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New Approaches to the Division of Cognitive Labor

Abstract
Scientists are not lone agents, cut off from the outside world, responding only to information generated in
their own laboratories. Rather, they make decisions about what to investigate by integrating what they
discover for themselves with what they learn from others. They also take into account external factors such as
grants, prizes, and prestige. These sources of feedback lead scientists to coordinate and divide their resources
among differing approaches to the research domain. This coordination seems to enhance the success of
scientific communities, but this coordination is neither planned nor explicit. Philip Kitcher has called this fact
about scientific communities the division of cognitive labor.
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New Approaches to the Division of Cognitive Labor

Michael Weisberg
University of Pennsylvania

forthcoming in New Waves in Philosophy of Science

Scientists are not lone agents, cut off from the outside world, responding only to information gen-
erated in their own laboratories. Rather, they make decisions about what to investigate by inte-
grating what they discover for themselves with what they learn from others. ey also take into 
account external factors such as grants, prizes, and prestige. ese sources of feedback lead scien-
tists to coordinate and divide their resources among differing approaches to the research domain. 
is coordination seems to enhance the success of scientific communities, but this coordination is 
neither planned nor explicit. Philip Kitcher has called this fact about scientific communities the 
division of cognitive labor.

e division of cognitive labor is one of the most striking features of modern scientific communi-
ties and has been argued to be a key component in their epistemic success (Gerson, 2008; Kitcher, 
2002, 2003; Hull, 1988; Rosenberger, Grim, Anderson, Rosenfeld, & Eason, ms; Solomon, 2001; 
Strevens 2003, 2006;  Weisberg and Muldoon, forthcoming; Zollman 2007, forthcoming). How-
ever, relatively little is known about the connection between these cognitive and social facts about 
science and the epistemic productivity of scientific communities. Research questions concerning 
the division of cognitive labor are both empirical and theoretical. Empirically, we might ask: What 
is the actual division of labor in particular research communities? How much overlap and repeti-
tion of research is found in the most successful communities? What is the normal extent and pat-
tern of communication among scientists? How do scientists make choices about dividing their 
cognitive labor? What is the connection between this division and the division of expertise 
documented by psychologists (Keil, et. al., 2008)? While philosophers might contribute to these 
questions, they tend to fall into the domains of psychology and sociology of science.

But there are theoretical questions concerning cognitive labor that are more easily addressed with 
philosophical methods: What different types of divisions of cognitive labor are possible? How ef-
fective are these divisions for achieving scientific goals? Are there tradeoffs among these divi-
sions?  What kinds of individual motivations can lead to these divisions? How do restrictions of 
information and resources affect these choices and the division of labor which is an outcome of 
the choices? What kinds of incentives or structural features might the scientific community adopt 
to achieve better divisions of cognitive labor?

ese questions are at the heart of new work in philosophy of science that investigates the social 
structure of science. is work examines how the division of cognitive labor contributes to sci-
ence’s epistemic power, and how it can create epistemic and social problems. A truly interdiscipli-
nary part of philosophy of science, this work draws together philosophers, historians, sociologists, 
psychologists, computer scientists, and mathematicians. In this paper I will discuss three recent 
approaches to studying cognitive labor: Kitcher’s and Strevens’ marginal/contribution reward 



(MCR) approach, Zollman’s and Grim’s epistemic networks approach, and the epistemic landscape 
approach I developed with Ryan Muldoon.

1. Marginal Contribution/Reward Approach

e best known approach for modeling cognitive labor has been championed by Philip Kitcher 
(1992, 1993) and Michael Strevens (2003, 2006). Kitcher and Strevens represent the division of 
cognitive labor as a community-level resource allocation problem. Imagine that the scientific 
community is trying to find the metabolic pathway of an important biological process and they 
can take several approaches to discovering this pathway. To maximize its chances of discovering 
the pathway in the minimum amount of time, the community needs to find a way to divide its 
most important resource, scientists, across these different projects. e optimal allocation will be 
the one that maximizes the probability of finding the pathway, or of finding it in the shortest 
amount of time or for the least cost.

