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Executive Function Capacities, Negative Driving Behavior and Crashes in
Young Drivers

Abstract
Motor vehicle crashes remain a leading cause of injury and death in adolescents, with teen drivers three times
more likely to be in a fatal crash when compared to adults. One potential contributing risk factor is the
ongoing development of executive functioning with maturation of the frontal lobe through adolescence and
into early adulthood. Atypical development resulting in poor or impaired executive functioning (as in
Attention-Deficit/Hyperactivity Disorder) has been associated with risky driving and crash outcomes.
However, executive function broadly encompasses a number of capacities and domains (e.g., working
memory, inhibition, set-shifting). In this review, we examine the role of various executive function sub-
processes in adolescent driver behavior and crash rates. We summarize the state of methods for measuring
executive control and driving outcomes and highlight the great heterogeneity in tools with seemingly
contradictory findings. Lastly, we offer some suggestions for improved methods and practical ways to
compensate for the effects of poor executive function (such as in-vehicle assisted driving devices). Given the
key role that executive function plays in safe driving, this review points to an urgent need for systematic
research to inform development of more effective training and interventions for safe driving among
adolescents.
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Abstract: Motor vehicle crashes remain a leading cause of injury and death in adolescents, with
teen drivers three times more likely to be in a fatal crash when compared to adults. One potential
contributing risk factor is the ongoing development of executive functioning with maturation of the
frontal lobe through adolescence and into early adulthood. Atypical development resulting in poor or
impaired executive functioning (as in Attention-Deficit/Hyperactivity Disorder) has been associated
with risky driving and crash outcomes. However, executive function broadly encompasses a number
of capacities and domains (e.g., working memory, inhibition, set-shifting). In this review, we examine
the role of various executive function sub-processes in adolescent driver behavior and crash rates.
We summarize the state of methods for measuring executive control and driving outcomes and
highlight the great heterogeneity in tools with seemingly contradictory findings. Lastly, we offer
some suggestions for improved methods and practical ways to compensate for the effects of poor
executive function (such as in-vehicle assisted driving devices). Given the key role that executive
function plays in safe driving, this review points to an urgent need for systematic research to inform
development of more effective training and interventions for safe driving among adolescents.

Keywords: executive function; cognitive control; adolescents; young drivers; driving behavior; motor
vehicle crashes

1. Introduction

Motor vehicle collisions (MVC) remain the leading cause of death and injury in adolescents
worldwide [1,2]. In the US and Canada, MVCs account for a third of all adolescent deaths and
over 259,000 injuries [1,3]. Young drivers also represent a risk to their passengers and other road
users: young drivers are involved in a disproportionate amount of crashes, with a fatal crash rate
three times higher than that of middle-aged drivers, accounting for vehicle miles traveled [4]. Prior
studies have shown that teen driver crashes are attributed to a greater number of decision errors
(e.g., inappropriate speed for conditions), risky driving behaviors, inadequate surveillance and hazard
perception, distracted driving (e.g., cell phone use) and the presence of peers [4–7].

While inexperience likely plays a part, many of these crash-contributing factors imply poor
executive function. Higher-level executive function (EF; also called executive control) underpins the
ability to manage complex tasks, such as driving, by facilitating continued focus on the task or goal
(e.g., attention on the road, driving tasks and the destination), while filtering relevant and irrelevant
information (e.g., dealing with distractions) and adapting to the task demands (e.g., navigating
roadway conditions and traffic). EF has been shown to develop through adolescence and into early
adulthood with maturation of the frontal lobe [8–10]. Furthermore, low EF is related to impulsivity,
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sensation seeking and other risk-taking behaviors in teens [11–13]. Limited EF due to atypical
development may contribute to poor attention and decision making, impulsivity, and the risky driving
behaviors that contribute to the elevated crash risk among teen drivers [14–17]. However, sensation
seeking and rationalized risk-taking (i.e., weighing risks and benefits rather than impulsive risk-taking)
also appear to increase with EF ability in adolescence (see the Life-span Wisdom Model [13]), indicating
a complex relationship between EF and adolescent risk-taking behavior.

Observational and experimental studies support the role of EF ability in adolescent crash risk.
Findings point to increased crash risk during distracted driving, greater frontal lobe activation
during simulated driving, and poorer driving performance in older adults and clinical samples
with cognitive impairments [14,18–21]. For example, adolescent drivers with EF impairments—as in
Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD)—have a higher
crash and injury risk, according to some reports [22,23]. These conditions are characterized by increased
difficulty in paying attention, coordination, organized planning and making decisions while driving, as well
as by making more driving errors (particularly when there is increased demand on EF resources) [23–26].
In fact, Garner et al. [27] discerned that inattention, rather than impulsivity, better predicts risky driving in
young drivers with ADHD. However, more recent studies of adult drivers with ASD reveal mixed findings
of selective effects, whereby these drivers display more lapses, errors and slower reaction times [28–30],
but also exhibit better rule-following for checking cross-traffic and the use of indicators [28].

