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Coming Full Circle: Epithelial Plasticity And The Natural History Of
Metastasis

Abstract
The primary cause of cancer-related deaths is metastasis— the spread of cancer cells to distant organs— and
yet the mechanisms underlying this process remain elusive due to the difficulty in detecting early metastatic
events, which are rare, stochastic and microscopic. To investigate the cellular and molecular mechanisms of
metastasis, I utilized an autochthonous mouse model of pancreatic cancer (KPCY) in which all tumor cells
are genetically labeled with yellow fluorescent protein (YFP). The YFP lineage label allows for the detection
and isolation of disseminated tumor cells as they delaminate from epithelial structures within the primary
tumor, invade into the stroma and circulation, and colonize distal organs. Using this system, I characterized
the development of metastatic lesions from single disseminated cells to grossly macroscopic lesions in the
murine liver. I found that gross metastases closely resembled primary tumors in terms of differentiation and
microenvironment— these large lesions are well differentiated, containing primarily epithelial tumor cells,
and accumulate stroma consisting of myofibroblasts, leukocytes and extracellular matrix (ECM). In contrast,
single disseminated cells tend to be poorly differentiated and lack any association with stromal cells, and must
build up a microenvironment around them as they grow. Despite the presumably protective stroma
surrounding large lesions, gross metastasis was significantly reduced with chemotherapy, while single cells
were unaffected. Interestingly, residual lesions were enriched for epithelial features, suggesting that EMT
confers chemosensitivity in this context. I also used the KPCY model to investigate the molecular
mechanisms of epithelial-mesenchymal transition (EMT), which is widely considered to be the first step in
the metastatic cascade. The YFP lineage label made it possible to identify and isolate tumor cells that have
undergone EMT for transcriptional profiling. Surprisingly, I found that in a majority of pancreatic tumors,
conventional transcriptional repressors were not involved in EMT. Although a mesenchymal transcriptional
program was significantly enriched in cells that had undergone this “non-canonical” mechanism of EMT, the
epithelial program was downregulated at the protein level by a mechanism involving protein internalization.
Because cells retain both epithelial and mesenchymal properties during non-canonical EMT, this
phenomenon represents an attractive explanation for the ability of tumor cells to cycle between epithelial and
mesenchymal states and adapt to the changing microenvironment on their way to metastatic sites. The
journey from primary tumor to metastatic site requires cancer cells to overcome many obstacles and a better
understanding of how they navigate the numerous steps of the metastatic cascade could open the door to
desperately needed anti-metastatic therapies.
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ABSTRACT 
 

COMING FULL CIRCLE: EPITHELIAL PLASTICITY AND  

THE NATURAL HISTORY OF METASTASIS 

Nicole Marie Aiello 

Ben Z. Stanger 

 

The primary cause of cancer-related deaths is metastasis— the spread of cancer cells to 

distant organs— and yet the mechanisms underlying this process remain elusive due to the 

difficulty in detecting early metastatic events, which are rare, stochastic and microscopic. To 

investigate the cellular and molecular mechanisms of metastasis, I utilized an autochthonous 

mouse model of pancreatic cancer (KPCY) in which all tumor cells are genetically labeled with 

yellow fluorescent protein (YFP). The YFP lineage label allows for the detection and isolation of 

disseminated tumor cells as they delaminate from epithelial structures within the primary tumor, 

invade into the stroma and circulation, and colonize distal organs. Using this system, I 

characterized the development of metastatic lesions from single disseminated cells to grossly 

macroscopic lesions in the murine liver. I found that gross metastases closely resembled primary 

tumors in terms of differentiation and microenvironment— these large lesions are well 

differentiated, containing primarily epithelial tumor cells, and accumulate stroma consisting of 

myofibroblasts, leukocytes and extracellular matrix (ECM). In contrast, single disseminated cells 

tend to be poorly differentiated and lack any association with stromal cells, and must build up a 

microenvironment around them as they grow. Despite the presumably protective stroma 

surrounding large lesions, gross metastasis was significantly reduced with chemotherapy, while 

single cells were unaffected. Interestingly, residual lesions were enriched for epithelial features, 

suggesting that EMT confers chemosensitivity in this context. I also used the KPCY model to 

investigate the molecular mechanisms of epithelial-mesenchymal transition (EMT), which is 

widely considered to be the first step in the metastatic cascade. The YFP lineage label made it 
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possible to identify and isolate tumor cells that have undergone EMT for transcriptional profiling. 

Surprisingly, I found that in a majority of pancreatic tumors, conventional transcriptional 

repressors were not involved in EMT. Although a mesenchymal transcriptional program was 

significantly enriched in cells that had undergone this “non-canonical” mechanism of EMT, the 

epithelial program was downregulated at the protein level by a mechanism involving protein 

internalization. Because cells retain both epithelial and mesenchymal properties during non-

canonical EMT, this phenomenon represents an attractive explanation for the ability of tumor cells 

to cycle between epithelial and mesenchymal states and adapt to the changing microenvironment 

on their way to metastatic sites. The journey from primary tumor to metastatic site requires cancer 

cells to overcome many obstacles and a better understanding of how they navigate the numerous 

steps of the metastatic cascade could open the door to desperately needed anti-metastatic 

therapies. 
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CHAPTER 1: Introduction  
 

Biology of pancreatic ductal adenocarcinoma 

 Pancreatic ductal adenocarcinoma (PDAC) is the most common form of 

pancreatic cancer and also the most deadly, with a five-year survival rate of only 7.7%1. 

The poor prognosis for PDAC patients can be attributed to frequent and widespread 

dissemination, chemoresistance and a lack of early detection methods. The vast majority 

of cases present with metastasis and are thus ineligible for surgery, the only known cure 

for PDAC2,3. Even those who receive surgery have an extremely high (90%) rate of 

recurrence4 and 70% of PDAC patients die from metastatic disease5, highlighting the 

need for therapies that can prevent or target metastasis.  

Pathology 

The most common lesions preceding PDAC are pancreatic intraepithelial 

neoplasia (PanINs), which are microscopic and characterized by ductular architecture. 

As PanINs increase in grade from 1-3, they acquire nuclear atypia and cytologic 

abnormalities until finally progressing to frank, locally invasive malignancy6. Intraductal 

papillary mucinous neoplasia (IPMN) and mucinous cystic neoplasia (MCN) can also 

evolve into PDAC but at a lower frequency compared to PanINs7. PDAC tumors are 

characterized by the accumulation of desmoplasia, which consists of various stromal cell 

populations such as leukocytes and fibroblasts, as well as numerous extracellular matrix 

components8. Unlike most solid cancers, PDAC is typically hypovascular and poorly 

perfused, which, in addition to the dense stroma, is thought to contribute to the failure of 

drug delivery to these tumors9-11. However, it is not clear whether the microenvironment 

plays a similar role in chemoresistance at metastatic sites. 
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Genetics 

PDAC is relatively homogenous in terms of driver mutations: over 90% of PDAC 

tumors harbor activating mutations in the oncogene Kras12, pointing to the RAS pathway 

as a critical gatekeeper of pancreatic tumorigenesis. Kras is a GTPase involved in the 

early steps of the signal transduction cascades activated by various growth factors. 

Mutations in the Kras gene frequently occur at codon 12 but are also found at codons 13 

and 61, all of which cause the protein product to be constitutively active. In addition to 

RAS, commonly altered signaling pathways include Hedgehog, TGF-β, WNT, apoptosis, 

regulation of G1/S transition, chromatin modification, DNA damage repair and axon 

guidance13,14. Subsequent mutations of tumor suppressors involved in these pathways, 

such as Tp53, Smad4 or Cdkn2a, are thought to be necessary for tumor progression15,16. 

On average, PDAC tumors possess significantly fewer somatic mutations compared to 

other cancer types such as breast and colorectal13. 

Subtypes 

 PDAC tumors can be stratified into both genetic and transcriptional subtypes. 

Whole genome sequencing and copy number variation have revealed four PDAC 

subtypes based on chromosome structural variation: stable, locally rearranged, 

scattered and unstable14. “Stable” tumors exhibit the fewest structural variation events 

(<50) but often exhibit aneuploidy, indicating defects in mitosis. “Locally rearranged” 

tumors are characterized by a single focal event, usually a large amplification or deletion 

or the fusion of two neighboring chromosomes. “Scattered” tumors exhibit a moderate 

level of chromosomal rearrangements while “unstable” tumors possess more than 200 

structural variation events and exhibit the highest genomic instability of all subtypes.  
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Transcriptional PDAC subtypes have been identified and corroborated by three 

independent groups. Using microarray data from patient samples and established 

human and murine PDAC cell lines, Collisson et al. were the first to stratify tumors into 

three subtypes: classical, exocrine and quasi-mesenchymal17. Classical tumors are 

moderate to well differentiated (i.e. exhibit epithelial histology) and tend to be sensitive to 

erlotinib, an EGFR inhibitor. The exocrine subtype is characterized by high expression of 

pancreatic enzyme genes and, like classical tumors, tends to be more differentiated in 

terms of histology. Quasi-mesenchymal tumors are often poorly differentiated, express 

high levels of mesenchyme-related genes and are sensitive to gemcitabine, the standard 

of care for PDAC. Using RNA-sequencing, Bailey et al. uncovered essentially the same 

PDAC subtypes plus an additional one in a panel of 96 human PDAC tumors: pancreatic 

progenitor (Collisson’s classical), aberrantly differentiated endocrine exocrine (ADEX; 

Collisson’s exocrine), squamous (Collisson’s quasi-mesenchymal) and immunogenic18. 

Most recently, Moffitt et al. utilized virtual microdissection to bioinformatically separate 

tumor and stromal gene expression in PDAC microarray data and identified two tumor 

subtypes, classical and basal-like, which closely resemble Collisson’s classical and 

quasi-mesenchymal subtypes, respectively19. Thus, there is clear consensus on the 

existence of at least two distinct PDAC subtypes that differ in histology, drug sensitivity 

and gene expression. 

Treatment 

There are limited options for PDAC treatment, with only a handful of FDA-

approved chemotherapeutic regimens. The standard of care for the last fifteen years has 

been gemcitabine, a nucleoside analog that causes apoptosis by inhibiting DNA 

replication20. More recently, clinical trials have attempted to combine gemcitabine with 
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other drugs, but few have represented improvements21. One successful combination, 

gemcitabine plus the microtubule inhibitor nab-paclitaxel, increased median overall 

survival by 1.8 months and is considered the new standard of care22. Another more 

aggressive four-drug regimen consisting of fluorouracil, irinotecan, oxaliplatin, and 

leucovorin (FOLFIRINOX) also increases median overall survival compared to 

gemcitabine alone (11.1 months vs. 6.8 months, respectively) but is used less frequently 

because of its side effects23. For patients with resectable disease, one of these drug 

combinations is usually given as adjuvant therapy after surgery, however most develop 

distant recurrence24-26, suggesting that nearly all PDAC patients have occult 

micrometastatic disease. There are ongoing clinical trials testing the efficacy of 

neoadjuvant therapy to reduce primary tumor size and involvement and target 

micrometastatic disease early on. For most patients, surgery is not an option so they 

must rely on aggressive chemotherapy, sometimes combined with radiation, to control 

the disease2. Despite recent advances, the five-year survival rate for those eligible for 

surgery, have locally advanced disease and metastatic disease are 29.3%, 11.1% and 

2.6% respectively1. Thus there is a critical need to understand and target 

chemoresistance at primary as well as metastatic sites. 

Metastasis 

 During the metastatic cascade, tumor cells break off from epithelial structures as 

either single cells or clusters, intravasate into the circulation, lodge in the capillary beds 

of distant organs and extravasate into the parenchyma where they grow into larger 

lesions27. Eighty percent of PDAC patients present with locally advanced or metastatic 

disease1, with dissemination primarily to the lymph nodes, liver, peritoneum, diaphragm 

and lung28. It was once thought that a tumor’s pattern of metastatic colonization reflected 
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blood flow and biomechanics, however in 1889 Paget’s “seed and soil” hypothesis 

completely upended this idea29. Paget postulated that tumors “seed” organs that are 

conducive to growth (i.e. fertile soil). It is now clear that not only do tumor cells 

selectively seed organs, but they also “fertilize” the soil to generate a receptive pre-

metastatic niche30-34. 

Gross metastatic lesions typically resemble the primary tumor they arose from 

histologically, which in the case of PDAC tend to be epithelial in nature35-37. However 

epithelial cells are not particularly motile or invasive, so it has been postulated that 

metastasizing cells must go through epithelial-mesenchymal transition (EMT) to escape 

from the primary tumor and then the reverse process, mesenchymal-epithelial transition 

(MET) during colonization. There is precedent for this paradigm in embryogenesis, 

during which multiple rounds of EMT/MET are necessary for the formation of the three 

germ layers and various organs38. Numerous studies have demonstrated that EMT 

increases tumor cell dissemination but not metastatic colonization, while epithelial tumor 

cells have high colonization potential39-41.  

Common themes in embryogenesis and cancer 

The process of embryogenesis requires precise spatial and temporal activation of 

developmental signaling pathways. Re-activation of these embryonic signals in adult 

cells, a consequence of mutations and epigenetic remodeling, is a characteristic feature 

of cancer. Key developmental signaling pathways – including the Wnt, Hedgehog, and 

Notch pathways – are frequently dysregulated in cancer and participate in all stages of 

tumor progression, from initiation and maintenance to metastatic spread and growth at 

distant sites (Figure 1.1).  



6 
 

During development, Wnt signaling is involved in cell fate specification, 

proliferation and migration, and in the adult this pathway is involved in maintaining 

homeostasis in tissues such as the intestine, where Wnt signaling is critical for stem cell 

function42,43. There are three known Wnt pathways: canonical, which regulates gene 

expression, and two non-canonical pathways that regulate planar cell polarity and 

calcium flux44. In this review we have focused on canonical Wnt signaling because this is 

the most frequently implicated Wnt pathway in cancer. As depicted in Figure 1.1A, in the 

absence of a Wnt signal, the canonical Wnt effector beta-catenin (CTNNB) is 

continuously phosphorylated and targeted for degradation by glycogen synthase kinase-

3 (GSK3), which is stabilized when complexed with adenomatous polyposis coli (APC) 

and Axin. In response to Wnt glycoproteins, which signal through Frizzled receptors 

(FRZ) and their coactivators low-density lipoprotein receptor-related proteins 5 and 6 

(LRP), Axin binds FRZ and is unable to stabilize the APC/GSK3/CTNNB complex, 

freeing CTNNB to enter the nucleus and facilitate the transcriptional activity of the T-cell 

specific transcription factor (TCF) and lymphoid enhancer binding factor (LEF) family44. 

Canonical Wnt signaling is active in nearly all developing tissues and plays a critical role 

in body axis patterning45, stem cell maintenance and lineage specification46,47. In the 

adult, hyper-activation of the Wnt pathway – typically due to loss of the tumor suppressor 

protein APC – represents the first step in colorectal tumorigenesis48. Ligand-independent 

activation of CTNNB is a more common alteration in cancers outside the gut, especially 

in endometrioid ovarian cancer, hepatoblastoma and Wilms’ tumors49,50.  

