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Segregation That No One Seeks

Abstract
This article examines a series of Schelling-like models of residential segregation, in which agents prefer to be in
the minority. We demonstrate that as long as agents care about the characteristics of their wider community,
they tend to end up in a segregated state. We then investigate the process that causes this and conclude that the
result hinges on the similarity of informational states among agents of the same type. This is quite different
from Schelling-like behavior and suggests (in his terms) that segregation is an instance of macrobehavior that
can arise from a wide variety of micromotives.

Disciplines
Philosophy

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/philosophy_papers/8

http://repository.upenn.edu/philosophy_papers/8?utm_source=repository.upenn.edu%2Fphilosophy_papers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


Philosophy of Science, 79 (January 2012) pp. 38–62. 0031-8248/2012/7901-0003$10.00
Copyright 2012 by the Philosophy of Science Association. All rights reserved.

38

Segregation That No One Seeks*

Ryan Muldoon, Tony Smith, and Michael Weisberg†‡

This article examines a series of Schelling-like models of residential segregation, in
which agents prefer to be in the minority. We demonstrate that as long as agents care
about the characteristics of their wider community, they tend to end up in a segregated
state. We then investigate the process that causes this and conclude that the result
hinges on the similarity of informational states among agents of the same type. This
is quite different from Schelling-like behavior and suggests (in his terms) that segre-
gation is an instance of macrobehavior that can arise from a wide variety of microm-
otives.

Weak, individually held preferences can be significantly amplified when
aggregated in a population. This fact is exemplified in simple agent-based
models of segregation that show how weak preferences to have like in-
dividuals as neighbors lead to far greater segregation than any individual
desires.

In his landmark studies of this phenomenon, Thomas Schelling (1971)
represented a neighborhood as a grid with two types of agents placed
randomly on it. Each agent was allowed to move to nearby unoccupied
cells in order to satisfy its preference to be like at least 30% of its neighbors.
Despite the relatively low preference for having neighbors of the same
type, these models exhibit significant segregation and clustering of the
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SEGREGATION THAT NO ONE SEEKS 39

agents. This phenomenon has become known as the Schelling result or
Schelling segregation.

Subsequent theoretical work has taken the form of robustness analysis
and has investigated a wide range of neighborhood definitions and agent
utility functions.1 In every case that we are aware of, researchers have
found Schelling-like models to exhibit segregation.2 Since the segregation
result is extremely robust against changes to utility function and neigh-
borhood definition, we investigated whether segregation could survive an
even more strenuous perturbation: agents that explicitly aim to be in the
smallest minority. We will show that when model individuals know about
their communities in addition to their neighborhood and strictly prefer
to be in the minority in their communities, widespread segregation can
develop.

Our investigation employs a series of Schelling-like models, where in-
dividuals placed randomly on a toroidal grid assess their utility on the
basis of how many similar individuals are in a viewable radius. The utility
functions and radii vary in the models, with the result that even agents
that prefer to be in the smallest minority end up highly segregated when
their viewable radii are of intermediate size relative to the grid. These
results demonstrate the extreme fragility of integrated populations because
they show that even when individuals try as hard as possible to be in the
minority, imperfect information about their environment actually leads
them to segregate.

1. Schelling’s Models of Segregation. Thomas Schelling famously asked,
“what leads a neighborhood to segregate?” He showed that racial seg-
regation can occur even when no explicit racism is present, by constructing
a physical agent-based model of a population. In this model, dimes and
nickels represented two types of individuals, A and B, and the squares
on a chessboard represented spatial location. Each individual prefers that
30% of its neighbors be of the same type. So the As want 30% of their
neighbors to be As and likewise for the Bs. Schelling’s neighborhoods
were defined as standard Moore neighborhoods, a set of nine adjacent
grid elements. An agent standing on some grid element e can have any-
where from zero to eight neighbors in the adjoining elements.

1. The term ‘robustness analysis’ was introduced by Richard Levins (1966). See Wim-
satt (1981), Weisberg (2006), Muldoon (2007), and Weisberg and Reisman (2008) for
further discussion.

2. This work is primarily theoretical and shows that with different idealizing assump-
tions, Schelling-like models produce segregation. However, most of this research has
not been concerned with the accuracy of the model’s assumptions, what some re-
searchers call the model’s validity.
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40 RYAN MULDOON ET AL.

Although Schelling did not explicitly provide a utility function, the
preference described above is usually interpreted to mean that each agent
is indifferent to having 30%–100% of its neighbors be alike but finds
having fewer than 30% of its neighbors alike to be unacceptable. Because
of the constraints of a grid’s geometry, in the case of a full neighborhood,
the preference boils down to wanting to have at least three of one’s eight
neighbors be alike and to equally prefer three to eight like neighbors.

The dynamics of Schelling’s model involve agents sequentially choosing
to remain in place or move to a new location. When it is an agent’s turn
to make a decision, it determines whether there is a sufficient ratio of
alike agents among its neighbors. If this condition is met, the agent is
satisfied and remains where it is. If it is not, the agent then moves to the
nearest empty location. This sequence of decisions continues until all of
the agents are happy where they are and do not try to move.

What one notices from watching this model unfold is that there is a
contagion effect: agents that were originally satisfied can become dis-
gruntled as soon as a neighbor leaves or a new one moves in. It is in this
way that the decision of a single agent can dramatically affect the decisions
made by the entire population. A small patch of dissatisfaction can result
in widespread movement and, ultimately, segregation of the “city.” Al-
though there are a few possible grid configurations that are fully integrated
and in which every agent is happy, these are rare and nearly impossible
to arise from agent movement. The dominant equilibrium state of the
model is segregation.3

Schelling concluded that small preferences for similarity can lead to
massive segregation. This conclusion is quite robust across many changes
to the model, including different utility functions (Zhang 2004; Bruch and
Mare 2006; Pancs and Vriend 2007), different rules for updating (Bruch
and Mare 2006), differing neighborhood sizes, and different spatial con-
figurations (Fossett and Dietrich 2009). These studies show that it is
extremely hard to avoid segregation when agents have some preference
for like neighbors.4 However, earlier studies have not investigated what
happens when agents are committed to living in a fully integrated neigh-

3. “Equilibrium” here refers to a steady state of the model, in which no agent moves
from its current position in subsequent rounds. Given the particular utility functions
examined in Schelling’s work, this also happens to coincide with a Nash equilibrium,
as no party can be made better off by unilateral deviation.

