
Practical Technology for Archives Practical Technology for Archives

Volume 1 Issue 7 Article 5

1-2017

Python for Archivists: Breaking Down Barriers Between Systems Python for Archivists: Breaking Down Barriers Between Systems

Gregory Wiedeman
SUNY Albany

Follow this and additional works at: https://digitalcommons.ilr.cornell.edu/pta

 Part of the Archival Science Commons

Thank you for downloading an article from DigitalCommons@ILR. Thank you for downloading an article from DigitalCommons@ILR.

Support this valuable resource today! Support this valuable resource today!

This Article is brought to you for free and open access by DigitalCommons@ILR. It has been accepted for inclusion
in Practical Technology for Archives by an authorized administrator of DigitalCommons@ILR. For more information,
please contact catherwood-dig@cornell.edu.

If you have a disability and are having trouble accessing information on this website or need materials in an
alternate format, contact web-accessibility@cornell.edu for assistance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@ILR

https://core.ac.uk/display/219376997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.ilr.cornell.edu/
http://digitalcommons.ilr.cornell.edu/
https://digitalcommons.ilr.cornell.edu/pta
https://digitalcommons.ilr.cornell.edu/pta/vol1
https://digitalcommons.ilr.cornell.edu/pta/vol1/iss7
https://digitalcommons.ilr.cornell.edu/pta/vol1/iss7/5
https://digitalcommons.ilr.cornell.edu/pta?utm_source=digitalcommons.ilr.cornell.edu%2Fpta%2Fvol1%2Fiss7%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1021?utm_source=digitalcommons.ilr.cornell.edu%2Fpta%2Fvol1%2Fiss7%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://securelb.imodules.com/s/1717/alumni/index.aspx?sid=1717&gid=2&pgid=403&cid=1031&dids=50.254&bledit=1&appealcode=OTX0OLDC
mailto:catherwood-dig@cornell.edu
mailto:web-accessibility@cornell.edu

Python for Archivists: Breaking Down Barriers Between Systems Python for Archivists: Breaking Down Barriers Between Systems

Description Description
[Excerpt] Working with a multitude of digital tools is now a core part of an archivist’s skillset. We work
with collection management systems, digital asset management systems, public access systems,
ticketing or request systems, local databases, general web applications, and systems built on smaller
systems linked through application programming interfaces (APIs). Over the past years, more and more
of these applications have evolved to meet a variety of archival processes. We no longer expect a single
tool to solve all our needs and embraced the “separation of concerns” design principle that smaller,
problem-specific and modular systems are more effective than large monolithic tools that try to do
everything. All of this has made the lives of archivists easier and empowered us to make our collections
more accessible to our users.

Yet, this landscape can be difficult to manage. How do we get all of these systems that rely on different
software and use data in different ways to talk to one another in ways that help, rather than hinder, our
day to day tasks? How do we develop workflows that span these different tools while performing complex
processes that are still compliant with archival theory and standards? How costly is it to maintain these
relationships over time as our workflows evolve and grow? How do we make all these new methods
simple and easy to learn for new professionals and keep archives from being even more esoteric?

Keywords Keywords
Python, collection management, digital archives

This article is available in Practical Technology for Archives: https://digitalcommons.ilr.cornell.edu/pta/vol1/iss7/5

https://digitalcommons.ilr.cornell.edu/pta/vol1/iss7/5

Python for Archivists:
Breaking down barriers between systems

Gregory Wiedeman

SUNY Albany

Working with a multitude of digital tools is now a core part of an archivist’s

skillset. We work with collection management systems, digital asset management

systems, public access systems, ticketing or request systems, local databases, general

web applications, and systems built on smaller systems linked through application

programming interfaces (APIs). Over the past years, more and more of these

applications have evolved to meet a variety of archival processes. We no longer expect a

single tool to solve all our needs and embraced the “separation of concerns” design

principle that smaller, problem-specific and modular systems are more effective than

large monolithic tools that try to do everything. All of this has made the lives of

archivists easier and empowered us to make our collections more accessible to our

users.

Yet, this landscape can be difficult to manage. How do we get all of these

systems that rely on different software and use data in different ways to talk to one

another in ways that help, rather than hinder, our day to day tasks? How do we develop

workflows that span these different tools while performing complex processes that are

still compliant with archival theory and standards? How costly is it to maintain these

relationships over time as our workflows evolve and grow? How do we make all these

new methods simple and easy to learn for new professionals and keep archives from

being even more esoteric?

These problems are becoming more and more obvious as we implement more

systems and the technology of our donors and users continually evolves. Donor

organizations might have important records managed by web applications with APIs

that need to be collected with custom scripts. Having trouble importing Encoded

Archival Description (EAD) files into ArchivesSpace? Python can extract the problematic

data into a CSV where it can be cleaned with OpenRefine, and then converted back into

EAD or into ArchivesSpace itself through the API. Dislike the data entry system in

ArchivesSpace? You can create box and folder lists with a spreadsheet, save it as a CSV,

and then use a Python script to upload it with the API. Born-digital accessions often

arrive on external hard drives. Python can be used to read a complex directory structure

and export it to a CSV, and EAD file, or also directly into the ArchivesSpace API. This can

also be done while moving and bagging files with the bagit-python library1. All of these

problems and more can be easily combated—and even automated—with some basic

Python knowledge.

These are the challenges for archivists of today and tomorrow. A big part of an

archivist’s job is now designing automated workflows that leverage many different

tools. We now have a big toolkit of open and interoperable applications and much of

our effort will be dedicated to reformatting, cleaning, evaluating, and moving data

between all of these systems. Python is the perfect power tool for this problem. Its

syntax is relatively simple and intuitive, it is extremely well-documented with a wide

user base, and it has an enormous number of libraries optimized to solve just about

every problem we have.

Python is a general-use programming language. That means it exists

independently from any specific software and interacts with information purely as

textual or binary data. Python does not know what ArchivesSpace is, or EAD, or Open

Refine – and it does not care. It understands strings, integers, and floats, which allow it

to easily read, write, and reformat data from all open systems. Python truly is a Swiss

Army knife for the software world, and Python scripting is a skill you can use in just

about every situation.

While most librarians and archivists often choose more accessible tools, there is

published work that shows the use of Python to solve a variety of problems in libraries

and archives. Heidi Frank discuss how a Python-based workflow enabled them to extract

MARC records from Archivist’s Toolkit, and modify them for importing into the libraries’

general catalog. She concludes by describing how it is “…hard to imagine a world of

cataloging…” without the use of the methods she describes. “The increase in

collaborations between catalogers and coders, as well as the increase in catalogers

who are coders, is proving to be the next logical direction for the field of bibliographic

description and access.2 In another context, Jacob L. Nash and Jonathan Wheeler

developed an automated workflow to automate the creation of Simple Archive Format

(SAF) packages for batch upload into DSpace.3 At the Rockefeller Archive Center, Amy

Berish reflected on learning Python as a processing archivist, describing how, “It became

obvious to me that having both traditional archival training and a toolbox of technical

skills would be particularly useful in an age where workflows have the ability to be more

efficient through automation.4”

This will be an introduction to using Python to move many of the types of data

archivists work with between different formats and systems for technical archivists who

are familiar with the basics of coding and are somewhat comfortable on the command

line. This is not meant to be an introduction to programming or computer science or

designed to be comprehensive in any way. I will not cover some of the basic

fundamentals of coding, like data types (strings, floats, etc.), variables, or operators. If

you do not have any experience coding, I would recommend learning web technologies

first as their use of browsers seem to make them much easier for new coders to learn.

