSK) were stained 

with anti- c-kit, -Sca-1, -CD48, and -CD150 antibodies, as described above. 150 LT-

HSCs were sorted using a drop envelope of 1.25 using a BD Aria sorter into individual 

wells of a 96 well plate containing 100µL of StemSpan SFEM (STEMCELL 

Technologies, 09600) with 2% fetal bovine serum (FBS) (SAFC Biosciences, 12103C-

500mL). Competitor cells were added directly to each well in 50µL of PBS and then 

transplanted as described above. HSPCs (LSK) for in vitro assays were pre-enriched 

and sorted into the same media in 1.7mL tubes using the MoFlo Astrios EQ on the 

“purify” setting.  

 

Bone Marrow Transplant (BMT) 

Total bone marrow or sorted LT-HSCs (CD150+CD48-c-kit+Sca1+Lin-) from donor mice 

were mixed with 3x105 freshly isolated competitor (B6.SJL) cells and injected retro-

orbitally into lethally-irradiated (10Gy, split dose, Orthovoltage Precision X-Ray) F1 
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recipient mice. At 4, 8, 12 and 16 weeks post transplantation, peripheral blood of 

recipients was analyzed for donor reconstitution in myeloid, T- and B- lineages by flow 

cytometry. At 16 weeks post transplant, recipients were sacrificed and donor 

reconstitution in various HPSC compartments was analyzed using flow cytometry. BM 

cells from primary transplants were harvested and 2 million cells were injected into each 

secondary recipient. Tertiary transplants were similarly performed.  

 

pI:pC 

Mice were injected with 5 mg/kg pI:pC (InvivoGen) i.p. twice weekly for 4 weeks. On day 

28, BM cells were isolated and HSCs were quantified by FACS. One or two million total 

bone marrow from pI:pC treated mice was transplanted into each lethally-irradiated 

recipients. 

 

Colony Forming Assay 

Total BM or sorted LSK were plated onto M3434 semi-solid methylcellulose media 

(STEMCELL Technologies). Plates were seeded in triplicate and colonies were counted 

7 days after plating. For transient drug treatment, freshly sorted LSK were plated in 

Mitomycin C (MMC) (Sigma) as indicated for 4 hours, then washed and plated in M3434 

media and counted as described.  

 

Liquid culture of primary HSPCs and splenic B cells 
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Sorted LSK were cultured in 96 well plates containing 100µL StemSpan supplemented 

with 10% FBS and 1% penicillin/streptomycin (Life Technologies, 15140-122), 1% L-

glutamine (Life Technologies, 25030-081), 100µM β-mercaptoethanol (Sigma, M7522), 

10 ng/mL murine TPO (Peprotech Inc, 315-14), and 50 ng/mL murine SCF (Peprotech 

Inc, 250-03). Cells were seeded at a density of 100,000/mL in triplicate and maintained 

at less than 1 million/mL throughout culture by subculture into fresh media. Viable cells 

were counted using a Hemacytometer (Hausser Scientific, 1475) and viability dye 

Trypan Blue (STEMCELL technologies, 07050). Cell number was recorded at day 5, 7, 

and 14 of culture. For culture in MMC, cell culture media was supplemented with fresh 

MMC when cells were subcultured. 

 

Splenic B cells were cultured in 6 well plates containing 2.5mL RPMI (Gibco, 31800-022) 

supplemented with 10% calf serum (HyClone, SH30072.03), 1% penicillin/streptomycin, 

1% L-glutamine, 1% nonessential amino acids (Life Technologies, 11140-050), 1% 

sodium pyruvate (Life Technologies, 11360-070), 50 µM β-mercaptoethanol, 5 ng/mL 

murine IL-4 (Life Technologies, PMC0045), RP105 (BD Pharmingen, 552128), and 25 

µg/mL LPS (Sigma, L4391). 

 

Cell Cycle and Apoptosis assays 

Cell cycle analysis on proliferating cells in vitro was performed using a BrdU kit (BD 

Biosciences, 559619). Cells were exposed to BrdU for 30 minutes and BrdU 

incorporation was assessed according to manufacturer’s instructions. For analysis of 
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apoptosis, cells were incubated with anti-Annexin V antibody (Biolegend cat 556420) in 

Annexin V binding buffer (BD Biosciences, 556454) for 15 minutes. Cells were then 

stained for viability by incubation with 7-AAD (BD Biosciences, 559925). Both BrdU and 

AV staining data was acquired using a BD Canto flow cytometer and FACS DiVa 

software and analyzed using FlowJo v8.7 for MAC.  

 

Cell cycle analysis on HSPCs from BM was performed with freshly isolated HSPCs. Lin-

depleted BM cells were stained for HSPC markers, then fixed and permeabilized 

followed by staining with anti-Ki-67-APC antibodies. Cell cycle analysis is performed 

along with DAPI staining for DNA content and assessed on a BD Fortessa flow 

cytometer. 

 

Metaphase spreads 

Splenic B cells or LSK were cultured for 3 or 7 days respectively, and then treated with 

0.5 µM Nocodazole (Calbiochem, 487928) for three hours to arrest in metaphase. Cells 

were incubated in 75mM potassium chloride (Sigma P9541) at 37°C for 20 minutes to 

swell cell volume, and subsequently fixed with 3:1 methanol: acetic Acid for 10 minutes 

on ice. Metaphase spreads were then prepared by dropping cells onto methanol-washed 

positively charged slides (Globe Scientific Inc 3591W). Slides were stained with Giemsa 

stain and sealed. Images of 100-150 metaphase spreads from 4-6 individual animals 

were captured using 100x objective, and chromosomal breaks and radial chromosomes 

were visually counted using FIJI software. 
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DNA fiber assay 

DNA fiber assay was performed similarly to published protocols 17,29. Splenic B cells or 

sorted LSK were cultured for 3 days then replicating DNA was labeled by a 30 minute 

pulse with 50µM IdU (Sigma I7125-5G) followed by a 30 minute pulse with 250µM CldU 

(Sigma C6891-100MG). Cells were washed then treated with HU (Sigma H8627) (4mM 

for spleen B cells and 2mM for BM HSPCs) for three hours. Cells were counted, and 

resuspended to a concentration of 2.5x105/ mL in PBS, then mixed 1:1 with unlabeled 

cells. 2.5µL of the cell suspension was mixed with 7.5 µL of lysis buffer (200 mM 

TrisHCL pH 7.4, 50 mM EDTA, 0.5% SDS) directly on positively charged slides and 

incubated for eight minutes at room temperature. The slides were then tipped to 30° and 

dried. Slides were fixed in 3:1 methanol:acetic acid overnight, then rehydrated in PBS. 

DNA was denatured using 2.5M HCl for one hour at room temperature, followed by 

washes in PBS to renormalize pH. Slides were blocked in 2% BSA, 0.1% Tween 20 PBS 

for one hour, then incubated with primary and secondary antibody for 2.5 hours and one 

hour at room temperature, respectively. DNA fibers were captured using 60x objective 

on a Nikon Eclipse 80i fluorescent microscope and quantified using FIJI software. 

 

Statistical analysis  

For all cell culture and BMT experiments, two-tailed Student’s t-tests were performed. 

Graphs are presented as mean ± SEM. For metaphase analysis and DNA fiber labeling, 

statistical comparisons were made using one-tailed ANOVA and Tukey test in PRISM 

software. The P value of less than 0.05 will be considered statistically significant. 
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2.4 Results 
 

Lnk deficiency fully restores phenotypic HSCs in Fancd2-/- mice 

Mouse models of FA recapitulate cellular DNA repair defects and impaired HSPC 

function. Mice deficient for FancD2, a central component of the FA signaling pathway, 

are reported to have an ~50% reduction in HSPCs as indicated by Lineage-Kit+Sca1+ 

(LSK) cells27,30. However, the long-term (LT-) HSCs are only about 5% of the LSK 

fraction. To further pinpoint the defects in various HSPC compartments, we utilized a 

panel of cell surface markers to differentiate HSCs from multipotent progenitors (MPPs). 

Our studies reveal that Fancd2-/- mice on a pure C57/B6J background exhibit a 50% 

reduction in MPPs while the phenotypic HSCs are trending lower than wildtype (WT) 

(Fig. 1). Notably, loss of Lnk fully restored phenotypic HSCs in Fancd2-/- mice as defined 

by SLAM marker (CD150+CD48-LSK)31, or CD34-Flk2-LSK 32 markers, or the most 

stringent and current markers for LT-HSCs (CD150+CD48-CD34-Flk2-LSK)33,34 (Fig. 

1A-C, and Suppl. Fig. 1A). In fact, Fancd2-/-;Lnk-/- double mutant mice had more 

phenotypic HSCs that WT animals (Fig. 1A-C and Suppl. Fig. 1A). 

 

Lnk deficiency rescues the reconstitution defects in Fancd2-/- BM cells 

To assess if Lnk deficiency rescues the functional defects in Fancd2-/- BM cells, we 

transplanted a graded number of unfractionated BM cells into lethally-irradiated 

recipients. Fancd2-/- BM cells showed markedly compromised reconstitution in bone 

marrow transplantation (BMT) assays (Fig. 1D) consistent with previous reports, 
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although the phenotypes we observed on the pure B6 background is more severe than 

previous reports on mixed background 27,30. Strikingly, the reconstituting ability of 

Fancd2-/;-Lnk-/- BM cells was restored to WT levels (Fig. 1D). To test the self-renewal 

ability of HSCs, we performed serial BMTs. Lnk deficiency largely restored HSC self-

renewal in Fancd2-/- BM cells, albeit slightly inferior to WT cells (Fig. 1E-G and suppl. 

Fig, 1B). Fancd2-/- BM cells had near zero reconstitution in the transplants, underscoring 

the profound functional defects of FA cells as well as the significance of the rescue by 

Lnk deficiency. Of note, none of the serially transplanted mice developed leukemia. Nor 

did we observe any malignancy in cohorts of Fancd2-/-;Lnk-/- mice by 12 months of age 

(data not shown). 

 

Lnk deficiency restores HSC functions in Fancd2-/- mice 

Since Fancd2-/-;Lnk-/- double mutant mice have an increased phenotypic HSC number as 

assessed by cell surface markers, total BM transplants might reflect the number rather 

than the functions of HSCs. Thus, we purified HSCs through Fluorescence- activated 

cytometric sorting (FACS) and injected them into irradiated host animals. Our data 

showed that Fancd2-/- HSCs had a cell-intrinsic defect in reconstituting the hematopoietic 

system, while Lnk deficiency rescued the HSC functional defects associated with FA 

(Fig. 1H). 

 

Lnk deficiency does not restore HSC quiescence in Fancd2-/- mice  
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We reported previously that Lnk-/- HSCs are more quiescent22, which protects HSCs from 

regenerative stress. In contrast, FA-deficient HSPCs show decreased quiescence and 

compromised self-renewal 27,30. It is plausible that the rescued HSC compartment in 

double mullizygous mice simply reflects an accumulating quiescent HSC population. To 

address this possibility, we quantified in vivo cell cycle kinetics in HSPC subsets. We 

found that Lnk deficiency does not restore HSC quiescence in Fancd2-/- mice (Fig. 1I-J). 

Thus, the rescue of Fancd2-/- HSC homeostasis and activity is not due to protection of 

HSC quiescence. Rather, Fancd2-/-;Lnk-/- HSCs do proliferate. 

 

Lnk deficiency does not rescue MMC hypersensitivity in Fancd2-/- BM progenitors  

The hallmark of FA in humans is the hypersensitivity to ICL-inducing reagents. This 

molecular feature is recapitulated in all FA mouse models. To explore the mechanisms 

by which Lnk deficiency ameliorates HSPC defects associated with FA, we first 

examined the MMC sensitivity of BM progenitor cells. Using both liquid culture growth 

assay and clonogenic survival assays, we found that both Fancd2-/-Lnk-/- and Fancd2-/- 

BM progenitors are strongly sensitive to MMC in comparison to WT progenitors (Fig. 2). 

Lnk-/- single KO BM cells show similar MMC sensitivity to that of WT (data not shown). 

Thus, Lnk does not appear to play an overt role in ICL repair. 