The Hedgehog (HH) pathway, like the Wnt pathway, plays a critical role in the 

development of many organs including but not limited to the patterning of the central 

nervous system (CNS), tooth development and limb formation51-53. HH ligands, of which 

there are three including Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert 
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hedgehog (DHH), act as morphogens to direct left-right asymmetry and cell fate 

decisions and pattern developing tissues54. In the absence of HH ligands, the 

transmembrane protein Patched (PTC) indirectly facilitates the degradation of GLI-family 

zinc finger proteins (GLI) by blocking Smoothened (SMO) activity. In the presence of HH 

ligands, PTC is unable to inhibit SMO, which stabilizes GLI and allows it to translocate 

into the nucleus where it acts as a transcription factor (Figure 1.1B)55. In the pathogenic 

context, activation of the HH pathway can lead to basal cell carcinoma (BCC) (a type of 

skin cancer)56 or to the recruitment of a fibroblast-rich stroma in pancreatic cancer57,58.  

The Notch pathway is similarly involved in embryonic cell fate decisions; 

specifically, it is critical for the development of organs including but not limited to the 

CNS, pancreas, bone, and heart59. This pathway is activated by juxtacrine signaling 

between the Notch receptor on the receiving cell and Notch ligands including Delta-like 

(DLL) and Jagged (JAG) on the signaling cell. Upon binding of Notch ligands to the 

receptor, gamma-secretase (γ-SEC) cleaves the intracellular Notch domain (NICD), 

allowing it to enter the nucleus and facilitate the transcriptional activity of Recombination 

signaling binding protein for kappa J region (RBPJ) (Figure 1.1C)60. Notch’s role in tumor 

progression seems to be context-dependent, as the pathway can act as an oncogene in 

some settings (e.g. breast cancer and T-cell leukemia) or as a tumor suppressor gene in 

others (e.g. skin cancer)61-63, although the latter may be through a non-cell autonomous 

mechanism64. Other cellular signaling pathways in addition to Wnt, HH and Notch play 

critical roles in cell fate specification and migration during embryogenesis and have also 

been implicated in cancer invasion and metastasis. These include the fibroblast growth 

factor (FGF) and transforming growth factor beta (TGFβ)/bone morphogenic protein 

(BMP) signaling pathways which will be discussed later in this section for their ability to 

promote cell migration and invasion in both the developmental and cancer contexts65-68. 
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Thus, the molecular cues used to pattern an embryo are harnessed by tumor cells to 

enhance growth, recruit stromal cells and coordinate spread from the primary tumor.  

A recurring motif in development is reciprocal signaling between neighboring cell 

populations; crosstalk that facilitates morphogenesis of the emerging tissue. Reciprocal 

signaling between developing epithelium and mesenchyme occurs repeatedly during 

embryogenesis and is critical for the formation of limbs, epidermal appendages, 

pancreas, lungs, kidney and other organs69-75. Carcinomas also contain a mixture of 

epithelium - cancer cells - and mesenchyme, which in the cancer context is known as 

stroma. The latter consists of leukocytes, fibroblasts, endothelium and lymphatic 

vessels, and collectively form what is known as the “tumor microenvironment” (TME). 

These cell populations engage in molecular crosstalk with cancer cells, which can effect 

cancer cell survival, proliferation and migration. An example is provided by pancreatic 

cancer. As touched upon above, pancreatic tumor cells secrete SHH, a HH ligand, which 

recruits fibroblasts to form the dense “desmoplastic” or fibrotic stroma of that cancer 

type57,76,77. The fibroblast-rich stroma of pancreatic cancer has been demonstrated to 

exert both pro- and anti-tumor effects. Although desmoplasia is known to impair drug 

delivery9-11, depletion of myofibroblasts using genetic and pharmacological methods 

results in increased tumor growth and metastasis58,78. Nonetheless, signaling between 

cancer cells and the stromal cells they recruit is a common theme in carcinoma 

progression. Through reciprocal interactions such as these, tumors build a non-

cancerous stroma that in turn influences cancer cell behavior. 

Embryogenesis entails dramatic morphological changes and cellular movements 

that are recapitulated within tumors. One of the most notable of these is epithelial to 

mesenchymal transition (EMT), a process in which epithelial cells lose their epithelial 

characteristics, including apical-basal polarity and cell-cell adhesion, and take on the 
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motile features of fibroblasts. The primary role of EMT is during embryonic development, 

where it is critical for gastrulation, and other developmental events; however, cancer 

cells exploit this property of increased motility to facilitate spread. During gastrulation, 

WNT, TGF-β and FGF orchestrate primitive streak formation by promoting EMT via the 

activation of transcription factors Snail and Twist65,79,80. These developmental EMT 

transcription factors (EMT-TFs) are also drivers of EMT and consequent metastasis in 

breast, pancreatic and colorectal cancers, among others81,82. EMT is again required later 

in development, for neural crest cell migration, and is facilitated by Snail, Slug (also 

known as Snail2), and the Zeb family of transcription factors; these too have been 

implicated in cancer cell invasion and dissemination83-85.  

The primary function of EMT-TFs is to transcriptionally repress epithelial genes 

and activate mesenchymal genes86. One classic EMT-TF target is E-cadherin (Cdh1), a 

critical regulator of epithelial identity and a component of adherens junctions where it 

interacts with catenins. E-cadherin is a calcium-dependent cell adhesion molecule that 

tethers epithelial cells closely together87. Loss of E-cadherin allows an epithelial cell to 

disengage from its neighbors and is considered a hallmark of EMT88. In addition to E-

cadherin, other epithelial proteins such as those within tight junctions (claudins and 

occludins) and the cytoskeleton (keratins) are also downregulated89-91. Concurrently, 

mesenchymal genes involved in cell motility and extracellular matrix interactions are 

switched on to facilitate invasion92. MicroRNAs (miRNA), including the miR-3493,94 and 

miR-200 families95-99, negatively regulate EMT-TFs to keep the EMT program in check. 

Alternative splicing, epigenetic modifications and post-translational regulation are 

layered on top of miRNA negative feedback loops, resulting in complex regulatory 

circuitry that controls the balance of EMT-promoting and -inhibiting factors86.  



10 
 

Fate mapping 

Once a cancer cell undergoes EMT it becomes indistinguishable from the 

surrounding non-cancerous stroma. Likewise, studying metastasis in vivo has been 

challenging, particularly in the context of a spontaneously-growing tumor because each 

of the events that occur during metastasis – from invasion through basement 

membranes to growth at distant sites – involve rare stochastic phenomena that are 

difficult to capture experimentally. Fate mapping, also known as lineage-labeling or 

lineage-tracing, was originally developed to visualize the fate of individual cells and their 

progeny, referred to as clones, during embryogenesis, but it has also proven useful for 

the study of tumor-initiating populations and dynamic cellular movements in the context 

of cancer. Early fate mapping experiments employed vital dyes, fluorescent dyes, or 

radio-labeling to mark a specific region, lineage, or even a single cell of an embryo and 

follow it throughout development as cells divide and migrate away from their original 

positions. These studies allowed embryologists to generate detailed fate maps for a 

number of model organisms, including frog, zebrafish and chick100-102.   

With the advent of site-specific recombinase technology such as the Cre-lox 

system it became possible to genetically label and track a cell lineage, facilitating fate 

mapping in mammals, which, unlike lower model organisms are not transparent and 

contain many more cells and lineages. Cre recombinase (Cre) recognizes specific DNA 

sequences (loxP sites) and targets these for recombination, which, depending on the 

orientation of the sites can result in deletion, inversion or translocation of intervening 

sequences103,104. Typically, loxP sites are used to delete regions of DNA, such as, for 

example, a gene of interest or a stop codon located upstream of a fluorescent reporter 

gene105. Cre expression can be restricted to specific cell types by altering upstream 

promoter elements, which permits spatial control of gene expression106. Thus the Cre-lox 
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system can be utilized to specifically and indelibly label tumor cells, allowing for the 

detection and isolation of cancer cells that have undergone EMT, intravasated into the 

circulation and colonized distant organs. 

Cell-of-origin 

A pressing issue in cancer biology is the elucidation of tumor-initiating cells or 

“cell-of-origin” in cancer: which cells in a normal tissue give rise to cancer? Given the 

robust self-renewal capacity of cancer cells, it is often assumed that cancers arise from 

resident, adult stem cells within tissues, and hence the concepts of “cell-of-origin” and 

“cancer stem cells” are often conflated. (The cancer stem cell hypothesis posits that a 

subset of cells within the tumor harbor most of the tumor’s long-term self-renewal 

capacity, a concept quite distinct from the cell-of-origin, which merely points to the cell 

type within a tissue most likely to be transformed by the initiating mutation). Importantly, 

because cancer cells can, in principle, acquire stem cell properties as a consequence of 

mutation or epigenetic remodeling, they need not arise from stem cells. The ability of 

tumors to emerge in tissues where it is questionable whether stem cells exist (e.g. the 

kidney) is further evidence that cancers can arise from fully differentiated cells.  

Lineage tracing has been a powerful tool to identify stem cell populations in 

embryonic and adult tissues, and the same approach has now been used to identify 

tumor-initiating cells in cancer (Figure 1.2). Several years ago, Lgr5 – a Wnt-target gene 

– was identified as a marker of intestinal stem cells, as Lgr5+ cells labeled with Cre-

based technology durably gave rise to all the differentiated cell types of the intestinal villi 

as well as more Lgr5+ cells107,108. Building on this approach, Barker and colleagues 

(2009) used additional Cre-based tools to delete the tumor suppressor gene Apc in 

either the stem cell compartment (using Lgr5-Cre) or the non-stem cell “transient 
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amplifying” compartment--capable of short-term self-renewal only-- using Ah-Cre. While 

Apc deletion in the stem cells resulted in adenomas (premalignant lesions) that exhibited 

unimpeded growth, Apc deletion in the transient amplifying cells resulted in 

microadenomas (tumors less than 10mm in diameter) whose growth rapidly 

stalled109109109. This result suggested that intestinal stem cells are more competent than 

their transient-amplifying cell progeny – in the context of an APC mutation – to form 

tumors.  

At present, lineage tracing offers the most robust method of addressing the 

cancer stem cell hypothesis in vivo. By using inducible Cre systems such as CreER and 

titrating the dose of tamoxifen, one can limit recombination to rare, sparse cells within a 

tissue, providing the resolution to identify clonal populations. Utilizing this concept, 

Driessens and colleagues (2012) were able to identify cancer stem cells and their 

progeny in a chemical-induced carcinogenic model of squamous cell carcinoma (SCC). 

Using a lineage labeling system driven by Keratin 14 (K14)-CreER which marks basal 

epithelial cells within the epidermis, the authors found that only 20% of these cells were 

capable of generating a large clonal population of pre-malignant papilloma cells. 

However, when the authors allowed these papillomas to progress to malignant SCC, the 

tumors were became poorly differentiated and exhibited a much higher frequency of 

long-term replicative cells, suggesting that in the transition from benign to malignant the 

cancer stem cell/differentiated progeny hierarchy starts to fall apart110. 

Such lineage tracing experiments support the general notion that cancer is the 

result of having the “right” mutations in the “right” cell at the “right” time. In other words, 

certain cell populations (stem cells or non-stem cells) might be susceptible to the 

oncogenic effects of certain gene mutations that have no effect in other cell populations. 

Additional factors, such as the local environment (e.g. inflammation), could contribute to 
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the susceptibility or resistance of various cell types to the cancer-causing effects of a 

given mutation. Similar lineage tracing experiments have identified cells-of-origin in a 

number of contexts111-115. From these studies, it appears that in some cases tumors arise 

from resident tissue stem cells (e.g. intestinal tumors and basal cell carcinomas), 

whereas in other cases it appears that tumors can arise from fully differentiated cells 

(e.g. pancreatic tumors, cholangiocarcinomas, gliomas). 

Clonal heterogeneity and tumor evolution 

Genomic analyses have confirmed that tumors are composed of numerous “sub-

clones,” or clones with distinct mutations in addition to the original tumor-driving 

mutation(s)116,117. Such tumor heterogeneity is a consequence of “clonal evolution,” a 

process whereby cells within a cancer can acquire different mutations that lead them to 

be genetically and phenotypically distinct. A recent study has suggested that interactions 

between different sub-clones might drive tumor growth118, suggesting that heterogeneity 

might not be merely a byproduct of clonal evolution but could also underlie key features 

of tumor biology. 

Lineage tracing lends itself to the study of clonal evolution and the complex 

relationships between clonal populations. One useful tool has been the “Confetti” mouse, 

a strain in which cells are labeled with one of four fluorescent colors upon activation of 

Cre activity119. The system relies on the fact that Cre mediates different recombination 

events depending upon the orientation of LoxP sites: if LoxP sites are oriented in the 

same direction, the DNA sequence between them will be excised, if they are oriented in 

opposite directions, the gene between them will be inverted, and if they are located on 

separate chromosomes, Cre will mediate a translocation120. Within the Confetti allele, 

four fluorescent protein genes are flanked by LoxP sites and oriented in such a way that 
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excision or inversion results in the (somewhat) random expression of one of the four 

lineage labels. Using this system, it has been possible to identify “bottlenecks” during the 

clonal evolution of a tumor in vivo. For example, premalignant progression in pancreatic 

cancer is associated with a shift from acinar-to-ductal metaplasia (ADM), which are 

polyclonal, to more advanced pancreatic intraepithelial neoplasia (PanIN), which are 

monoclonal. This model has also revealed differences in metastatic potential between 

different tumor sub-clones, providing evidence for inter-clonal cooperation during tumor 

dissemination121. 

Lineage tracing has also provided insight into clonal evolution following 

chemotherapeutic selective pressures. Using a Cre-inducible mouse model of 

glioblastoma, for example, Chen et al. found that Nestin+ adult neural stem cells 

genetically labeled with green fluorescent protein (GFP) made up only a small fraction of 

naïve tumor, but upon treatment with temozolomide, an alkylating agent that is used to 

treat some brain cancers, these cells and their progeny expanded to become the most 

abundant tumor clone122. Similarly, in a mouse model of SHH-driven medulloblastoma, 

rare quiescent Sox2+ adult neural stem cells were found to be resistant to anti-mitotic 

and SHH-targeted therapy and responsible for recurrence after treatment123. These 

studies offer an explanation for why single therapies typically fail-- there is almost 

inevitably a resistant tumor subclone that will repopulate the tumor. The best strategy 

likely involves using multiple therapies targeting different pathways to reduce the chance 

of a single resistant subclone growing out. 

EMT and invasion 

It is comparatively easy to identify cells undergoing EMT during embryogenesis, 

as whole cell populations (e.g. the epiblast) can be observed to undergo a 
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transformation from an epithelial sheet to highly migratory fibroblast-like cells. However, 

it has proven to be exceptionally difficult to study cancer-associated EMT in vivo, 

because once a cancer cell undergoes EMT it becomes indistinguishable from the 

surrounding non-cancerous stroma. Likewise, studying metastasis in vivo has been 

challenging, particularly in the context of a spontaneously-growing tumor because each 

of the events that occur during metastasis – from invasion through basement 

membranes to growth at distant sites – involve rare stochastic phenomena that are 

difficult to capture experimentally.  

