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Abstract 

Contaminated waste drill cuttings produced from drilling activities in the North Sea is 

currently transported onshore and landfilled at high costs, as there is no existing option 

for alternative and viable recycling. The aim of this research was therefore to investigate 

the technical feasibility of transforming this waste into an inert, porous, ceramic material 

to potentially be utilised as lightweight aggregate (LWA). In this project, three samples 

of waste drill cuttings were obtained and characterised for chemical compositions, 

mineralogy, thermal behaviour and contaminant leaching. To manufacture LWA, the raw 

materials were dried, ball milled, formed into pellets and fired above their initial sintering 

temperature. The effect of firing temperature on particle density, water absorption, 

compressive strength and microstructure was studied and compared with those of 

standard commercial products such as LECA and Lytag. The mineralogy before and after 

firing and its effect on leaching behaviour was also investigated. Washing pre-treatments 

were employed to mitigate the leaching of chlorides in the manufactured LWA and the 

potential of milled waste glass incorporated into LWA as a matrix forming material was 

evaluated. Finally, the research proposed a novel approach for calculating carbon 

dioxide emissions for the production of drill cuttings LWA.

The results of this research showed that drill cuttings contained variable amounts of 

minerals with poor sintering capabilities. This limited their viability to be readily used as 

a raw material in LWA production – due to the unfavourable physical properties and 

environmental compatibility of the final products. In samples with high concentrations 

of chloride salts, a two-step washing pre-treatment using deionised water at an L/S ratio 

of 10 l/kg was necessary for leaching to comply with the End of Waste criteria. In 

samples with high concentrations of barium sulphate and carbonate minerals, the 

addition of 40 wt.% waste glass in the mix and firing at 1150 °C, produced LWA 

with physical properties comparable to commercially available products. However, 

mitigating the leaching of sulphates remained a challenge in samples with high initial 

concentrations of drilling fluids. Carbon dioxide emissions as low as 236.0 kg per 1.0 

tonne of drill cuttings LWA were estimated and compared favourably with those 

for current management scenarios and other waste derived LWA. Overall, the 

research showed that LWA manufacturing represents a beneficial reuse of drill 

cuttings that diverts waste from landfill.  
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1 Chapter 1 Aim and objectives 

1.1 Background 

Waste drill cuttings consist of a fine mix of rock particles produced by drilling for oil 

and gas either during exploration or production. They are contaminated with drilling 

fluids which are often synthetic oils containing several additives to enhance the 

drilling operation. Waste drill cuttings are classified as hazardous in the EU Waste 

Catalogue (01 05 05*), mainly because of high concentrations of total petroleum 

hydrocarbons (TPH) and soluble salts. Contaminated drill cuttings pose a serious 

risk to the marine environment and must be shipped onshore for treatment and 

disposal (Jorissen et al., 2009). In the UK, contaminated drill cuttings are another 

significant hazardous waste stream, adding further burden to the UK already over-used 

landfill facilities (Dhir et al., 2010).

1.1.1 UK hazardous waste generation overview 

The implementation of the EU Council Directive (1999/31/EC) on the landfill of waste 

and the revised EU Waste Framework Directive (2008/98/EC) on waste has provided a 

general waste management framework and set target limits for the Member States 

with regards to the amount of waste landfilled. In 2015, the European Commission 

published a monitoring report of the EU sustainable development strategy, evaluating 

the changes in resources productivity, consumption and waste generation (European 

Commission, 2015). The report highlighted the production of hazardous waste has 

continued to increase. The generation of hazardous waste including major minerals 

waste in the EU in 2014 was reported to be 95.6 million tonnes and for that year, for 

most of the Member States, the ratio of hazardous waste to total waste was at 

approximately 10% (Eurostat). 

Figure 1.1 shows the hazardous waste, including major mineral waste 

generated in the UK between 2004 and 2014. In 2014, the total generated 

hazardous waste decreased to nearly 5.7 million tonnes showing more than 25% 

decrease compared to 2012 (Eurostat). The chart shows the classification of economic 

activities in the European Community (NACE). The total mineral and solidified waste 

arising in the UK was 1.4 million tonnes in 2014 which was more than double the 

amount produced in 2004. It should be noted that waste drill cuttings generated from the 

petroleum industry both from exploration and production activities) is in this category.

1 
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The amount of drill cuttings transferred onshore for disposal varied between 

approximately 30,000 to 70,000 tonnes per year (Oil and Gas UK, 2016b, Oil and Gas 

UK, 2017). Waste drill cuttings contributes to 2 – 5% of the total mineral and solidified 

waste arising in the UK (Eurostat). 

Figure 1.1 Total hazardous waste (including major mineral wastes) generated in the UK 

based on the classification of economic activities in the European Community (NACE). 

Source: (Eurostat). 

Figure 1.2 shows the status of hazardous waste treatment in the UK. In 2014, 

approximately 2.8 million tonnes of hazardous waste was treated, comprising almost half 

of the total amount; with the other half being landfilled (Eurostat). Of this, more than 30% 

of the total treated hazardous waste was disposed into or onto land or through land 

treatment and released into water bodies, approximately 9% was incinerated without 

energy recovery and up to 4% with energy recovery, and the remaining 57% were either 

recycled or used for backfilling. It is important to note that the share of recycling 

significantly increased between 2010 and 2014. This shows that the UK is aiming to 

expand recycling and material reuse as the two main objectives of the Waste Framework 

Directive. However, comparing the recycled share of the total generated hazardous waste 

(nearly 26%), it is evident that there is still an enormous challenge which confronts the  
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UK in employing strategies to develop suitable infrastructures to expand its recycling 

capacity and thus, minimise its landfill dependency. 

1.1.2 UK drilling activity 

To date, up to 43 billion barrels of oil equivalent (BOE) have been extracted from the UK 

Continental Shelf (UKCS) and up to 20 billion BOE are predicted to be preserved (Oil 

and Gas UK, 2016a). In 2016, the UK Oil and Gas Authority (OGA) announced that 

more than 3 billion BOE are available for utilization in approximately 350 unsanctioned 

discoveries across the UKCS (Oil and Gas Authority, 2016). The positions of these 

discoveries are marked in Figure 1.3. The OGA also pointed out that the majority of these 

discoveries are in reaching distance of existing infrastructure, indicating the vast 

potential for development in the UK drilling activities. At the same time, due to the 

consumption of easily accessible hydrocarbon reservoirs in the past, deeper and more 

complex drilling operations which produce increased amounts of drill cuttings are 

becoming more prevalent (Pereira, 2013). 
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Figure 1.3 Map of the UK offshore oil and gas discoveries 

(https://ogauthority.maps.arcgis.com [Accessed on 20/12/2016]). 

https://ogauthority.maps.arcgis.com/
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1.2 Aim and objectives 

There have been only limited investigations into ways to transform waste drill cuttings 

into products of value and as a result, there is a lack of commercially viable recycling 

options for this waste. The aim of this research is to investigate an innovative and 

resource-efficient re-use application for waste drill cuttings that is currently landfilled in 

the UK. The research investigates the use of waste drill cuttings as a raw material for the 

manufacture of lightweight aggregates (LWA) and evaluates the effect of production 

parameters on physical and environmental properties of the end-products. 

The following objectives will be delivered: 

Objective 1: Raw material characterization 

Drill cuttings will be characterized for chemical compositions, mineralogy, 

microstructure, thermal behaviour and contaminant leaching. The characteristics of raw 

materials will provide information on the bloating capability of materials, which is 

necessary for producing low-density LWA. In addition, the information will be used to 

optimize the properties of the end products.

Objective 2: Assessing the effect of production parameters and the production of LWA 

To identify effective production parameters, a literature review will be conducted. This 

involves the determination of pre-processing parameters such as drying, milling and 

pelletisation condition. For the production, the materials sintering temperature range for 

use in the kiln firing stage together with the heating/cooling rate and dwell time at the 

maximum temperature will be established. 

Objective 3: Assessing the properties of the manufactured LWA 

To assess the performance of the manufactured LWA, physical properties of the final 

products such particle density, water absorption capacity (after 24 hours immersion) and 

compressive strength of the individual pellets will be determined and compared to those 

of commercially available products. The microstructure, developed during the firing stage 

and mineralogical phase changes, will be analysed in order to understand the physical 

properties and leaching behaviour of the manufactured LWA. 
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Objective 4: Developing a process framework to produce LWA complying with technical 

and environmental requirements 

Due to the hazardous nature of the waste drill cuttings, development of effective 

treatments to mitigate the contaminant leaching will be investigated. To optimize the 

physical properties of LWA, the use of additional materials in the mix will also be 

explored. The design of suitable treatments and selection of potential additional material 

will be based on an extensive literature review. Finally, the amount of carbon 

dioxide emissions for productions of 1.0 tonne of LWA will be estimated.

1.3 Summary of novelty and innovation 

This thesis will provide a novel contribution to the field of sustainable construction 

materials by: - 

1) Developing a beneficial reuse application for waste drill cuttings in the 

manufacture of LWA.

2) Characterizing the North Sea waste drill cuttings for which limited compositional 

and mineralogical data is currently available.

3) Developing innovative methods for the mitigation of contaminant leaching and 

improving the physical properties of the manufactured LWA.

4) Proposing a new approach for calculating the carbon dioxide emissions for 

production of drill cuttings LWA. 

1.4 Experimental approach 

To achieve the identified objectives a series of laboratory work, material 

characterization, analytical experiments and statistical calculation will be employed. 

Table 1.1, shows the experimental approach for each objective.
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Table 1.1 Experimental approach for each objective of the research. 

Objective 1: Raw materials 

characterization 

Objective 2: Determine production 

parameters for LWA manufacturing 

Objective 3: LWA 

properties 

Objective 4: Development of a production 

process framework  

Pre-processing Particle density Design suitable pre-treatments  

Sintering range Water absorption Use additional materials in the LWA body/matrix 

Oxide compositions 

Mineralogy 

Heavy metal content Heating and cooling rate Compressive strength Estimation of CO2 emissions for LWA production 

Total petroleum hydrocarbons Firing temperature Microstructure 

Particle morphology Dwell time Mineralogy 

Thermal Analysis Leaching test 

Leaching test 

Loss on Ignition 
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2 Chapter 2 Waste drill cuttings and LWA potential 

2.1 Oil and gas drilling technology 

Drilling operations are employed in two major phases of oil and gas extraction: 

exploration and development. The presence of hydrocarbons is assessed by exploratory 

drilling and once they are discovered in sufficient quantities for commercial production, 

development wells are drilled (CAPP, 2001).

2.1.1 Drilling process 

The process of oil and gas well drilling consists of rotary drills and drilling fluids, such 

as water, to transport the drilling fragments (cuttings) that need to be removed. In this 

setting, as shown in Figure 2.1, the drill bit at the lower end of drill pipe (drill string) 

cuts through the formation rock to produce the drill cuttings. The drill bit has a larger 

diameter than the drill pipe to provide a space between the pipe and wellbore wall 

(annulus). Drilling mud enters the drilling pipe on the surface and exits the drilling 

bit at high velocities to flush away the drill cuttings to the surface through the 

annulus. The high viscosity of drilling mud suspends the chipped off cuttings that were 

produced from the rotation of the drill bit and eases their transportation to the surface 

where the cuttings are removed, and the drilling mud is recycled for re-injection back 

into the drill pipe. Cuttings are produced during all stages of the drilling process. 

However, higher quantities of cuttings are removed at the early stages where the 

borehole diameter is at the largest (Melton et al., 2004). The drill pipe rotation is 

provided by a rotary table at the surface to generate a sufficient torque for the drill bit. 

As drilling continues and the well deepens, steel casings with lower diameters are 

placed inside the wellbore. The space between the wellbore wall and casings is filled 

with cement to fix the casing. This process is continued until the final depth is reached 

and the wellbore is ready for tubing to be installed for oil and gas production. 
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Figure 2.1 Oil and gas drilling operation. Modified from (CAPP, 2001). 

2.1.2 Drilling mud

Drilling muds are used during drilling operations for (Melton et al., 2004, Neff, 2005): 

a) Maintaining pressure: drilling mud in the wellbore together with the drill pipe 

provide a hydrostatic load over the formation being drilled. This also prevents the 

accumulation of formation fluid and ensures a safe drilling operation.

b) Removing cuttings from the wellbore: the stream of drilling mud coming out of 

the drill bit carries the cuttings away, preventing it from clogging. It also 

transports the cuttings from the bottom of the hole to the surface, through the 

annulus. For this function, sufficient viscosities are vital to suspend the cuttings 

when drilling stops, particularly for drilling horizontal wells.

c) Cooling and lubrication: drilling muds cools and lubricates the drill bit and the 

drill pipe which heat up due to friction at the contact point with the formation.

d) Protecting, stabilizing and supporting the wellbore wall: formation minerals such 

as shale can swell in the presence of water during the drilling operation and cast 
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off the sidewall into the well. Drilling muds contain additives to minimize this 

effect. 

e) Preventing mud transfer to the formation.

2.1.2.1 Continuous phase in drill muds 

The type of drilling muds is based on characterises of the drilled rock formation These 

formulations can be classified into two major groups (Neff et al., 2000): 

a) Water-based muds (WBMs): The continuous phase in WBM is freshwater, 

seawater or concentrated brine. Historically, most of the drilling operation in the 

North Sea used water-based muds, however drilling certain formations composed 

of swelling rocks was problematic due to the wellbore instability (Davies et al., 

1984). During drilling operations with WBMs, cuttings are usually discharged 

into the sea.

b) Non-aqueous-based muds (NABMs): The continuous phase in NABM is replaced 

either by a mineral or synthetic oil. NABMs are often used in technically 

challenging sections of the drilled well, or when wells with non-vertical angles 

are being drilled (Oil and Gas UK, 2016b). The fluid part in is an invert emulsion 

with fine water droplets in a water-to-oil ratio of between 1:6 and 1:1. This 

provides a number of advantages over WBM including better lubrication and 

stability. In the 1980’s and 1990’s mineral oil-based muds (OBMs) were 

developed as a replacement for WBM and for a decade they were extensively 

employed in the North Sea (Neff, 2005). Used OBMs were commonly sent 

onshore for disposal whilst cuttings containing absorbed OBM were discharged 

to the ocean. This experience in the North Sea proved to have a permanent 

environmental impact and therefore, the discharge of OBM was ultimately banned 

in 1994 (Bloys et al., 1994, Olsgard and Gray, 1995). The environmental concerns 

over the use of OBMs forced the oil industry to develop a new group of drilling 

fluids based on synthetic oils (SBMs) (Candler et al., 1993). Synthetic based muds 

(SBMs): In SBMs, the continuous phase is composed of synthetic oil and, as 

opposed to OBMs, neither the fluid nor the additives are of petroleum origin (Neff 

et al., 2000). SBMs were formulated to be more environmentally compatible i.e. 

to degrade faster than OBMs if discharged, and contain minimal volatile  
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compounds such as polycyclic aromatic hydrocarbons (PAHs) - while showing 

similar functionality to OBMs (Friedheim and Conn, 1996). 

Table 2.1 shows the continuous phase in SBMs. Four typical formulations for synthetic 

oil are available (Neff et al., 2000): 

a) Synthetic hydrocarbons: polymerized olefins such as linear alpha olefins (LAOs), 

poly alpha olefins (PAOs) and internal olefins (IOs) are the most commonly-used 

synthetic hydrocarbons (Friedheim and Conn, 1996). Ethylene (C2H4) is the 

building block of these polymers with each group containing a mixture of 

polymers, with different chain lengths, to achieve optimal physical and chemical 

properties that are important during drilling operations.

b) Ethers: are saturated hydrocarbons with a wide variety of chain lengths that can 

provide high hydraulic stability and low toxicity (Candler et al., 1993). Despite 

these advantages, they have a very low biodegradability and their use in the North 

Sea has been abandoned.

c) Esters: are produced from a reaction between a fatty acid (carboxylic acid derived 

from vegetable or fish oil) and alcohol (most commonly 2-Ethylhexanol). In SBM 

systems, sometimes a mixture of fatty acid esters is used. They can also be mixed 

with other polymerized olefins to enhance the drilling performance. Esters are 

popular in the North Sea.

d) Acetals: similar to ethers, they are stable in neutral and basic conditions. They 

have been used in the North Sea in the past but are no longer used today. 
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Table 2.1 Continuous phase categories in synthetic-based drilling fluids and their 

chemical structure and chain length range (Neff et al., 2000). 

SBM continuous phase Chemical structure Chain 

length 

Synthetic hydrocarbons: 

Linear Alpha Olefin (LAO) CH3 ─ (CH2)n ─ CH ═ CH2 C14 – C16 

Poly Alpha Olefin (PAO) CH3 ─ (CH2)n ─ C ═ CH ─ (CH2)m ─ CH3 

│ 

(CH2)p ─ CH3 

C8 – C40 

Internal Olefin (IO) CH3 ─ (CH2)m ─ CH ═ CH ─ (CH2)n ─ CH3 C16 – C18 

Ether CH3 ─ (CH2)n ─ O ─ (CH2)n ─ CH3 - 

Ester CH3 ─ (CH2)n ─ C ═ O 

│ 

O ─ (CH2)m ─ CH3 

C26 

Acetal CH3 ─ (CH2)n ─ O  O ─ (CH2)n ─ CH3 

\ / 

CH - (CH2)m - CH3 

C20 

2.1.2.2 Drilling mud additives 

During the drilling process, cuttings are constantly separated from the drilling muds, 

however, there always remains a portion of this mud, which contaminates the 

cuttings with hydrocarbons (Wheaton and Manu, 2012). Drilling muds contain a 

number of additives to enhance drilling operations, therefore for any re-use 

application of drill cuttings, information about the composition of the absorbed mud 

is crucial. Table 2.2 shows the functions and examples of additives found in drilling 

muds. These additives are classified as (Neff, 2005):

a) Weighting materials: the main weighting material that is often used for all types

of drilling mud is barite (BaSO4: a natural mineral with density of 4.1 – 4.5 g/cm3).

This material may contain impurities such as SiO2, Fe2O3, CaCO3, CaMgCO3 and

several metal sulphides. The amount of BaSO4 in drilling mud ranges from 6.3
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kg/m3 (for drilling near the surface) to 2000 kg/m3 (for deep wells). The use of 

large amounts of BaSO4 can be problematic due to high concentrations of 

metals. Therefore, hematite (Fe2O3 with a density of 5.3 g/cm3) or ilmenite 

(FeTiO3 with a density of 4.5 – 5.0 g/cm3) can be used as a replacement for 

BaSO4 to produce high-density drilling muds, with a lower environmental risk if 

disposed of offshore (Chénard, 1984, Commission, 2004).

b) Viscosifiers: these are the second most abundant additives in the composition of 

drilling muds. Bentonite (sodium montmorillonite) or palygorskite clay are often 

added to drilling muds to provide gel-like properties with sufficient viscosity 

capable of suspending the drill cuttings. Cellulose polymers and starch can be 

used as a replacement for clay to provide a better viscosity while preventing fluid 

loss to permeable formations (Hudgins, 1991).

c) Thinners and dispersants: The addition of weighting materials and viscosifiers 

increases the energy required for pumping. Thinners and dispersants can be added 

to balance the viscosity by forming complexes with the charged clay particles, 

preventing them from flocculation (particles clumping together). Several 

deflocculants such as chrome and ferrochrome lignosulfonates have been used for 

offshore bentonite-based WBMs. However, oil industries in the North Sea have 

replaced these materials with calcium and iron lignosulfonates and other 

deflocculants such as lignite, due to the high toxicity of Cr compounds (Conklin 

et al., 1983, Hudgins, 1991). 

d) Other additives: a number of other additive are available in drilling fluids at lower 

amounts (Husein et al., 2010): asphalt (to reduce fluid loss to permeable 

formations); diesel fuels, vegetable or mineral oils as lubricants (to reduce torque); 

water-soluble emulsifiers (to disperse the oils in the water phase); and, Fe2O3 and 

ZnO as sulphide scavengers (to deal with the H2S that may seep into the wellbore 

from the formation). 
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Table 2.2 Concentration and function of components for drilling muds, modified from 

(Rushing et al., 1991). 

Additives Function Example 

CaCl2 Reduce water activity and promote 

dehydration of shale. 

- 

Emulsifier Promote forming and maintaining an 

inverted emulsion (water in SBF). 

Metal soap of fatty acids 

Rheological 

Modifier 

Promote suspending drill cutting in 

the mud. 

Organophilic 

montmorillonite 

Lime (CaO) Enhance the emulsification of water. - 

Wetting agent To ensure that the formation solids 

(cuttings) are wet. 

Polyamines, fatty acids, and 

oxidized tall oils 

BaSO4 Increase the weight of the drilling 

mud and control the well pressure. 

