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Abstract 

Early rheumatoid arthritis may be characterized by the rapid onset of functional impairment. 

Despite advancements in the management of this disease, more than half of all patients 

experience significant walking impairments within the first two years following diagnosis. 

Clinical research has adopted 3D motion capture to provide data on musculoskeletal 

impairment in rheumatoid arthritis. However, there is limited published research using 3D 

motion capture to investigate the effects of early rheumatoid arthritis on the biomechanical 

function of the foot and lower limb. To translate laboratory based findings into clinical practice, 

more comprehensive data are therefore required in order to optimise the recognition and 

targeted management of early musculoskeletal pathology in rheumatoid arthritis.  

 

Protocols were developed for the examination of lower limb walking patterns in early 

rheumatoid arthritis using 3D motion capture. When the walking patterns of 18 early 

rheumatoid arthritis participants were compared to an age and gender matched control group, 

significant between-group differences in spatial-temporal parameters and joint movement 

patterns within the foot were observed. Walking speed in early rheumatoid arthritis participants 

was found to be significantly slower (p<0.05). This was accompanied by a delay in terminating 

stance (p<0.05). Principal component analysis showed that early rheumatoid arthritis 

participants exhibited a significantly greater (p<0.05) magnitude of eversion and abduction of 

the rearfoot and midfoot during gait. A significantly reduced (p<0.05) magnitude of 

dorsiflexion at the first metatarsophalangeal joint was also observed. Kinematic coupling 

relationships between the rearfoot and midfoot were also found to be significantly altered 

(p<0.05), suggesting that an additional source of mechanically based trauma is also present 
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within the foot.  Linear regression analysis showed that these features were largely unexplained 

by current measures of disease activity and disease impact.  

 

The findings of this research suggest that mechanically based foot pathology in early 

rheumatoid arthritis is of a greater magnitude than previously reported and that these changes 

are not explained by laboratory based measures of disease activity or patient-reported 

questionnaires.  Based upon these findings, the multidisciplinary use of 3D motion capture is 

recommended to meet both current and future demands for the early assessment and targeted 

management of mechanically based foot pathology in early rheumatoid arthritis.  
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Chapter 1: Introduction 

This chapter provides an introduction to the origins of the research questions and central 

hypotheses of this thesis.  The novel elements of the research are summarised. A framework for 

the thesis structure and content is provided.  

 

1.1 Research rationale 

Early rheumatoid arthritis (RA) may be characterized by a pattern of rapidly progressive joint 

damage resulting in significant functional impairment within the first two years following 

initial diagnosis. Despite improvements in the management of early RA more than half of 

patients report walking impairments as a key consequence of this disease (Van der Leeden et 

al., 2008).  Such impairments may be characterised by the adoption of antalgic gait patterns to 

reduce pain. Despite this, the extent and magnitude to which these adaptations take place within 

the lower limb is poorly understood.  

 

Whilst there is a general consensus that lower limb physical impairment should be assessed in 

early RA, there is a lack of clarity as to how this should be undertaken. Currently no 

quantitative measure of lower limb biomechanical function is recommended by the National 

Institute for Clinical Excellence (NICE) for the evaluation of early RA (Nice, 2009). Although 

guidelines published by the North West Clinical Effectiveness Group for the Foot in Rheumatic 

Diseases (NWCEG) outline essential requirements for the musculoskeletal assessment of the 

foot and ankle in early RA, there are no specific recommendations concerning which 

musculoskeletal outcome measures to use (Combe, 2009). Whilst guidelines published by 

Woodburn et al., (2010) advocate the early screening and management of residual foot 
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pathology in RA, outcomes recommended for the assessment of the foot do not measure 

physical function directly. In the absence of validated outcome measures for use in the  

musculoskeletal assessment of the foot and lower limb in patients with early RA, clinical 

research has adopted 3D motion capture to provide data on spatial-temporal parameters,  joint 

kinetics (those forces that cause movement) and  joint kinematics (joint movement patterns 

independent of those forces that bring about this movement).  It is from these definitions of 

‘biomechanical function’ that this thesis will investigate the foot and lower limb in early RA.  

 

Within these terms of reference, one 3D motion capture study has specifically investigated 

early RA foot function in a cross-sectional analysis of twelve patients within the first two years 

of disease onset (Turner et al., 2008). Using 3D motion capture to quantify foot movement 

patterns, this study reported that patients with early RA adopted slower self-selected walking 

speeds in which the foot exhibits motion patterns characteristic of the presence of excessive 

pronation. Owing to the small numbers of participants recruited for this study, the statistical 

significance of these findings was not reported. Likewise, whether these features were 

accompanied by concurrent modifications in hip and knee kinetics and kinematics was not 

investigated. Given that musculoskeletal impairments are a feature of early RA, there is a need 

to quantify and characterize early changes in lower limb biomechanical function in these 

patients.  For this reason the first research question asked by this thesis is:  

1. When people with early RA are compared to age and gender-matched healthy adults, 

are there significant between-group differences in the biomechanical function of the 

foot and lower limb during gait? 
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Rheumatology function tests are currently the only validated methods by which clinicians may 

assess and quantify physical impairment in early RA. Of these tests, the first two (grip strength 

and the ability of a patient to button and unbutton a shirt as quickly as possible: timed button 

test) are exclusively measures of upper extremity function. These tests are used as surrogate 

indicators of global physical capacity. Only one rheumatology function test assesses lower limb 

functional capacity; the timed assessment of self-selected walking speed. Whilst these tests are 

among the most reproducible measures used in clinical rheumatology, they are not designed to 

measure alterations in lower limb kinetics and kinematics that are associated with changes in 

gait in early RA. Given their use as proxy indicators of lower limb physical impairment, this 

thesis asks the following question:  

2. Is there an association between the biomechanical function of the foot and lower limb in 

early RA with measures of rheumatology physical function? 

 

In reality, the burdens of time mean that within the clinical setting functional capacity is more 

likely to be inferred from measurements of disease activity, than through the prescription of 

rheumatology function tests. Whilst a number of composite indices have been developed for 

use in rheumatology, disease activity is most commonly assessed using the Disease Assessment 

Score 28-joint count (DAS28) which combines the erythrocyte sedimentation rate (ESR) with 

a painful joint count of twenty eight sites within the body.   Infrequently, measures of disease 

may also be supplemented with self-reported questionnaires assessing for the presence physical 

disability, most notably the Health Assessment Questionnaire (HAQ).  Whilst acting as proxy 

indicators of lower limb function, measures of disease activity and self-reported physical 

impairment may have a limited capacity to detect early alterations in lower limb walking 

patterns. The DAS28 does not include an evaluation of the ankles and joints of the feet which 

are frequently involved in early RA. Likewise, the HAQ does not include a detailed assessment 
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of lower limb biomechanical function. The question as to whether such measures do indeed 

have a surrogate capacity to explain lower limb kinetics and kinematics in early disease has yet 

to be answered. With these limitations in mind, the third overarching research question asked 

within this thesis is: 

3. Is there an association between the biomechanical function of the foot and lower limb in 

early RA with measures of disease activity? 

 

In summary, the protocols developed and described within this thesis will extend current 

conceptual understanding of foot and lower limb biomechanical function in early RA by 

providing unique and comprehensive data.  It is intended that the outcomes of this research will 

provide a more robust evidence basis upon which clinicians will evaluate and interpret lower 

limb movement strategies adopted by patients with early RA and thus inform optimal 

management of this population.  

 

1.2 Overall Hypothesis  

It is proposed that biomechanical function is significantly altered in the first two years 

following diagnosis of RA. From this, it is hypothesised that spatial-temporal parameters, joint 

kinetics and joint kinematics in adults with early RA will be significantly different from those 

of age and gender matched controls. It is also hypothesised that relationships will be found 

between altered biomechanical function in early RA and measures of disease activity and 

physical function.  
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1.3 Aims of the Research 

The specific aims of this research are: 

1. To establish reliable protocols for the biomechanical evaluation of the foot and lower limb 

in participants with early RA. 

 

2. To compare baseline biomechanical function of the foot and lower limb in early RA 

participants compared to aged-matched healthy controls. 

 

3. To explore the relationship between foot and lower limb biomechanical function and 

disease impact. 

 

Aim 1. To establish reliable protocols for the biomechanical evaluation of the foot and lower 

limb in participants with early RA. 

To achieve this aim, protocols for the quantitative assessment of gait using 3D motion capture 

were developed. Protocols for the assessment of foot posture, rheumatology physical function 

and disease impact were also developed. To test whether protocols for the collection of 

quantitative 3D gait and foot posture data were robust, a repeatability study (Study 1) will be 

undertaken in two phases:  Phase 1 will assess repeatability of measures prior to the start of the 

research. Phase 2 will investigate whether the repeatability of these protocols had remained 

robust until the end of the research.   
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Figure 1.1: Flowchart illustrating the framework of study 1 

 

Aim 2.  To compare baseline biomechanical function of the foot and lower limb in early RA 

participants compared to age and gender-matched healthy controls. 

 

Hypothesis 1 (H1) - Lower limb spatial-temporal parameters in adults with early RA will be 

different from those of age and gender matched adults 

 

Hypothesis 2 (H2) - Hip, knee and ankle kinetics in adults with early RA will be different from 

those of age and gender matched adults 
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Hypothesis 3 (H3) - Hip, knee, ankle and foot kinematics in adults with early RA will be 

different from those of age and gender matched adults 

 

To achieve this aim and investigate these hypotheses, a comparative cross-sectional study 

(Study 2) will be undertaken.  This study will use 3D motion capture to collect data on the 

spatial-temporal, kinetic and kinematic parameters of the foot and lower limb in participants 

with early RA. These data will be compared against a control group age and gender matched 

healthy participants.  Data will be analysed using discrete variable analysis, principal 

component analysis and an investigation of inter-segmental coupling variability.  

 

 

Figure 1.2: Flowchart illustrating the framework of study 2 



33 
 

Aim 3. To investigate the relationship between lower limb biomechanical function and 

disease impact. 

Hypothesis 4 (H4). - Relationships will be found between lower limb biomechanical function 

in early RA and measures of disease activity 

 

Hypothesis 5 (H5) - Relationships will be found between lower limb biomechanical function in 

early RA and measures of physical impairment 

 

To achieve this aim and investigate these hypotheses, study 3 will analyse associations between 

lower limb biomechanical function in early RA and measures of rheumatology physical 

function, disease impact and disease activity. This will be investigated in two phases:  

 

In phase 1, independent variables explaining lower limb biomechanical function in early RA 

will be identified using linear regression analysis.  To assess between-group differences in 

these parameters an age and gender match control group will be recruited.  

 

In phase 2, the relationship between these independent variables and foot kinematics will be  

investigated using linear regression analysis in a sub-group of early participants.    
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Figure 1.3: Flowchart illustrating the framework of study 2 

 

1.4 Novel elements of this research 

Previous studies have relied upon the analysis of a limited number of discrete variables to 

assess the repeatability of measures. In contrast to this, study 1 will incorporate a novel solution 

to this problem by using waveform symmetry analysis to allow kinematic waveform data to be 

assessed across all time points. To the best of the author’s knowledge, this will be the first 

repeatability study of its kind to evaluate the shape, amplitude and excursion of these data using 

this technique.   

 

Study 2 will be the first to use 3D motion capture to analyse the simultaneous movement 

patterns of the hip, knee, ankle and foot in early RA, determining the location and timing of 
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significant between-group differences in joint movement patterns and forces. It is believed that 

study 2 will be the first to investigate lower limb biomechanical function using principal 

component analysis and kinematic coupling.  

 

In extending what is currently understood concerning the relationships between lower limb 

biomechanical function and measures of disease activity and disease impact, it is believed that 

study 3 will be  unique in examining associations between lower limb kinematic data in early 

RA and measures of rheumatology physical function, disease impact and disease activity. To 

the best of the author’s knowledge, this is the first study that will identify which explanatory 

variables significantly explain lower limb joint kinematics in early RA.   

 

1.5 Thesis structure 

Chapter 2 presents a review of the current literature, providing the background material used 

to generate of the aims and hypotheses of this research.   

 

Chapter 3 presents the methodology of this research.  Protocols are outlined for the use of 3D 

motion capture in assessing lower limb biomechanical function in early RA participants. 

Protocols for the application of rheumatology function tests and self-reported measures of 

disease impact are given. The statistical analyses used in this research are outlined.  
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Chapter 4   presents the findings of study 1. To test whether the protocols developed for this 

research were robust, an analysis of the repeatability of 3D motion capture and foot posture 

assessment are undertaken.  

 

Chapter 5 presents the findings of study 2 (phases 1 and 2).  This is a comparative cross 

sectional analysis of 18 early RA participants compared to an age and gender matched control 

group.  Between-group comparisons of spatial-temporal, kinetic and kinematic data are 

presented and significant findings reported.  

 

Chapter 6   presents the findings of study 2 (phase 3), determining whether intersegmental 

coupling patterns in early RA are significantly altered in the presence of early RA. The findings 

of this analysis are reported in this chapter.  

 

Chapter 7 presents the results of study 3.  In this study the relationship between foot 

kinematics in early RA and current measures of disease activity and physical impairment are 

analysed in two groups of early RA participants. This chapter reports the results of this study.    

 

Chapter 8 presents a summary discussion of the key findings of this research. Specific 

consideration is given to the limitations of the research, its clinical interpretation and proposals 

for future research.  
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Figure 1.4: Conceptual framework of thesis 
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Chapter 2: Literature Review 

This chapter reviews the relevant literature on the clinical features of what is termed early RA. 

Current limitations in the evaluation of foot and lower limb pathomechanical function in early 

RA using 3D motion capture are discussed.  A justification for this research is then presented.  

 

2.1 Search Strategy 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)  flow 

diagram represented in figure 2.1  depicts the flow of studies used in the compilation of this 

literature review of the biomechanical function of the foot and lower limb in early RA. The 

following search terms were used: early rheumatoid arthritis, spatial-temporal, kinetics, 

kinematics, hip, knee, ankle and foot.  

 

Figure 2.1:   PRISMA flow diagram of search strategy 
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2.2 Early RA 

This section explains the prevalence and frequency of early RA in the foot and lower limb, 

identifying current limitations in the clinical assessment of musculoskeletal function associated 

with this disease.    

 

2.2.1 Prevalence 

Early RA is defined by the presence of disease activity of less than two years duration (Emery 

et al., 2014). Data from the National Institute for Health and Care Excellence (NICE) show that 

approximately 12,000 new cases are diagnosed annually,  resulting in a prevalence rate for this 

disease of 0.8% (NICE, 2009).  Early RA is significantly higher in women at 1.16%, compared 

to 0.4 % in men   (Nikiphorou et al., 2016). Its impact upon the UK economy is significant both 

in terms of direct costs to the National Health Service (NHS) and indirect costs such as early 

mortality and reduced productivity. Indeed, approximately one third of patients stop work 

within two years of diagnosis, resulting in a total cost to the UK economy of between £3.8 and 

£4.75 billion per year (NICE, 2009).   

 

2.2.2 Clinical features 

Early RA is characterised by a persistent and destructive polyarthritis. This is accompanied by  

a progressive spread from small to large joints, which is often associated with the presence 

rheumatoid factor and/or anti-cyclic citrulinated peptide (Singh et al., 2015).  Small joint 

inflammation in the lower limb is a hallmark of early RA, although the site of 

initial presentation may vary – knee: 8%; foot: 13% and ankle: 6% (Combe, 2009).  Variability 

in its clinical presentation means that the pattern of disease may be either monoarticular or 
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polyarticular at initial onset, with joint damage ranging from mild cartilage degradation to 

rapidly progressive erosive disease.  An additional defining feature of early RA is a disease 

course that may be either cyclic or unrelenting (Emery and Symmons, 1997; van Zeeben et al., 

1994; Wolf, 1996).  A variable combination of these characteristics produces a broad 

heterogeneity that is in part manifested in differences in disease outcomes ranging from 

remission to severe disability and premature mortality (Emery et al., 2014).  

 

2.2.3 Disease Classification 

The necessity of basing the diagnosis of RA upon the pattern of clinical and investigational 

findings, means that the clinical recognition of RA within the earliest stages of the disease 

remains a key diagnostic challenge (Dale, 2010).  As the pattern of clinical features develop 

over time, it is disease chronicity which is a key pathological feature (Singh et al., 2015). For 

this reason, American College of Rheumatology/European League Against Rheumatism 

(ACR/EULAR) classification criteria presented in table 2.1 also require clinical features to be 

present for at least six weeks (Aletaha et al., 2010). 

 

2.2.4 Pharmacotherapy 

As structural damage associated with early disease cannot be reversed, pharmacotherapy is the 

cornerstone of treatment in early RA (Aletaha and Smolen, 2011). Advancements in the 

management of early RA have seen a gradual shift away from an escalated, or conventional 

step-up approach to pharmacotherapy, in favour of one in which treat to target is the primary 

aim. This approach incorporates stringent disease control combined with the aim of achieving 

a predefined level of low disease activity, or ideally, remission within the first two years.    
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NICE guidelines recommend the early use of Methotrexate as first-line therapy as an “anchor 

drug” combined with a second disease-modifying antirheumatic drugs (DMARD) plus the use 

of short term glucocorticoids, tapering the most toxic drug first and maintaining the DMARD 

with the best efficacy/toxicity ratio for as long as required (NICE, 2009). Histologically, the 

period of transition between immune plasticity and immune rigidity coincides with pannus 

formation and erosive joint damage. At this point, therapeutic interventions have the capability 

to fundamentally alter the disease course and hence the disease prognosis (Luqmani et al., 

2006). Beyond this “window of opportunity”, a predictable course of abnormal inflammation 

and immune dysfunction develops which is less responsive to immunomodulatory therapy 

(Blom and Riel, 2007). 

 

Table 2.1: 2010 ACR-EULAR classification criteria for early RA 

 

Joint Involvement   
 

Score 

 1 large joint 
 

0 

2-10 large joints 
 

1 

1-3 small joints 
 

2 

4 -10 small joints 
 

3 

>10 joints (at least 1 small joint) 
 

5 

Serology 
 

 

Negative RF positive ACPA 
 

0 

Low-positive RF or low-positive ACPA 
 

2 

High-positive RF or high positive ACPA 
 

3 

Acute Phase Reactants 
 

 

Normal CRP and normal ESR 
 

0 

Abnormal CRP or abnormal ESR 
 

1 

Duration of Symptoms 
 

 

<6 weeks 
 

0 

≥6 weeks 
 

1 

  
Score of ≥6/10 is needed for classification of definite RA   
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2.2.5 Radiographic progression 

Data on the rate of radiographic progression in early disease is not unanimous.  Radiographic 

progression in early RA has variously been described as approximately linear, fast-slow, slow-

fast and sigmoid (Hulsmans et al., 2000; Plant et al., 1998; Dixey et al., 2004; Graudal et al., 

1998). In fact, the severity of radiological changes and erosion rates within the first year of 

disease vary considerably. The majority of early RA patients develop structural damage within 

the first two years of disease. Significant radiographic progression was reported in patients 

within the first twelve months by Fautrel and colleagues who noted that 32% of all patients 

treated with conventional DMARD therapy demonstrated evidence of disease progression 

defined by a mean change of 1.6 ± 5.5 on the modified Sharp/Van der Heidje score (SHS). Of 

these, rapid radiological progression, defined as structural damage of at least 5 points on the 

SHS, was noted in 11% of patients irrespective of baseline risk factors (Fautrel et al., 2012).    

 

2.2.6 Outcomes in early RA 

With clear guidelines on the classification of early disease, the question arises as to whether 

the early recognition and management of RA has improved outcomes for patients? This 

depends upon how outcomes are measured. Where management is commenced in the first three 

months following disease onset, 50% of patients achieve medically managed remission 

compared with 15% where the onset of treatment is delayed (Deighton et al., 2010).  There are 

of course consequences arising from a delay in instituting a diagnosis. A study by Rat et al., 

(2004) reported a 73% risk of establishing erosive disease prior to the onset of treatment where 

treatment is delayed by more than twelve months.  Despite the clear benefits of early treatment, 

the mean duration of time between the onset of synovitis and commencement of therapy 

remains in excess of 6 months (Sorensen et al., 2015).   
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If the early recognition and management of this disease has so far proven to be clinically 

challenging, the question arises as to whether improvements in the management of early RA 

have led to a reduction in the physical impairment seen in patients living with this condition? 

The following sections discuss this aspect with specific focus on the foot and lower limb.  

 

2.2.7 Physical impairment in early RA 

Whilst achieving the complete remission of disease activity is now seen as a realistic objective 

in the management of early RA, sustained remission may be unachievable (Deighton et al., 

2010).  In practice, routine clinical and laboratory examinations incorporated within composite 

indices also appear to lack sufficient sensitivity to assess remission according to this definition 

(Balsa et al., 2010).  Ultrasound investigations of both early and established DMARD treated 

RA  have demonstrated the presence of on-going synovitis in the presence of DAS28 defined 

remission,  suggesting that remission according to current clinical indices may not necessarily 

be accompanied by the complete suppression of disease activity (Brahe et al., 2016; Dale et al., 

2016; Moller et al., 2017; Mouterde et al., 217). This may therefore be a factor underlying 

previous observations that despite improvements in pharmacotherapy, walking impairments 

remain a key feature of early disease (Van der Leeden., 2008; Otter et al., 2010).  

 

2.2.8 Early foot involvement in RA 

A key characteristic determining the manner in which walking impairments manifest is the 

high frequency of  foot pathologies seen in early RA. In 63 early RA participants recruited 

through the National Rheumatoid Arthritis Society (NRAS), Otter et al., (2010)  found that the 

frequency of foot pain within the first two years following symptom onset reached 90.5% 
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despite DMARD therapy. Similar findings were also seen in hospital recruited participants 

(88.2%). When anatomical location was taken into account, this group reported that the 

frequency of pain was found to be greatest at the forefoot (63.3%). A high frequency of pain 

was also reported at the ankle in 42% of participants whilst the rearfoot was affected in 21.8%. 

Though the frequency of pain was found to be least at the midfoot, this was still reported in 

17% of participants (Otter et al., 2010).   

 

2.2.9 Joint involvement patterns within the foot in early RA 

Disease of the forefoot is the first manifestation of RA in 15% of patients (Trieb et al., 2013). 

The presentation of disease related structural damage within the forefoot appears to follow a 

characteristic pattern of joint involvement. Ultrasound analysis of 31 DMARD treated patients 

by Bowen et al., (2010) found early evidence of synovial hypertrophy at the fifth metatarsal in 

around 74% of  patients. Around 58% of these patients also exhibited similar  changes at the 

second metatarsal.  This group also found erosion rates at the first metatarsal to be high, 

reaching 75%. This was observed to be far greater than that seen at second metatarsal (9.7%). 

By contrast, active metatarsophalangeal joint (MPJ) synovitis was found to be less prevalent,  

ranging from 9.7% to 3.2% for the fifth and second MPJ respectively (Bowen et al., 2010).  In 

an magnetic resonance imaging (MRI)  study of 24 patients, Siddle et al., (2012) reported 

pathological changes to be present in all of the lesser metatarsals. This group found the fifth 

MPJ to be the most commonly affected site in the forefoot with bone oedema and erosions 

affecting between 92% and 50% of participants depending upon site and pathogenic process. 

Localised plantar plate pathology at the lesser metatarsals was associated with MRI located 

synovitis 71%, bone oedema 71% and erosions 71%.   
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In a follow up study,  Siddle and colleagues speculated that the prevalence of early pathological 

changes within the forefoot are under the influence of factors such as  altered foot kinematics, 

possibility acting in conjunction with  inflammatory pathophysiology and structural changes 

affecting the plantar plate mechanism to determine the severity of changes  (Siddle et al., 2014). 

In this study,  bone erosions favoured a distribution pattern that was predominantly plantar-

medial and plantar-lateral in nature, affecting primarily the fifth metatarsal.  These changes  

were found to co-exist with reductions in plantar pressure, ranging from 581.5kPa ± 379.6  at 

the first MPJ to 355.2kPa ± 242.0 at the fifth. This was felt by this group to indicate the presence 

of pathomechanical modifications to gait in response to early disease.  

 

Within the foot, clinical observations have indicated that synovitis may deteriorate over time, 

responding to interventional pharmacology at a much slower rate than markers of disease state 

would indicate. Observations of soft tissue pathology suggest that synovitis may be initiated 

by the pathological processes that are active in early RA but then perpetuated independently 

by mechanical trauma (Bowen et al., 2010).  Little is known of the role of foot pathology in 

relation to walking impairments in early RA. Investigating this mechanical component of early 

disease therefore warrants further investigation.   

 

2.2.10 Frequency of lower limb involvement in early RA 

Reflecting the propensity of early RA to affect multiple joint sites within the lower limb,  

Grondal et al., (2008) found that concurrent involvement of the forefoot and knee was seen   in 

14% of patients. An additional 9% of patients also found to experience combined hindfoot-

ankle-knee involvement (Grondal et al., 2008). Where more than one joint is involved a median 
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of 3 joints are affected with concurrent involvement of the foot, hand and shoulder being the 

most frequently seen combination in 47% of cases. This is followed by foot, hand and knee 

involvement which was seen in 45% of patients (Grondal et al., 2008).  Given the high 

prevalence of walking impairments in early disease, whether these arise primarily from active 

foot disease or from the simultaneous pathomechanical function across multiple joint sites is 

unclear. Understanding where within the foot and lower limb functional impairments first arise 

would allow more targeted assessments and interventions to be undertaken in early RA.      

 

2.2.11 Walking impairments in early RA 

In an attempt to reposition joints to lessen symptoms, patients with early RA adopt antalgic 

gait patterns.  For this reason, active foot disease is considered the primary cause of walking 

impairments in early RA. A study by Van der Leeden and colleagues of 848 DMARD treated 

patients found the prevalence of walking impairments to be around 56.7% within the first two 

years following diagnosis. Of these 32% of patients described their disability as mild, 20% as 

moderate and 4% as severe (Van der Leeden et al., 2008).   The assessment and management 

of altered ‘function’ in early disease is recommended in rheumatology core set guidelines by 

Woodburn et al., (2010).  However, little appears to be known of the simultaneous joint 

movement strategies that facilitate antalgic gait patterns adopted in early RA. Evaluating the 

location and magnitude of these early alterations in joint movement patterns within both the 

foot and lower limb may help elucidate the pathomechanical origins of early physical 

impairment. Yet, assessing altered joint movement patterns is difficult, in part due to the 

complex anatomy of the foot and lower limb and the limitations of current measurement 

protocols (Jarvis et al., 2013).  
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2.2.12 Limitations in assessing lower limb biomechanical impairment in early RA 

Currently no quantitative measure of lower limb biomechanical function is recommended for 

the evaluation of early RA in guidelines published by NICE (NICE, 2009). Though guidelines 

published by NWCEG outline essential requirements for foot and ankle assessment, there are 

no specific guidelines set out for the musculoskeletal assessment of the foot and lower limb 

(Williams et al., 2011).  Furthermore, whilst guidelines published by Woodburn et al., (2010) 

advocate the early screening and management of residual foot pathology in RA, candidate 

outcomes recommended by this group for the assessment of the residual foot pathology do not 

measure physical function directly.  

 

Compounding this, current paradigms of musculoskeletal assessment are unsuitable for use in 

the assessment of physical impairment in earl RA.  A central paradigm that still underpins 

clinical practice is that of Root and colleagues (Root et al., 1977). However, the clinical 

assessment techniques attributed to this group have been found to poorly correlate to foot 

kinematics during gait (Nester., 2009;  Jarvis et al., 2017). As clinical assessments of 

musculoskeletal pathology are often largely based upon observation rather than objective 

measurement, a paucity of evidence currently informs the clinical recognition and management 

of musculoskeletal conditions (Jarvis et al., 2017).   In the absence of validated outcome 

measures for use in the musculoskeletal assessment of the lower limb in patients with early 

disease, clinical research has adopted 3D motion capture to provide data on spatial-temporal 

parameters, joint kinetics and joint kinematics. 
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2.3 Evidencing lower limb functional impairment using 3D motion capture 

The following sections discuss the application and limitations of 3D motion capture in the study 

of biomechanical function in early RA. 

 

2.3.1 3D Motion Capture 

It is assumed that 3D motion capture mitigates against current conceptual limitations by 

providing a reliable and objective measurement of musculoskeletal status (McGinley et al., 

2013).  Furthermore, the magnitude of error reported in 3D motion capture data is considered 

compatible with that of clinical decision making (Schwartz et al., 2004). As it is not 

theoretically embedded within current paradigms of musculoskeletal assessment, the 

pathomechanics and symptomology of the foot and lower limb may instead be explained 

though  the analysis of kinetics and kinematics. Kinematics refers to joint movement patterns 

adopted by individuals, independent of those forces that cause movement. Kinetics refers to 

those forces that result in movement, be they internal (due to muscle contraction) or external 

(due to gravity). Data on these parameters therefore provide information on what causes 

movement of the lower limb to take place (Capozzo et al., 2005). It is within these definitions 

of biomechanical function that investigators have studied the impact of early RA on the foot 

and lower limb.   

 

2.3.2 Biomechanical modelling in 3D motion capture  

In 3D motion capture, biomechanical models have been  used to represent the foot as a system 

of rigid segments, each defining a specific anatomical structure (Rankine et al., 2008). 

Movement between adjacent segments characterise joint rotation patterns (Capozzo et al., 
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2005). Whilst early studies of foot kinematics in RA represented the foot as a single rigid 

segment, variability in marker placement  in the presence of deformity resulted in errors in data 

in excess of 6° (Davis et al., 2008). With the need to provide more reliable and comprehensive 

data, a number of multisegment foot models have been described in the literature. The number 

of segmental definitions in these models vary, from two segments (Kepple et al., 1990; Mosely 

et al., 1996),  three segments (Hunt et al., 2001; Davis et al., 2008), four segments  (Cornwall 

and McPoil, 2002; Myers et al., 2004; Kidder et al., 1996; Carsen et al., 2001), five segments 

(Kitaoka et al., 2006; Tome et al., 2006;  Jenkyn et al., 2007), six segments (Jenkyn and Nicol, 

2001; Leardini et al., 1999; Tome et al., 2006), seven segments (Hyslop et al., 2010) and nine 

segments (Hwang et al., 2004; McWilliams et al., 2003).  

 

2.3.3 Biomechanical models used in early RA research 

Of the aforementioned multisegment models, those described by Carsen et al., (2001),  Kidder 

et al., (1996) and Hyslop et al., (2010) have been applied to participants presenting with early 

RA (Turner et al., 2006; Khazzam et al., 2006; Barn et al., 2013; Gibson et al., 2014).  

Differences in the calculation of segmental rotations between these foot models makes 

comparability between studies difficult (Rankine et al., 2008).  Two of these models (Carsen 

et al., 2001; Hyslop et al., 2010) use the Joint Coordinate System (JCS) outlined by Grood and 

Suntay (1983). Segmental rotations are therefore calculated about an orthogonally located  

floating axis. By contrast, the model described by Kidder et al., (1996) uses a joint projection 

angle technique described by Simon et al., (2006).  Differences in these conventions have been 

shown to result in discrepancies in the calculation of segmental rotations by up to 5° in the 

frontal and transverse plane (Cappozzo et al., 2005).  
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2.3.4 Statistical approaches to data analysis in early RA research 

In describing the kinematics of the foot in early RA using 3D motion capture, several 

challenges have faced investigators. Foremost among these is that the pathological processes  

affecting tendon, soft tissue and bone  may spontaneously give rise to a variable combination 

of non-random, structured movement patterns. Together, these give rise to the concept of 

physiological complexity (Manor et al., 2010). In attempting to measure physiological 

complexity, investigators have historically viewed these data as the consequence of 

deterministic motor behaviours which are both predictable and the product of linear 

correlations between data (Van Emmerick et al., 2016).   

 

Reflecting this deterministic approach to data analysis, foot kinematics in early RA have so far 

been reported using the mean and standard deviation of angular rotations at  predetermined gait 

cycle events (or discrete variables) derived from  conventional descriptions of the gait cycle by 

Perry, (1992). These discrete variables have varied across studies, focusing on the use of data 

at  initial contact (Turner et al., 2006), toe-off (Turner et al., 2006), mean angular rotations 

(Turner et al., 2006; Barn et al., 2013; Gibson 2014) and the total range of motion (Khazzam 

et a., 2006).  A limitation of this approach is that historically  the pathomechanical significance 

of these events have been viewed as arbitrary (Schwartz et al., 2012). Furthermore, the analysis 

of discrete variables does not provide data on the duration of gait over which  altered segmental 

kinematics deviate from that considered normal (Cimolin and Galli., 2014). Given that 

kinematic data incorporate this temporal component, this may be problematic; waveform data 

exhibit contractions and dilatations which serve to amplify or diminish between-group 

differences beyond these predetermined discrete variables (Schwartz et al., 2012).  
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Accompanying these sigmoidal fluctuations in kinematic waveforms, variance in these data is 

viewed as an intrinsic feature of gait (McGinley et al., 2013). Studies of early RA have 

expressed such cycle-to-cycle variability using the statistical concept of variance (Field, 2009). 

Whilst this acknowledges that the rhythmic movement patterns seen in early RA kinematics 

may be both stable and variable, reporting early RA kinematics in this manner does not take 

into account the presence of randomness and stochasticity within these movement patterns 

(Riley and Turvey., 2002).  With sample sizes ranging from 10 early RA participants (Barn et 

al., 2013) to 15 (Gibson et al., 2014), it is also uncertain as to whether between-group 

comparisons with healthy controls are free of type II error (Portney and Watkins, 2009).   

 

2.3.5 Alternatives to discrete variable analysis in early RA 

Alternatives to discrete variable analysis have been limited. In mitigating against the limitations 

of discrete variable analysis, investigators have instead used the coefficient of multiple 

correlation (CMC) to examine gait between-subject variance across the full duration of gait 

(Gibson et al., 2014). This approach is still problematic. Roislien et al., (2012) found that the 

CMC is affected by signal-to-noise ratio,  so that small ranges of motion may compromise the 

amplitude of waveform data relative to measurement error and natural variation. As a result, 

erroneously low CMC values may be computed. An additional observation was that the CMC 

does not adjust for a high correlation that may exist between data points that make up a gait 

waveform. This again may lead to misleadingly low CMC values. Roislien and colleagues 

concluded that as an objective measure the CMC should not be used in its current form. In 

elucidating the impact of early RA on foot kinematics, finding an alternative to the CMC is 

therefore an aspect that warrants further investigation (Roislien et al., 2012).  
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Current methods of measuring and describing altered foot motion in early RA may not 

adequately take into account physiological complexity in altering movement patterns. It is 

plausible that the true magnitude, location and timing of altered foot kinematics in early RA 

have yet to be fully clarified. To elucidate such data, an alternative statistical technique to the 

CMC is required. In advancing current understanding of the nature of mechanically based 

trauma within the foot and lower limb, this is an aspect that warrants further investigation.  

 

2.3.6 Early RA foot kinematics 

This section discusses what has so far been published on the impact of early RA upon on the 

kinematics of the rearfoot, forefoot, first MPJ, knee and hip.   

 

2.3.7 The rearfoot  

A long term consequence of RA on the foot is the pathogenesis of pes planovalgus (Turner et 

al., 2006). The role of rearfoot kinematics in the early onset of pathomechanical function has 

therefore been of particular interest to investigators.  Woodburn et al., (2002) found that the 

kinematics of the rearfoot become altered even in the presence of moderate disease activity 

(DAS = 3.4 ± 1.2), low-to-moderate functional impairment (HAQ = 1.00 (0.47, 1.75) and low 

levels of radiographic damage (Larsen index of feet was 5.5 (0, 13.8).  The rearfoot was 

observed to operate within an everted and internally rotated envelope, with peak eversion 

increasing by 6.8°, reaching a maximum of -10.6° ± 5.4°. This was accompanied by an increase 

in internal rotation of the rearfoot of 4.8°. Although the timing and duration of these features 

have yet to be elucidated, similar observations were made in a cross-sectional study by Turner 

et al., (2006).  Reporting on the segmental kinetics and kinematics in a group of twelve patients 
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within the first two years following symptom onset,  this group noted that  moderate disease 

activity (DAS28 <3.2) modulated by both conventional and biological therapies, did not protect 

against the onset of pathomechanical function. Peak rearfoot eversion was found to reach -5.5° 

± 9.8°, 20% greater than that seen in controls. These changes were also accompanied by a 

greater magnitude of dorsiflexion at the initial contact, evidenced by an increase in foot contact 

angle of 14.2° ± 4.5° in early RA patients compared with 13.8° ± 2.4°seen in controls.   

 

Whilst rearfoot alignment is altered in early RA, the total range of frontal plane motion appears 

not.  Woodburn et al., (2002) found this to be reduced by 0.9°,  whilst differences in sagittal 

plane motion were not found to be non-clinically relevant, exhibiting  only a 2.1° between-

group difference.  With the relative preservation of motion, this may explain why rearfoot 

malalignment has been shown to be reducible within the first two years of diagnosis. When 

personalised orthoses are prescribed, peak rearfoot eversion has been shown to reduce to 

between -1.8° and -2.2° (Gibson et al., 2014). This raises the possibility that additional data on 

the timing, magnitude and duration of theses changes may help in the enhance targeting of such 

interventions.  

 

2.3.8 The midfoot 

There is limited published data on the kinematics of the midfoot in early RA. Investigating the 

contribution of rearfoot malalignment to the pathogenesis of long term functional outcomes is 

technically challenging.  Three-dimensional foot models rely on the use of the palpable 

anatomical landmarks to define joint axes and track movement patterns (Cappozzo et al., 2005). 

Where these landmarks are absent or where specific bones are inaccessible, it is not possible 
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to model structures such as the midtarsal joint with an acceptable level of precision (Deschamps 

et al., 2012). With the exception of the multisegment foot model described by Hyslop et al., 

2010, none of the models so far used in early RA research have included a segmental definition 

of the midfoot. Whilst the foot model described by Hysop et al., (2010) defines the midfoot 

segment, its kinematics were not described by Gibson et al., (2014) owing to the limitations of 

in-shoe measurement of midfoot kinematics.   

 

In the presence of early RA, the sagittal plane excursion of the navicular has been used as a 

proxy of midfoot kinematics (Turner et al., 2006; Gibson et al., 2014).  Turner and colleagues 

observed that where increased rearfoot eversion is present, peak medial longitudinal arch 

(MLA) height reduces by 8% (Turner et al., 2006).   In a study of 10 participants in the first 

three years of diagnosis, Barn et al., (2013) also reported midfoot collapse in association with 

rearfoot pathology.  This group noted that whilst the percentage of maximum isometric 

contraction of tibialis posterior, expressed as a median and interquartile range, was found  to 

be increased at initial contact (RA group, 48% (35 – 116); Control group, 22 (14-28)), this was 

insufficient in preventing pathomechanical alterations, characterised by a reduction in 

navicular height of 71% (RA group, 29mm ± 9 compared; Control group, 41mm ± 0.1).   

 

Whilst corroborating clinical observations of the pathomechanical inter-relationship between 

rearfoot and midfoot kinematics, these data do not fully elucidate the complexity of coordinated 

movement between these segments.  Given that end stage functional impairment in RA 

historically been reported to be associated with the decoupling of motion between the shank, 

rearfoot and midfoot within six years of diagnosis (Woodburn et al., 1999). Investigating the  

coupling of motion between these two segments in early RA  warrants further investigation, 
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especially as altered function at these sites has been shown to be amenable to early intervention   

(Gibson et al., 2014).    

 

2.3.9  The forefoot  

Three-dimensional motion capture studies do not include data on forefoot kinematics in early 

RA. This contrasts to established disease where RA participants may eventually exhibit an 

overall reduction of motion in all three cardinal body planes of up to 3.1°.  The largest between- 

group differences have been reported for  peak plantarflexion  which has been shown to be 

reduced by 4.1°  (Woodburn et al., 2004).   Turner et al., (2008) found that regardless of where  

primary deformity is located,  a decrease in the range of motion at the forefoot of more than  9° 

may be seen when compared to healthy controls.  

 

These data should be treated with caution. The forefoot is highly deformable and kinematic 

data, particularly that of the first metatarsal, have been found to violate assumptions of rigid 

body modelling; a major factor determining error in 3D motion capture data.  A study by Nester 

et al., (2014) tracking the motion of intra-cortical bone pins, reported that displacement of the  

first metatarsal to range from 1.6° to -3.9° in the frontal plane and from 2.9° to -5.4° in the 

transverse plane.   

 

Analysing the simulated gait in ten cadavers Okita et al., (2009) observed significant 

differences in motion between skin mounted markers and intra-cortical bone pins. This group 

found that transverse plane motion of intra-cortical pins was particularly susceptible to error, 

leading to errors in measurement of 4.1° in transverse plane rotations of the first metatarsal. 
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Skin motion artefact between intra-cortical bone pins and surface mounted markers  was also  

found to range between 3.4° and 3.7°.  Given that the acceptable level of absolute error in 3D 

motion capture is considered to be 5° (McGinley et al., 2013), this calls into question the utility 

of investigating forefoot motion using rigid body modelling (Okita et al., 2009).   

 

2.3.10 The first metatarsophalangeal joint 

Participants with early RA have been shown to exhibit a reduced range of dorsiflexion at the 

first MPJ by up to 12.9° (Khazzam et al., 2006).   Whether this also corresponds to a decrease 

in both the foot elevation angle at terminal stance (RA, -82.2 ± 2.0; Control, -69.1 ± 13.5) and 

plantarflexion moment of gastrocnemius and soleus of -1.5 ± 0.1 Nm/kg reported by Turner et 

al., (2006) is uncertain.  Investigating the relationship between these motion patterns may 

further elucidate the adaptive that processes take place  in early RA gait. Localised synovitis 

and erosion at the first MPJ has been shown to demonstrate a strong negative correlation 

coefficient to maximum dorsiflexion (95% CI -0.8, -0.3) (Dubbledam et al., 2011). Alterations 

of this nature are thought to act as an adaptation process, limiting compressive forces applied 

to the joints of the forefoot and thereby reducing pain to the forefoot (Laroche et al., 2005).    

The mechanical consequence of which is  thought to shift the plantar aspect of the foot posterior 

to the centre of pressure resulting in a smaller ankle plantarflexion torque and leg acceleration 

into the following swing phase (Neptune., 2001). The relationship between changes in adaptive 

kinematics at the first MPJ and those seen elsewhere within the lower limb have yet to be 

investigated in early RA.  

 

 



  

57 
 

2.3.11 The knee 

In early RA, contemporary data on the impact of early RA on knee kinematics is lacking. In 

established disease electromyography has previously suggested a link between 

pathomenchanical function of the foot and that of the knee. Woodburn and colleagues 

conjectured that valgus deformity of the rearfoot in excess of -13.7°± 4.9  may be accompanied 

by a reduced motor strength in gastrocnemius, soleus and tibialis posterior as reported by 

Keenen et al., (1991) in a study of established RA. This causal relationship appears not have 

been given serious attention. It is possible that a deceleration of the forward advancement of 

the tibia associated with adaptive mechanics may result in an increased valgus alignment and 

tissue stress at the knee as suggested by (Woodburn et al., 1999). Since that study, there appears 

to be limited published research investigating the inter-relationship of between the kinematics 

of the foot and those of the hip and  knee, especially in early RA. With total joint replacements 

of the knee reported to be 49.4% of patients (Nikiphorou et al.,  2014), investigating this aspect 

further may provide novel data on the possible role of altered foot function in mechanically 

based trauma to the knee in early RA. With that knowledge, interventions may be targeted 

towards improving foot function.  

 

2.3.12 The hip 

Data on hip kinematics in RA are also scarce. In particular, the impact of antalgic gait patterns 

on hip kinematics in early RA may be an important omission.  Once established, RA may result 

in limitations in motion at this joint. Reporting on sagittal plane data, Weiss et al., (2008) 

studied lower limb joint movement patterns in fifty pre-operative participants with a mean 

disease duration of seventeen years presenting with moderate self-reported physical 

impairment (HAQ = 1.03 ± 0.66). Using the conventional lower limb model described by Davis 
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et al., (1991) this group observed that when participants exhibit a reduced walking velocity of 

0.96m/s ± 0.32, the total range of hip motion may be reduced by up to 14° in conjunction with 

a reduced range of abduction of up to  4°. Importantly, these changes were found to occur in 

conjunction with a reduction in ankle plantarflexion of 10°.  With the development of antalgic 

gait patterns seen as  a key feature of physical impairment in early RA (Carroll et al., 2015), 

this raises the possibility that such impairments in function may be established early, arising 

from the interaction between altered segmental  kinetics and kinematics at the foot, ankle, knee 

and hip.  Identifying and measuring alterations of this nature may allow a greater targeting of  

interventions to be provided at an earlier point within the natural history of the disease.  

 

2.3.13 Future directions 

It may be argued that accounts of pathomechanical function in early RA have been based upon 

the premise that these exhibit deterministic behaviour patterns.  This may not take into account 

the complex interrelationship between the main functional components of the foot and lower 

limb acting under the combined influence of  mechanical and pathophysiological processes 

(Van Emmerick et al., 2016). To extend what is currently understood of the pathomechanical 

function of the foot and lower limb in early RA, adopting novel statistical approaches may be 

necessary in providing unique data elucidating pathomechanical relationships between the 

main functional components of the foot and lower limb.  

