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Abstract
This article focuses on the methodology of modeling and how it can be applied to philosophical questions. It
looks at various traditional views of modeling and defends the idea that modeling is a form of surrogate
reasoning involving two distinct steps: indirect representation of a target system using a model and analysis of
that model. The article considers different accounts of model/target representational relations, defending an
account of similarity. It concludes by presenting several examples of the use of models in philosophy,
suggestions for philosophers new to modeling, and an assessment of the relationship between thought
experiments and models.
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Abstract and Keywords

This article focuses on the methodology of modeling and how it can be applied to 
philosophical questions. It looks at various traditional views of modeling and defends the 
idea that modeling is a form of surrogate reasoning involving two distinct steps: indirect 
representation of a target system using a model and analysis of that model. The article 
considers different accounts of model/target representational relations, defending an 
account of similarity. It concludes by presenting several examples of the use of models in 
philosophy, suggestions for philosophers new to modeling, and an assessment of the 
relationship between thought experiments and models.

Keywords: philosophical methodology, modeling, surrogate reasoning, models, target systems, philosophy, 
thought experiments

1. Introduction
I live on a racially diverse block in South Philadelphia. A little more than half of my block 
is Caucasian, a little less than half is African American, and the rest of the people are of 
Asian or Latino descent. Let’s imagine three things about my block and the city it is in: 
First, imagine that everyone else on the block values living in a diverse neighborhood. 
Second, let’s imagine that there is some comfort threshold that everyone on the block 
has. If, say, less than 30% of the block was African American, the African Americans 
currently living here might feel uncomfortable and decide to move. Finally, let’s imagine 
that the whole city has this preference structure.
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What will happen to the city in the long run? Will the city gradually move towards more 
and more integrated blocks like mine (because people value diversity)? Will blocks be 
relatively integrated, but with some being 30% African American and some 30% 
Caucasian (because those are the “floor” thresholds)? Will the city become even more 
integrated? Or will it become more segregated (because people aren’t comfortable being 
in a very small minority)?

I have a very hard time imagining what would happen in this scenario. When I have asked 
friends about it, many of them see the 30% threshold as especially salient and think we 
will find pockets of 30% Caucasians and 30% African Americans. But almost no one who 
comes up with the right answer, which economist Thomas Schelling discovered (1978) by 
constructing a model.

Schelling’s original model was concrete, consisting of a chessboard, dimes, and nickels. 
The squares of the chessboard represented addresses in a city, dimes and nickels 
represented households consisting of people from two racial groups, which I will call A
and B. The dimes and nickels were distributed randomly throughout the board.

Besides the individuals and 
their initially random 
spatial layout, the model 
also contained a utility 
function and a movement 
rule. The utility function 
said that each individual 
prefers that at least 30% 
of its neighbors be of the 

same type. So the As want at least 30% of their neighbors to be As and likewise for the 

Bs. Schelling’s neighborhoods were defined as standard Moore neighborhoods, a 
set of nine adjacent grid elements. An agent standing on some grid element e can have 
anywhere from zero to eight neighbors in the adjoining elements.

The model is made dynamic by a simple movement rule. In each cycle of the model, its 
agents choose to either remain in place or move to a new location. When it is an agent’s 
turn to make a decision, it determines whether its utility function is satisfied. If if is 
satisfied, the agent remains where it is. If it is not satisfied, then the agent moves to the 
nearest empty location. This sequence of decisions continues until all of the agents’ utility 
functions are satisfied.

When the movement rule and utility function are implemented in Schelling’s physical 
model, something very surprising happens: a cascade is observed which leads from 
integrated neighborhoods to highly segregated neighborhoods. In a modern computer 
implementation of this model on a 51 x 51 grid (shown in Figure 15.1), a preference for 
30% like neighbors usually leads to agents having 70% like neighbors.

Click to view larger

Figure 15.1  Computer simulation of Schelling’s 
segregation model. On the left is shown a random 
distribution of the agent times. As time moves 
forward, large clusters of the two agent types form.

(p. 263) 
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Schelling urged his readers to actually take out a chessboard and implement his model so 
they could see the model’s dynamics unfold. What one sees in doing this, or 
reimplementing the model in a computer, is a cascade: agents that start out satisfied 
become unsatisfied when a neighbor leaves or a new one moves in. This leads to 
movement, which leads to more agents becoming unsatisfied. A small patch of 
dissatisfaction can result in widespread movement, and ultimately, segregation. While 
there are a few agent configurations that are integrated where every agent is satisfied, 
these states are very rare and nearly impossible to generate from random agent 
movement. Thus, Schelling’s major result is that small preferences for similarity can lead 
to massive segregation. This result is quite robust across many changes to the model 
including different utility functions, different rules for updating, differing neighborhood 
sizes, and different spatial configurations (Muldoon, Smith, and Weisberg, 2012). 
Schelling’s model does what my imagination couldn’t do. It predicts that my integrated 
block in South Philadelphia is unstable in the long run. Although the model is idealized in 
many ways, it says that over time, my block is likely to become homogenous if the 
movement rules and utility function of the model are anything like the ones that real 
people have.

Although Schelling’s model is a simple one, I think it very nicely illustrates how an idea 
can be sharpened using a model. This sharpening forces us to examine our explicit and 
implicit assumptions, and extends the reach of our imaginative capacities, allowing 

us to explain and predict complex phenomena that are difficult or impossible to 
gain a complete cognitive grasp of. This chapter explores the methodology of modeling, 
showing how it has been applied to philosophical questions and can continue to do so in 
the future.

2. What is Modeling?
Modeling is a form of surrogate reasoning, a practice in which one constructs and 
analyzes a model in order to learn, indirectly, about something else. Most commonly in 
both scientific and philosophical contexts, models are simpler than the real world target 
systems they represent and they are idealized relative to these targets.

Surrogate reasoning involves two steps: indirect representation of a target with a model 
and analysis of that model. One first constructs or acquires a model, and specifies the 
intended target of that model. This step does not involve extensive empirical or 
conceptual interrogation of a target and construction on the basis of inference from the 
properties of that target. Schelling didn’t derive his model from a detailed description of 
Philadelphia or some other city. Instead, he asked himself about some of the essential 
properties of a city, and used those to create his model. So a model shouldn’t be thought 
of as simply as a representation of a target, but rather an intermediary between the 
target and an analysis. This is why I call model-based reasoning “surrogate reasoning.”

(p. 264) 
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After constructing or acquiring the model, one subjects it to analysis. Techniques of 
analysis vary widely, and depend on both the type of the model and the question of 
interest. But typically one is interested in understanding the properties of various 
features of the model, and especially how some mechanistic features give rise to other 
behavioral features. Sometimes we try to give complete analyses, uncovering everything 
there is to know about the model. More often, analyzes are goal-directed, trying to 
answer specific questions. For example, Schelling’s model can be used to answer 
questions about the tipping points or thresholds of segregation.