-
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2.1.3 Separation of drilling fluids from drill cuttings 

The drilling fluid must be constantly separated from drill cuttings before re-entering into 

the wellbore. For an effective separation and control over solids, the knowledge of 

suspended solid particle sizes in the drilling mud (both cuttings and solid additives) is 

necessary. A portion of solids, such as bentonite, that are dispersed in the mud system to 

increase the viscosity has a particle size range below 2 μm (colloidal size). In addition, 

some of the cuttings as they move up the wellbore may undergo size degradations. This 

increases the available surface area of the solids and thus, more liquid is needed to keep 

the newly generated surface wet. The lack of free liquid increases the viscosity above 

the desirable levels, therefore, it is very important to separate the cuttings before they 

break down. Figure 2.2 shows the classification of solids in drilling muds based on 

particle size.

Figure 2.2 Classification of solids in drilling muds based on the particle size, modified 

from (IOGP, 2016). 

Common separation techniques for each particle size range involves (CAPP, 2001):       

a) Shale shaker: the machine basically operates by vibrating screen separators as

shown in Figure 2.3a. Shale shakers are used as the first step in the drilling mud

solid control process. 100% of the drilling mud with cuttings that are transported
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to the surface flows into a shale shaker and fragments that are larger than the mesh 

size are separated. For a typical shale shaker 5 – 15% of drilling mud remains on 

the cuttings. Recent technical advances have reduced this potion to 3 – 8% by 

using a vacuum-assisted technology (IOGP, 2016).

b) Hydrocyclones: particles with a lower particle size can be separated by 

hydrocyclones. They use centrifugal force from the pressure produced by a pump 

to separate the suspended solids from the drilling mud, as shown in Figure 2.3b. 

De-sanders hydrocyclones are usually used for drilling muds containing high 

volumes of cuttings produced from the fast drilling of large-diameter top holes 

(IOGP, 2016). De-silter hydrocyclones are used to separate smaller particles 

(cuttings in range of 12 – 40 μm and BaSO4 in range of 8 – 25 μm) (IOGP, 2016). 

They work with the same mechanism as de-sanders but with cones smaller in 

diameters.

c) Decanting centrifuges: these are usually used for weighted drilling muds to 

separate BaSO4 which is to be returned to the active mud system. The drilling mud 

is passed through a high-speed rotating bowel as the centrifugal forces transfer the 

heavier particles to the bowel wall where they are scraped by a rotating screw 

(conveyor) and ultimately discharged, as shown in Figure 2.3c (IOGP, 2016).  

The discharged materials from each of the above-mentioned separation techniques 

form the main constituents of waste drill cuttings. Shale shakers produced drill 

cuttings with the highest amount of absorbed drilling mud. This increases 

the hazardous properties of the discharged waste and causes a problem 

for the potential reuse of drill cuttings.
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Figure 2.3 Drill cuttings separation techniques: (a) adjustable linear shale shaker, (b) 

hydrocyclones and (c) decanting centrifuge, modified from (CAPP, 2001). 
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2.2 Drilling wastes 

Waste is produced at each stage of the oil and gas production life cycle - including 

exploration, development, drilling operation and decommissioning. Drilling operations 

generate two main types of waste, namely; produced formation water and drill cuttings 

(Oil and Gas UK, 2016b): 

2.2.1 Produced formation water 

Produced water is comprised of petroleum (associated with the naturally occurring 

reservoir products) and the water that is injected into the formation to maintain the well 

pressure (Holdway, 2002). According to Oil and Gas UK, 165 million m³ produced water 

was discharged into the sea in 2015. This was 37% lower than in 2000, where 263 million 

m³ was discharged (Oil and Gas UK, 2016b). The report also highlights that the decrease 

in the discharged volume was mainly due to a decrease in the UK overall oil and gas 

production over that time.

2.2.2 Waste drill cuttings 

During the 1960s and 1970s piles of drill cuttings were formed underneath and around 

approximately 250 oil platforms in the North sea (Marsh, 2003). In 2004, the drill cuttings 

volume in the North Sea was estimated to be 12 million m³ (Breuer et al., 2004). The 

issue with drill cutting waste piles surrounding platforms in the North Sea is complex 

with some reports claiming that these waste piles can contain radioactive materials 

(Ducrotoy et al., 2000). The debate is on whether to leave or to move the piles onshore. 

It is argued that they are stable due to sediment covering and more importantly, causing 

any disturbance such as transportation could result in the release of pollutants (Turner, 

2002). However, these piles of material have already been redistributed, due to tidal 

flows, and contaminated the seabed (Breuer et al., 2008). The evidence suggests that the 

effect of the existing discharge on the seabed and sediment contamination is local and the 

risk of widespread impact is not significant (Breuer et al., 2004). However, there is very 

little published information on the effect of drilling waste accumulation on marine 

populations or communities to know if the effect is actually significant or not (Bakke et 

al., 2013). 

In 1995, the first wells using SBMs were drilled in the North Sea and the cuttings were 

mainly discharged since the environmental impact of SBM were thought to be lower than 
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other mud systems (Neff et al., 2000). However, by 2001, all SBM drill cutting discharges 

were banned by government regulations (Breuer et al., 2004). The growing concerns over 

marine environmental pollution have been enough to produce change, with obliging the 

drilling operators to transfer their SBM drill cuttings onshore for treatment or disposal 

(Marsh, 2003). The Oslo-Paris convention for the protection of the North Sea (OSPAR) 

was put in force to prohibit the discharge of non-aqueous based cuttings that contain more 

than 1% fluid (Neff, 2008). The uncertainty over the effect of hydrocarbons on the marine 

environment has driven the legislator to further limit the offshore operational discharges 

and promote onshore treatment solutions. Currently, the EU and domestic offshore 

regulations require the operators to publish extensive details of every proposed 

exploratory drilling and provide an environmental statement for most developments 

(Strachan, 2010).

2.2.3 Radioactivity of waste drill cuttings 

Despite some reports about the radioactivity of drill cutting waste piles (Ducrotoy et al., 

2000), relatively low levels of naturally occurring radioactive materials (NORM) may 

exist in the organic-rich fractions of sediments (Breuer et al., 2004). These radioactive 

properties are usually measured based on the calculation of the exposure rates by means 

of activity concentration of naturally radioactive isotopes (Ra226, Th232, K40). For shale 

drill cutting samples, the levels of radioactivity were actually found to be negligible 

(Piszcz-Karaś et al., 2016). Currently, NORM testing is not required for drill cuttings 

waste management companies in the UK. 

2.2.4 Relevant legislation 

The management of any drilling waste must be in accordance with the EU Waste 

Framework Directive (2008/98/EC) which requires some form of treatment prior 

to disposal in landfills. In 2010, Department of Environment, Food and Rural 

Affairs (DEFRA) published a strategy with the aim to establish the practical 

application of the EU Waste Framework Directive (2008/98/EC). The document set out 

a methodology for the environmentally sound management of hazardous waste, 

including six principles (DEFRA, 2010, Lampris, 2013):

1. The waste hierarchy: a hazardous waste should be managed in accordance with

the EU waste hierarchy which prioritizes the available management options as

prevention, reuse, recycling, recovery and disposal.
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2. Infrastructure provision: hazardous waste infrastructure should be developed to 

ensure the UK’s self-sufficiency in terms of hazardous waste disposal and 

recovery.

3. Reduce reliance on landfill: landfilling practices should only be used when no 

better option is available.

4. No mixing or dilution: hazardous waste should not be mixed with other 

categories of hazardous waste or non-hazardous waste, unless under the terms of 

an environmental permit, and the mixing operation conforms to best available 

techniques.

5. Treatment of hazardous organic waste: when no reuse, recycling or recovery 

option is available, hazardous organic waste should be destroyed using best 

available techniques and should not be landfilled.

6. End reliance on the use of Landfill Directive waste acceptance criteria (WAC) 

derogations (3  WAC) that enables the hazardous waste landfilling 

practice to continue.  

The strategy also includes decision trees to support the implementation of these principles 

and assess the best available management option in accordance with the waste hierarchy. 

Figure 2.4 shows the relevant steps from the Waste Decision Tree for Inorganic 

Hazardous Waste that can be used for managing oil-contaminated drill cuttings waste. It 

must be noted that this decision tree is advised when no further separation of oil from 

drill cuttings is possible and there is no potential for energy recovery from 

waste. Contaminated drilling waste cannot be directly reused as a raw material or 

recycled without pre-treatment. A guidance note published by the UK 

government on the application of decision trees has specified that the use of pre-

treatments can be regarded as an interim step towards ‘other recovery’ but only where 

the waste is strictly intended to be used as a raw material replacement in a recovery 

process (Defra, 2011). The guidance gives an example of ‘other recovery’ for a 

gypsum-based waste resulting from the washing of air pollution control residues 

(APCr); suggesting that the waste can be used on its own or mixed with other 

calcium sulphate-based waste in an authorised construction activity under a permit 

and dependant on the remaining contaminant. Such recovery routes have been taken 

for drill cuttings waste in land application and bioremediation which will be 

discussed in section 2.4.5. 
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Figure 2.4 Decision Tree for Inorganic Hazardous Waste that can be used for managing 

oil-contaminated drill cuttings waste on which no further separation and energy recovery 

can be applied (DEFRA, 2010). 
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2.3 Drill cuttings mineralogy and the geology of the North Sea 

In the UKCS, the exploratory and development drilling activities are permitted in specific 

areas (shown as rectangular blocks in Figure 1.3). Central and northern North Sea have 

the highest share of oil production in the UK over the last decade and, most of the recent 

discoveries are also located within these regions. For any management practice of drilling 

cuttings waste, obtaining knowledge on the history of underlying geological formations 

and thus, on the petroleum geology of the North Sea is essential. 

The North Sea is located between Norway and the UK with an area of approximately 

600,000 square kilometres. It has an eventful geological history which has been 

discovered with extensive drilling activities in recent years. The major reservoir rocks are 

sandstone and limestone formed during the Middle and Late Jurassic successions (British 

Geological Survey, 2001). For instance, one of the most important hydrocarbon reservoirs 

with varying thickness of sedimentary rocks is located by the East Shetland Basin (Brent 

Group) and belongs to the Middle Jurassic (Johnson et al., 2005). Another important 

example is the Fladen Group which includes four formations comprising all coal-bearing 

and overlying transgressive sandstone units (Richards, 1993). The Late Jurassic 

succession is also significant since the primary source rocks including Kimmeridge Clay 

(comprising sandstone with high potential for hydrocarbons) were deposited during this 

period. Therefore, it is believed that a vast portion of the remaining hydrocarbons lies in 

similar reservoirs (Johnson et al., 2005). Those types of sedimentary rocks, that are 

important for the accumulation of hydrocarbons, are most likely to be found in drill 

cuttings and involve (Bjørlykke, 2015): 

2.3.1 Sandstones 

Jurassic sandstones are one of the most important oil reservoirs in the North Sea. 

Sandstones have high porosity and permeability which is essential for petroleum 

production. They mainly consist of sand grains up to 2 mm in diameter and various 

amounts of silt and clay. Sand grains contain quartz (85 – 90%), feldspars and 

microcrystalline rock fragments (Bjørlykke, 2015). Major clay minerals such as kaolin, 

illite, smectite, chlorite, and mix layers such as illite-smectite have been co-deposited 

with sand grains and deformed by mechanical compaction to form into sandstone 

(Bjørlykke, 1992). 
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2.3.2 Carbonates 

Carbonate reservoir rocks contain more than 40% of the petroleum in the world 

(Bjørlykke, 2015). Pure chalk limestones with clay-rich intervals can be found in the 

North Sea reservoirs (as in Plenus Marl). Such reservoirs are different to sandstone 

reservoirs in terms of sediment particles being produced through chemical precipitation1 

or biological processes2, mineralogy and texture, solubility in water and porosity. 

Geochemically, carbonates are characterized by an anionic structure consisting of CO3
−2 

and one or more cations. Rock-forming calcium carbonate (CaCO3) can be found as 

calcite (rhombohedral) or aragonite (orthorhombic) based on their crystal habit. 

Dolomite (CaMgCO3) is also a common rock-forming mineral found in carbonate 

reservoirs. In dolomite, layers of CaCO3 are alternated with layers of MgCO3.Fe+2. 

2.3.3 Shale and mudrock

A vast majority of sedimentary basins consist of shale and mudrock. These sedimentary 

rocks have high porosity and can therefore be a suitable source rock for hydrocarbons 

(the environment where organic materials are initially deposited and are subsequently 

migrated to reservoir rocks). However, shale may have very low permeability and thus, 

serve as a caprock (generating trapping mechanism to store hydrocarbons). Shale and 

mudrock are formed by the consolidation of varying amounts of fine-grained rocks, 

including a high content of clay-sized particles and other non-clay minerals 

(Halliburton, 2001). The clay minerals have similar origins to those in sandstones 

including weathering of non-sedimentary rocks, erosion of older shales, and diagenesis 

on the seafloor and during burial. 

2.3.4 Evaporite 

Evaporites are impermeable sedimentary rocks that make very effective traps for oil and 

gas. The presence of evaporite is often associated with hydrocarbons in oil and gas 

explorations. These traps are found in the form of salt domes especially in the southern 

North Sea (Bjørlykke, 2015). 

1 The chemical process involves dissolution of atmospheric CO2 in seawater generating carbonic 
acid which can react with calcium or magnesium ions and precipitate as calcium carbonate or 
magnesium carbonate. 
2 The biological process involves calcareous organisms and thus, the mineralogy of such 
sediments is related to carbonate skeleton. 
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Evaporites are simply the salt minerals that have formed in normal marine or continental 

environments by evaporation of water. The percentage composition of dissolved salts in 

seawater, together with the produced salt minerals, are listed in Table 2.3. Figure 2.5 also 

shows the sequence of evaporite precipitation as calcite (CaCO3), gypsum and anhydrite3 

(CaSO4·2H2O and CaSO4), halite (NaCl), sylvite (KCl) and bromide salts (Halliburton, 

2001). 

Table 2.3 Concentration and composition of salts formed in seawater after evaporation. 

Constituents (%) in seawater Salts (wt.%) of produced salts 

after evaporation 

Na 30.64 NaCl 77.76 

Mg 3.76 MgCl2 10.86 

Ca 1.20 MgSO4 4.74 

K 1.09 CaSO4 3.60 

Cl 55.21 K2SO4 2.47 

S 7.70 MgBr2 0.22 

C 0.21 CaCO3 0.35 

Br 0.19 

Total 100 100 

3 Calcium sulphate may precipitate as a hydrated form CaSO4·2H2O (gypsum) with a monolithic 
crystal system and, as a non-hydrated form CaSO4 (anhydrite) with an orthorhombic crystal 
system (Bollen, 1954). 
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Figure 2.5 Evaporation sequence in seawater (www.ancientminerals.eu [Accessed on 

16/10/2016]). 

A limited number of studies have investigated the mineralogy of drill cuttings produced 

in the North Sea.  Abbe et al. (2009) examined samples of oil-based drill cuttings from 

the central North Sea and reported SiO2, CaCO3, CaMgCO3, BaSO4, KAl2(Si3AlO10)(OH)2

(muscovite), kaolinite, NaCl and feldspars. Dhir et al. (2010) conducted XRD analyses of 

drill cuttings originating from four different locations in the North Sea and showed similar 

major phases with the absence of NaCl and clay minerals. However, this notwithstanding, 

there is no other information available on the mineral composition of drill cuttings to 

date. The degree of variability reported in these studies would greatly affect the proposed 

reuse application and thus a great deal work was allocated to characterize the 

mineral composition of waste drill cuttings in this research. 

http://www.ancientminerals.eu/
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2.4 Current disposal, treatment and management options 

Managing the drilling waste contributes significantly to the overall costs of drilling 

operations (Ikonnikova et al., 2015). Both offshore and onshore-based management 

options have been tested for contaminated drill cuttings. In the following sections, 

offshore options including re-injection, direct discharge into the sea and discharge after 

thermal treatments; and onshore options including landfill, bioremediation, solvent 

extraction and solidification/stabilization, are discussed. 

2.4.1 Re-injection 

Re-injection is a common offshore practice in which the cuttings are milled and mixed 

with seawater and pump down the well casting. This method, despite being associated 

with “zero discharge”, has been strongly criticized due to the risk for the return of cuttings 

to the surface, significant energy required for pumping, lack of studies on environmental 

risks and most importantly, the fact that the contaminated cuttings are discharged back 

into the environment without treatment (Gerrard et al., 1999). 

2.4.2 Discharge 

The direct discharge of drill cuttings into the sea has been banned, as discussed in section 

2.2.2. Discharging drill cuttings after reducing the absorbed mud to less than 1% by 

thermal treatment has been commonly employed in the North Sea; however, due to the 

environmental risks associated with this practice, governments are now implementing 

zero discharge policies (Bakke et al., 2013). 

2.4.3 Thermal treatments 

To reduce the discharge impact, a number of thermal treatments can be applied prior to 

any offshore (re-injection and direct discharge) or onshore (landfill and land applications) 

scenarios. Thermal treatments can be applied in either standing or portable installations 

and, based on recovery of the contaminants, are generally classified as incineration or 

thermal desorption (Ball et al., 2012). Thermal treatments are largely preferred over 

discharge and re-injection solutions for two main reasons: firstly, due to the removal of 

contaminants and their associated hazards and secondly, due to the possibility of 

treatment facilities to be retrofitted onto current platforms (Pereira, 2013). Three available 

thermal treatment practices used for contaminated drill cuttings are: 



2.4.3.1 Incineration 

Incineration is a high-temperature thermal oxidation process in which the waste is heated 

at temperatures between 900 °C and 1500 °C to destroy the organic fraction of the 

material, reduce the volume of waste and generate less hazardous residues (Oppelt, 1987, 

Morillon et al., 2002). Hazardous wastes are often a good candidate for incineration as 

they usually contain toxic and flammable organic materials that are resistant to 

biodegradation. Incineration of drilling wastes can be done in a rotary kiln, a 

commercially available technology that has been used for many types of waste. Rotary 

kilns produce an efficient heat transfer due to the turbulence generated from the 

tumbling motion of waste and that enhances the contact with hot burner gases (Islam 

and Khan, 2013). Incineration is not very common for treating drilling waste however, 

incineration at source (offshore incineration) has been shown to be technically 

feasible. Overall though, incineration is not considered environmentally acceptable and 

cost-effective due to the need for added fuel to sustain the process (Turner, 2002). 

2.4.3.2 Thermal desorption 

Thermal desorption has been mainly used for treating contaminated soil. It involves 

heating the materials at temperatures up to 600 °C at which organic compounds are 

volatilized (not oxidized) and subsequently removed from the generated gas phase by 

means of rapid condensation, scrubbing, filtration or destruction at higher 

temperatures (Hester and Harrison, 2001). The process has also been broadly used for 

treating oil-based drill cuttings due to the nature of the base oil for which lower 

temperature ranges (200 °C – 400 °C) are applied. The technique can recover more than 

99% of the absorbed oil with no significant degradation or fractionation (Khodja et al., 

2007). Two common designs for thermal desorption are available, namely: rotary dryer 

and thermal screw (Ball et al., 2012). The rotary dryer design involves a slightly 

angled horizontal cylinder that is directly or indirectly heated and can treat drill 

cuttings with a total organic content of lower than 2%. In thermal screw designs, screw 

conveyors transport materials through hollow augers that are indirectly heated by hot oil 

or steam, as shown in Figure 2.6. The thermal screw design is cable of treating drill 

cuttings with more 50% organic content. In such settings, both water and oil are 

recovered separately due to the difference in boiling point and are usually re-used back 

into the system (Seaton et al., 2006). 

Thermal desorption is a relatively new practice for processing hazardous waste in the UK 
(Environment Agency, 2012). A number of companies have established a range of low 

27 



28 

-temperature thermal desorption facilities to treat oil-based and synthetic-based mud 

drill cuttings shipped to shore in the UK (Wait and Thomas, 2003). However, over the 

past few years, the traditional desorption technologies have shown serious drawbacks in 

terms of efficiency (Pereira, 2013), mainly due to the granular nature of drilling 

cuttings that makes heat transfer extremely inefficient. Elevating the temperature within 

the depth of such materials using conventional heating methods requires long dwell 

times, which creates a significant CO2 footprint (Robinson et al., 2008). The high 

energy consumption and equipment cost has driven the waste management companies 

to invest in potential alternative technologies, such as microwaves capable of 

dissipating the heat more efficiently and chemical cleaning (Ye et al., 2017). 

Figure 2.6 Thermal desorption unit with a thermal screw design 

(thermaldesorption.wordpress.com [Accessed on 17/10/2016]). 

2.4.3.3 Microwave 

In microwave heating, the energy is directly transferred to depths of materials through 

molecular interactions with an alternating electromagnetic field (Robinson et al., 2008). 

This can significantly reduce the heating time (up to three orders) and thus, increase the 

overall efficiency of the treatment process (Robinson et al., 2008). Microwave heating 



techniques have been successfully used for thermal desorption processes for 

contaminated soil remediation (Jones et al., 2002). This process has been recently tested 

at a pilot scale and shown to be effective on bringing the portion of hydrocarbons to 

below 1% in drill cuttings contaminated with synthetic-based fluid (Pereira et al., 

2014, Petri Junior et al., 2015). 

