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Epistemic Landscapes and the Division of Cognitive Labor

Abstract
Because contemporary scientific research is conducted by groups of scientists, understanding scientific
progress requires understanding this division of cognitive labor. We present a novel agent‐based model of
scientific research in which scientists divide their labor to explore an unknown epistemic landscape. Scientists
aim to find the most epistemically significant research approaches. We consider three different search
strategies that scientists can adopt for exploring the landscape. In the first, scientists work alone and do not let
the discoveries of the community influence their actions. This is compared with two social research strategies:
Followers are biased toward what others have already discovered, and we find that pure populations of these
scientists do less well than scientists acting independently. However, pure populations of mavericks, who try
to avoid research approaches that have already been taken, vastly outperform the other strategies. Finally, we
show that, in mixed populations, mavericks stimulate followers to greater levels of epistemic production,
making polymorphic populations of mavericks and followers ideal in many research domains.

Disciplines
Philosophy

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/philosophy_papers/7

http://repository.upenn.edu/philosophy_papers/7?utm_source=repository.upenn.edu%2Fphilosophy_papers%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages


Philosophy of Science, 76 (April 2009) pp. 225–252. 0031-8248/2009/7602-0006$10.00
Copyright 2009 by the Philosophy of Science Association. All rights reserved.

225

Epistemic Landscapes and the Division
of Cognitive Labor*

Michael Weisberg and Ryan Muldoon†‡

Because contemporary scientific research is conducted by groups of scientists, under-
standing scientific progress requires understanding this division of cognitive labor. We
present a novel agent-based model of scientific research in which scientists divide their
labor to explore an unknown epistemic landscape. Scientists aim to find the most
epistemically significant research approaches. We consider three different search strat-
egies that scientists can adopt for exploring the landscape. In the first, scientists work
alone and do not let the discoveries of the community influence their actions. This is
compared with two social research strategies: Followers are biased toward what others
have already discovered, and we find that pure populations of these scientists do less
well than scientists acting independently. However, pure populations of mavericks, who
try to avoid research approaches that have already been taken, vastly outperform the
other strategies. Finally, we show that, in mixed populations, mavericks stimulate
followers to greater levels of epistemic production, making polymorphic populations
of mavericks and followers ideal in many research domains.

1. Introduction. The complexity of contemporary science far exceeds the
physical and cognitive resources of any individual scientist. Because of
this, scientific research is almost always tackled by communities of sci-
entists of varying size and degree of coordination.1 In other words, modern
science requires the division of cognitive labor.

*Received October 2007; revised March 2008.
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1. Such coordination can include minimal consultation about techniques and materials,
diving up tasks within a research team, or massive community-based projects where
no individual understands the whole project or the contribution of each member.
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226 MICHAEL WEISBERG AND RYAN MULDOON

While these facts about the nature of contemporary science are well-
known to philosophers, having been discussed by Kuhn and Lakatos,
among others, surprisingly little has been written about the epistemology
of divided cognitive labor and the strategies scientists do and should use
in order to divide their labor sensibly.2 What makes such work especially
challenging is the need to simultaneously keep track of the actions of
individual scientists and of the epistemic progress of a scientific com-
munity. We have to account for how divided knowledge among individuals
can give rise to unified knowledge in the community. At the same time,
optimal epistemic behavior of individual scientists can give rise to un-
desirable collective behavior, and the extent to which cognitive labor is
divided may affect this.

The complexity and philosophical richness of these issues provides many
avenues for investigation. Much of the extant literature, however, has
focused on two closely related questions: What are the optimal distri-
butions of cognitive labor? How can we make incentives for scientists to
divide themselves in the ways most beneficial to the progress of science?
These questions have primarily been addressed with the use of marginal
contribution/reward (MCR) models.

When applied to the division of cognitive labor, the MCR framework
envisions the following scenario: scientists have to choose a project to
work on. In order to do so, they calculate their marginal contribution to
the epistemic success of this project and also their potential reward, based
on the reward scheme in place. The most well-known of these models,
those proposed by Philip Kitcher (1990, 1993) and Michael Strevens
(2003), show that optimal distributions of cognitive labor can be achieved
even if all scientists acted in self-interested ways, at least under a certain
set of assumptions.

While we have been somewhat critical about the MCR approach’s
assumptions elsewhere (Muldoon and Weisberg 2008), we believe that
these studies reveal a very important insight: scientists’ micromotives can

2. Much has been written on the more general topic of the social nature of scientific
knowledge. A wide range of philosophers including Giere (1988), Hull (1988), Solomon
(1992), Kitcher (1993), and Thagard (1993) have emphasized that science involves the
coordinated cognitive effort of many scientists. Closer to our aims is Solomon’s (2001)
work on social empiricism, which argues that normative scientific epistemology requires
the assessment of internal as well as social factors. Our focus in this article is somewhat
different; we focus on how individual scientists make choices about dividing their labor,
not the diversity of perspectives required to put scientific knowledge on firm epistemic
footing. Sociologists of science have also discussed this issue, but their primary focus
has tended to be the incentive structure of science (e.g., Merton 1957) or the ways in
which scientists navigate the complex relationships created by the division of research
labor (e.g., Gerson 2008).
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look epistemically impure or shortsighted, yet these motives can actually
help the community as a whole make rapid progress toward finding out
the truth. Thus a core tenant of strategic models about the division of
cognitive labor is that what is epistemically good for individuals may
differ from what is epistemically good for the community.

This article embraces this insight but develops models of the division
of cognitive labor in a considerably different manner from Kitcher and
Strevens. Rather than employing the MCR framework, we develop an
agent-based approach, where individual scientists adopt strategies to ex-
plore what we call the ‘epistemic landscape’. As we will show throughout
the article, modeling the division of cognitive labor in this way allows for
greater representational flexibility for modeling epistemic situations that
are common to modern scientific communities.

We will argue that to be maximally effective, scientists need to really
divide their cognitive labor, coordinating in such a way to take account
of what other scientists are doing. We also show, albeit in a preliminary
way, that a mixed strategy where some scientists are very conservative
and others quite risk taking leads to the maximum amount of epistemic
progress in the scientific community.