 

In finding alternatives to the use of discrete variable analysis, one approach may be to recognise  

that the biological impact of early RA on human tissue may result in  segmental kinematics 

that exhibit non-linear behaviours under the influence of  more than one independent variable 
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(Van Emmerick et al., 2016).  This implies that the kinematics in early RA may be impacted 

upon by the external effects of both deterministic and random processes associated within the 

pathophysiology of the disease (Riley and Turvey, 2002).  For investigators studying the impact 

of early RA on foot kinematics, this may have important  implications for the way in which 

these data are analysed and interpreted.  It is plausible that in early RA, non-linear behaviour 

in foot kinematics operate within what  is termed a ‘dynamical system’ (Van Emmerick et al., 

2016).  Reflecting the impact of physiological complexity, this approach acknowledges that 

movement behaviours may evolve over time, whether they occur within a steady state or are in 

a period of change (Beck, 1995).  The issue of how altered kinematics in early RA are measured 

therefore becomes important.  

  

In a dynamical system, physiological complexity and non-linear behaviour manifest in the form 

of kinematic variability. This arises from the independent contributions of the soft tissue and 

osseous components of the foot which  allow  motor tasks such as gait to be performed using 

different degrees of freedom (Riley and Turvey., 2002). Within a dynamical system, variability   

is measured through the coordinated (or coupled)  motion that takes place between segments 

(Stergiou et al., 2001).   This represents a fundamentally different conceptual approach to that 

previously undertaken in studies of early RA (Turner et al., 2006; Khazzam et al., 2006; Barn 

et al., 2013; Gibson et al., 2014).  

 

In moving forward, analysing intersegmental coupling may offer an adjunct to conventional 

forms of kinematic analysis so far used in early RA research. As intersegmental rotations occur 

at different angular velocities and directions,   distinct regions of variability in segmental 

rotations occur during gait which conventional forms of data analysis are unable to measure 
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(Stergiou et al., 2001). At present, it is not known whether coordinated motion within the foot 

and lower limb is impacted in the presence of  early RA. This is a significant omission; when 

the degrees of freedom of movement are reduced to a critical threshold, injury or disease may 

result (Lipitz and Goldberger., 1992).  

 

Studying the variability of inter-segmental coupling may provide a critical  measure of 

pathomechanics  that has yet to be investigated in early RA. It is possible that in early RA, 

alterations in coordinative variability may play a key role in inducing mechanically based 

trauma to already pathologically compromised tissue. Given that segmental kinematics 

incorporate a spatial-temporal component (Riley and Turvey, 2002),  using a parameter which 

incorporates the elements of space, time and motion would provide a novel approach when 

investigating pathomechanical function in early RA.  Analysing coordinative variability may 

provide such a measure which has yet to be applied in 3D motion capture of early RA. Altered 

coordinative variability may represent an important injury mechanism that has yet to be 

elucidated, necessitating alternative methods of data analysis when moving forward with early 

RA research. If found to be present, alterations in coordinative variability may provide 

additional evidence supporting the view that pathomechanical foot function is an exacerbator 

of continued synovitis seen within the foot (Bowen et al., 2010).  

 

2.3.14 Errors associated with 3D motion capture 

Data collection using 3D motion capture is susceptible to error (Schwartz et al., 2004).  Error 

represents the variance component of data not attributable to true variance (Bruton et al., 2000). 

This occurs primarily due to incorrect marker placement arising from ambiguities in the 
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segmental definitions of biomechanical models and investigator fallibility (McGinley et al., 

2013). In developing protocols for future motion capture research in early RA, investigators 

must be confident that these are robust.  Where these data are to be used for clinical decision 

making, this is of particular relevance. With this in mind, this section focuses on how sources 

of error may adversely affect 3D motion capture data.  

 

2.3.15 Errors associated with lower limb kinematic data 

The Conventional Lower Limb Model (alternatively known as the Plug-in Gait model) is the 

most widely used lower limb biomechanical model and has been previously validated for use 

in the three-dimensional motion analysis of the lower limb (Kadaba et al., 1990).   A limitation 

of this model is the use of landmarks that may be only partially anatomical in nature when 

defining lower limb segments. This may result in errors in marker placement primarily 

affecting the repeatability of frontal and transverse plane data (Kadaba et al., 1990; Kadaba et 

al., 1991; Tsushima et al., 2003).  

 

The definition of embedded axes at the hip and knee are highly dependent upon marker 

placement.   Ramakrishnan and Kadaba (1991) reported that perturbation of the embedded axes 

within this model result in the flexion/extension axis of the hip and knee being displaced by up 

to 30 degrees, with sagittal plane data largely unaffected. Errors in knee abduction/adduction 

were found to reach 8-12° by midstance (60-80% of stance).  During the early to mid-swing, 

(60-80% of swing) errors in abduction/adduction angle increase (8-12⁰) with greater knee 

flexion (40-60⁰). Hip abduction/adduction angle errors were relatively larger in the stance 

phase (5-7⁰) with increasing flexion (30-35⁰).  In 40 able bodied participants, aged between 18 

and 40 years, Kadaba et al., (1990) found that transverse plane rotations demonstrated the 

lowest magnitude of repeatability. Although this resulted in CMC values that ranged between 
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0.918 ± 0.087 (hip rotations) and 0.885 ± 0.053 (ankle rotations), marker placement did not 

appear to significantly affect within-session repeatability in these kinematic data.   

 

Marker placement error may result in a decreasing hierarchy of repeatability. Tsushima et al., 

(2003) found that CMC values for transverse plane rotations were least repeatable, ranging 

from 0.812 ± 0.128 for knee rotations to 0.826 ± 0.120 for rotations at the hip, compared to 

sagittal plane rotations ranging from 0.993 ± 0.005 for hip flexion/extension to 0.975 ± 0.010 

for ankle dorsiflexion/plantarflexion.  Similarly, in a study by Meldrum et al., (2014) using the 

intraclass correlation (ICC) method, moderate to excellent repeatability of measures ranging 

from 0.63 to 0.84 were observed for sagittal plane rotations at the hip, knee and ankle.  Frontal 

plane rotations at the knee were reported to be poor, ranging between 0.20 and 0.38 for varus 

and valgus movements respectively. In addition, internal and external rotations at the knee were 

also observed to suffer from high levels of error with ICC coefficients of 0.34 and 0.25 for 

external and internal rotations in the transverse plane.  

 

2.3.16 Errors associated with lower limb kinetic data 

Test-retest repeatability of kinetic measures have been reported to vary at different sites within 

the lower limb. Overall, the highest levels of repeatability appear to occur within the hip and 

for sagittal plane data in particular. Weiss et al., (2007) reported mean joint moments for the 

hip to range between 0.95, 0.93 and 0.81N/kg for extension, flexion and abduction at this joint. 

In terms of repeatability, Meldrum et al., (2014) reported ICC values for these parameters to 

be 0.81, 0.71 and 0.70 respectively.  By comparison knee joint moments appear to demonstrate 

a lower magnitude of repeatability. Joint moments at the knee are lower than those seen at the 

hip with Weiss et al., (2007) observing joint moment values at this site to be 0.53, 0.45 and 

0.51 N/kg for knee joint extension, flexion and valgus rotation.  However, lower ICC values 
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were also observed by Meldrum and colleagues for the knee with respect to extension moments 

(ICC = 0.70) and flexion moments (ICC = 0.51).  Ankle joint moments have been reported to 

be 1.49 N/kg for plantarflexion and 0.18 N/kg for dorsiflexion. In terms of sagittal plane 

repeatability at this site, Meldrum reported an ICC value of 0.67 (Meldrum et al., 2014).  

 

2.3.17 Errors associated with foot kinematic data  

Anatomical landmarks on the foot may be either difficult to palpate or even absent, leading to 

uncertainties in marker placement. Of the aforementioned multisegment foot models cited in 

section 2.3.3, only those published by Hyslop et al., (2010) and Leardini et al., (1999) describe 

midfoot kinematics. Of these, only the Leardini foot model was explicitly developed to meet 

international Society of Biomechanics (ISB) guidelines on the measurement and reporting of 

segmental kinematics (Wu et al. 2001).   

 

But repeatability data for this model are limited. A study of two healthy participants (aged 27 

years) by Deschamps and colleagues reported on the inter-trial and inter-rater repeatability of 

the Leardini Foot Model.  This group observed that the greatest inter-session variability in 

mean angular rotations were seen in sagittal plane rotations at the Calcaneus-Midfoot (7.8°), 

Shank-Calcaneus (7.4°) and Calcaneus-Metatarsus (7.1°) segments. When inter-trial and inter-

investigator data were combined and expressed as a ratio (r), variability at these sites remained 

highest with differences in joint angles being reported as 10.4°, 8.7° and 7.9° respectively.   

Inter-session variability was reported to be least at the Shank-Foot and Calcaneus-Metatarsus 

(1.9°) segments.  
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Deviations in marker placement at the sustentaculum tali and peroneal tubercle result in large 

excursions in the orientation of calcaneal reference frame and hence relevant joint angles 

(Carravagi et al., 2011). This is subject to a learning effect. A study of 8 participants (mean age 

48 ± 15.4 years) using a repeated measures design by Deschamps et al., (2012) found that 

within-day and between day repeatability of data collected between senior and junior clinicians 

varied.  Using a z-score based analysis of mean range of motion data, 83% of absolute 

measurements by senior investigators were found to have a similar z-score,  decreasing to 74% 

where data were collected by less experienced staff (Deschamps et al., 2012). A  follow up 

study published in the same year by  this group found that in six participants (age range 22 – 

54 years), CMC values for kinematic data ranged between 0.782 and 0.987, reducing to 0.693 

and 0.991 for an inexperienced investigators. Between-day CMC values were similarly affected 

(Deschamps et al., 2012).  Despite the propensity for error, this group found that the overall 

inter-trial variability for all segmental rotations in the LFM was less than 3° (Deschamps et al., 

2012).   

 

2.3.18 Future directions 

Three-dimensional motion capture has in part elucidated how alterations in segmental 

kinematics manifest in early RA. In extending the clinical utility of previous research, 

additional investigation is required to ensure that protocols for 3D m3otion capture are robust 

enough to reduce error to within levels acceptable for clinical decision making.    
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2.4 Surrogate measures of pathomechanical function in early RA 

Whilst it has been argued that some form of musculoskeletal assessment should be carried out 

on patients with early RA (Woodburn et al., 2010), the nature of this assessment in current 

guidelines published by the Primary Care Rheumatology Society (PCR) and the Arthritis and 

Musculoskeletal Alliance (ARMA) is unclear (ARMA, 2004; PCR, 2011).  Currently, 3D 

motion capture is not widely for the assessment of physical impairment in these patients. The 

following sections focus on measures of disease activity and disease impact which are currently 

used as surrogate measures of physical impairment.   

 

2.4.1 Disease impact 

In the absence of specific guidelines on the musculoskeletal assessment of the foot and lower 

limb in early RA, rheumatology function tests (RFT) are used to assess the presence of physical 

impairment. Whilst these tests are among the most reproducible metrics used in clinical 

rheumatology, they are not direct measures of foot and lower limb kinetics and kinematics.  In 

translating the results of laboratory based 3D motion capture research on early RA into clinical 

practice, it must be acknowledged that the utility  of this technique may preclude its use in 

clinical practice (Schurr et al., 2017). Whether RFTs  have an explanatory capacity of 

segmental kinematics to allow their use  as alternative surrogate measures of lower limb 

physical impairment in early disease has yet to be determined. The following sections describe 

those tests of physical function currently validated for use in laboratory based research and 

clinical practice.  
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2.4.2 Rheumatology physical function tests 

The conceptual framework of physical disability is modelled as the explicit interaction between 

four sequential stages: pathology → impairment → functional limitation → physical disability. 

Within this framework functional limitations are defined as restrictions in basic physical 

actions normally viewed as involving the whole person (Escalante et al., 2002). As  the rate of 

functional decline in patients with early RA  increases sharply following initial diagnosis   a 

decline in the capacity to perform specific Rheumatology Function Tests (RFT)  is used to 

provide quantifiable and reproducible information concerning a patients currents functional 

status and future prognosis (Pincus and Callahan, 1992).  

 

Measurements of grip strength, timed walking and button time have been shown to be reliable 

objective assessments of functional status in patients with RA (Sokka et al., 2003).  These 

measures of functional status demonstrate generally higher levels of significance than 

radiographic scores or laboratory tests when predicting  long term outcomes such as disability 

status and predict premature mortality (Pincus and Sokka, 2003).  Furthermore, these tests are 

among the most reproducible measures used in clinical rheumatology. Because global 

measures are significantly correlated to patient status, they do not change sufficiently over time 

to be useful for monitoring patients quantitatively (Pincus and Callahan, 1992). Therefore, 

functional status is recognised as important in assessment and monitoring patients with RA. 

When assessing the impact of RA on physical function, performance based functional measures 

are seen  as well suited to the quantification of  functional impairment in RA as they measure 

physical actions performed by the intact person and are not subject to socio-cultural influences 

(Pincus, 2005). 
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2.4.3 Grip strength 

Muscle weakness in RA is considered to be indicative of the presence of generalized disuse 

atrophy (Häkkinen et al., 2006). Whilst being primarily a test of upper body physical function, 

grip strength in early RA is therefore viewed as a determinant of global functional capacity. 

Grip strength has been shown to discriminate between disease activity states in early RA, based 

upon the presence of decreasing physical performance (Sheehy et al., 2013). A decline in 

muscle strength has previously been reported to be associated with disease activity and 

disability (De Santanna et al., 2014). Decreased muscle strength in RA has also been associated 

with worse physical performance and difficulties in carrying out activities of daily living. 

Significant and progressive loss of grip strength has been shown to be significantly correlated 

to global HAQ function. Häkkinen et al., (2006) found that  decreasing grip strength acts as an 

explanatory factor of self-reported physical function in the HAQ sub-dimensions of ‘eating’, 

‘reach’, ‘grip’ and common activities of daily living, including ‘walking’.  

 

2.4.4 Timed button test 

In the context of RA, the timed button test involves asking the subject to button and unbutton 

a shirt or button board as quickly as possible,  with results expressed as the number of buttons 

fastened/unfastened per minute (Pincus and Sokka, 2003). A baseline value for a timed button 

test of less than 40 seconds predicts a survival rate of 90% at 15 years compared to 50% at 5 

years and 30% at 15 years where baseline levels were greater than 120 seconds. This test 

quantifies both large and small upper extremity joints (Escalante et al., 2004).  
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2.4.5 Timed walking 

When considering those RFT specifically validated to assess lower limb functional impairment, 

only timed walking is recommended for use in RA. A modified walking time of less than 10 

seconds along  a 30 metre walkway has been shown to predict a 90% survival rate at 5 years 

and 70% at 25 years compared with a survival rate of 50% at 5 years and 30% at 15 years 

where the baseline values were greater than 30 seconds (Fransen and Edmonds, 1999). In 

addition, Pincus and Sokka (2003) note that both inter-rater and intra-rater reliability for this 

test are excellent. 

 

2.4.6 Timed up and go 

More recently, timed up and go (TUG) has emerged as a test to evaluate functional capacity 

across a series of specific manoeuvres. TUG measures, in seconds, the time taken by a subject 

to stand up from a standard chair, walk a distance of 3 metres at self-selected walking speed, 

turn and then walk back to the same chair and sit down. Initially developed for the assessment 

of elderly individuals at risk of falls, TUG is now a widely used simple measure of basic 

function. This test has been shown to be predictive of falls within elderly community dwelling 

adults (Hayes and Johnson, 2003). More recently its use has been extended to the assessment 

of specific  pathologies including multiple sclerosis (Nilsagard et al., 2007) and osteoarthritis 

(Murphy et al., 2011). TUG has yet to be studied in the context of early RA. However, in a 

study of the applicability and reliability of balance tests in patients with peripheral arthritis, 

Noren and colleagues (2001) concluded that TUG may be applicable to those patients with 

moderate to severe disability including RA (Noren et al., 2001). Both a high inter-rater and 

intra-rater reliability have been reported for TUG. In addition, criterion validity has been 
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reported as moderate compared to other functional tests such as gait speed and Berg balance 

test (Hayes et al., 2000). 

 

2.4.7 Future directions 

It may be argued that given their inter-professional use within both the clinical and research 

settings, there is a question as to whether RFT can be used clinically as proxy measures of 

lower limb altered lower limb kinematics?  This is a question that has yet to be answered. Given 

the need for assessment tools that are quickly and easily prescribed (Pincus, 1992), 

demonstrating such explanatory relationships with early RA kinematics  may identify clinically 

cost effective and validated alternatives to the use of 3D motion capture in the musculoskeletal 

assessment of early disease 

 

2.4.8 Disease Activity  

The burdens of time mean that within the clinical setting functional capacity is more likely to 

be inferred by measuring disease activity, than through the prescription of rheumatology 

function tests (Aletaha et al., 2009).  The surrogate use of disease activity is based upon the 

premise that once the transition from early to established disease has taken place, the long-term 

accumulation of radiographic damage and thus physical impairment may be considered a 

reflection of disease history.  It is unclear whether disease activity measured using composite 

indices or single measures has an explanatory role in the presence of altered kinematics in early 

disease. It is also unclear whether disease impact measured using self-reported questionnaires 

has an explanatory role. The following sections describe how disease activity is currently 

assessed.    
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2.4.9 Composite indices used in early RA 

There is no single gold standard quantitative measure to assess and monitor the clinical status 

of patients presenting with early RA (Smolen et al., 2005). Instead, disease activity may be 

assessed using a variety of measures including laboratory tests, radiographic scores, formal 

joint counts, self-reported questionnaires and measures of physical function. For this reason, 

several composite indices have been validated for use in RA that provide a single estimate of 

disease activity from multiple data: DAS, DAS28, Clinical Disease Activity Index (CDAI) and 

the Simplified Disease Activity Index (SDAI). A hallmark of these indices is the algebraic 

calculation of disease activity using data from swollen and tender joint counts combined with 

acute phase reactants. In calculating disease activity these indices differ in the number of tender 

and swollen joints that are counted. Apart from CDAI, all incorporate acute phase reactants.  

 

2.4.10 Reproducibility and concordance of disease activity measures 

Little separates these indices in terms of their reproducibility and concordance. In what is 

considered a landmark study of the DAS, Van der Heijde et al., (1990) reported test-retest of 

this measure to have a correlation coefficient of 0.89. Similarly, the reproducibility of a later 

iteration of the DAS, the DAS28, has been reported to be excellent in two studies by Virijhoef 

et al., (2003) and Walsh et al., (2008) with ICC values of 0.82 and 0.89 being reported 

respectively. When direct comparisons were made between the DAS28, SDAI and CDAI, ICC 

values have again been shown to be excellent at 0.88, 0.82 and 0.89 respectively (Virijhoef et 

al., 2003).   
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Concordance between indices has also been reported. In a study of 223 early RA participants, 

Ranganath et al., (2007) reported concordance between the DAS and DAS28 to be moderate 

to good at 77% in terms of DAS44 defined treatment response.  Similarly, Van Gestel et al., 

(1998) reported a treatment concordance of 86.7% in a study of 105 early RA patients.  

Concordance between the DAS28 and SDAI have also been reported to range from 0.82 to 

0.89.   When the DAS28 was compared against the CDAI, concordance was again very good, 

ranging from 0.89 to 0.93 (Ranganath et al., 2007). 

 

2.4.11 Metrological ranking of disease activity measures 

Ranking these measures according to their metrological properties is also difficult.  What 

separates these measures is their ability to discriminate between disease activity cut-off points, 

specifically in the presence of remission in early RA. This is a key factor determining the 

construct validity of composite indices used in RA.  When comparing the ability of the DAS28 

and DAS44 to discriminate between patients in remission according to ARA criteria, area under 

the curve (AUC) values have been found to be similar: DAS28 AUC = 0.93 [0.92 – 0.94] versus 

DAS44 = 0.96 [0.95 – 0.97]   (Soubrier at al., 2006).  Construct validity appears to be dependent 

upon disease duration. Aletaha and colleagues reported that when correlations between disease 

activity and physical function were studied in 998 patients in the first 8 years of disease, 

correlations between HAQ score and the DAS28, SDAI and CDAI showed similar-to-fair 

correlations ranging from r = 0.45 – 0.47 (Aletaha et al., 2005).  By contrast, the presence of 

early disease, correlations were much weaker, with r values ranging between 0.26 – 0.31.  
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In reality, it is difficult to ascertain whether one disease activity measure is superior; all appear 

to be valid tools. Determining their ranking according to metrological properties is difficult 

except for where remission is concerned. Despite the DAS28 being accepted, its 

implementation in daily practice remains a challenge; it has been considered less reproducible 

owing the larger number of joints evaluated, including those within the feet. This does not 

however appear to have been investigated or demonstrated. Consequently, of the 

aforementioned indices the DAS28 is officially recommended by EULAR and is considered 

most widely used measure of disease activity in clinical practice. 

 

2.4.12 DAS28 

Originally developed and validated by Van der Heijde and colleagues as the DAS (van der 

Heijde et al., 1992), this composite measure of disease activity was subsequently modified by 

Prevoo et al., (1995). Derived from counts of 28 tender and swollen joints, the erythrocyte 

sedimentation rate (ESR) and global health measured by a visual analogue scale (Hameed et 

al., 2008). The DAS28 was specifically designed for use in the assessment of patients with 

early RA and has become the most widely used measure of disease activity in RA (Symmons, 

2010) recommended within NICE and British Society of Rheumatology (BSR) guidelines for 

use in the assessment patients with RA (Luqmani et al., 2006). The DAS28 provides a 

continuous numerical range from 0 to 10 in which a score of >5.1 implies high disease activity, 

a score of <3.2 implies low disease activity, whilst a score of <2.6 indicates remission as 

defined by the American Rheumatism Association (Prevoo et al., 1995).  
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In the Combinatietherapie Bij Reumatoide Artritis (COBRA) trial cohort, single values of the 

DAS28 were shown to be significantly longitudinally associated with radiographic progression 

(Welsing et al., 2006), whilst Koevets et al., (2013) concluded that the main clinically relevant 

predictor for disability, showing the largest size effect was the DAS28 (β=0.250 95% CI 0.220 

to 0.280). Importantly, fluctuations in DAS28 disease activity appear to have an independent 

effect on radiographic progression with the strength of the associations between fluctuations 

and radiologic progression being dependent upon RF status and/or baseline disease activity.  

As a result, although high peaks in disease activity result in additional damage, periods of low 

disease activity in an otherwise fluctuating disease course are not protective (Welsing et al., 

2004).  

 

2.4.13 Limitations of the DAS28 

As a measure of disease activity, the DAS28 primarily focuses on evaluating the impact of RA 

within the upper body; it does not evaluate the impact of RA below the level of the knee. It is 

for this reason that the most frequent criticism of the DAS28 is that it does not include an 

evaluation of the joints of the ankles and feet, commonly involved in early RA. This may 

profoundly limit the use of DAS28 driven measures of disease activity in assessing physical 

impairment in early RA. In a study of 155 patients treated with DMARDs combined with high 

dose oral prednisolone, Landewe and colleagues noted that in paired observations between the 

DAS28 and DAS, omitting the joints of the foot resulted  in discordant observations of 

remission in 96% of patients where only the 28 joint count is used (Landewe et al., 2006). 

Because composite indices such as the DAS28 omit the joints of the foot, it is plausible that 

even within remission status, long term morbidity may still occur. The observation that both 

the CRP and ESR are within normal range in 45% of patients may further exacerbate the 
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potential for the underestimation of active foot pathology in early RA (Sokka and Pincus, 

2009). This view was endorsed by Wechalekar et al., (2012) who found that in 123 DMARD 

treated patients studied within the first six months of disease activity, the percentage of those 

exhibiting foot synovitis reached 43% regardless of DAS28 defined disease activity.   

 

Investigating the disassociation between composite measures of disease activity in the presence 

of synovitis, Dale and colleagues used musculoskeletal ultrasound (MSUS) of the 

metatarsophalangeal joints (Dale et al., 2014). Investigating 111 patients with disease duration 

of up to five months treated with step-up conventional and biological therapies, this group 

found that in the presence of moderate DAS28 defined disease activity, power Doppler signal 

was identified in ≥ 2 joints in 25% of patients. Furthermore, remission was not found to be 

protective of disease activity within these joint sites with power Doppler signal detected in 24% 

of patients.   

 

A failure to detect active synovitis within the foot means that it is unclear whether the DAS28 

has an explanatory role when identifying and monitoring altered foot and lower limb 

biomechanical function in early disease. Investigating this aspect is an area for further 

investigation that is required if the DAS28 is to be confirmed as a surrogate indicator of 

biomechanical pathology.  

 

2.4.14 Health Assessment Questionnaire  

Infrequently, measures of disease activity may also be supplemented with data from self-

reported questionnaires, namely the HAQ. When defining the nature of lower limb functional 
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impairment, it may be conceptualised as the interaction between global health, personal and 

environmental factors. To this end the World Health Organisation (WHO) recommend the use 

of the International Classification of Functioning (ICF) to provide a framework within which 

physical impairment and disability may be described and organised (WHO, 2001). It is within 

this conceptualisation of ‘function’ using a biopsychosocial model that the Comprehensive ICF 

Core Sets for RA have been derived.    

 

The HAQ is used to evaluate disease impact benchmarked against ICF core sets in RA. 

Designed and validated by Fries et al., (1982) as an adjunct to clinical examination, the HAQ 

provides a quantitative measure of the impact of disease activity on physical function with 

category scores ranging from 0 – 1 (mild impairment); 1 – 2 (moderate to severe); 2 -3 (severe 

to very severe).  Recommended by NICE, the HAQ is distinct from measures such as laboratory 

and radiographic examinations. The HAQ has been shown to be sensitive to current disease 

activity and cumulative damage (Pincus and Sokka, 2003). In addition, the HAQ is a good 

predictor of global health in patients with RA (Pincus and Sokka, 2003). Several modifications 

of the HAQ have been reported with the Modified HAQ (MHAQ) providing a simplified 

scoring system allowing clinicians to visualize activities of daily living (ADL) scores as well 

as Visual Analogue Scales (VAS) for pain and global status in an abridged format (Prevoo et 

al., 1995; Ringold and Singer, 2008).  A further modification of the MHAQ incorporates six 

additional ADLs to the eight already included in the MHAQ and is referred to as the Multi-

dimensional HAQ (MDHAQ). In addition, the Clinical HAQ (CLINHAQ) incorporates the 

domains of anxiety and depression as additional items (Prevoo et al., 1995; Ringold and Singer, 

2008).  
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2.4.15 Limitations of the HAQ 

In evaluating the impact of early RA on lower limb physical impairment it is possible that there 

are limitations to using the HAQ. Because physical Function and Disability as defined by the 

ICF is broad conceptually, an instrument such as the HAQ which exclusively covers the 

components of activity and participation must be selective in its incorporation of which core 

sets to use.   From a pragmatic perspective the omission of these data may simply reflect those 

ICF Core Sets which cannot be measured using self-administered questionnaires. Their 

omission may however also reflect wider attitudes concerning how physical impairment and 

disability in RA is interpreted and measured within rheumatology communities.  As a result, 

the manner in which ICF Core Sets are incorporated into measures such as the HAQ therefore 

define the parameters within which physical function and disability are assessed in RA.  

 

The manner in which ICF categories are selected may therefore introduce conceptual 

limitations in which lower limb function is assessed.  Not only do the ICF Core sets provide 

guidance on what to measure; they also leave open to interpretation which measures to use. Of 

the twenty-five ICF categories appertaining to the component of “Body Functions” included in 

the Comprehensive ICF Core Set for RA, only “Sensation of Pain” is assessed by the HAQ. 

Related categories of lower limb physical function in RA not assessed by the HAQ are: “Pain 

in Lower Limb”, “Gait Pattern Functions”, “Mobility of Joint Functions”, “Stability of Joint 

Functions” and “Mobility of Joints (Generalised)”. Within the eighteen ICF categories of the 

component “Body Structures” none are assessed by HAQ that are specific to the lower limb. 

Importantly, this fails to consider “Structure of Lower Extremity”, “Hip joint”, “Knee joint” 

and “Structure of ankle and foot”. Of the 32 categories within the component of “Activities 

and Participation”, only “Walking” specifically assesses lower limb function. Whilst this 
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category is included within the HAQ, a greater emphasis is placed upon the specific assessment 

of upper limb impairment and disability or the global effects of upper body disease upon 

activities of daily living.  Lastly, of the categories within the component “Environmental 

Factors” none are included within the HAQ that address the environmental contexts within 

which lower limb physical impairment or disability in RA take place.  

 

2.4.16 Leeds foot impact scale 

Within the conceptual framework of the ICF only the Leeds Foot Impact Scale (LFIS) has been 

developed as a patient reported outcome measure for use in assessing the impact of RA on the 

foot (Van der Leeden et al., 2008). In addition, the LFIS assesses constructs that are closely 

aligned to those of the domains of the ICF. The LFIS is both an evaluative and discriminative 

patient reported outcome measure that places a strong emphasis on the qualitative aspects of 

pain, stiffness and biopsychosocial experiences arising from the impact of RA on the foot 

(Walmsley et al., 2010). This measure consists of a self-completed questionnaire comprising 

of  two subscales:  impairment/footwear  and activity limitation/participation restriction (van 

der Leeden et al., 2008a). The former contains 21 items related to foot pain, joint stiffness and 

footwear-related impairments. The latter contains 30 items relating to activity limitation and 

participation restriction. In addition, a visual analogue scale (VAS, 0 – 100mm) is used to 

record both global pain and joint pain in subjects. 

 

2.4.17 Limitations of the Leeds Foot Impact Scale 

The LFIS exhibits demonstrable measurement properties relating to reliability, construct 

validity and responsiveness (Helliwell et al., 2005). It has subsequently been used in a number 
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of cross-sectional, intervention and audit studies (Turner et al., 2006; Turner et al., 2008; Rome 

et al., 2011; Rome et al., 2013; Silvester and Williams, 2010; Muradin et al., 2016; Williams 

et al., 2016; Morpeth et al., 2016; Zou et al., 2017). Whilst developed to provide a wide 

applicability of evaluation of disease specific impact in RA populations, it was not designed 

specifically for sole use in early RA participants (Helliwell et al., 2005). Whether this affects 

the sensitivity and specificity of the LFIS when used in early RA participants has yet to be 

ascertained. Muradin and colleagues have recently cast doubt over the utility of the LFIS. When 

applied to patients not presenting with those characteristics not seen within the samples used 

in the original development of the LFIS. In participants with established disease presenting 

with advanced forefoot and rearfoot pathology, the LFIS was found to demonstrate moderate 

internal responsiveness when compared to the Foot Function Index (FFI). The sensitivity of 

75%, specificity of 57%of the LFIS were also found to be affected compared to that of the FFI. 

The LFIS demonstrated below acceptable discriminative properties compared to the FFI. 

(Muradin and van der Heide, 2016). In addition, some doubts have been raised over the utility 

of the tool with respect to patient cognition of individual questions within each dimension 

(Carter et al., 2016).  

 

In developing the LFIS, Helliwell and colleagues placed specific emphasis upon testing the 

unidimensionality of the tool as a disease specific measure applicable to all patients presenting 

with RA.   This has resulted in dimensions of impairment and function that reflect perceptions 

of the disease based upon interviews from thirty patients presenting with both early and 

established disease in the absence of structural pathology (Helliwell et al., 2005).  Whilst these 

may mirror those ICF classification criteria for the domains of impairment and function, 

specific consideration to the pathomehanical features underlying these dimensions were not 

given.   
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The relationship between the dimensions of ‘impairment’ and ‘function’ with altered foot 

kinematics in early RA is uncertain. As an alternative to 3D motion capture, whether the LFIS 

may act as a proxy of altered foot kinematics in early RA remains to be established.   Caution 

should therefore be exercised when applying this tool to a specific sub-section of patients such 

as those presenting with early RA. Muradin and colleagues have recently cast doubts over the 

utility of the LFIS has been raised when applied to patients not presenting with those 

characteristics not seen within the samples used in the original development of the LFIS. In 

participants with established disease presenting with advanced forefoot and rearfoot pathology, 

the LFIS was found to demonstrate moderate internal responsiveness when compared to the 

FFI. The sensitivity of 75%, specificity of 57% of the LFIS were also found to be affected 

compared to that of the FFI. The LFIS demonstrated below acceptable discriminative properties 

compared to the foot function index (FFI). (Muradin and van der Heide, 2016).  

 

2.4.18 Future directions 

In the absence of specific guidelines on the musculoskeletal assessment of the foot and lower 

limb in early RA, composite measures of disease activity and self-reported assessment of 

disease impact have played a surrogate role in the clinical assessment of early RA. The question 

as to whether such measures relate specifically to alterations in lower limb kinetics and 

kinematics in early disease has yet to be answered. As these are parameters that underpin the 

onset of long term pathomechanical dysfunction, it may be argued that there is a clinical need 

for investigating their use in the assessment of early RA. Given the need for tests of physical 

impairment that are of low cost and easy administration, there may be a specific role in the 

assessment of musculoskeletal impairment in early RA that these tests may fulfil which current 

measures are unable to provide.  
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2.5 Justification for this PhD thesis 

Three-dimensional motion capture has in part elucidated the presentation pathomechanics in 

early RA. To translate these laboratory based findings into clinical practice, more 

comprehensive data are required in order to optimise the recognition and targeted management 

of early musculoskeletal pathology in RA by clinicians: 

 

1. In early RA, the kinematics of the foot and lower limb have yet to be investigated 

simultaneously using 3D motion capture. Clinicians cannot be completely certain as to 

where significant alterations in segmental kinematics of the hip, knee, ankle and foot 

are located within the first two years of disease.    

 

2. Likewise, the magnitude and location of significant alterations in lower limb kinetics is 

also unclear.  

 

3. The timing and duration of altered segmental kinetics and kinematics in early RA is 

unknown; between-group differences in the mode of variance of these parameters have 

yet to be elucidated.   

 

4. Whether early RA affects the inter-segmental coupling of movement between the main 

functional units of the foot is unknown.    

 

5. Whether early RA affects the inter-segmental coupling of movement between the foot 

and lower limb has is also unknown.    
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6. In the absence of clear guidelines and validated tools for the clinical assessment of 

musculoskeletal pathology in early RA, it is unclear whether rheumatology function 

tests, indices of disease activity and measures of disease impact can be used by 

clinicians as surrogate indicators of 3D laboratory based measures of biomechanical 

function.  

 

2.6 Research Aims 

In moving forward, the overarching aims of this research will be:  

 

4. To establish reliable protocols for the 3D biomechanical evaluation of the foot and lower 

limb in subjects with early adult RA. 

 

5. To quantify and characterise the baseline 3D biomechanical function of the foot and lower 

limb in adult patients with early RA determining if these characteristics differ from aged-

matched healthy adults. 

 

6. To analyse the relationship between foot and lower limb 3D biomechanical function and 

disease impact. 
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2.7 Research Questions 

The specific research questions asked within this thesis are:  

Chapter 5 

1. When people with early RA are compared to age and gender-matched healthy adults, 

are there significant between-group differences in the kinematics of the foot and lower 

limb during gait? 

 

2. When people with early RA are compared to age and gender-matched healthy adults, 

are there significant between-group differences in the kinetics of the foot and lower 

limb during gait? 

 

Chapter 6 

3. When people with early RA are compared to age and gender-matched healthy adults, 

are there significant between-group differences in kinematic coupling within the foot 

and lower limb? 

 

Chapter 7 

4. Is there an association between the biomechanical function of the foot and lower limb 

in early RA with measures of rheumatology physical function? 

 

5. Is there an association between the biomechanical function of the foot and lower limb 

in early RA with measures of disease impact? 
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6. Is there an association between the biomechanical function of the foot and lower limb 

in early RA with measures of disease activity? 
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Chapter 3: Methodology 

To achieve the aims of this PhD thesis, protocols were developed for the use of 3D motion 

capture in the analysis of spatial-temporal parameters, joint kinetics and joint kinematics in 

participants with early RA and age and gender matched controls.  Protocols for the use of 

rheumatology physical function tests and self-reported measures of disease impact were also 

developed.  This chapter describes these protocols, the overall research design of the thesis 

and the statistical techniques used for data analysis.   

 

3.1 Research design 

A prospective cross-sectional study design was used to compare the kinetics and kinematics of 

the foot and lower limb in participants with early RA to an age and gender matched control 

group. This research was conducted over three studies between January 2013 and December 

2016.  Study 1 (phase 1) investigated the repeatability of 3D motion capture and foot posture 

assessment protocols at the beginning of the research. Study 1 (phase 2) investigated the 

repeatability of these protocols at the end of the research. Study 2 (phases 1, phase 2 and phase 

3) investigated between-group differences in foot and lower limb spatial-temporal, kinetic and 

kinematic data. Study 3 (phase 1 and 2) investigated explanatory variables of altered foot 

kinematics in early RA. Figure 3.1 summarises the research design.  
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Figure 3.1: Summary of research design  

 

3.2 Ethical approval  

Ethical approval for this research was given by the National Research Ethics Service (NRES) 

Committee London – Bloomsbury: REC reference: 13/LO/0093 (Appendix 1) and the 

University of East London Research Ethics Committee (Appendix II).   

 

3.3 Recruitment sites 

The University of East London is located within a socioeconomically heterogeneous area of 

London in which high levels of deprivation and adverse healthcare outcomes have been 

reported (Department for Communities and Local Government, 2015). Invitations to recruit 

early RA participants from this area were sent to three recruitment sites: Homerton University 

Hospital, Whipps Cross University Hospital and Mile End Hospital. As part of Bart’s Health 
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the combined catchment area of these sites encompasses four local authorities within East 

London area: Tower Hamlets, Newham, Hackney and Waltham Forest. Combined these local 

authorities represent 41.5% of the total population of East London (Office for National 

Statistics, 2011). Following initial consultations with these recruitment sites, Homerton 

University Hospital and Whipps Cross University Hospital agreed to participate as recruitment 

sites for this study.    

 

3.4 Participant Recruitment 

Two groups of participants were recruited. The first group consisted of adults diagnosed with 

early RA. These participants were identified by their rheumatology care teams during 

consecutive rheumatology out-patient appointments according to the inclusion/exclusion 

criteria of the research (Chapter 3, section 3.6). The second group consisted of a control group 

of healthy non-RA participants recruited from a convenience sample of volunteers from local 

community groups within the Newham, Tower Hamlets, City and Hackney and Waltham 

Forest areas.  

 

3.5 Informed Consent  

All prospective participants were given an information leaflet outlining, in layman’s terms, the 

aims and methodology of this research (Appendix III). The aims and methodology of this 

research  were also  explained verbally by the Chief Investigator to all participants To avoid 

coercion or undue pressure to participate, all early RA and control group participants were 

given the option of ‘opting in’ to this research project. All participants were given the option 
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of leaving at any stage without prior explanation or disadvantage to themselves. Prior to data 

collection each participant gave written informed consent (Appendix IV). 

 

3.6 Sample Size 

Chapter 2 (section 2.3.6) highlighted the limited availability of published data on significant 

between-group differences in foot and lower limb kinetics and kinematics in early RA. To 

estimate the sample size required for this study, data from the first 10 early RA participants 

were therefore analyzed against 10 age and gender matched controls. Anthropometric data on 

these participants are presented in table 3.1. Data on the aforementioned parameters were used 

to estimate sample size using the formula  𝑛 ≥
2κσ²

Δ²
 where 𝑛 represents the population size, σ 

represents the variance in the groups being compared, κ represents the multiplying factor for 

the sample size formula at a 5% two-sided significance level at 80% power and Δ represents 

the minimum difference that this research was required to detect   (Portney and Watkins, 2009). 

Table 3.4 presents the results of these analyses.    

 

Table 3.1: Mean ± SD of anthropometric data for the first 10 early RA and 10 control group participants 
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Table 3.2: Sample size calculations based upon the Mean ± SD of foot and lower limb kinematic data from the 

first 10 early RA participants 

 

 

The numbers of participants needed to reach the required sample size calculations were beyond 

the magnitude of the recruitment rates achieved for this study.  The numbers of participants 

required for the present study ranged from 61 to 773. By contrast, data from 32 early RA 

participants were collected for this study. Of these participants, 18 agreed to provide 3D motion 

capture data. Power calculations using mean and standard deviations from the final recruited 

sample of early RA participants therefore demonstrated  statistical power ranging from 90.7% 

(frontal plane motion of the shank-calcaneus) to 15.7% (sagittal plane motion of the hip).  The 

generalizability of the results of this research to the wider UK early RA population may 

therefore be considered uncertain and the present study may be regarded as exploratory in 

nature (Polgar and Thomas, 1995). 
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3.7 Inclusion Criteria 

Early RA participants: Participants presenting with RA, aged between 25 – 60 years and with 

an ability to walk unaided were recruited within two years of initial diagnosis.   

 

Control group participants: Healthy, non-RA participants, aged between 25 – 60 years (prior 

to key age related changes to musculoskeletal health) with no history of systemic disease, 

trauma and orthopaedic surgery were invited to participate in this research. Control group 

participants were age and gender matched to early RA participants. 

 

3.8 Exclusion criteria 

Both early RA and control participants were excluded where there was a prior history of foot 

and lower limb surgery or any systemic condition other than RA that might affect foot posture 

or cause a disturbance in gait.  

 

3.9 Protocols for investigating foot and lower limb musculoskeletal function in adults with 

early RA and controls 

The following sections describe the protocols used for investigating foot and lower limb 

musculoskeletal function using 3D motion capture in early RA and control group participants.  
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3.9.1 Three-dimensional motion capture system 

Spatial-temporal, kinetic and kinematic data were collected simultaneously using an on-line 

stereophotogrammetry system. The hardware used for 3D motion capture consisted of:              

(1) A ten camera VICON Nexus system used to track auto-reflective markers applied to the 

foot and lower limb (Vicon Motion systems Ltd, Oxford, UK); (2) Twenty-nine 14mm auto-

reflective markers, each mounted on a polyethylene base (Vicon Motion systems Ltd, Oxford, 

UK); (3) Two six-component force plates (Bertec, Model 4060-10 MIE Ltd. UK, Bertec, Model 

4060-15 MIE Ltd. UK). 

 

Cameras were wall mounted in a combined orthogonal and non-orthogonal configuration and 

directed between 60° and 90° towards the centre of the laboratory.  The size of the capture 

volume measured approximately 4 x 1.5 metres and was sited in the middle of a 10 metre 

walkway. This camera arrangement ensured that at least three cameras were able to detect each 

auto-reflective marker, thereby reducing the dead space that falls outside of the cameras field 

of view.   

 

3.9.2 Force plates  

Two force plates embedded in the floor of a 10 metre walkway to record ground reaction force 

GRF).   Analogue data from these force plates was amplified and transferred to the Vicon data 

station. Ground reaction forces were sampled at 1500 Hz.  

 

3.9.3 Camera sampling rate and sensitivity 

To optimise the reconstruction of markers prior to the calibration of cameras, sensitivity was 

set at 1500Hz.  Kinematic data was sampled at 100 Hz and recorded digitally on a personal 
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computer. Reflective objects within the laboratory which may have provided extraneous 

sources of reflection resulting in false marker interpretations were identified and removed in 

order to preserve the integrity of the calibration process. Cameras were then masked.  

 

3.9.4 Static calibration 

To ensure that the image co-ordinates for each camera view were converted into the three 

dimensional co-ordinates of each marker, cameras were calibrated prior to each motion capture 

session. This was undertaken by setting the volume origin of the laboratory by capturing and 

reconstructing three markers of known location attached to a rigid ‘L frame’ placed at the 

corner of one force plate.  This established the origin and location of the laboratory-fixed global 

axes.  

 

3.9.5 Dynamic calibration 

A dynamic calibration was undertaken using a calibration wand mounted with two auto-

reflective markers of known location in a ‘T’ configuration to determine the residual mean. 

The orientation of the wand was moved through the capture volume for a duration of 10,000 

frames to determine the residual mean. The residual mean is an indication of the position of 

each marker in space against its true position. For example, a residual mean of 1.0mm indicates 

that each marker can be located within 1mm of its true position. The residual mean appropriate 

for the size of capture volume used for this study was set at <1mm, along with wand visibility 

of > 65%.  A successful calibration was therefore defined where residuals from marker position 

and inter-distances standard deviation were less than 1mm and wand visibility exceeded 65%. 

The capture volume area calibrated was 1.5m high, 2m long (direction of gait) and 2m wide.  
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3.9.6 Force plate calibration 

Prior to calibration both force plates were switched on at least 30 minutes before testing to 

allow the force transducer system to reach thermal stability. An auto zero function provided on 

the external amplifier of the force plates allowed for zeroing offset loads to full scale.  Force 

plates were calibrated separately using known weights of 10kg placed within the centre of each 

force plate. Vertical GRF was recorded and a correction factor applied to align each force plate 

reading to the correct acceleration due to gravity calculated to be -98N.  

 

3.9.7 Laboratory co-ordinate system 

The laboratory reference frame from which all positions originated was calibrated using an 

XYZ Cardan sequence with a right-handed orientation according to ISB recommendations (Wu 

et al., 2001).  In the present study, the z axis was orientated vertically, the y axis was orientated 

along the walkway such as it was positive in the direction of progression and the x axis was 

orientated perpendicular to the other two axes and positive in the medial direction at right foot 

contact.  

 

3.9.8 Order of data collection 

Anthropometric and biomechanical data were collected on participants attending 3D motion 

capture study visits. Data were collected in the following order:  

(1) Anthropometric measurements 

(2) Foot posture assessment 

(3) 3D motion capture  

(4) Rheumatology function tests  
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3.9.9 Anthropometric measurements 

To facilitate the calculation of joint centres and joint trajectories in 3D motion capture, the 

following anthropometric measures were taken: height, knee width, ankle width, leg length and 

weight. 

