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Zooming in: A Practical Manual for Identifying Geographic Clusters

Abstract
Research summary: This paper advances strategic management research by taking a close look at the reasons,
procedures, and results of cluster identification methods, focusing on a density-based algorithm that
organically define clusters from actual locations of economic activities. Despite being a popular research topic
and analytical tool, geographic clusters are often studied with little consideration given to the underlying
economic activities, the unique cluster boundaries, or the appropriate benchmark of economic concentration.
Our goal is to increase awareness of the complexities behind cluster identification, and to provide concrete
insights and methodologies applicable to various empirical settings. The method we propose is especially
useful when researchers work in global settings, where data available at different geographic units complicates
comparisons across countries.

Managerial summary: Geographic proximity has been recognized as a fundamental factor driving firm
performance, especially in knowledge-intensive industries. However, despite increasing interest in the study of
geographic clusters—locations with a high concentration of economic activity—we as researchers have not
given sufficient consideration to the underlying economic activity, the unique cluster boundaries, or even the
definition of economic concentration. In this paper, we carefully examined the existing methodologies for
cluster identification and proposed a method that defines clusters based on the actual location of economic
activity. This new method is applicable to various empirical settings beyond geographic clusters. In addition,
because clusters are defined by actual economic activity rather than administrative boundaries, it allows for
meaningful comparison across countries.
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Zooming In: A Practical Manual for Identifying Geographic Clusters  

 

Abstract 

This paper takes a close look at the reasons, procedures, and results of cluster 

identification methods. Despite being a popular research topic in strategy, 

economics, and sociology, geographic clusters are often studied with little 

consideration given to the underlying economic activities, the unique cluster 

boundaries, or the appropriate benchmark of economic concentration. Our goal is 

to increase awareness of the complexities behind cluster identification, and to 

provide concrete insights and methodologies applicable to various empirical 

settings. The organic cluster identification methodology we propose is especially 

useful when researchers work in global settings, where data available at different 

geographic units complicates comparisons across countries.  

 

1. INTRODUCTION 

The concept of clusters—high concentrations of economic activity in a specific geographic 

unit—is at the core of a vast amount of research in economics, management, urban planning, 

sociology, and public policy. It is surprising, then, that few papers look carefully at the issue of 

cluster identification. With a few notable exceptions (Ellison and Glaeser, 1997; Porter, 1990), 

most papers overlook the nuances embedded in this seemingly intuitive concept. 

In this paper, we detail the reasons, procedures, data, and results of our effort to identify 

geographic clusters. Our goal is to increase awareness of the complexities behind cluster 

identification, and to provide a concrete method, used in Alcacer (2006) and Alcacer and Zhao 

(2012), that can help researchers define clusters more accurately. In particular, we address three 



 
 

related questions in cluster identification: (1) What economic activity should we measure to 

determine clustering? (2) What is the appropriate geographic unit over which economic activity 

should be measured? and (3) What levels of economic concentration are high enough for the 

geographic unit to be labeled a cluster?1 

We answer these questions with a combination of literature review, theoretical discussion, 

and illustrations with various algorithms. While we use a specific empirical context (the global 

semiconductor industry) for illustrative purposes, the insights and methodologies are general 

enough for other contexts. The organic cluster identification methodology we propose is 

especially useful when researchers work in global settings, where data available at different 

geographic units complicates comparisons across countries.  

2. HOW TO IDENTIFY CLUSTERS? 

In this section, we discuss the three questions that researchers should consider when they define 

clusters in a specific context: the measure of economic activity in a location, the geographic unit 

over which economic activity should be measured, and the concentration threshold required to 

classify a location as a cluster.  

2.1 What type of economic activity? 

When studying agglomeration, a researcher is inherently interested in some underlying economic 

activity. For example, to understand how agglomeration influences firms’ competitive 

advantage, the researcher is likely interested in firms’ technical capabilities or knowledge stocks. 

In this case, the underlying economic activity is knowledge creation and dispersion. Marshall 

(1920) takes firms as the unit of analysis in his seminal work on agglomeration economies. More 

                                                 
1 There are other decisions that need to be addressed when defining clusters. For example, Ellison and Glaeser 

(1997) try to determine if a cluster is the result of agglomeration benefits or endowments. We focus on the 
characteristics of clusters regardless of how those clusters emerged. 