While Kitcher and Strevens discuss how the community might calculate the optimum distribu-
tion of cognitive labor, the most interesting part of their analysis is conducted from the point of 
view of the individual scientist. Strictly speaking, they model a representative agent, but it is easi-
est to think about the analysis from the point of view of a scientist newly entering the field. In 
their account, the scientist knows the current distribution of scientists to projects, as well as the 
success function for each project. Success functions represent the ability of the project to trans-
form the cognitive resources of scientists into successful outcomes.

With the success function and the current distribution of cognitive labor, the model scientist can 
calculate its marginal contribution to the success of the different projects. In other words, it can 
figure out how much more probable a project’s success would be if it were to join the project. 

On the basis of such models, Kitcher and Strevens make an important argument: Classical epis-
temic norms will lead scientists to misallocate their cognitive labor. If a classically rational, truth-
seeking agent followed the procedure above, then she would join the project with the highest 
probability of success. But this isn’t always what the scientific community as a whole wants to see 
happen. Maximizing the chance at success might involve distributing scientists across projects, 
not just to the projects with the best chance of success.

Returning to our example, imagine that one of the ways of investigating the biochemical pathway 
had a high probability of success when a reasonable number of scientists works on the project. At 
the same time, there is another approach that has a relatively low probability of success, but this 
probability of success could be realized if a small number of scientists works on the project. In a 
case like this one, assuming diminishing marginal returns for increasing numbers of scientists, 
the community would be better off if a small number of scientists worked on the second ap-
proach. However, this would not happen if everyone followed the classical epistemic norm: “take 
the approach most likely to lead to the truth.”

To explain this discrepancy between classical epistemic norms and real scientific communities, 
Kitcher and Strevens draw on analyses from the history and the sociology of science. Scientists, 



they argue, are oen motivated by more than just epistemic factors. Prestige, credit, money, jeal-
ousy, greed, and so forth, are all factors that may affect how scientists choose to divide their labor.

Consider the simple case where scientists are motivated by credit alone. Assuming that the lion’s 
share or all of the credit goes to the scientist who makes a discovery first, scientists will want to 
take into account both the probability of success of the project and the probability that they will 
be the first one to complete the project. e first consideration pushes scientists towards the pro-
ject with the overall highest probability of success, but the second consideration pushes scientists 
towards projects that have fewer scientists working on them. is fact, Strevens (2003) has ar-
gued, explains why the scientific community has adopted the Priority Rule, the rule that whoever 
discovers something first gets all the credit.

is is only a sample of the utility of Kitcher’s and Streven’s framework for studying cognitive la-
bor, but it illustrates the kind of question that it can be most usefully applied to. When a fixed 
number of projects are available, and the incentives, success functions, and distribution of cogni-
tive labor are known to all scientists, analytical results can be derived in this framework. Many of 
these results show that the scientific community is oen right to hedge its bets by distributing 
cognitive labor. One way this can be encouraged is if the community organizes incentives so that 
self-interested individual scientists can lead the community as a whole to better fulfill its epis-
temic goals.

Productive as it has been, the MCR framework has been less successful in modeling situations of 
imperfect information and bounded rationality. For example, the models require that every agent 
know what every other agent is doing. e next approach to cognitive labor is specifically de-
signed to investigate situations where this is not the case.

2. Epistemic Network Approach

A second approach to modeling cognitive labor focuses on how the social structure of science af-
fects learning, confirmation, and the propagation of error. Famous laboratories such as the war-
time Los Alamos nuclear weapons laboratory (Rhodes, 1987) and MIT RADAR laboratory (Gali-
son, 1997) planned ways for scientists to continuously integrate their findings and share ideas 
with one another. Technological innovations such as the Internet and rapid forms of electronic 
publication make this possible on a much wider and geographically distributed scale. But is this 
high degree of collaboration an unambiguously good thing?  Might such communication lead to 
the propagation and fixation of errors as well as knowledge?

e epistemic network approach investigates these questions by combining ideas from confirma-
tion theory and network theory. Scientists attach probabilities to hypotheses using information 
that they discover for themselves and information that they learn from other members of their 
community. In new work by Grim (Rosenberger, Grim, Anderson, Rosenfeld, & Eason, ms) and 
Zollman (2007; forthcoming), lines of communication between scientists are represented by net-
work graphs, such the ones seen in Figure 1. Each node of these graphs represents a scientist and 
each edge a communication channel. By altering the connectivity of the graph, from the mini-
mally connected cycle to the maximally connected complete graph, Zollman and Grim have 
simulated different communication structures in science.