2. Science as a Landscape. While almost all modern scientific research
takes place in scientific communities, not every division of cognitive labor
is the same. In one kind of scenario, scientists choose between different
approaches, all of which aim at the same narrow goal. Such situations,
like the race to find the structure of DNA, to synthesize Taxol, and to
complete the human genome project, have a special kind of epistemic
structure: From the point of view of the community as a whole, the thing
that matters most is getting to the final answer as quickly as possible.
Once we know the structure of DNA, finding it out a second time isn’t
very useful. Repetition of crucial elucidation experiments may be impor-
tant, but only insofar as they help establish that the structure was elu-
cidated correctly. These types of cases with definitive goals and end points
are especially well-suited to be studied with the MCR approach and have
been analyzed in detail by Kitcher and Strevens.

Another type of scenario in which scientists divide their cognitive labor
involves research on the same topic broadly construed, but with small
differences in the activities and goals of particular scientists. For example,
within the research program of synthetic biology (Benner 2003), a group
of chemists successfully synthesized novel DNA nucleotides that function
analogously to naturally occurring DNA bases. This initial synthesis by
one group of scientists (Liu et al. 2003) led another to incorporate these
bases into a strand of DNA, creating what they called ‘xDNA’ (Gao, Liu,
and Kool 2005). Still another group studied the electronic properties and
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228 MICHAEL WEISBERG AND RYAN MULDOON

stability of these molecules using computational methods (McConnell and
Wetmore 2007). These individual episodes of research were independent,
but they built off of one another. Progress by one research group affected
the research trajectory of others, but unlike in Watson and Crick’s elu-
cidation of DNA’s structure, a significant discovery made by one did not
signal the end of the specific research topic.

This kind of division scenario seems to us to be more common, the
sort that makes up the bulk of scientific progress. Even highly significant
findings of the sort reported each week in Science and in Nature often
result from research organized in this way. Our models are designed to
capture and analyze this division by mapping information about the mi-
crostructure of scientific research to spatial components of an epistemic
landscape. Division of labor is represented as the distribution of agents
throughout the landscape and scientific change as the exploration of the
landscape. We now turn to these details.

2.1. Components of the Epistemic Landscape. A single epistemic land-
scape corresponds to the research ‘topic’ that engages a group of scientists.
Research topics can be individuated at broad and narrow scopes, but we
will focus on relatively narrow scopes. The scope of our models approx-
imately corresponds to the topic that a specialized research conference or
advanced level monograph might be devoted to. For example, in psy-
chology, the study of young children’s abilities to engage in and reason
about pretend play is a topic of the scope we have in mind. Similarly, the
study of opiod receptors in chemical biology, critical phenomena in sta-
tistical physics, or plant chemical communication in biology are all topics
of the appropriate scope for our models.

The second conceptual component of epistemic landscapes are ‘ap-
proaches’. These are narrow specifications of how an individual scientist
or research group investigates the topic. An approach includes:

1. the research questions being investigated,
2. the instruments and techniques used to gather data,
3. the methods used to analyze the data, and
4. the background theories used to interpret the data.

For example, among the researchers studying children’s ability to engage
in pretend play (a single topic), classes of approaches might involve in-
vestigating the developmental time course, the differences between indi-
vidual and group play, how children play with peers versus adults, and
so on. Within these classes of approaches would be the specifics of the
research method, including where the population was drawn from, direct
manipulation versus observational approaches, the props used to initiate
pretend play, and the like. Finally, the same techniques aimed at the same
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EPISTEMIC LANDSCAPES 229

questions may yield different results in light of the background theories
used to interpret the data. We mean for approaches to be individuated
quite finely with respect to each of these four aspects.

The final main component of an epistemic landscape is the ‘epistemic
significance’ of the results yielded by following a particular approach.
Here we follow Kitcher (1993) in claiming that finding out true things
about the world is extremely easy—all the null results collected in every
laboratory tell us true things about the world, but many of these null
results are not very scientifically interesting. What scientists really care
about are significant true things.3

An important and foundational debate in philosophy of science con-
cerns the source of scientific significance. A classical perspective holds
that some facts have intrinsic scientific significance. A radical alternative
holds that all judgments of scientific significance are merely the result of
dominant ideologies and other political and social forces that influence
scientists and scientific consumers as much as anyone else. Moderate
positions acknowledge both the social origin of much of what we take to
be important in scientific knowledge, but also that some questions and
answers have significance internal to the goals and structures of science.
Our model makes no commitment about the source of significance judg-
ments. It only requires that the community of scientists working on the
same topic would make the same or nearly the same judgments about
significance.4

We now have the basic components necessary to construct the land-
scape: topics, approaches, and the significance of research conducted with
these approaches. The boundaries of the landscape are delimited by the
topic; the coordinates of the landscape correspond to approaches; and
the topography of the landscape corresponds to significance. The episte-
mic landscape represents the hypothetical research approaches that could
be taken with respect to a given research topic and the epistemic signif-
icance that research employing a particular approach can yield.

Strictly speaking, epistemic landscapes only need two dimensions, one
for approaches and one for significance. But a realistic epistemic landscape

3. Technically, the significance in our model should be thought of as significance of
the truth that is uncovered by employing a given approach.

4. In most real cases, this is an idealization, which we made here in order to keep the
models simple and to bring them in line with Kitcher’s and Strevens’s. Real judgments
about epistemic significance are likely to be colored by background beliefs and non-
epistemic goals. In future, more complex landscape models, other kinds of judgments
of significance such as ‘technological significance’, or monetary value might be rep-
resented as additional dimensions on the landscape. The scientists’ overall judgments
about the significance of the truths yielded by an approach will be a function of all
of these dimensions and might vary between scientists.
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230 MICHAEL WEISBERG AND RYAN MULDOON

Figure 1. An example epistemic landscape of the form used for the models in this
article.

would be of high dimensionality because approaches can vary along many
dimensions, as discussed above. HIV drug researchers, for example, might
share the research topic of treating HIV and the dimensions of their
landscape might correspond to different drugs, to different treatment cy-
cles, to different assessment protocols, and so forth. Each point in the
landscape would represent a particular choice about these aspects of the
approach along with the epistemic significance that employing the ap-
proach yields.

Although realistic landscapes are of high dimensionality, we will employ
a three-dimensional5 landscape in the models discussed in this article. The
x and y coordinates of points on this landscape will correspond to aspects
of the approach and the z coordinate will correspond to the epistemic
significance of the truths yielded by adopting that approach. Further, to
make our model manageable, we will discretize the topography, describing
‘patches’ centered around integer coordinates for x and y and having a
particular significance value. Figure 1 shows such a landscape.