 
 

recently, most of the literature studying agglomeration in economic activity has used 

employment concentration instead of the number of establishments (Glaeser et al., 1992). The 

popularity of employment-based agglomeration level measures is driven by the availability of 

employment data and by the public policy orientation of most papers examining economic 

development.  

Employment appears to be a plausible measure for studies of manufacturing clusters. 

However, there is anecdotal and empirical evidence that the link between employment and 

innovation (as opposed to the link between employment and manufacturing plants) is weaker. 

Audretsch and Feldman (1996) find that R&D activities tend to be more concentrated than 

production activities. Similarly Alcácer (2006) finds the distribution of R&D labs in the wireless 

industry is more concentrated than any other activity in the value chain, and that locations of 

manufacturing and innovation in that industry differ.  

For technology clusters, patents are a better data source for cluster identification because 

patents are associated with the locations in which inventors innovate. Obviously the usefulness 

of patents as a data source for cluster identification depends on whether patents are good 

indicators of innovation, which seems to be the case in industries such as semiconductors 

(Macher et al., 2008), pharmaceuticals (Cohen et al., 2000), and chemicals (Ahuja and Katila, 

2001), among others. For areas such as biotechnology and pharmaceuticals, publications are an 

alternative data source for local innovative activities (Furman et al., 2005).  

A related decision is whether to collect data for a specific industry or for a set of related 

industries. The literature represented by Marshall (1920), Arrow (1962), and Romer (1986) (the 

MAR school) takes an intra-industry perspective, arguing that proximate firms specializing in the 

same activity create agglomeration economies by encouraging skilled labor and input providers 



 
 

to make industry-specific investments and by increasing the amount of industry-specific 

knowledge in the region. Meanwhile, Jacobs (1969) and Porter (1990) (the Jacobs-Porter school) 

focus on interactions across industries. Input-output linkages attract related industries to locate 

next to one another (Ellison et al., 2010). For example, new semiconductor technology may 

come from and be used by firms in diverse industries: aircrafts, automobiles, electronics, medical 

devices, etc. These firms compete in different product markets and interact with each other in the 

same technology field (Alcácer and Zhao, 2012). Depending on the importance of such cross-

industry interactions, the measures of economic activity should reflect them accordingly.  

2.2 What geographic unit? 

Whatever the underlying economic activity is, the geographic units should be defined based upon 

the economic activity of interest. Different economic activities have different geographic ranges. 

For instance, knowledge is sticky, suggesting a limited geographic range. In contrast, moving 

intermediate goods across distances is easier, suggesting a broader geographic range. The 

activity’s geographic range then helps define the appropriate geographic unit. Economic activity 

with a more limited geographic range should be examined using smaller geographic units, such 

as counties or metropolitan areas; while activity with a greater range can be examined using 

larger geographic units, such as states or even countries. This consideration is often absent in the 

extant literature: a particular definition for geographic units is used with little consideration of 

the underlying economic activity, or based on citations of other papers that use the same 

geographic units for the analysis of totally different economic activities.  

There are two approaches to the definition of geographic units. One is to use predetermined 

administrative or statistical units, such as countries, states, metropolitan areas, or economic area. 

This is a one-size-fits-all approach. The other is to use the data on the economic activity under 



 
 

investigation, and organically generate geographic units for the analysis. This is an approach 

customized for a specific industry (i.e. semiconductors or biotechnology), location (i.e. Japan or 

Jamaica), or phenomenon (i.e. R&D or manufacturing).  

Predetermined units 

The common practice in the literature is to use pre-determined geographic units, such as 

metropolitan areas, county, or states in the U.S., and countries for locations outside of the U.S. 

Data availability generally drives that decision: most U.S. employment data is generated at the 

county or metropolitan-area levels and then aggregated to economic areas or states. In some 

cases, such administrative boundaries are adequate. For example, if the research focus is 

institutional environment’s effect on firms’ location decisions, then variations across state 

legislation would suggest that state is the right geographic unit for the study. 