Modeling can be contrasted with direct representation and analysis. In this style of 
theorizing, one begins by representing a target system using what one knows about the 
target to generate an accurate representation. Although approximations and idealizations 
may enter the representation for pragmatic or epistemic reasons, the goal is to depict the 
features of some target system. If we wanted to study segregation by direct 
representation, we would look carefully at a time series of demographic information, such 
as data about each census tract. From this data, one could construct a representation of 
city migration patterns. One might also try to infer likely future patterns, or even the 
psychological motivations underlying them. It is possible that this would generate 
something like the Schelling model, but the procedure by which it was constructed would 
be very different. In direct representation, we analyze the system itself. In modeling, we 
study a constructed intermediary. The difference is one of practice and procedure, not 
necessarily the end product (Weisberg, 2007).

One of the virtues of modeling is that models are extremely flexible tools. They can be 
used to study a single target, a cluster of targets, a generalized target, or even targets 
known not to exist. In philosophical contexts, models are rarely used to study a 
single target. Instead, they are most often used to answer how possibly questions (Dray, 
1968; Resnik, 1991; Forber, 2010) or what would happen if questions, and hence usually 
have generalized systems as their targets. And sometimes, the targets of philosophical 
models are themselves hypothetical systems which do not exist, such as a perfectly just 
society, or a universe with only two particles.

3. Models
What kinds of things are models? This basic and central question has remained 
surprisingly controversial in the philosophical literature. Some philosophers, especially 
those who defend the semantic view of theories (e.g., Suppes, 1960; Suppe, 1989) argue 
that scientific models are the same kinds of things as logician’s models. The motivating 
idea for this view is that theories should be language independent. Although we may 
describe theories with words, equations, and diagrams, they should not be tied to any of 
these descriptions. Proponents of the semantic view argue that the theory itself is a 

(p. 265) 
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structure which satisfies such a description. A true theory, then, is a structure which is 
isomorphic to structures in nature. Models are thus a kind of mathematical structure.

More recent proponents of the semantic view, especially Bas van Fraassen (1980) and 

Elizabeth Lloyd (1994), argue that models are sets of trajectories in a state space. A state 
space is a set of points corresponding to the properties of a system. They are organized in 
such a way that each dimension of this space is an independent way that the state can 
vary. Trajectories through the space are time ordered sets of states that describe the 
temporal evolution of a model system. When there is some kind of match between the 
trajectories in the state space and trajectories corresponding to the target system, we 
have a model of the target system.

Another traditional view about models sees them as complements to mathematical 
theories, and hence not mathematical themselves. In this view, models are material 
analogies (Campbell, 1957; Hesse, 1966; for a dissenting view, see Duhem, 1906) they 
allow a scientist to develop an intuitive picture of a complex mathematical principle by 
comparison to something well-understood and concrete.

Hesse and others have emphasized that many important theoretical advances have been 
made when theorists understood that some property of one system was materially 
analogous to that of another. For example, the mathematics describing the propagation of 
light might be accompanied by an analogy comparing the propagation of light waves to 
the propagation of water waves. While we no longer think it is necessary for light to 
propagate though a physical medium, the analogy between light and water waves allowed 
James Clerk Maxwell to develop the equations describing light propagation.

Although most of the philosophers writing about the nature of theories today do not 
emphasize material analogies, this view has remained influential in the modeling 
literature in two ways. First, almost all philosophers of science accept that concrete 
models can do important scientific work. Watson and Crick used a material model of their 
proposed DNA structure to make inferences about base-pair hydrogen bonding (Watson, 
2011). Walter Newlyn and Bill Phillips constructed a hydraulic model to study 
how tax rates affect the British economy (Morgan, 2012). And the United States Army 
Corps of Engineers constructed a working tidal model of the San Francisco Bay and Delta 
Region in order to study what would happen if the Bay was dammed up (Weisberg, 2013).

A more controversial appeal to concrete systems can be found in a literature which 
asserts that all scientific models are fictional scenarios. Philosophers defending this view 
see all models, including mathematical models, as fictional scenarios that would be 
concrete if they were real. So on this view, Schelling’s model isn’t an abstract 
configuration of states and set of transition rules, but is actually an imaginary world: a 
neighborhood with people, preferences, and movement rules (Godfrey-Smith, 2006; see 

Weisberg, 2013 for a critique).

(p. 266) 
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My own view of models is that they are composed of two parts: structure and 
interpretation. Like the critics of the semantic view, I think models cannot simply be 
mathematical objects. Bare structures stand in relations to target systems, but they often 
have too many of the wrong kinds of relations, and not enough of the right kind. However, 
mathematical, computational, or concrete structures, suitably interpreted, can stand in 
the right kinds of relations to represent features of targets. I call the relevant 
interpretations modelers’ construals.

Construals provide an interpretation for the model’s structure, set up relations of 
denotation between the model and real-world targets, and give criteria for evaluating the 
goodness-of-fit between a model and a target. They are composed of four parts: the 

assignment, the modeler’s intended scope, dynamical fidelity criteria, and 

representational fidelity criteria. The assignment and scope determine the relationship 
between parts of the model and parts of the target system. The fidelity criteria are the 
standards theorists use to evaluate a model’s ability to represent real phenomena.

Assignments are explicit specifications of how parts of real or imagined target systems 
are to be mapped onto parts of the model. This explicit coordination is especially 
important because although the parts of some models seem naturally to coordinate with 
parts of real-world phenomena, such as grid locations and addresses in Schelling’s model, 
this is often not the case. For example, in a simple model of population growth, a 
population’s growth is described by an exponential function. Nothing about this function 
suggests population size—it could just as easily signify a nuclear chain reaction. The 
theorist’s assignment is what gives this function its meaning.

Assignments are often not made explicit in discussions of models, because communities 
of modelers have standard reading conventions for model descriptions. Where 
conventions are not explicit, are being violated, or where the modeler needs to be 
especially explicit, he or she will be forced to make the assignment explicit in discussions 
about the model.

Models inevitably have structure not present in the real-world phenomena they are being 
used to study. For example, Schelling’s model has a perfectly regular grid and perfectly 
squared off edges. No actual city has these features. So are these features of the model 
intended to represent something about the target, or are they merely artifacts of the 
idealizations that went into constructing the model? A model’s intended scope specifies 
the answer to this question, telling the theorist what parts of the model should be taken 
seriously.

The other aspects of a modeler’s construal are fidelity criteria. While the assignment and 
scope describe how the target system is intended to be represented with the model, 
fidelity criteria describe how similar the model must be to the world in order to 
be considered an adequate representation. I divide these criteria into two types: 
Dynamical fidelity criteria tell us how close the output of the model—the predictions it 
makes about the values of dependent variables given some independent variables—must 
be to the output of the real-world phenomenon. Representational fidelity criteria are 

(p. 267) 
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more complex and give us standards for evaluating whether the structure of the model 
maps well onto the target system of interest. Typically, these criteria specify how closely 
the model’s internal structure must match the causal structure of the real-world 
phenomenon to be considered an adequate representation.

