University of Pennsylvania

CSAR 62 Spin Curve

Mohsen Azadi
Singh Center for Nanotechnology, azadi@seas.upenn.edu
Georgia Griggs
Singh Center for Nanotechnology, ggriggs@seas.upenn.edu
Glen de Villafranca
Singh Center for Nanotechnology, devilla@seas.upenn.edu
Gerald Lopez
Singh Center for Nanotechnology, lopezg@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/scn_protocols
Part of the Electronic Devices and Semiconductor Manufacturing Commons, and the Nanotechnology Fabrication Commons

[^0] https://repository.upenn.edu/scn_protocols/48

CSAR 62 Spin Curve

Keywords

CSAR, CSAR 62, Spin Curve, Curve, Spin

Disciplines

Electronic Devices and Semiconductor Manufacturing | Nanotechnology Fabrication

Goal:

This report documents the spin curves for CSAR 62 electron beam lithography resist from AllResist. The aim is to provide a self-generated spin curve for CSAR 62.

Materials:

- CSAR 62 from AllResist (www.allresist.com)
- Anisole
- Si wafers
- Two 80mL beakers
- One amber bottle

Protocol:

Coat

1. Mount wafer and ensure that it is centered.
2. Spin wafer at a fixed RPM for 60 seconds.

Soft Bake

1. Bake wafer at $180^{\circ} \mathrm{C}$ for 90 seconds and allow wafer to cool after removal.

Measurement

1. Allow the Filmetrics F 50 light to warm up for at least 5 minutes.
2. Click Baseline ... to calibrate the tool using the SiO_{2} and Si standards.
3. Mount wafer and select the CSAR on Si recipe.
4. Edit the recipe so that 85 points are measured on the wafer with a 1 cm edge exclusion.
5. Click Start to measure the resist thickness of each wafer.

Results:

RPMs	Resist Thickness (nm)
1000	386.3
2000	278.6
3000	229.7
4000	201.4
5000	177.1
6000	161.6

Equipment:

- ReynoldsTech Spinner
- Torrey Pines Scientific Hotplate
- Filmetrics F50
- Digital Scale to measure dilutions

[^0]: Azadi, Mohsen; Griggs, Georgia; de Villafranca, Glen; and Lopez, Gerald, "CSAR 62 Spin Curve", Protocols and Reports. Paper 48.