My goal is to make using Python more accessible to archivists by providing easy

examples of how to manipulate and use the data we see every day. My hope is that

even without understanding much of the language itself, beginner readers can run some

code and get some results to understand some of the possibilities and challenges of

working with Python. Readers should come away with an understanding that may either

help them to better manage technical implementations generally, or some relevant

hands-on tasks to experiment with as they continue on to learn from the many other

great introductions to programming with Python.5

Python: Not so scary after all

Perhaps the most daunting challenge to using a high-level programming

language like Python is not the intellectual difficulty of the code or the syntax itself, but

the accessibility of the technology itself. Most of the work professional archivists and

librarians do is more conceptually difficult than doing basic tasks with Python, but the

broader technical complexity and freedom make it a daunting challenge. Not only does

Python coding lack a graphical user interface (GUI), but there is no application at all – no

structure or easy setup. In fact, getting a basic development environment set up,

running a script, and reading and writing data to files might be the most difficult tasks I

will cover here. Setting up Python on Windows can be particularly frustrating. Half the

battle is setting up a basic environment that will run your code and get some results

that enable you to get comfortable with it over time. After that, Python gets much less

intimidating.

Another issue with starting to work with Python is whether to use Python 2 or

Python 3. Essentially, the Python maintainers made some changes with Python 3 that

are not backwards compatible, so they are still updating Python 2 as well. Code libraries

took a long time to migrate but the important ones are finally Python 3-ready. Beginners

should now clearly start with Python 3.6 The only difference you will notice at first is

that in Python 3, print requires parentheses. If you work with Python 2, the next thing

you’ll likely notice is that your code will start blowing up when you work in non-ASCII

text, since Python 2 assumes everything is in ASCII unless you tell it otherwise. There are

ways to work with Unicode in Python 2, but they are confusing and not worthwhile

when you consider Python 3 handles non-ASCII text much more effectively. While all of

the example code will run with both Python 2 and 3, the article will assume you are

working in Python 3.

Setting up Python

To work with Python, you need the Python software itself, a text editor, and a

command-line shell. It is easy to get sidetracked and spend lots of time with different

text editors and shells – both of which do not really matter for our purposes. Many

Linux operating systems, like Ubuntu, come with both Python 2 and Python 3. Mac OSX

should include Python 2 by default, and Windows does not come with either by default.

If you are running a Linux distribution like Ubuntu, just open Terminal and

type python3 –V. This should list your Python version. If that does not work, try python -

V, which should be Python 2. If you do not get these results, then you may need to

download and install Python 3 manually, and then add it to your shell path7. On Mac

OSX you should be able to run python -V in Terminal to get your version of Python 2, but

you will need to download and run the Python 3 Mac OSX installer, which should also

add Python 3 to your shell path8. The Python documentation should also provide some

help in getting Python 3 running on OSX, but provides more detail than may be helpful.9

Setting up Python on Windows is a bit trickier. First open up a command line

shell to see if you already have Python already installed. The default shell for Windows 7

is still cmd.exe, but modern systems have Windows Powershell which will also work.

Updated versions of Windows 10 also have a newer default shell simply called

Command Prompt that seems like a mix of cmd.exe, Powershell, and Bash. There is also

an experimental version of Bash that runs on newer Windows 10 machines10. All of

these shells will work fine.

First, check if you already have Python by opening any command line shell and

enter python -V. If you get an error, you will need to download and run the Windows

installer for Python 3.11 Now, the version of Python you install matters. If you have a

modern 64-bit version of Windows you will have the option of installing either the 64-bit

or the 32-bit (x86) version. You should probably choose the 64-bit version, but for our

purposes it will not matter as long as you note which version you are running. All

additional libraries you add will have to be compatible with this Python install, so just

make sure you use the same versions as your Python install.

Another issue is selecting a version of Python that has a compatible lxml

installer, which we will use to work with XML. Lxml is an add-on library for working with

XML that has full XPATH support12. On Windows you have to install it manually because

of some dependencies, and there is not always an installer for the latest version. Thus,

you may have to install an older version of Python to easily install lxml. For example, at

the time of writing the latest version of Python is 3.5.x, and lxml is up to 3.6.413. The

3.6.4 version of lxml does not have an executable installer, only Python wheel files for

pip which are considerable more difficult to work with. Lxml version 3.6.0 and older

have the much-easier .exe installers, but are only compatible with Python 3.4.x and

below14. The easiest way to get everything up and running at the time of writing is to

install the older Python 3.4.x and use a matching installer for lxml 3.6.0. However, this

may change in the future if .exe installers become available for the latest versions of

lxml. As detailed above, be sure to use the 64-bit version of lxml if you chose that

version of Python. The lxml installers list either win32 for 32-bit or win-amd64 for 64-bit

in the installer filename.

Setting Python up to run from the command-line on Windows can be challenging

for such a simple task. First, you need to find the directory where Python is installed. By

default, Python 3.5.x and later installs itself in your %APPDATA% directory, which is

typically C:\Users\[USERNAME]\AppData\Local\Programs\Python. This should also be

the case for users of Python 3.4.x and below that do not have administrator rights. If

you are installing 3.4.x or earlier and have administrator rights, Python is likely to install

itself directly in your C:\ drive as C:\Python34.

Take a look at the directory where Python was installed, and you should have a

folder named for the version of Python you downloaded. Mine is labeled Python34, but

Python 3.5.x may install as Python35-32 or Python35-64, depending on the version you

selected. In that directory you should find python.exe. Next, you need to right-click on

your My Computer (This PC), and select Properties. On the left side you should see a link

for “Advanced System Settings” which will open a new window.

Figure 1: Finding the Environment Variables option on Windows 10

One the bottom there should be a button for Environment Variables. This will

open yet another window. Under “System variables” at the bottom select “Path” in the

list and click the Edit button.

Figure 2: Finding the Path variable to edit on Windows 10

Windows 10 now has new window where you can click the “New” button to add

a new path. This should be the path to the python.exe file you found above, typically

something like C:\Users\[USERNAME]\AppData\Local\Programs\Python\Python35-

32 or C:\Python34. If you are working on an older version of Windows, you will see a

text box with a long string of paths. Here you need to find the end without deleting

anything, and add semicolon (;) and then the full directory path that holds python.exe.

Figure 3: Adding the Path to python.exe on Windows 10

Figure 4: Adding the Path to python.exe on Windows 7

You should also add the Scripts directory which should be located in the same

folder as python.exe. This could be

C:\Users\[USERNAME]\AppData\Local\Programs\Python\Python35-

32\Scripts or C:\Python34\Scripts. Now, close any command line shells you have open

then reopen one. You should be able to type python -V and get your python version,

and pip -V if you added the Scripts directory correctly.15

Once your Python environment is up and running, you can write and run some

basic scripts. A Python script is just a text file. To create a script you just open up a text

editor, create your Python script, and save it as a file with the .py extension, such

as whatever.py. Then you just open your command line shell and cd into the directory

where the script is saved and enter the command python whatever.py and the script will

run.

The introduction below will discuss a set of sample scripts and data that are

available on Github. You can download these files from either from the command line if

you are comfortable with git, or just by downloading them as a zip file from the

Python4Archives Github page16. Then you can just cdinto the folder where you cloned or

extracted the files, and run python test.py to get a result. Open the file in a text editor to

look at the source code.