However, the specific role of EF constructs in driving performance has not been examined
systematically in adolescent drivers [31]. In order to improve teen driver safety and reduce injury and
death on the roads, it is crucial that we better understand which discrete domains and sub-processes of
EF are key to safe driving so that training and other countermeasures can be geared towards addressing
the root causes of adolescent crashes. This review examines EF capacities in adolescents and how
they relate to driving performance and outcomes (i.e., crashes). This review also aims to assess the
state-of-the-art tools in measurement and methods regarding EF and adolescent driving, to suggest
future directions for research, and to offer some guidance for training and intervention development.
First, we begin with a brief conceptual outline of the nature of executive function.

2. Executive Function

The umbrella term “executive function” is used to describe a number of top-down control
processes that allow us to regulate our thoughts and behavior by managing incoming sensory
information, directing attention allocation and selecting behavioral responses see [9,32]. These EF
processes are often associated with the prefrontal cortex of the brain, and map onto a number of
related but separable domains or constructs that operate with limited resource capacities [9,33]. Three
factor constructs of EF are commonly reported: working memory, inhibition (response inhibition and
interference control) and set-shifting [8,9,33].

Working memory is the capacity for information monitoring, updating and manipulation
in the moment (including monitoring multiple tasks) that pertains to visual, verbal and spatial
information [9,34,35]. Inhibitory control is the capacity to filter, suppress or resist irrelevant or
distracting sensory information or primary reflexes. Specifically, interference control (or selective
attention) allows distractors to be ignored, while response inhibition allows for voluntarily suppression
of prepotent behavioral responses, and appropriate response execution [9,33,36]. Set-shifting (cognitive
flexibility or task switching) is the ability to adapt to changing goals or task demands, or to shift mental
set/perspective [9,33]. Other components such as such as forward planning, prospective memory,
and attention (vigilance/sustained attention and visuospatial orienting) have also been reported, but to
a lesser extent [9].

In the task of driving, drivers are required to maintain focus on the road (i.e., sustained attention)
and goal/destination (using working memory), while constantly adapting speed to the demands of
the situation (flexibility/set-shifting) and managing distraction from peers, in-car technology or other
sources (i.e., inhibiting responses to distraction and/or using working memory to multitask). These
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key EF constructs have been shown to be distinct, but highly interrelated, and can depend upon each
other [9]. For example, good inhibitory control helps maintain focus on the road, and keeping the goal
and task in mind helps avoid distraction. These construct domains and sub-processes of EF also have
a shared neural basis within the prefrontal cortex (mainly dorsolateral) and anterior cingulate, and the
associated neural networks, highlighting their interrelatedness [9,33,37].

Within the driving literature reviewed here, EF was most commonly defined as a broad set of
higher-level cognitive processes that play a supervisory or managerial role in complex behaviors,
often with reference to Miyake’s model of EF as both unified and diverse [33]. Within this definition,
the three core components of EF were prominent, with some studies naming as little as two EF
sub-processes—such as inhibition and/or working memory capacity [38]—where others provided an
extensive list of EF sub-processes [39]. Typical development of EF progresses rapidly during childhood
and adolescence, alongside structural changes in frontal grey and white matter tracts that strengthen
brain networks, but some EF capacities don’t reach full maturation until later into the 20s [40–42].
Response inhibition and set-shifting have been shown to mature by mid-adolescence (by ~age 12–15
years), but working memory and sometimes interference inhibition have been evidenced to mature later
in early adulthood [8,9]. While infants can update the contents of their working memory, the capacity
is very limited: the ability to maintain and manipulate many pieces of information develops slowly
and much later during adolescence, along with interference inhibition [42,43]. Thus, the development
of EF processes is not homogenous and the length of the trajectories are not fixed. Furthermore, much
of the variability in executive capacities can be attributed to individual differences, whereby some late
adolescents can perform better than the adult average [44].

3. Methods

A literature search was conducted to identify relevant recent studies of EF capacity in adolescents
that relate to driving outcomes. The aim was to identify the relative role of the different EF capacities
and sub-processes that are important for driving performance in young drivers. The search was
undertaken using Science Direct and PubMed databases to identify all relevant papers published
between 2000 and July 2017. A combination of search terms was used, such as “executive”, “driving”,
“adolescent”, and “young driver”. Studies were included if they related EF capacity to driving in a
sample of typically developing adolescent drivers, or driver samples with a mean age between 16–21.
Studies that analyzed atypically developing young drivers (e.g., ADHD, ASD), or middle-aged and
older adults, were not included in this review. The reference lists of all included studies were searched
for additional relevant studies.

