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Challenges to the Structural Conception of Bonding

Abstract
The covalent bond, a difficult concept to define precisely, plays a central role in chemical predictions,
interventions, and explanations. I investigate the structural conception of the covalent bond, which says that
bonding is a directional, submolecular region of electron density, located between individual atomic centers
and responsible for holding the atoms together. Several approaches to constructing molecular models are
considered in order to determine which features of the structural conception of bonding, if any, are robust
across these models. Key components of the structural conception are absent in all but the simplest quantum
mechanical models of molecular structure, seriously challenging the conception’s viability.
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Challenges to the Structural Conception
of Chemical Bonding

Michael Weisberg†‡

The covalent bond, a difficult concept to define precisely, plays a central role in chemical
predictions, interventions, and explanations. I investigate the structural conception of
the covalent bond, which says that bonding is a directional, submolecular region of
electron density, located between individual atomic centers and responsible for holding
the atoms together. Several approaches to constructing molecular models are considered
in order to determine which features of the structural conception of bonding, if any,
are robust across these models. Key components of the structural conception are absent
in all but the simplest quantum mechanical models of molecular structure, seriously
challenging the conception’s viability.

Crucial to chemical practice and discourse is the notion of the chemical
bond, specifically the covalent bond. For most synthetic and analytical
purposes, molecules are conceived of not just as collections of atoms but
as structural entities consisting of directionally oriented atomic centers
connected, in some way or other, by covalent bonds. Hydrogen gas is said
to be composed of two hydrogen atoms held together by a single, covalent
bond; oxygen gas, by two oxygen atoms and a double bond; methane,
by four equivalent C-H single bonds.

While the chemical bond plays a central role in chemical predictions,
interventions, and explanations, it is a difficult concept to define precisely.
Fundamental disagreements exist between classical and quantum me-

†To contact the author, please write to: Department of Philosophy, University of
Pennsylvania, 433 Cohen Hall, Philadelphia, PA 19104-6304; e-mail: weisberg@phil
.upenn.edu.

‡Earlier versions of this article were presented at the Australia National University,
the Philosophy of Science Association, and the Center for Philosophy of Science,
University of Pittsburgh. I am grateful to these audiences for their enthusiasm and
very helpful comments. Special thanks to Jerry Berson, Barry Carpenter, Dave Chal-
mers, Peter Godfrey-Smith, Clark Glymour, Robin Hendry, Roald Hoffmann, Paul
Needham, John Norton, Janet Stemwedel, and Deena Skolnick Weisberg for extremely
helpful feedback.
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STRUCTURAL CONCEPTION OF CHEMICAL BONDING 933

chanical conceptions of the chemical bond, and even between different
quantum mechanical models. Once one moves beyond introductory text-
books to advanced treatments, one finds many theoretical approaches to
bonding but few, if any, definitions or direct characterizations of the bond
itself. While some might attribute this lack of definitional clarity to com-
mon background knowledge shared among all chemists, I believe this
reflects uncertainty or maybe even ambivalence about the status of the
chemical bond itself.

This kind of ambiguity has led chemists to different conclusions. Most
commonly, chemists adopt a pragmatic stance and simply demand that
bonding theories be useful for making predictions and aiding in the syn-
thesis of new molecules. The underlying ontological status of the bond
holds little interest. Although useful to everyday chemical practice, this
approach is deeply unsatisfying to the philosopher of chemistry because
it leaves unanswered fundamental questions about the nature of the chem-
ical bond.

Other chemists, including ones of deep realist commitment, draw a
different and more skeptical conclusion from these facts. Robert Mulliken,
a founder of quantum chemistry said, “I believe the chemical bond is not
so simple as some people seem to think” (Coulson 1960). Charles Coulson,
another founder, wrote that the chemical bond “is a figment of our imag-
ination” (1952). These chemists believe that progress in quantum chem-
istry shows that there is something deeply flawed about the chemist’s
notion of the bond. While this degree of skepticism may be warranted in
the end, it is a hard thing for most chemists to accept, given the ubiquity
and usefulness of the bond concept.