5. Our primary motivation for adopting the three-dimensional landscape was concep-
tual clarity and computational simplicity. More complex landscapes can be generated
easily and they often yield additional local maxima. However, without making more
specific real-world commitments about what the topography of a particular landscape
represents, we believe that the prudent course is to keep the landscapes simple. Future
investigations could profitably explore landscapes of higher dimensionality and greater
ruggedness.
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2.2. Scientist Agents. So far, we have described the scientist-indepen-
dent parts of our model—the structure of the epistemic landscape and
the information encoded in it. One of the major advantages of our models
when compared to MCR models is that we can more realistically represent
the actual epistemic situation of scientists who have limited knowledge
about the landscape. Scientists do not see the whole landscape at the
beginning of the simulation; they learn about the landscape by exploring
it or observing others.

As these models are agent-based models, individual scientists or re-
search groups are explicitly represented as individuals. Each scientist will
have a series of agent variables including its position in the epistemic
landscape, memory about the patches already explored, and a variable
which describes the algorithm it uses to explore the epistemic landscape.
In more complex models, the scientists can also have variables corre-
sponding to individual utility functions, sets of skills, level of talent, pres-
tige, resources, and so on.

How do scientists move through the epistemic landscape? This is one
of the major areas of flexibility in this family of models. Different explo-
ration rules can be explored, as can mixed strategies where subpopulations
employ different rules.

To fix ideas, we begin by describing the simplest movement rule we
employ called HE, for hill climbing with experimentation. Scientist agents
following this rule, whom we call ‘controls’, only keep track of the sig-
nificance of their current location and the significance of their previous
location on the epistemic landscape. These scientists make all of their
decisions on their own, evaluating how to find a better approach given
where they have been. We consider these agents to be control agents
because they make all of their decisions independently, as if they were the
only ones engaged in research. They also resemble the epistemicaly pure
agents in classical discussions of scientific rationality.

The agents start out distributed randomly through zero significance
areas of the landscape and facing a particular direction, which we call
their ‘heading’. Controls employ the following movement rule each cycle
of the model:

HE Rule:
1. Move forward one patch.
2. Ask: Is the patch I am investigating more significant than my pre-

vious patch?
If yes: Move forward one patch.
If no: Ask: Is it equally significant as the previous patch?
If yes: With 2% probability, move forward one patch with a random

heading. Otherwise, do not move.
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232 MICHAEL WEISBERG AND RYAN MULDOON

If no: Move back to the previous patch. Set a new random heading.
Begin again at Step 1.

The HE rule is a very basic hill-climbing algorithm with the addition
of an experimentation rate. Scientists moving around the epistemic land-
scape rely only on what they can detect themselves about the significance
of a patch; indeed, they do not even notice if another agent is currently
on the same patch. They move in the direction of increasing significance
and if they get stuck in a low significance area, they will ultimately move
in an experimental new direction and find a more significant area. The
experimentation rate is not strong enough, however, to knock scientists
off of a local maximum, unless the peak is constrained to a single patch.
Agents following a hill-climbing algorithm of this type are guaranteed to
find at least a local maximum in finite time (Russell and Norvig 1995,
111).

What does it mean for a scientist to visit a patch in these models? In
the most abstract sense, it means that the scientist has explored that
portion of the epistemic landscape. There are some good reasons to leave
the interpretation at this level of abstraction, because there really is no
additional structure in the model to guide a more concrete interpretation.
However, because we want the models reported here to ultimately form
the base of more realistic models, we believe further interpretation of
scientists visiting patches is needed.

To give further interpretation, we need to be very clear about what is
not included in the model. There is no notion of a research cost in the
model. In each model cycle, every scientist is permitted to move. Similarly,
there is no notion of the differential time it might take to fully investigate
any patch of the epistemic landscape. Whether the patch has been pre-
viously visited or not and whether investigating the patch could yield
significant truths or not does not constrain movement through the epi-
stemic landscape. Finally, there is no notion of changing significance on
the basis of what has happened in previous cycles of the model. In real
science, when a highly significant part of the epistemic landscape has been
well-explored, there is little to be gained by scientists further exploring
that exact region. But in the models reported here, no aspect of this
phenomenon—such as a finite number of possible publications per
patch—will be accounted for.

Given this background, we interpret visiting a patch as follows: when
a scientist visits a patch, this means that she tries to determine whether
there is a significant truth to be determined at the patch. In other words,
she tries to determine whether a particular approach will yield a significant
truth. This might be accomplished by reading the literature, doing an
experiment, or communicating with other scientists. Our models do not
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distinguish between these possibilities and since research is costless, the
yield of any of these approaches is equivalent. Further, our models assume
that scientists are extremely talented at laboratory and library research.
A visit to a patch will always yield a truth of the objective significance
value associated with that particular approach.6 Higher values of signif-
icance correspond to the discoveries of more epistemically significant
truths. In real science, this probably corresponds to higher prestige
publications or grants. But in our model, significance is simply a value7

that can be collected.
The models we will analyze in subsequent sections are thus very ide-

alized. We believe that this is the appropriate way to begin agent-based
investigations of the division of cognitive labor and will allow us to get
a handle on the basic dynamics of cognitive labor represented on epistemic
landscapes. Despite these idealizations, we can make considerable progress
in studying strategies for the division of cognitive labor and how these
strategies interact when the community is polymorphic in strategy. Nev-
ertheless, it would be premature to draw quantitative conclusions from
the models before future work can investigate the robustness of the result
upon relaxing these idealizing assumptions.

One of the most important differences between the epistemic landscape
approach and the approach employed by Kitcher and Strevens is that in
the MCR framework, information about the potential success of a project
is embedded in the calculation performed by scientists. In our model,
scientists do not have a global view of the landscape. They can only see
the parts that they have explored, as well as any information they get
from the exploration of others. This fundamental difference will become
clearer as we now describe the behavior of the scientists in simulations
which employ this framework.

3. Hill Climbing with Experimentation. By way of initial analysis of our
models, we will describe a first series of simulations involving both simple

6. In a more complex model, one could more fully distinguish between landscape
exploration and landscape exploitation. The question of which approaches yield sig-
nificant truths would be settled by exploration, but actually generating those significant
truths would involve some kind of investment into research using that approach which
we call ‘exploitation’. The current models only keep track of exploration, because
keeping track of exploitation would require introducing a cost for doing research and
a less trivial connection between finding a highly significant patch and actually yielding
a significant, publishable truth.