4. Results

Firstly, we provide an overview of the methods used, then delineate the role of global EF capacity
in adolescent driving, followed by a review of the findings that link different EF capacities and
sub-processes to driving outcomes in young drivers. Table 1 presents the recent studies (from 2000 to
2017) that investigated the contribution of EF capacities to negative driving behavior and increased
crash risk among adolescent drivers. A range of methodologies were used, precluding replication or
meta-analysis, but the table is instructive in presenting the range of subjective and objective measures
of EF used as well as the range of methods used for measuring driving outcomes, both subjective
self-report scales (e.g., the Driver Behavior Questionnaire: DBQ), and objective performance-based
measures of simulated driving.

For measuring EF, the majority of studies used neuropsychological performance-based tasks
(e.g., Go/No-Go task of response inhibition). Some studies also examined resource sharing between
EF domains and driving by taxing drivers with a secondary EF task, and observing deficits in driving
performance. Fewer studies employed self-report measures of real-world EF behavior (namely the
clinical Behavior Rating Inventory of Executive Function: BRIEF) [14,16,31,45], and only one paper
reviewed here utilized both subjective and objective measures of EF [31]. These questionnaires
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consisted of a number of subscales targeting specific EF sub-processes, but a total global EF score
was utilized most often in the analyses. Poor global EF as measured on the BRIEF predicted more
lapses, errors and violations reported on the DBQ, independently of age and sex [45]. Low global
EF was also associated with increased engagement in distracted driving—including texting while
driving, specifically [14,16]. In addition, self-reported cognitive failures (i.e., absent-mindedness),
which represent a failure of EF, and poor vigilance (but not executive attention) were also related to
distracted driving as measured by lapses on the DBQ [46]. However, it is important to discern the
differential role of individual executive domains and sub processes, as not all of them may relate to
all negative driving outcomes [31]. The following review consists mainly of studies examining the
three core domains of EF as outlined by Miyake et al. [33]. However, measures of attention were also
included in some studies, and so we have included a brief section to highlight these findings also.

4.1. Working Memory

Most of the studies reviewed here found a significant relationship between poor working memory
and negative driving outcomes. Using self-reported driving outcomes, Pope et al. [31] found that poor
self-reported WM (Working Memory) on the BRIEF was related to more incidents of MVCs, being
pulled over and receiving traffic tickets, but only significantly increased the odds of being pulled over.
Other studies using a simulated driving task as the driving outcome also found a relationship between
WM and poorer driving performance. Ross et al. found that poorer verbal and visuo-spatial WM
predicted more variation in lane position (swerving) [38], but not collisions or hazard responses [47].
Lane maintenance has also been shown to deteriorate when resources are taxed with a secondary
WM task [38,47,48], but young drivers with high WM capacity at baseline were less influenced by
the additional load [38]. Furthermore, a study by Mäntylä et al. [49] that compared composite scores
across the three core EF domains clearly showed that poor WM performance alone (and not inhibition
or set-shifting) predicted worse performance on the simulated lane change task in teen drivers.

Two studies contradict the hypothesis that better WM contributes to safer driving. Using self-reported
outcomes, Starkey and Isler [39] reported that higher WM ability related to more self-reported risky
driving and more accepting attitudes to risk among male teen drivers. Using simulated driving outcomes,
Ross et al. [47] also found that higher visuospatial WM performance contributed to running more red and
yellow traffic lights and shorter following distances in a simulated task.

4.2. Inhibition

In order to study the role of inhibition on negative driving outcomes, several investigators used
retrospective study designs which compared those who had driving infractions to controls that did
not. Two such studies found a relationship between inhibition (self-reported and quantitatively
measured) and traffic violations. Lower self-reported inhibition on the BRIEF has been significantly
associated with the increased odds of being pulled over and receiving a ticket in 16–19 year olds [31].
One UK study [37] compared a group of young drivers recruited from a speed awareness course
(“offenders”) to a group of age-matched controls on two performance-based measures of response
inhibition (Stop-Signal and Go/No-Go tasks). The young offenders had poorer inhibitory control
(on the Go/No-Go task alone), with faster reaction times overall suggesting a speed-accuracy trade off.
Hatfield et al. [50] found that poorer inhibitory control on the Go/No-Go task positively correlated
with total “unsafe” driving (pre-defined responses to hazards/risk events) and speeding in a simulated
driving task (but not lane maintenance). In contrast, poor response inhibition on the Stop-Signal task
(SST) has been associated with poor lane maintenance, but not with other measures of speeding or
with running red lights [46]. In addition, drivers with poorer SST performance showed increased
speeding in the presence of peer passengers (but no difference in lane position, running traffic lights,
collisions, braking or deceleration for road hazards) [51], with better Go/No-Go performance related
to less red light running in the presence of cautious peers [52].
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Three contradictory studies found no association between inhibitory control and risky driving
using both simulated and self-report measures [39,49,53]. However, when comparing across domains,
Ross et al. [47] found that poor SST (but not Go/No-Go) performance and poor WM contributed to
more variation in lane position, and that poor inhibitory control alone (on both the SST and Go/No-Go)
contributed to slower hazard responses and more crashes on a simulated task. Additionally,
Guinosso et al. [48] reported that higher Stroop inhibitory control (and higher intelligence quotient
[IQ]) predicted better simulated driving performances in late adolescents, whereas attention and
flexibility/set-shifting did not.