Basic Syntax

The key difference between Python code and most other languages is that

whitespace counts. In fact, indents and new lines define different parts of the code. For

example, in XML or HTML, using indentation to show children is a good idea and makes

the code readable, but it does not really count as code. The computer will still know

which a child is and which a parent is. This is not the case with Python. Each line and

each indent matters just as much as any other character. Unlike other languages that

ignore whitespace, Python does not have to use sets of brackets, parenthesis, or

semicolons as much. This makes the code cleaner, less verbose, and simpler to the eye.

There are just a handful of basic statements that you will use for just about every

script. This is really all there is to it:

#comments don't matter

print(something)

something = "A string of text"

for something in manyThings:

if something == anotherThing:

Comments are the simplest unit of Python. They exist to help you read and

structure your code. Essentially Python ignores anything to the right of a pound sign (#)

or everything between sets of three double quotes (""") for multi-line comments.

print simply displays whatever you put in the parenthesis on the command line.

Just note that this is very different than writing your data as output. It is helpful to think

of print as merely a tool to give you feedback on what the script is doing, not to produce

the output itself. We will talk about producing output later.

The equals sign (=) is used to assign things like integers and text strings to

variables. You can make the variable something mean some text and then print it. You

can also add together strings using the plus (+) operator.

something = "A string of text"

anotherThing = something + ", and more text"

print(anotherThing)

> A string of text, and more text

You can also do math with variables and integers using operators (+, -, *, /):

something = 5

print(something + 15)

> 20

You can experiment with variables by running the sample script equals.py from

the Github page. Open the file in a text editor and change some of the text between the

quotes. You can then save it and just run python equals.py in the command line from

the directory where you extracted or cloned the sample scripts. If you get an error you

can just use the undo option in text editors like Notepad++ or GEdit to go back to

something that works, save the file, and try again. Experiment and see what results you

get. While crude, this can be a very effective way to learn code.

for is a loop that runs through a group of things in turn so you can perform the

same actions on each individual thing. You can loop through lines in a CSV file or a table,

lines or characters in text, items in a list, children of a parent in XML, or files in a

directory. If manyThings is a group of things, you can write:

4| for number in manyThings:

5| print(number)

Think of it as: “for each number in manyThings.” Then, you can do perform

actions on the number variable that will be performed by everything in

the manyThings variable in turn. Take a look at for.py in the sample scripts to see how

this works. Notice the indents. The indented code underneath the for loop tells the

computer what to run during the loop. Code that is not indented will then be run after

the loop has fully completed.

A list is a good thing to start experimenting with loops. This is any set of things,

like numbers or strings of text in quotes, separated by commas between brackets.

14| listOfIntegers = [5, 12324, 23, 657, 177]

15| listOfStrings = ["a thing", "another thing", "a 3rd thing"]

16|

17| listOfStrings.append(10)

18|

19| print(listOfStrings)

> ["a thing", "another thing", "a 3rd thing", 10]

Lists can also contain a mix of both strings and integers, and they can also

contain other lists, so you can have lists of lists of lists. To add things to list you can use

the .append() function like above.

27| listOfLists = [[01, 02, 03], ["January", "February", "March"]]

Reading and Writing Text to Files

Another major hurdle to working with Python is reading and writing data with

serialized text formats like XML, JSON, CSV, or just plain text files. First we have to point

our script to a text file we want to read. The simplest way to do this is to just enter a

path into our script as a string. Windows and Unix paths are a bit different, and this is

complicated further by Windows’s use of backslashes (\) which are special characters in

Python used to escape other characters. In practice, this just means that we have to use

two backslashes for Windows paths instead of one. First, assign the explicit path to the

sample scripts as a variable. Here are two examples of what your path could be in

Windows and then Unix:

2| windowsPath = "C:\\Users\\[USERNAME]\\python4archivists\\example.txt"

3| unixPath = "/home/[USERNAME]/python4archivist/example.txt"

Here is also an example of a Windows UNC path for a Windows server that is not

mounted:

uncPath = "\\\\myserver\directory\\python4archivist\\example.txt"

Once this is saved correctly as a string, you can read the text from the file into a

string like this:

fileObject = open(windowsPath, "r")

#do stuff to fileObject

fileObject.close()

The “r” is the mode you are opening the file in, this tells the computer that we

are just reading from the file and not modifying it. We can now do things like print() or

loop though file with for. Closing the file with close() after you are done with it is always

a good idea. Once you have a file object, you can turn it into a string of text with .read(),

and work with it as you would any other string. In the example readWrite.py script on

Github, you can experiment with adding new text to files. In this script, we change

the fileObject variable into a text string called textString with the read() function. On line

8 we print the string and then add an additional line to it on line 11. Remember that we

have to use two backslashes in Windows paths? That is because a backslash is used to

denote additional characters. Here \n means a carriage return or new line.

 5| fileObject = open(myPath, "r")

 6|

 7| textString = fileObject.read()

 8| print(textString)

 9|

10| #make the textString variable equal the same string plus more text

11| textString = textString + "\nAdd another line here!"

12|

13| #print the new string

14| print(textString)

15|

16| #remember to close the file

17| fileObject.close()

To run this script you have to open readWrite.py in a text editor and change the

path to where you downloaded the example.txt file. You can edit the Windows path on

line 2 or the Mac or Linux friendly one on line 3. Just remember to change the variable

on line 5 if you use unixPath. Then you can just cd into the correct directory and run the

command python readWrite.py. You can experiment by adding additional text to

the textString variable on line 11 before printing it.

If you open the example.txt file after running the readWrite.py script, you will

notice that it remains the same even though you modified the text in the script and saw

the additions printed to the command line. This is because python loaded the text from

the file into memory, and even though you can modify it and print it, this data only stays

in memory while the script itself is running. Printing to the command line is very

different from writing data back to a file on your hard drive. Writing text to a file is a

type of serialization, this means the data is written back to the file system for storage. If

you never write back to a file explicitly, you can work with important data—like a

directory of EAD files—without unknowingly modifying that data.

You may want to write the new text you modified back to a file. You can do this

by removing the two sets of double quotes (""") on lines 19 and 24 in readWrite.py. This

loads the path to the existing or new file you want to write to again with open(), but

uses “w” for write as the mode instead of “r”. This will overwrite any existing file or

create one if none exists. If you want to add text to the end of an existing file there is

another mode, “a,” for append17. Finally, you must write the text string to the file object

using .write() before closing it.

20| saveDir = "newFile.txt"

21| file2 = open(saveDir, "w")

22| file2.write(textString)

23| file2.close()

Remove the triple-quotes and run python readWrite.py to write these changes

back to the file. Open newFile.txt in a text editor to see what happened.

Reading and writing textual metadata to and from files can be an important skill

for archivists. While we should not have to write or develop software to manage our

data, it is becoming more and more likely that archivists will play a major role in

managing the movement of data between different systems – particularly though

migrations. These processes can involve temporarily writing data to files while making

alterations or joining data from multiple systems. Working with serialized data can be an

important skill to speed up these complex challenges, and give archivists a more hands-

on role, rather than sending this work to a technologists who may not fully understand

the eccentricities of archives metadata.

Working with XML

XML is very familiar to archivists because of the proliferation of EAD, so it may be

a comfortable format to start working with data in Python – particularly for those who

are familiar with XPATH. ElementTree is the default Python library for working with

XML, but lxml is much superior. The syntax of ElementTree is essentially the same as

lxml, but it lacks things like full XPATH support and handy functions like .getparent(), so

if you work with XML, you will find that it is worth the process of installing the additional

lxml library.18

Installing lxml on OSX and most Linux machines should be easy, and it may even

be installed by default. Newer versions of Python come with pip, Python’s own package

manager for downloading and installing libraries. You just may need to run the

command pip install lxml.