Whatever the ultimate verdict, entertaining Coulson’s and Mulliken’s
skepticism raises many deep, philosophical questions about the nature of
chemical bonds and molecular structure. These questions include the fol-
lowing: Are chemical bonds real? If so, should we think of them as entities?
If bonds are not real, is the phenomenon of bonding real? If so, how
should this phenomenon be characterized? What is the relationship be-
tween molecular structure and bonding?

These issues are complex and interrelated, and philosophers of chem-
istry are beginning to consider them (Woody 1998; Berson 2008; Hendry
2008; Needham 2008; Stemwedel 2008). Approaches to answering these
questions necessarily involve the combination of philosophical analysis
and argumentation with a close examination of chemical theory itself.
The latter has proved especially difficult because the last 80 years have
seen myriad theoretical models of varying complexity developed to ac-
count for molecular structure. Much of the diversity comes from different
approximations and idealizations that are made in the course of devel-
oping such models. Different models say different things about the phe-
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934 MICHAEL WEISBERG

nomenon of covalent bonding, and no single model is obviously the cor-
rect one, making the task of philosophical analysis more difficult. The
problem of unclear foundations for the chemical bond is thus compounded
by the diversity of models of structure and bonding.

This article addresses one of these issues: It asks what the myriad models
of molecular structure collectively say about the nature of bonding. Spe-
cifically, it asks whether models of molecular structure endorse a structural
conception of covalent bonds of the kind implicit in much of chemical
practice. To cope with the multiplicity of models, I will follow a modified
form of robustness analysis, where one looks for the structure common
to multiple, otherwise conflicting models (Levins 1966; Wimsatt 1981;
Weisberg 2006; Weisberg and Reisman 2008). As in standard robustness
analysis, I will examine multiple models of molecular structure, looking
for features and predictions common to these models. Where this article
will differ from standard robustness analysis is that we are already in
possession of an external calibration point for the predictions of each
model: experimentally measurable quantities. Using this external stan-
dard, we can examine successively more predictively accurate model
types, investigating the general features that these models have and
which ones they lack. Approaching the problem in this way will let us
determine which bonding features of molecular models are on the surest
theoretical footing—the features that ought to guide our inquiry about
the foundations of covalency.

1. The Structural Conception of Bonding. The chemical literature often
describes covalent bonds in structural terms, employing what I will call,
following Hendry (2008), the structural conception of bonding. In sub-
sequent sections, I will investigate whether this conception is robust and,
if not, which features of bonding are robust. In order to carry out this
analysis, I will rely on a working definition for the structural conception
of bonding. Characterized in purely functional terms, the structural con-
ception of bonding says that a covalent bond is a directional, submolecular
relationship between individual atomic centers that is responsible for hold-
ing the atoms together. As this initial definition is functional, it does not
say what realizes the role of the bond. Defining the bond this way will
be useful in historical studies because bonds were an important part of
chemical theory before the discovery that electrons played a role in
bonding.

In modern chemistry, it is completely uncontroversial to see electrons
or electron density as what realizes the submolecular relationship. This
leads to the following structural conception of bonding: a covalent bond
is a directional, submolecular region of electron density located between
individual atomic centers that is responsible for holding the atoms together.
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STRUCTURAL CONCEPTION OF CHEMICAL BONDING 935

This conception tells us three important things about the nature of
covalent bonds. First, it distinguishes covalent bonds from ionic bonds
with the directionality restriction. Ionic bonds are omnidirectional elec-
trostatic interactions between positively and negatively charged ions. Co-
valent bonds are regions of electron density that bind atoms together
along particular trajectories. Second, this conception says that bonding
is a submolecular phenomenon, confined to regions between the atoms.
This eliminates the possibility that bonds are a molecule-wide phenom-
enon. Third, the region of electron density between the atomic centers
has to hold these centers together, which I will interpret to mean that
they are closer together than they would have been in the absence of the
bond. In other words, bonds are a stabilizing force for the molecule, and
this stabilization will manifest itself in the amount of energy required to
separate the atomic centers.1 The next sections ask how robustly this
conception of the chemical bond is represented in models of molecular
structure.