However, despite the high efficiency of microwave-assisted thermal desorption in 

reducing the hydrocarbon portion of drill cuttings, and thus the hazardous properties of 

the waste, such management options still contribute to waste generation – as the final 

treated solid waste is still required to be landfilled. In addition, other sources of 

contamination in drill cuttings, including soluble salts and drilling additives, 

remain unchanged over the temperature ranges used for such methods, and thus this 

limits the beneficial reuse of thermally treated drill cuttings. 

2.4.4 Supercritical fluid extraction (SFE) 

In this method, fluids above their critical pressure and temperature are used as a solvent 

to extract compounds such as hydrocarbons from the solid matrix. Supercritical fluids 

have a gas-like diffusivity and viscosity, liquid-like density and almost no surface 

tension allowing their penetration deep into granular materials (Street and Guigard, 

2009). This allows an efficient mass transfer of contaminants (hydrocarbons in case of 

drill cuttings) to the supercritical fluid phase. The method has been used for the 

treatment of OBM drill cuttings using supercritical carbon dioxide at a pressure range 

of 16 MPa to 22 MPa and a temperature range of 55 °C to 79.5 °C (Goodarznia and 

Esmaeilzadeh, 2006). In a more recent study, 89.2% efficiency for total organic carbon 

(TOC) removal was reported when supercritical water, at pressure of 35 MPa and 

temperature of 475 °C was used (Chen et al., 2017). 

2.4.5 Bioremediation 

As the name suggests, it is a biological process that uses microorganisms such as bacteria 

and fungi to degrade the contaminants into non-toxic residues. It is simple, cost effective 

and generally, has a high public acceptance. However, its main drawbacks are the 

relatively long time scales, transportation cost involved and the fact that the process is not 

effective on the full range of contaminants present (Vidali, 2001). There are a number of 

bioremediation techniques available for treating contaminated drill cuttings, as listed in 

Table 2.4. Land applications including land farming and land treatments are less 
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exploitable in places like the UK where there is limited land availability. Bioreactors, on 

the other hand, are enclosed vessels in which various parameters can be controlled. 

Despite being complex, they can achieve rapid and satisfactory results and may represent 

a viable solution yet, in the UK, bioreactors have only been tested academically and 

further work to access commercial viability is still required (Turner, 2002). 

Table 2.4 Summary of available bioremediation techniques for treating contaminated drill 

cuttings (Vidali, 2001, Turner, 2002, Ball et al., 2012). 

Techniques Area 

requirement 

Time-scale Advantages Disadvantages 

Composting/

bio-piling 

Low 

(10 m2/tonne) 

1 – 2 

months 
Rapid  

degradation of 

contaminants. 

Low risk of 

leaching. 

Release of 

hydrocarbon into 

the environment. 

Fire risk. 

Land 

application 

Medium to 

very large 

(500 – 2000 

m2/tonne) 

2 – 3 years Near complete 

degradation of 

contaminants. 

Low-cost. 

Extended 

treatment time. 

Contamination 

build-up on 

repeated use of 

land. 

Bioavailability 

limitations. 

Vermiculture Low 

(20 m2/tonne) 

1 – 2 

months 

Rapid degradation 

of contaminants. 

Useful by-product 

produced. 

Effective for a 

limited range of 

contaminants. 

Bioreactor Very low 10 – 30 

days 

Rapid and 

complete 

degradation of 

contaminants. 

Short process 

duration.  

Large cost of 

equipment. 

Requires skilled 

operation and 

maintenance. 
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2.4.6 Solidification/stabilization (S/S) 

This method is a chemical process in which binders such as Portland cement are mixed 

with certain amounts of waste to reduce the leaching characteristics of materials (Lampris 

et al., 2011). The method is often used for hazardous waste like energy-from-waste (EfW) 

residues with high concentrations of heavy metals and soluble salts, to comply with 

landfills of waste acceptance criteria (Quina et al., 2008). There are also successful 

examples of using this method for contaminated drill cuttings, as listed in Table 2.5. 

Table 2.5 Studies using solidification and stabilization (S/S) for treating petroleum drill 

cuttings. 

Reference Waste Binder Comments 

(Al-Ansary 

and Al-

Tabbaa, 2004) 

SBM drill 

cuttings from 

the North Sea 

Portland cement Significant reduction in 

leaching of both 

hydrocarbons and Cl−

ions. 

(Leonard and 

Stegemann, 

2010) 

Petroleum drill 

cuttings from an 

unidentified 

drilling operator 

Portland cement Enhanced immobilization 

capability for 

hydrocarbons and Cl− 

ions, with the addition of 

high carbon fly ash. 

(Mostavi et al., 

2015) 

Petroleum drill 

cuttings from an 

unidentified 

drilling operator 

Portland cement, 

coal fly ash and 

silica fume 

Enhanced strength of 

concrete sample by adding 

up to 5 wt.% silica-fume. 

(Aboutabikh et 

al., 2016) 

Treated oil sand 

drill cuttings 

Portland cement Up to 20 wt.% drill 

cuttings in the mix 

provided enhanced 

solidification and reducing 

heavy metal leaching. 

(Kogbara et 

al., 2016) 

Petroleum drill 

cuttings from 

Niger Delta 

Portland cement Incorporating activated 

carbon resulted in up to 

99% TPH reduction. 
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2.4.7 Drill cuttings as a resource 

Most of the treatment methods for contaminated drill cuttings are aimed at making the 

waste compatible with non-hazardous landfill requirements. There is still a lack of 

commercially viable recycling options for non-aqueous-based drill cuttings and a limited 

number of studies have investigated options for producing secondary products of value. 

Sintered glass ceramics with low porosity were produced from the North Sea SBM drill 

cuttings (Abbe et al., 2009). This was shown to reduce leaching of contaminants through 

physical encapsulation of salts and heavy metals within a glass matrix - however, such 

solutions have not reached a large-scale manufacturing level. 

Geological materials and mineral wastes with compositions similar to those of 

drill cuttings have been extensively used in the production of building materials and 

especially sintered porous ceramic products known as lightweight aggregate (LWA). 

This indicates a significant potential for drill cuttings to be used as a resource, which 

will reduce landfill dependency. In addition, the presence of hydrocarbons can also be 

beneficial because during LWA production process, as organic matter is normally 

added to the mix to provide some part of the energy required for sintering. 

In the UK, the market of LWA is growing due to a large demand for lightweight concrete 

products. At the same time, the use of naturally occurring materials is becoming limited 

due to environmental concerns about the overconsumption of natural resources. 

This generates a significant potential for the reuse of recycled materials (with 

a suitable composition) in the manufacturing of LWAs. Furthermore, this would allow 

part of the production costs to be offset against the avoided cost of waste disposal and 

contribute to the development of a circular economy, in which waste materials 

remain part of the economic cycle (Cheeseman and Virdi, 2005). 

The following sections review the available research on using geological and mineral 

waste in LWA production, defining the properties of ideal LWA and typical production 

methods and conditions. 
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2.5 Lightweight aggregate4 

The British standard (BS EN 13055-1) for lightweight aggregates for concrete, mortar 

and grout, define LWA as a granular material with a loose bulk density not exceeding 1.2 

g/cm3 or with a particle density not exceeding 2.0 g/cm3. An ideal LWA for use in 

concrete products should have low water absorption capacity, since water absorption can 

adversely affect the properties of hardened concrete (Molineux et al., 2016). In addition, 

LWA should be nearly spherical (4 – 14 mm in diameter to be in the range of normal 

coarse aggregate), strong and have an impermeable rough surface to enhance the cement-

aggregate bond (Cheeseman and Virdi, 2005). LWA improves thermal insulation 

properties of concrete, reduces permeability and reduces structural dead load, allowing 

the construction of larger buildings with the same foundation size. The use of LWA 

to replace normal weight aggregate in precast concrete products is associated 

with additional CO2 savings gained with more efficient transportation due to lighter 

loads (Velis et al., 2014).

LWAs can be classified in two groups: natural and synthetic. Natural LWAs consist of 

particles derived from natural rocks, mainly those of volcanic origin such as pumice, 

scoria and tuff (Cheeseman and Virdi, 2005). Synthetic LWAs are produced from 

materials such as shale and expansive clay at high temperature, traditionally in a rotary 

furnace (González-Corrochano et al., 2009b). These materials contain common clays and 

some amounts of non-clay minerals such as quartz and feldspars. These minerals produce 

sufficient viscosities that are capable of entrapping the released gaseous phases at high 

temperatures and bloat (expand). 

2.5.1 LWA Manufacturing process 

Figure 2.7 shows a typical LWAs manufacturing process and the end products when clay 

is used as the raw material. The two main stages of lightweight aggregate production are 

pelletisation and sintering (Anagnostopoulos and Stivanakis, 2009). Before 

pelletisation, raw materials such as clay and organic matter are finely ground and 

mixed together in specific proportions. Pelletisation can be achieved either by 

plastic extrusion or agglomeration of particles with suitable moisture content. 

Depending on the pelletisation method, water is either added at the beginning or 

gradually throughout the pellet formation process. ‘Green’ or ‘fresh’ pellets 

are obtained from this process.
4 A revised version of this section has been published (Ayati et al., 2018). 
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The physical properties of the ‘green’ pellets are important for handling and 

stockpiling during the manufacturing process. They are mainly dependant on 

pelletisation parameters i.e. engineering properties of the raw material, such as 

particle size distribution, wettability, moisture content and the angle and rotational 

speed of the pelletisation drum or disc (Baykal and Döven, 2000). The strength of 

‘green’ pellets is determined by the quantity of cohesive force acting on the particles 

and the interlocking effects. In addition, the magnitude of these two factors is a 

function of void ratio and the surface texture of particles, respectively. The void 

ratio of the particles is important in affecting the sintering kinetics and therefore, 

the strength of ‘green’ pellets can correlate to the degree of sintering. 

Statistical analysis of multifactor pelletisation experiments has shown that the 

strength of ‘green’ pellets is most significantly influenced by the speed followed 

by the angle of the drum, while the major parameter affecting the size of pellets is 

the moisture content (Harikrishnan and Ramamurthy, 2006). It must be appreciated 

that the way these parameters influence the properties of the ‘green’ pellets has not 

been fully investigated and a comprehensive model that predicts the pelletisation 

behaviour is still required.

Figure 2.7 Lightweight aggregate manufacturing process (Sarabèr et al., 2012). 
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Pellets are dried to discard any excess water before sintering. They are then transferred to 

a kiln and fired at temperatures in the range of 1050 °C to 1250 °C. The time that pellets 

are fired at the maximum temperature is known as ‘dwell time’ or ‘sintering period’ and 

this can vary between 3 and 20 minutes depending on the characteristics of raw materials. 

Sintering is a process in which the particles of a powdered material consolidate by the use 

of thermal energy and/or pressure (Guo et al., 2017). This involves the fusion of particles 

at a mutual contact point at a temperature that is up to 80% of the material’s melting 

point (Rahaman, 2007).

Sintering is the most energy-intensive stage in the LWA manufacturing process. 

LWA manufacture is reported to emit ~0.3 tonne of CO2 per tonne of aggregate 

(Bremner et al., 2005). Energy for LWA production can be provided from biomass 

combustion given the relatively low sintering temperature required. In addition, a 

number of studies have used organic matter such as sewage sludge in the mix as an 

energy source (Xu et al., 2013, Molineux et al., 2016, Liu et al., 2017). 

The industrial process for LWA production is usually carried out in a rotary tube kiln with 

three different zones (Figure 2.8a): 1) drying/pre-heating zone which operates in the 

range of 100 – 600 °C with up to 40 m lengths and a slow rotation providing two 

hours of residence time; 2) sintering zone where firing takes place at around 1200 °C 

with up to 20 m lengths and a fast rotation providing 8 – 10 min dwell time; 3) cooling 

zone to reduce the pellets temperature to below 100 °C with up to 20 m length and two 

hours of residence time (Quina et al., 2014b). 

Figure 2.8 (a) LWA manufacturing rotary kiln with different heating zones (Huang and 

Wang, 2013) and (b) Trefoil design of the kiln inner tube (Laursen et al., 2006). 
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There are other types of sintering equipment namely: sinter strand, fluidized bed reactors 

and shaft. Rotary kilns provide a fast heating, required for materials bloating. To improve 

the thermal efficiency with a faster heat-up and cool-down period, a trefoil design for the 

kiln inner tube (Figure 2.8b) has been used (Wainwright and Cresswell, 2001). This 

provides a better control over the sintering process and produces consistent pellet shapes 

(Sarabèr et al., 2012).

2.5.2 Commercial LWA 

The UK market for LWA was originated in the 1950’s based on clay, shale wastes from 

mining, and slate. In the 1960’s and 1970’s other LWA manufacturing facilities were 

developed to meet the national demand. As an example, the commercial LWA Lytag was 

first manufactured in 1958 from pulverized fuel ash (PFA), widely available at the time. 

The production process was also different from traditional ‘kiln bloating’ by firing. 

Instead, the aggregates were manufactured in a reducing environment on a coking sinter 

strand (Boarder et al., 2016). Lytag is still commercially available and has been one of 

the most commonly used LWA in manufacturing structural lightweight concrete (LWC) 

(Bai et al., 2004). Another contemporary manufactured LWA in the UK is lightweight 

expanded clay aggregate (LECA) that is extensively used in the building industry, road 

construction, gardening etc. It is produced by firing expanding clay in a rotary kiln at 

1100 to 1200 °C (Latosińska and Żygadło, 2009). Table 2.6 shows the important 

properties of some commercial LWA commonly used in the production of lightweight 

concrete. 

A report on LWA demand in the UK construction industry estimated that approximately 

1.0 million tonnes of LWA per year are consumed, which is a small portion in 

comparison with the total supply of normal weight aggregate (270 million tonnes per 

year) (Cresswell, 2007). The report highlighted that Lytag and LECA form up to 30% of 

this market whilst the remaining portion of the LWA supply is mainly imported. 



37 

Table 2.6 Range of physical properties for commercial LWA and lightweight concrete 

(Neville, 1995). 

LWA Typical concrete 

Particle 

density 

(g/cm3) 

24-hour

water 

absorption 

(%) 

Density 

(kg/m3) 

Compressive 

strength 

(MPa) 

Strength 

range 

LECA 0.3 – 0.9 5 – 30 1000 – 1700 20 – 60 Structural 

Lytag 0.6 – 1.1 ~20 1500 – 1600 30 – 60 Structural 

Pumice 0.5 – 1.6 50 1200 – 1600 5.0 – 15 Moderate 

Perlite 0.1 – 0.4 - 400 – 500 1.2 – 3.0 Insulating 

Vermiculite 0.1 – 0.4 - 300 – 700 0.2 – 3.0 Insulating 

2.5.3 Published research on manufactured LWA 

A variety of mineral wastes can be utilized as raw materials for LWA production. Table 

2.7 provides a summary of LWA production from existing literature sources – using 

geological materials such as clays and other natural aluminosilicate minerals as the major 

raw material. For each study, SiO2/Ʃ flux (SiO2/Ʃ (Fe2O3 + Na2O + K2O + CaO + MgO)) 

and SiO2/Al2O3 were calculated as an indication for chemical composition that controls 

the viscosity at high temperatures and thus the bloating mechanism. Two main production 

parameters including firing temperature range and dwell time were reported for each 

study. Other production parameters such as pre-processing conditions and heating rate 

were not available for all of the studies. Three main physical properties such as particle 

density, water absorption after 24 hours and compressive strength were also reported.

The information extracted from the studies in Table 2.7 is used to construct the literature 

review on effects of production parameters on LWA properties and will be the basis for 

determining the range of these production parameters for LWA manufacturing methods 

in this work over the following chapters.
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Table 2.7 Summary of LWAs and characteristics, process conditions and physical properties from existing publications, including: Si/ƩF: SiO2 to total 

flux ratio; Si/Al: SiO2 to Al2O3 ratio; T: sintering temperature; t: dwell time; ρdr: particle density; WA24: water absorption after 24 hours; S: compressive 

strength; FA: coal fly ash; ISSA: incinerator sewage sludge ash; MSWIFA: municipal solid waste incineration fly ash; APCr: air pollution control 

residues. 

Minerals Waste Si/ƩF Si/Al T (°C) t (min) ρdr (g/cm3) WA24 (%) S (MPa) 

(de' Gennaro et al., 2004) Zeolite - 2.4 – 8.3 2.9 – 6.2 1350 – 1500 4 0.51 – 1.68lbd - - 

(Fragoulis et al., 2004) Diatomite rock - 2.9 3.34 1100 15 0.53 – 0.93bd - 0.41 – 2.01* 

(de Gennaro et al., 2005) Zeolite - 3.4 3.2 1390 4 0.96 – 1.09 3.6 – 3.6 1.65 

(Laursen et al., 2006) Clay CaF2 sludge 1.5 4.5 1200 2 0.31lbd 24.1 - 

(de Gennaro et al., 2007) Zeolite - 3.2 – 4.8 3.6 – 3.9 1260 – 1380 40 0.46 – 1.85 1.4 – 5.7 0.6 – 2.9* 

(Fakhfakh et al., 2007) Smectite clay - 2.7 – 3.6 2.3 – 3.1 1060 – 1180 5 0.37 – 0.89lb 3 – 4872h 0.08 – 0.45* 

(Huang et al., 2007) Shale MSWIFA 1.6 3.6 1050 - 1250 15 0.50 – 1.6 - 4.3 – 7.5* 

(Mun, 2007) Clay ISSA 2.9 – 4.8 2.6 – 3.6 1100 15 0.65 – 0.91 7.0 – 11.0 - 

(Mueller et al., 2008) Zeolite - 1.8 5.1 850 - 0.42 – 0.48bd 3.0 – 5.5 0.1 – 0.25* 

(González-Corrochano et 

al., 2009a) 

Washing 

aggregates

FA 2.1 – 2.4 1.4 – 5.1 1150 - 1225 10 1.31 – 1.51 14.5 – 16.0 4 – 8.29 

(González-Corrochano et 

al., 2009b) 

Clay sediments - 2.4 – 2.8 2.7 – 3.5 1150 – 1225 10 1 – 1.88 2.0 – 56.0 1 – 12.55 

(Chen et al., 2010) Reservoir sediment MSWIFA 1.9 – 3.8 2.5 -2.6 1150 – 1200 15 0.94 – 1.55 2.1 – 10.1 -
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(Wei et al., 2011) Reservoir sediment Glass 4.7 4.4 1000 – 1150 18 0.79 – 2.35 2.7 – 17.5 - 

(Liao and Huang, 2011) Reservoir sediment - 2.9 2.7 1170 – 1230 15 1.13 – 2.32 0.4 – 3.8 4.08 

(Tang et al., 2011) Reservoir sediment - 5.9 3.0 1200 12 1.01 – 1.41 10.4 – 12.3 7.2 – 13.4* 

(Hwang et al., 2012) Reservoir sediment MSWIFA 6.1 2.4 1070 – 1150 20 0.88 - 1.69 7.6 – 29 5.3 – 13.4* 

(Huang and Wang, 2013) Reservoir sediment - 2.8 – 5.4 2.4 – 2.8 1150 – 1275 10 0.65 – 1.97 2.7 – 15 - 

(González-Corrochano et 

al., 2014) 

Clay FA 2.0 2.5 1150 3 0.98 6.68 1.53 

(Bernhardt et al., 2014a) Clay - 3.4 2.3 1100 8 0.31 – 0.57 - 0.54 – 1.58 

(Bernhardt et al., 2014a) Clay - 3.4 3.3 1120 8 0.41 – 0.48 - 0.76 – 2.39 

(Volland et al., 2014) Sand sludge - 2.5 9.7 900 – 975 - 0.77 – 1.05 0.1 – 2.17 0.18 – 0.36* 

(Quina et al., 2014a) Clay APCr 3.0 3.0 1070 – 1100 8 0.5 – 0.60 - 0.19 – 0.46 

(Lo et al., 2015) Clay FA 3.9 1.7 1150 1.70 6.30* 

(Zhang et al., 2015) Clay FeCr sludge 1.9 2.2 1000 – 1210 20 0.82 – 2.5bd - 0.76 -18.27 

(Volland and Brötz, 2015) Sand and zeolites - 1.8 – 1.9 7.0 – 8.1 850 – 900 - 0.71 – 1.52 0.3 – 2.9 0.7 – 12.9 

(Soltan et al., 2016) Clay Granite 4.2 3.4 – 5.5 1200 15 0.65 – 1.86bd - - 

(Molineux et al., 2016) Clay Bauxite 0.7 – 1.1 1.8 – 2.1 1200 25 1.63 – 1.71 5.1 – 6.2 - 
* Fracture force (kN): obtained from crushing resistance test.
bd Bulk density (apparent density); lbd Loose bulk density.