4.3. Set-Shifting

Few studies examined set-shifting (or flexibility), but of those that did, none found a significant
relationship with driving in adolescence. Set-shifting was not related to self-reported crashes or
citations [31], or with simulated risky driving, speed or lane maintenance [48,49,53].

4.4. Attention

Among the studies reviewed above, a small number also examined the role of sustained
attention/vigilance in adolescent driving. Sustained attention is a lower level attention capacity
to maintain focus, which encompasses filtering information and ignoring distractors and irrelevant
or conflicting sensory input, and thus overlaps with the EF processes defined above (particularly
inhibition and working memory) [9]. Poorer vigilance/sustained attention was significantly related
to more self-reported attentional lapses on the DBQ [47]. However, a factor of sustained attention
(and forward planning) was not found to predict risky driving when compared to inhibition and
WM [39]. In addition, Guinosso et al. [48] found that general attention (with more focus on alerting)
was associated with, but did not predict, simulated lane maintenance in late adolescent drivers. Often
the definitions of attention overlap with those of the EF domains, and as this review focused on the
commonly reported core constructs of EF, studies of attention were not the focus of the literature
search. However, the role of attention in driving and crash risk is apparent in the devastating effects of
distracted driving behavior reviewed elsewhere [54].
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Table 1. Summary of research papers included in this review.

Author Sample EF measure Driving Outcome (and Metrics) Summary of Main Finding(s)

Morris et al., 2008 [45] i) n = 92, age: 17–25
ii) n = 244, age: 18–58

Self-Report
Global EF: BRIEF-A

Self-Report
DBQ (lapses, errors and violations)

Lower scores on all EF subscales related to more negative
driving outcomes. Poor global EF explained 27% and 17%
of the variance in negative driving behavior for each
respective group. In addition, EF partially mediated the
effects of age on negative driving behavior.

Mäntylä et al., 2009 [49] n = 50, age: 15–19 Performance
Working Memory: N-back task
Matrix monitoring
Inhibition: Stroop task (Interference)
Stop Signal task (Response)
Set-shifting: Plus 3/Minus 3 task;
Trail-Making Test

Performance
Driving Simulator Lane change task
(lane position and deviation)

Individual differences in EF were related to lane position
and variability, but only poor working memory (not
set-shifting or inhibition) significantly predicted greater
variability. This effect was also mediated by computer
gaming skills.

Jongen et al., 2011 [43] i) n = 31, age: 17–18
ii) n = 22, age: 22–24

Performance
Response Inhibition: Stop Signal task

Performance
Driving Simulator Task1 of normal
driving and Task2 of risk-reward
driving (lane position, speeding,
running red lights, crashes)

Inhibitory control increased with age (suggesting
continuing development), and lower inhibitory control was
related to more variability in lane position, but not with
risky driving behavior (speeding and red-light running).

Roca et al., 2013 [46] n = 104, Mage: 21 Performance
Cognitive Failures: Cognitive Failures
Questionnaire
Attention & Vigilance: ANTI-V (tonic
alertness/vigilance, executive control,
orienting and phasic alertness indices)

Self-Report
DBQ (lapses, errors, violations and
aggressive driving)

The more cognitive failures reported, the higher the
aberrant driving scores on the DBQ. More lapses while
driving were related to more cognitive failures and poorer
vigilance. No other driving behavior factors correlated with
the ANTI-V. Driving errors and violations were also highly
correlated with cognitive failures.

O’Brien et al., 2013 [37] i) n = 30, age: 17–21
(Speeding offenders)
ii) n = 40, age: 17–21
(Controls)

Performance
Response Inhibition: Go/No-Go task; Stop
Signal task

Performance
History of speeding offense

Police-reported speeding offenders had poorer inhibitory
control on one performance task only (the Go/No-Go),
compared to a non-offender control group.

Graefe et al., 2013 [53] n = 49, Mage: 20.25 Performance
Interference Inhibition: Stroop task
Set-shifting: Wisconsin Card Sorting task;
WM, Scanning, Processing Speed: Symbol
Digit Modalities Test
Attention: ANT (alerting, orienting, and
executive attention)
Risk propensity: BART

Performance
Driving Simulator baseline task and
risky driving task with time pressure
and both rewards and punishments
for performance (speed, lane position,
stopping behavior, reaction times to
hazards situations, risky overtakes)

Executive function performances did not significantly
predict driving performance on the risky driving task.