7. From the point of view of the models’ agents and from our own point of view, all
that matters is the ordering of the significance values. Since the models described in
this article are not intended to be correlated to any actual scientific topic, the absolute
values are not particularly meaningful.
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epistemic landscapes and scientists following the HE rule.8 The epistemic
landscapes used in this study are built on a 101 patch by 101 patch toroidal
grid. Significance is determined by two Gaussian functions generated with
similar parameter sets.9 The baseline significance for a given grid patch
is 0. At the boundary of a set of significant patches this jumps from 0 to
50, signaling entry to an area of epistemic significance.10 From there, the
significance grows according to the Gaussian function. Figure 1 is a three-
dimensional representation of such a landscape, but in our subsequent
discussion, it will be more straightforward to examine two-dimensional
contour plots, where height is represented with lighter shades of gray.
Figure 2 is such a representation.

This epistemic landscape is not meant to model any particular target
scientific domain; however, we believe that it has several features which
are common to many kinds of domains we wish to study. First, most
domains have multiple approaches that will yield significant truths. Sec-
ond, the approaches likely to yield significant results cluster together, and
are not scattered randomly through the epistemic landscape. Third, there
is likely to be more than one cluster of promising approaches in a given
topic domain. It is thus necessary to represent multiple promising ap-
proaches, but we believe that two peaks are sufficient in these basic models.

The epistemic landscape is populated with control agents, scientists who
follow the HE rule. As we have already discussed, when a population
follows this rule, all of the agents will eventually find their way to one of
the peaks. So while it is important for model validation purposes to ensure
that all agents eventually find a peak on the epistemic landscape during
a simulation, the most interesting things we can learn are about the short-
and medium-term behavior of the model. Specifically, we will ask the
following questions:

1. How fast does a community of controls find the two peaks of the
epistemic landscape? How does this scale up as the number of sci-

8. All of the simulations described in this article were carried out using models con-
structed with Netlogo 4.0 beta (Wilensky 1999). The behavior of these models was
subsequently verified in Netlogo 4.0. Code for the models, as well as example parameter
sets, can be found from the authors.

9. Two-dimensional Gaussian functions have the form 2f(x, y) p A exp (�a(x � x ) �0

, where is the amplitude, the center, and the2b(x � x )(y � y ) � c(y � y ) ) A (x , y )0 0 0 0 0

parameters , , and control the spread of the function in three dimensions. For thea b c
studies described in this article, we used the parameter set , , ,A p .75 a p .02 b p .01
and for the Gaussian centered at and , , , andc p .02 (25, 25) A p .7 a p .01 b p .01

for the Gaussian centered at (�5, �5)c p .01

10. Any boundary change yields the same behavior. We use the large jump for ease
of visualization.

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



EPISTEMIC LANDSCAPES 235

Figure 2. Two-dimensional representation of epistemic landscape. In the simulation,
this grid is wrapped around a torus so that there are no edges. Lighter shades of gray
correspond to greater significance.

entists increases?
2. If epistemic progress can be approximated as the percentage of sig-

nificance yielding approaches discovered, how much epistemic prog-
ress does the community of scientists make? How does this scale up
as the number of scientists increases?

To answer the first question, we ran a simulation experiment where 10
controls were placed randomly in zero significance areas of the epistemic
landscape and their initial headings were also randomized. They were
allowed to move around the landscape according to the HE rule. The
simulation was cycled11 continuously until each of the two peaks had been
found by at least one scientist or else a time limit had elapsed. We set the
time limit to 50,000 cycles, which pilot simulations suggested were long
enough to ensure that the scientists landed on a peak. Based on this pilot
data, we interpret a simulation that runs to the elapsed time to mean that
all of the controls had piled on to a single peak, leaving the second one
unvisited (which is a possible equilibrium state of our model). Moreover,
despite being noncommittal on the amount of research time that one cycle

11. One cycle corresponds to each scientist agent following its rule set one time.
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of the simulation corresponds to, we think that 50,000 cycles is far longer
than the lifetime of most research topics. For the sake of generating an
intuition about the time scales, imagine that a single model cycle corre-
sponded to an average day of research, then 50,000 cycles would almost
be 137 years.

The simulation was repeated 100 times using 10 controls and the stan-
dardized epistemic landscape described above. After each simulation, the
random number generator was reseeded. We found that 95 times out of
100, the 10 controls successfully found both peaks of maximum signifi-
cance. That is, they found the two most significant patches out of the
10,201 patches on the landscape. Among these 95 successful simulated
communities, the time to finding the two significant peaks varied consid-
erably from a maximum of 43,004 cycles to a minimum of 553 cycles.
The mean for these runs was 6,075 with standard deviation 8,518 and the
median was 2,553. More importantly, the length of runs is distributed in
a heavy-tailed distribution, with 60% of the runs being completed in 4,000
cycles and 80% being completed in 10,000 cycles.

These results suggest that a small population of controls can run into
trouble in a number of ways. First, it is simply the luck of the draw
whether a small population will find the patches of maximum epistemic
value in short order, after a grueling, long period of time, or ever. While
the community will eventually find at least one peak, it may converge to
a suboptimal situation, finding only one peak, and be stuck there forever.
And if the community is especially unlucky, converging on this single peak
may take a very long time. There will be huge variance in these facts and
it can only be explained by random factors.

The next step is to see how these results change with increasing numbers
of scientists working on the same research topic and hence located in the
same epistemic landscape. We ran a second set of 100 simulations, in-
creasing the number of controls to 20. This has two dramatic effects: it
nearly ensures that the scientific community finds both peaks12 and it
halves the median time for the community to find both peaks. We con-
tinued analyzing the time to convergence by rerunning the simulation
adding 10 scientists at a time. The result of these simulations is shown in
Figure 3.

From these simulations, we learn that the probability of finding the
approaches of maximal significance in a timely manner is strongly de-
pendent on the number of independently working scientists in the com-
munity. Further, we learn that there are diminishing marginal returns for
adding scientists. With this particular landscape, the differences between

12. While there is no guarantee that they will reach both peaks, it was true for all of
our simulations and seems to be a high probability outcome.
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Figure 3. Median time for the scientific community to find the two maximally signif-
icant approaches on a two-Gaussian landscape. Each simulation was run 100 times.

groups of 10 scientists—after the model is already populated with 30 or
more—are relatively small.

So far we have only looked at the community’s ability to find the peaks
of the epistemic landscape. While it is obviously important for the scientific
community to find these peaks, much important research also happens
on the slope of the peaks with significant, but nonmaximally significant
approaches. The next step is to consider how controls fare in exploring
these nonmaximal, but nevertheless significant portions of the epistemic
landscape.