For example, say that Schelling’s model of segregation was targeted at the city of 
Philadelphia. One way to evaluate the model is with very high-fidelity criteria. If we did 
this, then the model’s predicted equilibrium state, as well as the dynamics leading to that 
state, the utility functions of the agents, the movement rules, and so forth would be 
compared with the city’s distribution of racial groups, looking for a very close match. 
Another way to evaluate the model is with a qualitative, not quantitative criterion. Yet 
another kind of fidelity criterion says that the model should be regarded as a how-
possibly model, qualitatively matching the segregation patterns of the city, but with no 
expectation that the movement rules and utility functions were realistic.

Fully describing fidelity criteria requires an account of the model/target relation. If one 
thinks of models as (ideally) true descriptions of targets, fidelity criteria simply become 
an error tolerance, specifying how far one can deviate from truth. But when one has an 
account of the model/target relation that takes into account the highly idealized nature of 
many contemporary models, the situation is more complex.

Along with a concrete, mathematical, or computational structures, theorists’ construals 
generate models. To say that a model is structure plus interpretation means that models 
are structures whose parts are interpreted via their assignments. They can potentially 
denote parts of a target as specified by the theorists’ intended scope. And they are 
evaluated by the theorists’ fidelity criteria. These four components of the construal 
constitute the theorists’ interpretation of the model.

Whatever view about the nature of models is adopted, it is important to distinguish 
between models and their descriptions. Model descriptions specify models, and stand in 
many-many relationships to them. A single model might be described by words, 
equations, or diagrams. And any imprecision in a model description, including parameters 
left as dummy variables, will specify multiple models. Scientists often refer to equations 
as “models,” but I think it is important to see equations as descriptions. Models’ 
structures should be seen as independent of the way they are described.

4. Target Systems
Models are not compared directly to real phenomena, but to target systems, which are 
abstractions over these phenomena. The reason for this is that phenomena have many 
more properties than are represented in even the most realistic models. So when a 
modeler is ready to start comparing her model to the world, she constructs a target. She 
does so by identifying a spatio-temporal region of interest and the contents of (p. 268) 
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that region of interest. In scientific cases, the choice of target is driven by the research 
question of the scientist, specifically, which part of the empirical world is under 
investigation. Philosophical cases allow somewhat more latitude. Sometimes philosophers 
are interested in actual extant practices. Other times, they are interested in ideal 
scenarios such as conditions of perfect justice, or universes with minimal structure. Still 
other times, the goal of philosophical modeling can be the investigation of concepts, and 
there are no real or imagined targets for models.

Whatever the case, when a model is targeted at a real or imagined system, it represents 
only some parts of that system. Theorists must abstract away from the full richness of 
phenomena and aim their models at a set of features of a real-world phenomenon. For 
example, say I was interested in modeling a communication system. We might start by 
identifying the real-world phenomenon of people speaking English to one another. But 
this phenomenon is far too complex to capture in a model, so the modeler must decide 
which features to focus on. If the model was being constructed in philosophy of language, 
perhaps in order to investigate questions about intentionality, we might work with a very 
abstract target consisting of a set of symbols, states of the word, and transmission 
channels. However, a linguist would want to include many more details about the nature 
of language in her target, a communications engineer would include more about the 
transmission system, and so forth.

This example shows that the relationship between real-world phenomena and targets is 
one-to-many, which opens the door for a massive proliferation of target systems. Since 
there are so many different targets that can be generated from the same phenomenon, 
does anything go? Are there standards that govern the kinds of abstractions that theorists 
make?

Alkistis Elliott-Graves (ms) has argued that the answer to this question is no. Although 
many targets can be generated from one phenomenon, there are general norms for 
constructing appropriate targets. She argues that target system generation should be 
thought of as consisting of two conceptually distinct stages. Modelers partition the 
phenomenon into sets of features and then they abstract from these features in order to 
generate the target. Partitioning, she argues, is guided by the pragmatic norm of 
usefulness. The modeler should ask whether the relevant features for the topic of 
investigation get captured by the partition. Abstraction is more highly constrained by the 
norm of aptness, limited to what one can omit without distortion. Whether or not one 
accepts Elliott-Graves’ account, it seems right to say that the enormous latitude of targets 
is not limitless. The flexibility it affords is positive, but the pragmatics of modeling impose 
limits.

Philosophical contexts, and, to be sure, some scientific ones, do not always require 
targets that are abstractions over real-world phenomena. More specifically, constructing 
and analyzing models of targets known not to exist (e.g. perpetual motion machines, time 
traveling bricks, or single particles alone in the universe) have played important roles in 
scientific and philosophical modeling. Sometimes, models are studied simply for their 
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own sakes, without any target at all in mind. A good example of the latter category is 
Conway’s Game of Life cellular automaton (Gardner, 1970). This model consists of an 
array of cells, which can each be in an alive state or a dead state. Transition rules 
determine how the states change, and these rules typically depend on the states of 
neighboring states.

One of the reasons we study models without targets is in order to help to 
sensitize our imagination so that we learn how to notice things we might have missed 
otherwise when looking at real targets. For example, Dennett discusses the interesting 
fact that when we begin thinking about the Game of Life, we start by describing a grid, 
cells, and the rules for each cell. But fairly soon we are talking about the patterns and 
apparent motion in the game.

Note that there has been a distinct ontological shift as we move between levels; 
whereas at the physical level there is no motion, and the only individuals, cells, 
are defined by their fixed spatial location, at this design level we have the motion 
of persisting objects; it is one and the same glider that has moved southeast … 
Here is a warming-up exercise for what is to follow: should we say that there is 
real motion in the Life world, or only apparent motion? The flashing pixels on the 
computer screen are a paradigm case, after all, of what a psychologist would call 
apparent motion. Are there really gliders that move, or are there just patterns of 
cell state that move? And if we opt for the latter, should we say at least that these 
moving patterns are real?

(Dennett, 1991)

Nevertheless, many of our most important cases of modeling are target-directed. A 
suitable target is chosen and the model is coordinated to that target by the modelers’ 
construal. When that happens, what kinds of relations must a model stand in to its target?

5. Model/Target Relations
There are two types of accounts of model/target relations in the literature: model-
theoretic accounts and similarity accounts. Model-theoretic accounts are the dominant 
view. Like other aspects of the modeling literature, they find their original home in 
discussions of the semantic view of theories. Such accounts typically posit that models 
must be isomorphic to their targets, although some proponents of the semantic view have 
weakened the requirement to homomorphism (Lloyd, 1994), or partial isomorphism (da 
Costa and French, 2003).

Isomorphism is a mapping between two sets that preserves structure and relations. 
Formally, an isomorphism is a bijective map between two sets such that the mapping 
function f and its inverse are both homomorphisms, structure-preserving maps between 

(p. 269) 
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these two structures. This account of the model/target relation remains influential, but 
many philosophers have argued that it cannot appropriately deal with the relationship 
between idealized models and their targets (e.g. Hendry and Psillos, 2007).