Height: Height was measured in centimetres by asking each participant to stand under a 

portable stadiometer (Seca Medical Scales and Measuring Systems UK). Height was defined 

as the maximum distance from the floor to the highest point of the head with the participant 

looking straight ahead. Participants were asked to stand straight with their back against the 

stadiometer with both feet together and plantigrade to the floor.  

 

Joint widths: Joint widths were measured in centimetres using an anthropometer (Holtain Ltd). 

Each participant was asked to stand in neutral rotation and base of relaxed static stance. Both 

left and right knee and ankle joint widths were measured. Knee width was defined as the 

distance between the medial and lateral femoral epicondyles. Ankle width was defined as the 

distance between the medial and lateral malleoli (Vicon Motion Systems Ltd).  

 

Weight: Weight was measured in kilograms by asking each participant to stand on a pair of 

weighing scales (Seca Medical Scales and Measuring Systems UK). Participants were asked to 

stand on the centre of scales, without support and with their weight distributed evenly on both 

feet. 
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Leg length: Leg length was measured in centimetres from a straight line between the anterior-

superior iliac spine and the ipsilateral medial malleolus using the direct method tape measure 

technique described by Asim et al., (2013).  

 

3.9.10 Foot posture assessment 

Measurements of foot posture were conducted on each participant on the day of testing using 

the Foot Posture index (FPI-6) described by Redmond et al., (2006). The internal construct 

validity of this index was observed by Keenan et al., (2007) to be compatible its clinical 

application, whilst a high level of intra-rater reliability for this measure was reported by 

Cornwall et al., (2009).  As a clinical assessment tool, it has also been observed to remain 

robust, even when administered by novice examiners (McLaughlin et al., 2016).  

 

Each participant was asked to stand in neutral rotation and base of relaxed static stance. The 

FPI-6 is, for the most part,  an observational tool by which static foot posture is examined in 

all three cardinal body planes using the following criterion: (1) talar head palpation; (2) 

curvature above and below the lateral malleoli; (3) Calcaneal inversion/eversion; (4) talo-

navicular congruence; (5) medial arch height and (6) Forefoot abduction/adduction. A 

summative score based on a continuous Likert scale classifies foot posture as follows: normal 

= 0 to +5, pronated = +6 to +9, highly pronated = +10, supinated = -1 to -4 and highly supinated 

= -5 to -12. 
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3.9.11 Lower limb biomechanical models 

To facilitate the application of reflective markers on the lower limbs, all subjects were barefoot 

and wore shorts. Twenty nine reflective markers (14 mm spheres) were placed directly on the 

skin of the lower limbs. Two 3D biomechanical models were applied to each participant. The 

first model was the Conventional Lower Limb model. This was applied to the pelvis and both 

lower limbs. A second, multisegment foot model (Leardini Foot Model) was applied to the 

dominant or most symptomatic lower limb.  

 

Segmental motion of the Leardini foot and Conventional Lower limb models was calculated 

using the joint co-ordinate system and expressed as output angles for each of the X, Y and Z 

axes. Output angles for the following segmental rotations were used to evaluate motion in early 

RA and control group participants: (1) hip joint; (2) knee joint; (3) ankle joint; (4) shank relative 

to calcaneus; (5) calcaneus relative to midfoot (6) MLA and (7) first MPJ. 

 

3.9.12 Conventional lower limb model 

The Conventional Lower Limb Model (Figure 3.1) is the most widely used lower limb 

biomechanical model and has been previously validated for use in the 3D motion analysis of 

the lower limb (Kadaba et al., 1990).  The application of the Conventional Lower Limb Model 

followed protocols for the definition of segments, axes and output angles described by Davis 

et al., (1991).   

 

3.9.13 Leardini multisegment foot model 

The Leardini foot model is a five segment foot model that was applied to each participant 

undergoing gait analysis. This multisegment foot model was first described by Leardini et al., 
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(2007) and validated for use in adults by Caravaggi et al., (2011).  The application of the 

Leardini Foot Model (Figure 3.2) followed protocols for the segmental definitions, axes and 

output angle described in Leardini et al., (2007).  

 

 

Figure 3.2: Marker Placement for the Conventional Lower Limb Model 

 

 

Figure 3.3: Marker Placement for the Leardini Foot Model 
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3.9.14 Data collection protocol 

Static trial:  To ensure that all auto-reflective markers were detected by the camera system, 

and to establish the position of joint centres for each gait model, a static trial of four seconds 

was recorded.  Each static trial was recorded with the participant standing on the force plates 

within the capture volume. Participants were asked to stand facing in the direction of the Y-

axis of the laboratory reference frame with their hands placed by their side and the lower limbs 

in neutral rotation.  

 

Dynamic trial:  Gait trials were recorded by asking each participant to walk barefoot along the 

walkway and through the capture volume at a comfortable self-selected walking speed. 

Participants were instructed to start walking on the command of "one, two, three, go". To allow 

participants sufficient time to accelerate to a self-selected walking speed a minimum of three 

steps were required on entering the capture volume. To allow sufficient deceleration a 

minimum of three step were required on exiting the capture volume.   

 

To naturalise gait patterns and acclimatise participants to the conditions of the motion analysis 

laboratory, each participant was asked to carry out several practise gait trials. To acclimatise 

each participant to the conditions of the laboratory, practise trials were repeated until each 

participant could execute a complete gait cycle within the confines of the capture volume.   

 

Perry (1992) described the phases of the gait cycle with respect to reciprocal foot contact with 

the ground. Within the capture volume, gait events were defined using the onset and 

termination of vertical force by the right foot on the force plates. Vertical ground reaction force 

above a threshold of 20N was used to identify initial contact of the dominant or affected lower 

limb. Contact with a second force plate above the 20N threshold determined initial contact and 
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toe-off events for the contralateral limb. Ipsilateral Initial contact and ipsilateral toe-off 

determined the stance and swing phases of the gait cycle.  

 

Following acclimatisation to the laboratory conditions, up to 35 gait trials were recorded for 

each participant from which spatial-temporal, kinetic and kinematic data from six error free 

walking trials were analysed. A successful walking trial included the following: (1) one 

complete gait cycle per lower limb, consisting of one initial contact event, one midstance event 

and one toe-off event; (2) each participant was observed to walk through the capture volume 

in a straight line without targeting the force plates; (3) that the gait cycle events for each lower 

limb took take place within the confines of one force plate only and (4) all markers remained 

attached.  

 

3.9.15 Protocols for evaluating rheumatology physical function and disease impact 

Grip Strength: Grip strength was assessed by asking each participant to assume a sitting 

position with the elbow held at 90° with the forearm supported flat at horizontal. Grip strength 

was then assessed by compressing a dynamometer (Takai Instruments Corp, Japan) as hard as 

possible, three times with each hand with a one minute interval given between consecutive grip 

tests. The mean value was designated as the grip strength value. 

 

Six Minute Walk Test: From a standing position, each subject was asked to walk across a thirty-

metre walkway at comfortable self-selected walking speed and timed with a stopwatch. The 

distance in meters that each participant was able to walk in six minutes was then measured.  
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Timed Button Test: Participants were given a standard eight button shirt to wear and asked to 

button and unbutton the shirt as quickly as possible. The results were expressed as the number 

of buttons fastened/unfastened per minute. This was repeated three times. The mean value was 

designated as the timed button test speed. 

 

Timed Up and Go: Participants were asked to stand up from a standard chair, walk a distance 

of three metres at self-selected walking speed, turn and then walk back to the same chair and 

sit down. The time taken for each participant to carry out this task was measured using a 

stopwatch. This was repeated three times. The mean value was designated as the timed up and 

go speed. 

 

3.9.16 Measures of rheumatology disease impact 

The number of painful joints that each early onset adult RA participant presents with were 

recorded using a participant reported painful joint count. To measure the impact of early onset 

adult RA on the foot, early onset adult RA participants were asked to complete the following 

additional outcome measures at this visit: (1) LFIS and (2) HAQ.  

   

Leeds Foot Impact Scale and Visual Analogue Pain Scale: At the end of each testing session, 

early RA participants were given the LFIS to complete which was described in chapter 1. In 

addition, a visual analogue scale (VAS, 0 – 100mm) was be used to record pain on the day of 

testing.   
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Health Assessment Questionnaire: In order to evaluate key components of global disease 

activity, damage and functional ability each early RA participant was asked to complete the 

HAQ.   

 

3.9.17 Data collection at NHS recruitment sites 

The following data were retrieved from patient records held at individual NHS Trust sites:  

Patient Demographics: name, age, gender and current RA specific drug therapy. 

Measures of Current Disease Activity: Disease activity data were recorded using the DAS28, 

DAS-CRP, erythrocyte sedimentation rate (ESR), anti-cyclic citrulinated peptide (Anti-CCP), 

C-reactive protein (CRP) and rheumatoid factor (RF).  

 

3.9.18 Data management 

To minimise the dissemination of personal information and research data collected, only the 

Chief Investigator was responsible for data collection and data storage. The Chief Investigator 

did this in accordance with the Data Protection Act 1998.  

 

3.9.19 Data processing 

To avoid artificially increasing effect size and violating assumptions of independence only data 

from the dominant or affected limb were extracted for analyses (Menz, 2005). Vicon software 

was used to reconstruct marker trajectories. In total, two hundred and sixteen trials in which 

marker trajectories were visible throughout the entire gait cycle were used for analysis. Upon  

reconstruction, raw trajectories were filtered using the Woltring filter routine with the 
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recommended mean square error (MSE) value for filtering of gait data set at 20 (Vicon Motion 

Systems, Oxford).  

 

Vicon Polygon® Plug-In-Gait software (Vicon Motion systems Ltd, Oxford, UK) was used to 

extract kinetic and kinematic data derived from the Conventional Lower Limb Model. C-Motion 

3D® software (Visual 3D Inc, USA) was used to calculate and extract kinematic data derived 

from the Leardini Foot Model.   

 

3.10 Statistical analysis 

The following sections outline the statistical methods used to analyse data in this thesis. The 

descriptions of these methods are organised according to the study in which they were used. 

 

3.10.1 Study 1: Evaluating test-retest repeatability 

Chapter 2 (section 2.3.14) highlighted that 3D motion capture data is susceptible to 

measurement error. In statistical terms ‘error’ refers to all sources of variability in data that 

cannot be explained by the independent variable (Rankin and Stokes, 1998). Estimating the 

magnitude of error is therefore a fundamental determinant of what constitutes measurement 

repeatability and is attributable both to intrinsic and extrinsic sources.    

 

3.10.2 Intrinsic variability 

As part of the normal variation in human gait in able-bodied participants,  it is normal to see 

variations in movement patterns and spatial-temporal parameters  between gait cycles. This 
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natural variability is referred to as intra-subject (or intrinsic) variability. Such variability may 

be attributed to factors such as age, gender height and walking speed.  Whilst experimental 

design may be used to control for these factors, their influence cannot be completely eliminated 

(McGinley et al., 2013).   

 

The magnitude of intrinsic variability may vary depending upon joint site and plane of motion. 

Using the CMC method, Tsushima et al., (2003)  studied intra-subject variability in  six able-

bodied participants (mean age 35.2 years ± 6.2), reporting  sagittal plane rotations to 

demonstrate the lowest level of intrinsic variability, ranging from 0.997° ± 0.001 at the hip to 

0.981° ± 0.005 at the ankle. Intrinsic variability may, however, increase when measured over 

time. Charlton et al.,(2004) reported a combined same day  inter-trial variation in joint rotations 

of 2.90° ± 2.09 for the hip, knee and ankle motion, increasing to 3.09° ± 1.83,  when measured 

between days.  

 

By contrast, spatial-temporal data appear more stable. In a study of 5 participants (age range 

from 21-31 years, male/female ratio 2:3), analysing within-day and across-week variability in 

spatial-temporal parameters, McGinley et al., (2014) reported inter-session variability to be 

remained low with standard deviation values equal to or less than 0.05 m/s for walking speed, 

2 steps/min for cadence and 0.03m for stride length.  

 

Whilst natural variability is a consistent and modifiable feature of gait data, it should not be 

confused with measurement error. To estimate the error component of data it is important to 
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consider sources of variance which occur external to the participant which together constitute 

extrinsic variability.  

 

3.10.3 Extrinsic variability 

Three dimensional motion capture data are susceptible to extrinsic variability arising primarily 

from inaccurate marker placement and the movement of underlying soft tissue structures or 

artefact (McDermott et al., 2010). Because of this, variability in repeated measures taken 

between subjects and between-days has been shown to be the largest contributor to error in 

kinematic measures (Long et al., 2010). To mitigate against the effects of error in 3D motion 

capture data, repeatability studies assess how much measurements vary when they are repeated 

on the same participant under the same conditions. Repeated measures may be used to estimate 

between-rater variability, within-rater variability or inter-session variability. Distinguishing 

between these models is important when establishing protocols for repeatability analyses. How 

variability is analysed therefore depends upon the conceptual model of repeatability used as 

different models of repeatability may lead to different estimates of the variance component 

(Schwartz et al., 2004). 

 

3.10.4 Analysis of extrinsic variability 

In analysing the repeatability of 3D motion capture data, the approach of this thesis was to use 

two methods. In study 1,  a conventional form of analysis was undertaken which  examined the 

repeatability of spatial-temporal parameters, joint kinetics and joint kinematics using discrete 

variable analysis of data extracted from following events within the gait cycle: initial contact, 

midstance, toe-off and peak angular motions.  The repeatability of these data was evaluated 

using the Standard Error of Measurement (SEM), Mean Difference and the Bland and Altman 
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limits of agreement (LOA). The level of agreement between repeated measures was evaluated 

using the Intraclass Correlation Coefficient (ICC). In contrast to conventional forms of 

repeatability analysis, a novel approach was used in study 2, based upon waveform symmetry 

analysis. This method was used to analyse the similarity in the shape, amplitude and excursion 

of 3D motion capture waveform data across the entire duration of gait. The following sections 

describe these methods.  

 

3.10.5 Standard Error of Measurement 

The standard deviation of measurement error reflects the reliability of a test measurement. For 

this reason it is incorporated into the SEM as a measure of absolute repeatability. The SEM is 

expressed in the units of measurement chosen for data collection. The SEM was calculated 

according to the method described by Portney and Watkins (2009):  

SD × √1 − ICC 

 

3.10.6 Bland and Altman 95% Limits of Agreement 

To assess agreement between test 1 and test 2 measurements, the Bland and Altman 95% LOA 

was used. This was calculated according to the method described by Bland and Altman (1986):   

 

1. The mean of the test 1 and test 2 measurements was calculated along with the difference 

between the two means 
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2. The standard deviation of the two differences was calculated 

 

3. The 95% limits of agreement was then calculated using the formula:  1.96 ×  
𝛴(𝑑2−𝑑1)²

𝑛
  

 

The 95% limits of agreement provides a range of error that may relate to clinical acceptability 

although this should be interpreted with respect to the range of measures in the raw data.  

Assuming errors are normally distributed it should be expected that 95% of the differences in 

test 1 and test 2 scores  fall within 2 standard deviations above and below the difference 

between the mean of all measurements (more precisely ± 1.96).  

 

3.10.7 Intraclass Correlation Coefficient  

The intraclass correlation coefficient is a single index calculated using variance estimates 

obtained by partitioning measurement error into between and within subject variance. This is 

known as analysis of variance (ANOVA). The ICC reflects both the degree of consistency and 

agreement among measurements.  

The level of agreement between repeated measures was evaluated using the ICC model (3, 1).  

𝐼𝐶𝐶 =  
𝐵𝑀𝑆 − 𝐸𝑀𝑆

𝐵𝑀𝑆 + (𝜅 − 1)𝐸𝑀𝑆
 

Where BMS represents the between subject variance, EMS represents the residual variance and 

subscript kappa (κ) represents the number of raters. 

The acceptance criteria for the ICC used in phase 1 followed guidelines recommended by 

Portney and Watkins, 2009). Therefore a correlation coefficient of <0.50 was defined as poor. 
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A correlation coefficient between 0.50 – 0.75 was classified as moderate whilst coefficients 

between 0.75 – 0.90 were accepted as good. 

 

3.10.8 Waveform symmetry analysis 

To assess the similarity of kinematic waveform data, a novel approach was used to examine 

the repeatability of all data points across the gait cycle. Waveform symmetry analysis was 

conducted using Matlab 2016a according to the method described by Crenshaw and Richards 

(2006). For each variable the following parameters were calculated: trend symmetry, range 

offset, and range amplitude for all three planes of motion. A fourth variable, phase offset, was 

calculated for sagittal plane parameters only. Trend symmetry is a unitless metric and was 

measured using eigenvector analysis using the following steps: 

1. The mean value of each kinematic waveform was subtracted from each time-point in 

the data series:  

{
𝑋𝑡𝑖
𝑌𝑡𝑖

} = {
𝑋𝑖
𝑌𝑖

} − {
𝑋𝑚
𝑌𝑚

} 

Each kinematic curve was represented by X and Y, respectively. Subscript i indicates the 

original data, ti indicates the translated elements after the data were demeaned, and the mean 

of each curve is indicated by subscript m. 

2. These data were entered into a matrix containing each pair of points as a row. 
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3. Eigenvector analysis was then conducted using a singular value decomposition was 

applied to this matrix, multiplying it by its transpose: 

(𝑀 = 𝑈𝛴𝑉𝑇) 

Here, 𝑀 represents the original m x m matrix, 𝑈 represents an m x m orthogonal matrix   , 𝛴 

represents an m x n diagonal matrix and 𝑉𝑇 represents the original matrix transposed.  

 

4. Each row of the resultant matrix was rotated by the angle measured between the 

eigenvector and the X-axis (Θ). This rotation caused the points to lie about the X-axis:  

{
𝑋𝑅𝑖

𝑌𝑅𝑖
} = [

cos 𝜃 sin 𝜃
sin 𝜃 cos 𝜃

] {
𝑋𝑡𝑖
𝑌𝑡𝑖

} 

Subscript Ri indicates the rotated elements and subscript ti indicates the translated elements of 

each data set. 

5. The variability of data points was calculated along both the X and Y axes. X-axis 

variability was the variability along the eigenvector, whilst Y-axis variability was the 

variability about the eigenvector. 

 

6. The trend symmetry value was computed by dividing the Y-axis variability (variability 

about eigenvector) by the X-axis variability (variability along the eigenvector) and was 

expressed as a percent. 

 

7. This value was subtracted from one. A value of zero indicated perfect asymmetry. A 

value of one, indicated perfect symmetry. Values ≥ 0.95 were considered highly similar 
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between modes based upon a sagittal plane normative gait database (Crenshaw and 

Richards, 2006).  

 

Range offset was measured as the mean difference, in degrees, between kinematic curves. A 

value of zero indicated that the mean value was the same for both waveforms. Positive values 

indicated the test 1 waveform to be greater in amplitude than that of the test 2 waveform.  

Range amplitude was calculated as the ratio of the relative excursion (max value minus min 

value) between kinematic waveforms (test 1 versus test 2) and therefore unitless. A value of 

one indicated that the kinematic curves had the same excursion. Values larger than one 

indicated excursions were greater in the test 2 waveform.   

The phase offset was calculated for the sagittal plane only as the other planes do not undergo 

large enough excursions. To calculate the phase offset one kinematic waveform was shifted by 

a 1% stance increment relative to the other. The trend symmetry number was then calculated. 

This shifting was repeated for every 1% of stance up to 20% stance in both forward and 

backward increments. The percentage of stance where the maximum trend symmetry value was 

identified was determined as the phase offset. 

 

3.10.9 Test-retest repeatability of foot posture assessment 

To investigate the repeatability of foot posture assessment, Rasch analysis was undertaken in 

study 1 to allow the analysis of categorical data from the FPI-6 using parametric statistics.   

Rasch analysis is a probabilistic testing procedure that is used to assess outcome scales against 

a mathematical measurement model. This method was used in order to operationalize those 
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axioms thought to define foot posture, modelling the probability that foot posture assessment 

acted as a function of both the chief investigators operation of the FPI-6 and the response of 

individual criterion when applied.  This was undertaken by calculating the probability of a 

correct response as the logistic function of the difference between the person and item 

parameter (Tennant and Conaghan, 2007). Fundamentally, Rasch analysis was therefore 

undertaken to characterize both the proficiency of the chief investigator in completing the FPI-

6 and criterion difficulty as locations on a continuous latent variable.  

 

Each criterion is viewed within Rasch analysis as a fundamental trade-off between the abilities, 

attitudes, or person traits of the clinician and the difficulty of measuring individual criterion 

(Tennant and Conaghan, 2007). Using a probabilistic form of Guttman scaling, response 

patterns achieved from a set of items in an outcome measure that are intended to be summed 

together are tested against what is expected by the model (Guttman, 1950). A Rasch model 

therefore describes the structure which data should exhibit in order to obtain measurements 

from that data, providing a criteria for successful measurement. In doing so, it provides an 

experimental benchmark, or model, against which data must fit (Andrich, 2004).   

 

Rach models may be either dichotomous or polytomous. Tennant and Conaghan., (2007)  

advise the use of a polytomous model where categorical data are organised in ascending 

magnitude and where Likert-type scales are applied such as those used within the FPI-6.  For 

these reasons, a polytomous mathematical derivation of the Rasch model first described by  

Andrich, (1978) was chosen. The algorithm for this model is described here in a simple logit-

linear form:  log (Pnij / Pni(j–1)) = Bn – Di – Fj (1)  where Pnij is the probability that participant 
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n encountering item i is observed in category j of a set of ordered response categories j = s + 

1, s + m,.  Bn is the ability of participant n, Di is the difficulty of item I and Fj is the Rasch-

Andrich threshold located at the point of equal probability of categories j–1 and j.  

 

To test the fit of data to the model used for this study, Rasch analysis used Chi-square based 

statistics to test the difference between observed and expected responses for  criterion that 

demonstrate a difficulty level near the person's ability level: 

New difficulty logit:  This estimate is used to express item difficulty on a linear scale that 

extends from negative infinity to positive infinity. Under normal circumstances, item 

difficulties range from −3 logits to +3 logits. 

 Person standard error: This shows the precision of the Rasch estimate. The size of a standard 

error of an estimate is strongly influenced by the number of measurements used to make the 

estimate and should be no more than 3 standard errors difference. 

 Infit Mean Squares (MnSq): A mean-squares estimate near 1.0 indicates little distortion of the 

measurement system. The Infit MnSQ should normally be near 1.0. A MnSQ of above 1.0 may 

be considered high.  

Rasch analysis was performed using WINSTEPS® software to transform ordinal data from the 

six component criterion scores of the FPI-6 into interval data prior to analysis using parametric 

statistics.  Before entering data, item calibration was undertaken by scaling data (+1 to +5) in 

order to eliminate negative numerals.  Once Rasch analysis was completed for both test-retest 

data on FPI-6 was performed, transformed summative scores of the FPI-6 were analysed using 

the ICC method described in section 3.9.6 of this chapter.   
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3.10.10 Study 2 - Comparative cross sectional study of adults with early RA compared 

against age and gender matched controls   

Statistical analyses were performed using SPSS Version 22.0 and Microsoft Excel Version 

2013. To assess for normality of distribution, data was assessed using the Shapiro-Wilk test. 

Between-group comparisons of spatial-temporal, kinetic and kinematic data were examined 

using independent t tests for normally distributed data and Mann-Whitney tests for non-

normally distributed data. The level of significance used was 0.05 and all data reported as 

means ± SD.   

 

3.10.11 Principal component analysis 

In the presence of disease, 3D kinetic and kinematic waveforms may vary significantly in their 

shape and magnitude from those of healthy controls. To determine where dominant modes of 

variance occur between waveforms, principal component analysis (PCA) was carried out using 

SPSS Version 22.0.  

  

PCA is a data reduction technique that enables the structure within a large dataset to be 

examined in order to extract those principal components that identify statistically significant 

features of variance between waveforms. In essence, PCA reduces a high dimensional dataset 

into low-dimensional, uncorrelated set of features that maximally explain the variation in the 

original dataset. These features can then be used to determine between-group differences. To 

achieve this, PCA arranges correlation coefficients between variables into a correlation matrix. 

The presence of clusters of large correlation coefficients between variables suggest that these 
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variables measure aspects of the same underlying dimension. These dimensions are known as 

components.  

 

PCA was used to extract principal components from the overall data matrix by identifying what 

combination of variables showed the strongest linear relationship, accounting for as much of 

the total variance in a dataset as possible. To extract these components, each waveform was 

transformed into its constituent principal components through eigenvector analysis of the 

covariance matrix. A singular value decomposition of the covariance matrix was conducted, 

transforming it into a set of principal components, composed of eigenvectors. These principal 

components were conceptualised as a set of new variables which are used to describe the 

original dataset. 

 

It should be highlighted that principal components are abstract statistical entities. They do not 

indicate which data are related to which principal component. As such they are statistical 

representations of variance and cannot be interpreted as conceptually real (Portney and 

Watkins, 2009). When analysing waveforms, the series of principal component coefficients are 

interpreted as a single mode of variation describing variability within the entire original data 

set, where each mode is orthogonal to all other modes and ranked in terms of variance via its 

associated eigenvalue.  

 

Eigenvalues were used to establish a cut-off point to limit the number of principal components 

for analysis.   As eigenvalues represent the amount of variation explained by a factor principal 

components for each waveform were retained for analysis where eigenvalues were greater than 
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1.00 and component loadings were greater than > 0.70. Finally, a parallel analysis was used to 

identify the number of principal components to retain for further comparison. In this manner, 

only those principal components that captured a greater amount of variability than would be 

expected by chance were retained for further analysis.  

 

In the present study, normalised gait cycle waveforms for each subject in the early RA and 

control groups (N= 36) were divided into 101 data time points (0-100%). Each time point 

corresponded to 1% of the gait cycle from initial contact to on one limb to the next initial 

contact on the same limb. To perform PCA, the total number of data points should be less than 

the number of subjects (Field, 2009). For this reason, thirty three data time points (i.e. each 

alternate data point corresponding to each 3% of the gait cycle) were therefore stored in a 36 x 

33 matrix (number of subjects x number of data time points) for 17 kinematic and 9 kinetic 

waveforms prior to eigenvector extraction. When carrying out PCA, an oblique rotation of the 

data was performed in order to allow principal components to correlate to component loadings 

(Field, 2009).  

 

In PCA not all principal components are retained for further analysis. To determine which ones 

were to be selected, principal components were first evaluated graphically using a scree plot to 

visually identify the number of components to retain. Group differences in patterns of joint 

angular joint motion and external joint moments were then evaluated by selecting those 

principal components which combined accounted for more than 80% of variation in each gait 

waveform.  
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When conducting PCA, it is important to assess the nature of the dispersal of correlations 

within the data. Where partial correlations are present, the pattern of correlations may be too 

dispersed to allow PCA to be undertaken.  To evaluate the dispersal of correlations, the Kaiser-

Meyer-Olkin test is used to represent a ratio of the squared correlation to squared partial 

correlation between variables. This ratio varies between 0 and 1. A value of 0 indicates that the 

sum of partial correlations is large compared to the sum of correlations. This indicates a 

diffusion in the pattern of correlations and hence the use of PCA is inappropriate. A value close 

to 1 indicates a compact pattern of correlations hence PCA is appropriate. Values between 0.5 

– 0.7 are considered mediocre, hence values above 0.7 are accepted. In addition, a Bartlett’s 

test of sphericity was used to test whether the diagonal elements of the variance-covariance 

matrix are equal (i.e. group variances are the same) and that off-diagonal elements are 

approximately zero (i.e. dependent variable not correlated). Non-significant values indicated 

that there were no relationships between variables and PCA is not appropriate (Field, 2009).   

 

For each of the waveform variables, between-group differences were examined using principal 

component scores. Principal component scores represent the transformation of the original 

observations into a new coordinate space defined by the principal components. Principal 

component scores provide a measure of distance indicating how closely each waveform 

conforms to the mode of variability captured by each principal component. Mean Principal 

component scores were used to illustrate the modes of variance captured for each waveform 

variable. Since each principal component captures variability across all time points, not all 

dimensions are required to reconstruct the original data set within a given level of accuracy. 

Therefore it is possible to reduce the dimensionality of the original dataset matrix and retain 

only those principal component scores that reflect primary modes of variation.  Previous 
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research by Wrigley et al., (2005) used principal component scores as the dependent variable 

in order to determine significant between-group differences.  

 

3.10.12 Kinematic coupling 

In a biomechanical model, joint rotations are represented by movements taking place between 

adjacent segments. When movements of two or more body segments are co-ordinated within 

an overall movement pattern, they are said to be coupled. Kinematic coupling is defined as the 

angular displacement of one segment relative to the angular displacement of another. Three 

dimensional angular rotations are calculated by means of transformation matrices and are 

represented using vectors in relation to the X, Y and Z planar axes (Cappozzo et al., 2005).  

Whilst providing data on the angular rotations of individual lower limb model segments, a 

limitation of using vectors is that they can be neither subtracted nor added to one another. It is 

therefore not possible to analyse the movement patterns that take place between segments 

simply by comparing their adjacent angular rotations.  To overcome this limitation, the 

calculation of intersegmental rotations was carried out using a method presented by Hamill and 

colleagues known as Vector Coding (Hamill et al., 1999).   

 

The co-ordination of angular rotations between two segments are referred to as phase 

relationships. The relative phase is used to identify different states of movement, or co-

ordination between adjacent segments.  By plotting the angular rotations of a segment against 

its angular velocity, the ‘phase plane’ of that segment may be calculated.  The difference in 

phase plane angles between adjacent segments is referred to as the continuous relative phase 

(CoRP). To provide a continuous measure of segmental coordination throughout the entire 
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stance phase of gait, between-segment coordination patterns were determined by calculating 

the continuous relative phase using Microsoft Excel Version 2013. This allowed the assessment 

of both the flexibility and intrinsic variability in coordination between adjacent segments in 

early RA participants.  

 

The calculation of the CoRP was described by Hamill et al., (1999). Phase plots were calculated 

for each joint segment and angle studied. In the first step in calculating the CoRP, phase plots 

consisting of the angle (θ) on the horizontal axis with its derivative, angular velocity (ω), on 

the vertical axis were computed. To allow for the calculation of the phase angle (φ), phase plots 

were normalised for each trial using the following equations: 

 

Horizontal axis (angle):  2∗[𝜃𝑖−min(∅𝑖)]

max(𝜃𝑖)−min (𝜃𝑖)
   where Θ indicates the segment angle;  i indicates the 

data point within the stance phase 

 

Vertical axis (angular velocity):   𝜔𝑖

𝑚𝑎𝑥{max(𝜔𝑖),   max (−𝜔𝑖)}
   where ω indicates the segment angle;  

i indicates the data point within stance phase 

 

Next, the phase angle was then calculated as follows:    ∅ = tan−1 𝜔(𝑡)

𝜃(𝑡)
 

The CoRP angle was defined as the difference between the normalised phase angles of adjacent 

segments throughout stance. The continuous relative phase variability (VCoRP) was calculated 

according to Miller et al., (2008) as the between stride standard deviation in the continuous 
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relative phase for a single participant at each time step. VCoRP was averaged over six trials 

for each subject then averaged across participants.  

 

3.10.13 Study 3: Relationships between early RA walking patterns with measures of 

disease Activity, disease impact and rheumatology physical function 

Functional relationships between the walking patterns of early RA participants and measures 

of disease activity, disease impact and tests for rheumatology physical function were 

investigated using regression analysis. This technique is used to determine whether an outcome 

variable may be either predicted or explained by a single or set of predictor or explanatory 

variables. This is known as single or multiple regression analysis respectively. Regression 

analysis was carried out using SPSS Version 22.0.  

 

To avoid the inclusion of misleading or unhelpful variables owing to covariance between data, 

the selection of which prospective explanatory variables to use was based upon the strength of 

the Pearson correlation coefficient. Only strongly associated variables entered into the model. 

In addition, only those variables considered to have a plausible functional relationship based 

upon evidence presented within the wider rheumatology literature were considered. Once 

identified, prospective explanatory variables were then grouped into the following categories: 

measures of disease activity, measures of disease impact, measures of rheumatology physical 

function, foot posture assessment and temporal-spatial parameters.  Variables found to be 

significantly associated with each principal component score were then entered into a series of 

linear regression analyses. The model of multiple regression analysis used incorporated a 

backwards stepwise procedure. This was used to further identify the set of variables that 
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significantly and independently explained variance in each outcome variable. The outcome 

variables used for this study were the principal component scores for segmental kinematics that 

were calculated following PCA. 

 

When conducting a regression analysis, significant correlations between explanatory variables 

should be avoided as this creates uncertainty regarding the actual strength of association 

between outcome variables and their predictors. Significant correlations between explanatory 

variables is known as multicollinearity.  The presence of multicollinearity between explanatory 

variables can increase the variance of coefficient estimates which makes estimates very 

sensitive to minor change.  As a result estimates become unstable and difficult to interpret. 

Explanatory variables should therefore be selected that avoid multicollinearity within the 

chosen regression model. When conducting a multiple regression analysis the variance 

inflation factor (VIF) and its tolerance statistic are used as measures to assess how much the 

variance of the estimated regression coefficient is inflated by the presence of correlation 

between explanatory variables. The VIF should preferably be below 1.00 whilst the tolerance 

statistic should be above 2.0.  

 

In this study, in order to eliminate multicollinearity within the multiple regression models used 

to explain associations between explanatory variables and 3D gait kinematics, those variables 

which increased the VIF and tolerance statistic were removed. For each outcome variable, 

either single or multiple regression analyses were performed depending upon the number of 

explanatory variables remaining after prior elimination.  
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CHAPTER 4:   Evaluating Test-Retest Repeatability  

  

The reliability of 3D motion capture data may be compromised by errors in instrumentation, 

investigator fallibility and the inconsistent response of human participants. To test whether the 

protocols developed for this research were robust enough to allow the aims of this thesis to be 

achieved, study 1 investigated the repeatability of 3D motion capture and foot posture 

assessment. The results of study 1 are reported in this chapter.  

 

4.1 Introduction 

The presence of extrinsic variability in 3D motion capture data means that their interpretation 

may in part be determined by the presence of error. Error may occur as a result of the protocols 

used in undertaking 3D motion capture (Schwartz et al., 2004). Where these data incorporate a 

high magnitude of error, it is difficult to interpret the true impact of disease on the 

musculoskeletal function of the foot and lower limb. In mitigating against the impact of error, 

the approach taken by this thesis was to investigate the magnitude of measurement error within 

a two phase repeatability study. The following sections report on the results of study 1.  

 

4.2 Aims of Study 1 

The aim of study 1 was to establish reliable protocols for the 3D biomechanical evaluation of 

the foot and lower limb in participants with early RA. 
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4.3 Study Design 

Study 1 used a prospective intra-rater test-retest design to investigate the repeatability of 3D 

motion capture and foot posture assessment over two phases. Phase 1 investigated the intra-

rater test-retest repeatability of 3D motion capture and foot posture assessment prior to the 

commencement of study 2 and study 3. To ensure that the protocols developed in phase 1 

remained robust throughout the duration of the research, phase 2 investigated the intra-rater 

repeatability of 3D motion capture and foot posture assessment after data collection for study 

2 and study 3 had been completed.  Figure 4.1 summarises the study design.  

 

4.4 Data Analysis 

The repeatability of 3D motion capture data was investigated using two approaches. Firstly, a 

conventional approach was undertaken using discrete variable analysis. The repeatability of 

spatial-temporal data was analysed using the following parameters: walking speed (m/s), 

cadence (steps/min), step length (mm) and stride length (mm). The repeatability of joint 

kinetics and joint kinematics were investigated using discrete variable analysis of data 

extracted at the following gait cycle parameters: initial contact, midstance, terminal stance and 

total joint motion or moment. All discrete variables were analysed using the SEM, ICC, and 

Bland and Altman 95% LOA.  Secondly, a novel approach using waveform symmetry analysis 

was undertaken. All kinematic waveform data were analysed using waveform symmetry 

analysis. The following parameters were analysed: trend symmetry, phase offset, range 

amplitude and range offset. The following The statistical methods used in this study were 

described in chapter 3 (sections 3.9.4 to 3.9.8). The flow of data analysis in phase 1 and phase 

2 of his study is summarised in figure 4.1. 
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Figure 4.1: Flow diagram of data analysis in study 1 

 

4.5 Participants 

Phase 1:  Ten participants were recruited for this study, comprising of six control participants 

(4 males, 2 females, 34 ± 6 years) and four early RA participants (1 male, 3 females, and 45 ± 

7 years).  

Phase 2: Twenty-five healthy participants were recruited (mean age 44 ± 10 years, male/female 

ratio 9:16)  
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Figure 4.2: Flow diagram of study 1 

 

4.6 Results  

This section reports on the results of study 1. Tables A(VI)1 to 12 summarising the results of 

this repeatability analysis may be found in Appendix VI. 

 

4.6.1 Repeatability of spatial-temporal parameters 

Phase 1: Good to excellent repeatability was seen across all spatial-temporal parameters 

between test 1 and test 2 data.   All ICC coefficients for spatial-temporal parameters were 

observed to be above 0.75 with excellent test-retest repeatability (ICC: 0.90) found in four of 

the five spatial-temporal parameters analysed.  Test-retest variability was least for toe-off (%) 
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(mean ICC = 0.77, mean SEM = 0.79) and largest for cadence (mean ICC = 0.95, mean SEM 

= 3.58 steps/min).  

Phase 2: Good to excellent repeatability was again seen across all spatial-temporal parameters.   

All ICC coefficients for spatial-temporal parameters were observed to be above 0.75. With the 

exception of % foot-off where good repeatability was observed (mean ICC = 0.73), excellent 

test-retest repeatability (ICC: 0.90) was found for the remaining spatial-temporal parameters 

analysed. The greatest magnitude of repeatability was observed for cadence (mean ICC = 0.95, 

mean SEM = 2.58 steps/min).  

 

4.6.2 Repeatability of kinetic parameters 

Phase 1:  Overall, good to excellent test-retest repeatability (mean ICC: 0.88, mean SEM – 

0.05N/Kg) was found for 18 of the 21 kinetic parameters analysed.  Test-retest repeatability 

was lowest at the hip joint (ICC = 0.69, SEM = 0.03 N/kg) and highest at the ankle joint (ICC 

= 0.96, SEM = 0.02 N/kg).  

Good to excellent repeatability was seen in sagittal plane joint moments. The lowest magnitude 

of repeatability was seen during ankle dorsiflexion (ICC = 0.96, SEM = 0.02N/Kg).  The 

highest magnitude of repeatability was seen at the knee on initial contact (ICC = 0.95, SEM = 

0.02N/Kg).  

Moderate to excellent test-retest repeatability (mean ICC 0.88, mean SEM 0.01N/Kg) was 

found for all kinetic parameters in the frontal plane.  Test-retest repeatability was lowest at the 

knee joint (mean ICC = 0.71, mean SEM = 0.01 N/kg) and highest at the hip joint (mean ICC 

= 0.95, mean SEM = 0.01 Nm/kg).  No values of the ICC were below 0.50.   
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Moderate to excellent test-retest repeatability (mean ICC = 0.81, mean SEM 0.05N/Kg) was 

found for all kinetic parameters in the transverse plane. Test-retest variability was least at the 

hip joint (ICC = 0.69, SEM = 0.03 N/kg) and largest at the hip joint (ICC = 0.92, SEM = 0.09 

N/kg).  No values of the ICC were below 0.50. 

 

Phase 2: Overall, good to excellent test-retest repeatability (mean ICC: 0.85, mean SEM  =  

0.05 N/Kg) was again found for 18 of the 21 kinetic parameters.  Test-retest repeatability was 

least at the hip joint (ICC = 0.69, SEM = 0.03 N/kg) and largest at the ankle joint (ICC = 0.95, 

SEM = 0.02 N/kg).  

Good to excellent repeatability was seen in sagittal plane joint moments. The lowest 

repeatability was seen at maximum hip flexion moment (ICC = 0.73, SEM = 0.07N/Kg). The 

highest repeatability was seen at the minimum ankle dorsiflexion/plantarflexion moment at the 

ankle (ICC = 0.96, SEM = 0.03 N/Kg).   

Moderate to excellent test-retest repeatability (mean ICC 0.81, mean SEM = 0.05 N/Kg) was 

found for all kinetic parameters in the frontal plane.  Test-retest variability was lowest peak hip 

adduction (mean ICC = 0.69, mean SEM = 0.03 N/kg) and highest at peak hip abduction (mean 

ICC = 0.96, mean SEM = 0.01 Nm/kg).  No values of the ICC were below 0.50.   

Moderate to excellent test-retest repeatability (mean ICC = 0.87, mean SEM = 0.01 N/Kg) was 

found for all kinetic parameters in the transverse plane. Test-retest variability was least at the 

knee joint (ICC = 0.71, SEM = 0.04 N/kg) and largest at the hip joint (ICC = 0.95, SEM = 0.01 

N/kg).  No values of the ICC were below 0.50. 

 

 



  

126 
 

4.6.3 Repeatability of Conventional Lower Limb Model 

Phase 1: Overall, good to excellent test-retest repeatability was found for 14 of the 15 

kinematic parameters analysed in the sagittal plane; (mean ICC = 0.90 and mean SEM = 1.57º). 

Test-retest repeatability was observed to be lowest at the ankle joint with moderate repeatability 

observed (ICC = 0.61 and SEM = 2.54°).  Repeatability was highest at the hip joint (mean ICC 

= 0.97, mean SEM = 1.11°). No values of the ICC were below 0.50.    

Overall, excellent test-retest repeatability was found for all 15 kinematic parameters in the 

frontal plane (mean ICC = 0.86 and mean SEM = 0.68 °). Test-retest repeatability was lowest  

at the ankle joint (ICC = 0.76, SEM = 1.03°) and highest at the knee joint (mean ICC = 0.92, 

mean SEM = 1.30°).  No values of the ICC were below 0.50.   

Overall, Moderate to excellent test-retest repeatability was found for 14 of the 15 kinematic 

parameters in the transverse plane (mean ICC = 0.87, mean SEM = 2.08°). Test-retest 

variability was least at the knee joint during peak internal rotation (ICC = 0.69, SEM = 2.52º) 

and greatest at the ankle joint at initial contact (ICC = 0.91, SEM = 0.32°). No values of the 

ICC were below 0.50.   

 

Phase 2:  Overall, good to excellent test-retest repeatability was found for 16 of the 18 

kinematic parameters analysed in the sagittal plane (mean ICC = 0.86 and mean SEM = 0.38°. 

Test-retest repeatability was least at the knee joint at toe-off (ICC = 0.66, SEM = 0.58°) and 

greatest at the ankle joint at peak plantarflexion (ICC = 0.95, SEM = 0.22º).  No values of the 

ICC were below 0.50.   

Overall, excellent test-retest repeatability was found for 17 of the 18 kinematic parameters 

analysed in the frontal plane; mean ICC = 0.91 and mean SEM =  0.29°. Test-retest repeatability 
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was lowest at the ankle joint for total range of motion (mean ICC = 0.54, mean SEM = 0.68°) 

and highest at the knee joint (mean ICC = 0.94, mean SEM = 0.24°). No values of the ICC 

were below 0.50.   

Overall, Moderate to excellent test-retest repeatability was found for kinematic parameters 

analysed in the transverse plane in stage 1; (mean ICC = 0.83 and mean SEM = 0.38º). Test-

retest variability was least at the knee ankle joint for total range of ankle joint motion (ICC = 

0.70, SEM = 0.55º) and greatest at the hip joint at initial contact (ICC = 0.96, mean SEM = 

0.20º). No values of the ICC were below 0.50.   

 

4.6.4 Waveform symmetry analysis of the Conventional Lower Limb Model  

Phase 1:  A high level of similarity was seen between kinematic waveforms on trend symmetry 

analysis. The mean trend symmetry value for all waveforms was 0.99° indicating a high level 

of symmetry between test 1 and test 2 waveforms. The mean range offset for all kinematic 

waveforms was   0.23°, indicating similar mean values between test 1 and test 2 measures.  The 

mean range amplitude was 0.97°, indicating that the excursions between waveforms were very 

similar.  All sagittal plane phase shifts were equal to or less than 1%. Trend symmetry was 

least for frontal plane rotations of the knee with a value of 0.98 and range offset and amplitude 

of -0.95 and 0.9 respectively.  By contrast, symmetry was highest for sagittal plane rotations 

of the hip with a trend symmetry value of 0.99 and a range offset and amplitude of 0.05. 

 

Phase 2:  A high level of similarity was seen between kinematic waveforms on trend symmetry 

analysis. The mean trend symmetry value for all waveforms was   0.99° indicating a high level 

of symmetry between test 1 and test 2 waveforms. The mean range offset for all kinematic 
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waveforms was 0.15 °, indicating similar mean values between test 1 and test 2 measures.  The 

mean range amplitude was 0.89°, indicating that the excursions between waveforms were very 

similar.  All sagittal plane phase shifts were equal to or less than 1%. Trend symmetry was 

least for frontal plane rotations of the knee with a value of 0. 98 and range offset and amplitude 

of -0.32 and 0.84 respectively.  By contrast, symmetry was highest for sagittal plane rotations 

of the hip with a trend symmetry value of 0.90 and a range offset and amplitude of 0.04. 

