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The Impacts of OGAP on Teachers’ Interpretation and Response to Student Thinking1 

Caroline B. Ebby, Phil Sirinides, Jonathan Supovitz 
Consortium for Policy Research in Education 

Graduate School of Education, University of Pennsylvania 
 

This paper describes the impact of the OGAP intervention on teachers’ ability to use formative 

assessment data for instructional decision making. We measured this construct both before and after 

one and two years of the intervention with an instrument developed to measure teacher knowledge of 

student thinking in the activity of looking at and responding to student work. We begin with an overview 

of the design and development of the TASK instrument, and then present quantitative and qualitative 

findings on the impact on teacher responses.  

Background and Rationale 

Interpreting and responding to student thinking is central to recent characterizations of ambitious 

mathematics instruction that have emerged from mathematics education research (Lampert, Beasley, 

Ghoussenini, Kazemi & Franke, 2010; Stein, Engle, Smith & Hughes, 2008). Stein et al (2008) define five 

practices related to making student thinking central to mathematics instruction: anticipating, 

monitoring, selecting, sequencing, and making connections between student strategies and 

explanations, while at the same time ensuring that the learning of the whole class moves towards the 

mathematical goals. In addition, using information on student thinking formatively has proven to be a 

key factor for improving learning (Black & Wiliam, 1998; Wiliam, 2007).  Effective formative assessment 

involves continually collecting and interpreting evidence of student thinking to formulate an 

instructional response targeted to help the learner move closer to the learning goal.  Yet despite the 

importance of understanding student thinking to both current theories of mathematics instruction and 

formative assessment, research suggests that many teachers struggle to make effective use of evidence 

of student thinking (Goertz, Olah &Riggan, 2009; Supovitz, Ebby & Sirinidies, 2014). 

A constructivist perspective on learning argues that teachers cannot directly know their students’ 

mathematical understandings (von Glasersfeld, 1995); they can only draw from evidence of students’ 

mathematical work to build a model of student knowledge. Research from the Cognitively Guided 

Instruction project highlights the importance of knowledge of children’s solution strategies in this 

model-building process. In both experimental and case studies, teachers who were provided with 

research-based knowledge about children’s thinking and problem solving in addition and subtraction 

were found to have higher levels of student achievement (Carpenter, Fennema, Peterson, & Carey, 

1988; Carpenter & Fennema, 1992). More recent research begins to explore the process by which 

teachers develop and use the pedagogical content knowledge necessary for interpreting and responding 

to evidence of student learning.  For example, Wilson, Lee, and Hollebrands (2011) investigated how 

pre-service teachers make sense of students’ work on a data analysis task and found that in addition to 

                                                           
1 This research was funded by the National Science Foundation (grant no. DRK-12 1316527). Any opinions 
expressed in this paper are those of the authors' and do not necessarily reflect the views of the National Science 
Foundation.  
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the actions of describing, comparing and inferring, teachers go through a process of restructuring their 

own mathematical understandings as they collect evidence of multiple approaches and develop models 

of student thinking around particular mathematical concepts. Kazemi and Franke (2004) studied 

facilitated conversations with elementary teachers around student work and found that over time 

teachers began to recognize sophistication of strategies, think about better ways to elicit student 

thinking, and develop “possible instructional trajectories” that built on student thinking. Key to this 

transformation was learning to focus on the details of student thinking as well as an increase in 

teachers’ attempts to elicit student thinking in the classroom. 

Learning trajectories, or developmental progressions of levels of student thinking in particular 

mathematical domains, are gaining increasing prominence in mathematics educational research 

(Battista 2011; Daro, Mosher, & Corcoran, 2011) and are at the core of current conceptualizations of 

both standards and instructional practice (Common Core State Standards Initiative, 2010; Szatjn, 

Confrey, Wilson, & Edgington 2012). Learning trajectories can provide an important link between 

research on learning and research on teaching by providing teachers with a clear articulation of learning 

goals, a framework for how students’ thinking develops, and learning activities that are likely to move 

students along the path towards achieving those goals (Heritage 2008). Recent studies confirm that 

introducing teachers to these research-based frameworks of how students build mathematical 

understanding can enhance their ability to interpret evidence of student learning and respond 

productively in light of that evidence (Clements et al., 2011; Wilson 2009). 

The OGAP formative assessment system is set of tools, resources, and routines to help teachers 

systemically and continuously monitor and respond to student understanding in relation to learning 

trajectories. In each year of the study, teachers experienced five days of intensive professional 

development focused on mathematical content, the research base on student thinking, and the use of 

formative assessment items, frameworks, and strategies. Teachers were also supported throughout the 

year in Professional Learning Communities (PLCs) focused on looking at student work. A central 

component of OGAP is a framework that synthesizes problem structures and the progression of student 

thinking in core content areas to help teachers analyze evidence in student work and make instructional 

decisions. (see Figure 1). This is both a conceptual framework that provides a general schema for how 

students learn the core content--i.e., developing procedural fluency through conceptual understanding, 

the use of visual models, and properties of operations-- and a classification structure that helps teachers 

categorize and label student strategies in order to make sense and act on the data to inform instruction.  

As part of the larger RCT study on impacts of OGAP on teacher and student learning (See Supovitz et al., 

2017), we used the TASK instrument, described below, to explore the impact of this intervention on 

grades 3-5 teachers’ capacity to make sense of and respond to student work in multiplicative reasoning 

over two years.   
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Figure 1 OGAP Multiplication Progression2 

  

                                                           
2 There is a corresponding progression for division and also for fractions, the focus of the intervention in Year 2.  
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Theoretical Framework 

In conceptualizing the knowledge that teachers need to implement effective formative assessment in 

the classroom, we draw upon a conception of teaching as a complex activity that is dependent on 

distinct but interconnected bodies of knowledge. (Ball, Thames & Phelps, 2008; Putnam & Borko, 2000; 

Shulman, 1987). Arguing that teachers draw on knowledge that is distinct from either knowledge of 

subject matter, Shulman defines pedagogical content knowledge (PCK) as “the ways of representing and 

formulating the subject matter that make it comprehensible to others” (p. 9) and frames it as the 

intersection between content and pedagogy. Building on this work to study the work that teachers do 

when teaching mathematics in the classroom setting, Ball and colleagues have further defined and 

delineated mathematical knowledge for teaching (MKT) by breaking down the domain of content 

knowledge into common content knowledge, specialized content knowledge and horizon content 

knowledge and pedagogical content knowledge into knowledge of content and students, knowledge of 

content and teaching, and knowledge of content and curriculum (Ball et al, 2008).  