As an alternative, Steven French and colleagues have offered the partial isomorphism 
account. Proponents of this account say that the model/target relation is tripartite, 
corresponding to the part of the model that is isomorphic to the target, the part that is 
not isomorphic to the target, and the part that is “left open” with respect to the target. A 
model is partially isomorphic to its target when a substructure of the model is isomorphic 
to a substructure of the target. Such an account can deal with some kinds of idealized 
models. For example, consider the idealization of elastic collisions that is associated with 
the ideal gas model. This idealization says that when two particles of the gas collide, the 
pair maintains their combined kinetic energy after the collision. This is not true 
for molecular gases (hydrogen gas, oxygen gas, water vapor, etc.) because when they 
collide, some kinetic energy is transferred to the molecules’ internal degrees of freedom 
(internal rotations and oscillations). However, the truth of this idealization is not required 
for many ideal gas model-based explanations and, in these cases, the idealized model can 
be confined to the non-isomorphic substructure without any loss.

But this will only handle idealization up to a point. In many cases, it is the idealized 
features of models themselves that are supposed to be representations of targets’ 
features. For example, the Schelling model’s idealized features, such as agents’ utility 
functions and spatial distribution, are the very things that represent properties of real 
people and do the model’s explanatory work. This has led some philosophers, including 
me, to look elsewhere for an account of model/target relations.

Similarity accounts posit that the model/target relation is one of similarity: a good model 
is similar to its target in certain respects and degrees (Hesse, 1966; Giere, 1988, Godfrey-
Smith, 2006). Proponents of this type of account tend to defend their account along two 
lines. First, they argue that model-theoretic accounts do not have the resources to 
account for the relationship between the most common type of model and its target: 
idealized models relating to realistic targets. Second, they argue that modelers often talk 
and think about models as if they resemble their targets. This is taken as evidence for the 
nature of the relation.

There is a long tradition of skepticism about similarity. In “Natural Kinds,” W. V. O. Quine 
argued that similarity was “logically repugnant” (Quine, 1969) because it couldn’t be 
analyzed in terms of more basic notions. He also thought that mature sciences would 
dispense with similarity all together. In a more detailed discussion, Nelson Goodman 
(1972) agrees with Quine and adds another challenge. He argues that similarity is too 
promiscuous a relation to do any philosophical work. For any three objects, there will 
always be some respect in which two of the objects resemble each other more than the 
third. This, Goodman argues, shows that there can be no context-free similarity metric.

(p. 270) 
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For many philosophers, this was the end of the matter. Positing similarity as the model/
target relation was a dead end. Others took the criticism to be a constraint on a 
reasonable account of similarity; it must be a context-relative relation. For example, on 

Giere’s (1988) account, a model must resemble its target in certain “respects and 
degrees.” Cartwright (1983) argues that the relevant similarity between models and their 
targets is “behavioral similarity,” meaning the similarity of the model’s and the target’s 
causal structures.

While this criticism of Goodman’s was simply taken on board, Quine and Goodman also 
challenged proponents of similarity to give a reductive analysis, showing how some 
particular model and some particular target could be more similar to each other than 
other random models and targets. Much less has been written on this question, but some 
of my own work attempts to give such an analysis.

In Simulation and Similarity: Using Models to Understand the World, I argue that we can 
analyze model/target similarity in terms of weighted feature matching, and idea that has 
its origin in Amos Tversky’s contrast account of similarity (Tversky, 1977; Tversky and 
Gati, 1978). The basic idea is that a model’s similarity to its a target is a function of the 
features it shares and the features it doesn’t share. Because Goodman is correct and 
there is no general, context-free account of similarity, some of a model’s and a 
target’s features are weighted more heavily than others.

The account can be developed as follows: First, we begin a set of features Δ. This feature 
set can contain quantitative or qualitative predicated, including “is purple,” “is to the left 
of ξ,” “will rain with probability 0.9,” and so forth. Further, for model M and target T, m is 
the set of features in Δ possessed by M and t is the set of features in Δ possessed by T. 
Modelers’ fidelity criteria also implicitly provide a weighting function f(∙), which is 
defined over the power set of Δ. The overall similarity of the model to the target is given 
by an equation of this form :

When modeling, it is customary to distinguish between the overall properties and 
patterns of a system (often called the “output” in computational and mathematical 
modeling) from the underlying mechanisms generating these properties. I will call the 
first set of properties attributes, and the second set mechanisms. It is important for many 
kinds of modeling, including philosophical modeling, that they be distinguished. The 
reason for this is that in some instances of modeling, we care far more about feature 
matching between one or the other type of feature.

As an example, we can return once again to Schelling’s model. When the model comes to 
equilibrium, it contains racially segregated clusters driven by agents’ utility functions and 
rules for movement. Attributes such as degrees of clustering are states of the model and 
mechanisms such as agents’ movement rules are the transition rules of the model. Insofar 
as Schelling’s model explains segregation in actual cities, then there has to be some 

(p. 271) 
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relation between the model’s attributes and the city’s attributes. And there has to be 
some relation between the model’s transition rules and the actual mechanisms that drive 
segregation in the city.

Now consider two other uses of Schelling’s model. If it is used to ask a “what would 
happen if?” type of question, such as I opened this chapter with, all that is required is 
that the mechanisms of the model match the mechanisms in the scenario I wished to 
investigate. It might also be used to answer a how possibly question. Most American 
cities are highly segregated, even if their overall racial breakdown is mixed. What could 
possibly cause a racially mixed city to be segregated? Schelling’s model offers one 
answer to this question. In evaluating a how possibly question, all that is required is that 
the attributes of the target (racially segregated neighborhoods in this case) are shared by 
the model.

Summing up the last few sections, we can say that most cases of modeling involve 
indirect representation, where a model is studied in order to learn about some real-world 
target. Models are interpreted structures which stand in relationships of similarity to 
target systems. Target systems are, in turn, parts of real-world phenomena.

6. Asking Philosophical Questions with 
Models
Thus far, I have primarily spoken about modeling in a scientific context. I have done so 
both because modeling is most at home in the sciences, and because the philosophical 
literature about modeling is mostly about scientific modeling. In this section, I turn to 
several examples of the use of models in philosophy.

6.1 Fairness and the Social Contract

One well-known instance of philosophical modeling involves the application of game 
theory to foundational issues in political philosophy. Philosophers have long been 
interested in the question of why rational, egoistic agents would develop the sense of 
fairness and justice that seems to be the heart of stable political arrangements. Looking 
to the early modern tradition, Jean Hampton (1988) and David Gauthier (1986) showed 
that some of Hobbes’ arguments could be reformulated as game-theoretic models. More 
recently, Brian Skyrms (1996) and his students have further developed these ideas and 
applied evolutionary game-theoretic models to question about the origins of our sense of 
fairness.

To take just one example from this rich literature, let’s consider the game called Divide 
the Cake. In this game, two players are given a chocolate cake and they have to figure out 

(p. 272) 
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a strategy to divide it before it spoils. Each player asks for a certain fraction, and as long 
as those fractions add up to 1 or less, then both get some cake.