2.5.4 Physical properties of manufactured LWA 

As mentioned previously, LWA for use in lightweight concrete products should be strong 

and have low particle density and water absorption. These properties are mainly affected 

by the chemical composition of the raw materials as well as their production parameters. 

However, the pore structure of LWA is an intermediate variable that relates the raw 

material characteristics and production parameters to the properties of 

manufactured LWA.

The pore structure of LWA can be defined by the total porosity (total void ratio), pore 

size distribution, and pore connectivity (pore closeness). An ideal pore structure for a 

bloated LWA is shown in Figure 2.9. It is comprised of small uniform cellular pores in 

the matrix, pores decreasing in size adjacent to the surface and indeed, a non-porous 

surface. The black core indicates the presence of a reducing condition. 

Figure 2.9 Ideal pore structure shown for an individual clay LWA pellet (Ayati et al., 

2018). 

The development of a pore structure is the result of the bloating phenomenon during the 

firing stage of LWA production. The bloating mechanism has been debated extensively 

in the literature. However, there is a general agreement that bloating requires sufficient 
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liquid phase at high temperature to convert the body/matrix to a viscous (pyro-plastic) 

state. In addition, the occurrence of pyro-plasticity should match the gas release for 

bubbles to grow and cause expansion (Dondi et al., 2016). Table 2.8 shows the 

necessity of a suitable viscosity range and gas release for an effective bloating. 

Materials with a low pyro-plastic viscosity are simply not capable of entrapping the 

released gas, whilst high pyro-plastic viscosities will cause the materials to melt (flow) 

and lose their structural integrity completely.

The pore structure of LWA as an intermediate variable and its dependency on the 

viscosity of the liquid phase at high temperatures allows a causal pathway to be 

constructed, as shown in Figure 2.10. The influence of chemical composition and 

production parameters on viscosity and pore structure are marked as (i) and (ii), 

respectively. The effect of pore structure on physical properties is marked as (iii). These 

relations are explained as follows:

Table 2.8 Conditions necessary for LWA bloating modified from (Dondi et al., 2016). 
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Figure 2.10 Relationships between raw material characteristics, production parameters 

and physical properties, showing the pore structure as an intermediate variable. 

i. Effect of chemical compositions on pore structure

As discussed previously, the bulk chemical composition (oxide composition) of the raw 

materials affects the pyro-plastic viscosity during the LWA bloating which results in the 

development of the pore structure. However, it is difficult to pin down the exact measures 

in bulk chemical compositions that control the viscosity of clay materials at pyro-plastic 

states. Two important mineralogical features were introduced by Riley (1951) as SiO2/Ʃ 
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flux (Fe2O3 + Na2O + K2O + CaO + MgO) and SiO2/Al2O3 ratios. It has been argued that 

at a pyro-plastic state, the flux content (Fe2O3 + Na2O + K2O + CaO + MgO) controls the 

softening point of materials and, factors such as the SiO2 and Al2O3 content control the 

viscosity (Fisher and Garner, 1967). This is because SiO2 and Al2O3 are network formers 

and thus increase the viscosity (Bernhardt et al., 2014a). In addition, minerals with high 

SiO2 and Al2O3 contents tend to have very high softening points. However, the presence 

of fluxing oxides (mainly alkali, alkali earth and ferric oxides) can disrupt the networks 

and reduce the softening point and pyroclastic viscosity. These oxides can also be added 

to the raw material prior to firing to adjust the viscosity and therefore improve the bloating 

behaviour. However, their excessive use can reduce the viscosity and produce a liquid 

phase causing densification of LWA (Tsai et al., 2006, Liao et al., 2013). The addition of 

20 wt.% glass (containing flux i.e. Na2O and CaO) was shown to be sufficient in 

decreasing the sintering temperature and improve the pore structure by reducing the 

amount of open porosity (Kourti and Cheeseman, 2010).

SiO2/Ʃ flux and SiO2/Al2O3 ratios have been widely used to determine the bloating 

capability of various minerals. SiO2/Σ flux ratios greater than 2 have been specified as a 

requirement for bloating behaviour (de' Gennaro et al., 2004, Chiou et al., 2006, 

González-Corrochano et al., 2009a). However, Dondi et al. (2016) suggested SiO2/Σ flux 

and SiO2/Al2O3 ratios should be in the range of 4 – 7.5 and 4 – 5.6 respectively. Some of 

the studies in Table 2.7 found a relation between these ratios and the total porosity of 

manufactured LWAs. For example, in LWAs of de' Gennaro et al. (2004) from zeolitic 

rocks samples with higher SiO2/Ʃ flux and SiO2/Al2O3 ratios, it was demonstrated that a 

higher viscosity retained more gas bubbles, resulting in an increase in the total porosity. 

The bloating effect also requires sufficient amounts of gas-releasing compounds to be 

present within the raw materials. The main sources of the gaseous phase in clay materials 

at high temperatures are understood to be: the dissociation or reduction of ferric oxides, 

combustion of organic matter, interlayer water molecules and thermal decomposition of 

carbonates (Quina et al., 2014a). 

ii. Effect of production parameters on pore structure

Achieving the right combination of microstructural features (high total porosity, pore size 

uniformity and pore closeness) is the main challenge for LWA production as these 
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features are sensitive to changes in production parameters. The main controlling 

production parameters identified from the literature review are: 

• Temperature: Firing temperature (the maximum temperature at which LWA is 

kept in the kiln) is one of the most important production parameters because of its 

effect on the pyro-plastic viscosity, as shown in Table 2.8. It is very important to 

note that increasing the firing temperature above the range of pyro-plasticity 

would result in the formation of a viscous flow, reducing the pore size and 

consequently increasing the particle density of aggregates (Lin, 2006).

• Heating/cooling rate: Heating rate and the kiln inlet temperature (feeding 

temperature) have shown to influence the pore structure and resulting quality of 

LWA. A suitable heating rate can ensure simultaneous gas release and material 

softening, which are necessary for bloating. Low heating rates (<5 °C/min) causes 

both the matrix and the surface of the pellets to undergo an identical temperature 

rise. This would cause the surface to become incompletely vitrified while the gas 

is generated, making it possible for the gas to escape. High heating rates (>10 

°C/min) can also be disadvantageous for bloating (de Gennaro et al., 2007). In fast 

heating, materials do not have sufficient time for softening before the firing 

program ends. The use of feeding temperature has also been observed by Huang 

et al. (2007) to have a positive effect on bloating. When shale and incinerator fly 

ash pellets were fed at 850 °C into a tunnel kiln, a rapidly-vitrified surface 

enveloped the released gases and increased the matrix total porosity while kept 

the surface pores at a minimum. When LWA exits the kiln after the completion of 

the firing stage, it is transferred to a cooler and the pellets temperature drops as 

it is exposed to the ambient air. However, in industrial settings, sometimes air 

is blown onto hot LWA to harvest the available heat, which is then forwarded 

for use in the pellet drying stage. Fast cooling rates may have a direct negative 

effect on the strength of LWAs, due to the formation of micro-cracks. This 

is because, above the glass transition temperature (Tg), the core 

incorporates iron in the reduced form and acts as a viscous body with a 

higher thermal expansion coefficient (TEC). Meanwhile, the surface is oxidized 

and contracts differently during the cooling. This would result in the shell and 

the core experiencing different thermal contractions due to their different 

TECs, which would induce compressive stress in the shell, producing micro-

cracks and consequently reducing the strength of the granules. This effect was 
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avoided in LWAs of Bernhardt et al. (2014a) where a double post-treatment at 

800 °C in the air together with a subsequent slow cooling regime (0.7 °C/

min) resulted in 114% increase in strength. In a more recent study by Zhang 

et al. (2015) on the influence of cooling methods on the strength of LWA, a 

relation between the pore structure and cooling rate was observed. The authors 

reported that the total porosity and average pore size were high for fast-

cooled LWAs compared to LWAs subjected a slow cooling regime. The 

smaller average pore size would have also allowed the slow-cooled pellets 

to form a continuous framework structure and obtain a higher compressive 

strength as opposed to fast-cooled pellets where the cracks were developed from 

the boundary of the largest pores (the weakest region in the structure). 

• Dwell time: The majority of studies in Table 2.7 used dwell time between 4 and

20 minutes. Determining an optimal duration to keep LWA at maximum

temperature is important because low dwell times may cause an insufficient

sintering and therefore an open porosity. High dwell times are not economically

viable due to the amount of fuel needed to keep the kiln contents at the

maximum temperature. In addition, dwell time has been shown to be the factor

that most strongly affects the connectivity of pores. A study by Korat et al.

(2013) used X-ray micro-tomography and mercury intrusion porosimetry (MIP)

to characterise the pore-forming process in LWAs based on silica sludge. This

study showed that, by increasing the dwell time up to 60 minutes, the number

of pores decreases while the total porosity increases. This change in the pore

structure features indicates an increase in the connectivity of the pores. Hence, a

definite dwell time is desirable to obtain a low degree of connectivity within the

pore structure, and therefore low water absorptions.

• Milling and sieving: Pre-processing of raw materials to achieve a fine particle size

distribution can affect the bloating and pore structure of LWA (Chindaprasirt et al.,

2009). Some levels of uniformity in pore size can be achieved through

homogenization of raw materials with techniques such as milling and sieving.

However, the effect of pre-processing parameters such as milling time and size

distribution of raw material particles on the pore structure has not been fully studied.

iii. Effect of pore structure on physical properties

The physical properties of LWA may be affected only by one of the pore structure 

features. For example, the particle density is mainly influenced by the total porosity 
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produced from the materials bloating, and less dominantly by the other features. The 

porosity of LWA surface is one of the main parameters which determine the water 

absorption capacity of LWAs (Hwang et al., 2012). In addition to an impermeable surface, 

LWA matrix pore structure with a low degree of connectivity is desirable. Insufficient 

sintering is the main cause for an open porosity and results in LWAs with high 

water absorption capacity (Kourti and Cheeseman, 2010).

High total porosity and the presence of large pores have been related to the lower 

compressive strength of the manufactured LWAs (González-Corrochano et al., 2014). 

The uniformity of pore size can also be influential in enhancing the compressive 

strength as it promotes a homogeneous distribution of stress throughout the inner 

structure. In addition, small pore size and strong matrix material can be attributed to 

the strength of LWAs (Cheeseman and Virdi, 2005, Bernhardt et al., 2014b). However, 

no satisfactory evidence has yet been reported in the literature on the effect of pore 

structure on the strength of LWAs. 

2.5.5 Mineralogical changes during firing 

The XRD analysis for some of the LWAs in Table 2.7 including the initial phases and 

final phases after firing treatment were extracted from the literature, as shown in Table 

2.9. The mineral wastes used in the manufacture of LWA, contained common clay 

minerals such as smectite, kaolinite, chlorite and illite. Additionally, considerable 

amounts of non-clay minerals such as quartz, feldspar and CaCO3 were present in the raw 

materials. In general, some clay minerals found in shale and expansive clay including 

illite, montmorillonite, vermiculite and chlorite, and some rock-forming minerals such 

as quartz and feldspar - have been associated with the bloating capability (Tang et al., 

2011, Huang and Wang, 2013). Carbonates can also play a role in the bloating 

mechanism however this depends on the nature of clay mineral present in the mix. For 

example, it has been shown that illitic clays were more effective in entrapping the 

released CO2 than kaolinitic clays and, in a zeolitic mix, CaCO3 mainly acted as a 

fluxing agent and caused no expansion (Dondi et al., 2016). 

The neo-formed minerals in Table 2.9 show that most of the initial phases transformed as 

the result of heat treatment. The reported amorphous phases could have different origins. 

For example, diatomite used by (Fragoulis et al., 2004), was found to be mainly composed 
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of opal, which has an amorphous nature. LWAs of de Gennaro et al. (2007) manufactured 

from a mixture of zeolitic rock and polishing mud (mainly consisting of glass with 24% 

quartz) also contained a significant amount of glass. The increase in the glass fraction of 

LWAs with increases in temperature has also been reported in studies using water 

reservoir sediments and clay-bearing sand sludge as a raw material (Liao and 

Huang, 2011, Volland et al., 2014, Volland and Brötz, 2015).

The three main endmembers of the feldspars series including potassium feldspar 

(KAlSi3O8 sanidine), calcium feldspar (CaAl2Si2O8 anorthite) and sodium feldspar 

(NaAlSi3O8 albite) have been reported in the manufactured LWAs. These minerals can be 

either relics of primary detrital phases or neo-formed. For example, the formation of the 

CaAl2Si2O8 phase can be attributed to high contents of CaO that is likely to remain from 

the decomposition of carbonates. Ca2+ ions are capable of substitution into 

the aluminosilicate matrix and facilitate the formation of CaAl2Si2O8 (Erol et al., 

2008). NaAlSi3O8 is the sodium endmember of plagioclase division and is capable of 

forming a continuous solid solution with potassium feldspars at high temperatures 

(above 700 °C) (Deer et al., 2001). The formation of NaAlSi3O8 has been reported in 

LWAs of Liao et al. (2013) manufactured from reservoir sediment as a result of the 

addition of sodium hydroxide. 

Nevertheless, apart from the above-mentioned examples, studying the effect of neo-

formed phases on physical properties of LWA has received little attention; representing 

a subject area that needs to be addressed by future research.



48 

Table 2.9 XRD analysis for manufactured LWAs from mineral waste. “m” indicates minor phase detected. 

Materials Initial phase in raw materials Final phase in LWA 
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2.5.6 Use of secondary materials in LWA 

One of the most important economic aspects of LWA production is the potential for 

incorporating industrial secondary materials, often waste, as a partial replacement for 

geological materials. The basic idea in this application is that heavy metals and other 

leachable constituents such as Cl− present in ‘waste’, would be encapsulated in a 

silicate-based matrix or substitute other ions in the crystal structure when the materials 

are sintered at high temperature making them non-leachable (Chang et al., 2007). This 

method has been presented as a recycling option for industrial by-products such as sewage 

sludge and waste glass among others and in some cases for hazardous waste such as air 

pollution control residue (APCr) from EfW plants. Thermal treatments can cause heavy 

metals to be integrated into both an amorphous matrix and a crystalline phase, which 

reduces their availability. A study on leaching behaviour of LWA with incorporation of 

coal fly ash has found that heavy metals such as Cr, Ni, Mn and Zn can become a part of 

neo-formed spinel groups and feldspar crystalline structures; while Pb and Cd can react 

with SiO2 (in phyllosilicates) and enter the amorphous phases (González-Corrochano et 

al., 2012b). The study reported that divalent and trivalent ions such as Mn and Cr can 

partially replace Mg+2 and Al+3 and/or Fe+3 of the spinel and/or magnetite series. In a 

similar study on stabilization of heavy metals in LWA incorporating sewage sludge and 

river sediments (Xu et al., 2013), it was explained that in an oxidative condition, Al+3 can 

replace tetrahedral Si+4, producing an additional negative charge in the system which 

therefore can be balanced with any present heavy metal cations (Cd, Cr and Cu). The 

study also associated the LWAs’ leaching behaviour with the degree of sintering. The 

authors also reported that higher Fe2O3 content could be beneficial for solidification of 

Cd, Cu and Pb, as Fe2O3 can reduce the eutectic point of LWA components. This 

promotes the formation of a liquid phase sintering which would eventually result in 

LWAs with a stable structure.
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2.6 Summary 

New discoveries of oil reservoirs in the North Sea and the need for more complex drilling 

operations will produce large amounts of drilling waste in the future. This will be a burden 

on the UK landfill facilities and thus, a viable recycling option for drilling wastes and 

particularly contaminated cuttings is crucial. Currently, most of the management practices 

aimed at reducing the portion of hydrocarbons to below 1 wt.% making 

the waste compatible with the requirement for non-hazardous waste criteria.

The literature review highlighted the possibility of turning the contaminated drilling 

waste into lightweight aggregate for use in concrete products.  Major areas in the field of 

LWA production from mineral wastes were explored the. Studies have shown that various 

geological materials can be used for the manufacture of LWA, but the main challenge for 

producing high-quality LWA is to control the bloating mechanism to obtain an ideal pore 

structure. Reviewing previous research identified the key factors that influence the 

bloating and development of pore structure during the firing stage. These were classified 

into two groups. The first group involves the chemical composition (proportion of major 

oxides) of the raw materials, which determines the pyro-plastic viscosity and the presence 

of gas releasing compounds (measured through mineralogical and thermal analysis) to 

facilitate the bloating mechanism. The second group involves the production parameters 

such as the firing temperature, heating/cooling rate, dwell time and pre-processing 

techniques including milling and sieving. In addition, the review discussed the influence 

of pore structure on the physical properties of LWA including particle density, water 

absorption and compressive strength. The information provided in this chapter will be the 

basis for the experimental design and development of the manufacturing process in the 

subsequent chapters. 
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3 Chapter 3 Materials and methods 

3.1 Materials 

Three samples with a minimum of 20 kg oil-contaminated drill cuttings were supplied by 

Augean PLC, Peterborough, UK, a specialized waste management company that is 

responsible for managing the majority of the UK drill cuttings produced in the North Sea. 

The samples appeared to be varied in the oil content. For those with high oil content, the 

chunks of cuttings were broken down in the oil using a hand blender until a semi-dried 

homogeneous powder was achieved. It was observed that the material became drier as 

the blending progressed due to the absorption of oil on the generated surface area of 

the cuttings particles. The semi-dried materials were then air-dried over 7 days to 

minimize the hydrocarbons evaporating from the cuttings. Air-dried drill cuttings were 

ball milled (milling conditions are described in section 3.2.2) and homogenised in a 

mixer for 10 min prior to characterization. The samples were named as SDC, CDC and 

EDC. A picture of the as-received sample of oil-contaminated drill cutting and an air-

dried portion of material is shown in Figure 3.1.

Figure 3.1 Synthetic-based mud (SBM) drill cuttings: a) as received and b) air-dried. 
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3.2 Methods 

3.2.1 Material characterization 

This section provides a description of the selected analytical methods used for 

characterization of waste samples. As discussed in Chapter 2, to evaluate the bloating 

capability of the materials, information on chemical composition (major oxides) of drill 

cuttings is important. For this purpose, X-Ray Fluorescence (XRF) analysis was used. 

The presence and nature of gas releasing compounds were analysed by X-Ray Diffraction 

(XRD). Total Petroleum Hydrocarbon (TPH) due to the remaining drilling fluids in 

cuttings was measured by Gas Chromatography (GC) and used in the calculation of CO2 

emissions for the production of LWA. To determine the firing temperature range and the 

initial sintering temperature, drill cuttings were analysed by heating microscopy. 

Differential Thermal Analysis (DTA) was also used to provide complementary data to 

XRD analysis. Since SBM drill cuttings are waste materials, the release of contaminants 

including heavy metals and soluble salts were measured for samples of drill cuttings and 

compared with those for manufactured LWA. The concentration of acid-soluble and 

water-soluble heavy metals in the drill cuttings were determined by acid digestion and 

standard leaching analysis, respectively.

3.2.1.1 Chemical composition 

XRF spectroscopy is an accurate, fast and non-destructive analytical method for 

measuring the chemical compositions of a wide range of materials. In this method, the 

sample is irradiated by x-rays causing the material to produce characteristic x-ray, also 

known as x-ray fluorescence (Beckhoff et al., 2007). Each atom has specific energy levels 

that produce characteristic x-rays with a unique set of energies. This can be used as an 

elemental fingerprint to identify the chemical composition of materials. 

The measured intensities of the emitted x-rays are then used for determining the 

concentration of each element present in the sample (Brouwer, 2006). The sum 

of measured x-ray photon counts per unit of time is considered as a measure of 

intensity. Therefore, a calibration curve can be constructed using samples 

with known concentrations. This curve is used to predict the concentration (wt.%) of 

elements (often expressed as major oxides for geological materials) for 

samples of unknown concentration (Pessanha et al., 2018). 
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In this study, XRF analysis was performed to determine the chemical composition of drill 

cuttings. The analysis was conducted on 10 ± 0.01 g of homogenised material using a 

2010 PANalytical Axios sequential XRF spectrometer with 4kW Rh-anode x-ray tube. 

3.2.1.2 Mineralogy

XRD analysis is the most commonly used method for the identification and analysis of 

clay-sized minerals. It provides information on the bulk properties of materials that is 

averaged over 1011 – 1012 unit cells or billions of crystals. The mechanism for x-ray 

generation, diffraction phenomena and challenges on identification and analysis of 

minerals are briefly summarized from (Moore and Reynolds, 1989):

Continuous x-rays are produced when fast-moving particles such as electrons are slowed 

down as they pass through a strong electrical field. Characteristic x-rays are produced 

when a beam of accelerated electrons strike and knock out an electron from the inner 

orbital close to the nucleus of a target material such as Cu. The generated vacancy is then 

filled with another electron from outer orbits and a photon is released as the result of 

this event. The photon energy is equal to the energy difference between the orbitals, 

therefore for materials with a higher atomic number, photons with a higher energy and 

lower wavelength are emitted. If the vacancy is in the K shell and an electron from the 

closest location in L shell fills it up, the radiation is called Kα. Similarly, the radiation 

generated by an electron from M shell is called Kβ. 