2. Valence Bond Models. Valence bond models are the first type of quan-
tum mechanical treatment of molecular structure that I will discuss. These
models can be thought of as “bringing together complete atoms and then
allowing them to interact to form bonds” (Carroll 1998, 24). In other
words, covalent bonds are formed when two isolated atoms, each pos-
sessing a full complement of protons, neutrons, and electrons, are
brought together and allowed to interact. The change in electron dis-
tribution and the resulting energetic stabilization from this change is
taken to be the bond. All of this has to be unpacked in some detail,
but we need to begin by considering what a quantum mechanical de-
scription of a molecule looks like.

The quantum mechanical descriptions of atoms and molecules are given
as wave functions of the form (x, y, z, t). Different molecular modelingw

techniques will generate somewhat different wave functions for the mol-
ecule in question because of the different approximations they employ.2

In all of the bonding models that I will discuss, several simplifying
assumptions will be made: First, I will only focus on the electrons and

1. For further discussion about the structural conception as well as other conception
of covalent bonding, see Hendry 2008.

2. In recent times another effective quantum mechanical method has taken root in the
theoretical chemistry community. This is density functional theory, which gives prime
place to the electron density.
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936 MICHAEL WEISBERG

hence on the electronic wave functions.3 Second, I will only examine
time-independent wave functions, taking into account the spatial prop-
erties of the electronic wave functions but not how they evolve in time.
Third, I will only discuss models of molecular hydrogen (H2), a two-
proton, two-electron system. Because this strongly coupled system has a
singlet state as its ground state, I will simply assume that the electrons
have opposite spin. This will prevent us from having to consider the
complexities of the triplet (same spin) two-electron system, at least at the
beginning of the discussion. I will begin the robustness analysis with the
simplest possible valence bond model of hydrogen, one that most closely
embodies the structural conception of bonding.

2.1. Simple Valence Bond Model. The first model of H2 is constructed
by multiplying together two wave functions corresponding to the electrons
originally associated with two individual hydrogen atoms. The electrons
are still “tied” to the nuclei that they came to the bond with.

Let a and b denote electronic wave functions centered around two
distinct hydrogen nuclei. They will each bring along an electron that we
will designate as 1 and 2. This simple model keeps the first electron (1)
in the vicinity of the first hydrogen nucleus (a) and the second electron
(2) in the vicinity of the second nucleus (b) but multiplies them together
to represent the mixing of the wave functions upon bring the atoms to-
gether. Here a(1) stands for the atomic wave function (1s in the simplest
case) of electron 1, moving around atomic center a. Mathematically, this
can be expressed as follows, where c is a normalization parameter:

w p ca(1)b(2). (1)1

Using this wave function, the Hamiltonian for the molecule, and the
Schrödinger equation, we can calculate the dissociation energy of the
molecule described by this wave function. The dissociation energy is the
energy required to pull the atoms apart, removing the interaction between
them and hence destroying the covalent bond. Using this model, the dis-
sociation energy is calculated to be 24 kJ/mol. We can also calculate the
equilibrium distance between the atomic nuclei. This gives us what is
usually called the bond length. In this model, the equilibrium bond length
is calculated to be 90 pm.

We can check these predictions against experimental measurements of
these properties. The simple valence bond model predicts 24 kJ/mol and
90 pm, but experimental investigation has measured the bond length to

3. The assumption that the nuclear and electronic wave functions can be computed
separately is called the Born-Oppenheimer approximation (Born and Oppenheimer
1927).
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STRUCTURAL CONCEPTION OF CHEMICAL BONDING 937

be 74.1 pm and the dissociation energy to be 458.0 kJ/mol. We are in the
right ballpark, but clearly there is much room to improve our model. The
first improvement will be to loosen the spatial restriction of each electron.

2.2. The Heitler-London Model. A substantial improvement in accu-
racy can be made to our simple model of the H-H bond. The model was
first proposed by Heiter and London (1927). It starts from the model
discussed in Section 2.1 but modifies it by making the following obser-
vation: the electrons are indistinguishable, and hence it is arbitrary to
assign electron 1 to atomic center A and electron 2 to atomic center B.
The model thus considers a compound wave function, generated from the
one discussed in Section 2.1 and the following:

w p ca(2)b(1). (2)2

This corresponds to the electrons “swapping places.”
In quantum mechanics, wave functions can be built up by taking linear

combinations of simpler wave functions. Thus, our full wave function will
be the linear combinations of Equations (1) and (2). The linear combi-
nation corresponding to the singlet ground state is