However, in the case of knowledge spillover, we need a unit that reflects the pooling of 

knowledge and resources. In an effort to identify geographic areas that mimic economic activity, 

the Bureau of Economic Analysis (BEA) defined 179 economic areas spanning the continental 

U.S.  Each economic area consists of at least one node (a metropolitan or densely populated area 

that serves as center of economic activity) and the surrounding counties that are economically 

related to the node(s). Commuting patterns are the main factor used to determine economic 

relationships among counties. Each economic area includes, as far as possible, both the work site 

and residences of its labor force. The BEA’s definition of economic areas not only captures the 

boundaries of labor pools as described by commuting patterns between work and home, but also 

the bounds of supplier pools because supplying firms draw from the same labor pool, and one of 

the main conduits of knowledge flow is employee turnover in the local labor pool. 



 
 

Unfortunately, in many cases, actual economic activity does not follow the neat borders of 

predetermined geographic units, which were often created for other reasons than studying the 

specific underlying economic activity such as agglomeration economies. Figure 1 helps to 

illustrate the potential problems caused by inappropriate, predetermined definitions of 

geographic units. Each point in Figure 1 represents an innovation and each rectangular shape 

represents a predetermined geographic unit (A, B, C, D, E). Assuming that clusters are defined as 

areas containing more than five dots, the data would reveal the existence of two clusters: cluster 

1 in unit A and cluster 2 between units B and E.  

This example illustrates three basic problems with using predetermined geographic units to 

identify clusters. First, the number of clusters may increase by aggregating numerous low-

density locations within the same geographic unit. For example, geographic unit C would be 

labeled a cluster even when there is not a single location within the area that satisfies the density 

requirement of a cluster. The larger the area of the geographic unit, the more likely it will capture 

false positives—units identified as clusters when they are not.  

Second, a cluster may be perceived as larger than it actually is. For example, within 

geographic unit A, the three points to the right would be added to cluster 1. As a result, the size 

of the cluster—the level of economic activity within it—would be artificially high. The concept 

of density also varies across locations. For example, in densely populated areas such as Japan 

and Western Europe, some traditional clustering methods tend to identify a large area as one 

cluster, even if they are divided by clear boundaries (e.g. mountains).  

Third, a cluster’s borders may extend beyond a geographic unit. For instance, cluster 2 is in 

both geographic units B and E. Delgado et al. (2010) addressed this by including a measure of 

cluster strength within a region of related clusters—a measure that captures the strength of 



 
 

similar clusters in neighboring regions. Failing to consider contiguous clusters would require 

empirical models that address spatial correlations. Granted, the prevalence and consequences of 

these problems will vary depending on theoretical arguments for clustering and the specific 

empirical context. 

Organically defined units  

Instead of following pre-determined geographic units, the borders of clusters can be identified 

organically to reflect as much as possible the actual spatial distribution of the data. With this 

approach, areas 1 and 2 in Figure 1 would be identified as clusters regardless of whether they 

belong to specific geographic units. Such organically defined clusters are even more relevant in 

global settings. Any pre-determined geographic unit is not going to be common across countries, 

rendering impossible a meaningful comparison across clusters.  

There are several existing methods for cluster generation, mainly partition clustering and 

hierarchical clustering. In a partition clustering process—k-means and k-medians being the most 

frequently used—researchers first fix the number of clusters to k. Then the algorithm will look 

for k cluster centers so that, when all the N data points in the sample are assigned to the nearest 

centers, the sum of distances (in the case of k-medians) or squared distances (in the case of k-

means) from each data point to its respective cluster center is minimized. That is, the resulting k 

clusters are the most compact ones allowed by the data. Depending on the specification, the 

cluster centers may or may not be one of the original points in the sample.  

While this clustering process is convenient, there are several drawbacks. First, the 

optimization process is approximate, and the result depends on the number k predetermined by 

the researcher. With large datasets, the selection of k is often arbitrary. Second, this process 

minimizes the sum of distances or squared distances from cluster centers, so the result tends to 



 
 

be k clusters of similar sizes, which does not always square with reality. Finally, this method is 

not effective in handling clusters with irregular shapes. Long stretches of concentrated economic 

activity, such as in the northeast corridor of the United States, tend to be cut off arbitrarily when 

the locations are too far away from the cluster center.  