A beam of x-ray is produced by passing the radiations through a small hole in a metallic 

plate (usually Pb). The beam then strikes the crystalline phase and produces a 

diffraction pattern. For an electromagnetic wave of any wavelength, the distance 

between the diffracting centres must be equal to the wavelength of the incident beam in 

order to have diffraction phenomena. A measurable diffracted beam must also be 

composed of a large number of constructive interfering waves that mutually reinforce 

each other. When a beam of x-ray strikes planes of atoms in a crystal structure, rays 

can reflect with an equal angle from different atomic planes. Figure 3.2 shows two 

beams of x-ray that are in the same phase striking the material. As the first ray is 

reflected from the atom in the top layer, the second ray reflecting from the atom in the 

second layer has to travel an extra distance (2l). For the second ray to remain in the 

same phase and thus, produce a detectable constructive interference, its extra 
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travelled distance must be equal to natural multiplications of the incident beam 

wavelength (nλ). It can also be seen that the extra distance is equal to 2sin(θ) where d is 

the distance between atomic planes and θ is the incident angle. The Bragg’s law or 

Bragg’s equation uses this relationship to calculate the distances between the diffraction 

centres in a crystalline material as follows:

d =  
nλ

2sin(θ)
3.1 

Figure 3.2 Demonstration of Bragg's law (Rachwal, 2010). 

The reflected part of the incident beam is also passed through an aperture slit before it 

goes to the detector. The aperture slit controls the peak sharpness and resolution. This is 

important for analysing clay minerals as they have inherently broad peaks in comparison 

to other crystalline materials and thus, the use of fine slits would reduce the intensity of 

reflections and make them indistinguishable from the background peaks.

Clay minerals are best identified from the pattern of oriented aggregates in the direction of

(001)5 crystal plane; since in X and Y directions, the structures are similar, and it is the

Z direction at which the atomic patterns differ. The analysis of bulk rock can be more 

difficult due to the presence of non-clay (non-platy) minerals that can produce numerous 

interferences. However, this is not always the case, for example, quartz is normally present

in most clay-size fractions of sedimentary rocks and since it does not tolerate any 

5 Miller indices are a notion system for describing the orientation of crystal lattice planes by using their 
intercepts with xyz axes (https://www.doitpoms.ac.uk/tlplib/miller_indices/index.php [Accessed on 
29/01/18]). 

https://www.doitpoms.ac.uk/tlplib/miller_indices/index.php
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significant atomic substitution, it shows a distinctive diffraction pattern (strongest peak 

at 26.65 °2θ and second strongest at 20.85 °2θ). 

The above-mentioned difference in the identification process of clay/non-clay also 

exists in their quantitative analyses by XRD methods. For the majority of non-clay 

minerals, a simple peak height can be used as the measure for an integrated intensity 

that can be related to the abundance of that mineral in the mixture. This is because 

these minerals contain large scattering domains (hundreds of unit cells) that can 

produce narrow peaks with identical widths. However, the application of such 

methods for mineral phase quantification is very limited for multi-component mixture 

such as drill cuttings samples with a high possibility of overlapping peaks. Other factors 

such as inherent variability of some crystal structures, preferred orientation and the 

absorption of x-rays by other present phases in the mixture, can also limit the 

application of traditional peak heights in quantification (Ward and French, 2005). To 

address these issues, in 1969 Hugo Rietveld proposed a refinement method for crystal 

structure diffraction data. In his method, the observed diffraction pattern is fitted with a 

calculated diffraction profile corresponding to the sum of theoretical patterns for each 

identified phase; and the difference between the two is minimized through a refinement 

process (Hillier, 2000). At the best fit, the two profiles are related by a scale factor, 

allowing the relative quantification of each mineral phase (Alves and Omotoso, 2009). 

The refinement involves fitting the observed (measured) diffraction pattern with a 

crystallographic calculated profile (Bish and Howard, 1988). The theoretical diffraction 

pattern is used as the starting theoretical model and this is adjusted by least-squares to fit 

the observed pattern (Stinton, 2006). The model contains a number of profile parameters 

such as unit cell information and 2θ corrections (deviations in 2θ caused by displacement 

of the sample), peak shape functions (for both the sample including the domain size, 

stress/strain defects, etc. and, the instrument including the radiation source, geometry, slit 

size, etc.) and a function to model the background (McCusker et al., 1999): 

In Rietveld refinement, the function ∆ is minimised: 

∆ = ∑  wi {yi(obs) − yi(calc)}2

i

3.2 

where yi(obs) is the observed intensity at step i, yi(calc) is the calculated intensity and

wi is a weighting factor which is defined as: 
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wi =  
1

yi(obs)
3.3 

The fit of the calculated pattern to the observed data (the process of convergence) is done 

in terms of agreement indices or R-factors. The quality of the fit is represented through 

lower R-factors. The most common is the weighted-profile R-factor which is defined as: 

Rwp =  {∑ wi {yi(obs) − yi(calc)}2/ ∑ wi {yi(obs)}2

i

 

i

}

1/2

 × 100% 3.4 

Another R-factor which represents the statistically expected quality of the fit is defined 

as Rexp. This is a measure of data quality and Rwp should approach Rexp. 

Rexp =  { (N − P) / ∑ wi {yi(obs)}2

N

i

 }

1/2

 × 100% 3.5 

where N is the total number of observations and P is the number of parameters refined. An 

example of output model for quantitative analysis of drill cuttings was given in Appendix II.

In this study, XRD analysis was conducted on 10 ± 0.01 g of homogenised material 

using a Philips x-ray diffractometer system with generator (1830) and the goniometer 

(3020). Cu K-alpha radiation, a step size of 0.05° and a time for each step of 1.0 second. 

For peak identification, the programme ‘Traces’ was used in conjunction with the 

International Centre for Diffraction Data (ICDD) and Powder Diffraction File 

(PDF). For quantification, the commercial Rietveld-based software ‘Siroquant’ was 

used.

3.2.1.3 Total Petroleum Hydrocarbon (TPH) 

To measure the concentration of the remaining (absorbed) portion of drilling fluids on 

cuttings, TPH content of the raw materials was determined. This information was also 

used to estimate the embodied CO2 of LWA, discussed in detail in Chapter 8. TPH was 

extracted from a 5 ± 0.01 g weighted sample of drill cuttings using sodium sulphate and 

n-heptane digestion according to the British standard method (BS EN ISO 16703) and 

measured using gas chromatography with flame ionisation detector (CG-FID), Agilent 

6890 Network Gas Chromatograph. TPH limits for Hazardous Properties (HP) including 

Carcinogenic (HP 7), Ecotoxic (HP 14), Toxic for Reproduction (HP 10) and Specific 

Target Organ Toxicity/Aspiration Toxicity (HP 5) as expressed in the UK’s waste 

catalogue (WM3, 2015) are listed in Table 3.1. 
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Table 3.1 Limits for assessing the hazardous properties of waste as expressed in the UK’s 

waste catalogue (WM3, 2015). 

Total petroleum hydrocarbons 

(TPH) concentration  

Hazardous properties (HP) assessment 

≥ 10.0% 100,000 mg/kg Specific Target Organ Toxicity/Aspiration Toxicity (HP 5) 

≥ 3.0% 30,000 mg/kg Toxic for reproduction (HP 10) 

≥ 2.5% 25,000 mg/kg Ecotoxic (HP 14) 

≥ 0.1% 1000 mg/kg Carcinogenic (HP 7) 

3.2.1.4 Microstructural analysis 

In the study of materials, the pore structure is an intermediate variable that relates the 

chemical composition of raw materials and production parameters to physical properties 

including particle density, water absorption and compressive strength. The pore structure 

of LWA is developed due to bloating. The occurrence and the degree of bloating can be 

analysed by microscopy. Scanning electron microscope (SEM) is a powerful imaging 

instrument which can be used for microstructural analysis of LWA. SEM uses an electron 

beam for producing images with as low as 10 nm spatial resolution. This provides an 

opportunity to characterise the main features of pore structure including total porosity, 

pore connectivity and size distribution and, investigate their effects on LWA physical 

properties. The surface porosity of LWA can be characterized by SEM and used for 

investigating the water absorption.

SEM operates by the bombardment of the sample’s surface with an electron beam. This 

results in an activated volume close to the surface (Figure 3.3) where various 

electron/nuclei interactions take place. These interactions result in emissions of electrons 

with different energies and x-rays, each of which are collected with a special detector and 

able to provide information about properties of materials at specific depths (Reed, 2005): 

Backscatter electrons (BSE) are produced when the incident electrons are elastically 

scattered in the specimen and leave the surface at highly deflected angles. Secondary 

electrons (SE) are produced when the inelastically-scattered fraction of the incident electron 

beam hits and ejects the loosely bound electrons of the specimen. Due to the inelastic 

interactions, the secondary electrons have lower energies and thus, only those electrons 
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that are produced at a few nanometres depth can escape. For this reason, SEs are used for 

conventional SEM imaging when topographical surface details are of interest. 

SEM has applications in different fields of geology including sedimentology and 

mineralogy, as it can produce high-resolution images of sediment grains and inter-growth 

and so can be very useful in studying the minerals morphology (Reed, 2005). In this study, 

raw materials in powder form were analysed for particle morphology. The analysis 

provides insight into the effect of milling on drill cuttings particle size reduction and 

agglomeration. To analyse drill cuttings particle morphology, small amounts of 

milled samples were carefully placed on a layer of double-sided carbon tape 

attached to the specimen stub.

The microstructures of the manufactured LWA were analysed to understand the 

transformation and degree of sintering for drill cutting particles and, establish relations 

between the bloating phenomenon and physical properties. For the manufactured LWA, 

the outer surface and fracture surface produced after compressive strength testing were 

used for SEM imaging. All samples were coated with gold/platinum in a Polaronprep 

2000 (Quorum Technologies) sputter coater to prevent any surface charging effect. 

A JOEL JSM 6460LV SEM was used for microstructural analysis.
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Figure 3.3 Signals resulting from electron beam and sample surface interaction (Fens, 

2000). 

3.2.1.5 Thermal behaviour of drill cuttings 

Thermal analysis methods are widely used for characterization of geological materials. 

In thermal analyses, a sample of material is heated and changes in physical properties are 

used to provide information on the material chemistry and its behaviour at high 

temperatures. In this study, heating microscopy (HM) and differential thermal analysis 

(DTA) were used to investigate the materials high-temperature behaviour. In addition, 

this study aimed to use HM in combination with DTA to monitor the bloating behaviour 

and the role that decomposition reactions may play in the bloating mechanism.

 Heating microscopy

Heating microscopy is a method for studying the materials high-temperature events such 

as shrinkage, sintering, bloating, softening and melting. The method has been widely 

adopted in the ceramic and glass industry. Heating microscopes work by taking images 

of a specimen outline during a heating period (starting at the room temperature and 

finishing above the materials melting point) to define a number of characteristic 

temperatures corresponding to particular shapes of the outline (Montanari et al., 2014). 



The variations in the sample dimensions are measured through an image analysis software 

during the heating process.

Important characteristic temperatures can be identified based on the matrix viscosity at a 

pyro-plastic state: as the material heats up and passes the softening point, the viscosity of 

the matrix decreases and the surface tension of the liquid phase tends to minimize the 

sample outer surface (Raask, 1979). This phenomenon blunts the sharp edges of the 

sample outline and if the size of the sample is sufficiently small, the sample transforms 

into a nearly spherical shape, known as ‘sphere’ or ‘ball’ point (Pascual and Pascual, 

2001). Above this, as the surface tension of the melted phase reduces by temperature, the 

sample partially flows and reach a hemispherical shape, known as ‘hemisphere’ point. As 

the temperature increases further, the material reaches the melting point. 

In this study, a high-temperature optical dilatometer (microscope), EM201/HT163, 

Hesse Instruments (Germany) with the maximum operating temperature of 1400 °C ± 3 

°C was used to examine drill cutting cubic samples (3 × 3 × 3 mm). The analysis was 

conducted at 10 °C/min to simulate the heating rate used in the muffle furnace during 

the LWA firing stage. 

 Differential thermal analysis (DTA)

In DTA, a sample of material and an inert reference material are heated and let to cool 

simultaneously in the same chamber and the temperature difference between them 

is recorded (Vold, 1949). If the material undergoes a phase transformation, the 

resulted released or absorbed heat would increase the measured temperature difference 

and a peak is generated in the DTA curve (thermogram). Conventionally, an 

exothermic reaction peaks upward and an endothermic reaction peaks downward 

(towards the abscissa). In this study, a Bahr-Thermoanalyse GmbH (Germany) 

differential thermal analyser with a heating rate of 10 °C/min and using aluminium 

oxide as the reference material was used. 

3.2.1.6 Heavy metal concentration in drill cuttings 

The total metals in drill cuttings were extracted through acid digestion with Aqua Regia 

to produce a liquid digestate compatible with inductively coupled plasma optical 

emission spectroscopy (ICP-OES). Particular attention was given to elements of 

the waste acceptance criteria (WAC), including As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, 

Se and Zn. 

The acid digestion with Aqua Regia is proposed by the Environment Agency for 
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extracting total metals to be determined using an appropriate end-detection technique, 

such as ICP-OES (Environment Agency, 2006). A sample of 1.0 g air-dried drill cuttings 

was digested on a hot block for 3 hours at 110 °C with 20 ml Aqua Regia (consisting a 

mixture of concentrated HNO3 and concentrated HCl at a volumetric ratio of 1:3). Once 

cooled, the digestate was diluted with 100 ml deionised water and then filtered and 

analysed using an ICP-OES for the desired metals. The extract concentrations 

are converted from mg/l to mg/kg as follows:

Cs  =  (Ce  Ve) / (Msd  1000) 3.6 

where Cs is the concentration of the metal in the sample in mg/kg; Ce is the concentration 

of the metal in the sample extract solution in mg/l; Ve is the volume of extract (elute) in 

ml; and Msd is the mass of dry sample in kg.

3.2.1.7 Leaching analysis of drill cuttings and manufactured LWA 

Leaching is defined as the release of soluble constituents from a solid phase (waste) to a 

liquid phase (water) over the course of long periods of time (Saveyn et al., 2014). It is a 

complex phenomenon that is affected by a series of factors - such as element chemistry, 

pH, redox potential, complexation, liquid-to-solid (L/S) ratio and contact time with 

solvent (van der Sloot et al., 1996). The major element compositions are very important 

as they determine the chemistry of pore water which in turn controls the leaching of trace 

and minor elements. The pH also plays a vital role in regulating the solubility of the 

constituents. In addition, inorganic complexing agents such as Cl−can increase the 

leaching behaviour of specific heavy metals. The liquid to solid (L/S) ratio simulates the 

actual time-scale through which the infiltration occurs (van der Sloot et al., 1996). 

Currently, the potential release of contaminants from granular solids is measured 

according to two major classes of leaching tests (Kosson et al., 1996). First, single batch 

extraction tests that simulate the release under specific environmental conditions, 

examples include ‘Compliance test for leaching of granular waste materials’ (BS EN 

12457-2, 2002) and, ‘Toxicity Characteristic Leaching Procedure’ (TCLP, United States). 

Second, sequential chemical extraction tests that evaluate the release under a series of 

increasingly more aggressive solvents, such as ‘Characterization of waste. Leaching 

behaviour test. Influence of pH on leaching with initial acid/base addition’ (BS EN 14429, 

2005) and, ‘Leaching characteristics of solid earthy and stony building and waste 
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materials’ (NEN, 1995). In each class of tests, a fundamental leaching parameter, either 

availability or solubility, is set to control the release mechanism as discussed below 

(Kosson et al., 1996): 

 Availability controlled condition: is used often to estimate the potential release in

batch tests with high L/S ratios (>10 l/kg) and near neutral pH. When the leachate

concentration is below the saturation for a specific constituent, its release is under

availability-controlled condition. Availability for most of the heavy metals like

Pb is significantly lower than their total content. For such constituents, the

availability is an estimate of release in more than 1000 years. However, for highly

soluble salts such as NaCl, the availability can be almost equal to its total content

and thus, it can be reached over the course of just a few years under different

disposal or utilization scenarios.

 Solubility controlled condition: occurs when the solvent is in saturation with

respect to a specific constituent. The condition is likely to happen at low L/S ratio

in the fields where water contact with the solid is through percolation. For a

saturated solution, the solubility of dissolved constituents can be affected by pH.

In the case of heavy metal cations, such as Pb and Zn the solubility is very

sensitive to pH and the presence of complexing agents. Therefore, the condition

is often reproduced in pH-dependence leaching tests to estimate the solubility of

a constituent of interest and is given as a function of pH.

In this research, the manufactured LWA are aimed to perform in construction scenarios 

where the material own/natural pH governs the release of the constituents (the leachate 

pH is determined by the released/water-soluble constituents). Therefore, drill cuttings 

and manufactured LWA were subjected to the leaching test without acid or base 

addition as described by British standard method (BS EN 12457-2) and the results 

were compared with designated End of Waste (EoW) criteria.

3.2.1.8 End of Waste (EoW) criteria 

EoW criteria determine when a waste gains the status of a product. The EU 

Waste Framework Directive (2008/98/EC) introduces provisions to define EoW 

criteria that provide a high level of environmental protection and economic benefits. 

This provides an opportunity to encourage recycling and use of waste as a resource,
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whilst aiming to inhibit over-consumption of natural resources and creates 

landfill diversion. For aggregate manufacturers in the UK, EoW criteria for the 

production and use of aggregates from inert waste are outlined in the Aggregate 

Quality Protocol (Environment Agency, 2013), in which no specific leaching criteria is 

provided.

Most European countries, except the UK, have founded the EoW criteria on the leaching 

properties of materials. However, each country uses a specific leaching test and thus 

establishing leaching limit would be irrelevant without referring to the test condition 

(Velzeboer and Zomeren, 2017). For the research on the use of hazardous waste in 

the production of construction materials, studies have often based the criteria on 

batch leaching test (BS EN 12457) and the EU inert landfill Waste Acceptance Criteria 

(WAC) as expressed in (2003/33/EC). Therefore, the EoW criteria based on WAC 

limit values for inert waste were used in this study as listed in Table 3.2. 
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Table 3.2 EoW criteria based on WAC for inert landfill as expressed in (2003/33/EC).

Constituents WAC 

Arsenic (As) 0.5 

Barium (Ba) 20.0 

Cadmium (Cd) 0.04 

Chromium (Cr) 0.5 

Copper (Cu) 2.0 

Mercury (Hg) 0.01 

Molybdenum (Mo) 0.5 

Nickle (Ni) 0.4 

Lead (Pb) 0.5 

Antimony (Sb) 0.06 

Selenium (Se) 0.1 

Zinc (Zn) 4.0 

Chloride (Cl−) 800 

Fluoride (F−) 10 

Sulphate (SO4
−2) 6000* 

DOC 500 

3.2.1.9 Leaching test procedure:

Since drill cuttings are classified as a hazardous waste, leaching behaviour of the 

final products was of concern. Leaching tests were conducted according to the 

European standard (BS EN 12457-2): 0.090 ± 0.005 kg of dry sample was ground (to a 

particle size of 4 mm or less) and added into a 2-litre high-density polyethylene 

bottle containing deionised water at a liquid to solid o (L/S) of 10 l/kg. The volume of 

deionised water was determined according to the following equation:

3.7 

* 6000 mg/kg at L/S  = 10 l/kg is complying with the inert limit if the leaching is 
caused only be SO4-2 and Cl-
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where: Ve = Volume of deionised water (elute) in ml; x = Liquid to solid ratio in l/kg (10 

l/kg for this experiment); mc = Moisture content in %; Msd = Dry mass in kg. 

The moisture content was calculated as: 

mc = 100 × (Mw −  Msd)/Msd 3.8 

where Mw = The mass of wet sample in kg.

The bottle was placed under constant rotation in an end-over-end tumbler (5 rpm - 10 

rpm) for 24 hours (see Figure 3.4), and then allowed to rest for 15 min to settle the solid 

particles. The resulted leachate was then vacuum filtered through a 0.45 μm membrane. 

The concentrations of dissolved constituents were measured by inductively coupled 

plasma optical emission spectroscopy (ICP-OES) and ion chromatography (IC). 

Figure 3.4 End-to-end rotary tumbler used for leaching test. 

3.2.1.10 Analysis of metals by ICP-OES:

ICP-OES is an analytical technique for determining trace (<100 ppm) and minor (100 – 

1000 ppm) elements with a wide range of applications from geological materials to water 

and fluid extracts (leachates) (Lichte et al., 1987). For the analysis of solutions, the sample 



is transformed into an aerosol (1 -10 μm) and is passed through the plasma. The plasma 

is an electrically neutral, highly ionised gas that operates with pure helium or argon to 

avoid combustion. The ICP induces the plasma using an induction coil to produce a 

magnetic field (Manning and Grow, 1997). This process excites the outer shell electrons 

of atoms for which electromagnetic radiation (photon of light) is emitted as electrons are 

relaxed from the excited state to the ground state. The radiations are emitted at specific 

energies (characteristics of atomic energy level transition) and are therefore characteristics 

of each element in the sample. These photons are simultaneously detected by 

photomultiplier tubes (PMTs) within the detection system (Lichte et al., 1987, Manning 

and Grow, 1997); having the advantage of directly proportioning an emission of a 

specific element (at a given wavelength) to its concentration (Beer’s Law).