As Skyrms points out, the intuitively correct answer is also the fairest one: both should 
ask for half the cake. But there is nothing special about this solution. All divisions that 
add up to a whole cake are Nash equilibria, meaning that neither player could be better 
off changing her strategy unilaterally if that division is employed.

Despite the infinite number of equilibria, we have a very strong sense that the fair 
division is a 50/50 split. How could that be? What Skyrms was able to show is that when a 
population of dividers repeatedly plays the game and modifies their strategies according 
to the ones that lead to the biggest payoffs in cake (formally, employing the replicator 
dynamics), then the fair strategy can evolve. Skyrms estimates that with nothing else 
added to the model, the 50/50 division evolves 62% of the time (1996). However, once 
correlation—interacting with some players more frequently than others—is added to the 
model, then the fair split evolves most of the time. Skyrms writes:

In a finite population, in a finite time, where there is some random element in 
evolution, some reasonable amount of divisibility of the good and some 
correlation, we can say that it is likely that something close to share and share 
alike should evolve in dividing-the-cake situations. This is, perhaps, a beginning of 
an explanation of the origin of our concept of justice.

Thus, Skyrms is able to show that in repeated interactions with correlation under an 
evolutionary dynamic, which might be instantiated in cultural evolution as much as in 
biological evolution, fairness norms begin to establish themselves in the population. 
Skyrms himself primarily offers this as an explanation of the origin of these norms, a sort 
of genealogy of morals. But some philosophers take this kind of modeling to have 
normative conclusions. Assuming that we are primarily self-interested, norms of 
reciprocity and fairness are justified by their good outcomes, as judged by an egoist.

6.2 Meaning and Signaling

A second case of philosophical modeling concerns the origin of meaning. In Lewis’ 
Convention (1969), he introduces a game-theoretic analysis of convention and uses this 
analysis to investigate how communication can arise without a prior shared language or 
communication system.

In the two-agent version of the model, we imagine that the first agent (the sender) 
observes the world is in some state S  for which the second agent (the receiver) ought to 
perform action R  . The agents are cooperative such that for each i, if the world is in S  the 
sender wants the receiver to perform R  . In order to achieve this, for each observation, 
the sender sends a signal σ  which is received by the receiver. The receiver’s contingency 
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plan specifies the action R  that will be performed for each signal σ  . Both sender and 
receiver aim to achieve a signaling system with the following structure:

S  ⇒ σ  ⇒ R
S  ⇒ σ  ⇒ R
S  ⇒ σ  ⇒ R
         ⋮

To illustrate this kind of signaling system, Lewis asks us to consider a signaling system 
that may have been established between the sexton of the Old North Church and Paul 
Revere. If the sexton saw the British army staying at home, he would hang no lanterns in 
the belfry. If they set out to attack by land, he would hang one lantern. And if they set out 
to attack by sea, then he would hang two lanterns. Revere would stay home if he saw no 
lantern, warn of a land attack if he saw one lantern, and warn of sea attack if he saw two 
lanterns. The connection between number of lanterns and type of attack is, of course, 
purely arbitrary. One lantern might have caused Revere to warn of a sea attack. All that 
matters is that there is coordination between the sexton and Revere such that the signal 
leads to the right outcome.

In the actual historical case, Revere and the sexton agreed on the code. But what if they 
hadn’t? Could this signaling system evolve by itself? More generally, when two agents (or 
organisms) have a common interest in communicating, but no shared language, can such 
a system evolve? Skyrms (2010) investigated this question by adding learning (change 
within an organism’s lifetime) and the replicator dynamic (evolution between the lifetime 
of organisms) to the Lewis signaling model.

To investigate learning, Skyrms coupled a Lewis signaling model and Herrnestein’s 
matching law. On this probabilistic model of learning, probabilities for taking actions get 
updated according to the reward accumulated at previous times. When these dynamics 
are applied to the simplest case involving two signals and two actions, the signaling 
system (signal 1 leads to action 1, signal 2 leads to action 2, …) is very quickly learned. 
Skyrms also investigated this process from an evolutionary point of view. When the same 
type of setup is allowed to evolve under the replicator dynamics, signaling 
systems are the only stable equilibria. Things get more complicated with greater numbers 
of signals and actions, but the overall lesson is the same.

6.3 The Division of Cognitive Labor

The final example that I will discuss comes from philosophy of science. There was a long 
tradition in philosophy of science that saw ideal scientists as impartial, cooperative, 
motivated by the truth, and always striving to do highly significant work. Although 
philosophers knew that real scientists could fall short of these ideals, they took this to be 
a more-or-less accurate description of scientists most of the time and the ideals that 
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scientists should strive for. Scientific communities function better when they cooperated 
in order to find out the truth.

This picture has been called in to question by historians, sociologists, and philosophers. 
The classic source for such doubts is Thomas Kuhn’s The Structure of Scientific 
Revolutions (1962). Kuhn argued that much of scientific inquiry took the form of 
“articulating the paradigm,” a kind of incremental, puzzle-solving activity. He also argued 
that in times of scientific revolution, resolution of theoretical controversy had more in 
common with religious conversion experiences then with rational discourse. Others 
following in this tradition emphasized all the non-rational and even irrational qualities 
that characterize scientific behavior. Instead of priests in lab coats, powerful scientists 
look like mafia bosses, and their underlings like foot soldiers.

Let’s say that the historians and sociologists are right, and that much about science 
seems less than rational. What are the epistemic consequences for the scientific 
enterprise? Does lack of communication, lack of epistemically pure motivation, and a 
focus on small-scale puzzles mean that we have to change our views about the authority 
and productivity and science? A number of philosophers have tried to address these 
questions by modeling, and the resultant literature is about the division of cognitive labor.

Among the best known philosophical models in this area are those offered by Philip 
Kitcher (1990) and Michael Strevens (2003). Kitcher and Strevens focus on the question 
of motivation: What happens when scientists have motives other than the truth? 
Specifically, what happens when individual scientists are motivated by getting credit for 
important discoveries (presumably because this leads to fame, higher ranked positions, 
and money), rather than simply learning about the truth.

Imagine that the scientific community has a particular scientific goal in mind—in his 
original scenario, Kitcher describes something like the race to find the structure of DNA. 
In order to reach that goal, there are n research approaches that might be taken. Each 
research approach has a success function, whose input is the number of scientists taking 
that approach and whose output is the probability that the problem will be solved using 
that approach.

With this type of model, we can ask two key questions: What is the optimal distribution of 
cognitive labor? And how will scientists’ motivations, including non-epistemic motivations 
such as those for prestige and credit, lead to different allocations.

On the basis of such models, Kitcher and Strevens argue that classical epistemic norms 
will lead scientists to misallocate their cognitive labor. If a classically rational, 
truth-seeking agent followed the procedure above, then he or she would join the project 
with the highest probability of success. But this isn’t always what the scientific 
community as a whole wants to see happen. Maximizing the chance at success might 
involve distributing scientists across projects, not just to the projects with the best 
chance of success.