Again, lineage tracing has proven to be a useful technique in studying these 

processes. For example, by introducing a yellow fluorescent protein (YFP) lineage label 

into a well-established genetically engineered mouse model (GEMM) of pancreatic 

cancer, it became possible to unambiguously identify cells that had undergone EMT, as 

such cells still bore the lineage marker confirming their epithelial origins, despite 

acquiring a mesenchymal phenotype124. Lineage tracing has also been used to elucidate 

the dynamics of metastasis. For example, Aytes and colleagues (2013) used a YFP 

reporter in the context of a mouse model of prostate cancer to determine the temporal 

occurrence of lung metastasis: at one month post-induction, rare single YFP+ cells could 

be observed in the lung; at two months, YFP+ micrometastases were evident; and by 

three months, gross metastases were found in 100% of animals125. Similar observations 

have been made in pancreatic cancer, where lineage tracing has enabled the 

examination of the rare events involved in metastatic growth, down to single cell 

resolution.  
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Mouse models of pancreatic ductal adenocarcinoma 

Numerous mouse models of PDAC exist, and they all share the common theme 

of Kras deregulation and closely recapitulate the human disease in terms of progression 

from PanIN to PDAC, frequency and location of metastasis and poor response to 

chemotherapy. In each of these models, Cre-mediated recombination of loxP-stop-loxP 

(LSL) KrasG12D (a constitutively active mutant) is driven by one of three pancreas-specific 

promoters: Pdx1, Ptf1a (also called p48) or Ela1126. Pdx1 and Ptf1a are both expressed 

by pancreatic progenitor cells during development, however Pdx1 becomes restricted to 

endocrine cells in the adult pancreas while Ptf1a expression is limited to acinar cells of 

the exocrine compartment127. On the other hand, Ela1 is expressed only in mature acinar 

cells128. Mutant Kras alone drives pancreatic tumorigenesis in only a fraction of mice and 

with a long latency (>1 year)129, so many models also employ floxed or dominant 

negative (DN) tumor suppressor alleles such as Tp53, Smad4 or Cdkn2a (lost in 50-95% 

of human PDAC tumors)126. Loss of one of these tumor suppressors in addition to the 

expression of a constitutively active mutant Kras dramatically shortens tumor latency to 

2-5 months and increases penetrance126. Addition of a genetic lineage label such as 

LSL-Rosa26YFP/YFP allows for the visualization of rare, stochastic events such as EMT 

and early metastatic colonization. Using the KPCY model (Pdx1-Cre, LSL-KrasG12D, 

Tp53fl/+, LSL-Rosa26YFP/YFP), our lab previously demonstrated that EMT does indeed 

occur in living tumors and that there is evidence of dissemination to the liver even at pre-

neoplastic stages124. 

At present, a diagnosis of metastatic pancreas cancer is essentially a death 

sentence; thus there is a dire need for effective anti-metastatic treatments. However, to 

develop new therapies a basic understanding of the mechanisms driving metastasis is 

necessary. The molecular mechanisms underlying cancer cell EMT in vivo are still poorly 
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understood; much of what we know about EMT has been revealed by forcing cancer cell 

lines to undergo EMT through Tgf- treatment or overexpression of known EMT-TFs, 

which may not accurately reflect spontaneous EMT in living tumors. Another poorly 

understood aspect of metastasis is that of colonization: it is unclear how single 

disseminated cells develop into large metastatic lesions that closely resemble the 

original primary tumor. A stronger grasp of the mechanisms of spontaneous EMT and 

the natural history of metastatic colonization would open up new avenues for the 

prevention and treatment of metastasis. My thesis work sheds light on these processes 

using a lineage labeled mouse model of PDAC, which allowed me to isolate and 

transcriptionally profile of tumor cells that have undergone EMT in vivo and to detect 

occult micro-metastases and follow their development. 
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Chapter 1 Figures and Figure Legends 
 

 

 

Figure 1.1: Developmental pathways are frequently activated in cancer. WNT, HH 

and NOTCH pathways are involved in many aspects of embryogenesis, including, but 

not limited to, patterning, cell fate specification, proliferation and stem cell maintenance. 

Dysregulation of each of these signal transduction pathways has been implicated in 

tumor initiation. In each case, the pathway is activated upon binding of a ligand to a 

receptor on the plasma membrane. This sets off a cascade of events allowing an 



19 
 

effector to translocate to the nucleus and affect gene transcription. Pathway genes that 

are typically inactivated in cancer are highlighted in red; genes that are frequently 

hyperactivated in cancer are shown in green. WNT, wingless-type MMTV integration 

site; FRZ, Frizzled; LRP, low-density lipoprotein receptor-related protein; APC, 

adenomatous polyposis coli; GSK3, glycogen synthase kinase-3; CTNNB, β-catenin; P, 

phosphorylation; TCF, T-cell-specific transcription factor; LEF, lymphoid enhancer 

binding factor; HH, hedgehog; PTC, patched; SMO, smoothened; GLI, GLI-family zinc 

finger; DLL, delta-like; JAG, jagged; NICD, notch intracellular domain; γ-sec, γ-

secretase; RBPJ, recombination signaling binding protein for kappa J region.  
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Figure 1.2: Use of lineage labeling to identify stem cells during development and 

tumor progression. Using inducible Cre-recombinase technology, cells within a lineage 

are sparsely labeled to provide the resolution necessary to identify clonal populations. 

After a short period of time, labeled progeny (shown in green) become apparent. If the 

original labeled cell is a genuine stem cell, the labeled clones will persist over the lifetime 

of the tissue (or tumor) because the stem cell is continuously self-renewing and 

producing differentiated daughter cells. If, on the other hand, the labeled clones are lost 

over time, the original labeled cell was most likely a transient amplifying cell, which is 

capable of short-term self-renewal but eventually becomes terminally differentiated, no 

longer contributing to the pool of cells. This test is not only useful for identifying stem 

cells and cancer stem cells but also for detecting drug-resistant clones. After sparse 

labeling and chemotherapy, drug-resistant clones will persist and begin to take up a 

much larger fraction of the tumor cell population, much like a stem cell. 
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CHAPTER 2: Metastatic progression is associated with 
dynamic changes in the local microenvironment 

 

Abstract 

Most cancer-associated deaths result from metastasis. However, it remains 

unknown whether the size, microenvironment, or other features of a metastatic lesion 

dictate its behavior or determine the efficacy of chemotherapy in the adjuvant 

(micrometastatic) setting. Here, we delineate the natural history of metastasis in an 

autochthonous model of pancreatic ductal adenocarcinoma (PDAC), using lineage 

tracing to examine the evolution of disseminated cancer cells and their associated 

microenvironment. With increasing size, lesions shift from mesenchymal to epithelial 

histology, become hypovascular, and accumulate a desmoplastic stroma, ultimately 

recapitulating the primary tumors from which they arose. Moreover, treatment with 

gemcitabine and nab-paclitaxel significantly reduces the overall number of metastases 

by inducing cell death in lesions of all sizes, challenging the paradigm that PDAC stroma 

imposes a critical barrier to drug delivery. These results illuminate the cellular dynamics 

of metastatic progression and suggest that adjuvant chemotherapy affords a survival 

benefit by directly targeting micrometastases. 

 

Introduction 

Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate of less than 

6%, a dismal outcome related to late detection and a high rate of spread at the time of 

diagnosis1,130. Hence, metastatic disease accounts for a majority of PDAC-related 

deaths, even for patients with resectable tumors and no evidence of metastasis at the 
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time of diagnosis2,5. However, the mechanisms by which tumor cells navigate the 

“metastatic cascade” – a gauntlet that requires cellular escape from the primary tumor, 

survival in the circulation, invasion into distal tissues and colonization (growth) in a 

foreign, potentially hostile microenvironment – remain poorly understood131. 

One process thought to facilitate metastasis is epithelial-mesenchymal transition 

(EMT), whereby epithelial cells lose their adhesive contacts with neighbors and take on 

the migratory phenotype of mesenchymal cells92. Although EMT is believed to play a role 

in the dissemination of carcinoma cells, it has also been observed that metastases tend 

to exhibit the epithelial histology of their parent primary tumors35,36,132. This has led to the 

idea that the reverse process – mesenchymal-epithelial transition (MET) – drives the 

formation of a more epithelial phenotype at metastatic sites133. Although several studies 

support the view that MET is critical for metastatic colonization39-41, evidence for this 

phenomenon is lacking from spontaneous tumor models.  

Like primary tumors, metastases are a conglomerate of cancer cells, stromal 

cells, and extracellular matrix (ECM). In primary pancreatic cancer, a particularly dense 

(desmoplastic) stroma containing leukocytes, fibroblasts, and ECM makes up a large 

portion of the tumor mass, while the density of blood vessels tends to be low8. Although 

macro-metastatic lesions of various cancers – including PDAC, ovarian and breast – 

also exhibit a dense stromal infiltrate, it remains unclear when during metastatic 

progression this re-establishment of the tumor microenvironment occurs. 

Here, we have taken advantage of a lineage-labeled autochthonous model of 

pancreatic cancer to carefully catalog the changes that occur within metastatic cells and 

their immediate microenvironment during metastatic colonization and growth. We report 

that the process is highly dynamic, as both tumor cells and the stroma undergo marked 

changes during progression from singly seeded cells to micro- and macro-metastases. 
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Furthermore, we show that treatment with gemcitabine and nab-paclitaxel results in 

killing of metastatic tumor cells despite the presence of an ostensibly protective 

microenvironment. These results provide insight into the process of metastatic 

colonization and challenge the hypothesis that stroma acts as a physical barrier to drug 

delivery. 

 

Results 

Lineage tracing permits detection of micro-metastases 

We began by characterizing metastatic PDAC lesions in KPCY mice – in which 

Cre-mediated recombination triggers mis-expression of mutant KrasG12D, deletion of one 

copy of p53, and activation of a YFP lineage label in pancreatic epithelial cells – allowing 

us to track tumor cells at the single cell level124. KPCY mice, like related mouse 

models134,135, exhibit a pattern of gross metastasis similar to the human disease, 

consisting of spread to liver (40.5% of mice), diaphragm (32.4%), lung (10.8%), 

peritoneum (5.4%) and kidney (2.7%) (n= 40). We confined our subsequent analysis to 

the liver as it is the most frequent site of metastasis. Lesions were binned into five size 

categories according to the number of YFP+ cells: single, nano (2-10 cells), micro (11-

100 cells), milli (101-1000 cells) and macro (greater than 1000 cells) (Fig. 2.1a). When 

examined microscopically, nearly all tumor-bearing KPCY mice exhibited single cells 

(95.6%) or nano-metastases (91.3%) in the liver, while a lower frequency of animals had 

micro-metastases (65.2%) or milli- and/or macro-metastases (39.1%) (n=23). Most 

metastatic lesions contained 100 or fewer cells, with nano- and micro-metastases being 

the most abundant (Fig. 2.1b). Detailed metastatic burden quantification for each animal 

is listed in Table 2.1. 
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 We next sought to determine baseline levels of proliferation and apoptosis within 

metastatic lesions. Surprisingly, proliferation rates (as measured by the percentage of 

Ki67+ cells within each lesion) were not significantly different across lesions of all five 

metastatic categories (11-19%) and were comparable to the primary tumor (Fig. 2.1c, 

Fig. 2.2a). These results were corroborated by staining for phospho-histone H3 (pH3), a 

marker of mitosis (Fig. 2.2b,e) and proliferating cell nuclear antigen (PCNA) (Fig. 2.2c,f). 

Apoptosis, as measured by the percentage of cleaved caspase-3 (CC3) positive cells 

within each lesion, was absent from single cells and rarely seen in nano-metastases 

(0.2% of cells within nano-metastases were CC3+). Primary tumors and larger lesions 

also exhibited low (~1%), albeit significantly higher levels of apoptosis compared to 

single cells (Fig. 2.1c; Fig. 2.2d). To determine if proliferation is also constant across 

lesions in human PDAC we stained matched primary tumors, gross metastases and 

micro-metastatic lesions from patients for Ki67 (Fig. 2.3a-d). We found that the rate of 

Ki67 positivity (mean ± SD) was not significantly different between primary tumors (2.1 ± 

1.9), gross metastases (5.4 ± 5.6) and micro-metastases (3.1 ± 5.9), similar to what we 

observed in mouse PDAC. These data suggest that metastatic cancer cells exhibit 

similar rates of proliferation regardless of lesion size. 

 

Metastatic lesions become more epithelial as they grow 

We next determined the epithelial-mesenchymal status of cells at various stages 

of metastatic growth by co-staining with a panel of epithelial and mesenchymal markers 

and the YFP lineage label. To identify tumor cells with epithelial characteristics, we used 

antibodies that recognize E-cadherin (ECAD) and Claudin-7 (CLDN7)82,89,136 and 

measured the percentage of YFP+ cells that exhibited positive staining as a function of 

lesion size. Compared to single cells and nano-metastases, in which fewer than half of 
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the cells were positive for these markers, metastases having 100 cells or more (milli- 

and macro-) exhibited rates of epithelial staining in the range of 60-80%, resembling 

primary tumors (Fig. 2.4a, b, e). A complementary pattern of staining was observed 

when antibodies against fibroblast-specific protein-1 (FSP1) or zinc finger E-box binding 

homeobox 1 (ZEB1) were used90,137, as milli- and macro-metastases exhibited reduced 

staining with these markers relative to nano-metastases (Fig. 2.4c, d, e). Comparing the 

frequency of epithelial (ECAD/CLDN7) cells to mesenchymal (FSP1/ZEB1) staining 

within each size group revealed that single cells and nano-metastases exhibited 

comparable frequencies of cells positive for these epithelial and mesenchymal markers; 

by contrast, larger lesions had a significantly greater fraction of epithelial cells (Fig. 2.5). 

These results are consistent with the notion that small metastatic lesions contain a 

higher percentage of cells that have undergone EMT, and that such cells revert to a 

more epithelial state, via MET, during colonization and growth. To determine whether 

this trend is also observed in human PDAC, we performed IHC on primary human PDAC 

tumors, gross liver metastases and microscopic liver metastases for CLDN7 and FSP1. 

Consistent with the murine data, CLDN7 staining was greater in primary tumors than 

micro-metastases while FSP1 staining was greater in micro-metastases compared to 

gross metastases and primary tumors (Fig. 2.6). Thus, in both mouse and human PDAC, 

metastatic cells appear to re-acquire an epithelial phenotype with increasing lesion size. 

 

Desmoplasia gradually accumulates at metastatic lesions  

 Desmoplasia – a dense infiltrate of non-cancerous stromal cells and extracellular 

matrix (ECM) components – is a hallmark of PDAC, where it is thought to promote tumor 

growth and act as a barrier to the effective delivery of chemotherapy138. Myofibroblasts, 

a subset of fibroblasts involved in wound healing and fibrosis, are among the most 
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prevalent stromal cell types in PDAC. To determine if and when myofibroblasts 

accumulate during metastatic growth, we stained metastatic livers for YFP and α-smooth 

muscle actin (αSMA). Importantly, and in contrast to a recent publication139, αSMA is 

specific to myofibroblasts and is never expressed in cancer cells that have undergone 

EMT (under review). Nearly all metastatic lesions consisting of 10 or more cells were in 

direct contact with myofibroblasts, while smaller lesions were less frequently associated, 

especially single cells (Fig. 2.7a, b). In particular, myofibroblast recruitment seemed to 

occur at the nano-metastasis stage, as there was a direct correlation between the 

number of cells present in a lesion (from 2 to 10) and their association with 

myofibroblasts (Fig. 2.8a). Additionally, the number of associated myofibroblasts 

significantly increased with lesion size, as demonstrated by an increase in αSMA+ area 

at larger lesions (Fig. 2.7c). 

