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Abstract 

Adaptive guidance is an instructional intervention that helps learners to make use of the control 

inherent in technology-based instruction. The present research investigated the interactive effects 

of guidance design (i.e., framing of guidance information) and individual differences (i.e., pre-

training motivation and ability) on learning basic and strategic task skills over time. 130 

participants were randomly assigned to one of two types of adaptive guidance (autonomy-

supportive, controlling) or a no-guidance condition while learning to perform a complex 

simulation task over nine consecutive trials. Results indicated that participants receiving 

controlling guidance acquired strategic task skills at a faster rate than participants receiving 

autonomy-supportive guidance or no-guidance. The design of adaptive guidance also moderated 

the effects of pre-training motivation and cognitive ability on learners’ acquisition of basic and 

strategic task skills. Specifically, autonomy-supportive guidance enhanced the positive effects of 

pre-training motivation on the acquisition of basic task skills, and controlling guidance enhanced 

the positive effects of cognitive ability on the acquisition of strategic task skills. Implications for 

research and practice are discussed.  

 Keywords: learning, technology, guidance, individual differences, performance 
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Guiding Learners through Technology-Based Instruction: The Effects of 

Adaptive Guidance Design and Individual Differences on Learning over Time 

Over the past decade, a number of different forces, including technological advances, 

economic pressures, and globalization, have spurred significant growth in technology-based 

instruction in both higher education and corporate settings.  For instance, the National Center for 

Education Statistics estimates that from 2000 to 2008 the percentage of undergraduates enrolled 

in at least one distance education course grew from 8% to 20% (Radford, 2011).  Similarly, the 

American Society for Training and Development estimates that the percentage of learning 

delivered through technology in work organizations has increased from 8.8% in 2000 to 38.5% 

in 2011 (Miller, 2012; Van Buren & Erskine, 2002). 

 One important implication of this trend in learning delivery is that technology-based 

instruction often provides learners with significant control over different aspects (e.g., content, 

sequence, pace) of their learning (DeRouin, Fritzsche, & Salas, 2005).  Kraiger and Jerden 

(2007), for example, note that many modern forms of technology-based instruction follow a 

learner-centered format in which the software serves as a learning portal and individuals must 

make choices about both what and how to learn.  When compared to conditions in which 

instructional software controls most or all of the learning decisions (i.e., program control), 

learner control often has a positive, albeit small, effect on student outcomes (Kraiger & Jerden, 

2007; Reeves, 1993).  Yet, researchers have also noted that instruction that offers high levels of 

learner control often proves ineffective because learners experience resource depletion, fail to 

come into contact with important information, and make poor learning decisions (Brown, 2001; 

Kirschner, Sweller, & Clark, 2006; Mayer, 2004). 
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These findings highlight the need for instructional strategies that can assist learners in 

making effective use of the control offered by technology-based instruction. One approach that 

has been examined involves supplementing learner control with adaptive guidance, which 

provides learners with diagnostic and interpretive information designed to help them make more 

effective learning decisions (Bell & Kozlowski, 2002).  Although research has shown that 

adaptive guidance leads to better learning outcomes than either total learner or program control 

(e.g., Bell & Kozlowski, 2002; Corbalan, Kester, & Merriënboer, 2008), the issue of how 

adaptive guidance should be designed to optimize student learning in technology-based 

instruction remains largely unexplored.  

One instructional design feature that may have an important impact on student 

achievement is the framing of guidance information.  Prior research has demonstrated that how 

learning instructions and activities are framed can have a significant impact on learning (e.g., 

Kozlowski & Bell, 2006; Rawsthorne & Elliot, 1999).  For instance, drawing on self-

determination theory (SDT), investigators have shown that learning contexts that are framed as 

autonomy-supportive lead to higher levels of motivation and learning than contexts that are 

framed as controlling (e.g., Black & Deci, 2000; Vansteenkiste, Simons, Lens, Sheldon, & Deci, 

2004).  These findings suggest that guidance information should be framed so as to minimize 

perceptions of external control and emphasize learners’ autonomy and freedom.  Resource 

allocation theories of self-regulation (e.g., Kanfer & Ackerman, 1989), however, suggest that 

providing greater autonomy and choice may deplete learners’ cognitive resources and impede 

skill acquisition, particularly in learning contexts that impose substantial demands on attentional 

resources.  Thus, guidance that is framed as more controlling and restrictive may reduce the 

burden on learners, allow them to direct more of their attentional resources to learning, and 
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increase the likelihood that learners’ come into contact with important learning content (Mayer, 

2004).  

The current study explores these different perspectives through an examination of the 

effects of two forms of adaptive guidance - autonomy-supportive and controlling – on learning 

during a complex simulation-based training program.  This effort advances the existing literature 

in at least three ways.  First, using SDT and resource allocation theory, we propose that the 

effects of different adaptive guidance designs may vary across different learning outcomes.  To 

test this prediction, we examine the effects of autonomy-supportive and controlling guidance on 

multiple indicators of learning, namely the acquisition of basic and strategic task skills. Second, 

recent studies suggest that individual differences often moderate the effects of interventions 

designed to improve learning during technology-based instruction, such that a specific 

intervention will be more effective for some learners than others (e.g., Sitzmann, Bell, Kraiger, 

& Kanar, 2009).  Building on and extending these findings, we examine how different forms of 

guidance interact with individual differences related to effort (i.e., pre-training motivation) and 

resource availability (i.e., cognitive ability) to influence learning. Finally, we use a longitudinal 

design and latent growth modeling to examine the effects of the two forms of adaptive guidance 

over time. Whereas most research has treated the effects of guidance as static, our longitudinal 

approach examines the impact of the different types of adaptive guidance on individuals’ 

learning trajectories over the course of instruction, which provides further insight into how 

different forms of guidance influence the acquisition of different types of task skills. The 

conceptual model examined in this research is presented in Figure 1.  In the following sections, 

we discuss the theory that underlies the relationships outlined in the model. 
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Adaptive Guidance 

Although there is some evidence that learner control can enhance student motivation and 

satisfaction (e.g., Reeves, 1993), research suggests that individuals often do not make effective 

use of the control they are given over their instruction (Steinberg, 1977, 1989).  Learners 

frequently misinterpret feedback and are poor judges of their performance and progress, which 

can lead to poor learning choices and misdirected effort.  Brown (2001), for example, studied 

learner choices during online instruction and found that learners commonly skipped critical 

practice opportunities and some spent less than 50% of the available time in the course.  He 

concluded, “Results suggest that, despite the appeal of computer-based training as a way to make 

learning more efficient, employees may not use control over their learning wisely” (p. 290).  

Mayer (2004) leveled similar criticisms against discovery learning, in which students are free to 

work in the learning environment with little or no guidance.  He reviewed research that 

compared pure and guided discovery methods and concluded that guided methods help ensure 

that students come into contact with to-be-learned material and better support the cognitive 

processes necessary for constructivist learning.  Finally, Kirschner et al. (2006) argue that 

unguided environments create a heavy working memory load that is detrimental to learning.     

Although guided instruction can take many forms (c.f., Kirschner et al., 2006), in the 

current study we focus on adaptive guidance, which was designed for more complex learning 

environments that leverage technology (Bell & Kozlowski, 2002).  Adaptive guidance was 

developed based on a foundation provided by learner control research (e.g., Tennyson, 1980; 

Tennyson & Buttrey, 1980), but was also designed to extend to more complex learning domains 

that require learners to acquire not only basic but also strategic task skills. Basic task skills 

involve a trainees’ ability to perform fundamental task operations that must be learned in order to 
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develop more advanced skills (Bell & Kozlowski, 2002). Individuals utilize their declarative 

knowledge (e.g., knowledge of facts) and procedural knowledge (e.g., knowledge of rules) when 

performing basic skills. Through practice and experience, declarative knowledge is compiled or 

proceduralized, which allows trainees to execute basic operations more quickly and with fewer 

errors (Anderson, 1983). Strategic skills involve carrying out more difficult operations that 

require trainees to understand the underlying complexities of a task and integrate task concepts. 