Hierarchical clustering does not require a predetermined k. In fact, it does not even generate a 

specific number of clusters. As indicated by the name, it generates a hierarchy of clusters with 

one big cluster including all N data points at the top and N clusters each comprising one data 

point at the bottom of the tree. The researchers decide on the appropriate distance function for 

the optimization process, and then decide which level of the hierarchy (or equivalently, the 

number of clusters) to use for the analysis. While hierarchical clustering is more flexible than 

partition clustering, they share the same limitation with regard to geographic areas of irregular 

shapes. 

To overcome the limitations of existing clustering algorithms, we developed an organic 

cluster identification algorithm that takes full advantage of information from the data. Each 

cluster will start from a high-density point and organically expand in all directions until the 

density tapers off or the distance between the neighboring points gets too large. That way, we are 

not constrained by any specific number of clusters or by the distance from an arbitrary cluster 

center.  The resulting clusters can take any shapes or sizes, reflecting what we see in reality. In 

Section 3, we will describe the algorithm in detail and compare it with the existing algorithms. 

2.3 How much activity concentration is enough to label a location as a cluster? 

Not all geographic concentrations constitute a cluster. The definition of a cluster implicitly 

requires a large concentration of economic activity; the question is precisely how much 

concentration is required for an agglomeration to become a cluster. Again with Figure 1 as an 



 
 

example, if the cut-off value is 4 instead of 5 (i.e. geographic units are labeled clusters if they 

contain more than 4 points), concentrations 3 and 4 would become clusters (along with 

concentrations 1 and 2).  

The idea of activity exceeding a benchmark is forwarded by Ellison and Glaeser (1997) when 

examining agglomeration of U.S. manufacturing. Using a geographic unit of the 50 states, they 

used a “dartboard” approach to define the benchmark: without agglomeration, a state’s number 

of manufacturing establishments should be determined by random throws at a dartboard with 

each state’s size equal to its square miles of area. States with establishments in excess of this 

dartboard threshold are considered “agglomerated”. In cluster-related researches, each researcher 

needs to define a benchmark threshold appropriate to the setting.  

A related question is the appropriate number of clusters in a study. Approaches to determine 

the number of clusters have been diverse in the literature. Alcácer and Chung (2007) looked at a 

continuum of industry-employment concentration (i.e. the levels of geographic agglomeration) 

while Alcácer and Chung (2013) defined clusters as those locations in which agglomeration 

levels are above the mean. Ellison and Glaeser (1997) plotted their agglomeration measurement 

and set an arbitrary cutoff value based on the intuition from their results. Delgado et al. (2012) 

defined strong clusters as the top 20 percent of economic areas in terms of the magnitude of 

cluster specialization.  

The appropriate cutoff point should offer a good balance between coverage (a fair 

representation of the field or industry under study) and selection (true clusters with 

agglomeration economies). On the one hand, including an adequate number of clusters in the 

sample is important to minimize sample bias and to provide enough variation to isolate the 

effects of specific variables. For instance, because universities may be a common feature in large 



 
 

clusters, the effect of educational institutions on innovation may be underestimated if clusters 

without universities are excluded from the sample. On the other hand, too large a selection may 

include locations that are not truly clusters, introducing unnecessary noise to the analysis. 

Alcácer and Zhao (2012) chose the top 25 clusters because they account for 84 percent of 

innovations in the semiconductor industry while offering a sufficient variety of competitive local 

environments. When the cutoff criteria are unclear, robustness checks are useful to ensure that 

the results are not dependent on the number of clusters considered. In Alcácer and Zhao (2012), 

the results remain robust with the selection of top 10 or top 50 clusters. 

3. Defining organic clusters 

This section addresses the issue of selecting the geographic unit size over which economic 

activity should be measured, using the global semiconductor industry as the context to introduce 

an organic cluster identification algorithm. We also compare this algorithm with predetermined 

geographic units as well as with the hierarchical clustering algorithm. 

3.1 Preparing the location data 

Semiconductor firms routinely patent their innovations, leaving a trail of the geographic 

distribution of R&D activities in the industry. Thus, our algorithm primarily uses the density of 

patents in a given location to identify the contours of a cluster. Unfortunately the inventor 

addresses provided by the USPTO were noisy. Typos were common, especially for foreign 

locations. Therefore, our first non-trivial task was to manually clean all names for which an 

electronic match with the latitude and longitude data was not found. 

