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Three Essays On Interfirm Interdependence And Firm Performance

Abstract
This dissertation explicitly examines the structure of interdependencies that firms are subjected to within a
platform-based ecosystem and its implications for firm performance. Two theoretical themes emerge from this
dissertation: (1) a firm’s interdependence with other actors in the ecosystem matters both for its performance
and the sustainability of its superior performance; and (2) a manager’s understanding of these
interdependencies can have significant implications on firm performance and the choice of governance
structures. The first essay explores how a firm’s innovation differs with respect to its interdependence with
various elements of the ecosystem and examines its implications on the innovation’s commercialization
success. The core set of data is based on all the apps that were launched in the Apple iPhone ecosystem from
2008 to 2013. The results suggest that firms can enhance the value of their innovation by drawing on the
broader set of complementary technologies that are available in the ecosystem. But, these complementarities
also subject firms to an array of bottlenecks limiting their innovation’s value creation. The second essay
examines how ecosystem-level interdependencies affect the extent to which firms can sustain their value
creation in a platform-based ecosystem. The analysis is based on a panel dataset of top-performing app
developers in the iOS and Android ecosystems from January 2012 to January 2014. The results suggest that a
firm’s ability to sustain its superior performance is facilitated by the technological interdependence faced by its
innovation within an ecosystem and the experience gained within the ecosystem, but hampered by
technological transitions initiated by the central firm. The third essay addresses the performance
consequences of misrepresentation of interdependence structures in the alliance context using an agent-based
simulation. The results suggest that the misrepresentation of interdependence structures plays an important
role in determining performance consequences of various governance modes to manage the alliance
relationship. Specifically, overrepresentation of interdependence structures requires fully integrated or more
hierarchical governance modes, whereas underrepresentation of interdependence structures requires more
decentralized governance modes. Collectively, these essays contribute to the literature on ecosystems and
alliances, shedding new light on the role of structure of interdependence ins shaping firm’s performance.
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ABSTRACT 

 

THREE ESSAYS ON INTERFIRM INTERDEPENDENCE AND FIRM PERFORMANCE  

Shiva Agarwal 

Harbir Singh & Rahul Kapoor 

            This dissertation explicitly examines the structure of interdependencies that firms 

are subjected to within a platform-based ecosystem and its implications for firm 

performance. Two theoretical themes emerge from this dissertation: (1) a firm’s 

interdependence with other actors in the ecosystem matters both for its performance and 

the sustainability of its superior performance; and (2) a manager’s understanding of 

these interdependencies can have significant implications on firm performance and the 

choice of governance structures. The first essay explores how a firm’s innovation differs 

with respect to its interdependence with various elements of the ecosystem and 

examines its implications on the innovation’s commercialization success. The core set of 

data is based on all the apps that were launched in the Apple iPhone ecosystem from 

2008 to 2013. The results suggest that firms can enhance the value of their innovation 

by drawing on the broader set of complementary technologies that are available in the 

ecosystem. But, these complementarities also subject firms to an array of bottlenecks 

limiting their innovation’s value creation. The second essay examines how ecosystem-

level interdependencies affect the extent to which firms can sustain their value creation 

in a platform-based ecosystem. The analysis is based on a panel dataset of top-

performing app developers in the iOS and Android ecosystems from January 2012 to 
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January 2014. The results suggest that a firm’s ability to sustain its superior performance 

is facilitated by the technological interdependence faced by its innovation within an 

ecosystem and the experience gained within the ecosystem, but hampered by 

technological transitions initiated by the central firm. The third essay addresses the 

performance consequences of misrepresentation of interdependence structures in the 

alliance context using an agent-based simulation. The results suggest that the 

misrepresentation of interdependence structures plays an important role in determining 

performance consequences of various governance modes to manage the alliance 

relationship. Specifically, overrepresentation of interdependence structures requires fully 

integrated or more hierarchical governance modes, whereas underrepresentation of 

interdependence structures requires more decentralized governance modes. 

Collectively, these essays contribute to the literature on ecosystems and alliances, 

shedding new light on the role of structure of interdependence ins shaping firm’s 

performance. 
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1. INTRODUCTION 
 

 The strategy literature has long explored how firms generate rents by 

combining resources that lie outside their boundaries (e.g., Dyer and Singh, 1998; Gulati 

1998). The bulk of the attention has been on the bilateral nature of interdependence, 

such as those between buyers and suppliers. However, in today’s world, with the rising 

prominence of ecosystems often fueled by technology platforms, the nature of 

interdependence between firms is becoming increasingly multilateral, involving a 

network of suppliers and complementors (Teece 2007; Adner and Kapoor, 2010; Kapoor 

and Lee 2013; McIntyre and Srinivasan 2017).  In this dissertation, I focus on this 

emergent phenomenon of platform-based ecosystems and examine how the structure of 

multilateral interdependencies shapes firms’ value creation. Scholars in economics and 

strategy have studied platform-based ecosystems primarily through theories of direct 

and indirect network effects, where the main line of inquiry has been to understand how 

the platform firm orchestrates interactions between different players (e.g., Katz and 

Shapiro, 1986; Schilling, 2000; Evans, 2003; Rochet and Tirole, 2003, 2006; Armstrong, 

2006). While complementor firms are considered key enablers of value creation in these 

ecosystems, their strategies and performance have been largely understudied (Kapoor, 

2013; McIntyre and Srinivasan, 2017). This dissertation focuses on complementor firms 

participating in platform-based ecosystems and explores how the structure of 

technological interdependencies with respect to platform and other elements in the 

ecosystem impact their performance.  

Two theoretical themes emerge from this dissertation: (1) a firm’s 

interdependence with other actors in the ecosystem matters both for its performance and 
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the sustainability of its superior performance; and (2) a manager’s understanding of 

these interdependencies can have significant implications on firm performance and the 

choice of governance structures to manage these interdependencies. The dissertation 

comprises three essays. The first essay focuses on complementors participating in 

platform-based ecosystems via their innovations. It considers the structure of  

complementors’ innovations with respect to the platform and other complements in the 

ecosystem. It introduces the notion of connectedness to refer to the extent to which a 

given innovation interacts with the platform (i.e., platform connectedness) and also with 

the other complements in the ecosystem (i.e., complement connectedness). For 

example, while all software applications (apps) launched by developers on the iPhone 

platform interact with the iPhone’s core mobile computing module, there is considerable 

variation in terms of whether they interact with the iPhone’s other components (e.g., 

camera,GPS, accelerometer), as well as with other complementary apps (e.g., Google 

Maps, Dropbox, Facebook). The core set of data for this first essay is based on all the 

apps that were launched in the Apple iPhone ecosystem from 2008 to 2013 within the 

U.S. market. The results suggest that firms can enhance the value of their innovations 

by drawing on the broader set of complementary technologies that are readily available 

in the ecosystem. Still, these complementarities also subject firms to an array of 

bottlenecks that limit their innovations’ value creation.  

The second essay examines how ecosystem-level interdependencies affect the 

extent to which complementor firms can sustain their performance in a platform-based 

ecosystem. In this chapter, I offer a novel perspective on firms’ ecosystem-level 

interdependencies that is rooted in the structural and evolutionary features of the 

ecosystem. The structural feature is based on the technological interdependence 

between firms’ products and other components of the ecosystem. I incorporate the 
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evolutionary feature by taking into account the technological transitions initiated by the 

central firm that governs the ecosystem and the experience gained by complementors 

within an ecosystem over time. The analysis is based on a unique monthly panel dataset 

of top-performing app developers in the iOS and Android ecosystems from January 2012 

to January 2014. The results suggest that a firm’s ability to sustain its superior 

performance is facilitated by the technological interdependence faced by its innovation 

within an ecosystem and its experience gained within the ecosystem, but hampered by 

technological transitions initiated by the central firm.  

The third essay takes a more behavioral perspective and examines the 

implications of an incorrect understanding of interdependence structures.  Specifically, it 

uses an agent-based simulation model to gain insights into the behavioral biases that 

may exist when interdependent firms form strategic alliances.  The model simulates 

managers’ understanding of underlying task interdependencies within an alliance under 

different levels of complexity and governance modes. The findings suggest that the 

misrepresentation of interdependence structures plays an important role in determining 

performance consequences of various governance modes to manage the alliance 

relationship. Specifically, I find that overrepresentation of the interdependence structures 

requires fully integrated or more hierarchical governance modes, whereas 

underrepresentation of the interdependence structures requires more decentralized 

governance modes. Additionally, I find that the complementary effect of both types of 

misrepresentation and governance modes on exploration and coordination can explain 

the performance differences of various governance modes.  

 

 



4 
 

2. TWO FACES OF VALUE CREATION IN BUSINESS ECOSYSTEMS: 
LEVERAGING COMPLEMENTARITIES AND MANAGING 
INTERDEPENDENCIES 

 
INTRODUCTION 

There is increasing recognition among strategy scholars and practitioners that 

firms are dependent on their ecosystems for creating value from their innovations (Iansiti 

and Levien, 2004; Adner and Kapoor, 2010, Kelly, 2015). In many cases, the basis of 

value creation in ecosystems involves a platform that serves as a foundation upon which 

other firms can build complementary products or services (i.e., complements). Scholars 

have explored this phenomenon primarily from a perspective of a platform firm, 

emphasizing how platform-based architectures encourage innovations by complementor 

firms and enhance the overall value proposition of the platform (e.g., Baldwin and Clark, 

2000; Gawer and Cusumano, 2002; Evans et al., 2008).  While having a large number of 

complementors innovating around a platform is uniformly acknowledged as an important 

driver of the platform’s success, the implications for complementors themselves 

participating in these ecosystems with their innovations remain less clear.  There are 

often significant differences in the extent to which a given innovation is commercially 

successful in an ecosystem (Adner and Kapoor, 2010), and yet, what makes a 

complementor’s innovation successful in a platform-based ecosystem is not well 

understood.  

In this study, we start with the premise that a given innovation does not stand 

alone. Rather it is connected with other elements in the ecosystem that impacts its value 

creation (Rosenberg, 1982; Hughes, 1983; Adner and Kapoor, 2010; 2016). We draw on 

this premise and take the perspective of a complementor firm innovating around a 

platform to explain the commercial success of its innovation. To do so, we introduce the 

notion of connectedness to refer to the extent to which a given innovation interacts with 
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the platform (i.e., platform connectedness) and also with the other complements in the 

ecosystem (i.e., complement connectedness).  For example, while all software 

application (apps) launched by developers on the iPhone platform interact with iPhone’s 

core mobile computing module, there is considerable variation in terms of whether they 

interact with iPhone’s other components (e.g., camera, GPS, accelerometer), as well as 

with other complementary apps (e.g., Google Maps, Dropbox, Facebook).   

On the one hand, higher connectedness may allow the innovation to leverage a 

broader set of complementarities in the ecosystem.  Firms will be able to enhance the 

value of their innovations by drawing on complementary technologies that are readily 

available in the ecosystem (Teece, 2006; Kapoor and Furr, 2015).  On the other hand, it 

may subject the innovation to an array of interdependencies that may limits its value 

creation.  An innovation that is interdependent on other complementary technologies 

may not achieve its desired functionality either because of the challenges in managing 

the interdependencies (Henderson and Clark, 1990; Kapoor and Agarwal, 2017), or 

because of being subject to the bottlenecks that may arise with respect to other 

complementary technologies in the ecosystem (Ethiraj, 2007; Adner and Kapoor, 2010; 

2016).  In the context of platform-based ecosystems, these challenges are especially 

salient when there is a change in the platform architecture triggered by platform firms 

through the introduction of a new platform generation.  

We explore our arguments in the context of Apple’s iPhone ecosystem between 

2008 and 2013 within the U.S. market. This context provides a relevant and important 

opportunity to study the commercialization success of complementors’ innovations in a 

platform-based ecosystem. The focal firms are app developers launching their apps for 

the iPhone. The iPhone ecosystem represents one of the largest and most valuable 

business ecosystems with the App Store revenue estimated to be more than $10B in 

2016. Hundreds of thousands of app developers participate in this ecosystem by 



6 

 

frequently launching new apps. Moreover, apps launched by developers vary in terms of 

leveraging both the iPhone components and other complementary apps, providing us 

with significant variance to test our predictions with respect to platform and complement 

connectedness. Finally, we are able to exploit yearly changes in the iPhone platform 

through Apple’s introduction of new platform generations to consider the 

commercialization challenges that app developers may face with the new generation of 

the platform. 

The analysis is performed on a newly assembled dataset of 249,305 iPhone 

apps launched by 20,391 developers with detailed information on the focal app and the 

app developer, along with novel measures for each of the app’s platform and 

complement connectedness. An app’s successful commercialization is measured based 

on the likelihood of it being listed in the Top 500 list by revenue (e.g., Kapoor and 

Agarwal, 2017; Davis et al., 2016). The Top 500 list is an important indicator of an app’s 

successful commercialization as apps that make it into this list represent approximately 

95 percent of the total revenue generated by apps in the iPhone ecosystem 

(SensorTower, 2016). Such a list is also keenly followed by industry observers and 

analysts as a reference for successful apps. We find that higher platform connectedness 

and higher complement connectedness is associated with a higher likelihood of app’s 

successful commercialization. However, the benefit of platform connectedness is 

negated during the initial period of the new iPhone generation. In contrast, the benefit of 

complement connectedness with respect to iPhone’s generational evolution is much 

more nuanced.  The benefit is strengthened when Apple introduces the new platform 

generation and if the complements that the focal app is connected to have low platform 

connectedness whereas it is weakened when Apple introduces the new platform 

generation and if the connected complements themselves have high platform 

connectedness. 
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These findings highlight the two facets of value creation in ecosystems, and the 

implications for complementor firms innovating around a platform. Firms in platform-

based ecosystems can enhance the value of their innovations by leveraging a broad 

array of platform components and other complements.  However, this interconnected 

architecture of value creation can subject the firm to challenges with respect to 

managing the technological interdependencies especially when there is a new platform 

generation.  Further, the distinction between platform connectedness and complement 

connectedness helps in explaining the puzzling difference within innovations with high 

complement connectedness.  Our results suggest that the technological 

interdependencies due to complement connectedness have a negative impact on the 

innovation’s commercialization only when the connected complements themselves have 

high platform connectedness.  In contrast, when the connected complements have low 

platform connectedness, the new platform generation actually facilitates the innovation’s 

commercialization.  In so doing, the study contributes to the emerging literatures on 

ecosystems and platforms, examining both the opportunities and the challenges faced 

by complementors in creating value from their innovations (e.g., Boudreau, 2010; 

Ceccagnoli et al., 2012; Kapoor, 2013; Kapoor and Lee, 2013; Altman, 2016; Cennamo, 

Gu, and Zhu, 2016; Zhu and Liu, 2016; Kapoor and Agarwal, 2017). More broadly, the 

study contributes to the complementary assets framework (Teece, 1986) that has been 

instrumental in explaining innovators’ commercialization outcomes.  As Teece (2006) 

points out in his reflection of the original article, the extant literature has been somewhat 

limited in its examination of complementarities, confining them to enterprise-level value 

chains (i.e., manufacturing, sales, marketing, and distribution), and not considering 

complementarities within the broader ecosystem (Adner and Kapoor, 2010, 2016; 

Kapoor and Furr, 2015). Our findings offer compelling evidence of how such 

complementarities impact the innovation’s commercial success. Moreover, while the 
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extant literature has emphasized the usefulness of specialized complementary assets for 

innovators to benefit from their innovations, we show that in the context of platform-

based ecosystems, even generic complementary assets (i.e., platform, complements) 

can influence innovators’ value creation and appropriation. 

 
INNOVATION IN PLATFORM-BASED ECOSYSTEMS 

A platform-based ecosystem encompasses a central platform firm and a network 

of complementor firms who build products around the platform. A platform represents an 

underlying technical architecture that acts as a foundation upon which other firms can 

develop their products, and offer them to the users.1  Gawer (2014) highlights two 

distinct approaches to studying platforms in the extant literature.  One approach 

focusses on platforms as creating value through network effects or multisided markets 

(e.g., Katz and Shapiro, 1986; Schilling, 2002; Eisenmann et al., 2006; Rochet and 

Tirole, 2003; Armstrong, 2006). The other approach focusses on platforms as technical 

architectures that facilitate innovation by complementors within the ecosystem (Gawer 

and Cusumano, 2002; Baldwin and Woodard, 2009; Boudreau, 2010).  Scholars from 

both streams of research have considered the focal platform or the focal platform firm as 

the primary object of attention.  While these scholars have also acknowledged the role of 

complementors and their innovation in driving platform’s success, there has been in 

general a lack of emphasis in examining the outcomes of complementors and their 

innovations. There are often significant differences in the extent to which a given 

innovation is commercially successful in an ecosystem (Adner and Kapoor, 2010), and 

yet, what makes a complementor’s innovation successful in a platform-based ecosystem 

is not well understood.  

                                                           
1
 In this paper, the focus is primarily on platforms that provide a foundation upon which other firms 

develop complementary products (e.g., platforms focusing on enterprise software, genomics, smart homes, 

internet of things), and not on platforms that purely facilitate transactions between buyers and sellers (e.g., 

eBay. Amazon). 
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An emerging stream of work has started paying attention to complementors, 

which are critical to value creation within the platform-based ecosystem (e.g., Kapoor, 

2013; Kapoor and Agarwal, 2017; Boudreau, 2010, 2012; Altman 2016; Cennamo, Gu, 

and Zhu, 2016; Zhu and Liu, 2016). While scholars have started shedding some light on 

the complementors’ strategies and performance, they have largely been agnostic to the 

technological interactions that exist between a complementors’ innovation and other 

elements of the ecosystem. In this study, we focus on complementors’ innovation and 

the vast array of its technological interactions within the ecosystem. For example, an app 

in the iPhone ecosystem can interact with multiple components from the iPhone (e.g. 

camera, GPS, accelerometer) as well as with other apps from the ecosystem (e.g. 

Google maps, Facebook, Dropbox). We use the notion of connectedness to refer to 

these technological interactions of a complementor’s innovation with the platform (i.e., 

platform connectedness) and other complements (i.e., complement connectedness). We 

explore how an innovation’s platform connectedness and its complement connectedness 

shape its commercialization success within the ecosystem. 

For the platform connectedness, we consider the level of hierarchy within the 

platform architecture. In addition to being a modular system, a platform is also a 

hierarchical system and can be decomposed into core and optional components. There 

are some components in the platform that represent the core architecture of the 

platform, and all the complements participating in the ecosystem leverage these core 

components. In other words, firms develop their products using the core components of 

the platform. The rest of the components are optional, and complements may (or may 

not) leverage them. For example, in the video game ecosystem, the console consists of 

the central processing unit (CPU), the graphics processing unit, the memory controller, 

and the video decoder. These are the core components of the console that enable 

games developed by third-party developers to be played on the console. In addition to 
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the core components, the console also provides access to a number of optional 

components (such as motion detectors, camera, and Bluetooth) that game developers 

can leverage to enhance features of their games. The game developers use the core 

components, and may also use some of the optional components, to develop different 

games for the console users. Such an architectural hierarchy that involves core and 

optional platform components exists in many settings such as in the cases of computing 

hardware, enterprise software, genomics technologies and mobile payments. We 

consider this characterization of the platform to understand variation in ways a 

complementor’s innovation can be connected with the platform.  

  In addition to platform connectedness, we also examine the role of complement 

connectedness in impacting an innovation’s commercial success. The extant literature 

has considered the interaction between the platform and the complements primarily 

through the theoretical lens of indirect network effects (e.g., Schilling, 2002; Zhu and 

Iansiti, 2012). However, complements in an ecosystem can be connected not only with 

the platform but also with the other complements in the ecosystem. For example, the 

Uber app in the smartphone ecosystem is connected with Google Maps for its navigation 

purposes. Figure 2.1 illustrates the two types of connectedness that we consider in this 

study using a simplified schema. We now explore how the nature of connectedness for 

the focal innovation within the ecosystem may affect its commercialization success.   

----------------------------------------- 
 Insert Figure 2.1 about here 

----------------------------------------- 
Platform Connectedness 

We consider an innovation as having high platform connectedness if it leverages 

the optional components of the platform in addition to the core module of the platform. 

For example, in the iPhone ecosystem, the ‘QR reader’ app that allows scanning of QR 

codes, barcodes, and documents through the app has high connectedness with the 
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iPhone platform as it leverages the core mobile computing module as well as the 

camera, one of the optional components provided by the smartphone. The optional 

components provided by the platform represent a set of complementary technologies 

that firms can combine with their focal innovation, and achieve superior functionality 

without having to invest in those technologies internally.  Moreover, users are generally 

familiar with platform components, and hence, may not face adoption challenges for 

innovations high platform connectedness.  Finally, access to these components can also 

facilitate experimentation by providing the innovating firm with new options with respect 

to the functionality at little or no cost.  Hence, we expect that innovations with greater 

platform connectedness will be more likely to achieve successful commercialization:  

H1 - The greater is the innovation’s platform connectedness, the higher will be the 
likelihood of its successful commercialization. 

 
Complement Connectedness 

We consider an innovation as having high complement connectedness if it 

interacts with other complements in the ecosystem. For example, in the iPhone 

ecosystem, the “National Park” app, provided by National Geographic Society, has high 

complement connectedness, as it leverages the Google Map app to provide navigation 

facility to its users. Prior work in strategy has considered how complements enhance the 

value of the platform for the user through indirect network effects (e.g., Schilling, 2002; 

Zhu and Iansiti, 2012). We argue that such network externalities can not only exist 

between a platform and complements, but can also exist between complements.   

The focal innovation that is connected to other complements in the ecosystem 

might be more valuable as users can derive additional benefits from combining the 

functionalities of the complements with the focal innovation. Such connections can also 

provide the focal innovation with access to the installed bases of the connected 

complements. Further, having access to the specialized technologies provided by 
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external complements can increase the combinatorial set for experimentation and 

learning for the focal innovation and thus, can facilitate commercialization. Finally, 

developing the complementary technologies on one’s own can be costly and uncertain. 

By leveraging the readily available complementary technologies provided by other firms, 

firms can also avoid commercialization setbacks that can be associated with the launch 

of new innovations within an ecosystem (Adner and Kapoor, 2010; Kapoor and Furr, 

2015). Accordingly, we suggest that:  

H2 - The greater is the innovation’s complement connectedness, the higher will be 
the likelihood of its successful commercialization. 

 
 

Effect of platform evolution (generational change) 

We now consider how the effect of platform and complement connectedness on 

an innovation’s commercialization success might be impacted by the introduction of the 

new generation of the platform. Transitioning to a new platform generation is an 

important mode by which platform firms compete and create value over time. New 

platform generations typically offer improvements in existing functionality as well as add 

new functionality. In so doing, they alter the interfaces through which the complements 

interact with the platform (Venkatraman and Lee, 2004; Ansari and Garud, 2009; Adner 

and Kapoor, 2010; Kapoor and Agarwal, 2017). Hence, a new platform generation may 

represent the instance of an architectural change as discussed by Henderson and Clark 

(1990) but at the level of the ecosystem, where the core design concepts and the 

associated knowledge are not overturned but there is a change in the nature of the 

interactions between the platform and the complements. This, in turn, might affect the 

commercialization success of innovations that are technologically connected with the 

platform for their functioning.  
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The connectedness between an innovation and a platform creates 

interdependence that needs to be managed proactively. Traditional coordination 

mechanisms such as hierarchy and ongoing communications associated with firms are 

typically absent in platform-based ecosystems. The platform firm often relies on the core 

technical architecture to frame interactions and to coordinate activities among 

complementors (Gawer and Cusumano, 2002). This is achieved through the design of 

the platform interfaces that provide complementors with access to the platform’s core 

and optional components. The platform firm coordinates activities within the ecosystem 

by managing these interfaces so as to ensure coherent working of the ecosystem. As 

firms build their innovations using the components provided by the platform, they 

repeatedly interact with the platform through these interfaces. To maximize value 

creation, they design their innovation specific to the interfaces provided by the platform. 

They develop skills and processes specific to the interfaces provided by the platform. 

This designing of the innovation and routinization of processes specific to the interfaces 

and the platform context can also be referred to as ‘structural embeddedness’ of firms in 

the platform (Karim, 2012).  

When an innovation has a high level of connectedness with the platform, its 

commercialization may be hampered by the newness of the platform generation. Users 

may face challenges as they adopt the focal innovation during a period when there is 

significant uncertainty regarding the overall architecture of the platform. From the 

perspective of the innovating firm, while higher platform connectedness allows for the 

leveraging of additional functionality accorded by the platform firm, it also imposes 

greater technological interdependencies that have to be carefully managed during a 

period of generational transition within a platform (Kapoor and Agarwal, 2017). Such 

additional challenges faced by the users and innovators during a period of generational 
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transition may limit the commercialization success of those innovations with high 

platform connectedness. Hence, we hypothesize the following:  

H3 - The effect of platform connectedness on the innovation’s commercialization 
success will be moderated by platform’s generational evolution such that the 
effect will be less positive when the platform generation is new than when it is 
mature. 

 

The new generation of the platform not only affects innovations that have high 

connectedness with the platform, but it can also affect innovations that are connected 

with other complements in the ecosystem.  On the one hand, the interdependent 

complements enhance the value of the focal innovation; on the other hand, they can also 

act as bottlenecks constraining its successful commercialization especially during 

technology transitions (Adner and Kapoor, 2010; 2016). For example, Gawer and 

Henderson (2007) show that the performance of Intel’s microprocessor was constrained 

by the bottleneck in the peripheral complements that supplied data to the 

microprocessor. Similarly, in the semiconductor lithography equipment industry, the 

commercialization success of innovations was negatively impacted by the technological 

bottlenecks in the mask and the resist complements (Adner and Kapoor, 2016). Such 

constraints that limit the commercialization success of an innovation are likely to be most 

prominent in a platform-based ecosystem when a new generation of platform is 

introduced. 

In addition, it is likely that as the connected complements evolve in the face of 

platform transitions, so will the technological interfaces between the focal innovation and 

those complements.  Thus, the focal innovation needs to adapt not only to the changes 

made in the new generation of the platform but also to the changes that the connected 

complement makes in response to the new platform generation. Such additional 

challenges faced by the complementors during a period of generational transition may 
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limit the commercialization success of those innovations with high complement 

connectedness. Hence, we hypothesize the following:  

H4 - The effect of complement connectedness on the innovation’s 
commercialization success will be moderated by platform’s generational evolution 
such that the effect will be less positive when the platform generation is new than 
when it is mature. 

 

METHOD 

 The empirical setting for the study is Apple’s iPhone ecosystem, and the focal 

complementor firms are application software (app) developers who participated in the 

ecosystem from 2008 to 2015 by developing apps for the iPhone within the U.S. market. 

Apple launched its first generation of iPhone in January 2007, and it developed its own 

apps for this generation. However, in March 2008, Apple released the first software 

development kit that allowed external software developers to build apps for the iPhone, 

and started offering apps from these developers through its App Store in July 2008. 

Since this shift towards a platform-based strategy, the number of application developers 

building apps and the number of apps for the iPhone has grown exponentially, and this 

has been a key enabler of iPhone’s success over the past decade. As of June 2015, 

there were more than 1.5 million apps offered in the App Store, and more than 100 

billion copies of apps downloaded by iPhone users.  

The setting provides an important and relevant context to study how the 

commercialization success of complementor’s product innovations is shaped by the 

structure of technological interactions within the ecosystem.  The iPhone ecosystem 

represents one of the largest and most valuable business ecosystems with App Store 

revenue estimated to be more than $10B in 2016.  Hundreds of thousands of app 

developers participate in this ecosystem by frequently launching new apps. Moreover, 

apps launched by developers vary in terms of leveraging both the optional components 
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(e.g., camera, GPS, accelerometer) from the iPhone platform, and the other 

complementary apps (e.g., Google Maps, Dropbox, Facebook) offered by developers in 

the iPhone ecosystem. Finally, between 2008 and 2015, there were six generational 

transitions within the iPhone platform when Apple launched new versions of the 

smartphone operating system and the handset, allowing us to observe the impact of 

platform’s generational evolution on the commercialization success of apps across 

multiple generations.  