4. Bruch and Mare point out a number of additional limitations and unrealistic features
of the Schelling model, including its dependence on step utility functions. However,
Pancs and Vrand, as well as Zhang, show that one does not require step functions to
generate the Schelling result. All three of these authors agree with Bruch and Mare
that while the Schelling model is very robust, it could profitably be made much more
realistic.
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SEGREGATION THAT NO ONE SEEKS 41

borhood. We might imagine that if we could all actively prefer to live in
diverse communities, segregation would disappear. Perhaps, even, this is
something that we could decide to aim toward, through educational efforts
about the benefits of diversity. This could be taken as the extreme version
of various efforts toward integration. However, this leaves a number of
questions that must be answered. What happens when agents have max-
imally heterogeneous preferences? What happens when they want the max-
imum possible diversity among their neighbors? Do we get the outcomes
that we might intuitively expect from these underlying micromotives?

This article takes up these questions. We will investigate them by in-
troducing a new class of Schelling-like models. But before turning to these
models, let us consider how the situation might play out in a real pop-
ulation. Consider a neighborhood of immigrants where the primary char-
acteristic is spoken language. All the agents begin by determining how
many Spanish, Mandarin, Japanese, Lithuanian, and English speakers are
in the neighborhood. They then determine whether speakers of their own
language are the smallest minority, part of a tie for the smallest minority,
or exactly tied with all of the others. If in a given period, any of these
conditions are met for an individual, then that individual is happy and
remains in place. If not, the individual tries to rectify the situation im-
mediately by moving to a new neighborhood. In this extreme case, people
want to be as different as possible from their neighbors. We will try to
capture this situation in a set of maximally heterogeneous preference models
(MHP models). While we doubt that there are any actual populations
that have these preferences, they provide a powerful test for the Schelling
dynamic’s robustness. If we continue to see segregation in populations
with these preferences, it would suggest that segregation is a much stronger
attractor than previously realized. MHP models represent an intuitive
best-case scenario for segregation reduction.

The general description of MHP models given above leaves considerable
latitude about how neighborhoods are defined. While it is possible to use
the nine-neighbor Moore neighborhood as Schelling does, we will allow
for varying neighborhood sizes because in almost all real cases, individuals
interact with more than just their immediate neighbors. To take just one
example, cities are often broken down into several communities, often
with a number of different ethnic enclaves, and can gain reputations of
having their own particular character that may be distinct from the city
at large.

By using a more inclusive notion of community, we can also more
realistically capture the factors individuals use in deciding to choose where
to live. Individuals do not typically consider single city blocks in isolation
of everything else when looking for housing. They care about the larger
area, whether it is safe, and what its amenities might be. It is very often

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



42 RYAN MULDOON ET AL.

the case that individuals first pick which community they would like to
live in and then go about looking for suitable neighborhoods within that
community.

2. MHP Models. Our investigation of the MHP utility function was con-
ducted with a spatially explicit agent-based model. This approach is very
close to Schelling’s original model and will allow for direct comparison.
The model begins with a grid corresponding to the largest spatial area
under investigation, which we will call a virtual city. This virtual city is
composed of cells that we can think of as addresses. In our models, there
are 1,225 cells arranged on a grid. This grid is wrapped around35 # 35
a torus to prevent edge effects. On to this grid, we randomly place 498
agents. In cases where two agents occupied the same positions, we reori-
ented one of the overlapping agents, by having it find a new location at
random.

Each agent has some fixed property p, which, following Schelling, we
can think of as race, first language, or some other (unchanging) observable
property. The simulations reported here all consider cases in which agents
have one of three possible values of this property, designated as types 1,
2, and 3. In all simulations, these types are evenly distributed among the
498 agents, yielding 166 agents of each type.5

In addition to its intrinsic properties, each agent also has a radius of
vision, r, within which other agents can be seen. The value of r defines
the agent’s perceived community, which may range in size from the agent’s
closest neighbors ( ) all the way up to the entire grid ( ,�r p 1 r p 17 2
which is approximately 24). To keep the analysis simple, every agent is
given the same value for r in each simulation. This corresponds to 498
overlapping communities, each with radius r.

Given that this is an agent-based model, each agent implements a move-
ment strategy based on an individual utility function. If denotes theaNp

number of agents of type p in agent a’s community and if (i, j, k) denotes
some permutation of (1, 2, 3), then the MHP utility function, , for eachaUi

agent a of type i is defined to be a satisficing utility of the following form:6

5. While we are reporting on this specific parameter set, we also examined a wider set
of models to see whether there were any notable qualitative differences. We implemented
the model as a cellular automata, allowed up to 10 different types of agents, explored
different agent densities, and examined nonsatisficing variants on our utility function.
None of these variations had notable qualitative changes from the results we report
on here.

6. Such utilities, first introduced by Simon (1957), distinguish only between acceptable
and unacceptable alternatives.
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SEGREGATION THAT NO ONE SEEKS 43

a a a a1 if N ! (N � N � N )/3a i i j kU p . (1)i {0 otherwise

Hence an agent a of type i will move to new position whenever .aU p 0i

The basic structure of our iterative simulation model is that at the
beginning of each model iteration we determine the current value of aUi

for every agent a of type . If , then agent a does notai p 1, 2, 3 U p 1i

move. If , then agent a moves according to the following rules:aU p 0i

1. Choose a random heading.
2. Walk forward n steps, where n is a random number between 1 and

10.
3. Determine whether any agent occupies the new grid cell. If so, return

to step 1.
4. If not, occupy the center of the new grid cell.

In Schelling’s own models, the movement order was decided either by
starting from the center and working outward or by starting from the
upper-left corned and sweeping right and down (Schelling 1971, 148). In
our models, we simulate a parallel process by randomizing the order of
moves on each round. Also, Schelling had his agents move to the nearest
empty square, while our procedure does not always guarantee this. The
model itself is iterated repeatedly until either an equilibrium state is
reached (where every agent has achieved an MHP utility of one) or else
a time limit of 1,000 model iterations has elapsed.