 

Lnk deficiency rescues ex vivo growth and restores genome stability of Fancd2-/- 

progenitors 
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BM progenitors from BMF syndromes show growth retardation even in the absence of 

DNA damage-inducing reagents 35. Thus, we subjected BM progenitor cells from 

Fancd2-/- mice to liquid cultures in the presence of cytokines. Indeed, Fancd2-/- HSPCs 

showed progressive loss of growth ability in comparison to that of WT or Lnk-/- HSPCs 

(Fig. 3A). Importantly, Lnk deficiency rescued the growth disadvantage of Fancd2-/- BM 

cells as well as colony-forming-unit (CFU) progenitors (Fig. 3B). FA cells are observed 

to have a higher rate of apoptosis 36.  Indeed, we observed the percentage of apoptotic 

cells was doubled in Fancd2-/- culture relative to WT (Fig. 3C), but the cell cycle 

progress remain little perturbed (Suppl. Fig. 2). Importantly, the percentage of apoptotic 

cells in DKO was on par with WT (Fig 3C), indicating that Lnk deficiency ameliorates the 

survival defect of Fancd2-/- cells.  

 

The increased apoptosis in Fancd2-/- cells is attributable to a higher level of genome 

instability, and suppression of genomic instability is a major role of the FA pathway. 

Thus, we examined chromosomal abnormality in ex vivo cultured progenitors. We 

arrested cultured BM HSPCs in mitosis with nocodazole and subsequently prepared 

metaphase spreads as described 37. At least 30 metaphases from each sample were 

scored for the presence of sister chromatid breaks, gaps and radial chromosome 

aberrations, which are hallmarks of ICL repair deficiency in FA. Chromosomal 

abnormalities were elevated in Fancd2-/- cells as expected, which was partially rescued 

by Lnk loss (Fig. 3D-E). Primary splenic B cells have been widely used to study 

molecular and cellular defects in FA mouse models 17. To assess if Lnk deficiency 

restores genome stability in cell types other than BM HSPCs, we examined 

chromosomal aberrations in B cells. We found that in these cells, genome instability in 
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Fancd2-/- is also significantly elevated relative to WT, while Lnk deficiency restored it to 

WT levels (Fig. 3E and suppl. Fig. 3), reinforcing our conclusion and extending the 

effect of Lnk deficiency to cell populations beyond HSPCs. Together these results 

showed that Lnk deficiency rescues growth and apoptotic defects and reduces genome 

instability in the Fancd2 deficient cells. To our knowledge, this is the first genetic model 

of reduced genome instability in FA cells. 

 

Lnk deficiency restores HSPC function upon physiological stress-induced 

proliferation 

FA cells are known to be impaired by the damage resulting from physiological stress, 

such as forced proliferation induced by transplantation and by administration of 

polyinosinic:polycytidylic acid (pI:pC) 8. To determine whether Lnk deficiency rescues 

Fancd2-/- HSPC function in context of endogenous replication stress, we induced HSPC 

proliferation in vivo by repeated treatment with pI:pC. We then examined phenotypic 

HSC by FACS and HSC functions by BMT (Fig. 4A). Fancd2-/- mice exhibited a 

reduction in HSCs upon pIpC stress compared to WT, while Lnk-/- mice had more HSCs 

than WT (Fig. 4B-C). Importantly, Lnk deficiency restored HSC numbers in Fancd2-/- 

mice (Fig. 4B-C). Functionally, Fancd2-/- BM cells repopulated to a very limited extent 

(Fig. 4D and suppl. Fig, 4). Remarkably, BMs from double nullizygous mice 

repopulated on par with WT (Fig. 4D and suppl. Fig, 4), indicating robust LT-HSC 

activity. Taken together, these data show that Lnk deficiency preserves HSC function in 

Fancd2-/- mice upon physiological replication stress.  
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Lnk deficiency stabilizes replication fork upon replication stress in Fancd2-/- 

progenitors  

Cells deficient in FA/BRCA are sensitive to replication poisons, such as hydroxyurea 

(HU) or poly(ADP-ribose) polymerase (PARP) inhibitors. To investigate a potential role 

of LNK in replication stress, we first treated freshly isolated HSPCs with PARP inhibitor 

AZD881. PARP is required for Mre11 localization to stalled forks, and its loss protects 

against genome instability in Brca mutant backgrounds 17,38,39. Fancd2-/- HSPCs showed 

a marked reduction in CFU progenitors upon PARPi, and Lnk deficiency rescued 

progenitors’ clonogenic ability in Fancd2-/- mice (Fig. 5A). In contrast, Lnk deficiency 

failed to rescue clonogenic ability of Fancd2-/- HSPCs upon MMC treatment (Fig. 5A). 

Thus, our data suggest that Lnk deficiency alleviates replication stress but not ICL-

induced genotoxic stress associated with FA. 

 

To examine the mechanisms by which Lnk loss ameliorates replication stress associated 

with FA, we treated BM progenitors with HU and examined the stabilization of stalled 

replication forks by single-molecule DNA fiber analysis 29. Replication tracts of log-phase 

cultured HSPCs were pulse labeled with IdU and CldU sequentially before replication 

fork stalling by HU (Fig. 5B). Single DNA fibers were spread onto microscope slides 

before immunofluorescence staining with antibodies against IdU and CIdU to measure 

relative fork length (CidU/IdU ratio). The relative shortening of the IdU tract after HU 

treatment serves as a measure of replication fork degradation. WT HSPCs as well as 

splenic B cells showed a mean IdU/CldU tract ratio close to 1 (Fig. 5B-D). However, 

Fancd2-deficient cells exhibited a 30–45% reduction in the relative IdU tract length (Fig. 
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5B-C). Importantly, we discovered that loss of Lnk protected stalled replication fork from 

degradation upon replication stress in Fancd2-/- progenitors as well as B cells (Fig. 5B-

C). Furthermore, we demonstrated that Lnk deficiency conferred resistance to HU in 

clonogenic survival of HSPCs (Fig. 5G). 

 

Cytokine-JAK2 signaling is important in stabilizing stalled replication forks  

Since LNK negatively regulates the cytokine receptor-associated JAK2 kinase, we next 

asked whether its role in fork protection was cytokine signaling-dependent. Since BM 

HSPCs dependent upon cytokines for their survival in culture, we were unable to 

withdraw cytokines from BM culture. By removing IL-4 from the splenic B cell culture, it is 

possible to evaluate the role of cytokine-JAK signaling in isolation while still providing 

mitogenic stimuli to proliferating B cells through Toll-like receptor signaling. In these 

conditions, Lnk deficiency failed to rescue Fancd2- null B cells from replication 

degradation upon HU stress (Fig. 5E), suggesting that cytokine/JAK signaling plays a 

role in replication fork stabilization. 

 

We next attempted to decipher the signaling pathways that contribute to replication fork 

stability in Lnk null cells. LNK is a cytoplasmic adaptor protein that is not known to 

associate with chromatin. We previously reported that Lnk deficiency potentiates JAK2 

activation in HSPCs, which in part accounts for its role in HSC self-renewal22-24,28. To 

define the role of JAK2 in replication fork stability, we subjected WT and Lnk-/- HSPCs to 

JAK inhibitors (Ruxolitinib) and examined its effects on replication fork stability. We 

found that WT HSPCs were sensitive to JAKi in stabilizing stalled replication fork, while 
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Lnk-/- HSPCs were more resistant to JAKi (Fig. 5F). Furthermore, MRE11 inhibitor Mirin 

was able to rescue replication fork degradation in WT HPSCs upon JAK inhibition. Our 

data suggest that JAK signaling contributes to replication fork stabilization in HSPCs 

through MRE11-mediated nuclease activity.  
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2.5 Discussion 
 

This report demonstrated that loss of Lnk restores FA HSPC functions by alleviating 

replication stress. To our knowledge, these findings represent a rare in vivo example of 

genetic suppression of FA-associated HSPC defects. There are very few examples of 

animal models in which there are elevated HSC numbers and function40. Understanding 

how Lnk deficiency imparts these remarkable HSC properties will likely advance our 

understanding of stem cell biology and offer insights into strategies for the treatment of 

FA and other BMF diseases in general. 

 

We show that Lnk deficiency increases phenotypic and functional HSCs in Fancd2-/- 

mice. It has been showed recently forced proliferation in vivo by repeated pIpC treatment 

leads to HSC exhaustion and BMF in FA mice. We found that Lnk deficiency mitigates 

HSC exhaustion upon physiological stress. Our ex vivo growth results are also 

consistent with the in vivo BMT data, as reconstitution of myelo-ablated animals is a 

form of “forced” proliferation. Furthermore, we showed that Lnk deficiency does not 

protect HSC quiescence in FA, rather it allows Fancd2-/- HSPCs to proliferate and self-

renew. Previous work demonstrated that p53 activation contributes to the HSPC decline 

and BMF in FA9. However, p53 levels remain unchanged and p53 signaling remains 

intact in Lnk-/- cells (data not shown), suggesting that the rescue of FA by Lnk deficiency 

cannot be attributed to p53 inhibition. While the survival of Fancd2-/- cells can be 

improved by inactivation of apoptotic signaling with deletion of p53 9 or inflammatory 

signaling with inactivation of TNFa signaling41, the genomic instability in Fancd2-/- cells 

has not been demonstrably suppressed by these pathways. We showed here that Lnk 
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deficiency mitigates replication stress-incurred chromosomal aberrations in FA mice and 

prevents HSPCs attrition without incurring leukemic transformation. Understanding 

mechanisms by which Lnk deficiency suppresses FA phenotypes will facilitate 

development of strategies that have the dual benefit of ameliorating BMF and 

simultaneously reducing genome instability. 

 

Our studies raise the question on the cause of stem cell attrition and BMF in FA patients. 

It has been suggested that endogenous aldehydes, in the forms of acetaldehydes from 

cellular lipid peroxidation and formaldehydes from histone, DNA, and RNA 

demethylation, leads to ICL DNA damage 6,42. FA patients and mice are thus more 

sensitive to deficiencies in the aldehyde detoxification enzymes, such as Aldh2 and 

Adh5 6,42. We found that deficiency in Lnk protects stalled replication forks from 

degradation and rescues the survival and stabilizes genome integrity of Fancd2-/- HSPCs 

without restoring ICL-induced DNA repair. Therefore, our results imply that replication 

stress may be a more important mechanism for HSC attrition and BMF in FA than 

previously appreciated. Lnk deficiency increases stem cell fitness and alleviates HU-

incurred replication stress. This translates to a superior HSC self-renewal and serial 

transplantability upon forced proliferation in vivo or in vitro. We speculate this DNA 

repair-independent mechanism is a more probable cause of HSC exhaustion in FA, 

which is illustrated by the rescue of Lnk deficiency in mitigating replication stress. 

 

We show that Lnk-/- HSPCs are hypersensitive to MMC-induce DNA damage, indicating 

that LNK does not play an overt role in ICL repair. A more recently described role for FA 
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proteins is in replication fork stability 15. The FA/BRCA pathway is recruited to stalled 

replication forks and is essential in preventing fork destabilization and resection by 

Mre11 nuclease 15,16. Without fork stabilization by RAD51, Mre11 degrades stalled 

replication forks, results in double stranded breaks, which can lead to chromosomal 

rearrangements and genome instability. It has been shown recently that protection of 

nascent DNA from degradation provides a mechanism that can promote synthetic 

viability in Brca-deficient cells and causes drug resistance in Brca-deficient cancers 

without restoring HR at DSBs 17. These results suggest that defects in replication fork 

stabilization upon replication stress rather than DNA repair deficiency in FA/BRCA 

mutated tumors contribute to genome instability and transformation to cancer. We found 

that Lnk deficiency rescues fork stability and genome instability in B cells in addition to 

BM HSPCs, suggesting a potential broad role for LNK in replication and perhaps that 

outside the hematopoietic system. 

 

LNK is a cytoplasmic adaptor protein, which is not known to associate with chromatin 

and all known associated proteins are cytoplasmic. Moreover, a recent large-scale 

proteome effort identified hundreds of proteins enriched in nascent chromatin, however, 

LNK was not among them43. Given LNK’s role in limiting cytokine signaling, we 

hypothesize that LNK regulates the activity of kinase cascades that transmit their signals 

to the nucleus to affect the expression or activity of DNA replication and repair proteins. 

Indeed, our results highlight the importance of cytokine-mediated JAK2 signaling in 

replication stress. This is the first example, to our knowledge, that cytokine/JAK signaling 

plays a role in promoting replication fork stability. Future efforts are warranted to 
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elucidate the mechanisms by which LNK-regulated JAK signaling in replication stress 

alleviation. 