 

Data 

The dataset comprises of all the apps that were introduced by developers for the 

iPhone between July 2008 and March 2013. The primary sources of data are App Annie 

(www.appannie.com), iTunes (www.apple.com/itunes/), and AppShopper 

(www.appshopper.com). App Annie and AppShopper are the leading data aggregating 

and archiving sources for information on apps in the iPhone ecosystem. Since 2008, 

they have been independently archiving information on the apps launched in the iPhone 

ecosystem. We first collected information for the apps that were launched until March 

2013. Using two different sources helped us to minimize missing data, and we were able 

to identify 796,876 unique apps. For each of these apps, we collected information on 

launch date, app description, download price, average consumer rating, content rating, 

app size, language, in-app purchases and category.  We supplemented this with 

additional information from iTunes on platform components leveraged by the focal app, 

and all of the version updates up to December 2015. 

In the analysis, we only consider those apps whose primary source of revenue is 

from the App Store through either paid downloads or in-app purchases. We did that for 

two reasons. First, firms from many industries such as retail and financial services offer 

iPhone apps as an additional channel to support their existing business. Hence, the app 

http://www.appannie.com/
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on its own is not their focal product innovation. Second, many firms also offer apps for 

free and rely on ad-based revenue model. In such cases, apps are the main source of 

ad-based revenue, but these revenues are not captured by the App Store and, hence, 

do not allow us to draw inferences with respect to their commercialization success. This 

reduced the total number of apps to 421,021 apps. In parallel, we gathered information 

about the Top 500 iPhone apps based on downloads and revenues. Apple provides daily 

lists of the Top 500 apps based on the number of downloads and the total app revenue. 

App Annie has archived this daily ranking information from Apple, and we were able to 

access this information from February 2010 to December 2015. To avoid any left 

censoring in the data, we excluded 127,703 iPhone apps that were introduced before 

February 2010.  Finally, we induce the extent of complement connectedness from the 

detailed app description and using a keyword-based approach. This approach made it 

difficult to include apps offered in other languages, and hence, these apps were 

excluded from the analysis.  We also excluded books, news, and reference apps, whose 

description typically include portions of the actual content which made the keyword-

based approach to identifying complement connectedness less effective. The final 

dataset comprised of a total of 249,305 apps launched by 20,391 firms. Because of the 

hypercompetitive nature of this setting, we test our predictions using monthly 

observations for each of the apps.  

 

Measures 

 Dependent variable: We measure successful commercialization of an innovation 

by examining whether the focal app made it to the Top 500 apps list by revenue (e.g., 

Kapoor and Agarwal, 2017; Davis et al., 2016). The revenue distribution for smartphone 

apps is heavily skewed. According to Sensor Tower, a leading vendor for App Store 

marketing and sales tracking software, the top 1 percent of the app developers in the 
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iPhone ecosystem represent approximately 94 percent of total ecosystem-level revenue 

(SensorTower, 2016). Therefore, having an app in the Top 500 list offers clear evidence 

of successful commercialization among hundreds of thousands of apps. Such a list is 

also keenly followed by industry observers and analysts as a reference for successful 

apps. 

Platform connectedness: The iPhone platform comprises of a core mobile 

computing module that all app developers have to leverage for their apps to function on 

the iPhone.  In addition, app developers can leverage a number of iPhone components 

such as Bluetooth, camera, GPS, gyroscope, location services, video camera, and Wi-Fi 

for their apps.  The greater is the number of iPhone components that an app is 

leveraging, the higher will be its platform connectedness. Hence, we measured platform 

connectedness based on the number of non-core components offered by the platform 

that the focal app leveraged. While about 50 percent of apps leveraged only the core 

module of the iPhone platform, 30 percent of apps leveraged one optional component, 

and 20 percent of apps leveraged more than one optional components.  

Complement connectedness: In addition to connectedness with the platform, a 

focal app can also be connected with apps offered by other firms in the ecosystem. For 

example, many apps in the iPhone ecosystem leverage Google’s map app for its 

navigation functionality via the application programming interfaces (APIs).  Similarly, a 

large number of apps leverage Facebook’s apps such as Facebook and Instagram for 

the social networking functionality. The information on the apps that a focal app 

leverages is prominently disclosed in the description of the app.  We searched the 

description of all apps for the mentions of these other apps. For example, one of the 

apps, ReaddleDocs, describes its connectedness with other apps such as MobileMe 

iDisk, Dropbox, and Google Docs in its description:  
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“…readdleDocs is all-in-one document reader for iPhone and iPod 
touch...readdleDocs allows you to download and upload files from MobileMe iDisk, 
Dropbox, Google Docs, and other services....”  
 

Similarly another app, Matg, discusses how it leverages Google Maps: 

“….designed for sales, marketing or finance executives, this app allows you to access 
customers, sales order transactions, accounts receivable statements, item master, and 
item warehouse information...tight integration with other iPhone features, such as e-mail 
and Google Maps, will provide you with the ability to communicate effectively with your 
corporate office about any of your accounts….” 

 
The greater is the number of other complementary apps that the focal app is 

leveraging, the higher will be its complement connectedness in the ecosystem. Hence, 

the variable complement connectedness measures the number of other apps that the 

focal app is connected to in the iPhone ecosystem. While about 13 percent of apps 

leveraged one complement, about 9 percent of apps leveraged more than one 

complement. In some cases, apps would increase their complement connectedness as 

part of their “version update” which includes new features.  Hence, in addition to 

searching through the product description, we also searched through the version update 

history to identify changes in an app’s complement connectedness.  As a robustness 

check, we excluded these apps from the analysis, and found very similar results.  

Table 2.1 summarizes the number of apps based on their platform and 

complement connectedness for all apps in the dataset and for only those apps that 

made it into the Top 500 list by revenue. Apps that leverage at least one optional 

component of the iPhone platform are categorized as having high platform 

connectedness, and low otherwise. Similarly, apps that leverage at least one other 

complementary app are categorized as having high complement connectedness. Of all 

the apps in the dataset, 49.3 percent had high platform connectedness whereas of all 

the Top 500 apps, 64.4 percent had high platform connectedness. This pattern is 

consistent with the prediction in Hypothesis 1. Similarly, 21.9 percent of apps in the 
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dataset had high complement connectedness whereas of all the top 500 apps, 41.2 

percent had high complement connectedness. This pattern is also consistent with the 

prediction in Hypothesis 2.   

----------------------------------------- 
Insert Table 2.1 about here 

----------------------------------------- 
 

Generational Newness: Between 2008 and 2015, the iPhone platform underwent 

six episodes of generational transitions. These transitions included both changes in the 

operating system (iOS) and in the handset.  More than 90% of iPhone users have been 

shown to migrate to the new operating system within the first month whereas the 

migration to the new handset is much more gradual. From a perspective of an app 

developer, the changes in iOS are a major consideration as it impacts almost the entire 

iPhone user base.  In order to consider the impact of iPhone platform’s generational 

evolution on the successful commercialization of the focal app, we used the variable 

generational newness which is calculated based on the number of months between the 

observation month and the month in which the latest generation of the iPhone platform 

was launched. We multiplied this measure by -1 for ease of interpretation with respect to 

the hypotheses.  Hence, higher values correspond to an early period of a new platform 

generation.   

In order to explore the challenges faced by app developers and users during the 

early period of a new platform generation, we used Google search data reported in 

Google Trends (www.google.com/trends).  Figure 2.2 shows the graphical plot for 

normalized monthly trend of U.S. search volume for the search term “iOS app not 

working” from January 2010 to December 2015. As shown in the figure, there are 

significant spikes in search volume during the months when the new platform generation 

http://www.google.com/trends


21 

 

is launched, suggesting that iPhone users and app developers faced major challenges 

with their apps during this period.  

----------------------------------------- 
 Insert Figure 2.2 about here 

----------------------------------------- 
 

Control variables: We control for a number of firm-level and app-level effects that 

can influence the likelihood of successful commercialization for the firm’s app. First, we 

control for firms’ experience in the ecosystem using the variable firm experience, which 

is the total number of months that a firm has been participating in the ecosystem. To 

obtain this measure, we first identified the month in which the firm introduced its first app 

in the ecosystem (i.e., the month of entry) and then calculated the number of months 

between the observation month and the month of entry. Second, app developers often 

try to gain visibility among their potential users by providing free apps. We controlled for 

this firm-level effect through a dummy variable top 500 free that takes a value of ‘1’ if any 

of the apps developed by the firm were also part of the Top 500 ranking based on the 

number of downloads for free apps in a given month.  Further, an app’s successful 

commercialization is likely to be influenced by the overall demand for its submarket 

category (e.g., Games, Productivity, Utility, Business). An app in a high-demand 

submarket category will find it relatively easier to succeed. We account for this possibility 

using the variable category demand, which is the total number of apps from the focal 

firm’s app category in the Top 500 list in a given month. In addition, we also control for 

any category-level differences by using category fixed effects.  

We control for the quality of the app based on consumer ratings received by the 

focal app. Consumers can rate an app from 1 to 5 stars, with 5 being the highest quality. 

In the dataset, we were able to observe the cumulative rating offered by the consumer 

for a given app as of March 2013, but not the changes in the rating over time. We used 
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this time-invariant measure to control for app quality. The variable app rating is the 

cumulative rating received by the focal app as of March 2013. We also control for recent 

investments made by firms in their focal app by measuring the number of updates to the 

focal app in the past three months (3-month updates) and the total number of updates 

before the observation month (Total updates). Additionally, we controlled for other app-

level characteristics like the price for download (download price), recommended age 

rating for the app (content rating), the app’s storage space as a proxy for app 

complexity, and whether the app has an in-app purchase option or not (in-app 

purchase). Table 2.2 provides a brief description of the variables used in the analysis. 

----------------------------------------- 
Insert Table 2.2 about here 

----------------------------------------- 
Analysis 

We tested our hypothesis using continous time event history analysis to estimate 

the hazard rate of an app achieving successful commercialization. We constructed the 

data in the long form to account for time-varying covariates. We started analyzing all the 

apps since their first month of launch on the iPhone platform. For the apps that entered 

the Top 500 list by revenue, we included information for the months until they first 

appeared in the Top 500 list. For those apps that did not appear in the Top 500 list until 

December 2015, we used two different approaches to identify the censoring month. 

First, many of these apps continue to be available in the App Store without any updates 

akin to the ‘living dead’ phenomenon (Bourgeois and Eisenhardt, 1987).  Censoring 

these apps based on the last month of observation (December 2015) might be 

problematic because the likelihood of them making it to the Top 500 list may be very low 

beyond a certain month. To account for this possibility, we identify these ‘living dead’ 

apps by analysing data on version updates, and we only include monthly observations 

until 12 months after their last update. As an additional robustness check, we also 
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estimated a model where we only include observations for these apps until six months 

after their last update. We report this analysis in the robustness checks section after 

presenting our main results. 

 We used the Cox proportional hazard model, a robust technique for hazard rate 

analysis that does not require making an additional assumption about the shape of the 

baseline hazard, which may be increasing, decreasing, constant, or non-monotonous 

(Cox, 1975). This helps address concerns about the incorrect distributional assumptions 

yielding biased estimates (Blossfeld and Rohwer, 2002) and the choice of parametric 

specification based on observed data generating inconsistent results (Carroll and 

Hannan, 2000). Further, we tested for the proportionality hazard assumption by checking 

if the slope of the regression equation of scaled Schoenfeld residuals on time is nonzero 

for the full model as well as for all predictor variables (Grambsch and Thermeau, 1994). 

The proportional hazard assumption was satisfied for both the full model and all 

predictor variables.  Finally, apps introduced by the same firm often differed with respect 

to their connectedness within the ecosystem, allowing us to control for unobserved firm-

level heterogeneity by treating each firm as a separate stratum (Allison, 1996). 

 
Results 

We report the summary statistics and correlations between our covariates in 

Table 2.3. The results from the Cox model are reported in Table 2.4. The model 

estimates the hazard of an app achieving successful commercialization as identified by 

its first inclusion in the Top 500 list by revenue. The reported coefficients can be 

exponentiated to obtain hazard ratios, which are interpreted as the multiplier of the 

baseline hazard for the app being included in the Top 500 list when the variables 

increase by one unit (Allison, 2010). An increase in hazard can also be interpreted as an 

increase in the likelihood of an app achieving successful commercialization. All standard 
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errors reported were corrected for noninterdependence across multiple observations for 

the same app by clustering observations for each app. All the models include category-

fixed effect and firm-level stratification to control for any unobserved time-invariant 

differences across categories and firms. Model 1 is a baseline model with only control 

variables. In Models 2 and 3, we include the variables platform connectedness and 

complement connectedness to test Hypotheses 1 and 2, respectively. In Model 4, we 

include the interaction term between platform connectedness and generational newness 

to test Hypothesis 3. Similarly, we include the interaction term between complement 

connectedness and generational newness in Model 5 to test Hypothesis 4. Model 7 is 

the fully specified model with all independent variables and interaction terms.  

----------------------------------------- 
Insert Tables 2.3 and 2.4 about here 

          ----------------------------------------- 

In Hypothesis 1, we predicted that the greater is the innovation’s platform 

connectedness, the higher will be the likelihood of its successful commercialization. We 

find support for this prediction in both Models 2 and 4. The estimated coefficient for 

platform connectedness is positive and statistically significant (p < 0.01). In considering 

the magnitude of the estimated coefficients in Model 2, we find that a one unit increase 

in platform connectedness is associated with a 17.4 percent higher likelihood of the focal 

app making it into the list of Top 500 apps by revenue within the iPhone ecosystem. 

Similarly, in Hypothesis 2, we predicted that the greater is the innovation’s complement 

connectedness, the higher will be the likelihood of its successful commercialization. We 

find statistical support for this prediction.  The coefficient estimates for the variable 

complement connectedness in Models 3 and 5 are positive and statistically significant (p 

< 0.01). Based on the estimated coefficients from Model 3, an increase in complement 

connectedness by one unit can increase the focal app’s likelihood of making it into the 

list of Top 500 apps by revenue by 15.1 percent.  
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In Hypothesis 3, we predicted that the effect of platform connectedness on the 

innovation’s successful commercialization will be weaker during the early period of the 

platform generation than when platform generation is relatively mature. The results from 

Model 4 supports the prediction. The estimated coefficient for the interaction term 

between platform connectedness and generational newness is negative and statistically 

significant (p < 0.01). Hence, the effect of platform connectedness on the app’s 

commercialization success is less positive when the platform generation is new than 

when it is mature.  This suggests that the benefits of platform-level complementarities 

that accrue to app developers whose apps have high platform connectedness may be 

buffered by the challenges of managing additional technological interdependencies 

between their apps and the new generation of iPhone platform. 

Finally, in Hypothesis 4, we predicted that the effect of complement 

connectedness on the successful commercialization of an innovation will be weaker 

during the early period of the platform generation than when platform generation is 

relatively mature. We test for the interaction between complement connectedness and 

generational newness in Model 5. The estimated coefficient for the interaction term is 

positive but statistically insignificant, suggesting that the effect of complement 

connectedness on an app’s successful commercialization does not vary with platform’s 

generational evolution. 

 To further explore this non-finding with respect to Hypothesis 4, we conduct a 

post hoc analysis to understand how the connected complement might differ with 

respect to its platform connectedness. Our theoretical arguments were premised on the 

existence of technology bottlenecks and the need for firms to adapt and reconfigure their 

products during generational transition of the platform (Henderson and Clark, 1990; 

Kapoor and Agarwal, 2016). However, it is possible that there is some variation in the 

degree of adaptation required, depending on the level of connectedness between the 
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connected complements and the platform itself. To explore this possibility, we separate 

the variable complement connectedness into two categories depending on the level of 

platform connectedness of the complement that the focal innovation is connected to. 

We identified the complements with high platform connectedness as those that 

used at least one of the optional components offered by the platform. Apps such as 

Google Maps, Waze, and YouTube use one or more optional components provided by 

the iPhone platform, whereas apps like Dropbox and Google Drive use only the mobile 

computing module of the iPhone platform. We measured complement connectedness 

with high platform connectedness as the number of complements with high platform 

connectedness that the focal innovation is connected to within the ecosystem. Similarly, 

we measured complement connectedness with low platform connectedness based on 

the number of complements with low platform connectedness that the focal innovation is 

connected to within the ecosystem.  

In Models 6 and 7, we test for both the direct effect of complement 

connectedness with high and low platform connectedness respectively, and their 

interaction effect with generational newness. The coefficient for the direct effect of both 

types of complement connectedness is positive and statistically significant, providing 

evidence for the argument that complement connectedness increases the likelihood of 

the focal innovation achieving successful commercialization. Further, the coefficient for 

the interaction effect of complement connectedness with low platform connectedness 

and generational newness is positive and statistically significant. In contrast, the 

coefficient for the interaction effect of complement connectedness with high platform 

connectedness and generational newness is negative and statistically significant (p < 

0.05). We illustrate this difference in the effect of the two types of complement 

connectedness through the plots in Figure 2.3. The difference in the effect of 

complement connectedness depends on the extent of connectedness between the 
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platform and the complement that the focal innovation is connected with. The benefit of 

complement connectedness is strengthened when Apple introduces the new platform 

generation and if the complements that the focal app is connected to have low platform 

connectedness whereas it is weakened when Apple introduces the new platform 

generation and if the connected complements themselves have high platform 

connectedness. These findings clearly highlight the two faces of value creation in 

ecosystems – the opportunities associated with leveraging complementarities and the 

challenges associated with managing technological interdependencies.  

----------------------------------------- 
Insert Figure 2.3 about here 

          ----------------------------------------- 

Robustness Checks 

We conduct a number of additional checks to establish the robustness of our 

findings. We report these results in Table 2.5. First, in order to ensure that the results 

are not the artifact of a large number of observations, we conduct an additional analysis 

on the randomly drawn subsample based on the weighted exogenous sampling 

maximum likelihood (WESML) technique suggested by Manski and Lerman (1977).  An 

estimation based on the random exogenous sample was not practical because apps that 

achieve successful commercialization are rare. There are only 4,213 apps out of 

244,034 total apps that achieved successful commercialization during the observation 

period. From the information point of view, it would be desirable to have a greater 

fraction of apps that achieved successful commercialization. A choice-based sampling 

that takes fractions of both successful and unsuccessful apps would not be appropriate. 

Because this stratification would be done on the dependent variable, the estimates 

would be subject to selection bias. Hence, the WESML technique is more suited for rare 

events (Singh, 2005), as it allows for forming a sample with a greater fraction of 

observations with rare events without any selection bias. Intuitively, the idea is to weigh 
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each sample observation by the number of population elements it represents to make 

the choice-based sample simulate a random exogenous sample.   

In order to construct our sample, we followed the WESML technique laid out by 

Singh (2005). We constructed the sample by first selecting all the apps that entered the 

Top 500 list during the observation period and then drawing a random pool of 

approximately 20 percent of the apps that never entered the top list. This generated a 

sample of 50,091 apps. We then assigned weights to the each of these apps based on 

the representation of these apps in the overall dataset. The apps that entered the top list 

were assigned a weight of ‘1,’ as all these apps from the population were included in the 

sample. The apps that did not enter the top list were assigned weights as the ratio of 

total apps in the respective category that were in the sample to that in the entire dataset. 

The results of the analysis based on this subsample are reported in Model 8 and are 

qualitatively similar to our main results.  

----------------------------------------- 
Insert Table 2.5 about here 

         ----------------------------------------- 

Alternative specifications 

We also conduct additional robustness checks with alternative specifications. 

First, we test the sensitivity of our results to the use of categorical variables to categorize 

high or low connectedness (Model 9). The variable takes a value of 1 if the focal app 

connects with a complement or optional platform components, and 0 otherwise. 

Moreover, we test the importance of the degree of connectedness, i.e., whether results 

are driven by the presence of connectedness or whether the degree of connectedness 

matters. We do so by removing all the apps that did not have any connectedness with 

the platform or other complement (Model 10). Further, we also test whether our results 

are sensitive to the window that we have used to specify whether an app is still active in 

the ecosystem or not. As an additional check, we consider an app to be actively 
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contesting for the top position only if it was updated in the previous six months (Model 

11). The results from all of these analyses are consistent with the main results.  

Finally, an important issue to consider in our analysis is the possibility that apps 

self-select into different types of connectedness, which could potentially bias our 

estimates. We use both coarsened exact matching and instrument variable approach to 

test the robustness of our results to this potential endogeneity bias.  

Coarsened exact matching analysis 

Coarsened exact matching approach has been used commonly in economics to 

address concerns related to selection bias. Recently, scholars in management have 

started using this approach to address selection bias in their empirical specifications 

(e.g., Aggarwal and Hsu, 2013; Feldman and Amit, 2014). It is a nonparametric 

approach to reestablish the conditions of natural experiment by comparing statistical 

results between a treatment group and a comparable control group, thus, allowing for 

causal inference. We used this approach to evaluate whether apps with high 

connectedness with the platform or other complements have higher likelihood of 

achieving successful commercialization or not. For the purpose of this analysis, we 

compare apps that have high connectedness with those that have low connectedness. In 

the case of platform connectedness, apps are considered to have high platform 

connectedness if they are leveraging at least one optional component provided by the 

platform, and low otherwise. Similarly, apps that interact with one or more complements 

in the ecosystem are considered to have high complement connectedness, and low 

otherwise. We estimate separate models for platform and complement connectedness. 

The treatment group is defined as the apps that have high connectedness with the 

platform or other complements. Our control group is drawn from the apps that had low 

connectedness with the platform or other complement.  
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 The coarsened matching provides an alternative approach by generating 

counterfactual that closely match with the treatment on the set of observed variables. To 

implement coarsened exact matching, the logistic regression predicting an app 

propensity to have platform or complement connectedness is estimated using coarsened 

values of independent variables, to accurately group innovations that share similar 

values of these variables.  We use cross-sectional data with observations pertaining to 

the last month to estimate an app’s propensity to have platform or complement 

connectedness. We, then, use the weights calculated by coarsened matching estimator 

(cem routine in STATA) in the second-stage model that we used in the main analysis. 

This model estimates the app’s likelihood of entering into the top 500 revenue ranking 

based on its connectedness with platform or complements. The un-coarsened 

observations are weighted according to the prominence of each stratum into which they 

fall. Table 2.6 presents the result from the second-stage model.  The estimates for 

second-stage model for platform connectedness and complement connectedness (with 

high platform connectedness) are statistically significant and consistent with the main 

model. The coefficient estimate for complement connectedness (with low platform 

connectedness) is qualitatively similar to the main model but has large standard error.  

----------------------------------------- 
Insert Table 2.6 about here 

           ----------------------------------------- 

Instrument variable analysis 

While the coarsened exact matching approach matches the apps with and 

without connectedness on the basis of observables, it is possible that these apps’ 

connectedness may be due to some unobserved differences. To further check for any 

potential app-level endogeneity bias, we use instrument variable using ivprobit STATA 

procedure (Bascle, 2008).  
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 We identify an instrument that is likely to be correlated with an app’s likelihood to 

have platform or complement connectedness, but uncorrelated with the app’s 

commercialization success beyond its effect on the endogenous regressor (Angrist and 

Pischke, 2008; Bascle, 2008). We use the number of queries posted by developers on 

an online discussion board about the development challenges associated with the 

integration of platform components and other complements with their app. The number 

of queries is reflective of an overall interest within the developer community about the 

platform components and other complements. Hence, it is likely to be highly correlated 

with an introduction of platform or complement connectedness in the new apps or 

existing in the upcoming months. However, it is unlikely that this instrument would be 

correlated with an app’s commercialization success, beyond its effect on the app’s 

connectedness with the platform or complement. Given that our independent variables 

and queries related to these variables are mutually exclusive, we instrumented each 

independent variable separately. In this analysis with instrument variable, we focus only 

on the direct effects as we are not aware of any technique that allows using instrument 

variable for the interaction term. Further, we believe concerns related to endogenous 

selection are mainly associated with the direct effects of the connectedness on an app’s 

successful commercialization. Hence, for this analysis we convert the long-panel data 

into a cross-sectional data by using values of the variables pertaining to the last 

observation month.  

 In Models 15, 17 and 19 in Table 2.7, we show the coefficients of the first stage 

selection model that estimates the effect of the number of queries on the apps’ degree of 

platform and complement connectedness respectively. Models 16, 18 and 20 presents 

results from the second-stage model. The coefficient for platform connectedness and 

complement connectedness are positive and statistically significant (p <0.01). The Cragg 

Donald statistics for three models is greater than 16.28, the recommended threshold 
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provided by Stock and Yogo (2004) to satisfy instrument relevance condition. Overall, 

these additional analyses help to further establish the robustness of our findings.   

----------------------------------------- 
Insert Table 2.7 about here 

             ----------------------------------------- 

DISCUSSION 

A given innovation often does not stand alone. Rather it is connected with other 

elements in the ecosystem that impacts its value creation. In this study, we draw on this 

premise in a platform-based ecosystem in which participating complementor firms 

innovate around a platform to explain the commercial success of its innovation. We 

depart from the existing conceptualization of these ecosystems as multisided markets in 

which firms interact with other actors and benefit from network externalities. Instead, we 

conceptualize them as interconnected technological systems in which the focal 

innovation interacts with other technology elements to create value. We introduce the 

notion of connectedness to refer to the extent to which a given innovation interacts with 

the platform (i.e., platform connectedness) and also with the other complements in the 

ecosystem (i.e., complement connectedness). On the one hand, higher connectedness 

may allow the innovation to leverage a broader set of complementarities in the 

ecosystem. On the other hand, it may subject the innovation to an array of 

interdependencies that may limits its value creation especially when a generational 

transition triggered by the platform firm changes the underlying platform architecture.   

We explore these arguments on app developers that participated in Apple’s 

iPhone ecosystem between 2008 and 2013 in the U.S. market. We find that higher 

platform connectedness and higher complement connectedness is associated with a 

higher likelihood of app’s successful commercialization. However, the benefit of platform 

connectedness is negated during the initial period of the new generation of platform. In 

contrast, the benefit of complement connectedness with respect to platform’s 
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generational evolution is much more nuanced.  The benefit is strengthened when Apple 

introduces the new platform generation and if the complements that the focal app is 

connected to have low platform connectedness whereas it is weakened when Apple 

introduces the new platform generation and if the connected complements themselves 

have high platform connectedness. 

The study contributes to the emerging literatures on ecosystems and platforms, 

examining both the opportunities and the challenges faced by complementors in creating 

value from their innovations (e.g., Boudreau, 2010; Ceccagnoli et al., 2012; Kapoor, 

2013; Kapoor and Lee, 2013; Altman, 2016; Cennamo, Gu, and Zhu, 2016; Zhu and Liu, 

2016; Kapoor and Agarwal, 2017). We show that while participation in platform-based 

ecosystems enables firms to enhance the value of their innovations by leveraging a 

broad set of platform components and other complements, such an interconnected 

architecture of value creation can subject the firm to challenges with respect to 

managing the technological interdependencies. We also contribute to the literature on 

platform architecture (e.g., Baldwin and Woodard, 2009; Gawer, 2014). This stream of 

research provides a detailed account of the modular nature of the platform architecture 

and emphasizes its role in spurring innovation. We build on this characterization of the 

platform architecture and elucidate how the modular components of the platform differ 

with respect to their level of hierarchy within the platform architecture. We illustrate that 

the platform components can be decomposed into core and optional components, and 

this difference has important implications for value creation in ecosystems.   

Further, we contribute to the research on complementary assets by focusing on 

complementary technologies that lie outside the firm’s value chain. It has long been 

recognized that complementary assets play an important role in the success of an 

innovation and in the firms’ ability to appropriate value from their innovations (Teece, 

1986; Teece 2006). However, the bulk of the attention to this line of inquiry has been on 
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complementary assets that either lie within the boundary of the firms or can be accessed 

by firms through alternative means such as licensing or strategic alliances (e.g., Dyer 

and Singh, 1998; Rothaermel, 2001; Arora and Ceccagnoli, 2006). The role of 

complementary technologies and assets that reside in the external business ecosystem 

remains relatively underexplored (Adner and Kapoor, 2010; Kapoor and Furr, 2015; 

Teece, 2006). In this study, we show how complementary technologies that lie outside 

the firm’s value chain can help support the firm’s focal innovation. Further, we also show 

how complementary technologies can be detrimental to a firm’s performance when a 

platform is relatively new.  