For the analysis presented here, we consider instantiations of the model
with community sizes ranging from to in increments ofr p 1 r p 24.5
0.5. This covers the range from just under the size of the Moore neigh-
borhoods in Schelling’s model to just over the size of the entire virtual
city.7 For each community size, we ran 100 repetitions, each starting from
a different random configuration of the 498 agents on the grid. We also
constructed a comparison set of 100 random benchmark configurations,
each generated by a random initialization of our model without running
the decision procedure.

For the purposes of later analysis, a coordinate file was recorded for
each simulation that gives the location of each agent and its type. In all
the analyses discussed in subsequent sections, we arbitrarily chose a single
type of agent for analysis and studied the extent to which this agent type
exhibited either attraction to or segregation from the other two types.

7. To be more precise, a radius of corresponds to a rook neighborhood (analogousr p 1
to rook moves in chess) consisting of a cell together with the four cells sharing one of
its faces. In these terms, a Moore neighborhood is also called a queen neighborhood
since it includes the additional four cells sharing corners with the given cell.

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



44 RYAN MULDOON ET AL.

3. Analysis of Segregation. Based on these simulations, our main finding
is that, starting from random configurations, the equilibrium outcomes
for most parameter values exhibit spatial segregation between agent types.
The degree of segregation, however, depends crucially on the radius of
vision r. When r is below 4.5, segregated clusters are extremely small and
only exist as transients, not equilibrium states. Once we move to larger
values of r, agents segregate themselves into increasingly larger clusters.
It is only when r encompasses almost the whole population for each agent
that segregation starts to decrease, and it eventually disappears when all
agents are visible to one another. This suggests that in the current model,
segregation is driven by agents having some, but not full, information
about the wider community beyond their immediate neighborhood.

3.1. A Scale-Sensitive Test of Segregation versus Attraction. Given the
assumed symmetry among agent types, our analysis of segregation focuses
only on a single type (type 1), now designated as the target population of
agents (labeled 1). Types 2 and 3 are then combined into a single reference
population (labeled 0).8 In this context, the most widely used test of at-
traction versus repulsion (segregation) between such spatial point popu-
lations is based on cross-K-function statistics, which formed the natural
starting point for our analysis.9 For each given community size, r, the
cross-K-function value, K(d; r), denotes the expected number of reference
individuals (per unit area) within distance d of a randomly selected target
individual. These statistics are designed to detect either attraction or re-
pulsion (segregation) between the target and the reference populations.
Roughly speaking, an unusually small (large) value of K(d; r) is taken to
indicate significant segregation (attraction) between these populations at
scale d.

However, while tests based on cross-K-function values did indicate the
presence of significant segregation over a range of spatial scales, visual
comparisons between typical equilibrium patterns and test results showed
that these statistics sometimes failed to detect segregation that was readily
apparent (especially for extreme values of r). Further analysis suggested
that the main reason for this is that values K(d; r) focus only on the

8. Note that since the MHP utility function for each agent, a, in the target pop-1Ua

ulation depends only on the total size of the reference population in a’sa a(N � N )2 3

current community, there is no need to distinguish between agent types within this
reference population.

9. K-functions were first developed for univariate spatial point processes by Ripley
(1976) and later generalized to cross-K-functions for multivariate (marked) point pro-
cesses by Hanisch and Stoyan (1979). Subsequent extensions include the influential
paper by Lotwick and Silverman (1982) and are summarized in sec. 8.6 of Cressie
(1993).
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SEGREGATION THAT NO ONE SEEKS 45

numbers of reference agents within distance d of a given target agent and
ignore the presence or absence of other target agents. Hence, segregated
clusters of similar agents were often missed.

This led us to consider a modified test statistic that incorporates counts
of both types of agents. The particular form of this statistic (which is
tailored to our current simulation model) is based on the observation that
if the three identical populations of agents were randomly distributed
throughout the virtual city, then in any given subregion, one would expect
to find about the same numbers of each agent type. Hence, if we now let

denote the number of reference agents within distance d of a givenaN (d )0

target agent, a, and let denote the number other target agents withinaN (d )1

distance d of a, then under complete randomness one would expect
to be about twice as large as . Thus, our test statistic isa aN (d ) N (d )0 1

designed to estimate the expected difference, , whicha aE[N (d ) � 2N (d )]0 1

should be about zero under complete randomness. However, to be precise,
one must consider the conditional expectation, , givena aE[N (d ) � 2N (d )Fa]0 1

the inclusion of target agent a. It is shown in the appendix that if nd

denotes the number of distinct cells within distance d of any given cell,
that is, the d-neighborhood of this cell (which must be the same for all
cells by our torus construction), then a correction term, , is requiredn /612d

in order to ensure zero expectation with respect to every d-neighborhood
(given our specific population sizes of each agent type). With this cor-
rection, the desired modification of cross-K-functions for our current pur-
poses is based on the conditional expected local differences defined for
each agent, a, and distance, d, by10

a ad (d ) p E[N (d ) � 2 N (d ) � n /612Fa]a 0 1 d . (2)a ap E[N (d ) � 2N (d )Fa] � n /6120 1 d

It is shown in the appendix that under the null hypothesis of randomly
located agents, for all d-neighborhoods.11 Hence, in each d-d (d ) p 0a

neighborhood of agent a, positive (negative) values of are associatedd (d )a

with larger (smaller) numbers of reference agents relative to target agents
than would be expected under randomness.

10. As with cross-K-functions, population counts in these local differences should in
principle be normalized by population densities. But since such densities are constant,
they have no effect on the tests developed and are thus ignored for simplicity.

11. Technically, exact satisfaction of this zero-expectation property requires the ad-
ditional simplifying assumption of binomially (rather than hypergeometrically) dis-
tributed population counts, as detailed in the appendix. But for the current sample
sizes, this approximation is very good. It should also be emphasized that this zero-
expectation property is only for purposes of interpretation. As will be clear from the
difference form of the final test statistic (8) to be used, the constant correction term,

, cancels out and has no influence on the tests to be conducted.n /612d
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46 RYAN MULDOON ET AL.