w p ca(1)b(2) � ca(2)b(1). (3)HL

Confining our attention then to Equation (3), let’s consider what the
wave function tells us qualitatively about the distribution of electrons. If
we think about them as particles, it tells us that they are free to move
between the atoms but in a coordinated fashion. They must, on average,
be near opposite atomic centers, but they have greater mobility. It is
impossible for a verbal description to be fully accurate, but a somewhat
better description is that when we calculate the probability distribution
of the electrons through space ( ), we find that there is a buildup ofWW*
electron density between the two atomic centers, with maximum electron
density centered on each of the two atomic centers. The biggest difference
between this model and the simpler one considered in the previous section
is that there is a greater distribution of electron density throughout the
molecule.

How well does the Heitler-London model predict the measurable prop-
erties of H-H bonds? Considerably better than the simple valence bond
model, it turns out. The bond distance is calculated to be 86.9 pm, which
is a little better than the simple model, but the dissociation energy is
calculated to be 303 kJ/mol, which now brings it to the same order of
magnitude as the measured value. By allowing greater electron delocali-
zation, the model is brought into closer alignment with the experimentally
measured values. This is a theme that I shall return to throughout the
article.
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938 MICHAEL WEISBERG

2.3. Improving Valence Bond Models. The Heitler-London model can
be improved further if we take the Heitler-London wave function to be
just two terms of a more complex wave function. In other words, we add
additional terms corresponding to other characteristics that the wave func-
tion might have. I will only discuss one example of this, but it illustrates
a very general principle at the heart of modern model building in quantum
chemistry.

One thing that the Heitler-London model does not do is take into
account the possibility that the molecule could have ionic character. In
other words, it does not allow for the possibility that there is a greater
distribution of electron density on one side of the molecule or the other,
however briefly or however slightly.

We can take this possibility into account by adding in additional terms
corresponding to an ionic distribution of electron density, which at the
extreme would correspond to the electrons being on both one side of the
molecule or on the other side (e.g., ). At the same time, we doa(1)b(1)
not want to overcompensate, adding too much ionic character. One way
around this is to add an adjustable parameter to each term. The wavel

function is then optimized by setting to some value, calculating thel

energy of molecule, then trying another value for , and keep iteratingl

until we find the value that gives the lowest energy, making the well-
motivated assumption that the ground state electronic wave function will
be the one with the lowest energy.4 The new model has the following wave
function:

w p ca(1)b(2) � ca(2)b(1) � lca(1)b(1) � lca(2)b(2). (4)ionic

Adding these ionic terms considerably improves the model, allowing us
to calculate 388 kJ/mol and 74.9 pm, bringing the dissociation energy of
the model even closer to the experimental value.

Having looked at three successively improved valence bond models,
let’s consider what they have told us collectively about the structural
conception of bonding. First, by letting the electrons delocalize, as in
the Heitler-London approach, the model came closer to agreement with
experimentally measured quantities. When the model was made even
more flexible, allowing the electrons to travel further afield and giving
the model ionic character, the model came in even better agreement with
experimental measurements. This trend continues with increasing elec-
tron mobility. In 1968, Kolos and Wolniewicz used a 100-term, highly

4. Technically, we also rely on the variation theorem, which tells us that this procedure
will only ever overestimate but not underestimate the energy. Thus, we can keep varying
parameters until we get the energy minimum, without fear that we are underestimating
(Levine 1991).
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STRUCTURAL CONCEPTION OF CHEMICAL BONDING 939

flexible wave function, and after optimizing the parameters, they came
within 0.01 kJ/mol of the measured values (Kolos and Wolniewicz 1968).
Thus, the result most strongly robust among these many models of the
covalent bond is that greater electron delocalization leads to greater sta-
bilization and closer agreement to experiment.

What do these valence bond models say about our three criteria for
the structural conception of bonds? First, they are directional and allow
us to distinguish between ionic and covalent bonds. However, as we have
just seen, adding ionic character actually stabilizes many molecular models
such as those for the H2 model. Second, while the simple valence bond
models start out with submolecular regions of electron density that we
can identify as the bond, they are improved by allowing the electrons to
have increased delocalization, spreading some of the density throughout
the molecule. Finally, the valence bond models do nothing to challenge
the idea that bonds hold the molecule together.