More recently, Sztajn et al (2012) bring together research on learning trajectories with research on 

teaching to propose the construct of learning trajectory based insruction as "teaching that uses student 

learning trajectories as the basis for instruction (p. 147)." In addition to presenting a learning trajectory 

interpretation of the six MKT categories, they define a learning trajectory interpretation of formative 

assessment as the case where teachers are "guided by the logic of the learner" rather than only by 

disciplinary goals when eliciting student thinking and providing feedback to students. In developing the 

TASK instrument and analyzing the results of the field test, we draw on these frameworks to explore 

how teachers actually make sense of evidence of student thinking for their instruction. 

We also draw on situated views of learning to prioritize sensemaking and conceptualize teacher learning 

in relation to the mediation of action by cultural signs and tools (Wertsch, 1998). Within the OGAP 

intervention, the OGAP Progression can be seen as a cultural tool; as a mediator of knowledge and 

action, it has both affordances and constraints (Wertsch, 1991, 1998). In using sociocultural theory to 

understand teacher’s use of pedagogical tools, Grossman and colleagues (1999; 2000) distinguish 

between conceptual tools, or principles, frameworks and ideas about teaching, learning and content 

that teachers use “as heuristics to guide their instructional decisions,” and practical tools that “have 

more local and immediate utility” (p. 634). Both conceptual and practical tools can be appropriated by 

teachers, a developmental process which involves internalization of specific culturally embedded ways 

of thinking through active participation in social practices (Leont'ev, 1981, Wertsch, 1991). Grossman et 

al. (1999) define five different levels of appropriation: lack of appropriation, appropriating a label, 

appropriating surface features, appropriating conceptual underpinnings, and achieving mastery. The 

level of appropriation can be influenced by the social context of learning and  individual characteristics 

of the learner.  

The TASK Instrument  

The Teacher Assessment of Student Knowledge (TASK) instrument was developed, field tested, and 

validated to provide a contextualized measure of teachers’ ability to a) analyze students’ mathematical 
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thinking within a grade-specific content area in relation to research-based learning trajectories, and b) 

formulate effective instructional responses (Ebby & Sirinides, 2015; Ebby, Sirinides, Supovitz & 

Oettinger, 2013; Supovitz et al., 2014). For this study we used three parallel forms of the Multiplicative 

Reasoning (MR) TASK for grades 3-5 that were designed to assess the following three domains of 

knowledge relevant for making sense of student work for instruction and assessment:   

1. Analysis of Student Thinking (AST) – In order to build on student thinking, teachers need to be able 

to go beyond determining whether or not a response is correct or incorrect to identify the 

underlying conceptual understanding or misconceptions that are present in student work.  

2. Learning Trajectory Orientation (LTO) – After analyzing the strategy a student uses to solve a math 

problem, teachers need to be able to position that strategy along a learning trajectory for the 

respective math content. Thus, teachers must have a sense of what the developmental progress 

looks like for the particular math concept and where to place students along that continuum and be 

able to use this as a framework to interpret and respond to student thinking.  

3. Instructional Decision Making (IDM) – Finally, teachers must choose an appropriate instructional 

response and be able to describe why that instructional intervention is designed to move students 

from their current level of understanding along the developmental trajectory towards greater 

understanding. 

TASK is situated in the activity of looking at and responding to a carefully designed set of typical student 

responses to a mathematics problem in the specified content area. The student responses characterize 

distinct levels of sophistication of student thinking as well as common misconceptions that are 

supported by mathematics education research. The set of student work for the Multiplicative Reasoning 

TASK contains three correct solutions and three incorrect solutions to a word problem involving equal 

grouping (1-digit x 2-digit) (See Appendix A). The correct solutions include various levels of 

sophistication: drawing out the groups and counting by ones, drawing an open area model and 

multiplying the tens and ones separately, and using a related fact and compensating. The incorrect 

solutions include a correct strategy (skip counting) with an error, a misuse of the traditional 

multiplication algorithm reflecting a lack of place value understanding, and an incorrect modeling of the 

problem. In this way, the student work represents some of the important landmarks that have been 

identified in current research on children's learning of multiplication, common conceptual and 

procedural errors, as well as an overall progression from additive to multiplicative reasoning. Thus, TASK 

is designed to provide a realistic context from which to elicit information about what teachers pay 

attention to when they examine student strategies that they are likely to come across in their own 

classrooms.   

Through an online instrument, teachers are presented with the six samples of student work and then led 

through a series of ten questions designed to measure these three key domains of knowledge related to 

the mathematical concept. Respondents move through several screens where the student work is 

shown along with the respective prompts. Open-ended responses for analysis of student thinking, 

ranking rationale, and instructional decision making are entered into text boxes.  
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The three domains measured by the TASK can be located in domains of Knowledge of Content and 

Students (KCS) and Knowledge of Content and Teaching (KCT) in the framework of Mathematical 

Knowledge for Teaching (MKT), proposed by Ball, Thames, and Phelps (2008) (shown in Figure 2). While 

we do not aim to measure the MKT domains in their entirety, the TASK measures their application in the 

context of formative assessment that is informed by learning trajectories. Sztajn et al. (2012) also 

propose a Learning Trajectory-Based Instruction (LTBI) interpretation of the MKT categories that in many 

ways parallels our conceptualization of these domains. In order to show how the TASK aligns with MKT 

and LTBI interpretations of MKT, the specific prompts from the TASK are shown in Table 1 along with the 

corresponding domain of teachers’ formative assessment capacity that are assessed by each set of 

prompts, as well as where these domains are located in MKT and the learning trajectory 

conceptualization of MKT. 