Observe next, from the identity of MHP utility functions for all agents
and the complete symmetry of all cell locations on the torus, that this
conditional expectation must be the same for all target agents. Hence, the
specification of a particular agent, a, in (2) could in principle be dropped.
But for expositional purposes, it is most convenient to eliminate depen-
dency on a by averaging. Thus, we now focus on the expected local dif-
ference across all target agents, , at scale d, as de-a p 1, . . . , n (p 166)1

fined by
n11

d(d ) p d (d ). (3)� an ap11

As a parallel to cross-K-functions, these expected local differences can
equivalently be interpreted as values of (2) for a randomly sampled target
agent.

Before developing tests based on these indexes, it should be noted that
for d equal to the community size, r, there is a close relation between

in (2) and the values of a’s MHP utility in (1). In particular, sinced (r)a

for each agent, a, in equilibrium, and since the cor-a aN (d ) � 2N (d ) 1 00 1

rection term ( ) tends to be relatively small by comparison,12 onen /612d

can expect to find positive values of in equilibrium. So at equilibrium,d(r)
one should not be surprised to find a substantial degree of attraction at
the community scale, r, which is of course precisely what individual agents
are trying to achieve. Thus, our main interest focuses on the consequences
of this behavior for segregation or attraction at scales, .d ( r

With these definitions and informal observations, we can now for-
malize our testing procedure as follows. If at each community size, r, we
let denote the expected local difference in (3) for MHP processesd(d; r)
under r (with corresponding conditional forms, , in eq. [2]) andd (d; r)a

similarly let denote the expected local difference in (3) for thed(d; rand)
random benchmark process defined above, then our testing procedure
focuses on the difference between these mean values,

D(d; r) p d(d; r) � d(d; rand), (4)

at each scale, d, and community size, r. Given the above interpretation
of expected local differences, positive (negative) values of can alsoD(d; r)
be taken to imply more attraction (segregation) between agent types at
scale d than would be expected under the random benchmark process. A
test of the statistical significance of these D-values can thus be implemented
in terms of a standard difference-between-means test.

To carry out such a test, we performed simulations of theN p 100

12. Since , it follows by definition that . This in2n ≤ 35 � 1 p 1,224 0 ≤ n /612 ≤ 2d d

turn implies that and, hence,a a a aE [N (d) � 2N (d)Fa] ≤ d (d) ≤ E [N (d) � 2[N (d) � 1Fa]0 1 a 0 1

that the effect of this correction is small relative to the expected counts involved.
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SEGREGATION THAT NO ONE SEEKS 47

MHP process under each community size, r. If for each simulation s p
we let and denote the observed values ofa a1, . . . , N n (d; r, s) n (d; r, s)0 1

and in that simulation and leta aN (d ) N (d )0 1

(s) a ad̂ (d; r) p n (d; r, s) � 2n (d; r, s) � n /612 (5)a 0 1 d

denote the corresponding (one-sample) estimate of , then the re-d (d; r)a

sulting estimate of under community size r is given byd(d; r)
n11(s) (s)ˆ ˆd (d; r) p d (d; r). (6)� an ap11

Similarly, for N parallel simulations of the random benchmark process,
one can construct corresponding estimates:

n11(s) (s)ˆ ˆd (d; rand) p d (d; rand). (7)� an ap11

At this point it should be noted that the individual estimates (s)d̂ (d; r)a

(respectively, ) are not independent within a given simulation(s)d̂ (d; rand)a

(since d-neighborhoods can overlap one another). However, the estimates
(respectively, ) for separate simulations, s, are inde-(s) (s)ˆ ˆd (d; r) d (d; rand)

pendent by construction. Hence, these can be regarded as N independent
random samples of mean estimates from both the MHP process and the
random benchmark process.

Given this independence property, it follows that if the resulting sample
estimate of for each simulation, s, is denoted byD(d; r)

(s) (s) (s)ˆ ˆD̂ (h; r) p d (d; r) � d (d; rand), (8)
then the grand mean across all simulations; that is,

N1 (s)ˆ ˆD(d; r) p D (h; r) (9)�
N sp1

N N1 1(s) (s)ˆ ˆp d (d; r) � d (d; rand) (10)� �
N Nsp1 sp1

ˆ ˆ{ d(d; r) � d(d; rand), (11)
yields an appropriate test statistic for discriminating between the MHP
and the random benchmark processes. In particular, this statistic satisfies
the conditions for a Welch-Satterthwaite (WS) difference-between-means
test that allows for possibly different variances between these two statis-
tical populations.13

13. In addition to independence, this test requires that the two sample populations be
normally distributed. While individual difference statistics, , are generally not(s)d̂ (d; r)a

normal, their sample means, , were confirmed (by Shapiro-Wilks tests) to be(s)d̂ (d; r)
sufficiently normal for testing purposes. Normality in this case can also be justified on
theoretical grounds from the well-known asymptotic normality properties of sample
means for locally dependent data.
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To carry out this test, we first calculated the sample means for the
MHP process in (6) and the random benchmark process in (7) for each
simulation. This was accomplished with a program (written in Matlab by
one of the authors) that calculates and at each scale,(s) (s)ˆ ˆd (d; r) d (d; rand)
d, in each simulation, s. Here it should be noted that while community
sizes, r, are allowed to range up to the maximum torus distance of ap-
proximately , we restrict the scale values, d, to lie in the ranger p 24

. The reason for this is that our torus approximation ofd p 1, . . . , 15
d-neighborhoods on large planar grids breaks down for distances greater
than half the width of the original ( square, that is, for35 # 35) d ≥

.14 These computed sample means formed the basic inputs for the WS17.4
test conducted at each scale, , and community size,d p 1, . . . , 15 r p

.1, . . . , 24
The test results were determined by calculating the t-values for

and applying the WS approximate t-distributions for two-sidedD̂(d; r)
tests of the null hypotheses for each choice of r and d. ForD(d; r) p 0
all practical purposes, none of these t-distributions were distinguishable
from the normal distribution at the given sample sizes (of forN p 100
each population). So our formal rule was basically to conclude significant
attraction for t-values above 1.96 and significant segregation for t-values
below �1.96. But since the computed t-values ranged so far outside this
interval, it proved to be more informative to plot these t-values directly
and simply indicate the critical interval on the graphs.15[�1.96, 1.96]