3. Molecular Orbital Models. Our robustness analysis will continue with
a second, distinct approach to constructing molecular models: the mo-
lecular orbital method. Rather than looking at bonding as what happens
when we bring together two atoms and let them interact, we start off with
atomic centers at initial distances, then calculate electron wave functions
for the entire molecule. The electrons are affected by a potential field
generated by the nuclei collectively. This is repeated at different nuclear
distances, building up a potential energy curve, from which the equilibrium
bond distance can be calculated.

As with valence bond models, one can start with an arbitrary form for
the molecular orbital wave function and then improve the model by adding
more terms and adding adjustable parameters on these terms. We will
start with a simple trial wave function for H2 to illustrate some of the
key features of molecular orbitals. A prudent way to begin is to use wave
functions corresponding to linear combinations of the atomic orbitals of
our two hydrogen atoms, which we will call A and B. So we have

w p w � w (5)j A Bg

and

w p w � w . (6)j A Bu

When populated with electrons, Equation (5) gives us the lower energy
bonding wave function, while Equation (6) gives us the higher energy
antibonding wave function. If we want to calculate the total electronic
wave function for the molecule, corresponding to adding the two electrons
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940 MICHAEL WEISBERG

into the hydrogen molecular orbital, we take the product of the wave
function for each orbital:5

w p w � w . (7)H j (1) j (2)2 g g

Combining Equation (5) with Equation (7), we get the following expan-
sions:

w p [w � w ][w � w ] (8)H A(1) B(1) A(2) B(2)2

and

w p w w � w w � w w � w w . (9)H A(1) A(2) B(1) B(2) A(1) B(2) A(2) B(1)2

Interesting structure emerges from the terms in this equation. The third
and fourth terms ( and ) are exactly the same terms asw w w wA(1) B(2) A(2) B(1)

those found in the Heitler-London model of the H2 molecule. This cor-
responds to a single electron being located in the vicinity of each nucleus.
However, there are two additional terms, and , whichw w w wA(1) A(2) B(1) B(2)

correspond to the electrons simultaneously positioned near the A nucleus
or the B nucleus. These ionic terms corresponding to asymmetric electronic
distributions had to be added manually to the Heitler-London model. So
right from the start, this model includes the possibility of ionic character
in what would classically be treated as a nonpolar, covalent bond. In fact,
in this molecular orbital wave function the covalent and ionic parts of the
wave function are given exactly equal weight. We will come back to this
point below.

How does this simple molecular orbital model conform to experiment?
If we calculate the dissociation energy and bond distance predicted by
this model, we come up with �260 kJ/mol and 85 pm, respectively, values
that accord reasonably well with the measured values of �458.0 kJ/mol
and 74.1 pm. These values are similar to those calculated with the Heitler-
London model but considerably better than those calculated with the
simplest valence bond model. Even in this simple model, we see some
interesting and nonclassical structural features.

First of all, there is the importance of the aforementioned ionic terms.
This suggests that there is far greater electron mobility than in a case of
two isolated atoms. Further, the electronic density is at its peak in the
areas immediately surrounding the nuclear centers. Figure 1 is a cross
section of the amplitude of the wave function of H2 calculated from our
model. We can see that the highest density is just around the nuclear
centers, with considerable density in between the atomic centers, but also

5. It is assumed (and suppressed for clarity) that this spatial wave function is multiplied
by an antisymmetric spin wave function to describe the ground state of the molecule.
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STRUCTURAL CONCEPTION OF CHEMICAL BONDING 941

Figure 1. A cross section of the electronic density distribution calculated from a mo-
lecular orbital model of hydrogen. This diagram is not to scale.

a reasonable amount of electronic density on the far sides of the atomic
centers.

There are many ways to improve this simple molecular orbital model,
some of which will be discussed in the next section. But even from this
very simple model and the Heitler-London model discussed in the last
section, we can see the continuation of the pattern that has been emerging.
Delocalization of electron density is a prominent feature of this model of
molecular structure. The electrons are not sitting between the two atoms
holding everything together; rather, they are distributed throughout the
molecule. This puts pressure on the second part of the structural concep-
tion of bonds, the idea that bonds are submolecular phenomena. Similarly,
delocalization makes the bonds less directional. The nuclei are still located
in particular places that minimize the total energy of the molecule; however,
the bonds themselves are considerably more diffuse. As we will see in the
next section, the trend continues with more complex molecular orbital
models.