On Windows, installing can be more difficult as it requires some dependencies

that do not install when you use pip. The easiest way is to download and run the

executable installer that is compatible for your version of Python19. As of writing the

latest installers were for lxml 3.6.0 which only works with Python 3.4.x and below. Make

sure you choose the correct 64-bit or 32-bit version that matches your Python install.

Once you download and run the installer you should have lxml up and running.

For all operating systems, the simplest way to check if lxml is installed correctly is

to enter python in the command line. This will give you a Python prompt where you can

enter import lxml. If you do not get an error, lxml should be installed and working fine20.

Run exit() to get out of the Python prompt and back to the basic command line.

After you have lxml installed, you can import the library to script by stating from

lxml import etree as ET at the top. If you have trouble installing lxml, you can use

ElementTree to start out. Just use import xml.etree.ElementTree as ET as the import

line. Once the library is imported, you need to parse the XML file to an object that

Python can understand using ET.parse(xmlPath). Finally, you need to get the root

element as a variable by using .getroot().

1| from lxml import etree as ET

2|

3| #enter a path to the XML file here

4| windowsPath = "C:\\Users\\[USERNAME]\\python4archivists\\apap159.xml"

5| unixPath = "/home/[USERNAME]/python4archivists/example.txt"

6| xmlObject = ET.parse(windowsPath)

7|

8| #root is the top-level tag

9| root = xmlObject.getroot()

Now that you have assigned the root element to a variable, there are a basic set of

methods you can use to get information for every element – from the root down to the

smallest child.

• root.find() will navigate down the document tree to find children

• root.xpath() will return a matching element using an XPATH query as a sting

• root.tag will show the element’s name

• root.text will show any text contained by the element

• root.attrib will provide an dictionary of an element’s attributes

• To get an attribute, use root.attib[“attributeName”]

• root.tail will show any text after the element for mixed content

We can now navigate and read any XML document in complex ways using just these

few methods along with Python’s basic for and if statements. There is a working

example of reading a sample EAD file in the sample scripts called editXML.py. Here we

can load the root element as an XML Object like we did above, and print its tag name

and ID attribute using root.tag and root.attrib[“id”]. In the next block of code, we find

the collection-level element and a assign its .text to a variable called collectionName and

then print it on the next line.

13| #lets find out which collection this is

14| collectionName = root.find("archdesc/did/unittitle").text

15| print("We are working with " + collectionName)

Next, starting on line 19, we can loop though each child of /, and assign each

child element to the variable series. Now, in EAD not all children of must be series

components, so indented within the for loop, we use an if statement on line 21 to make

sure that everything that is indented underneath the if statement is limited to elements

that have a tag name equal to “c01.” Notice that we use a double equal sign (==) as the

operator here. This is because a single equal sign is used for assigning variables while a

double equal sign is used to compare two things. Finally we use the .find() method to

print the .text of the for each series.

19| for series in root.find("archdesc/dsc"):

20| if series.tag == "c01":

21| print(series.find("did/unittitle").text)

While we are still looping through each series, we can change anything in the

XML file itself. As long as we stay at the same indentation level under the if statement,

we can keep acting upon the series variable. On line 26 we use the .set() method to

change the “level” attribute to “series.” This will either change the existing series

attribute, or add a new one.

26| series.set("level", "series")

Perhaps we want to add an additional element for each series to state that the

series is located offsite. In the same loop we have been working in, we can assign a new

to a variable by using ET.Element(“physloc”). On line 30 we add a string of text to that

element using .text. Finally, we have to place that element as a child of , so we

use .find() to assign it to the variable did, and then use the .append() method to place

the element as its last child.

29| newElement = ET.Element("physloc")

30| newElement.text = "This series is located in..."

31| did = series.find("did")

32| did.append(newElement)

By returning to the outer indent level in line 34 we are telling the computer that

we want the next set of code to execute after our for loop has finished and completed

everything we discussed so far. In this block of code we loop though each series again,

while also limiting our actions to “c01” elements with an if statement. On line 39 we find

the text of each series element and print it to the command line within other text strings

to make the output readable. Next we use the comparison operator (==) check to see if

we can find an element with for each series on line 39, and if that element has text on

line 41. Finally we use print() to give us feedback on the command line.

36| for series in root.find("archdesc/dsc"):

37| if series.tag == "c01":

38| print("\nDoes " + series.find("did/unittitle").text + " have a ?")

39| if series.find("did/physloc") == None:

40| print("No! its does not, we made a mistake...")

41| elif series.find("did/physloc").text == None:

42| print("Its there, but it doesn't have any text.")

43| else:

44| print("Yes it does!")

After running editXML.py, you will again notice that, although we modified our

root element while the script was running, the apap159.xml file remains unchanged

because we never wrote the new data back to the hard disk. To do this, we first need to

convert our root XML object back to a string using ET.tostring(). On line 49 we assign the

string to a variable called xmlString using the root XML object, and some other options

that will place an XML declaration on the top of the file.

49| xmlString = ET.tostring(root, pretty_print=True, xml_declaration=True,

encoding="utf-8", doctype="")

Finally, to write the new data to a file we use the same code we used in

readWrite.py to write the text to a new XML file. Remove the two sets of triple quotes

(""") in editXML.py, and then save and run the script again to see how this works.

A large percentage of archives metadata is still stored in the EAD format as XML

files. Python gives us an easy way to edit and manipulate this data at scale. This could

mean creating, editing, or reviewing EAD files, or converting EAD data to another

format. EAD is likely to stick around in archives for a while, even as more effective tools

become available, so being able to automate the management of XML files at scale is a

key skill for archivists.

Working with JSON

JavaScript Object Notation (JSON) has moved past XML to become the most

common format for serialized data on the web. Archivists are becoming more and more

likely to work with JSON, and Python provides an easy way to manage data in JSON and

move data between JSON and other formats and systems with the json library, which is

included in Python’s default installation.

Remember when we talked about lists while introducing loops in the Basic

Syntax section? Another useful data type in Python is dictionaries. Dictionaries are

essentially a list of key-value pairs that you can loop through with for and get values by

calling the appropriate key. Dictionaries are held in curly brackets ({}), and key-value

pairs are listed with commas (just like a list), and separated by a colon (:). In the sample

scripts, dict.py shows a basic dictionary on line 4.

3| #a simple dictionary

4| dict = {"key1": "value", "key2": 1}

Dictionaries are very useful for archivists, as they are ideal for holding data with

description, and key value pairs will be familiar to all archivists who work with metadata.

The dict.py sample script provides an example of a useful calendar dictionary on line 7.

You can get values from a dictionary by calling keys with brackets. Here we get the value

of the “04” key from the calendar dictionary just like in line 10.

 6| #a useful dictionary

 7| calendar = {"01": "January", "02": "February", "03": "March", "04": "April", "05":

"May", "06": "June", "07": "July", "08": "August", "09": "September", "10":

"October", "11": "November", "12": "December"}

 8|

 9| #print the value for the key "04"

10| print (calendar["04"])

 > April

Next, we see that both list and dictionaries can be nested within one another.

You can have a list of dictionaries, or dictionaries that contain lists as values. On lines

12-17 we set up a set of dictionaries that contain the keys: title, dates, and extent. The

first two keys contain strings and the extent key contains a list with both an integer and

a string. Finally, we add all of these dictionaries to a single list called fonds on line 20.