Figure 2 Mathematical Knowledge for Teaching 

 

Table 1 TASK Domains, Prompts, and Correlation to MKT and LTBI 

TASK 
Domain  

Number 
of 
Prompts 

 TASK Prompt MKT LTBI interpretation of MKT 

Analysis of 
Student 
Thinking 
 

3 

Comment on four students’ 
solution processes in terms of 
what the work suggests about 
their understanding of number 
and operations. 

Knowledge of 
Content and 
Students 

Content knowledge intertwined with  
knowledge of how students think about, 
know, or learn particular content. 

Learning 
Trajectory 
Orientation— 
Rationale 

4 

Explain the rationale for the 
rankings between selected 
pairings of student work.  

Knowledge of 
Content and 
Students  

Knowledge of the various levels of the 
trajectories through which learners 
progress; knowledge of the cognitive steps 
that support development and of the ways 
learners approach certain tasks. 

Instructional 
Decision 
Making  
 

2 

Suggest instructional next 
steps and explain the rationale 
for those steps for a student 
who has a correct, but less-
sophisticated response to the 

Knowledge of 
Content and 
Teaching  

Knowledge of ways to support learners’ 
cognitive development along the trajectory 
to help students’ voices develop into 
mathematical perspectives; knowledge of 
how to select and target tasks to promote 

Note: This will be reshaded so 

that only KCS and KCT are 

shaded 
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problem, and a student who 
demonstrates conceptual 
weakness in the response.  

individual movement along the trajectory 
and content-rich classroom discourse.  

 

Scoring rubrics were developed for each domain based on a four- or five-point ordinal scale to capture 

the overall orientation toward teaching or student understanding. These rubrics were developed from 

pilot data through both an inductive and deductive process and then further refined after field testing. 

Each rubric scale captures a continuum of depth, from a focus on general or surface characteristics of 

student work (correctness, format, or unrelated to multiplicative reasoning), to a descriptive focus (what 

the student did to solve the problem), to a conceptual focus (what the strategy suggests about student 

understanding) and finally a developmental focus (situating strategy within the learning trajectory) 

 

The shift from procedural to more conceptual views of mathematics has long been promoted in 

mathematics reform literature (e.g., Hiebert, 1986; National Council of Teachers of Mathematics, 1988; 

National Research Council, 2001), and so a conceptual orientation toward student work was rated as 

higher than one that was only procedural.  More recently, research on learning trajectories has 

promoted a developmental view, where students' conceptual knowledge develops in relation to 

instruction along a predictable path toward more complex and sophisticated thinking (Battista, 2011). 

Therefore, in order for a response to be at the highest level of the rubric, we determined that a 

teacher’s focus on conceptual understanding must have evidence of drawing upon a developmental 

framework. We then had four ordinal categories (general, procedural, conceptual, and learning 

trajectory) that applied to each question on the TASK.  

 

The rubric shown in Table 2 describes each of the TASK rubric categories. These categories are not 

mutually exclusive and teacher responses were rated in relation to the highest level of analysis present. 

(Therefore a response that contained general, procedural, and conceptual elements would be rated as 

conceptual.) Specific rubrics were developed for each of the three domains. For Analysis of Student 

Thinking and Learning Trajectory Orientation, a fifth category of Early Conceptual was created to 

capture the distinction between responses that had some general reference to concepts but the 

teacher’s reference to those concepts was vague or not sufficiently articulated (e.g., stating the 

student “understands multiplication”). Responses in this category indicate that teachers may be 

paying attention to conceptual understanding, but do not have the knowledge or vocabulary to 

articulate it clearly.  

 

For this study, we created three parallel forms of the Multiplicative Reasoning TASK to mitigate testing 

threat. The forms contain samples of student work that have the same array of strategies and problem 

structure, but reflect different numbers, student names, and a different order of presentation.  
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Table 2 TASK Rubric Levels 

TASK Rubric Levels and Descriptions 

Score Category Description 
5 Learning 

Trajectory  
Response draws on developmental learning trajectory to explain student 
understanding or develop an instructional response.  

 
4 Conceptual  Response focuses on underlying concepts, strategy development, or 

construction of mathematical meaning. 
 

3 Early 
Conceptual 

Response contains some reference to conceptual understanding, but 
concepts are not sufficiently articulated to warrant conceptual rating. 
 

2 Procedural  Response focuses on a particular strategy or procedure without reference to 
student conceptual understanding. 
 

1 General Response is general or superficially related to student work in terms of the 
mathematics content. 

 

 

Methods 

The Multiplicative Reasoning TASK was administered as part of an online baseline survey in the 

Spring of the year preceding the intervention and again in the Spring of each intervention year to all 

OGAP teacher leaders and grades 3-5 teachers, including Special Education and ESL, from 60 schools 

(30 treatment and 30 control). Response rates for all three surveys were over 80%.  Figure 3 

illustrates the timeline of the TASK administration and intervention. At the end of year 2, when the 

intervention focused on fractions, teachers were randomly assigned to take either the 

Multiplicative Reasoning TASK or the Fraction TASK.  

Figure 3. TASK data collection timeline 
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As a school level intervention, we collected data from all grade 3-5 teachers, regardless of whether 

or not they attended all of the training or follow ups. Three raters who had masters degrees in 

elementary education and teaching experience were trained to code the 9 open-ended responses 

with the rubrics on training sets of actual teacher responses. TASK responses were scored by raters 

after they had established reliability of at least 80% direct agreement with an expert rater across all 

nine items.  

At the end of Year 1, TASK was administered to 603 teachers from treatment and control schools. 

There were 79 teachers from the treatment group who completed the TASK in all three 

administrations. This sample reflects teachers from 27 of the 30 treatment schools with between 1 

and 7 teachers from each school. The breakdown of this sample by grade level in comparison to the 

larger group is shown below in Table 3.  