 

4.6.5 Repeatability of the Leardini Foot Model 

Phase 1:  Good to excellent test-retest repeatability was found for 19 of the 20 kinematic 

parameters analysed in the sagittal plane, (mean ICC = 0.92, mean SEM = 1.60°). Test-retest 

variability was least at the first MPJ at peak dorsiflexion (ICC = 0.74,  SEM = 5.56º) and largest 

at the shank-calcaneus (ICC = 0.99, SEM = 0.55°. No values of the ICC were below 0.50.   

Moderate to excellent test-retest repeatability (ICC 0.81, 1.90°) was found for 6 of the 10 

kinematic parameters analysed in the transverse plane.  Test-retest repeatability was least at the 

shank-calcaneus (ICC = 0.63, SEM = 1.83°) and largest at the calcaneus-midfoot (ICC = 0.86, 

SEM = 1.26°). No values of the ICC were below 0.50.  

Good to excellent test-retest repeatability was found for 9 of the 10 kinematic parameters 

analysed in the frontal plane, (mean ICC = 0.92, mean SEM = 0.98°). Test-retest repeatability 

was least at the shank-calcaneus (ICC = 0.72, SEM = 3.10º) and largest at the calcaneus-

midfoot (ICC = 0.99, SEM = 0.52°). No values of the ICC were below 0.50. 

 

Phase 2:  Good to excellent test-retest repeatability was found for 20 of the 24 kinematic 

parameters analysed in the sagittal plane (mean ICC = 0.86 and mean SEM = 0.36°). Test-
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retest repeatability was lowest at the MLA (ICC = 0.61,  SEM = 0.62°) and highest for total 

range of motion at the shank-calcaneus (ICC = 0.97, SEM = 0.17°). Values of the ICC were 

below 0.50. 

Good to excellent test-retest repeatability was found for 11 of the 12 kinematic parameters 

analysed in the frontal plane (mean ICC = 0.85 and mean SEM = 0.39°). Test-retest 

repeatability was least at the calcaneus-midfoot (ICC = 0.90, SEM = 0.32°) and largest at the 

shank-calcaneus (ICC = 0.68, SEM = 0.57°). No values of the ICC were below 0.50. 

Moderate to excellent test-retest repeatability was found for all kinematic parameters analysed 

in the transverse plane (mean ICC = 0.75 and mean SEM = 0.49°).  Test-retest variability was 

least for total range of motion at the shank-calcaneus (ICC = 0.57, SEM = 0.66°) and largest at 

the calcaneus-midfoot at initial contact (ICC = 0.90, SEM = 0.32°). No values of the ICC were 

below 0.50. 

 

4.6.6 Waveform symmetry analysis of the Leardini Foot Model 

Phase 1: A high level of similarity was seen between kinematic waveforms on trend symmetry 

analysis. The mean trend symmetry value for all waveforms was   0.96 indicating a high level 

of symmetry between test 1 and test 2 waveforms. The mean range offset for all kinematic 

waveforms was -0.36°, indicating similar mean values between test 1 and test 2 measures.  The 

mean range amplitude was 0.60 indicating that the excursions between waveforms were very 

similar.  All sagittal plane phase shifts were equal to or less than 1% with the exception of 

sagittal plane motion at the first MPJ which demonstrated a phase offset of 2%. Trend 

symmetry was least for transverse plane rotations of the calcaneus-midfoot segment with a 

trend symmetry value of 0.94 and range offset of -3.61. Waveform symmetry was greatest for 
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shank-calcaneus motion in the sagittal plane with a trend symmetry score of 0.98 and range 

offset of -0.65.  

 

Phase 2:  Symmetry between test-retest waveforms was again found to be high.  The mean 

trend symmetry value for all waveforms was 0.99, indicating a high level of symmetry between 

test 1 and test 2 waveforms. The mean range offset for all kinematic waveforms was -0.83°, 

indicating similar mean values between test 1 and test 2 measures.  The mean range amplitude 

was 0.89° indicating that the excursions between waveforms were very similar.  All sagittal 

plane phase shifts were equal to or less than 1%. Trend symmetry was lowest for sagittal plane 

rotations of the first MPJ with a trend symmetry value of 0.96 and a range offset 0.97. By 

contrast, symmetry was highest for sagittal plane motion at the MLA with a trend symmetry 

value of 0.99 and a range offset -2.65. 

 

4.6.7 Repeatability of the Foot Posture Index 

In accordance with recommendations by (Tennant and Conoghan, 2007), when conducting 

Rasch analysis, tests of fit should be undertaken and reported. The results of these analyses for 

phase 1 and phase 2 FPI-6 raw data are presented in tables A(VI)13 and 17.  In both phase 1 

and phase 2, Rasch  analysis of FPI-6 scores demonstrated good fit to the model across all 

parameters examined using the criteria described in Chapter 3, section 3.10.9. Person location 

data were transformed and mapped onto raw FPI-6 scores. Tables A(VI)16 and 17 present the 

Rasch transformed logit scores for the FPI-6 for all test-retest measures.  

Transformed logit scores for phase 1 and phase 2 test-retest measures were analysed using the 

ICC model (3, 1).  An ICC score of 0.85 for this parameter indicated excellent repeatability in 
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phase 1.  Likewise, in Phase 2 excellent intra-rater repeatability was observed with an ICC 

score of 0.86.  

 

4.7 Discussion 

One of the aims of this thesis was to establish reliable protocols for the biomechanical 

evaluation of the foot and lower limb in participants with early RA. To achieve this aim, 

study 1 was designed to investigate the intra-rater test-retest repeatability of spatial-temporal, 

kinetic and kinematic 3D motion capture data. These parameters were investigated using a 

conventional approach incorporating the analysis of discrete gait variables using the ICC, 

SEM, mean difference and Bland and Altman 95% LOA. Owing to the limitations of discrete 

variable analysis, a novel method of investigating test-retest repeatability was undertaken, 

using waveform symmetry analysis.  

 

When using 3D motion capture for the assessment of musculoskeletal function in the foot and 

lower limb, it is generally accepted that measurement errors in excess of 5° are not acceptable 

for clinical decision making (Meldrum et al., 2014). Against this threshold, the magnitude of 

absolute error reported in both phases of study 1 would be deemed acceptable in both of the 

3D biomechanical models tested; most observations of the SEM were below 3°. This suggests 

that the protocols developed for the use of 3D motion capture within this thesis were robust.   

In addition to the measurement of absolute error,  when the variance of 3D motion capture data 

were partitioned to allow the analysis of  between-participant and within-participant variability,   

ICC coefficients showed good-to-excellent repeatability across all of the kinetic  parameters 

tested. Good-to-excellent repeatability was also observed in the majority of kinematic data. 

Intraclass correlation coefficients did however demonstrate a tendency to decrease in value 
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when kinematic data were analysed at more distally located joints. This would be consistent 

with the presence of greater magnitudes of variance in motion at these sites. This pattern of 

increased variability is similar to observations of a proximal-to-distal propagation in error that 

have been reported in previous studies using the CMC method (refs). In explaining his 

phenomenon, difficulties in marker placement, soft tissue artefact and errors in joint axis 

calculation have been proposed as likely factors in the presence of such error (refs).  

 

Overall, sagittal plane joint rotations demonstrated the lowest magnitudes of measurement 

error with ICC coefficients indicating good-to-excellent repeatability in both 3D biomechanical 

models tested during phase 1 and phase 2 of the study. In addition, frontal plane rotations also 

exhibited good-to-excellent repeatability of ICC coefficients.  By contrast, transverse plane 

rotations exhibited more error in repeated measures. Discrete variables exhibiting moderate 

repeatability were located at the knee and ankle. However, when data from these parameters 

were analysed across the full duration of the gait cycle using waveform symmetry analysis, a 

high level of waveform symmetry was observed between test-retest measures. For this reason, 

these parameters were retained when moving forwards into study 2.  

 

Overall, the results of study 1 suggest that the protocols tested remained robust, with good-to-

excellent ICC coefficients sustained across both phase 1 and phase 2.  SEM values were 

generally small and a reduction in the Bland and Altman 95% LOA was observed in several of 

the parameters tested by the end of phase 2. Taken together, these results suggest that as these 

protocols became established, the magnitude and range of error of these data showed evidence 

of an improvement over time.    
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4.8 Study limitations  

There are several limitations to study 1 which arise from issues concerning participant 

recruitment, study design and the use of multiple comparison procedures. The following 

section discusses these aspects.   

 

Participant recruitment: Difficulties were experienced in participant recruitment. Whilst it 

may be argued that the protocols developed for this thesis were robust, the improved 

repeatability of 3D motion capture data that was observed in this study  may in part be due to 

the small number of participants evaluated in phase 1 (n = 10). It is plausible that this may have 

contributed to the larger standard deviations and magnitudes of absolute error observed at the 

beginning of the study. The larger standard deviations and mean difference values for some 

parameters also suggest that outliers may have accounted for the lower levels of repeatability 

reported in phase 1.  Due to the small numbers of participants recruited for this phase, it was 

decided not to remove these data from the analysis.  The narrower Bland and Altman 95% LOA 

seen in phase 2 may suggest that the effect of these outliers were reduced as a result of the 

larger sample size recruited at the end of the study (n = 25).  

 

The availability of a sufficient number of early RA and control participants to attend more than 

one testing session also prohibited the collection of between-session repeatability data. This 

limited study 1 to investigating within-session repeatability, rather than incorporating a second 

between-session repeatability component. Whilst this was in part mitigated by the analysis of 

a second group of participants in phase 2, it may be argued that this is a limiting factor to the 

design of study 1. When test-retest repeatability is analysed on the same participants between 
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sessions that are separated over the course of days or weeks, an increase in the magnitude of 

error in kinematic data has been reported (Schwartz et al., 2004). It is plausible that fluctuations 

in disease activity and symptomology in participants with early RA may adversely influence 

their response to testing with 3D motion capture.  Had repeatability testing been performed on 

the same participants between sessions, greater magnitudes of error may have been observed. 

Establishing between-session repeatability in early RA participants would have allowed the 

aims of this thesis to have been achieved within a longitudinal cross-sectional study design.  

This would be justifiable given that early RA demonstrates a temporal component to the onset 

and development of musculoskeletal pathology.  It may therefore be argued that the limitations 

in the design of study 1 also had limiting effect upon the overall research design of the thesis. 

 

On the issue of foot posture assessment, the small sample size of participants recruited to both 

phase 1 and phase 2 of this study mean that the findings for this repeatability analysis should 

be treated with caution. (Wright and Douglas, 1975) recommend that, in order to have 99% 

confidence that data stability will measure within ±1 logit, a sample sizes of 50 participants 

should be used when operating a polytomous Rasch model. This far exceeds the number of 

participants recruited to study 1.  Furthermore, a limitation of the Rasch model is that it may 

be considered overly prescriptive in that it assumes all items to have equal discrimination. In 

practice, item discrimination may vary, rendering the measurement tool unequal to the 

theoretical ideal generated by Rasch analysis.  It is therefore unlikely that any dataset will ever 

demonstrate a perfect data-model fit (Tennant and Conoghan, 2007).  This raises the question 

as to whether the FPI-6 data collected in study 1 provided sufficient quality of measurement 

for its intended purpose, rather than a matching an unattainable level of theoretical precision.  

Whilst it may be concluded in this study that foot posture assessment was shown to be 
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repeatable, difficulties in recruitment do not allow these findings to be generalizable. 

Furthermore, the utility of the Rasch model means that these findings are not without their 

conceptual limitations.  

 

Data analysis: Whilst the discrete variables analysed in study 1 represent those conventionally 

used to investigate repeatability (Rankin and Stokes, 1998), the statistical methods used in 

discrete variable analysis are not without their limitations. As the ICC is a dimensionless value 

it is therefore not easily interpreted (Meldrum et al., 2014).  In addition, what constitutes an 

acceptable level of repeatability remains a subjective decision and is generally decided on the 

basis of the purpose of the instrument under investigation (Steiner and Norman, 2004).  A 

criticism of the ICC is the extent to which it is influenced by between-participant variance.  As 

it measures the ratio of the true score variance to true variance plus error, it will invariably be 

low in conditions where there is little variation among subjects (McDermott et al., 2010). When 

interpreting ICC coefficients, the value of the reliability coefficient may be considered than 

whether the magnitude of measurement error renders the instrument practical for clinical use 

(McDermott et al., 2010). As correlation coefficients like the ICC provide no indication of the 

magnitude of expected error within repeated tests. As a coefficient of correlation, it is also 

unitless value. To allow the meaningful interpretation of data the ICC should not be used alone.  

To overcome these limitations it is recommended that the ICC ratio is interpreted alongside 

additional methods of evaluating repeatability which present the magnitude of error in absolute 

terms using unambiguous units of measurement (Portney and Watkins, 2009).   The SEM fulfils 

this requirement by expressing the correlation coefficient in relation to between subject 

variance. This method therefore enhances the interpretation of the ICC by providing an 

indication of the magnitude of the error between repeated tests, whilst also providing an 
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estimate of absolute error based upon the unit of measurement used in the biomechanical model 

(Rankine and Stokes, 1998).   

 

As an additional measure, the Bland and Altman 95% LOA provides the range of error that 

accompanies the absolute measurement of error given by the SEM (Portney and Watkins, 

2009).  The Bland and Altman 95% LOA is calculated by taking the difference in the mean 

between two measures, the calculation of the standard deviation of the differences between the 

two means, then calculating the 95% limits of agreement. Whilst the advantages of this 

approach are that the 95% limits of agreement provide a range of error that relate to clinical 

acceptability, this must be interpreted with respect to the range of measures within the raw data.  

 

The analysis of discrete variables may not necessarily represent those time points within the 

gait cycle at which peak magnitudes of error occur. It is therefore plausible that the magnitude 

of absolute error that occurred between these discrete variable analysed in study 1 exceeded 

that considered acceptable for clinical utility.  Conventional alternatives of analysing all data 

points across the kinematic waveform, namely the CMC method, have been shown be affected 

by a high signal-to-noise ratio (Roislien et al., 2012).  To mitigate against this limitation, 

waveform symmetry analysis was used as a novel approach to the investigation of test-retest 

repeatability by comparing the shape, amplitude an excursion of kinematic waveforms. Whilst 

this technique was able to demonstrate that a high level of similarity between test-retest 

waveforms existed in study 1, it does not specifically measure the magnitude of absolute error. 

Waveform symmetry analysis therefore cannot be used as an alternative to discrete variable 

analysis based upon the use of the SEM. Neither does it provide a single correlation coefficient 

that analyses the between-subject and within-subject variance of data as would be expected 



  

137 
 

when using the ICC method.  Whilst waveform symmetry analysis is used to compare all data 

points across the kinematic waveform, it is not designed specifically locate where significant 

differences in the mode of variance of repeatability data may be found within the gait cycle.  

 

Multiple comparison procedures: Finally, it should be acknowledged that whilst the use of 

multiple test-retest analyses has previously been justified in mitigating against the limitations 

of individual statistical techniques (Rankin and Stokes, 1998),   it is acknowledged that this 

may increase the likelihood of experiment-wise, or type I error (Gelman et al., 2012). Given 

the small sample size of participants recruited to study 1, the limitations of the study design 

and the limitations of the statistical tests used, it cannot be ruled out that multiple testing of 

these data may have increased the likelihood of concluding that the magnitude of error in 

repeated measures to be within acceptable limits.  However, Armstrong, (2014) advises against 

the use of multiplicity adjustment procedures such as Bonferroni correction in repeatability 

analyses on the grounds that that procedures such as the Bonferroni correction are not advisable 

in circumstances in which variables are highly inter‐dependent such as those assessed in study 

1. As Bonferroni correction is a conservative procedure, when it is applied to all p values 

associated with each individual test to maintain the α level over all tests at 0.05, it is possible 

that the significant between-group differences may go undetected.  

 

4.9 Conclusion 

An acceptable level of repeatability was observed in spatial-temporal, kinetic and kinematic 

data in study 1. These protocols remained robust throughout the duration of the research, 

showing evidence of an improvement in the magnitude of error by the end of the study.   The 

protocols developed for using 3D motion capture in the thesis were found to be robust enough 
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to allow the comparative analysis of lower limb biomechanical function in study 2 and           

study 3.  

In the next chapter, these protocols were used to investigate whether spatial-temporal 

parameters, joint kinetics and joint kinematics in early RA participants are different to age and 

gender matched healthy controls.  
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Chapter 5: Comparative Analysis of 3D Motion Capture Data between 

Adults with Early Rheumatoid Arthritis and Age and Gender Matched 

Controls 

 

In the second study of this thesis, a comparative cross-sectional analysis was undertaken to 

investigate spatial-temporal, kinetic and kinematic 3D motion capture data from participants 

with early RA. To achieve the aims of this thesis, study 2 was conducted over three phases.  

This chapter presents the results of phase 1 and phase 2 of this study.    

 

5.1 Introduction 

In the absence of validated outcome measures for the assessment of musculoskeletal 

pathologies of the foot and lower limb, researchers have adopted 3D motion capture as a 

method of collecting data on spatial-temporal parameters, joint kinetics and joint kinematics in 

participants with early RA.  Consistent with the conceptual framework of this thesis, these 

authors have reported the presence of altered joint kinematics in participants with early RA 

(Turner et al., 2006; Khazzam et al., 2006; Barn et al., 2013; Gibson et al., 2014). Whilst these 

studies have documented the magnitude of altered joint kinematics in early RA, from the 

comprehensive review of the literature, it is plausible that current methods of analysing 3D 

motion capture data are unlikely to fully elucidate the location, timing and duration of early 

biomechanical changes in RA. Furthermore, it was argued that the practice of viewing these 

data as fundamentally linear, or deterministic in nature, may be an additional limiting factor to 

the interpretation of mechanically based trauma in early RA. With these limitations in mind, 

the approach taken by this thesis was to extend the work of previous investigators by using 
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novel approaches in the analysis of 3D motion capture data in the assessment of 

musculoskeletal pathology in early RA within a three phase study. These approaches were 

described in chapter 3 (section 3.9.10 and section 3.9.11). The following sections summarise 

the design of this study and report on phase 1 and phase 2.   

 

5.2 Aims 

The aim of study 2 was to quantify and characterize the baseline biomechanical function of the 

lower limb in adult patients with early RA determining if these characteristics differ from aged-

matched healthy adults. 

Data from this study was used to answer the first research question of this thesis: 

1. When people with early RA are compared to age and gender-matched healthy adults, 

are there significant between-group differences in the biomechanical function of the 

foot and lower limb during walking? 

 

5.3 Hypotheses   

Data from study 2 was used to test the following hypotheses: 

• (H1) - Lower limb spatial-temporal parameters in adults with early RA will be different 

from those of age and gender matched adults 

 

• (H2) - Lower limb joint kinetics in adults with early RA will be different from those of 

age and gender matched adults 
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• (H3) - Lower limb joint kinematics in adults with early RA will be different from those 

of age and gender matched adults 

 

5.4 Study Design 

 

Study 2 used a comparative cross-sectional study design to compare the spatial-temporal, 

kinetic and kinematic characteristics of early RA participants against healthy controls using 3D 

motion capture. To mitigate against current limitations in the analysis of mechanically based 

trauma in early RA, study 2 was conducted in three phases which are summarised in figure 5.1. 

 

 

 

Figure 5.1: Summary of study design 
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5.5 Data Analysis 

In phase 1 of this study investigated the magnitude and significance of between-group 

differences in spatial-temporal, kinetic and kinematic data using discrete variable analysis. The 

method of discrete variable analysis used in this thesis was described in chapter 3 (section 

3.9.9). To analyse the location, timing and duration of significant between-group differences 

in 3D motion capture data, phase 2 investigated between-group differences in the mode of 

variance of kinetic and kinematic data by using PCA. This technique was described in chapter 

3 (section 3.9.10).  In 3D motion capture data where significant between-group differences 

were found using PCA, phase 3 investigated the presence of non-linear behaviour patterns in 

these data by analysing inter-segmental coupling variability. This method is described in 

chapter 3 (section 3.9.11).  

 

5.6 Recruitment 

 

Early onset adult RA participants were recruited from consecutive outpatient rheumatology 

clinics. Prospective early RA participants were identified by their rheumatology care teams 

during out-patient appointments according to the inclusion/exclusion criteria of the study.  

 

A control group of healthy non-RA participants was recruited from a convenience sample of 

volunteers from local community groups within the Newham, Tower Hamlets, City and 

Hackney and Waltham Forest areas.  
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5.7 Participants   

 

A total of 48 early RA participants were referred to the study. Of these, eighteen of the early 

RA participants recruited (mean age 45.5 ± 9.75 years, male/female ratio 5:13) agreed to 

provide additional 3D motion capture data. Data from an age and gender matched control group 

of 18 participants (mean age 43.9 ± 7.58 years,   male/female ratio 5:12) were also collected. 

The flow of early RA participant recruitment for study 2 is illustrated in figure 5.2.  

 

 

 

Figure 5.2: Flow diagram of early RA participant recruitment and data collection 
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5.8 Participant Anthropometrics 

 

Participant anthropometric data are given in table 5.1. No significant group differences in age 

and gender were found. Significant group differences were seen in height and weight. All data 

were normally distributed.  

 

Table 5.1: Mean and ± SD of anthropometric data of early RA and control groups evaluated for biomechanical 
walking patterns 

 

Parameter Control Group Mean Early RA Group Mean p-value 

Male: Female Gender 7:11 5:13  

Age (years) 43.90 ± 7.58 45.50 ± 9.75 0.42 

Height (cm) 165.55 ± 8.04 149.61 ± 30.84 0.04 

Weight (Kg) 72.15 ± 15.65 93.94 ± 39. 53 0.04 

 

 

5.9 Early RA participant demographics 

 

Pharmacological management and self-reported tender joint sites of early RA participants 

(n=18) are presented in tables 5.2 and 5.3.  
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Table 5.2: Pharmacological Management of early RA participants (n=18) 

 

Medication Frequency (%) 
  

Methotrexate  72 

Sulphsalazine  11 

Prednisolone 0 

Folic Acid  67 

Hydroxychloroquine  11 

Cortisone  17 

Leflunomide 6 

Nil Therapy  11 

 

 

 

Table 5.3: Early RA participant self-reported tender joint sites  

 

Joint Site Frequency (%) 

  

Shoulder Joints (%) 25 

Elbow joints (%) 0 

Wrist Joints (%) 0 

Metacarpophalangeal Joints (%) 62.5 

Hip joints (%) 0 

Knee Joints (%) 0 

Ankle Joints (%) 37.5 

Subtalar Joints (%) 37.5 

Midtarsal Joints (%) 25 

Metatarsophalangeal Joints (%) 75 

 

 

5.10 Results of phase 1: Discrete Variable Analysis 

 

In study 1, discrete variable analysis was used to investigate between-group differences in 

spatial-temporal parameters, joint kinetics and joint kinematics in participants with early RA 

compared to healthy controls. The following sections present the results of this analysis.  
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5.10.1 Spatial-temporal parameters 

Spatial-temporal data are presented in table 5.4.  All data were normally distributed. Significant 

group differences were seen in walking speed which was slower in the early RA group (early 

RA group, 1.10m/s ± 0.17, control group, 1.30m/s ± 1.09) and the percentage of the gait cycle 

where toe-off occurred (toe-off %) where early RA participants exhibited an increase in the 

duration of the stance phase (early RA group, 61.09 % ± 1.84, control group, 59.72 % ± 1.33).  

 

Table 5.4: Mean and ± SD of spatial-temporal data of early RA and control groups evaluated for biomechanical 
walking patterns 

 

Parameter Control Group Mean Early RA Group Mean p-value 

Walking Speed (m/s)      1.30 ± 0.09 1.10 ± 0.17 0.00 

Cadence (steps/min) 115.18 ± 8.51 116.02 ± 13.15 0.83 

Step length (m) 13.43 ± 24.65 13.01 ± 27.83 0.96 

Stride Length (m) 1.35 ± 0.06 1.24 ± 0.22 0.07 

Step Time (s) 0.52 ± 0.04 0.52 ± 0.08 0.96 

Stride Time (s) 1.04 ± 0.08 1.07 ± 0.13 0.41 

Toe-off (%) 59.72 ± 1.33 61.09 ± 1.84 0.02 

 

 

5.10.2 Vertical ground reaction force 

Vertical ground reaction force data are presented in table 5.5 and figure 5.3.  No significant 

between-group differences were seen in these data. All data were normally distributed. 
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Table 5.5: Mean and ± SD of vertical ground reaction force data of early RA and control groups evaluated for 
biomechanical walking patterns 

 

Parameter Control Group Mean (N) Early RA Group Mean (N) p-value 

Initial Contact 0.44 ± 0.12 0.34 ± 0.15 0.06 

First Peak (F1) 1.63 ± 0.41 1.54 ± 0.50 0.55 

Trough (F2) 1.10 ± 0.29 1.07 ± 0.43 0.85 

Third Peak (F3) 1.67 ± 0.41 1.57 ± 0.54 0.55 

Toe-off 0.44 ± 0.12 0.35 ± 0.21 0.16 

 

 

 

Figure 5.3:  Group mean and ± SD vertical ground reaction force data during gait. The black line represents an 
age and gender matched control group (n=18). The red line represents participants with early RA (n=18). 
Normalised gait cycle is defined from initial contact of one foot to the subsequent contact of the same foot and is 
normalised as a percentage. Positive values represent flexion moments. Negative values represent extension 
moments.   
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5.10.3 Sagittal joint moments 

Mean and SD sagittal joint moment data for the hip, knee and ankle at initial contact, midstance, 

toe-off, and peak activity are presented in table 5.6.  Of these parameters, only data on ankle 

dorsiflexion at initial contact and peak plantarflexion were found to be significantly different 

between-groups.  

 

Table 5.6: Mean and ± SD of sagittal plane external joint moments of the hip, knee and ankle in early RA and 
control groups evaluated during gait 

 

Segment Parameter Control Mean (Nm/Kg) Early RA Mean Nm/Kg) p-value 

Hip Initial Contact (0%)  0.20 ± 0.21 0.39 ± 0.12 0.11 
 

Midstance (50%)  -0.64 ± 0.36 -1.31 ± 0.67 0.64 
 

Toe-off (100%)  0.02 ± 0.12 0.21 ± 0.20 0.84 
 

Peak Extension -0.71 ± 0.36 -1.41 ± 0.61 0.66 
 

Peak Flexion 0.69 ± 0.25 0.75 ± 0.11 0.08 

Knee Initial Contact (0%)  -0.11 ± 0.10 -0.14 ± 0.07 0.11 
 

Midstance (50%)  -0.05 ±  0.32 0.40 ± 0.43 0.8 
 

Toe-off (100%) -0.04 ± 0.04 -0.09 ± 0.06 0.61 
 

Peak Extension -0.49 ± 0.12 -0.35 ± 0.15 0.40 
 

Peak Flexion  0.70 ± 0.38 0.66 ± 0.46 0.21 

Ankle  Initial Contact (0%)  -0.09 ± 0.06 -0.01 ± 0.05 0.01 

 Midstance (50%)  1.42 ± 0.22 1.12 ± 0.48 0.21 

 Toe-off (100%) -0.01 ± 0.02 -0.01 ± 0.03 0.72 

 Peak Plantarflexion -0.22 ± 0.11 -0.13 ± 0.08 0.02 

 Peak Dorsiflexion 1.51 ± 0.22 1.19 ± 0.50 0.07 

 

 

On visual inspection, the ankle joint moment curves of both groups follow a similar motion 

pattern of initial plantarflexion as GRF moves closer to the ankle, followed by dorsiflexion as 
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GRF passes in front of the ankle. This rapidly increases following toe-off. Qualitatively, the 

plantarflexion moment in the first 20% of gait is reduced in the early RA participants. These 

participants also demonstrated a reduced magnitude of dorsiflexion moment between 25-62% 

of gait.  Between-group differences in ankle joint plantarflexion moments at initial contact were 

significant with early RA participants exhibiting a reduced plantarflexion moment (Early RA 

group, -0.01 Nm/Kg ± 0.05, Control Group, -0.09 Nm/Kg ± 0.06).  Peak plantarflexion moment 

was also significantly reduced in the early RA participants (Early RA Group, -0.13 Nm/Kg ± 

0.08, Control Group, -0.22 ± 0.11).  

 

 

Figure 5.4:  Group mean ± SD sagittal plane external joint moments of the ankle during gait. The black line 
represents the age and gender matched control group (n=18). The red line represents the early RA group (n=18). 
Normalised gait cycle is defined from initial contact on one foot to the subsequent contact of the same foot. The 
gait cycle is normalised as a percentage. Positive values represent adduction moments. Negative values represent 
abduction moments.   
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5.10.4 Frontal joint moments  

Mean and SD frontal joint moments of the hip, knee at initial contact, midstance, toe-off and 

peak activity are presented in table 5.7. No parameter was found to exhibit significant between-

group differences.    

 

Table 5.7: Mean and ± SD of frontal plane external joint moments of the hip, knee and ankle kinematics in early 
RA and control groups evaluated during gait 

 

Segment Parameter Control Mean (Nm/kg) Early RA Mean (Nm/kg) p-value 

Hip Initial Contact (0%) 0.06 ± 0.12 0.04 ± 0.16 0.62 
 

Midstance (50%)  0.31 ± 0.35 0.41 ± 0.32 0.72 
 

Toe-off (100%) 0.11 ± 0.09 0.07 ± 0.09 0.07 
 

Peak Abduction  -0.16 ± 0.11 -0.15 ± 0.09 0.32 
 

Peak Adduction 0.73 ± 0.32 0.83 ± 0.38 0.64 

Knee Initial Contact (0%)  0.02 ± 0.03 0.06 ± 0.08 0.14 
 

Midstance (50%)  0.28 ± 0.14 0.26 ± 0.21 0.30 
 

Toe-off (100%)  0.04 ±  0.03 0.05 ± 0.05 0.71 
 

Peak Abduction  -0.05 ± 0.02 -0.06 ± 0.04 0.62 
 

Peak Adduction  0.50 ± 0.18 0.48 ± 0.29 0.99 

Ankle Initial Contact (0%)  -0.01 ± 0.03 -0.01 ± 0.01 0.51 

 Midstance (50%)  -0.09 ± 0.03 -0.05 ± 0.06 0.33 

 Toe-off (100%)  0.02 ± 0.03 0.02 ± 0.02 0.62 

 Peak Abduction  -0.07 ± 0.29 -0.07 ± 0.06 0.74 

 Peak Adduction  0.06 ± 0.07 0.06 ± 0.06 0.81 
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5.10.5 Transverse joint moments  

Mean and SD of transverse  joint moments  of the hip, knee and ankle during walking  at initial 

contact, midstance, toe-off and peak activity are presented in table 5.8.  Positive values 

represent internal rotation moments, whilst negative values represent external rotation 

moments.  No parameter was found to exhibit significant between-group differences.  

 

Table 5.8: Mean and ± SD of transverse plane external joint moments of the hip, knee and ankle kinematics in 
early RA and control groups evaluated during gait 

 

Joint Parameter Control Mean (Nm/Kg) Early RA Mean (Nm/Kg) p-value 

Hip Initial Contact (0%)  0.00 ± 0.01 0.00 ± 0.02 0.71 

 Midstance (50%)  0.04 ± 0.05 0.01 ± 0.07 0.82 

 Toe off (100%)  0.01 ± 0.02 -0.01 ± 0.03 0.64 

 Peak Ext Rota  -0.13 ± 0.09 -0.16 ± 0.09 0.73 

 Peak Int Rota 0.10 ± 0.07 0.09 ± 0.06 0.75 

Ankle Initial Contact (0%)  -0.01 ± 0.01 -0.01 ± 0.01 0.83 

 Midstance (50%)  0.04 ± 0.03 0.04 ± 0.04 0.81 

 Toe off (100%)  0.01 ± 0.02 0.01 ± 0.03 0.84 

 Peak Ext Rota -0.03 ± 0.02 -0.03 ± 0.02 0.79 

 Peak Int Rota 0.11 ± 0.05 0.11 ± 0.05 0.81 

Knee Initial Contact (0%)  0.00 ± 0.01 0.00 ± 0.01 0.87 

 Midstance (50%)  0.05 ± 0.04 0.07 ± 0.06 0.30 

 Toe off (100%)  0.01 ± 0.02 0.01 ± 0.02 0.76 

 Peak Ext Rota -0.03 ± 0.02 -0.03 ± 0.02 0.89 

 Peak Int Rota 0.11 ± 0.06 0.13 ± 0.08 0.34 
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5.10.6 Sagittal plane kinematics   

Mean and SD sagittal plane joint rotations of the hip, knee and ankle at initial contact, 

midstance, toe-off, peak rotation and total range of motion are presented in table 5.9. Only data 

on ankle joint dorsiflexion at initial contact and peak plantarflexion were found to exhibit 

significant between-group differences.   Data on ankle kinematics are plotted against the 

percentage of normalised total gait cycle and presented in figure 5.5.   

 

 

Figure 5.5: Group mean ± SD sagittal plane joint angles of the ankle during gait. The black line represents the age 
and gender matched control group (n=18). The red line represents the early RA group (n=18). Normalised gait 
cycle is defined from initial contact on one foot to the subsequent contact of the same foot. The gait cycle is 
normalised as a percentage.  Positive values represent flexion values. Negative values represent extension angles. 
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Table 5.9: Mean and ± SD of sagittal plane joint angles for hip, knee and ankle kinematics of early RA and control 
groups evaluated during gait 

 

Segment Parameter Control Mean (°) Early RA Mean (°) p-value 

Hip  Initial Contact (0%)  34.30 ± 8.34 35.87 ± 6.59 0.34 
 

Midstance (50%)  -8.82 ± 8.96 -6.18 ± 7.02 0.12 
 

Toe-off (100%)  33.70 ± 8.73 35.69 ± 6.11 0.29 
 

Peak Extension  -9.19 ± 8.94 -6.99 ± 6.64 0.32 
 

Peak Flexion 36.27 ± 8.83 37.61 ± 5.97 0.28 
 

Range of Motion 
 

45.45 ±   3.25 44.60 ± 5.99 0.53 

Knee  Initial Contact (0%)  3.93 ± 4.99 7.74 ± 4.84 0.10 
 

Midstance (50%)  8.84 ± 6.66 8.78 ± 5.00 0.26 
 

Toe-off (100%)  3.95 ± 5.32 8.07 ± 4.54 0.14 
 

Peak Extension -1.21 ± 5.80 -2.50 ± 4.95 0.17 
 

Peak Flexion 58.49 ± 5.52 58.40 ± 3.36 0.72 
 

Range of Motion 
 

59.71 ± 3.04 55.90 ± 5.17 0.27 

Ankle  Initial Contact (0%)  -4.60 ± 3.81 -1.45 ± 3.81 0.19 
 

Midstance (50%)  9.92 ± 4.19 14.95 ± 6.74 0.58 
 

Toe-off (100%)  -5.27 ± 3.82 -0.83 ± 2.28 0.01 
 

Peak Plantarflexion -21.85 ± 9.09 -11.88 ± 5.89 0.01 
 

Peak Dorsiflexion 13.26 ± 3.83 16.09 ± 5.70 0.07 
 

Range of Motion 35.10 ± 8.86 27.96 ± 8.68 0.10 

 

On visual inspection, angular rotations at the ankle are represented by a quadruple waveform 

pattern composed of four arcs of motion. The first three arcs occur within the stance phase and 

consist of: plantarflexion following initial contact; dorsiflexion following full forefoot loading 

and plantarflexion at the end of the stance phase. The fourth arc represents dorsiflexion of the 

ankle as foot clearance occurs during swing phase. Visually, both early RA and control group 

waveforms are similar in shape, following the same overall pattern of motion. Differences can 

be appreciated visually during the first 10% of gait, with a positive displacement of the early 
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RA waveform, indicating a reduced magnitude of plantarflexion in these participants from 

initial contact onwards. From 30% until 75% of the gait cycle the early RA group demonstrate 

a decrease in plantarflexion and then again between 83% – 100% in late swing prior to the 

initiation of the next gait cycle. At initial contact, less plantarflexion is seen in the early RA 

group.  By midstance a greater magnitude of dorsiflexion was seen in this group. Significant 

differences were not however apparent until toe-off where the early RA participants again 

exhibited less plantarflexion. Maximum dorsiflexion angle was not significantly different 

(Early RA Group, -5.27 ± 3.82;     Control Group,    -0.83 ± 2.28). Conversely, minimum 

plantarflexion angle was significantly different (Early RA Group,   -21.85 ± 9.09, Control 

Group,  -11.88 ±5.89).  

 

Mean and SD sagittal plane joint rotations of the shank-calcaneus, calcaneus-midfoot, MLA 

and first MPJ at initial contact, midstance, toe-off, peak rotation and total range of motion are 

presented in table 5.8.  Significant between-group differences were observed for data on shank-

calcaneus, MLA and first MPJ kinematics. These data are plotted against the percentage of 

normalised total gait cycle and presented in figures 5.6, 5.7 and 5.8.  

 

On visual inspection, a similar quadruple waveform pattern of dorsiflexion and plantarflexion 

can be observed for the shank-calcaneus which is presented in figure 5.6.  Between initial 

contact and 11% of gait, the early RA waveform is positively displaced indicating a reduction 

in plantarflexion at this segment compared to the control group. Between 24% and 46% the 

early RA waveform becomes negatively displaced indicating that early RA participants 

exhibited less dorsiflexion at this segment. By toe-off, the early RA waveform is again 

positively displaced.  During the swing phase, a negative displacement of the waveform shows 
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that this group exhibited less dorsiflexion at this segment in preparation for the beginning of 

the next gait cycle.  For this segment a significant between-group difference in plantarflexion 

at midstance was present (Early RA group, -0.32 ± 3.76, Control group, -1.39 ± 6.67) along 

with a significant reduction in the overall range of motion (Early RA group, 17.29 ± 3.86, 

Control group, 24.95 ± 6.41). Significant between-group differences were not present in any 

other parameter.   

 

Data on MLA kinematics show that both the early RA and control waveforms followed a 

similar pattern of planar motion in the sagittal plane for this planar angle. The early RA 

waveform was positively displaced compared to that of the control group. This angle is taken 

from lines bisecting the longitudinal axis of the rearfoot segment and the first metatarsal.  An 

increase in the magnitude of this planar angle represents a reduction in the height of the MLA 

as the two reference lines diverge. Conversely, a decrease in this angle results from an increase 

in the height of the MLA as these lines converge.  

 

 Overall, plantar angles for the early RA participants were larger for this parameter indicating 

a reduction in MLA height. Significant between-group differences were seen at initial contact 

(Early RA Group, 136.74° ± 12.74, Control Group, 131.38° ± 8.66) and at maximum height 

representing peak plantar excursion of the MLA (Early RA group, 131.12° ± 10.93, Control 

Group, 126.71° ± 8.16).  

 

 

 

Table 5.10: Mean and ± SD of sagittal plane joint angles for shank-calcaneus, calcaneus-midfoot, MLA and first 
MPJ kinematics of early RA and control groups evaluated during gait 
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Segment Parameter Control Mean (°) Early RA Mean (°) p-value 

Shank-Calcaneus Initial Contact (0%)  -3.38 ± 4.49 -3.35 ± 6.08 0.64 
 

Midstance (50%)  -1.39 ± 6.67 -0.32 ± 3.76 0.04 
 

Toe-off (100%)  -3.60 ± 4.29 -2.65 ± 5.62 0.06 
 

Peak plantarflexion  -19.93 ± 8.22 -13.85 ± 3.58 0.17 
 

Peak Dorsiflexion  5.01 ± 4.59 3.44 ± 2.02 0.10 
 

Range of Motion 24.95 ± 6.41 17.29 ± 3.86 0.01 

Calcaneus-Midfoot  Initial Contact (0%)  32.98 ± 10.85 37.57 ± 8.49 0.18 
 

Midstance (50%)  35.50 ± 9.63 38.64 ± 7.34 0.28 
 

Toe-off (100%)  32.95 ± 10.53 38.13 ±  8.27 0.23 
 

Peak Plantarflexion 25.78 ± 10.68 29.90 ± 8.28 0.07 
 

Peak Dorsiflexion 36.80 ± 9.92 41.24 ± 7.64 0.21 
 

Range of Motion 11.02 ± 4.45 11.34 ± 4.29 0.17 

MLA Initial Contact (0%)  131.38 ± 8.66 136.74 ± 12.74 0.02 
 

Midstance (50%)  131.43 ± 10.16 135.00 ± 9.31 0.06 
 

Toe-off (100%)  131.47 ± 8.96 137.51 ± 12.41 0.11 
 

Minimum  Height 126.71 ± 8.16 131.12 ± 10.93 0.01 
 

Maximum Height 143.38 ± 8.49 148.09 ± 10.34 0.03 
 

Range of Motion 16.67 ± 4.18 16.96 ± 5.49 0.26 

First MPJ Initial Contact (0%) 43.23 ±  10.91 37.26 ± 9.54 0.06 
 

Midstance (50%) 41.53 ± 12.24 33.52 ± 7.40 0.02 
 

Toe-off (100%) 42.26 ± 11.74 36.54 ± 9.47 0.03 
 

Minimum dorsiflexion 78.33 ± 28.97 66.37 ± 27.12 0.01 
 

Maximum Plantarflexion 31.39 ± 10.91 25.02 ± 6.39 0.03 
 

Range of Motion 46.94 ± 22.37 41.35 ± 27.88 0.03 

 

 

At the first MPJ, both the early RA and control group waveforms followed a similar pattern of 

planar motion in the sagittal plane. The early RA waveform was negatively displaced 

throughout the gait cycle  compared to that of the control group indicating that a lesser 
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magnitude of dorsiflexion was exhibited by these participants at midstance (Early RA group, 

33.52 ± 7.40, Control group, 41.53 ± 12.24) and  at toe-off (Early RA group, 36.54 ± 9.47, 

Control group, 42.26 ± 11.74). The magnitude of maximum dorsiflexion at this joint was also 

reduced in the early RA group (Early RA group, 66.37 ± 27.12, Control group, 78.33 ± 28.97) 

as was the total range of motion (Early RA group, 41.35 ± 27.88, Control group, 46.94 ± 22.37).  

 

 

 

Figure 5.6: Group mean ± SD sagittal plane joint angles of the shank-calcaneus during gait. The black line 
represents the age and gender matched control group (n=18). The red line represents the early RA group (n=18). 
Normalised gait cycle is defined from initial contact on one foot to the subsequent contact of the same foot. The 
gait cycle is normalised as a percentage 
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Figure 5.7:   Group mean ± SD sagittal plane joint angles of the MLA during gait. The black line represents the 
age and gender matched control group (n=18). The red line represents the early RA group (n=18). Normalised 
gait cycle is defined from initial contact on one foot to the subsequent contact of the same foot. The gait cycle is 
normalised as a percentage 

 

 

Figure 5.8: Group mean ± SD sagittal plane joint angles of the first MPJ during gait. The black line represents the 
age and gender matched control group (n=18). The red line represents the early RA group (n=18). Normalised 
gait cycle is defined from initial contact on one foot to the subsequent contact of the same foot. The gait cycle is 
normalised as a percentage 
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5.10.7 Frontal plane kinematics 

Mean and SD sagittal plane joint rotations of the hip, knee and ankle at initial contact, 

midstance, toe-off, peak rotation and total range of motion are presented in table 5.11. Only 

data on hip abduction at toe-off exhibited significant between-group differences. These data 

are plotted against the percentage of normalised total gait cycle and presented in figure 5.9. 

 

Table 5.11: Mean and ± SD of frontal plane joint angles for hip, knee and ankle kinematics of early RA and control 
groups evaluated during gait 

 

 

Segment Parameter Control Mean (°) Early RA Mean (°) p-value 

Hip  Initial Contact (0%)  -0.09 ± 4.35 -1.60 ± 3.93 0.97 
 

Midstance (50%)  0.77 ± 3.77 2.46 ± 3.00 0.73 
 

Toe-off (100%)  0.18 ± 4.21 -0.66 ± 3.53* 0.01 
 

Peak Abduction  -7.88 ± 3.47 -5.52 ± 3.50 0.06 
 

Peak Adduction 8.28 ± 5.40 7.24 ± 2.94 0.30 
 

Range of Motion 
 

16.16 ± 4.87 12.76 ± 2.39 0.10 

Knee  Initial Contact (0%)  -0.33 ± 3.05 -1.20 ± 5.12 0.35 
 

Midstance (50%)  -1.73 ± 5.00 -2.23 ± 5.07 0.14 
 

Toe-off (100%)  -0.49 ± 3.20 -1.51 ± 5.23 0.08 
 

Peak Abduction  -6.35 ± 8.52 -9.76 ± 11.89 0.30 
 

Peak Adduction 9.63 ± 10.59 3.73 ± 9.23 0.06 
 

Range of Motion 
 

15.97 ± 6.65 13.49 ± 6.89 0.12 

Ankle  Initial Contact (0%)  -1.43 ± 2.59 -1.84 ± 2.59 0.25 
 

Midstance (50%)  -1.33 ± 2.67 -2.24 ± 1.95 0.11 
 

Toe-off (100%)  -1.60 ± 2.60 -1.97 ± 2.47 0.29 
 

Peak Abduction  -2.61 ± 2.52 -3.11 ± 2.30 0.29 
 

Peak Adduction 2.22 ± 2.76 1.99 ± 2.01 0.31 
 

Range of Motion 4.82 ± 0.84 5.10 ± 1.20 0.39 
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Angular rotations at the hip are represented in figure 5.9 by a triple motion waveform curve. 