In addition, trainees must develop contextual knowledge that informs why, when, and where to 

apply their strategic skills (Ford & Kraiger, 1995). Thus, strategic performance involves 

selectively retrieving and integrating specific knowledge from one’s knowledge base and 

applying the resulting constructions to varying task contingencies (Tennyson & Breuer, 2002). In 

environments that require both basic and strategic skills, learning is a function of not only effort 

(e.g., time on task) but also the quality of study and practice activities.  Thus, adaptive guidance 

uses learners’ past performance to provide evaluative and diagnostic information that assists 

them in judging their progress toward task mastery, which should influence the amount of effort 

they invest in learning.  In addition, it provides individualized suggestions for what learners 

should study and practice, based on progress, which should influence the allocation of attention 

and lead to better learning choices.          

Bell and Kozlowski (2002) showed that adaptive guidance helps learners to make better 

learning decisions in a learner-control environment. Learners who received guidance studied and 

practiced training material in a more appropriate sequence than those who received no guidance. 

Guidance also had a positive effect on trainees’ self-efficacy early in training, when learning is 

most challenging and errors are common. The result was that learners who received adaptive 

guidance exhibited higher levels of basic and strategic knowledge and performance and were 
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better able to transfer their skills than those who were given learner control without guidance 

(Bell & Kozlowski, 2002).  Accordingly, we expect that learners receiving adaptive guidance 

will exhibit greater positive change in their performance relative to those in a no guidance 

condition.  

H1: Participants who receive adaptive guidance will exhibit more positive change in 

basic and strategic performance skills than participants who do not receive guidance. 

Autonomy-Supportive and Controlling Guidance  

The issue of how adaptive guidance should be designed to optimize student learning in 

technology-based instruction has received limited research attention.  Adaptive guidance seeks to 

provide the direction learners need to avoid making poor learning decisions while retaining the 

motivational benefits of autonomy.  Self-determination theory (SDT; for a review see Ryan & 

Deci, 2000) is a theory of motivation that assumes high-quality motivation is inherently human 

and is expressed to different degrees depending on the context that influences the process of 

making choices.  Initial conceptualizations of motivation quality distinguished between 

motivations stemming from an internal locus of causality (e.g., interest and enjoyment) and those 

stemming from an external locus of causality (e.g., rewards and punishments) (Vansteenkiste, 

Lens, & Deci, 2006).  A more recent conceptualization, however, distinguished among various 

types of extrinsic motivation that differ in their degree of autonomy, which shifted the focus to 

differences between autonomous motivation, which involves the experience of volition and 

choice, and controlled motivation, which involves the experience of being pressured or coerced 

(Vansteenkiste et al., 2006). Prior research has shown that learning contexts that provide choice 

and options for self-direction tend to facilitate autonomous motivation and enhance learning, 

whereas controlling environments that pressure learners to think or act in a particular way often 
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diminish autonomous motivation and lead to poorer learning (Ryan & Deci, 2000; Vansteenkiste 

et al., 2004).  

A common means of operationalizing autonomy-supportive and controlling learning 

environments is through the framing of instructions. For example, a number of laboratory and 

field studies have found that verbal or written instructions containing primarily autonomy-

supportive phrases (e.g., “you may” or “if you choose”) lead to higher levels of autonomous 

motivation and learning than instructions with more controlling phrases (e.g., “you should” or 

“you have to,” Vansteenkiste et al., 2004). Thus, presenting adaptive guidance instructions using 

autonomy-supportive language may capitalize on these motivational benefits and lead to greater 

learning performance than guidance instructions incorporating controlling language. 

As previously noted, however, prior learner control research has found that greater 

autonomy does not always translate into higher levels of learning, and in fact sometimes leads to 

poorer performance (e.g., Pollock & Sullivan, 1990). A closer examination of this research 

suggests that these mixed findings may be due, at least in part, to differences in the learning 

outcomes examined across studies.  For example, a meta-analysis by Patall, Cooper, and 

Robinson (2008) found small and positive effects of choice on simple task performance (i.e., 

quantity and accuracy), but they did not find a significant relationship between choice and 

subsequent measures of learning that assessed skill acquisition.  Overall, they concluded that 

research examining the effects of choice on learning has yielded findings that have been 

“somewhat inconsistent” (Patall et al., 2008, p. 294). Accordingly, it may be important to 

consider how different forms of guidance potentially impact different types of learning 

outcomes. Ackerman (1987), for instance, found that motivation and effort are the primary 

determinants of learners’ acquisition of declarative knowledge and performance on simple tasks. 
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Learners’ motivation influences performance on basic tasks because, through practice and 

experience, learners develop knowledge of facts (declarative knowledge) and rules (procedural 

knowledge) and thus are able to perform tasks quicker and with fewer errors (Anderson, 1983). 

Thus, the motivational benefits of autonomy-supportive guidance should be evident on basic task 

components, where performance is determined primarily by effort (Bell & Kozlowski, 2002).  

Accordingly, we expect that learners receiving autonomy-supportive guidance will acquire basic 

skills at a faster rate than learners receiving controlling guidance.                         

H2: Participants in the autonomy-supportive condition will exhibit more positive change 

in basic performance skills than participants in the controlling condition. 

The positive effects of choice in learner-controlled training, however, may not extend to 

learning outcomes that are a function of a trainee’s ability to process and integrate complex 

information. Acquisition of more complex task skills is closely tied to processes related to 

learners’ attention such as choices made during training (e.g., sequence of study) and the quality 

of practice (Bell & Kozlowski, 2002; Brown, 2001), and guidance that is more controlling may 

increase the likelihood that trainees engage in appropriate study and practice activities.   In 

addition, guidance design features that facilitate (rather than restrict) a learner’s sense of 

autonomy increase the number of potential problem solutions and amount of information that 

needs to processed.  As the total amount of information increases, people must rely on less 

information to make choices, resulting in simplified problem-solving and decision-making 

processes and sub-optimal outcomes (Chua & Iyengar, 2008; Payne, Bettman, & Johnson, 1993). 

For example, Iyengar and Lepper (2000) found that a greater number of options decreased 

people’s ability to think about multiple solution combinations. By directing learners’ attention to 

key elements of the task and limiting learners’ choices, controlling guidance may enhance the 
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acquisition and integration of skills for performing more complex components of the task. Thus, 

we expect that learners receiving controlling guidance will acquire strategic skills at a faster rate 

than learners receiving autonomy-supportive guidance.  

H3: Participants in the controlling condition will exhibit more positive change in strategic 

performance skills than participants in the autonomy-supportive condition. 

Interactive Effects of Guidance Design and Individual Differences 

Although autonomy may yield motivational benefits during training, it is also important 

to consider trainees’ motivation when entering a training program (i.e., pre-training motivation).  

Pre-training motivation describes trainees’ initial attitudes and intentions to exert effort toward 

learning the content of a training program (Noe, 1986). Pre-training motivation is different from 

motivation quality constructs because pre-training motivation implies attitudes and personal 

action (activation) directed toward learning; motivation quality constructs address the beliefs and 

reasons underlying different types of motivation (Vansteenkiste, Sierens, Soenens, Luyckx, & 

Lens, 2009). Motivated action theories have shown that attitudes and intentions provide the link 

between beliefs and behaviors (Heckhausen & Kuhl, 1985). Indeed, learning orientation strongly 

and positively predicts trainees’ pre-training motivation levels (Colquitt & Simmering, 1998; 

Klein, Noe, & Wang, 2006), and motivation to learn has been shown, in turn, to positively relate 

to learning outcomes (Colquitt, LePine, & Noe, 2000). 