 ECM components can be deposited by myofibroblasts or by tumor cells 

themselves (following EMT), and contribute to the desmoplastic reaction in PDAC8,140. 

Collagen I (COL1), hyaluronic acid (HA), fibronectin (FN) and secreted protein acidic and 

rich in cysteine (SPARC) represent the most abundant constituents in PDAC140,141. With 

the exception of FN density, which peaked at intermediate-sized micro-metastases, all 

other ECM components exhibited an increase as lesions grew (Fig. 2.7d-g, Fig. 2.8b-e) 

with the most dramatic change being the levels of SPARC present in all lesions as 

compared to single cells (Fig. 2.7f). These results demonstrate that the desmoplastic 

response begins at the nano-metastasis stage and that most stromal components 

increase in density as a function of lesion size. We also sought to determine whether 

ECM accumulation occurs during metastatic growth in human PDAC. We performed IHC 

for FN on primary human PDAC tumors, gross liver metastases and microscopic liver 

metastases and found that FN expression is higher in micro-metastases compared to 
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primary tumors (Fig. 2.9), consistent with the pattern of FN deposition observed in KPCY 

metastases. 

 In addition to myofibroblasts and ECM, pancreatic neoplasia is accompanied by 

a robust infiltration of leukocytes, particularly myeloid cells, which can comprise more 

than half of the cells within a tumor142,143. We thus determined how leukocyte populations 

change during metastatic progression by staining livers for CD45 (pan-leukocyte), F4/80 

(macrophages), Gr-1 (myeloid-derived suppressor cells [MDSCs]), CD3 (T lymphocytes) 

and YFP (Fig. 2.10). Although the number of macrophages, MDSCs and leukocytes in 

general was increased in uninvolved areas of metastatic livers compared to control 

(Pdx1-Cre; RosaYFP) livers (Fig. 2.10a-e), only MDSCs showed a significant association 

with metastatic lesions, specifically nano-, micro- and milli-metastases (Fig. 2.10h,m). In 

contrast, T lymphocyte density, which was lower overall compared to the other leukocyte 

subsets, was unchanged between metastatic and control livers and across metastatic 

lesions (Fig. 2.10j,n). These results suggest that the presence of a primary pancreatic 

tumor causes a marked increase in certain leukocyte subsets in the liver, only MDSCs 

exhibit dynamic changes during metastatic progression. 

 

Metastatic growth is associated with hypovascularity 

 PDAC tumors are commonly hypovascular, leading to increased hypoxia as well 

as impaired drug delivery9,10. To characterize the vascular properties of metastatic 

lesions, we stained metastatic livers for VE-cadherin (VECAD) and calculated vessel 

density (VECAD+ lumen-containing blood vessels per 40x field). As expected given the 

high prevalence of vascular sinusoids in the normal liver, vessel density in the vicinity of 

small lesions (single cells and nano-metastases) was high, ranging between 25-30 

vessels per field (Fig. 2.11a,b). In bigger lesions, however, vessel density decreased, 
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approaching the mean of five vessels per field found in primary tumors (Fig. 2.11a,b). 

Quantification of the average distance from metastatic cells to the closest VECAD+ 

vessel produced a similar trend: single cells and nano-metastases were in close 

proximity to blood vessels (mean distance 5.4 ± 7.7 and 11.1 ± 9.2 microns, 

respectively) while cells within milli- and macro-metastases were far removed from the 

nearest blood vessel (mean distance 38.5 ± 30.1 and 36.2 ± 35.3 microns, respectively) 

similar to primary tumors (mean distance 19.2 ± 16.7 microns) (Fig. 2.11c). 

To assess whether these observations result in functional differences in 

perfusion, we injected tumor-bearing KPCY mice with Texas-red dextran, a high 

molecular weight fluorescent polysaccharide. Consistent with the observation that 

metastatic lesions become more hypovascular as they grow, we observed a “halo” of 

dextran-poor areas that became more prominent with increased size (Fig. 2.11d). These 

data demonstrate that metastatic PDAC liver lesions are initially well-vascularized and 

perfused but become progressively hypovascular with growth. To determine if this trend 

of decreasing vascularity with increasing lesion size holds true in human disease, we 

stained human PDAC tumors and matched small and large liver metastases for CD31 

and calculated vascular density as CD31+ vessels per micron. Consistent with our 

findings in the KPCY model, small but not large metastases had a higher vessel density 

compared to primary tumors (Fig. 2.11e,f). Thus, in both the KPCY model and human 

PDAC, metastatic growth is associated with decreasing vascular density. 

 

The impact of chemotherapy on metastasis 

 The studies described so far reveal that large metastatic lesions are 

hypovascular and surrounded by dense, desmoplastic stroma while small lesions and 

single cells, although well-perfused by nearby liver sinusoids, have not yet established a 
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local tumor microenvironment. As PDAC stroma has been proposed to act as a physical 

barrier to drug delivery in primary tumors9,10, we hypothesized that large metastases 

would be more resistant to chemotherapy compared to small lesions and single cells. To 

test the this “stromal barrier” hypothesis, we treated tumor-bearing KPCY mice with 

standard of care chemotherapy – the nucleoside analog gemcitabine (GEM) and the 

albumin-bound microtubule inhibitor nab-paclitaxel (PTX) – to examine the effects of 

chemotherapy on metastasis. Animals received intraperitoneal (IP) injections of GEM 

and PTX (each at 120 mg kg-1) every four days for 2-4 weeks, for a total of 4-8 doses of 

chemotherapy, and were sacrificed when moribund. Compared to untreated historical 

controls (matched for age and tumor weight; Fig. 2.12a,b), this treatment regimen led to 

a dramatic reduction in metastatic tumor burden with a decrease in the mean (± SD) 

number of lesions from 50.7 ± 64.9 (untreated) to 13.3 ± 13.0 (treated) (Fig. 2.13a). In 

addition, the metastases that did form were significantly smaller (Fig. 2.13b), with no 

macro-metastases and only a single milli-metastasis evident in chemotherapy-treated 

animals. Interestingly, chemotherapy also led to a reduction in the frequency of 

circulating tumor cells (CTCs) in tumor-bearing KPCY mice, with a log decrease in the 

mean number of CTCs from 141.6 ± 390.0 per ml (untreated) to 14.6 ± 14.6 per ml 

(treated) (Fig. 2.12c).  

We reasoned that GEM/PTX could shift the numerical and size distribution of 

metastases by either preventing the progression of small lesions or by reducing the 

burden of multicellular metastatic lesions at every stage. To distinguish between these 

possibilities, we treated tumor-bearing KPCY mice with a single dose of chemotherapy 

and assessed cell death in primary tumors and metastases 10-12 hours later by CC3 

staining. With the exception of single cells, metastases in all size categories exhibited a 

significant increase in CC3 staining after treatment (Fig. 2.13c, Fig. 2.12d). Surprisingly, 
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almost no cell death was observed in single YFP+ cells following GEM/PTX treatment 

(Fig. 2.13c), consistent with the observation that the number of single cell lesions did not 

change after chemotherapy (Fig. 2.13b). These data suggest that chemotherapy induces 

comparable degrees of cell death in lesions of all sizes greater than one cell.  

We considered the possibility that EMT is responsible for the apparent 

chemoresistance of single cells. EMT has been implicated in resistance to GEM in 

PDAC144-146, and since small metastases have high rates of EMT (Figure 2.4), we 

hypothesized that lesions treated with GEM/PTX for 2-4 weeks would be enriched for 

mesenchymal features. We assessed the expression of ECAD and FSP1 in untreated 

and treated primary tumors and small metastatic lesions, focusing only on single cells 

and nano-metastases since nearly all treated lesions fell into these two size categories 

(representative images in Fig. 2.14a,c). Surprisingly, treated primary tumors and 

metastatic lesions were significantly depleted of ECAD- and FSP1+ mesenchymal tumor 

cells (Fig. 2.14b,d). We then assessed the rate of apoptosis in ECAD+ and ECAD- tumor 

cells from mice treated with one dose of GEM/PTX and harvested 10-12 hours later. 

Consistent with the loss of mesenchymal tumor cells with long-term treatment, ECAD- 

tumor cells in the primary tumor and metastases had significantly higher rates of CC3 

positivity compared to ECAD+ cells (Fig. 2.14e,f). These data suggest that EMT 

promotes chemosensitivity in the context of GEM/PTX treatment. 

 

Discussion 

The highly inefficient nature of metastasis has made it difficult to observe the 

cellular and molecular events underlying tumor cell spread and growth at distant sites. 

As a result, most animal studies of metastasis have relied on transplantation of tumor 
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cell lines into recipient animals. In this study, we used a genetically engineered mouse 

model to characterize the key events that accompany metastatic growth, from single 

cells to large grossly detectable metastases. Importantly, the stochastic nature of tumor 

development and metastatic progression in the KPCY model allowed us to assess the 

natural history, and treatment response, of metastasis in the setting of naturally evolving 

and genetically heterogeneous tumors, an approach that has not been taken previously 

with any cancer type.  

The vast majority of animals with advanced pancreatic tumors had either overt or 

occult metastases, mirroring the human disease in which relapse is the norm despite 

surgery, with most lesions being smaller than 100 cells in size. Although small metastatic 

lesions exhibited features that distinguished them from primary tumors, they 

progressively acquired cell-intrinsic and –extrinsic features of the primary tumor. One of 

the biggest surprises of our study was that the rate of cell proliferation did not fluctuate 

with lesion size despite the dramatic changes in the microenvironment with progression. 

Large lesions were predominantly comprised of tumor cells with an epithelial phenotype, 

an observation consistent with the notion that epithelial properties are advantageous at 

metastatic sites39-41. Because proliferation rates did not vary across lesions and death 

rates were negligible, the tendency for large metastatic lesions to have an epithelial 

phenotype is most likely the result of MET rather than selective outgrowth of the 

epithelial population. Although the factors that drive EMT and MET in vivo remain to be 

determined, the observation that lesions acquire stroma as they grow represents one 

potential source of signals.  

Myofibroblasts appear early during metastatic growth, with most lesions having 

direct contact with myofibroblasts by the time they are 6-7 cells in size. This rapid 

recruitment suggests that factor(s) produced by the cancer cells either attract pre-
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existing myofibroblasts to the lesion or activate local stellate cells to differentiate into 

myofibroblasts. ECM deposition became more evident in advanced lesions, with macro-

metastases exhibiting levels of collagen I, fibronectin, hyaluronic acid and SPARC 

comparable to levels present in primary tumors, consistent with a recent study reporting 

similar levels of myofibroblasts, collagen, and hyaluronic acid in human primary 

pancreatic cancers and large metastases147.  

The vasculature also underwent dynamic changes during metastatic progression, 

with small lesions surrounded by blood vessels and larger lesions exhibiting 

hypovascularity, mirroring the hypovascular nature of primary PDACs in this model and 

in the majority of patients. Importantly, we found that human pancreatic tumors exhibit 

the same phenomenon, with small metastatic lesions having a higher vessel density 

than large lesions and primary tumors. Although the mechanism leading to vessel 

paucity in primary tumors and large metastases remains unknown, we recently showed 

that depletion of stromal fibroblasts (by interfering with Shh signaling) results in 

increased vessel density, suggesting that fibroblasts and/or ECM components exert an 

anti-angiogenic effect58. Hence, it is possible that hypovascularity is a consequence of 

increased myofibroblast activity. Regardless of the mechanism, it appears that the so-

called “angiogenic switch” – whereby tumor cells activate an angiogenic signal to 

increase their vascularity – is dispensable for the transition from micro-to macro-

metastasis in PDAC. 

For patients with metastatic PDAC, treatment with chemotherapy provides 

minimal improvement of survival22,23, whereas adjuvant chemotherapy for patients in 

clinical remission after initial resection offers a more substantial benefit, doubling overall 

survival. In the KPCY model, we observed killing in a wide spectrum of metastases, 

providing direct evidence that adjuvant chemotherapy targets lesions that are too small 
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to detect by standard imaging. We had initially hypothesized that small lesions, with their 

close proximity to endothelium and lack of stroma, would be particularly susceptible to 

chemotherapy, while large lesions, which are hypovascular and protected by stroma, 

would be resistant9-11. Thus, it was surprising that chemotherapy resulted in comparable 

levels of cell death in small lesions, large lesions, and primary tumors, while having only 

minimal impact on single cells. These results suggest that the stromal barrier hypothesis 

– which postulates that blood vessel paucity and desmoplastic stroma impedes the 

delivery of chemotherapy – is incomplete, at least with respect to metastatic lesions.  

There are several possible explanations for the apparent resistance of single 

cells to both long-term and short-term chemotherapy. The simplest possibility is that 

single disseminated cells are replenished by the primary tumor faster than they are 

being removed by chemotherapy. However, the observation that treated mice have 

significantly fewer CTCs would argue against this hypothesis. Mesenchymal tumor cells 

were acutely sensitive to chemotherapy, consistent with the observation by Collisson et 

al. that human and murine mesenchymal PDAC cell lines are more susceptible to 

gemcitabine compared to epithelial lines17. Single cells were enriched for epithelial 

features after long-term treatment, and since the average number of single cells did not 

differ between untreated and treated mice this likely reflects a mesenchymal-epithelial 

transition. Therefore, another possibility is that the epithelial plasticity of single 

disseminated cells plays a role in resistance to the combined treatment of gemcitabine 

and nab-paclitaxel. Finally, as nab-paclitaxel is thought to act by binding SPARC in the 

tumor microenvironment, increasing its local concentration, it is possible that the 

absence of SPARC near single cells spares them from cytotoxicity. This is an especially 

attractive mechanism in light of the fact that EMT induces SPARC expression148, and 
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there is significantly less EMT within treated lesions. While SPARC’s role in primary 

tumor chemosensitivity is disputed149-152, its role in metastasis is yet to be explored. 

Our data also have implications for the treatment of patients with resectable PDAC. 

KPCY animals treated for only 2-4 weeks with gemcitabine/nab-paclitaxel exhibited a 

marked improvement in metastatic burden, yet no animals had complete absence of 

metastatic disease. Indeed, this failure of combination chemotherapy to demonstrate 

“curative potential” in KPCY mice mirrors a critical failing of adjuvant chemotherapy for 

patients with PDAC; namely, improvement in median survival compared to observation, 

yet only rare long-term remissions or cures. Thus, even as gemcitabine/nab-paclitaxel 

and other combinations are beginning to be tested in the adjuvant clinical setting, our 

findings provide additional motivation to evaluate novel, non-chemotherapeutic 

approaches that target residual micrometastatic disease. 
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Materials and Methods 

Mouse Strains 

Pdx1-cre, KrasLSL-G12D, p53L/+, RosaYFP/YFP mice have been described previously124. 

KPCY mice were palpated and examined for evidence of morbidity twice per week. 

Tumor-bearing animals were sacrificed when moribund. Both male and female mice 

were used for analysis with a mean age of 22.6 ± 8.1 weeks. Pdx1-cre, RosaYFP/YFP mice 

were used as controls. All vertebrate animal experiments were conducted in compliance 

with the National Institutes of Health guidelines for animal research and approved by the 

University of Pennsylvania Institutional Animal Care and Use Committee. 