Table 3 Comparison of Year 1 Teacher Sample (n=603) and Treatment Sample (n=79) 

                                               Treatment                 Control  Treatment BL, Y1, Y2 

Number of Teachers 285 248 79 

ESL teacher 10.6% 10.0% 1.3% 

SPED teacher 21.9% 15.8% 2.7% 

3rd grade teacher 34.2% 36.9% 31.1% 

4th grade teacher 34.8% 35.2% 36.5% 

5th grade teacher 32.8% 29.3% 28.4% 

 

Although this sample of 79 teachers was not intentionally constructed, it ended up being fairly 

representative of the treatment group overall. To explore the impact of the OGAP intervention on 

teacher knowledge over time, we analyzed the rubric scores and responses from these teachers across 

the three administrations.  
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[add Phil’s analysis here] 

We also conducted a qualitative analysis of the TASK responses to identify specific aspects of OGAP use. 

Responses from the three TASK administrations were grouped by teacher and then coded for patterns 

across the responses. The codes were developed inductively and deductively to hone in on aspects of 

OGAP use that were evident in responses to particular domains and questions. As shown in Table 4, for 

AST, all responses were coded for evidence of use of labels from the OGAP Progression (e.g., early 

additive, transitional), and the presence of conceptual analysis, but we also had codes that were specific 

to the nature of the student work. For example, in ASTC the student decomposes the factors and uses 

compensation (e.g., to solve 26 x 3, computes 25x 3 and adds 3). In addition to whether or not the 

teacher referred to this as a multiplicative strategy, we coded for whether it included analysis of the 

students conceptual understanding and/or mention of the distributive property, since this 

understanding was a focus in OGAP training.  

This analysis offered slightly different information than the TASK coding in that we were not assessing 

the overall level of the response but rather evidence of use or take-up of the OGAP framework. For 

example, in the TASK coding, a response was given the learning trajectory code if the OGAP Progression 

was used correctly to determine the level of a student strategy. However, in our teacher level analysis, if 

a teacher misjudged the level it was still counted as use of the progression. For instructional decision 

making, we coded for whether or not the response suggested teaching a standard algorithm as the next 

step, which allowed us to identify cases where teachers’ instructional recommendation remained stable 

over time or shifted from the standard algorithm to a strategy on the progression.  

Table 4. Codes for Qualitative Analysis of TASK Responses 

Question Codes  Word search 

ASTA Use of OGAP Progression labels 
 

Conceptual analysis  

ASTB Use of OGAP Progression labels 
 

Characterization of 
error as conceptual 

Place value 

ASTC Use of OGAP Progression labels Conceptual analysis Distributive property 
 

LTO (A-D) Use of OGAP Progression labels Change in ranking Place value  
Distributive property 

IDM (A,B) Strategies from Progression Standard algorithms 
 

 

 

Results: Impact on Teacher Knowledge 

At the end of Year 1, on the TASK as a whole, as measured by the average score across the 9 open-

ended items, the treatment group scored significantly higher at the end of the first year of treatment 

that control teachers when controlling for baseline (F(2,446)=64.54, p<.001, R2=.22; d=.77). Treatment 

teachers also scored significantly higher on each of the three domains. Data from the first year also 

indicates that implementation of OGAP in the treatment schools was highly variable. For example, on 
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the survey administered at the end of Year 1 only 20% of teachers reported using OGAP assessment 

items with their students at least once a week, as the program model specifies. Half of the participating 

teachers (49%) reported using OGAP items about twice a month, and almost a third (31%) of teachers 

reported administering OGAP items to their students only rarely. Furthermore, only 22% of teachers in 

the treatment schools reported adhering to the twice-monthly PLC meetings specified in the program 

model (Supovitz, 2016). (Analysis on Year 2 TASK data is forthcoming.) 

While these findings indicate that OGAP had an impact on teacher knowledge as measured by TASK, we 

conducted further qualitative analysis to understand more about the variation in these results and how 

teachers appropriated the learning trajectory framework as a conceptual and/or practical tool.  

Teacher Growth Over Two Years 

Within the group of 79 teachers who took the TASK at all three points in time, 51 (65%) demonstrated a 

positive change in the average TASK score from the baseline to the end of Year 2. 59 teachers (75%) 

showed growth from the baseline to the end of year 1 and 38 (48%) showed growth from the end of 

year 1 to the end of year 2.  Figure 4 below shows the average TASK scores by domain for this group of 

teachers at each point in time.  As the data show, the average score for Learning Trajectory Orientation 

(LTO) increased in both Year 1 and Year 2. While Analysis of Student Thinking increased after Year 1, 

there was a slight decrease in Year 2. Finally, Instructional Decision Making showed only slight changes 

in both directions. (While the IDM scores appear to be lower, IDM is out of a total of 4, while AST and 

LTO are out of 5.) 

Figure 4. Average TASK scores for AST, LTO, and IDM over 3 years 

 

This sample of 79 teachers can be further divided into four groups to characterize the change in their 

individual TASK score over time:  The largest group of 38 teachers only showed increase in TASK scores 

after the first year of the intervention. A smaller group of 21 teachers had a greater score after Y1 and 

Baseline Year 1 Year 2

AST Average 2.2 2.76 2.7

LTO Average 2.4 2.77 2.85

IDM Average 2.08 2 2.12

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5
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then additional growth in Y2. There were also 17 teachers who only demonstrated growth in Y2. Two of 

the 3 teachers who showed no detectable growth had the same average score after Y1 and only a slight 

decline in Y2.  

 

 

 

 

Figure 5. Relative Frequency of Growth in TASK Score Patterns over Two Years 

 

 

Several themes emerged from the analysis of the 79 sets of teacher responses across all three TASK 

administrations that inform our understanding of what teachers may have learned from the 

intervention. These themes are summarized in Table 6 and then described below in relation to the three 

domains: analysis of student thinking, learning trajectory orientation, and instructional decision making. 