To determine this, we will define ‘epistemic progress’ to be the per-
centage of patches with significance greater than zero that have been
visited by the community of scientists. Employing the same epistemic
landscape as before, we will examine a series of small communities of
scientists and determine how much epistemic progress these scientists
make over set periods of time. The results of these simulations can be
found in Figure 4.

As we can see in Figure 4, there is a linear relationship between the
number of controls and the average epistemic progress of the community.
For any of the fixed lengths of time that we measured, we can see that
increasing the number of controls gives a linear increase in the average
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Figure 4. The average epistemic progress of scientific communities following the HE
rule.

epistemic progress of the community. As we might expect, for any given
number of controls, the longer we wait, the greater the epistemic progress.

A scientific community that adopts the HE rule as its way of exploring
the epistemic landscape is neither very effective nor very efficient. Large
populations of controls can achieve high degrees of epistemic progress,
but it takes a considerable amount of time for this to happen. One reason
for this, which we believe is revealed in the simulation data presented
above, is that the scientists in such communities cannot learn from one
another. Scientists do not take into account what other scientists are doing
when they plan their next moves. In some sense, the community that
follows HE isn’t really dividing cognitive labor among its members. Each
member of the community is acting as if it were the only member of the
community. The progress of the community is achieved simply by the
wisdom of the crowd. In the next section, we describe two new rules for
epistemic landscape exploration, which do take into account what other
scientists are working on and are more accurately described as rules that
divide cognitive labor.
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4. Followers and Mavericks. Controls apparently suffer because they can-
not learn from one another. In the next two strategies we will describe,
scientists are very strongly influenced by what their neighbors are doing
and attempt to learn from what their neighbors have previously discov-
ered. In one of these strategies, scientists are strongly biased in favor of
doing what others have done; in the second, they try to avoid what others
have done.

There are two simple ways that agents can learn from what other agents
have done. The first is for them to explicitly learn from other nearby
agents and the second is for agents to leave markers in the epistemic
landscape signifying that a particular approach has been explored. In the
strategies discussed in this section, we opt for the latter approach because
distance on our landscape is not really physical distance. When our agents
are near one another on the landscape, this means that they are working
on similar things, not that they are in physical or even communicative
proximity. Real scientists working on similar projects may communicate
in the short term through talking but leave ‘markers’ in the form of
publications for posterity. The marks left in our epistemic landscapes
correspond to publications, in an abstract way. This allows agents to
communicate to one another about what regions have been successfully
explored.

4.1. Followers. In the next set of simulations, the agents will employ
the strategy we call Follow, and we will refer to these agents as followers.
These agents attempt to take information about previously successful
approaches and use it to find approaches of even greater significance.
Specifically, at the beginning of each cycle of the model, followers examine
the patches in their Moore neighborhood, the eight patches immediately
adjacent to the one on which they are currently located. Followers will
then move to the previously explored approach of maximum significance
in their Moore neighborhood, if such an approach is available. More
specifically, followers execute the following decision procedure:

Follow Rule:
Ask: Have any of the approaches in my Moore neighborhood been

investigated?
Ask: Have any of the approaches in my Moore neighborhood been

investigated?
If yes: Ask: Is the significance of any of the investigated approaches

greater than the significance of my current approach?
If yes: Move towards the approach of greater significance. If there

is a tie, pick randomly between them.
If no: If there is an unvisited approach in the Moore neighborhood,
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move to it, otherwise, stop.
If no: Choose a new approach in the Moore neighborhood at

random.

As with the community of controls, we first asked how quickly a com-
munity of followers can converge on the approaches of maximum epi-
stemic significance and then evaluate the epistemic progress of follower
communities over time. In order to make comparisons with the previous
set of simulations, we will continue to employ the same two-Gaussian
epistemic landscape.

To examine the time to convergence on maximally significant ap-
proaches, we ran simulations where followers were placed randomly in
zero significance areas of the epistemic landscape. The simulation was
cycled until at least one scientist had found each of the two peaks or else
a time limit of 1,000 cycles had elapsed.13

We ran 100 simulations with 10 followers, then in subsequent batches
of 100 simulations, we increased this number by 10 up to 200 followers.
After each simulation, the random number generator was reseeded. With
only 10 followers, not a single population managed to find both ap-
proaches of maximum significance and only 3% managed to find at least
one approach of maximum significance. At the high end of this simulation
with 200 followers, a single approach of maximum significance was found
60% of the time, with both approaches being found only 12% of the time.
However, when the populations of followers did find both peaks, this
happened very rapidly with an average time to converge on the two peaks
(among the populations that did converge) of 56 cycles, which suggests
that the randomly placed agents were near the boundary of significance
at the beginning of the simulation. The data for the entire batch of sim-
ulations is shown as a histogram in Figure 5.

Turning now to the epistemic progress of communities of followers, we
followed a similar procedure to our analysis of the control group. We ran
simulations of populations of 10–400 followers for 1,000 cycles. In every
case, the population quickly converged to its final value for epistemic
progress and remained stationary throughout many of the 1,000 cycles.
A typical time-course for this population is recorded in Figure 6.

As we can further see in Figure 7, adding additional followers does
result in the community of followers making great strides in their epistemic
progress. The average epistemic progress of a community of 400 followers

13. We use a much shorter maximum time limit in this study because the Follow
movement rule does not ensure that scientists will find one of the peaks and because
pilot simulations revealed that the model reaches its steady state after a relatively small
number of cycles.
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Figure 5. The frequency of convergence on approaches of maximum significance.

is 0.17, whereas the average epistemic progress for 10 followers was 0.0065.
This contrasts poorly with communities of controls. In just 500 cycles,
400 controls progressed to epistemic significance level 0.24 and after 10,000
cycles, they reach 0.69. It took fewer than 300 control scientists 500 cycles
to reach the maximum epistemic significance achieved by 400 followers
in 1,000 cycles.

As can be seen from Figure 6, populations of followers tend to reach
their equilibrium epistemic progress very rapidly. Once this is reached,
the population ceases to move about the landscape. To further analyze
this behavior, we traced the path of individual followers during the course
of individual model runs, an example of which is shown in Figure 8. These
plots show three behaviors of interest: first, clusters of followers who start
out close to hills in the epistemic landscape follow each other up the hill.
These are the only followers that ever make it on to the hills at all. Second,
finding one’s way onto the hill does not guarantee making it to the top,
which strongly contrasts with the behavior of controls. If a control finds
the edge of a hill, she will ultimately make it to the peak. However, if
followers bump into each other on the way up, they can get stuck following
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Figure 6. Typical time-course for 300 followers on a two-Gaussian epistemic landscape.

each other around on a suboptimal region of the hill. Finally, the vast
majority of followers who start far away from the hills on the landscape
never get close to the landscape because, if alone, they end up following
their own trail. Or if around others, they end up circling around the trails
each other make.