We found three types of typos. The first type was inconsistencies in abbreviations and 

acronyms for city names, mainly, but not exclusively, in American locations. For example, Los 

Angeles could be spelled fully or as LA, L.A., etc.; Salt Lake City appeared often as SLC; words 



 
 

like West, East, North and South could be abbreviated or spelled fully. The second type was 

mismatches between city and state or city and country. For example, Ann Arbor, Michigan (state 

code MI) was sometimes assigned to Minnesota (state code MN), Mississippi (state code MS) or 

Missouri (state code MO). Israeli cities such as Tel-Aviv that were sometimes assigned to the 

U.S. state of Illinois because the code for both Illinois and Israel is IL. The third type was 

incomplete addresses mainly associated with foreign inventors. For example, many addresses 

included a postal code but missed either the province or the city. In most cases, we were able to 

recover the city information using the directory of each country’s postal codes. 

This name cleaning process required many rounds of improvement and revision. A program 

to fuzzy-match geographic names offered potential matching options to the research assistants 

and authors. We then used lists of provinces, major cities, and zip codes for most countries in our 

dataset to resolve ambiguous matches, aided by internet searches. In the case of international 

addresses, we asked individuals knowledgeable about specific countries or languages to perform 

the manual checks. The authors were able to cover Latin America, Spain, France, Italy, Portugal, 

Australia, the U.K., the U.S. and the Greater China region. We also asked native speakers from 

Korea, Singapore, Germany, Russia and Slavic countries, Scandinavia, and Japan to clean up the 

data of these countries.  

Next, we obtained latitude and longitude information from two sources. For U.S. locations, 

we used the Geographic Names Information System (GNIS) of the U.S. Geological Survey. For 

foreign locations, we used the Geonet Names Server (GNS) of the National Geospatial 

Intelligence Agency. Besides its wide coverage of 5.5 million location names worldwide, the 

GNS dataset uses phonetic variations to capture spellings from different alphabets (as in Asian 

countries) and from alphabets with extra characters (as in Scandinavian and Slavic countries). 



 
 

We first applied this process to global patents from the semiconductor industry. We relied on 

the technological classification from the Derwent World Patent Index (DWPI) to obtain the 

universe of semiconductor patents applied for between 1998 and 2001, and granted between 

2001 and 2004.2 After removing duplicates in patent families (Gittelman and Kogut, 2003), our 

semiconductor patent sample consisted of 23,675 patent families, from which we were able to 

identify 38,261 unique locations in the U.S. and 61,385 unique locations outside of the U.S., with 

an almost 100 percent success rate. Most of the locations for which we could not attach latitudes 

and longitudes are in China, where a large number of cities share identical spellings. Without any 

province information, we were unable to find a unique match.  

This effort also generated a list of common typos in location names and a set of programs 

that help to clean and geocode locations. We applied these tools to the entire UPSTO dataset, 

creating a comprehensive dataset with latitudes and longitudes for most patents granted since 

1975. This dataset will be available to the public together with this note.  

3.2 Identifying the cluster contours 

With the location data prepared, we can generate the contours of each cluster based on the 

density of patents in a given location. The main steps in the algorithm are the following: 

First, we load the data described above. Each observation denotes a particular patent with the 

latitude and longitude of the inventor. If a patent is developed by a group of inventors residing at 

different locations, there are as many observations as unique locations of the inventors, with each 

location accounting for one patent.3 Then we calculate the density for each location by adding up 

                                                 
2  For details of the data source, see Alcácer and Zhao (2012). 
3  Depending on the research question, one may also count this as a fraction of a patent. For example, if we are 

interested in the participation of local inventors, each patent represents a project that the local talents are involved 
in, so counting it as one patent is reasonable. On the other hand, if we are interested in relative contribution of 
various locations to the firms’ R&D, calculating the fractions is more appropriate. 



 
 

all the patents with the same latitude and longitude. The maximum and minimum latitude and 

longitude values in the dataset are used to set up the border of the map. 