Immunofluorescence (IF) 

Tissues were fixed in Zn-formalin, paraffin embedded and stained as previously 

described 124. In brief, after sections were deparaffinized, rehydrated and subjected to 

antigen retrieval, sections were blocked in 5% donkey serum for 1 hour at room 

temperature (RT), incubated with primary antibodies for 1 hour at RT, washed, incubated 

with secondary antibodies for 1 hour at RT, washed and mounted. Rabbit anti-Zeb1 

(Santa Cruz Biotechnology, Santa Cruz, CA) required additional tyramide signaling 

amplification (PerkinElmer, Waltham, MA). See Table 2.3 for a list of antibodies used. 

Slides were visualized using an Olympus IX71 inverted multicolor fluorescent 

microscope. 

Metastasis Quantification 

Gross metastases were confirmed by fluorescent microscopy using a Leica MZ16FA 

multi-color fluorescent stereomicroscope. To determine metastatic burden, YFP+ lesions 
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were quantified for 5 liver sections spaced 100 µm apart. Large metastatic lesions that 

were captured on multiple sections were only counted once. 

Percent Area Quantification (IF) 

Percent area was determined for a subset of stains (αSMA, COL1, HA, SPARC, FN, 

CD45, F4/80, GR-1, CD3 & VECAD) by first cropping the image within one cell diameter 

of each metastatic lesion. Using ImageJ, fluorescent channels were split and the 

channel of interest was thresholded to highlight positive staining while excluding 

background. The ‘analyze particles’ tool was then used to calculate percent area. 

Fluorescent Dextran Administration 

Tumor-bearing mice were injected with 25 ug kg-1 Texas red-conjugated dextran (70,000 

MW; Thermofisher Scientific, Waltham, MA) 30 minutes prior to euthanasia. Tissues 

were embedded in OCT (Electron Microscopy Sciences, Hatfield, PA), cut into 5 um 

sections and imaged on an Olympus IX71 inverted multicolor fluorescent microscope. 

Human Specimens 

Tissue samples were obtained from patients who consented to a research autopsy in 

association with the IRB approved Johns Hopkins Rapid Medical Donation Program 

(PMID: 19273710). Clinicopathological characteristics are listed in Table 2.3. Formalin-

fixed and paraffin-embedded samples of the primary carcinoma, two independent gross 

liver metastasis sections from these patients were used for image analysis and 

immunohistochemistry. Micrometastases were detected within the normal liver 

parenchyma adjacent to gross liver metastases and were identified by nuclear atypia 

and larger cell size. 
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Immunohistochemistry 

Sections were deparaffinized in xylene, rehydrated and subjected to antigen retrieval. 

Endogenous peroxidases were blocked with 1.5% H2O2. Endogenous avidin and biotin 

were also blocked using an Avidin/Biotin Blocking Kit (Vector Labs, Burlingame, CA) 

according to the manufacturer’s instructions. Sections were then blocked with 5% 

donkey serum in 0.3% Triton-X100 (MP Biomedicals, Santa Ana, CA) in PBS for 1 hour 

at RT, then incubated with primary antibodies at 4oC overnight. The next day, slides 

were washed in 0.1% Tween-20 (Fisher Scientific, Pittsburgh, PA) in PBS (PBST) and 

incubated with a biotin-conjugated secondary antibody for 1 hour at RT. Slides were 

washed in PBST and staining was revealed using ABC-HRP and DAB kits (Vector Labs) 

according to the manufacturer’s instructions. 

Human CD31 quantification 

Immunolabeled slides were scanned at 200x total magnification at a resolution of 0.49 

µm/pixel using an Aperio Scanscope CS digital slide scanner (Aperio Technologies, Inc., 

Vista, CA). Aperio ImageScope was used to extract 735 µm2 (1500 x 1500 pixel) fields 

as TIFF images for further analysis. The fields were randomly selected in the area of 

interest using a low magnification view of the slide.  To compare vessel density in 

primary and metastatic tumor, up to five fields were extracted from each slide. The 

extracted fields were then analyzed with image analysis software written using ImageJ 

(Wayne Rasband, NIH, http://rsbweb.nih.gov/ij/). Total tissue area was measured by 

manually thresholding a grayscale version of the original field. The CD31-positive area 

was then measured by first masking out any areas with background staining using 

manual drawing tools and then performing color deconvolution to separate the DAB and 
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hematoxylin staining 153. The DAB image was then manually thresholded to select the 

CD31 positive pixels.  Particles (groups of connected pixels) less than 150 pixels (73.5 

µm2) in size were excluded to reduce the degree of large vessel fragmentation and the 

presence of single immunoreactive cells. CD31+ vessel density was calculated as the 

number of CD31 positive particles/total tissue area.  

Chemotherapy Administration 

Tumor-bearing animals in healthy condition were enrolled once the tumor had reached 

an estimated 1 cm in diameter based on palpation. With the knowledge that the average 

number of metastases per mouse in our historical, untreated controls is 50.7 (± 64.9), we 

concluded that a large effect size of at least a 75% decrease in metastasis with a 

relatively small (≤10) standard deviation would be necessary to detect significant 

changes after treatment. Using these values, with an alpha error level of ≤5%, we 

determined that a sample size of 8 mice would be sufficient. Gemcitabine-HCl (Sun 

Pharmaceuticals, Mumbai, India) and nab-paclitaxel (Abraxane; Celgene, Summit, NJ) 

were both dissolved in PBS and administered via intraperitoneal injection at 120 mg kg-1. 

The drugs were administered simultaneously once every four days until the mouse 

became moribund, between 2-4 weeks from enrollment. Each mouse received at least 4 

(and a maximum of 8) doses. 

Flow Cytometry 

Blood was collected by cardiac puncture as previously described 124. Erythrocytes were 

removed using RBC lysis buffer (G-biosciences, St. Louis, MO) according to the 

manufacturer’s instructions. The remaining cellular fraction was stained with APC anti-
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mouse CD45 (Biolegend, San Diego, CA) and analyzed on a BD FACSVerse flow 

cytometer. DAPI-/ CD45-/YFP+ events were counted as circulating tumor cells. 

Statistical Analysis 

Differences between two groups were analyzed by two-tailed Student’s t-test with 

Welch’s correction to account for unequal SDs, or by Mann-Whitney test for non-

normally distributed data. Differences between three or more groups were analyzed by 

one-way ANOVA with Tukey’s multiple comparisons test used as a post hoc test to 

assess differences between ‘single cells’ and all other groups. For experiments in which 

‘single cell’ means were binary (0 or 100%), differences between ‘single cells’ and all 

other groups were analyzed by one-sample t-test. All statistical analyses were performed 

using GraphPad Prism 6 (GraphPad, La Jolla, CA). P ≤ 0.05 denotes differences that 

are statistically significant. 

 

  



40 
 

Chapter 2 Figures and Figure Legends 
 

 

Figure 2.1: Metastatic landscape of the KPCY model. (a) Representative images of 

YFP+ liver metastases and primary tumor. Scale bars, 50μm. (b) Size distribution of 

metastatic lesions in the liver grouped according to size (n=23 mice). (c) Quantification 

of KI67+ (p=0.9439) tumor cells in liver metastases (n= 6 mice, 159 lesions). (d) 

Quantification of CC3+ (p= 0.1621) tumor cells in liver metastases (n= 4 mice, 46 

lesions). P-values were calculated by one-sample t-test against ‘single cell’ means. Data 

are presented as mean ± SD. 
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Figure 2.2: Proliferation/apoptosis rates of metastatic lesions. (a) Proliferation. 

Primary tumor and metastases were stained for YFP (red), DAPI (blue) and Ki67 

(green). (b) Mitosis. Primary tumor and metastases were stained for YFP (red), DAPI 

(blue) and pH3 (green). (c) PCNA expression. Primary tumor and metastases were 

stained for YFP (red), DAPI (blue) and PCNA (green). (d) Apoptosis. Primary tumor and 

metastases were stained for YFP (red), DAPI (blue) and CC3 (green). (e) Quantification 

of pH3 staining; p= 0.9633. (f) Quantification of PCNA staining; p=0.0642. Bars 

represent means ± SD. Scale bars, 50 μm. 
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Figure 2.3: Proliferation in human PDAC tumors and metastases. (a-c) 

Representative images of a micrometastatic lesion (a), gross metastasis (b) and primary 

tumor (c) stained for Ki67 by IHC. (d) Quantification of Ki67 staining. The percentage of 

Ki67+ cells was determined for micro-metastases (n=126), gross metastases (n=11) and 

primary tumors (n=7); p=0.3890. For large lesions (gross metastases and primary 

tumors), five fields were averaged together. Bars represent means ± SD.  
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Figure 2.4: Metastatic growth is associated with a more epithelial phenotype. (a-d) 

Representative images of metastases and primary tumor stained for DAPI (blue), YFP 

(red) and ECAD (a), CLDN7 (b), FSP1 (c) and ZEB1 (d) (green). Scale bars, 50 μm. (e) 

Quantification of EMT in metastases. The percent of positive cells for each lesion was 

determined and the percentages were averaged across lesions of the same size (ECAD, 

p<0.05; CLDN7, ns; FSP1, p<0.05; ZEB1, ns). n ≥ 8 mice, ≥100 lesions for each stain. 

Data are presented as mean ± SD. P values were calculated by one-way ANOVA and 

one sample t-tests against ‘single cell’ means; *, p<0.05. 
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Figure 2.5: Skewing of epithelial to mesenchymal cell ratio within primary tumor 

and metastatic lesions. (a-f) Comparison of epithelial (ECAD+, CLDN7+) and 

mesenchymal (FSP1+, ZEB1+) cell frequency within each size category. Bars represent 

means ± SD; *, p<0.05; **, p<0.01; #, p<0.001; ##, p<0.0001. 
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Figure 2.6: Epithelial and mesenchymal features of human PDAC tumors and 

metastases. (a-c) Representative images of human microscopic liver metastasis 

(n=114), gross liver metastasis (n=24) and primary PDAC tumors (n=6) stained for 

CLDN7 by IHC. (d) Quantification of CLDN7+ area per 20X field for gross metastases 

and primary tumors or within one cell diameter for micro-metastases. (e-g) 

Representative images of human microscopic liver metastasis (e), gross liver metastasis 

(f) and primary PDAC tumors (g) stained for FSP1 by IHC. (h) Quantification of FSP1+ 

area per 20X field for gross metastases (n=18) and primary tumors (n=6) or within one 

cell diameter for micro-metastases (n=57). For large lesions (gross metastases and 

primary tumors), five fields were averaged together. Bars represent means ± SD; *, 

p<0.05; **, p<0.01; #, p<0.001; ##, p<0.0001.  
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Figure 2.7: Desmoplasia accumulates as lesions grow. (a) Representative images of 

metastases and primary tumor stained for DAPI (blue), YFP (red) and ɑ-SMA (green). 

Scale bars, 50μm. (b) Contact between metastases and ɑ-SMA+ fibroblasts. Each lesion 

was binned by size and scored for direct contact with an ɑ-SMA+ cell (n= 9 mice, 167 

lesions). (c) ɑ-SMA+ fibroblast density at metastatic lesions. Percent ɑ-SMA+ area was 

quantified within one cell diameter of metastatic lesions (n= 9 mice, 167 lesions). (d-g) 

Extracellular matrix (ECM) density at metastatic lesions. Metastatic livers were stained 
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for ECM components COL1 (d), HABP (e), SPARC (f) and FN (g). Percent positive area 

was quantified within one cell diameter of each lesion. n ≥ 5 mice, ≥ 50 lesions for each 

stain. Data are presented as mean ± SD. P values were calculated by one-way ANOVA 

and one sample t-tests against ‘single cell’ means; *, p<0.05; **, p<0.01; #, p<0.001; ##, 

p<0.0001. 
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Figure 2.8: Myofibroblast contact with nano-metastases depends on cell size and 

representative images of ECM stains. (a) Contact between nano-metastases and 

myofibroblasts by cell number. Data are shown as mean ± SD. P values were calculated 

by one sample t-tests against ‘single cell’ mean; *, p<0.05. (b-e) Representative images 

of primary tumor and metastases stained for YFP (red), DAPI (blue) and (b) Collagen 1 

(COL1); (c) Hyaluronic acid binding protein (HABP); (d) Secreted protein acidic and rich 

in cysteine (SPARC); and (e) Fibronectin (FN) in green. Scale bars, 50μm. 
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Figure 2.9: Fibronectin deposition in human PDAC tumors and metastases. (a-c) 

Representative images of human microscopic liver metastasis (n=52), gross liver 

metastasis (n=18) and primary PDAC tumors (n=6) stained for FN by IHC. (d) 

Quantification of FN+ area per 20X field for gross metastases and primary tumors or 

within one cell diameter for micro-metastases. For large lesions (gross metastases and 

primary tumors), five fields were averaged together. Bars represent means ± SD; *, 

p<0.05. 
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Figure 2.10: Leukocytes accumulate in metastatic livers. (a-d) Representative 

images of CD45 (a), F4/80 (b), Gr-1 (c) and CD3 (d) staining (green) and DAPI (blue) in 

uninvolved areas of control (Pdx1-cre, RosaY/Y) and metastatic (KPCY) livers. Scale 

bars, 50μm. (e) Quantification of leukocyte density in uninvolved areas of liver (CD45, 

p=0.0002; F4/80, p<0.0001; Gr-1, p<0.0001; CD3, p=0.3243). (f-j) Representative 
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images of leukocyte density at metastatic lesions. Metastases and primary tumor were 

stained for YFP (red), DAPI (blue) and (f), CD45 (leukocytes); (g), F4/80 (macrophages); 

(h), Gr-1 (MDSCs); and (j), CD3 (T cells) in green. Scale bars, 50μm. (k-n) Quantification 

of leukocyte density at metastatic lesions. The percent positive area for each leukocyte 

stain was quantified within one cell diameter of metastatic lesions. Data are presented 

as mean ± SD. Data are presented as mean of the percent positive area within a 40X 

field ± SD. n ≥ 5 mice, ≥ 50 lesions for each stain. P values were calculated by one-way 

ANOVA and unpaired Student’s t-test with Welch’s correction; *, p<0.05; **, p<0.01; #, 

p<0.001; ##, p<0.0001. 
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Figure 2.11: Metastatic growth is associated with functional hypovascularity. (a) 

Representative images of metastases and primary tumor stained for VECAD (green), 

YFP (red) and DAPI (blue). Scale bars, 50μm. (b) Metastatic vessel density. VECAD+ 

blood vessels were quantified at metastases within 40x fields. Data are presented as 

mean ± SD; n = 7 mice, 100 lesions. (c) Proximity to blood vessels. For each lesion, the 

distance between five random tumor cells and the nearest VECAD+ blood vessel was 

determined. Data are presented as mean ± SD. n = 7 mice, 100 lesions. P values were 
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calculated by one-way ANOVA and one sample t-tests against ‘single cell’ means. (d) 

Functional hypovascularity at large metastases. Representative images of fluorescent 

dextran accumulation (red) at metastatic lesions (YFP, green; DAPI, blue). (e) 

Representative images of human primary PDAC and matched liver metastases stained 

for CD31 (brown). Scale bars, 50μm. (f) Mean vessel density quantification of human 

primary PDAC and matched liver metastases (n=25 cases). Data are presented as mean 

± SD; *, p<0.05; **, p<0.01; #, p<0.001; ##, p<0.0001. 
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Figure 2.12: Circulating tumor cells (CTCs) are decreased after long-term 

chemotherapy. (a-b) Age at death (a) and tumor weight (b) for untreated historical 

controls and treated animals. Lines represent mean ± SD. P value by Student’s t-test. (c) 

CTCs in untreated (n=23) and treated (n=8) mice; *, p < 0.05. Lines represent the mean. 