 

Taken together, Lnk deficiency mitigated replication stress-incurred DNA damage in FA 

mice and prevented HSPCs attrition without incurring leukemic transformation. 

Understanding mechanisms by which Lnk deficiency suppresses FA phenotypes will 

facilitate development of strategies that have the dual benefit of ameliorating BMF and 

simultaneously reducing genome instability. Our research sheds light on the underlying 

the origin of BMF in FA patients and has implications for new therapeutic strategies. 
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2.8 Figure legends 

 

Figure 2.1: Lnk deficiency restores phenotypic and functional HSCs in FancD2-/- 

mice.  

(A-C) Quantification of various HSPC compartments by flow cytometry, Lin-kit+Sca1+ 

(LSK) HSPC population (A), LT-HSCs (CD48+CD150-CD34-LSK) (B) and MPP 

(CD48+CD150-LSK) (C) in WT, FancD2-/- (D2-/-), Lnk-/- (L-/-) and FancD2-/-;Lnk-/- (D2-/-L-/-) 

mice. (D-G) show serial transplantation of total bone marrow cells from WT, D2-/- and D2-

/-L-/- mice. A graded number of BM cells were mixed with competitors and transplanted 

into lethally-irradiated host animals. (D) Donor chimerisms in the peripheral blood of the 

recipient mice 16 weeks after transplant are shown. (E) At the end of primary transplant. 

Donor frequency in the host BM and various HSPC populations were quantified by flow 

cytometry. The 3x105 group was transplanted into secondary and tertiary recipients. 

Donor chimerism in peripheral blood after secondary transplant (F) and tertiary 

transplant (G) are shown. (H) 100 purified SLAM LSK HSCs were mixed with 3x105 

competitors and transplanted into lethally-irradiated recipients. Donor chimerisms in 

peripheral blood 16 weeks after transplant are shown. Each symbol represents an 

individual mouse; horizontal lines indicate mean frequencies; error bars indicate SE. p 

values determined by two-tailed student’s t-test are shown.  ns: not significant. (I-J) 

shows quantifications of cell cycle analysis of LT-HSCs (D) and MPPs (E) in mice of 

different genotypes. **: p<0.01 compare to WT, two-tailed student’s t-test. 

 

Figure 2.2: Lnk deficiency does not rescue ICL hypersensitivity associated with 

FancD2 deficiency. (A) HSPCs were cultured in different concentrations of MMC for 7 
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days. Total (right) and relative cell numbers to untreated cells (left) are shown. Statistical 

analysis using two-tailed student’s t-test of comparisons among untreated and MMC-

treated cells within each genotype are indicated. (B-D) Fresh BM cells were plated in 

semi-solid methylcellulose media containing various concentrations of MMC and 

assessed for progenitors of myeloid (B), B cell (C), and erythroid lineages (D). Relative 

colony forming units relative to untreated are shown. * p<0.05, ** p<0.01, two-tailed 

student’s t-test,  denotes comparison between WT and D2; † p<0.05, †† p<0.01, 

denotes WT vs DKO.  

 

Figure 2.3: Lnk deficiency rescues the growth and survival defect of FancD2-/- 

HSPCs and mitigates genome instability. (A-B) HSPCs were cultured in TPO and 

SCF containing media for 14 days. (A) Cumulative cell growth at days 5, 7 and 14 is 

shown. (B) At each corresponding day of culture, cells were plated for quantification of 

colony-forming progenitors. Cumulative progenitor cell numbers were calculated and 

plotted. P values indicate two-tailed student’s t-test. (C) On day 7, percentage of 

apoptotic cells was assessed by Annexin V staining and shown. For panels A-C one 

representative experiment of three independent replicates is shown. (D-F) HSPCs 

cultured 7 days (E) or splenic B cells cultured 3 days (F) in cytokines were assessed for 

chromosomal aberrations. (D) shows examples of chromosomal breaks (arrows) and 

radial chromosomes (arrowhead) scored on metaphase spreads. Quantifications of 

mean aberrations for 100-150 metaphase spreads from 4-6 animals are shown, and 

error bars indicate SE. Comparisons among all 4 genotypes were calculated by one-way 

ANOVA are shown for each graph. p-values using Tukey’s t-test for each indicated 

comparison pair are shown.   
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Figure 2.4: Lnk deficiency rescues HSC defects associated with FA upon forced in 

vivo proliferation. Proliferation of HSPCs in vivo was induced by pI:pC injection. (A) 

depicts a schematic overview of pI:pC injection. Mice were injected i.p. with 5mg/kg 

pI:pC twice per week over four weeks, followed by analysis for HSPC frequency and 

function in bone marrow at day 28. LT-HSC frequency determined by SLAM LSK (B) or 

CD34-Flk2-SLAM LSK (C) marker schemes is shown. Bars indicate mean of frequencies 

from four to six mice, and error bars indicate SE.  Statistics were calculated by two-tailed 

student’s t test. (D) Two million total BM cells from treated mice were mixed with 3x105 

competitors and transplanted into lethally-irradiated host animals. Donor chimerism in 

peripheral blood of recipients 16 weeks after transplant is shown. Each symbols 

represents an individual recipient animal, horizontal bars represent the mean of each 

group. p values from two-tailed students’ t-test are shown. 

 

Figure 2.5: Lnk deficiency stabilizes stalled replication forks in FancD2-/- HSPCs 

through cytokine-JAK2 signaling. (A) Freshly-isolated HSPCs were treated for 4 

hours with MMC or AZD881 (PARP inhibitor), and subsequently plated in semi-solid 

methylcellulose media. Colony forming progenitor numbers relative to the vehicle-treated 

group (mean± SE) were enumerated and graphed. ** p<0.01, two-tailed student’s t-test. 

(B) The top panel shows the experimental overview of the fork protection assay. (B-C) 

Bone marrow HSPCs were subjected to fork protection assay. The frequencies of 

different replication tract ratios are plotted (B). (C) The distribution of CldU/IdU fiber 

ratios is shown with the horizontal lines indicating median fiber ratios, and the medians 
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shown at the bottom of the graph.  (D-E) B cells were cultured in RP-105 and LPS with 

(d) or without IL-4 (E), and the median of fiber ratios are shown. (F) HSPCs were 

cultured in the presence of 1µM JAK2 inhibitor ruxolitinib (JAKi) or vehicle alone (Veh) 

and the distributions of fiber ratios are shown. In panels (B-F) each individual symbol 

represents one CldU/IdU labeled fiber and the horizontal line indicates the mean of each 

group. The mean of each distribution is written under each plot. Statistical significance of 

each set of conditions was calculated using one-way ANOVA and comparisons between 

individual groups were calculated using Tukey’s t-test. (G) Freshly-isolated HSPCs were 

treated for 4 hours with HU and colony forming potential was assessed. Representative 

of 4 independent experiments are shown. Statistics were calculated using two-tailed 

student’s t-test. 

Figure 2.6: Model. TPO signaling impacts FANCD2 function at stalled replication 
forks.
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Supplemental Figures: 

Figure S1: Lnk deficiency restores phenotypic HSCs but not MPPs in Fancd2-/- 

mice. (A) Quantification of various HSPC subsets by flow cytometry using the CD34 and 

Flk2 surface marker scheme: LT-HSCs (CD150+CD48-CD34-Flk2-LSK), HSCs (CD34-

Flk2-LSK) and MPP (CD34+Flk2+LSK). (B) Quantification of various HSPC subsets in 

BM of transplanted mice by flow cytometry. P values are calculated using two-tailed 

student’s t-test. 

 

Figure S2: Lnk deficiency does significantly alter cell cycle status in Fancd2-/- 

HSPCs in a short-term ex vivo cell culture. Quantification of cell cycle status in 

HSPCs using Ki67 and DAPI after seven days in culture. Bars indicate mean and error 

bars indicate SE. *: p<0.05 compared to WT, student’s t-test. 

 

Figure S3: Lnk deficiency partially mitigates genome instability after long-term 

culture in Fancd2-/- HSPCs. Quantification of chromosomal aberrations by metaphase 

spread in HSPCs after 10 days of culture. Results from 100-150 metaphase spreads of 

4-6 animals are shown. Bars indicate mean and error bars indicate SE. p-values using 

student’s t-test for each indicated comparison pair are shown. Comparisons among all 4 

genotypes calculated by one-way ANOVA is also shown.  
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Figure S4: Lnk deficiency restores Fancd2-/- HSPCs function after forced in vivo 

cell proliferation. Peripheral blood reconstitution by donor derived cells 16 weeks after 

transplant of one million total BM from pI:pC –treated mice is shown. Each symbols 

represents an individual recipient animal, horizontal bars represent the mean of each 

group. p values from two-tailed students’ t-test are shown. 
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3.1 Abstract 
Hematopoietic stem cells (HSCs) are rare cells in the bone marrow that continually 

generate and replenish all hematopoietic lineages in the blood throughout life and are 

distinguished by their multilineage differentiation and self-renewal capacities. Adult bone 

marrow HSCs possess a unique cell cycle status, which is termed quiescence, and 

infrequently exit quiescence to proliferate and self-renew. Self-renewal is defined as the 

inheritance of HSC properties by one or both daughter cells and is regulated by HSC 

division kinetics. 

 

Deficiency of the adaptor protein LNK, a negative regulator of the Thrombopoietin 

signaling pathway in HSCs, results in a 10-fold expanded HSC pool. Lnk-/- HSCs have 

superior reconstitution potential, enhanced self-renewal and do not exhaust prematurely. 

This augmentation in HSC function is due, in part, to an increased propensity for HSC 

self-renewal in Lnk-/- HSCs. This property has been observed at a single cell level in 

vitro, but it is unclear how LNK deficiency influences self-renewal propensity.   

 

Using a label retention model that tracks HSC division in vivo, we demonstrate a 

divisional heterogeneity in a highly enriched stem cell population. We demonstrate that 

HSC function is inversely correlated with each in vivo division and that Lnk deficiency 

both enhances the stem cell properties of undivided HSCs, and increases the frequency 

of bona-fide HSCs in subsets of cells that have divided several times in vivo. Genome-

wide expression profiling reveals a transcriptional status correlated with active RNA 

synthesis and signal transduction in undivided cells, and an increase in DNA synthesis 
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and mitotic machinery as cells accrue in vivo divisions. We identify progressive changes 

in expression of several genes related to self-renewal, which may be targets of 

enhanced Tpo signaling in Lnk-/- HSCs. Additionally, our study uncovers that LNK 

deficiency retards changes in cell surface expression of several HSC-associated 

proteins, suggesting a transcription-independent role for LNK deficiency in regulating 

self-renewal. 

 

Taken together our findings provide an unprecedented view of the relationship between 

in vivo HSC division and self-renewal and illuminate several potential mechanisms 

involved in self-renewal that might be impacted by Lnk deficiency.
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3.2 Introduction	

Hematopoietic cells are generated and maintained throughout life by a relatively rare 

population of stem cells. There is an inverse relationship between the frequency of 

division and the long-term repopulating capacity of HSCs (LT-HSCs). The exact 

mechanisms behind this relationship between the frequency and fate determinants of 

division remain poorly understood; however, they are immensely important as they 

regulate the size of the HSC pool, and indirectly, the ability of HSCs to maintain a 

constant, homeostatic hematopoietic supply. 

 

Lnk-/- HSCs have enhanced self-renewal capacity. In vitro, Lnk-/- HSCs show a 

propensity towards symmetric self-renewing divisions 1 but it has not been possible to 

study this propensity on a single cell level in vivo. Additionally, it is not well understood 

how Lnk deficiency impacts the propensity for self-renewal in HSCs.  

 

In this manuscript, we investigate HSC self-renewal in vivo using the M2R-tTA; H2B-

GFP mouse model, in which H2B is fused with GFP and its expression is induced in 

response to doxycycline administration (Fig 3.S1A). Virtually all cells are labeled during 

a six-week pulse period, and upon doxycycline withdrawal, GFP signal is diluted two-fold 

with each division as each cell inherits half of the labeled H2B. Long-term chase 

experiments have identified HSCs as those cells that retain the GFP label 2,3. By using a 

relatively short chase period, we hoped to catch a population of stem cells with sufficient 

heterogeneity, such that there would be a mix of true LT-HSCs and some ST- or non-

HSCs. We anticipated that undivided cells – the d0 population – would contain almost 
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exclusively HSCs. As cells undergo division we expected to see a dilution in 

transplantation capacity such that by d5+ there would be few, if any, HSCs.  