Although pre-training motivation has been shown to be a positive predictor of training 

outcomes, research has also found that individual characteristics often interact with training 

design to influence learning (i.e., aptitude x treatment interactions).  Gully, Payne, Koles, and 

Whiteman (2002), for example, found that trainees higher in openness to experience had, in 

general, higher declarative knowledge, training performance, and self-efficacy.  In addition, they 
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found that when the training was designed to encourage exploratory behaviors consistent with 

this dispositional characteristic, the positive relationship was strengthened.  However, when the 

training was designed to restrict exploration, the positive effect of openness on the training 

outcomes was nullified.  In the current study, we propose that guidance design may play a 

similar role in either enhancing or constraining the positive relationship between pre-training 

motivation and skill acquisition.  In particular, autonomy-supportive guidance should support 

trainees’ desire to take personal action toward learning the training content, thus strengthening 

the relationship between pre-training motivation and learning.  On the other hand, guidance that 

is framed as controlling should contradict trainees’ positive attitudes and intentions toward the 

training, thus weakening the relationship between pre-training motivation and learning. 

Consistent with our earlier arguments, we expect the interaction between guidance design and 

trainees’ pre-training motivation will be observed for basic skill acquisition, which is determined 

primarily by trainees’ motivation and effort.  

H4: Pre-training motivation will be positively related to basic performance growth for 

participants receiving autonomy-supportive guidance, and this relationship will be 

weaker for participants receiving controlling guidance. 

In more complex learning environments, it is important to design training to support not 

only trainees’ motivation but also their cognition (Bell & Kozlowski, 2008).  Cognitive ability, 

which is an individual’s intellectual capacity, has been shown to be a potent predictor of learning 

(Colquitt et al., 2000; Ree & Earles, 1991).  In general, individuals with higher levels of 

cognitive ability have greater attentional resources to devote to learning, which means they are 

able to absorb and retain more information than lower ability individuals.  The challenge in 

learner controlled environments is ensuring that trainees allocate their attentional resources to 
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study and practice activities that facilitate learning.  DeRouin et al. (2004, p. 154) suggest that 

when trainees are given too much control, “they may be unable to focus the majority of their 

attention on the subject matter of the instructional program,” which can cause learning to suffer.  

Niederhauser, Reynolds, and Salmen (2000), for example, examined the effects of hypertext 

navigation features on learning.  They found that students who made extensive use of compare 

and contrast links, which were designed to provide alternate paths to information, exhibited 

impaired learning, whereas students that read the text in a systematic and sequential manner 

performed significantly better.  Niederhauser et al. (2000) suggest that the compare and contrast 

links impeded learning because they required learners to make decisions about what to read and 

the order in which to read information, which likely absorbed attentional resources that could no 

longer be directed to integrating new knowledge.  Consistent with these findings, we expect that 

by providing learners with a clear and unambiguous path for navigating the training, controlling 

guidance should enable trainees to devote more of their attentional resources to learning.  This 

should strengthen the positive relationship between cognitive ability and performance, 

particularly on strategic task components that require deeper comprehension and integration of 

task concepts.  In contrast, the relationship between cognitive ability and strategic performance 

should be weakened when trainees are given autonomy-supportive guidance because the greater 

choice options may increase the chances that attentional resources are misdirected or absorbed 

by instructional decisions.        

H5: Cognitive ability will be positively related to strategic performance growth for 

participants receiving controlling guidance, and this effect will be weaker for participants 

receiving autonomy-supportive guidance.     
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Method 

Participants 

 Participants were 130 undergraduate students enrolled in an introductory human resource 

management course at a large northeastern university who earned course credit for participation. 

Fifty-nine percent of the participants were male and most (93.1 percent) were between 18 and 21 

years old.  

Task 

The task used in this study was a version of TANDEM (Dwyer, Hall, Volpe, Cannon-

Bowers, & Salas, 1992), a computer-based radar-tracking simulation designed for assessing 

judgment and decision making in complex task environments. The object of the simulation was 

to make correct decisions about unknown— and potentially hostile—contacts appearing on a 

simulated radar screen and to prevent contacts from crossing defensive perimeters. Participants 

were required to detect, identify, and act upon the multiple contacts on the screen using a number 

of basic and strategic skills (Bell & Kozlowski, 2002; Kozlowski & Bell, 2006). All participants 

had access to an online instruction manual that contained complete information on all important 

aspects of the simulation. 

Basic skills involved making decisions about contacts on the radar screen.  After 

engaging a contact, participants could access cue information from pull-down menus, with 3 

cues available for each of three component decisions regarding the Type (air, surface, 

submarine), Class (civilian or military), and Intent (hostile or peaceful) of the contact.  After 

making the three component decisions, participants needed to decide whether to take action 

against the contact (if hostile) or clear it from the radar screen (if peaceful).  Participants 

received points for correct decisions and lost points for incorrect decisions. 
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The basic skills serve as the foundation for developing more strategic skills focused on 

perimeter defense and contact prioritization.  Specifically, there are two defensive perimeters 

located within the task and participants lose points for perimeter intrusions.  The inner defensive 

perimeter is clearly marked and easy for participants to identify.  However, the outer perimeter is 

beyond the initial viewing range of the radar display and is not clearly marked.  Thus, 

participants must learn how to “zoom out” and locate “marker contacts” that serve to identify the 

outer boundary. Participants must also learn how to prioritize contacts by determining which 

constitute the greatest threats to the defensive perimeters. There are often multiple contacts 

approaching both the inner and outer perimeter, so participants need to monitor both perimeters 

and gather information on the speed and distance of contacts in order to determine those that are 

the highest priority.  Trainees also have to make strategic decisions about trade-offs between 

contacts approaching the inner and outer perimeters, based on the number of contacts at each 

perimeter and their “cost” if they penetrate.            

Manipulations 

Learners can be given control over a number of different aspects of their instruction, 

including content, sequence, and pace (Kraiger & Jerden, 2007).  In the current study, all trainees 

were given control over what they chose to study and practice (content) and the order in which 

they chose to study and practice the material (sequence). In addition, they were given some 

control over the pace of their learning, such as being able to exit the online manual early; 

however, for design reasons we set maximum time limits on the study and practice periods. 

Thus, trainees in all conditions were given the same level of objective learner-control.  

At the beginning of the training session, participants in the no-guidance control condition 

were given a list of learning topics.  They were told that the list covered all important aspects of 
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the simulation and that they may want to focus on these topics during training, but what they 

chose to study and practice was at their discretion. Trainees in the no-guidance condition did not 

receive any guidance information.  

Trainees in the guidance conditions received the list of learning topics, along with 

guidance information that could be used to help them evaluate their current progress and improve 

their deficiencies in the different aspects of the simulation. As described below, the framing of 

this information depended on whether trainees were assigned to the controlling or autonomy-

supportive condition.  The guidance information was delivered following the last screen of 

feedback presented after each trial.  The guidance manipulations created for the current study 

were modeled from prior research (Bell & Kozlowski, 2002). The guidance was “adaptive” 

because the suggestions for study and practice were tailored to participants’ proficiency in the 

simulation.1 The guidance focused on helping learners build basic skills early in training, before 

proceeding later in training to developing more strategic competencies which build on the 

fundamental skills.  

The two guidance manipulations were created by framing the instructions for study and 

practice using language that either (a) was coercive and controlling (controlling guidance) or (b) 

emphasized choice and self-initiated behaviors (autonomy-supportive guidance). The specific 

phrases were identical to those used in a number of earlier studies that manipulated autonomy-

supportive or controlling contexts through task instructions (e.g., Vansteenkiste et al., 2004). 

Specifically, the controlling guidance manipulation used explicitly controlling language through 

phrases such as “you have to,” “you must,” “you should,” and “you had better.” For example, 

participants might be told, “You must study the material in your manual on prioritization 

strategies.”  The autonomy-supportive guidance manipulation used instruction phrases such as, 
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“you can,” “you might,” “you may,” and “if you choose.” For example, participants in the 

autonomy-supportive guidance condition might be told, “You may want to study the material in 

your manual on prioritization strategies.” Other than the differences in the use of autonomy-

supportive or controlling phrases, the two types of adaptive guidance were identical.  

Measures 

Pre-training motivation.  At the beginning of the experimental session, participants’ 

pre-training motivation was measured using 7-items developed by Noe and Schmitt (1986).2  

Items were modified to be consistent with our learning setting and were rated on a five-point 

scale ranging from “strongly disagree” (1) to “strongly agree” (5).  Sample items are “I am 

motivated to learn the skills emphasized in this training program” and “If I can’t understand 

something in the training program I will try harder.” Internal consistency reliability of the scale 

was .86.  