[Figure 1]

Zollman’s recent work provides both an illustrative example of the potential of this work, and also 
a surprising and startling conclusion. He asks us to consider the following abstract scenario: sci-
entists are trying to determine whether the world is in state φ1 or φ2. He likens this to trying to 
determine the causative agent for some disease. Are peptic ulcers, for example, caused by hyper-
acidity or bacteria? In standard Bayesian fashion, every scientist has a prior probability on the hy-
potheses that φ1 is true and that φ2 is true, where no scientist attaches probability 1 or 0 to either 
hypothesis and where these two hypotheses are mutually exclusive.

Now imagine that data start coming in by experiment. As each scientist begins experimenting, 
she receives information about the world. is information is drawn from a distribution centered 
around the objectively true answer, taking in to account the fact that experiments produce noisy 
data. Scientists update their beliefs according to the data that they generate, as well as the data 
generated by the peers to whom they are connected in a social network.

Zollman took this basic idea and applied it to network models suitable for investigation by simu-
lation. He iterated the scenario described above until the community converge either on the cor-
rect answer or on another state where the population is no longer able to take in new information. 
e scenario was studied with randomized initial priors and repeated 10,000 times per condition.

Although there are many subtleties to Zollman’s results, two especially interesting conclusions can 
be drawn from this work. First, scientists connected in a cycle converged to the truth more oen 
than scientists connected in a wheel or in a fully connected graph. is suggests the unintuitive 
conclusion that careful limiting of information available to scientists may have certain advantages. 
Or to put the point more bluntly, less well-informed scientists might have an advantage over more 
well-informed ones, if the goal is to minimize error. e second result, however, suggests an ad-
vantage of the more highly connected communities. When these communities converge to the 
truth, they do so more rapidly. For the ten-scientist communities Zollman studied, those on com-
plete networks converged about five times faster than those in the cycle network.

e epistemic networks approach promises to be extremely helpful in studying divisions of cogni-
tive labor that result in limited information to individual scientists. Zollman and Grim have pri-
marily used this method to address issues of confirmation, but one could also imagine studies of 
project choice in this framework as well. One could start with the MCR framework, but then in-
clude network structure to explicitly limit the information available to scientists in making a 
choice about how to divide their cognitive labor.

Despite its advantages, the epistemic networks approach still requires a lot of initial fixity. e hy-
potheses under consideration as well as the network structure need to be fixed ahead of time and 
do not change. In addition, the models are homogeneous with respect to scientists. Every scientist 
is epistemically equivalent to all the others, the only difference being in connectivity. e final 
approach to cognitive labor allows us to have heterogeneous populations and allows the space of 



projects and hypotheses to change “on-line,” a more accurate reflection of the way science pro-
ceeds.

3. Science on an Epistemic Landscape

A third approach to modeling the division of cognitive labor is the epistemic landscape approach, 
which I have developed along with Ryan Muldoon. is approach incorporates aspects of MCR 
and epistemic networks, but envisions scientific research as being more like foraging than either 
microeconomic optimization or Bayesian reasoning. Like epistemic network models, this ap-
proach severely limits the information available to scientists. e models focus, however, on 
MCR-like questions about how scientists choose to divide their cognitive labor. e approach 
starts with agents of very limited knowledge and rationality and tests how interesting dynamics 
can arise from the bottom up.

Like the other approaches to cognitive labor considered in this paper, the epistemic landscapes 
approach begins from the individual scientist’s point of view. We start by considering the epis-
temic situation of  individual scientists ― what information they have, what their motivations 
are, and so forth. We then try to work out what rules scientists might follow when making deci-
sions about which research projects to pursue and implement these rules in the models.