12| #both lists and dictionaries can be nested

13| collection = {"title": "Hugo A. Bedau Papers", "dates": "1957-2003 ", "extent":

[36, "cubic ft."]}

14| series1 = {"title": "Scholarship and Teaching", "dates": "1958-2002", "extent":

[6, "cubic ft."]}

15| series2 = {"title": "Correspondence", "dates": "1957-2003", "extent": [4, "cubic

ft."]}

16| series3 = {"title": "Advocacy Organization", "dates": "1958-2003", "extent":

[10, "cubic ft."]}

17| series4 = {"title": "Subject Files", "dates": "1955-2003", "extent": [16.79, "cubic

ft."]}

18|

19| #here is a list of the dictionaries above

20| fonds = [collection, series1, series2, series3, series4]

We can loop though this list with for and print values by calling the relevant keys.

On lines 22-23 we print the title and dates keys for each dictionary in the fonds list. On

lines 26-27 we loop through the extent lists and print each item after turning it into a

string with str().

22| for resource in fonds:

23| print (resource["title"] + ", " + resource["dates"])

24|

25| #the value of extent is a list

26| for extent in resource["extent"]:

27| print (" " + str(extent))

If you are wondering why we are experimenting with lists and dictionaries

instead of JSON, the reason for this is that Python’s json library reads a JSON file and

essentially turns it into sets of nested lists and dictionaries. You can work with JSON just

like we did above. Open the sample script editJSON.py in a text editor for an example of

how to work with JSON data in just this way. You can see we imported the json library

on line 1, and we also imported a function on line 2 that we will use later. Change the

path to the sample scripts, where there should be a sample json file called

resource.json. On lines 9-11 we load the file and use the json library’s .load() function to

read the data as sets of lists and dictionaries.

9| jsonFile = open(windowsPath, "r")

10| jsonData = json.load(jsonFile)

11| jsonFile.close()

This is a fairly large and complex JSON file, so on lines 13-16 we first loop though

the jsonData object and print all the keys so we can see what kinds of data we have. Run

the script with python editJSON.py to take a look at the keys.

13| #lets take a look at what keys are in this file

14| print ("Here are the keys:")

15| for key in jsonData:

16| print (" " + key)

17|

18| #looks like there is a "level" key and a "title" key

19| print ("\n\n" + jsonData["level"] + ": "+ jsonData["title"])

20|

21| #there is also a notes key too, remove the # below to uncomment the line

22| #print (jsonData["notes"])

There is a “level” and a “title” key, so we print those values on line 19, and we

find that this is JSON data for the collection, Environmental Advocates of New York

Records. A good amount of descriptive metadata is under the “notes” key. You can

uncomment line 22 by removing the # from the start of the line, and when you run the

script again a large amount of data is printed to the command line. Most of this is hard

to read in this format, so if you comment or erase line 22, and uncomment lines 24-30

by removing the triple quotes (""") on each end, we can loop though the notes to read

only the data we are looking for. On line 26 we loop though the notes and print the

“type” key on line 27. Within this same loop we use an if statement to limit notes that

have a type that equals the string “abstract.” Finally we print the “content” key for this

note. As you can see if you run the script again, the content key also contains a list of a

single string with the collection’s abstract.

25| print ("\nHere are the notes: ")

26| for note in jsonData["notes"]:

27| print (note["type"])

28| if note["type"] == "abstract":

29| print (note["content"])

We can also modify JSON data just like any other type of serialized data. If you

uncomment lines 34-46, you can see how we can loop though the “dates” key and get

the “begin” date and “end” date. Here we are also using the handy .split() method to get

only the characters in the timestamp before the “T” character. On line 38 we combine

the “begin” and “end” dates with a slash (/) in between to get the normalized ISO date

format archivists have commonly used in EAD XML files. On line 39 we use that magic

function we imported on line 2 called iso2DACS() to reformat the date range in the

common DACS display date format, and assign that new date to the “expression” key.

Outside the loop on line 40 we call that “expression” key from the 0th item in the

“dates” list and print it. Finally, on lines 43-45, we use the json library’s .dump() method

to turn our dictionaries and lists back into a big string, and write it to a new file called

newResource .json. If you run the script again without these lines commented, it will

show the reformatted date and create the new output file.

35| for date in jsonData["dates"]:

36| beginDate = date["begin"].split("T")[0]

37| endDate = date["end"].split("T")[0]

38| isoDate = beginDate + "/" + endDate

39| date["expression"] = iso2DACS(isoDate)

40| print (jsonData["dates"][0]["expression"])

41|

42| #write the data back to a JSON file

43| output = open("newResource.json", "w")

44| json.dump(jsonData, output)

45| output.close()

Working with CSV

Comma-separated values are a very simple way to serialize tabular data that

relies solely on text encoding for its structure. Although it has some flaws, the

independence of CSV is useful for moving data between systems. Also, since CSV is a

tabular format, it can be a good way to make data human-readable by just opening it in

a spreadsheet. Many archives workflows involve viewing data in a spreadsheet for

editing or cleanup, making CSV a core tool in an archivist’s toolkit.

Python readily works with CSV through its default csv library. Unlike lxml, this

library is included with Python and does not require an additional installation. All you

have to do is state import csv on the top of your script and you can easily manipulate

CSV files.

Remember when we discussed lists in the syntax section? Python essentially

views CSV files as a list of lists. There is an example called editCSV.py in the Github

sample scripts that introduces manipulating CSV files with Python, and some sample

data called executedJuveniles.csv. We have to open() a CSV file from a path just like

other file formats, but then we can easily use csv.reader() on the open file object to turn

the data into a list of lists on line 8. Then we can use our familiar for statement to loop

though the csvObject and act upon each row. In this example, each row variable is a list

of each field that we can access by an index number – you just have to remember that

the index starts at 0 instead of 1. So by stating row[2], we are calling the third column of

each row and printing it to the command line on line 10. If we run the editCSV.py script,

we should see a long list of names that is from the third column of the example CSV file.

Remember to edit the path to the CSV file on lines 4 or 5 to point to the directory where

you cloned or downloaded the scripts.

 7| csvFile = open(windowsPath, "r")

 8| csvObject = csv.reader(csvFile)

 9|

10| #loop though the CSV file

11| for row in csvObject:

12| print(row[2])

Next we can take the data we have in that same CSV file, change it, and write it

to a different file. If we remove the two sets of three quotes (""") on lines 16 and 46 that

change all the rest of the code to a comment, we can see how this works. First, we have

to create some new variables. newList is an empty list that we will write to our new CSV

file after we add rows to it. rowCount is an integer that will let us know which row of the

CSV we are on during our loop. On lines 22 and 23 we open and read our original CSV

file again just like we discussed above (remember to change the path variable on line 22

for Unix paths). Then, on line 25 we begin our for loop that lets us read each row in turn.

If you take a look at the sample CSV file, you will notice that the first row is a header

that describes the content of each column. We want to omit this row, which we can do

by counting through our loop. Line 27 takes our rowCount variable and adds 1 to it.

Since it starts at 0, the rowCount variable will equal 1 for the first row. For subsequent

rows, this line will continue to add 1 to the variable, so for the second

row, rowCount will be 2, 3 for the third, etc. This lets us know what row we are on

during our loop.