Second, we identify the location with the highest density (i.e. the location with the largest 

number of patents) and assign it a cluster ID. Then we identify all locations within its 

Neighborhood Radium (NR) and evaluate their respective patent densities. NR determines the 

most basic geographic unit, in miles. Put simply, this is to define how big each “dot” on the map 

should be. For example, we set the NR for American locations at 20 miles, meaning that the 

algorithm will identify all observations within a 20-mile radius from the focal location and check 

the patent density at these locations.4  

Another crucial parameter in our algorithm is the Contour Threshold (CT), which is the 

minimum density value for a location to be considered part of a cluster. Locations with a density 

value above the CT are added as members of the cluster and used as new focal locations from 

which new NRs could be drawn for evaluation. That is, the cluster will continue to expand from 

there. If any location in the new NR has already obtained an existing cluster ID, the two clusters 

are merged and every member of the new cluster assumes the ID of the existing one. Locations 

with a density value below the CT indicate the start of a low-density area and thus become the 

border of the cluster contour. When any new location considered within the NR of an already-

clustered location has fewer patents than the CT, or when any location is farther away than the 

number of miles in the NR, the cluster is “closed” and the contours are drawn. The next location 

with the highest density is then given a new ID and the above steps are repeated. This continues 

until all locations are associated with a cluster ID. 

                                                 
4 We used a different NR value for each country based on average commuting distances, which we obtain from 

various sources. In countries where we could not obtain commuting distances, we used those of neighboring 
countries or the regional average. 



 
 

Figure 2 shows this process visually. Figure 2a shows the highest-density locations in the 

sample in a two-dimensional universe. The algorithm looks for locations that are within the NR 

of each focal point (Figure 2b) and checks that the densities of those locations are not below the 

CT. All the points in Figure 2b passed this test and were added to their respective cluster IDs. 

Note that two high-density points were connected within the NR and were joined as one cluster. 

New locations were evaluated in Figure 2c and each location with a higher-than-CT density 

triggered a new NR. The process continues in Figure 2d, when lower peaks—location with lower 

densities—emerged. In Figure 2e, the new locations added for analysis were either below the CT 

or far away from the NR. Thus, the final contours of the clusters were assigned. Note that the 

algorithm’s output includes locations with just one patent (stand-alone points in Figure 2f), 

locations with low and medium patent densities, and areas with high patent densities. With our 

global semiconductor data, our algorithm generated 5,234 units, among which the singletons are 

not used in the analysis.  

We can also reproduce the output on a map to have a visual assessment of the algorithm, 

where adjacent clusters are mapped with different colors depending on the cluster IDs they 

assume. Figure 3 gave the examples of the U.S., Japan and Western Europe. As shown in the 

maps, both density and distance matter in cluster identification. The clusters generated from our 

algorithm are not constrained by specific shapes or sizes, but follow the actual observations of 

innovation activities. 

Although our organic cluster identification algorithm has a number of advantages, it also has 

some drawbacks. It demands latitude and longitude data for each location. It also requires 

obtaining realistic parameter values for both NR and CT, which entails some manual adjustments 

to ensure accuracy. For example, inappropriate values of NR or CT would result in very long 



 
 

clusters in densely populated areas around cities such as Tokyo and New York City. Repeatedly 

checking establishment locations as reported in Dun & Bradstreet helped us gain a better 

understanding of the clustered activities in those locations and adjust the parameters accordingly.  

3.3 Testing the results of cluster identification 

An ideal geographic unit to capture the concept of clusters should increase the chance that two 

neighboring locations are assigned to the same cluster and reduce the chance that two distant 

points are assigned to the same cluster. In other words, measuring Type I errors (in which a 

location is added to a cluster it should not belong to) and Type II errors (in which a location is 

not added to a cluster it belongs to) allows us to evaluate how well a given geographic unit can 

capture the concept of a cluster. Therefore, we compared proxies of Type I and Type II errors for 

different geographic units, including clusters generated with our algorithm described in the 

previous subsection, and those used in the literature: state, economic area, county, metropolitan 

areas (for American inventors only), country, and hierarchical clusters (for all inventors).  