In this study, a Perkin Elmer ICP-OES Optima 8300 was used. The concentration of 

dissolved metals in leachates from the leaching test was directly analysed by ICP-OES 

according to the British standard for water quality (BS EN ISO 11885, 2009). The ICP-

OES instrument was calibrated running a three-point calibration curve at 0.1 mg/kg, 

1 mg/kg and 10 mg/kg for the 12 waste acceptance criteria (WAC) elements including 

As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se and Zn, using certified reference solutions. 

The instrument detection limits were calculated as three times the standard deviation for 

the noise of 10 blank runs (baseline noise value). The detection limits for each element was 

measured as three times the standard deviation of spiked samples, which are prepared for 

each element at concentrations of three times the instrument limit of detection. 

Accordingly, the limit of quantification in (mg/kg) was calculated by multiplying the 

resulted detection limit for each element by 10. It must be noted that as the signal to noise 

ratio varies for all elements, some have higher detection limit values than others.

3.2.1.11 Analysis of anions with ion chromatography (IC)

Ion chromatography (IC) is a powerful analytical method for measuring the concentration 

of ionic species in solutions. IC offers a higher sensitivity, speed and simultaneous 

selectivity for analysis of anions compare to other methods - including ICP and atomic 

absorption spectroscopy (AAS) (Weiss, 2016). The method is comprised of pumping a 

liquid mobile phase (eluent) through a solid stationary phase (usually uniform particles, 

5 μm in diameters and packed in a 5 – 30 cm long cylindrical column) and then through 

a flow-through detector (Haddad and Jackson, 1990). The sample is injected into the 

eluent and enters the separator column as shown in Figure 3.5. The ions travel at different 
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speeds through the column as they interact differently with the stationary phase and thus, 

reach the detector at different times. A conductivity suppression unit is used to reduce the 

background conductivity of the eluent (Na2CO3 and NaHCO3) by converting it into a less 

conductive acid form and to increase the conductivity of anions by protonating them into 

a highly conductive (up to 3 - 5 times) conjugate acid (Wang, 2010, Mohamed, 2012). 

The detector simultaneously measures the time it takes for an anion to emerge from the 

column, versus the conductivity to generate a peak. The concentration is determined by 

comparing the peak area to standard solutions with known concentrations.

In this study, samples were leached in deionised water according to the single stage 

leaching process at a L/S ratio of 10 l/kg (BS EN 12457-2, 2002). The leachate was 

filtered and run through a Dionex Ion Chromatograph for measuring relevant anions i.e. 

Cl−, F- and SO42- according to (BS EN 6068-2.46, 1995). 0.5 M sodium carbonate was 

used as the eluent. The prepared multi-element calibration standards included: 

a) Cl− = 2500 mg/l, F- = 1000 mg/l and SO42- = 1000 mg/l

b) Cl− = 500 mg/l, F- = 200 mg/l and SO42- = 200 mg/l

c) Cl− = 50 mg/l, F- = 20 mg/l and SO42- = 20 mg/l

d) Cl− = 5 mg/l, F- = 2 mg/l and SO42- = 2 mg/l

Where the sample chromatogram exceeded the calibration peak, the test was repeated 

with a higher dilution factor. The measured concentrations were reported as mg/kg. 



68 

Figure 3.5 Ion chromatography (IC) system flow diagram adapted from (Wang, 2010). 

pH and conductivity

The leachate pH was measured using a Thermo Orion Star - A211 pH meter. The 

conductivity of the leachate was measured in μS/cm using an Orion Star A212 

conductivity meter with temperature compensation. These values are required to be 

reported alongside the leaching concentration measured according to the British 

standard method (BS EN 12457-2, 2002). 

3.2.1.12 Dissolved organic carbon (DOC) 

DOC was measured by filtering the leachate through a 0.45 μm membrane and 

oxidation of organic carbon in water to CO2 by supercritical water oxidation (using 

persulphate as the oxidising agent) according to the British standard method (BS EN 

1484, 1997). The gas was then separated and run through a NDIR (Nondispersive 

infrared) module. 
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3.2.1.13 Loss on ignition (LOI) 

LOI is a simple gravimetric test method for measuring the mass loss of a sample of 

material when it is heated up to high temperatures in presence of air or oxygen. The 

heating temperature range varies for different research fields and for estimating the 

presence of different components. For example, in soil science, a sample is heated 

between 300 °C and 800 °C for 2 – 12 hours to measure the organic and inorganic carbon 

content; in geological science, the applied temperature range is usually between 550 °C 

and 950 °C for approximately two hours to measure various volatile salts, structural water 

and inorganic carbon content including carbonates as in CaCO3 and CaMgCO3 (Mu et al., 

2017). 

In this study, the LOI was determined on 20 ± 0.01g of dried sample following the (BS 

EN 12879, 2000). The sample was first dried in a drying oven at 105 °C overnight and 

allowed to cool down in a desiccator for at least 30 min before the test. The dried sample 

is then weighed out into a crucible before being heated at 550 ºC for four hours. The 

sample was left to cool before reweighting. The difference in the initial mass and the final 

mass is the LOI. 
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3.2.2 Manufacturing method 

This section provides information on the manufacturing method used for LWA 

including pelletisation and firing stages. The production parameters selection 

procedure is described. Tests used for determining the physical properties of LWA 

including particle density (fired pellets density), water absorption after 24 

hours immersion and compressive strength of individual pellets are outlined.

In Figure 2.10, the main production parameters that affect the pore structure and physical 

properties of LWA were shown. These include pre-processing such as milling and 

sieving, heating/cooling rate, firing temperature and dwell time. In this study, LWA was 

manufactured according to the flowchart shown in Figure 3.6. The production parameters 

and their range of variability used in each step were determined based on the literature 

(provided in Chapter 2) and material characterization data. In addition, the manufacturing 

process and the range of parameters were aimed to closely resemble those commonly 

used in large-scale LWA manufacturing. However, due to the large number of production 

parameters and the limited time available for a PhD project, investigating the full range 

of variability for each parameter was not possible and therefore, some parameters were 

set on an optimal range extracted from the literature. The manufacturing process involved: 
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Figure 3.6 Flowchart of pre-processing, pre-treatments and LWA manufacturing in this 

study. 

3.2.2.1 Pre-processing 

In the large-scale manufacturing of ceramics and mineral processing, both wet and 

dry milling are commonly used (Kotake et al., 2011). The nature of drill cuttings, 

containing considerable amounts of soluble salts, necessitated a dry condition employed 

during the milling stage.

Particle size reduction can serve in favour of bloating through higher sintering 

efficiencies and better gas entrapments, however a coarser particle size distribution is 

also needed for sufficient workability of material for pelletisation (Dondi et al., 2016). 

In this study, the maximum particle size of 250 μm was used, as suggested by the work 

of Cougny (1990), to ensure both bloating and technological behaviour of LWA. This 

was the rationale for determining the speed and duration of the milling process. A 

number of preliminary experiments were carried out to find an optimal milling condition 

that provided a size reduction to <250 μm, for the ball mill that was available for this 

study. Milling was conducted in a dry condition using a 6-litre planetary ball mill (DECO-

PBM) at 300 rpm for 6 hours. Milled samples were sieved using a mesh size of 250 μm. 



3.2.2.2 Pelletisation 

To pelletise the samples prior to firing, the amount of water required to facilitate 

sufficient workability (plastic behaviour) without causing the material to flow was 

determined through a series of preliminary experiments. The samples were 

pelletised by adding approximately 22.5 ± 2.5 wt.% water to the ball milled drill 

cuttings. Roughly spherical pellets with 7 – 12 mm in diameter (to be in the 

size range of normal-weight course aggregate) were formed by hand rolling. The 

hand rolling method was selected to provide consistency in the shape and size of 

‘green’ pellets for testing. 

The remaining moisture after pelletisation can cause the pellets to burst during the firing 

stage and therefore must be removed by drying. However, the conventional drying 

temperatures used for LWA manufacturing (100 – 200 °C) could not be used here due 

to the resultant loss of hydrocarbons from drill cuttings. Therefore, drying was 

carried out in a cabinet dryer at 65 °C for 24 hours. 

3.2.2.3 Firing 

The ‘green’ pellets were fired in a laboratory-scale programmable muffle 

furnace (SNOL 6,7/1300). The firing conditions were adjusted to simulate those 

used in large-scale LWA manufacturing, as described in Chapter 2: 

 Heating/cooling rate

In the drying/pre-heating zone of rotary tube  kilns, the ‘green’ pellets temperature can 

reach up to 600 °C before entering the sintering zone and being exposed to firing 

temperatures of approximately 1200 °C. Such a sudden increase in the temperature is 

not achievable in a laboratory-scale muffle furnace. Since it normally takes 2 hours for 

pellets to experience a temperature rise (from ambient to maximum sintering 

temperature) a mean heating rate of 10 °C/min can be applied during the firing stage in 

the muffle furnace to resemble the heating regime in the industrial rotary tube kilns. 

Therefore, the heating rate was set at 10 °C/min throughout this study. Figure 3.7 shows 

the heating regimes to which LWA pellets were subjected. 

The cooling rate was designed to mimic the fate of LWA in cooler units at large-scale 
commercial manufacture where ambient air is blown on pellets. This could be achieved 
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by opening the muffle furnace door at the end of the firing stage to expose the pellets to 

the ambient air. Since this would damage the heating elements, a two-step cooling 

regime was applied for all samples comprising of a slow cooling regime, at 10 °C/min 

until 800 °C, followed by rapid cooling in ambient air, at  ̴ 40 °C/min, until room 

temperature is reached.

Figure 3.7 Heating regimes applied in muffle furnace during the LWA manufacture. 

 Firing temperature

The firing temperature range for each sample of drill cuttings was determined separately. 

This was because the material characterization data revealed that the three samples of 

drill cuttings were very different in nature, and therefore would reach pyro-plasticity at 

different temperature ranges. The minimum temperature at which the material showed 

sintering was defined as the lower firing limit and the temperature at which melting was 

initiated was set as the higher firing limit. Both the initial sintering and melting 

temperatures were determined based on the data obtained from heating microscopy. The 

first sharp decrease in the cube outline area to 95% of the original area has been associated 

to the initiation of sintering (Zhang et al., 2011) and therefore, was used in the muffle 

furnace as the lower firing temperature for LWA manufacturing in this study. The 

initiation of melting was also determined from heating microscope images, where the 

liquid phase appeared, and the cube started to lose its structural integrity. The defined 
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firing temperature range was divided into four segments and the ‘green’ pellets were fired 

at each interval temperature. Samples that did not exhibit melting over the temperature 

range used in the heating microscope were fired at four temperatures above the initial 

sintering point with 10 °C increments to ensure sufficient pyro-plastic viscosity and 

to maximise energy savings.

 Dwell time

As discussed in Chapter 2, the firing dwell time (the time that pellets were kept at the 

maximum temperature in the kiln) must be sufficient for bloating to occur and not too 

long to cause large energy consumption and possibly melting. In the sintering zone of 

rotary tube kilns (in Figure 2.8) LWA normally resides for 8 – 10 min. In addition, the 

majority of dwell times used in studies of Table 2.7, range between 5 – 15 min. 

Therefore, for this study, a mean dwell time of 10 min was used.
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3.2.3 Physical tests 

The applicability of the manufactured LWA for use in concrete products is assessed by 

measuring three main physical properties including particle density, water absorption and 

compressive strength, as discussed in Chapter 2. In this study, these properties were 

determined and compared with those for commercial products that are used in the 

production of structural concrete products. Furthermore, the effect of LWA pore structure 

developed during the firing stage on physical properties was investigated. A description 

of the physical tests used in this study are provided in the followings:

3.2.3.1 Particle density 

Particle density on an oven-dried basis was calculated using the Archimedes principle - 

based on the method described in the British standard (BS EN 1097-6). According to this 

principle, when an object is immersed in the water, its volume is equal to the mass of 

displaced water (if density of water is assumed 1.0 g/cm3). Since LWA is a porous 

material with some degree of water absorption, the volume of dried pellets must be 

determined by excluding the water-accessible pores. Therefore, the volume of the dried 

pellets is equal to the difference between the mass of water-saturated pellets and its 

apparent mass (immersed mass in water). Particle density on an over-dried basis (ρdr) for 

the manufactured LWA was calculated in accordance with the following equation 

(Cheeseman and Virdi, 2005): 

ρdr  = (ρw  ×  mdr)/(msat −  mimm) 3.9 

[Where: ρw is the density of water in g/cm3; mdr is the mass in g of oven-dried test

portion; msat is the mass of saturated and surface-dried aggregates (24 hours in water and 

dried in air) in g; mimm is the apparent mass (immersed mass) in g; and. The measurement 

was carried out in triplicates using 10 pellets for each test portion.] 

3.2.3.2 Water absorption capacity 

Water absorption capacity is equal to the increase in weight of dry pellets after immersion 

in water for 24 hours. Water absorption capacity as a percentage of the dry mass (WA24) 

was calculated in accordance with the following equation: 

WA24 = 100 × (msat −  mdr)/mdr 3.10 
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3.2.3.3 Compressive strength 

The majority of the reviewed studies in Table 2.7 obtained the LWA strength data from 

compressing a single pellet between two rigid surfaces and measured the critical load, 

which causes the fracture. If the critical load is determined, the compressive strength can 

be calculated because the porous structure of LWA produces the same stress distribution 

as in a solid sphere for which a number of equations exist. To calculate the compressive 

strength of LWA the equation must involve a number of interrelated physical properties 

– such as the strength of the matrix and geometrical factors such as size and shape 

(González-Corrochano et al., 2009b). It has been shown that in single pellet crushing 

tests, porosities <0.82% perform similarly to solid brittle spheres, where fracture failure 

is due to tensile stress somewhere alongside the axis between two loading points, and 

most importantly, the strength is increased exponentially with decreasing sample size (Li 

et al., 2000, Bernhardt et al., 2013). The following equation has been introduced for 

calculating solid brittle spheres compressive strength and been widely used for LWA 

(Hiramatsu and Oka, 1966):

S = (2.8 × Pc)/πX2 3.11 

[Where: Pc is the fracture load in N and X is the distance between the loading points in 

mm.] 

In this study, compressive strength (S) was calculated by loading the pellets to fracture 

between two parallel rigid surfaces and using the above equation. The fracture load was 

determined using a load ring with 4.55 kN capacity (Wykeham-France) at the loading 

speed of 0.05 mm/s. 

The physical properties of LWA are mainly influenced by the microstructure developed 

during the firing stage, as discussed in Chapter 2. In addition, the leaching behaviour of 

LWA is affected by mineralogy of the phases formed during the firing. This research 

aimed to investigate these relations for various batches of manufactured LWA, as shown 

in Figure 3.8. 
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Figure 3.8 Relations investigated between properties of LWA. 
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4 Chapter 4: Characterization of drill cuttings 

In this chapter, the research investigated the characteristics of the three samples of SBM 

drill cuttings; namely SDC, CDC and EDC. The study aimed to determine chemical 

compositions, mineralogy, particle morphology, thermal behaviour and contaminant 

leaching. The characterization data was used as a basis to design the manufacturing 

process in Chapter 5 and explain the LWA physical and leaching characteristics.

4.1 Chemical compositions 

The chemical compositions of drill cutting samples were determined by XRF analysis. 

The data was used to: predict the materials capability to bloat, explore the nature and 

quantity of drilling additives present in cuttings and estimate the total amount of leachable 

compounds including heavy metals and soluble salts. Table 4.1 shows the results of XRF 

analysis including major elements reported as oxide weight percentages (wt.%) 

normalised to 100%, and LOI data. Table 4.2 shows the concentration of minor and trace 

elements in drill cuttings. 

4.1.1 SDC 

SDC had 32.89 wt.% SiO2, 4.39 wt.% Al2O3 and 30.53 wt.% total flux (Fe2O3 + MgO + 

CaO + Na2O + K2O). The viscosity of LWA matrix at the pyro-plastic state is related to 

SiO2/Σ flux ratio and SiO2/Al2O3 ratios, as discussed in Chapter 2.  The SiO2/Σ flux ratio 

and SiO2/Al2O3 ratios were 1.08 and 7.49 respectively indicating an inability of the material 

to produce a suitable viscosity for bloating. High concentrations of Ba (161,261 mg/kg) and 

sulphur (42,233 mg/kg) were measured for SDC sample. Comparing these with the values 

for the molar mass of Ba (137.3 g/mol) and sulphur (32 g/mol), it is likely that BaSO4 

is the main SO4
−2 bearing phase in SDC sample. As discussed in Chapter 2, BaSO4 is

added to the drilling fluid as a weighting agent (especially for drilling high depths). 

4.1.2 CDC 

XRF analysis for CDC showed the lowest silica (32.52 wt.%) and the highest calcium 

oxide content (50.15 wt.%) among the samples. The SiO2/Σ flux ratio and SiO2/Al2O3 

ratio were 0.48 and 4.88 respectively, indicating a lack of bloating. Ba and S were 

72,595 mg/kg and 18,369 mg/kg respectively, suggesting again BaSO4 to be the major 

sulphur bearing component present.
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4.1.3 EDC 

The analysis of EDC showed the concentrations of SiO2 and Al2O3 at 41.18 wt.% and 

12.75 wt.% respectively. The SiO2/Σ flux ratio was 0.91 and the SiO2/Al2O3 ratio was 

3.22, showing a disproportionate composition for bloating also in EDC sample. Ba and 

S were 32,019 mg/kg and 39,727 mg/kg respectively. Molar mass calculations revealed 

the presence of considerable amounts of other sulphur bearing components. Most likely, 

calcium sulphate and magnesium sulphate may be present in drill cuttings since these 

are the main minerals formed within salt dome evaporite deposits that are associated 

with hydrocarbon reservoirs (Warren, 2006).

Table 4.1 Chemical compositions including major oxides and LOI of drill cuttings 

determined by XRF analysis. 

Oxide compositions SDC CDC EDC 

(wt.%) (wt.%) (wt.%) 

SiO2 48.59 32.52 41.18 

Al2O3 6.48 6.52 12.75 

Fe2O3 6.07 6.79 3.29 

MgO 1.77 2.12 7.34 

CaO 35.07 50.15 14.95 

Na2O 1.46 0.99 17.32 

K2O 0.74 0.38 2.530 

TiO2 0.53 0.21 0.447 

MnO 0.20 0.20 0.073 

P2O5 0.14 0.12 0.116 

Si/ƩF* 1.08 0.48 0.91 

Si/Al** 4.50 4.97 3.23 

LOI 3.9 8.6 8.2 

* SiO2/Σ flux ratio
** SiO2/Al2O3 ratio
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Table 4.2 Chemical compositions including minor and trace element concentrations of 

drill cuttings determined by XRF analysis. 

Minor and trace elements (mg/kg) (mg/kg) (mg/kg) 

Ni 0.8 20.1 36.0 

Co 12.0 17.6 13.3 

Cr 5.6 29.0 74.3 

Sc 4.5 9.5 9.7 

Cu 30.7 34.9 23.9 

Zn 235.9 108.4 102.4 

As 13.4 10.3 11.8 

S 42,233 18,369 39,727 

F 55 631 352 

Cl 8375 17,546 80,911 

Br 955.5 2103.5 1128.0 

Ga 30.4 12.7 15.3 

Pb 140.8 54.5 38.5 

Sr 1616 1981 13.20 

Rb 40.5 90.0 119.5 

Ba 161,261 72,595 32,019 

Zr 33.5 97.1 94.7 

Nb 2.5 5.5 10.2 

Mo 2.2 0.7 1.1 



81 

4.2 Riley diagram 

The measured compositions were plotted in a Riley (SiO2/Al2O3/Σ flux) ternary diagram, 

that has been frequently used to predict the bloating capabilities of aluminosilicate-based 

materials (de' Gennaro et al., 2004, Fakhfakh et al., 2007, de Gennaro et al., 2007, 

González-Corrochano et al., 2009b, González-Corrochano et al., 2009a, Tang et al., 2011, 

Wei et al., 2011, Chen et al., 2012, Huang and Wang, 2013, González-Corrochano et al., 

2014, Quina et al., 2014a, Lu et al., 2015, Zhang et al., 2015, Mueller et al., 

2015, González-Corrochano et al., 2016). Figure 4.1 shows that the compositions of 

all three samples of SBM drill cuttings were located outside of the bloating area 

established by Riley (1951).