Since the student names and genders were changed in the different forms administered, those names 

and work samples are referred to with a letter (e.g., Student A).  

Table 6. Themes in Analysis across Teacher Responses 

Domain Theme 

Analysis of Student 
Thinking 

• Classification with labels from the progression 

• Paying close attention to evidence in student work 

• Recognizing limits in students procedural understanding 

• Instructional frame of mind (over evaluative) 
 

Learning Trajectory 
Orientation 

• Changing order of rankings 

• Using progression to justify rankings 

Growth Y1 only

Growth Y1 and Y2

Growth Y2 only

No Growth

0 10 20 30 40

Growth Y1
only

Growth Y1
and Y2

Growth Y2
only

No Growth

Column1 3821173
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• Justifying rankings in relation to underlying conceptual 
understanding and reasoning 

• Balancing multiple cues from student work (e.g., strategy use and 
errors) 
 

Instructional 
Response 

• Using progression to identify next developmental step 

• Shift from teaching traditional algorithm to building on what 
student knows 

• Increased specificity in instructional response 
 

 

Analysis of Student Thinking 

The most prevalent change from the baseline to the Y1 and Y2 responses was evidence of teachers using 

labels from the OGAP Progression (e.g. early additive, transitional) to categorize and analyze the samples 

of student work. The words additive, transitional and multiplicative were not present in any of the 

baseline responses, but at the end of Y1 more than a third of the teachers correctly used the labels to 

categorize the two work examples that clearly showed an additive or multiplicative strategy.   

 

 

 

The example below is illustrative of many of the cases where teachers showed this growth: they shifted 

from relatively vague descriptions of the student strategy (using pictures, making groups) to naming the 

strategy according to the progression: The teachers is analyzing Student A’s strategy, which was to draw 

out each object in every group and count the total by ones, as evidenced by tick marks next to the 

objects.  

BL Y1 Y1 and Y2 Y2 only

Additive 0 30 9 3

Multiplicative 0 27 15 2

0

5
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35
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BL  Y1 

Student A drew a picture of the problem 
showing that there are 19 packs of 
erasers and 3 erasers in each pack. She 
understood the problem. 

 

Student A is in the early additive stage 
modeling and counting by ones.  

 

As this example, illustrates, the labels give teachers an efficient way to categorize student work in 

relation to learning trajectory. Interestingly, these labels were less prevalent at the end of Year 2, 

indicating that teachers may have been using the OGAP Multiplicative Reasoning Progression more in 

the first year than they were in the second year of the intervention. One explanation for this could be 

because the focus of the intervention during Year 2 was on fractions; alternatively, there may have been 

some fading out of the use of the progression. This does not necessarily indicate that these teachers 

were analyzing the student work at a lower level, only that they were not using the labels. A few 

teachers who did not use the labels at the end of Year 1 did use the labels at the end of Year 2, 

indicating that for some, additional take up of the OGAP Progression may have taken place in the second 

year. 

A second theme that emerged was that many teachers were paying closer attention to the evidence in 

the student work, as shown by the following example. While in the baseline year, this teacher merely 

noted the presence of the picture and used that to conclude that the student "understands the concept" 

at the end of year 1, the teacher carefully analyzed that picture for evidence of understanding of 

multiplication and counting by ones. This teacher also recognized that the presence of the multiplication 

sentence (24 x 4 = 96) did not count as evidence that the student was actually using multiplication to 

solve the problem.  

BL  Y1 

Student A uses pictures to solve. 
Understands the concept 

 

Student A makes 24 groups and draws 4 lines 
for each group to represent the legs on the 
elephants. I believe he is counting by ones 
because it looks like he went back and put a 
dot to count up all the legs. Student A gave a 
multiplication fact to find the answer, but did 
not get the answer by multiplying. 

 

A third theme in analysis of the student work was recognizing the limits in student's procedural 

understanding. This was prevalent in the analysis of work where the student had attempted to use the 

traditional US algorithm but showed lack of understanding of place value in carrying out the steps and 

had an unreasonable solution. The student work also showed evidence of a less sophisticated level of 

understanding in the fact that repeated addition had been used to calculate a single digit multiplication 

fact. Many teachers initially analyzed the errors in the work as procedural and secondary to the fact that 

the student was using the algorithm, but then after the intervention recognized that the student was 

using a procedure without understanding. For the following teacher, this recognition only came at the 

end of the second year: 

BL  Y1  Y2 



15 
 

Student C understand multiples. 
Difficulty carrying out the 
process to the traditional 
algorithm. 

 

Student C has an understanding 
of the traditional algorithm for 
multiplication, but has made an 
error in the process of using it. 

 

Student C doesn't understand 
that in 26 x 3 that he is 
multiplying 3 by both 6 and 20.  
He doesn't understand the 
value on the 2 due to his place 
value. 

 

The response in Year 2 shows recognition that the error in the student work indicates a lack of place 

value understanding, something that was noted by only 9 teachers in the baseline, but then by 20 

teachers in either Year 1 or Year 2. Several other teachers recognized that the student did not "have 

good number sense," might not be "ready" for the standard algorithm, and/or would benefit from more 

modeling or conceptual work.  

 

Finally, we noted a tendency of teachers to talk about instructional implications of the student work 

even though this was not a focus of the prompt. For the example that had errors, several teachers 

suggested that the student might benefit from a model or more experience with equal groups. Likewise, 

for the student work that showed evidence of counting by ones, some teachers wrote about how this 

could be built upon to introduce addition or arrays.  

Learning Trajectory Orientation-Ranking and Justifying Student Work 

After the first year of the intervention teachers began to use the progression to help justify their 

rankings of the student work in terms of sophistication of reasoning. This resulted in changing the order 

of sophistication of the selected pairs of student work in relation to each other.  