(p. 275) 
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What if scientists were motivated by the accumulation of credit, the recognition that 
comes from being the first to make a discovery? To answer this question, let’s assume 
that the scientific community adopts the Priority Rule (Merton, 1957), that most or all of 
the credit for a discovery goes to the scientist who makes the discovery first. In this case, 
scientists will want to take into account both the probability of success of the project and 
the probability that they will be the first one to complete the project. The first 
consideration pushes scientists towards the project with the overall highest probability of 
success, but the second consideration pushes scientists towards projects that have fewer 
scientists working on them.

To investigate this question more fully, Strevens (2003) models a representative agent 
who is poised to enter the field for the first time. If this agent can choose between n
projects, and knows the current distribution of scientists to projects and the success 
functions of these projects, which one would she choose? Strevens shows that if the 
scientific community allocates credit according to the Priority Rule, then the community 
as a whole achieves the optimum division of cognitive labor. This, he argues, explains why 
the scientific community has adopted the Priority Rule, the rule that whoever discovers 
something first gets all the credit. So even if scientists strive for credit instead of truth, 
the scientific community is well functioning. Further, it might actually function better if 
scientists strive for credit than if they are only interested in the truth.

Another line of research in this area has looked at cooperation in science. Famous 
laboratories such as the wartime Los Alamos nuclear weapons laboratory (Rhodes, 1987) 
and MIT RADAR laboratory (Galison, 1997) planned ways for scientists to continuously 
integrate their findings and share ideas with one another. Technological innovations such 
as the Internet and rapid forms of electronic publication make this possible on a much 
wider and geographically distributed scale. According to classical norms of scientific 
inquiry, this is unambiguously good and should be encouraged. But it this really true? 
Might such communication lead to the propagation and fixation of errors as well as 
knowledge?

Epistemic network models allows us to investigate these questions (Zollman, 2007; see 
also Grimm et al., forthcoming). In such models, lines of communication between 
scientists are represented by network graphs, such the ones seen in Figure 15.2. Each 
node of these graphs represents a scientist and each edge a communication channel. By 
altering the connectivity of the graph, from the minimally connected cycle to the 
maximally connected complete graph, we can represent different types of scientific 
communication—from maximal to minimal.

Click to view larger
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How can this be used to 
investigate norms about 
communication? In a 
recent paper, Zollman 
considers networked 

scientists trying to decide what propositions are true of the world. Imagine that scientists 
are trying to determine whether the world is in state s1 or s2. They get information from 
their own experimentation and also from the other scientists they are connected to. On 
the basis of this information, they update their beliefs in a standard Bayesian way. When 
their beliefs reach some threshold (i.e. the probability is high enough), then they decide 
what to believe. The main independent variable in the model is connectedness of 
scientists.

Zollman’s model generates two especially interesting results. First, scientists connected 
in a cycle converged to the truth more often than scientists connected in a wheel or in a 
fully connected graph. This suggests that careful limiting of information available to 
scientists may have certain advantages. Or to put it another way, less well-informed 
scientists might have an advantage over more well-informed ones, if the goal is to 
minimize error. However, when more communicative communities converge to the truth 
(or a falsehood), they do so more rapidly. For the ten-scientist communities Zollman 
studied, those on complete networks converged about five times faster than those in the 
cycle network. So one might conclude from this that too much communication is a bad 
thing. Scientific communities may be better off when they partially limit communication, 
to ensure that the wrong answers aren’t locked in too quickly.

A final line of philosophical modeling in this area considers how scientific communities 
discover significant significant scientific truths. Epistemic landscape models (Weisberg 
and Muldoon, 2009) investigate the ways that scientists choose what kinds of problems to 
work on and the approaches they take in order to do so. They begin by postulating a set 
of approaches, narrow specifications of how a research topic is investigated. These 
approaches are then organized by their mutually independent properties. Each one of 
these properties is represented as a dimension in an epistemic landscape, whose points 
correspond to approaches. An additional dimension corresponds to the epistemic 
significance of the approach, giving a topography to the landscape where peaks 
correspond to the most highly significant approaches, as in Figure 15.3. However 
individual scientists are motivated, a socially optimal outcome would be one where the 
peaks are found and so are the many highly significant regions that are not peaks.

Figure 15.2  Three epistemic networks explored by 
Zollman. The nodes represent agents, and the edges 
represent lines of communication.

Images courtesy of Professor Zollman
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Scientists are represented 
in epistemic landscape 
models as agents who 
make strategic choices 
about what approaches to 
take. They get feedback 
from the landscape about 
the significance of the 
approaches they have 
taken, and have the 
possibility of 
communicating with other 
agents about the 
significance of the 
approaches that these 

other agents have taken. So an exploration strategy will be the rules an agent follows in 
determining which approaches to adopt in each cycle of the model. Should it keep the 
current approach, or move on? Should it take into account what others are doing? If so, 
how should this information be taken in to account.

In one model, Muldoon and I investigated the last of these questions. We looked at two 
extreme ways that scientists can take account of what others are doing in their search for 
approaches of high significance. Followers think that the best way to find more significant 
truths about the world is to find the approach which has yielded the highest significance 
so far, and move in that direction. This is simulated in several steps. At the beginning of 
each cycle of the model, followers examine the patches in their Moore neighborhood, the 
eight approaches immediately adjacent to the one on which they are currently located. 
These patches correspond to the most conceptually similar approaches to the agent’s 
current approach. Model agents then move to the previously explored approach of 
maximum significance in their Moore neighborhood, if such an approach is available. Like 
followers, mavericks pay attention to what others are doing, but they use this information 
differently. Instead of moving towards approaches yielding high significance, mavericks 
move away from explored territory.

When first working on this project, Muldoon and I expected the followers to do quite well 
because the strategy is essentially imitative. We predicted that the followers would help 
each other get to the “frontier” of unexplored knowledge, then they would spread out and 
discover what there as to discover. Mavericks, we predicted, would do less-well. Since 
they are always adopting new approaches, they never allow themselves to build on the 
knowledge of those that came before them, which seems to create a disadvantage if they 
are trying to find the peak of the epistemic landscape.

Click to view larger

Figure 15.3  A low dimensional epistemic landscape 
investigated in Weisberg and Muldoon, 2009. The x
and y dimensions correspond to aspects of the 
research approach and the z axis corresponds to 
degree of epistemic significance.

Weisberg and Muldoon, 2009

(p. 277) 
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As it turns out, our 
imagination led us widely 
astray. When we take these 
ideas about maverick and 
follower strategies and 
implement them as 
models, we see a very 
different result. For ease 
of visualization, let’s look 
at a simple, three-
dimensional landscape: 
two dimensions 
correspond to ways that 
approaches can vary, a 
third corresponds to 

epistemic significance. At the beginning of a simulation, scientist-agents are placed in 
random, low-significance regions of the landscape. They are then allowed to implement 
the follower strategy or the maverick strategy. The results are striking: the 
mavericks massively outperform the followers.