Specifically, we took all inventors in our semiconductor data (246,620 inventors worldwide 

at 100,006 unique locations, with 104,742 of those at 38,621 unique U.S. locations) and explored 

whether a given pair of inventors would be classified as being in the same geographic unit (same 

cluster) using various unit definitions.  

The pairs were generated as follows: For each inventor in our sample (focal inventor) we 

drew randomly another inventor that was not associated with the same patent. We know the 

latitudes and longitudes of each pair and can calculate the actual distance between them. We 

assumed that if two inventors were within 20 miles of each other, they are likely to be part of the 

same geographic unit, regardless of how that unit is defined. A good unit definition would 

recognize pairs as being in the same cluster when they are less than 20 miles apart (minimizing 



 
 

Type II errors) and would not group two inventors in the same cluster when they are farther than 

20 miles apart (minimizing Type I errors). As with any measurement, minimizing both error 

types is practically impossible.5 

Table 1 shows the results of this exercise with predetermined definitions of clusters, using 

state, economic area, metropolitan area, and county for the U.S. inventors, and country for 

foreign inventors. Each panel corresponds to a different definition of geographic units and has 

two rows, the first for pairs in which the two inventors are less than 20 miles apart, the second 

one for pairs that are more than 20 miles apart. From 104,742 randomly generated pairs, 71,095 

have both inventors within 20 miles of each other and 33,647 are separated by more than 20 

miles. The column labeled Not classified indicates the number of pairs for which one of the 

inventors didn’t belong to any geographic unit. Columns Different units and Same unit indicate 

how many pairs were classified as members of the same unit or different units.  

We start the exercise in Table 1 using states. In this case, of the 71,095 pairs within 20 miles 

of each other, 69,985 pairs (98%) were classified as belonging to a cluster. The remaining 1,110 

pairs corresponded to inventors that were close to each other but living in different states. Most 

of these cases occurred in the Northeast. The number of distant inventors that would have been 

classified as belonging to the same cluster (when they probably do not) was also high at 17,773 

(53%). Most of these happened in states like California and Texas, where several clusters exist 

within the same state boundaries. 

Defining clusters by economic areas offers an improvement by reducing Type II errors, i.e. 

most pairs within 20 miles (70,818) were recognized as co-located. Economic areas were also 

                                                 
5  Note that we believe it is not accurate to presume that pairs more than 20 miles apart are not in the same cluster. 

For example, imagine two inventors working in Silicon Valley and living in opposite ends of the city’s 
commuting zone – San Francisco and Mountain View. These inventors should be part of the same cluster despite 
living miles apart. In other words, expecting Type I errors close to 0 is not realistic. 



 
 

better at separating pairs that were more than 20 miles into different clusters, i.e. 48 percent of 

pairs were classified as belonging to different clusters. 

Among all of the geographic units considered, counties performed best in terms of avoiding 

potential Type I errors. Most pairs 20 miles apart would have been classified as belonging to 

different clusters if counties defined the cluster boundaries. Unfortunately, counties were also the 

unit with the lowest number of neighboring pairs recognized as belonging to the same cluster 

(74%). 

Metropolitan Statistical Areas (MSAs) are a commonly used unit of analysis. According to 

the U.S. Office of Management and Budget (OMB), an MSA “consists of one or more counties 

and includes the counties containing the core urban area, as well as any adjacent counties that 

have a high degree of social and economic integration (as measured by commuting to work) with 

the urban core.” Unlike economic areas, though, MSAs do not span the whole territory of the 

U.S. Therefore, some locations in our sample did not fall into any MSAs. As a consequence, 

compared to economic areas, MSAs performed slightly worse in identifying neighboring pairs as 

well as distant pairs.6 

The last panel in Table 1 shows the results for international locations. Most previous studies 

examining innovation across countries used country as the definition of locations. For example, 

Singh (2008) studied knowledge flows within multinationals using countries as the unit of 

analysis. Note that the number of pairs is different: we have 141,878 foreign inventors in our 

sample for which we created random pairs. Among those pairs, 85,209 were within 20 miles of 

each other and 56,669 were more distant. Not surprisingly, using countries as geographic units 

                                                 
6  Note that MSAs are very accurate at identifying neighboring pairs when both inventors fall into an economic area. 

This suggests that the problem with MSAs is not their definition but the fact that they do not cover all U.S. 
territories. 