In practical terms, our study offers some guidance for both platform firms and 

complementor firms. A platform firm can enhance the overall value potential of an 

ecosystem by bundling a number of optional components along with the core 

technological architecture. Complementors can combine these optional components with 

their focal innovations and create more value for end users. Further, platform firms can 

also enhance value creation in an ecosystem by attracting participation by the 

“keystone” complementor firms in their ecosystems. These keystone firms represent a 

set of complementors who provide specialized technologies or user networks other 

complementors can leverage. Finally, our results also suggest that platform firms should 

pay more attention to platform generational transition and its impact on the interfaces by 

which complements interact with the platform. As these generational transitions can 

hamper complementor firms, better management of platform interfaces can help platform 

firms preserve the value of the platform during periods of generational transition. 

 The findings of this study are subject to a number of limitations that provide an 

opportunity for future research. First, they are based on a single empirical context, and 

their validity needs to be established through explorations in other settings. Second, our 

https://scholar.google.com/citations?user=MuZkxuMAAAAJ&hl=en&oi=sra
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measure for successful commercialization is based on whether the focal app is ranked 

within Top 500 apps in terms of revenue in the iPhone ecosystem.  Although this 

measure is consistent with our theory and is widely accepted as a proxy for successful 

commercialization, it may not represent superior economic performance for firms in 

general.  Finally, the measures for complement and platform connectedness do not 

account for differences between complements or platform components in terms of their 

impact on an app’s value creation.  Despite these and other limitations, the study sheds 

light on the two faces of value creation for firms innovating in ecosystems -- the 

opportunities associated with leveraging complementarities and the challenges associated 

with managing technological interdependencies.   



36 

 

 

Figure 2.1:Different types of connectedness for an innovation in a platform-based 

ecosystem 

 

 

 

 

 

 

Figure 2.2:Normalized weekly trend of Web search in the U.S. on Google for the 

term “iOS app not working.”  

(Data source: Google Trends; http://www.google.com/trends/) 
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Figure 2.3: Interaction graphs for complement connectedness 

Complement connectedness 
(Low platform connectedness) 

 

Complement connectedness 
(High platform connectedness) 

 
  

Table 2.1: Apps with platform and complement connectedness  

Type of Connectedness All Apps % Total 
apps 

Top 500 
apps 

% Total 
Top 500 
apps 

Platform 
connectedness 

Low 126,311 50.67% 1,654 35.56% 

High 122,994 49.33% 2,997 64.44% 

      

Complement 
connectedness 

Low 194,683 78.10% 2,735 58.80% 

High 54,622 21.91% 1,916 41.20% 
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Table 2.2: Description of variables 

Dependent variable 

Successful 
commercialization 

Dummy = 1 for the month in which the app enters the Top 500 list by 
revenue  

Independent variables 

Platform connectedness 
Number of optional platform components with which the focal app 
interacts  

Complement 
connectedness 

Number of complements in the ecosystem that the focal app 
interacts with 

Complement 
connectedness (Low 
platform connectedness) 

Number of connected complements that interact only with the core 
platform module 

Complement 
connectedness (High 
platform connectedness) 

Number of connected complements that interact with optional 
platform components 

Control variables 

Generational newness 
Number of months since the launch of the latest generation of the 
platform; multiplied by -1 for ease of interpretation 

App rating Cumulative consumer ratings received by the app 

App size The amount of storage space required by the app (in MBs) 

App content rating Recommended age rating based on the app content 

3-month updates Number of times the focal app was updated in the last three months 

Total number of updates 
Total number of times the focal app was updated since its first 
launch 

In-app purchase Dummy = 1 for apps that have an in-app purchase option 

App price Price of the focal apps (in U.S. dollars) 

Firm experience Number of months since the focal firm launched its first app 

App in Top 500 free 
Dummy = 1 if firm has an app in the Top 500 ranking for the free app 
in a given month 

Category demand 
Total number of apps for the focal category in the Top 500 ranking 
based on revenues in a given month  



39 

 

Table 2.3: Descriptive statistics and correlations 

 

No. Variables 

 

Mean 

 

S.D. 1 2 3 4 5 6 7 8 9 10 11 12 

1 Platform connectedness 0.636 0.770 1.000                       

2 

Complement 

connectedness 0.393 0.894 -0.003 1.000                     

3 Generational newness -6.901 3.802 0.031 0.007 1.000                   

4 App rating 1.463 2.068 0.048 0.129 0.003 1.000                 

5 App content rating 139.301 109.943 -0.009 0.024 -0.002 0.039 1.000               

6 App size 47.887 230.691 -0.010 0.010 0.001 0.029 0.039 1.000             

7 In-app purchase 0.308 0.462 0.222 0.068 0.018 0.265 0.055 0.005 1.000           

8 3- months updates 0.534 0.892 0.027 0.068 0.025 0.134 0.025 -0.006 0.077 1.000         

9 Total updates 2.717 2.613 0.025 0.153 0.021 0.257 0.028 -0.016 0.113 0.316 1.000       

10 App price 3.191 19.207 -0.100 -0.029 -0.032 -0.257 -0.091 0.125 -0.117 -0.040 . -0.058 1.000     

11 Firm experience 26.959 16.443 0.165 0.046 0.000 -0.010 0.023 0.047 0.153 -0.107 0.097 0.006 1.000   

12 App in Top 500 free 0.019 0.135 0.018 0.062 -0.001 0.151 0.017 0.036 0.078 0.030 0.012 -0.042 0.061 1.000 

13 Category demand 136.111 186.492 0.273 -0.049 0.049 0.172 0.038 0.016 0.289 -0.025 -0.047 -0.124 0.109 0.084 

 

Correlations greater than 0.01 or smaller than -0.01 are significant at p <0.05, N = 3,797,947 
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Table 2.4: Cox proportional hazard model estimating the likelihood of achieving 

successful commercialization 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Platform connectedness  0.174***  0.226***   0.217*** 

  (0.023)  (0.028)   (0.028) 

Complement connectedness   0.151***  0.131***   

   (0.024)  (0.030)   

Platform connectedness*Gen. newness    -0.177***   -0.175*** 

    (0.056)   (0.056) 

Complement connect.*Gen. newness     0.070   

     (0.062)   

Complement connect.(Low plat. connect.)      0.100*** 0.091*** 

      (0.035) (0.035) 

Comp. connect.(Low plat. connect.)*Gen. 

newness 

     0.182** 0.183** 

      (0.076) (0.076) 

Complement connect.(High plat. connect.)      0.264*** 0.236** 

      (0.093) (0.094) 

Comp. connected (High plat. conn.)*Gen. 

newness 

     -0.365** -0.340** 

      (0.172) (0.172) 

Generational newness 0.227*** 0.181*** 0.203*** 0.369*** 0.154** 0.150* 0.307*** 

 (0.064) (0.064) (0.064) (0.089) (0.078) (0.078) (0.099) 

App rating 0.831*** 0.836*** 0.826*** 0.835*** 0.825*** 0.827*** 0.834*** 

 (0.074) (0.075) (0.074) (0.075) (0.074) (0.074) (0.075) 

App rating * App rating -0.069*** -0.070*** -0.069*** -0.070*** -0.069*** -0.069*** -0.071*** 

 (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) 

App content rating 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

App size -0.000*** -0.000** -0.000** -0.000** -0.000** -0.000** -0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Has in-app purchase 0.431*** 0.384*** 0.395*** 0.379*** 0.397*** 0.394*** 0.371*** 

 (0.054) (0.054) (0.054) (0.054) (0.054) (0.054) (0.055) 

3-month updates 0.251*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.248*** 

 (0.029) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030) 

Total updates 0.131*** 0.113*** 0.115*** 0.113*** 0.115*** 0.116*** 0.114*** 

 (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) 

App price 0.189*** 0.206*** 0.201*** 0.205*** 0.201*** 0.199*** 0.205*** 

 (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) 

Firm experience -0.046** -0.046** -0.052*** -0.044** -0.052*** -0.052*** -0.046** 

 (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

Time effect 0.028 0.028 0.038** 0.027 0.038** 0.038** 0.029 

 (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

Top 500 free app 0.832*** 0.832*** 0.834*** 0.831*** 0.833*** 0.834*** 0.830*** 

 (0.071) (0.071) (0.071) (0.071) (0.071) (0.071) (0.070) 

Category demand 0.005** 0.004** 0.005** 0.004** 0.005** 0.005** 0.004** 

 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

Category demand * Category demand -0.000** -0.000** -0.000** -0.000** -0.000** -0.000** -0.000* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Category-fixed effect Yes Yes Yes Yes Yes Yes Yes 

Firm-fixed effect Yes Yes Yes Yes Yes Yes Yes 

Total observation 3,797,947 3,797,947 3,797,947 3,797,947 3,797,947 3,797,947 3,797,947 

Total apps 244,084 244,084 244,034 244,084 244,034 244,034 244,034 

Total firms 20,174 20,174 20,174 20,174 20,174 20,174 20,174 

Total events 4,213 4,213 4,213 4,213 4,213 4,213 4,213 

Log likelihood -7,050.31 -7,028.78 -7,036.16 -7,025.72 -7,035.74 -7,033.68 -7,011.29 

* p < 0.1; ** p < 0.05; *** p < 0.01 
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Table 2.5: Robustness checks (Alternative specification) 

 Model 8 
WESML 

Model 9 
Dummy IVs 

Model 10 
High dep. apps 

Model 11 
6-mth window 

Platform connectedness 0.189*** 0.487*** 0.157*** 0.209*** 

 (0.047) (0.091) (0.032) (0.028) 

Complement connectedness (Low platform  

connectedness) 

0.064** 0.219*** 0.085** 0.092*** 

 (0.025) (0.066) (0.037) (0.034) 

Complement connectedness (High platform  

connectedness) 

0.234** 0.239** 0.224** 0.236** 

 (0.104) (0.102) (0.097) (0.094) 

Platform connectedness*Generational 

newness 

-0.149* -0.336* -0.127* -0.161*** 

 (0.082) (0.203) (0.067) (0.055) 

Comp. connectedness (Low platform 

connectedness)*Generational newness 

0.269** -0.004 0.181** 0.180** 

 (0.131) (0.151) (0.082) (0.075) 

Comp. connectedness (High platform 

connectedness)*Generational newness 

-0.504* -0.324* -0.254 -0.340** 

 (0.288) (0.190) (0.170) (0.173) 

Generational newness 0.342** 0.455** 0.191 0.270*** 

 (0.158) (0.222) (0.143) (0.099) 

App rating 1.017*** 0.829*** 0.821*** 0.832*** 

 (0.102) (0.088) (0.089) (0.076) 

App rating * App rating -0.083*** -0.067*** -0.066*** -0.070*** 

 (0.013) (0.011) (0.011) (0.010) 

App content rating -0.083*** 0.001*** 0.001*** 0.001*** 

 (0.013) (0.000) (0.000) (0.000) 

App size -0.000 -0.000 -0.000 -0.000** 

 (0.000) (0.000) (0.000) (0.000) 

Has in-app purchase 0.287*** 0.281*** 0.291*** 0.353*** 

 (0.083) (0.060) (0.060) (0.054) 

3-month updates 0.256*** 0.217*** 0.223*** 0.265*** 

 (0.045) (0.033) (0.033) (0.029) 

Total updates 0.180*** 0.107*** 0.105*** 0.087*** 

 (0.044) (0.028) (0.028) (0.023) 

App price 0.182*** 0.181*** 0.172*** 0.198*** 

 (0.040) (0.028) (0.029) (0.026) 

Firm experience -0.036*** -0.047** -0.045** -0.045** 

 (0.005) (0.018) (0.019) (0.019) 

Time effect 1.017*** 0.030 0.030 0.030 

 (0.102) (0.018) (0.019) (0.019) 

Top 500 free app 0.843*** 0.890*** 0.861*** 0.814*** 

 (0.106) (0.078) (0.077) (0.070) 

Category demand 0.003 0.006** 0.000 0.000 

 (0.003) (0.002) (0.001) (0.001) 

Category demand* Category demand -0.000 -0.000** -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

Total observation 1,053,803 3,797,947 2,267,398 2,925,262 

Total apps 50,901 244,034 148,385 244,034 

Total firms 6,412 20,174 15,512 20,174 

Total events 4,246 4,213 3,416 4,213 

Log likelihood -363.87 -5,307.70 -5,319.49 -6,922.18 

* p < 0.1; ** p < 0.05; *** p < 0.01 
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Table 2.6: Robustness check: Results with Coarsened Exact Matching (CEM) 

 Model 12 Model 13 Model 14 

Platform connectedness 0.474***   

 (0.139)   

Platform connectedness*Generational newness -0.540*   

 (0.316)   

Complement connectedness  (Low platform  

connectedness) 

 0.132  

  (0.169)  

Complement connectedness (Low platform 

connectedness)* Generational newness 

 0.182  

  (0.358)  

Complement connectedness( High platform  

connectedness) 

  0.189** 

   (0.093) 

Complement  connectedness (High platform 

connectedness) * Generational newness 

  -0.352* 

    

Generational newness 0.206 0.226 0.561*** 

 (0.239) (0.263) (0.095) 

App rating 0.925*** 1.225*** 0.846*** 

 (0.177) (0.283) (0.172) 

App rating* App rating -0.054** -0.102*** -0.055*** 

 (0.022) (0.033) (0.020) 

App content rating 0.001 0.001* 0.001* 

 (0.001) (0.001) (0.000) 

App size 0.000 0.000 0.000* 

 (0.000) (0.000) (0.000) 

Has in-app purchase 0.349** 0.496*** 0.155* 

 (0.139) (0.152) (0.085) 

3-month updates 0.123 0.323*** -0.176* 

 (0.080) (0.110) (0.093) 

Total updates 0.107 -0.030 0.260*** 

 (0.067) (0.092) (0.085) 

App price 0.139* 0.113 0.243*** 

 (0.078) (0.080) (0.046) 

Firm experience -0.112 -0.146** -0.021*** 

 (0.092) (0.072) (0.002) 

Time effect 0.087 0.124* 0.084 

 (0.092) (0.072) (0.102) 

Top 500 free app 0.575*** 0.513*** 0.472*** 

 (0.150) (0.112) (0.149) 

Category demand 0.004 0.010 0.007** 

 (0.006) (0.007) (0.003) 

Category demand * Category demand -0.000 -0.000** -0.000*** 

 (0.000) (0.000) (0.000) 

Total observation 3,294,869 1,488,883 3,188,760 

Total apps 215,983.41 223,089.98 191,100.68 

Total events 1,571.63 1,134.00 4,750.97 

Log likelihood -2,216.84 -1,163.06 -15,625.77 

* p < 0.1; ** p < 0.05; *** p < 0.01 
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Table 2.7: Instrument variable analysis along with first stage selection model 

 Model 15 Model 16 Model 17 Model 18 Model 19 Model 20 

Platform query 17.305***      

 (0.226)      

Platform connectedness  1.047***     

  (0.033)     

Complement query (Low 

platform connectedness) 

  4.293***    

   (0.173)    

Complement connectedness 

(Low platform  connectedness) 

   1.293***   

    (0.005)   

Complement query (High 

platform  connectedness) 

    6.818***  

     (0.792)  

Complement connectedness 

(High platform  

connectedness) 

     0.149*** 

      (0.069) 

Generational newness 0.024*** 0.065** 0.011 0.010 0.036* 0.055* 

 (0.007) (0.032) (0.007) (0.013) (0.020) (0.042) 

App rating -0.091*** 0.454*** 0.038*** 0.023*** 0.154*** 0.510*** 

 (0.004) (0.021) (0.001) (0.005) (0.010) (0.028) 

App rating * App rating 0.018*** -0.040*** 0.004*** -0.016*** -0.013*** -0.034*** 

 (0.001) (0.003) (0.001) (0.003) (0.002) (0.004) 

App content rating -0.000*** 0.001*** 0.000*** 0.000*** 0.000*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

App size -0.000*** 0.000*** 0.000*** -0.000* 0.000** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Has in-app purchase 0.176*** 0.166*** 0.052*** 0.028** 0.034** 0.475*** 

 (0.005) (0.026) (0.005) (0.011) (0.013) (0.024) 

3-month updates 0.057*** 0.476*** 0.048*** 0.108*** 0.045*** 0.632*** 

 (0.003) (0.019) (0.003) (0.011) (0.007) (0.010) 

Total updates 0.005*** -0.071*** 0.063*** -0.061*** 0.023*** -0.031*** 

 (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) 

App price -0.039*** 0.253*** -0.005* 0.074*** 0.056*** 0.287*** 

 (0.002) (0.011) (0.003) (0.006) (0.007) (0.014) 

Firm experience 0.003*** -0.033*** 0.002*** -0.012*** 0.004*** -0.040*** 

 (0.000) (0.001) (0.000) (0.001) (0.000) (0.001) 

Time effect 0.038*** -0.018*** 0.004*** -0.027*** -0.000* -0.007*** 

 (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) 

Top 500 free app 0.019 0.973*** 0.307*** -0.075*** 0.324*** 1.270*** 

 (0.012) (0.039) (0.012) (0.027) (0.025) (0.059) 

Category demand 0.005*** -0.012*** -0.002* -0.004*** -0.004*** -0.007*** 

 (0.000) (0.001) (0.000) (0.000) (0.001) (0.001) 

Category demand * Category 

demand 

-0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Constant -0.169*** -2.812*** 0.048*** -0.975*** -2.468*** -3.277*** 

 (0.013) (0.102) (0.013) (0.054) (0.043) (0.066) 

Total observation 244,084 244,084 244,084 244,084 244,084 244,084 

Cragg-Donald statistic  6296.96  615.52  87.31 

* p<0.1; ** p<0.05; *** p<0.01 
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3. SUSTAINING SUPERIOR PERFORMANCE IN BUSINESS ECOSYSTEMS: 
EVIDENCE FROM APPLICATION SOFTWARE DEVELOPERS IN THE IOS 
AND ANDROID SMARTPHONE ECOSYSTEMS 

 
 

Introduction 

There is growing recognition within the strategy field that the locus of value 

creation has shifted from focal firms to business ecosystems (Iansiti and Levien, 2004; 

Teece, 2007; Baldwin, 2012; Adner et al., 2013).  Increasingly, business ecosystems are 

characterized by a firm that orchestrates the functioning of the ecosystem by providing a 

platform and setting the rules for other firms to leverage the platform and offer 

complementary products to the users.  Scholars exploring this phenomenon have tended 

to focus on the strategies and performance of platform firms (e.g., Cusumano et al., 

1992; Boudreau, 2010; Gawer and Henderson, 2007; McIntyre and Subramaniam, 2009; 

Eisenmann et al., 2011; Zhu and Iansiti, 2012).  The emphasis has been on explaining 

how firms can create a platform, attract users and complementors, and achieve market 

dominance.  Hence, the research so far has tended to focus on the unitary actor that 

orchestrates the business ecosystem.  Much less attention has been devoted to 

understanding the performance consequences for complementors who typically 

represent a vast majority of firms in the ecosystem and who are critical to the value 

creation within the ecosystem.  

In this study, we focus on the performance of complementor firms within a 

platform-based ecosystem.  Specifically, we study the extent to which a high performing 

complementor can sustain its superior performance within the ecosystem.  While 

sustainability of superior performance is a critical goal for managers and has been an 

important line of inquiry for strategy scholars (e.g., Porter, 1985; Rumelt et al., 1991), it 

is becoming increasingly difficult for firms to realize it (Wiggins and Ruefli, 2002; D’Aveni 
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et al., 2010; McGrath, 2013).  In the context of platform-based ecosystems, sustainability 

of complementors’ superior performance has important implications not only for these 

firms themselves but also for the platform firms whose performance is tied to value 

creation by their complementors.   

To unpack the drivers of sustainability, we offer a novel characterization of 

complementors’ ecosystem-level interdependencies that is rooted in the structural and 

evolutionary features of the ecosystem.  We first consider the structure of the 

complementor’s interdependence within the ecosystem based on the number of unique 

components (or subsystems) that interact with the complementor’s product.  For 

example, in the iOS smartphone ecosystem orchestrated by Apple (the platform firm), an 

application software (app) developer firm (the complementor) is interdependent on the 

specific handset and operating system combination offered by Apple.  In contrast, in the 

Android smartphone ecosystem orchestrated by Google, an app developer is 

interdependent on many unique handset and operating system combinations offered by 

firms such as HTC, LG, Motorola and Samsung.  We use the notion of ecosystem 

complexity to characterize this difference in the structure of interdependence for 

complementor firms.  We then consider the evolutionary features of an ecosystem by 

taking into account the generational transitions that are initiated by platform firms (e.g., 

introduction of new generation of operating system), and the experience that 

complementors gain within an ecosystem over time.  Our theoretical arguments are 

premised on complementors’ search processes with respect to innovation and imitation 

(e.g., Nelson and Winter, 1982, 2002; Gavetti and Levinthal, 2004). We consider how 

ecosystem-level interdependencies impact these processes, and the resulting 

performance dynamics among complementors.  

The empirical setting for the study is the two dominant smartphone ecosystems 

in the U.S. - Apple’s iOS and Google’s Android, and we examine the performance of app 
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developers in these ecosystems from January, 2012 to January, 2014.  The setting 

provides a valuable opportunity to study complementors’ performance dynamics in 

ecosystems with varying levels of complexity and being subject to frequent platform 

transitions.  The diversity in handsets and operating systems among the user base 

makes the Android ecosystem much more complex for app developers than the iOS 

ecosystem.  While the contrast between iOS and Android is stark, we also observe 

varying levels of complexity within both ecosystems over time.  In addition, we observe 

three episodes of platform transitions that entail major updates to the smartphone 

operating system.2  

We assembled a unique monthly panel dataset of top-performing app developers 

in the iOS and Android smartphone ecosystems over the two-year period.  To gain 

insights into the challenges of developing apps and competing in these ecosystems, we 

also interviewed several executives and engineers from app developer firms.  The 

analysis is based on the extent to which app developers sustain their superior 

performance by observing whether their apps continue to be in the top performance 

stratum in a given ecosystem (i.e., Top 500 apps by revenue).  The research setting is 

hypercompetitive and, on average, a firm sustains its superior performance for only six 

months.  Moreover, once a firm exits the top performance stratum in a given ecosystem, 

the likelihood of reappearance in the stratum is very low.  Only 14% of exit events are 

followed by re-entry in the top performance stratum.  Finally, 64% of top-performing firms 

participate in both the iOS and Android ecosystems, which helps us address 

endogeneity concerns due to firms self-selecting into a given ecosystem.  Consistent 

with our arguments, we find that app developers’ ability to sustain superior performance 

                                                           
2
 While smartphone is the dominant hardware for Android and iOS operating systems, these operating systems 

are also used in other hardware categories such as tablets and e-readers.  In this study, we focus on the 

performance dynamics of app developer firms within only the Android and iOS smartphone ecosystems.  For 

Apple, the iOS smartphone ecosystem is effectively the iPhone ecosystem. 
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is facilitated by the ecosystem complexity and their ecosystem experience but hampered 

by platform transitions initiated by Apple and Google.  Moreover, ecosystem complexity 

enhances the benefit of ecosystem experience whereas it exacerbates the impact of 

platform transition. 

The study, while limited to a specific empirical context, provides one of the first 

detailed accounts of the drivers of complementors’ performance within a platform-based 

ecosystem.  A key aspect of the study is to offer a novel perspective of complementors’ 

ecosystem-level interdependencies that incorporates both the structural and evolutionary 

features of the ecosystem, and to show that such a perspective is useful in explaining 

performance dynamics among complementors within an ecosystem.   In so doing, it 

contributes to the emerging literature stream examining the challenges and opportunities 

faced by complementors in business ecosystems (e.g., Boudreau, 2010; Ceccagnoli et 

al., 2012; Kapoor, 2013; Kapoor and Lee, 2013).  More broadly, the study offers a new 

lens on the interactions between firms and their environments.  Existing treatments of 

firms’ environments are typically premised on complexity and uncertainty being a 

general feature of the industry (e.g., Dess and Beard, 1984; Anderson and Tushman, 

2001; Davis, Eisenhardt and Bingham, 2009).  However, in platform-based ecosystems, 

environmental complexity and uncertainty for complementors can be shaped by the 

strategies of platform firms, and as a result, complementors in the same industry can be 

subject to significantly different environments.  Accordingly, there are implications for 

both platform firms that orchestrate the ecosystem and for complementor firms that 

leverage the focal platform.  As we show in the study that ecosystem complexity can 

help complementors sustain their superior performance but it can also magnify the 

challenges that complementors face during periods of platform transition.  Our findings 

also contribute to the literature on technological change which has shed light on how 

technology transition impacts the performance of firms in the focal industry (Tushman 
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and Anderson, 1986; Henderson and Clark, 1990; Christensen, 1997).   We highlight 

how technological interdependencies between platform firms and complementors in 

related industries can create a ripple effect for complementors when platform firms 

introduce a new generation of the platform.  Finally, the study is also among the first to 

offer systematic empirical evidence about the role of complexity on firm performance as 

theorized within the evolutionary economics perspective of firms (e.g., Levinthal, 1997; 

Rivkin, 2000; Lenox et al., 2010).  

Hypotheses 

We focus on the performance of complementors within a platform-based 

ecosystem.  In particular, we take into account that there are performance differences 

among complementors within an ecosystem, and we explore the extent to which a high 

performing complementor can sustain its performance advantage within an ecosystem.  

Sustainability of superior performance is an important goal for managers (e.g., Porter, 

1985), and it has been studied extensively by strategy scholars (e.g., Rumelt et al., 

1991; Teece, 2007).  We theorize how complementor’s sustainability of superior 

performance is impacted by ecosystem-level interdependencies.   

We first consider the structure of complementor’s interdependence in the 

ecosystem based on the number of unique components that interact with a 

complementor’s product.  We refer to this structural feature as ecosystem complexity.  

The greater the number of unique components that interact with a complementor’s 

product, the greater is the degree of ecosystem complexity faced by the complementor.  

This uniqueness could be driven by different variants of the components that perform the 

same function (e.g., distinct versions of a hardware component) or by different 

components that perform different functions (e.g., a hardware and a software 

component).  Moreover, depending on the architecture of the ecosystem, the same 

complementor could be subject to varying degrees of complexity across two different 



49 

ecosystems (e.g., an app developer participating in iOS and in Android smartphone 

ecosystems), or two different complementors may be subject to varying degrees of 

complexity within the same ecosystem (e.g., an app developer and a handset 

manufacturer within the Android smartphone ecosystem). 3  Further, the architecture of 

the ecosystem can itself change over time depending on the choices of platform and 

complementor firms.  This characterization of ecosystem-level complexity is distinct from 

existing treatments of industry-level complexity that are rooted in the complexity of firms’ 

internal technological knowledge domains, products and processes (e.g., Ganco, 2013; 

Fleming and Sorenson, 2001; Lenox et al., 2010; Singh, 1997), or in the concentration of 

firms’ inputs and outputs in the focal industry (e.g., Dess and Beard, 1984; Anderson 

and Tushman, 2001).   

We then consider the impact of generational transitions initiated by platform firms 

(e.g., new generations of gaming consoles introduced by Sony, Nintendo, or Microsoft).  

These transitions represent a common means by which platform firms compete and 

create value over time.  From a complementor’s perspective, however, they necessitate 

significant adaptation, as complementors need to reconfigure their products to leverage 

the performance improvements accorded by the new generation of the platform.  Finally, 

we consider the impact of complementor’s experience in an ecosystem. Given that a 

complementor’s product is closely tied to the ecosystem-specific components, we 

explore the importance of ecosystem-specific learning as it relates to the sustainability of 

superior performance.  

Our theoretical predictions stem from the evolutionary economics perspective of 

firms (e.g., Nelson and Winter, 1982, 2002; Levinthal, 1997; Gavetti and Levinthal, 

2004).  Drawing on this perspective, we consider the dual search processes of 

                                                           
3 Since our emphasis in this paper is to explore the performance outcomes of complementor firms, we are 

considering the local structural complexity that the complementor firm is subjected to in a given ecosystem.  A 

separate characterization can entail the complexity of the entire ecosystem.   
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innovation and imitation as shaping performance dynamics among firms (e.g., Zott, 

2003; Lenox et al., 2006).  The first process, innovative search, is characterized by firms 

searching for superior solutions to a given problem and improving their performance 

over time (e.g., Levinthal, 1997).  Such a solution comprises of choices that 

complementors may make regarding their products, tasks, or organization with respect 

to the ecosystem, and which collectively represent a superior performance configuration.   