Figure 15.4 shows the epistemic progress (fraction of significant approaches investigated) 
against the number of scientists of different types. As we can see from this graph, even 
small populations of mavericks massively outperform followers. So our intuition that 
followers would be effective was incorrect. In fact, we also were able to show that 
populations of followers do no better, and sometimes do worse, than populations that 
don’t share any information. This result suggests that while the sharing information can 
be a good thing, it can also have unforeseen consequences. Sometimes the community is 
better off “spreading out” in epistemic space, not simply building on the best that came 
before.

I opened this section by saying that the traditional view of scientists was that they were 
impartial, cooperative, motivated by the truth, and always striving to do highly significant 
work. Kuhn and others called this picture into question, and drew radical epistemic 
conclusions from it. The philosophical modeling described in this section shows some of 
the ways that these less-than-ideal individual epistemic virtues may nevertheless be 
beneficial at a societal level.

7. Relationship Between Thought Experiments 
and Models

Click to view larger

Figure 15.4  Epistemic progress of communities of 
agents of different types.

Weisberg and Muldoon, 2009
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Throughout this chapter, I have often introduced the models I was discussing in the way 
one introduces thought experiments. I might introduce Schelling’s model by saying, 
“Imagine a city where all the houses are arranged on a grid.” This certainly sounds very 
similar to many philosophical thought experiments: “Suppose that I’m locked in a room 
and given a large batch of Chinese writing” (Searle, 1980). “Suppose you are the driver of 
a trolley. The trolley rounds a bend, and there come into view ahead five track 
workmen, who have been repairing the track” (Thomson, 1985).

In this section, I want to think about this apparent similarity between thought 
experiments and simulations and ask a couple of questions: Are models and thought 
experiments the same kind of thing? Are models better than thought experiments? Should 
models replace thought experiments in philosophical theorizing?

7.1 Thought Experiments and Models

Although there is a large philosophical literature about thought experiments (e.g. 
Gendler, 2000a; Sorensen, 1992), there is little consensus about what kind of thing 
thought experiments are. Most philosophers accept that thought experiments are 
imaginary scenarios, and that is how I will understand them in this chapter. If thought 
experiments are imaginary scenarios contemplated in order to help us learn something 
about the world, then they look very much like models. The main difference is the role of 
imagination: I have argued that models are interpreted concrete, mathematical, or 
computational structures. Thought experiments, on the other hand, are products of 
imaginations. What is the relationship between these things?

One view is that all models are actually a kind of thought experiment. Godfrey-Smith 
defends what I call the fictions’ view, arguing that even mathematical models are best 
understood as fictional scenarios. In discussing the ways that modelers talk and think 
about their models, he writes:

I take at face value the fact that modelers often take themselves to be describing 
imaginary biological populations, imaginary neural networks, or imaginary 
economies. An imaginary population is something that, if it was real, would be a 
concrete flesh-and-blood population, not a mathematical object.

(Godfrey-Smith, 2006)

On a more standard view of models that sees them as structures, not all models are 
thought experiments. There are many mathematical and computational structures that 
are difficult or even possible to imagine, so they can’t be the same kind of things as 
thought experiments, unless one thinks that thought experiments do not literally have to 
be imagined. So on this view, the set of models is clearly much larger than the set of 
thought experiments. But the converse question remains: are all thought experiments 
models or proto-models?

(p. 279) 
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It is tempting to simply say that thought experiments are models, where imaginative 
structures take the place of mathematical, computational, or concrete structures. A more 
refined way to link thought experiments to models is to say that the narrative parts of 
thought experiments are model descriptions for concrete or computational models. 
Without seeing the dynamics of Schelling’s model play out on a computer screen, I can’t 
imagine much about the scenario he describes. But here is a very simple Schelling-like 
thought experiment: There are 10 houses on a block and only four families, half 
Caucasian and half African American. Each family wants to have 50% of its neighbors be 
of the same race and, although they are initially placed randomly in houses, they can 
move freely in the block until they find a configuration that satisfies them. It is easy to 
imagine the equilibrium state of the model: four houses together alternating in racial 
makeup.

What was this thought experiment I was engaging in? There are clearly the same 
kinds of computational elements as Schelling’s original model: a configuration of agents, 
a utility function, and movement rules. The main difference is that this case is sufficiently 
simple to have a good intuitive grip on, that could be checked with a computer program 
or chessboard. So in this case, the thought experiment is functioning in exactly the same 
way as a computational model.

Here is another kind of case. Gendler (2004) asks us to

[t]hink about your next-door neighbor’s living room, and ask yourself the following 
questions: If you painted its walls bright green, would that clash with the current 
carpet, or complement it? If you removed all its furniture, could four elephants fit 
comfortably inside? If you removed all but one of the elephants, would there be 
enough space to ride a bicycle without tipping as you turned?

What is happening in this case when we contemplate, along with Gendler, whether bright 
green would in fact clash with the carpet? Gendler argues that our judgments about these 
questions are made by creating the relevant mental image of green walls, carpets, 
elephants, and bicycles, and then forming a judgment by examining this image. She says 
that using a mental image to determine if elephants will fit is analogous to taking “a 
three-dimensional scale-model of the room, along with four similarly scaled plastic 
elephants … putting the elephants into the room, and seeing whether they fit” (1158). So 
in this case, we are using our imagination in exactly the same way that we would use a 
concrete model.

7.2 Advantages of Models

If thought experiments are models or proto-models, are there any advantages to being 
more formal and constructing full-blown models to replace thought experiments? Is it 
sufficient to rely on thought experiments, or should we take the construction of a fully 
explicit model as some kind of regulative ideal? In order to answer these questions, I 
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think it is worth considering some of the advantages models have over thought 
experiments.

In a philosophical context, the main advantages of modeling over thought experiments 
are explicitness, reduced inter-philosopher variation, and the ability to deal with 
imaginative resistance. Creating and analyzing a model is a process that involves, among 
other things, forcing oneself to make all assumptions explicit. Our imaginations are very 
flexible and we can construct an imagined scenario from a very minimal script. But when 
one has to derive an equation, build something out of plastic, or write a computer 
program, this kind of vagueness is not allowable. Programs won’t compile, equations 
cannot be derived, and plastic models will fall apart if details are left unspecified. One of 
the most common experiences reported by model builders is discovering a missing or 
hidden assumption in the course of modeling. This involves finding a resolution, or 
realizing that there are multiple avenues worthy of investigation.

A second major advantage is the reduction of inter-philosopher variation. There will 
always be philosophical disagreements about how to assess the results of thought 
experiments. This is especially true in normative domains, but also true in epistemology 
and metaphysics cases. However, sometimes our imaginations cannot even resolve the 

phenomenon we are supposed to be judging, or we seem to think different things 
would happen. For example, here is a thought experiment suggested by philosopher 
Simon May in personal correspondence: Imagine we allowed and encouraged professors 
and students to carry firearms on campus. Would there be many fewer or many more 
campus shooting fatalities? I can imagine this scenario, and I even know what I think 
would happen. But I have no confidence that my imagination is able to resolve the 
scenario properly and, therefore, no confidence in my judgment of the case. A major 
advantage of modeling in such cases is a determinate answer about what would happen 
in such a case, given such-and-so assumptions.