 
 

performed well at capturing neighboring pairs but poorly at identifying distant pairs.  Only 22% 

of the distant pairs were identified as in different clusters. 

Table 2 shows results similar to those presented in Table 1, this time for organically 

generated clusters. The first panel in Table 1 shows the results of our own cluster identification 

algorithm for U.S. locations. Compared with all the predetermined geographic units in Table 1, 

our algorithm generated the fewest Type I and Type II errors: it recognized more neighboring 

pairs as belonging to the same cluster and separated more distant pairs into different clusters. A 

more detailed analysis of Type II errors suggests that our algorithm also works well at 

identifying isolated inventors as singletons.  

For foreign locations, our algorithm performed slightly poorer for neighboring pairs (99.65% 

vs. 99.96%) but significantly better for distant pairs than the country definition (61% vs. 22%). 

Taken together, the performance results for both U.S. and non-U.S. locations suggest that our 

cluster identification algorithm outperforms most commonly used geographic units.  

Table 2 also compares our algorithm with the hierarchical clustering algorithm with centroid 

linkage, for U.S., non-U.S., and all locations. In each region, we picked the number of clusters 

that closely mimics the number from our algorithm, so the outcomes are comparable in sizes but 

different in their contours. Our algorithm performed better for distant pairs, although both 

approaches performed similarly well for neighboring pairs. 

4. CONCLUSION 

Given the large amount of research in firms’ location strategies, and in economic geography 

more generally, we believe that it is important for researchers to understand the factors behind 

the choice of an appropriate geographic unit for empirical analysis, as well as the implications of 

such choices. In this paper, we discussed three crucial considerations in the identification of 



 
 

clusters. First, the measure of economic activity in a location should reflect the specific 

phenomenon under study. Second, when choosing the geographic unit over which economic 

activity is measured, one should consider the requirement of the research questions as well as the 

degree of distortion that each choice may incur. Finally, the balance between coverage and 

selection determines the concentration threshold required to classify a location as a cluster.   

We also provided a new method to identify a cluster organically based on the economic 

activities in the data. This useful alternative for the definition of geographic units offers unique 

advantages in precision, flexibility, and applicability to cross-country studies. The process by 

which the algorithm was developed also sheds light on the various tradeoffs that researchers 

must address in geography research.  
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Figure 2: Organic Cluster Identification Algorithm 
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Table 1: Comparing predetermined geographic units  

  

Distance 
(miles) 

 Obs 
Different 
units 

Same 
unit 

Not 
classified 

 Correct 
classification 

 State   [10,20]  71,095     1,110        69,985   98% 

   (20,…)  33,647  15,874 17,773   47% 

 Economic Area   [10,20]  71,095  277        70,818   100% 

   (20,…)  33,647  16,281 17,366   48% 

 MSA   [10,20]  71,095  537        69,256 1,302 97% 

   (20,…)  33,647  15,509 15,748 2,390 46% 

 County   [10,20]  71,095  18,210        52,885   74% 

   (20,…)  33,647  30,238 3,409   90% 

 Country   [10,20]  85,209  34        85,175   100% 

(excluding US)  (20,…)  56,669  10,140 46,529   22% 

 

  



 
 

Table 2: Comparing organically identified geographic units 

 

  

Distance 
(in miles) 

 Obs 
Different 
units 

Same 
unit 

Correct 
classification 

Our organic clustering  [10,20]    71,095  37         71,058 100% 

 (US) (20,…)    33,647  19,392 14,255 58% 

Our organic clustering [10,20]    85,209  297         84,912 100% 

 (non-US) (20,…)    56,669  34,335 22,334 61% 

Our organic clustering  [10,20]  156,304  334         155,970 100% 

 (all locations) (20,…)    90,316  53,727 36,589 59% 

Hierarchical clustering [10,20]    71,095  16         71,079 100% 

 (US) (20,…)    33,647  15,780 17,867 47% 

Hierarchical clustering [10,20]    85,209  207         85,002 100% 

(non-US) (20,…)    56,669  29,505 27,164 52% 

Hierarchical clustering [10,20]  156,304  223         156,081 100% 

(all locations) (20,…)    90,316  45,285 45,031 50% 
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