Cognitive ability.  At the beginning of the experimental session, participants provided 

their SAT or ACT scores.  Research has shown that the SAT and ACT have a large general 

cognitive ability component (Frey & Detterman, 2004).   In addition, the publishers of these tests 

report high internal consistency reliabilities for their measures (e.g., KR-20 = .96 for the ACT 

composite score; American College Testing Program, 1989) and self-reported SAT/ACT scores 

have been shown to correlate highly with actual scores. For example, Gully et al. (2002) found 

that self-reported SAT scores correlated .95 with actual scores. Individuals’ ACT or SAT scores 

were standardized using norms published by ACT and the College Board, and this standardized 

score was used as a measure of cognitive ability (College Board, 2011).      

Basic and strategic task performance.  Using measures that have been established in 

previous research using the TANDEM simulation (e.g., Bell & Kozlowski, 2002) data were 
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collected during each training trial that allowed assessments of participants’ performance on 

basic and strategic aspects of the task. Basic task performance was calculated based on the 

number of correct and incorrect decisions during the trials; the two fundamental components of 

participants’ score.  Performance on these two aspects of the task is the result of knowledge of 

basic task components (e.g., decision-making cues and procedures).  This measure is similar to 

task performance measures of accuracy often found in studies of choice effects on motivation 

(Patall et al., 2008). Strategic task performance was composed of the number of times 

participants zoomed out, the number of markers hooked in an effort to identify the location of an 

invisible outer perimeter, and the number of high priority contacts processed during the practice 

trials.  These indicators capture the two major elements of strategic performance: perimeter 

defense and contact prioritization. Past cross-sectional research supports the two-factor structure 

for the performance data using TANDEM (e.g., Bell & Kozlowski, 2002).  

Procedure 

 Training was conducted in a single three-hour session with groups of one to four 

participants. During this session, participants learned to operate the radar-tracking simulation 

described above.  Participants were randomly assigned to one of three experimental conditions: 

controlling guidance, autonomy-supportive guidance, or a no-guidance control condition. 

 Familiarization. Trainees were first presented with a brief demonstration of the 

simulation that described its features and decision rules and were shown the online instruction 

manual that contained complete information on all important aspects of the simulation. They 

then had an opportunity to familiarize themselves with the instruction manual for 3-min and were 

able to practice the task in a 5-min “familiarization” trial.  The goal of this preliminary trial was 
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to ensure that participants understood how to operate the instruction manual and were familiar 

with the equipment.  

Training. After the familiarization trial, trainees began the training session, which was 

divided into nine 10.5-min trials.  Each training trial consisted of a cycle of study, practice, and 

feedback.  Trainees had 3-min to study the online instruction manual.  They then had 5-min of 

hands-on practice. The nine trials possessed the same general profile (e.g., same difficulty level, 

rules, number of contacts), but the configuration of contacts (e.g., location and characteristics of 

contacts) was unique to each trial. Immediately after each practice trial, trainees reviewed 

veridical descriptive feedback on all aspects of the task relevant to both basic and strategic 

performance.  Trainees in all conditions received feedback, but only trainees in the guidance 

conditions received the adaptive guidance information following the last screen of feedback in 

each trial.  Trainees in all conditions were given the same amount of time (2.5-min) after each 

practice trial to review their feedback and, if available, guidance information.  Participants were 

given a 5-min break following the third and ninth trials.      

Manipulation Checks 

At the end of training, all participants responded to a three-item measure of autonomous 

motivation adapted from Vansteenkiste et al. (2004).  The items were assessed on a 5-point 

Likert scale that ranged from 1 (not at all true) to 5 (very true).  A sample item is “I practiced the 

task because it was very interesting.”  The reliability (coefficient alpha) of the measure was .93.  

We ran a hierarchical regression analysis, controlling for participant’s pre-training motivation, to 

determine whether there were differences across the three conditions on the measure of 

autonomous motivation.  We employed one-tailed tests of significance due to the directional 

nature of our predictions.  As expected, participants in the controlling condition (M = 2.73, SD = 
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1.21) reported significantly lower levels of autonomous motivation than participants in the no 

guidance condition (M = 3.28; SD = 1.19), t (129) = -2.19, p < .05, and marginally significant 

lower levels of autonomous motivation than participants in the autonomy-supportive condition 

(M = 3.01; SD = 1.11), t (129) = -1.46, p < .10.  Autonomous motivation did not differ 

significantly across the autonomy-supportive and no guidance conditions (t (129) = .92, p > .10), 

which is consistent with the fact that participants in both conditions were told they could choose 

what to study and practice. 

 Given the subtle nature of the manipulation, we also examined the amount of time 

participants spent in the feedback sessions.  Following each trial, participants could spend up to 

2.5-min reviewing their feedback and, if available, guidance information.  Participants in the no-

guidance condition received only feedback, whereas participants in the controlling and 

autonomy-supportive conditions received both feedback and adaptive guidance information.  

Thus, if participants in the controlling and autonomy-supportive conditions reviewed the 

guidance information, we would expect them to spend more time overall in the feedback 

sessions.  The amount of time (in seconds) participants spent reviewing the pages containing 

feedback and guidance (if available) information across the nine trials was automatically 

recorded by the computer and was subjected to regression analysis, once again using one-tailed 

tests of significance.  The results revealed that participants in the autonomy-supportive condition 

(M = 616.10, SD = 18.90) spent significantly more time in the feedback sessions than 

participants in the control condition (M = 418.77, SD = 23.26), t (129) = 6.58, p < .01, as did 

participants in the controlling condition (M = 600.33, SD 21.23), t (129) = 5.77, p < .01.  Time 

spent in the feedback sessions did not significantly differ across the two guidance conditions, t 

(129) = -.55, p > .10.  Further, analyses examining time spent on only the pages containing 
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feedback information revealed that participants in autonomy-supportive condition (378.47, SD = 

14.37) spent significantly less time than participants in the no-guidance condition reviewing 

feedback (M = 418.77, SD = 17.69), t (129) = -1.77, p < .05, as did participants in the controlling 

condition (M = 356.41, SD = 16.14), t (129) = -2.61, p < .01.   The two guidance conditions did 

not significantly differ in amount of time spent reviewing feedback, t (129) = -1.02, p > .10.  

Together, these findings show that participants in the guidance conditions spent more time in the 

feedback sessions and this increase was due to the time they spent reviewing the guidance, rather 

than feedback, information.  

Analyses 

We used latent growth curve analysis (LCA) to analyze the repeated measures 

performance data. Latent growth curve analysis is an extension of covariance structure analysis 

that invokes a confirmatory factor analytic structure on the repeated variables measured over 

time, where the factor loadings for the latent growth constructs determine the shape of the 

growth trajectories. This approach can give identical results to other growth modeling 

approaches (e.g., hierarchical linear modelling) but allows greater flexibility (Curran, 2003). In 

particular, the latent growth curve framework allowed us to (a) test measurement invariance 

assumptions across time and (b) estimate growth across the three experimental conditions 

simultaneously by specifying a multiple-group growth curve model. Hypotheses were tested by 

sequentially imposing constraints on latent means (Hypotheses 1, 2, & 3) and structural paths 

(Hypotheses 4 & 5) and comparing nested models with the chi-square difference test (Bentler & 

Bonett, 1980). M-Plus was used to conduct all analyses (Muthén & Muthén, 2007). Performance 

measures were standardized across the nine trials. For all models, we specified autocorrelated 
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error terms for performance scores at each time period because scores at adjacent time periods 

were non-independent. 

Results  

Table 1 reports descriptive statistics and intercorrelations among the study variables. 

Inspection of the means for the basic and strategic performance outcomes shows that participants 

improved over time but at a decreasing rate. Table 2 presents the basic and strategic task 

performance means for each condition for each of the nine training trials.    