3.2. Test Results. To summarize our test results, we begin by observing
that for all community sizes, , the simulations always settled5 ≤ r ≤ 24
to an equilibrium state. The only exception is the extreme full-visibility
case of , where by definition no equilibrium is possible (since nor p 24.5
agent can be in a strict minority). Moreover, the test results showed that
these equilibrium states for community sizes always involve5 ≤ r ≤ 24
significant segregation below a certain critical scale, dr, depending on r.
So even though agents are maximizing their MHP utilities (i.e., are in
minorities less than one-third of their current community populations),
they nevertheless find themselves in segregated neighborhoods at all scales
not exceeding the critical scale, dr, for their radius of vision, r. This is
illustrated in figure 1b for a community size of , with critical scaler p 8

. Here, the filled circles denote locations of target agents (type 1),d ≈ 5.58

and the locations of reference agents (type 2 and type 3) are denoted by
open circles and triangles, respectively. (The large circles in the figure will

14. In particular, d-neighborhoods larger than this are seen to overlap themselves on
the torus, so that some cells start to appear more than once in the same neighborhood.

15. This is the convention employed in figs. 2 and 3 below.
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Figure 2. Plot of t-values for community size 8.

be discussed below.) Here it is visually evident that each agent type exhibits
clustering that results in segregation at certain scales, as will be verified
by the test results below. For purposes of comparison, figure 1a shows
the initial realization of the random benchmark process leading to the
equilibrium pattern in figure 1b.

Turning now to the test results themselves, it is again useful to illustrate
these findings for the case of community size , in figure 1b. The fullr p 8
plot of t-values for all relevant scales, , is shown for thisd p 1, . . . , 15
case in figure 2. Here the relatively narrow width of the critical interval

(indicated by the horizontal dashed lines in the figure) shows[�1.96, 1.96]
that there is a strong degree of statistical significance in both the regions
of attraction and the regions of segregation in the figure.16

As for the shape of the plot in figure 2, notice first that as predicted
above (in the discussion of expected local differences), there is a peak of
very significant attraction at precisely scale , reflecting the MHPd p 8 p r
utility-maximizing behavior of all agents.17 More important for our cur-
rent purposes is the lower end of the graph, where there is seen to be

16. As mentioned above, the critical intervals for each of these 15 t-distributions are
slightly different. But all are so close to the normal distribution that such differences
are imperceptible.

17. This will be illustrated more fully in fig. 4 below.
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significant segregation between agent types at all scales, .18d ≤ d ≈ 5.58

Here segregation appears to be most significant at a scale of about d p
. Visually this corresponds to circular neighborhoods of radius 3 about3

each cell, as illustrated by the solid circle near the center of figure 1b.
This particular neighborhood is seen to be just large enough to cover the
cluster of target agents (filled circles) shown in the figure. More generally,
the most significant scales of segregation (below the critical scale, dr) for
each community size, , tend to reflect the cluster sizes of agent typesr ≥ 5
seen in typical equilibrium patterns for that community size.19 Thus, while
figure 1b shows only one instance of a simulated equilibrium pattern for
community size , it helps to illustrate the broader statistical resultsr p 8
summarized in figure 2. Note finally that beyond the attraction peak at

, there appears to be a second peak of significant segregationd p 8 p r
at about . But further analysis shows that secondary peak is es-d p 13
sentially a reflection of the regularly spaced clusters of agents at smaller
scales. For example, the dashed circular neighborhood of radius 13 that
is concentric with the smaller circle in figure 1b is seen to be just large
enough to include the second wave of target-agent clusters adjacent to
the central cluster shown. Hence, the concentration of target agents at
this scale is a consequence of a similar concentration at smaller scales.

To analyze further properties of these statistical results, it is useful to
distinguish three ranges of community sizes, r. The first is the minimal
range, involving community sizes , in which equilibria do not1 ≤ r ! 5
always occur. The second is the intermediate range, , which5 ≤ r ≤ 20
covers the most interesting cases for our purposes, and the third is the
maximal range, , which exhibits behavior somewhat different fromr 1 20
that of the intermediate range. Here we begin with the most important
intermediate range and then consider each of the extreme ranges in turn.

3.2.1. Intermediate Community Sizes. The key feature of the interme-
diate range, , is the relation between each community size, r,5 ≤ r ≤ 20
and its associated critical scale, dr. Specifically, as the radius of vision
increases, the critical scale for segregation also increases. This is illustrated
in figure 3, where the t-values are plotted for selected values of inter-
mediate radii (5, 8, 10, 12, 17, 20)20 and where each curve is numbered
by its associated community size.

18. An alternative representation of such cluster-size relations is given in fig. 5.

19. As for the actual significance level in this case, the calculated t-value is seen from
fig. 2 to be more than 20 standard deviations from the mean. Thus, the associated p-
value is virtually zero, which indicates why t-value plots are more meaningful here.

20. These specific values were chosen in order to achieve a relatively even spacing
between t-value curves.
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Figure 3. Community sizes 5–20.

For the sake of visual clarity, only the most relevant portion of each
curve is shown, specifically the t-values at all scales, , for eachd ≤ r � 1
community size, r. For example, the curve shown for community size

is seen to be the lower portion of the same t-value curve in figurer p 8
2. By definition, the critical scale, dr, for each community size, r, is seen
to be the scale at which the associated t-value curve first intersects the
critical interval from below (shown by a filled circle on each curve). So
on curve , the filled circle is seen to be at scale . Hence, ther p 8 d ≈ 5.58

steady increase in these critical scale values is easily seen by the progression
of these intersection points.