 

Naturally, the choice of cell population would be very important – too many or too few 

HSCs and we would not catch this heterogeneity. We therefore chose to study HSC self-

renewal in SLAM LSK. First, the SLAM LSK HSC population has been extensively 

characterized 4,5. Second, SLAM LSK cells represent a significant portion of all label-

retaining cells. As previously shown, label-retaining cells are enriched by markers 

associated with HSCs. The stem and progenitor compartment defined by LSK markers 

considerably enriches for label retaining cells relative to Lin-c-kit+ alone. SLAM LSK 

further enriches for label retaining cells and represents approximately half of all label-

retaining cells (Fig 3.S1B). Finally, since 1 in every 3 cells in SLAM LSK is a LT-HSC 4, 

there is a high likelihood this population contains a mix of cells suitable to our study. We 

hypothesized that division status might further stratify LT-HSCs from other cells within 

SLAM LSK. To this end, we were encouraged to find that SLAM LSK cells are comprised 

of a heterogeneous cell population with respect to division.  

 

Here we show that HSCs in SLAM LSK are further dissected functionally from early 

progenitors and non-HSCs by in vivo division status, and demonstrate the propensity of 

Lnk-/- HSCs to self-renew in vivo using this system. We highlight trends with division that 

correlate with self-renewal propensity and identify transcriptional changes genome-wide 

expression in Lnk-/- SLAM LSK across divisions, which may shed light on how Lnk 

deficiency promotes self-renewal.



	

76	
	

3.3 Results 

HSCs exist in a continuum of repopulating capacity over in vivo division and this 

continuum is skewed by LNK deficiency  

Given the inverse relationship between division and self-renewal capacity, we were 

curious to know whether division status could explain the functional heterogeneity 

observed within the SLAM LSK compartment. To address this question, we first 

visualized the division history of SLAM LSK using FACS. After four weeks of chase, 

SLAM LSK cells exist as heterogeneous population distributed by their division history 

(Fig 3.S1B). We were able to discern seven distinct division states (division 0 – 6+). We 

hypothesized that the number of functional LT-HSCs would be decreasing with in vivo 

division. To test this, we sorted individual division subsets of SLAM LSK (d0, d2, d4, or 

d5+) and assayed their repopulating capacity from WT and Lnk-/- donors by competitive 

transplant. Indeed, in both genotypes, we observed a decreasing trend in donor 

reconstitution in peripheral blood with division, indicating that later divisions contained 

fewer functional LT-HSCs than earlier ones (Fig 3.1A). 

 

We then examined repopulation between WT and Lnk-/- cells. Lnk-/- cells repopulated 

recipients significantly better than their WT counterparts within each division subset (Fig 

3.1A). Strikingly, recipients of d5+ WT cells did not reach 1% peripheral donor chimerism 

(the cutoff for functional HSCs) 6 7 1 8, while 4/5 recipients of d5+ Lnk-/- cells did (Fig 

3.1A), indicating that at least 1/100 d5+ SLAM LSK is still a functional HSC in Lnk-/- 

mice. This was more evident in secondary transplant, where 3/5 recipients of d5+ Lnk-/- 

cells repopulated robustly. Additionally, secondary recipients of d4 Lnk-/- cells had donor 
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chimerism on par with those of d0 cells, while recipients of WT counterparts were 

significantly less reconstituted, on average (Fig 3.1B). Individually, only 2/5 recipients 

showed robust reconstitution in the WT group, in contrast with 7/7 recipients of Lnk-/- 

cells. Together this data indicates the presence of bona fide HSCs capable of self-

renewal in d4 and d5+ subsets of Lnk-/- SLAM LSK.   

 

Secondary transplant and phenotypic HSCs frequency in primary transplant recipient 

indicate HSC self-renewal. To look directly at this, we quantified the donor SLAM LSK in 

bone marrow of primary recipients. The donor SLAM LSK frequency of Lnk-/- cells 

showed a marked expansion over WT counterparts. Additionally, Lnk d0 and d2 SLAM 

LSK expanded significantly over WT d0 cells and expansion was on par between WT d0 

in Lnk-/- d4 subsets (Fig 3.1C). The expansion was most evident in d2 and d4 recipients, 

in which Lnk-/- cells expanded 8.11x and 13.4x over their WT counterparts, respectively, 

exceeding the fold expansion by d0 cells.  

 

Another important metric of HSC function is lineage choice. The predominant LT-HSC 

subtype is the β-HSC, which produces a B-cell heavy lineage distribution 9. Single 

lineage repopulation indicates a committed progenitor, while myeloid skewing indicates 

HSC subtypes that are either partially committed or nearing exhaustion 9. We therefore 

next assayed the lineage distribution of primary and secondary transplant recipients. In 

primary recipients, we found no significant differences in lineage distribution through d4 

in both genotypes (Fig 3.1D). In division 5+ of Lnk-/- cells, there was a T-cell skew, 

indicating some lineage-committed cells (Fig 3.1E). Similarly, in secondary transplant, 
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though there was significantly more myeloid skewing than in primary transplant, there 

wasn’t a significant lineage bias until d5+ in recipients of Lnk-/- cells. Therefore, Lnk 

deficiency slants HSCs along the continuum towards self-renewal and reconstitution. 

 

In vivo division imparts cell intrinsic changes to HSCs 

A distinguishing feature of LT-HSCs is their quiescent status, which is evident at the 

transcriptional and cellular level. In vitro, LT-HSCs are demonstrated to enter division 

later than their ST-HSC and MPP counterparts, resulting in a net proliferative delay, 

which may help prevent unnecessary proliferation and depletion of LT-HSCs. This delay 

has been attributed to LT-HSCs exiting quiescence later, having to activate 

transcriptional and translational machinery for responsiveness to growth stimuli. Indeed, 

the second in vitro division occurred after the same interval regardless of cell identity 10 8. 

 

We asked how in vivo division history influences exit from quiescence in SLAM LSK with 

various in vivo division histories. To investigate this, we sorted single cells into wells of a 

96 well plate and manually inspected the wells every two hours over a period of 72 hours 

and scored the number of cells per well. We wanted to maximize our chances of 

observing HSCs, so we performed this assay in Lnk deficient SLAM LSK, where there 

are more HSCs than in WT SLAM LSK. To further increase our chances, we chose a 6 

week chase. We reasoned that in shorter chase times early division subsets (d0-2) are 

more likely to also include progenitors that have recently started dividing, whereas 

longer chase times would enrich for HSCs in these subsets. This is an important 

consideration since transplant only tests whether long-term repopulating activity is 



	

79	
	

present in the donor cells, and is not influenced by contaminating cells. In contrast, a 

single cell division assay reads every cell in the population and therefore its composition   

is more important. Indeed, after 6 weeks a greater proportion of SLAM LSK are in 

division subsets 6+ (Fig 3.2A). However, by transplant, cells in d0, d2, and d4 

reconstitute recipients on par with cells after 4 week chase (Fig 3.2B), indicating that 

HSC distribution among subsets is similar between 4 weeks and 6 weeks of chase.  

 

Strikingly, we found a strong negative correlation between every in vivo division and time 

to first division in vitro (Fig 3.2C). Cells in d0 divided significantly later (38 hours) than 

any other subsets. In fact, there was a step-wise shortening of time to division in vitro 

with division in vivo: cells in d1 and d2 subsets divided on par with one another, and 

significantly later than those in d4 (Fig 3.2D). The net effect of this spread in time to 

division was that later division subsets produced more cells by the end of the 

observation period than earlier division subsets. This was largely owing to the difference 

in time to first division, as the rate of second division was more similar (Fig 3.2E), and 

cell death was negligible (data not shown). Taken together these data demonstrate that 

in vivo division primes HSCs towards proliferation, even after a single in vivo division. 

 

Lnk deficiency delays the exit from quiescence of undivided cells 

To study how Lnk deficiency impacts cell exit from quiescence, we performed a 4 week 

chase followed by time to first division assay on WT and Lnk-/- d0, d2 and d4 cells. Here 

a clear negative correlation between division and time to in vitro division is also evident 

(Fig 3.3A), albeit less dramatic among d2 and d4 subsets. In both genotypes, d2 and d4 
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cells divide earlier than d0 (Fig 3.3B). Interestingly, however, Lnk deficient d0 cells divide 

significantly later than their WT counterparts (38.4 vs 35.8 hours), suggesting a deeper 

quiescent status (Fig 3.3C). Strikingly, Lnk-/- and WT cells in d2 and d4 subsets divide 

on par with one another (Fig 3.3B). By the end of the observation period, there was more 

net change in growth between Lnk-/- and WT cells in d2 or d4 subsets (Fig 3.3D). Taken 

together these findings demonstrate that Lnk deficiency widens the difference in 

behavior between divided and undivided HSCs. 

 

Genome wide gene expression correlates with continuum of HSC functional states 

in vivo 

HSCs exist on a transcriptional continuum in vivo 11  and division-related processes are 

the major source of expression variation among HSCs 12. However, there has never 

been a direct study of the relationship between in vivo division history and transcriptional 

profile. We therefore set out to examine how transcription changes with in vivo division. 

To do this we profiled RNA expression in SLAM LSK across d0, d2, d4, and d5+ division 

subsets by RNAseq. We recovered high percentage (Table 3.S1) of high quality reads, 

with tight clustering between replicates, with a greater Pearson correlation distance 

between samples than between biological replicates (Fig 3.4A). We next performed 

differential expression analysis using DESeq2. 1852 genes were significantly changed 

among all comparisons, with the greatest number changed between d0 and d5 (Fig 

3.4B). Interestingly and consistently with their similar behavior in vitro, there were no 

significant expression changes between d2 and d4 (Fig 3.4B). Unsupervised clustering 

of gene expression by k-means clustering revealed four clusters: one set of genes with 
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high expression in d0 only (Cluster 1), one set gradually decreasing in expression from 

d0 to d5+ (Cluster 2), another gradually increasing (Cluster 3), and one with high 

expression in d5+ only (Cluster 4) (Fig 3.4C). 

 

To better understand the genes within each cluster functionally, we performed Gene 

Ontology (GO) analysis on each of the four clusters. We chose to display only the top 15 

enriched categories for each cluster. Cluster 1 is enriched for processes related to 

negative regulation of differentiation (GO:0051254, GO:0051241, GO:0051093) (Fig 

3.4D), consistent with previous reports of transcriptional profiles in quiescent cells 13 14. 

Interestingly, several categories related to transcription, and RNA biosynthesis and 

processing are also enriched in Cluster 1(GO:0045944, GO:0051254, GO:1902680, 

GO:1903508, GO: 0045893, GO:0010628). Given the well-documented observation that 

quiescent cells have low RNA content 15 16, it is possible that there is high turnover in 

RNA in d0 cells. This is in agreement with findings that demonstrate quiescent HSCs 

produce transcripts rich in intronic sequences and only express processing machinery as 

they activate and proliferate 17. Finally, several categories related to protein signaling are 

also enriched (GO:0006468, GO:0018193, GO:0035556, GO:0016310), indicating that 

these cells are actively engaged in signaling, potentially with the niche 18. 

 

In Cluster 2, there is enrichment in RNA processing, and cytokine and tyrosine kinase 

signaling categories (Fig 3.4D), as in Cluster 1. Notably, there is robust enrichment in 

TGFβ regulation (GO:0017015, GO:1903844), which is consistent with previous reports 

showing that TGFβ signaling promotes HSC quiescence in vivo 19. Additionally, there are 
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several categories associated with cell motility (GO:0010810, GO:0051272, GO:000147, 

GO:0030335, GO:0040017). Though contradictory at first, it is consistent with our 

unpublished observation that after the first in vitro division d0 and d2 daughter cells have 

high motility, and move apart from one another while daughters of d4 cells or after in 

vitro divisions do not. Similar observations were previously made in a study where HSCs 

were imaged every three minutes through time lapse microscopy and shown to have 

fewer cellular processes than more differentiated cells 8. 

 

In Clusters 3 and 4 the majority of enrichments fall into categories associated with DNA 

replication and cell division (Fig 3.4D). Interestingly, Cluster 3 is enriched primarily for 

RNA biogenesis, DNA synthesis and DNA repair, and this is evident transcriptionally as 

early as the d2 population. However, the strongest enrichment for actual cell division is 

in Cluster 4, which is only highly enriched in d5+. This is consistent with the decreased 

repopulating capacity that we observe in divisions 4 and 5, and underscores the pro-

proliferative, largely non-HSC composition of these populations. 