The second process, imitative search, represents firms’ attempting to imitate other high 

performing firms (e.g., Rivkin, 2000).  We assume that complementors are continuously 

searching for superior performance configurations within an ecosystem.  The search 

processes for the new complementors or the existing complementors with inferior 

performance (follower firms) are likely to be characterized by some combination of 

innovative and imitative search, while the search processes for the complementors with 

superior performance (leader firms) are likely to be characterized by innovative search.  

We first explore the role of ecosystem complexity.  We then examine the role of 

complementors’ experience and platform transition and how these factors interact with 

ecosystem complexity. 

Ecosystem Complexity 

To explain how ecosystem complexity influences complementors’ sustainability 

of superior performance, we need to understand how ecosystem complexity impacts the 

search processes of firms in the ecosystem.  As ecosystem complexity increases, 

complementors need to optimize their products so as to account for greater number of 

interactions between their products and other components within the ecosystem.  For 

example, in our empirical context, the large variety of the handset and operating system 

combinations subjected app developers to significantly greater complexity in the Android 

ecosystem than in the iOS ecosystem.  During our interviews, many executives and 
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engineers from app developer firms emphasized this difference.  The quote below from 

an engineer elucidates this: 

“We need to test our app on different OEM devices likes Samsung, HTC to make 
sure our app works on different Android devices.4 This creates a lot of work for 
developer and testing teams.  iOS does not have any such issue…this is our 
biggest technological challenge with Android.” 

Hence, an increase in ecosystem complexity translates into an increase in 

complementor’s internal complexity with respect to its decision variables (i.e., the 

choices that complementors make regarding their products, tasks, and organization).  

For example, as the number of unique components that the complementor’s product 

interacts with increases, there will be an increase in the number of decision variables 

with respect to product design.  These decision variables may also interact with each 

other due to technological interdependence (i.e., hardware and software components) or 

due to performance tradeoffs (i.e., higher value of a design variable that increases 

performance with respect to one hardware component may decrease the performance 

with respect to another hardware component).   

Under conditions of high ecosystem complexity, the search for superior 

performance configuration by follower firms will be difficult (e.g., Levinthal, 1997).  This is 

because higher ecosystem complexity increases the number of possible combinations of 

decisions, which makes the search process intractable.  Moreover, even if a follower firm 

is able to innovate and identify a higher performance configuration, it is more likely that 

the configuration represents a local optimum and may not lead to superior performance.  

                                                           
4 OEM stands for Original Equipment Manufacturer.  In our empirical context, it is used to refer to handset 

manufacturers.  Also, as this quote highlights that app developers do not create different apps for different 

OEMs within the Android ecosystem.  Rather they create the same app and try to ensure that it functions on 

devices offered by the different OEMs.  This is also consistent with our characterization of ecosystem 

complexity faced by complementors. 
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Further, such conditions also make it difficult for follower firms to search by incrementally 

changing their decision variables (Rivkin, 2000).5   

Beyond searching for superior configurations through innovation, followers can 

also imitate leader firms.  When ecosystem complexity is high, the focal firm with the 

leadership position is also protected against imitation in two ways.  First, follower firms 

will find it difficult to decipher the exact configuration of the leader firm (Lippman and 

Rumelt, 1982; Rivkin, 2000; Csaszar and Siggelkow, 2010).  Second, even if a follower 

attempts to replicate the exact configuration of the leader, greater complexity will help 

sustain the leader’s superior performance.  This is because a small error in imitation will 

generate large penalties in performance when ecosystem complexity is high (Rivkin, 

2000). 

In summary, ecosystem complexity will help complementors sustain their 

superior performance by making it more difficult for other complementors to search for or 

to imitate higher performance configurations.6  Accordingly, we predict: 

Hypothesis 1: A complementor will be more likely to sustain its superior 
performance when ecosystem complexity is high than when it is low. 

Ecosystem Experience 

A complementor’s experience within an ecosystem can also play a significant 

role in its ability to sustain superior performance. Ecosystem experience, which spans 

the entire period of participation in an ecosystem and not just the period of superior 

                                                           
5 It is worth noting that innovative search for superior performance configuration when ecosystem complexity 

is high will be difficult for all firms.  Our focus in this study is to explain the sustainability of superior 

performance. Hence, our theoretical arguments are premised on some firms achieving superior performance, 

and we focus on the difficulty of innovative search for follower firms (e.g., Rivkin, 2000). 
6 It is possible that at very high levels of complexity, complementors with superior performance may also find 

it difficult to innovate and maintain their leadership position.  Hence, the difficulties with respect to innovation 

encountered by both leader and follower firms at very high levels of ecosystem complexity might offset each 

other.  However, imitation by followers will still be difficult at such high levels of complexity.  Therefore, in 

considering the two mechanisms of innovation and imitation, the overall effect at very high levels of 

ecosystem complexity might depend on the relative impact of these individual mechanisms for the leader and 

the follower firms.  We also note that such an extreme scenario of ecosystem complexity is unlikely to occur 

in platform-based ecosystems because of the somewhat modular nature of the interfaces between the platform 

and the complements.  
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performance, will help confer several types of learning-based advantages on leader 

firms. Sustaining superior performance requires leader firms to continuously search and 

identify higher performing configurations. Experience facilitates the development and 

improvement of routines, making search process underlying leader firms’ innovation 

efforts with respect to other interdependent components more reliable (i.e., less prone to 

mistakes) (Nelson and Winter, 1982; Katila and Ahuja, 2002).  Experience also helps 

improve the efficiency of leader firms’ search processes by reducing the cost of 

experimentation and, hence, making it less costly for firms to innovate over time (Zott, 

2003).  

In addition to the abovementioned learning-by-doing advantages, an important 

type of learning in ecosystems is what Rosenberg (1982) referred to as learning-by-

using.  This type of learning is not a function of the experience in developing and 

producing the product per se, but rather is a function of the experience in the product’s 

utilization by its users in conjunction with the rest of the system.  Rosenberg (1982) 

provided a valuable illustration of learning-by-using by aircraft manufactures and 

suggested that this type of learning is especially important when the use of the product is 

influenced by its interaction with other components.  The existence of numerous 

technological interdependencies within a platform-based ecosystem makes it difficult for 

firms to know in advance how the product will perform during use and, hence, 

experience that is rooted in the usage of the product by the users plays a vital role in 

helping firms innovate and improve their products over time.  A leader firm, by virtue of 

having a large user base for a platform, will derive a significant advantage through 

learning-by-using. 

In our interviews, a senior engineer from a leading app developer firm elaborated 

on the importance of experience as it relates to both learning-by-doing and learning-by-

using: 
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"Experience plays a critical part in our product lifecycle. From pure engineering 
perspective…most of the knowledge and skills are acquired through the 
development efforts over time. It is not easily accessible from outside-firm 
sources, and it [is] essential for building a high quality, user delightful 
application…The application keeps evolving at design and feature level, through 
responding to user feedbacks and data. Engineering team also benefits from this 
mostly capturing edge cases which is rarely producible in the internal 
environment.” 

Finally, experience in an ecosystem enables firms to accumulate knowledge-

based assets such as new product development and marketing capabilities.  Firms 

imitating such assets will be subject to time compression diseconomies (Dierickx and 

Cool, 1989), making it easier for the leader firms to sustain their performance superiority.  

Hence, experience in an ecosystem is likely to confer a high performing complementor 

with both learning-by-doing and learning-by-using advantages as well as make it more 

difficult for followers to replicate its knowledge-based assets.7  Accordingly, we predict: 

Hypothesis 2: The greater the complementor’s ecosystem experience, the 
more likely the complementor will sustain its superior performance within 
the ecosystem. 
 

Complementor’s experiential advantage within an ecosystem may be impacted 

by the level of ecosystem complexity.  Greater ecosystem complexity increases 

complementor’s internal complexity with respect to the choices that complementors 

make regarding their products, tasks, and organization.  This increase in internal 

complexity can raise the opportunities for learning-by-doing (Balasubramanian and 

Lieberman (2010)), making it more difficult for followers to catch up with experienced 

leaders.  In addition, the greater the degree of ecosystem complexity that a focal 

complementor’s product is subjected to, the more uncertain will be the interactions 

                                                           
7 Our focus here is on theorizing with respect to complementors’ experience-based advantages for a specific 

platform-based ecosystem.  These advantages stem from learning-by-doing, learning-by-using and time 

compression diseconomies associated with knowledge-based assets.  Experience-based advantages in an 

ecosystem could also stem from firms’ accumulation of other assets such as brand, customer loyalty, as well as 

firms having a broader portfolio of products over time.  We account for these drivers in our empirical analysis, 

and we also show that complementor’s platform-specific experience (e.g., smartphone apps for iOS platform) 

has a much greater impact on its sustainability than its general experience in the industry (e.g., smartphone 

apps).   



55 

between the product and the rest of the system and, hence, the more valuable will be 

learning-by-using.  Finally, time compression diseconomies associated with the 

followers’ imitation of knowledge-based assets accumulated by the leader firms are also 

likely to increase in complexity (Pacheco-de-Almeida, 2010).  Hence, we expect that 

complementors’ ecosystem experience would be more valuable in sustaining their 

superior performance when ecosystem complexity is high than when it is low: 

Hypothesis 3: The positive effect of a complementor’s ecosystem 
experience on the sustainability of its superior performance will be 
stronger when ecosystem complexity is high than when it is low. 

Generational Transitions by Platform Firms 

Finally, we consider the impact of generational transitions initiated by platform 

firms on the complementors’ ability to sustain their superior performance.  While extant 

literature has explored how technology transitions in the focal industry impacts firm 

performance (Tushman and Anderson, 1986; Henderson and Clark, 1990; Christensen, 

1997), we explore how technology transitions initiated by platform firms may impact 

complementors’ performance in the ecosystem.  Therefore, we highlight an important 

evolutionary feature of platform-based ecosystems in which a technological shift 

orchestrated by the platform firm can have important consequences for the 

complementors. 

Transitioning to a new platform generation is an important mode by which 

platform firms compete and create value.  New platform generations typically offer 

improvements in existing functionality and also add new functionality.  In so doing, they 

alter the interactions among components within the ecosystem (Venkatraman and Lee, 

2004; Ansari and Garud, 2009; Adner and Kapoor, 2010).  Hence, a new platform 

generation may represent a case of an architectural change as discussed by Henderson 

and Clark (1990), where the core design concepts and the associated knowledge are not 

overturned but there is a change in the nature of interactions between the platform and 
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the complements.  This renders the strategic configurations of the high performing 

complementors from the previous platform generation less effective.  Put at a more 

abstract level, the fitness landscape (i.e., mapping between strategic configurations and 

performance) is re-specified (Levinthal, 1997).  For example, when Apple introduced the 

new mobile operating system named iOS 6, some of the music apps stopped working.  

After updating to the new operating system, many users found that their music data had 

disappeared.  App developers had to optimize and retest their apps with the new 

operating system to ensure smooth functioning of their apps.  During our interview, a 

senior engineer from an app developer firm also elaborated on this challenge: 

“Although OS [Operating System] upgrades do a good job of the issue of 
backward compatibility, but the new OS will depreciate some APIs from the older 
version.8 If the apps are using the API from the older version, it is going to crash. 
Further, we also try to use latest APIs in the new OS. If the user tries to run the 
latest APIs on the older version, the app is going to crash.” 
 
In another interview, a cofounder of a leading app developer firm discussed how 

a recent transition in iOS impacted the functioning of his firm’s app: 

“In iOS 7 [released in September 2013], Apple changed some parts of the 
background infrastructure [API] the way an app interacts with the 
operating system, in order to enhance the graphics on its new hardware.  
And because of this change, our app literally stopped working on the new 
version, when it was working perfectly in the previous version.” 
 

At the same time, features introduced in the new platform generation can provide 

opportunities for new complementors to enter the ecosystem and to effectively compete 

against leader firms.  Hence, while platform transitions are important for sustaining 

technological progress within an ecosystem, they may present challenges for 

complementors to sustain their superior performance:  

Hypothesis 4: Generational transition initiated by the platform firm will 
make it more difficult for the complementor to sustain its superior 
performance within the ecosystem. 

                                                           
8 API stands for application program interface.  In the context of smartphone ecosystems, these are software 

protocols provided by platform firms such as Apple and Google for app developers to create apps for their 

platforms. 
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In the face of a platform transition, complementors need to adapt so as to identify 

new strategic configurations that can yield high performance.  We now consider how 

ecosystem complexity affects these firms’ ability to adapt — i.e., we explore the 

interaction between platform transitions and ecosystem complexity.  When ecosystem 

complexity is low, adaptation through local search performed in the neighborhood of a 

firm’s previous configuration is effective (Levinthal, 1997).  Hence, a complementor with 

a superior performance configuration in the previous platform generation will find it 

relatively easier to identify and to move to a high performance configuration in the new 

platform generation.  In contrast, when ecosystem complexity is high, adaptation through 

local search might not be very effective.  Successful adaptation would require a greater 

degree of change (i.e., often referred to as a long jump on a fitness landscape).  

However, at the same time, greater complexity among firms’ choices makes such a 

large-scale change very risky, as a small error or miscalculation can result in subpar 

performance (Henderson and Clark, 1990).  Therefore, complementors may find it much 

more difficult to sustain their superior performance in the face of a platform transition 

when ecosystem complexity is high than when it is low:   

Hypothesis 5: The negative effect of platform transition on the 
sustainability of a complementor’s superior performance will be stronger 
when ecosystem complexity is high than when it is low. 
 

Methodology 

The empirical analysis is carried out in the context of the iOS and Android 

smartphone ecosystems within the U.S. market.  The focal complementor firms are 

application software developers who were able to attain superior performance in these 

ecosystems from January 2012 to January 2014.  Smartphones based on iOS and 

Android operating systems represented more than 90% of the U.S. smartphone installed 

base during this period.  Both Apple and Google provide a daily list of Top 500 apps by 
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revenue.  We use that information to identify the focal firms.  The context is 

hypercompetitive, where hundreds of thousands of app developers are frequently 

introducing new apps or improved versions of their existing apps.  Such high intensity of 

competition makes it very difficult for app developers to sustain their superior 

performance, even for a few months. 

This setting also provides a valuable context in which we can observe two 

ecosystems with varying levels of complexity for the app developers within the same 

industrial context.  This difference arises primarily due to the difference in the strategies 

used by Apple and Google for controlling and governing their respective ecosystems.  

Apple’s strategy is often described as a closed strategy, as it exercises strong control 

over the entire ecosystem, with the objective of providing high quality experience to the 

user (Ghazawneh and Henfidsson, 2013).  Most notable is Apple’s strict control and 

ownership of both the handset and the iOS operating system.  In contrast, Google’s 

strategy is premised on Android as an open-source operating system, which allows for 

its development and distribution by various original equipment manufacturers (OEMs) 

such as HTC, LG, and Samsung.  Hence, an app in the Android ecosystem interacts 

with multiple handset and operating system combinations offered by various OEMs.  As 

a result, an app developer firm in the Android ecosystem operates in a relatively more 

complex ecosystem compared to the one operating in the iOS ecosystem.  The two 

ecosystems also collectively underwent three episodes of platform transitions during our 

observation period, which allowed us to examine the impact of platform transition on 

complementors. 

Data 

The primary sources for our data are App Annie (www.appannie.com) and 

appFigures (www.appfigures.com), two of the leading analyst firms in the mobile 

computing sector.  App Annie has been tracking and archiving information related to all 

http://www.appannie.com/
file:///C:/Dropbox/Shiva/Paper/www.appfigures.com
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the apps developed for iOS and Android platforms.  Its data is extensively used by app 

developers, venture capital firms, and financial analysts.  Similarly, appFigures has 

developed a comprehensive database of all apps in the iOS and Android ecosystems.  

We used appFigures as a supplementary data source in order to validate the data 

received from App Annie and to also extend the data to incorporate a more recent time 

frame.9  Note that both App Annie and appFigures do not generate their own data, but 

accumulate daily data from Google Play and Apple iTunes App stores over time and 

offer their users easy-to-use tools for analyzing trends. 

The dataset comprises information on app developers whose apps attained top-

ranking positions by revenue (i.e., Top 500) in either the iOS or Android ecosystem from 

January 2012 to January 2014.  The dataset does not include some e-commerce apps 

such as those from Amazon and Walmart, that do not generate revenues through paid 

apps or in-app purchases via Apple iTunes or Google Play App stores.  The revenue 

distribution for smartphone apps is heavily skewed.  For example, based on the survey 

of more than 10,000 app developers, it was found that the top “1.6% of developers make 

multiples of the other 98.4% combined” (VisionMobile, 2014).10  Therefore, having an 

app in the Top 500 list offers clear evidence of performance superiority among hundreds 

of thousands of app developers.  Such a list is also keenly followed by industry 

observers and analysts as a reference for successful app developers.  We use this 

revenue ranking to characterize firms’ superior performance.  Ideally, we would have 

also liked to have information on the actual revenues and profits within an ecosystem for 

each of the app developers in the sample.  However, such data is not made available by 

app developers.  Despite this constraint, rank-based relative performance information 

                                                           
9 Originally, App Annie was the primary source of data for the paper.  We had received data from App Annie 

from January 2012 to June 2013.  We subsequently received data from appFigures that allowed us to extend 

the timeline to January 2014.     
10 The report is available at http://www.developereconomics.com/reports/developer-economics-q3-2014/. Last 

accessed on March 10, 2016. 

http://www.developereconomics.com/reports/developer-economics-q3-2014/
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provides us with an approach to capture the relative performance superiority of app 

developers in an ecosystem that is consistent with our theory and is also consistent with 

how industry analysts evaluate performance superiority among app developers.  

The majority of firms whose apps appear in the Top 500 list do not stay in that list 

for more than six months, a finding that is consistent with the context being 

hypercompetitive.  Unpacking such finer-grained performance dynamics requires 

choosing an observation window that is shorter than the annual window typically 

employed in strategy research (D’Aveni et al., 2010).  We chose the period of 

observation to be a given month that would allow us to explain greater variance in the 

app developer’s sustainability of superior performance without being subject to 

exogenous intermittent fluctuations in the Top 500 ranking associated with daily or 

weekly observations.  This required aggregating the daily revenue rank data into monthly 

data.  Because of the skewness of the distribution of revenues across the Top 500 apps, 

taking a simple average of apps’ daily ranks to compute monthly ranks is problematic.  

To adjust for this skewness, we followed a procedure guided by prior research.  

Researchers have attempted to infer revenue and sales data from rank data by 

conducting experiments, collaborating with focal firms, or using publicly available 

information (e.g., Brynjolfsson, Hu, and Simester, 2003; Chevalier and Goolsbee, 2003; 

Garg and Telang, 2013).  These studies have found that the relationship between 

revenue (or sales) and rank closely follows a Pareto distribution according to which: 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑏 ∗ (𝑟𝑎𝑛𝑘)−𝑎+ ∈ 
 

where b is the scale parameter that is a function of the total revenue and a is the 

shape parameter of the underlying distribution that drives the difference in revenues 

across ranks.  Moreover, the shape parameter for the Pareto distribution for this 

relationship has been found to be proximate to 1.  For example, in a recent study by 

Garg and Telang (2013), shape parameters for the iOS and Android apps were 
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estimated to be between 0.86 and 1.16.  Hence, to account for the Pareto distribution in 

our data, we assume the daily revenue for an app in the Top 500 list to be inversely 

proportional to its rank.11  Further, we assume the scale parameter for each ecosystem 

to be constant during a given month.  This allows us to calculate an app’s monthly 

revenue rank for both the iOS and the Android ecosystems.  

In addition to data on app developers whose apps achieved a Top 500 rank by 

revenue, we also obtained monthly data on the total number of apps and firms within 

each category of apps (e.g., games, social networking, productivity).  We supplemented 

data from App Annie and appFigures with data from firms’ websites and LinkedIn 

(www.linkedin.com) to gather information on the number of employees and firms’ 

participation in businesses other than smartphone apps.  We also directly contacted 

some firms to obtain information on their number of employees.  To measure ecosystem 

complexity faced by app developers within the Android ecosystem, we obtained data on 

the monthly share of the U.S. installed base for each of the smartphone OEMs from 

comScore (www.comscore.com).  We also used the aggregate statistics on installed 

base, the number of app developers, and the number of apps for both iOS and Android 

to rule out that the observation period (Jan’ 2012 – Jan’ 2014) is not idiosyncratic in 

ways that may impact our inferences.  The level of analysis is firm-ecosystem-month, 

and the final dataset comprises 12,691 observations from 1,516 app developer firms. 

Measures 

Dependent variable: We examine the sustainability of superior performance for 

app developers by observing whether their apps continue to be among the Top 500 apps 

by revenue in the iOS or the Android ecosystem.  These ecosystems represented most 

of the economic opportunities for smartphone app developers during the observation 

                                                           
11 Note that the inversely proportional relationship between app revenue and rank also follows from Zipf’s law 

that is frequently used to approximate actual data from rank data in physical and social sciences.  
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period.  Revenues in other smartphone ecosystems such as RIM’s Blackberry, 

Microsoft’s Windows Mobile and Nokia’s Symbian were relatively negligible.  Hence, 

being ranked in the Top 500 apps by revenue in iOS or Android corresponds to 

significant economic performance for app developers.  For about 80% of the cases, a 

firm had a single app in the Top 500 list in the same month.  Since our level of analysis 

is a firm and not an app, if a firm had more than one app in the Top 500 list in the same 

month, we treated those cases as a single firm-level observation.  A related issue with 

our measure is that for some firms, sustainability in an ecosystem may be driven by 

different apps (i.e., App A is in Top 500 list in month t and App B (not App A) is in Top 

500 list in month t+1).  It is possible that App B may be a close substitute to App A or 

that App B is a “new” app focusing on a different use.  We discuss this issue in the 

robustness checks section and conduct an additional analysis by including firms which 

only had a single app in the Top 500 list.    

Similar to Wiggins and Ruefli (2002, 2005) and Hermelo and Vassolo (2010), we 

consider a firm’s superior performance to be eroded if it exits the superior performance 

stratum (i.e., the Top 500 list).  In order to ensure that the exit is somewhat persistent 

rather than intermittent, we use a window of three months to record the exit event (i.e., 

firm’s app is not present in the Top 500 list for three consecutive months after being in 

that list in the previous month).  Hence, a firm is assumed to sustain its superior 

performance if its app continues to be in the Top 500 list in at least one of the following 

three months.  We also performed sensitivity checks by using windows of two and four 

months respectively.  

On average, an app developer remains in the Top 500 list for a longer duration in 

the Android ecosystem (7 months) than in the iOS ecosystem (5 months).  Moreover, in 

the iOS ecosystem, about half of the firms exit the Top 500 list in less than two months, 
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whereas in the Android ecosystem, this duration is about five months.  This pattern is 

consistent with our prediction in Hypothesis 1.  

Independent variables:  Complexity has been defined and measured in many 

different ways across different scientific fields (Lloyd, 2001).  This is because no single 

approach can capture what scientists from different fields mean by complex (Page, 

2010).   In general, most definitions and associated measures consider complexity 

based on the difficulty of describing or creating an object, or based on the degree of 

organization with respect to the object (e.g., structural linkages between parts of a 

system).  Our measure of ecosystem complexity needs to account for the technological 

interdependencies that an app developer is subjected to with other components within a 

smartphone ecosystem.  Therefore, our approach here is consistent with characterizing 

complexity in terms of the degree of organization.  For smartphone ecosystem, the most 

obvious interdependencies for an app developer are with respect to the operating 

system and the handset.  Hence, the greater the number of operating system and 

handset combinations that an app developer is subjected to, the greater is the 

ecosystem complexity faced by the app developer.  As Apple controls both the operating 

system and handset, an app in the iOS ecosystem interacts only with the combination 

offered by Apple.  In the case of the Android ecosystem, although the core operating 

system is designed by Google, each smartphone OEM customizes the operating system 

and the handset.  As a result, an app in the Android ecosystem interacts with handset 

and operating system combinations from many different OEMs.  Our interviews also 

confirmed that app developers typically do not develop different apps for different OEMs 

in the Android ecosystem.  It is the same app that works across different handset and 

operating system configurations provided by the OEMs. 

Since ecosystem complexity faced by app developers is rooted in the diversity in 

the operating system and handset combinations offered by OEMs, we use a Simpson 
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index-based diversity measure to operationalize ecosystem complexity (Page, 2010).12  

The measure ecosystem complexity is the sum of the squares of the monthly shares of 

the U.S. installed base for smartphone OEMs in an ecosystem.13  It takes a value of 1 for 

the iOS ecosystem and ranges from 0.28 to 0.40 for the more complex Android 

ecosystem.  We multiplied the measure by -1 so that higher values indicate higher 

ecosystem complexity.    

We measured ecosystem experience as the total number of months that a firm 

gained experience in a given ecosystem.  To obtain this measure, we first identified the 

month in which the firm introduced its first app in the ecosystem (i.e., month of entry) 

and then computed the number of months between the observation month and the 

month of entry.  We identified the effect of platform transition using a dummy variable 

that takes a value of 1 if a new generation of smartphone operating system was 

introduced within the prior three months.14  The reason for the three-month window is 

that it often takes users several weeks to adopt the new generation of operating system 

and a similar time frame for app developers to adapt and reconfigure their apps.  During 

                                                           
12 An alternative could be a measure based on the Shannon index. The two indices differ with respect to the 

relative weights that they ascribe to each OEM’s installed base. The Simpson index uses the proportion of 

each OEM’s installed base as weights to calculate the weighted arithmetic mean of the share of installed base 

for each OEM. The Simpson index thus gives higher weights to the OEMs which have high installed base. In 

contrast, the Shannon index uses weights based on natural logarithm of the proportion of installed base of each 

OEM and thus ascribes relatively higher weights to the OEMs with the low installed base. Hence, the measure 

is somewhat inconsistent with the fact that app developers focus most of their efforts on OEMs with high 

installed base.  The Simpson index is mathematically equivalent to the popular Herfindahl index used in 

economics and management literature to measure industry concentration. Herfindahl index is based on the 

sales of different firms within an industry whereas our measure is based on the installed base of the different 

OEMs within an ecosystem. 
13 Note also that our measure is based on the share of OEMs installed base and not the share of their sales. 

This is because the market for apps is not only confined to new smartphones being sold but it also 

encompasses existing smartphones being used.  As an additional alternative measure, we could have also used 

a count-based measure of the number of smartphone OEMs or the number of the different types of 

smartphones in a given ecosystem.  However, in our interviews, industry participants repeatedly asserted that 

their firms focus their app development efforts on the small subset of more commonly used handsets.  For 

example, in Android, they consistently referred to focusing their efforts so that the same app works on 6-8 

leading smartphones from multiple OEM firms.  The Simpson index-based measure helps to account for this 

concentration effect. 
14 New generations of smartphone operating system were identified based on change in the code name (e.g., 

change from Ice Cream Sandwich to Jelly Bean in the case of Android, and from iOS 5 to iOS 6), a standard 

practice in this industry.  In addition to launching new generations of operating system, both Apple and 

Google also offer minor updates which are predominantly “bug fixes” within the existing generation.  

Therefore, we do not consider these minor updates as platform-level generational transitions. 
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the period of study, there were two major platform transitions in the iOS ecosystem 

(launch of iOS 6 in September 2012 and launch of iOS 7 in September 2013) and one 

major transition in the Android ecosystem (launch of the Jellybean 4.1 operating system 

in July 2012).  Although Google officially launched Jellybean 4.1 in July 2012, it became 

available to the majority of U.S. consumers through the different OEMs only in 

December 2012.  We verified this information by searching for news articles discussing 

the launch of Jellybean 4.1 by OEMs such as Samsung, HTC, and Motorola, often with 

new generations of handsets.  Hence, for the Android ecosystem, we considered the 

period of platform transition to last from January to March of 2013.  