Let’s start from a concrete example. Consider a psychologist interested in how children’s under-
standing of pretense develops. Given that this is a new area, there are few guidelines about what 
specific projects she might choose to work on. She does know that another lab has demonstrated 
the basic developmental milestones of spontaneous pretend play, but this only constrains her next 
move very modestly. Assuming that she is early in her career, a reasonable first move is to start off 
by replicating the previous finding or by choosing a very similar project. en, as she makes small 
changes from this initial approach, she can determine the extent to which the resulting findings 
are epistemically significant.

Although this sounds straightforward in the abstract, there are actually many degrees of freedom 
making the choice of the next project non-trivial. Even if the scientist starts by investigating the 
developmental trajectory of pretend play and wants to “take the next step,” what direction should 
she take it in? is is where computational models can help us start to get a handle on the process 
of project choice.

3.1 Epistemic Landscape  

Epistemic landscape models begin by postulating a set of approaches, narrow specifications of 
how a research topic is investigated. Approaches specify  the research questions being investi-
gated, the instruments and techniques used to gather data, the methods used to analyze the data, 
and the background theories used to interpret the data.

In the psychology example described above, different approaches might involve investigating 
these phenomena in children of different ages, looking at the differences between individual and 



group play, considering how children play with peers vs. adults, etc. Within these classes of ap-
proaches would be the specifics of the research method, including where the population was 
drawn from, direct manipulation versus observational approaches, the props used to initiate pre-
tend play, and the like. Finally, the same techniques aimed at the same questions may yield differ-
ent results in light of the background theories used to interpret the data. Approaches are narrowly 
individuated in all of these respects and represented spatially in our models.

Scientists make strategic choices when they choose or modify their approaches. In particular, they 
want to choose approaches that generate results of equal or greater significance to their current 
approach. So we need a way of representing the connection between approaches and the signifi-
cance of the knowledge generated by using that approach. 

For present purposes, let’s confine ourselves to what Kitcher (2001) has called the epistemic sig-
nificance of scientific knowledge. is is the purely scientific value of a result that the community 
agrees on. Financial and other pragmatic values are excluded for present purposes. Let’s further 
suppose that all of our scientists are sufficiently talented that adopting an approach will always 
yield whatever significant truths could be discovered by employing that approach.

With these assumptions, we can construct an epistemic landscape. e dimensions of this land-
scape correspond to aspects of approaches, along with an additional dimension of epistemic sig-
nificance. Each point is thus an approach with a corresponding degree of epistemic significance. 

Epistemic landscapes are the scientist-independent part of this representational framework. Here, 
only objective information about the world is represented. It takes the form: If such and such an 
investigation (narrowly construed) is performed by a competent scientist, then such and such re-
sults will obtain. All of this information is meant to be independent of any particular scientist.

In order to make the landscape tractable to simulation, we need to take three further, pragmatic 
steps. First, we discretize the landscape so that “patches” instead of points correspond to ap-
proaches. Second, we reduce the dimensionality of the landscape from the hundreds of dimen-
sions in a realistic landscape to three: two for approach and one for significance. is reduction 
can be thought of as either “bundling” aspects of approaches together, or more plausibly as a sub-
space of the larger approach space. Finally, we wrap the landscape on a torus so that it has no 
edges. When we do this, we get a landscape much like the one depicted in Figure 2, which is the 
landscape used for the tests described in this chapter.

Figure 2

3.2 Scientist Agents

e second half of the framework brings us back to the scientist’ point of view. In the real world, a 
scientist knows what approaches she has taken in the past and the success of these approaches. 
She also knows what approaches some of her colleagues have taken and how successful they were. 
What a scientist doesn’t know is the entire topography of the epistemic landscape. She can’t be 
certain how significant untried approaches will prove to be. All she can do is to make inferences 



about these approaches and then try them out. ese facts are all reflected in the epistemic land-
scape framework.

In epistemic landscape models, a scientist’s current approach is represented spatially: Scientists’ 
locations on the landscape correspond to their current approaches. e model-scientist maintains 
some memory about where she has been before, so that she can determine later if she is going in a 
plausible direction. Further, by adopting a particular approach, scientist agents are able to deter-
mine the significance associated with their current approach. is corresponds to a real-world 
scientist conducting successful research and determining how significant her results actually are.