Ross et al., 2014 [38] n = 46, age: 17–25 Performance
Working Memory: Visuospatial span;
Verbal Letter span
WM Load Task: Verbal N-back task

Performance
Driving Simulator lane change task at
baseline and with a secondary WM
task (correct lane changes, lane
change initiation and path deviation)

Driving performance deteriorated overall with increasing
verbal WM load on the secondary task, but drivers with
better verbal WM capacity at baseline had better lane
change initiation and percentage of correct lane changes.
These variables were not vulnerable to the
secondary task load.
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Table 1. Cont.

Author Sample EF measure Driving Outcome (and Metrics) Summary of Main Finding(s)

Cascio et al., 2014 [52] n = 42, age: 16–17
(all male)

Performance
Response Inhibition:
Go/No-Go task

Performance
Driving Simulator with either a risk
promoting or non-risk promoting
peer passenger (red-light running)

Higher inhibitory control related to less red-light running,
but only in the presence of a cautious peer passenger.

Ross et al., 2015 [47] n = 38, age: 17–25
(Mage: 19.03)

Performance
Working Memory: Digit span; Visuospatial
span
Response Inhibition: Stop Signal task;
Go/No-Go task

Performance
Driving Simulator
(lane position, speeding, responses to
red and yellow traffic lights,
responses to road hazards, and
following distance to slow vehicles)

Poor verbal working memory and inhibitory control (on the
Stop Signal task alone) predicted more variability in lane
position. However, poor inhibitory control alone predicted
more collisions and poorer hazard detection and response.
Higher visuospatial working memory performance
predicted more red and yellow light running.

Guinosso et al., 2016 [48] n = 74, age: 16–24
(Mage: 19.8)

Performance
Interference Inhibition: Stroop task
Set-shifting: Wisconsin Card Sort Test-64
Attention: Attention Network Task (ANT:
alerting, orienting, and executive
attention)
WM Load Task: Verbal WM task

Performance
Driving Simulator task at baseline
and with a secondary WM task
(velocity, accelerator position, lane
position, steering wheel position)

Better Stroop inhibition and alerting predicted more
consistent driving at baseline, and greater inhibitory control
also predicted less variability in driving during distraction
(WM load task). Flexibility, orienting, and conflict executive
control were not associated with performance in either
driving condition.

Starkey et al., 2016 [39] i) n = 46, age: 16–18
ii) n = 32, age: 25+

Performance
Working Memory: Digits Forwards/
Backwards
Interference Inhibition: Color Word
Interference Test
Forward Planning: Tower Test
Attention: Letter Cancellation
Information Processing: Trail-Making Test

Self-Report
(a) Driving history questionnaire
(b) Driver Risk Taking questionnaire
(c) Driver Attitude Questionnaire

Adolescent drivers had poorer EF and were more accepting
of risk. Working memory and attitudes to risk explained
self-reported driving behavior, with better working memory
related to more self-reported risky driving behavior and
acceptance of risk. Safer driving correlated with better
forward planning and less acceptance of risk.

Ross et al., 2016 [51] i) n = 30, age: 17–18
ii) n = 20, age: 22–24

Performance
Response Inhibition:
Stop Signal task

Performance
Driving Simulator Task1 of normal
driving and Task2 of driving with
peer presence (lane position,
speeding, running red and amber
lights, braking and deceleration for
hazards, and crashes)

Drivers with low inhibitory control showed increased
speeding in the presence of peer passengers. Inhibitory
control did not relate to lane position, running traffic lights,
braking, or deceleration for road hazards and collisions.

Pope, et al., 2016 [31] n = 46, age: 16–19 Self-Report
Global EF: BRIEF-SR
Performance
Working Memory: Backwards Digit Span
Set-shifting: Trail-Making Test

Self-Report
Problematic driving outcomes
(crashes, citations, being pulled over)

Poor self-reported planning and organization correlated
with more reports of prior crashes, with poor self-reported
inhibitory control associated with prior traffic citations.
Multiple BRIEF subscales had a negative correlation with
being pulled over. However, there was no relationship
between performance based EF
measures and driving outcomes.
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Table 1. Cont.

Author Sample EF measure Driving Outcome (and Metrics) Summary of Main Finding(s)

Pope, et al., 2017 [14] i) n = 13, age: 19–20
ii) n = 21, age: 36–54
iii) n = 25, age: 65–92

Self-Report
Global EF: BRIEF-A

Self-Report
Distracted driving behavior
questionnaire

Younger and middle aged adults engaged in more
distracted driving than older adults. Lower EF scores was a
unique predictor of more self-reported engagement in
distracted driving in all age groups.

Hayashi et al., 2017 [16] i) n = 20, Mage: 19 (Texters)
ii) n = 20, Mage: 18.7
(Controls)

Self-Report
Global EF: Executive Function Index

Self-Report
Texting while driving questionnaire

The levels of EF on all subscales were higher in the
“non-texter” (while driving) group, where “texters” had
lower scores on EF subscales of strategic planning and
impulse control, and lower total EF scores.