Nature of Performance Trajectories 

The first step in latent growth curve analysis is to describe the nature of change for all 

participants in the sample. Table 3 presents fit statistics and nested comparisons for alternate 

growth trajectories (i.e., no-growth, linear, and quadratic growth) and error structures (i.e., 

homogeneous or heterogeneous) for basic and strategic performance. The no-growth model 

included only a latent intercept mean and error term, while additional mean and error terms are 

included in the linear (i.e., intercept and linear terms) and quadratic (intercept, linear, and 

quadratic terms) models. Consistent with other longitudinal research on learning and 

performance during skill acquisition (e.g., Chen & Mathieu, 2009), the nested models in Table 3 

show that the quadratic growth specification best fit the longitudinal data.  

Table 4 presents the parameter estimates for the quadratic growth curve models. The 

latent factor means describe the average shape of performance growth across the nine trials for 

all participants. The positive linear factor means for basic (μ = 0.31, t = 9.52, p < .001) and 

strategic (μ = 0.34, t =11.17, p < .001) performance suggest that, on average, participants scored 

0.31 and 0.34 standardized points higher in each subsequent performance trial for basic and 

strategic performance, respectively. However, the significant negative quadratic factor means for 
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basic (μ = -0.02, t = -4.44, p < .01) and strategic (μ = -0.02, t = -5.33, p < .001) performance 

suggest that the marginal rates of performance improvement were declining over time. 

Importantly, Table 4 also shows significant variation around the intercept, linear, and quadratic 

factors. Thus, we next specified conditional latent curve models in order to predict the 

individual-level variation in performance trajectories and test the study hypotheses. 

Modeling Variation in Change  

 We modeled variation in participants’ growth trajectories as functions of the 

experimental design (i.e., condition) and two time-invariant individual-difference factors (i.e., 

pre-training motivation and cognitive ability). Separate multiple-group growth curve models 

were estimated for basic and strategic performance. Cognitive ability was a single-indicator 

factor where we set the loading to the latent variable to the square root of the scale's reliability 

and set the error variance for the single indicator to one minus the reliability multiplied by the 

observed variance of the scale (Fornell & Larker, 1981). We used random-item parcels to reduce 

the number of items on the pre-training motivation scale (Landis, Beal, & Tesluk, 2000) from 

seven to two items. The multiple-group models for basic χ²(df = 171, N = 130) = 238.63, CFI =  

0.941, TLI = 0.932, RMSEA = 0.096, SRMR = 0.095) and strategic χ²(df = 176, N = 130) = 

226.96, CFI =  0.946, TLI = 0.939, RMSEA = 0.082, SRMR = 0.114) performance met 

conventional standards for fit statistics.   

Table 5 presents the parameter estimates across the three experimental conditions. A 

visual inspection of Table 5 shows that pre-training motivation was significantly related to basic 

growth trajectories, while cognitive ability was a significant predictor of strategic growth. For 

both basic and strategic task performance outcomes, learners in all three conditions showed 
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significant and positive linear performance improvements, and significant and negative quadratic 

performance declines (Figure 2).  

Hypothesis 1 predicted that learners receiving adaptive guidance would show greater 

gains in basic and strategic performance than learners receiving no guidance. Table 5 presents 

the means for basic and strategic performance outcomes across experimental conditions. We 

tested Hypothesis 1 by sequentially constraining growth factor means as equal—first across the 

no-guidance and autonomy-supportive guidance conditions and second across the no-guidance 

and controlling guidance conditions—and examining the associated change in the chi-squared fit 

statistics between the nested models (Bentler & Bonett, 1980). Contrary to our expectations, all 

chi-squared difference tests for linear and quadratic mean differences across basic and strategic 

performance models revealed non-significant differences between the autonomy-supportive and 

no guidance conditions (all p’s > .10).  

Next, we compared the growth trajectories across participants receiving controlling 

guidance to those receiving no guidance. As predicted, participants receiving controlling 

guidance showed more positive linear growth in strategic performance (μ = 0.44) than 

participants receiving no guidance (μ = 0.26; Δχ² = 19.44, Δdf = 1, p < .001). However, results of 

the chi-squared difference tests showed no other significant differences in performance trajectory 

means across the controlling guidance and no guidance conditions for basic or strategic 

performance (all p’s > .10). In sum, results showed that learners receiving controlling guidance 

had more positive strategic linear performance trajectories than participants receiving no 

guidance, yet no other differences in performance trajectories were evident. Accordingly, 

Hypothesis 1 received partial support.  
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Hypothesis 2 predicted that participants receiving autonomy-supportive guidance would 

exhibit greater basic performance growth than participants receiving controlling guidance. Figure 

2 shows that, contrary to our prediction, we found that participants receiving controlling 

guidance exhibited marginally more positive linear basic performance trajectories (μ = 0.38) than 

participants receiving autonomy-supportive guidance (μ = 0.28; Δχ² = 3.51, Δdf = 1, p < .10). 

Hypothesis 2 was not supported. However, because the quadratic factor means were negative, 

indicating a decelerating trend, a negative relationship between a predictor and a quadratic 

growth factor suggests that higher levels of a predictor are associated with less deceleration in 

performance over time. The quadratic factor mean for participants receiving autonomy-

supportive guidance (μ = -0.01) was marginally less-negative than for participants receiving 

controlling guidance (μ = -0.02; Δχ² = 3.18, Δdf = 1, p < .10), suggesting that learners’ receiving 

autonomy-supportive guidance improved in their basic task skills at a more consistent rate than 

did participants receiving controlling guidance. Figure 2 shows that the basic performance 

differences between participants receiving autonomy-supportive guidance and controlling 

guidance become smaller over time.  

Hypothesis 3 predicted that participants receiving controlling guidance would exhibit 

greater strategic performance growth than participants receiving autonomy-supportive guidance. 

Figure 2 (lower figure) shows that, as expected, participants receiving controlling guidance (μ = 

0.44) showed greater linear growth in strategic performance than participants receiving 

autonomy-supportive guidance (μ = 0.32; Δχ² = 8.79, Δdf = 1, p < .01). The strategic quadratic 

factors for controlling guidance (M = -0.02) and autonomy-supportive guidance (μ = -0.02) were 

not different (Δχ² = 0.42, Δdf = 1, ns). Thus, Hypothesis 3 was supported.  
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Hypothesis 4 predicted that pre-training motivation will be positively related to basic 

performance growth for participants receiving autonomy-supportive guidance, and this 

relationship will be weaker for participants receiving controlling guidance. Table 5 shows that 

participants’ pre-training motivation was positively related to basic linear growth in the 

autonomy-supportive guidance condition (ß = .27, EST/SE = 2.32, p < .05) and negatively 

related to performance growth in the controlling guidance condition (ß = -.28, EST/SE = -2.21, p 

< .05). This difference was significant (Δχ² = 15.84, Δdf = 1, p < .05) and is illustrated in Figure 

3, where we plotted the interactive effects following Aiken and West`s (1991) procedures. Table 

5 also shows that participants’ pre-training motivation was more strongly and negatively related 

to quadratic change (i.e., deceleration) for participants receiving autonomy-supportive guidance 

(ß = -0.03, EST/SE = -2.16, p < .05) than for participants receiving controlling guidance (ß = 

0.02, EST/SE = 1.796, p < .10; Δχ² = 13.75, Δdf = 1, p < .05). This suggests that participants 

receiving autonomy supportive guidance with greater pre-training motivation were able to 

improve their basic performance scores at a more constant rate throughout the training.  Finally, 

as expected, Table 5 shows that participants’ pre-training motivation was not significantly 

related to strategic performance growth in either guidance condition. These results support 

Hypothesis 4.  