On visual inspection both the early RA and control group waveforms follow a similar pattern 

of motion within a small arc consisting of abduction and adduction.  The early RA waveform 

can be seen however to be negatively displaced for the majority of the gait cycle, indicating a 

greater magnitude of abduction. Except at toe-off (Early RA Group, -0.66 ± 3.55, Control 

Group, 0.18 ± 9.21), analysis of the two waveforms did not confirm that the increased 

magnitude of abduction seen qualitatively was significant  

 

 

Figure 5.9: Group mean ± SD frontal plane joint angles of the hip during gait. The black line represents the age and 
gender matched control group (n=18). The red line represents the early RA group (n=18). Normalised gait cycle 
is defined from initial contact on one foot to the subsequent contact of the same foot. The gait cycle is normalised 
as a percentage. Positive values represent adduction angles. Negative values represent abduction angles 

 

 

Mean and SD frontal plane joint rotations for the  shank-calcaneus, calcaneus-midfoot, MLA 

and first MPJ at initial contact, midstance, toe-off, minimum rotation angle, maximum rotation 

angle and total range of motion are presented in table 5.12. Only data on the angular rotation 
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of the shank-calcaneus at midstance and peak eversion exhibited significant between-group 

differences. These data are plotted against the percentage of normalised total gait cycle and 

presented in figure 5.10. 

 

Table 5.12: Mean and ± SD of frontal plane joint angles for shank-calcaneus, calcaneus-midfoot, MLA and first 
MPJ kinematics of early RA and control groups evaluated during gait 

 

Segment Parameter Control Mean (°) 
 

Early RA Mean (°) p-value 

Shank-Calcaneus Initial Contact (0%)  -4.62 ± 4.79 -7.72 ± 5.00 0.09 
 

Midstance (50%)  -5.53 ± 4.98 -9.76 ± 5.29 0.04 
 

Toe-off (100%)  -6.16 ± 5.24 -8.95 ± 5.06 0.35 
 

Peak Eversion  -9.92 ± 6.79 -10.95 ± 5.69 0.09 
 

Peak inversion  -2.08 ± 4.37 -5.35 ± 4.92 0.03 
 

Range of Motion  7.85 ± 3.30 5.60 ± 2.17 0.11 

Calcaneus-Midfoot Initial Contact (0%)  1.83 ± 6.14 1.02 ± 6.42 0.49 
 

Midstance (50%)  1.38 ± 5.85 0.49 ± 6.34 0.48 
 

Toe-off (100%)  1.89 ± 6.20 0.77 ± 6.35 0.58 
 

Peak Eversion  0.39 ± 5.92 -0.45 ± 6.25 0.47 
 

Peak Inversion  5.00 ± 6.25 3.18 ± 6.46 0.36 
 

Range of Motion 4.61 ± 2.61 3.63 ± 1.15 0.37 

 

 

Both kinematic waveforms illustrated in figure 5.10 follow a similar pattern of inversion and 

eversion at the shank-calcaneus.  Although the early RA waveform is more negatively 

displaced, both groups operated within an eversion envelope. This indicates that whilst both 

groups exhibited sustained subtalar joint pronation, the magnitude of the eversion component 

was higher in the early RA group. Table 5.12 shows that a greater magnitude of eversion was 

exhibited by the early RA group at midstance (Early RA group, -9.76 ± 5.29, Control group, -

5.53 ± 4.98) and at peak inversion (Early RA group, -10.95 ± 5.69, Control group, -9.08 ± 
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6.79).  Significant between-group differences in other parameters for this segment were not 

found.   

 

Figure 5.10:  Group mean ± SD frontal plane joint angles of the shank-calcaneus during gait. The black line 
represents the age and gender matched control group (n=18). The red line represents the early RA group (n=18). 
Normalised gait cycle is defined from initial contact on one foot to the subsequent contact of the same foot. The 
gait cycle is normalised as a percentage. Positive values represent inversion angles. Negative values represent 
eversion angles. 

 

 

5.10.8 Transverse plane kinematics   

Mean and SD transverse plane joint rotations of the hip, knee and ankle at initial contact, 

midstance, toe-off, minimum rotation angle, peak rotation and total range of motion are 

presented in table 5.13. Only data external hip rotation at initial contact were found to exhibit 

significant between-group differences. These data are plotted against the percentage of 

normalised total gait cycle and presented in figure 5.11. 
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Table 5.13: Mean and ± SD of transverse plane joint angles for hip, knee and ankle kinematics of early RA and 
control groups evaluated during gait 

 

Segment Parameter Control Mean (°) Early RA Mean (°) p-value 

Hip Peak Internal Rotation -14.24 ± 10.70 -20.21 ± 6.39 0.08 

 
Peak External Rotation 7.87 ± 11.22 1.99 ± 9.19 0.07 

 
Initial Contact (0%)  -8.51 ± 9.59 -16.40 ± 6.02 0.03 

 
Midstance (50%)  0.34 ± 11.22 -7.93 ± 8.72 0.09 

 
Toe-off (100%)  -2.27 ± 12.82 -5.48 ± 8.61 0.21 

Knee Peak Internal Rotation -13.61 ± 10.04 -14.00 ± 6.01 0.40 

 
Peak External Rotation 6.69 ± 8.29 7.76 ± 5.42 0.73 

 
Initial Contact (0%)  -8.75 ± 7.85 -8.79 ± 5.09 0.60 

 
Midstance (50%)  -3.57 ± 9.07 -6.53 ± 7.73 0.77 

 
Toe-off (100%)  -1.54 ± 10.26 -1.05 ± 7.08 0.87 

Ankle Peak Internal Rotation -14.79 ± 9.60 -16.76 ± 7.07 0.35 

 
Peak External Rotation 11.25 ± 8.59 12.56 ± 8.02 0.83 

 
Initial Contact (0%)  5.57 ± 9.80 3.37 ± 9.71 0.96 

 
Midstance (50%)  3.96 ± 9.99 8.16 ± 9.50 0.37 

 
Toe-off (100%)  -1.41 ± 10.16 2.13 ± 10.44 0.55 

 

 

Kinematic data for the hip demonstrate a similar double internal rotation motion curve in figure 

5.11.   Both groups exhibit a similar waveform curve with comparable angular excursions and 

waveform amplitude. From figure 5.10 the hip can be seen to move through an arc of internal 

rotation followed by a similar arc of external rotation. Angular rotations at the hip were similar 

at initial contact before moving into neutral rotation. At midstance angular rotations were 
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similar as were those at toe-off. The hip moved into external rotation by toe-off before 

internally rotating again during swing.  Between-group differences were non-significant.  

 

 

Figure 5.11: Group mean ± SD transverse plane joint angles of the hip during gait. The black line represents the 
age and gender matched control group (n=18). The red line represents the early RA group (n=18). Normalised 
gait cycle is defined from initial contact on one foot to the subsequent contact of the same foot. The gait cycle is 
normalised as a percentage. Positive values represent internal rotation angles. Negative values represent external 
rotation angles.   

 

 

Mean and SD transverse plane joint rotations for the shank-calcaneus and calcaneus–midfoot 

at initial contact, midstance, toe-off, peak rotation and total range of motion are presented in 

table 5.14. Positive values represent adduction angles whilst negative values represent 

abduction angles. No parameter was found to exhibit significant between-group differences.  
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Table 5.14: Mean and ± SD of transverse plane joint angles for shank-calcaneus, calcaneus-midfoot, shank-
calcaneus and calcaneus-midfoot kinematics of early RA and control groups evaluated during gait 

 

 

 

5.10.9 Phase 1: Summary of Findings 

• Early RA participants exhibited significantly less plantarflexion at the ankle joint at 

toe-off.   In addition, the minimum angular rotation recorded at this joint was also found 

to be significantly reduced in early RA participants.   

 

• Early RA participants exhibited less plantarflexion at the shank-calcaneus at midstance. 

The total range of motion of this segment was also found to be significantly reduced.  

 
• Early RA participants exhibited a significant reduction in the magnitude of peak 

dorsiflexion at the first MPJ. 

Segment Parameter Control Mean (°) Early RA Mean (°) p-value 

Shank-Calcaneus  Initial Contact (0%) -10.87 ± 5.16 -11.15 ± 2.59 0.25 
 

Midstance (50%) -10.71 ± 4.98 -10.03 ± 3.47 0.33 
 

Toe-off (100%) -11.55 ± 5.63 -11.42 ± 2.99 0.51 
 

Peak Abduction -13.50 ± 5.00 -13.38 ± 3.05 0.42 
 

Peak Adduction -5.96 ± 4.00 -6.56 ± 2.90 0.19 
 

Range of Motion 7.54 ± 2.20 6.82 ± 2.44 0.39 

Calcaneus-Midfoot Initial Contact (0%) 9.90 ± 4.19 7.25 ± 3.18 0.12 
 

Midstance (50%) 8.79 ± 4.28 6.54 ± 3.42 0.22 
 

Toe-off (100%) 9.96 ± 4.11 7.51 ± 3.56 0.31 
 

Peak Abduction 5.34 ± 3.98 3.59 ± 3.51 0.14 
 

Peak Adduction 11.34 ± 4.43 9.02 ± 3.28 0.10 
 

Range of Motion 6.01 ± 1.66 5.43 ± 1.69 0.25 
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• Early RA participants exhibited significant differences in the frontal plane kinematics 

of the shank-calcaneus at both midstance and for the total range of motion at this 

segment.  

 

• Early RA participants exhibited significantly less overall motion at the shank-

calcaneus. This segment operated within an eversion envelope that was found to be as 

significantly greater in the presence of early RA.  

 
• Early RA participants exhibited a greater magnitude of eversion at the calcaneus-

midfoot compared to that seen in controls.  

 

5.11 Results of phase 2: Principal Component Analysis 

In phase 2, PCA was used to investigate between-group differences in the mode of variance in 

joint kinetics and joint kinematics in participants with early RA compared to healthy controls. 

The following sections present the results of this analysis.  

 

5.11.1 Sagittal joint moments  

Principal component analysis was performed on all sagittal plane hip, knee and ankle joint 

moment waveforms. Principal component scores are presented in table 5.15. None were found 

to be significantly different.  
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Table 5.15: Principal components (PC) and mean ± SD PC score identified for sagittal plane joint kinematic 
patterns for the hip, knee and ankle in early RA and control group participants during gait 

 

 

 

5.11.2 Frontal joint moments  

Principal component analysis was performed on all frontal plane hip, knee and ankle joint 

moment waveforms. Principal component scores are presented in table 5.16. None were found 

to be significantly different. 

 

Table 5.16: Principal components (PC) and mean ± SD PC scores identified for frontal plane joint kinetic patterns 
for the hip, knee and ankle in early RA and control group participants during gait 

 

Segment Principal Component Control Mean PC score Early RA Mean PC score p-value 

Hip  PC1 12.27 ± 35.26 20.41 ± 31.71 0.36 

 PC2 -18.19 ± 31.93 -10.56 ± 20.06 0.28 

 PC3 -20.84 ± 29.69 -21.01 ± 28.17 0.98 

Knee PC1 19.74 ± 17 20.01 ± 18.7 0.81 

Ankle PC1 5.13 ± 6.90 5.36 ± 7.18 0.52 

 

 

 

Joint Principal Component Control Mean PC score Early RA Mean PC Score 

Hip  PC1 -0.40 ± 3.29 -0.97 ± 2.81 

Knee  PC1 1.63 ± 2.43 2.13 ± 3.85 

 PC2 -1.10 ± 1.40 -1.13 ± 1.04 

 PC3 0.16 ± 0.90 0.10 ± 0.94 

Ankle PC1 1.79 ± 3.62 1.89 ± 4.53 

 PC3 0.10 ± 1.12 0.14 ± 1.27 
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5.11.3 Transverse joint moments 

 Principal component analysis was performed on all transverse plane hip, knee and ankle 

external joint moment waveforms. Principal component scores are presented in table 5.17. 

None were found to be significantly different.  

 

Table 5.17: Principal components (PC) and mean ± SD PC scores identified for transverse plane joint kinematic 
patterns for the hip, knee and ankle in early RA and control group participants during gait 

 

Segment Principal Component  Control Mean PC Score Early RA Mean PC Score p-value 

Hip  PC1 -0.27 ± 0.66 -0.40 ± 0.78 0.51 
 

PC2 0.22 ± 0.44 0.11 ± 0.27 0.22 
 

PC3 -0.01 ± 0.08 -0.02 ±  0.09 0.53 

Knee  PC1 0.21 ± 0.31 0.33 ± 0.41 0.19 
 

PC2 0.22 ± 0.40 0.29 ± 0.52 0.54 
 

PC3 0.02 ± 0.06 0.02 ± 0.07 0.81 

Ankle PC1 0.11 ± 0.16 0.14 ± 0.22 0.46 
 

PC2 0.25 ± 0.42 0.28 ± 0.46 0.77 
 

PC3 0.00 ± 0.09 0.01 ± 0.12 0.70 

 

 

5.11.4 Sagittal plane kinematics  

Principal component analysis was performed on all sagittal plane hip, knee and ankle 

waveforms. Principal component scores are presented in table 5.18. None were found to be 

significantly different. 
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Table 5.18: Principal components (PC) and mean ± SD PC scores identified for sagittal plane joint kinematic 
patterns for the hip, knee and ankle in early RA and control group participants during gait 

 

Segment Principal Component Control Mean PC Score Early RA Mean PC Score p-value 

Hip  PC1 148.03 ± 203.97 209.58 ± 220.25 0.27 

Knee  PC1 54.35 ± 105.18 74.17 ± 115.47 0.50 

 PC2 143.06 ±  262.37 139.88 ± 258.64 0.96 

 PC3 152.43 ± 273.15 164.08 ± 280.11 0.87 

Ankle PC1 1.43 ± 39.19 9.84 ± 40.15 0.42 

 PC2 -6.62 ± 38.23 -1.99 ± 31.61 0.62 

 PC3 -34.70 ± 79.25 -12.65 ± 47.02 0.20 

 

 

Principal component analysis was performed on sagittal plane rotations at the shank-calcaneus, 

calcaneus-midfoot, MLA and first MPJ.  Principal component scores are presented in table 

5.19. Significant difference were found in principal component scores for the first MPJ. These 

data are illustrated in figure 5.12.  

 

Table 5.19: Principal components (PC) and mean ± SD PC scores identified for sagittal plane joint kinematic 
patterns for the shank-calcaneus, calcaneus-midfoot, MLA and first MPJ in early RA and control group 
participants during gait 

 

Segment Principal Component Control Mean PC Score Early RA Mean PC score p-value 

Shank-Calcaneus  PC1 -13.07 ± 56.89 -9.56 ± 54.25 0.81 

 PC2 -16.71 ± 65.00 -40.48 ± 49.94 0.12 

Calcaneus-Midfoot  PC1 524.44 ± 27.46 527.21 ± 34.55 0.74 

MLA PC1 2102.97 ± 41.58 2100.08 ± 36.62 0.78 

First MPJ PC1 -352.18 ± 45.73 -416.41 ± 48.86 0.00 
 

PC2 -43.27 ± 204.59 -55.76 ± 245.97 0.87 
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Principal component loadings were calculated from data on sagittal plane rotations of the first 

MPJ in early RA and control participants. Principal components for these data were therefore 

interpreted to represent the between-group mode of variance in sagittal plane rotations of this 

segment under the influence of early RA.  Three principal components were identified for the 

first MPJ which combined accounted for 90.15% of the variance of the data between the two 

groups. The largest mode of variance between groups was captured by the first principal 

component, PC1. This principal component explained 67.50% of between-group variance. The 

second principal component, PC2, explained 13.48%.  The third, PC3, explained 9.17% of 

variance. Only PC1 and PC2 were retained following parallel analysis. Principal component 

scores for these principal components were computed. Significant between-group differences 

were found for PC1. The mode of variance captured by this principal component occurred 

between 25% and 89% of the gait cycle with peak variance occurring at 62%. PC1 is illustrated 

in figure 5.12 against the kinematic waveform for the first MPJ.   

 

 

Figure 5.12: Principal component coefficients for sagittal plane joint angles of the first MPJ during gait. The blue 
line represents principal component plotted against the normalised gait cycle.   
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5.11.5 Frontal plane kinematics  

Principal component analysis was performed on all frontal plane hip, knee and ankle 

waveforms.  Principal component scores for these parameters are presented in table 5.20. None 

were found to be significantly different. Principal component analysis was performed on shank-

calcaneus and calcaneus-midfoot frontal plane waveforms.  Principal component scores for 

these parameters are presented in table 5.21. Principal component scores were found to be 

significantly different for both segments.  

 

Table 5.20: Principal components (PC) and mean ± SD PC scores identified for frontal plane joint kinematic 
patterns for the hip, knee and ankle in early RA and control group participants during gait 

 

Segment Principal Component Control Mean PC score Early RA Mean PC score p-value 

Hip  PC1 12.27 ± 35.26 20.41 ± 31.71 0.36 

 PC2 -18.19 ± 31.93 -10.56 ± 20.06 0.28 

 PC3 -20.84 ± 29.69 -21.01 ± 28.17 0.98 

Knee PC1 19.74 ± 17 20.01 ± 18.7 0.81 

Ankle PC1 5.13 ± 6.90 5.36 ± 7.18 0.52 

 

 

 

Table 5.21: Principal components (PC) and mean ± SD PC scores identified for frontal plane joint kinematic 
patterns for the shank-calcaneus, calcaneus-midfoot, MLA and first MPJ in early RA and control group 
participants during gait 

 

Segment Principal Component Control Mean PC Score Early RA Mean PC Score p-value 

Shank-Calcaneus  PC1 -170.13 ± 12.51 -219.02 ± 9.70 0.00 

Calcaneus-Midfoot   PC1 -8.29 ± 6.67 17.48 ± 7.85 0.00 
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Principal component loadings were calculated from data on frontal plane rotations of the shank-

calcaneus in early RA and control participants. Principal components for these data were 

therefore interpreted to represent the between-group mode of variance in frontal plane rotations 

of this segment under the influence of early RA.  A single principal component, PC1, explained 

91.94% of variance of the data between the two groups for the shank-calcaneus. Parallel 

analysis of PC1 showed that this principal component explained group differences in variance 

beyond the possibility of chance. Principal component scores were then computed. Between-

group differences in principal component scores for frontal plane motion of the shank-

calcaneus were shown to be significantly different. The mode of variance of PC1 is illustrated 

in figure 5.13. Between-group variance for this segment occurred throughout the duration of 

the entire gait cycle, peaking at 10% and again at 79%.  

 

Principal component loadings were calculated from data on frontal plane rotations of the 

calcaneus-midfoot in early RA and control participants. Principal components for these data 

were therefore interpreted to represent the between-group mode of variance in frontal plane 

rotations of this segment under the influence of early RA.  Frontal plane motion of the 

calcaneus-midfoot segment demonstrated a single principal component explained 97.57% of 

the variance between groups which is illustrated in figure 5.14. Principal component scores for 

PC1 were computed and shown to be significantly different between groups. The variance 

captured by this principal component is concentrated in two parts of the waveform. The first 

occurs between 21% and 52% of the gait cycle whilst a second concentration of variability is 

seen between 76% and 100%. Peak variance was identified at 92% 
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Figure 5.13: Principal component coefficients for frontal plane joint angles of the shank-calcaneus during gait. 
The blue line represents principal component plotted against the normalised gait cycle.  

 

 

 

Figure 5.14: Principal component coefficients for frontal plane joint angles of the calcaneus-midfoot during gait. 
The blue line represents principal component plotted against the normalised gait cycle.  
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5.11.6 Transverse plane kinematics   

Principal component analysis was performed on all transverse plane hip, knee and ankle 

waveforms. Principal component scores are presented in table 5.22. Only principal component 

scores for transverse plane data on the ankle demonstrated significant between-group 

differences.  

 

Table 5.22: Principal components (PC) and mean ± SD PC score identified for transverse plane joint kinematic 
patterns for the hip, knee and ankle in early RA and control group participants during gait 

 

Segment Principal Component Control Mean PC Score Early RA Mean PC Score p-value 

Hip  PC1 -42.80 ± 33.39 -41.50 ± 29.77 0.74 

Knee  PC1 11.10 ± 21.10 11.02 ± 20.14 0.82 

Ankle PC1 11.41 ± 24.98 32.85 ± 48.15 0.04 

 

 

Three principal components were identified for the ankle, together explaining 98.93% of the 

variance in these data. Individually, PC1, PC2 and PC3 explained 87.73%, 5.26% and 3.94% 

of variance respectively. Following parallel analysis only PC1 was retained. Figure 5.15 

demonstrates PC1. Principal component scores for PC1 were shown to be significantly 

different between groups. In PC1 significant between-group variance occurred between 33-

52% of gait cycle.   

 

Principal component analysis was performed on transverse plane rotations of the shank-

calcaneus and calcaneus-midfoot. Principal component scores are presented in table 5.23. 
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Principal component scores for both segments demonstrated significant between-group 

differences. These data are illustrated in figure 5.16 and 5.17.  

 

 

Figure 5.15:  Principal component coefficients for transverse plane joint angles of the ankle during gait. The blue 
line represents principal component plotted against the normalised gait cycle.  

 

 

Table 5.23: Principal components (PC) and Mean ± SD PC scores identified for transverse plane joint kinematic 
patterns for the shank-calcaneus and calcaneus-midfoot in early RA and control group participants during gait 

 

Segment Principal Component  Control Mean PC Score Early RA Mean PC Score p-value 

Shank-Calcaneus PC1 3.03 ± 63.58 4.06 ± 58.89 0.95 
 

PC2 -147.74 ± 19.87 -135.98 ± 18.08 0.02 

Calcaneus-Midfoot PC1 88.84 ± 15.24 107.27 ± 16.43 0.00 

 PC2 3.48 ± 37.71 4.26 ± 45.40 0.94 
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Two principal components described the major modes of variance for shank-calcaneus 

segment, interpreted to represent the between-group mode of variance in transverse plane 

rotations of this segment under the influence of early RA.   Combined they explained 95.67% 

of the variance in data between the early RA and control groups. The first principal component, 

PC1, explained 80.46% of variance with the second, PC 2, explaining 15.21%. A parallel 

analysis of these principal components showed that both PC1 and PC2 could be retained for 

further analysis.  Between-group comparison of principal component scores showed that PC1 

significantly explained the mode of variance for transverse plane motion at this segment. The 

greatest variability captured by PC1 was concentrated between 4 - 50% of gait cycle which 

represents the period of the stance phase following heel strike through to 58%.  In PC1 an initial 

peak in variability occurred at 10%.   

 

PCA identified two major modes of variance for the calcaneus-midfoot, interpreted to represent 

the between-group mode of variance in transverse plane rotations of this segment under the 

influence of early RA.  Combined the two principal components explained 97.20% of the 

variance in data between the two groups. Individually, the first, PC1, explained 82.27% of 

variance with PC 2, explaining 14.93% of variance. Both principal components were retained 

for further analysis. PC1 was found to be significantly different between-groups with variance 

taking place between 7-53% of gait cycle, peaking at 10%.   
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Figure 5.16: Principal component coefficients for transverse plane joint angles of the shank-calcaneus and 
calcaneus-midfoot during gait. The blue line represents principal component plotted against the normalised gait 
cycle.  

 

 

 

Figure 5.17: Principal component coefficients for transverse plane joint angles of the shank-calcaneus and 
calcaneus-midfoot during gait. The blue line represents principal component plotted against the normalised gait 
cycle.  
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5.11.7 Phase 2: Summary of findings 

• A reduced magnitude of dorsiflexion exhibited by early RA participants resulted in 

significant between-group variance from 25% to 89% of gait. Peak variance in this 

motion was seen at 62% of the gait cycle, corresponding with the termination of stance.  

 

• PCA showed that the increased magnitude of eversion exhibited by the early RA 

participants resulted in significant between-group variance throughout the gait cycle,  

with peak variance taking place in early stance at 10%.  

 

• An increased magnitude of eversion exhibited at the calcaneus-midfoot in the early RA 

participants was sustained throughout the gait cycle.    

 

• An increased magnitude of internal rotation at the ankle exhibited by early RA 

participants resulted in significant between-group variance, taking place between 33% 

of and 52% of gait,  peaking towards the end of stance at 55%.  

 

• An increased magnitude of abduction of the shank-calcaneus segment exhibited by 

early RA participants resulted in significant between-group variance throughout most 

of stance between 0% and 58% of the gait cycle, peaking at 10% 

 

• An increased magnitude of adduction of the calcaneus-midfoot segment exhibited by 

early RA participants resulted in significant between-group variance between 0% and 

58% of the gait cycle, peaking at 10% 
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5.12 Discussion  

To the best of the authors’ knowledge, study 2 is the first to investigate the concurrent 

segmental kinetics and kinematics of the foot and lower limb in participants with early RA. 

Following a comprehensive review of the literature, it is believed that this is the first study of 

its kind to use PCA in determining the timing and duration of significant alterations in the 

kinetics and kinematics of the foot and lower limb in participants with early RA. The following 

sections discuss the results of phases 1 and 2 of this study.    

 

5.12.1 Spatial-temporal parameters 

Based upon the findings of previous research (Turner et al., 2006; Khazzam et al., 2006; Barn 

et al., 2013; Gibson et al., 2014), it was anticipated that data on spatial-temporal parameters in 

participants with early RA would be significantly different to those of age and gender matched 

controls. Of the parameters analysed in phase 1, two were found to show significant between-

group differences.  Alterations in walking speed reported in phase 1 (Table 5.4) were found to 

be similar to those reported by Turner and colleagues who reported this parameter to be reduced 

to 1.05 m/s ± 0.20. In contrast to the findings of this group, toe-off (%) was also found to be 

altered in early RA participants. Indicating the termination of stance, this parameter was found 

to be significantly delayed in early RA participants.  In these participants, self-reported pain in 

the foot and lower limb was observed to be most frequent at the MPJ region (75%) followed 

by the ankle and subtalar joints (37%).  By delaying the initiation of propulsion, loading of the 

forefoot may have been delayed in these participants to facilitate  pain avoidance at these sites. 

This would be consistent with evidence from plantar pressure studies in patients with 

established RA (Otter et al., 2008). Alternatively, it is plausible that a delay in terminating 
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stance may reflect underlying alterations in lower limb kinetics which will be discussed in the 

next section.  

 

On the basis of these findings, the first hypothesis (H1) which states that lower limb spatial-

temporal parameters in adults with early RA will be different from those of age and gender 

matched controls, is accepted.  

 

5.12.2 Joint moments  

Joint moment data were investigated as they are an indicator of the type of movement brought 

about by the moments of force acting upon individual joints arising from the product of 

agonistic and antagonistic muscle activity (Perry, 1992). In phase 1, discrete variable analysis 

showed that significant between-group differences in peak ankle plantarflexion moments were 

reduced in participants with early RA. It is believed that this is the first time that this has been 

reported in early RA. These finding suggest that significant differences in ankle plantarflexion 

moment data reported in phase 1 may represent an attempt by early RA participants to 

compensate  for weakness in these muscles  and to reduce the anterior excursion of the tibia to 

reduce weight bearing of the metatarsal heads by delaying the onset of forefoot loading.  With 

the tibia advancing forwards upon the weight bearing foot at a slower velocity, heel rise would 

be delayed. This may explain the observation that walking speed was reduced in early RA 

participants. This may also explain why the percentage of gait at which foot-off  occurred was 

delayed in this group.  
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These findings should be interpreted with caution.  Vertical GRF data were found to be 

unaffected by the presence of early RA; a typical double hump vertical ground reaction force 

curve was exhibited by both groups in figure 5.1 with close similarities in the timing and 

magnitude of the vertical GRF curves.   Data from both groups were also very similar to that 

reported by Weiss et al., (2008).   As external joint moments are calculated by multiplying the 

external GRF vector by its distance from a joint centre (Richards., 2008), it would be expected 

that modified external joint moment data would be accompanied by concurrent modifications 

to vertical GRF. This was not the case in the present study.  With between-group differences 

in principal component loadings for ankle moment data being found to be insignificant, it may 

be argued that the small sample size of early RA participants recruited to this study may have 

resulted in type I error (Portney and Watkins, 2009) in phase 1. Alternatively, whilst it is 

possible that altered muscle function may have played a part in modifying spatial-temporal 

characteristics in early RA, based upon the results of the findings of phase 2, it is plausible  that 

these parameters were affected primarily by between-group differences in foot kinematics.  

 

On the basis of these findings, the second hypothesis (H2) which states that hip, knee and ankle 

kinetics in adults with early RA will be different from those of age and gender matched adults, 

is accepted. 

 

5.12.3 Segmental kinematics 

As a consequence of early RA, it was anticipated that between-group differences in consecutive 

motions within the foot and lower limb would be observed (chapter 2, section 2.3.13). Whilst 

significant between-group differences were reported in phase 1, contrary to expectations, the 

kinematics of hip, knee and ankle kinematics in early RA participants were not found to be 
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significantly different from controls. The kinematic data reported for both groups of 

participants reported in tables 5.9, 5.11 and 5.13 were in fact similar to normative values 

published for these joints (Weiss et al., 2008; Weiss et al., 2009; Beulieu et al., 2007; Kadaba 

et al., 1999; Perry and Burnfield, 2009). Furthermore, in phase 2, PCA did not detect significant 

between-group differences in the modes of variance in joint kinematics at these sites in phase 

2. Rather, significant between-group differences were reported at the shank-calcaneus, 

calcaneus-midfoot and first MPJ kinematics. The following section discusses these findings. 

 

Shank-Calcaneus (frontal plane kinematics): The presence of an increased magnitude of peak 

rearfoot eversion is generally accepted to be a feature of pathological rearfoot motion in RA 

(Woodburn et al., 2004; Woodburn et al., 2008; Turner et al., 2008).   In participants with early 

RA, this is interpreted to be characteristic of the presence of excessive pronation (Turner et al., 

2006). In phase 1, early RA participants were found to exhibit a greater magnitude of eversion 

at the shank-calcaneus. Discrete variable analysis of frontal plane rotations of the shank-

calcaneus in  study 1 concur with the findings of Turner et al., (2006). Whilst this group found 

reported the magnitude of between-group differences in rearfoot eversion to reach -1.1⁰,  the 

magnitude of peak eversion observed in phase 1 was more consistent with that reported in 

established RA. Woodburn et al., (2004) reported peak eversion reach -7.4⁰ ± 5.1 in participants 

with disease of between 6 – 33 years, whilst in the presence in disease of up to 13 years, peak 

eversion was reported by Turner et al., (2008) to reach -9.0⁰ ± 7.1.   

 

Principal component analysis in phase 2 found significant between-group variance in rearfoot 

eversion.  Principal component loadings representing the effect of early RA on shank-calcaneus 

eversion increased above 0.7 between 0% and 56% of the gait cycle. This mode of variance 
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incorporates all stance phase events leading up to toe-off, after which principal component 

loadings reduced below 0.7 from this point onwards. Peak variance in these data occurred at 

10% of gait.  Comparing figures 5.2 and 5.12, it can be seen that the increase in principal 

component loadings for this segment correspond to an increase in GRF in response to 

deceleration of the lower limb following initial contact.  Following the termination of stance, 

eversion of the shank-calcaneus exhibited a second period of variance during the swing phase, 

extending between early swing (67%) and the initiation of the next gait cycle (100%).  

Comparisons between figures 5.9 and 5.12 indicate this to correspond to a period of increased 

rearfoot eversion in early RA participants prior to the onset of the next gait cycle.  

 

Shank-calcaneus (transverse plane kinematics): Discrete variable analysis initially failed to 

detect between-group differences in transverse plain rotations for this segment.  Comparability 

with previous research is difficult as there appear to be no published data for this parameter in 

early RA. By contrast, PCA demonstrated significant variance in the transverse plane motion, 

resulting in principal component loadings above 0.7 from initial contact (0%) onwards. Peak 

variance for these rotations occurred at 10% of gait with PC loadings reducing below 0.7 until 

just before midstance (45%). This findings suggest that between-group differences are greatest 

in the period following initial contact and early weight acceptance of the rearfoot. The major 

modes of variance in transverse plane rotations of the shank-calcaneus are therefore similar to 

those  of frontal plane rotations of this segment. This would be consistent with the pronatory 

torque directed towards the subtalar joint by GRF which serves to initiate an abductory 

component of subtalar joint pronation as part of the weight acceptance and shock attenuation 

of gait.   
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Midfoot (frontal plane kinematics): Comparability with previous reports on early RA are 

difficult as segmental midfoot kinematics have not been investigated before in participants with 

early RA (Turner et al., 2006; Khazzam et al., 2006; Barn et al., 2013; Gibson et al., 2014). 

PCA identified two modes of variance  within the stance and swing phases respectively. The 

first mode of variance was seen between 10% and 50% of gait, encompassing motion from 

early and mid-stance events of gait. The second mode of variance extended from late swing 

(80%) to the initiation of the next gait cycle (100%). Whilst the increased magnitude of 

eversion and abduction of the midfoot appeared to reciprocate that reported for the shank-

calcaneus, between-group variance in midfoot motion was initiated earlier within stance.  This 

may reflect a proximal to distal propagation of alterations in frontal plane motion between these 

segments.  

 

Midfoot (transverse plane kinematics): In phase 1, although the magnitude of abduction seen 

in the early RA group was found to be increased, this was not found to be statistically 

significant. By contrast, PCA of these data demonstrated significant between-group differences 

in variance extending between initial contact until 60% of gait, with peak variance in abduction 

of this segment occurring at 10%.  

 

Medial Longitudinal Arch:  Discrete variable analysis showed that MLA height to be 

significantly lower in early RA participants at initial contact only. The minimum planar angle 

for this parameter was also significantly lower in the early RA group.  Reductions in the height 

of the MLA were previously reported by Turner et al., (2006)  but based upon the calculation 

of MLA height in millimetres  measured from the ground and a tracking marker on the 

navicular at full forefoot loading. Study 2 found that between-group differences were of a very 
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low magnitude with a mean difference  of -2mm. Due to the small sample size of this study, 

definite conclusions concerning these findings were not made. Differences in the calculation 

of MLA height between this study and the Leardini foot model make direct comparisons with 

Turner et al., (2006) difficult. Furthermore, the mode of variance between groups was not found 

to be significantly different.  From these data, it may be concluded that MLA function appears 

largely unaffected in participants with early RA participants in contrast to the findings of this 

group.  

 

First metatarsophalangeal joint:  In phase 1, discrete variable analysis of first MPJ motion 

demonstrated significant between-group differences with early RA participants exhibiting a 

reduced magnitude of dorsiflexion at midstance, toe-off and peak rotations.  To the best of the 

authors’ knowledge, published data reporting on motion at the first MPJ in early RA is lacking.  

Peak variance in the mode of variability of first MPJ dorsiflexion was found to occur at 60% 

of gait, corresponding to toe-off. Between-group differences in this mode of variance were, 

however, found to extend much further. With altered motion at this joint in early RA 

participants being observed between 40% to  85% of gait, this would be consistent with an  

overlapping proximal-to-distal propagation in pathomechanical function between the rearfoot, 

midfoot and first MPJ. These findings suggest that altered function at this joint is initiated much 

earlier in gait than previous data have suggested (Khazzam et al., 2006) and that this alteration 

in function is maintained until late within the swing phase.  

 

On the basis of these findings, the third hypothesis (H3) which states that hip, knee, ankle and 

foot kinematics in adults with early RA will be different from those of age and gender matched 

adults, is accepted. 
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5.13 Limitations of study 

There are several limitations to phase 1 (study 1) which may have increased the likelihood of 

type I error being incorporated into the results of this research. Individually, these limitations 

arise from the use of multiple comparison procedures, the small participant sample size of study 

2 and the use of principal components analysis. This section discusses these limitations. 

 

Multiple comparison procedures: In phase 1 of study 2, gait was partitioned into six variables 

based upon either specific events (i.e. initial contact, midstance and terminal stance) or the 

magnitude of segmental rotation (i.e. peak motion and range of motion). It is likely that the 

probability of finding a significant between-group difference in these data simply by chance 

(Type I error) exceeded 0.05 owing to the number of variables chosen for analysis (Armstrong, 

2014). Subsequent analyses of statistical significance in phase 2 may also have incorporated 

type I error. As a result, p values may have been randomly distributed between 0 and 1 with 

equal probability, meaning that some are likely to have fallen between 0 – 0.05 (Sainani., 2009).  

 

Reducing the chance of a type I error through multiplicity adjustment procedures such as the 

Bonferroni correction would, however, have increased the probability of a type II error, i.e. 

accepting no between-group difference when one exists (Gelman et al., 2012) . In addition, 

post hoc adjustments such as Bonferroni   primarily test universal hypotheses (Ho) which focus 

on the results of all comparisons. This is an approach more commonly associated with 

confirmatory research (Armstrong., 2014).  By contrast, though hypothesis driven, the present 

research was exploratory in nature (chapter 3, section 3.5); the results of this research cannot 

be viewed as definitive proof upon which clinical decision making can be made.  

 



  

187 
 

Several authors advise against the use of post hoc adjustments in the context of exploratory 

research (Armstrong., 2014). In addition, multiplicity adjustment procedures do not solve the 

problem of making valid statistical inferences where the number of  analyses are driven in 

response to data,  as was the case in phase 2 of study 2 (PCA) and in study 3 (Linear Regression 

Analysis).  Therefore, as the choice and number of analyses were in effect  data dependent, 

multiple significance tests can only be used for descriptive purposes rather than for clinical 

decision making, regardless of whether multiplicity corrections have been performed (Bender 

and Lange., 2001). It has been argued that the as the interpretation of individual tests results is 

dependent upon the number of tests performed and conclusions should be drawn on this basis 

and not adjusted (Bender and Lange., 2001).  

 

There is also the possibility that some of the kinematic and kinetic variables analysed were 

related. This may have had the effect of further increasing the chance of a type I error.  To 

mitigate against this, a Hotelling’s two-sample T2 test multivariate analysis of variance 

(MANOVA) would have been an alternative choice for multivariate analysis.  Due to the 

uncertainty and complexity of meeting the necessary assumptions central to MANOVA 

analysis (i.e. equivalent linear relationship between variables accompanied by a similar 

variance / covariance structure), t test based significance testing without multiple comparison 

procedures was instead chosen.  

 

The results of the present research have been therefore been reported without multiplicity 

adjustment procedures. On this basis, these results should be viewed as exploratory in nature, 

in line with recommendations by Portney and Watkins, (2009).   
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Participant recruitment: A failure to observe significant between-group differences in knee 

and hip kinematics using discrete variable analysis and PCA in study 2 may be a reflection of 

the low number of participants recruited for study 2 and the subsequent impact of type II error 

on the findings of the study. For this reason, the magnitude of between-group differences in 

kinematic data, particularly for knee and hip may have been underestimated in study 2. If this 

is indeed the case, the magnitude of between-group differences may have been further reduced 

as a consequence of normalisation procedures used prior to analysis.  Whilst normalisation of 

kinematic data to the percentage of gait cycle reduces the influence of anthropometric 

differences on data, time normalisation results in a levelling out of the differences in waveform 

amplitude, further diminishing of between-group comparisons (Federolf et al., 2013). It may 

also be argued that the small sample size of study 2 may have led to sampling bias with only 

the most cooperative and physically able early RA participants volunteering to take part in the 

research (Portney and Watkins, 2009).  Though the recruitment protocols used in this research 

were designed to minimise bias (Chapter 3, sections 3.3 to 3.5), it cannot be assumed that where 

significant between-differences in foot kinematics were reported in phase 1 of study 2 that they 

can necessarily  be generalised (Federolf et al., 2013). Importantly, low levels of recruitment 

may also have resulted in type II error in subsequent analyses undertaken in phase 2 and 3 of 

this study.     

 

Principal components analysis: The use of PCA in phase 2 may be considered conceptually 

abstract (Portney and Watkins, 2009). Whilst PCA reduces multidimensional data to its 

variance component (Chau et al., 2001a), this is at the expense of topological (intrinsic) 

dimensionality that is indicative of the inherent structures within these data (Chau et al., 2001a). 

This make the results of PCA difficult to interpret. Numerous factors act in consort to influence 

the form and magnitude of kinematic waveforms, making these data inherently 
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multidimensional in nature. Reducing the multidimensionality of kinematic data to 

unidimensional principal components that represent those underlying dimensions that account 

for the original set of observed variables is not unproblematic. The utility of PCA rests upon a 

meaningful post hoc interpretation of these principal components which may introduce 

subjectivity into the analysis, especially where correlated variables are present as seen in 

kinematic waveforms (Warmenhoven et al., 2017).  The identification of principal components 

in study 2 was based upon conclusions drawn from the results of between-group analysis in 

phase 1. These indicated the presence of early RA was associated with increased magnitudes 

of eversion and abduction at the rearfoot and midfoot as well as reduction in first MPJ 

dorsiflexion. Whilst it is highly likely that the principal components identified within this study 

were explained by the presence of early RA, there is also the possibility that these may have 

alternatively reflected the influence of a yet unidentified explanatory factor. For this reason, it 

has been argued that PCA can only reveal the global structure of data allowing general, rather 

than specific conclusions to be made (Chau et al., 2001b).   

 

Based upon previous reports on early RA presented in chapter 5 (section 5.3), the research   

hypotheses (Chapter 2, section 5.3) reflected an assumption that significant between-group 

variability in segmental kinematics would be observed when investigated using PCA. It was 

also considered plausible that physiological complexity secondary to early RA could also act 

as a contributory factor to between-group differences in foot and lower limb kinematics 

(chapter 2, section 2.3.4). Whilst PCA was reported in study 2 to show a significant difference 

in the between-group mode of variance in kinematic data secondary to the presence of early 

RA, such variability may also have stemmed from both anthropometric differences between 

participants and  differences in motor strategies used to execute gait (Chau et al., 2001b). 

Furthermore, the multisegmental nature of the lower limb incorporates many degrees of 
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freedom to create a multidimensional space of motor strategies for the same task (Sparrow et 

al., 1989). Taken together, this implies that whilst large variation in kinematics is possible, the 

tolerance for deviation in the complexity of a task such as gait is small (Hamill et al., 1999).  It 

may therefore be argued that large inter and intra subject variation may be present even in the 

absence of disease activity (Stergiou et al.,2001). As PCA explicitly deals with variances by 

finding projections aimed at maximising the capture of total variance, large variability in data, 

regardless of cause, may lead to the identification of false patterns, resulting in type I error 

(Warmenhoven et al., 2017). For this reason, it cannot be completely ruled out that significant 

between-group group differences in principal component scores may have been over 

emphasised by PCA within study 2.  

 

5.14 Conclusion 

In the first twelve months following diagnosis, 3D motion capture found evidence of significant 

alterations in joint kinematics at the  rearfoot, midfoot and first MPJ in participants with early 

RA. These alterations were found despite the presence of low-to-moderate disease activity 

which was managed using current treat to target DMARD protocols. These alterations were 

also found to be of a greater magnitude and duration than previously reported.   

In the next chapter, the concept of kinematic coupling between adjacent 3D foot model 

segments is investigated to further test the hypothesis that this the kinematics of participants 

with early RA are different to those of age and gender matched controls.  
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Chapter 6: Comparative Analysis of Kinematic Coupling between Adults 

with Early Rheumatoid Arthritis and Age and Gender Matched Controls 

 

In the second phase of study 2,   angular rotations of the ankle, shank-calcaneus and calcaneus-

midfoot segments were found to be significantly altered in early RA participants when analysed 

using discrete variable analysis and PCA.  In the third phase of study 2, a dynamic systems 

approach was used to investigate non-linear behaviour patterns in kinematic data by analysing 

intersegmental coupling between these segments. This chapter reports on the findings of      

phase 3.  

 

6.1 Introduction 

Investigators have historically viewed 3D kinematic data as the product of deterministic motor 

behaviours that are predictable and linear in form (van Emmerick et al., 2016). Previous studies 

of early RA foot kinematics have therefore been based upon the premise that these data are 

deterministic in nature.  It was concluded in chapter 2 (section 2.3.13) that this may not take 

into account the complex interrelationships between  biomechanical and pathophysiological 

disease processes that together result in what is termed physiological complexity (Van 

Emmerick et al., 2016). It is therefore plausible that participants with early RA may also exhibit 

non-linear behaviour in foot kinematics that may contribute to the pathogenesis of 

mechanically based musculoskeletal pathology (Van Emmerick et al., 2016). Analysing the co-

ordination variability of angular rotations between those 3D biomechanical model segments 

that were found to exhibit significant between-group alterations in their kinematics in phase 2 

may further elucidate the pathogenesis of mechanically based trauma in early RA.   
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In phase 1 and phase 2 of this study, 3D motion capture data of the foot and lower limb were 

investigated.  Significant between-group differences in the magnitude of segmental kinematics 

of the shank-calcaneus and calcaneus-midfoot were reported. In phase 2, PCA found these 

segments to also exhibit significant between-group differences in their mode of variance. To 

determine whether the inter-segmental coupling between these segments exhibited non-linear 

behaviour patterns as an additional source of mechanically based trauma, these segments were 

carried forward for further analysis in phase 3 of this study. Phase 3 investigated inter-

segmental coupling between the shank (which is analogous to the lower leg) and the shank-

calcaneus (which is analogous to the rearfoot). Inter-segmental coupling between the shank-

calcaneus and calcaneus-midfoot was also investigated. This chapter reports on the results of 

these analyses.  

 

6.2 Data Analysis 

The analysis of kinematic coupling was described in Chapter 2 (section 3.8.11). This technique 

involves plotting the angular rotations of a segment against its angular velocity, in order to 

calculate the phase plane of that segment.  The difference in phase plane angles between 

adjacent segments is referred to by Hamill et al., (1999) as the CoRP.  Using the CoRP, the 

phase relationship between adjacent segments and their variability component (VCoRP) may 

be described throughout the duration of a movement task.  In this manner, transitions in the 

coordination pattern between 3D biomechanical model segments were characterised.  