Figure 4.1 The location of bulk chemical composition for samples of drill cuttings in 

Riley diagram. The shaded area indicates the bloating region established by Riley (1951). 
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4.3 Mineralogy

The mineralogy of drill cuttings was determined using XRD analysis. The information 

was used to identify the presence of gas-releasing compounds such as carbonates and 

sulphates necessary for bloating at high temperatures. In addition, XRD analysis 

revealed the nature and quantity of inorganic salts and drilling additives present in drill 

cuttings that control the materials’ leaching behaviour. XRD patterns for samples of drill 

cuttings are shown in Figure 4.2. Results of Rietveld quantitative phase analysis are 

given in Table 4.3. It must be noted that in the Rietveld quantification analysis for major 

phases, relative errors in the order of 1 – 2% and up to 3 – 4% for minor phases do 

occur, while the sensitivity of the quantification varies with each mineral phase (De la 

Torre and Aranda, 2003).

4.3.1 SDC 

In SDC, CaCO3 (calcite and aragonite), BaSO4, KAlSi3O8 (orthoclase), NaCl and SiO2 

(quartz) were identified. Most distinctively, the peaks at 31.7 °2θ and 56.5 °2θ are 

associated to NaCl (200) and (222) reflections respectively; the peaks close to 32.85 °2θ 

and 42.9 °2θ were identified as BaSO4 (211) and (212) reflections, and the peaks 

appeared at 26.2 °2θ, 27.25 °2θ, 33.15 °2θ and 52.5 °2θ are associated to aragonite 

(111), (021), (012) and (113) reflections, according to ICDD reference database. 

These results were in good agreement with XRF analysis where high concentrations 

for Cl, Ba and Ca were determined. 

In SDC, the quantitative analysis showed that 50.6 wt.% of the total crystalline phase 

was composed of BaSO4; 20.2 wt.% KAl2(Si3AlO1)(OH)2; 10.8 wt.% NaCl; 12.1 wt.% 

carbonate minerals including 4.3 wt.% CaCO3 (calcite), 6.4 wt.% CaCO3 (aragonite); and 

1.4 wt.% CaMgCO3 (Table 4.3). From the quantified phases, it could be concluded 

that the sample is rich in minerals found in shale reservoirs (Clarkson et al., 2013). 

High quantities of BaSO4 in drill cuttings can be due to a poor separation that causes 

the weighting agent to remain in the drill cuttings waste, as explained in section 2.1.3. 

This can also indicate the depth at which the material is obtained since more BaSO4 is 

added to the drilling fluid to further increase the density when drilling at higher depths 

(Dhir et al., 2010). 10.8 wt.% NaCl quantified was consistent with XRF analysis of SDC 

sample. This is mainly originated from the drilled formation rock (Manspeizer, 2015). 

However, a second source could be from the drilling fluid which may contain high 
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concentrations of soluble sodium and calcium salts in order to control the fluid loss 

(dissolution) to the formation (Neff, 2005), as discussed in section 2.1.2. More than half 

of the 12.1 wt.% of carbonate minerals quantified for SDC sample, was predicted to be 

aragonite. The quantified concentration of quartz was as low as 2.5 wt.%. The 

concentrations of calcium sulphates (both CaSO4 and CaSO4·2H2O) were also negligible. 

Three endmembers of feldspar groups - NaAlSi3O8, CaAl2Si2O8 and KAlSi3O8 - were 

included as a potential phase during the quantification and the analysis showed 1.7 wt.% 

of the total crystalline phase to be NaAlSi3O8 and 2.0 wt.% to be CaAl2Si2O8.

4.3.2 CDC 

In CDC (Figure 4.2), SiO2 (quartz), CaCO3, CaSO4·2H2O, CaSO4, BaSO4 and KAlSi3O8 

could be identified. In this sample, the position of the most intense CaCO3 reflection 

(104) was slightly shifted to a higher angle (29.85 °2θ). This effect has been associated 

to the substitution of ions such as Mg, Mn and Fe for Ca in the CaCO3 crystal structure 

(Magaritz and Kafri, 1979). BaSO4 (121) and (212) reflections appeared at 28.8 °2θ and 

42.9 °2θ. It was observed that the intensity of NaCl peaks was considerably lower 

compared to SDC, while the peak intensity of other major mineral phases (most notably 

quartz) was higher. It is worth mentioning that the heights of the peaks only give an 

approximate indication of quantity present. Well crystallised minerals like quartz (and to a 

lesser extent CaCO3) can give very large peaks when only a relatively small amount is 

present (Hurst et al., 1997).

In CDC, the quantitative model predicted 63.7 wt.% of the total crystalline phase to be 

CaCO3 (Table 4.3). This is in accordance with approximately 50 wt.% calcium oxide 

measured by XRF analysis. The second most abundant mineral in this sample was BaSO4, 

quantified at 18.8 wt.%. Minor concentrations of quartz and KAl2(Si3AlO10)(OH)2 were 

quantified by the model at 5.7 wt.% and 7.8 wt.% respectively. 

4.3.3 EDC 

Major crystalline phases in EDC (Figure 4.2) were CaCO3, CaMg(CO3)2, SiO2 (quartz), 

KAlSi3O8, NaCl, KAl2(Si3AlO1)(OH)2, BaSO4 and CaSO4. Most of these peaks were 

clearly visible compared to those identified for the other two drill cuttings samples, at 

the positions indicated in ICDD reference database. Most distinctive were NaCl (200), 

(220) and (222) reflections at 31.7 °2θ, 45.45 °2θ and 56.5 °2θ; CaSO4 (200) at 

25.45 °2θ; and CaMgCO3 (104) and (113) at 30.1 °2θ and 41.2 °2θ.
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In EDC, carbonate minerals including CaCO3 and CaMgCO3 were quantified at 7.1 wt.% 

and 21.8 wt.%. These are the two common carbonates that cement (precipitate) 

chemically from pore fluid in rock-forming minerals (Ali et al., 2010). They were the 

most abundant minerals present in the sample and that agreed with the results of XRF 

analysis where both calcium oxide and magnesium oxide were measured at high 

concentrations (14.95 wt.% and 7.34 wt.%). The model quantified KAl2(Si3AlO10)(OH)2 

at 20.5 wt.%. KAl2(Si3AlO10)(OH)2 is a dioctahedral mica that belongs to a 2:1 

phyllosilicate group of the silicate minerals. Sulphates such as CaSO4 and BaSO4 were 

present at the quantities of 11.6 wt.% and 6.0 wt.%, respectively. CaSO4 has been 

documented in drill cuttings obtained from the southern North Sea (Pye and Krinsley, 

1986). This showed that the extra SO4
−2 bearing phase predicted by molar mass calculation

in the XRF analysis is mainly comprised of calcium sulphate minerals. Similarly, 10.9

wt.% of NaCl determined by the model, agreed with the high concentrations of Cl− ions

observed in XRF results. The quantified mineral phases for EDC strongly indicate that

the material is a marine evaporite in nature (Dean, 2013).

Overall, the XRD analysis revealed that gas-releasing compounds, such as carbonates 

and sulphates in the form of CaCO3 and CaSO4, are present in drill cuttings at sufficient 

quantities required for the bloating mechanism of LWA. These compounds are 

decomposed at temperatures above 800 °C during the firing stage which provides the 

gaseous phases necessary for bloating. In addition, the analysis showed more than 10 

wt.% of the crystalline phase in SDC and EDC is composed of NaCl; indicating the 

possibility for high levels of Cl− leaching for these materials. Natural sulphate salts such 

as CaSO4 and drilling additives such as BaSO4 were also present in drill cuttings at 

different concentrations, which can cause high levels of SO4
−2 leaching.
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Figure 4.2 X-ray diffraction patterns with some important peak markers for crystalline phase identification in SDC, CDC and EDC samples. Markers 
include c: CaCO3 (calcite), ar: CaCO3 (aragonite), dl: CaMg(CO3)2, b: BaSO4, h: NaCl, q: SiO2, g: CaSO4·2H2O, a: CaSO4, o: KAlSi3O8 and 
m: KAl2(Si3AlO10)(OH)2. 
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Table 4.3 Rietveld quantitative analysis of minerals presents in the samples of drill 

cuttings. 

Minerals Chemical formula SDC 

(wt.%) 

CDC 

(wt.%) 

EDC 

(wt.%) 

Quartz SiO2 2.5 5.7 7.4 

Calcite CaCO3 4.3 63.7 7.1 

Aragonite CaCO3 6.4 -* - 

Dolomite CaMg(CO3)2 1.4 2.5 21.8 

Halite NaCl 10.8 0.3 10.9 

Barite BaSO4 50.6 18.8 6.0 

Muscovite KAl2(Si3AlO10)(OH)2 20.2 7.8 20.5 

Gypsum CaSO4·2H2O 0.0 0.1 0.0 

Anhydrite CaSO4 0.0 0.0 11.5 

Diopside MgCaSi2O6 - - 1.2 

Albite NaAlSi3O8 1.7 0.0 0.0 

Anorthite CaAl2Si2O8 2.0 0.2 1.8 

Orthoclase KAlSi3O8 0.0 0.0 0.0 

Sanidine KAlSi3O8 0.0 0.0 10.9 

Kaolinite Al2Si2O5(OH)4 0.5 0.8 0.9 

* Mineral not included in quantification analysis.
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4.4 Particle Morphology 

In this section, samples of drill cuttings were analysed morphologically by SEM. The 

analysis provided qualitative information on the effect of ball milling on particle size 

reduction and particle size distribution of drill cutting particles. In addition, the 

morphological analysis of raw materials will be used to investigate the transformation of 

particles at high temperature and the degree of sintering in LWA. Figure 4.3a to Figure 

4.3c show the particle morphology of drill cuttings samples. For SDC in Figure 4.3a, a 

wide particle size distribution with various angular shapes was observed. The particle 

size distribution of CDC in Figure 4.3b appeared to be coarser than SDC despite using 

an equal milling time. CDC contained nearly spherical porous rock fragments larger 

than 100 μm in diameter with a rough outer surface. EDC particles in Figure 4.3c were 

more irregularly shaped compared to the other two samples. The main reason for this 

is the presence of various minerals such as carbonates, sulphates and NaCl, each with 

specific morphological features. For example, distinctive cubic crystals with sizes 

below 10 μm could be associated with NaCl particles. In addition, it was evident that 

EDC had a wider size distribution with a lower average particle size compared to the 

other two drill cuttings samples. Such irregularity in particle shape can be beneficial 

during pelletization because of the interlocking effect that can reduce the material’s 

flowability (Popov et al., 2003). SEM micrographs of drill cuttings samples obtained 

at higher magnifications are shown in Appendix I.
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Figure 4.3 SEM micrographs of (a) SDC, (b) CDC and (c) EDC samples showing 

irregular morphology of drill cutting particles and a wide particle size distribution 

developed after six hours of ball milling at 300 rpm.
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4.5 Thermal analysis 

Characteristic temperatures such as initial sintering temperature, softening and melting 

point were determined by thermal analysis for samples of drill cuttings. This involved 

heating microscopy (HM) and differential thermal analysis (DTA), to define these 

temperatures and provide accurate data for the optimal design of the firing regime 

for LWA manufacturing.

4.5.1 Heating microscopy 

Heating microscopy was conducted to determine the sintering range that would be needed 

in the muffle furnace. The initiation of sintering was measured as the temperature at which 

the cube outline area reduced to 95% of its original (Zhang et al., 2011). This temperature 

was then used as the lower limit of firing in the muffle furnace during LWA 

manufacturing as described in section 3.2.2. The final sintering temperature (the highest 

temperature at which the structure of the sample was upheld was used as the upper limit 

of firing (Latosińska and Żygadło, 2011). 

4.5.2 SDC 

Figure 4.4a shows the percentage change in the outline of a cubic sample of SDC as a 

function of temperature together with heating microscope (HM) images. Before 

1190 °C, no distinctive dimensional change could be recognized. At 1190 °C the area 

reduced to 95% of its original and therefore it was considered as the first 

characteristic temperature associated with the initiation of sintering. It is important 

to note that the presence of CaCO3 in this sample did not cause any significant 

decrease in the cube outline area considering its decomposition which occurs below 

850 °C (Stern and Weise, 1969). Above 1190 °C until 1420 °C, a constant drop in 

the area showed further material shrinkage (with the increase in temperature). This 

can be attributed to the decomposition of BaSO4, which was quantified as the most 

abundant mineral in this sample. However, determining the initial decomposition 

temperature for BaSO4 is difficult since it is not in a pure form. Other studies have 

reported a BaSO4 reaction with alumina and silicate at temperatures as low as 1100 °C 

- to form hexa-BaAl2Si2O8, according to the following reaction (AdabiFiroozjaei et al., 

2011, Koshy et al., 2011): 

2BaSO4(S) + 4SiO2(S) + 2Al2O3(S) → 2BaAl2Si2O8(S) + 2SO2(g) + O2(g) 4.1 



The experiment showed no important bloating behaviour required for the manufacture of 

LWA. Despite the presence of superfluous gas-releasing compounds which reduced the 

cube original outline area to more than 60% of its initial size, a lack of plastic phases with 

appropriate viscosity to capture those gases undermined the materials capability for 

bloating. This result agreed with the material’s position being outside of the bloating 

region as shown in the Riley diagram (Figure 4.1).

4.5.3 CDC 

Figure 4.4b shows the HM images of CDC. Up to 9% increase in the cube outline area 

was observed from room temperature to 1050 °C. However, this effect was not due to 

bloating, since the corners of the cube remained at right angles – this again indicates the 

lack of plastic behaviour. The effect was therefore associated with the material physical 

expansion upon heating. As determined by XRD quantification, this sample is mainly 

composed of CaCO3 for which decomposition is known to increase the porosity of the 

remaining CaO to more than 50% without causing any significant shrinkage (Stanmore 

and Gilot, 2005). The 5% decrease in the outline area occurred at around 1200 °C, and 

thus was selected as the initial sintering temperature. The area remained stable between 

1220 °C and 1320 °C, and showed 50% reduction as the temperature reached 1420 °C. 

This sample also did not show any bloating behaviour over the designated heating range. 

This result also agreed with the Riley diagram prediction. 

4.5.4 EDC 

Figure 4.4c shows HM images of EDC. It was observed that at the initial stage of the 

test (as the temperature increased to approximately 750 °C), the material undergoes a 

simple expansion of up to 3%. At 750 °C, a minor dimensional change was detected, 

most likely due to the decomposition of carbonates and the subsequent release of CO2. 

1175 °C was assigned as the initial sintering temperature. As the sintering process 

continued, the sample outline remained relatively uniform, but the dimensions 

continued to reduce until 1190 °C. At 1200 °C, a liquid phase emerged on the surface of 

the sample. However, the captured image shown at this temperature did not reveal a 

‘sphere’ point, indicating an insufficient surface tension of the liquid phase. Above 1200 

°C, the surface tension remained in the control of the sample outline since the 

majority of the matrix was composed of a melted phase. The sample outline at 1210 °C 

is known as the ‘hemisphere’ point (Morin and Lamothe, 1990, Pascual and Pascual, 

2001). 
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The image of 1240 °C shows a complete flattening of the sample, which is 

also considered as the ‘flow’temperature (Pascual and Pascual, 2001). In this 

experiment, the sample showed minimal bloating effect (images captured at 1180 °

C showed little inflation at their outline). It must be noted that the condition in the 

heating microscope is different from that of the kiln system used for LWA production. 

This is mainly in terms of heat transfer efficiency and dwell time, both of which can 

hinder the material true bloating potential (de Gennaro et al., 2005, Quina et al., 

2014a).
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Figure 4.4 Outline area % change as a function of temperature with attached heating 

microscope images at characteristic temperatures for a cubic sample (3 × 3  3 mm) of 

drill cuttings subjected to 10 °C/min heating rate: (a) SDC, (b) CDC and (c) EDC. 



4.5.5 Differential thermal analysis (DTA) 

DTA was carried out to determine the nature and temperature range of decomposition 

reactions, which occurred upon heating. Figure 4.5 shows DTA data, acquired over the 

range from room temperature to 1100 °C at 10 °C/min. Possible thermal events based 

on information from the literature were marked on both the heating and cooling curves. 

All three samples were calcined at 440 °C prior to the analysis to remove 

the hydrocarbons from the samples.

4.5.6 SDC 

 DTA data for SDC shown in Figure 4.5a showed a distinctive endothermic peak at 

approximately 770 ° C which can be attributed to the decomposition of carbonate 

minerals including two polymorphs of CaCO3 i.e. calcite and aragonite, and dolomite. The 

endothermic peak at 570 ° C is likely due to the transformation of α-quartz to β-quartz. 

DTA for this sample showed no other significant thermal events with the applied heating 

rate. On the cooling curve, DTA showed two exothermic reactions at around 1014° C and 

937 ° C, indicating possible crystallization of new phases. The neo-formed mineral phases 

will be investigated in Chapter 5 XRD analysis. 

4.5.7 CDC 

Figure 4.5b shows DTA data for CDC. As predicted by the XRD quantification model, 

this sample is mainly composed of CaCO3. Accordingly, the only DTA event observed 

was a large endothermic reaction starting at approximately 775 °C and ending at 890 °C 

with a peak at 841 °C. Differential thermal curves of CaCO3 have been reported in the 

literature with the same characteristics (Vandeveer, 1951). 

4.5.8 EDC 

Figure 4.5 shows DTA data for EDC. A low temperature endothermic hump between 75 

°C to 105 °C was observed which could be due to the evaporation of absorbed water from 

the environment. Two successive endothermic peaks at 603 °C and 689 °C were detected. 

The broad characteristics of these peaks could be due to a combination of various thermal 

events, however both peaks are in the range of calcium carbonates decomposition if the 

effects of impurities are taken into account (González-Corrochano et al., 2009b). They 

could also be indicative of peaks associated with CaMgCO3 decomposition - occurring 

with MgCO3 and CaCO3 reactions at different temperatures (Todor, 1976). Two
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exothermic peaks between 750 °C and 780 °C were also seen, which could be attributed 

to a neo-formation process. The free-lime in the system can react with products of other 

phase breakdowns, such as KAl2(Si3AlO10)(OH)2, and results in a neo-formed phase 

(Loutou et al., 2013). On the cooling curve, a sharp exothermic peak was clearly visible 

at 535 °C, which exactly matches the dihydroxylation of KAl2(Si3AlO10)(OH)2 reported 

to appear on heating curves in work by Chen et al. (2012).
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Figure 4.5 DTA data of (a) SDC, (b) CDC and (c) EDC. 
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4.6 Total Petroleum Hydrocarbon (TPH) 

The TPH of drill cuttings was measured as an indication of wt.% of absorbed drilling 

fluid in the samples. The information was also used to estimate the energy available from 

combustion of drill cuttings during the firing stage in LWA manufacturing. 

Table 4.4 shows the results of TPH measurements. In SDC and CDC, TPH was 123,500 

mg/kg (12.3 wt.%) and 143,000 mg/kg (14.3 wt.%). This is above the (HP 5) limit, as 

determined by the UK Waste Catalogue (WM3, 2015). EDC had a lower TPH content at 

56,000 mg/kg (5.6 wt.%), which is above the (HP 10) limit. In addition, most of the TPH 

of drill cuttings were comprised of hydrocarbons with chain lengths of between 10 and 

25 carbon atoms. This indicated the synthetic nature of the absorbed drilling fluid in the 

samples according to Table 2.1.

Table 4.4 TPH of drill cuttings. 

SDC 

(mg/kg) 

CDC 

(mg/kg) 

EDC 

(mg/kg) 

TPH > C6* - C10 1558 927 1140 

TPH > C10 - C25 121,750 142,000 54,900 

TPH > C25 - C40 <454 <155 <236 

TPH > C40 - C44 <1191 <406 <617 

Total TPH C06 - C44 123,500 143,000 56,000 

* Number of carbon atoms in the polymers chain length.
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4.7 Total heavy metal content 

Table 4.5 shows the concentrations of metals in drill cuttings measured by acid digestion 

with Aqua Regia. In the SDC sample, the total content of heavy metals was 1513 mg/kg 

and mainly associated with levels of Ba (730 mg/kg), Pb (270 mg/kg) and Zn (430 

mg/kg). The observed discrepancy between acid soluble Ba and that measured by XRF 

indicates the stability of BaSO4 (the main sulphate bearing phase in the SDC sample) in 

strong acids. The CDC sample had a similar heavy metal content (1510 mg/kg) but was 

mainly associated with a higher Ba concentration (1240 mg/kg). The EDC sample had 

the lowest level of heavy metals (451 mg/kg) compare to the other two samples and was 

mainly associated with Ba (258 mg/kg) and Zn (109 mg/kg) in the digestate.

Table 4.5 Total metal content measured by acid digestion for samples of drill cuttings. 