4. Modern Molecular Orbital Models. The methods considered so far
were worked out for simple molecules in the first half of the twentieth
century. Since that time, there has been considerable progress in devel-
oping models that can yield more accurate calculations of molecular prop-
erties. To review all of these methods here would be impossible and un-
necessary; however, many modern methods can be seen as systematic
improvements to molecular orbital models along two dimensions relevant
to the structural conception of bonds.

The first type of improvement involves using a hierarchy of more com-
plex basis functions as trial wave functions. These basis functions are
expanded by taking into account many possibilities (with adjustable pa-
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942 MICHAEL WEISBERG

rameters), including greater delocalization of the electrons as well as oc-
cupation of higher energy electronic states. Just as ionic terms are “mixed”
into the valence bond wave functions, so too these spatially diffuse, de-
localized, and higher energy states are mixed into the starting molecular
wave functions.

The second dimension on which modern methods improve upon simple
molecular orbital models is in the nature of the optimization of the wave
function, given the basis set. I have already alluded to the way calculations
are typically performed using simple molecular models, a method called
the Hartree-Fock method. The method works as follows:

1. Make an initial guess of the position of the nuclei.
2. Start with initial values of the parameters on all the electronic terms

in the trial wave function.
3. Choose the terms corresponding to a single electron, then vary the

parameters on those terms in order to minimize the energy.
4. Repeat step 3 for each electron in sequence.
5. Repeat step 4, cycling through all of the electrons until the energy

values no longer change, having reached self-consistency of the or-
bitals with the field generated by the electrons.

6. Perturb the nuclei a small distance and repeat steps 2–5, searching
for an energy minimum (Levine 1991; Anslyn and Dougherty 2005).

Although wave functions calculated with the Hatree-Fock method can
yield excellent results, the method does not fully take into account electron
correlation, the coordinated movement of electrons. Recall that electronic
wave functions are optimized from the point of view of a single electron.
The method imagines that each electron is influenced by a field generated
by the stationary distribution of all of the other electrons. It moves sys-
tematically through the electrons, treating them in this fashion, until self-
consistency is achieved. But any two electrons in the vicinity of one an-
other will repel one another, and this cannot be fully taken into account,
especially for electrons of antiparallel spin, in this type of calculation.
Hence, a more accurate calculation would take this electronic correlation
into account. One method for doing this is called configuration interaction.

Configuration interaction (CI) approximates the effect of electron cor-
relation by constructing a new molecular wave function from linear com-
binations of the ground state configuration (the one discussed throughout
this article) and wave functions that correspond to promoting electrons
to higher-lying molecular orbitals, formally approximations to what might
be the excited state of the molecule. Each of these terms has a coefficient
that can be varied in order to minimize the total energy. The resultant
wave function from a configuration interaction calculation will take the
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STRUCTURAL CONCEPTION OF CHEMICAL BONDING 943

following form:

w p c W � c W � c W � . . . . (10)CI 1 1 2 2 3 3

A full configuration interaction calculation would take into account all
the possible ways that electrons can be assigned to the molecular orbitals
formed from the basis set. In practice, only a few excited states are usually
taken into account because of the great computational cost of these
calculations.

These approximation methods and others are interesting but take us
away from the important question that is at the heart of our robustness
analysis: What do successively better calculations that take into account
CI tell us about bonds?

We can answer this question by reflecting on why configuration inter-
action allows us to build very good molecular models that take into
account electron correlation. Remember that correlation is the coordi-
nated motion of electrons. Conceptually, adding in these repulsions will
change the shape of the molecular orbital, because the electrons may
spread apart further in space. A systematic way to alter the shape of
molecular orbitals is to mix in orbitals corresponding to formal excited
states, which will have different shapes and symmetry properties from the
ground state orbital. When enough of these are mixed together, we will
have the flexibility to accurately describe the real distribution of electrons
in the molecule through orbitals that correctly account for correlation,
as well as the nucleus-electron attractions that account for the electronic
distribution (Anslyn and Dougherty 2005, 824).