Hypothesis 5 predicted that cognitive ability will be positively related to strategic 

performance growth for participants receiving controlling guidance, and this effect will be 

weaker for participants receiving autonomy-supportive guidance.  Table 5 shows that ability was 

positively related to linear strategic performance growth for participants receiving controlling 

guidance (ß = 0.14, EST/SE = 2.30, p < .05) but negatively and not significantly related to 

performance for participants receiving autonomy-supportive guidance (ß = -0.05, EST/SE = -
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0.60, ns). The structural paths between ability and the linear growth factors were marginally 

different across the experimental conditions (Δχ² = 3.48, Δdf = 1, p < .10). To help interpret the 

interaction effects across guidance conditions we plotted the interactions using Aiken and West’s 

(1991) procedures (see Figure 4), using one standard deviation differences in participants’ 

ability. There was also a marginally significant negative relationship between ability and the 

strategic performance quadratic factor for participants receiving controlling guidance (ß = -0.01, 

EST/SE = -1.89, p < .10), suggesting that higher ability participants receiving controlling 

guidance were better able to sustain positive gains in strategic performance throughout the nine 

trials (see Figure 4). Ability was not related to the quadratic factor for participants receiving 

autonomy-supportive guidance (ß = .00, EST/SE = 0.16, ns), and the two guidance conditions did 

not differ in the effect of the ability on quadratic change (Δχ² = 1.88, Δdf = 1, ns). Finally, as 

expected, Table 5 shows that ability was not significantly related to participants’ basic 

performance growth in either guidance condition. Overall, these results provide support for 

Hypothesis 5.   

Discussion 

 Although educational institutions and work organizations are increasingly using 

computers to deliver instruction, learners often do not make good use of the control inherent in 

modern learning technologies (Brown, 2001).  Prior research suggests that adaptive guidance can 

assist learners in making more effective learning choices and can enhance learning outcomes in 

technology-based instruction (Bell & Kozlowski, 2002).  The current investigation provides 

further support for the utility of adaptive guidance, but more importantly it advances research in 

this area by showing that the effects of guidance may vary across different design features, 
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learning outcomes, and learner profiles.  In the following sections, we review the key findings of 

the current study and discuss their theoretical and practical implications.   

Key Findings and Theoretical Implications  

Prior research on adaptive guidance has tended to treat its effects on learning as static.  

To address this limitation, we used a longitudinal design and latent growth curve analysis to 

examine the effects of adaptive guidance on learning over time.  The results revealed that 

learners who received adaptive guidance exhibited more positive change in their task 

performance over time than those who received no guidance, but this effect was limited to the 

effects of controlling guidance on strategic task performance.  Adaptive guidance is designed 

primarily to impact the quality of learning (Bell & Kozlowski, 2002), so it is not surprising that 

its effects would be most pronounced for strategic performance outcomes, which are closely tied 

to processes related to learners’ attention and require the integration of concepts and the 

development of task strategies.  Further, although we expected that both autonomy-supportive 

and controlling guidance would lead to more positive strategic task performance change than no 

guidance, the observed pattern of findings support the argument that increasing the level of 

direction and constraining learner choices may enhance strategic learning outcomes by reducing 

demands on learners’ attentional resources and making it more likely that learners will come into 

contact with critical to-be-learned material (Kirschner et al., 2006; Mayer, 2004).              

 The direct comparison of autonomy-supportive and controlling guidance provided further 

evidence for the superiority of controlling guidance in the current context.  As expected, 

individuals receiving controlling guidance exhibited greater linear growth in their strategic task 

performance than those who received autonomy-supportive guidance.  Contrary to our 

predictions, individuals who received controlling guidance also exhibited marginally more 
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positive basic task performance trajectories than those receiving autonomy-supportive guidance.  

It is important to note, however, that the basic performance trajectories of those in the controlling 

guidance condition showed a trend toward greater deceleration in performance growth than those 

in the autonomy-supportive guidance condition (see Figure 2).  Thus, future research may 

investigate these findings further to determine whether guidance that emphasizes autonomy and 

choice may lead to higher levels of basic performance when learning is extended over a longer 

timeframe, perhaps by sustaining individuals’ motivation and effort (e.g., Moller, Deci, & Ryan, 

2006).  Overall, however, these findings suggest that controlling guidance may be a more 

effective strategy for supporting skill development in more complex learning environments. 

Future research is needed to replicate and extend these findings, with particular attention devoted 

to examining the learning processes that may help further elucidate the effects of different 

guidance designs on various learning tasks.   

 A final issue examined in the current study was the interactive effects of learner 

characteristics and guidance design on learning over time.  Drawing on SDT and resource 

allocation theory, we argued that individual differences related to effort (pre-training motivation) 

and the availability of attentional resources (cognitive ability) may interact with autonomy-

supportive and controlling guidance, respectively, to influence learning trajectories.  As 

expected, the results revealed that individuals with high levels of pre-training motivation 

exhibited greater growth in basic task performance when given autonomy-supportive rather than 

controlling guidance.  Controlling guidance was detrimental to the basic task performance 

growth of individuals with high levels of motivation (see Figure 3), but interestingly it enhanced 

the performance of individuals with low levels of pre-training motivation (a finding we discuss 

more below).  Overall, these findings suggest that autonomy-supportive guidance may support 
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the natural expression of high levels learning motivation, whereas controlling guidance may be 

effective for inducing effort from those trainees who have less positive initial attitudes and 

intentions toward training.   

We also found that ability interacted with guidance design to impact strategic task 

performance.  Among those who received controlling guidance, there was a positive relationship 

between ability and strategic performance growth.   These findings support our argument that 

controlling guidance enables learners to allocate more of their attentional resources toward study 

and practice activities that will allow them to master complex task elements.  However, when 

individuals received autonomy-supportive guidance, ability was unrelated to strategic 

performance.  This is consistent with our hypothesis that increasing learner choice options may 

absorb or divert attentional resources that could otherwise be directed toward skill acquisition.    

 Practical Implications  

The present study suggests that the relative advantage of autonomy-supportive 

instructional designs relative to controlling designs may be limited in more complex tasks and 

motivational guidelines alone are not sufficient for instructional design. Instead, designers should 

consider the extent to which the instructional program aims to teach basic or strategic skills.  For 

basic task performance, autonomy supportive guidance had an advantage over controlling 

guidance, but only for learners who possessed high levels of pre-training motivation (i.e., 

learners 1 SD above the mean; see Figure 3). This is consistent with our argument that 

autonomy-supportive learning contexts facilitate, and controlling contexts thwart, the beneficial 

effects of pre-training motivation.  

Although controlling instructional designs are less frequently advocated, the present 

study showed a clear advantage for controlling guidance over autonomy-supportive guidance for 
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strategic skill acquisition. Learners receiving controlling guidance showed greater gains in 

strategic performance than participants receiving either autonomy-supportive guidance or no 

guidance (Figure 2). Further, controlling guidance enhanced the positive relationship between 

cognitive ability and strategic performance, whereas cognitive ability was not significantly 

related to performance improvements for those receiving autonomy-supportive guidance. 

Although unexpected, the greatest growth in basic performance was observed among participants 

who were low in pre-training motivation who were given controlling guidance instructions.  

Together, these findings provide several examples of the potential utility of guidance instructions 

that are controlling instead of autonomy-supportive.   

Katz and Assor (2006) point out that self-determination theory is a theory of three human 

needs—autonomy, competence, and relatedness.  Providing choice can have implications for 

learning if it changes the extent to which any of these needs are or are not satisfied. Katz and 

Assor (2006) note the potential resource limitations associated with providing learners with 

autonomy during complex tasks, and suggested that instructional designers might reduce the 

complexity of the task to match a person’s cognitive ability. On complex tasks learners’ need for 

competence may be more salient than their need for autonomy.  In the current study, controlling 

guidance information may have helped to conserve attentional resources that could be directed to 

learning important material, thus supporting learners’ need for competence. Future research can 

investigate whether tailoring guidance to different needs (autonomy, relatedness, and 

competence) can enhance the beneficial effects of adaptive guidance on learning and 

performance across different learning contexts. For example, Katz and Assor (2006) note that 

providing choice to teams can impact relatedness needs.   

  



GUIDING LEARNERS THROUGH TECHNOLOGY-BASED INSTRUCTION  32 

Limitations and Future Research Directions  

It is important to highlight a few limitations to the present research. First, the synthetic 

task and student sample may limit the generalizability of our findings. Future research should 

extend our findings to different tasks, training spanning different lengths of time, and different 

instructional aids (e.g., intelligent tutors).  Further, future research should examine the 

relationships in other samples with varying levels of motivation and ability. For example, future 

research extending our findings in a field study employing a sample varying on demographic and 

individual-difference factors (e.g., age) associated with different levels of motivation and ability 

would have important practical implications. Alternatively, researchers could attempt to 

manipulate attentional resources in an experimental study by varying the task demands across 

performance trials.  