Since epistemic landscapes are supposed to be models of the social structure of science, agents 
need to have information about the activities and progress of other scientists. Real scientists de-
vote time to reading the literature, attending conferences, and communicating with colleagues, 
learning what has been tried and what has been successful. In the models described below, this 
will be represented in a simplified manner, which roughly corresponds to reading the scientific 
literature or going to conferences. Agents will be able to see a limited range of other approaches, 
determine whether these approaches have been tried and if so, discover the degree of significance 
associated with these approaches.

e models Muldoon and I (forthcoming) have developed focus on approach choice, much like 
MCR models. Once our model scientists can determine the significance of the truths discovered 
with their current approach and their neighbors’ approaches, they must decide what approach to 
try next. A major advantage of epistemic landscape models is that these decisions can be made 
differently by different agents; each can have its own strategy. Our preliminary analyses have in-
vestigated three types of agents with different in strategies: controls, mavericks, and followers.

3.3 Controls

We begin by considering model scientists with extremely limited knowledge: ey only know 
about what approaches they have taken in the past and the significance of the truths generated by 
taking these approaches. ese scientists are unaware of or uninterested in the rest of the com-
munity. eir only interest is in surveying the epistemic landscape in order to find areas of high 
significance. In addition, the scientists will engage in some degree of experimentation: behavior 
that deviates from their current research trajectory. is will keep the agents from getting ma-
rooned in zero significance areas. Because such scientists do not take other’s discoveries into ac-
count, they will serve as our baseline case for investigating the division of cognitive labor.

In our epistemic landscape models, scientists choose their approaches by employing strategies. 
e controls deploy the following, very simple strategy:

CONTROL 

1. Move forward one patch.

2. Ask: Is the patch I am investigating more significant than my previous patch?



 If Yes: Move forward one patch.

   If No: Ask: Is its significance equal to the previous patch?

  If Yes: With probability e, move forward one patch with a random heading.  
   Otherwise, do not move.

   If No: Move back to the previous patch. Set a new random heading. 

3. With probability e, change to a random heading and move forward. 

As discussed above, this strategy restricts the agents’ knowledge to what they can detect them-
selves about the significance of a patch. ey will not even notice if another agent is currently on 
the same patch. e rule ensures that their movement will always be in the direction of increasing 
significance if they are on a gradient. If they get stuck in a low significance area, the experimenta-
tion probability will eventually cause them to move in a new direction and find a more significant 
area. Scientists following this search pattern are guaranteed to find local significance maxima in 
finite time. However, the experimentation procedure is not strong enough to knock scientists off 
of local maxima, unless the peak is constrained to a single patch. is means that the controls are 
guaranteed to find at least one approach of peak significance, but not necessarily both.

To assess the research potential of a community of controls, Muldoon and I asked the following 
questions:

1. How fast does a community of controls find the two peaks of the epistemic landscape? 
How does this scale up as the number of scientists increases?

2. How much epistemic progress does the community of scientists make? How does this 
scale up as the number of scientists increases?

ese questions were addressed by repeatedly employing the landscape shown in Figure 2, but 
varying the initial positions and numbers of scientists. With respect to the first question, we 
found that ten controls found both peaks 95% of the time, but that the time it took to find these 
peaks varied from about 550 to about 43,000 cycles of the model. is variance seems to be ex-
plained solely as a function of the initial distribution of scientists to approaches, which were ran-
domly assigned, although agents were restricted to low significance areas. Increasing the number 
of agents ensured that both peaks were found (as happens 100% of the time in our simulations 
with 20 agents) and that the mean time to finding these peaks was rapidly diminished with in-
creasing numbers of controls.

While it is obviously important for the scientific community to find the epistemic landscape’s 
peaks, much important research also happens using non-maximally significant approaches. To 



investigate this, let epistemic progress be the fraction of patches with significance greater than zero 
that have been visited by the community of scientists.