Estimating the number of agent clusters.—To obtain further statistical
insight into this segregation phenomena, we constructed a program that
attempts to identify the number of spatial clusters in the target population.
This program involves two stages. First, the equilibrium configuration of
n individual target agents was successively grouped into smaller numbers
of clusters by continually adding closest clusters (where distance between
clusters was measured as the distance between their closest points). This
hierarchical clustering procedure was continued until the n points cor-
responding to the target population were reduced to a specified cutoff
number of clusters (which was set sufficiently low to include all clustering
levels of potential interest).21

21. This stage of the program was implemented using the Matlab package cluster-
data.m, with the ‘single linkage’ (or ‘nearest neighbor’) criterion for joining clusters.
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With a cluster hierarchy in hand, the second step was to determine the
best number of clusters with which to group the target population. This
number was not always obvious on visual inspection and exhibited sub-
stantial variation between simulations (with different initial random con-
figurations of agents). After considerable experimentation, it was found
that two criteria seemed to place reasonable bounds on the number of
clusters observed visually. The first criterion (which focuses on achieving
compact groupings within each cluster) is to find the cluster configuration
that minimizes the mean-squared distance of points to their respective
cluster centroids.22 Since this criterion value, C1, for each cluster partition
is always decreasing in the number of clusters, it was decided to compare
observed values with those expected under random configurations. Here
cluster hierarchies for 1,000 random configurations were constructed and
used to estimate the sampling distribution of C1 under randomness. When
observed criterion values, C1, are replaced with their z-scores, Z1, under
this distribution, the cluster number with the minimum Z1 value can be
interpreted as that for which C1 is most significantly lower than would
be expected under randomness. The second criterion (which focuses on
achieving good separation between clusters) starts by computing for each
cluster the shortest distance between points in the cluster and points out-
side and then finds the cluster configuration that maximizes the mean of
these shortest distances for each cluster. Since these values, C2, are also
monotone decreasing in the number of clusters, the same random cluster
hierarchies were used to construct a sampling distribution of C2 under
randomness. When observed values C2 are replaced by their z-scores, Z2,
the cluster number with maximum Z2 value can be interpreted as that for
which C2 is most significantly higher than would be expected under ran-
domness. As stated above, the optimal cluster numbers, N1 and N2, pro-
duced by these two criteria tended to place reasonable bounds on the
number of clusters observed visually over a wide range of examples.
Hence, our final representative cluster number, N, was obtained by taking
the average, , of these two optima.N p (N � N )/21 2

To analyze these cluster numbers, we simulated 1,000 equilibria for
each possible community size, , and constructed corre-r p 5, . . . , 24
sponding cluster numbers, Nir, for each simulation . Buti p 1, . . . , 1,000
in order to interpret these results, it is important to note that cluster
numbers by themselves are only meaningful relative to the particular size
of the torus approximation used. Hence, it was deemed to be more ap-
propriate to convert each cluster number, Nir, to a corresponding average

22. This is the implicit objective function employed in k-means clustering.
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Figure 4. Equilibrium cluster sizes.

cluster size, , in terms of target agents per cluster.23 In par-S p 166/Nir ir

ticular, the average size of these clusters relates more directly to the degree
of segregation exhibited by the agents. In figure 4, the median of these
cluster sizes is plotted for each community size,(S : i p 1, . . . , 1,000)ir

.r p 5, . . . , 24
The step-function nature of the plot is a consequence the underlying

discreteness of possible cluster numbers. But even with this lack of smooth-
ness, the regularity of its overall pattern is evident.24 In particular, median
cluster size (degree of segregation) first increases with community size up
to a radius of about and then decreases with all larger communityr p 16
sizes (as emphasized by the simple quadratic fit shown as a dashed curve).
This is in rough agreement with the segregation results above (in terms
of critical scales), except for the slight decrease in cluster size from r p

to . But even here it should be borne in mind that this decrease17 r p 20
from about 33 to 30 agents per cluster corresponds to the smallest possible

23. For example, if the current torus grid together with a given equilibrium cluster
configuration were expanded to a square panel of nine identical copies, then by our
torus construction, this would automatically constitute a larger equilibrium configu-
ration for agents. But while the number of target-agent clusters would increase9 # 498
ninefold, the average cluster size in terms of target agents would remain the same.

24. While a plot of mean (rather than median) values tends to yield somewhat smoother
results, the inherent step-function nature of this data is much clearer with medians.
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increase in median cluster numbers from 5 to 5.5.25 So substantial de-
creases in cluster sizes are only seen to occur beyond .r p 20

It should also be noted that the cluster identification procedure un-
derlying this plot is far less precise that the statistical significance results
above. But in spite of its lack of precision, this procedure served to identify
one additional feature of these equilibrium patterns that was entirely
missed by our difference-between-means tests.

A secondary equilibrium mode.—The histograms of cluster numbers
identified at each community size revealed that there are actually two
modes of equilibria: a primary mode and a secondary mode. In figure 4,
we have displayed these histograms for four community sizes, r p

, that are typical of the full range of sizes.5, 10, 15, 20
Here, the primary mode (small numbers of clusters) corresponds to the

segregated equilibria that are the focus of this article, and the secondary
mode (large numbers of clusters) corresponds to equilibria in which es-
sentially no segregation is evident.26 One should hasten to add that, except
for the most extreme community sizes (close to either or ),r p 5 r p 24
the primary mode involves about 75% of all equilibria. But nonetheless,
this secondary mode is of some interest.

First of all, while it is not difficult to construct rather uniform equi-
librium configurations in which all agents are maximizing MHP utility,
it was not clear to us that such equilibria could be even locally stable.
However, these results show that many are. Moreover, the presence of
such equilibria suggests that unless the initial random configuration in-
volves some minimal degree of clustering (as generally seems to be the
case), segregation may fail to emerge in equilibrium.27 It is also of interest
to note that unlike the primary mode, these nonsegregated patterns appear
to be very insensitive to community size. As shown by the dashed line in
figure 5, this mode always ranges between about 10 and 16 clusters, with
a mean around 12.5. Hence, these dispersed patterns appear to exhibit
roughly the same degree of agent heterogeneity at all scales.

Finally, in view of the nonsegregated nature of this secondary mode,
it is important to ask whether the inclusion of this mode might distort
the relation of cluster sizes to community sizes occurring within the more
important primary mode. This can be checked by including only cluster

25. Recall from the averaging definition of cluster numbers, , that theN p (N � N )/21 2

closest value above 5 is .(5 � 6)/2 p 5.5

26. In fact, examples show that most of the clusters identified in this secondary mode
are essentially an artifact of our clustering algorithm (which always identifies some
number of clusters, even for very dispersed patterns).