For example, when asked to compare two samples with correct solutions, Student B who used the open 

area model and Student E who used a more abstract strategy of using a related fact and adjusting 

through compensation, teachers who initially ranked B over E or ranked them equally, came to see E as 

more sophisticated after the intervention: 

BL (B>E)  Y1 (E>B)  Y2 (E>B) 
Student B is more sophisticated 
because he knew the lattice 
strategy of multiplication. 
Student E estimated to the 
nearest ten to make it easier for 
her to solve the problem. Then 
she found the related fact 2x3 
to get 60 and then subtracted 3. 

 

Student E uses multiplication 
and subtraction 

 

Student E is multiplicative and 
Student B is transitional using 
open area model. 

 

In addition to using the progression labels, this teacher seemed to develop a stronger familiarity with 

different strategies, learning to recognize the open area model (rather than thinking it was the lattice 

method) and seeing Student E's strategy as a multiplicative strategy rather than estimation.  

In comparing Student E's multiplicative strategy to Student A, who drew out all the groups and counted 

by ones, most teachers could identify Student E as being more sophisticated even at the baseline. 

However, after the intervention, many were also able to articulate their reasoning in terms of the 
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students' underlying level of reasoning and understanding. Note how the following respondent moves 

from stating that Student E understands the problem more abstractly to being able to articulate the 

student's underlying understanding of multiplication:  

 

 

 

 

BL (E>A)  Y1 (E>A)  Y2 (E>A) 
Student E understands the 
problem abstractly as 20 
packages is 3 erasers less than 
19 packages. 

 

Student E understands 25 
groups subtract one group is 
the same as 24 groups of four. 
He finds the fastest and easiest 
way to calculate and he may 
also be able to do this mentally 
without writing it down. A is 
counting by ones. Even though 
Student A drew equal groups of 
fours, there is no evident that 
he can count by fours. Student E 
can multiply 4 by 25 without 
any counting. Student E showed 
that he has a lot more 
experiences of family facts of 
four up to 25. Student E uses his 
prior knowledge to solve the 
problem creatively and quickly. 

 

Student E is using 
multiplicative thinking. She 
understands that the 
conceptual algorithm of 
partial products of 25 x 3 and 
adding 1 group of three is 
equivalent to the product of 
26 x 3. On the other hand, 
Student A still has to rely on 
drawing models of 26 equal 
groups of three to arrive at 
the answer.  If Student A had 
just written the equation 26 x 
3=78, he may be able to think 
as abstractly as Student E did. 
Even if Student A did that, 
Student E's ability to break 26 
x3 into two equations proves 
to me that she has a better 
conceptual understanding of 
how multiplication and 
addition are related. 

 

Similarly, the following respondent moves from stating that Student E didn't need to "draw it out" to  

using the progression to justify the rankings, and finally to identifying the use of the distributive 

property in this strategy. While there was no mention of the distributive property in any of the baseline 

responses for this question, it came up directly in 5 responses after the intervention and was described 

less directly by many others (e.g., "E understands she can break apart the number to create two easier 

problems").  

BL (E>A)  Y1 (E>A)  Y2 (E>A) 
Student E knew to use easier 
numbers to get the answer and 
didn't need to draw it all out. 

 

Student E is in the multiplicative 
area and Student A is still 
transitional, or additive but 
using repeated addition. 

 

Student E understood how to 
make the problem easier by 
using the distributive property. 
Student A had to draw it out. 
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Again, the use of labels from the progression was particularly prevalent at the end of Year 1, but by the 

end of Year 2, many teachers were also able to justify their rankings in terms of the underlying 

conceptual understanding in the student work without necessarily using the progression. 

However, when teachers were asked to compare two students who had obtained the incorrect answer 

the results were slightly different: Student C used the traditional US algorithm incorrectly with place 

value errors while student D used skip counting but made an error in keeping track of the number to 

count. In other words, student C's error was conceptual while student D was computational and easier 

to address. On the other hand, student C was attempting to use a higher level strategy. In the following 

example, a teacher who initially ranked student C higher then used the progression after Year 1 and 2 to 

justify why student D was higher.  

 

BL (C>D)  Y1 (D>C)  Y2 (D>C) 
Student C attempts to multiply 
conventionally, even though she 
multiplies incorrectly. Student D 
does not attempt to multiply. 
Instead he relies on skip 
counting, which is not as 
sophisticated. 

 

Student D uses a transitional 
strategy. Student C incorrectly 
uses the traditional 
multiplication strategy.  

Student D uses an early 
transitional approach. He skip 
counts and is almost correct.  
Student C attempts to use a 
traditional algorithm but uses 
procedures incorrectly and is 
therefore non-multiplicative. 

 

These responses from Y1 and Y2 reflect how teachers were taught to use the OGAP Progression in 

training. If a student attempted to use an abstract procedure but showed lack of understanding of that 

procedure, the response was classified a non-multiplicative. Making the comparison between these two 

pieces of student work requires paying attention to and balancing several different pieces of 

information: the level of the strategy attempted, the correctness of the answer, the nature of the error, 

the reasonableness of the answer, and additional information that Student C used repeated addition to 

find a simple fact. For example, another teacher explained how she balanced this information:  

I ranked Student D higher because even though they are both incorrect, Student D's answer is 

reasonable and she has just made an error in her skip counting. Student C is trying to use a 

traditional method without understanding and she is adding on the side. 

However, many teachers continued to identify the use of the algorithm as being indicative of 

multiplicative thinking, either because the student was trying to use multiplication or because Student D 

was using a less sophisticated strategy : "Student D is LESS sophisticated in her thinking than Student C 

because she used an additive strategy, but skipped one group of 4 (from 40 to 48). Student C is 

multiplicative, but just regroups incorrectly."  This example illustrates the complexity of analyzing and 

ranking student work in terms of sophistication, and the data suggests that many teachers may adopt 

the use of the progression somewhat procedurally, at least initially. Learning to classify student work by 

strategy is a new activity for most teachers, and as they make that shift they may do so to the extent 

that they ignore the other evidence on the page. Learning to balance and weigh strategy and errors may 

be a more complex activity that takes additional time to learn and master.  
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Instructional Implications 

The most common theme in the instructional decision making responses was a shift from teaching 

students a standard algorithm (partial products, lattice, traditional US algorithm) to a developmental 

view. After the intervention, when teachers were asked what they would do next with Student A, who 

had drawn out all the groups and counted by ones to find the total, 57 teachers (72%) made an 

instructional recommendation that drew on the progression in some manner. 24 of those teachers had 

shifted from initially suggesting the student learn a standard algorithm or fact recall to recognizing that 

the student was not yet ready, and instead suggesting a more appropriate next step such as skip 

counting or introducing the open area model, as in the first example shown below. In other words, they 

drew on the progression to suggest transitional strategies rather than jumping all the way up to the 

multiplicative level. There were also several teachers who shifted from relatively vague instructional 

suggestions (moving away from using pictures, developing a quicker strategy) to recommending more 

specific strategies from the transitional level of the progression.  