 

Using the method described by Hamill et al., (1999). Coordination patterns were analysed 

according to whether they were either in-phase or out-of-phase. In-phase coordination patterns 
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represent intersegmental rotations that move in the same direction. Conversely, out-of-phase 

coordination patterns represent intersegmental rotations occurring in opposite directions. In 

addition, coordination patterns with a negative displacement indicate that the distal segment 

rotated to a greater magnitude compared to the proximal segment. The converse is true where 

coordination patterns are positively displaced.   

 

6.3 Hypothesis 

Phase 3 of study 2 was designed to test the third hypothesis of this thesis:  

• (H3) - Lower limb joint kinematics in adults with early RA will be different from those 

of age and gender matched adults 

 

6.4 Study Design 

In a comparative cross-sectional study of eighteen early RA participants and eighteen age and 

gender matched controls, kinematic coupling between the shank-calcaneus and calcaneus-

midfoot was investigated by analysing between-group differences in coordination variability 

using the VCoRP. Participant anthropometrics and disease activity have already been described 

in chapter 5 (section 5.7). Figure 6.1 illustrates phase 3 of this study.  

 

6.5 Results 

The mean CoRP and VCoRP data for early RA and control group participants are presented in 

table 6.1. The following sections report in details the kinematic coupling patterns investigated 

within phase 3 of the study.  
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Figure 6.1: Analysis of kinematic coupling variability in phase 3  

 

 

 

Table 6.1: Mean Continuous Relative Phase (CoRP) and CoRP variability (VCoRP) over the stance phase of gait 
for early RA and control group participants. 

 

Coupling Angle Control CoRP Early RA CoRP Control VCoRP Early RA VCoRP p-vaue 

      

Shank Int/Ext  - Rearfoot Inv/Ev 3.31 1.04 9.09 8.86 0.00 

Rearfoot Inv/Ev - Midfoot Inv/Ev -7.76 -7.58 5.16 6.02 0.01 

Rearfoot Inv/Ev - Midfoot Abd/Add -3.76 -2.25 3.34 3.02 0.02 

 

 

 

6.5.1 Shank (internal/external rotation) – Shank-Calcaneus (inversion/eversion) 

From figure 6.2, it can be seen that at heel strike (0%) the CoRP for the control group was in-

phase. This indicates that both the shank and shank-calcaneus segments were rotating in the 

same direction. Between heel strike and 20% of stance, the CoRP was largely out-of-phase and 

negatively displaced, indicating that distal segment, or shank-calcaneus, rotated to a greater 
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magnitude than the shank.  Between 20% - 30% of stance, coupling between the two segments 

interchanged between phase states, after which coupling became positively displaced until 57% 

of stance, where it became negative prior to toe-off.   

 

 

Figure 6.2: Continuous Relative Phase (CoRP) patterns between internal /external rotation of the shank-
inversion/eversion of the calcaneus during stance. The Early RA CoRP pattern is represented in red. The control 
CoRP pattern is represented in black.  The thick line indicates the CoRP with the thinner, broken line, represents 
the VCoRP. 

 

Although visually, a very similar CoRP waveform was exhibited by the early RA group, 

differences were apparent in the period between 5-15%% of stance where this group exhibited 

a greater magnitude of negative CoRP. This indicates that in early RA participants, the shank-

calcaneus segment rotated to a greater magnitude compared to the shank and for a longer 

duration.  
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The mean CoRP value for the control group was greater than that seen in the early RA group 

(Control, 3.31 ± 9.09, Early RA, 1.04 ± 8.86), indicating that a greater magnitude of inter-

segmental rotation occurred between the shank and shank-calcaneus in these participants. 

Significant between-group differences were seen in CoRP variability which was reduced in the 

early RA group.  

 

6.5.2 Shank- Calcaneus (inversion/eversion) – Calcaneus-Midfoot (inversion/eversion) 

From figure 6.3, it can be seen that at heel strike, the CoRP of control group participants was 

in-phase, indicating that both segments rotated in the same direction. However, for the majority 

of the stance phase the CoRP remained out of phase. Between 0 – 25% the CoRP was largely 

positive, indicating that the rearfoot rotated to a greater magnitude than the calcaneus-midfoot 

(mean and SD). Between 15-22% the CoRP was relatively in-phase, after which it became out 

of phase and largely in a negative direction, indicating that the midfoot rotated to a greater 

magnitude than the rearfoot. By toe-off, the CoRP was again positively displaced.  

 

 The CoRP for the early RA group was similar. However, between 4-15%, the early RA 

participants exhibited a positive displacement of the CoRP, indicating that in these participants, 

the rearfoot rotated further compared to the midfoot.  For both groups the mean CoRP was 

negative indicating that on average the midfoot moved to a greater magnitude compared to the 

rearfoot. The mean CoRP of the control group was greater however (Control, -7.76, early RA 

-7.58) and negatively displaced. However, a significant increase in VCoRP variability was seen 

in the early RA group. Whilst the coupling that occurred between these two segments was 

reduced in the early RA participants, the movement that occurred was more variable. 
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Figure 6.3: Continuous Relative Phase (CoRP) patterns between inversion/eversion of the calcaneus -
inversion/eversion of the midfoot during stance. The Early RA CoRP pattern is represented in red. The control 
CoRP pattern is represented in black.  The thick line indicates the CoRP with the thinner, broken line, represents 
the VCoRP. 

 

6.5.3 Shank-Calcaneus (inversion/eversion) – Calcaneus-Midfoot (abduction/adduction) 

From figure 6.4, it can be seen that at heel strike the CoRP was out of phase and negatively 

displaced, indicating that a greater magnitude of calcaneus-midfoot rotation relative to the 

shank-calcaneus was occurring.  For the whole of the stance phase the CoRP was out of phase 

except for a period between 25-30% where it was relatively in-phase. Between 24-96% of 

stance the CoRP was negative, indicating that the midfoot motion exceeded that of the rearfoot. 

By toe-off, the CoRP had returned to a positive value.  
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Figure 6.4: Continuous Relative Phase (CoRP) patterns between inversion/eversion of the shank - 
abduction/adduction of the midfoot during stance. The Early RA CoRP pattern is represented in red. The control 
CoRP pattern is represented in black.  The thick line indicates the CoRP with the thinner, broken line, represents 
the VCoRP. 

 

 

The CoRP for the early RA group was similar except for a longer duration of positive 

displacement of the CoRP between 10-23% indicating that in these participants the shank-

calcaneus rotated to a greater magnitude compared to the calcaneus-midfoot. The mean CoRP 

value of both groups were negative indicating a greater magnitude of midfoot motion relative 

to the rearfoot. However, significant differences between groups in the variability of the CoRP 

show that in the early RA group, while less inter-segmental motion occurred, it was also 

accompanied by a reduction in the VCoRP or intrinsic variability.   
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6.6 Discussion 

A dynamical systems approach was used in phase 3 of this study to investigate the presence of 

non-deterministic behaviour patterns in foot kinematics, ascertaining whether the variability of 

inter-segmental coupling relationships in participants with early RA is significantly different 

to those of healthy controls. To the best of the authors’ knowledge, study 3 is the first to 

investigate the variability of kinematic coupling relationships within the foot in participants 

with early RA. The following sections discuss the findings of these analyses.   

 

6.6.1 Intersegmental coupling involving the rearfoot and lower leg 

From the data presented in phase 3 of this study, it can be seen that the mean CoRP coupling 

angle between transverse plane rotations of the lower leg and frontal plane rotations of the 

shank-calcaneus was reduced in early RA participants.   The positive value of the mean CoRP 

reported in table 6.1 indicates that the proximal segment, i.e. the lower leg, underwent a greater 

magnitude of inter-segmental rotation compared to that of the shank-calcaneus.  Importantly, 

the significant reduction in the VCoRP reported in this study may represent a previously 

unrecognised cause of mechanically based trauma in early RA, consistent with the concept of 

physiological complexity outlined in chapter 2 (section 2.3.4),  

 

The significantly  low variability of the VCoRP observed  in early RA participants may be a  

reflection of the between-group differences in shank-calcaneus eversion patterns reported in 

early RA participants in chapter 5 (sections 5.9.7 and 5.10.5).  In adopting a sustained increase 

in the magnitude of eversion that was observed at this segment, it is plausible that a decrease 

in the variability of intersegmental coupling patterns reflected a reduction in the available 
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degrees of freedom of movement at this segment in early RA participant.  A reduction in the 

available degrees of freedom may explain why, on visual inspection, the CoRP representing 

rotations between the lower leg and the shank-calcaneus was observed to be altered in the first 

15% of stance, corresponding to that period at early weight acceptance where subtalar joint 

pronation is thought to dissipate GRF during gait (Lui et al., 2012).  

 

Reducing the degrees of freedom within which the shank-calcaneus operates would render this 

segment biomechanically less able to adapt to perturbations in its function during gait, placing 

both the joint and its associated ligaments and peritendinous structures under greater 

mechanical stress.   This is an important consideration as synovitis at the subtalar joint is a 

frequent presentation of RA in the rearfoot, particularly at the sinus tarsi where it may lead to 

progressive weakening of the cervical, interosseous talocalcaneal and superomedial 

calcaneonavicular ligaments (Matsumoto et al., 2014). These ligaments provide resistance to 

eversion at the subtalar joint and their mechanical failure may in part explain why a 

displacement and change in the orientation of the talus is seen relative to the calcaneus and 

tarsal bones (Woodburn et al., 2010).  

 

This interpretation is consistent with current consensus that individuals who demonstrate less 

variability in lower limb movement patterns are more susceptible to secondary pathologies 

(McClay and Manal, 1997; Miller et al., 2000; Heiderscheit et al., 2002; Peter et al., 2003; Seay 

et al., 2006; Pohl et al., 2006; Dierks et al., 2007; Chang et al., 2008; Hein et al., 2012; Lamb 

and Stocki, 2014).  In the context of early RA, this is an important consideration, particularly 

where long term outcomes in early RA are concerned. Involvement of the rearfoot has been 

shown to affect between 30% - 60% of patients with long term disease (Matsumoto et al., 
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2014). This is typically associated with the long term development of pes planus (Woodburn 

et al., 2004).  It is plausible that the findings of this study, that repeated mechanical stresses 

secondary to a reduction in the VCoRP may constitute a source of microtrauma that may be 

responsible for the pathogenesis of long term functional outcomes in RA (Miller et a., 2008).   

 

The findings of this study may also suggest that whilst these intersegmental rotations were 

repeatable, they occurred within a narrower kinematic range, reflecting fear-avoidance of 

activities resulting in pain and associated with increased physical deconditioning, decreased 

strength and muscular endurance. Cognitive responses are thought to bring about an avoidance 

of activity which in turn exacerbates functional impairment (Keefe et al., 2002). Indeed, 

Woodburn and Helliwell speculated that the presence of inflammatory disease, patterns of 

muscular activity, perhaps through modified pain avoidance gait, may simultaneously bring 

about atypical plantar pressure patterns reported in established disease along with irreversible 

long term structural rearfoot deformity (Woodburn and Helliwell, 1996). It is therefore 

plausible that the coordination of segments seen in early RA participants in the present study 

was such that there could be little deviation in the relative actions of these segments to produce 

relatively pain free gait. By contrast, the control group exhibited coupling actions which 

indicate that multiple combinations of coupling patterns could be utilised. This would be an 

optimal solution and one which serves to minimise trauma to these sites (Van Emmerick et al., 

2014).  
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6.6.2 Intersegmental coupling involving the rearfoot and midfoot 

Significant reductions in the VCoRP for this intersegmental coupling between the fontal plane 

rotations of the shank-calcaneus and transverse plane rotations of the calcaneus-midfoot were 

found in early RA participants. This indicates that these intersegmental rotations demonstrated 

a loss of coordinative flexibility. Similarly, the mean CoRP between frontal plane rotations 

between the shank-calcaneus and calcaneus-midfoot segments were reduced in early RA 

participants. The negative value of the CoRP indicated that the rotation of the distal segment, 

i.e. calcaneus-midfoot was greater than that of the shank-calcaneus. 

 

In contrast, when frontal plane rotations between the shank-calcaneus and calcaneus-midfoot 

segments were investigated, the VCoRP was found to be significantly greater in the early RA 

group. This finding is consistent with an increase in the variability of coupling between these 

segments in early RA which may represent a loss of intersegmental coupling control in these 

participants.  This would be consistent with the adoption of new coordination patterns in early 

RA that allow pain free movement. The findings of this study suggest that this results in an 

increase in stance variability between the subtalar joint and midtarsal joint, most probably as a 

consequence of an increased magnitude of subtalar joint pronation reported in chapter 5. It is 

also plausible that the midtarsal joint may be susceptible to such alterations in its function as a 

consequence of diffuse inflammation associated with early RA at both the talonavicular joint 

and sinus tarsi combined with the simultaneous involvement of plantarcalcaneonavicular 

ligament (Woodburn et al., 2002).   
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A loss of the structural integrity provided by this ligament results in a change in the direction 

and orientation of the bones of the midfoot.  Lui et al., (2006) observed that such a loss of 

structural integrity increases plantarflexion at the talus which is accompanied by a 

simultaneous displacement of the calcaneus in a dorsolateral lateral and valgus rotation as 

pronation of the subtalar joint increases.  The talus, cuboid and calcaneus have also be shown 

to jointly rotate in the direction of eversion (Woodburn et al., 2002). This would be consistent 

with the findings of chapter 5 which reported between-group differences in the magnitude, 

timing and duration of both rearfoot and midfoot kinematics in early RA, reporting a greater 

magnitude of eversion and abduction at these segments. The reduction in walking speed 

observed in the early RA participants may also have contributed to a reduction in the 

contraction of the surrounding musculature. Combined with the smaller range of motion at the 

rearfoot and midfoot segments, this may have decreased the tensile strain upon proximal 

ligaments (Woodburn et al., 2002). The combined effect of reduced stiffness of both muscles 

and ligaments may have resulted in more flexible coupling relationships being created.  

 

6.7 Limitations of study 

Whilst the rationale for using a dynamical systems approach to the study of musculoskeletal 

pathology in early RA was given in chapter 2 (section 2.3.13) and chapter 6 (section 6.1), the 

analysis of intersegmental coupling is still an emerging area of research. Ambiguity concerning 

the contribution of the CoRP to musculoskeletal pathology remains a feature of its use, arising 

primarily from the way in which these data are normalised and interpreted (Kurz and Stergiou., 

2002). This section discusses these considerations with respect to phase 2 of study 2.  
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Normalisation: When analysing the CoRP, it is assumed that kinematic data are sinusoidal in 

nature (Lamb and Stöcki., 2014).  This may not necessarily be true for all data in every gait 

cycle, particularly when considering the possibility that physiological complexity in early RA 

may be associated with underlying disease mechanisms that potentially modify kinematics to 

produce non-linear behaviour patterns.  The presence of non-linearity in kinematic data 

becomes important when processing these data prior to analysis. Normalising angular velocity 

data produces scalar multiples of the original segment trajectories. Consequently, differences 

in amplitude between segments do not affect the coupling measures (Kurz and Stergiou, 2002). 

The method of normalisation described by Hamill et al., (1999) used in study 2 does not 

distinguish between the form that a kinematic waveform takes. Though Perter et al., (2003) 

argue that where waveform data are sinusoidal, the precise method of normalisation is 

irrelevant, where data are non-sinusoidal, normalisation may modify the CoRP curve both 

graphically and mathematically. This results in frequency artefacts which may either increase 

or decrease the amplitude of the CoRP waveform depending which method of normalisation is 

used (Lamb and Stöcki, 2014).   As normalisation techniques may fundamental alter the shape 

and amplitude of the CoRP, it is possible that they may influence the manner in which the 

CoRP is interpreted.   

 

Interpretation: As the CoRP is in essence a function of the position and angular velocity of one 

segment relative to another, it has been argued that describing its contribution to the 

pathogenesis of musculoskeletal pathology is both difficult and subjective (DeLeo.et al., 2004).  

This arises from differences in the manner by which the temporal dispersion of the CoRP may 

be interpreted.  Perter et al., (2003) have previously argued that CoRP values approaching 180° 

do not necessarily indicate that opposing segments are rotating in opposite directions. By 

contrast, the present research followed current consensus which still maintains this to be the 
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case (Miller et al., 2008).  To mitigate against these limitations, the CoRP was not analysed in 

isolation in study 2. Rather, significant between-group comparisons were made using its 

variance component, the VCoRP.  It is acknowledged, however, that additional investigation 

is required in a larger group of early RA participants in order to further clarify the role of altered 

intersegmental coupling as an on-going injury mechanism in early RA.   

 

 6.8 Conclusion 

In this study, 3D motion capture found evidence of significant between-group differences in 

non-deterministic behaviour patterns in foot kinematics which may act as a contributory source 

of mechanically based trauma in early RA. That these data are not detectable using 

conventional forms of kinematic analysis is an important finding, suggesting that alterations in 

inter-segmental coupling should also be investigated when screening for mechanical foot 

pathology in participants with early RA within the first twelve months following diagnosis.   

 

To explain the presence of altered segmental foot kinematics reported in early RA participants 

in study 2, linear regression analysis is used in study 3 to test the fourth and fifth hypotheses 

of this thesis. The next chapter investigates the relationships between altered segmental 

kinematics in early RA and measures of disease activity, disease impact and rheumatology 

physical function.  
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Chapter 7: Explanatory Variables of Segmental Foot Kinematics in Adults 

with Early RA 

 

In study 2, participants with early RA were found to exhibit altered foot kinematics at the shank, 

rearfoot, midfoot and first MPJ. The relationship between altered foot kinematics in early RA 

and measures of disease activity, disease impact and rheumatology physical function was 

investigated in study 3. The results of study 3 are reported in this chapter.   

 

7.1 Introduction 

In the absence of validated outcome measures for use in the musculoskeletal assessment of the 

lower limb in patients with early RA, chapter 2 (sections 2.4.1 to 2.4.18) highlighted the 

surrogate role that composite measures of disease activity and patient-reported assessment of 

disease impact have played in the clinical evaluation of musculoskeletal pathology in early RA. 

This is reflected in the conceptual framework of this thesis. Within this framework, a 

relationship exists between measures of early RA disease activity, disease impact and 

rheumatology physical function and the assessment of musculoskeletal impairment using 3D 

motion capture.  However, these relationships have yet to be investigated.   

 

In study 2, PCA identified significant between-group differences in the mode of variance of 

3D kinematic data. Specifically, these were located at the shank-calcaneus, calcaneus-midfoot 

and first MPJ. In moving forward, we believe this may be the first study designed to investigate 

the relationship between these findings with measures of early RA disease activity and patient-
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reported assessments of disease impact using linear regression analysis. To the best of the 

authors knowledge, there are no published data investigating these relationships in early RA.  

 

7.2 Aims  

The aim of study 3 was to determine the explanatory   relationships between segmental foot 

kinematics in early RA measures of disease activity, disease impact and rheumatology physical 

function. 

Data from this study was used to answer the second and third research questions of this thesis: 

• Is there an association between the biomechanical function of the foot and lower limb in 

early RA with measures of rheumatology physical function? 

 

• Is there an association between the biomechanical function of the foot and lower limb in 

early RA with measures of disease activity? 

 

7.3 Hypotheses  

Data from study 3 was used to test the following hypotheses: 

• (H4) - Relationships will be found between lower limb biomechanical function in early 

RA and measures of disease activity 

 

• (H5) - Relationships will be found between lower limb biomechanical function in early 

RA and measures of physical impairment 
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7.4 Study design 

Linear regression analysis was used to investigate relationships between the kinematics of the 

shank, rearfoot, midfoot and first MPJ in early RA and measures of disease activity, disease 

impact and rheumatology physical function. To determine which independent variables 

significantly explained segmental foot kinematics in early RA, linear regression was 

undertaken in two phases. These are illustrated in figure 7.1.  

 

 

Figure 7.1: Flow diagram of study 3 

 

7.5 Data Analysis 

To investigate hypotheses the fourth and fifth hypotheses of this thesis, study 3 was undertaken 

in two phases. In both phases, linear regression analysis was used to investigate explanatory 

relationships between early RA segmental kinematics and measures of disease activity, disease 
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impact and rheumatology physical function. Linear regression analysis is described in chapter 

3 (section 3.9.12).  

 

7.6 Phase 1: Linear regression analysis 

The following sections describe the study design of phase 1. The results of this phase are then 

presented. 

 

7.6.1 Participants 

Associations between rheumatology physical function, disease impact and disease activity with 

walking velocity were explored in a group of 32 early RA participants (mean age 45.34 ± 10.22 

years, male/female ratio 9:23). To assess group differences in these parameters an age and 

gender match control group of 31 healthy participants was also recruited (mean age 41.87 ± 

10.74 years, male/female ratio 9:22).  Participant anthropometric data are presented in table 

7.1. Data on disease activity and disease impact for early RA participants is presented in table 

7.2.  

 

Table 7. 1:   Mean ± S D early RA (N= 32) and Control Group (N = 31) Anthropometric Data 

 

Parameter Units Early RA Group Mean Control Group Mean p-value 

Age Years 45.34 ± 10.22 41.42 ± 10.04 0.08 

Male: Female Gender Total 8:24 10:20  

Height M 149.61 ± 30.84 165.55 ± 8.04 0.01 

Weight Kg 93.94 ± 39.53 72.15 ± 15.65 0.00 

Time Since Diagnosis Months 10.14 ±  7.41 N/A  
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Table 7. 2: Mean ± SD early RA Group (N=32) Disease Activity Parameters 

 

Parameter Mean 

  

HAQ 0.84  ± 0.95 

VAS (mm) 40.21 ± 31.82 

LFIS 1 10.85 ± 4.75 

LFIS 2 11.54 ± 9.01 

DAS28 3.84 ± 1.22 

DAS-CRP 3.76 ± 1.26 

CRP   (mg/l) 10.54 ± 11.74 

ACPA positivity 0.55 ± 0.50 

ACPA Value 13.17 ± 14.85 

ESR (mm/hr) 17.77 ± 11.34 

 

7.6.2 Dependent variable 

The value of a regression coefficient depends upon the independent variables that are entered 

into a regression model and care should be taken when determining which explanatory 

variables to use.  This decision should be   based upon the results of previous research and the 

substantive theoretical importance of each variable (Field, 2009).  Spatial-temporal data were 

collected on all participants at self-selected walking speed. Walking speed was significantly 

reduced in the early RA participants recruited for this study compared to their controls (early 

RA, 1.10 ± 0.17, Controls 1.10 ± 0.09). In the main group of early RA participants (n = 32), 

walking speed was the primary variable used to evaluate gait which was common to all 

participants regardless of whether they had elected to attend for subsequent 3D motion capture. 

Alterations in walking speed have been reported to modify the segmental kinematics of the 

foot in able-bodied participants (Dubbledam et al., 2010). Walking speed has also been shown 

to be a contributory factor in in explaining modified foot kinematics in participants with 

established RA of 9 years   (Dubbledam et al., 2011). For these rationale, walking speed was 

chosen as the dependent variable representing lower limb biomechanical function during gait.  
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7.6.3 Independent Variables 

Chapter 2 reviewed the inter-relationship between disease activity, joint damage and physical 

impairment.  From the literature review it is apparent that the severity of outcomes in RA are 

determined several factors.  As disease activity, disease phenotype and initial HAQ score have 

all been associated either independently or as coexisting factors in determining the severity of 

outcomes in RA, the following variables were automatically selected for inclusion into the 

initial set of independent variables for multiple regression analyses: DAS28, DAS-CRP, CRP, 

RF, anti-citrullinated protein antibodies (ACPA) and HAQ.   

 

7.6.4 Linear associations  

To identify additional candidate independent variables, associations between walking speed 

and measures of disease activity, physical impairment, spatial-temporal parameters and foot 

posture were assessed using Pearson’s correlation coefficients. This method was used to 

identify variables which may contribute to multicollinearity, by determining where covariance 

between related variables was present. Where linear associations between related variables and 

walking speed were identified, candidate variables were removed prior to performing 

regression analysis.  The results of these analyses are presented in table 7.3.   

 

The linear relationships between walking speed, measures of disease activity, physical 

impairment, disease Impact and spatial-temporal parameters show that walking speed in 

participants with early RA was associated with cadence, step length and the toe-off (%) (Table 

7.3).  
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In participants with early RA, adaptations in walking speed were not associated with the 

length of time from diagnosis, FPI-6, mean grip strength, timed walking, timed button, TUG, 

VAS, LFIS1 or   LFIS2.  

 

The following independent variables were included as independent variables into regression 

models:  time since diagnosis, FPI-6, mean grip, timed walk, timed button, TUG, VAS, LFIS1, 

LFIS2, DAS28, DAS-CRP, CRP, ESR, RF and HAQ. 

 

Table 7.3: Linear association between walking speed in early RA Participants and measures of disease activity, 
physical impairment and spatial-temporal parameters  

 

Parameter Walking Speed 

  

Time Diagnosis -0.289 

FPI6 0.089 

Mean Grip 0.221 

Timed Walk 0.28 

Timed Button -0.306 

TUG 0.092 

VAS 0.056 

LFIS1 -0.481 

LFIS2 -0.321 
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Figure 7.2: Independent variables included in linear regression model 

 

7.6.5 Linear regression 

Independent variables were grouped into the following categories: measures of disease activity, 

measures of disease impact, measures of rheumatology physical function, measures of foot 

posture and temporal-spatial measures. Separate regression analyses were carried out by 

entering data according to category using a stepwise method illustrated in figure 7.3. 
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Figure 7.3: Flow diagram of regression analysis conducted in phase 1. 

 

7.6.6 Results   

The results of the linear regression analysis undertaken in phase 1 are presented in table 7.4.  

Table 7.4: Significant explanatory variables of walking speed in participants with early RA 

 

Dependent Variable Explanatory Variable β SE B R2 P-value 

      

Walking Speed ACPA 0.645 0.03 0.48 0.00 

Walking Speed RF -0.338 0.03 0.48 0.00 

Walking Speed ESR 0.236 0.01 0.48 0.00 

Walking Speed LFIS1 -0.57 0.01 0.33 0.00 

Walking Speed Timed Button -0.34 0.01 0.19 0.00 

Walking Speed Timed Walk 0.29 0.01 0.19 0.00 

Walking Speed FPI-6 0.26 0.01 0.07 0.01 
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7.6.7  Measures of disease activity 

The following multiple regression model was used to analyse the association between walking 

speed, ACPA, the presence of RF and ESR: 

 

Walking Speed𝑖 = 𝑏𝑜 + 𝑏₁ 𝐴𝐶𝑃𝐴 𝑖 + 𝑏₂ 𝑅𝐹 𝑖 + 𝑏₃ 𝐸𝑆𝑅 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F(3,103), = 33.766,  p = < .000), with an R2 of 

0.481. The predicted velocity of gait in participants with early RA was equal to 1.03 + - 0.003 

(ESR) + -0.129 (RF) + 0.222 (ACPA),  where ACPA was coded as 1  and  0, rheumatoid factor 

positivity was coded as 1 and 0  and ESR  was measured in  millimetres/hour. ACPA, RF and 

ESR were significant explanatory variables of walking speed.  

 

7.6.8 Measures of physical impairment 

The following single regression model was used to analyse the association between walking 

speed and the footwear/impairment dimension of the LFIS: 

 

Walking Speed𝑖 = 𝑏𝑜 + 𝑏₁ 𝐿𝐹𝐼𝑆1 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F (1.068, 2.180), = 51.033, p = <0.000), with an 

R2 of 0.329. The predicted velocity of gait in participants with early RA was equal to 1.31 +     

-0.02 (LFIS1), where the LFIS1 is measured on a scale between 0 and 21. The LFIS was a 

significant explanatory variable of early RA walking speed.   
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7.6.9 Measures of rheumatology physical function 

The following multiple regression model was used to analyse the association between walking 

speed, timed button test and timed walking: 

 

Walking Speed𝑖 = 𝑏𝑜 + 𝑏₁𝑇𝑖𝑚𝑒𝑑 𝐵𝑢𝑡𝑡𝑜𝑛 𝑖 + 𝑏₂ 𝑇𝑖𝑚𝑒𝑑𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F (0.640, 2.605), = 12.154, p = < 0.000), with an 

R2 of 0.194.  The predicted velocity of gait in participants with early RA was equal to 0.94 +   

- 0.00 (timed button) + -0.00 (timed walk), where timed button was measured in seconds and 

timed walk was measured in metres/second. Timed button and timed walk were significant 

explanatory variables of walking speed.  

 

7.6.10 Measures of foot posture 

The following single regression model was used to analyse the association between walking 

speed and the FPI-6:  

 

Walking Speed𝑖 = 𝑏𝑜 + 𝑏₁ 𝐹𝑃𝐼6 𝑖 + 𝜀𝑖 

 

A simple linear regression was calculated to explain early RA walking speed based on the         

FPI-6.  A significant regression equation was found (F (0.224, 3.029), = 7.680, p = < 0.007), 

with an R2 of 0.069. Early RA participants predicted gait velocity was equal to 1.06 + 0.017 

(FPI-6) where the FPI-6 is measured on a scale between -10 and +12. The FPI-6 was a 

significant explanatory variable for walking speed.  
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7.6.11 Summary of phase 1 results 

• A multiple linear regression model incorporating disease activity biomarkers showed 

that the presence of ACPA, rheumatoid factor, and ESR acted as explanatory variables 

of walking speed.   

 

• A multiple linear regression model incorporating rheumatology physical function tests 

as outcome measures of performing a timed button and a timed walk test also acted as 

explanatory variables of walking speed.    

 

• A simple linear regression model incorporating measures of disease impact   showed 

that the footwear/ impairment dimension of the LFIS acted as explanatory variable of 

walking speed.   

 

• A simple linear regression model incorporating measures of foot posture   showed that 

the FPI-6 acted as explanatory variable of walking speed.   

 

7.7 Phase 2 Linear regression analysis 

The following sections describe the study design of phase 2. The results of this phase are then 

presented. 

 

7.7.1 Participants 

To determine explanatory relationships of altered foot kinematics in early, a second regression 

analysis was conducted using data taken from a subgroup of 18 early RA participants who had 
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attended 3D motion capture sessions.  Participant demographics are presented in table 7.5.   

Data on disease activity, disease impact and rheumatology physical function are presented in 

tables 7.6.  

 

Table 7.5: Mean ± SD of anthropometric data of groups evaluated for linear regression analysis in phase 2  

 

Parameter Units Early RA Group Mean Control Group Mean p-value 

     

Age Years 45.50 ± 11.90 42.24 ± 7.82 0.37 

Male: Female Gender Total 5:13 7:10 0.13 

Height M 149.61 ± 30.84 165.55 ± 8.04 0.03 

Weight Kg 93.94 ± 39.53 72.15 ± 15.65 0.02 

Time Since Diagnosis Months 12.78 ± 10.33 NA  

 

 

Table 7.6: Mean ± SD of measures of disease activity and physical impairment in early RA participants (N = 18)  

 

Parameter Early RA Mean 

  

HAQ   4.55 ± 16.37 

VAS (mm) 29.17 ± 21.29 

LFIS 1 7.76 ± 4.12 

LFIS 2 5.76 ± 6.08 

DAS28 3.17 ± 0.74 

DAS-CRP 3.16 ±  1.02 

CRP   (mg/l) 6.47 ± 5.70 

ACPA positivity 0.61 ± 0.49 

ACPA Value 1.35 ± 0.75 

ESR (mm/hr) 17.92 ± 15.73 
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Table 7.7: Mean ± SD of spatial-temporal and physical function data for early RA and control groups  

 

Parameter Control Mean Early RA Mean p- value 

    

Walking Speed (m/s) 1.30  ± 0.09 1.10 ± 0.17 0.00 

Cadence (step/min) 115.18 ±  8.51 116.02  ± 13.15 0.83 

Step length (m) 13.43 ± 24.65 13.01  ± 27.83 0.96 

Stride Length (m) 1.35  ± 0.06 1.24  ± 0.22 0.07 

Step Time (s) 0.52  ± 0.04 0.52  ± 0.08 0.30 

Stride Time (s) 1.04  ± 0.08 1.07  ± 0.13 0.41 

Toe off (%) 59.72  ± 1.33 61.09  ± 1.84 0.02 

FPI-6 3.65  ± 2.68 3.72  ± 3.57 0.72 

Grip Strength (kg) 29.60  ± 6.13 24.46  ± 13.21 0.24 

6 min Walk (m) 550.41  ± 63.76 476.14  ± 87.10 0.01 

Timed Button (s) 44.93  ± 8.60 67.03  ± 41.03 0.04 

TUG (s) 6.97  ± 1.26 8.68  ± 3.28 0.06 

 

 

7.7.2 Dependent Variables 

The kinematic parameters chosen as dependent variables for inclusion within the regression 

analysis were:  shank-calcaneus frontal plane rotation, shank-calcaneus transverse plane 

rotation, calcaneus-midfoot frontal plane rotation, calcaneus-midfoot transverse plane rotation 

and first MPJ sagittal plane rotation.  Each segmental rotation was then entered into a separate 

regression equation as a dependent variable.  

 

7.7.3 Independent Variables 

In phase 1, the following independent variables were shown to significantly explain walking 

speed: ACPA, RF, ESR, LFIS1, timed button test, timed walking and the FPI-6.  To identify 

additional candidate independent variables, associations between segmental foot kinematics 

and measures of disease activity, physical impairment, spatial-temporal parameters and foot 
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posture were assessed using Pearson’s correlation coefficients. The results of this analysis are 

presented in table 7.8.  

 

Table 7.8: Pearson’s correlations showing linear relationships between independent variables of disease activity 

and physical impairment and frontal plane angular rotations at the shank-calcaneus segment in participants with 

early RA. 

Parameter  Shank-Calcaneus 
(Inv/Ev) 

Shank-Calcaneus 
(Abd/Add) 

Calcaneus-Midfoot 
(Inv/Ev) 

Calcaneus-Midfoot 
(Abd/Add)  

        

Walking Speed m/(s) 0.67** 0.17 0.67** 0.3 

Cadence (step/min) -.513* -0.36 -0.51 -0.29 

Step Length (m) .484* 0.12 .484* -0.11 

Stride Length (m) 0.19 -0.08 0.19 0.24 

Step Time (s) 0.11 0.1 0.11 -0.17 

Stride Time (s) .475* 0.28 .475* -0.01 

Toe-off (%) -.530* 0.01 -.530* -0.37 

Time Since Diagnosis (yr) -0.17 0.03 -0.17 -.477* 

RFPI6 0.01 0.13 0.01 0.13 

Mean Grip (kg) 0.13 -0.32 0.13 0 

Timed Walk (m) 0.27 0.39 0.27 .513* 

Timed Button (s) -0.22 0.41 -0.22 -0.34 

TUG 0.2 .537* 0.20 -.541* 

VAS 0.16 -0.24 0.16 0.14 

LFIS1 -.598* -0.29 -.598* -0.08 

LFIS2 -0.26 -0.28 -0.26 0 

 

*p=<0.05 

 

7.7.4 Shank-calcaneus (inversion/eversion)  

The linear relationships between frontal plane angular rotations of the shank-calcaneus 

inversion/eversion, disease activity, physical impairment, disease impact and spatial-temporal 

parameters show that walking speed in participants with early RA was associated with walking 

speed, cadence, step length, toe-off (%) and the first dimension of the LFIS (Table 7.8).  
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The increased magnitude of eversion of the shank-calcaneus segment in early RA participants 

was significantly associated with cadence (rp = -.513; p < 0.01) and step length (rp = .484;     p 

< 0.01), toe-off (%) (rp = -.530; p < 0.05) and the FFIS (rp = -.598; p < 0.05)  . 

In participants with early RA, no adaptations in walking speed were associated with stride 

length, step time, time since diagnosis, FPI-6, mean grip, timed walk, timed button, TUG, VAS 

and LFIS2. 

 

Significant associations between the dependent variable of frontal plane motion at the shank-

calcaneus and the independent variables of cadence, step length, stride time and toe-off (%) 

were shown. To avoid multicollinearity these independent variables were not included in the 

regression analysis.   

Independent variables entered into linear regression analyses were:  stride length, step time,  

time since diagnosis, FPI-6, mean grip, timed walk, timed button, TUG, VAS, LFIS1, DAS28, 

DAS-CRP, CRP, ESR, RF and HAQ. 

 

7.7.5 Shank-calcaneus (abduction/adduction)  

The linear relationships between transverse plane angular rotations of the shank-calcaneus 

segment, disease activity, physical impairment, disease Impact and spatial-temporal parameters 

show that   shank-calcaneus inversion/eversion in participants with early RA was associated 

with CRP (Table 7.8).  

Increased abduction at the shank-calcaneus segment   in early RA participants was significantly 

associated with (rp = -528; p < 0.01). In participants with early RA, no adaptations in shank-
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calcaneus motion were associated with walking speed, cadence, step length, stride length, step 

time, step length, stride length, step time, time diagnosis, FPI-6, mean grip, timed walk, timed 

button, TUG, VAS, LFIS2 and HAQ. 

Whilst significant associations were shown between the dependent variable of transverse plane 

motion at the shank-calcaneus and the independent variables of TUG and CRP, as neither 

variable measures the same dimension of interest, both were retained for regression analysis.    

Independent variables entered into linear regression analyses were: walking speed,  cadence, 

step length, stride length, step time, step length, stride length, step time,  time diagnosis, FPI-

6, mean grip, timed walk, timed button, TUG, VAS, LFIS1, DAS28, DAS-CRP, CRP, ESR 

and  RF 

 

7.7.7 Calcaneus-midfoot (inversion/eversion)  

The linear relationships between frontal plane angular rotations of the shank-calcaneus 

inversion/eversion, disease activity, physical impairment, disease Impact and spatial-temporal 

parameters show that walking speed in participants with early RA was associated with walking 

speed, cadence, step length, toe-off (%) and the first dimension of the LFIS (Table 7.8).  

 

The increased magnitude of eversion of the shank-calcaneus segment in early RA participants 

was significantly associated with cadence (rp = -.513; p < 0.01) and step length (rp = .484;        

p < 0.01),  toe-off(%) (rp = -.530; p < 0.05) and the LFIS (rp = -.598; p < 0.05)  . 

In participants with early RA, no adaptations in walking speed were associated with stride 

length, step time, FPI-6, mean grip, timed walk, timed button, VAS, and LFIS2. 
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Significant associations between the dependent variable of frontal plane motion at the 

calcaneus-midfoot and the independent variables of walking speed, cadence, step length, stride 

time and toe-off (% ) were shown. To avoid multicollinearity, of these, only walking speed was 

retained as an independent variable.   

 

Independent variables entered into linear regression analyses were:  walking speed, stride 

length, Step time,  foot off,  time diagnosis, FPI-6, mean grip, timed walk, timed button, TUG, 

VAS, LFIS2, DAS28, DAS-CRP, CRP, ESR, RF and HAQ. 

 

7.7.8 Calcaneus-midfoot (adduction/abduction) 

The linear relationships between transverse plane angular rotations of the calcaneus-midfoot 

segment, disease activity, physical impairment, disease Impact and spatial-temporal parameters 

show that walking speed in participants with early RA was associated with walking speed, 

cadence, step length, toe-off (%) and the first dimension of the LFIS (Table 7.8).  

 

The increased magnitude of abduction of the shank-calcaneus segment in early RA participants 

was significantly associated with time since diagnosis (rp = -.477; p < 0.01) and TUG (rp = -

.541; p < 0.01).   In participants with early RA, no adaptations in walking speed were associated 

with  walking speed, cadence, step length, stride length, step time, stride time,  foot off,  FPI-

6, mean grip, timed walk, timed button, VAS and LFIS2. 
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Whilst significant associations were shown between the dependent variable of transverse plane 

motion at the calcaneus-midfoot and the independent variables of time since diagnosis and 

TUG, as neither variable measures the same dimension of interest, both were retained for 

regression analysis.    

Independent variables entered into linear regression analyses were: walking speed, cadence, 

step length, stride length, step time, stride time,  toe-off (%),  time since diagnosis, FPI-6, mean 

grip, timed walk, timed button, TUG, VAS, LFIS2, DAS28, DAS-CRP, CRP, ESR, RF and 

HAQ. 

 

 

Figure 7.4: Independent variables entered into linear regression model in phase 2 

 

7.7.9 Linear regression 

Linear regression in phase 2 of this study was undertaken using a backwards stepwise method 

which is illustrated in figure 7.5. 
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Figure 7.5: Flow Diagram of multiple regression analysis of variables as part of phase 2 of study 3  

 

7.7.10 Results  

Significant explanatory relationships of linear regression between segmental angular rotations 

of the foot and independent variables in participants with early RA are presented in table 7.9. 

 

Table 7.9: Significant explanatory variables of segmental angular rotations in participants with early RA 

 

Dependent Variable Explanatory Variable β SE B R2 P-value 

      

Shank-Calcaneus:  Frontal Plane PC1 Walking Speed 0.68 152.75 0.46 0.00 

Shank-Calcaneus:  Frontal Plane PC1 LFIS -0.6 6.65 0.36 0.01 

Shank-Calcaneus:  Frontal Plane PC1 RF -0.62 80.05 
 

0.03 

Calcaneus-Midfoot:  Frontal Plane PC1  Toe-off (%) -0.5 22.15 0.25 0.03 

Calcaneus-Midfoot:  Frontal Plane PC1  Walking Speed 0.48 236.92 2.25 0.04 

Calcaneus-Midfoot:  Frontal Plane PC1  Timed Walk 0.53 0.18 0.37 0.02 

first MPJ: Sagittal Plane PC1 Step Length -0.99 1.067 0.37 0.0 
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7.7.11 Explanatory variables of frontal plane angular rotations: shank-calcaneus  

 

Walking Speed:  The following single regression model was used to analyse the association 

between fontal plane motion at the shank-calcaneus and walking speed: 

 

Shank − Calcaneus (frontal plane motion)𝑖 = 𝑏𝑜 + 𝑏₁𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F (158803.5, 189279.9), = 12.585, p = < 0.003), 

with an R2 of 0.456. Participants predicted gait velocity was equal to -978.92 + 541.90, where   

walking speed is measured in metres/second. Walking speed was a significant explanatory 

variable of frontal plane motion at the shank-calcaneus.      

 

Measures of Disease Impact:  The following single regression model was used to analyse the 

association between frontal plane motion at the shank-calcaneus and the first dimension of the 

LFIS:  

 

Shank − Calcaneus (frontal plane motion)𝑖 = 𝑏𝑜 + 𝑏₁𝐿𝐹𝐼𝑆 1 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F(107042.8, 29884.5.8), = 8.371,  p = <0.011), 

with an R2 of 0.358.  Participants predicted principal component score for frontal plane 

kinematics of the shank-calcaneus segment was equal to -240.64 + -19.24 where the LFIS 1 is 

measured on a scale between 0 and 21.     
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Disease Activity:  The following single regression model was used to analyse the association 

between frontal plane motion at the shank-calcaneus and the presence of RF: 

 

𝑆ℎ𝑎𝑛𝑘 − 𝐶𝑎𝑙𝑐𝑎𝑛𝑒𝑢𝑠 (𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑒 𝑚𝑜𝑡𝑖𝑜𝑛)𝑖 = 𝑏𝑜 + 𝑏₁𝑅𝐹 𝑖 + 𝜀𝑖 

 

A significant regression equation was found. Participants predicted principal component score 

for frontal plane kinematics of the shank-calcaneus segment was equal to -245.35 + -200.93, 

where RF positivity is coded as either 1 or 0.      

 

 

 

7.7.12 Explanatory Variables of frontal plane angular rotations: calcaneus-midfoot 

 

Toe-off (%):  The following single regression models were used to analyse the association 

between frontal plane motion at the calcaneus–midfoot and the percentage of gait at which 

foot-off occurred:  

 

Calacneus − Midfoot (frontal plane motion)𝑖 = 𝑏𝑜 + 𝑏1 𝑇𝑜𝑒 − 𝑜𝑓𝑓(%) 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F (16198.5, 477727.2), = 5.425, p = < 0.33), with 

an R2 of 0.253. Participants predicted principal component score was equal to 3137.83 + -51.59, 
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where foot-off is measured as a percentage of gait. Toe-off (%) was a significant explanatory 

variable for frontal plane kinematics for the calcaneus-midfoot segment.      

 

Walking Speed:  The following single regression models were used to analyse the association 

between frontal plane motion at the calcaneus–midfoot and walking speed:  

 

Calacneus − Midfoot (frontal plane motion)𝑖 = 𝑏𝑜 + 𝑏₁ 𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F (150255.7, 489448), = 4.912, p = < 0.042), with 

an R2 of 0.235. Participants predicted principal component score for frontal plane kinematics 

of the calcaneus-midfoot segment was equal to - 592.87 + 525.09, where   walking speed is 

measured in metres/second.    Walking speed was a significant explanatory variable of frontal 

plane kinematics of the calcaneus – midfoot segment.  