To ensure that our coding of these platform transitions matches with our 

theoretical premise of challenges faced by complementors during such episodes, we 

used data from Google Trends for searches made on Google in the U.S. with the search 

term “app not working.”15  Figure 3.1 plots the normalized weekly trend of search volume 

from January 2012 to January 2014.   It shows clear instances of peaks during the 

months in which new generations of operating system are introduced within the iOS and 

Android ecosystems.  Hence, these trends confirm our coding schema and provide 

evidence of the challenges faced by app developers during periods of platform 

transitions.16 

(Insert Figure 3.1 about here) 
 

Control variables: We controlled for a number of covariates that may influence an 

app developer’s ability to sustain its superior performance.  We used the total number of 

employees as a proxy for firm size and used this variable to control for scale-related 

                                                           
15 Results can include searches containing "app" and "not working" in any order. Other related terms may be 

included in the search results, like "music app not working." 
16  We note that the introduction of new generations of smartphone operating system are also typically 

accompanied by the introduction of new handsets by OEMs.  However, the older handsets still account for the 

majority of users during the transition period.  Hence, for both iOS and Android ecosystems, the major driver 

of app developers’ performance as well as their adaptation requirements during generational transitions stem 

from the change in the operating system rather than from the launch of the new handsets. 
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effects.  Data on the total number of employees was collected from the firm’s website or 

LinkedIn.  For those firms for which this information was not available, we contacted 

them via e-mail and received a 78% response rate.   

About 64% of firms in the sample participated in both the iOS and Android 

ecosystems.  Participation in both ecosystems may create challenges with respect to 

resource allocation over time.  We controlled for this effect through the variable dual 

participation, which takes a value of 1 if the firm had an app in both the iOS and Android 

ecosystems in a given month and 0 otherwise.  We also controlled for the firm’s 

presence in markets other than smartphone apps that may confer advantages such as 

those with respect to brand, customer loyalty, and economies of scope.  The variable 

other online business takes a value of 1 if a firm is active in other web- or PC-based 

businesses like owning a social networking website or developing software for PC.  The 

variable other offline business takes a value of 1 if the firm’s scope of businesses 

expanded beyond the internet and PC domain, such as console games.   

App developers often try to gain visibility by providing free apps.  We controlled 

for this effect through a dummy variable Top 500 free ranking that takes a value of 1 if 

any of the apps developed by the firm were also part of the Top 500 ranking based on 

the number of downloads for free apps in a given month.  We also controlled for the 

overall quality of firms’ apps by using data on consumer ratings received by all apps 

developed by the firm.  We are unable to observe the change in ratings for all apps over 

time.  Hence, we used a time-invariant firm-level control to capture firm-level differences 

in app quality.  Consumers can rate an app from 1 to 5 stars, with 5 being the highest 

quality.  The variable firm app rating is the average rating of all apps developed by the 

firm in a given ecosystem as of March, 2014.  We also controlled for the price of the 

focal app that is in the Top 500 list (by revenue).  For firms that had more than one app 

in the Top 500 list in the same month, we used the price for the app with the highest 
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rank.  Many app developers derive their revenues through in-app purchases, and hence, 

their revenues include recurring revenues from existing customers.  To account for this 

feature of the business model, we include a variable In-app purchases, which takes a 

value of 1 if the focal app has an in-app purchase option.  This would also help us to 

control for the benefits that firms may derive from customer loyalty or customer switching 

cost.  

Firms predominantly offered apps in a specific category such as games, music, 

social networking or productivity.  We controlled for this category-level heterogeneity 

through category fixed effects and other category-level time-varying controls.17  A firm 

can continue to have its apps in the Top 500 ranking if there is a high level of demand 

for a particular category of apps in which the firm is active in.  We account for this 

possibility using the variable apps in top 500, which is the total number of apps in the 

Top 500 list in a given month within the same category as the focal firm’s app.  While the 

context in general is hypercompetitive, there may be differences in the competitive 

intensity across categories over time.  We included two variables to account for these 

differences.  First, we included the total number of new apps that were introduced in a 

category in a given month.  This variable captures apps launched by both new and 

existing firms.  Second, we included the total number of new firms that entered the 

category in a given month.  The two variables are log-transformed to account for 

skewness. 

Analysis 

We tested our hypotheses using continuous time event history analysis to 

estimate the hazard rate of app developers exiting the superior performance stratum.  

This approach is consistent with prior studies which have focused on studying the 

                                                           
17 In the few cases where firms offered apps in multiple categories, we used information for the highest 

ranking app to calculate values for the category-level control variables.  
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sustainability of firms’ superior performance (e.g., Wiggins & Ruefli, 2002, 2005; 

Hermelo & Vassolo, 2010).  Many firms in our sample did not exit the superior 

performance stratum during the observation period.  Hence, our data is right censored.  

Event history models are well suited to account for right-censored observations (Allison, 

1984).  Since we are studying only those firms that made it to the Top 500 ranking and 

were subjected to the risk of exiting the superior performance stratum, our data does not 

have left censoring.  Some firms in our sample entered the superior performance 

stratum before the start of the observation period.  Hence, our data is left truncated.  We 

checked for potential biases due to left truncation through an additional robustness 

check.  We did this by including observations for firms that only entered in the iOS or 

Android ecosystems from January 2012 onwards.  We report this analysis in the 

robustness checks section after presenting our main results. 

We constructed data in the long form to account for time-varying covariates.  We 

used the Cox proportional hazards model, a robust technique for hazard rate analysis 

that does not require making an additional assumption about the shape of the baseline 

hazard, which may be increasing, decreasing, constant, or non-monotonous (Cox, 

1975).  This helps address concerns with respect to incorrect distributional assumptions 

yielding biased estimates (Blossfeld and Rohwer, 2002), and the choice of parametric 

specification based on observed data generating inconsistent results (Carroll and 

Hannan, 2000).  Further, we tested for proportionality hazard assumption by checking if 

the slope of the regression equation of scaled Schoenfeld residuals on time is nonzero 

for full model as well as for all predictor variables (Grambsch and Therneau, 1994). We 

found that the proportionality hazard assumption was not satisfied for Top 500 free 

ranking and price variables.  To overcome this issue, we followed the recommended 

approach in the literature by including interaction terms between time (in months) and 

the respective variables to allow for the effect of these variables to vary over time.  As a 
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robustness check, we also performed our estimations using the piecewise constant 

model with month-specific effects.  The estimates from these models were consistent 

with those obtained from the Cox model. 

Results 

We report the summary statistics and correlations between our covariates in 

Table 3.1.  We report the results from the Cox model in Table 3.2.  The model estimates 

the hazard rate that a firm exits the superior performance stratum and, hence, its inability 

to sustain its superior performance.  The reported coefficients can be exponentiated to 

obtain hazard ratios, which are interpreted as the multiplier of the baseline hazard of the 

firm exiting the superior performance stratum when the variable increases by one unit 

(Allison, 2000).  An increase in hazard can also be interpreted as shortening the time 

period for which a firm sustains its superior performance.  All standard errors reported 

were corrected for non-independence across multiple observations faced by the same 

firm by clustering observations for each firm.  Model 1 is a baseline model. Models 2, 3, 

and 4, include ecosystem complexity, ecosystem experience, and platform transition to 

test Hypotheses 1, 2, and 4, respectively.  Model 5, includes the interaction term 

between ecosystem complexity and ecosystem experience to test Hypothesis 3.  Model 

6, includes the interaction term between ecosystem complexity and platform transition to 

test Hypothesis 5.  Model 7 is the fully specified model with all of the independent 

variables and the interaction terms. 

(Insert Tables 3.1 and 3.2 about here) 

The results from the baseline model (Model 1) suggest that the likelihood of app 

developers sustaining their superior performance increases with their firm size, if they 

offered in-app purchases, and if they had other web- or PC-based online businesses.  

Also, app developers who offered apps in both ecosystems and who offered free apps 
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that were ranked among the Top 500 free apps in terms of downloads were likely to 

sustain their superior performance.  

In Hypothesis 1, we predicted that higher ecosystem complexity will be 

associated with greater likelihood of complementors sustaining their superior 

performance.  This prediction was supported in all of the models (Models 2, 5, 6, 7).  The 

coefficient for ecosystem complexity is negative and statistically significant (p-value < 

0.01).   In considering the magnitude of estimated coefficient in Model 2, we find that an 

increase in ecosystem complexity by one standard deviation reduces the app 

developer’s likelihood of exiting the superior performance stratum by 22%.  

In Hypothesis 2, we predicted that firms with greater experience within the 

ecosystem will be more likely to sustain their superior performance. We find support for 

Hypothesis 2, as the coefficient for ecosystem experience is negative and statistically 

significant in Models 3, 5, and 7 (p-value < 0.01).  In considering the magnitude of 

estimated coefficients, an increase in an app developer’s experience by one standard 

deviation (16 months) decreases its likelihood of exiting the superior performance 

stratum by 13%.  In Hypothesis 4, we predicted that generational transitions initiated by 

platform firms will make it more difficult for complementors to sustain their superior 

performance.  We find support for this prediction as the coefficient for platform transition 

is positive and statistically significant in Models 4, 6, and 7 (p-value < 0.01).  In 

considering the magnitude of estimated coefficient in Model 4, we find that an app 

developer’s likelihood of exiting the superior performance stratum increases by about 

44% during the platform transition.  

In Hypothesis 3, we predicted that the effect of complementor’s ecosystem 

experience on the sustainability of its superior performance will be moderated by 

ecosystem complexity such that the effect will be stronger when ecosystem complexity is 

high than when it is low.  We find support for Hypothesis 3, as the coefficient for the 
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interaction term between ecosystem complexity and ecosystem experience is negative 

and statistically significant (p < 0.10) in both Models 5 and 7.  Finally, the coefficient for 

the interaction term between ecosystem complexity and platform transition is positive 

and statistically significant in both Models 6 and 7 (p < 0.05).  Hence, we find support for 

Hypothesis 5 that platform transitions make it more difficult for complementors to sustain 

their superior performance when ecosystem complexity is high than when it is low.  

Figure 3.2 illustrates these interaction effects by plotting the average marginal effects of 

ecosystem complexity for different values of ecosystem experience and platform 

transition based on estimates in Model 7, holding all other variables at their mean 

values.  The standard errors for the average marginal effects are estimated using the 

delta method and are calculated by the margins routine in STATA.  

 

(Insert Figure 3.2 about here) 
 

Robustness checks 

We conducted a number of additional checks to establish the robustness of our 

findings.  The robustness checks are summarized in Table 3.3 and the results are 

reported in Tables 4 and 5 respectively.  In Table 3.4, we explore alternative 

explanations that could drive our main results, and in Table 3.5, we focus on the 

sensitivity of our results to alternative measures and operationalization.  

(Insert Table 3.3 about here) 
Alternative Explanations  

Firms may be self-selecting into the iOS or Android ecosystems, and this may 

subject our estimates to a firm-level selection bias.  To address this concern, we 

estimated a model by including data for only those firms that participated in both 

ecosystems.  The coefficient estimates are reported in Model 8 and exhibit similar 

patterns as our main results. The only exception was that the interaction term between 
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ecosystem complexity and ecosystem experience is marginally insignificant (p-value = 

0.15).  Another type of a “selection” issue is that that certain types of firms (unobservable 

to us) are more likely to achieve superior performance in an ecosystem of a given 

complexity.  If we are not able to characterize the type based on the observables, our 

inferences with respect to ecosystem complexity might be particularly problematic.  To 

address this concern, we ran an additional check by using the sample of 278 firms that 

achieved superior performance in both iOS and Android ecosystems, and we included 

firm-fixed effects in that analysis.  The results are reported in Model 9 and are 

qualitatively similar to our main results.  The standard errors for a fixed-effects model 

with a much smaller sample size are somewhat higher with the interaction terms being 

marginally insignificant. 

(Insert Table 3.4 about here) 
 

In order to ensure that the significant effect of app developers’ ecosystem 

experience is not simply an artifact of their general experience with apps, we performed 

a supplementary analysis on firms that participated in both ecosystems.  We controlled 

for the app developers’ general experience – the total number of months that an app 

developer has been active in the smartphone app market for iOS and Android apps.  

Firms with greater general experience may benefit through superior app development 

and marketing capabilities as well as having a stronger brand.  The results are reported 

in Model 10.  While the coefficient for general experience is negative and statistically 

significant, the coefficient for ecosystem experience remains statistically significant, and 

its magnitude is almost twice as that of the coefficient for general experience.  Hence, 

this check helps to reinforce that complementors’ experiential benefit has a strong 

ecosystem-specific component.18 

                                                           
18 We performed an additional check to ensure that the experience effect is not simply driven by customer 

loyalty resulting in high app revenues through continued in-app purchases.  To do so, we re-ran Model 5 on a 
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We also explore other possible explanations with respect to different types of 

firms and their strategies.19  Firms in our sample include those that are pure app firms 

which derive all of their revenues from app stores and those firms which also have other 

online or offline businesses.  To check if there are any systematic differences between 

these firms, we estimated separate models for pure app firms (Model 11) and for firms 

which also had other businesses (Model 12).  The coefficient estimates are qualitatively 

similar to our main results.  The interaction term of ecosystem complexity*experience 

loses statistical significance possibly because of smaller sample size and the fact that 

pure app firms are generally younger than the other firms.  It is also possible that app 

developers may differ in terms of their innovations and investments in apps, and the size 

of their app portfolio.  These differences may be correlated with their experience or 

ecosystem complexity.  To rule out these explanations, we collected additional data on 

the total number of apps and the number of updates to the focal apps for the firms which 

were active in Jan’ 2016.  For this sample of firms, we included controls for the total 

number of updates, and the total number of updates in the previous three months (Model 

13), and the total number of apps in a given month (Model 14).  Finally, while both iOS 

and Android were dominant smartphone platforms during the observation period, there is 

variation in their overall sales growth over time.  To ensure that our results are not 

impacted by the relative differences in sales growth between iOS and Android, we 

obtained quarterly unit sales data from IDC (the data was not available at monthly 

intervals), and included it as an additional control in Model 15.  The results with these 

additional control variables continue to support our predictions, and give us greater 

confidence in our findings. 

                                                                                                                                                                             
sample of 467 firms whose apps in the Top 500 list did not include an in-app purchase option.  The experience 

effects continued to be significant even for a very small sample, giving us additional confidence with respect 

to our inferences.  
19 We thank the two anonymous reviewers for suggesting these analyses in order to rule out alternative 

explanations. 
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Alternative Measures 

A potential concern with the analysis could be that our measure for ecosystem 

complexity, based on the OEMs’ installed base, does not account for the diversity of 

handset configurations within OEMs.  For example, in the case of iOS ecosystem, the 

measure remains constant throughout the observation period and does not capture 

differences with respect to the types of phones, especially does with different screen 

sizes (e.g., iPhone 4s and 5).  For an app developer, screen size in addition to OEM 

operating system configuration can be an important driver of the variety of the handset 

and operating system combinations that their app interacts with.  While designing an 

app, the developer needs to carefully ensure that its app fits and works seamlessly 

across the different screen sizes of the different OEMs (Panzarino, 2012).  Further, since 

the measure of ecosystem complexity is significantly correlated with the type of platform 

(i.e., iOS or Android), it might be capturing some unobserved differences with respect to 

platform firms’ strategies or user-characteristics across these platforms.  These 

differences may impact the relative ease with which app developer firms can sustain 

their superior performance in a given ecosystem, and may make some of our inferences 

problematic.  To address this possibility and to account for OEM-level screen size 

variations faced by app developers, we obtained detailed data on installed base of 

handsets and user characteristics from comScore.  comScore conducts a monthly 

survey of about twelve thousand U.S. smartphone users and collects data on their 

handset profiles, user demographics and the app usage patterns.  The survey data for 

each month is then adjusted to account for national demographics.  Due to high cost of 

this survey data, we were only able to obtain this information for the period from 

January, 2012 to May, 2013, which also resulted in the exclusion of observations for an 

iOS platform transition (i.e., iOS 7). 
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We explore the robustness of our results by including a finer-grained measure of 

ecosystem complexity based on the number of unique OEM firm and screen size 

combinations.  The use of this measure also allows us to control for the focal platform.  

The variable iOS takes the value of 1 if the app developer is participating in the iOS 

platform and 0 if it is participating in the Android platform.  To account for differences in 

demographics and app usage between the iOS and Android users, we include three 

control variables.  The variable App download measures the percentage of users who 

download 5 or more apps in a given month in the focal platform.  The variables Female 

user and Age measure the percentage of female users and the percentage of users of 

age between 18 and 45 years.  We report the results in Models 16-18.  Model 16 

includes the new measure of ecosystem complexity and with controls for user 

characteristics.  Model 17 includes the additional control for iOS.  The coefficient 

estimates continue to support our predictions.  Model 18 includes the interaction terms.  

The coefficients for the interaction terms have large standard errors possibly because of 

multicollinearity with respect to some of the key variables with individual variance 

inflation (VIF) factors well above the recommended cutoff level of 10 (VIF is 47 for 

ecosystem complexity, 46 for iOS, and 13 for the ecosystem complexity and experience 

interaction term), and the fact that there are fewer episodes of platform transitions.   

Moreover, our theory and our measures are at the level of the firm in an 

ecosystem.  However, in our empirical design, it is possible that for some firms, 

sustainability in an ecosystem may be measured across different apps i.e., App A is in 

top 500 list in month t and App B (not App A) is in top 500 list in month t+1.  In our 

sample, of the 9672 sustainability events for iOS and Android ecosystems (i.e., focal firm 

has an app in the Top 500 list for two consecutive months), there were only 661 

sustainability events where the focal firm had a different app in the Top 500 list in the 

subsequent month.  As an additional robustness check, we only used the sample of 
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firms that had a single app in the Top 500 list in a given ecosystem.  The estimates 

reported in Model 19 continue to support all of the predictions.   

In our main results, we considered a firm to be in the superior performance 

stratum if its app appeared in the Top 500 list by revenue, and we used a three-month 

observation window to assess whether the firm sustains its superior performance or not.  

To ensure that our results are not sensitive to these choices, we used a higher 

performance threshold based on a firm’s app in the Top 250 list by revenue (Model 20), 

and we also used windows of two and four months (Models 21 and 22).  The coefficient 

estimates for all the three models continue to support our predictions.   

 
(Insert Table 3.5 about here) 

 

Finally, some firms in our sample entered the superior performance stratum 

before the start of the observation period.  Hence, our data is left truncated.  We tested 

for any potential biases due to left truncation by only including observations for those 

firms that entered these ecosystems from January 2012 onwards (Model 23).  The 

coefficient estimates are qualitatively similar as our main results with the exception of the 

interaction term between ecosystem complexity and firm experience exhibiting similar 

magnitude and sign, but the estimates are not precise enough for statistical significance.  

This is possibly due to the fact that these estimations are based on a smaller sample 

and that too of younger app developer firms.  Overall, these additional analyses with 

alternative measures help to further establish the robustness of our findings.   

Discussion 

We study the increasingly prominent phenomenon of platform-based ecosystems 

in which value is created through a network of firms offering complementary products 

and services around a platform.  Value creation in such ecosystems is shaped by 

platform firms who own the underlying technical architecture and set the rules for 
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complementors’ participation.  We explore the strategic implications for complementors 

by considering how ecosystem-level interdependencies affect the extent to which 

complementors can sustain their value creation in an ecosystem.  We offer a novel 

perspective of complementors’ ecosystem-level interdependencies that is rooted in the 

structural and evolutionary features of the ecosystem.  The structural feature is based on 

the technological interdependence between complementors’ products and other 

components in the ecosystem.  We refer to this feature as ecosystem complexity faced 

by the complementor.  We incorporate the evolutionary features by taking into account 

the technology transitions initiated by platform firms and the experience gained by 

complementors in an ecosystem over time.   

We test our arguments on app developers in Apple’s iOS and Google’s Android 

smartphone ecosystems from January 2012 to January 2014.  During the period of 

study, both of these ecosystems were populated by hundreds of thousands of app 

developers that offered a wide variety of specialized software applications to smartphone 

users.  The stark contrast between Apple’s “closed” model and Google’s “open” model, 

in addition to several episodes of platform transitions initiated by these firms, allowed us 

to examine how ecosystem complexity and platform transitions faced by app developers 

impacted the ease with which they could sustain their superior performance within an 

ecosystem.  Consistent with our arguments, we find that higher ecosystem complexity 

and ecosystem experience helps app developers sustain their superior performance 

whereas platform transition makes it more difficult. We also find that on the one hand, 

ecosystem complexity enhances the benefit of ecosystem experience whereas it 

exacerbates the impact of platform transition 

Our study's findings make important contributions to the literature streams in 

strategy on business ecosystems, platforms, technological change and to the 

evolutionary economics perspective in general.  Scholars studying business ecosystems 
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have focused on the coordination and technological challenges with respect to 

complementors and the resulting implications for firms’ organizational choices and value 

creation (e.g., Iansiti and Levien, 2004; Adner and Kapoor, 2010, 2014; Kapoor and Lee, 

2013; Kapoor, 2013).  Scholars studying platforms have focused on the strategies used 

by platform firms to attract complementors and to compete against rival platforms 

(Gawer and Cusumano, 2002; Gawer and Henderson, 2007; Boudreau, 2010; 

Eisenmann et al.; Zhu and Iansiti, 2012).  While these literature streams have shifted the 

theoretical emphasis from industries and products to business ecosystems and 

platforms, the primary mode of inquiry is to illustrate how firms manage their 

interdependence with complementors so as to create and appropriate value.   

In this study, we focus on the other side of the phenomenon, beyond the platform 

firms and illustrate how complementors’ value appropriation is shaped by the structural 

and evolutionary features of the ecosystems.  Our findings have implications for both 

platform firms such as Apple and Google that set the rules and own the platform and 

complementors such as app developers that follow the rules and leverage the platform.  

We show how the strategies of the platform firms may play a significant role in the 

complementors’ ability to appropriate value over time.  While major technological 

changes within the platform are important for sustaining the progress of the ecosystem 

over time, these platform transitions can create high uncertainty and disrupt the 

leadership position of complementors who are significant contributors to value created in 

the ecosystem.  At the same time, platform transitions can present new opportunities for 

other complementors to create value in the ecosystem.  Hence, we shed light on the 

challenges and the trade-offs that platform firms and complementors face in their quest 

for value creation and appropriation over time.  

By showing how platform firms’ strategies can  shape the level of complexity and 

uncertainty faced by complementors, we depart from the existing treatments of firms’ 
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environments that are typically premised on complexity and uncertainty being a general 

feature of the industry (e.g., Dess and Beard, 1984; Anderson and Tushman, 2001; 

Eisenhardt, 1989).  In so doing, we offer a new lens on the interactions between firms 

and their environments through which complexity and uncertainty faced by 

complementors is explicitly determined by the strategies of platform firms.  This can also 

result in the same firm being subject to different types of environments in the same 

industry.  Further, literature on technological change has shed light on how technology 

transitions impacts the performance of firms in the focal industry (e.g., (Tushman and 

Anderson, 1986; Henderson and Clark, 1990; Christensen, 1997).  We contribute to this 

literature by highlighting how technology transitions initiated by platform firms can impact 

the performance of complementor firms within an ecosystem.  Hence, we highlight that 

technological interdependencies between platform firms and complementors in related 

industries can have important consequences for complementors during periods of 

platform transitions. Relatedly, the evidence in the study also points to the difficulties of 

coordinating technology transitions at the level of the ecosystem. Even if platform firms 

intend to create a smooth generational transition for all of their complementors, the 

system-level interdependencies and technological uncertainties make such coordination 

difficult. 

The study is also among the first to provide systematic empirical evidence 

regarding the role of complexity on firm performance as theorized within the evolutionary 

economics perspective (e.g., Nelson and Winter, 1982, 2002; Levinthal, 1997; Gavetti 

and Levinthal, 2004).  While scholars have drawn on a variety of theoretical approaches 

to model firms’ search processes and their performance outcomes at different levels of 

complexity, empirical evidence regarding the role of complexity on firm performance has 

been somewhat lacking (Lenox et al. (2010) is an important exception). We show that 

complexity plays an important role in sustaining superior performance in business 
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ecosystems, and its impact is especially strong for firms with greater ecosystem-specific 

experience and during periods of platform transitions.  Finally, we also offer an empirical 

contribution to the strategy literature by going beyond the typically used annual datasets 

to shorter temporal windows of months. We show that finer-grained observational 

periods can be useful in deciphering performance dynamics in hypercompetitive settings 

such as the smartphone context.  

The findings and the inferences from the study are subject to a number of 

caveats that offer opportunities for future research.  First, they are limited to a single 

empirical context, and their validity needs to be established across other settings.  

Relatedly, Apple’s closed model and Google’s open model played a significant role in 

determining the extent of ecosystem complexity faced by smartphone app developers.  

However, theoretically, this correlation does not imply that a closed model will always 

result in low ecosystem complexity for complementors.  The origins of ecosystem 

complexity might not only be rooted in the choices of the platform firms across different 

ecosystems but also in the choices of the complementors within the same ecosystem 

(Agarwal and Kapoor, 2017).  Further, while we focus on the short-run impact of platform 

transitions on complementors, platform transitions can also have a long-run impact on 

the ecosystem complexity faced by complementors.  Second, our measure of superior 

performance is premised on whether firms’ apps are ranked within Top 500 apps in 

terms of revenue in the two dominant smartphone ecosystems.  Although this measure 

is consistent with our theory and is widely accepted as a proxy for superior performance 

in these ecosystems, it may not represent superior economic performance for firms in 

general.  Specifically, the measure does not account for the costs of participation in an 

ecosystem, and is not sensitive to the differences between ecosystems in terms of total 

revenue.  It is possible that a firm may have a high revenue-based rank in an ecosystem 

with low total revenue (i.e., large share of a small revenue pie), or a firm may incur high 
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cost of participation.  Both of these possibilities might result in firms with low 

performance (revenue/profits) at the level of the industry being categorized as ones with 

superior performance at the level of the ecosystem.  Hence, the applicability of our 

measure with respect to overall economic performance for the firm is subject to some 

important boundary conditions.  Our finding with respect to the interaction effect between 

ecosystem experience and ecosystem complexity is less robust than our other findings.  

This could imply that our theorized mechanism may be subject to some boundary 

conditions or that our measures are somewhat limited in their ability to tease out this 

effect.  Finally, our dataset is limited to only 25 months, and while we observe significant 

fluctuations within the competitive landscape over this relatively short period, we are 

unable to draw inferences over longer time frames.   

Despite these and other limitations, the study offers one of the first explorations 

of performance of complementor firms in platform-based ecosystems.  We propose a 

novel perspective of complementors’ ecosystem-level interdependencies that is rooted in 

the structural and evolutionary features of the ecosystem, and show that such a 

perspective is useful in explaining the extent to which complementors can appropriate 

value within an ecosystem over time.  In so doing, the study also sheds light on how the 

performance of complementors in business ecosystems can be shaped by the rules and 

the actions of the platform firms that orchestrate the ecosystem.  
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Figure 3.1: Normalized weekly trend based on Google’s search data for the term 

“app not working” for US-based searches  

(Data source: Google Trends; http://www.google.com/trends/: Data last accessed on 

August 29, 2014) 
 

 

Figure 3.2: Average marginal effects of ecosystem complexity with 95% 

confidence intervals 
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Table 3.1: Descriptive statistics and correlations 

No. Variable Mean 
Std. 