In the before and after pictures in Figure 8, we show how a population
of 300 followers starts off and how it reaches its equilibrium. In the second
picture, we have let each follower trace out its path. All three behaviors
of interest are exhibited in these figures.

These three behaviors suggest that the high degree of coordination and
learning from others exhibited by followers is simply not paying off.
Populations of followers do not even make as much epistemic progress
as the same sized population of controls. But is the problem coordination
with other agents, or the way that followers coordinate? In the next sec-
tion, we examine this question by analyzing a third strategy which we call
the ‘maverick’ strategy.

4.2. Mavericks. Like followers, mavericks take into account which ap-
proaches have been previously explored and which ones were successful.
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Figure 7. Epistemic progress of communities of followers after 1,000 cycles of the
model.

However, unlike followers, mavericks avoid previously examined ap-
proaches, while followers emulate them.

At the beginning of each cycle of the model, mavericks examine the
patches in their Moore neighborhood and execute the following decision
procedure:

Maverick Rule:
Ask: Is my current approach yielding equal or greater significance

than my previous approach?
If yes: Ask: Are any of the patches in my Moore neighborhood

unvisited?
If yes: Move towards the unvisited patch. If there are multiple un-

visited patches, pick randomly between them.
If no: If any of the patches in my neighborhood have a higher

significance value, go towards one of them, otherwise stop.
If no: Go back 1 patch and set a new random heading.

We first examined the mavericks’ efficiency at finding the two ap-
proaches of maximum significance. Unlike in the case of the followers,
10 mavericks nearly always found both peaks (99% of the time), and 20
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Figure 8. Exploration of the epistemic landscape by a community of 300 followers
before (A) and after (B) movement begins. The tails behind agents are a plot of the
paths they followed during the course of the simulation.

mavericks always found both peaks in our simulations. In addition, the
mavericks are far more efficient at finding the peaks than controls. With
10 mavericks, the mean time to find both peaks was only 80 model cycles.
With 100 mavericks, the mean time to find both peaks was 37 cycles and
this is only slightly improved by adding 100 more mavericks to make a
total of 200. With 200 mavericks, the average time to find both peaks is
33 cycles.

The mavericks are similarly impressive when we examine their epistemic
progress: Large amounts of progress is made with very few agents in a
very short amount of time. As with the controls and followers, we ex-
amined populations of 10–400 mavericks in increments of 10. We sampled
the community’s epistemic progress after 200, 500, and 2,000 cycles of
the model.

As expected, the worst performance was with 10 agents and the shortest
amount of time. The mean value for epistemic progress in this case was
merely 0.10. In other words, 10% of the significant approaches had been
found. After another 300 cycles, this hardly improves (0.12) suggesting
that the source of this low value is actually the mavericks’ efficiency at
hill climbing. Populations of 10 mavericks find the peak approaches before
they can explore a sufficient number of alternative approaches.

Increasing the number of mavericks drastically increases the epistemic
progress of the community. With 100 mavericks, the community achieves
0.55 epistemic progress after 200 cycles. With 400 mavericks, they achieve
epistemic progress of 0.90 after 200 cycles, meaning that nearly every
significant approach has been explored.
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Figure 9. Comparison of the epistemic progress of controls, followers, and mavericks.
Controls and mavericks measured after 200 cycles; followers after 1,000.

As with the small number of mavericks, there is little change in epistemic
progress after 200 cycles. With 100 mavericks, for example, the community
gets to 0.63 from 0.55. With 200, it moves from 0.75 to 0.80. In all cases,
populations of mavericks make the progress that they are going to make
quickly and they find the maximally significant approaches quickly. We
compare the epistemic progress of mavericks to followers and controls in
Figure 9.

Having examined the performance of pure populations of controls,
followers, and mavericks on the same epistemic landscape, we can now
draw some preliminary conclusions. Mavericks are extremely efficient at
finding peaks, and, due to the methods they use to find the peaks, they
also make excellent epistemic progress. In contrast, followers are very
poorly equipped to find the peaks of the landscape to make epistemic
progress. The contrast between these two groups suggests that while it
may be important to take into account information about what other
scientists are doing, if one takes it into account in the wrong way, it can
be disastrous. Like mavericks, populations of controls are pretty good at
finding peaks; given enough time, they will always find at least one of the
peaks. However, they take far longer to find the peaks and make far less
epistemic progress per number of scientists then do mavericks.

So far we have only looked at pure populations, where all the scientists
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follow the same strategy. In the next section, we report preliminary anal-
ysis of mixed populations. Of particular interest will be the effect that
mavericks can have on populations of followers.

5. Mixed Populations of Mavericks and Followers. Our initial study of
mixed maverick and follower populations14 asks a very simple question:
Does the addition of a single maverick to a large population of followers
make a difference? Specifically, does this addition increase the epistemic
progress of the community and does it alter the behavior of the followers
in any other significant way?

In order to address these questions, we employed the same epistemic
landscape as in the earlier studies with populations of 400 followers. We
allowed the model to run for 1,000 cycles and measured the epistemic
progress and the total number of approaches that were explored by the
community. This was compared to a second set of populations, this time
with 400 followers and the addition of a single maverick. The same mea-
surements were taken.

For both measures, there was a significant difference between these
samples. Adding a single maverick increased the epistemic progress of a
population of followers by an average of 0.02 ( , , two-t p �5.74 p ! 0.001
tailed) and it increased the total number of approaches investigated by
232 ( , , two-tailed). In contrast, the difference in av-t p �10.8 p ! 0.001
erage approaches investigated and average epistemic progress between a
population of 400 followers and a population of 401 followers are not
significant ( , , two-tailed).t p �1.47 p p 0.144

Since adding even a single maverick to a population of followers makes
a significant difference, we conducted a series of mixed population studies
to demonstrate the effect of systematically adding mavericks to popula-
tions of followers. Using the same epistemic landscape, we systematically
studied populations of 10–400 followers, mixing in 10 mavericks at a time
up to a maximum of 50 mavericks. After 500 cycles of the model, the
epistemic progress was recorded. As expected, the added mavericks had
several significant effects.