27. The identification of such clustering thresholds is left for future research.
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Figure 5. Cluster size distributions.

numbers, Nir, within in the primary mode (i.e., ) and constructingN ! 10ir

a median plot paralleling figure 4. Given the invariant shape of this sec-
ondary mode across community sizes, it is perhaps not surprising to find
that the primary-mode plot is qualitatively almost exactly the same.
Hence, the only effect of this secondary mode is to inflate the level of
median cluster numbers obtained. But since the ultimate effect of this
inflation is to yield lower (more conservative) estimates of the degree of
segregation present, we have chosen to show only the combined plot.

3.2.2. Minimal and Maximal Community Sizes. When agents’ com-
munity size is very small , the model fails to reach an equilibrium(r ! 5)
state in which all agents have maximal MHP utility. Nevertheless, the
underlying dynamics of the model continue to exhibit a nonrandom spatial
structure that we set out to investigate.

We began with 498 agents of three types distributed randomly over our
toroidal grid. Like in the procedure used to study medium neighborhood
sizes, we investigated 100 simulations for each neighborhood size corre-
sponding to a different initial distribution of agents. Since the simulations
never reach equilibrium, we chose to sample the pattern reached after
1,000 iterations of the model. This set of 100 samples was then compared
to a set of 100 randomly generated distributions of agents on the grid
using precisely the same procedure as above. In particular, we computed
the appropriate values in (6) and (7) above for each simulation,(s)d̂ s p

, and then tested for significant differences between them.1, . . . , 100
For these small neighborhoods, we found patterns that correspond to

the secondary equilibria discussed above. Visually, this appears as very
small clusters—more structured than completely random but not statis-
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tically significant. These clusters are unstable, as the agents in them all
have low utility and will continue to move, seeking higher utility. Nev-
ertheless, they persistently reappear as the model is iterated.

Finally, for large community sizes ( ) we found that equilibriar 1 20
continued to emerge all the way up to the maximal community size of

(in which no equilibrium is possible). However, the critical scales,r p 24.5
dr, for significant segregation in such equilibria began to diminish. This
is also seen in figure 4 above, where median cluster sizes diminish rapidly
for . A possible explanation for this diminishing effect is given inr 1 20
the next section.

4. Discussion. Schelling’s original result was striking but perhaps not al-
together surprising. While the degree of segregation observed in his model
is far higher than any individual’s preference for homogeneity, agents still
desired some degree of homogeneity in their neighborhoods. In our model,
agents want to be surrounded by agents that are different from themselves.
So why does segregation still arise in the model?

We believe that the result can be explained by careful consideration of
the microdynamics of MHP models. Consider a model like ours with only
two types of agents, and start with a population of only two agents (a
and b) of the same type in close proximity. Because they have maximally
heterogeneous preferences, these agents will be repelled from each other
until they move outside each other’s community. This repulsion, however,
begins to be modified as additional agents are added to the model.

For example, suppose now that three new agents (c, d, and e) of the
opposite type are placed in close proximity to the original two. Agents a
and b will still repel each other but will also both be attracted to c, d,
and e because they are different in type. This means that a might now
tolerate being close to b because there is a chance to be in a strict minority
relative to c, d, and e.

A more formal way of thinking about these dynamics is to consider
the informational state of the agents as they make decisions. As each
agent relies on exactly the same decision rule and utility function, only
two factors can cause agents to make different movement decisions: their
agent type and their information about the locations and types of other
agents, which we call the agent’s information set.

Consider how these two factors interact. Each agent’s information
about its surroundings is strictly defined by its radius of vision. As such,
this information set is position dependent. A consequence of this position
dependence is that as two agents move closer together, their information
sets become increasingly correlated. When they are adjacent, their infor-
mation sets are very nearly identical. For two agents that are of different
types, this near identity of information sets will not necessarily lead to
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identical behavior because their types will lead them to have different
interests. However, for two agents that are of the same type, we should
expect their movement decisions to be highly correlated. Thus, correla-
tions in information sets will correspond to correlations in decisions about
where agents want to move. As the relocation process continues, local
groups of target agents will tend to move toward similar positions. This
will in turn lead to further information convergence about the agents in
their respective neighborhoods. In this way, similarity of information sets
becomes its own attractor.

This attractive power of informational similarity is possible in our
model because of the focus on communities rather than neighborhoods.
Neighborhoods are fairly small and can contain relatively few agents.
However, depending on their radius of vision, the communities relevant
for agents can be much larger geographically and, hence, can contain
many more agents. For example, in our current model suppose we let Sr

denote the set of cells within distance r of any given cell and consider
vision radius (as discussed in sec. 3.2 above). Then it is readilyr p 8
verified that the relevant community, S8, for any target agent, a, can
contain as many as 197 agents. In this context, if we consider a neigh-
borhood, S4, of radius 4 about agent a (which is less than the critical
scale of ), then it can also be verified that S4 can contain at mostd p 5.58

49 agents. Hence, even if all agents in neighborhood S4 are also target
agents, it is still quite possible that this population is a strict minority in
a’s community, C8. Moreover, as vision radius r increases, the maximum
population size of Cr grows in proportion to r2.28

More generally, considerations of both (i) neighborhoods versus com-
munities and (ii) the overlap between agents’ information sets offer pos-
sible explanations of the systematic changes in critical scales and median
cluster sizes as vision radius changes. First, for small radii, r, since the
communities of agents are not much larger than their immediate neigh-
borhoods, no equilibrium is possible in which target agents have even a
few other target agents as neighbors. It is only when r becomes sufficiently
large relative to local neighborhoods that sizable clusters of target agents
are possible in equilibrium. Moreover, as r increases, the overlap between
the communities (information sets) of adjacent agents must also increase,
so that adjacent agents are more likely to share minority positions in their

28. Here it is worth noting that this dominating influence of community over neigh-
borhood will remain true even if the agents discount their interest in other agents on
the basis of distance separation—so long as discounting is not too severe. For example,
if agents at distance r are discounted in a manner proportional to r�a, then the “ef-
fective” community population will continue to grow with r as long as . In thesea ! 2
instances, simulation results are qualitatively similar to the no-discounting case.
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similar communities. These two factors together thus help to account for
the initial growth in both critical scale values and median cluster sizes as
r increases from small values.