BL  Y1 

I would instruct Student A on how to do 
lattice multiplication to solve this 

problem. 
 

I would have Student A move from modeling to 
skip counting with modeling. 

 

Even those teachers who seemed to take a developmental view before the intervention, over time were 

able to articulate the instructional next step more specifically in terms of the progression, such as in the 

example below. 

BL  Y1 

When I feel that she is ready I would 
start to move her from representational 
to abstract by showing her some 
methods to figure the problem out with 
just numbers and steps. It is clear that 
she understands the concept so helping 
her move to the next stage would be the 
next step. 

 

I would try to move Student A from the 
additive stage to the early transitional stage by 
showing him how to use an area model to 
solve the problem. I would to do this to try to 
move him to the next stage of reasoning. I 
think the area model would be a good next 
step. 

 

One teacher was able to go beyond merely suggesting the open area model, to explain how to transition 

the student from the drawing to the area model and the distributive property:  

I will have Student A visualize and communicate why he had made an array of 5 groups x 

5 groups to get 25 groups. Treating the model as an array, I would ask him how many 

stickers are in 5 groups of 3, 10 groups of 3, 15 groups of 3, 20 groups of 3 and finally 25 

groups of 3. Or how many stickers are in each row? each column? Example, if 26 x3 =78, 

what is 5 x 3, what is 10 x3 and what is 20 x3...I would also assess if Student A knows 

how to skip count by three and be able to physically match the number with the model 

as well as explain his thinking using his model. 



19 
 

This shows a deeper level of instructional decision making that was relatively rare and goes beyond 

merely applying the progression, to demonstrate fuller understanding of the development of 

multiplicative reasoning. In other words, the teacher was appropriating conceptual underpinnings of the 

tool (Grossman, 1999).  

Trajectories of Teacher Learning 

Looking across TASK scores from all three time periods illustrates four distinct patterns of change over 

time. We illustrate these patterns with examples of teacher’s analysis of Student A’s work, the one that 

drew out all the groups and counted by ones to find the total. The first and most common path is 

characterized by teachers whose responses were rated higher at the end of Y1 but then slightly lower at 

the end of Y2. As the following example shows, many teachers in this group used the progression to 

analyze student work differently in Y1, but then not in Y2. (In this case, the teacher went from a general 

to a learning trajectory and then back to a descriptive or procedural analysis.) One possible explanation 

is that the Multiplicative Reasoning progression was forgotten with the focus being on fractions in Y2. 

Another explanation may be that the teacher or school put less focus on OGAP and formative 

assessment during Y2. 

 

 

 

 

 

 

 

 

As stated earlier, a sizeable number (39) of teachers demonstrated increased scores from baseline to 

end of Y2 with more than half of those increases in both years.  Looking more closely at responses from 

this group of teachers a common trajectory is an initial shift from general or procedural analysis to use 

of the progression to identify the student strategy and then in the second year, a shift from merely 

identifying the strategy to providing an analysis of what the student understands in relation to 

multiplicative reasoning.  

 

 

 

Very concrete learner. 

A is using an early additive 
strategy and modeling, counting 
by ones to get the answer 

A is using equal groups  

Student understands how to 
"act out" the problem in order 
to figure out solution. Still must 
count one-to-one 
correspondence or can count by 
threes 

Student uses early additive 

strategy of counting by ones 

Student understands that there 
are 26 groups of 3 stickers each.  
She understands that the correct 
way to represent the problem is 
with a multiplication number 
sentence 26 X 3 = 78.  Student 
may have used Early Additive 
Strategy to count by ones to 
solve problem. 
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In this case, and in several others, the teacher began by identifying that student is using drawings or 

pictures, but had nothing else to say about it, then moved to identifying strategy on progression in Y1, 

and then ultimately to understanding what that evidence (the picture) shows about both strategy and 

underlying understanding.  

This pattern suggests a possible trajectory where introduction of tool supports categorization, focuses 

attention, and then over time leads to qualitatively different analysis in terms of student understanding. 

Could this be because they are paying more attention to student thinking? Recognizing student 

understanding in their classrooms?   

A third trajectory that appears to be common is characterized by an initial shift to using progression in 

Y1 and that stays stable in Y2.  

 

 

 

 

 

 

 

 

 

In this example, it may be that the categorization of student work in relation to the framework has 

become so automatic or routine that the teacher no longer needs to extract and explain all the 

evidence, or it may represent a slightly less sophisticated analysis. Either way, the framework is still in 

use at the end of Y2.  

A fourth and final trajectory is characterized by no discernable or negative change in Y1 but then 

positive growth in Y2. In the example below, the teacher provided a descriptive and conceptual analysis 

of Student A’s work at the baseline. At the end of year 1, the analysis seemed to draw on the 

progression but misidentified the strategy as an array and did not reference conceptual understanding. 

Student understands how to 
"act out" the problem in order 
to figure out solution. Still must 
count one-to-one 
correspondence or can count by 
threes 

He knew the correct operation 
to use. He's appears to be in the 
early additive stages because he 
counted each leg by ones, but he 
knew how to write the equation. 

Is in the additive stage of 

multiplicative reasoning 
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It is only at the end of Y2 that the analysis correctly describes the strategy and places it in the additive 

stage, suggesting a stronger understanding of the progression.  