P value by Student’s t-test. (d) Representative images of untreated and treated 

metastatic lesions stained for CC3 (green), YFP (red) and DAPI (blue). Scale bars, 

50μm. 
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Figure 2.13: Chemotherapy reduces metastatic burden. (a) Liver metastatic burden 

after long-term chemotherapy. Each dot represents one mouse. Untreated group 

consists of historical controls from Figure 1B (untreated, n= 23; treated, n=8). Bars 

represent means ± SD; *, p<0.05, Student’s t-test with Welch’s correction. (b) Size 

distribution of metastatic lesions after long-term chemotherapy. Data are presented as 

mean ± SD, *, p<0.05, Student’s t-test with Welch’s correction. (c) Apoptosis rates in 

metastases after single dose chemotherapy. CC3 positivity in metastases was assessed 

10-12 hours after treatment. Each dot represents a lesion; line represents the mean. *, 

p<0.05; **, p<0.01; #, p<0.001 by Mann-Whitney test. 
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Figure 2.14 Mesenchymal tumor cells are depleted after chemotherapy. (a) 

Representative images of untreated and treated (GEM/PTX for 2-4 weeks) primary 

tumors and small metastatic lesions stained for ECAD (green), YFP (red) and DAPI 

(blue). (b) Quantification of ECAD- tumor cells in untreated and treated primary tumors 

and small metastatic lesions. (c) Representative images of untreated and treated 

primary tumors and small metastatic lesions for FSP1 (green), YFP (red) and DAPI 
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(blue). (d) Quantification of FSP1+ tumor cells in untreated and treated primary tumors 

and small metastatic lesions. n ≥ 7 mice for each condition. Bars represent means ± SD. 

Statistical significance was determined by Student’s t-test with Welch’s correction. (e) 

Representative images of treated (1 dose GEM/PTX) primary tumor and liver metastasis 

stained for CC3 (green), ECAD (cyan), YFP (red) and DAPI (blue). Arrows denote 

YFP+/ECAD+/CC3+ cells, arrowheads denote YFP+/ECAD-/CC3+ cells. (f) Quantification 

of CC3 staining in ECAD+ and ECAD- tumor cells (n ≥ 4 mice). Bars represent means ± 

SD. Statistical significance was determined by Mann-Whitney test. Scale bars, 50 um. *, 

p<0.05; **, p<0.01; #, p< 0.001; ##, p < 0.0001.  
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Chapter 2 Tables 
 

 

Table 2.1: Metastatic burden (raw counts) for each animal used in Figure 3b. 
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Table 2.2: Antibodies used in Chapter 2.
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Table 2.3: Clinicopathological characteristics of patients. Abbreviations: standard 

deviation (SD); overall survival (OS); month (mo); number of patients (n); wildtype (WT). 
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CHAPTER 3: A non-canonical mechanism drives 
epithelial plasticity in vivo 

 

Abstract 

 Metastasis is responsible for the majority of cancer-related deaths, and yet the 

molecular mechanisms underlying tumor cell spread remain elusive. It is widely believed 

that epithelial-to-mesenchymal transition (EMT) – during which epithelial cells lose their 

adhesive behavior and acquire a fibroblast-like morphology and migratory behavior – is 

an important step in cancer progression154. EMT is reawakened during tumorigenesis in 

mouse models124,155,156, where it contributes to invasion and hematogenous 

dissemination81,82,157. EMT is thought to be regulated primarily at the transcriptional level 

through the repressive activity of EMT transcription factors (EMT-TFs) on epithelial 

genes including E-cadherin (Cdh1)158,159. However, these canonical EMT mechanisms 

have been parsed out almost exclusively in vitro under defined experimental conditions, 

and the molecular programs that drive EMT in physiological context remain to be 

delineated. Here, we describe a post-translational mechanism that accounts for EMT in 

the majority of tumors in a murine model of pancreatic ductal adenocarcinoma (PDAC). 

This “non-canonical” program employs epithelial protein internalization, rather than 

transcriptional repression, to suppress the epithelial program. At a global transcriptional 

level, tumors utilizing this alternative EMT program are associated with the recently 

identified classical/progenitor/exocrine transcriptional subtypes of PDA, while those 

tumors utilizing canonical EMT programs correspond to the squamous/basal/quasi-

mesenchymal subtype of PDAC. Most strikingly, tumor cells utilizing non-canonical EMT 

mechanisms exhibit greater epithelial-mesenchymal plasticity and tumor initiation 

capacity compared to tumor cells utilizing canonical mechanisms. Taken together our 
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data demonstrate that the programs driving tumor-associated EMT in vivo differ 

dramatically from the classically described Tgfβ-Snail-Twist axis. 

Introduction 

Metastasis is responsible for the majority of cancer-related deaths, and yet the 

molecular mechanisms underlying tumor cell spread remain elusive. During a tumor 

cell’s journey to the metastatic site it must adapt to ever-changing obstacles, from local 

desmoplasia to the circulatory system to foreign and potentially hostile 

microenvironments. Thus a key feature of any successful metastasizing cell is plasticity. 

It is widely believed that epithelial-mesenchymal transition (EMT) and the reverse 

process mesenchymal-epithelial transition (MET) are responsible for ushering cancer 

cells through the gauntlet of the metastatic cascade154. During EMT, an epithelial cell 

loses its apicobasal polarity and adhesion to neighboring cells to take on a more 

fibroblast-like morphology and migratory behavior86. EMT is an evolutionarily conserved 

program critical for aspects of embryogenesis that require dynamic cellular movements, 

such as gastrulation and neural crest cell migration38,160. We and others have 

demonstrated that EMT is reawakened during spontaneous tumorigenesis in mouse 

models156,161,162, in some cases even before frank malignancy124,163. EMT appears to be 

vital for early steps of metastasis (hematogenous dissemination)39-41, however metastatic 

lesions tend to have an epithelial histology35,132,156 and numerous studies have 

demonstrated that reversion back to an epithelial state is essential for later steps of 

metastasis (colonization)39,40. 

 Canonical mechanisms of EMT hinge on the transcriptional repression of 

epithelial genes, most notably E-cadherin, by various EMT transcription factors such as 

Snail, Slug, Twist and Zeb1/286. These transcription factors are induced by many 
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different extracellular signals, including but not limited to TGFβ164, HGF165, WNT166 and 

EGF167, and are negatively regulated by microRNAs such as mir-3493,94 and the miR-200 

family97,99,168. To date, the mechanisms driving EMT have been parsed out almost 

exclusively in vitro under pre-defined conditions (ie, by using recombinant TGFβ or 

overexpressing Snail), but it remains to be seen whether the machinery that regulates in 

vitro EMT is physiologically relevant. Here we show that in vivo, and in contrast to 

canonical mechanisms, EMT is driven primarily by post-translational regulation of the 

epithelial program which we have termed non-canonical EMT. This alternative 

mechanism has functional consequences for tumor cells, as it promotes greater 

epithelial-mesenchymal plasticity and enhances tumor initiation and metastasis 

compared to canonical EMT. 

 

Results and Discussion 

EMT is accompanied by dramatic morphological and molecular changes during 

which epithelial markers are lost while mesenchymal markers, including transcription 

factors and cytoskeletal components, are gained. The loss of E-cadherin (Ecad) is 

considered a hallmark of EMT, and we found that in the pancreatic tumors of Pdx1-cre; 

LSL-KrasG12D; P53loxP/+; LSL-RosaYFP/YFP (KPCY) mice, 89% ± 11.9 (mean ± SD) of YFP+ 

tumor cells that had delaminated from epithelial structures were negative for 

membranous Ecad (Fig. 3.1a). By contrast, only a fraction of tumor cells that had lost 

Ecad staining also exhibited higher expression of mesenchymal markers or EMT-TFs 

such as zinc-finger E-box homeobox 1 (Zeb1), slug (Snai2), vimentin (Vim), or fibroblast-

specific protein 1 (Fsp1) (Fig. 3.2a-e). Moreover, expression of these mesenchymal 

markers was rarely observed in tumor cells that were positive for membranous Ecad. 
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Thus, Ecad loss, rather than the gain of a single mesenchymal marker, is the most 

reliable indicator of cells that have undergone EMT in this model. 

 To better understand the transcriptional changes associated with EMT in vivo, we 

used fluorescence-activated cell sorting (FACS) to isolate Ecad+ (epithelial; E) and Ecad- 

(mesenchymal; M) YFP+ cancer cells from 11 primary KPCY tumors for RNA sequencing 

(Fig. 3.1a-b; Fig. 3.3a). We confirmed accurate sorting by visual inspection of sorted 

cells and ruled out contamination of non-tumor cells by performing qPCR for Cd45 and 

YFP (Fig. 3.3b-d). Although we expected Ecad+ samples to be closely related to each 

other and distinct from the Ecad- samples, principal component analysis and 

unsupervised hierarchical clustering arranged samples into two subgroups organized 

independently of epithelial-mesenchymal status but instead according to tumor identity 

(Fig. 3.1c,d). In the first tumor subgroup (3/11), EMT was associated with robust 

downregulation of Ecad mRNA (Fig. 3.1e,f), as expected. In the second subgroup (8/11), 

by contrast, EMT was associated with stable levels of mRNA for Ecad and other 

epithelial genes (Fig. 3.1e,f). Thus, loss of the epithelial program occurs in the absence 

of transcriptional repression in the majority of KPCY tumors undergoing EMT. 

To distinguish between these mechanisms, we applied the term canonical EMT 

(C-EMT) to refer to those tumors in which the epithelial program was eliminated by 

transcriptional repression and the term non-canonical EMT (NC-EMT) to refer to those 

tumors in which the epithelial program was suppressed by other means. Tumors in both 

subgroups exhibited a robust upregulation of mesenchymal-related transcripts within the 

Ecad- population, including periostin (Postn), fibroblast-activated protein (Fap), platelet 

derived growth factor receptor beta (Pdgfrβ), GLI-Kruppel family member 1 (Gli1), 

tenascin C (Tnc), secreted protein acidic and cysteine rich (Sparc), podoplanin (Pdpn), 

palladin (Palld) and numerous collagens (Fig. 3.1f). Gene set enrichment analysis 
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(GSEA) of both C- and NC-EMT samples confirmed that Ecad- transcriptomes strongly 

correlated with published EMT datasets (Fig. 3.4). Importantly, transcripts for several 

known EMT-TFs – Snai2, Twist1, Zeb1 and ETS variant 1 (Etv1) – were significantly 

more abundant in C-EMT tumors (Fig. 3.5), possibly accounting for the marked reduction 

in epithelial transcripts in Ecad- samples from these tumors. Thus, tumors characterized 

as either C-EMT or NC-EMT exhibit overlapping EMT-associated mesenchymal 

programs despite having distinct mechanisms for repressing their epithelial programs 

during EMT. 

 We noticed that tumors categorized as C-EMT tended to be poorly differentiated 

while tumors characterized as NC-EMT tended to be moderately-to-well differentiated 

(Fig. 3.6). Consequently, we hypothesized that these two modes of EMT may be related 

to known PDAC subtypes, which also exhibit histological heterogeneity. To test this, we 

compared our KPCY tumor transcriptomes to three reported PDAC subtype signatures 

(Fig. 3.7). In all cases, C-EMT tumors were strongly associated with poorly-differentiated 

subtypes (quasi-mesenchymal, squamous, and basal-like) while NC-EMT tumors were 

strongly associated with well-differentiated subtypes (classical/exocrine-like, pancreatic 

progenitor/ADEX, and classical)17-19. Hence, the mode by which the epithelial phenotype 

is lost in murine models of PDAC correlates with transcriptional subtypes in human 

PDAC, suggesting that tumor class dictates EMT mechanism in vivo.  

 To further understand these distinct mechanisms, we developed a quantitative 

PCR (qPCR) signature that could distinguish between C- and NC-EMT and applied it to 

a panel of mouse and human PDAC cell lines (Fig. 3.8a,b). As predicted, cell lines 

expressing the C-EMT signature exhibited robust down-regulation of Ecad mRNA when 

FACS sorted into Ecad+ and Ecad- populations. By contrast, cell lines expressing the 

NC-EMT signature exhibited no change in Ecad mRNA levels when Ecad+ and Ecad- 
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cells were compared (Fig. 3.8c,d). This suggests that canonical and non-canonical 

mechanisms of Ecad repression are retained in cell lines derived from mouse and 

human PDAC. Using principal component analysis, we also found a significant 

correlation between the C-EMT and quasi-mesenchymal PDAC subtypes, and the NC-

EMT and classical PDAC subtypes in human PDAC cell lines, consistent with our 

findings in murine PDAC tumors and cell lines (Fig. 3.8e). The relationship between 

tumor subtypes and mode of EMT also applies to breast cancer. Luminal A/B and 

normal-like breast cancer cell lines, which tend to be well differentiated, are strongly 

associated with a non-canonical EMT transcriptional profile, while poorly differentiated 

basal cell lines tend to have a canonical EMT expression pattern (Fig. 3.8f).   

EMT is often induced in vitro by treating cells with specific growth factors, most 

commonly Tgfβ. As expected, our PDAC cell lines exhibited morphological features of 

EMT (Fig. 3.9a) with loss of Ecad protein (Fig. 3.9b) upon Tgfβ treatment. Exposure to 

Tgfβ resulted in robust transcriptional down-regulation of Ecad and up-regulation of 

Snail, Slug and Zeb1, regardless of whether the cell line was categorized as C-EMT or 

NC-EMT (Fig. 3.9c). This suggests that cell lines that utilize non-canonical EMT 

mechanisms under standard culture conditions remain competent to employ a canonical 

mechanism when confronted with an exogenous (and overriding) growth factor signal. 

 We next sought to understand the NC-EMT phenotype using our stratified murine 

PDAC cell lines. Since Ecad mRNA abundance remained unchanged during NC-EMT, 

we examined the fate of Ecad protein during this process. First, to determine whether 

residual Ecad mRNA was being translated, we sorted cells from our cell line panel into 

Ecad+ (E) and Ecad- (M) fractions and compared Ecad protein levels in whole cell 

lysates (Fig. 3.10a). While the M fraction from C-EMT cell lines lacked any Ecad protein, 

as expected, the M fraction from NC-EMT cell lines retained Ecad protein (Fig. 3.10b). 
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Other epithelial proteins, including claudin-7 (Cldn7) and epithelial cell adhesion 

molecule (Epcam) were also maintained upon NC-EMT at the transcript and protein 

levels (Fig. 3.10b). In contrast, C-EMT cell lines did not express appreciable levels of 

these proteins in either the E or M fraction.  Levels of p120-catenin, an important direct 

Ecad regulator, did not vary between E and M in either C- or NC-EMT cell lines. 

However, NC-EMT cell lines expressed both 1A (mesenchymal) and 3A (epithelial) 

isoforms169 while C-EMT cell lines only expressed the 1A isoform (Fig. 3.10b). These 

data demonstrate that epithelial proteins continue to be translated in cells that have 

undergone NC-EMT.  