As we saw in Section 4, pure populations of followers make very little
epistemic progress. Populations of 100 followers made epistemic progress
of 0.07, and 400 followers only made an average progress of 0.17. In
contrast, when just 10 mavericks are added, 100 followers improve to an
average of 0.15 (a 214% increase), and 400 followers improve to 0.28 (a
165% increase). This suggests that even small additions of mavericks to

14. Although in this section we analyze mixed populations of agents employing pure
strategies, this is equivalent to homogeneous populations employing mixed strategies
(Maynard Smith 1982).
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Figure 10. Epistemic progress of mixed communities of followers and mavericks after
500 model cycles.

populations of followers massively boosts the productivity of that popu-
lation. We can see this result clearly in Figure 10, which plots the epistemic
progress for different mixed populations of mavericks and followers.

We also note that the epistemic progress of these mixed populations is
not due to the mavericks alone. If the progress were solely due to the
mavericks, then the absolute increase in epistemic progress would be the
same across mixed populations, with the one caveat that there would be
a slight tendency to decrease progress as the number of followers increases.
Instead we find the opposite trend: there is an increase of 0.08 in a pop-
ulation of 100 followers, whereas with 400 followers the increase is 0.11.
This suggests there is an indirect stimulation of follower activity that
accounts for the additional epistemic progress. Thus, the increase in pro-
ductivity of the mixed population is due both to the direct actions of the
mavericks, namely, their own efficiency at finding high significance ap-
proaches, and the effect that mavericks have on followers. Mavericks help
many of the followers to get unstuck, and to explore more fruitful areas
of the epistemic landscape.

Our final study of mixed populations of mavericks and followers ex-
amined what happens when the total number of scientists is held fixed,
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Figure 11. Average number of approaches investigated by mixed populations of fol-
lowers and mavericks after 500 model cycles. The landscape consists of 10,201 ap-
proaches total.The population size is held fixed at 400 scientists, but the ratio of
mavericks to followers is varied from 0 mavericks to 400 mavericks.

but the ratio of mavericks to followers was adjusted from 100% followers
to 100% mavericks. This time, instead of just looking at what we have
been calling ‘epistemic progress’, we consider the total progress of the
community. We define ‘total progress’ as the total number of approaches
investigated, whether significant or not. This measure allows us to see
how much total activity is being performed by the scientific community,
which we need to keep track of to fully understand the effect of strategy
distributions in a population.

Figure 11 summarizes the results of this final analysis and the results
are rather striking. The initial addition of mavericks (ratios of .02–.10)
causes rapid tripling then quadrupling of the number of approaches in-
vestigated. Further small increases in the number of mavericks (0.10–0.40)
take the population to around the 90% mark for the number of approaches
explored in 500 cycles. Remembering that the mavericks quickly converge
to the approaches of maximal significance themselves, this rapid increase
in the number of projects explored is primarily a result of the increased
stimulation of followers by mavericks briefly passing through their region.
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Thus, in this set of simulations as in the others, we see the very significant
indirect affect that mavericks have on research progress via their ability
to stimulate the followers.

6. Dividing Cognitive Labor in Normal Science. The simulations described
in this article only scratch the surface of what might be explored using
epistemic landscape models. Landscapes can be made more rugged, they
can contain more information, exploration strategies can take into ac-
count more information, an economy of money and credit can be included,
and so forth. Much work remains to be done in realizing these possibilities,
all of which we believe can be built within our existing framework.

Even with our current models and current landscape, we have observed
a number of very interesting general trends about the division of cognitive
labor. The first is a connection between cognitive labor and Thomas
Kuhn’s (1962) extensive discussions of ‘normal science’.

Kuhn himself described normal science as ‘puzzle solving’, a way of
articulating the details of a paradigm. One thing the behavior of agents
in our model makes clear is that this is too simple a characterization for
describing the division of cognitive labor in nonrevolutionary circum-
stances. All of our agents are doing normal science, yet some quickly
converge to the maximally significant patches (and get papers in Nature),
others find their way to significant areas, no doubt producing high quality,
slightly derivative research, and others seem completely hopeless, ma-
rooned forever, employing approaches which can generate few results of
significance. It is only these latter scientists who truly seem to be puzzle
solving, at least in the most pejorative sense. The rest of the scientists are
discovering significant truths, doing significant research. So one general
lesson we might take away from this analysis is that one should make
finer divisions among normal science activities if one is interested in cog-
nitive labor.

Closely related to this is the differential suitability of the strategies for
different kinds of normal science. Unsurprisingly, followers seem very well
suited for puzzle solving—the simple articulation of details of a paradigm.
Mavericks can partially fulfill this role, but their search patterns through
the epistemic landscape are not particularly well suited for the kind of
long term analyses required, for example, to add one more decimal place
to a known constant. However, having a small population of mavericks
in the midst of a larger population of followers helps the followers to
puzzle solve. As we discussed in Section 5, even a few mavericks can cause
the followers to explore a greater portion of the insignificant portion of
their epistemic landscape, the regions we have associated with puzzle
solving.

While the followers are good at puzzle solving, the mavericks are es-
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pecially efficient at finding the peaks of maximum significance. As we
showed, individual mavericks find the peaks extraordinarily quickly and
indeed the whole population converges rapidly on those peaks. This means
that if one wants to search the landscape rapidly for the most significant
truths, one should employ a population of mavericks, at least as opposed
to followers or controls. Even small populations of mavericks will be
sufficient.

The maverick strategy of seeking out unknown epistemic territory has
an important relationship to the class of problems that Kitcher and Stre-
vens are most interested in. For those winner-take-all problems in which
there is no particular value to discovering something a second time, mav-
ericks have an important advantage. They converge on peaks very quickly
because they do not duplicate the approaches of others. This strategy can
thus be interpreted as a behavioral representation of the MCR approach
favored by Kitcher and Strevens, insofar as both strategies seek out the
greatest potential gains. Just as diminishing marginal returns discourage
agents from joining projects that are already well populated, the maverick
strategy avoids approaches that have already been tried. However, as our
model can address a wider range of divisions of cognitive labor, we can
also see how mavericks perform in more common scenarios.

We have also seen that in mixed populations, mavericks can provide
pathways for followers to find the base of the peaks on the epistemic
landscape. Once the followers find these bases, they are reasonably effi-
cient at finding the tops. And mavericks can also stimulate followers to
engage in pure puzzle solving, ensuring that the landscape is fully explored
to find hidden significant approaches. Therefore, mixed populations of
mavericks and followers are valuable divisions of cognitive labor.