Timed walk:  The following single regression models were used to analyse the association 

between frontal plane motion at the calcaneus–midfoot and the percentage of gait at which 

foot-off occurred:  

 

Calacneus − Midfoot (frontal plane motion)𝑖 = 𝑏𝑜 + 𝑏1𝑇𝑜𝑒 − 𝑜𝑓𝑓(%) 𝑖 + 𝜀𝑖 

 

 A significant regression equation was found (F(36414.862, 56562.734), =  4.507,   p = < 

0.031), with an R2 of   0.372. Participants predicted   gait velocity was equal to   - 17.60 + 0.45, 

where    timed walk is measured    in metres.      
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7.7.13 Explanatory variables of sagittal plane angular rotations: first MPJ  

Step Length: The following single regression model was used to analyse the association 

between sagittal plane motion at the first MPJ and spatial-temporal parameters: 

 

First MPJ (dorsiflexion)𝑖 = 𝑏𝑜 + 𝑏₁ 𝑊𝑎𝑙𝑘𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑 𝑖 + 𝜀𝑖 

 

A significant regression equation was found (F (36414.862, 56562.734), = 4.507, p = < 0.031), 

with an R2 of 0.372. Participants predicted gait velocity was equal to - 483.07 + -95.07 where    

step length is measured in centimetres.      

 

7.7.14 Explanatory Variables of Transverse Plane Angular Motion: Shank-Calcaneus 

No significant explanatory variables were identified for this parameter.  

7.7.15 Explanatory variables of transverse plane angular rotations: calcaneus-midfoot 

No significant explanatory variables were identified for this parameter.  

 

7.7.16 Summary of Phase 2 results 

• Simple linear regression models in which spatial-temporal parameters were 

incorporated showed that walking speed, step length and toe-off (%) acted 

independently as significant explanatory variables of frontal plane kinematics of the 

shank-calcaneus segment.  

 



  

230 
 

• A single linear regression model in which the footwear/impairment dimension of the 

LFIS was incorporated showed that it acted as a significant explanatory variable of 

frontal plane kinematics of the shank-calcaneus segment. 

 

• A single linear regression model in which RF was incorporated showed that it acted as 

a significant explanatory variable of frontal plane kinematics of the shank-calcaneus 

segment. 

 

• A single linear regression model in which the percentage of gait at which foot off 

occurred was incorporated showed that it acted as a significant explanatory variable of 

frontal plane kinematics of the calcaneus-midfoot segment. 

 

• A single linear regression model in which walking speed was incorporated showed that 

it acted as a significant explanatory variable of frontal plane kinematics of the 

calcaneus-midfoot segment. 

 

• A single linear regression model in which step length was incorporated showed that it 

acted as a significant explanatory variable of sagittal plane kinematics of the first MPJ. 

 

• No significant explanatory variables were identified for transverse plane kinematics for 

both the shank-calcaneus and calcaneus-midfoot segments. 
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7.8 Discussion 

Chapter 2 of this thesis highlighted the role that measures of disease activity, disease impact 

and rheumatology physical function may play in the absence of validated assessments of foot 

and lower limb musculoskeletal impairment in early RA.  The results of study 3 suggest that 

the majority of these measures do not explain altered foot kinematics in early RA participants. 

It is believed that this is the first time that explanatory variables of altered segmental kinematics 

in early RA have been investigated.  The following sections discuss these findings. 

 

7.8.1 Explanatory variables of segmental foot kinematics in early RA 

 

Of the measures of disease activity investigated, none were found to explain segmental foot 

kinematics in the early RA participants recruited to this study. Only the presence of the 

biomarker RF was found to have a significant relationship to segmental foot kinematics in early 

RA. The r2  (R square) for this linear regression model was 0.358, indicating that significant 

associations for RF explained 36% of frontal plane motion of the shank-calcaneus. On the basis 

of these findings, the fourth hypothesis (H4) stating that relationships will be found between 

lower limb biomechanical function in early RA and measures of disease activity, is rejected. 

The alternative hypothesis (H0) is therefore accepted.  

 

Furthermore, of the measures of disease impact and rheumatology physical function 

investigated, only the first dimension of the LFIS demonstrated a significant explanatory 

relationship to early RA foot kinematics. Specifically, the r2  (R square) for this model was 

0.358 indicated a significant association for LFIS1, accounting for 36% of the total variance in 
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frontal plane motion of the shank-calcaneus. With only the footwear/impairments dimension 

of the LFIS being found to explain frontal plane motion at the shank-calcaneus, it is difficult 

to conclude that the measures of disease impact and rheumatology physical function explain 

segmental kinematics in early RA. For this reason, on the basis of these findings, the fifth 

hypothesis (H5) stating that relationships will be found between lower limb biomechanical 

function in early RA and measures of physical impairment, is rejected. The alternative 

hypothesis (H0) is therefore accepted.  

 

In contrast to these findings, of the spatial-temporal parameters investigated, three were 

observed to have a significant explanatory relationship to segmental kinematics of the shank-

calcaneus and calcaneus-midfoot. Walking speed was found to be an explanatory variable of 

frontal plane angular rotations of the shank-calcaneus in early RA participants. Of the 

independent variables investigated, it exhibited the strongest relationship, exhibiting an r2  (R 

square) for this model of 0.456 indicating that walking speed accounted for 46% of the variance 

in these segmental kinematics. For segmental kinematics at the calcaneus-midfoot, 

relationships to spatial-temporal parameters were weaker but were nonetheless found to be 

significant with an The r2  (R square) for this model of 0.235.  Walking speed was therefore 

observed to explain 24% of the total variance in frontal plane motion of the calcaneus-midfoot. 

Similarly, toe-off (%) exhibited an r2 (R square) for this model of 0.253 indicating that 

associations with toe-off (%) explained 26% of the variance in frontal plane motion at this 

segment. Finally, step length exhibited an r2 (R square) of 0.372 for this model, therefore 

explaining 37% of the variance in sagittal plane motion at the first MPJ.   
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Spatial-temporal parameters are known to be affected in early disease. Reductions in self-

selected speed in early RA participants have been reported to range between 0.90m/s to 0.96m/s 

(Khazzam et al., 2007; Turner et al., 2008). Reductions in walking speed have therefore been 

viewed as a primary explanatory factor underpinning pain avoidance strategies in the presence 

of active disease (Van der Leeden., 2008).  Chapter 5 (section 5.11.2) raised this as a plausible 

explanation  underlying the observation that the  significant reductions in walking speed and  

delayed termination of stance observed in early RA participants, may have facilitated the 

significant between-group differences in segmental foot kinematics reported in study 2.  

Though the biomechanical model segments analysed in study 2 incorporated joint sites within 

the foot where the pathology of early RA is known to occur (Matsumoto et al., 2014), the 

findings of study 3 suggest that in early RA, the disease process itself may not necessarily 

demonstrate a direct influence in modifying foot kinematics.  Rather, alterations in segmental 

foot kinematics may be modulated indirectly through alterations in spatial-temporal 

parameters.  

 

7.8.2 Disassociation between dependent an independent variables  

The disassociation observed in this study between measures of disease activity, disease impact 

and rheumatology physical function may have arisen from several factors.  These encompass 

issues of the internal validity, sensitivity and specificity of these measures. The following 

section discusses these aspects.  

 

Measures of physical impairment: Whilst an explanatory relationship between segmental foot 

kinematics in early RA participants and the first dimension of the LFIS, none was found for 
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the HAQ.   In explaining this finding, it should be acknowledged that treatment paradigms in 

the management of early RA have changed radically since the original development of the 

HAQ in 1978. At its inception, the sensitivity and specificity of the HAQ were originally 

established to predict levels of physical impairment in participants presenting with chronic 

disease from the Stanford Outcome in Rheumatoid Arthritis (ORA) study (Fries et al., 1982). 

By contrast, levels of self-reported disability seen in the present study are similar to reports 

from larger modern RA cohort studies where an incidence of milder disease has been reported 

(Sokka., 2005) . Lower levels of self-reported physical impairment have been reported in 

several modern cohort studies which coincide with a general trend towards a more favourable 

course of disease activity and more aggressive therapy. Coupled with a shift in the clinical 

presentation of early RA since the HAQ was first introduced, the insufficient sensitivity of the 

HAQ to changes in foot kinematics may explain why explanatory relationships were not found.  

 

The lack of explanatory capacity of the HAQ may also have arisen from the fact that, as a 

measure of functional impairment, it is likely to be insufficiently specified for its application 

to the present group of early RA participants where altered joint kinematics were the dimension 

of interest. The internal and external validity of the HAQ is based upon operational definitions 

of physical function that markedly differ from that of altered joint kinematics which may be 

attributable to the original development of the tool. Whilst an excellent correlation for the 

category of ‘walking’ of 0.88 was reported by Fries et al., (1982) in the original validation of 

the HAQ, to the authors’ knowledge, it yet to be validated against a single continuous measure 

of 3D kinematics.  
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The HAQ was also conceived as a multidimensional assessment of functional impairment 

conceptualising physical impairment as an outcome measured within a patient-centric value 

system. With functional capacity being measured across nine general component categories, 

only with a single category of ‘gait outdoors’ assesses lower limb function.   When scoring the 

HAQ, to capture the multidimensional nature of physical function, the highest score from each 

category is taken and summed with the rest. This results in a final HAQ score that provides an 

overall measure of physical function rather than focusing upon walking ability alone. 

Therefore, the operational definition of global physical function used during the development 

of the HAQ is quite different to that of localised foot kinematics. Furthermore, 3D motion 

capture is an objective measure of musculoskeletal function (McGinley et al., 2013).   By 

contrast, the HAQ is a subjective self-reported assessment of function across multiple 

dimensions and therefore  may be influenced by the subjective ‘internal standards’ or 

expectations of the participant concerning their physical health and wellbeing (Maska et al., 

2011).  

 

Measures of disease activity: In study 3, no measure of disease activity acted as an explanatory 

variable of segmental foot kinematics in early RA participants. This is an important finding 

with particular reference to the DAS28. Historically, the interaction between disease activity 

in early RA with measures of radiological damage and physical impairment has been viewed 

as part of a central paradigm explaining long term outcomes.   One explanation for these 

findings is that the omission of the joints of the foot and ankle in the DAS28 means that active 

disease within the foot may be missed.  As a possible limitation of the DAS28, this was 

highlighted in chapter 2.  
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In addition, it plausible that the criterion validity of the patient-reported  28-joint count  

incorporated into the DAS28 may not be a true reflection of the clinical state of the disease 

Though  the DAS28 was originally developed from data on 227 patients recruited from hospital 

outpatient clinics  (Prevoo et al., 1995), operational definitions of physical function have never 

been applied to the DAS28; it was developed primarily as a composite measure of disease 

activity only. The DAS28 was primarily designed to discriminate between high and low disease 

activity, not functional impairment.  

 

The criterion validity may also be an issue. This stems from the original validation of the 

DAS28.  Physical disability was assessed using the HAQ. Radiographically detected damage 

in the hands and feet were used in the original development and validation of the DAS28 by 

Prevoo et al., (1995).  To assess criterion validity, correlations between individual DAS28 

scores and physical impairment measured using the HAQ were analysed. Pearson’s 

correlations between the DAS28 and HAQ were reported to be weak (0.38 ± 0.039). By 

comparison, linear associations between the DAS28 and radiographic damage were found to 

be stronger, ranging from 0.50 (number of erosions); 0.52 (joint space narrowing) and 0.53 

(total erosions and narrowing).  Since its original validation, disease activity has subsequently 

been shown to be independently and longitudinally associated with radiographic damage.  

Therefore, in terms of criterion validity, whilst the DAS28 appears to give a true measure of 

clinical status, this is only where radiological damage is taken into account. This is not so where 

lower limb walking patterns are concerned.   
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7.8.5 Biomarkers used in diagnosis 

Rheumatoid factor was the only biomarker of disease that was found to act as an explanatory 

variable of altered foot kinematics in early RA participants. In this study, 72% of the 

participants exhibited sero-positive disease, mirroring the incidence reported by Humphreys et 

al., (2012).  From a clinical perspective the utility the presence of RF as an explanatory variable 

may be limited.  As a biomarker of disease, RF is not exclusive to the incidence of rheumatoid 

arthritis. Furthermore, it may also be present in healthy individuals as they age. The sensitivity 

of RF is around 50-70%. Although higher titres of RF increase its specificity in the presence 

of inflammatory arthritis, a limitation of using RF as a biomarker is that titres do not reliably 

change with disease activity. Whilst patients are more likely to develop erosive disease than in 

seronegative disease. Their primary value is as a prognostic indicator of erosions (Schellekens 

et al., 2000).   

 

Neither the ESR, ACPA nor anti-CCP were found to act as explanatory variables of foot 

kinematics in early RA. Levels of all the biomarkers reported in the present study were low-

to-moderate. Whilst these biomarkers are included in ACR/EULAR Core set variables, they 

are not outcome measures but are instead process measures, representing the intermediate 

products of the disease classification process.  The use of process indicators to assess an 

outcome such as physical impairment assumes that they relate directly to that outcome; this is 

frequently not the case (Berwick and Knapp, 1987).   

 

The ESR is used primarily as an indirect method of measuring elevations in the concentrations 

of acute phase plasma proteins. It is non-specific to RA and may be present in a number of 
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pathophysiological states where inflammation is present. Accordingly, the CRP is an acute 

phase reactant which is elevated in the presence of inflammation, generally reflecting the extent 

of tissue injury. Like the ESR, elevated levels of CRP are seen in other inflammatory conditions 

other than RA.  Although included in ACR/EULAR classification criteria for RA, the ESR and 

CRP have little use as specific tests in the diagnosis of RA. Rather, they are used to follow 

disease activity and monitor response to treatment.  

 

Whilst the management of joint inflammation is usually accompanied by a decrease in the ESR 

and CRP, by themselves, they are not sufficient to determine treatment response as progression 

in joint damage may be seen where improvement in acute phase reactant are present 

(Schellekens et al., 2000). For this reason, the ESR and CRP are not used alone when 

determining disease activity.  Anti-CCP is used as a surrogate indicator of radiological 

damage/progression. Similar to RF, its presence at early diagnosis predicts more radiographic 

progression and a strong association between anti-CCP and the development of erosions has 

been demonstrated (Schellekens et al., 2000, Salvador et al., 2003). Anti-CCP titres do not 

however reliably change with disease activity. Therefore, like RF, anti-CCP can help identify 

patients more prone to severe disease (Schellekens et al., 2000). 

 

7.9 Limitations of the study 

It may be argued that the significant correlations reported in phase 2 of study 3 between early 

RA foot kinematics, disease activity and disease impact may not necessarily indicate causation. 

Rather, these relationships may instead be indicative of a correlation between variables under 

the influence of a common, albeit unidentified cause (Kumer-Ainur., 2007).  In moving forward 
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with this research, the reproducibility of these findings becomes an important factor in 

confirming the relationship between measures of disease activity, disease impact and physical 

function with alterations in early RA kinematics.  The results of this study may be difficult to 

replicate for several reasons. These centre on issues concerning recruitment, correlation 

between variables and the presence of error in data. 

 

Participant recruitment: The level of recruitment for this research fell short of sample size 

calculations (chapter 3, section 3.5). Though linear regression has previously been used to 

investigate explanatory variables of foot kinematics using similar sample sizes (Altman and 

Davis, 2012; Muhaffey et al., 2016; Caravaggi et al., 2016), it has been argued that to ensure 

the stability of regression estimates,  the number of participants should exceed the number of 

independent variables by a factor of ten (Field, 2009). It is therefore possible that the small 

sample size of the study resulted in regression estimates reported in study 2 that were 

overinflated.  

 

Correlation between variables: A second consideration is the extent to which kinematic data 

followed deterministic behaviour patterns as described in chapter 2 (section 2.3.13). When 

conduction linear regression, successive measurements of the dependent variable should be 

unrelated.  The value of the dependent variable should also be random (Field, 2009). As 

consecutive kinematic data occur within a time series taking place across the duration of the 

gait cycle, it is possible that autocorrelation may have occurred between successive data points 

(Kamer-Ainur., 2007).  Converting these data into principal component scores prior to linear 

regression as described in chapter 3 (section 3.8.10) may have mitigated against this by 

reducing these data to single values. Whether the standard error associated with each regression 
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coefficient was understated as a result remains a possibility. This is an important consideration 

as narrower prediction and confidence intervals that would occur would mean that the multiple 

correlations reported in this study may have been overstated in value (Yoo et al., 2014).   

Similarly, despite tests for multicollinearity, correlation between the independent variables 

entered into the regression models in phases 1 and 2 may still have been present. This would 

be of particular relevance to the use of walking speed, timed walking and TUG. Whilst care 

was taken not to enter these variables simultaneously into either the single or multiple 

regression models for phases 1 and 2, an eventual overestimate of the regression coefficient R2 

of the effect of these variables upon foot kinematics in phase 2 cannot be used out (Yoo et al., 

2014).  

 

Error: Lastly, the ability to reject the null hypothesis may have been influenced by the fact that 

simple linear regression assumes a lack of error within each measured variable (Field, 2009). 

Though an acceptable level of repeatability was demonstrated for 3D motion capture data in 

study 1, error may still be presumed to be a feature of these data, albeit within clinically 

acceptable levels.  This may also be considered true of all other measures used within these 

analyses.  For this reason we cannot assume that errors associated with the regression models 

used in study 3 and those of all other independent variables were independent of one another. 

Though the multiple regression models used in study 3 should have mitigated against this by 

entering multiple variables in a step-wise manner (Field, 2009), further investigation is required 

to confirm these results.  
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7.10 Conclusion 

The results of study 3 suggest that current measures of disease activity, disease impact and 

rheumatology physical function do not act as explanatory variables of altered foot kinematics 

in early RA participants.  Rather, altered foot kinematics appear to be explained largely as a 

result of early RA participants adopting significant reductions in walking speed which were 

accompanied by a delay in the termination of stance.  

 

It is acknowledged that there were limitations to this study which arose from difficulties in 

recruitment, the possible correlation between variables and the presence of error in data. 

However, these results suggest that measures of disease activity, disease impact and 

rheumatology physical function do not act as surrogates of mechanically based foot pathology 

detectable using 3D motion capture.  From a clinical perspective, this strengthens the case for 

the use of 3D motion capture in the early detection and management of musculoskeletal 

impairment in early RA.  
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Chapter 8:  Summary of Thesis 

 

The principal aims of this thesis were to investigate the presence of altered biomechanical 

function in early RA participants and to investigate relationships between these and measures 

of disease activity, disease impact and rheumatology function. Chapter eight draws together 

the results of this thesis and discusses their clinical implications. The limitations of this thesis 

are highlighted and discussed along with proposals for further research.  

 

8.1 Lower limb biomechanical function in early RA  

 

This thesis has reported that within the twelve months of diagnosis of RA, despite low-to-

moderate levels of disease, significant alterations in spatial-temporal parameters and foot 

kinematics were detectable using 3D motion capture.  For this reason the hypothesis (H1) stated 

in chapter 1 (section 1.3) that ‘Lower limb spatial-temporal parameters in adults with early RA 

will be different from those of age and gender matched adults’ can be accepted. Likewise, the 

hypothesis (H3) that ‘lower limb joint kinematics in adults with early RA will be different from 

those of age and gender matched adults’ can also be accepted. By contrast, in the absence of 

detectable between-group differences in lower limb kinetics, the hypothesis (H2) that ‘lower 

limb joint kinetics in adults with early RA will be different from those of age and gender 

matched adults’ can be rejected.  The alternative hypothesis (Ho) that ‘lower limb joint kinetics 

in adults with early RA are not different from those of age and gender matched adults’ can 

therefore be accepted.  
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8.2 Early assessment of residual foot pathology in RA 

The results of this thesis demonstrate that a determination towards significant mechanical foot 

pathology may be established early in the natural history of the disease. In extending the work 

of previous studies,  data from this thesis indicate that such alterations are likely to go 

undetected using current NICE guidelines on the assessment of RA (NICE, 2009). This has 

fundamental clinical implications when considering the early pathogenesis of lower limb 

physical impairment.   In translating the laboratory based findings of this thesis into clinical 

practice, several recommendations are made which are contextualised on this basis. These aim 

to mitigate against the long term functional consequences of those altered spatial-temporal and 

segmental kinematics reported in chapters 5 and 6. These recommendations are based upon the 

principals of early detection and intervention.  

 

On the principal of early detection, based upon these findings the first recommendation is that 

all early RA patients be referred for an assessment of mechanically based foot pathology as 

soon as possible following diagnosis. This recommendation is based upon current consensus 

that in order to positively influence the trajectory of early physical impairment, the 

management of residual foot pathology should be undertaken as soon as possible (Woodburn 

et al., 2010).  This recommendation aligns to current standards of care published by PCR and 

ARMA that advise that patients should be referred for foot examination within three months 

of diagnosis by practitioners integrated into the multidisciplinary team (ARMA, 2004; PCR, 

2011).  
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The need to make this recommendation is also based upon low levels of referral to specialist 

foot health services; only 42% of patients requiring foot health management are currently 

referred to specialist services by their rheumatology consultant (Hendry et al., 2013).  A key 

explanatory factor that this thesis has already highlighted is the use of DAS28 driven 

assessment of disease activity which excludes an examination of the foot. With persistent 

synovitis being reported within the feet in the presence of DAS28 defined remission (Landewe 

et al., 2006; Van der Leeden et al., 2010; Wechalekar et al., 2012), consultations based 

primarily upon this composite measure are likely to underestimate the impact of residual foot 

pathology in early disease (Williams, 2015).  

 

This is not the only factor that must be addressed if the early detection of mechanically based 

foot pathology in RA is to be improved. In making this recommendation it is acknowledged 

that there are fundamental limitations concerning the education and training of rheumatology 

specialists that may also need to be addressed. De Souza et al., (2016) noted that only 62% of 

rheumatology clinicians felt competent in foot examination. Historically, not all clinicians 

report receiving effective training (Woodburn and Helliwell, 1997; Helliwell, 2003) and a lack 

of medical undergraduate training in the UK on foot examination remains a key factor 

influencing the frequency of foot examinations. Whilst up to 80% of consultant, 75% of 

registrars and 67% of rheumatology nurses have been reported to have received postgraduate 

training, the nature of this training remains unspecified (De Souza et al., 2016). 
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8.3 The role of 3D motion capture in early RA 

Outcome measures proposed by Woodburn et al., (2010) for the assessment of the foot in early 

RA advocate  the use of the LFIS in preference to the direct measurement of function itself; 

clinical  data on gait analysis were viewed by this group not as a primary outcome but instead 

as an extended outcome within the domain of ‘function’.  With biomechanical impairment of 

the foot viewed as a red flag presentation of the disease, this is counterintuitive but may be in 

response to the limited availability of validated biomechanical assessment tools. In resolving 

this paradox there is a need to incorporate an outcome measure that directly quantifies 

mechanical foot pathology which is both valid and reliable (Pynsent, 2001).   Seen from this 

perspective there is a fundamental need to re-evaluate the manner by which mechanical foot 

pathologies in early RA are assessed.  

 

Historically, musculoskeletal pathologies of the foot have been classified based upon clinical 

observation of structural pathologies and their assumed symptomology during gait.  The 

classification of foot morphology and its association with mechanical dysfunction during gait 

are a central paradigm that still underpin the clinical examination of the foot.   By far the most 

widely used paradigm of foot classification still practised by podiatrists is that proposed by 

Root and colleagues (Root et al., 1977). That the theoretical basis of this paradigm is being 

increasingly doubted should be of concern. 

 

The common practice of assessing foot morphology using the static neutral positioning of the 

subtalar joint fails to sufficiently replicate those internal forces generated by muscle contraction 

that enable weight bearing kinematics to be replicated (Jarvis et al., 2012). For this reason, 
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static measures of foot abnormal morphology have also been found to poorly correlate to the 

magnitude or direction of segmental kinematics within the foot during gait. In the largest study 

to date examining the relationship between foot morphology and gait kinematics, the external 

validity of the Root paradigm was questioned by Jarvis et al., (2017). In a study of 140 

asymptomatic participants using a 6 segment foot model described by Nester et al., (2014), this 

group found no relationship between abnormal foot morphology described by Root and 

colleagues and foot kinematics during gait.  

 

A consensus that clinical experience is sufficient to discern normal from abnormal 

musculoskeletal function is a characteristic of current clinical practice (Jarvis et al., 2012). 

Using a modified Delphi technique, Jarvis and colleagues found that owing to the burdens of 

time, podiatrists choose to estimate and classify mechanically based disorders rather than 

ascertain these through direct measurement. Such an approach directly undermines 

measurement based interventions such as the prescription of functional foot orthoses. Yet  

Jarvis et al., (2012)  found that traditional measurements of foot biomechanics exhibit very low 

inter-assessor reliability, with ICC values ranging between 0.61 (measurement of ankle range 

of motion) to 0.02 (measurement of limb length).  

 

Current practices in podiatric biomechanics are therefore characterised by a level of theoretical 

uncertainty that does not necessarily represent a sound basis upon which the clinical 

examination of the foot should be undertaken. Adopting objective measures of musculoskeletal 

pathology which demonstrate an acceptable level of validity and reliability, even at the expense 

of time, would provide a more robust basis upon which clinical assessments would take place. 

To overcome current conceptual uncertainties, based upon the presupposition of unlimited time 
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and resources we recommend that 3D motion capture should be incorporated into current 

recommendations as an objective, validated and reliable assessment tool of gait analysis in 

early RA.  It is also recommended that baseline 3D motion capture data be collected as soon 

as possible following diagnosis in all patients with a view to the long term monitoring of 

biomechanical function of the foot within the first two years of disease.  

 

8.4 Early Intervention 

Alterations in rearfoot and midfoot kinematics described in this thesis are similar to those 

observed in established disease (Woodburn et al., 2003).  Without intervention, a decoupling 

of motion between these sites may occur within ten years of diagnosis which is associated with 

significant structural pathology (Woodburn et al., 2003). Woodburn and colleagues observed 

that by controlling altered rearfoot kinematics using functional orthoses, a normalisation of 

frontal plane motion at the rearfoot is achievable (Woodburn et al., 2008). Mechanically based 

interventions may therefore arrest the pathogenesis of long term physical impairment.    

 

Despite fundamental limitations used in the assessment of musculoskeletal foot pathologies in 

early RA, the net effect of mechanically based interventions such as the prescription of 

functional foot orthoses has been reported to produce positive outcomes (Hawke et al., 2008).  

The reasons behind this may however centre upon the redirection of internal forces and 

abnormal tissue stress rather than through the reestablishment of any perceived structural 

normalcy (Zammit and Payne,  2007).   
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Because 3D motion capture is not theoretically embedded within current paradigms of podiatric 

biomechanics, as a clinical measure it would allow a greater emphasis to be placed upon 

explaining the mechanical basis of foot biomechanics during weight bearing that relate to the 

pathology and symptomology of early RA rather than through the assessment of foot 

morphology. Such an approach allows clinical interventions to be personalised to the needs of 

individual patients with orthotic prescriptions targeted in a manner that modifies tissue 

pathologies in specific structures rather than attaining a predefined magnitude of structural 

normalcy. Evidence supporting this approach was presented by Gibson et al., (2014),  

confirming that the prescription of functionally optimised orthoses to participants within the 

first two years of disease enhances subtalar and midtarsal joint kinematics,  significantly 

reducing peak rearfoot eversion and navicular height.  For this reason we recommend the use 

of 3D motion capture in the early targeted interventions of mechanical pathology in RA.  In 

making this recommendation it is anticipated that this is an area of practice that may be 

delivered primarily by extended scope podiatrists in alignment with guidelines by Woodburn 

et al., (2010).  

 

8.5 Relationships between altered foot kinematics in early RA and measures of disease 

activity 

As a caveat to the recommendations made within this chapter, it should be recognised that there 

are time and cost implications that may prohibit the use of 3D motion capture within both the 

hospital and community care settings. The need to mitigate against the limitations of DAS28 

driven assessment mean that alternative outcome measures that are predictive of altered foot 

kinematics in early RA should be available to practitioners.  In addressing this, relationships 
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between lower limb biomechanical function and measures of disease activity, disease impact 

and rheumatology function were investigated in this thesis using linear regression analysis.  

 

Regression  analysis  found that the increased magnitude of frontal plane angular rotations at 

the rearfoot were explained by the presence of RF, walking speed,  the percentage of gait at 

which toe-off occurred and the footwear/impairment domain of the LFIS. The increased 

magnitude of frontal plane motion of the midfoot joint occurred independently of disease 

activity but was explained by the percentage of gait at which toe-off occurred, walking speed 

and the timed walk test. The only explanatory variable found relative to reduced first MPJ 

dorsiflexion was step length. The increased magnitude of abduction seen at the rearfoot and 

midfoot joint occurred independently of all variables entered into the regression model.   Whilst 

these relationships were significant, the R2 values for individual variables were weak. For these 

reasons, the hypothesis (H4) stated in chapter 1 (section 1.3) that ‘relationships will be found 

between lower limb biomechanical function in early RA and measures of disease activity’ 

cannot be accepted. This is also true of the hypothesis (H5) stated in chapter 7 (section 1.3) that 

‘relationships will be found between lower limb biomechanical function in early RA and 

measures of physical impairment’ can be accepted.  

 

In translating these findings to clinical practice it would be premature to make detailed 

recommendations for the adoption of specific outcome measures.  However, the findings of 

this thesis do indicate that the incorporation of spatial-temporal parameters into current 

rheumatology core outcomes may be an area for further investigation. Such measures may 

provide a simple, cost effective clinical metric accessible to all members of the rheumatology 

multidisciplinary team. To translate the findings of this thesis into clinical practice this 
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recommendation is however predicated upon further research to confirm the findings of this 

thesis via a definitive trial. This is an area for further investigation that is recommended in 

order to extend upon the present research.  

 

8.6 Access to 3D motion capture 

As a final point of interest, whilst the recommendations made within this chapter have so far 

contextualised ‘why’ and ‘when’ 3D motion capture should be used, they do not address how 

current levels of clinical demand may be met.  This is an important issue of service access.  As 

demand for healthcare is likely to grow, given current levels of service delivery it is unlikely 

that podiatrists alone will be able to meet predicted healthcare demands (Hendry et al., 2013).  

In addressing this, there is an implication as to ‘who’ uses 3D motion capture. The findings of 

the present study strengthen the case for the deployment of extended scope podiatrists within 

the rheumatology multidisciplinary team in the early assessment, monitoring and management 

of residual foot pathology in RA in alignment with current recommendations (Woodburn et al., 

2010). Furthermore, in the identification and control of inflammatory joint disease and 

mechanically based impairments this thesis acknowledges that podiatrists may fulfil a key role 

by routinely screening all patients with RA for mechanically driven pathologies within the first 

year of disease.  

 

A limiting factor to this recommendation is that the access and provision of dedicated foot care 

services has historically been reported to be variable and service provision poor when 

compared to the foot health care needs of early RA patients (Brand et al., 2009; Rome et al., 

2010; Royal College of Physicians, 2011). The need for foot health provision in the early RA 
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population has remained constant in the face of insufficient numbers of specialist practitioners 

(Redmond et al., 2006; Kings Fund, 2009; National Audit Office, 2009). Indeed, numbers of 

specialist podiatrists are unlikely to increase in the NHS (PCR, 2011).  Therefore, to meet 

current and future demands, the cross-discipline use of 3D motion capture may be required 

when recommending that all early RA patients be assessed for mechanically based foot 

pathology.  

 

8.7 Study limitations  

There are a number of potential limitations to the studies undertaken within this thesis.  These 

have been grouped below according to the following themes:  

 

• Recruitment 

• Sample size 

• Bias 

• Study design 

 

8.7.1 Recruitment 

An inherent limitation of cross-sectional analysis highlighted by Shekelle et al., (1999) is that 

the strength of evidence that is presented is consistent with that of non-experimental descriptive 

research. In contrast to randomised controlled trials which represent the highest categorisation 

of evidence and study based recommendations (grade 1A, A), cross sectional studies present 

evidence of a fundamentally lower magnitude (grade III, C).  In addition, there a several 
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limitations to the present study which threaten the external validity of the evidence presented. 

Of these, the question arising over the generalisability of the study findings may be considered 

a central limitation. First among these threats is the issue of sample size. The small sample size 

of the study arose from difficulties in securing study sites, changes to the study design and 

recruiting sufficient numbers of early RA participants.  

 

At the time of the original R&D submission in December 2012, recruitment sites had not been 

confirmed. Following submission of Site Specific Information Forms (SSI), R&D approval for 

the first study site (Homerton Hospital) was granted in July 2013 and recruitment at this site began 

in September 2013. Gaining R&D approval at Whipps Cross Hospital took longer than anticipated 

owing to administrative delays at this site. In addition, Barts Health required an internal peer 

review and financial impact assessment of the research. The Chief Investigator was also required 

to submit an Enhanced Disclosure and Barring Service (DBS) check and undertake Research 

Governance Framework (RGF) and Good Research Practice (GRP) training. R&D approval at 

this site was finally granted in 22/1/14. 

 

An annual monitoring review in early 2013 proposed that the study be amended to confine 

recruitment of early RA participants to the first six weeks following diagnosis followed by a 

second study visit at twelve weeks.  A substantial amendment to this effect was submitted to 

NRes Committee London- Bloomsbury on 8/10/13. A letter of favorable opinion was received on 

18/10/13.  Between July 2013 and September 2014, recruitment at Homerton University Hospital 

was slow due to a fall in the number of referrals of early RA cases reported by the onsite 

collaborator. Recruitment at the second site, Whipps Cross Hospital, was also slower than 

anticipated. A review of the recruitment strategy was undertaken in January 2015. It was 
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identified that following the amendment to the study design many prospective participants had 

been reluctant to participate within the first six weeks following diagnosis owing to the burdens 

of time and the adverse psychological impact of being newly diagnosed with RA.  

 

The present study also faced competition for early RA participants at Homerton University 

Hospital from a Medical Research Council (MRC) funded study called TACERA (Towards a 

Cure for Early Rheumatoid Arthritis). To ameliorate against these factors it was decided to 

embed this study into recruitment sites allowing the Chief Investigator to meet prospective 

participants face-to-face at the point of referral and collecting data on physical function and 

disease impact with the option of a second study visit at the University of East London (UEL) 

Stratford campus for 3D gait analysis. To amend the data collection protocol, an application to 

apply for a research passport via the National Institute for Health Research (NIHR) was 

submitted in February 2015. Permission to access NHS Trust property was granted in the same 

month (Appendix 3). Data collection at both recruitment sites commenced from March 2015 

onwards.  

 

A continued level of low recruitment prompted a second review of the recruitment strategy 

which was undertaken in May 2015. It was agreed that, in addition to the factors previously 

highlighted, the restriction of participants to the first six weeks following diagnosis had had a 

significant negative impact on recruitment.  To address this it was decided to return to the 

original inclusion criteria of studying early RA participants within the first two years following 

diagnosis as stated in the original grant application and REC documentation.  It was anticipated 

that this would allow for a larger cohort of prospective participants from which to be recruited 

whilst increasing the number of out-patient clinical sessions that could be accessed. Both 
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recruitment sites were made aware of the revised recruitment strategy which commenced from 

June 2015 onwards until December 2016     

 

 

Figure 8.1: Flow diagram of participant recruitment  

 

8.7.2 Sample size 

A priori analysis of the sample size required for this study incorporating an alpha (α) level of 

significance of 0.05 and beta (β) level of error of 20% (80% power) was calculated to range 

between 61 to 773 participants depending upon the joint site studied.  Difficulties in recruitment 

limited the sample size of the early RA group to eighteen participants.  In terms of the statistical 

construct validity, this compromised the ability of the study to reject the null hypothesis. The 
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increased likelihood of type II error may explain why, despite an increase in the magnitude of 

flexion and accompanying joint moments exhibited at the hip and knee during gait by RA 

participants, between-group differences failed to reach statistical significance. It is plausible 

that significant group differences may have emerged given a larger study group.  

 

8.7.3 Bias 

In addition to the small sample size there is the possibility that the collective attributes of the 

early RA group were influenced by the recruitment process. To avoid selection bias participants 

were recruited from consecutive outpatient clinics. It is possible that self-selection bias 

occurred, altering the characteristics of the group with only the most willing participants 

exhibiting milder disease presentations volunteering to take part. It is of note that the early RA 

group was relatively homogenous group in terms of disease presentation and disease impact. 

Whilst such homogeneity may have limited the effects of inter-subject variation upon the 

dependent variable, whether the group’s collective attributes can be generalised is questioned. 

These attributes may also have been affected in not controlling for factors such as weight, 

height and gait velocity, random systemic or non-systemic events that may affected the 

dependent variable. Furthermore, in the absence of a randomisation process it is possible that 

the composite characteristics of subjects may not have been distributed equally between groups 

as a function of chance alone.  

 

An additional factor modulating how these characteristics were expressed was in the data 

collection process itself. The schedule for data collection was intensive. The presence of fatigue 

may have changed participant’s responses to testing. By incorporating both motion capture and 
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rheumatology physical function testing.  It may be argued that the act of collecting data may 

have altered participant responses to measurement, for example by stimulating change rather 

than recording passive behaviour. 

 

8.7.4 Study design 

Whilst there was evidence of an explanatory relationship between dependent and independent 

variables, the internal validly of the study could have been more robust.  Whilst cross-sectional 

analysis is consistent with exploratory research, the inherent disadvantage of this approach is 

that it is likely that the dependent variable i.e. lower limb biomechanical function may be 

altered in these participants by the passage of time under the influence of disease activity.  It 

had been the intension to recruit participants at an earlier stage within the natural history of the 

disease. Very early RA has been identified as that stage within the disease inhabiting the first 

six weeks following diagnosis.  Following the progress of disease during the first two years 

rather than conducting a cross sectional study would have enabled the emergence and 

characterisation of between-group differences to be made in a manner never previously 

undertaken. In studying data longitudinally, relationships between lower limb kinematics and 

measures of disease activity and disease impact could have been explored in the context of 

predictive relationships rather than explanatory relationships. Longitudinally, it is plausible 

that metrics concerning disease activity, disease impact and joint kinematics and kinetics 

change over time. The explanatory relationship described in the present study may not remain 

constant over time. It is likely that some variables may demonstrate modified linear 

relationships depending upon when within the first two years these data are collected. 

Measuring the direction that these data travel in response to disease activity and 
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pharmacotherapy would have provided information concerning the way in which the lower 

limb responds to the presence of disease under current treat-to-target protocols.  

 

8.8 Areas for future research 

Several proposals are made concerning future investigative studies with the aim of further 

developing current knowledge and understanding of lower limb disease in RA. It is suggested 

that future research should be undertaken to verify the results of the present study for several 

reasons.  Firstly, the difficulty in recruiting a sufficient number of early RA participants was 

highlighted in chapter 2 resulting in a reduced level of statistical power.  It was therefore 

highlighted that the present study should be considered exploratory in nature. Portney and 

Watkins caution that insufficient statistical power may lead to the presence of type II error 

(Portney and Watkins, 2009). In the present study, angular rotations at the hip, knee and ankle 

did not demonstrate evidence of significant between-group differences. Whilst these findings  

may indeed characterise lower limb movement patterns in the those early RA participants 

recruited for the present study, it is possible that between-group differences in these parameters 

do indeed exist in the wider early RA population.  Furthermore, low levels of self-reported 

physical impairment and moderate disease activity were also reported in the present study.   To 

avoid self-selection bias, participants were recruited from consecutive out-patient clinics. It is 

still possible, however, that only the most compliant and physically unimpaired individuals 

volunteered to take part in the study. Determining significant differences in lower limb walking 

patterns in a larger, more disease heterogeneous group of early RA participants may be required 

to confirm the results of the present study.  
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Conducting a larger scale investigation may also help mitigate against the limitations of PCA.  

By decomposing the original data into a set of linear variates, PCA was used to locate 

underlying dimensions within the kinematic variables analysed. PCA is concerned only with 

establishing linear components within data and how a particular variable might contribute to 

that component. An assumption of PCA, however, is that it assumes that the data being 

analysed represents an entire population of interest, not a sample. A limitation of PCA is   that 

conclusions are restricted to the sample collected and generalisations of results can be achieved 

only if further analysis that is undertaken in different samples reveals the same factor structures. 

It may be argued that as a result of the way in which PCA operates, there can only be a limited 

generalisability of results of the present study to those early RA participants recruited and not 

to the wider early RA population.  

 

A characteristic of all motion analysis studies investigating the impact of RA in both 

established disease  (Woodburn et al., 2002a, Woodburn et al., 2003, Woodburn et al., 2004, 

Turner et al., 2008) and early disease (Turner et al., 2008) is the use of cross-sectional study 

designs to make between-group comparisons. The present study is no exception. A limitation 

of this methodology is that it does not take into account that   joint destruction in RA appears 

to result from the cumulative burden of inflammation over time.  This may have important 

consequences concerning the pathogenesis of lower limb functional impairment. The evolution 

and progression of altered lower limb walking patterns in RA under the influence of disease 

activity has yet to be examined.  As these features develop over time, their progression cannot 

be captured using a cross-sectional study design. For this reason, the point at which alterations 

in lower limb movement patterns become significantly different is uncertain.  
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The present study was of a comparative cross-sectional design. For this reason, when 

describing the relative strength of the relationship between each dependent and independent 

variable investigated, independent variables were seen as having an explanatory capacity rather 

than one which was predictive.  Therefore, a further rationale for studying early disease 

longitudinally is that this may provide data on the predictive relationships between lower limb 

movement patterns and measures of disease activity and physical impairment over time. 

Studying lower limb kinetics and kinematics under the simultaneous influence of drug 

modified disease activity, may help identify changes in key parameters and determine predictor 

variables.  Together, with the evaluation of musculoskeletal foot health interventional 

programs, new pathways of evaluation and care for patients with early RA could be developed. 

It is important to note, however, that as test-retest repeatability of variables was evaluated in a 

small number of participants on the same day, to allow future longitudinal investigations of 

walking patterns in early RA participants, it is important to re-evaluate the repeatability in a 

larger sample of participants tested on different days.  

 

Whilst the present study is believed to be the first to quantify intersegmental coupling 

relationships in the foot in early RA, the approach used to explore intersegmental coupling 

patterns in study 3 does have its limitations. Though the mean value of the CoRP provides 

spatial information regarding how adjacent segments were coupled, it does not provide direct 

information as to how the underlying segments were coordinated. This is important as the co-

ordination of intersegmental coupling angles has been shown to change through the stance 

phase of gait.  A modified vector coding technique proposed by Chang et al., (2008) provides 

this data by classifying intersegmental coupling according to their temporal location within the 

gait cycle.  Understanding exactly where in the gait cycle alterations in the amplitude and 

variation in coupling actions take place may provide further data on the temporal components 
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of mechanical tissue stress in early RA. Such data would also inform and enhance the use of 

treatment interventions designed to alter biomechanical function.  

 

A final consideration is that long term outcomes in RA may be differentiated according to 

gender.  Although not addressed in the present study, gender dimorphism is known to modulate 

disease activity. The age of onset, disease pattern, frequency of destructive joint disease and 

frequency of extra-articular involvement are taken into account, women exhibit more 

aggressive disease outcomes (Lahita., 1996).  These observations raise the possibility that 

gender modifies disease progression and prognosis. Indeed, it has been suggested that that male 

and female variants of RA may represent qualitatively different disease processes  (Rubtsov et 

al., 2010). Gender also appears to influence therapeutic interventions in RA, with female 

patients developing more structural deformities requiring surgical intervention, possibly due to 

either gender-specific mechanical factors or gender specific differences in tissue composition 

(Gossec et al., 2005).  

 

As a result of gender dimorphism, when long term outcomes are measured through pain and 

disability, the impact of RA on quality of life cannot be assumed to be the same for men and 

women.  Women report higher levels of pain and physical disability associated with non-

employment (Lahita, 1996b). Further investigation specifically evaluating the impact of gender 

on the characteristics of lower limb physical impairment in RA may provide unique data 

allowing a greater customisation of treatment interventions in individuals living with early RA  
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8.9 Conclusion 

Through the present study, robust protocols for the evaluation of lower limb walking patterns 

in adults with early RA using 3D motion capture, measures of disease activity and measures of 

physical impairment in early RA have been defined.   Using these protocols it was shown that 

in a group of early RA participants with low disease activity and low levels of self-reported 

physical impairment, when compared to age and gender matched controls, significant   

differences in the kinematics of the lower limb were seen. These differences were located at 

the distal extremity within the foot and were largely independent of current measures of disease 

activity.    

Owing to the difficulties in recruitment, sampling bias and the limitations of the research 

design, the findings of this thesis should be interpreted on the basis of this research being 

exploratory in nature and therefore subject to further investigation. However, based upon these 

findings, the multidisciplinary use of 3D motion capture is recommended to meet both current 

and future demands for the early assessment and targeted management of mechanically based 

foot pathology in RA.  
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Appendix II: Participant Information 

Information Sheet About the Research Study 

 

 
We would like to invite you to take part in a PhD research study. Before you decide whether 
or not you would like to take part in this study it is important for you to understand what the 
purpose of this study is and how it will be conducted. One of our team will go through this 
information sheet with you and answer any questions you may have. We would suggest that 
this will take approximately 15 minutes. 

 

What is the purpose of this study? 

This study will measure whether rheumatoid arthritis causes changes to occur in the 
movement patterns of the foot and leg during walking and whether these movement patterns 
change over time. This study will also investigate whether or not any changes seen in these 
movement patterns are related to the wider effect of rheumatoid arthritis on the rest of the 
body. 

 

Why have you been invited to take part in this study? 

The research team are recruiting participants who have recently been diagnosed with 
rheumatoid arthritis. You have received this leaflet because you have recently been diagnosed 
with rheumatoid arthritis.   

 

Do you have to take part in this study? 

All participants are being recruited on a voluntary basis so it is entirely up to you whether or 
not you wish to take part in this study. 