Finally, there are many scenarios that we are simply incapable of imagining, a 
phenomenon often called imaginative resistance (Gendler, 2000b; Walton, 2006). 
Although morally repugnant cases of imaginative resistance have received the most 
attention in the literature, the complex counterfactuals, high-dimensional spaces, massive 
aggregation over agents, and atypical mental states that arise in philosophical thought 
experiments may also induce resistance. While some of these scenarios may also resist 
analysis by modeling, mathematical and computational models do not face the cognitive 
and memory limitations of humans. In such cases, a careful description of the setup and 
initial conditions may yield to computation, even if not to human imagination.

So should explicit modeling replace thought experiments in philosophical analysis? I think 
such a position is both too strong and premature. There are many cases where we can 
engage in a thought experiment, but really have no idea how we can create a model for 
the case. Moreover, if what I have said in this section of the chapter is true, thought 
experiments already have a modeling-like character, so it isn’t obvious how much of an 
improved understanding we get by modeling. However, there are enough advantages to 
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modeling that a reasonable norm might be as follows: if one can construct and analyze a 
philosophical model, then one should attempt it. Short of actually building a model, many 
of modeling’s internal norms such as explicitness, publicness, cycling back and forth 
between constructing the model, analyzing the model, and revising the model, also make 
good norms for thought experiment analysis.

8. How to Get Started Modeling
In this final section, I will make a few brief comments about how to get started modeling. 
Unfortunately, it is hard to make such comments without being so general as to be 
unhelpful, or so specific as to only be relevant for a particular type of modeling. I will 
therefore divide these comments into two sections: the first about general principles of 
modeling and the second about agent-based modeling, a type of computational modeling 
particularly well suited to many philosophical questions.

8.1 Modeling Cycle

Modeling begins in much 
the same way thought 
experiments begin, by 
formulating a question to 
be answered and choosing 
a scenario to be 
investigated. Rather than 
the scenario being 
something imagined, 
however, the scenario is 
what the model’s 
interpreted structure will 
represent. In some of the 
recent literature on 
modeling methodology, 
this scenario is referred to 
as a hypothesis under 
investigation. Because 

models are stripped down versions of real-world scenarios, the modeler must pay special 
attention both to what gets “put in” a model. Grimm and Railsback (Grimm, et al., 2005; 
Grimm and Railsback, 2012) recommend that this be done in a pattern-oriented fashion, 
as depicted in Figure 15.5. One identifies patterns observed in some target systems and 
uses these to guide the construction of the model.

Click to view larger

Figure 15.5  A depiction of the modeling cycle from 
Railsback and Grimm (2012).

Figure used with permission.
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Using observed patterns for model design directly ties the model’s structure to the 
internal organization of the real system. We do so by asking: What observed 
patterns seem to characterize the system and its dynamics, and what variables 
and processes must be in the model so that these patterns could, in principle, 
emerge?

(Grimm et al., 2005, 987)

How one goes about translating a scenario to a model depends on the type of model one 
wishes to build. If one wants to build an agent-based model, then one has to decide, 
among other things, who or what the agents are, what the agents are trying to 
accomplish, what their resources are, and what rules guide their decisions. If one wishes 
to make a game-theoretic model, then one has to identify a game that represents the 
scenario, the payoff structure of that game, and if a repeated game, the space of possible 
strategies. And so on for other types of models.

Across many model types, some general questions arise. For example, do the model’s 
variables represent individuals or aggregates? Is time represented? Are the transition 
rules deterministic, probabilistic, or stochastic? Are these rules discrete or continuous 
with respect to time? Once answers to these questions and others are settled, one can 
choose a model structure and develop a construal.

Once the model is constructed, the process of analysis can begin. In general, 
there are two possible kinds of analysis here. If the modeler wishes to engage in complete 
analysis of the model, then he or she she will aim to determine:

1. the static and dynamic properties of the model
2. the allowable states of the model
3. the transitions between states allowed by the model
4. what initiates transitions between states
5. the dependence of states and transitions on one another.

I refer to this list as the total state of the model (Weisberg, 2013).

Complete analysis is usually associated with relatively simple mathematical models. In 
such cases, one can give analytical solutions which describe the models’ behavior for 
every initial condition and every intermediary state. For more complex models, intensive 
computation, along with some approximation, can generate a complete or near-complete 
analysis of a model. But in many cases, complete analysis is too difficult to be practical, 
and not necessary. In such cases, modelers engage in goal-directed analysis, where they 
are investigating a specific set of properties or patterns of the model.

At the beginning of this chapter, I said that modeling was the process of indirect 
representation and analysis, and spent some time explaining how a model can represent a 
target in virtue of being similar to such a target. In order to “transfer” the results of an 
analysis of a model to a target, we need to know something about this similarity. Since 
models are almost never truthful representations of their targets, we are not looking for 

(p. 283) 



Modeling

Page 25 of 29

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: University of Pennsylvania; date: 28 November 2017

confirmation that the model is truthful. Rather, we are looking for validation, that the 
model resembles the target in certain respects, and then confirmation that the analytical 
results are confirmed in virtue of this validation.

8.2 Agent-Based Modeling

Much recent work in philosophical modeling, including many of the examples I have 
discussed, take an agent-based approach. Such models explicitly represent individuals, as 
opposed to aggregates with aggregate-level properties. For philosophers new to 
modeling, I suggest beginning with models of this type because of the availability of a 
straightforward, powerful, and free tool called Netlogo (Wilensky, 1999).

Netlogo is a high-level programming language, especially appropriate for creating 
simulations of social and natural phenomena that can be broken down into individuals or 
agents, which are called turtles in this framework. Although Netlogo is a powerful 
language that has been widely adopted by modelers across the natural and social 
sciences, it is very straightforward to learn due to its close association with a family of 
programming languages specifically designed for teaching. The original Logo language 
was one of the first pieces of educational software written in the late 1960s for the PDP-1.

The best way to get started with Netlogo is twofold: First, one should choose a few of its 
dozens of example models and explore them. Both the interface side and the programs 
themselves are well documented and explained. Much can be learned by modifying, 

breaking, and fixing these existing models. Second, Agent-Based and Individual-
Based Modeling (Railsback and Grimm, 2012) is an essential textbook for beginners. It 
combines helpful discussions on all aspects of agent-based modeling methodology with 
practical advice on programming in Netlogo, and it is accessible to complete beginners.
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Notes:

( ) This is a much-simplified form of the similarity equations developed in Weisberg, 2013.
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evolutionary theory, the nature of the chemical bond, the division of cognitive labor, 
and the public understanding of evolution and climate change.
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