The models presented in this article are, of course, highly idealized,
even with respect to what we might accomplish in this framework. This
makes drawing larger conclusions from them difficult, because we would
want to know how robust the results we have discovered are to further
perturbations and complexifications of the model. That said, we can draw
some tentative conclusions about divisions of cognitive labor if we make
one further assumption: Different strategies have differential costs. In
particular, it is more costly to be a maverick than a follower.

That a maverick research strategy is more costly than a follower re-
search strategy seems plausible because of the strategy’s anticonservativ-
ism. Followers not only learn from their neighbors, but presumably they
can borrow techniques, equipment, background research, and the like.
They do not need to do everything for themselves. Mavericks, on the
other hand, are studiously avoiding what has been done before and hence
have to take a much larger research burden on themselves. Unless one
had a very large research budget consisting of lots of money, supplies,
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and helpers, it would be professionally, institutionally, and personally very
costly to be a maverick.

If it is more costly to be a maverick, then optimum research commu-
nities are going to be composed of a healthy number of followers with a
small number of mavericks. At this point, without considerably more
detail added to our models, it is hard to say exactly what the optimum
balance should be. The followers do the bulk of the puzzle solving, ex-
ploring every last corner of the epistemic landscape to make sure that
there are no hidden patches of high significance. They also simply artic-
ulate the paradigm, which has an important role in science, even if it is
not what garners one the most praise or glory. The mavericks have two
roles. Though small in number, they are essential for stimulating the
followers to expand their research horizons. They also do the majority
of finding the most significant peaks, at least at first. But finding the most
significant peaks is only part of the scientific enterprise; articulating the
paradigm matters too. Thus a polymorphic population of research strat-
egies thus seems to be the optimal way to divide cognitive labor.

REFERENCES

Benner, S. A. (2003), “Synthetic Biology: Act Natural”, Nature 421: 118.
Gao, J., H. Liu, and E. T. Kool (2005), “Assembly of the Complete Eight-Base Artificial

Genetic Helix, xDNA, and Its Interaction with the Natural Genetic System”, Ange-
wandte Chemie International Edition 44: 3118–3122.

Gerson, E. M. (2008), “Reach, Bracket, and the Limits of Rationalized Coordination: Some
Challenges for CSCW”, in M. S. Ackerman et al. (eds.), Resources, Co-evolution, and
Artifacts: Theory in CSCW. Dordrecht: Springer-Verlag, 193–220.

Giere, R. N. (1988), Explaining Science: A Cognitive Approach. Chicago: University of
Chicago Press.

Hull, D. L. (1988), Science as a Process: An Evolutionary Account of the Social and Conceptual
Development of Science. Chicago: University of Chicago Press.

Kitcher, P. (1990), “The Division of Cognitive Labor”, Journal of Philosophy 87: 5–22.
——— (1993), The Advancement of Science. Oxford: Oxford University Press.
Kuhn, T. S. (1962), The Structure of Scientific Revolutions. Chicago: University of Chicago

Press.
Liu, H., et al. (2003), “A Four-Base Paired Genetic Helix with Expanded Size”, Science

302: 868–871.
Maynard Smith, J. (1982), Evolution and the Theory of Games. Cambridge: Cambridge

University Press.
McConnell, T. L., and S. D. Wetmore (2007), “How Do Size-Expanded DNA Nucleobases

Enhance Duplex Stability? Computational Analysis of the Hydrogen-Bonding and
Stacking Ability of xDNA Bases”, Journal of Physical Chemistry B 111 (11): 2999–
3009.

Merton, R. K. (1957), “Priorities in Scientific Discovery”, American Sociological Review 22:
635–659.

Muldoon, R., and M. Weisberg (2008), “Robustness and Idealization in Models of Cognitive
Labor”, manuscript.

Russell, S. J., and P. Norvig (1995), Artificial Intelligence: A Modern Approach. Englewood
Cliffs, NJ: Prentice Hall.

Solomon, M. (1992), “Scientific Rationality and Human Reasoning”, Philosophy of Science
59: 439–455.

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2F978-1-84628-901-9_8
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2F978-1-84628-901-9_8
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FCBO9780511806292
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F289680
http://www.journals.uchicago.edu/action/showLinks?crossref=10.7208%2Fchicago%2F9780226360492.001.0001
http://www.journals.uchicago.edu/action/showLinks?crossref=10.7208%2Fchicago%2F9780226360492.001.0001
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2089193
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fanie.200500069
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fanie.200500069
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1126%2Fscience.1088334
http://www.journals.uchicago.edu/action/showLinks?crossref=10.7208%2Fchicago%2F9780226292038.001.0001
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1021%2Fjp0670079
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1038%2F421118a
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2026796


252 MICHAEL WEISBERG AND RYAN MULDOON

——— (2001), Social Empiricism. Cambridge, MA: MIT Press.
Strevens, M. (2003), “The Role of the Priority Rule in Science”, Journal of Philosophy 100:

55–79.
Thagard, P. (1993), “Societies of Minds: Science as Distributed Computing”, Studies in

History and Philosophy of Science 24: 49–67.
Wilensky, U. (1999), “Netlogo”, Center for Connected Learning and Computer-Based Mod-

eling. Evanston, IL: Northwestern University, http://ccl.northwestern.edu/netlogo/.

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.5840%2Fjphil2003100224
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2F0039-3681%2893%2990024-E
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2F0039-3681%2893%2990024-E

	University of Pennsylvania
	ScholarlyCommons
	4-2009

	Epistemic Landscapes and the Division of Cognitive Labor
	Michael Weisberg
	Ryan Muldoon
	Recommended Citation

	Epistemic Landscapes and the Division of Cognitive Labor
	Abstract
	Disciplines


	Epistemic Landscapes and the Division of Cognitive Labor

	Cit p_24:1: 
	Cit p_19:1: 
	Cit p_29:1: 
	Cit p_22:1: 
	Cit p_27:1: 
	Cit p_20:2: 
	Cit p_20:1: 
	Cit p_30:1: 
	Cit p_23:2: 
	Cit p_23:1: 
	Cit p_33:1: 
	Cit p_28:1: 
	Cit p_21:2: 
	Cit p_21:1: 
	Cit p_36:2: 
	Cit p_36:1: 
	Cit p_35:1: 