 

Gene Set Enrichment (GSEA) is a widely used independent gene expression analysis 

tool that ranks gene expression in sets against a null distribution, and can thus detect 

changes in gene expression based on whole pathways. Using GSEA, we found 

evidence of similar trends and patterns as in the cluster analysis. Relative to d0, every 

division subset showed enrichment for biosynthetic and division processes (Myc_targets, 

E2F_targets, G2M_Checkpoint), which again underscores that in vivo division poises 

cells for proliferation 20. Consistently, this trend was gradual across division subsets: 
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comparing between d2 and d5+, d5+ cells were enriched for additional gene sets related 

to active division, indicating a more robust proliferative transcriptional profile (Fig 3.4E). 

 

Taken together, our transcriptional findings reflect and parallel our in vivo and in vitro 

findings that there is a gradual, cell-intrinsic transition in HSCs throughout division.  

 

Next we manually inspected the differentially expressed gene lists. Sca1 (Ly6a) 

expression decreases with division, which correlates well with our surface expression 

data. We then examined the cell surface expression of other surface markers with 

significantly changed expression between d0 and d5. Two especially interesting 

candidates emerged. One is Alcam (CD166), a surface glycoprotein important for cell-

cell contacts that plays a role in HSC repopulation capacity 21. We found a progressive 

inverse change in surface expression of ALCAM with division (Fig 3.S2A, B). Another 

two significantly changed genes are CD41 (Itgab) and CD61 (Itgb3) (data not shown). 

CD41/CD61 forms a functional integrin complex. We find that CD41 shows a strong 

positive correlation with division (Fig 3.S2C, D), while CD61 has high cell surface 

expression throughout division (data not shown).  

 

Lnk deficiency retards the change in surface expression of HSC markers that 

occurs throughout division 

Recently there have also been reports showing that expression level of surface markers 

correlates with HSC function. Within the c-kit-gated population c-kit surface expression is 
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distributed across an approximate 10-fold range. Within that, high potency HSCs are 

found in the lower portion of that range, while cells in the higher range are only capable 

of intermediate term reconstitution of recipients 22-24. Given the strong negative 

correlation in HSC function that we have shown with each division, we asked whether 

the surface expression range of c-kit would be correlated with division status. Indeed, we 

find a strong positive correlation between c-kit expression and division in WT SLAM LSK 

(Fig 3.5A, left). In Lnk-/- SLAM LSK, this correlation is also present (Fig 3.5A, right), but 

notably d3 and d4 have a significantly lower relative c-kit expression, indicating more 

potent HSCs, than their WT counterparts (Fig 3.5B). These findings offer further 

evidence of the role of LNK deficiency in promoting the HSC identity, and also may point 

towards a mechanism.  

 

Based on this observation, we asked whether other surface markers correlated with 

division and whether the correlation was changed by Lnk deficiency. We first looked at 

well-known HSC markers Sca1 (Fig 3.5C, D), CD150 (Fig 3.5E, F), and CD48 (Fig 3.5G, 

H). Sca1 surface expressions showed a very strong negative correlation with division in 

WT SLAM LSK, consistent with a recent report correlating high Sca1 surface expression 

with HSC function 13. Interestingly, this progression is significantly tempered in Lnk-/- 

SLAM LSK (Fig 3.5D). CD150 and CD48 expression changes have not conclusively 

been linked to functional outcomes for HSCs, nevertheless there is a quantifiable 

change in surface expression with division (Fig 3.5F, H). In these populations, Lnk 

deficiency also tempers expression changes (Fig 3.5F, 5H). Taken together, these data 

show changes in cell surface receptors surface expression that correlates with division 
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status and HSC function. This suggests that Lnk could be involved in regulating stem 

cell identity through cell surface receptor stability in a transcription-independent way. 

 

In vivo division history marks HSCs independently of surface marker profiles 

Prospective HSC purification remains an elusive goal. One other potential application of 

this work is to identify a surface marker scheme with high specificity and sensitivity; that 

is, a marker scheme that identifies only the entire population of functional HSCs. SLAM 

LSK markers enrich HSCs to 1 out of 3 and only partially overlap with other marker 

schemes such as CD34-Flk2-LSK. Additionally, CD150- side-population also repopulate 

hosts 25, further underscoring the inadequacy of surface markers to accurately reflect the 

entire HSC pool.  

 

By FACS analysis, there is a clear population of d0 cells in CD150- (Fig 3.6A), and 

CD34+ (Fig 3.6B) subsets of CD48-LSK. Some CD34-Flk2- LSK are also CD150-, so we 

expected there to be repopulating activity in the CD150- CD48- LSK compartment. Since 

we have shown that in vivo division history strongly negatively correlates with HSC 

function, we wondered whether those HSCs would be found in the d0 subset. We 

therefore assessed the repopulation capacity of CD150+ or CD150- d0 cells from WT or 

Lnk-/- mice by transplant. Strikingly we found that both compartments were capable of 

long-term reconstitution (Fig 3.6C). Similarly, some SLAM LSK are CD34+. To test 

whether those cells were found in d0 subset, we performed a similar experiment on 

CD34+Flk2- LSK gated cells. Similarly, we found that CD34+ in d0 cells also 

reconstituted hosts (Fig 3.6D). We then also investigated the expression of a known 
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marker of intermediate-term HSCs, CD49b (Fig 3.6E). Consistently, CD49b+ cells in d0 

were able to repopulate recipients from both WT and Lnk mice (Fig 3.6F). For 

comparison, we also transplanted CD49b+ or CD49b- cells from d4 and neither was 

capable of repopulation (Fig 3.6F). Taken together these data strongly demonstrate that 

division status is a better determinant of HSC function than any single surface marker 

scheme. 
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3.4 Discussion 
 

Here we show that in vivo, HSCs exist in a continuum of repopulating and self-renewing 

capacity and that this continuum is organized by their in vivo division history. We devise 

and characterize a system by which to study the enhanced self-renewal capacity 

associated with Lnk deficiency in vivo and we molecularly probe the transcriptional and 

surface expression changes between division subsets in Lnk deficient HSCs. 

 

In this manuscript we provide several lines of evidence to demonstrate that in vivo 

division imparts cell-intrinsic changes to HSCs. In both WT and Lnk deficient mice there 

is a dilution of repopulating and self-renewal capacity as well. Using this model we also 

demonstrate that Lnk deficiency retards dilution of HSC function with division, retaining a 

frequency of at least 1/50 functional HSCs in d4. These are bona-fide stem cells, with 

self-renewal capacity as evidenced by robust reconstitution of secondary recipients.  

 

The decreasing reconstitution capacity of SLAM LSK with in vivo division correlates well 

with our in vitro findings that d0 cells exit quiescence later than cells in other subsets. 

Furthermore, we demonstrate that each in vivo division progressively changes cells, with 

each division shifting cells towards an earlier response to mitogenic stimuli. Even one in 

vivo division is sufficient to significantly reduce the lag in responsiveness to growth 

signals. It is intriguing to hypothesize that there may be an underlying functional 

advantage to activated but non-dividing HSCs. A parallel is seen in muscle stem cells, 

were activation of stem cells in one location induces a transient state of responsiveness 

to stimuli in muscle stem cells in a second, distant location 26, raising the intriguing 
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possibility that infrequent HSC division may be a mechanism to maintain sensitivity in 

HSCs. It would be interesting to further probe functional changes with each in vivo 

division. 

 

Finally, we see the same trend in genome wide transcriptional profiling of division 

subsets. The findings from our in vitro study are reflected in the profiling data, which 

shows that cells in later in vivo division subsets have a transcriptional program tuned for 

division. The data is validated by surface expression changes and agrees with published 

findings. Notably, d0 subsets overlap transcriptional profiles with a core set of genes 

enriched in functional HSCs, which was described from individual transcription profiles of 

cells that had been sequenced and correlated with functional output. This study also 

identified high expression of Sca1 and EPCR on LT-HSCs 13, and we also find 

correlation between these markers and division by gene and cell surface expression. 

Another noteworthy correlation is with a study that identified CDK6 as a driver of HSC 

proliferation and differentiation 10, blockade of which could protect HSCs from exhaustion 

due to proliferative stress 27. We find that CDK6 is significantly upregulated in d5+ cells. 

Our work adds an extra dimension to these studies, providing some insight into the order 

of transcriptional changes as cells lost self-renewal capacity.  

 

Future studies will aim to dissect the molecular underpinnings of how Lnk deficiency 

influences HSC self-renewal propensity in vivo. We have identified several potential 

future directions from the transcriptional data. First, changes in ALCAM or CD41 may be 

drivers of self-renewal propensity. Though we have not yet compared ALCAM and CD41 
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surface expression between Lnk-/- and WT mice, it is intriguing to speculate that one of 

these functional surface proteins may be altered by LNK deficiency and lead to a 

preference for self-renewal. Notably, in contrast to its embryonic role 28, CD41 surface 

expression enriches for progenitors in adult BM 29. The binding partner of CD41, CD61, 

forms another integrin complex, CD51 (Itgav), which is highly and uniformly expressed 

among division subsets at a gene expression level (data not shown). CD61/CD51 

surface expression is associated with long term repopulation capacity in HSCs while 

CD61/CD41 surface expression is associated with short term progenitors 30. Crucially, 

CD61/CD51 is activated by TPO signaling through which LT-HSC activity is preserved 

during in vitro culture 30. Integrins participate in orienting the cell division axis, and 

therefore influence cell fate decisions {Streuli:2009jo}. In addition, LNK deficiency has 

been shown to directly regulate integrin activity in endothelial cells 31, and specifically the 

CD41/CD61 integrin complex in platelets 32. Therefore, it would be interesting to 

determine whether LNK regulation of HSC integrins is an important mechanism in its role 

in regulating self-renewal. 

 

 A second potential driver is through the Retinoic Acid (RA) signaling pathway, activation 

of which has been reported to promote LT-HSC repopulating capacity 33 and be required 

for the maintenance of dormancy in HSCs 20. In d0 we see significant enrichment of 

retinoic acid response elements Rxra and Rxrb, but also Cyp26b1, the enzyme 

responsible for degradation of all-trans retinoic acid (ATRA). Conversely, in d5+ we see 

upregulation of ATRA synthesis, by enrichment of Aldh1a1 expression (the rate-limiting 

step enzyme), though ALDH1A1 has been shown to be nonessential in HSCs 34. Stat5, 

the transcriptional effector of Tpo/TpoR/Jak2 signaling in HSCs, is known to bind the 



	

90	
	

same sites as some retinoic acid elements and synergize with RA mediated transcription 

35. Ongoing work is aimed at probing the effect of Lnk deficiency on this signaling 

intersection.  

 

Additionally, our data show evidence of a potential role for Lnk deficiency to impact 

HSCs at a protein level. Our data convincingly shows the changes in surface expression 

with division of several HSC-associated proteins is decelerated by Lnk deficiency. It has 

previously been demonstrated that the level of c-kit surface expression is regulated by 

CBL, a ubiquitin ligase that targets proteins for degradation. Higher CBL activity was 

associated with lower c-kit surface expression and therefore higher HSC potency 23. 

Intriguingly, by mass spectrometry, we have found that LNK binds CBL (unpublished 

data), and therefore LNK may alter CBL activity and protein expression at the surface 

and intracellularly, thereby increasing the likelihood of self-renewing division. 

 

There are two key challenges going forward in this study. The first is that, though in vivo 

division history is traced by H2B-GFP dilution, neither the timing of division nor the 

relationship between division subsets can be directly inferred. It is certainly possible that 

some cells in d4 have initiated and undergone rapid division very close to the end of the 

4 week chase period, while other d4 cells have divided once every 4 weeks. Though our 

in vitro data would suggest that d4 cells behave relatively uniformly to division stimulus, 

it is clear by transplant that the d4 subset is a heterogeneous population. Given that self-

renewal often occurs as an asymmetric division during homeostasis 36 37, we expect that 

HSC function might be lost before surface marker profiles begin to change. Another 
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possibility is that the surface marker expression profile among cells in different division 

subsets of SLAM LSK is not constant, meaning that, for example, some cells in d4 did 

not originate from a d0 SLAM LSK but later acquired the SLAM LSK surface marker 

profile. While these questions could be explored with the help of another biomarker, 

such a second pulse-chase label that could be applied at variable intervals during the 

H2B-GFP pulse-chase, this would ultimately lead to the same population-based data. 