Configuration interaction is another example of how moving electrons
out of the classical bonding region stabilizes the molecular model and
brings it into closer agreement with experimentally determined values.6

When we allow for greater delocalization, taking into account electrons
temporarily entering higher energy states so as to avoid one another,
molecular models increasingly agree with experimentally measurable
quantities.

5. Robust Properties of Chemical Bonds. We have now come to the con-
clusion of our whirlwind tour of molecular models, searching for the
robust properties of chemical bonds. In this concluding section, I will
review what we have discovered, examining both what is and what is not
robust across models of molecular structure.

Our examination of molecular models began with the simple valence
bond model, the one that most faithfully illustrates the structural con-

6. In addition, CI also takes into account the possibility that when one electron is in
between the nuclei, the other one can be on the outside of the two nuclei.
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ception of bonding. In this model, electrons were associated with partic-
ular nuclei and, as a result, the molecule was represented by bringing
together two atoms, letting their electrons interact and taking advantage
of the stabilization created by this interaction. The electrons remained
associated with a particular nucleus; their interactions were then described
as sharing of the electrons between two atoms to form a bond.

This idea of electrons coming along with nuclei and being shared be-
tween two nuclei is resolutely not robust across bonding models. As we
move in the direction of models that correspond more accurately to ex-
perimentally measurable values, this property diminishes and seems to
vanish altogether in modern models.

The structural conception does not demand that electrons are shared
or even fully located in the region between the atoms. Indeed, it only
demands that bonds can regularly be identified as directional, submolec-
ular regions of electron density. So what we really need to know is whether
such regions of density can be identified in molecular models. Answering
this question is considerably more difficult, and this article certainly gives
no definitive answer to it; however, the properties that we have found to
be robust go a long way toward answering it.

Among the bonding models, several things have been shown to be
robust. In the examples we have considered, the models became energet-
ically stabilized by forming the bond. Energy is liberated when the bond
is formed—conversely, it takes energy to break a bond. This means that
for atoms that readily form covalent bonds, it is energetically more stable
for them to be in the bonding state than separated from each other such
that the electrons cannot interact. Bonding seems to fundamentally involve
energetic stabilization.

The second robust feature of the models is that greater electron delo-
calization leads to stabilization. When we moved from the simple valence
bond model to the Heitler-London model, we saw considerable stabili-
zation. This accompanied relaxing the restriction that pinned electron 1
to nucleus A and electron 2 to nucleus B. We further improved that model
by adding terms to the basis function that allowed greater flexibility to
the resultant wave function, which has the physical significance of allowing
greater delocalization. In addition, the wave function is improved as we
added correlation, the lowering of energy due to electrons being allowed
to stay away from each other (as they remain attracted to the nuclei).

The same is true in the molecular orbital models. Even the simple
molecular orbital models represent the electrons as delocalized across the
molecule. Improvements to the molecular orbital model involved using
basis functions with greater numbers of terms, which also allows more
flexibility in describing the electronic distribution, a distribution that is
not tied to the classical positioning of the electrons in between the nuclei.
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These robust features of molecular models put considerable pressure
on the structural conception of bonds and are no doubt the sorts of results
that led Coulson and Mulliken to their skepticism about the reality of
bonds. To be explicit, the structural conception says that covalent bonds
are directional, submolecular regions of electron density that hold mol-
ecules together. Throughout this article, we have seen that delocalization—
density spread beyond the submolecular region between the atoms—is
the norm in molecular models. Further, the addition of ionic character,
correlation, and the mixing of higher energy states all seem to improve
the model but make the bonds less directional and less submolecular.

I believe that this clearly rules out any straightforward version of the
structural conception of covalent bonding. However, while the features I
have pointed to that improve bonding models, including correlation and
ionic character, involve deviations from local, submolecular regions of
electron density, they themselves describe electronic characteristics of mol-
ecules in structural terms. They may, in fact, be compatible with a revised
structural conception of bonding. While future analysis is required to
either vindicate or fully reject the structural conception of bonding, the
considerations in this article go a long way toward motivating Coulson
and Mulliken’s skepticism about the reality of the covalent bond.
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