Second, Figure 3 reveals a negative relationship between motivation and basic 

performance for learners in the controlling guidance condition, which implies that the least 

motivated participants were acquiring basic skills at the fastest rate. This was an unexpected 

finding and suggests that controlling guidance did not thwart the positive effects of motivation 

on basic performance acquisition, but reversed the motivational effect (i.e., it was beneficial for 

unmotivated learners). We speculate that learners who lack the motivation to engage in study 

decisions may have defaulted to compliance, while learners with moderate levels of motivation 

may have reached a level of motivation that was sufficient to channel attentional resources away 

from the task. Future research is needed to first replicate and then extend this finding. Building 

on this finding, research may also consider other situations where external control is preferable 

to intrinsic motivation to learn (c.f., Pintrich, 2003).  
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In addition, our study design did not allow us to examine attrition from the training, 

which is an important practical problem for learner-control instructional designs (Sitzmann & 

Ely, 2010). This is an important consideration because scholars have found that controlling 

instructional designs may be associated with less task persistence than autonomy designs (e.g., 

Vansteenkiste et al., 2004). Therefore, it is important that future research include measures of 

attrition. Future research examining the impact of design features on attrition may also benefit by 

examining the type of motivation induced by the design features. For example, controlling 

guidance instructions may facilitate motivation that is introjected (e.g., internal control such as 

avoiding guilt) or external (compliance, satisfying external demands), and the difference may be 

important for measures of persistence. Finally, future research may want to examine instructional 

designs that shift the focus of guidance over time.  For example, guidance designs that shift from 

controlling to autonomy-supportive as training progresses may facilitate the acquisition of 

complex skills while also sustaining  learners’ motivation and effort over extended timeframes.       

Conclusion 

A central issue facing learner-controlled educational technologies is that learners often 

make poor use of the control they are given.  Thus, instructional strategies such as adaptive 

guidance aim to help learners to better use the control by facilitating key motivational (e.g., 

effort) and cognitive (e.g., learning choices) processes.  This article suggests that slight changes 

in the design of adaptive guidance interact with individual differences in pre-training motivation 

and cognitive ability to impact the rate at which learners acquire basic and strategic task skills. 

Specifically, guidance that was autonomy-supportive appeared to facilitate (while controlling 

guidance reversed) the positive effects of pre-training motivation during basic skill acquisition. 

Guidance that was controlling was better for learning strategic skills, and appeared to facilitate 
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the positive effects of cognitive ability on strategic skill acquisition. In contrast, when learners 

received guidance was autonomy-supportive, higher cognitive ability was not significantly 

related to the acquisition of strategic task skills. These findings highlight the importance of 

aligning the guidance design, individual differences, and skill outcome in learner-controlled 

environment.  
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Footnotes 

 1 The guidance was adaptive based on three levels of performance.  Pilot data was used to 

set cutoff scores at the 50th and 85th percentiles to differentiate among low, medium, and high 

performance on different task components.  Learners were not aware of the cutoff scores.  If 

individuals scored below the 50th percentile, the guidance informed them that they had not yet 

learned how to perform the necessary skill or strategy and provided practice and study 

suggestions for improvement.  For those scoring between the 50th and 85th percentile, the 

guidance informed them that they had reached a level of minimal performance, but needed to 

become more proficient.  The guidance also provided suggestions on what they should study and 

practice to improve.  For individuals exceeding the 85th percentile, the guidance informed them 

that they had mastered the skill or strategy and should focus on other areas in which they were 

still deficient. 

 2  Pre-training motivation was assessed with eight items adapted from Noe and Schmitt 

(1986).  Prior to modeling the latent growth trajectories, we conducted an exploratory factor 

analysis for the scales. One reverse-coded item “My primary goal for this experiment is just to 

finish it so I get my credit” yielded loadings less than .20 on the pre-training motivation factor. 

Thus, this item was dropped from the measure. The utility of reverse-coded items is frequently 

debated among psychometric scholars (Hinkin, 1998). In addition to internal item quality issues, 

dropping the item is also justified based on judgmental item quality concerns, given that the 

measure was adapted to the context and the item may have had different meaning with the 

respondent population (see Stanton, Sinar, Balzar, and Smith, 2002).    
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Table 1  

Descriptive Statistics and Correlations  

 

Note. ** p < 0.01 (2-tailed). *p < 0.05 (2-tailed). Basic performance on vertical axis, strategic performance on horizontal axis and bolded. 
a1= Autonomy-Supportive Guidance , 0 = Controlling Guidance and No Guidance; b 1 = Controlling Guidance, 0 = Autonomy-Supportive 

Guidance and No Guidance                                                    

  

 M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 M SD

Autonomy-supportive
a

0.41 0.49 - 0.57 ** 0.12 - 0.08 - 0.17 - 0.08 - 0.16 - 0.12 - 0.07 - 0.07 - 0.08 - 0.09 - 0.11 -- --

Controlling
b

0.32 0.47 - 0.57 ** - 0.06 0.06 0.16 0.18 ** 0.16 0.27 ** 0.26 ** 0.29 ** 0.35 ** 0.33 ** 0.40 ** -- --

Ability (standardized) 2.81 0.85 0.12 - 0.06 - 0.04 0.08 0.10 0.17 0.21 0.15 0.04 0.12 0.05 0.05 -- --
- -- --

Pre-training motivation 3.33 0.62 - 0.08 0.06 - 0.04 - 0.11 - 0.03 0.03 0.11 0.08 0.02 0.10 - 0.04 0.08 -- --

Performance trial 1 - 0.92 0.60 0.00 - 0.02 0.30 ** 0.06 0.45 ** 0.28 ** 0.23 ** 0.22 ** 0.24 ** 0.25 ** 0.34 ** 0.30 ** - 0.97 0.50

Performance trial 2 - 0.52 0.79 - 0.03 0.08 0.32 ** 0.05 0.41 ** 0.58 ** 0.48 ** 0.44 ** 0.43 ** 0.37 ** 0.34 ** 0.31 ** - 0.60 0.46

Performance trial 3 - 0.27 0.91 - 0.03 0.15 0.21 * - 0.11 0.27 ** 0.69 ** 0.60 ** 0.56 ** 0.45 ** 0.39 ** 0.27 ** 0.29 ** - 0.43 0.71

Performance trial 4 - 0.10 0.93 0.03 0.06 0.17 - 0.05 0.22 * 0.62 ** 0.73 ** 0.86 ** 0.72 ** 0.67 ** 0.52 ** 0.54 ** - 0.12 0.83

Performacne trial 5 0.05 0.92 - 0.03 0.06 0.20 * 0.03 0.18 * 0.52 ** 0.64 ** 0.73 ** 0.81 ** 0.74 ** 0.57 ** 0.66 ** 0.11 0.85

Performance trial 6 0.26 0.89 - 0.05 0.07 0.22 * 0.02 0.11 0.51 ** 0.65 ** 0.67 ** 0.82 ** 0.84 ** 0.64 ** 0.73 ** 0.35 0.96

Performance trial 7 0.41 0.95 - 0.04 0.00 0.22 * 0.04 0.22 * 0.51 ** 0.64 ** 0.67 ** 0.78 ** 0.83 ** 0.72 ** 0.77 ** 0.43 1.03

Performance trial 8 0.49 0.98 - 0.01 0.04 0.25 ** - 0.06 0.26 ** 0.55 ** 0.57 ** 0.60 ** 0.74 ** 0.76 ** 0.79 ** 0.77 ** 0.61 1.03

Performance trial 9 0.59 0.92 0.02 0.05 0.24 ** - 0.03 0.24 ** 0.52 ** 0.63 ** 0.58 ** 0.70 ** 0.75 ** 0.79 ** 0.84 ** 0.62 1.02
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Table 2 

Means & Standard Deviations for Performance Dimensions across Time and Experimental Conditions 

 

Note. Items are standardized. Means with different subscripts are different at p < 0.05. 