17| #set and empty list and initialize the count at 0

18| newList = []

19| rowCount = 0

20|

21| #open the original CSV again and read it

22| csvFile = open(windowsPath, "r")

23| csvObject = csv.reader(csvFile)

24|

25| for row in csvObject:

26| #count the number of times though the loop

27| rowCount = rowCount + 1

We can skip the first row by using a simple if statement on line 29. Now, the

code block indented underneath it will only be executed for rows 2 and above, omitting

the header row. Next, on line 31 we make a new list called rowList that will represent

each row in our new CSV file that we will make. In our new file we will make three

columns: a count of each row, the names from each row in our original CSV, and a DACS-

compatible date. We do not want our count to start at two, so we will subtract one from

our rowCount for the first column. The second column is easy: we will just use the index

of the original rows to get the names in the third of the original CSV. Next, we use

the iso2DACS() function that we imported on line 2 to convert the forth column to the

new date format.

Now, for each row of our original CSV file we have a new list of our reformatted

data. During this same loop, we can .append() this list to our newList variable which will

become a big list of these smaller lists.

30| #make a list of the rowCount, the 3rd column, and the 4th column using the

iso2DACS function

31| rowList = [rowCount - 1, row[2], DACS(row[3])]

32| #append that list to the newList - its just a list of lists

33| newList.append(rowList)

Finally, we have to write this big list of lists to a new CSV file. We can close the

original CSV file on line 36, as we have all the data we need now in our newList variable.

Remember to write a correct path to our new file on lines 39 for Windows or move the

comment from line 40 to line 39 to use the Unix path. This is where we will write this

data back to the file system. We can then use open() to open our new file in write mode,

but also add newline=” to format our CSV correctly. Python’s CSV library has a

simple .writerows() method that lets us format a list of lists as a CSV file. After that, we

just have to close the new file on line 45 and Python will create a new CSV file. Just be

sure to remove the two sets of three quotes (""") and enter a correct path before

running editCSV.py again, and you should have a new CSV file called csvDACS.csv. Open

it up in a spreadsheet program or text editor to see what it looks like.

39| newCSV = "C:\\Users\\[USERNAME]\\python4archivists\\csvDACS.csv"

40| #newCSV = "/home/[USERNAME]/python4archivists/csvDACS.csv"

41|

42| newFile = open(newCSV, "wb", newline='')

43| newCSV = csv.writer(newFile, delimiter=',')

44| newCSV.writerows(newList)

45| newFile.close()

Currently, we plan to use Python to manage the migration of accession data

from our old CMS database into ArchivesSpace. Our database developer will export the

important data from the old database as CSV files, but since the fields in the old system

were problematic, they have to be mapped onto the correct ArchivesSpace fields. Over

the years, the old fields were used inconsistently, and even the same fields will need to

be mapped differently, depending on how they were used. It is much more efficient for

archivists to manage this process from CSV files, rather than meeting multiple times

with technologists who would need to understand unfamiliar archival practices. In

migrations like these, the intellectual and technical challenges are so intertwined, that

separating them among multiple staff members can often result in miscommunication

and drawn-out processes.

Working with File Systems

So far we have worked with serialized text formats like XML, JSON, CSV, and

plain text, but one of the major benefits to using Python on a desktop is that you can

read and write to the file system directly. This means Python can read and write

directories and files right on your hard drive using the default os library, all you need to

do is state import os on the top of your Python script.

The fileSystem.py file provides a brief introduction to the kinds of things we can

do with Python’s os library. You can see we imported the os library on line 1, and you

can ignore lines 3-5 for now, as they just define a date function we will use later. Lines 7

and 8 demonstrate how we can use Python to work with all types of operating systems.

The os.name method lets us know what type of system Python is running on – “nt” for

Windows, and “posix” for a Unix-based system like Mac OSX or Linux. If you run

fileSystem.py, you should see that Python scripts can run on any number of platforms.

The script should let you know what operating system you are running.

Remember how we wrote in paths manually in other scripts? Well, Python’s os

library can do that for us. On line 10 we get the path to where this script is saved. This

should work on almost all platforms. You can see this path by printing it on line 11. Next,

we can loop through that directory using the os.listdir() method on line 17 which creates

a list of everything in the directory. We could just print each item, but there are

probably both files and folders in this directory, so we can count each type with our two

variables from lines 14 and 15. Python has two methods that identify files and

folders, os.path.isfile() and os.path.isdir(). We can use these to add 1 to the count for

each type and then print our final count outside the loop on line 26. This will tell us how

many files and how many folders are in the directory.

13| #start our counting variables

14| folderCount = 0

15| fileCount = 0

16| #loop though everything in a directory with os.listdir()

17| for item in os.listdir(directory):

18|

19| #count each folder and file

20| if os.path.isdir(item):

21| folderCount = folderCount + 1

22| elif os.path.isfile(item):

23| fileCount = fileCount + 1

24|

25| #print what we found to the command line

26| print("Found " + str(folderCount) + " folders and " + str(fileCount) + " files

here")

Note that we used another method while printing these results to the command

line. Our original variables were integers so we could add and subtract from them, but

you cannot combine integers and strings together, so we used str() to change our final

integers in to a text string of the same number – say the string “13”, rather than the

integer 13. We could do the opposite using int().

We can also use os.listdir() with what we learned about working with XML and

CSV files above. In many cases it could be helpful to loop though a large number of EAD

XML files to evaluate them or reformat some of the data. We can just use os.listdir() on

the directory to make a list of all the files and then write a for loop that acts upon each

of them using the lxml library within that one big loop. If you have a large directory of

XML files, you could easily use a python script with the os library and lxml to extract all

of the extents.

Python’s os library allows us to fully manipulate and extract information from

the ordinary files and folders on our hard drive. If you remove the two sets of three

quotes (""") on lines 28 and 54, we can see how to make folders and get details on each

file from filesystems. In the example scripts from Github there is an example directory

called “exampleDir” that contains some subdirectories and small text files. We can loop

through that folder using os.listdir() and find “exampleDir” using an if statement in line

31.

We can make a new directory here using Python’s os.mkdir() method, but first

we need a complete path for this new folder. Remember how paths are different in

Windows and Unix-based systems? The os library accounts for this using

the os.path.join() method. We can combine paths by just listing them separated by

commas and Python will make sure they will work on all operating systems. Here, we

combine directory (the original path from line 10), item (“exampleDir” from line 30 and

31), and our new folder as the string “WeMadeThis.” If we try to create this directory,

and it already exists, the script will return an error, so we can use a simple if

not statement and the os.path.exists()method on line 35 to only call os.mkdir() on the

new path if it does not already exist. After we run fileSystem.py, you should see the new

folder appear.

33| #combine the original directory with this item and "WeMadeThis" into a path

34| newFolderPath = os.path.join(directory, item, "WeMadeThis")

35| #check if this new path exists and then make it

36| if not os.path.exists():

37| os.mkdir(newFolderPath)

There are many tools in the os library that are useful to archivists. One of the

most powerful is os.walk() which can be used to navigate a large directory tree and

provide a list of folders and a list of files that it finds throughout. Unlike a typical for

loop, os.walk() assigns three different variables that you can see on line 40.

Here, rootDir is a string for the explicit path. We can use this later in the loop to get the

full path of files deep within the directory structure. The second variable is a list of

subfolders we assign to folders and the third is a list of all the files from all lower levels

of the directory tree that we assign to files. This gives us the root path, a list of all

folders from all child levels, and a list of all files from all child levels.

39| #walk the directory to get lists of files and folders

40| for rootDir, folders, files in os.walk(item):

41| #loop through the list of files

42| for file in files:

43| #print the file name and full path

44| print("filename: " + file)

45| fullPath = os.path.join(rootDir, file)

46| print(" path: " + fullPath)

On line 42 we loop though the file list, so we can act upon each one of these

disparate files in turn. First, we print the filename (which is file) on line 44, then we

use os.path.join() to combine rootDir and file to get the full explicit path to that file and

print that as well.