 We reasoned that Ecad internalization might account for the lack of membrane 

staining in NC-EMT. To test this, we performed dual antibody live cell 

immunofluorescence by first staining live cells for Ecad using the fluorophore BV421 (to 

detect membrane-associated Ecad; M-Ecad) followed by fixation, permeabilization and a 

second staining of Ecad using the fluorophore APC (to detect intracellular Ecad; I-Ecad) 

(Fig. 3.10c). As expected, C-EMT cells lacking membranous Ecad (M-Ecad-) were 

negative for I-Ecad, consistent with the loss of Ecad mRNA (Fig. 3.10d). In NC-EMT cell 

lines, by contrast, the majority of M-Ecad- cells were positive for I-Ecad (Fig. 3.10d). 

Consistent with this finding, we detected I-Ecad in sections from tumors expressing a 

NC-EMT signature (Fig. 3.10e) but not those expressing a C-EMT signature (Fig. 3.10f). 

These results suggest that Ecad protein is internalized by cells undergoing NC-EMT 

both in vitro and in vivo.  

 We next investigated the molecular mechanisms responsible for changes in Ecad 

localization and abundance. The only known EMT-related transcription factor 

significantly upregulated in mesenchymal NC tumor samples compared to epithelial NC 

tumor samples was pair-related homeobox 1 (Prrx1) (Fig. 3.11a). Prrx1 acts as a 
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transcriptional activator and has been described as “a more potent mesenchymal 

inducer than epithelial repressor”86, fitting the profile of a potential NC-EMT regulator. 

Prrx1 produces two isoforms, Prrx1a and Prrx1b, which are associated with epithelial 

and mesenchymal phenotypes, respectively170,171. Surprisingly, we did not observe 

isoform switching from Prrx1a to Prrx1b between NC-E and –M tumor samples; rather 

both isoforms were significantly increased in NC-EMT. Hence we sought to determine 

whether overexpression of one or both Prrx1 isoforms was sufficient to drive the NC-

EMT phenotype, specifically Ecad internalization. Using the PiggyBAC transposon 

system, we overexpressed Prrx1a, Prrx1b, both isoforms simultaneously or the control 

vector in C- and NC-EMT KPCY cell lines and assessed their effects on Ecad surface 

expression and internalization. Overexpression of the mesenchymal isoform, Prrx1b, 

resulted in a subtle but significant increase in M-ECAD- NC-EMT cells compared to the 

control while Prrx1a alone and Prrx1a/b dual expression had no effect on the frequency 

of M-ECAD- cells (Fig. 3.11b). Interestingly, the frequency of M-ECAD-/I-ECAD+ cells 

was significantly increased in an NC-EMT cell line with overexpression of any 

combination of Prrx1 isoforms compared to control, suggesting that both Prrx1 isoforms 

promote the retention of Ecad in the cytoplasm (Fig. 3.11c). These data suggest that 

while Prrx1 may not be a master regulator of the NC-EMT program, it does play a role in 

the post-translational regulation of Ecad, which is a prominent feature of the NC-EMT 

phenotype. 

 Finally, we explored the functional impact of C- and NC-EMT with respect to 

tumor initiation and epithelial plasticity. We used flow cytometry to sort cell lines into 

Ecad+ (E) and Ecad- (M) populations and then assessed subcutaneous tumor initiation 

potential by in vivo limiting dilution. While the tumor-initiating cell (TIC) frequency was 

the same for canonical Ecad+ (C-E), canonical Ecad- (C-M) and non-canonical Ecad+ 
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(NC-E) cells, non-canonical Ecad- (NC-M) cells exhibited a significantly higher rate of 

tumor outgrowth (Fig. 3.12a,b). Hence, non-canonical EMT is associated with a higher 

capacity to initiate tumors. We harvested the resulting tumors from the limiting dilution 

assay to assess epithelial plasticity. NC-E and –M tumors had high Ecad expression 

similar to unsorted NC tumors, and C-E and –M tumors had low Ecad expression 

resembling unsorted C tumors (Fig. 3.12c). These data suggest that NC-M cells and C-E 

cells are highly plastic, since they exhibit the largest shift in Ecad positivity. In both EMT 

subtypes, sorted tumors skewed in the same direction as unsorted tumors (NC toward 

epithelial, C toward mesenchymal), suggesting that the cells exhibit memory of the 

original epithelial:mesenchymal ratio, or reach an equilibrium determined by as yet 

unknown factors.  

 In summary, we have shown that pancreatic cancer cells employ two distinct 

mechanisms for shedding their epithelial programs during EMT in vivo – one utilizing 

transcriptional repression of epithelial genes and another involving post-translational 

regulation of protein localization and stability. Given prior work showing that Ecad is 

subject to dramatic trafficking and turnover in normal epithelial cells172-175, it is not difficult 

to envision how cancer cells might utilize such post-translational mechanisms to lose 

their epithelial properties. Moreover, cytoplasmic Ecad staining has previously been 

observed in surgical PDAC specimens, suggesting the process is conserved in human 

PDAC176. Protein relocalization could also help explain the phenomenon of circulating 

tumor cell clusters177-179, as the greater plasticity afforded by NC-EMT might permit 

tumor cells to become invasive while still retaining their adhesive properties. Although 

EMT has customarily been viewed as a transcriptionally regulated process, our 

identification of an alternate mechanism for suppressing the epithelial program – one 
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that underlies EMT in the majority of PDAC tumors in vivo – underscores the importance 

of examining the process under physiological conditions.  

Materials and Methods 

Mouse Strains 

Pdx1-cre, KrasLSL-G12D, p53L/+, RosaYFP/YFP mice have been described previously124. 

KPCY mice were palpated and examined for evidence of morbidity twice per week. 

Tumor-bearing animals were sacrificed when moribund. Both male and female mice 

were used for analysis with a mean (±SD) age of 16.3 (± 8.5) weeks. All vertebrate 

animal experiments were conducted in compliance with the National Institutes of Health 

guidelines for animal research and approved by the University of Pennsylvania 

Institutional Animal Care and Use Committee. 

Immunofluorescence (IF) 

Tissues were fixed in Zn-formalin, paraffin embedded and stained as previously 

described124. In brief, after sections were deparaffinized, rehydrated and subjected to 

antigen retrieval, sections were blocked in 5% donkey serum for 1 hour at room 

temperature (RT), incubated with primary antibodies for 1 hour at RT, washed, incubated 

with secondary antibodies for 1 hour at RT, washed and mounted. Rabbit anti-Zeb1 

(Santa Cruz Biotechnology, Santa Cruz, CA) required additional tyramide signaling 

amplification (PerkinElmer, Waltham, MA). See Table 3.1 for a list of antibodies used in 

Chapter 3. Slides were visualized using an Olympus IX71 inverted multicolor fluorescent 

microscope or a Zeiss LSM 710 confocal microscope. Confocal images were taken with 

Zen 2011 software and spectral imaging coupled with image analysis using linear 

unmixing was performed when necessary. 
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Fluorescence activated cell sorting (FACS) and flow cytometry 

FACS was used to sort KPCY cell lines as well as primary KPCY pancreatic tumors. To 

prepare cell lines, cells were incubated in cell dissociation buffer (Thermofisher) at 37oC 

for 15-60 minutes. To prepare tumors and create a single cell suspension, pancreatic 

tissue was rinsed vigorously in cold DMEM/F12 three times before mincing with scissors 

(approximately 100 chops). The minced pieces were then incubated in preheated 

collagenase with protease inhibitors (2 mg/ml; Sigma) for 20 min at 37°C. Vigorous 

vortexing was performed every 5 min during this incubation. The dissolved pieces were 

then poured over a 40 μM cell strainer and the large remaining pieces of tissue were 

mechanically dissociated using the plunger of a 3mL syringe. The flow through was 

resuspended in cold 2% FCS/DMEM/F12, centrifuged, washed once, and kept on ice in 

the dark. Samples were incubated with the primary antibody (1:200) and then secondary 

antibody (1:100) in 10% FCS /DMEM/F12 for 15 min at 4°C. Dissociated cells were 

stained for E-cadherin (ECCD-2 clone, Thermofisher) prior to sorting on either the 

FACSVantage or Influx (BD) and flow cytometry on the LSRII (BD). Sorting and flow 

cytometry were performed at the Penn PathBioResource Flow Cytometry Core. 

RNA isolation, library construction, and next-generation sequencing 

RNASeq libraries were prepared using the Clontech Ultra low RNA kit – HV, with 12 

cycles of PCR for cDNA amplification, and the Clontech Low Input Kit for library prep, 

with 9 cycles of PCR amplification, following the manufacturer’s protocol. The amplified 

library was purified using AMPure beads, quantified by Qubit and QPCR, and visualized 

in an Agilent Bioanalyzer. The libraries were pooled equimolarly, and loaded on either 
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one rapid run HiSeq 2500 flow cell, onboard clustering protocol, or on HiSeq 25000 high 

output flow cell lanes, as paired 50 nucleotide reads. 

Sequencing alignment, differential gene expression and clustering analysis 

The quality of raw reads was assessed using Fastqc (v0.11). Reads passing quality 

control were aligned to the mouse genome version NCBI GRCm38/mm10 with STAR 

(v2.3.1) using default parameters. Total reads, with alignment quality of at least 10, 

mapping to each gene were counted using HTseq-count and GRCm38/mm10 gene 

annotation files. Differential gene expression analysis was performed using the 

R/Bioconductor package DESeq2. Genes with Benjamini-Hochberg adjusted P values ≤ 

0.1 and absolute log2 fold change ≥ 1.0 were considered differentially expressed. As an 

alternate approach for normalization of gene and transcript level abundances, transcripts 

per million (TPM) were calculated using RSEM (v1.2.18) with default parameters.  

Gene expression heat maps  

For unsupervised hierarchical clustering and heat map generation, variance-stabilized 

expression values were clustered using average linkage with distance metric equal to 1 

minus the Pearson correlation coefficient using the 2000 genes with the most variable 

expression levels.  To visualize expression of specific genes involved in EMT, the log2 

ratio of normalized TPM values between paired mesenchymal (YFP+/Ecad-) and 

epithelial (YFP+/Ecad+) fractions from each individual tumor sample were plotted with 

ggplot2 in R. Markers specific for epithelial cells, mesenchymal cells and EMT 

transcription factors were selected from published literature86,92,159,180.   
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Comparison of human PDA cell lines  

Microarray expression data for human pancreatic cancer cell lines were obtained from 

the Cancer Cell Line Encyclopedia181.   

RNA extraction, cDNA synthesis and qPCR 

RNA was extracted using the RNeasy Micro kit (Qiagen) and cDNA was synthesized 

using the High Capacity cDNA Reverse Transcription kit (Thermofisher) according to the 

manufacturers’ instructions. qPCR was performed using SsoAdvanced Universal SYBR 

Green Supermix (Biorad) on a CFX384 Touch Real-Time PCR Detection System 

(Biorad) as previously described124. Relative expression was determined after adjusting 

for GAPDH.  
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Figure 3.1: Two distinct EMT programs exist in vivo. (a) Representative image of 

KPCY tumor stained for DAPI (blue), Yfp (red) and Ecad (green). Arrowheads denote 

cells that lack E-cadherin expression and have undergone EMT. Scale bar, 50 µm. (b) 

Experimental design. Primary KPCY tumors were dissociated, stained and sorted for 

Ecad. Epithelial (Yfp+/Ecad+) and mesenchymal (Yfp+/Ecad-) tumor cell populations were 

collected for transcriptome analysis. (c) Principal component analysis. (d) Hierarchical 

clustering. (e) Change in Ecad expression in canonical and non-canonical tumor pairs 

(log2 fold change Ecad- TPM/Ecad+ TPM). (f) Heat map of epithelial and mesenchymal 

transcripts in canonical and non-canonical tumor pairs (log2 fold change Ecad- 

TPM/Ecad+ TPM). TPM, transcripts per million. 
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Figure 3.2: Mesenchymal protein expression varies widely during EMT in vivo. (a-

d) Representative images of Ecad (left) and Zeb1 (a), Slug (b), Vim (c) and Fsp1 (d) 

expression (right); DAPI (blue), Yfp (red) and Ecad or mesenchymal marker (green). 

Scale bar, 50 µm. (e) Quantification of the percentage of mesenchymal marker-positive 

cells within the Yfp+/Ecad- putative EMT population. Bars represent mean ± SD.  
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Figure 3.3: RNAseq sorting quality controls. (a) Representative FACS plot of a KPCY 

tumor stained for Ecad. DP, double positive. (b) Representative images of tumor cells 

directly after sorting to check for purity. APC, allophycocyanin (fluorophore used for 

Ecad). (c-d) qPCR on sorted samples for CD45 (c), a leukocyte marker, and YFP (d) to 

rule out contamination of non-tumor cell populations. Bars represent mean ± SEM. 
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Figure 3.4: Gene set enrichment analysis (GSEA) reveals enrichment for EMT 

signatures in Ecad- samples.  
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Figure 3.5: EMT-TF expression differs between canonical and non-canonical EMT. 

Log2 fold change of Ecad- TPM/Ecad+ TPM in canonical and non-canonical tumors. 