Autonomy-Supportive Guidance Controlling Guidance No Guidance

Variable n M SD n M SD n M SD

Basic task performance 

Time 1 53 -0.92 0.65 42 -0.93 0.60 35 -0.90 0.54

Time 2 53 -0.55 0.87 42 -0.43 0.78 35 -0.58 0.70

Time 3 53 -0.31 0.88 42 -0.08 0.95 35 -0.44 0.89

Time 4 53 -0.07 0.97 42 -0.02 0.87 35 -0.24 0.95

Time 5 53 0.02 1.00 42 0.14 0.90 35 0.01 0.81

Time 6 53 0.21 0.95 42 0.36 0.89 35 0.23 0.80

Time 7 53 0.36 1.07 42 0.40 0.91 35 0.49 0.82

Time 8 53 0.47 1.08 42 0.54 0.98 35 0.44 0.84

Time 9 53 0.61 0.89 42 0.66 0.87 35 0.49 1.03

Strategic task performance 

Time 1 53 -1.07a 0.55 42 -0.85b 0.41 35 -0.95 0.51

Time 2 53 -0.65 0.42 42 -0.49 0.50 35 -0.68 0.46

Time 3 53 -0.57a 0.76 42 -0.27b 0.70 35 -0.43 0.61

Time 4 53 -0.23a 0.81 42 0.20 b 0.94 35 -0.33a 0.57

Time 5 53 0.05 a 0.85 42 0.43 b 0.91 35 -0.17a 0.65

Time 6 53 0.27 a 0.96 42 0.76 b 0.98 35 -0.03a 0.77

Time 7 53 0.34 a 1.02 42 0.96 b 0.94 35 -0.05a 0.89

Time 8 53 0.50 a 1.01 42 1.10 b 1.02 35 0.18 a 0.83

Time 9 53 0.49 a 0.86 42 1.21 b 1.03 35 0.12 a 0.90
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Table 3 

Fit Statistics for Intra-Individual Growth Trajectories 

 

Note. *** p < 0.001; Bold indicates best-fitting models. The degrees of freedom are different between 

some basic and strategic performance models. This was necessary since we found the strategic 

performance models with heteroscedastic error specifications arrived at improper solutions with negative 

uniqueness estimates for performances at trial nine. Given the small sample size, we followed the 

recommendations of Gerbing and Anderson (1987) and fixed this residual to zero which has minimal 

practical influence on parameter estimates or fit statistics.  

 

 

 

 

 

 

 

 

 

Model χ² df CFI TLI RMSEA SRMR

Basic performance

No-growth heteroscedastic 455.37 *** 35 0.56 0.55 0.30 0.84

No-growth homoscedastic 605.09 *** 43 0.41 0.51 0.32 0.41

Linear heteroscedastic 123.97 *** 32 0.90 0.89 0.15 0.17

Linear homoscedastic 151.96 *** 40 0.88 0.90 0.15 0.16

Quadratic heteroscedastic 47.27 *** 28 0.98 0.97 0.07 0.06

Quadratic homoscedastic 79.18 *** 36 0.96 0.96 0.10 0.09

Strategic performance 

No-growth heteroscedastic 926.92 *** 37 0.00 - 0.01 0.43 2.92

No-growth homoscedastic 733.75 *** 43 0.20 0.33 0.35 0.76

Linear heteroscedastic 178.06 *** 34 0.83 0.82 0.18 0.15

Linear homoscedastic 174.99 *** 40 0.84 0.86 0.16 0.19

Quadratic heteroscedastic 46.25 *** 30 0.98 0.98 0.07 0.08

Quadratic homoscedastic 94.89 *** 36 0.93 0.93 0.11 0.12
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Table 4 

Growth Curve Parameters for the Quadratic Models 

 

Note. *p < .05, **p < .01, ***p < .001.  

Basic performance Strategic performance

Growth parameter Parameter Parameter

Intercept

Mean - 0.89 - 16.99 *** - 0.95 - 23.73 ***

Variance 0.20 2.70 ** 0.11 1.99 *

Linear

Mean 0.31 9.52 *** 0.34 11.17 ***

Variance 0.09 4.50 *** 0.09 4.86 ***

Quadratic

Mean - 0.02 - 4.44 *** - 0.02 - 5.33 ***

Variance 0.00 3.91 *** 0.00 5.28 ***

Covariances

Intercept with linear - 0.03 - 0.87 - 0.02 - 0.93

Intercept with quadratic 0.00 1.00 0.00 1.14

Linear with quadratic - 0.01 - 4.24 *** - 0.01 - 4.76 ***

t t
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Table 5 

 

Parameter Estimates across Experimental Conditions 
 

 
 
Note. * p < .05 (2-tailed), † p < .10 (2-tailed). Predicted relationships are bolded. CG = Controlling guidance; AG = 

Autonomy-supportive guidance; NG = No guidance. Basic performance model: χ²(df = 171, N = 130) = 238.63, CFI 

=  0.941, TLI = 0.932, RMSEA = 0.096, SRMR = 0.095; Strategic performance model:  χ²(df = 176, N = 130) = 

226.96, CFI =  0.946, TLI = 0.939, RMSEA = 0.082, SRMR = 0.114. Modification indices suggested correlating 

performance trial two and four residuals in the NG basic model. Performance trial four occurred immediately 

following a short break and may reasonably have impacted participants not receiving structured guidance. This 

change improved fit (Δdf = 1, Δχ² = 13.71, p < .01) in the basic model, but did not change any results in this study.  

 

 

 

 

 

AG CG NG

Means
Intercept - 0.88 * - 0.82 * - 0.87 *
Linear 0.28 * 0.38 * 0.30 *
Quadratic - 0.01 * - 0.02 * - 0.02 *

Structural paths
Pre-training motivation → Basic intercept - 0.01 0.07 0.02
Pre-training motivation → Basic linear 0.27 * - 0.28 * 0.07
Pre-training motivation → Basic quadratic - 0.03 * 0.02 † - 0.01
Ability → Basic intercept 0.32 * 0.27 * 0.13
Ability →  Basic linear - 0.03 0.07 - 0.04
Ability →  Basic quadratic 0.00 - 0.01 0.00

Means
Intercept - 0.99 * - 0.88 * - 0.93 *
Linear 0.32 * 0.44 * 0.26 *
Quadratic - 0.02 * - 0.02 * - 0.02 *

Structural paths
Pre-training motivation → Strategic intercept - 0.22 † 0.12 - 0.04
Pre-training motivation → Strategic linear 0.15 - 0.15 0.06
Pre-training motivation → Strategic quadratic - 0.01 0.01 - 0.01
Ability → Strategic intercept 0.13 0.03 0.01
Ability → Strategic linear - 0.05 0.14 * 0.04
Ability → Strategic quadratic 0.00 - 0.01 † 0.00

Basic Performance 

Strategic Performance 
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Figure 1.  

Conceptual model of predicted relationships between adaptive guidance design, individual 

difference factors, and performance trajectories. 
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Figure 2.  Mean basic and strategic performance trajectories across experimental conditions.  A-

S Guidance = Autonomy-Supportive Guidance; C Guidance = Controlling Guidance 
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Figure 3. Influence of pre-training motivation on basic performance trajectories across 

experimental conditions. A-S Guidance = Autonomy-Supportive Guidance; C Guidance = 

Controlling Guidance  

 

 

 

 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9

B
a
si

c 
P

er
fo

rm
a
n

ce

Trial 

A-S Guidance:

Low motivation

A-S Guidance:

High motivation

C Guidance:

Low motivation

C Guidance:

High motivation



GUIDING LEARNERS THROUGH INSTRUCTION 52 

 

 

 

 

 

 

 

Figure 4. Influence of ability on strategic performance trajectories across experimental 

conditions. A-S Guidance = Autonomy-Supportive Guidance; C Guidance = Controlling 

Guidance. 
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