Employing the same epistemic landscape as before, we discovered a linear relationship between 
the number of controls and the average epistemic progress of the community. For any fixed num-
ber of model cycles, increasing the number of controls gives a linear increase in the average epis-
temic progress of the community. Fixing the number of controls and increasing the number of 
model cycles also results in a linear increase of epistemic progress. In more recent work, my stu-
dents and I have shown that this result is robust across many changes to the epistemic landscape 
(Werner, Naecker, Muldoon, and Weisberg, 2008). Specifically, changing the number, location, 
and size of the hills and peaks do not change these results in any appreciable, qualitative way.

Despite their modest success, a community of controls is neither very effective nor very efficient. 
Large populations of controls can achieve high degrees of epistemic progress, but it takes a con-
siderable amount of time for this to happen. An obvious reason for this is that controls cannot 
learn from one another or take into account what other scientists are doing when they plan their 
next moves. Communities of controls do not divide cognitive labor; each member of the commu-
nity is acting as if it were the only member. 

3.4 Getting Social: Followers and Mavericks

In the last section, I discussed the behavior of a classically rational agent: one that simply tries to 
find approaches yielding truths of the highest significance. is involves no division of cognitive 
labor at all. Each agent acts as if it was the only one. Understanding the behavior of these agents 
first provides a baseline against which we can now compare the behavior of scientists who do di-
vide their cognitive labor.

Followers divide their cognitive labor by reasoning that the best way to find more significant 
truths about the world is to find the approach which has yielded the highest significance so far, 
and move in that direction. is is simulated in several steps. At the beginning of each cycle of the 
model, followers examine the patches in their Moore neighborhood, the 8 patches immediately 
adjacent to the one on which they are currently located. e agents then move to the previously 
explored approach of maximum significance in their Moore neighborhood, if such an approach is 
available. More specifically, followers execute the following decision procedure:

FOLLOW

Ask: Have any of the approaches in my Moore neighborhood been investigated?
 
   If yes: Ask: Is the significance of any of the investigated approaches greater than 
the  significance of my current approach?

  If yes: Move towards the approach of greater significance. If there is a tie, 
pick    randomly between them. 



   If no: If there is an unvisited approach in the Moore neighborhood, move 
to it,    otherwise, stop.

    If no: Choose a new approach in the Moore neighborhood at random.
  
A parallel set of simulations to the ones described above reveals that followers are surprisingly 
bad at finding peaks and making epistemic progress. With 200 followers a single peak (approach 
of maximum significance) was found 60% of the time, with both approaches being found only 
12% of the time. In addition, as we can see in Figure 3, the average epistemic progress of a com-
munity of 400 followers is only 0.17 on our diagnostic landscape, which means that only 17% of 
the significant approaches were discovered. is contrasts poorly with communities of controls. It 
took fewer than 300 controls to reach the same significance achieved by 400 followers.

FIGURE 3

ese results suggest that the high degree of coordination and learning exhibited by followers is 
not an optimal strategy, at least when it is shared by the entire community. is result might lead 
one to think that learning from others inevitably leads to bad epistemic outcomes ― indeed, this 
is one lesson we might learn from Zollman’s models. But is the problem coordination with other 
agents, or the way that followers coordinate? e third strategy will let us investigate this ques-
tion.

Like followers, mavericks pay attention to what others are doing, but they use this information 
differently. Instead of moving towards approaches yielding high significance, mavericks move 
away from explored territory.

At the beginning of each cycle of the model, mavericks examine the patches in their Moore 
neighborhood and execute the following decision procedure:

MAVERICK

Ask: Is my current approach yielding equal or greater significance than my previous ap-
proach?
  
 If yes: Ask: Are any of the patches in my Moore neighborhood unvisited? 

  If yes: Move towards the unvisited patch. If there are multiple unvisited  
  patches, pick randomly between them.

   If no: If any of the patches in my neighborhood have a higher significance  
  value, go towards one of them, otherwise stop.
   
 If no: Go back 1 patch and set a new random heading.