Dev. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
Ecosystem 

complexity 
-0.66 0.34 1.00 

           
 

 

2 
Ecosystem 

experience 
22.91 16.07 -0.55 1.00 

          
 

 

3 
Platform 

transition 
0.18 0.38 -0.14 0.13 1.00 

         
 

 

4 New apps 7.84 0.97 -0.14 0.07 0.11 1.00 
        

 
 

5 New firms 6.35 0.77 -0.03 -0.01 0.07 0.95 1.00 
       

 
 

6 
Apps in Top 

500 
199.01 162.78 0.06 -0.08 0.05 0.76 0.71 1.00 

      
 

 

7 
Firm size 

(employees) 
6.22 17.92 -0.04 0.17 0.00 -0.06 -0.07 -0.07 1.00 

     
 

 

8 
Other online 

business 
0.59 0.49 -0.03 0.10 0.01 -0.04 -0.04 -0.01 0.23 1.00 

    
 

 

9 
Other offline 

business 
0.30 0.46 -0.03 0.12 0.01 -0.06 -0.09 -0.07 0.40 0.29 1.00 

   
 

 

10 
Dual 

participation 
0.63 0.48 0.12 0.04 0.01 0.12 0.14 0.20 0.15 0.20 0.17 1.00 

  
 

 

11 
Firm app 

rating 
4.01 0.49 0.25 -0.29 -0.03 0.17 0.16 0.22 -0.23 -0.14 -0.18 -0.05 1.00 

 
 

 

12 
Top 500 free 

app 
0.56 0.50 -0.17 0.16 0.01 0.11 0.12 0.13 0.07 0.03 -0.05 0.08 0.01 1.00  

 

13 
In-app 

purchases 
0.82 0.38 0.03 -0.02 0.03 0.22 0.21 0.29 0.01 -0.02 -0.12 0.08 0.06 0.20 1.00  

14 App price 3.55 30.90 -0.04 0.03 0.00 -0.08 -0.09 -0.10 0.01 0.01 0.04 -0.03 0.01 -0.10 -0.10 1 

 

Correlations greater than 0.01 or smaller than -0.01 are significant at p <0.05, N= 12,691 
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Table 3.2: Cox proportional hazards estimates for firms exiting the superior 

performance strata 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Ecosystem complexity  -0.740***   -0.691*** -0.784*** -0.751*** 

  (0.125)   (0.181) (0.134) (0.182) 

Ecosystem experience   -0.008***  -0.027***  -0.027*** 

   (0.002)  (0.008)  (0.008) 

Platform transition    0.365***  0.763*** 0.839*** 

    (0.082)  (0.258) (0.263) 

Ecosystem complexity*experience     -0.016*  -0.016* 

     (0.008)  (0.009) 

Ecosystem complexity*transition      0.661** 0.785** 

      (0.317) (0.325) 

New apps
 

0.074 -0.485** 0.220 0.016 -0.350* -0.483** -0.346* 

 (0.164) (0.193) (0.166) (0.166) (0.194) (0.194) (0.195) 

New firms
 

-0.182 0.272 -0.295 -0.104 0.206 0.274 0.200 

 (0.207) (0.233) (0.206) (0.210) (0.230) (0.235) (0.232) 

Apps in Top 500 0.008 0.011 0.008 0.006 0.010 0.010 0.009 

 (0.008) (0.007) (0.008) (0.008) (0.008) (0.008) (0.008) 

(Apps in Top 500)
2 

-0.000* -0.000** -0.000* -0.000 -0.000* -0.000* -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Firm size (employee) -0.013*** -0.013*** -0.012*** -0.013*** -0.011*** -0.013*** -0.011*** 

 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Other online business -0.217*** -0.224*** -0.216*** -0.217*** -0.226*** -0.223*** -0.226*** 

 (0.080) (0.079) (0.079) (0.080) (0.078) (0.079) (0.078) 

Other offline business 0.125 0.146 0.122 0.127 0.149 0.148 0.152 

 (0.096) (0.094) (0.096) (0.096) (0.094) (0.094) (0.094) 

Dual participation -0.481*** -0.436*** -0.472*** -0.474*** -0.410*** -0.436*** -0.410*** 

 (0.078) (0.077) (0.078) (0.078) (0.076) (0.077) (0.076) 

Firm app rating -0.089 -0.013 -0.135** -0.081 -0.072 -0.012 -0.070 

 (0.068) (0.068) (0.067) (0.067) (0.066) (0.068) (0.066) 

Top 500 free app
 

-0.678*** -0.826*** -0.613*** -0.686*** -0.743*** -0.831*** -0.749*** 

 (0.101) (0.107) (0.103) (0.101) (0.107) (0.107) (0.107) 

Top 500 free app*time 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

In-app purchases
 

-0.582*** -0.568*** -0.573*** -0.577*** -0.542*** -0.562*** -0.536*** 

 (0.101) (0.099) (0.101) (0.100) (0.097) (0.098) (0.097) 

App price -0.089 -0.117* -0.069 -0.090 -0.090 -0.118* -0.090 

 (0.062) (0.063) (0.061) (0.062) (0.061) (0.063) (0.061) 

App price*time 0.003 0.004 0.003 0.003 0.004 0.004 0.004 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Category fixed effect Yes Yes Yes Yes Yes Yes Yes 

Total observation 12,691 12,691 12,691 12,691 12,691 12,691 12,691 

Total firms 1,516 1,516 1,516 1,516 1,516 1,516 1,516 

Total exit events 1,774 1,774 1,774 1,774 1,774 1,774 1,774 

Log likelihood -10,601.36 -10,571.66 -10,592.50 -10,592.08 -10,545.74 -10,545.74 -10,539.44 

* p < 0.1; ** p < 0.05; *** p < 0.01  
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Table 3.3: Summary of robustness checks reported in Tables 4 and 5. 

 

 

  

Model  Robustness check Rationale 

8 Included data for only those firms that 

participated in both ecosystems 

Firms may be self-selecting into the iOS or 

Android smartphone ecosystems 

9 Included only those firms that achieved 

superior performance in both iOS and Android 

ecosystem with firm-fixed effects 

Certain types of firms may be more likely to 

achieve superior performance in an ecosystem 

of a given complexity 

10 Controlled for firm’s general industry 

experience in smartphone apps 

Ecosystem experience may simply be an 

artifact of general industry experience 

11, 12 Ran separate models for pure app firms and 

firms with other businesses 

There might be systematic difference between 

firms based on their business scope 

13 Controlled for total number of updates and 

updates in the last 3 months for the focal app 

Firms’ investments in apps might be 

impacting sustainability 

14 Controlled for firm’s app portfolio Firms’ app portfolio size might be correlated 

with their ecosystem experience or ecosystem 

complexity 

15 Controlled for unit handset sales for both iOS 

and Android 

Results may be driven by relative differences 

in sales growth between iOS and Android 

16 Used alternative measure for ecosystem 

complexity based on the number of unique 

OEMs and screen size combinations.  

Main measure for ecosystem complexity does 

not account for the diversity of handset 

configurations within OEMs 

16, 17, 18 Used alternative measure for ecosystem 

complexity and controlled for the focal 

platform, and user characteristics  

Main measure for ecosystem complexity 

might be capturing  unobserved differences 

with respect to platform firms’ strategies or 

user-characteristics across these platforms 

19 Included data for only those firms that had a 

single app in Top 500 list 

Sustainability of superior performance at firm-

level may be due to different apps launched by 

the same firm 

20 Used a higher performance threshold based on 

a firm’s app in the Top 250 list by revenue 

Results might be sensitive to the choice of 

Top 500 list to measure superior performance 

21, 22 Used two- and four-month windows 

respectively to measure sustainability 

Results might be sensitive to the choice of the 

three-month window to measure sustainability 

23 Included data for only those firms that entered 

an ecosystem after January 2012 

Left truncation 
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Table 3.4: Robustness checks (Alternative explanations) 

 Model 8 Model 9 Model 10 Model 11 Model 12  Model 13 Model 14 Model 15 

Ecosystem complexity -0.814*** -1.011* -0.595*** -0.790*** -0.963*** -0.760*** -0.657*** -0.592*** 

 (0.216) (0.567) (0.230) (0.254) (0.255) (0.199) (0.212) (0.204) 

Ecosystem experience -0.029*** -0.068* -0.020* -0.023* -0.022* -0.019** -0.031*** -0.031*** 

 (0.010) (0.036) (0.010) (0.012) (0.012) (0.009) (0.009) (0.009) 

Platform transition 0.768** 1.281** 0.769** 0.696* 0.993*** 0.726*** 0.969*** 0.722*** 

 (0.303) (0.565) (0.304) (0.389) (0.362) (0.274) (0.308) (0.267) 

Ecosystem complexity * Experience -0.015 -0.047 -0.015 -0.010 -0.011 -0.009 -0.021** -0.019** 

 (0.010) (0.032) (0.010) (0.012) (0.012) (0.009) (0.010) (0.009) 

Ecosystem complexity * Transition 0.705* 1.245 0.711* 0.629 0.946** 0.707** 1.015*** 0.627* 

 (0.375) (0.983) (0.375) (0.478) (0.450) (0.339) (0.377) (0.333) 

New apps -0.256 0.179 -0.208 -0.444* -0.309 -0.489** -0.313 -0.453** 

 (0.257) (0.808) (0.255) (0.270) (0.295) (0.205) (0.220) (0.217) 

New firms 0.013 0.074 -0.015 0.138 0.312 0.447* 0.139 0.046 

 (0.301) (0.916) (0.298) (0.335) (0.341) (0.246) (0.264) (0.301) 

Apps in Top 500 0.010 -0.023 0.009 0.009 0.007 0.007 0.007 0.015* 

 (0.012) (0.031) (0.011) (0.010) (0.013) (0.008) (0.008) (0.009) 

(Apps in Top 500)2 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Firm size (employee) -0.011***  -0.011*** -0.067** -0.010*** -0.012*** -0.011*** -0.010*** 

 (0.004)  (0.004) (0.030) (0.004) (0.004) (0.004) (0.004) 

Other online business -0.201**  -0.196**   -0.220*** -0.158* -0.228*** 

 (0.097)  (0.097)   (0.081) (0.089) (0.080) 

Other offline business 0.155  0.168   0.146 0.130 0.161* 

 (0.105)  (0.106)   (0.097) (0.104) (0.096) 

Dual participation    -0.447*** -0.322*** -0.429*** -0.515*** -0.387*** 

    (0.115) (0.100) (0.080) (0.087) (0.078) 

Firm app rating 0.004 0.464 0.001 -0.226** 0.111 -0.016 -0.003 -0.028 

 (0.086) (0.326) (0.086) (0.094) (0.091) (0.068) (0.077) (0.068) 

Top 500 free app -0.791*** -0.792* -0.803*** -0.629*** -0.871*** -0.808*** -0.724*** -0.742*** 

 (0.125) (0.425) (0.125) (0.155) (0.148) (0.116) (0.130) (0.118) 

Top 500 free app*time 0.002*** 0.005* 0.002*** 0.001* 0.002*** 0.001*** 0.001*** 0.001*** 

 (0.000) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

In-app purchases -0.573*** -0.321 -0.574*** -0.475*** -0.635*** -0.507*** -0.513*** -0.491*** 

 (0.133) (0.507) (0.133) (0.145) (0.132) (0.104) (0.118) (0.099) 

App price -0.205*** 0.072 -0.195** 0.025 -0.180** -0.076 -0.089 -0.080 

 (0.077) (0.272) (0.077) (0.096) (0.078) (0.066) (0.078) (0.072) 

App price*time 0.009** -0.017 0.009** -0.002 0.007* 0.001 0.004 0.003 

 (0.004) (0.020) (0.004) (0.005) (0.004) (0.003) (0.004) (0.004) 

General experience   -0.010**      

   (0.004)      

Update last 3m      0.041***   

      (0.012)   

Total updates      -0.025***   

      (0.005)   

Platform sales growth        5.009* 

        (2.936) 

Portfolio size        0.002  

       (0.002)  

Category fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

Firm fixed effect  Yes       

Total observation 9,999 4,253 9,999 5,228 7,463 11,351 9,510 11,121 

Total firms 993 278 993 766 750 1,409 1,095 1,396 

Total events 1,236.00 361 1,236 864 910 1,587 1,290 1,568 

Log likelihood -7,117.13 -1,503.29 -7,112.86 -4,346.84 -4,927.98 -9,241.47 -7,281.61 -9,306.81 
* p<0.1; ** p<0.05; *** p<0.01  
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Table 3.5: Robustness checks (Alternative measures) 

 Model 16  Model  17  Model 18 Model 19  Model 20  Model 21  Model  22  Model 23  

Ecosystem complexity -0.665*** -1.055* -1.439* -0.779*** -0.436** -0.714*** -0.734*** -0.866*** 

 (0.223) (0.565) (0.769) (0.234) (0.207) (0.178) (0.186) (0.298) 

Ecosystem experience -0.017*** -0.016*** -0.022*** -0.024** -0.032*** -0.027*** -0.025*** -0.058*** 

 (0.004) (0.004) (0.007) (0.011) (0.008) (0.008) (0.008) (0.020) 

Platform transition 0.302** 0.312** 0.065 1.388*** 0.831** 0.644*** 0.817*** 1.145** 

 (0.124) (0.126) (0.298) (0.344) (0.357) (0.239) (0.281) (0.489) 

Ecosystem complexity 

*Ecosystem experience 

  -0.008 -0.019* -0.022*** -0.016* -0.013 -0.030 

   (0.010) (0.011) (0.008) (0.008) (0.009) (0.024) 

Ecosystem complexity * 

Platform transition 

  -0.579 1.341*** 0.982** 0.581** 0.705** 1.116* 

   (0.642) (0.425) (0.416) (0.295) (0.344) (0.578) 

New apps
 

0.194 0.191 0.209 -0.207 -0.357* -0.410** -0.383* 0.066 

 (0.276) (0.277) (0.278) (0.231) (0.210) (0.187) (0.196) (0.386) 

New firms
 

-0.205 -0.234 -0.244 0.074 0.293 0.340 0.209 -0.174 

 (0.306) (0.311) (0.310) (0.265) (0.265) (0.220) (0.235) (0.446) 

Apps in Top 500 -0.002 -0.002 -0.001 0.014 0.016** 0.008 0.008 0.021 

 (0.008) (0.008) (0.008) (0.008) (0.008) (0.007) (0.008) (0.015) 

(Apps in Top 500)
2 

-0.000 -0.000 -0.000 -0.000** -0.000** -0.000* -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Firm size (employee) -0.010** -0.010** -0.010** 0.000 -0.006** -0.013*** -0.011*** -0.025 

 (0.004) (0.004) (0.004) (0.003) (0.003) (0.004) (0.004) (0.019) 

Other online business -0.271*** -0.270*** -0.274*** -0.226** -0.078 -0.219*** -0.225*** -0.333*** 

 (0.095) (0.095) (0.096) (0.092) (0.086) (0.076) (0.079) (0.116) 

Other offline business 0.010 0.010 0.013 0.049 -0.032 0.167* 0.114 0.316** 

 (0.116) (0.116) (0.116) (0.121) (0.100) (0.093) (0.098) (0.157) 

Dual participation -0.405*** -0.407*** -0.408*** -0.316*** -0.217*** -0.382*** -0.435*** -0.199* 

 (0.117) (0.118) (0.117) (0.095) (0.081) (0.074) (0.077) (0.121) 

Firm app rating -0.206** -0.205** -0.203** -0.034 -0.100 -0.067 -0.063 0.075 

 (0.093) (0.093) (0.093) (0.079) (0.074) (0.065) (0.068) (0.110) 

Top 500 free app
 

-0.788*** -0.800*** -0.809*** -0.564*** -0.466*** -0.680*** -0.758*** -0.853*** 

 (0.126) (0.128) (0.129) (0.147) (0.144) (0.107) (0.108) (0.211) 

Top 500 free app*time 0.002 0.002* 0.002* 0.002*** 0.001** 0.001*** 0.001*** 0.003*** 

 (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) 

In-app purchases
 

-0.578*** -0.577*** -0.578*** -0.484*** -0.377*** -0.513*** -0.519*** -0.451*** 

 (0.119) (0.119) (0.119) (0.128) (0.108) (0.093) (0.098) (0.164) 

App price -0.120* -0.121* -0.129* -0.025 -0.038 -0.056 -0.079 -0.015 

 (0.067) (0.067) (0.069) (0.071) (0.046) (0.058) (0.062) (0.096) 

App price*time 0.018*** 0.018*** 0.018*** -0.001 -0.000 0.003 0.003 0.003 

 -0.120* -0.121* -0.129* (0.004) (0.000) (0.003) (0.003) (0.005) 

Female Users
a 

1.778 3.260 3.627      

 (3.736) (4.240) (4.281)      

User Age
a
  -0.169 1.107 0.312      

 (3.163) (3.614) (3.701)      

User App Downloads
a 

-4.301 -3.458 -1.813      

 (4.201) (4.370) (4.730)      

iOS  -0.361 -0.864      

  (0.496) (0.731)      
Category fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

Total observation 8,715 8,715 8,715 5,290 6,565 12,691 12,691 3,662 

Total firms 1,311 1,311 1,311 1,081 933 1,516 1,516 651 

Total events 996 996 996 1,179 1,188 1,996 1,641 611 

Log likelihood -5,926.75 -5,926.49 -5,925.63 -5,975.38 -6,255.50 -11,864.49 -9,755.62 -2,847.90 

aVariables are calculated based on proportion of total users in the ecosystem. * p<0.1; ** p<0.05; *** p<0.01 
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4. PARTNERING IN A HAZE: INTERDEPENDENCE MISSPECIFICATION 
AND FIRM PERFORMANCE IN STRATEGIC ALLIANCES 

 
 

INTRODUCTION 

  

The strategic alliance literature points to inter-firm task interdependencies as a key link 

between alliance governance choice and firm performance (Gulati and Singh, 1998; 

Aggarwal, Siggelkow and Singh, 2011; Reuer and Devarakonda, 2015). Alliances 

involve the need to coordinate interdependencies across organizational boundaries 

(Hamel, Doz and Prahalad, 1989; Ring and Van de Ven, 1992), as well as the need to 

select governance mechanisms for inter-firm decision making (Aggarwal et al., 2011; 

Reuer and Devarakonda, 2015). The nature of inter-firm interdependence has been 

shown to influence governance mode choice (Kale and Puranam, 2004; Villalonga and 

McGahan, 2005) as well as the performance implications of this choice (Sampson, 2004; 

Mayer and Teece, 2008). 

Prescriptive managerial advice stemming from this stream of the extant alliance 

literature generally makes the implicit assumption that in the course of deciding on a 

mode of governance, allying firms are “correct” in their representations of inter-firm 

interdependencies. In practice, however, managers often enter into alliances with an 

imperfect ex ante understanding of their true patterns of inter-firm interdependence 

(Haspeslagh and Jemison, 1991; Doz, 1996). This makes selection of a “correct” 

structure likely to be an unrealistic assumption. Our aim in this paper is thus to better 

understand the implications of relaxing the assumption that managers correctly 

understand inter-firm interdependencies when selecting an alliance governance mode. 

We focus on two forms of such interdependence misspecifications—over-specification 

and under-specification—analyzing how these incorrect managerial representations of 
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inter-firm task interdependencies influence firm performance in an alliance setting, under 

varying interdependence and governance mode conditions. 

A small set of studies lends credence to the notion that managers do not have a 

fully correct understanding of their inter-firm task interdependencies when entering into 

alliances (Doz, 1996; Sosa, Eppinger and Rowles, 2004; Gokpinar, Hopp and Iravani, 

2010). Although these studies have made important strides in expanding our 

understanding of the role of interdependence misspecifications, relatively little large-

sample empirical research has addressed this issue (many of these studies are single 

case-based). One reason for the lack of research on this topic is the difficulty in 

measuring managers’ ex-ante understanding of interdependencies. We consequently 

have very little understanding of the relative performance implications of different forms 

of interdependence misspecifications. To remedy this gap we develop a computational 

model that allows us to simulate managers’ understanding of underlying task structures 

under different scenarios. This approach, we believe, offers a first step in pushing the 

literature toward a deeper understanding of how interdependence misspecifications 

influence firm performance in the context of alternate governance mode choices. 

A key benefit of employing a computational model is that such models naturally 

overcome the limitation of not being able to observe counterfactuals, a critical constraint 

in empirical work. Examining the antecedents of alliance governance choice (e.g., Kogut 

and Singh, 1988; Hennart and Reddy, 1997; Dyer, Kale and Singh, 2004; Villalonga and 

McGahan, 2005), for example, very often relies on observing only realized transactions. 

A computational modeling approach allows us to develop insights by creating 

counterfactuals and specifying scenarios that are difficult (or impossible) to observe 

empirically. 
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We build on a rich body of work that has used computational methods to develop 

insights into issues in strategy (e.g. Levinthal, 1997). Such an approach enables us to 

abstract away from industry and firm-level factors such as resource complementarity, 

trust, and prior experience (Anand and Khanna, 2000; Kale, Dyer and Singh, 2002), and 

to focus instead on isolating the performance effects of errors associated with task 

interdependence structure assessment. In particular, we model various task 

interdependence structures and their associated errors, a goal that would not be 

possible to accomplish with empirical methods alone.20 

Our results lead to several sets of insights. First, we find that interdependence 

misspecifications lead to a loss in firm value, with the relative magnitude of this loss 

varying by governance mode. Across-mode differences further suggest that normative 

advice regarding governance mode selection in alliances should be conditional on the 

relative level of ex-ante managerial certainty regarding the nature of inter-firm 

interdependence. Second, we find that increases in the actual (correct) level of 

interdependence reduce the underperformance penalty associated with interdependence 

misspecifications. Finally, we find that under- and over-specification influence alliance 

performance through their effect on the extent of exploration and the magnitude of 

coordination failures experienced by the firms in the alliance. While over-specification 

increases both exploration and coordination failures, under-specification decreases 

these two effects.  The relative magnitude of the two effects explains the resulting impact 

on firm performance. When exploration and coordination itself are outcomes of interest 

in an alliance setting, our insights further point to the possibility of a tradeoff between 

                                                           
20

 Our study complements recent work examining misspecification of interdependencies in a single firm 

setting (Martignoni, Menon and Siggelkow, 2015). This work differs from ours in important ways, with one 

key difference being that Martignoni et al. (2015) focus on misspecification in a single-firm setting (versus 

an inter-firm setting like ours in which governance mode issues are paramount). 
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performance and non-performance outcomes, which may condition alliance governance 

mode choice. 

In the next section we briefly highlight the literature which serves to motivate and 

frame our research question. In the subsequent sections we detail our computational 

model and associated analyses, with the aim of more deeply understanding the 

implications of interdependence misspecifications for firm performance in an alliance 

setting. We end by discussing the implications of our study for theory and for future 

research. 

  

MOTIVATING LITERATURE 

  

Alliances are complex inter-organizational relationships with high failure rates (Kale, 

Dyer and Singh, 2002; Kale and Singh, 2009; Lunnan and Haugland, 2008). A key 

challenge in an alliance context is governing the joint set of activities of the partnering 

firms. Recent work on alliance governance has underscored the importance of 

coordination among partner firms as a critical determinant of relationship success (e.g, 

Gulati and Singh, 1998; Gulati, Lawrence and Puranam, 2005; Reuer and Arino, 2007). 

Coordination is often necessary as partners must engage in joint tasks without the 

benefits of the structures and systems available in traditional hierarchies (Gulati and 

Singh, 1998). Difficulties arise from decomposing tasks and from ensuring the division of 

labor outside organizational boundaries, and coordination challenges persist even with 

perfect alignment of self-interest among the interacting parties (Heath and 

Staudenmayer, 2000; Kretschmer and Puranam, 2008). 

While firms can address coordination challenges through a variety of 

mechanisms, including the use of detailed contracts that specify tasks, roles and 
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responsibilities (Mayer and Argyres, 2004; Carson, Madhok and Wu, 2006; Reuer and 

Arino, 2007), contingency plans and responses (Ring and Van de Ven, 1994), and 

information sharing and feedback (Argyres and Mayer, 2007), explicit governance 

mechanisms are an over-arching channel through which coordination challenges are 

often resolved in alliance settings (Gulati and Singh, 1998). Inter-firm interdependencies 

influence both the nature of the desired alliance governance structure, as well as the 

consequent performance of the relationship in the context of such a structure (Gulati and 

Singh, 1998; Mayer and Teece, 2008; Aggarwal et al., 2011; Reuer and Devarakonda, 

2015; Kim, Zhao and Anand, 2015). 

What are the implications of employing particular alliance governance structures 

when interdependencies are not correctly understood by managers? Though the 

literature on this question is limited, as the typical assumption is one of perfect 

knowledge regarding the nature and extent of task interdependencies (which in turn 

dictates appropriate governance structure choice), several studies have used case 

examples to illustrate the consequences of incorrect ex ante assessments of such 

interdependencies (e.g. Doz, 1996; Sosa et al., 2004; Gopkinar et al., 2010). In a study 

of the R&D alliance between Ciba Geigy and Alza to develop a drug called OROS, for 

example, Doz (1996) finds that the allying firms started with an incorrect understanding 

of the nature of interdependencies among their underlying tasks. Their assumption was 

that the alliance would involve a simple “handover” of the drug from Alza to Ciba Geigy. 

In reality, however, the alliance required a high level of coordination between the 

downstream functions of both firms. Over the course of the alliance, as the firms realized 

the need for tighter coordination, they then ended up over-specifying the level of 

interdependence, selecting a governance structure that provided greater levels of 

coordination than actually required. As a consequence of the firms’ interdependence 
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misspecifications (and sub-optimal governance choices), joint development of the drug 

was slowed, and the alliance failed to meet its intended objectives. 

Under-specified representations of task interdependencies can likewise be 

problematic. Sosa et al. (2004; 2007) address the under-specification issue in their study 

of a large commercial aircraft engine project. They find that a significant number of 

interdependencies between sub-systems were invisible to system architects. As a 

consequence, system architects did not set up appropriate structures to deal with 

underlying interdependencies, with the misalignment in structure and task 

interdependence resulting in significant cost and program delay. 

Despite the fact that over- or under-specification of inter-firm task 

interdependencies is likely to be common in practice across many types of inter-

organizational relationships, there is little systematic evidence in the literature (with the 

exception of a small set of case-based examples, two of which we mention above) as to 

how interdependence misspecification might affect the performance of firms, particularly 

under alternate modes of governing the alliance relationship itself. Our methodological 

approach in this paper, therefore, is to employ a computational model to investigate the 

link between misspecified levels of interdependence and alliance performance in a 

systematic manner. This approach enables us to develop a set of theoretical insights 

that might then serve as the basis for future empirical research. We turn to the details of 

our computational model in the next section. 

 
MODEL 
 
Tasks and interdependencies 
 
We draw on the NK approach to modeling firm decision making (Kauffman, 1993, 

Levinthal, 1997), which conceptualizes firms as consisting of a set of inter-related 
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activities, N, that can represent various organizational decisions such as those related to 

firm strategy, organizational form, product design, and so forth (Rivkin, 2000).21 The 

canonical NK model assumes that these N activities are interrelated so that a change in 

one activity affects the payoff to the other K activities. Firm performance is based on the 

unique configuration of these N activities, with the topography (“ruggedness”) of the 

performance landscape determined by the degree of interaction among the firm’s 

activities (Levinthal, 1997). 

We build on Aggarwal et al. (2011), who extend the canonical NK approach to a 

two-firm alliance setting. In this model there are two firms, Firm 1 and Firm 2, each of 

which makes decisions over a set of binary activities denoted by 𝐹1 and 𝐹2. A subset of 

the activities of each firm is considered to be part of the alliance relationship (the 

“alliance activities”), denoted by 𝐴𝑖, while the remainder of the activities are outside the 

scope of the alliance (the “non-alliance activities”), denoted by 𝑁𝑖. Firm 1’s activities are 

thus denoted by 𝐹1 = {𝑁1, 𝐴1} while Firm 2’s activities are denoted by 𝐹2 = {𝑁2, 𝐴2}. The 

two-firm system we model consists of a total of 12 activities, each of which is denoted by 

𝑑𝑗, with 𝑗 running from 1 to 12.22 Figure 4.1 illustrates the allocation of each of the 𝑑𝑗 

activities to the four activity sets {𝑁1, 𝐴1, 𝐴2, 𝑁2}. For Firm 1, for example, the non-alliance 

activities are represented by 𝑁1 = {𝑑1, 𝑑2, 𝑑3, 𝑑4} and the alliance activities are 

represented by 𝐴1 = {𝑑5, 𝑑6}. Interdependencies among particular activities, which can 

be either intra-firm or inter-firm, are indicated with an “X”.  

[INSERT FIGURE 4.1 HERE] 

We then consider five different patterns of interdependence, as illustrated in 

Figure 4.2, each of which contains a different set of interdependencies among the four 

activity sets described in Figure 4.1. We select these patterns in order to model the 

                                                           
21

 We use the term “activities” interchangeably with “choices” and “tasks” throughout this paper. 
22

 This value for N is consistent with prior NK literature (e.g., Rivkin and Siggelkow, 2007; Aggarwal et 

al., 2011). 
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characteristics of a broad range of interdependence forms. The patterns not only 

increase in the overall level of interdependence, but each successive pattern introduces 

a particular class of interdependence among the activity sets {𝑁1, 𝐴1, 𝐴2, 𝑁2} (e.g., going 

from Pattern 1 to Pattern 2 introduces interdependencies within the alliance activities) so 

that we can more easily isolate the implications of interdependencies of different types. 

While these patterns are certainly not exhaustive, they collectively enable us to conduct 

a set of analyses that can generate insights into the mechanisms underlying our core 

research question around the impact of interdependence misspecifications. 