 

The second challenge is that there are significant limitations to studying HSCs by 

surface markers. Foremost is that many surface markers are not functional. Second, 

surface markers only enrich HSCs. By the most up to date surface marker scheme, only 

1 in 2 cells are bona-fide HSCs. Additionally, recent evidence shows that in steady state 

in vivo progenitors contribute extensively to maintaining hematopoiesis, and not the cells 

designated “LT-HSCs” 38. Finally, HSCs exist as a functionally heterogeneous population 

at the single cell level, as a mix of cells with propensities towards a particular lineage 9. 

All this calls into question the study of HSCs as a population and based on a phenotypic 

description and highlights the necessity to study HSCs at a single cell level. 

 

This approach will allow for several advantages over population-level profiling. First, 

rigorous quantification of HSCs within each division subset in WT and Lnk-/- mice by 

limiting dilution assay will determine the nature of the dilution in repopulation capacity 

that we observe – whether HSC quantity or quality change, or both. Together with 

single-cell transcriptional data, it will be possible to independently cluster and map how 

closely cells within each division subset are related to one another. Second this 
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approach will be able to determine whether Lnk-/- HSCs preserve a specific 

transcriptional program regardless of division history. Finally, this approach will be able 

to answer whether the impact of Lnk deficiency is at a transcriptional or post-

transcriptional level. At present, it is thought that transcription may be only one 

component of self-renewal determination. Since self-renewal is defined at the moment of 

division, which often involves the asymmetric inheritance of HSC function into only one 

daughter cell 36 37, it is not unreasonable for an HSC-niche interaction or asymmetric 

protein distribution to potentially be the actual driver of this asymmetrical inheritance of 

function. Indeed, multiple HSC-niche interactions such as with E-SELECTIN 39 or CXCL4 

and niche megakaryocytes 40 41 42, drivers of asymmetric protein distributions such as 

LIS1 43, and even level of protein synthesis 44 have been reported to impact HSC 

function. Therefore, future studies should also include single cell level protein profiling 

such as by the recently developed mass cytometry 45, particularly in paired cells after 

division. 

 

Taken together, we show LNK deficiency shifts the in vivo HSC continuum towards the 

stem cell side, and establish several leads that may elucidate the mechanisms behind 

enhanced self-renewal in Lnk -/- HSCs. 
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3.5 Materials and Methods 
Mice 

Rosa M2R- tTA; collagen H2B-GFP (H2B-GFP) mice were kindly provided by Dr. Hanno 

Hock (Massachusetts General Hospital and Harvard University, Boston, MA) 2. Lnk-/- 

mice by Dr. Tony Pawson (Samuel Lunenfeld Research Institute, Canada). H2B-GFP 

mice were bred with Lnk-/- mice to create M2R; H2B-GFP; Lnk-/- animals. All mice were 

on C57/B6J background (CD45.2) and both male and female mice were used in 

experiments. Transplant competitor cells were from SJL (CD45.1) mice and transplant 

recipients were progeny of SJL x C57/B6J (F1). To induce H2B-GFP expression, 6-8 

week old mice were given water supplemented with 2mg/mL Doxycycline (Sigma 

D9891) and 5% sucrose three times a week for a period of six weeks (“label” period). At 

the end of the label period, mice were returned to normal drinking water (“chase” period). 

After four or six weeks, mice were sacrificed and bone marrow was harvested from 

tibias, femurs and ilia. Bone marrow was flushed using 0.5% bovine serum albumin 

(BSA) (Fisher, BP1600-100) in PBS. Cells were passed through a 30µm nylon filter to 

make a single cell suspension. 

 

Genotyping 

Mice were genotyped by PCR of genomic DNA from tail snips of weanling mice. Tails 

were digested at 55°C overnight in buffer containing 100mM Tris pH 8.0, 5mM EDTA pH 

8.0, 0.2% SDS and 200mM NaCl. DNA was precipitated in propanol and washed in 70% 

EtOH and then resuspended in water. Mice were genotyped for Lnk (wild-type: 5’-

gtccgactctctggctatgtggta-3’, neo insertion: 5’- cgcatcgccttctatcgcct-3’, common: 5’- 
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gaagaggagtccatgtcatagtcc-3’), M2R-tTA (5’-aaagtcgctctgagttgttat-3', 5’-

gcgaagagtttgtcctcaacc-3', 5’-ggagcgggagaaatggatatg-3'), and H2B-GFP (5’-

gcacagcattgcggacatgc-3', 5’-ccctccatgtgtaccaagg-3', 5’-gcagaagcgcggccgtctgg-3'). 

 

Sorting 

Sorts for transplant and RNAseq were performed on one of two different instruments. 

First, HSPCs were pre-enriched using a lineage depletion kit (Miltenyi, 130-090-858) and 

magnetic separation column (Miltenyi, 130-042-401) following manufacturer’s 

instructions. Briefly, bone marrow from individual mice was resuspended in 150µL of 

2mM EDTA 0.5% BSA PBS pH 7.2 (depletion buffer) and 40µL of Lineage antibody 

cocktail. Cells were incubated at 4°C for 15 minutes, then washed in 10 mL of the 

depletion buffer. Cells were resuspended in 250µL depletion buffer and 70µL Biotin 

conjugated microbeads, and incubated and washed again. Cells were resuspended in 1 

mL depletion buffer and passed through a 30µm nylon mesh into the separation column. 

Columns were washed with 3x3mL depletion buffer. LT-HSCs (SLAM LSK) were stained 

with anti- c-kit, -Sca-1, -CD48, and -CD150 antibodies. GFP divisions were resolved by 

individual peaks, and verified by Geo Mean (two-fold dilution after each division; 

GeoMeandX= GeoMeand0/2X). For the paired WT and Lnk -/-transplant, cells were double 

sorted on a BD Aria sorter with a 70µm nozzle. On the first sort, LSK were enriched 

using the “yield” setting, then highly purified LT-HSCs in division 0, 2, 4, or 5+ were 

sorted using a “single cell” drop envelope into 1.7mL tubes containing StemSpan SFEM 

(STEMCELL Technologies, 09600) with 2% fetal bovine serum (FBS) (SAFC 

Biosciences, 12103C-500mL). For RNAseq analysis, division subsets were sorted only 
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once on a BD Aria sorter using the “single cell” drop envelope directly into 1.7mL tubes 

containing Trizol LS (Thermo Fisher 10296028). For all other transplants and for in vitro 

division sorts, LT-HSCs were double sorted using the MoFlo Astrios EQ with on the “low 

pressure” setting. First LSK were enriched using the “enrich” setting, then LT-HSCs in 

different division subsets were sorted into individual wells of a 96 well plate containing 

100µL of 2% FBS SFEM. Competitor cells were added directly to each well in 50µL of 

PBS and then transplanted as described below.  

 

Bone Marrow Transplant 

Sorted LT-HSCs separated by division status from donor mice were mixed with 350,000 

freshly isolated competitor (B6.SJL) cells or 400,000 Sca1-depleted competitor cells and 

injected retro-orbitally into lethally irradiated (10Gy, split dose, Orthovoltage Precision X-

Ray) F1 recipient mice in 100-150µL of PBS per recipient. At 4, 8, 12 and 16 weeks post 

transplantation, peripheral blood of recipients was analyzed for donor reconstitution in 

myeloid, T-, and B- lineages by flow cytometry. At 16 weeks post transplant, recipients 

were sacrificed and donor reconstitution in various HPSC compartments was analyzed 

using flow cytometry. BM cells from primary transplants were harvested and 2 million 

cells were injected into each secondary recipient. 

 

Flow Cytometry 

For peripheral blood analysis, 50µL of peripheral blood was collected by retro-orbital 

bleed in heparinized microcapillary tubes (Drummond 1-000-7500-HC/5). Red blood 
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cells were lysed with ACK lysis buffer (0.8% ammonium Chloride, 10 µM EDTA, pH 7.5 

with sodium bicarbonate). Cells were stained for donor reconstitution (CD45.1, CD45.2) 

in myeloid (Gr-1, Mac1) or lymphoid (CD19, CD3) lineages. All peripheral blood data 

was acquired using BD Canto flow cytometer and FACS DiVa software. At least 20k live 

events were recorded for each sample. For donor reconstitution in bone marrow of 

transplant recipients, cells were stained with fluorophore-conjugated anti-CD45.1, 

Lineage (biotin-Ter-119, -Mac-1, -Gr-1, -CD4, -CD8α, -CD5, -CD19 and -B220), -c-kit, -

Sca1, -CD150, -CD48, followed by staining with streptavidin-PE-TexasRed. For 

evaluation of additional surface markers, LT-HSCs were pre-enriched and stained with 

SLAM LSK or CD34 and Flk2 LSK panels as described, and additionally with anti-CD41, 

or –ALCAM antibodies. Data for bone marrow analysis was collected on the BD LSR 

Fortessa flow cytometer and FACS DiVa software. All flow cytometry data was analyzed 

using FlowJo v8.7 for MAC. All antibodies used for flow cytometry are detailed in 

supplemental table 2. 

 

In vitro division assay 

For time to first division in vitro, one single cell was sorted into each well of a round 

bottom 96 well plate (Costar 3799) containing 100µL of 10% FBS SFEM supplemented 

with 1% penicillin/streptomycin (Life Technologies, 15140-122), 1% L-glutamine (Life 

Technologies, 25030-081), 100µM β-mercaptoethanol (Sigma, M7522), 10 ng/mL 

murine Tpo (Peprotech Inc, 315-14), and 50 ng/mL murine SCF (Peprotech Inc, 250-03). 

Media was filtered through a 0.22µm membrane (Millipore SLGV013SL) prior to 

aliquotting into plates. Cells were incubated at 37°C with 5% CO2. Starting from 14-16 
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hours after sorting, each well was inspected individually using an inverted light 

microscope every two hours until the end of the 72h observation period. Wells in which 

zero or more than one cells was initially observed were excluded from analysis. The time 

to first division was counted as the first hour during which two separate cells were visible 

in a well. The time to second division was counted as the first hour during which four 

separate cells were visible in a well. 

 

RNA seq 

Two replicates of RNA libraries were prepared from 20,000-40,000 single sorted cells 

from five mice each. 500µL of Qiazol (Qiagen 79306) was added to each sample. 

Samples were spun for 15 minutes at 4°C 12,000xg and the liquid phase was transferred 

to a new tube and mixed with 1.5x volume 200 proof ethanol. RNA was isolated using 

the miRNeasy (Qiagen 217004) kit according to manufacturer’s instructions, with the 

following modifications: columns were replaced by ones from the MinElute cleanup kit 

(Qiagen 28204), and flow through after column loading was collected and loaded a 

second time to increase yield. DNA was digested using DNase I (Qiagen 79254). Beijing 

Genomics Institute (BGI) at CHOP performed sequencing library construction and 

sequencing. Briefly, BGI prepared amplified cDNA using SPIA amplification (NuGEN) 

and created a paired-end sequencing library using the Ovation Ultralow Library System 

(NuGEN). Samples were sequenced on an Illumina HiSeq 2500 Sequencing System 

(Illumina) using a PE100 flow cell to a depth of 80-100 million reads per sample. 

 

Bioinformatics 
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RNAseq samples were analyzed for differential expression as follows. Reads were 

aligned using STAR 2.4.2a with default parameters 46. STAR genome indices were 

generated using the UCSC mm9 genomic sequence, and genes annotated using the 

UCSC mm9 RefSeq GTF files (RefFlat version). Reads were tabulated using HTSeq-

0.6.1p1 47. Using R.3.2.4 and DESeq2 v3.2 48, differentially expressed genes were called 

with adjusted p-values less that 0.1.  Graphic outputs used regularized logarithm 

adjusted data. Gene Set Enrichment Analysis (GSEA) 49 50 was performed using 

MSigDB v6.0 and enrichments were significant called at FDR≤0.2 and/ or p≤0.05. 