Now that we have a full path for each file, we can use some of the additional

os.path methods to get information on each file. os.path.getsize() provides us with the

file’s size in bytes. We can do some basic math to make the size more readable for

larger files, but we omitted this to keep things simple. On line 49 we get the size of each

file, turn it into a text string, and print it to the command line.

49| print(" size: " + str(os.path.getsize(fullPath)))

The os library also includes a set of methods to read the timestamps that are

stored in the file system for each file. Different operating systems store these

timestamps differently and consider creation time to be different, but Python provides a

cross-platform way to get this important information. These methods

are os.path.getmtime() for last modified, os.path.getatime() for last accessed,

and os.path.getctime() for creation date. On lines 51-53 we use these methods and the

small humanTime() function we defined on lines 4 and 5, to print human-readable

versions of these timestamps to the command line.

51| print(" Last Modified: " + humanTime(os.path.getmtime(fullPath)))
52| print(" Last Accessed: " + humanTime(os.path.getatime(fullPath)))
53| print(" Created: " + humanTime(os.path.getatime(fullPath)))

Python’s ability to easily work with the filesystems of a number of different

operating systems archivists work with makes it very useful for born-digital material.

Files systems are not designed to store information about records for the long-term, and

the ability to get important provenance information on files and move that information

to more stable formats can be extremely valuable. Even though the files from Github

serve only as a basic example, you can probably learn something about them by running

fileSystem.py and looking at the timestamps the script shows. When were these files

created? What can you tell about how Github handles metadata for files?

Working with APIs

As I have demonstrated above, once you get a basic environment set up and

understand the basics of writing scripts, Python is a powerful tool for editing, cleaning,

transforming, and migrating different formats of serialized data and file systems. Yet,

the real strength of Python is its ability to work both with serialized data and large

systems through APIs. The most obvious benefit for archivists is to read and write data

to ArchivesSpace at scale using its backend HTTP API. This tool is one of the biggest

benefits to ArchivesSpace. It is a large, complex, and stable system for archival data that

is governed by a strict data model that also allows non-technical archivists to manage

data through a web browser. Through the API, we also have the granular control to

make large scale, iterative changes to our data just like we can with EAD data in XML

files. Unlike working in XML, the ArchivesSpace API will also prevent us from making

damaging changes to our system of record, and will return errors instead.

Here we can easily take data from XML, JSON, CSV, and file systems to update

and make large-scale changes to data held in ArchivesSpace with Python’s requests

library. This is an add-on library that is not included in the default install, but you should

be able to just enter pip install requests on the command line to install the library with

pip. Once this is installed, open editAPIs.py in a text editor to see how we can edit

ArchivesSpace data on the backend.

Remember the JSON data we learned about previously? That sample file,

resource.json is an example of an ArchivesSpace resource record from the API. In this

script, we will use the API to get a resource record, create the same date expression

from the JSON section by working with lists and dictionaries, and post the updated

record back to ArchivesSpace. Here, lines 1-3 import the libraries we need, and lines 6-

10 contain the important information ArchivesSpace requires to login via the API. If you

have a local or development instance of ArchivesSpace, you can try to add in your own

information, but you should not use this script on a production instance [21]. We also

need the repository number and the resource number for the collection we wish to

update. Edit these accordingly to try it yourself.

On line 13 we use requests.post() with the correct username and password and

ArchivesSpace will give us a response as the connectASpace variable. If the connection is

successful, connectASpace.status_code will be equal to 200. On line 15 we check for this

and then print a confirmation while continuing the script. If the connection failed, the

whole response will be printed from line 38. We can use the .json() method to get the

date included in the response. This has a session key that gives us access to make

changes for a set period of time, but we have to include that session key for each

additional request we make, so we save it in the format ArchivesSpace likes

as headers on line 19.

12| #inital request for session

13| connectASpace = requests.post(backendURL + "/users/" + user + "/login",

data = {"password":pw})

14|

15| if connectASpace.status_code == 200:

https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftn21

16| print ("Connection Successful")

17|

18| sessionID = connectASpace.json()["session"]

19| headers = {'X-ArchivesSpace-Session': sessionID}

20|

21| resource = requests.get(backendURL + "/repositories/" + repoID +

"/resources/" + resourceNumber, headers=headers).json()

Now that we have permission to make changes, we make an additional API

request for the resource we want on line 21, including the headers variable.

21| resource = requests.get(backendURL + "/repositories/" + repoID +

"/resources/" + resourceNumber, headers=headers).json()

ArchivesSpace then gives us the same JSON object we worked with before as

the resource variable, so on lines 23-27 we make the same date expression change as in

the JSON section above, and print the result on line 28. Even though we are not writing

this data to a file, we still have to convert the sets of lists and dictionaries to a big string

before posting it back to ArchivesSpace, which we do using the .dumps() method from

the json library on line 31. Finally, on line 33 we post this updated record back to

ArchivesSpace with another API request, and print the result on line 34.

31| jsonData = json.dumps(resource)
32|
33| postResource = requests.post(backendURL + "/repositories/" + repoID +
"/resources/" + resourceNumber, headers=headers, data=jsonData)
34| print (postResource.json()["status"])

We can make many kinds of large scale updates with the ArchivesSpace API and

Python. The API documentation details each type of request we can make22. The request

module is just managing HTTP URLs for us, somewhat like you would type in to a web

browser, but with Python we can link a number of API requests together to make

complex changes and automate multi-step workflows. With a bit more coding, we can

loop through many—or even all—of the resources held within ArchivesSpace, and run

the same date expression update to each one. We could also make further requests to

get child archival object or digital object records and apply the same code there. The API

is so complete, you can update just about any type of data held within ArchivesSpace at

scale. The API makes these scripts relatively stable, so they are easier to maintain over

time then working with XML or other serialized data. Additionally, Python scripts can be

scheduled to run at certain times, so once they are written, these automated processes

can run on their own without any human intervention.

The ArchivesSpace API can also be used for exporting or displaying data as well.

This is a much more consistent method than working with EAD exports. An effective

example of using the ArchivesSpace API to export collection data for display is Hillel

Arnold’s StaticAid test case23. This example uses Python scripts and Jekyll to periodically

create static HTML pages with collection data from the ArchivesSpace API. The result is a

limited, but reasonably effective way of enabling access to archival collections with just

ArchivesSpace and a web server. A similar, in-production example is North Carolina

State University Libraries’ Collection Guides system24. This is a Ruby on Rails web

application that also relies on exported data from the ArchivesSpace API.

Conclusion

Python’s independence and wide use make it a great tool for developing

automated workflows between larger systems. If environments are set up effectively,

Python scripts can be true cross-platform tools to manage data between essentially

every open system. Python’s prolific use with research data and general software

development means is has extremely good publically-available documentation and wide

variety of useful libraries. While working with Python, archivists are likely to find that

many of their problems have already been solved and that others have written code

samples and made them available for use or modification.

The barriers to using Python to solve archives problems are steep and just

getting started can be challenging. Although the syntax itself if not difficult, its

independence from any sort of system or structure makes it particularly challenging for

archivists that are just starting to work with code or on the command line. Just getting a

working environment set up requires tackling some significant challenges, particularly

on Windows systems.