Pattern 1, which we refer to as fully decomposable, has interactions only within 

each of the four activity subsets {𝑁1, 𝐴1, 𝐴2, 𝑁2}: the activities within the 𝑁1 subset only 

affect other activities in 𝑁1, and the same holds for activities within 𝐴1, 𝐴2 and 𝑁2. In 

Pattern 2, pure alliance interaction, we introduce interactions within each of the sets of 

alliance activities of both the firms (i.e., within 𝐴1 and 𝐴2). In Pattern 3, firm own-alliance 

interaction, we introduce interactions within the firm’s own non-alliance and alliance 

activities so that activities within 𝑁1 interact with activities within 𝐴1, and activities within 

𝑁2 interact with activities within 𝐴2. In Pattern 4, firm partner-alliance interaction, the 

alliance activities of one firm interact with the non-alliance activities of the partner 

(activities within 𝐴1 interact with activities within 𝑁2, and activities within 𝐴2 interact with 

those of 𝑁1). And finally, for Pattern 5, full interdependence, there is complete 

interdependence, with all activities interacting with one other. 

[INSERT FIGURE 4.2 HERE] 

Performance landscapes 
 
Each unique configuration of the N activities in the two-firm system (in which, as 

discussed above, the full set of N activities is divided into the subsets {𝑁1, 𝐴1, 𝐴2, 𝑁2}) 

has associated with it a particular performance level. To create the performance 
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landscape we follow the standard approach in the NK literature (e.g. Levinthal, 1997; 

Rivkin 2000): for each of the N activities, 𝑑𝑖, in the system, we define a contribution 

value function 𝐶𝑖. Each 𝐶𝑖 takes as parameters the state (either 0 or 1) of 𝑑𝑖, together 

with the state of the 𝑘𝑖 other policies with which 𝑑𝑖 interacts (these interactions are 

defined, as described above, by the interaction matrix associated with the particular 

interdependence pattern being considered), and is initialized with a value drawn at 

random from a uniform 𝑈[0,1] distribution for each possible combination of the various 

states of 𝑑𝑖 and its 𝑘𝑖 interacting policies. The set of N contribution value functions 𝐶𝑖 is 

defined at the outset, and remains unchanged as the simulation progresses. 

The overall performance of the entire two-firm system for any given configuration 

of activities 𝑑∗ (i.e., the N-dimensional vector of 𝑑𝑖 values) is the sum of the N 𝐶𝑖 values 

for that particular configuration i.e. ∑ 𝐶𝑖
𝑁
𝑖=1 . We can define the performance of Firm 1 for 

a given 𝑑∗ as the sum of the contribution values of the activities specific to the firm itself, 

plus a portion, 𝛼, of the alliance activities (we set 𝛼 = 0.5 throughout). The performance 

of Firm 1, for example is ∑ 𝐶𝑖(𝑑∗) +  𝛼 ∑ 𝐶𝑖(𝑑∗)6
𝑖=5

4
𝑖=1 . To reduce statistical artifacts we 

follow the commonly employed approach in the NK literature in which the reported 

performance values are normalized by dividing the raw performance by the performance 

value at the highest peak in the landscape (see e.g., Rivkin and Siggelkow [2003]). 

 
Interdependence misspecifications 
 
Modeling misspecifications in managerial representations of task interdependencies 

requires that we model not only the true underlying interaction matrix among the firms, 

but also that we model the misspecified representation of the interaction matrix that is 

taken into account by managers as they make decisions. We do so by modeling two 

matrices, with the true matrix used to determine the actual performance that managers 
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observe as a consequence of their choices, and the misspecified matrix used to 

determine the choice that managers actually make as they search the landscape. 

 More formally, we define two interaction matrices. The first interaction matrix, 𝑀0, 

represents the true structure of the underlying pattern of inter-firm task interdependence, 

and is used to determine the performance landscape as discussed in the prior section. 

The second interaction matrix, 𝑀1, represents firms’ own representation of the inter-firm 

task interdependencies, and can differ from the true matrix 𝑀0. The performance 

landscape for 𝑀1 is derived from the true performance landscape 𝑀0 to ensure that the 

(potentially misspecified) performance values are correlated with the true performance 

values via the processes described later in this section.  

Firms search by evaluating alternatives and making choices with respect to their 

activities based on a set of governance structures which we describe in a subsequent 

section. In the process of evaluating alternatives and making changes to their activities 

𝑑𝑖, the firms take into account performance values as determined by the (misspecified) 

interdependence matrix, 𝑀1. Once a choice is made in any given period, however, the 

performance that firms actually experience is defined by performance values stemming 

from the (true) interdependence matrix, 𝑀0. While searching for high performing 

configurations, firms compare the performance values of the alternatives based on the 

𝑀1 matrix with the observed performance of the current configuration based on the 𝑀0 

matrix.   

Firms are said to have an under-specified view when the misspecified matrix 𝑀1 

has a lower degree of interdependence than the true matrix 𝑀0; and firms are said to 

have an over-specified view when the misspecified matrix 𝑀1 has a higher degree of 

interdependence than the true matrix 𝑀0. For the purpose of our analysis we will 

consider misspecifications that differ by a single pattern difference as defined by the 
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patterns in Figure 4.2. As an example, with a true Pattern 3 interdependence matrix (i.e., 

where 𝑀0 is based on Pattern 3), under-specification is defined as a situation where 

there is an 𝑀1 based on Pattern 2, while over-specification is defined as a situation 

where there is an 𝑀1 based on Pattern 4.  

In the remainder of this section we discuss the processes for calculating the 

performance values of the landscapes as a function of the under- or over-specification of 

the 𝑀1 pattern. The performance levels for 𝑀1 (whether under- or over-specified) are 

derived from the 𝑀0 performance levels. To accomplish this we first define the 

performance landscape for 𝑀0 via the process described in the previous section; and we 

then derive the performance landscapes for the under- and over-specified cases using 

the procedures described next. 

Under-specified interdependence matrix 𝑴𝟏. What is the procedure we use to 

construct a performance landscape for an under-specified matrix? The performance 

values of the under-specified landscape should be correlated with the true landscape in 

such a way that the under-specified landscape appears to be a slightly “blurry” (or less 

rugged) version of the true landscape. How do we accomplish this? When the matrix 𝑀1 

is under-specified, each decision 𝑑𝑖  is affected by �̅�𝑖 other decisions, with �̅�𝑖 < 𝑘𝑖, where 

𝑘𝑖 is the number of interdependencies associated with 𝑑𝑖 in the true matrix 𝑀0. In order 

to calculate the performance landscape for 𝑀1 we take averages of the contribution 

values from the true interaction matrix 𝑀0 for each fixed configuration of 𝑑𝑖 and its �̅�𝑖 

interacting choices, an approach consistent with Gavetti and Levinthal (2000). 

We can illustrate this process with an example. Assume that in the true matrix 𝑀0 

a particular activity 𝑑1 interacts with activities 𝑑2, 𝑑3, and 𝑑4. Also assume that in the 

misspecified matrix 𝑀1 the activity 𝑑1 is represented by managers as interacting only 

with activity 𝑑2. The performance landscape 𝑀1 thus requires that we generate 
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contribution values for each unique combination of the 𝑑1 and 𝑑2 activities. For ease of 

notation, let 𝐶𝑖 refer to the contribution value function for activity 𝑑𝑖 for the true matrix 𝑀0. 

Furthermore, let the four arguments of 𝐶𝑖( ) refer to the states (which can be either 0 or 

1) of each of the activities 𝑑1 through 𝑑4. Thus 𝐶1(0,0,0,0) refers to the contribution value 

assigned to the true (𝑀0) matrix for activity 𝑑1 where activities 𝑑1 through 𝑑4 are all set 

to 0. In our example, we would define the contribution values for 𝑑1 in the misspecified 

matrix 𝑀1 for each of the four possible configurations of the 𝑑1 and 𝑑2 activities as 

follows: 

𝑑1 = 0 and 𝑑2 = 0: Average {𝐶1(0,0,0,0), 𝐶1(0,0,0,1), 𝐶1(0,0,1,0), 𝐶1(0,0,1,1)} 
 

𝑑1 = 0 and 𝑑2 = 1: Average {𝐶1(0,1,0,0), 𝐶1(0,1,0,1), 𝐶1(0,1,1,0), 𝐶1(0,1,1,1)} 
 

𝑑1 = 1 and 𝑑2 = 0: Average {𝐶1(1,0,0,0), 𝐶1(1,0,0,1), 𝐶1(1,0,1,0), 𝐶1(1,0,1,1)} 
 

𝑑1 = 1 and 𝑑2 = 1: Average {𝐶1(1,1,0,0), 𝐶1(1,1,0,1), 𝐶1(1,1,1,0), 𝐶1(1,1,1,1)} 
 

Over-specified interdependence matrix 𝑴𝟏. Having discussed the procedure 

for constructing an under-specified performance landscape, we turn next to the 

procedure for constructing the performance values of an over-specified landscape. In 

this case, rather than being a slightly “blurry” (or less rugged) version of the true 

landscape (as it was in the under-specified case), the over-specified landscape can be 

thought of as a more “granular” (or more rugged) version of the true landscape. 

How do we accomplish this? When the matrix 𝑀1 is over-specified, each activity 

𝑑𝑖  is affected by �̿�𝑖 other activities, with �̿�𝑖 > 𝑘𝑖 (where 𝑘𝑖 is the number of 

interdependencies associated with 𝑑𝑖 in the true matrix 𝑀0). This implies that for each 

unique combination of 𝑑𝑖  and the 𝑘𝑖 other activities affecting it in the baseline 𝑀0 matrix, 

there are 2 �̿�𝑖−𝑘𝑖 additional contribution values in the 𝑀1 matrix that must be created to 

account for the additional 𝑀1 matrix interdependencies. To generate these additional 

contribution values we follow the following process. First, we generate 2 �̿�𝑖−𝑘𝑖−1 random 
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numbers 𝜀𝑗 from the uniform distribution 𝑈[0, 𝑎], where 𝑎 is min(𝑐𝑖 , 1 − 𝑐𝑖), and 𝑐𝑖 is the 

particular contribution value for 𝑑𝑖 for the specific configuration of 𝑑𝑖 and the 𝑘𝑖 other 

policies affecting it (note that 𝑐𝑖 is based on the 𝐶𝑖 function that defines the landscape for 

the 𝑀0 matrix). Second, for each random number 𝜀𝑗 we generate two contribution values 

𝑐𝑖𝑗1 = 𝑐𝑖 + 𝜀𝑗 and 𝑐𝑖𝑗2 = 𝑐𝑖 − 𝜀𝑗. Finally, we randomly assign 𝑐𝑖𝑗1 and 𝑐𝑖𝑗2 to the additional 

2 �̿�𝑖−𝑘𝑖 activity combinations for which we need the additional contribution values. 

Constructing the landscape for the over-specified matrix in this way allows us to ensure 

that the true and misspecified landscapes are correlated with one another in the same 

way as they are in the under-specified case. More specifically: under-specifying (by one 

pattern) an over-specified (by one pattern) landscape results in the original (correct) 

landscape. 

We can illustrate the over-specification procedure with an example. Assume that 

in the true matrix 𝑀0 the activity 𝑑1 interacts with 𝑑2 and 𝑑3, while in the over-specified 

representation 𝑀1, in addition to these interactions there are two additional interactions, 

with activities 𝑑4 and 𝑑5. In this case it is necessary to define four additional contribution 

values for each possible configuration of 𝑑1, 𝑑2 and 𝑑3. In the case where the activity 

configuration of (𝑑1,𝑑2, 𝑑3) is (1,0,0), for example, we need to construct contribution 

values for activity 𝑑1 where the (𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5) values take on the following set of four 

possible configurations: (1,0,0,0,0), (1,0,0,0,1), (1,0,0,1,0), and (1,0,0,1,1). To do this we 

start with 𝑐1 = 𝐶1(1,0,0). That is, we start with 𝑐1, which is the specific contribution value 

in the 𝑀0 matrix for the 𝑑1 activity where the configuration of (𝑑1, 𝑑2, 𝑑3) is (1,0,0). We 

define 𝑎 = min(𝑐1, 1 − 𝑐1), and then generate two error terms 𝜀1  and 𝜀2 from the uniform 

distribution 𝑈[0, 𝛼]. These two error terms then allow us to generate the four contribution 

values 𝑐11  =  𝑐1  +  𝜀1 , 𝑐12  =  𝑐1 −  𝜀1 , 𝑐13  =  𝑐1  +  𝜀2 , and 𝑐14  =  𝑐1 −  𝜀2, which we 

then assign at random to the four configurations noted above, (1,0,0,0,0), (1,0,0,0,1), 
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(1,0,0,1,0), and (1,0,0,1,1). E.g., if 𝐶1
𝑀1(𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5) represents the function that 

maps the particular configuration of 𝑑1 through 𝑑5 to a particular contribution value for 𝑑1 

in the 𝑀1 matrix, then after generating the contribution values through the process 

described above, the random allocation could generate the following: 𝐶1
𝑀1(1,0,0,0,0) =

𝑐11; 𝐶1
𝑀1(1,0,0,0,1) = 𝑐13; 𝐶1

𝑀1(1,0,0,1,0) = 𝑐14; and 𝐶1
𝑀1(1,0,0,1,1) = 𝑐12. 

 
Governance modes 

 

We turn next to the governance modes that determine how agents in our model search 

the performance landscape. We draw on Aggarwal et al. (2011), considering four 

governance modes that represent varying points along the spectrum of alliance 

integration (Kogut and Singh, 1988; Hennart and Reddy, 1997; Dyer et al., 2004; 

Villalonga and McGahan, 2005). At the opposite ends of the spectrum we have what we 

refer to as the modular and integrated modes of governance. As hybrid forms we 

consider what we refer to as the self-governing alliance and ratification modes. We 

describe each of these modes in detail in the remainder of this section. 

In the modular mode of governance both firms make choices simultaneously 

within a given period and only consider the profits associated with the particular activities 

within their scope. We model a 12 activity system, with performance values normalized 

by the total value of the system at the highest peak of the landscape (performance at the 

landscape peak is denoted by Π∗). In the modular mode Firms 1 and 2 control their 

respective alliance and non-alliance activities independently, with each firm thus 

controlling 6 of the 12 activities in the system. In each period Firm 1 evaluates 

alternatives for activities 𝑑1through 𝑑6 based on the expected value of the configuration 

stemming from 𝑀1, comparing these alternatives against the realized performance from 
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the prior period as determined by 𝑀0, and selecting a choice if it increases their 

expected performance. Firm 2 does the same for its own set of policy choices. 

More precisely, in the modular mode, Firm 1 evaluates alternatives based on its 

expected profit, ∑ 𝐶𝑖
𝑀1(�̅�𝑡)6

𝑖=1 / Π∗, comparing this against the prior period realized 

performance, ∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)6

𝑖=1 / Π∗. Similarly, Firm 2 evaluates its alternatives based on 

its expected profit ∑ 𝐶𝑖
𝑀1(�̅�𝑡)12

𝑖=7 / Π∗, comparing this against ∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)12

𝑖=7 / Π∗. In this 

notation 𝐶𝑖
𝑀0 and 𝐶𝑖

𝑀1 respectively represent the contribution values for activity 𝑑𝑖 based 

on the 𝑀0 and  𝑀1 matrices respectively. Vector �̅�𝑡 refers to the configuration of the 

activities being evaluated in the current period, while vector �̅�𝑡−1 refers to the existing 

configuration of activities, as of the end of the prior period. Firm 1 and Firm 2 can 

change up to two activities in any given period, and agents for each firm evaluate all 

possible alternatives when making decisions in a given period. For each agent, and for 

each alternative being considered by each agent, the vector �̅�𝑡, which represents the 

vector being evaluated by the agent, is thus allowed to differ from the prior round’s 

realized configuration �̅�𝑡−1 by up to two activities. 23 

While the modular mode can be conceptualized as a simple case of an arms-

length relationship where both firms work independently with full control of their 

activities, the integrated mode lies at the other end of the spectrum. In the integrated 

mode Firms 1 and 2 operate as a single entity that makes decisions with respect to all 

12 policy choices. Examples of integrated governance structures can be found in long-

term equity-based alliances where decision making is fully integrated, and where firms 

                                                           
23

 Prior work has parameterized the number of activities that can be changed in any given period, as well as 

the number of alternatives considered, referring to these values as “search radius” and “alternatives” 

(Siggelkow and Rivkin [2005]; Aggarwal et al. [2011]). In our study we hold these parameters constant, 

allowing each agent to have a search radius of 2, and to evaluate all possible alternatives associated with 

this search radius in any given period. We thus map to what Aggarwal et al. (2011) refer to as “Capability 

Level D”. Our results and insights, however, are qualitatively similar and robust to variation in these 

parameters. For ease of exposition we report all results based on these fixed settings of “search radius” and 

“alternatives.”  Results on alternative settings are available upon request. 
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behave as if they were a single entity (e.g., the alliance between Renault and Nissan, in 

which there is an integrated governance structure under a single leadership).  

In our model of the integrated mode, the single agent takes into account the total 

combined profit of Firms 1 and 2 when evaluating alternatives, comparing this against 

the profit from the prior round’s full configuration. Formally, the quasi-integrated entity 

evaluates alternatives based on ∑ 𝐶𝑖
𝑀1(�̅�𝑡)12

𝑖=1 / Π∗, comparing these against 

∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)12

𝑖=1 / Π∗, where �̅�𝑡 is the vector being evaluated, which differs from the prior 

round’s configuration �̅�𝑡−1 by up to two activities. Though profit is calculated at the level 

of the system, we can also report profit for each firm; since the firms are symmetric in 

our analyses, profit for each individual firm is simply ½ of the the profit of the entire 

system. 

In addition to the modular and integrated governance modes which lie on 

opposite ends of the governance spectrum, we consider two hybrid modes: self-

governing alliance and ratification, in line with Aggarwal et al. (2011). In both cases the 

alliance function is managed independently by a third agent (e.g., a joint committee 

formed by both firms to manage the alliance). The agents for Firms 1 and 2 are 

responsible solely for their respective non-alliance activities (𝑑1 through 𝑑4 and 𝑑9 

through 𝑑12 respectively), but in the process of evaluating alternatives and making 

decisions each takes into account their individual total profit, which for each firm is 

defined as the profit of the firm’s non-alliance activities plus a portion, 𝛼, of the profit 

from the alliance activities (we set 𝛼 = 0.5 throughout).  The alliance agent considers 

profit from only the alliance activities (i.e., 𝑑5 through 𝑑8) when evaluating alternatives 

and making decisions. 

More precisely, with the self-governing alliance and ratification modes, in each 

period the Firm 1, Firm 2, and Alliance agents each make the following comparisons 
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when evaluating alternatives, with each agent able to make up to two changes to the 

(four) activities under each of their individual purview (i.e., in each case the N-

dimensional vector of binary values �̅�𝑡 differs from �̅�𝑡−1 by at most two activities): 

Firm 1 compares:  ∑ 𝐶𝑖
𝑀1(�̅�𝑡)4

𝑖=1 / Π∗ + 0.5 ∗ ∑ 𝐶𝑖
𝑀1(�̅�𝑡)8

𝑖=5 / Π∗ 

 

against: ∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)4

𝑖=1 / Π∗ +0.5 ∗ ∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)8

𝑖=5 / Π∗ 

 

Firm 2 compares:  ∑ 𝐶𝑖
𝑀1(�̅�𝑡)12

𝑖=9 / Π∗ + 0.5 ∗ ∑ 𝐶𝑖
𝑀1(�̅�𝑡)8

𝑖=5 / Π∗  

 

against: ∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)12

𝑖=9 / Π∗ +0.5 ∗ ∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)8

𝑖=5 / Π∗ 

 

Alliance compares:  ∑ 𝐶𝑖
𝑀1(�̅�𝑡)8

𝑖=5 / Π∗  

 

against: ∑ 𝐶𝑖
𝑀0(�̅�𝑡−1)8

𝑖=5 / Π∗ 

 
Although the way the self-governing alliance and ratification modes compare 

alternatives is the same, the two modes differ in the level of independence and degree of 

oversight over the alliance agent. In the self-governing alliance mode, the alliance agent 

operates independently, without any oversight from the firms. In any given period the 

alliance agent makes its decisions. Firms 1 and 2 then select their policies 

simultaneously, taking into account the policy choice made by the alliance agent. 

In the ratification mode, by contrast, in any given period the Firm 1 and Firm 2 

agents decide on their activity set changes, followed by the alliance agent. Firm 1 and 

Firm 2 then have veto power over the activity changes suggested by the alliance agent. 

That is, before implementing any activity change, the alliance agent needs to have its 

proposed change ratified by the agents of the two firms. Ratification requires that both 

firms accept the proposed policy change, with a firm accepting any proposed policy 

change only if it does not reduce the firm’s own profit. 
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ANALYSIS 

 

We model a 12-policy choice system of two firms, with four activity subsets 

{𝑁1, 𝐴1, 𝐴2, 𝑁2}, sub-divided as depicted in Figure 4.1, and with patterns of 

interdependence as depicted in Figure 4.2. The model is symmetric for both firms such 

that the performance results of each are equal when run over a large number of 

landscapes. We thus focus on analyzing the difference in overall performance of the 

two-firm alliance system under varying combinations of interdependence pattern and 

governance structure. We are interested in situations of over- or under-specification, 

which we define as a single pattern higher or lower, respectively in interdependence (for 

example, with the patterns in Figure 4.2, over-specification for Pattern 3 would be 

Pattern 4, while under-specification for Pattern 3 would be Pattern 2). We assume that 

both firms and the alliance agent (in the case of self-governing alliance and ratification) 

have the same misspecified view of the underlying task structure. Each time period in 

the simulation consists of agents making a set of decisions with respect to their activities 

(per the mode governing their decisions as described in the previous section). We run 

the simulation for 200 periods on a particular landscape in order to observe the long-run 

performance of firms in the system, and then take an average over 10,000 different 

simulation runs in order to minimize the effects of any statistical artifacts. 

 

Performance implications of over- and under-specification  

 

As a starting point for our analysis we compare long-term performance outcomes, i.e. 

performance at the end of period 200, for the alliance system in the case of 

misspecification to the case where all the agents in the system have a correct 
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understanding of their task interdependencies. We refer to the percentage decline in 

overall performance as the “value-loss” due to the misspecification of task 

interdependence. 

Over-specified case. We begin with the situation where the firm agents (and 

alliance agent in the case of the self-governing alliance and ratification modes) have an 

over-specified view of the underlying task structure. We consider performance for the 

four different forms of governance under the various interdependence patterns. Table 

4.1 compares the performance outcomes of the four governance modes under Patterns 

1 through 4 for firms with the over-specified view. We find that the average long-run 

performance for firms with an over-specified view decreases for all patterns. Pattern 1 

has a lower value loss compared to the rest of patterns, due primarily to the difference in 

the additional number of interdependencies agents consider in the search landscape.24 

Moving on to the rest of the patterns, we find that the overall value loss decreases as we 

move from Pattern 2 to Pattern 4. For example, for the modular governance mode, the 

overall value loss is -18.6% for Pattern 2 as compared to -14.8% for Pattern 4. Similarly, 

for the self-governing alliance mode the overall value loss is -15.0% for Pattern 2 

whereas it is -4.6% for Pattern 4. Further, for the ratification mode the overall value loss 

is -18.8% for Pattern 2, while it is -8.3% for Pattern 4. For the integrated mode the 

overall value loss is -20.0% for Pattern 2 and -11.3% for Pattern 4.  

Our findings on the effects of over-specification are consistent with intuition. The 

overall loss in value for the firm with an over-specified view is directly linked to the error 

introduced into the search process as a consequence of the over-specification. For 

                                                           
24

 Pattern 1 differs from other patterns with respect to the total number of interdependencies that the agents 

consider in their search landscape (an additional 8 interdependencies with an over-specified view). For the 

other patterns the search landscape has an additional 32 interdependencies. 



107 

example, in the case of Pattern 1, while searching for higher performance the firm 

assumes that the alliance activities of the two firms are interdependent, impacting its 

performance. In reality, however, the underlying task is fully decomposable, with no 

interdependence between the alliance activities of the two firms. This misspecification of 

interdependence leads to an error in the search process, decreasing performance. 

Under-specified case. We turn next to examining how under-specification 

affects the performance of both firms. Table 4.2 shows performance outcomes of the 

various modes under Patterns 2 through 5 for firms with the under-specified view. We 

find that under-specification leads to lower performance on average. Similar to the over-

specification results we find that Pattern 2 has a lower value loss compared to the other 

patterns with under-specification, primarily due to the difference in the characteristics of 

interdependencies that agents consider to be missing in the case of Pattern 2 and the 

other patterns.25 

In the under-specified case we also find that the overall value loss decreases as 

we move from Pattern 3 to Pattern 5.  In fact, for Pattern 5, we find that the overall 

performance increases for the modular and self-governing alliance modes. For example, 

in the case of the modular governance mode, the overall value loss is -19.1% for Pattern 

3 as compared to a 7.8% gain for Pattern 5. Similarly, the overall value loss for Pattern 3 

in the case of the self-governing alliance is -17.3%, while it is -1.0% for Pattern 5. For 

other modes the overall value losses for Pattern 2 with the ratification and integrated 

modes are -15.6% and -21.6% respectively, while they are -2.5% and -9.5% for Pattern 

5 with the ratification and integrated modes.  

                                                           
25

 Firms consider a total of 8 interdependencies within the alliance agent to be missing when considering 

the under-specified view of Pattern 2. For the rest of the patterns, firms consider their search landscape to 

have 32 fewer interdependencies as compared to that of the true landscape.  
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We can then observe the governance structure that provides the highest 

performance level when agents have the correct view as compared to when they have a 

misspecified view. Interestingly, we find that misspecification of task structure often 

results in a different governance mode providing the optimal level performance. For 

example, the integrated governance mode provides the highest performance for Pattern 

4 when firms have the correct view, while the self-governing alliance mode provides the 

highest performance with both under- and over- specified views. On average, we find 

that the self-governing alliance mode provides the highest performance across patterns 

for both forms of misspecification (Pattern 1 with the over-specified view is an exception 

where the modular governance mode performs better). We turn to the mechanisms 

driving these results in the next section.  

[INSERT TABLES 4.1 AND 4.2 HERE] 

Coordination failures and exploration as intermediate explanatory mechanisms 

 

To more deeply understand the reasons for the differences in value loss among the 

various interdependence pattern-governance mode combinations, we turn next to the 

mechanisms that may influence firm performance in an alliance setting, building on 

Aggarwal et al.’s (2011) discussion of the role of coordination and exploration in 

influencing the performance effects of alliance governance. Figure 3 illustrates the over-

arching conceptual framework we explore in the remainder of this section: coordination 

failures and exploration achieved are intermediate measures that link misspecification, 

governance mode and level of interdependence with firm performance in an alliance 

setting. 

[INSERT FIGURE 3 HERE] 
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 Why do we focus in particular on the dimensions of coordination and exploration? 

Coordination concerns are pervasive in an alliance context (Litwalk and Hylton, 1962), 

influencing governance mode decisions (Gulati and Singh, 1998). The ability to 

effectively coordinate activities among alliance partners, moreover, influences alliance 

performance (Zollo, Reuer and Singh, 2002; Gulati, Lawrence and Puranam, 2005). In 

addition to effective coordination, exploration is a key determinant of alliance 

performance as well (Child, 2001; Grant & Baden-Fuller, 2004; Lavie and Rosenkopf, 

2006). We thus aim to understand how interdependence misspecifications, together with 

governance modes and actual patterns of interdependence, link to firm performance via 

the mediating effects of coordination and exploration. 

Constructing the intermediate measures of coordination and exploration. 

We construct the measure, coordination failures, which we define, in any given period, to 

be the total number of incidences up to and including the current period in which firms (in 

total) experience a profit decline as compared to the previous period due to 

simultaneous decision making by the two firms.  Total (Firm 1 + Firm 2) profit can decline 

both because of simultaneous movement of the agents, as well as because of errors in 

the search process due to landscape misspecification. We isolate the former by stripping 

out situations of search-related error.26 For our analyses in this paper we consider 

coordination failures at period 200, which is the point at which the two-firm system has 

reached a steady-state level of performance. 