 

In what way will you be asked to participate in this study? 

In order to investigate whether movement patterns in the foot and leg change over time, all 
participants are being invited to attend two study visits. The first study visit will take place 

 

Study Title:  Gait and Function in Rheumatoid Arthritis (GAFRA) Study 
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approximately one month following your initial diagnosis of rheumatoid arthritis. The second 
study visit will be scheduled to take place approximately three months following your initial 
diagnosis. 

 

If you are interested in taking part in this study you will receive a letter by post which will invite 
you to attend an appointment at the Motion Analysis Laboratory (Room UH 207), University of 
East London, School of Health and Bioscience, Stratford Campus, Romford Road, London 
E15 4L. 

 

At the first appointment you will meet the Chief Investigator (Alexander Izod) who will talk to 
you about this study and answer any questions that you may have.  

Once you have spoken to the Chief Investigator, if you would still like to take part, you will be 
asked to read and sign a consent form which will give us your permission to include you as a 
participant in this study.  

You are under no obligation to take part in this study. If you decide not to take part you will be 
able to leave the appointment and will not be asked to take any further part in this study.  

At this appointment, if you agree to give us your permission to include you as a participant in 
this study, we would like to assess how rheumatoid arthritis may have affected the way in 
which you perform some basic daily activities. This will be done in several ways and during 
this assessment we will measure the following: 

 

• How far you can walk in 6 minutes at your normal walking speed. 
 
• The time it takes for you to stand up from a chair, walk a distance of 3 metres (10 feet), turn 

and then walk back to the same chair and sit down. 
 

• Your grip strength by gripping onto a hand held device called a dynamometer. This is a 
portable instrument which measures how strong your grip is when you grip onto it. 

 
• How long it takes you to fasten and unfasten buttons on a shirt that we will provide. 
 
• The movement patterns of your feet, legs and pelvis. 

 
• At the beginning of the recording session you will be asked to wear a pair of shorts in order to 

allow a set of small reflective markers to be placed on your feet, legs and pelvis. These reflective 
markers will be attached to the skin using an adhesive tape.    
 

• After this, you will then be asked to walk at your normal speed along a walkway. As you do this 
the movement that takes place in your feet, legs and pelvis will be recorded using a set of 
cameras designed to detect the reflective markers.  

 

• Human movement is very complex and difficult to study so you will be asked repeat all of these 
activities several times so that enough information can be recorded for analysis.  
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• At the end of this appointment you will be you will be asked to complete two questionnaires. 
The first questionnaire will ask you about the impact of rheumatoid arthritis on your foot health. 
The second questionnaire will ask you about the impact of rheumatoid arthritis on your ability 
to perform basic daily activities such as dressing, grooming or walking. 

 

• This appointment will take approximately 2 ½ hours. 
 

 

At the end of the first appointment you will be invited to take part in a second study visit. At 
this second study visit we will repeat all of the above measurements.  

 

Are there any benefits to taking part in this study? 

No. Although the Chief Investigator is a podiatrist registered with the Health and Care 
Professions Council, you will not be offered, or should expect to receive, any form of medical 
consultation or treatment. 

Participation in this study is not intended to supplement or substitute for any medical or 
complimentary therapies that you may currently be receiving.  

This study is not designed to directly or indirectly have a positive benefit on any aspect of your 
health and wellbeing.  

 

What are the risks to you as a participant? 

It is not unusual for people living with Rheumatoid Arthritis to experience pain, stiffness, 
muscle weakness and impaired movement. You will only be asked to complete activities in a 
manner that you find comfortable. If at any point you feel discomfort, you should inform the 
Chief Investigator and the testing will be stopped.  

 

As a participant, will you receive any payment for taking part in this study? 

No. However, your travel fees to the appointment will be reimbursed. 

 

Can participants leave the study? 

Yes. You do not have to give a reason for leaving this study and you may leave the study at 
any point with no disadvantage to yourself. Any information collected up until that point may 
be used as part of the study. 
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Is there any personal information about you that may be needed to carry out this 
study? 

In order to assess the impact of rheumatoid arthritis on the movement patterns of your feet 
and legs, it will be necessary for the Chief Investigator (Alexander Izod) to access your hospital 
records. The Chief Investigator will only make a note of information that is relevant to the 
study. This will consist of the following information:  

 

• Your date of birth and gender 
• The date when you were first diagnosed 
• The clinical presentation of your rheumatoid arthritis 
• Any medications that you may be currently taking for rheumatoid arthritis 

 

 

 How will confidentiality be maintained? 

Your contribution to this study and any data collected will be treated as strictly confidential 
information and stored in accordance with the Data Protection Act. Only information that is 
necessary to carry out this study will be collected. Only authorised persons will be able to 
access the information collected about you as part of this study. 

 

The results of this study will be published for scientific benefit. No personal information about 
you will be identifiable from any scientific publications.  The results will be available to you on 
request.  

 

Who will know about your participation in this study? 

Apart from the Chief Investigator and his academic supervisors, only your rheumatology 
consultant and nurse will know that you have been invited to participate in this study. If you 
consent, they will be informed of your participation. All information about you that is collected 
as part of this study will be stored in a locked cupboard. To ensure anonymity, your name and 
address will be removed from any files that are stored. Only members of the research team 
will be able to access the information collected about you. 

 

Data collected on the questionnaire about your foot health may be shared with the developers 
of this questionnaire at Leeds University in order to monitor its use. All data will be anonymous 
and it will not be possible to identify you from any data that is shared. 

 

 

Who is organising the funding of this research? 
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This research is being undertaken as part of a PhD research programme supervised by the 
School of Health, Sport and Bioscience at the University of East London. It is being funded by 
the Dr William M Scholl Podiatric Research and Development Fund.  

 

Who has reviewed this research study? 

This study has been reviewed and given ethical approval by the National Research Ethics 
Service (NRES) Committee London - Bloomsbury. It has also been reviewed and approved 
by the University of East London Research Ethics Committee. 

 

Who do you contact if you want to find out more about this study?  

If you would like to know more about this study, please speak to your rheumatology consultant 
or nurse. Alternatively, you can contact the Chief Investigator or his Director of Studies at the 
following addresses: 

 

Chief Investigator 

Alexander Izod 

University of East London, 

School of Health and Bioscience, 

Room AE4.47, 

Stratford Campus, 

Water Lane, London E15 4LZ 

(Telephone  0208 223 4339     e-mail    a.izod@uel.ac.uk) 

 

Director of Studies 

Professor Wendy Drechsler  

Associate Dean: Research and Knowledge Exchange  

School of Health, Sport and Bioscience,  

Room AE5.21, 

Stratford Campus,  

Water Lane, London, E15 4LZ  

(Telephone  020 8223 4121     e-mail  w.drechsler@uel.ac.uk) 

 

mailto:a.izod@uel.ac.uk
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Appendix III: Participant Consent 

 
Subject Consent Form December 2012 

 
Participant Study Number ……………………. 
 

Participant Consent Form 
 

Research Project Title: Gait and Function in Rheumatoid Arthritis (GAFRA) Study 
 

Chief Investigator: Alexander Izod 
 
I have read the information leaflet relating to the above programme of research in which I have been 
asked to participate and have been given a copy to keep.  The nature and purposes of the research 
have been explained to me, and I have had the opportunity to discuss the details and ask questions 
about this information.  I understand what is being proposed and the procedures in which I will be 
involved have been explained to me.  
  
I understand that my involvement in this study, and particular data from this research, will remain strictly 
confidential.  Only the researchers involved in the study will have access to the data. I understand that 
relevant data collected during this study may be looked at by individuals from regulatory bodies, NHS 
Trusts participating in this study or by other universities. It has been explained to me what will happen 
to the data once the research programme has been completed.  
 
It has been explained to me that, for the purposes of this study, personal information from my medical 
records will need to be accessed. I understand why this information is required and consent for this 
information to be accessed and used solely for the purpose of this study. 
  
I hereby fully and freely consent to participate in the study which has been fully explained to me.  
  
Having given this consent I understand that I have the right to withdraw from the programme at any 
time without disadvantage to myself and without being obliged to give any reason.  
  
 Participant's name (BLOCK CAPITALS):  
.......................................................................................................................... 
Participant's signature:    
.......................................................................................................................... 
Date……………………………………………… 
Chief Investigator's name (BLOCK CAPITALS): 
.......................................................................................................................... 
Chief Investigator's signature:    
........................................................................................................................... 
Date:  ………………………………………………….   
  
If you have any questions about this study, please contact the Director of Studies at the following 
address: 
 
Professor Wendy Drechsler  
Associate Dean: Research and Knowledge Exchange  
School of Health, Sport and Bioscience,  
Room AE5.21, 
Stratford Campus,  
Water Lane, London, E15 4LZ  
(Telephone 020 8223 4121     e-mail  w.drechsler@uel.ac.uk) 
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Appendix VI: Data Collection Sheet 

 

Gait and Function in Rheumatoid Arthritis (GAFRA) Study 

 

Participant Number…………………………………………….. 

Initials………………..        DOB……………………………….. 

Date…………………. 

Study Visit………….. 

 

Anthropometric Measurements 

Height  (cm) 

 

 

Weight  (Kg) 

 

 

 Left  Right 

Ankle  (cm) 

 

  

Knee  (cm) 

 

  

Leg Length  (cm) 
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 Rheumatology Function Tests 

 

 

 

 

 

 

 

 

 

 

 

 Left Right 

1 2 3 1 2 3 

Grip Strength  (Kg)  

 

 

 

 

 

   

 

 

 1 2 3  

Timed Up and Go (Sec)  

 

 

 

 

 

Timed Button Test (Sec)  

 

 

 

 

 

 

 

 Six Minute Walk Test (M) 

 

2 Minutes:  

 

6 Minutes:  



  

295 
 

Appendix V: Health Assessment Questionnaire 

 

HEALTH ASSESSMENT QUESTIONNAIRE 

Participant Study Number _____________________  

Date of assessment (dd/mm/yy)_____________________  Assessment number________ 

In this section we are interested in learning how your illness affects your ability to function in 
daily life.  Please feel free to add any comments on the back of this page. 

Please check the response which best describes your usual abilities OVER THE PAST 
WEEK: 

        Without ANY       With SOME     With MUCH UNABLE 

            difficulty0           difficulty1            difficulty2   to do3 

DRESSING & GROOMING 

Are you able to: 

-Dress yourself, including tying   

  shoelaces, and doing buttons?             

 

-Shampoo your hair?                       

 

ARISING 

Are you able to: 

-Stand up from a straight chair?    

 

-Get in and out of bed? 

 

EATING 

Are you able to: 

-Cut your meat? 
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-Lift a full cup or glass to your mouth? 

 

-Open a milk carton? 

 

WALKING 

Are you able to: 

-Walk outdoors on flat ground? 

 

-Climb up five steps? 

 

Please check any AIDS OR DEVICES that you usually use for any if these activities: 

 

Cane    Devices used for dressing (button hook, zipper pull, shoe horn, 

etc.) 

 

Walker    Special or built up utensils 

 

Crutches   Special or built up chair 

 

Wheelchair   Other 

(specify:______________________________________) 

  

Please check any categories for which you usually need HELP FROM ANOTHER PERSON: 

 

 Dressing and Grooming   Eating 

 

 Arising     Walking 
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Please check the response which best describes your usual abilities OVER THE PAST WEEK: 

    Without ANY With SOME With MUCH UNABLE 

     difficulty0    difficulty1    difficulty2   to do3     

HYGENE 

Are you able to: 

-Wash and dry your body?         

 

-Take a tub bath 

 

-Get on and off the toilet 

 

REACH 

Are you able to: 

-Reach and get down a 5-pound 

  object (such as a bag of sugar) from 

  just above your head? 

 

-Bend down to pick up clothing 

  from floor? 

 

GRIP 

Are you able to: 

-Open car doors? 

 

-Open jars which have been 

  previously opened? 

 

-Turn faucets on and off? 
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ACTIVITIES 

Are you able to: 

-Run errands and shop? 

 

-Get in and out of a car? 

 

-Do chores such as vacuuming or 

  yardwork? 

 

Please check any AIDS or DEVICES that you usually use for any activities: 

 Raised toilet seat    Bathtub bar 

 

 Bathtub seat     Long-handled appliances for reach 

 

 Jar opener (for jars previously opened)  Long-handled appliances in bathroom 

 

      Other (specify________________________) 

 

Please check any categories for which you usually need HELP FROM ANOTHER PERSON: 

 Hygiene   Gripping and opening things 

 Reach    Errands and chores 
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We are also interested in learning whether or not you are affected by pain because of your illness. 

 

How much pain have you had because of your illness IN THE PAST WEEK: 

 

PLACE A VERTICAL ( ) MARK ON THE LINE TO INDICATE THE SEVERITY OF PAIN 

 

 

NO                 SEVERE 

PAIN                  PAIN 

 

0                    100 
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Appendix VI: Summary tables of test-retest repeatability 

 

 

Table A(VI) 1: Repeatability of spatial-temporal parameters 

 

 

 

 

 

 

 

 

 Phase 1    Phase 2 
Parameter Mean ± SD Mean Diff SEM ICC    Mean ± SD Mean Diff SEM ICC 

            
Cadence (steps/min) 109.18 ± 16.51 0.06 3.58 0.95    108.07 ± 12.51 0.06 2.58 0.95 

            
Step Length (mm) 679.05 ± 48.76 1.59 18.18 0.86    672.05 ± 48.76 1.59 16.15 0.83 

            
Stride Length (mm) 1331.61 ± 86.96 3.70 29.10 0.89    1311.41 ± 84.42 3.68 28.10 0.84 

            
Walking Speed (mm/s) 1282.78 ± 198.25 5.53 44.77 0.95    1280.72 ± 198.25 5.51 43.52 0.92 

            
Toe-off (%) 58.33 ± 1.65 0.12 0.79 0.77    58.31 ± 1.61 0.11 0.71 0.73 
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Table A(VI) 2: Repeatability of sagittal plane kinematic parameters at the hip, knee and ankle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Phase 1  Phase 2 

 
Segment 

 
Parameter 
 
 
 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland and Altman 

LOA 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland and Altman 

LOA 

Hip Initial Contact   33.36 ± 4.80 1.90 -0.95 0.95 3.09 →- 4.90   33.19 ± 7.03 1.11 0.26 0.93 28.98 → 38.02 
 Toe-off   -2.49 ± 4.95 1.04 -0.38 0.95 3.74 → -4.46   0.17 ± 5.30 0.38 0.47 0.78 0.08 → 0.20 
 Peak extension   -9.68 ± 6.52 -0.46 1.11 0.97 3.99 →- 4.89   -7.38 ± 4.89 0.02 0.39 0.85    -3.34 → -10.72 
 Peak flexion   33.44 ± 5.84 -0.09 1.77 0.91 5.1 → 8.03   35.75 ± 7.03 1.16 0.26 0.93  31.09 → 40.07 
 Total ROM   -43.52 ± 6.67 -0.31 1.25 0.96 5.39 → -4.78   -43.13 ± 4.95 1.19 0.32 0.90   -38.72 → -47.86 
                 

                 

Knee Initial Contact   5.81 ± 3.35 1.01 -0.30 0.90 3.64 →- 4.23   8.04 ± 3.67 0.53 0.41 0.83   6.05 → 11.08 
 Toe-off   36.41 ± 4.74 1.49 0.93 0.89 8.16 → -6.32   36.68 ± 4.94 0.63 0.58 0.66 29.87 → 41.02 
 Peak flexion   56.88 ± 8.81 0.16 3.08 0.88 11.49 → -11.17   3.50 ± 4.07 2.10 0.32 0.90 -1.03 → 5.74 
 Peak extension   1.99 ± 5.11 0.24 2.04 0.83 7.99 → -7.53   58.72 ± 6.65 1.02 0.36 0.87 53.89 → 61.74 
 Total ROM   54.88 ± 5.88 1.96 3.10 0.77 9.18 → -2.07   -55.22 ± 5.32 1.08 0.44 0.81 -50.00 → -54.72 
                 

                 

Ankle Initial Contact   -1.22 ± 3.91 1.50 0.62 0.86 4.31 → -3.07   -3.65 ± 3.88 0.89 0.53 0.72 -0.42 → -5.34 
 Toe-off   -9.22 ± 4.82 1.90 0.64 0.84 7.63 → -6.36   -14.81 ± 5.68 1.40 0.42 0.82 -12.87 → -16.02 
 Peak dorsiflexion   12.69 ± 4.48 -0.69 1.27 0.92 4.54 → -4.69   -18.06 ± 4.66 0.64 0.47 0.78 -16.74 → -20.56 
 Peak plantarflexion   -14.87 ± 3.95 -0.28 2.54 0.61 8.02 → -8.60   13.34 ± 4.37 0.41 0.22 0.95 11.07 → 14.31 
 Total ROM   27.55 ± 5.72 -0.43 2.37 0.84 7.96 → -8.80   -31.40 ± 5.26 1.05 0.42 0.82 -29.04 → -32.01 
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Table A(VI) 3: Repeatability of frontal plane kinematic parameters at the hip, knee and ankle   

 

 

 

 

 

   Phase 1  Phase 2 
 

Segment 
 
Parameter 
 
 
 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland &Altman  

LOA 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

Hip Initial Contact   -2.20 ± 2.23 0.93 0.33 0.82 3.75 → -3.12   -1.76 ± 3.58 1.10 0.45 0.80 -0.90 → -2.75 
 Toe-off   -5.36 ± 3.45 0.73 0.28 0.95 3.18 → -2.65   -5.86 ± 4.48 0.05 0.28 0.92 -1.07 → -7.77 
 Peak Adduction   4.60 ± 2.53 0.37 0.99 0.83 4.17 → -3.30   -6.86 ± 4.08 0.56 0.24 0.94 -3.56 → -8.04 
 Peak Abduction   -4.71 ± 2.08 -0.02 0.61 0.91 2.33 → -2.36   6.32 ± 4.08 0.07 0.26 0.93   3.65 →  7.72 
 Total ROM   9.25 ± 3.74 0.46 1.12 0.90 4.86 → -3.97   -13.18 ± 3.47 0.63 0.40 0.84  -9.90 → -14.02 
                
                

Knee Initial Contact   1.40 ± 2.76 0.96 -0.16 0.85 3.61 → -3.92   0.40 ± 4.21 0.10 0.26 0.93 -2.00 →  0.65 
 Toe-off   0.87 ± 3.59 1.37 -0.42 0.86 3.88 → -4.71   3.66  ± 11.30 2.43 0.22 0.95  7.85 →  4.21 
 Peak Valgus   0.44 ± 3.69 -0.53 1.17 0.90 3.74 → -4.78   -7.73 ± 9.83 3.55 0.14 0.98 -3.98 → -10.84 
 Peak Varus   4.58 ± 6.09 -0.52 1.98 0.90 6.94 → -7.96   13.62  ± 10.54 1.17 0.30 0.91   3.03 → 17.32 
 Total ROM   6.28 ± 4.66 -0.63 1.30 0.92 14.79 → -15.40   -21.35 ±  8.40 3.32 0.32 0.90 -17.56 → -24.12 
                
                

Ankle Initial Contact   -0.98 ± 2.46 1.37 0.42 0.76 3.57 → -2.73   -3.05 ± 3.55 0.54 0.24 0.94 -2.90 → -4.78 
 Toe-off   0.21 ± 3.29 0.75 -0.11 0.85 2.84 → -3.06   -1.48 ± 3.02 0.60 0.32 0.90 -0.21 → -2.89 
 Peak Inversion   3.16 ± 1.59 -0.37 0.56 0.87 1.69 → -2.45   -4.69 ± 3.29 0.85 0.36 0.87 -1.74  → -6.67 
 Peak Eversion   -1.11 ± 1.95 -0.44 1.10 0.78 2.83 → -3.72   2.41  ± 2.30 0.29 0.36 0.87  2.35  → 3.81 
 Total ROM   3.93 ± 2.74 0.76 1.03 0.76 3.10 → -3.01   -7.10 ± 1.86 0.56 0.68 0.54 -5.78  → -8.00 
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Table A(VI) 4: Repeatability of transverse plane kinematic parameters at the hip knee and ankle 

 

 

 

    Phase 1  Phase 2 
 

Segment 
 
Parameter 
 
 
 

    
Test Mean (°) 

±SD 

 
Mean 

Difference 

 
SEM 

 
ICC 

 
Bland &Altman 

LOA 

   
Test Mean (°) 

±SD 

 
Mean 

Difference 

 
SEM 

 
ICC 

 
Bland & Altman 

LOA 

Hip Initial Contact    -6.04 ± 11.93 -0.31 4.04 0.88 10.19 → -8.73   -12.89 ± 8.40 0.99 0.20 0.96 -3.98 → -18.04 
 Toe-off    1.61 ± 11.50 -0.08 3.89 0.88 11.23 → -9.69   0.80 ±17.65 4.33 0.26 0.93 -8.45 → 17.95 
 Peak Ext Rotation    -11.03 ± 2.22 0.53 0.56 0.85 14.23 → -11.44   -23.74 ± 4.99 3.96 0.26 0.93 -14.78 → -29.02 
 Peak Int Rotation    10.21 ± 12.80 4.58 4.08 0.89 11.38 → -8.22   10.80 ± 18.07 0.93 0.26 0.93 9.73 → 21.02 
 Total ROM    -22.27 ± 5.82 0.84 2.19 0.82 8.07 → -6.40   -34.54 ± 9.69 3.03 0.53 0.72 -31.87 → -38.92 
                 
                 

Knee Initial Contact    -1.91 ± 5.53 2.52 2.52 0.76 11.61 → -6.68   -12.11 ± 9.89 2.84 0.44 0.81 -8.09 → -15.31 
 Toe-off    2.11 ± 5.75 1.68 0.28 0.89 7.15 → -7.70   -5.32 ± 9.58 0.28 0.52 0.73 -3.74 → -7.22 
 Peak Ext Rotation    6.56 ± 5.97 -0.01 1.80 0.91 6.75 → -6.77   -17.89 ± 0.85 0.68 0.39 0.85   -9.67 → -20.71 
 Peak Int rotation    -6.93 ± 5.57 0.52 2.52 0.69 11.44 → -10.43   5.90 ± 10.48 0.77 0.32 0.90 1.89 → 7.84 
 Total ROM    13.73 ± 7.15 0.80 2.46 0.87 9.54 → -9.82   -23.79 ± 6.72 0.08 0.44 0.81 -25.12 → -27.41 
                 
                 

Ankle Initial Contact    1.93 ± 5.41 1.52 0.32 0.91 6.45 → -5.82   12.34 ± 13.75 3.95 0.32 0.90 0.04 → 11.02 
 Toe-off    -0.43 ± 6.34 2.38 0.36 0.87 8.32 → -9.05   5.34 ± 11.92 3.85 0.46 0.79 1.07 → 10.59 
 Peak Adduction    -7.92 ± 4.79 -0.17 2.53 0.73 8.68 → -9.03   -13.08 ± 8.98 3.65 0.42 0.82 -6.02 → 15.03 
 Peak Abduction    9.15 ± 9.14 1.43 4.22 0.82 15.48 → -12.56   19.91 ± 11.90 3.79 0.47 0.78 15.81 → 21.85 
 Total ROM    14.56 ± 14.32 -1.68 7.31 0.75 15.73 → -12.60   -32.99 ± 5.93 0.14 0.55 0.70 -32.01 → -33.87 
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Table A(VI) 5: Waveform symmetry analysis of hip, knee and ankle kinematics 

 

 Phase 1      Phase 2  
Segment Plane Trend 

Symmetry 
(unitless) 

Range 
Amplitude 
(unitless) 

Range Offset 
(°)  

Phase Offset 
(%) 

   Trend 
Symmetry 
(unitless) 

 

Range 
Amplitude 
(unitless) 

Range Offset 
(°)  

Phase Offset 
(%) 

Hip Sagittal 0.99 1.02 0.05 -1    0.99 1.02 0.05 -1 
  

    
          

Knee Sagittal 0.99 1.02 0.23 1    0.99 1.02 0.23 1 
  

    
          

Ankle Sagittal 0.99 1.02 -0.42 -1    0.99 1.02 -0.46 -1 
  

    
                

       
Hip Frontal 0.99 0.95 0.67 N/A    0.99 0.95 0.67 N/A 

  
     

       
Knee Frontal 0.98 0.90 -0.35 N/A    0.97 0.90 -0.34 N/A 

  
     

       
Ankle Frontal 0.99 1.01 -0.37 N/A    0.97 1.02 -0.37 N/A       

             
       

Hip Transverse 0.98 1.02 -0.31 N/A    0.98 1.01 -0.21 N/A 
  

     
       

Knee Transverse 0.99 -0.92 -0.95 N/A    0.99 0.91 -0.91 N/A 
  

     
       

Ankle Transverse 0.99 0.88 2.77 N/A    0.99 0.87 2.68 N/A       
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Table A(VI) 6: Repeatability of sagittal plane kinematic parameters at the shank-calcaneus and calcaneus-midfoot 

 

 

 

 

 

 

 

   Phase 1   Phase 2 

 
Segment 

 
Parameter 
 
 
 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

    
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

Shank-Calcaneus Initial Contact   -1.40 ± 6.22 0.77 0.55 0.99 2.50 → -0.97    -10.77 ± 5.40 0.93 0.35 0.88 -15.67 → -5.29 
 Toe-off   -11.09 ± 6.32 0.83 0.59 0.99 2.56 → -0.90    9.80 ± 4.68 2.13 0.32 0.90    5.79 → 12.02 
 Peak Extension   -15.31 ± 3.31 0.81 0.57 0.97 2.46 → -0.85    23.39 ± 5.27 0.08 0.17 0.97   19.45 → 26.67 
 Peak Flexion   4.08 ± 5.25 0.81 0.57 0.99 2.46 → -0.84    12.61 ± 4.59 0.16 0.36 0.87    8.71 → 14.82 
 Total ROM   19.24 ± 3.85 -0.11 2.73 0.98 3.99 → 0.73    8.22 ± 3.3 0.24 0.28 0.88    6.79 → 10.56 
                 
                 

Calcaneus-Midfoot Initial Contact   25.59 ± 6.89 -1.81 0.99 0.98 0.31 → -3.86    27.43 ± 5.96 1.81 0.48 0.77  21.56 → 27.34 
 Toe-off   20.39 ± 9.23 -1.79 0.99 0.99 0.32 → -3.83    21.31 ± 6.69 1.37 0.47 0.78  19.45 → 24.34 
 Peak Extension   18.66 ± 9.87 -1.84 1.02 0.99 0.31 → -3.91    30.21 ± 5.09 2.06 0.33 0.89  28.33 → 32.91 
 Peak Flexion   33.39 ± 6.43 -1.83 0.99 0.98 0.28 → -3.85    17.75 ± 6.59 2.10 0.55 0.70   15.91 → 19.43 
 Total ROM   14.61 ± 4.32 -0.24 2.08 0.98 2.04 → 0.49    12.46 ± 3.62 0.03 0.55 0.70   10.21 → 13.74 
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Table A(VI) 7: Repeatability of planar angles at the MLA and first MPJ   

 

 

  

 

 

 

 

   Phase 1  Phase 2 

 
Segment 

 
Parameter 
 
 
 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

MLA Initial Contact   140.13 ± 12.43 -1.08 2.19 0.87 117.03 → 164.65   136.59 ± 9.72 2.72 0.33 0.89 127.82 →140.43 
 Toe-off   151.05 ± 13.52 -0.12 0.61 0.80 125.80 → 179.92   142.94 ± 10.40 2.79 0.28 0.92 139.56 →149.72 
 Peak Flexion   152.83 ± 13.75 -0.73 1.39 0.89 125.54 → 179.84   152.18 ± 9.40 2.52 0.40 0.84 145.12 →160.24 
 Peak Extension   130.93 ± 11.87 -0.97 1.70 0.88 108.73 → 155.57   131.25 ± 6.74 4.43 0.46 0.79 128.24 → 39.72 
 Total ROM   21.44 ± 11.07 2.52 2.77 0.75 13.87 → 29.01   20.93 ± 7.48 1.92 0.62 0.61 15.98 → 25.52 
                
                

First MPJ Initial Contact   31.40 ± 4.50 -1.54 1.96 0.81 -1.30 → 8.40   34.92 ± 5.96 0.20 0.14 0.98 25.82 → -41.35 
 Toe-off   61.35 ± 15.31 -2.65 2.65 0.97 -0.73 → 9.40   29.12 ± 25.89 2.92 0.61 0.63 23.72 → 35.82 
 Peak dorsiflexion   67.44 ± 10.91 -3.43 5.56 0.74 -3.98 → 13.2   3.21 ± 4.85 6.32 0.50 0.75 3.02 → 7.28 
 Peak plantarflexion   2.79 ± 3.63 -0.49 1.15 0.90 -2.91 → 9.00   73.93 ± 25.46 0.23 0.20 0.96 70.67 → 84.56 
 Total ROM   46.21 ± 11.46 -2.81 4.86 0.82 11.2 → 30.1   77.14 ± 43.54 6.55 0.20 0.96 65.72 → 80.32 
                
                



   

 
 

307 
 

Table A(VI) 8: Repeatability of transverse plane kinematic parameters at the shank-calcaneus and calcaneus-midfoot 

 

 

 

 

 

 

 

 

   Phase 1 Phase 2 
 

Segment 
 
Parameter 
 
 
 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

  
Test Mean (°) 

±SD 

 
Mean 

Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

Shank-Calcaneus Initial Contact   -13.12 ± 4.13 1.61 1.74 0.82 7.55 → -4.32  -12.30 ± 4.66 0.72 0.55 0.70 -8.23 → -15.81 
 Toe-off   -14.95 ± 5.84 2.14 3.10 0.72 3.65 → 0.62  -9.36 ± 3.37 0.30 0.62 0.62 -7.04 → -4.81 
 Peak abduction   -18.14 ± 4.15 1.74 2.05 0.75 8.78 → -5.31  -7.72 ± 3.90 1.19 0.47 0.78 -5.65 → -9.34 
 Peak adduction   -9.65 ± 3.52 1.52 1.31 0.86 5.71 → -2.67  -15.31 ± 4.45 0.47 0.48 0.77 -12.78 → -16.27 
 Total ROM   -8.48 ± 3.03 1.46 1.43 0.78 4.84 → -1.30  7.59 ± 2.04 0.72 0.66 0.57 8.35 → 4.92 
               
     
               

Calcaneus-Midfoot Initial Contact   -2.10 ± 6.25 -2.58 0.53 0.99 0.91 → -2.40  9.84 ± 5.90 1.01 0.32 0.90 3.09 → 12.43 
 Toe-off   -0.96 ± 6.69 -1.42 0.56 0.99 0.96 → -2.53  8.65 ± 5.75 0.72 0.42 0.82 6.92 → 12.04 
 Peak abduction   -3.71 ± 6.52 -4.30 0.59 0.99 0.85 → -2.51  13.51 ± 6.10 1.67 0.55 0.70 7.43 → 19.08 
 Peak adduction   -0.02 ± 6.54 -0.45 0.55 0.99 0.81 → -2.45  4.75 ± 5.56 0.26 0.33 0.89 1.09 → 8.79 
 Total ROM   3.69 ± 0.10 -0.02 0.52 0.98 1.60 → -0.40  8.76 ± 2.94 1.40 0.61 0.63 7.23 → 10.07 
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Table A(VI) 9: Waveform symmetry analysis of shank-calcaneus, calcaneus-midfoot, MLA and first MPJ  kinematics 

 

 

 

 

 

 

 
 

  Phase 1      Phase 2   

 Plane Trend 
Symmetry 
(unitless) 

Range 
Amplitude 
(unitless) 

Range Offset 
(°)  

Phase Offset 
(%) 

  Trend 
Symmetry 
(unitless) 

 

Range 
Amplitude 
(unitless) 

Range Offset 
(°)  

Phase Offset 
(%) 

      
      

Shank-Calcaneus Sagittal 0.98 0.84 -0.65 1   0.98 0.84 -0.65 1 
  

    
         

Calcaneus-Midfoot Sagittal 0.95 0.56 3.56 -1   0.95 0.56 3.56 -1 
  

    
               

      
Shank-Calcaneus Transverse 0.97 0.54 1.05 N/A   0.97 0.54 1.05 N/A 

  
     

      
Calcaneus-Midfoot Transverse 0.94 0.63 -3.61 N/A   0.94 0.63 -3.61 N/A       

      
            

Shank-Calcaneus Frontal 0.94 0.58 -1.63 N/A   0.94 0.58 -1.63 N/A 
             

Calcaneus-Midfoot Frontal 0.97 0.45 -1.89 N/A   0.97 0.45 -1.89 N/A 
            
            

MLA  Sagittal  0.99 1.08 -2.65 -1   0.99 1.08 -2.65 -1 
               

First MPJ Sagittal   0.92   0.97   1.57   -2     0.92   0.97   1.57   -2  
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Table A(VI) 10: Repeatability of sagittal plane kinetic parameters at the hip, knee and ankle  

 

 

 

 

  Phase 1  Phase 2 
 

Segment 
 
Parameter 
 
 
 

  
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

   
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

Hip Initial Contact  0.40 ± 0.12 0.02 0.05 0.82 0.32 → 0.51   0.40 ± 0.12 0.02 0.06 0.77 0.32 → 0.58 
 Toe-off  -0.40 ± 0.14 -0.04 0.07 0.74 -0.28 → -0.31   -0.40 ± 0.30 -0.08 0.16 0.70 0.30 → 0.55 
 Midstance  -0.20 ± 0.13 0.00 0.00 0.83 -0.07 → -0.08   -0.40 ± 0.16 -0.04 0.08 0.73 -0.18 → -0.23 
 Peak extension  -1.30 ± 0.65 -0.12 0.37 0.68 -1.89 → -1.00   -1.30 ± 0.65 -0.12 0.39 0.65 -0.01 → -1.20 
 Peak flexion  0.76 ± 0.13 0.00 0.03 0.93 0.89 → 1.03   0.76 ± 0.14 0.00 0.06 0.80      0.39 → 0.89 
               
               

Knee Initial Contact  -0.16 ± 0.08 0.01 0.02 0.95 -0.18 → -0.23   -0.16 ± 0.08 0.01 0.02 0.95 -0.21 → -0.20 
 Toe-off  0.13 ± 0.11 0.01 0.04 0.88 0.08 → 0.28   0.22 ± 0.27 0.06 0.12 0.81 -0.04 → 0.35 
 Midstance  -0.09 ± 0.14 0.02 0.05 0.87 -0.03 → -0.23   0.13 ± 0.10 0.01 0.04 0.84 -0.03 → 0.23 
 Peak Extension  -0.45 ± 0.07 -0.02 0.03 0.82 -0.41 → -0.50   -0.45 ± 0.08 -0.02 0.03 0.80 -0.36 → -0.51 
 Peak flexion  0.78 ± 0.44 0.11 0.24 0.70 0.38 → 1.09   0.78 ± 0.09 0.11 0.05 0.70 -0.69 → 0.80 
               
               

Ankle Initial Contact  -0.04 ± 0.06 0.00 0.02 0.90 -0.03→-0.08   -0.03 ± 0.08 0.01 0.04 0.75 0.00 → 0.01 
 Toe-off  -0.01 ± 0.07 0.00 0.02 0.90 -0.01→-0.09   0.40 ± 0.11 -0.02 0.06 0.68 0.30 → 0.48 
 Midstance  -0.01 ± 0.03 0.00 0.01 0.83 -0.00→-0.06   -0.01 ± 0.07 0.00 0.03 0.79 0.00 → 0.04 
 Peak plantarflexion  -0.16 ± 0.10 -0.02 0.05 0.80 -0.10→-0.18   -0.16 ± 0.11 -0.02 0.05 0.78 -0.08 → 0.11 
 Peak dorsiflexion  1.06 ± 0.62 -0.07 0.35 0.68 0.89→1.12   1.06 ± 0.63 -0.07 0.38 0.64 1.01 →1.40 
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Table A(VI) 11: Repeatability of frontal plane kinetic parameters at the hip, knee and ankle  

 

 

 

 

    Phase 1    Phase 2 
 

Segment 
 
Parameter 
 
 
 

    
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

     
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland & Altman  

LOA 

Hip Initial Contact    0.11 ± 0.14 0.06 0.08 0.72 0.05 → 0.19     0.11 ± 0.14 0.06 0.08 0.72 -0.01 → -0.05 
 Toe-off    -0.07 ± 0.13 -0.02 0.06 0.78 -0.01 → 0.02     0.48 ± 0.28 0.01 0.15 0.72 0.15→ 0.21 
 Midstance    0.13 ± 0.06 0.01 0.02 0.87 0.03 → 0.15     -0.07 ± 0.13 -0.02 0.07 0.72 -0.10 → 0.08 
 Peak adduction    -0.14 ± 0.06 -0.03 0.03 0.72 -0.08 → -0.20     0.13 ± 0.06 0.01 0.03 0.81 0.08 → 0.19 
 Peak Abduction    0.85 ± 0.37 0.04 0.16 0.82 0.47 → 0.92     -0.14 ± 0.06 -0.03 0.03 0.71 -0.16 → -0.12 
                   
                   

Knee Initial Contact    0.06 ± 0.08 0.03 0.03 0.85 0.02 → 0.18     0.85 ± 0.37 0.04 0.17 0.80 0.13 → 0.04 
 Toe-off    -0.02 ± 0.04 0.00 0.01 0.89 -0.01 → -0.09     0.06 ± 0.08 0.03 0.04 0.80 0.03 → 0.10 
 Midstance    0.07 ± 0.04 0.01 0.01 0.88 0.02 → 0.08     0.21 ± 0.20 -0.03 0.09 0.80 0.01→ 0.30 
 Peak Adduction    -0.06 ± 0.03 -0.01 0.01 0.80 -0.02 → -0.07     -0.02 ± 0.04 0.00 0.02 0.69 -0.03 → 0.03 
 Peak Abduction    0.48 ± 0.25 0.02 0.13 0.73 0.29 → 0.64     0.06 ± 0.04 0.00 0.02 0.78 0.08 → 0.08 
                   
                   

Ankle  Initial Contact    0.02 ± 0.05 0.01 0.01 0.91 0.01→ 0.06     -0.06 ± 0.03 -0.01 0.01 0.76 -0.07 → 0.00 
 Toe-off    0.02 ± 0.02 0.01 0.01 0.88 0.01 → 0.03     0.32 ± 0.25 -0.14 0.14 0.70 -0.15 → 0.15 
 Midstance    0.00 ± 0.01 0.00 0.00 0.89 -0.01 → 0.01     0.02 ± 0.05 0.01 0.02 0.81 0.00 → 0.00 
 Peak adduction    -0.05 ± 0.05 -0.01 0.01 0.97 -0.02 → -0.07     0.04 ± 0.14 0.02 0.09 0.65 0.05 → 0.04 
 Peak abduction    0.13 ± 0.19 0.03 0.10 0.69 0.09 → 0.23     0.02 ± 0.02 0.01 0.01 0.74 0.02 → 0.01 
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Table A(VI) 12: Repeatability of transverse plane kinetic parameters at the hip, knee and ankle 

 

 

 

 

    Phase 1    Phase 2 
 

Segment 
 
Parameter 
 
 
 

    
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland and Altman  

LOA 

     
Test Mean (°) 

±SD 

 
Mean Difference 

 
SEM 

 
ICC 

 
Bland and Altman  

LOA 

Hip Initial Contact    -0.01 ± 0.01 0.00 0.00 0.92 -0.00 → -0.02     -0.01 ± 0.01 0.00 0.01 0.82 -0.00  → - 0.02 
 Toe-off    0.02 ± 0.01 0.00 0.00 0.88 0.01 → 0.03     0.00 ± 0.03 -0.01 0.02 0.78 -0.01 → 0.02 
 Midstance    -0.01 ± 0.01 0.00 0.00 0.77 -0.01 → -0.02     0.02 ± 0.01 0.00 0.01 0.80 0.03 → 0.01 
 Peak ext rota    -0.15 ± 0.08 -0.02 0.04 0.72 -0.13 → -0.17     -0.15 ± 0.09 -0.02 0.05 0.70 -0.016 → 0.04 
 Peak int rota    0.10 ±0.05 0.00 0.02 0.85 0.08 → 0.12     0.10 ± 0.05 0.00 0.02 0.80 0.13 → 0.04 
                   
                   

Knee Initial Contact    0.00  ± 0.01 0.00 0.00 0.90 -0.01 → 0.01     0.00 ± 0.01 0.00 0.00 0.79 -0.01 → 0.01 
 Toe-off    0.01 ± 0.01 0.00 0.00 0.88 0.02 → 0.01     0.05 ± 0.06 0.00 0.03 0.78 -0.01 → 0.08 
 Midstance    0.00 ± 0.01 0.00 0.00 0.90 -0.01→ 0.00     0.01 ± 0.01 0.00 0.01 0.72 -0.02 → 0.01 
 Peak ext rota    -0.03 ± 0.01 0.00 0.01 0.78 -0.02 → -0.01     -0.03 ± 0.01 0.00 0.01 0.72 -0.05 → 0.00 
 Peak int rota    0.14 ± 0.08 0.01 0.04 0.79 0.08 → 0.16     0.14 ± 0.09 0.01 0.05 0.72 -0.15 → 0.05 
                   
                   

Ankle  Initial Contact    0.00 ± 0.00 0.00 0.00 0.93 0.00 → 0.00     0.00 ± 0.00 0.00 0.00 0.83 0.00 → 0.00 
 Toe-off    0.01 ± 0.01 0.00 0.00 0.89 0.00 → 0.02     0.04 ± 0.04 0.00 0.02 0.70 0.05 → 0.04 
 Midstance    0.00 ± 0.01 0.00 0.00 0.89 -0.01 → 0.01     0.01 ± 0.01 0.00 0.01 0.79 0.02 → 0.01 
 Peak ext rota    -0.03 ± 0.01 0.00 0.01 0.76 -0.02 → 0.00     -0.03 ± 0.01 0.00 0.01 0.77 -0.04 → 0.01 
 Peak int rota    0.10 ± 0.06 0.00 0.02 0.89 0.08 → 0.12     0.10 ± 0.06 0.00 0.03 0.81 -0.11 → 0.01 
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Table A(VI) 13: Phase 1 Individual criterion item fit for FPI-6  (n=10) 

 

 

Table A(VI)14: Phase 2 Individual criterion item fit for FPI-6 (n=25) 

 

 

  Test 1      Test 2   

 

New Difficulty Logit Item Standard Error Person Standard Error Infit MnSq 
 

 New Difficulty Logit Item Standard Error Person Standard Error Infit MnSq 

Talar Head  0.19 0.88 0.91 1.18 
 

 1.30 0.86 0.93 1.03 

Malleoli  0.17 1.04 0.90 0.81 
 

 2.02 0.86 0.90 1.09 

Rearfoot 0.17 0.78 0.91 1.08 
 

 2.02 0.86 0.90 1.06 

T-N joint   0.00 0.79 0.90 0.81 
 

 1.30 0.86 0.90 0.90 

MLA   0.33 0.83 0.90 0.90 
 

 4.07 1.11 0.93 0.36 

FF Abduction  0.50 0.79 0.93 1.04 
 

 0.69 0.93 0.98 1.09 
      

 
    

  Test 1      Test 2   
 

New Difficulty Logit Item Standard Error Person Standard Error Infit MnSq   New Difficulty Logit Item Standard Error Person Standard Error Infit MnSq 

Talar Head  1.97 0.45 0.58 1.05   1.80 1.06 1.02 1.05 

Malleoli  1.22 0.91 0.17 1.14   1.73 1.15 0.51 1.03 

Rearfoot 2.04 0.96 1.08 0.68   2.60 1.17 1.02 1.03 

T-N joint   1.09 0.83 1.05 1.08   1.39 0.97 1.08 0.99 

MLA   1.55 0.66 0.90 0.71   1.85 1.06 1.82 0.72 

FF Abduction  1.97 0.45 1.04 0.91   1.49 1.02 1.10 0..68 
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Table A(VI) 16: Phase 1 conversion of raw FPI-6 scores into Rasch transformed scores (n=10) 

 

   Phase 1 

Test 1  
Raw FPI-6 Score 

 Test 1 FPI-6 score  
Frequency 

Transformed  
FPI-6 Score 

 
Test 2  

Raw FPI-6 Score 
Test 2 FPI-6 Score  

Frequency 
Transformed  
FPI-6 Score        

0.00 1 0.00 
 

-2.00 1 -1.41 

2.00 3 0.25 
 

0.00 1 0.00 

3.00 3 2.28 
 

2.00 2 1.21 

6.00 1 4.32 
 

3.00 3 2.30 

9.00 1 5.61 
 

6.00 1 4.09 

10.00 1 6.84 
 

8.00 1 5.71 
    

10.00 1 7.01 

 

Table A(VI) 17: Phase 2  conversion of raw FPI-6 scores into Rasch transformed scores (n=25) 

 

Phase 2 

Test 1  
Raw FPI-6 Score 

 Test 1 FPI-6 score  
Frequency 

Transformed  
FPI-6 Score 

 Test 2  
Raw FPI-6 Score 

Test 2 FPI-6 Score  
Frequency 

Transformed  
FPI-6 Score 

       

0.00 3 0.00  -1.00 1 -1.41 

2.00 14 0.35  -1.00 13 0.00 

3.00 3 2.71  2.00 4 1.31 

5.00 2 4.52  3.00 3 2.36 

8.00 2 5.21  5.00 1 4.19 

7.00 1 5.94  7.00 2 5.81 

    9.00 1 6.02 

 