At the other extreme, recall that when r is maximal and all agents are
visible to one another, no agent can be in a strict minority. In this extreme
case, target agents will be equally dissatisfied at all locations. In particular,
locations near target agents will be no more attractive than other locations.
But as r decreases from this extreme, information sets will differ between
locations and, in particular, will now be more correlated at locations close
to one another. So as the system approaches equilibrium, with many target
agents already satisfied, it is more likely that locations close to them will
also yield satisfaction for relocating target agents. So again one can expect
to see larger clusters of target agents appearing in equilibrium as r de-
creases from its maximal value.

5. Conclusions. We set out to investigate the robustness of Schelling’s
famous segregation result, subjecting it to the most stringent test that we
know. Our model shows that MHP utility functions, where agents want
to be in the smallest minority, can themselves create segregated clusters.
So long as agents have only partial information about their entire city,
and consider their community to be a few blocks in size, we find robust
segregation in equilibrium.

This result, combined with those previously established, shows the over-
whelming prevalence of segregation when agents base their decisions on
racial preferences. So long as agents all base their decisions on the same
property, regardless of their attitudes toward it, we will tend to find seg-
regation in a population. In this model, we aimed to provide the strongest
possible test of this hypothesis, by having agents actively seek out those
that are different from themselves. However, by adding the very weak,
realistic assumption that people care about their community rather than
just their immediate neighbors, we find that individuals still typically end
up in a segregated state.

This result tells us two things: First, it tells us that Schelling’s original
model is extremely robust to various kinds of perturbation. Second, it
tells us that because of this robustness, we have a single macrobehavior
that could be supported by a wide variety of underlying micromotives.
Let us consider each in turn.

The robustness of Schelling’s original model can be best explained by
the fact that the underlying dynamic relies only on a tipping phenomenon.
So long as all the agents have the same structure to their preferences,
initial innocuous movements will quickly cascade across the entire pop-
ulation, and we have segregation as an absorbing state of the model. In
our model, we saw that informational similarities were sufficient for this
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cascade to occur. Informational similarities result in highly correlated
movement decisions, and as agents move more toward one another, their
information sets become increasingly similar. This is a rather different
dynamic from the standard Schelling model. In the original model, we
get cascades of movement because agents were weakly repelled by agents
of a different type, and once enough of their fellows have moved out of
their neighborhood, their threshold for happiness is no longer met, and
they move themselves. This creates a separating equilibrium, in which
each type is most easily satisfied by being among its own. Nothing in that
model relies on informational similarities. But in each model, a cascade
of segregation occurs and quickly takes over the population.

This robustness reveals why Schelling’s initial insight is so essential. We
cannot argue from the observation of a macrobehavior to an understand-
ing of its microfoundations without a great deal of additional investi-
gation. While determining whether a model’s results are robust is an
essential component to most model validation, robust models can pose
their own unique scientific challenges. When we have a model with very
fragile results, where the phenomenon under study only manifests itself
under quite limited conditions, we can often be in a superior epistemic
position. If the fragile model’s assumptions are appropriately realistic and
calibrated against empirical information, then we have a much better
chance of having captured the precise underlying dynamics for the mac-
rophenomenon in question. This suggests that intervention strategies can
be more easily studied and implemented. However, with robust modeling
results the same phenomenon can be overdetermined by competing ex-
planations. In cases of extreme robustness, such as with the Schelling
result, our epistemic position can actually be weakened. As such, we learn
less about the empirical phenomenon than we do in the fragile cases; we
cannot identify what microdynamic is correct without further study.

Although segregation is extremely robust in the family of Schelling-like
models, not all cities are massively segregated, and perhaps some cities
are well integrated. This leads to the observation that these models do
not capture the precise population dynamics unfolding in cities, which is
unsurprising given the models’ simplicity. However, they remain important
tools not only for a fundamental understanding of population dynamics
but also for thinking about the effects of potential policy interventions.

Segregation’s robustness suggests that most policy interventions are
likely to fail to prevent one of the many possible microdynamics from
taking over and continuing to drive segregation. But this prediction is
testable. If we can find and study full or partially integrated communities,
then we would discover that the Schelling model and its variations fail
to capture some feature of the real world that is essential for a proper
understanding of the segregation phenomenon. So while we have seen
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that the original Schelling model is quite robust, it is possible that it is
too robust. Given its strong predictions of the near certainty of segre-
gation, this robustness makes it easy to mount challenges to the com-
pleteness of the model.

Appendix

We derive the normalization term required for the zero-expectation con-
dition that holds for all d-neighborhoods. In particular, wed (d ) p 0a

calculate the conditional expectations of both and given thea aN (d ) N (d )0 1

presence of an agent, a, and use these to normalize the expected difference,
. To do so, we begin by observing that the null hypothesisa aN (d ) � 2N (d )0 1

of random assignments of each agent type to distinct cells on the torus
grid of 1,225 (352) cells yields a standard “urn sampling” problem with
associated hypergeometric distributions for the random variables, aN (d )0

and . But given the population sizes of 166 agents of each type,aN (d )1

these distributions are well approximated by binomial distributions (which
technically involves sampling with replacement, where more than one
agent can in principle occupy the same cell). Given this approximation,
and recalling from the text that nd denotes the number of distinct cells
within distance d of the cell occupied by agent a (which is the same for
all cells), the conditional expectation of given the presence of a isaN (d )0

simply

aE[N (d )Fa] p n p ,0 d 0

where is the probability that any2p p (2 # 166)/(35 � 1) p 332/1,2240

given cell other than a’s cell is occupied by a reference (type 0) agent.
Similarly the conditional expectation of given the presence of a isaN (d )1

of the form

aE[N (d )Fa] p n p ,1 d 1

where is the probability that any given2p p (165)/(35 � 1) p 165/1,2241

cell other than a’s cell is occupied by one of the other 165 target (type 1)
agents. Thus, it follows at once that

a aE[N (d ) � 2N (d )Fa] p n p � 2n p0 1 d 0 d 1

p n ( p � 2p )d 0 1

p n (332 � 2 # 165)/1,224d

p n /612d

and hence from (3) that for all d,

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).
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nda ad (d ) p E[N (d ) � 2N (d )Fa] � p 0a 0 1 612

must hold under these assumptions.
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