TPM, transcripts per million. 
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Figure 3.6: EMT subtype correlates with histology. Hematoxylin and eosin (H&E) 

stained KPCY tumor sections.
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Figure 3.7: EMT subtype correlates with PDAC subtype. Hierarchical clustering of 

KPCY transcriptomes based on the Collisson (a), Bailey (b) and Moffitt (c) gene 

signatures for PDAC subtypes.  
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Figure 3.8: Cell lines segregate into canonical and non-canonical EMT. (a) 8-gene 

signature heatmap for KPCY tumor cell lines based on qPCR. (b) 8-gene signature 
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heatmap for established human PDAC cell lines based on expression data from the 

Cancer Cell Line Encyclopedia (CCLE). (c) Ecad expression (log2 fold change Ecad-

/Ecad+) of KPCY tumor cell lines sorted on Ecad. (d) Ecad expression (log2 fold change 

Ecad-/Ecad+) of human PDAC cell lines sorted on Ecad. (e) Principal component 

analysis of human PDAC cell lines based on whole transcriptome expression data from 

CCLE. (f) Principal component analysis of human breast cancer cell lines based on 

whole transcriptome expression data from CCLE.  
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Figure 3.9: Non-canonical cell lines are competent to undergo canonical EMT. (a) 

Representative phase contrast images of non-canonical cell line PD7591 ± Tgfβ 

treatment (5 ng/mL for 7d). Scale bars 100µm. (b) Expression of Tgfβ responsive genes 

± Tgfβ treatment normalized to GAPDH. (c) Western blot for E-cadherin ± Tgfβ 

treatment. 
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Figure 3.10: Non-canonical EMT is characterized by Ecad internalization. (a) 

Experimental design for acquiring protein from Ecad-sorted KPCY tumor cell lines. (b) 

Western blot for epithelial proteins on Ecad-sorted samples. (c) Experimental design for 

double Ecad labeling flow cytometry. (d) Quantification of the percentage of surface 

Ecad- cells with intracellular Ecad expression. (e-h) Confocal images of RNAseq tumor 

sections stained for DAPI (blue), Yfp (red) and Ecad (green). Scale bars 10µm. 
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Figure 3.11: Prrx1 regulates Ecad trafficking. (a) Prrx1 expression in non-

canonical RNAseq samples. (b) Surface expression of Ecad in non-canonical cell 

line PD7591 expressing control vector, Prrx1a, Prrx1b or Prrx1a/b (M-Ecad, 

Membranous Ecad). (c) Expression of intracellular Ecad (I-Ecad) in M-Ecad- cells 

in non-canonical cell line PD7591 expressing control vector, Prrx1a, Prrx1b or 

Prrx1a/b.  
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Figure 3.12: Non-canonical EMT confers enhanced tumor initiation potential and 

epithelial plasticity. (a) Limiting dilution assay results. Canonical and non-canonical 

KPCY tumor cell lines were sorted on Ecad and injected subcutaneously in NOD/SCID 

mice at 10,000; 1,000; 100; and 10 cells. (b) Tumor initiating cell (TIC) frequency, 

calculated using Extreme Limiting Dilution Analysis (ELDA) software182. (c) E-cadherin 

expression based on flow cytometry within unsorted and Ecad-sorted tumors from the 

limiting dilution experiment. Bars represent mean ± SD. P-values were calculated using 

Student’s T-test. *, p<0.05. 
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Antibody Dilution Vendor 

Rat α-Ecad 1:200-1:1000 Thermofisher & Takara Bio 

Rabbit α-Cldn7 1:100 Abcam 

Mouse α-p120 catenin 1:200 BD Biosciences 

Rabbit α-Slug 1:100 Gift of the Habener Lab 

Rabbit α-Zeb1 1:100 + TSA Santa Cruz Biotechnology 

Rabbit α-Vimentin 1:100 Cell Signaling Technology 

Rabbit α-Fsp1 1:500 Dako 

Mouse α-tubulin 1:5000 Sigma Aldrich 

 

Table 3.1: Antibodies used in Chapter 3.  
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CHAPTER 4: Conclusions and Future Directions 
 

Parallel evolution of a metastatic lesion and its attendant microenvironment 

 Throughout the study in Chapter 2, we focus on the development of the 

metastatic microenvironment in an autochthonous mouse model of pancreatic cancer. I 

found that single disseminated cells and small tumor cell clusters exhibit EMT features 

and lack an obvious tumor microenvironment, while larger lesions regain epithelial 

morphology and accumulate desmoplasia that closely resembles that of primary PDAC. I 

also observed that large metastases are hypovascular and poorly perfused while single 

cells and small lesions are well vascularized. Leukocyte populations did not show a 

strong association with metastatic lesions of any size but were increased overall in 

metastatic livers, especially macrophages and myeloid-derived suppressor cells 

(MDSCs). Adaptive immune cells such as T-lymphocytes were essentially absent from 

the metastatic microenvironment, consistent with the exclusion of this cell type from 

primary PDAC tumors. My results illustrate a gradual accretion of stroma and epithelial 

features during metastatic growth, and to my knowledge this is the first study describing 

the stepwise progression of spontaneous metastatic colonization. 

 The correlative nature of this work opens up many new potential avenues into the 

biology of metastasis. I focused entirely on dissemination to the liver because it is the 

most common site of PDAC metastasis, raising the question of whether metastases 

arise similarly at other locations. There is evidence that the clonality of metastasis differs 

within the liver and lung compared to the diaphragm and peritoneum, perhaps reflecting 

disparate selection pressures at different metastatic sites. In a similar mouse model of 

PDAC utilizing the Confetti allele as a lineage label, our lab demonstrated that gross liver 

and lung metastases exhibit reduced clonality with metastatic growth, while diaphragm 



92 
 

and peritoneal metastases remain polyclonal even at the macro-metastasis stage178. 

This suggests that metastatic development in the lung might have a similar progression 

to the liver, while diaphragm and peritoneal metastases likely develop along a different 

route.  

 Another question raised by this study is how stromal cells are recruited to sites of 

metastasis and what role they play in colonization. Myofibroblasts are essentially absent 

from the microenvironment of single cells and nano-metastases, but after the 10-cell 

stage they robustly accumulate at metastatic lesions suggesting that tumor cells secrete 

a recruitment factor that must reach a local threshold to function. Tumor-derived Sonic 

hedgehog (Shh) is a strong fibroblast mobilization signal in primary PDAC and likely 

plays a role in re-establishing the metastatic microenvironment76. Leukocytes such as 

macrophages and MDSCs do not accumulate at metastatic lesions specifically but are 

increased throughout metastatic livers, suggesting a systemic mechanism driving 

leukocyte trafficking to metastatic tissues. In melanoma, tumor-derived exosomes deliver 

long-range signals, specifically the Met receptor, to bone marrow progenitor cells, 

causing them to home to the liver and establish a pre-metastatic niche183. Similarly, 

PDAC-derived exosomes are taken up by resident macrophages of the liver (Kupffer 

cells), which in turn signal to local stellate cells to produce fibronectin which acts as a 

pre-metastatic niche31. So perhaps the increased numbers of macrophages and MDSCs 

are due to exosome-based recruitment to the liver, where they help to establish a 

generally permissive microenvironment for incoming metastatic cells. 

 Our observation that metastases become more epithelial with growth is 

consistent with the EMT/MET hypothesis, which postulates that EMT is required for early 

steps of metastasis (i.e. invasion and entry into the circulation) while MET is necessary 

for later steps (i.e. colonization). However, in our model it is impossible to discern 
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whether early mesenchymal lesions differentiate into epithelial ones or if early epithelial 

lesions are selected for within the liver microenvironment. Two recent studies of the role 

of EMT in metastasis would suggest that the latter possibility is true. Using two different 

mesenchymal Cre lines (Fsp1- and Vim-Cre) to lineage trace tumor cells that have 

undergone EMT in the Polyoma Middle T (PyMT) model of breast cancer, Fischer et al. 

found that lung metastases were uniformly negative for the EMT lineage label156. In other 

words, these metastatic cells had always been epithelial and never activated Fsp1 or 

Vim in their lifetime, suggesting that EMT is not required for metastasis. However, these 

two mesenchymal genes are almost certainly not universal EMT markers (none have 

been identified thus far), so it is possible that PyMT tumor cells undergo EMT through a 

different mechanism and therefore would be missed by this system. Furthermore, this 

study does not rule out the possibility that mesenchymal tumor cells are required for 

metastasis but only as chaperones for epithelial tumor cells in a phenomenon known as 

cell cooperation. During cell cooperation, tumor cell clones with different but 

complementary abilities work together to escape the primary tumor and metastasize184. 

In another study testing the role of EMT in metastasis, Zheng et al. knocked out Snail 

and Twist in the KPC model of PDAC and found no change in metastatic burden, again 

suggesting that EMT is not required for metastasis144. However, the authors failed to 

demonstrate that EMT is fully abrogated in these mice, and I found that Snail is 

expressed at high levels in both Ecad+ and Ecad- KPCY tumor cells in vitro and in vivo 

(Fig. 4.1), suggesting that it does not play a significant role in EMT in PDAC. Thus, it 

remains unclear whether EMT/MET or selection for epithelial cells occurs at metastatic 

sites. 
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EMT and response to chemotherapy 

The most surprising result from Chapter 2 is the observation that chemotherapy 

selects for epithelial tumor cells in vivo. I found that tumors subjected to long-term 

chemotherapy had a significantly lower frequency of EMT compared to untreated 

controls, and after a single dose of chemotherapy mesenchymal tumor cells exhibited 

higher rates of apoptosis than epithelial tumor cells. This is inconsistent with numerous 

reports that have linked EMT to chemoresistance144-146,156,185-187. However, these studies 

often possess one of two caveats (sometimes both): A. They were performed in vitro and 

thus lack the context of the tumor microenvironment or B. They rely on a single 

mesenchymal gene that might not be representative of the in vivo EMT program. Our 

data is consistent with at least one study which found that mesenchymal PDAC cell lines 

are sensitive to gemcitabine while epithelial PDAC cell lines are sensitive to erlotinib, an 

EGFR inhibitor17. It is likely that chemoresistance is dependent on the context. Cancer 

type, drug(s) used, and the microenvironment can all affect the delivery, metabolism and 

response to a given therapy. Further studies parsing these different contexts will be 

necessary to fully understand mechanisms of drug resistance in vivo. 

Discovery of an alternative mechanism of EMT in vivo 

 In Chapter 3, we focus on the mechanisms driving EMT in living tumors. I found 

that PDAC tumors can undergo EMT in one of two ways: through a canonical pathway 

involving transcriptional repression of epithelial genes, or through a non-canonical 

pathways involving post-translational repression of the epithelial program. PDAC 

subtype influences which mode of EMT tumor cells use, and there is evidence to 

suggest a similar correlation in breast cancer. Non-canonical EMT is characterized by 
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the internalization and cytoplasmic retention of epithelial proteins, which may contribute 

to their increased plasticity and tumor initiation potential. To my knowledge this is the 

first study to examine spontaneous cancer EMT in a physiologically relevant setting and 

the first to implicate post-translational regulation of the epithelial program as the 

predominant mechanism driving EMT in vivo. 

  There is some precedent for EMT regulation at the protein level during 

embryogenesis and in vitro. Snail is required during mouse gastrulation to 

transcriptionally repress Ecad, but is not sufficient to induce a full EMT: it must 

coordinate with p38, a mitogen-activated protein kinase (MAPK) that down-regulates 

Ecad protein without affecting transcription188. Epb41l5 is also required to down-regulate 

Ecad at the protein but not mRNA level during mouse gastrulation. It accomplishes this 

by disrupting the interaction between p120-catenin and Ecad, presumably exposing 

Ecad to ubiquitination by the E3 ubiquitin ligase Hakai, which facilitates Ecad 

internalization in association with Rab5+ early endosomes189. In Madine-Darby Canine 

Kidney (MDCK) cells, Gata6 promotes Ecad internalization and the formation of 

cytoplasmic Ecad+ punctae without effecting Ecad transcription, driving increased 

invasion190. It remains to be seen whether p38, Epb41l5 and Gata6 are involved in the 

same or parallel pathways and whether they play a role in cancer-associated EMT. 

In Chapter 3, we identified Prrx1 as a potential regulator of the non-canonical 

EMT phenotype, in particular with regard to Ecad trafficking. Both epithelial and 

mesenchymal isoforms of Prrx1 were significantly increased in non-canonical Ecad- 

tumor samples, leading us to pursue it as a candidate driver of NC-EMT. And while both 

isoforms promote the accumulation of cytoplasmic Ecad, they are not sufficient to down-

regulate membranous Ecad, a hallmark of EMT, suggesting that Prrx1 is a mediator but 

not a master regulator of NC-EMT. To identify a master regulator, we will most likely 
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have to focus on broad transcriptional changes rather than on individual differentially 

expressed genes within our dataset. One way to do this is to perform gene set 

enrichment analysis (GSEA) for transcription factor targets enriched within NC-EMT 

tumor samples191. At the top of the list in my preliminary analysis (Table 4.1) is Nuclear 

Factor of Activated T Cells (Nfat), which belongs to a calcium (Ca2+)-responsive family of 

transcription factors first discovered in the context of T-cell activation. Nfat proteins are 

regulated by calcineurin, which under Ca2+ replete conditions, dephosphorylates Nfat, 

allowing it to shuttle to the nucleus to modulate transcription192. Nfats have been 

implicated in PDAC progression and have been shown to promote tumor growth in 

PDAC through C-myc activation193,194 and p15INK4b repression195. Moreover, Nfat 

expression is associated with higher metastatic potential in colorectal cancer196. 

Therefore, based on GSEA and previous reports, Nfat would be a good candidate as a 

master regulator of NC-EMT in PDAC for future studies. 

The discovery of an alternative, post-translationally regulated EMT paradigm 

begs the question of whether epithelial-mesenchymal plasticity exists as a continuum 

rather than two discrete phenotypic states. In a recent comprehensive review article, 

Nieto et al. propose the idea of an intermediate EMT phenotypes of varying stability 

characterized by dampened epithelial characteristics with or without mesenchymal 

features86, reminiscent of the non-canonical EMT phenomenon described in Chapter 3. 

Furthermore, the authors acknowledge the inconsistency of mesenchymal qualities 

acquired during EMT and suggest the extent to which cells travel along the EMT 

continuum is highly context dependent86. We see evidence of this in Fig. 3.2, which 

demonstrates that traditional mesenchymal markers exhibit high inter- and intra-tumoral 

heterogeneity in the KPCY model. It is becoming increasingly clear that EMT is much 

more complex than previously thought: with so many EMT-inducing extracellular cues, 
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numerous signaling pathways, multiple layers of regulation and diverse molecular 

outputs, EMT can no longer be considered a simple binary switch between epithelium 

and mesenchyme.  

 

Concluding remarks  

 My thesis work was built upon the observation that pre-malignant pancreatic cells 

exhibit EMT features and are capable of seeding distant organs before frank 

malignancy. From there, it was a natural progression to study the cellular and molecular 

mechanisms of EMT and metastasis. This was made possible by the combination of a 

cancer model with lineage labeling, a technique borrowed from developmental biology.  

It is essentially impossible to identify tumor cells in situ that have undergone EMT 

without the aid of a lineage label, since they seamlessly blend in with true mesenchymal 

cells in the surrounding stroma. Furthermore, single disseminated cells and small 

metastatic lesions would be exceedingly difficult to locate within the vast parenchyma of 

the liver sans reporter. Without such a model, we would never know the events that take 

place during spontaneous metastatic colonization, nor would we learn that classical EMT 

mechanisms do not apply to the majority of PDAC tumors. This speaks to the power of 

animal modeling and the value of looking for innovative solutions in other fields. 

 Despite recent advances, many questions remain about the biology of EMT and 

metastasis. This work describes the stepwise progression of metastatic colonization but 

it stops short of uncovering the molecular requirements. Future studies will be necessary 

to address the mechanisms of stromal recruitment, metastasis-stroma crosstalk, the role 

of stroma in supporting colonization, and drug resistance of single disseminated cells. 

This work also revealed an alternative but predominant mode of EMT in living PDAC 
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tumors that challenges the paradigm of transcriptional regulation by EMT-TFs. However, 

it remains unclear what signals drive non-canonical EMT in vivo, what master regulators 

orchestrate it and what its molecular requirements are. It would also be interesting to find 

out whether the non-canonical EMT phenomenon is a general mechanism utilized by 

other cancer types. In Chapter 3, I presented evidence that well differentiated breast 

cancer cell lines fit the non-canonical EMT profile while poorly differentiated cell lines 

aligned with a canonical EMT expression pattern, however the true test will be to sort 

those cell lines on Ecad and perform qPCR to see how Ecad transcript behaves during 

EMT. Finally, a comparison of the metastatic potential of NC-EMT and C-EMT cells 

remains untested: perhaps NC-EMT cells are better equipped to metastasize because 

they retain both epithelial and mesenchymal properties and are thus more plastic. The 

answers to these questions will shed light on the metastatic process and expose its 

potential weaknesses, hopefully leading to a new generation of anti-metastatic therapies. 
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Chapter 4 Figures and Figure Legends 
 

 

Figure 4.1: Snail expression does not correlate with EMT in KPCY tumors. (a) 

KPCY tumor cell lines were sorted on Ecad and probed by Western blot for Snail. (b) 

KPCY tumor sections were stained for DAPI (blue), YFP (red), ECAD (white) and Snail 

(green). 
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Table 4.1: Enriched transcription factor targets in non-canonical Ecad- samples. 
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