 

Statistical analysis 

All statistical comparisons across samples were calculated by two tailed-student’s t-test.
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3.6 Figures	
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3.7 Figure Legends	

Figure 3.1: The HSC pool is a continuum of HSC subtypes with distinct cell cycle kinetics 
and self-renewal/ differentiation properties. (A) Peripheral blood analysis 16 weeks after 
transplant of 200 WT SLAM LSK (gray) or 100 Lnk-/- SLAM LSK (red) into lethally irradiated 
recipients together with 400k competitor cells is shown. For all transplant data, each symbol 
represents one animal, black bars represent the mean of each group. Horizontal lines indicate 
direct comparison. ‡ indicates comparison to WT d0 and ◊◊◊ indicates comparison to Lnk-/- d0. ‡ 
or ◊ signify p<0.05, ‡‡ or ◊◊ signify p<0.01, and ‡‡‡ or ◊◊◊ signify p<0.001. (B) Analysis of 
peripheral blood 16 weeks after secondary transplant of 1 million total BM from primary 
recipients is shown. (C) The donor derived SLAM LSK frequency in bone marrow of primary 
recipients after 16 weeks is shown. Donor frequency was calculated as follows: 
(donor%)*(SLAM LSK%). (D) Lineage composition of donor derived cells is shown in Myeloid 
(M), B cells (B) and T cells (T) in the peripheral blood of primary recipients 16 weeks after 
transplant. Mice with donor reconstitution below 1% in all lineages were excluded from this 
analysis. All comparisons are not significant. (E) Lineage composition of donor-derived cells is 
shown in M, B, and T cells in the peripheral blood of secondary recipients 16 weeks after 
transplant. 

 

Figure 3.2: Cell intrinsic properties conferred by in vivo division are maintained in vitro. 
(A) The division status of SLAM LSK in Lnk-/- mice after six weeks of chase was assessed by 
flow cytometry. The distribution of cells by division is shown, n=3. (A, D, E) Bars indicate 
means, and vertical lines indicate SE. (B) 50 SLAM LSK in division subsets d0, d2, and d4 were 
transplanted into lethally irradiated recipients together with 350,000 total bone marrow 
competitor cells. Shown is donor reconstitution of peripheral blood 16 weeks after transplant. (C) 
Individual cells were sorted into wells of round bottom 96 well plates and visualized every two 
hours for division. Time of division was noted as the first hour during which two individual cells 
were visible in a well. Median time to first division is charted by dotted lines. Each symbol 
represents the average number of cells per well. d0, d1, d2, and d4 are indicated by a diamond, 
cross, square and circle, respectively. The number wells counted is n=93, n=86, n=90, n=88 for 
d0, d1, d2, and d4 respectively. (D) The mean time to first division is quantified, and the 
numerical value is written in each bar. (E) The number of hours between the first and second in 
vitro division is quantified. (F) The average number of cells per well throughout the 72h 
observation period is shown. 

 

Figure 3.3: Lnk HSCs have slower division kinetics in vitro. (A) Individual cells in division 0, 
2 or 4 from WT and Lnk-/- mice were sorted into round bottom 96 well plates and visualized for 
division every two hours. Cells were tracked for 72h. Time to first division in hours is shown, 
plotted as the percent of wells in which the single cell has divided at least once. Time of division 
was noted as the first hour during which two individual cells were visible in a well. Median time 
to first division is charted by dotted lines. Each symbol represents the average number of cells per 
well. Only seven time points are displayed for clarity. n=3 for Lnk-/- and n=1 for WT, results 
from one paired experiment are shown. d0, d2 and d4 cells are indicated by diamonds, triangles 
and circles, respectively. The number wells counted for WT cells is n=82, n=86, n=89 for d0, d2, 
and d4 respectively. The number wells counted for Lnk-/- cells is n=84, n=83, n=81 for d0, d2, 
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and d4 respectively. (B) The time in hours to first division for d0, d2, and d4 from WT and Lnk-/- 
mice cells is shown. (B, C) Bars represent the mean and vertical lines represent SE throughout all 
graphs. The numerical value of the mean is displayed inside each bar. The result of statistical 
comparison of means by two-tailed student’s t-test is indicated above the bars, ns indicates not 
significant p value, * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001. (C) 
displays the mean number of hours between the 1st and 2nd divisions in vitro for d0 and d4 cells 
from WT and Lnk-/- mice. (D) Cell number over the 72h observation period is plotted for d0, d2, 
and d4 cells from WT and Lnk-/- mice. 

 

Figure 3.4: Genome wide gene expression correlates with HSC division continuum. (A) 
shows unsupervised clustering using Spearman correlation among biological replicates and 
samples from d0 (purple), d2 (green), d4 (orange), and d5+ (teal) SLAM LSK subsets. (B) 
Differential gene expression was calculated using DESEq2 and the number of significantly 
changed genes from each comparison is shown in the table. (C) K-means clustering analysis 
shows four clusters of differentially expressed genes. Each gene is scaled relative to expression 
across subsets by Z-score. Clusters are indicated by vertical lines. Color indicates level of gene 
expression; low expression is colored in blue, while high expression is colored in red. Division 
subsets are indicated at the bottom of the heatmap, biological replicates are indicated by 
horizontal lines. (D) shows top 15 Gene Ontology terms for each Cluster. GO terms are ranked by 
fold enrichment. (E, F) GSEA enrichment for each pairwise comparison between division subsets 
is shown for Hallmark Genesets (h.all.v6.0).  

 

Figure 3.5: HSC in vivo division history best represents HSCs. (A) CD150 intensity is plotted 
against GFP intensity in CD48-LSK cells from Lnk-/- mice. Clear CD150 positive and negative 
fractions are visible in division zero. n= 16, one representative image is shown. (B) CD34 
intensity is plotted in CD48- LSK. n=5, one representative image is shown. The gray dotted line 
represents the cutoff between positive and negative set by a fluorescence minus one control. 
Dotted fuchsia lines indicate sort gates. (C, D, F) CD48- LSK were gated on division 0 and 
additionally selected by CD150, CD34 or CD49b as indicated in each panel. 20 double-sorted 
cells were transplanted into lethally irradiated recipients together with 400,000 Sca-1 depleted 
competitor cells. Donor reconstitution in peripheral blood is shown 16 weeks after transplant. (C) 
shows donor reconstitution for CD150 positive or negative CD48- LSK from WT or Lnk-/- 
donors. (D) shows donor reconstitution for CD34 positive or negative CD48- LSK from WT 
donors. (E) CD49b is plotted against GFP in SLAM LSK cells. n=6, one representative image is 
shown. (F) shows donor reconstitution for CD49b positive or negative SLAM LSK from WT or 
Lnk-/- donors. In addition, CD49b positive or negative SLAM LSK cells in division 4 were 
transplanted from Lnk-/- donors. 

 

Figure 3.6: Lnk deficiency sustains stem cell markers throughout division. (A, C, E, G) 
Surface marker intensity was plotted against GFP in SLAM LSK cells from bone marrow of WT 
and Lnk-/- mice. (B, D, F, H) The geometric mean was calculated for each division subset and 
normalized relative to the intensity at division 0. Bars represent means and vertical lines represent 
SE. Statistical comparisons between WT and Lnk-/- cells with p≤0.05 are indicated above the 
bars. * indicates p<0.05, and ** indicates p<0.01. Comparisons with d0 within each genotype is 
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indicated by a double cross (‡) or diamond (◊) for WT or Lnk-/-, respectively. ◊ or ‡ indicate 
p<0.05, ◊◊ or ‡‡ indicate p<0.01, and ◊◊◊ or ‡‡‡ indicate p<0.001. Four recognized stem and 
progenitor -associated cell surface markers were analyzed. (A) The intensity of c-kit is plotted 
and (B) quantified, n= 9 for Lnk-/- and n=5 for WT. (C) The intensity of Sca-1 is plotted and (D) 
quantified, n= 7 for Lnk-/- and n= 5 for WT. (E) The intensity of CD150 is plotted and (F) 
quantified, n=16 for Lnk-/-, n=5 for WT. (G) The intensity of CD48 is plotted and (H) quantified, 
n=8 for Lnk-/- and n=5 for WT. 

 

 

Figure 3.S1: H2B-GFP captures the heterogeneous state of division of SLAM LSK cells. (A) 
H2B-GFP expression is induced by doxycycline administered in drinking water during “pulse” 
period for 6 weeks. Signal is diluted during “chase” period for four weeks. Signal retention is 
then examined in bone marrow.  (B) Histogram plots demonstrating that label retention by GFP 
intensity is enriched in stem cell populations. Pictured are LK, LSK and SLAM LSK populations 
of WT and Lnk-/- mice. (C) Label retention is quantified in SLAM LSK between WT and Lnk-/- 
mice (n=6, and n=17, respectively). *= p<0.05, **=p<0.01. 

 

Figure 3.S2: Division impacts several cell surface markers. (A) shows a representative plot of 
ALCAM surface expression across division subsets in SLAM LSK of Lnk-/- mice. (B) Mean of 
ALCAM intensity is quantified across division subsets relative to division 0. n=4 mice. (C) 
shows a representative plot of CD41 surface expression across division subsets in SLAM LSK of 
Lnk-/- mice. n=4. (D) Mean CD41 intensity is quantified across division subsets relative to 
division 0. (E) shows a representative plot of CD61 surface expression across division subsets in 
SLAM LSK of Lnk-/- mice. n=4, one plot is shown. Bars indicate mean. Statistical comparisons 
between surface marker expression relative to d0 are indicated above bars. ◊ indicates p<0.05, ◊◊ 
indicates p<0.01, and ◊◊◊ indicates p<0.001. Individual pair-wise comparisons are indicated by a 
horizontal bar, and p<0.05 is indicated by *. 

	

Supplemental Table 1: High quality sequencing reads are obtained from input. Table shows 
total reads, uniquely and multiple mapped reads, and mapped reads as percentage of total reads 
for each replicate and sample submitted for RNA sequencing. 

 

Supplementary Table 2: Antibody clones and suppliers 
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CHAPTER 4 Discussion 
 

Together this body of work investigates the impact of Lnk deficiency in HSCs. In chapter 

2, we show that in context of FA bone marrow failure, Lnk deficiency rescues the 

functional HSPC defects associated with Fancd2 deficiency and crucially, mitigates 

genome instability. The second is an investigation of the mechanism underlying 

increased HSC self-renewal in Lnk-/- HSCs. The findings presented here shed light on 

the mechanism of Lnk function and impact on HSC biology and offer a potential 

opportunity to manipulate HSCs through transient incapacitation of LNK. 

 

4.1 The impact of Lnk deficiency on FA 
	

4.1.1 Summary of research findings and conclusions 
	

There is much effort devoted to elucidating the roles of known FA proteins and 

identifying new members. As more information becomes available, it becomes 

increasingly clear that FA family members participate in a diverse set of roles. FANCC 

has been shown to mediate an extra-nuclear role in detoxifying reactive oxygen species 

1. Equally importantly, FANCC and FANCD2 have also been reported to promote 

autophagy through which they exert regulation over protein quality control and this role 

independently contributes to cell viability 2. FANCD2 is also important in resolving 

microbridges during anaphase and preventing microsattelite nuclei 3 4 5. The impact of 

these emerging roles for FA proteins is less clear, but the roles are as varied as they are 

numerous. 
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Though BMF in FA is currently treatable by BMT, a more permanent approach towards 

FA phenotype correction, of course, is through gene editing to directly correct the 

causative mutations. Recent advances in genome editing techniques, most notably via 

the bacterial-derived CRISPR-Cas9 system, make genome editing a possibility in FA 

cells. However before such an approach can be a viable therapeutic modality, several 

challenges must be overcome. First, the ability to effect gene correction by CRISPR-

Cas9 necessarily proceeds through a homologous recombination, the very mechanism 

that is defective in many subsets of FA. This creates an obvious roadblock in the 

efficient and safe integration of gene correcting sequences into the genome. Second, 

cells that can be removed from the body, modified, and then returned- such as HSCs- 

may be effectively targeted by a gene editing mechanism. Unfortunately, most cells 

would be not be targetable through this approach, leaving them still vulnerable to the 

hallmark FA-associated susceptibility to cancer. Epithelial head and neck, cancers, for 

example, have been documented in 5% of FA patients in the FA database 6 and the 

probability of solid tumor development is 76% in patients without leukemia or aplastic 

anemia 6. Together these drawbacks of direct gene correction therapy demonstrate the 

importance of independent genome instability –reducing interventions. 