Hatfield et al., 2017 [50] n = 71, Mage: 18.96 Performance
Response Inhibition:
Go/No-Go task
Stroop task

Performance
(a) Driving simulator (percentage of
distance speeding and lane position)
(b) Reward Saccade Task
(c) Hazard Perception Task

Poor inhibitory control on the Go/No-Go alone positively
correlated with total “unsafe” driving (defined unsafe
responses to events), speeding in the slow zone, and overall
speeding (with a large effect size).

Note: n = number of experiment participants, Mage = Mean age, WM = Working Memory, BRIEF = Behavior Rating Inventory of Executive Function, DBQ = Driver Behavior Questionnaire,
ANT = Attention Network Test, ANTI-V = Attention Network Test for Interactions and Vigilance, BART = Balloon Analogue Risk Task.
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5. Discussion

The general role of EF in driving is quite clear, whereby young drivers with inefficient EF make
more errors, engage in more dangerous driving behaviors and are at a higher risk of crashing. However,
this review attempted to tease apart the role of the different EF constructs and sub-processes, and how
they differentially relate to driver risk. Despite some mixed findings, it appears that poor working
memory, and to some extent inhibition, most consistently related to negative driving outcomes in
adolescents and young adults. In summary, teen drivers with low self-reported WM ability report
more crashes and traffic citations. In addition, young drivers with low performance-based WM also
self-report more inattentive driving (but not errors or violations), and exhibit poor lane maintenance,
hazard detection and perception during simulated driving. A low WM capacity would indicate poorer
ability to update information in the moment and manage the many subtasks of driving, plus additional
secondary tasks that are common in real-world driving (talking with peers, listening to the radio,
eating, drinking, and cell-phone use). Thus, it is easy to see the importance of WM in driving safely,
particularly among learner or new drivers who have not yet automated many of the subtasks of driving
(e.g., checking mirrors, moving through gears).

However, higher WM capacity can also lead to increased risk-taking while driving in young
drivers (e.g., running traffic lights). This increased risk-taking while driving may be related to greater
sensation-seeking that has been associated with WM development, whereby teens with higher WM
capacity may feel more capable of managing the task demands and thus take more calculated or
rationalized risks while driving [13,47]. This is consistent with the observed trend that violations
increase while errors decrease with age among young drivers [55], indicating voluntary risk-taking
and improved control of the driving task with experience.

Poor inhibition is sometimes associated with unsafe or risky driving, speeding and poor lane
maintenance in a simulated task, but this depends on the measure of inhibitory control. Two response
inhibition measures were most commonly used (Go/No-Go and SST), with less examination of
interference inhibition (Stroop). In addition, drivers with a record of speeding offences display poorer
response inhibition control compared to age-matched peers. These findings suggest that young drivers
may find it difficult to inhibit impulses for speed, perhaps related to sensation-seeking, and to ignore
distracting input which may contribute to the poor speed control and lane maintenance exhibited above.

The more comprehensive studies that used regression models rather than correlation coefficients,
and that employed multiple measures to compare across domains, largely supported the conclusion
that WM and inhibition in particular play a key role in adolescent driving outcomes [39,47–49].
This implies that teen drivers may not be equipped to ignore distractions, and may be particularly
vulnerable in complex/demanding driving situations that require efficient monitoring and updating of
information. Taken together, poor working memory and inhibition may both contribute to distracted
driving behaviors and their negative consequences, which are highly prevalent among teens and
young drivers [14,54]. Furthermore, poor working memory and inhibition related to negative driving
outcomes in healthy teens may be exacerbated in young drivers with developmental disorders such as
ADHD and ASD, accounting for the increased risk in these populations.

Studies examining set-shifting indicate that this domain of EF does not relate to negative driving
outcomes in young drivers. This may indicate that the ability to task-switch or shift mental set may
not be important for driving. However, this seems unlikely as real-world driving frequently calls
for adaptive behavior and task switching. Alternatively, these results may be due to set-shifting
maturing earlier, around the age of 15 years [8], leading to less variability among young drivers
aged 16 and above. However, we are cognizant of the fact that the literature above mostly targeted
WM and inhibition, with far fewer studies examining the role of executive attention and set-shifting,
which may account for these findings. Furthermore, other EF capacities such as forward planning
and prospective memory (which are also suggested to continue to develop across adolescence with
frontal lobe maturation) may also play a role in driving performance, but have not been consistently
examined in prior literature [56].
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While the capacity to sustain attention on the task of driving likely plays a role in safe driving
and crash-avoidance—as indicated by the few studies using tasks of attention above—this review
did not focus on the levels of attention. Given that many definitions and tasks of higher-levels of
attention overlap with the domains of EF [9], attention likely plays a role in the effects of each of the
EF domains on driving outcomes as outlined above. While not included here, many of the reviewed
papers also investigated the additional factors of impulsivity, IQ and risk propensity as additional
contributing factors to adolescent driver risk [16,38,39,48,50]. Collectively, these findings are consistent
with the hypothesis that frontal maturation and underdeveloped executive control may contribute to
risk-taking behavior and crashes in adolescent drivers [11–13]. Thus, we should be considerate of the
cognitive state, as well as the traits, of the adolescent driver when investigating risk [15]. In addition,
individual differences and the social and emotional context may also be important predictors of risk
on the roads [52].