 

 

 

 

 

 

 

 

This last example suggests that appropriation of the learning trajectory framework may take time, and 

may be procedural or focus only on surface features at first. Of course there were also those who 

demonstrated no significant change over time, indicating that the learning trajectory framework may 

have never appropriated--either because the teacher decided not take it up or did not have adequate 

time or opportunity to learn about it.  

Discussion  

Uncovering some of the patterns in how teacher responses in each domain changed after the 

intervention and the patterns of change in individual teachers' responses over two years, highlights both 

different levels of appropriation and some affordances and constraints of the learning trajectory as a 

tool for analyzing and responding to student thinking.  

First, it is clear that the OGAP Progression gave teachers new categories to frame their interpretation 

and response to student work. The labels on the progression helped to both focus teachers’ attention on 

student strategies and filter or organize that information in a progression. Several studies have found 

that classificatory talk pervades teacher workgroup conversations and that these categories tend to 

come from the way student performance is reported on high stakes standardized tests (e.g., below 

basic, basic, proficient, advanced) (Little, Bowker & Star, 1999; Horn, Kane & Wilson, 2013). This 

intervention introduced teachers to a very different way to categorize student work--not just on overall 

performance in relation to a standard but in relation to strategy, errors, and conceptual understanding. 

However, it is also clear that some teachers appropriated the OGAP Progression at a superficial level--

what Grossman et al call "appropriating a label"--while others "appropriated conceptual underpinnings."   

 

In addition, the OGAP Progression seems to have functioned as a tool that scaffolds teacher analysis and 

response to student work. Many teachers demonstrated  shifts in their ways of thinking about student 

thinking. These shifts include the kind of evidence teachers pay attention to, what they value in student 

Student A has a visual 
understanding of multiplication 
and understands equal groups. 
However, she might not know 
her facts, which might hurt her 
in larger problems 

Student A uses arrays to solve 
larger problems and still counts. 

Student A is in the additive 
stage since they are modeling 
and counting by ones. 
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thinking, how they compare solution strategies, and the importance of building on student thinking 

rather than prescribing specific strategies.  These shifts were particularly evident in relation to how 

teachers made sense of and responded to non-traditional strategies and in their views on procedural or 

algorithmic knowledge. Furthermore, many came to recognize both the importance of conceptual 

understanding and the limitations of procedural understanding.  

 

The data also suggest that many teachers appropriated the tool in somewhat superficial ways, at least 

initially. Categories and labels can help to focus attention but also be constraining. As Weick describes, 

words are a powerful part of the sensemaking process: "Words constrain the saying that is produced, 

the categories imposed to see the saying, and the labels with which the conclusions of this process are 

retained" (p.106).” While teacher responses showed evidence of using the progression, it was not 

always used correctly or in the spirit of making sense of student thinking. Nevertheless, many teachers 

who initially used the progression to apply labels to student work also moved beyond strict 

categorization to demonstrate an ability to articulate student understanding from a conceptual lens. In 

these cases the progression functions as both a schema for categorization and a conceptual framework. 

This raises important questions--does using the progression for categorization of student work lead to 

conceptual appropriation over time? What other factors may have influenced the appropriation to focus 

on conceptual underpinnings rather than only surface features?  

Finally, our analysis suggests that the TASK rubric, which was developed independent of this 

intervention and study, does not necessarily represent a developmental path--from general to 

procedural to conceptual to learning trajectory--as we might have predicted. Before the intervention, 

teachers were analyzing and responding to student work at general and procedural or descriptive levels. 

The intervention introduced teachers to a learning trajectory framework which led many of them to 

analyze student work in relation to this progression but some teachers appeared to do this without 

considering underlying conceptual understanding. Other teachers moved beyond this surface level 

usage to develop a more articulated analysis and response to student thinking, sometimes even 

dropping the labels by the second year. In this way the learning trajectory framework appears to act as a 

scaffold for deeper and more substantive interpretation rather than only serving as the endpoint of 

appropriation and mastery.  

Implications 

The findings of this study suggest that a learning trajectory framework can be a tool that supports 

growth in teacher knowledge. The shifts that are evident in teacher thinking are important not only for 

analyzing and responding to student work, but for developing ambitious instructional practices that 

center on student thinking. Teachers make sense of student thinking during whole class discussions, 

while working with individual students or small groups, and when planning for instruction. Current 

reform efforts, standards, and curriculum materials put value on having students use multiple strategies 

to solve problems. Teachers need the knowledge to be able to make sense of those strategies, know 

how to support student understanding of them, and move students to more sophisticated 

understanding over time. Teachers often remark that the newer curriculum materials introduce and 

have students practice all of the strategies represented on the OGAP Progression—e.g., repeated 
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addition, skip counting, arrays, open area, partial products, standard US algorithm. A learning trajectory 

framework gives teachers a way to move beyond presenting students with a smorgasbord of strategies 

to organize and map these strategies in a way that guides and inform both formative assessment and 

instruction. The fact that so many teachers in this study shifted from seeing standard multiplication 

algorithms as a universal next step for students to seeing them as strategies that should be introduced 

only after students have developed the multiplicative reasoning to make sense of them is particularly 

important. The progression of student strategies based on understanding of place value and properties 

of operations culminating in standard algorithms is a central theme the Common Core Standards for 

Mathematics and important for more principled use of CCSS aligned curriculum materials.  

The analysis reported in this paper was exploratory and raises several questions for further research. To 

explore change in teachers’ analysis and interpretation of student thinking over time, we drew on 

averages of rubric scores where increases and decreases varied and were often small. Further analysis 

will draw on more sophisticated models to explore teacher growth and change over time. We also plan 

to further explore the trajectories that emerged from this study and the relationships between these 

patterns and implementation, student performance, and other measures of teacher knowledge (e.g., 

MKT). 
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Appendix A. Student Work Samples from MR TASK Form A. Form B and C had parallel but slightly 

different samples.  
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