 

Two main studies demonstrate improvement in FA manifestations by non-curative 

means. The first study demonstrates that apoptosis in FA cells is p53 dependent 7. p53 

is basally activated in FA cells from patients as well as in BM cells from Fancg deficient 

mice. p53 mediates a cellular response that involves G1/G0 arrest in FA cells and 
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ultimately activates cell death through apoptosis. Predictably, knockdown of p53 

improves cell survival, which is also correlated with a rescue in LSK frequency in 

FancD2 deficient mice. What is especially noteworthy is that human cells with 

knockdown of p53 and FancD2 show improved reconstitution of recipients over 

reconstitution by FancD2 knockdown cells. It is important to note, however, that the 

reconstitution decreases over time, indicating cell exhaustion. Though p53 deletion as a 

treatment for FA is of course out of the question due to the genomic instability and 

cancer predisposition conferred by p53 inactivation, this study demonstrates for the first 

time that overcoming the consequences of accumulating DNA damage alone has 

significant impact on FA HSC function and lays the groundwork for the feasibility of 

rescuing HSPCs function in the context of FA without bone marrow transplantation or 

direct gene correction. 

 

The second study addresses another signaling arm that is over-activated in FA cells: 

TGFβ. Here, the findings also demonstrate that overcoming the cellular consequences of 

FA deficiency is sufficient to improve HSC function 8. Small molecule inhibition or genetic 

deletion of key TGFβ components results in suppression of bone marrow failure after 

forced in vivo HSC proliferation and a rescue in colony forming capacity. Importantly, the 

amount of DNA damage after forced in vivo proliferation is decreased after TGFβ 

blockade, as evidenced by γH2AX accrual. Additionally, suppression of TGFβ shifts DNA 

repair towards HR utilization by restoring transcription of HR component genes, thereby 

increasing the odds of error-free DNA repair in FANCD2 deficient cells and improving 

genome stability.  
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Our findings parallel the conclusions that non-curative interventions can dramatically 

improve FA HSC function. In the context of FANCD2 deficiency, we demonstrate robust 

restoration of hematopoietic stem cell function in a rigorous serial transplantation assay 

by deletion of Lnk. Both HSC numbers and transplantability are restored to WT levels, 

simultaneously highlighting the importance of replication-associated stress in BMF and 

the impact of non-curative treatments on ameliorating the manifestations of FA. 

Crucially, in context of chronic proliferation induced by pI:pC we also demonstrate LNK 

deficiency rescues FA HSC reconstitution potential. Importantly, LNK deficiency reduces 

genome instability, and this is through augmenting stalled replication fork stability – a 

direct rescue of a FANCD2 function. In combination with another approach capable of 

either directly restoring crosslink repair or detoxifying damaging intermediates, Lnk 

deficiency highlights potential targets of therapeutic interventions in FA. 

 

4.1.2 Future Perspectives 
	

The role of LNK in human FA cells remains undertermined. This question deserves 

immediate attention. In humans, inactivating mutations in LNK protein are associated 

with JAK2-dependent neoplasms 9 or JAK2-independent erythrocytosis 10,11, indicating a 

similar function in suppression of cell proliferation in humans as in mice. Additionally, 

human HSPCs modified to suppress LNK expression show increased erythroid cell 

production 12, demonstrating that LNK does play a role in regulating human HSPCs. The 

role of LNK deficiency in the expansion and self-renewal of human HSCs is ongoing in 
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the lab, as well as a parallel study on the impact of Lnk deficiency on HSC function and 

genome stability of human FA HSCs. 

 

Given the unexpected impact of LNK deficiency on replication fork stability in FancD2-/- 

cells, and by extension of cytokine signaling, it is easy to imagine that cytokine signaling 

might impact other functions of FA proteins. Our data conclusively rules out an impact on 

crosslink repair, but the impact of LNK deficiency on redox status and autophagy remain 

unexplored. In genome-wide profiling of LT-HSCs, we have previously shown an 

alteration in metabolic gene pathways in Lnk-/- HSCs, including enrichment in 

antioxidant genes 13. To that end, the role of Lnk deficiency in context of Fancg-/- or 

Fancc-/- will yield a definitive answer. Independent activity on redox homeostasis could 

be another way by which LNK deficiency prevents HSPC attrition, and was not explored 

in this work. If this is the case, however, then suppression of LNK would be a useful way 

to decrease DNA damage in FA cells. 

 

Cytokine signaling may play a role in genome-protection more broadly than only 

between LNK and FA. This role would not be unprecedented. TPO treatment increases 

radioprotection in IR-treated BM cells while LNK inhibits it 14 15. Given the role of cytokine 

signaling in protecting stalled replication forks it would be interesting to speculate 

whether Lnk deficiency could mitigate genome instability in context of deficiency of other 

fork-associated components, particularly BRCA2. BRCA2 mutated cells show high levels 

of genome instability, decrease in which decreases the risk for development of cancer 16 

17 18.  



	

125	
	

 

In this regard, it would be especially important to investigate whether LNK deficiency can 

impact genome instability in extra-hematopoietic tissues. In BM, Lnk is expressed in 

several progenitor populations 19 but Lnk is also expressed in other progenitor 

populations, which include the brain and adipocyte progenitors 20 21. In brain, LNK 

deficiency is associated with improved proliferation of brain neural precursor cells after 

injury 20.  

Together such findings would add to the case for developing a way to suppress LNK in 

vivo as a therapeutic intervention. 

 

4.2 Cell autonomous changes throughout in vivo division and role of LNK in 
regulating self-renewal 
	

4.2.1 Summary of research findings and conclusions 
	

Self-renewal of HSCs remains an open topic in stem cell biology both for its enigmatic 

mechanism and for its potential therapeutic applications. Though several key players 

have been discovered, a thorough understanding of how self-renewal in HSCs occurs is 

still missing. Deletion of key self-renewal components often leads to extreme 

consequences for HSCs. As mentioned in the introduction, deletion of TPOR, for 

example, leads to rapid depletion of HSCs, and impaired reconstitution potential. At the 

other extreme, some deletions preserve self-renewal at the cost of differentiation, such 

as is the case for DNMT3 22,23. Others deletions or gains of function such as JAK2V617F 

enhance self-renewal and initiate malignant transformation. In this context, LNK 
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deficiency offers a unique perspective into self-renewal because it simultaneously 

increases self-renewal capacity in HSCs without impinging on their capacity to 

differentiate and therefore provides an insight into studying self-renewal in a way that 

results in enhanced HSC function without impairment.  

 

HSCs are different from progenitors transcriptionally. Several studies have reported 

enrichment in mitogenic and proliferative signaling pathways in progenitors, setting 

HSCs apart by their quiescence 24 25 26. More recently, single cell profiling has more 

finely dissected these findings. One study sequenced single cells from populations 

enriched for stem cells 27. Their surface expression profiles during sorting were indexed 

and later compared against the transplantability of cells with identical surface profiles. 

This enabled an extrapolation of correlation between gene expression profile and 

functional output at a single cell level. Independent clustering revealed a common gene 

set associated with HSC function. Interestingly, these cells showed higher than average 

Sca1, and CD150 expression and lower than average CD48 expression, which 

correlates well with our d0 expression profile.  

 

Another profiling study, in which single HSCs were profiled based on label retention and 

surface markers against non-label retaining cells, also makes similar conclusions. This 

study demonstrates that dormant HSCs and activated HSCs exist in a continuum of 

states, aligned along a biosynthetic axis 28. Dormant HSCs are identified as label 

retaining and SLAM LSK, while active HSCs are non-label retaining in SLAM LSK, which 

is essentially like our profiling of d0 vs d5+ SLAM LSK. Indeed our findings are in 
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extensive agreement with this study. Interestingly, the study finds that all-trans retinoic 

acid maintains dormancy in HSCs. Changing trends in retinoic acid metabolism are also 

reflected in our gene expression profiling and represents an intriguing target for 

manipulation of self-renewal by LNK deficiency. Our study builds on this information by 

even more finely dissecting transcriptional profiles by each in vivo division and begins to 

investigate the relationship between cells after successive divisions. 

 

4.2.2 Future Perspectives 
	

Transcriptional profiling alone falls short of describing self-renewal completely. We have 

previously transcriptionally profiled the bulk SLAM LSK population and the resulting 

information was disappointingly scant: transcriptionally, Lnk-/- SLAM LSK are very 

similar to their WT counterparts. As is reflected in our data, fold change in expression of 

differentially expressed genes from cells across division subsets, where function vastly 

varies, actually vary only by a small amount. Interestingly, transcriptional profiles are 

also relatively stable through aging 29,30. This is true for LNK deficient HSCs as well 13. 

Whether the transcriptional changes we see are drivers or consequences of a cell fate 

decision is not distinguishable. The question arises, then, to what extent regulation of 

HSC self-renewal is post-transcriptional. 

 

There is mounting evidence that at least in part, self-renewal determination might be 

made at the post-transcriptional level. Self-renewing divisions are associated with 

asymmetrical inheritance of fate by asymmetrical inheritance of proteins in daughter 
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cells 31 32 33 34. We have previously shown that LNK binds a deubiquitinating complex, 

BRISC 35. JAK2 is marked by K63-linked ubiquitin after TPO stimulation, which serves 

as a mark for signaling activation. BRISC disassembles K63-linked ubiquitin chains, 

which attenuates JAK2 signal transduction. The cellular distribution of JAK2 at division 

has not been explored, but it is certainly possible that loss of Lnk could affect the 

distribution of Jak2 during cell division. 

 

Another, still emerging, self-renewal driver might be metabolic. The substrate for 

palmitoylation and the membrane anchors that establish polarity are metabolic 

intermediates. The availability of these intermediates can determine function. 

Cholesterol, for example, accumulates into local densities known as lipid rafts. These 

areas of membrane are stiffer than regular phospholipids in the membrane. Lipid rafts 

serve as organizing centers for signal transduction, and lipid rafts promote TPOR and c-

kit clustering, sensitizing cells to signal transduction 36 37. Furthermore, decreasing 

cholesterol level in HSCs suppresses their ability to proliferate and mobilize 38,39. 

Additionally, lipid composition has been shown to participate in orienting the cell division 

axis, which provides fate cues 40. Moreover, In our bulk SLAM LSK gene profiling, 

metabolic processes related to glycolysis, cholesterol synthesis and redox status 

dominated the enrichment categories in Lnk deficient HSCs 13.  

 

Finally, microenvironment may contribute to self-renewal choices. Several studies show 

the influence of niche interactions in cell fate decision, with daughter cells poised for 

differentiation dividing away from the niche 32. In this sense, cell surface proteins such as 
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integrins may help to determine whether a cell will be capable of receiving a self-renewal 

signal to begin with. If Lnk deficiency stabilizes cell surface expression of HSC markers, 

perhaps LNK deficiency improves the ability of HSCs to receive those self-renewal 

signals.  

 

Relatedly, another open question in Lnk-/- HSC biology is the localization of the 

expanded HSC compartment. It remains unknown whether Lnk-/- HSCs crowd the same 

number of niches or whether they simply create new ones. It would be interesting to 

determine whether Lnk -/- HSCs have enhanced self-renewal due to co-opting niches. 

 

4.3 Lnk deficiency as a mode of therapeutic intervention in HSCs 
Taken together, increased genome stability and enhanced self-renewal and repop 

ulation advantages make Lnk deficiency an attractive target for improving efficiency of 

gene therapy or transplant. Currently, two main challenges limit gene therapy: low 

engraftment after transplant and low editing efficiency 41 42. Given our findings, LNK 

deficiency may help address both issues.  

 

A second important application for LNK -/- HSCs is to improve engraftment and 

reconstitution during transplant. Myeloablative conditioning is a hard on recipients, 

especially in context of genome instability as in FA, where clearing the bone marrow 

space needs to be balanced against producing excess damage in other tissues. With the 

advantage LNK deficiency provides, transplants in which LNK is temporarily inhibited 
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might be able to produce a more robust reconstitution in recipients, and might reduce the 

need for severe conditioning. Of course, how LNK deficiency impacts human HSCs 

remains to be seen. 

 

Additionally, LNK is not considered a classically “druggable” target in itself since it lacks 

kinase activity. Therefore this highlights the need for further unraveling the mechanism 

of HSC fitness and expansion in LNK deficiency in order to discover such a target, or to 

look towards alternative strategies that might temporarily target LNK protein expression, 

such as inducible shRNAs or modified antisense oligos.  
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