 



Mavericks’ performance is vastly superior to that of controls and followers. e maximally signifi-
cant peaks are always found, even with very small populations. As with the controls and followers, 
we examined populations of 10 to 400 mavericks in increments of 10. With 100 mavericks, the 
community achieves 0.55 epistemic progress aer 200 model cycles. With 400 mavericks, they 
achieve epistemic progress of 0.90 in the same time. Mavericks are thus extremely efficient at find-
ing peaks and, due to the methods they use to find the peaks, they also make excellent and rapid 
epistemic progress. Figure 3 makes the contrast between mavericks and followers clear and shows 
that, while it may be useful for scientists to take into account what other have discovered, this in-
formation can be detrimental to progress when taken into account in the wrong way.

3.5 Polymorphic Populations

It seems highly unlikely that a real scientific community would be composed exclusively of mav-
ericks or followers. Strategies for scientific inquiry vary between scientists and within careers. 
Some scientists are more individualistic and maverick-like; others follow trends and are follower-
like. So what happens in the epistemic landscape model when populations are mixed?

An initial result for mixed populations is that the substitution of a single maverick for a follower 
results in a statistically significant increase of epistemic progress made by a community composed 
of followers. is increase of epistemic significance, however, is small. To investigate this effect 
further, Muldoon and I studied populations of scientist-agents with fixed size, but varied the ratio 
of mavericks to followers. We found that even small numbers of mavericks mixed in with follow-
ers causes the population to make considerably more epistemic progress.

To better understand why this happened, we adopted a second diagnostic measure, the total pro-
gress of the community. Total progress corresponds to the fraction of approaches investigated, 
whether these approaches are significant or not. is measure allows us to see how much total 
activity is being performed by the scientific community.

figure 4

Figure 4 summarizes the results, and we can see that the initial addition of mavericks (ratios of 
.02 –.10) causes rapid tripling then quadrupling of the number of approaches investigated. Fur-
ther small increases in the number of mavericks (0.10 –0.40) take the population to around the 
90% mark for the number of approaches explored in 500 cycles. is massive increase in total 
progress is primarily a result of the increased stimulation of followers by mavericks. As mavericks 
pass through a region where followers are located, they effectively “unlock” approaches for inves-
tigation that the followers would have otherwise avoided. is means that in addition to their 
own direct effects on epistemic and total progress, mavericks make a very important indirect con-
tribution to epistemic and total progress by stimulating followers.

Despite the fact that mavericks stimulate the followers to make considerable epistemic and total 
progress, pure populations of mavericks still perform better than equivalently sized mixed popu-
lations. Scientist for scientist, mavericks make more epistemic progress and more total progress 
than populations of followers. Yet as I mentioned above, scientific communities are typically 
polymorphic in strategy. Why might this be?



One possibility is that the maverick strategy is more costly both to individuals and to the com-
munity. In real communities, this could be due to the strategy’s extreme anti-conservatism. Mav-
ericks cannot learn from their neighbors, or even borrow their neighbor’s techniques, equipment, 
background research and the like. Unless one had a very large research budget consisting of lots 
of money, supplies, and helpers, it would be professionally, institutionally, and personally very 
costly to be a maverick.

If it is more costly to be a maverick, then when resources are finite, optimum research communi-
ties should be composed primarily of followers, but with some mavericks included. In a series of 
new simulations, I have investigated this possibility by adding two additional aspect to the model: 
research resources and research cost.

I start off with a fixed pool of available resource units. Research costs are represented as the con-
sumption of units of this resource per agent per cycle of the model. To investigate situations 
where mavericks are more costly than followers, the followers consume one unit per cycle, while 
mavericks consume ten units per cycle. If polymorphism in real populations of scientists is ex-
plained by research costs, then imposing these restrictions ought to reveal a tradeoff: In a fixed 
population of scientists with modest resources, there will be some optimum balance of mavericks 
and followers, mostly consisting of followers.

Investigation of the new, resource-limited models is ongoing, but two preliminary results are 
worth noting. e first result is that mavericks are always better at making epistemic progress 
than followers. My students and I expected that imposing modest resource limits and making 
each maverick more expensive than a follower would result in a tradeoff where a mixed popula-
tion of mavericks and followers made maximal epistemic progress; we were incorrect. Mavericks 
are so much better than the followers that in most scenarios, pure populations of mavericks are 
better than mixed populations, despite the fact that they have many fewer cycles to investigate the 
landscape.