5.1. Methodological Issues

A number of issues were apparent in the reviewed literature that reveal key gaps in the scientific
foundation for the role of EF on adolescent driving performance, and may limit the weight of our
conclusions. Foremost, the heterogeneous terminology and methodology make it difficult to compare
across studies, limit generalizability, and may account for the somewhat mixed findings above. As EF
refers to a collection of processes and constructs, it can be given any number of conceptual and
operational definitions. Varying construct definitions (e.g., WM maintenance or updating) and different
measures of the same construct (e.g., Stroop for interference inhibition vs Go/No-Go task measuring
response inhibition) have revealed contrasting results, even within the same sample, which may
be due to different underlying neural processing [37,47,49]. Mäntylä et al. [49] also highlighted the
questionable construct validity of some commonly used neuropsychological measures of EF, such
as the Wisconsin Card Sorting Task of set-shifting. Some tasks may not target a single underlying
construct, but rather tax a number of overlapping EF capacities. Furthermore, it is difficult to compare
findings between studies utilizing self-reported rating scales versus performance based measures of
EF as they may be measuring different things [14]. In order to circumvent this issue, future studies
should use both forms of measurement, include multiple well-characterized objective measures of
distinct EF domains to account for task-specific features, and compare across constructs to discern
the discrete relationships between components of EF and driving. The selection of objective EF tasks
should consider findings from the neuropsychological literature that relate behavioral performances to
distinct neural networks and activity in the frontal lobe.

The issue of methodological variability was also apparent in the measurement of the driving
outcomes, where it is difficult to compare self-report to simulated driving. Even within studies of
simulation, the specific drivers and outcome measures varied widely, as did the levels of simulation.
Some studies used low fidelity driving simulators that did not require all performance indices (steering
direction and response time, as well as braking), with limited driving outcome variables. For example,
Mäntylä et al. [49] used a driving simulation that only required steering input (not braking or response
times) and only measured lane maintenance, without events to measure risky-driving. More complex
driving events that have potential for risk-taking (e.g., intersections for red-light running) may relate
to other aspects of EF. Thus, it is not only difficult to generalize across varied simulated driving tasks
in the studies reviewed here, but also difficult to generalize to real-world driving that is complex with
a high potential for risky events. However, future studies should continue to use simulated driving
tasks as they offer a unique opportunity to observe ecologically valid risk scenarios and contexts for
adolescent drivers, which are important outcome measures to be included. Critically, we also observed
that some studies did not control for the potentially confounding variables of age and sex [31,46],
and two studies only included males in the sample [39,52] who have been shown to crash more than
females [57]. Despite these methodological issues, we conclude that working memory and inhibition
play a key role in the disproportionately high crash risk for teen drivers.
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In addition, some of the limitations of the observational experiments above could be overcome
by using additional methodological approaches, such as computational modeling. Computational
modeling can be used as a powerful tool to explore the factors and parameters of complex driving
behavior, and these models can be based on driving data, cognitive structure/architecture and
conceptual models of how driver behaviors impact road safety [58–60].

5.2. Future Directions

More systematic research is needed to compare across domains of executive function and to
discern the relationship between EF, personality traits and the social and emotional context. Future
research should also examine individual differences in EF capacity, particularly during adolescent
development, which may impact the capacity to drive safely. Furthermore, a longitudinal study of
the development of EF and driving skill acquisition across adolescence could also help clarify the
interaction between these two capacities, and how they relate to the disproportionate crash risk of
adolescent drivers. For each of these endeavors, the addition of neuroscientific measures to examine
information processing (temporally with an electro- or magnetic electro-encephalogram) and cognitive
load (using functional near-infrared spectroscopy) in the frontal lobe would greatly advance the current
understanding of the relationship between brain and driving behavior.

Despite the need for more research, we consider some potential avenues for interventions or
solutions for reducing adolescent injury and mortality on the roads, in light of this review. First we
consider how some readily available interventions can be improved. The Graduated Driver Licensing
(GDL) program is one such intervention already in place that has had some success in reducing fatal
crashes in novice teen drivers [61]. Currently, all 50 states have some form of GDL program which
provides longer licensing times or more hours of behind-the-wheel experience. However, this may not
be sufficient for enhancing the advanced skills needed for safe driving in complex situations, and may
not be of much benefit in later adolescence (aged 17+ years [62]). This may be due to overly generalized
training within the GDL, and we suggest that more tailored skills training that is targeted towards
improving driving tasks related to the working memory and inhibitory control capacity could promote
safer driving behavior. For example, training could be tailored to the differential developmental
trajectories of the EF processes across adolescence and young adulthood, with an aim to improve
driving skills that may be impacted by limited EF development.