However, once archivists become comfortable with a Python environment and

start running code and getting feedback, learning Python to perform basic reformatting

and data exchange can be much more accessible. The syntax of Python is concise and

intuitive, particularly comparted to other technologies that archivists have learned to

work with – whether that is XSLT, MARC, or odd “expert search” parameters in catalogs.

Python syntax is much simpler that these tools. While archivists do not need to become

software developers, many already perform complex and intellectually-challenging work

with data that can be made easier by some basic Python scripts.

About the author

Gregory Wiedeman is the University Archivist in the M.E. Grenander Department of

Special Collections & Archives at the University at Albany, SUNY. Here he manages

preservation and access for permanent public records and develops digital collecting

practices.

Notes:

1. “Bagit-python.” Github Pages, Library of Congress. Accessed October 29,

2016. https://libraryofcongress.github.io/bagit-python/.

2. Heidi Frank, “Augmenting the Cataloger’s Bag of Tricks: Using MarcEdit, Python, and

PyMARC for Batch-Processing MARC Records Generated From the Archivists’ Toolkit,”

Code4Lib Journal Issue 20 (2013). (Emphasis in original). Accessed October 30,

2016. http://journal.code4lib.org/articles/8336.

3. Jacob L. Nash and Jonathan Wheeler, “Desktop Batch Import Workflow for Ingesting

Heterogeneous Collections: A Case Study with DSpace 5,” D-Lib Magazine 22:1/2

(January/February 2016). Accessed October 30,

2016. http://www.dlib.org/dlib/january16/nash/01nash.html.

4. Amy Berish, “Learning Python as a Processing Archivist: A Reflection,” Bits & Bytes:

News from Rockefeller Archive Center’s Digital Team (April 6, 2016). Accessed October

30, 2016. http://blog.rockarch.org/?p=1483.

5. There are a number of free and paid tools to learn Python for different types of

learners. I recommend Codecademy (https://www.codecademy.com/) and Learn Python

the Hard Way (https://learnpythonthehardway.org/book/), but others may have success

with other methods.

6. “Python FAQ: Why Should I Use Python 3? / Fuzzy Notepad.” Accessed October 21,

2016. https://eev.ee/blog/2016/07/31/python-faq-why-should-i-use-python-3/.

7. A good introduction to Bash is available at The Programming Historian. Ian Milligan

and James Baker, “Introduction to the Bash Command Line,” The Programming

Historian. http://programminghistorian.org/lessons/intro-to-bash. Accessed September

20, 2016.

8. “Python Releases for Mac OS X | Python.org.” Accessed October 21,

2016. https://www.python.org/downloads/mac-osx/.

9. Using Python on a Macintosh – Python 3.5.1 Documentation.” Accessed October 21,

2016. https://docs.python.org/3/using/mac.html.

https://libraryofcongress.github.io/bagit-python/
http://journal.code4lib.org/articles/8336
http://www.dlib.org/dlib/january16/nash/01nash.html
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref4
http://blog.rockarch.org/?p=1483
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref5
https://www.codecademy.com/
https://learnpythonthehardway.org/book/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref6
https://eev.ee/blog/2016/07/31/python-faq-why-should-i-use-python-3/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref7
http://programminghistorian.org/lessons/intro-to-bash
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref8
https://www.python.org/downloads/mac-osx/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref9
https://docs.python.org/3/using/mac.html

10. Ethan Gates, “Windows Subsystem for Linux – What’s the Deal?” The Patch Bay

(2016). Accessed October 30,

2016. https://patchbaynyu.wordpress.com/2016/10/19/windows-subsystem-for-linux-

whats-the-deal/.

11. “Python Releases for Windows | Python.org.” Accessed October 21,

2016. https://www.python.org/downloads/windows/.

12. “Lxml – Processing XML and HTML with Python.” Accessed October 21,

2016. http://lxml.de/.

13. “Lxml – PyPI – the Python Package Index.” Accessed October 21,

2016. https://pypi.python.org/pypi/lxml/.

14. “Lxml 3.6.0 – PyPI – the Python Package Index.” Accessed October 21,

2016. https://pypi.python.org/pypi/lxml/3.6.0.

15. There are more robust ways to set up your Python environment using virtualenv, but

the goal here is to get readers up and running code in the fastest and simplest possible

way.

16. “python4archvists” Github. https://github.com/gwiedeman/python4archivists.

Accessed September 20, 2016.

17. There is a good chart on the different I/O modes here. “Python Files I/O,” Tutorials

Point. http://www.tutorialspoint.com/python/python_files_io.htm. Accessed

September 22, 2016.

18. There is a great introduction to using lxml with EAD files on the Bentley Historical

Library’s Archival Integration Blog. “Tools for the programming archivist: ead

manipulation with python and lxml.” Bridging Technologies to Efficiently Arrange and

Describe Digital Archives, October 5th, 2015. http://archival-

integration.blogspot.com/2015/10/tools-for-programming-archivist-ead.html. Accessed

September 21, 2016.

19. “Lxml – PyPI – the Python Package Index.” Accessed October 21,

2016. https://pypi.python.org/pypi/lxml/.

https://patchbaynyu.wordpress.com/2016/10/19/windows-subsystem-for-linux-whats-the-deal/
https://patchbaynyu.wordpress.com/2016/10/19/windows-subsystem-for-linux-whats-the-deal/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref11
https://www.python.org/downloads/windows/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref12
http://lxml.de/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref13
https://pypi.python.org/pypi/lxml/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref14
https://pypi.python.org/pypi/lxml/3.6.0
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref15
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref16
https://github.com/gwiedeman/python4archivists
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref17
http://www.tutorialspoint.com/python/python_files_io.htm
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref18
http://archival-integration.blogspot.com/2015/10/tools-for-programming-archivist-ead.html
http://archival-integration.blogspot.com/2015/10/tools-for-programming-archivist-ead.html
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref19
https://pypi.python.org/pypi/lxml/

20. If you are unable to install lxml you can use the Element Tree library which is

included with Python. You just have to change every line that reads: from lxml import

etree as ET to import xml.etree.ElementTree as ET

21. The code itself will only create date expressions from dates you have already

entered, but it will overwrite the date expression field. The script also requires a plain

text password which is not a good idea to use with a production instance.

22. “ArchivesSpace API Reference,” Github Pages. Accessed October 31,

2016. http://archivesspace.github.io/archivesspace/api/.

23. Hillel Arnold, “Introducing staticAid: A Static Site Generator for Archival Description.”

Accessed November 1, 2016. http://hillelarnold.com/blog/2016/02/a-static-html-site-

generator-for-archival-description/. Test site available

at http://hillelarnold.com/staticAid/.

24. “Collection Guides” NCSU Libraries. Accessed November 1,

2016. http://www.lib.ncsu.edu/findingaids.

https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref20
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref21
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref22
http://archivesspace.github.io/archivesspace/api/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref23
http://hillelarnold.com/blog/2016/02/a-static-html-site-generator-for-archival-description/
http://hillelarnold.com/blog/2016/02/a-static-html-site-generator-for-archival-description/
http://hillelarnold.com/staticAid/
https://practicaltechnologyforarchives.org/issue7_wiedeman/#ftnref24
http://www.lib.ncsu.edu/findingaids

	Python for Archivists: Breaking Down Barriers Between Systems
	Python for Archivists: Breaking Down Barriers Between Systems
	Description
	Keywords

	Python: Not so scary after all
	Setting up Python
	Basic Syntax
	Reading and Writing Text to Files
	Working with XML
	Working with JSON
	Working with CSV
	Working with File Systems
	Working with APIs
	Conclusion
	About the author