Figure 5

Only when we imposed severe restrictions ― ones that caused a pure population of mavericks to 
only run for about 25 cycles ― did we start to see the tradeoff (Figure 5b). Even here, the opti-
mum balance of mavericks and followers is shied much further in the direction of mavericks 
than we expected. While these models are still relatively simple, these results suggest that higher 
research costs cannot be the whole explanation for polymorphism in research communities.

Epistemic landscape models’ flexibility for representing cognitive labor should be evident, even 
from this brief presentation. To date, however, they still lack some of the positive features of the 
other approaches. Unlike the MCR approach, epistemic landscape models do not provide an easy 
way of determining the community-level optimum distribution of labor. Different distributions 
need to be tried by simulation, upon specification of the measure of interest. Similarly, landscape 
models have not yet represented community structure other than Moore neighborhoods of ap-



proaches. It is easy to generalize the Moore neighborhood concept to bigger areas, but this is still 
a neighborhood of approaches, not of agents.

4. Connecting the ree Approaches

e models described in this chapter are all extremely simple. Each one of them can be extended 
in myriad ways, and some of their key results might be tested by looking at sociological and psy-
chological data. Rather than describe these possible extensions and empirical tests, I want to close 
with a few comments about how the central ideas of the three modeling approaches might inform 
one another in future work.

One way of uniting the approaches is to take conclusions generated by MCR models, and investi-
gate the conditions under which they could arise using network and landscape models. For ex-
ample, say we wanted to discover the conditions under which the scientific community would 
adopt the Priority Rule. An agent-based model, similar to the ones used in the epistemic land-
scape approach, could be used to relax some of Strevens’ key assumptions, seeing under what 
conditions the Priority Rule produces the optimal distribution of labor. Another model might in-
corporate an evolutionary dynamic (with mentors “giving birth” to students) and show under 
what conditions the Priority Rule would spontaneously arise. e approaches might also make 
contact when additional sources of value or significance (practical, monetary, etc.) are included in 
the landscape. Here one might investigate the interaction of reward schemes and strategies with 
different epistemic landscapes.

A second potential connection between the three approaches would be to incorporate epistemic 
networks into MCR and landscape models. eir incorporation into MCR models would be one 
way to introduce bounded rationality into models that otherwise assume that representative 
agents have access to all relevant information. One might also imagine using epistemic networks 
in landscape models in order to create more realistic versions of the follower and maverick strate-
gies. e work of some scientists will be particularly salient to others, because of fame, skill, 
friendship, or other factors. It is reasonable to assume that followers only follow some scientists, 
and not necessarily just the ones employing nearby approaches. Similarly, mavericks may be com-
fortable following some very important leaders in their field, but otherwise they want to avoid 
what most other scientists are doing.

Finally, ideas from the landscapes approach might be fruitfully adopted in epistemic network 
models. While the connectivity in network models can be varied, the actual epistemic strategy of 
each scientist is homogenous and based on simple Bayesian reasoning. As the landscape approach 
shows, interesting results arise when strategies are varied and populations are polymorphic. Simi-
lar tests could be deployed using epistemic networks, where the agents at each node reason differ-
ently. 
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Figure 1: Zollman’s three 
epistemic networks with 
10 nodes. From le to 
right: the cycle, the 
wheel, and the complete 
network.

Figure 2: e example epistemic landscape 
used in the simulations described in this paper.

Figure 3: Comparison of the epistemic pro-
gress of controls, followers, and mavericks. 
Controls and mavericks measured aer 200 
cycles, followers aer 1,000.

Figure 4:
Average number of approaches investigated by 
mixed populations of followers and mavericks 
aer 500 model cycles. e landscape consists 
of 10,201 approaches total. e population 
size is held fixed at 400 scientists, but the ratio 
of mavericks to followers is varied from 0 
mavericks to 400 mavericks.
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Figure 5: e effect of resource restrictions on epistemic progress. On the le, resources are re-
stricted to a total of 75,000 agent-moves, where each maverick move costs ten times more than a 
follower move. On the right, only 25,000 agent-moves are allowed. In both cases, the populations 
have a total of 250 scientists, divided between followers and mavericks.
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