                                                           
26

 Due to differences in the contribution values between the search (𝑀1) and true (𝑀0) landscapes, 

configurations leading to high performance on the search landscape may not lead to high performance on 

the true landscape. An agent using a misspecified landscape for search may commit to a policy 

configuration that can lead to a decline in performance on the true landscape. We refer to this decline in 

performance due to differences in contribution values between the true and search landscapes as “search-

related error.” We strip out such search-related errors from the measure of coordination failures so that the 

measure reflects only situations where agents simultaneously make a choice that may be correct for each 

firm individually, but that ends up being performance reducing for the total profits of both firms as a whole. 
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We also construct the measure exploration achieved by calculating the total 

number of unique contribution values (𝐶𝑖’s) evaluated by the agents in the system over 

time, normalized by the total number of possible contribution values that exist for the 

given landscape (Aggarwal et al., 2011).27 The evaluated and total contribution values 

used as inputs to our exploration achieved measure come from the true landscape (𝑀0), 

and are based on the agents’ search history on the misspecified landscape (𝑀1). More 

precisely, for each policy configuration evaluated by the agents on the search landscape 

(𝑀1) up to and including the focal period, we take the corresponding configuration on the 

true landscape (𝑀0) and identify whether the contribution values for that policy 

configuration, as derived from the 𝑀0 landscape, have been considered by the agents in 

the search process up to and including the focal period.28 We count the total number of 

such cases where a particular contribution value has been evaluated, and divide this by 

the total number of distinct contribution values based on 𝑀0. As we do with coordination 

failures, we consider exploration achieved in the steady-state at period 200. 

 Implications of over-specification for intermediate measures. How does 

over-specification affect the intermediate measures of coordination failures and 

exploration? In the over-specified case the landscape searched by the agents becomes 

more rugged than that of the true landscape. Additionally, values of adjacent locations 

on the landscape are less correlated as compared to that of the true landscape. This 

increases the number of alternatives the agent considers, as well as the duration of the 

                                                           
27

 For instance, the total number of possible contribution values for Pattern 1 is 144, and for Pattern 5 it is 

49,152.   
28

 Note that any given policy configuration will exist on both landscapes (M0 and M1). However, whether or 

not the corresponding contribution values are “distinct” is a function of the interdependence structure of 

that landscape (which of course differs between M0 and M1). As an example, suppose we take a simple 

system in where there are only two possible binary policy choices {d1, d2}. When an agent evaluates the 

move from the existing policy configuration {0,0} to a new policy configuration {0,1}, the number of 

distinct contribution values she considers will differ depending on whether the two policy choices are 

interdependent or not. If they are interdependent, then there would be two unique contribution values, 

C1(0,1) and C2(0,1),  which would be taken into account; if they are not interdependent, then only one 

unique contribution value, C2(0,1) would need to be considered. 
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search process before an agent locks itself into a policy configuration. While this 

increase in the number of alternatives considered leads to a higher degree of exploration 

achieved, the increase in search time also leads to higher levels of coordination failure. 

With multiple agents searching the landscape at the same time, the chances of 

coordination failure increases as policies selected by one agent may not be optimal for 

the other. The degree of coordination failures between agents thus depends on the 

duration over which agents search the landscape simultaneously. 

 We report the results of the effect of over-specification on exploration achieved 

and coordination failures in the middle two columns of Table 4.3 (falling under the 

heading “symmetric view”). Similar to Tables 4.1 & 4.2, we compare the performance 

metric (in this case exploration achieved or coordination failures) for the misspecified 

case relative to the correctly-specified case at the end of period 200. The table shows 

that the overall degree of exploration achieved by the agents increases with the over-

specified view. Furthermore, the effect of over-specification is more prominent at 

patterns with a higher degree of interdependence, and with the modular and self-

governing alliance modes. In addition, agents with the over-specified view face a higher 

level of coordination failure. For example, under Patterns 3 and 4 with the self-governing 

alliance mode, coordination failures increase by 3.5% and 1.6% respectively.  

 Implications of under-specification for intermediate measures. How does 

under-specification affect the intermediate measures of coordination failures and 

exploration? In the under-specified case the search space for the agent is simplified. The 

agent searches on a landscape with a lower degree of interdependence that is 

consequently less rugged as compared to the true landscape. Each policy on the search 

landscape corresponds to a cluster of policies on the actual landscape. This 

simplification of the search landscape speeds the agent’s search processes (e.g., 
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Gavetti and Levinthal, 2000), enabling the agent to relatively quickly identify a peak with 

respect to its search landscape. Thus, the degree of exploration achieved with the 

underspecified-view decreases, as Table 4.4 (middle two columns, under the heading 

“symmetric view”) reports. The increase in search speed is particularly helpful in 

reducing coordination failures: with an increase in search speed agents identify optimal 

performance configurations with relatively fewer activity changes, reducing the overall 

number of associated coordination failures.  

[INSERT TABLES 4.3 AND 4.4 HERE] 

 

Concordance with conceptual framework. Having discussed the implications 

of misspecification for coordination and exploration, we now return to Figure 4.3, with the 

aim of testing the conceptual framework depicted there. To do so we construct a dataset 

based on our simulation results at period 200 with 320,000 observations: we run 10,000 

trials for each combination of misspecification-pattern-governance mode combination; 

and we then employ seemingly unrelated regression (SUREG) to analyze the results, 

using the framework depicted in Figure 4.3. We estimate three equations 

simultaneously: (1) the impact of misspecification on exploration achieved; (2) the impact 

of misspecification on coordination failures; and (3) the impact of exploration achieved 

and coordination failures on total performance. Seemingly unrelated regression 

(SUREG) allows for correlation between the error terms of these equations (Zellner, 

1962, 1963), a likely situation given the approach used to construct our dataset. 

In our SUREG models the variable, misspecification, takes the value of one when 

the observation is under a misspecified view, and 0 otherwise. We estimate models for 

over- and under- specification separately. To control for the effects of patterns and 

governance modes we include dummy variables for these factors. The modular 
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governance mode is used as the base mode against which to compare the effects of the 

other modes; and Pattern 2 is used as the base pattern against which to compare the 

effects of the other patterns.29 

Estimated standardized coefficients for the two models (over- and under-

specified) are reported in Table 4.5. We do not show p-values of the estimated 

coefficients to avoid redundancy, as all the p-values are less than 0.001 (with the 

exception of the effect of misspecification on coordination failures in the case of the 

over-specified view). As Model 1 shows, the coefficient of misspecification on exploration 

is positive, suggesting that over-specification of task structure is associated with higher 

exploration. On average, firms with the over-specified view tend to explore more by 0.10 

standard deviation. Similarly, in Model 2, the coefficient of misspecification on 

coordination failures is negative, suggesting that under-specification is associated with 

fewer coordination failures. Though we do not find statistically significant effects of over-

specification on coordination failures, we do find that under-specification increases 

coordination failures by 0.19 standard deviations. Furthermore, consistent with earlier 

research we find that the coefficient of exploration on overall performance is positive, 

and the coefficient of coordination failures on overall performance is negative, for both 

Model 1 and Model 2. We find that a standard deviation increase in coordination failures 

decreases overall performance by -0.21 and -0.37 standard deviations for over- and 

under-specification respectively. Similarly we find that a standard deviation increase in 

exploration increases overall performance by 0.38 and 0.45 standard deviations for over- 

and under-specification respectively. 

[INSERT TABLE 4.5 HERE] 

                                                           
29

 Since we do not have any observations for Pattern 1 in the case of the under-specified view, and for 

Pattern 5 in the case of the over-specified view, we use Pattern 2 as the base pattern, as it is common across 

both forms of misspecification.  
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Implications for governance mode choice: asymmetric view 

 

In a final set of analyses we consider the situation in which only one partner has either 

an under- or over-specified view. The results of the “asymmetric” perspective on 

coordination and exploration outcomes are shown in the right two columns of Tables 2A 

and 2B (under the heading “asymmetric view”). The asymmetric view is one in which the 

focal firm has the correct representation, while the partner has the misspecified view. 

These results help address the question of what governance mode managers should 

choose (or rather, negotiate for ex ante), conditional on their assessment of their 

partners’ likely representation of interdependencies. 

As Table 4.3 suggests, if managers believe their partner to be over-specified, 

higher levels of exploration can be obtained by selecting the modular governance mode, 

and coordination failures can be minimized by selecting the self-governing alliance 

mode. If on the other hand managers believe their partner to be under-specified, as 

Table 4.4 illustrates, they can minimize exploration losses by using the modular mode 

when in a lower interdependence situation (Patterns 2 and 3) and by using the 

ratification mode when in a higher interdependence situation (Patterns 4 and 5). 

Governance choice thus depends on managers’ understanding of their task structure, 

their partner’s level of misspecification, and the ultimate objectives of the alliance 

(whether this is firm performance itself, achieving high levels of exploration, or avoiding 

coordination failures). 

 
DISCUSSION 
 
Our aim in this paper was to use a computational model to understand the implications 

of incorrect managerial representations of inter-firm task interdependencies in the 
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context of alliance relationships, focusing on the effects of under- and over-specification 

under varying combinations of true inter-firm task interdependence and modes of 

alliance governance. We derive three sets of results. 

First, we find that managerial misspecification of interdependence structures 

leads to a decline in firm performance, a result consistent with prior case-based work 

(Doz [1996]; Sosa et al. [2007]). Our results suggest a number of interesting nuances. 

We find that while over- and under-specification of interdependence have similar effects 

on performance, the degree of value loss due to misspecification varies by governance 

mode. The decline in performance is on average lower for the modular and self-

governing alliance modes. This difference in the effect of misspecification on various 

governance modes has important implications. When both firms have a correct 

understanding of their interdependencies, the integrated mode provides better 

performance at patterns with higher interdependence (Patterns 4 and 5). As we relax the 

assumption of a correct understanding, however, we find that the self-governing alliance 

mode provides better performance than the integrated mode. The degree to which firms 

have an understanding of their underlying interdependencies is thus important in 

deciding on the optimal mode of governance. 

A second set of results is that the pattern of interdependence has a crucial 

impact on the level of decline in alliance performance due to misspecification. 

Interestingly, the decline in performance decreases with an increase in the degree of 

interdependence in the underlying task structure.  As illustrated in Tables 1A and 1B, the 

value loss for the alliance is lowest with Patterns 4 and 5 for both forms of 

misspecification. We are able to explain these results using the intermediate measures 

of coordination and exploration. 

Our analysis of these intermediate measures leads to our final set of conclusions, 

which relates to the possibly competing objectives relating to coordination and 
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exploration. Our study lends insight into the consequences of misspecification for these 

two objectives, as we find that the two forms of misspecification affect each differently. 

The overall level of exploration achieved by the alliance increases with an over-specified 

view; in the case of an under-specified view, however, the overall exploration level 

decreases (though with a few exceptions for low complexity patterns). Similarly, we find 

that coordination failures increase when both firms share an over-specified view. 

Although in the case of the under-specified view coordination failures are limited, they 

decline at higher levels of interdependence. This presents an interesting trade-off 

between paying attention to firm performance versus other alliance objectives such as 

exploration. Firms with an over-specified view of interdependence may achieve higher 

exploration, yet trade this off with lower performance. Likewise, with higher levels of 

interdependence firms can take on an under-specified view in order to achieve fewer 

coordination failures. 

From a managerial perspective our results underscore the importance of paying 

attention to task interdependencies when structuring alliances.  Decision makers should, 

in particular, make attempts to identify the true structure of their inter-firm 

interdependence. While estimating ex ante the magnitude and direction of 

misspecification may be difficult, managers may be able to reduce the magnitude of 

such errors by investing in efforts to identify the true interdependence structures in 

alliances: e.g., pre-alliance discussions and alliance management capabilities can help 

reduce the likelihood of any misspecifications. Such investments in understanding the 

true structure become particularly important because, as our results suggest, firms’ task 

structure representations are significant inputs to the choice of alliance governance 

mode. 

Before concluding we discuss some of the assumptions embedded in our model, 

and their implications for our results. First, our model assumes that both firms are 
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symmetric with respect to their views on interdependence. However, it may not be 

uncommon to have an alliance where both partners have different views of their 

interdependencies. We conducted robustness checks to understand the implications of 

this assumption. As noted in our discussion of coordination and exploration, we 

evaluated an ‘asymmetric view’ scenario in which only one of the partner firms has an 

incorrect view of their interdependence. The overall performance implications were 

consistent with our main findings, with the magnitude of value loss decreasing when only 

one partner has an incorrect understanding.  

As a second assumption embedded in our analysis, note that we pre-specify 

firms’ understanding regarding their interdependence structure, and assume that this 

remains constant for the entire period (i.e., there is no learning by agents about the true 

nature of their interdependence). It is likely, however, that firms update their 

understanding based on feedback received over the course of the alliance. While our 

purpose in the present paper was solely to examine the implications of relaxing the 

assumption of a correct specification of inter-firm task interdependencies (a gap that the 

literature has not yet addressed), it would be a natural extension to relax this assumption 

and to extend our model in order to study how the process of learning about 

interdependencies over time (and possibly modifying the alliance governance structure 

accordingly) influences our results.   

As a final assumption, note that we use a pre-defined set of patterns of 

interdependence to represent task structures and firms’ understanding of these 

structures. The current patterns represent discrete points on the continuum of increasing 

task complexity. These patterns characterize ideal configuration types that are useful for 

exposition; hybrid patterns may arise in reality, however, and future research might thus 

examine such patterns. We did run our results using a “random K” scenario to evaluate 

the implications of increasing levels of interdependence, where these interdependencies 
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were randomly scattered throughout the task matrix. The results on this analysis were 

broadly consistent with our findings. 

Our paper leads to a number of implications for work in the area of alliance 

governance. While the issue of governance structure choice has been examined both 

implicitly and explicitly in the alliance literature, with significant progress being made 

using empirical indicators, ours is the first effort to attempt to understand the implications 

of relaxing the common assumption that managers operate with a “true” representation 

of inter-firm interdependencies. Because in practice managers are unlikely to have 

perfect ex ante representations of their interdependencies, as we discuss up-front with 

the example from Doz (1996), such an assumption is likely to be unrealistic. Using 

empirical methods alone, however, is unlikely to allow to us fully address the implications 

of interdependence misspecifications, as empirical data is unlikely to be structured so as 

to allow simultaneous and deep observation of managerial representations, 

interdependencies, and governance structures. As a consequence, computational 

modeling provides an effective tool with which to examine the implications of managerial 

errors in interdependence representations in a structured way. The insights we gain from 

our model can complement future empirical work, and more importantly serve to inform 

the core theorizing that can guide these future empirical examinations of this topic. 

In conclusion, we make an important set of contributions to the literature on 

alliance governance by highlighting how a partial understanding of task 

interdependencies can be detrimental for alliance performance. We go beyond prior 

work to explicitly study the effect of errors on various patterns of interdependence, a task 

that would be difficult to accomplish using empirical methods alone. In so doing we 

contribute to the literature on governance choice (e.g. Dyer et al., 2004; Villalonga and 

McGahan, 2005), shedding new insights into the link between interdependence, 
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governance modes, and firm performance in alliance settings, and offering a promising 

set of avenues for future research. 
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Figure 4.1: Interaction matrix example 
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Note: This example corresponds to “Pattern 1” as described in Figure 4.2 
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Figure 4.2: Patterns of interdependence 
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Figure 4.3: Framework for understanding the effect of misspecification 
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Table 4.1: Value loss, over-specified representation 

Underlying 
pattern 

Governance 
mode 

Performance with 
correct view 

Performance with 
over-specified view 

% value loss 

Pattern 1 Modular 0.991 0.949 -4.1% 

 
Self-Governing  0.993 0.927 -6.8% 

 
Ratification 0.993 0.912 -8.0% 

 
Integrated 0.989 0.926 -6.4% 

Pattern 2 Modular 0.948 0.771 -18.6% 

 
Self-Governing  0.989 0.842 -15.0% 

 
Ratification 0.989 0.802 -18.8% 

 
Integrated 0.986 0.785 -20.0% 

Pattern 3 Modular 0.950 0.783 -17.0% 

 
Self-Governing  0.932 0.793 -14.9% 

 
Ratification 0.908 0.765 -15.2% 

 
Integrated 0.949 0.763 -19.5% 

Pattern 4  Modular 0.884 0.747 -14.8% 

 
Self-Governing  0.884 0.845 -4.6% 

 
Ratification 0.879 0.803 -8.3% 

 
Integrated 0.922 0.816 -11.3% 

 

Table 4.2: Value loss, under-specified representation 

Underlying 
pattern 

Governance 
mode 

Performance with 
correct view 

Performance with 
over-specified view 

% value loss 

Pattern 2 Modular 0.944 0.921 -2.6% 

 
Self-Governing  0.990 0.928 -6.2% 

 
Ratification 0.990 0.918 -7.2% 

 
Integrated 0.985 0.919 -6.6% 

Pattern 3 Modular 0.950 0.773 -19.1% 

 
Self-Governing  0.931 0.773 -17.3% 

 
Ratification 0.902 0.770 -15.6% 

 
Integrated 0.949 0.751 -21.6% 

Pattern 4 Modular 0.873 0.745 -15.6% 

 
Self-Governing  0.884 0.795 -10.3% 

 
Ratification 0.877 0.755 -14.7% 

 
Integrated 0.927 0.749 -19.0% 

Pattern 5 Modular 0.747 0.808 7.8% 

 
Self-Governing  0.828 0.829 -1.0% 

 
Ratification 0.780 0.757 -2.5% 

 
Integrated 0.910 0.823 -9.5% 

 

Note: Values in bold indicate the governance mode providing superior performance for each combination of 

pattern and managerial representation (either correct or misspecified). For example, in Table 4.1, with the 
combination of [Pattern 1, Correct View], both the self-governing and ratification modes provide the highest 
performance. 
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Table 4.3: Changes in coordination and exploration, over-specified representation 

Underlying 
pattern 

Governance 
mode 

Symmetric view Asymmetric view 

Exploration Coordination Exploration Coordination 

Pattern 1 Modular 0.9% 0.0% 0.7% 0.0% 

 
Self-Governing  3.4% 0.0% -0.9% 0.0% 

 
Ratification 2.3% 0.0% -0.6% 0.0% 

 
Integrated 1.6% 0.0% - - 

Pattern 2 Modular 0.6% -14.3% 1.6% -5.6% 

 
Self-Governing  5.3% 0.0% 0.3% 0.0% 

 
Ratification 0.5% 0.0% 0.3% 0.0% 

 
Integrated 1.8% 0.0% - - 

Pattern 3 Modular 7.7% 0.1% 2.6% 2.4% 

 
Self-Governing  9.4% 3.5% 0.9% 1.0% 

 
Ratification 0.2% 6.2% -0.3% 5.9% 

 
Integrated 3.7% 0.0% - - 

Pattern 4  Modular 3.4% -0.5% 0.7% 2.5% 

 
Self-Governing  0.5% 1.6% 0.4% 0.9% 

 
Ratification 0.3% 3.9% 0.0% 4.1% 

 
Integrated 1.6% 0.0% - - 

 

Table 4.4: Changes in coordination and exploration, under-specified 

representation 

Underlying 
pattern 

Governance 
mode Symmetric view Asymmetric view 

  
Exploration Coordination Exploration Coordination 

Pattern 2 Modular -1.4% -11.7% -0.5% -10.0% 

 
Self-Governing  0.6% 0.0% -1.6% 0.0% 

 
Ratification 0.1% 0.0% -1.4% 0.0% 

 
Integrated -1.2% 0.0% - - 

Pattern 3 Modular 2.3% 1.1% 0.1% 1.0% 

 
Self-Governing  -1.8% 3.4% -0.8% 0.5% 

 
Ratification 1.3% 5.1% 0.1% 3.6% 

 
Integrated 3.0% 0.0% - - 

Pattern 4 Modular -2.1% -11.0% -1.8% -8.7% 

 
Self-Governing  -0.6% 2.4% -0.5% 0.1% 

 
Ratification 0.0% 4.6% -0.1% 0.9% 

 
Integrated 1.1% 0.0% - - 

Pattern 5  Modular -2.6% -24.3% -1.7% -17.6% 

 
Self-Governing  -1.3% -1.1% -0.9% -1.8% 

 
Ratification -0.6% -13.9% -0.4% -12.1% 

 
Integrated 0.0% 0.0% - - 
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Table 4.5: Effect of misspecification on exploration, coordination failure and total 

profits 

Dependent variable Independent variable 
(all dummy variables 
except for constant) 

Model 1 
(Over-specification) 

Model 2 
(Under-specification) 

Exploration Misspecification 0.098 -0.009 
 Self-governing -0.147 -0.221 
 Ratification -0.234 -0.250 
 Integrated 1.055 0.787 
 Pattern 1 0.293  
 Pattern 3 -1.053 -1.328 
 Pattern 4 -1.629 -1.958 
 Pattern 5  -1.988 
 Constant 0.379 1.244 
 

 

R
2 

0.874 0.818 

Coord. failures Misspecification 0.003 -0.193 
 Self-governing -0.694 -0.801 
 Ratification -0.600 -0.561 
 Integrated -0.768 -0.916 
 Pattern 1 -0.278  
 Pattern 3 -0.077 -0.081 
 Pattern 4 0.282 0.117 
 Pattern 5  0.478 
 Constant 0.532 0.537 
 R

2
 0.132 0.179 

Performance  Exploration 0.383 0.459 
 Coordination failures -0.212 -0.375 
 Misspecification -1.116 -0.830 
 Self-governing 0.116 0.012 
 Ratification -0.005 -0.127 
 Integrated -0.423 -0.445 
 Constant 0.636 0.555 
 R

2
 0.413 0.390 

 Observations 320,000 320,000 

 

Note: All independent variables are dummy variables, except for exploration, coordination 
failures, and the constant. The misspecification dummy variable refers to the over-specified view 
for Model 1 and to the under-specified view for Model 2. 
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5. DISCUSSION  
 

This final section concludes by summarizing the core results from three essays 

and discussing their contribution to theory and practice. Together, the three essays had 

the broad objective of systematically examining the structure of interdependencies that 

underlie the success of a firm’s innovative efforts, particularly in the context of platform-

based ecosystems. The dissertation starts with the premise that firms are situated in a 

complex web of interdependencies that often lies outside their boundaries. It then builds 

on this premise to offer novel characterizations of these interdependence structures 

based on the interaction between a firm’s products and other elements of the ecosystem 

and to explore how these characterizations help explain firms’ performance dynamics.  

The first essay takes a granular view of the interdependence structure and starts 

with examining the interdependencies that lie at the level of a firm’s innovation. It 

conceptualizes a platform-based ecosystem as an interconnected technological system 

in which a firm’s innovation interacts with the platform and other complements to create 

value. It introduces the notion of ‘connectedness’ to describe an innovation’s 

interdependence with other elements in the ecosystem. It explicitly distinguishes 

between an innovation’s connectedness with the platform and other complements. In so 

doing, it examines how these two types of connectedness help firms leverage 

complementarities from the ecosystem, as well as create challenges that may limit an 

innovation’s value creation. In the context of the Apple iPhone ecosystem, I find that the 

higher connectedness with the platform and complements increases the likelihood of 

successful commercialization. However, the benefit of platform connectedness is 

negated during the initial periods of the new generation of the platform. The effect of 

complement connectedness during the initial periods of the new generation of the 
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platform is more nuanced and varies with the extent to which the connected complement 

is interdependent on the platform itself.  

The second essay zooms out to the interdependencies that lie at the level of an 

ecosystem and are primarily driven by the structural properties of the ecosystem. 

Specifically, it examines how the ecosystem-level interdependencies, characterized by 

the number of components that interact with a firm’s product, shape the extent to which 

complementors can sustain their value creation. The empirical context is Apple’s iOS 

and Google’s Android ecosystems, which provides a nice opportunity to study 

complementors’ dynamics in ecosystems with varying levels of interdependence. 

Overall, I find that greater ecosystem complexity helps firms sustain their value creation. 

Further, the firms’ ability to sustain superior performance is facilitated by their experience 

within the ecosystem, but hampered by transitions initiated by platform firms.  

While the first two essays are focused on the structure of interdependencies in 

explaining firm performance, the third chapter takes a more behavioral perspective and 

addresses the implications of a partial understanding of these interdependence 

structures by decision makers. I use a computational model to understand the 

implications of over- and underrepresentation of interfirm task interdependencies in the 

context of the alliance relationships. The results suggest that both types of 

misrepresentation of task structure are, on average, detrimental to alliance performance. 

However, the degree of value loss varies by governance mode. The decline in 

performance is lower for the modular and self-governing alliance modes. Interestingly, I 

also find that the decline in performance decreases with an increase in the degree of 

interdependence in the underlying task structure.  

Collectively, these essays make several theoretical and empirical contributions to 

the strategy and innovation literatures. First, this dissertation contributes to the emerging 

strategy literature on platforms and ecosystems by providing a detailed account of 
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interdependencies that exist within an ecosystem (e.g., Iansiti and Levien, 2004; Adner 

and Kapoor, 2010, 2014; Kapoor and Lee, 2013; Kapoor, 2013). Scholars studying 

platforms have focused on the strategies used by platform firms to attract 

complementors and to compete against rival platforms (Gawer and Cusumano, 2002; 

Gawer and Henderson, 2007; Boudreau, 2010; Eisenmann et al.; Zhu and Iansiti, 2012). 

In this dissertation, I look at the other side of the phenomenon, beyond the platform 

firms, and illustrate how the performance of complementor firms is shaped by the 

structure of interdependencies faced by them within the ecosystem. I show that 

complementor firms can enhance the value of their innovations by leveraging a broad 

set of complementary technologies provided by platform and other complementor firms, 

but they must consider the platform-level generational transitions that may offset the 

benefits. This finding provides practical implications to both the platform firms and the 

complementor firms. From the platform firm’s perspective, a platform firm can increase 

opportunities for value creation for the complementor firms by integrating additional 

components along with the core module of the platform. From the complementor firms’ 

perspective, they can increase the utility of their innovation for the users by connecting it 

with additional platform components and other complements available in the ecosystem. 

Further, I also show that the sustainability of a complementor firm’s performance is 

driven by the number of components that its product interacts with within the ecosystem. 

This finding highlights how platform firms’ strategies with respect to the design of the 

platform architecture and governance of the ecosystem can shape complementor firms’ 

performance.   

Further, this dissertation also contributes to the literature on technological 

change, which is typically premised on how technological transitions impact the 

performance of firms in the focal industry (e.g., Tushman and Anderson, 1986; 

Henderson and Clark, 1990; Christensen, 1997). In this dissertation, I show how 
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technology transitions initiated by platform firms can impact the performance of 

complementor firms within an ecosystem. It highlights that technological 

interdependencies between platform firms and complementors in related industries can 

have important consequences for complementors during periods of platform transitions. 

Relatedly, the evidence in the study also points to the difficulties of coordinating 

technology transitions at the level of the ecosystem. Even if platform firms intend to 

create a smooth generational transition for all of their complementors, the system-level 

interdependencies and technological uncertainties make such coordination difficult. 

This dissertation also makes an important set of contributions to the literature on 

alliance governance by highlighting how a partial understanding of task 

interdependencies can be detrimental to alliance performance. It goes beyond prior work 

to explicitly study the effect of errors on various patterns of interdependence—a task that 

would be difficult to accomplish using empirical methods alone. In so doing, it contributes 

to the literature on governance choice (e.g., Dyer et al., 2004; Villalonga and McGahan, 

2005), shedding new insights into the link between interdependence, governance 

modes, and firm performance in alliance settings and offering a promising set of 

avenues for future research. 

Finally, I also briefly note several avenues for future research given the 

theoretical and empirical results of the essays in this dissertation. While this dissertation 

is a first attempt to shed light on the microstructures of interdependencies that exist in a 

platform-based ecosystem, it has not accounted for the vast heterogeneity that exists 

with respect to the interdependent elements. For example, in the case of an iPhone 

ecosystem, an app interacts with different actors present in the ecosystem, such as 

handset providers and wireless providers. These actors differ from one another in many 

aspects, such as their added value in the ecosystem and their bargaining power. In 

future work, I hope to further characterize the structure of interdependencies introduced 
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in this dissertation by explicitly taking into account these differences. Finally, while I 

show the role of the structure of interdependencies in value creation, it would be 

important to understand how these interdependencies arise and evolve over time. In 

future work, I also hope to explicitly consider firm-level factors to understand how they 

drive the benefits and challenges posed by the interdependence structures that firms are 

subjected to in an ecosystem.   
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