Furthermore, screening measures could be developed and utilized to assess individual differences
in EF capacity [38,63] and how these relate to potential risk on the road. For example, working memory
screening tools are commonly used to assess fitness-to-drive in older adults [64], and could be adapted
to screen for heightened risk in teens with ongoing WM development or atypical development. This
screening could suggest when additional driver training is needed, and also inform personalized
driver skill training to be completed during driver education. Training on a driving simulator could
be a fruitful avenue for implementing individually-tailored training that focuses on any limited EF
capacities in young drivers. Simulated driver training can expose adolescents to the driving task
without the real-world risk, and this training could target performance/compensation for known
impairments. For example, young drivers with poorer working memory performance could be
trained to drive under complex circumstances with multiple directions/goals, or while multitasking.
In addition, young drivers with limited inhibitory control could be trained to drive with exposure
to distractors (which are ever present in the real-world). In fact, driving simulation is already being
considered as a novel tool for assessment, intervention and training in both typically developing
teens and those with clinical impairment [65]. In addition, gaming activity and skills have been
associated with both better working memory capacity and driving performance in typically developing
adolescents [49,66], which could open up a new avenue for intervention via more accessible computer
game simulated driver training for high-risk adolescents.

Furthermore, cognitive researchers continue to explore new forms of EF training for improving
academic performance, which could be examined for potential transfer to improved driving
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performance in teens. In fact, the success of EF training has been most pronounced in those with
poorer performance [67], so it could benefit teens with lower levels or later maturation of EF capacities
(including teens with ADHD and ASD). However, the evidence for EF training transfer to real-world
functions is still mixed [67]. In older adults, there are mixed findings of cognitive training transfer
to non-trained simulated driving tasks. Cassavaugh and Kramer found some modest evidence for
transfer of computer-based training of attention, visuospatial working memory and manual control
to simulated driving performance gains [68]. However, Cuenen et al. [69] found only marginally
significant effects, with limited transfer to the driving task. Further investigation and replication
is needed. Furthermore, ageing cognitive decline is not necessarily comparable to EF development
during adolescence, and so this approach should be investigated in adolescents.

Ongoing technological advances in the development of autonomous vehicles has the potential to
provide safer driving environments, particularly for those with limited EF capacities (including drivers
with clinical impairments and developing adolescent drivers). Furthermore, with more knowledge of
how EF capacities predict driving behavior in young drivers and clinical samples, we may begin to
harness computational models for practically recognizing and predicting driver behavior, impairment
and distraction in the moment (at a trait and state level). However, until the knowledge base and
this vehicle technology is readily available, we must look to more immediately available solutions.
Vehicle manufacturers are currently equipping vehicles with advanced driver-assistance systems that
provide alerts or perform automatic functions in order to avoid crashes see [70]. For example, lane
departure warnings have recently been shown to be effective in preventing crashes [71], and could be
particularly useful in counteracting the high lane position variability evident in teen drivers in the
simulated studies reviewed above. Further development of such systems should target the known
limitations of teen driver capacities in order to help ameliorate the catastrophic outcomes of some
common driving errors. In order to mitigate the dangers of distraction in teen drivers, we should
look to technologies such as cell phone-blocking applications, which have already been evidenced as
effective in teen drivers [72]. However, while these technologies are successful for isolated behaviors,
we should also consider more holistic approaches and longer-term solutions for reducing risky driving
behaviors and improving young driver safety.

6. Conclusions

In conclusion, from the existing literature, it seems that limited abilities to inhibit distracting
information, and to monitor, update and integrate task-relevant information in the moment, contribute
to poorer driving performance and higher crash-risk in adolescents. However, there has been
insufficient examination of set-shifting, attention and other capacities such as planning and prospective
memory, to rule out their involvement in driving performance. Thus, there is an urgent need for
systematic research to inform the development of more effective training and interventions for safe
driving among adolescents. Further rigorous examination of the relationship between different EFs
and driving in young drivers that is supplemented with alternative methodological approaches
(neuroscientific measures and computational modeling), would greatly advance current knowledge.

Driver education and assistive technology that targets limited EF capacities in adolescents
(e.g., poor working memory/multitask capacity and poor inhibition of distraction), and individual
differences in these functions, could reduce the high number of crashes in teen drivers. In addition, EF
screening and training, video-gaming and driving simulator training, and advanced vehicle technology
that collaborates with the states and traits of the driver represent potential avenues for the development
of novel interventions within the field of driving.
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