Sample SDC (mg/kg) CDC (mg/kg) EDC (mg/kg) 

As <3.75* <3.96 <3.92 

Ba 730 1240 258 

Cd 0.367 <0.215 <0.213 

Cr 27.95 32.5 41.3 

Cu 30.25 21.7 23.0 

Hg <0.903 84.4 <0.945 

Mo 3.3 <2.34 <2.32 

Ni 19.05 34.9 41.8 

Pb 270 26.7 <0.533 

Sb <4.13 10.5 <4.31 

Se <1.65 <1.74 <1.72 

Zn 430.5 61.2 109 

Total 1513 1510 451 

* Below ICP-OES quantification limit for the method used.
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4.8 Leaching analysis 

The concentration of water-soluble compounds, including problematic heavy metals and 

anions were measured by leaching test. Table 4.6 shows the results at L/S ratio of 10 l/kg 

on SDC, CDC and EDC samples. When the concentration of a given constituent was 

below the ICP-OES limit of quantification, the calculated values were reported as the 

highest possible concentration, as described in Chapter 3. 

4.8.1 Heavy metals 

4.8.1.1 SDC 

The leaching test results on SDC confirmed that except for Ba, the concentrations of all 

other analysed metals were below the ICP-OES limit of quantification. The water-soluble 

concentration of Ba was measured as 3.85 mg/kg which must be because Ba is present in 

the form of BaSO4 (as identified by XRD) for which the solubility in water is in the range 

of 2-3 mg/l. It is worth highlighting that both Pb and Zn which also had a relatively high 

availability (270 mg/kg and 430 mg/kg in Table 4.5) were both below the quantification 

limit. This indicates superior chemical fixation of these elements in the material, thus 

inhibiting their release. 

4.8.1.2 CDC 

Most of the heavy metals leachable concentration in CDC were also below ICP-OES limit 

of quantification (Table 4.6). Only concentrations of Ba, Mo and Ni were sufficient to be 

measured. The Ba concentration was 1.4 mg/kg which was lower than SDC despite its 

higher acid-soluble concentration (1240 mg/kg in Table 4.5). Ni and Mo were 0.5 mg/kg 

which were in an acceptable range according to the EoW criteria in Table 3.2. 

4.8.1.3 EDC 

The leachable concentrations of Ba, Cu and Ni in EDC sample were 0.43 mg/kg, 1.07 

mg/kg and 0.42 mg/kg, respectively (Table 4.6). Ba leachable concentration (0.43 mg/kg) 

was lower compared to the other two samples. It was evident again that other heavy metals 

with relatively high acid-soluble concentration including Cr (41.3 mg/kg) and Zn (109 

mg/kg) were measured below the ICP-OES instrumental limit of quantification. These 

results showed that all three samples of drill cuttings did not have significant 

environmental issues in terms of heavy metal leaching and in most cases, suitable chemical 
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fixation was in play to reduce the release of these potentially problematic constituents in 

water. 

4.8.2 Anions 

4.8.2.1 SDC 
The concentration of major leachable anions i.e. Cl− and SO4

−2 from SDC were 7366

mg/kg and 206.7 mg/kg, respectively. The F− concentration for this sample was below

the ICP-OES limit of quantification. Comparing these results to XRF data, it was clear 

that these Cl− had different leaching mechanisms than those observed for heavy metals.

The concentration of Cl− ions was in the same range as the total Cl− measured by XRF -

showing an availability-controlled leaching. However, the concentration of leachable 

SO4
−2 ions (206.7 mg/kg) was considerably below the total concentration of sulphur

(42,233 mg/kg from XRF analysis), indicating a strong solubility-controlled leaching 

mechanism. 

4.8.2.2 CDC 

The measured concentration of leachable Cl− ions in CDC was 11,946 mg/kg which was

nearly twice as high as that in SDC. The concentration of leachable SO4
−2 ions was 1111

mg/kg. For both CDC and SDC, BaSO4 was quantified as the main SO4
−2-bearing mineral,

which could explain the low release of SO4
−2 ions in the leachate. Similarly, the leachable

concentration of F− ions was below the ICP-OES quantification limit.

4.8.2.3 EDC 

The concentration of Cl− ions in the EDC sample was extremely high (85,712 mg/kg).

The chlorine content measured by XRF minor element analysis (80,911 mg/kg) and 10.9 

wt.% NaCl measured in XRD quantitative analysis, are in accordance with the leaching 

result. The SO4
−2 leaching from EDC was also high, with concentrations reaching 45,248

mg/kg (Table 4.6). Unlike Cl−, leaching behaviour of SO4
−2 ions, especially when they

are present in the form of calcium sulphates, is controlled by their solubility in water

(Barbudo et al., 2012). However, the high leaching concentration of SO4
−2 in EDC was

due to CaSO4 being the major SO4
−2-bearing compound. In addition, the release of SO4

−2

can be affected by the Cl− ions in the solution since their presence will increase the ionic

strength of the leach environment and thus, increase the mobility of SO4
−2 ions (Shirley

and Black, 2011). There was evidence that this mechanism was also affecting the release

of F− ions. The F− leachable concentration was 31.40 mg/kg; while the total fluorine
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content measured by XRF was 352 mg/kg. However, it was observed that the release of 

F− from the CDC sample (with twice as high as total content), was below the ICP-OES

quantification limit. This confirms that high contents of soluble Cl− in the leachate could

increase the release of F− ions.

4.8.3 DOC 

Dissolved organic carbon (DOC) also showed some levels of variation. SDC contained 

the highest DOC among the samples (1482 mg/kg). This was again in accordance with 

highest TPH that was measured for this sample. In the CDC sample, DOC was 696 mg/kg, 

and EDC had the lowest DOC at 477 mg/kg. 
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Table 4.6 Results of leaching test (BS EN 12457-2) on SDC, CDC and EDC samples. 

SDC CDC EDC 

(mg/kg) (mg/kg) (mg/kg) 

As <1.584 <1.582 <1.460 

Ba 3.85 1.4 0.43 

Cd <0.071 <0.071 <0.081 

Cr <0.201 <0.201 <0.120 

Cu <0.712 <0.712 1.07 

Hg <1.160 <1.158 <0.353 

Mo <0.152 0.5 <0.152 

Ni <0.325 0.5 0.42 

Pb <2.211 <2.209 <0235 

Sb <0.860 <0.858 <1.383 

Se <1.010 <1.008 <0.664 

Zn <2.485 <2.483 <3.095 

Cl− 7366.4 11,946.6 85,712.3 

F- <20.5 <20.3 31.4 

SO42- 206.7 1111 45,248.2 

DOC 1482.5 696 477 

pH at 20 °C 11.66 9.47 9.9 

Conductivity (μS/cm) 2327 3732 22,730 



4.9 Discussions 

Three samples of SBM drill cuttings were characterised for chemical composition, 

mineralogy, thermal behaviour and contaminant leaching. The information was used to 

design the manufacturing process and predict the bloating capability of drill cuttings 

LWA during the firing stage. The analysis showed that the samples contained a complex 

mixture of minerals with variable amounts of drilling additives and hydrocarbons. Some 

of these compounds were identified as being able to negatively affect the bloating and 

cause leaching problems in LWA. In the following, a discussion for each sample of drill 

cuttings is provided: 

XRD analysis of SDC showed that the sample was mainly composed of mica-rich 

compounds, quartz and different carbonate minerals which resembled the mineralogy of 

shale materials. The concentration of BaSO4 (an additive used for increasing the weight 

of the drilling mud) in the SDC sample was >50 wt.% of the total crystalline phase 

present. BaSO4 is not capable of solid-state fusion at temperature ranges used in LWA 

manufacturing, therefore such a large content would negatively affect the properties 

of LWA, as insufficient sintering would occur. In addition, the proportion of major 

oxides in SDC indicated a poor pyro-plastic viscosity, which is required for 

bloating. The thermal analysis results were also in accordance with these findings. The 

heating microscopy (HM) revealed the initiation of sintering to occur around 1190 °C. 

As the temperature increased the outline of the sample retained its shape and indicated a 

lack of viscous behaviour needed for the entrapment of the released gases. The 

decomposition reactions producing these gases were identified as the de-

carbonation of carbonate minerals by DTA analysis. Overall, despite the presence 

of clay minerals that are beneficial for low-temperature sintering, the high content 

of BaSO4 can limit the application SDC for use as a raw material for LWA. 

CDC was found to contain mainly carbonate-based minerals, with more than 60% of its 

crystalline phase composed of CaCO3, as determined by XRD analysis. The shape and 

position of the most significant endothermic peak on the DTA heating curve also strongly 

corresponded to carbonate-based nature of CDC. As a result, the highest initial sintering 

temperature was recorded for CDC at 1200 °C, where a 5% reduction in the original 

outline area of the cube was observed. This was because the decomposition of carbonate 

minerals (despite increasing the porosity) did not cause any significant shrinkage in the 

cube outline area (Stanmore and Gilot, 2005). Above 1200 °C, CDC showed a more 
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drastic shrinkage, but the cube still retained its shape. This indicated a lack of viscous 

phase, which was attributed to its very low silica content (32.5 wt.%) as measured by 

XRF analysis. Overall, CDC was not an ideal composition for LWA raw materials 

because the majority of the phases present can be decomposed during the firing stage. 

This would leave high levels of open porosity, negatively affecting the water absorption 

of LWA.

EDC was mainly composed of clay minerals, CaCO3, CaMgCO3, CaSO4 and NaCl. The 

mineralogy of EDC strongly resembled that of evaporite rocks found when hydrocarbon 

seal rocks are drilled. The concentration of BaSO4 was lower (6.0 wt.% of total crystalline 

phase) compared to the other two samples indicating that the material can form a viscous 

body above its initial sintering temperature (1175 °C). The HM images for EDC also 

showed a different behaviour as the cube outline started to deform above 1200 °C. The 

sample reached the ‘hemisphere’ point at 1210 °C and the ‘flow’ point at 1240 °C. EDC 

did not demonstrate the ‘sphere’ point which is usually observed in clay-bearing minerals 

HM images (Quina et al., 2014a). This can be attributed to the high total flux content 

(measured by XRF analysis) decreasing the viscosity and surface tension of the material 

at the pyro-plastic stage. 

Mitigating the release of heavy metals from hazardous mineral waste is one of the most 

important challenges for various suggested reuse applications (Shirley and Black, 2011, 

Bogush et al., 2015). However, the total heavy metal content measured by acid digestion 

showed that the inherent concentrations of heavy metals in all drill cutting samples were 

in an acceptable range compare to other hazardous mineral wastes such as Energy-from-

Waste (EfW) residues (Allegrini et al., 2014). This alleviates the concerns associated with 

their release if drill cuttings are used as a raw material for LWA. The variation in total 

heavy metals was mainly caused by Ba in the remaining (absorbed) drilling fluid. Pb, Hg 

and Zn were also found at different concentrations among the samples. However, it is 

difficult to pinpoint the origin of these contaminants, due to their low concentrations in 

the samples. 

Water-soluble concentrations of heavy metals measured by the leaching test complied 

with the EoW criteria. However, IC measurements of the leachates revealed high releases 

of anions from EDC. Leachable concentrations of Cl− were measured as 85,712 mg/kg. 

This could make the use of EDC for LWA manufacturing a non-viable option due to the 



104 

potential for Cl−-induced corrosion of steel in reinforced concrete structures (Tang et al.,

2018). 
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5 Chapter 5 Properties of drill cuttings LWA 

In this chapter, the aim was to investigate whether drill cuttings can be pelletised and 

fired effectively to produce LWA. In doing so, samples of raw material were air-dried, 

formed into pellets and fired over the sintering range determined by heating microscopy. 

The investigation focused on how firing temperatures affect the pellets physical 

properties, mineralogy, microstructure and leaching behaviour.

5.1 Structural characteristics of LWA

5.1.1 SDC-LWA 

For SDC-LWA in Figure 5.1a, it was observed that the homogeneous nature of the 

raw materials produced pellets with minimal irregularities and surface defects. 

However, no distinct bloating mechanism was observed in this series. This was in 

accordance with the Riley diagram prediction in Chapter 4. It must be noted that the Riley 

diagram was set up for distinguishing between bloating and non-bloating clay minerals. 

It has also been used for mineral wastes with substantial non-clay contents, however in 

these cases, it has been shown to produce a lower accuracy. This is because the diagram 

does not include some important characteristics of raw materials such as mineralogy 

and high-temperature viscosity (Dondi et al., 2016). But in the case of SDC, there was a 

fair agreement between the firing experiment results and the Riley diagram. The high 

concentration of BaSO4 (drilling additive) in SDC prevented the formation of phases 

with suitable pyro-plastic viscosity and thus the material was unable to entrap the 

released gaseous phases.

5.1.2 CDC-LWA

Figure 5.1b shows the surface and internal structure of CDC-LWA. High degrees of 

inhomogeneity were obvious in the pellets and increasing the firing temperature had 

little effect on the appearance. The prevalence of surface defects at all firing 

temperatures was due to decomposition of both carbonates and hydrocarbons 

present in the raw materials, generating empty pockets of space between the particles. In 

addition, over the examined firing temperature range, LWA had a poor structural 

integrity and despite the presence of large open pores, there was no evidence of a 

bloating effect. This agreed with the Riley diagram prediction and indicated that the 

silicate-bearing phases in the material do not exist in sufficient quantities to produce a 

network at a high temperature.
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5.1.3 EDC-LWA 

Figure 5.1c shows EDC-LWA demonstrating a bloating effect with relatively large 

bubbles. The bloating of pellets showed similar characteristics over the applied firing 

temperature range and no remarkable development in the size of large pores could be 

identified. This suggests that over the applied firing range, there was a sufficient viscous 

phase capable of forming a three-dimensional closed pore structure. However, this was 

not in agreement with the prediction of the Riley diagram (Chapter 4). This is because 

the Riley diagram does not account for high flux contents as favourable for 

bloating. Conversely, the firing of EDC showed fluxing compounds can produce 

low-viscosity phases that are capable of holding the generated gases at high temperatures. 

The reliability of the Riley diagram prediction and the need for a model which takes 

the pyro-plastic viscosity into account has also been discussed by other researchers 

(Dondi et al., 2016).

It was observed that a few irregular pores were formed at the contact point with 

the refractory plate. Other studies have also shown this happening when pellets are fired 

on the refractory shelves in a muffle furnace (Yang et al., 2015). EDC-LWA was 

widely heterogeneous in terms of surface smoothness, colour and porosity, despite the 

relatively narrow firing range used. This was possibly due to the high level of soluble 

salts measured in the raw material generating a solidified build-up layer on the surface 

of ‘green’ pellets during the drying stage. The soluble compounds in EDC can migrate 

to the surface during the pellet drying stage. 
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Figure 5.1 Appearance of drill cuttings LWA pellets surface and internal structure. (a) 

SDC-LWA, (b) CDC-LWA, and (c) EDC-LWA. 
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5.2 Physical properties of LWA 

In this section, the effect of firing temperature on physical properties of the fired pellets 

- including particle density, water absorption and compressive strength - were

investigated. Pellets were fired within the temperature range shown in section 5.1. The 

results were also compared with physical properties of two commercially manufactured 

LWAs namely: Lytag® and LECA®. Measured physical properties of Lytag and LECA 

are given in Table 5.1. 

Table 5.1 Measured physical properties of Lytag and LECA ± one standard deviation. 

Particle density 

(g/cm3) 

Water absorption 

(%) 

Compressive 

strength (MPa) 

Lytag® 1.27 ± 0.02 20.5 ± 2.3 3.2 ± 0.6 

LECA® 0.77 ± 0.05 32.7 ± 3.3 1.7 ± 0.9 

5.2.1 SDC-LWA 

Figure 5.2a shows the effect of firing temperature on particle densities of SDC-LWA. At 

10 °C/min, the average particle density decreased from 1.65 g/cm³ to its lowest level of 

1.56 g/cm³ when the firing temperature was increased from 1190 °C to 1210 °C. It should 

be noted that this drop was not due to bloating behaviour and indeed, could be associated 

to further decomposition reactions increasing the total porosity of pellets. The measured 

water absorption for this batch was the highest (27.1%) in the series indicating 

the formation of open porosity. From 1210 °C to 1220 °C, SDC-LWA particle 

density increased to 1.69 g/cm³. The observed densification was likely due to the 

increase in the degree of sintering. The lowest water absorption was measured at 1220 

°C (Figure 5.2b) indicating a reduction in void spaces (total porosity), which is 

likely due to an increase in the degree of particle fusion. Particle densities of 

SDC-LWA over the designated firing range were above those measured for both 

Lytag (1.27 g/cm³) and LECA (0.77 g/cm³).

Figure 5.2b shows the effect of firing temperature on water absorption of SDC-LWA. 

The average water absorption varied between 22.7% and 27.1% over the firing range of 

1190 °C to 1220 °C. 27.1% was obtained at 1210 °C clearly indicated a lack of sintering 
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and presence of open porosity. This is because phases such as BaSO4 in SDC, have a 

higher softening point than the designated firing range. In addition, the aluminosilicate 

network forming phases are not present in sufficient quantities to form a watertight 

matrix. Despite this, the obtained water absorptions were below those measured for 

LECA (32.7%) and comparable to those of Lytag (20.5%).

Figure 5.2c shows the effect of firing temperature on the compressive strength of SDC-

LWA. The compressive strength for of all batches in the series was below 1.0 MPa, 

confirming the low degree of sintering. The obtained strengths over the conventional 

temperature ranges in large-scale LWA manufacturing were inferior to those for 

Lytag and LECA. This raised the need for the incorporation of an additional material 

with the ability to enhance matrix formation. In Chapter 7, the addition of secondary 

materials to promote the degree of sintering is investigated. 
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Figure 5.2 Effects of firing temperature on physical properties of SDC-LWA: (a) particle 

density, (b) water absorption and (c) compressive strength. Error bars are plus and minus 

one standard deviation. 
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5.2.2 CDC-LWA 

Figure 5.3a shows the effect of firing temperature on particle densities of CDC-LWA. 

The average particle density was 1.21 g/cm³ at 1200 °C (lowest in the series) and this 

increased as the firing temperature increased, reaching 1.29 gr/cm³ at 1230 °C. The 

obtained particle densities for CDC-LWA were comparable to those measured for Lytag 

but were still above those for LECA. In addition, CDC-LWA exhibited distinctly lower 

particle densities than the SDC-LWA although in both cases no bloating mechanism was 

observed, as shown in Figure 5.1. This could be associated to the high concentration of 

carbonate minerals, producing pellets with high total porosity.

Figure 5.3b shows the effect of firing temperature on the 24-hour water absorption 

capacity of CDC-LWA. At 1200 °C, the average water absorption was at its highest, 

36.1%. This decreased to 31.4% with the increase in firing temperature of 1230 °

C. The drop was possibly due to the effect of sintering on reducing the number of 

open pores within pellets microstructure. The lowest water absorptions in the CDC-

LWA were higher than those obtained for SDC-LWA and Lytag; however, they were 

comparable to values found for LECA. It is noted that LWA with levels of water 

absorption comparable to these pellets can be used for agriculture applications 

where maximum water absorptions are favourable. 

Figure 5.3c shows the effect of firing temperature on the compressive strength of CDC-

LWA. An increasing trend in compressive strength from 0.35 MPa to 0.76 MPa was 

observed as the firing temperature was increased from 1200 °C to 1230 °C which again 

could be associated to the increase in the degree of sintering. However, the overall 

range of compressive strength was considerably below the requirement for a standard 

LWA. It was seen that the average compressive strength (even at its maximum), 

was barely comparable with LECA. It must be noted that in order to achieve 

higher strengths, increasing the firing temperature is not a sustainable option due to 

high amounts of energy that would be required to heat up the kiln in large-scale 

manufacture. To tackle this issue similar approach to those discussed for improving 

the properties of the SDC-LWA is explored in Chapter 7. 
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Figure 5.3 Effects of firing temperature on physical properties of CDC-LWA: (a) particle 

density, (b) water absorption, and (c) compressive strengths. Error bars are plus and minus 

one standard deviation. 
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5.2.3 EDC-LWA 

The effect of firing temperature on the particle density of EDC-LWA is shown in Figure 

5.4a. There was a decrease in the average particle density from 1.44 g/cm³ to 1.25 g/cm³ 

as the firing temperature was increased from 1175 °C to 1185 °C. This was due to the 

bloating effect causing the formation of large bubbles in the pellets matrix as the 

temperature increased. There was a slight increase in particle density to 1.29 g/cm³ at 

1190 °C. This was likely due to the development of liquid phases causing partial 

deification of pellets. There was evidence for this in HM images in Chapter 4, as 1190 °C 

was determined as the final sintering temperature beyond which the material began to 

flow. Comparing these results to Lytag and LECA, it became clear that the obtained 

densities were similar to Lytag but were considerably higher than the densities 

measured for LECA.

Figure 5.4b shows the effect of firing temperature on the water absorption capacity of 

EDC-LWA. The average water absorption decreased from 9.2% to 7.4% when the 

firing temperature increased from 1175 °C to 1185 °C showing that the newly formed 

pores due to bloating were less accessible by water. At 1190 °C, water absorption 

increased to 9.1% due to the growing sizes of bubbles in the pellets matrix which 

increased the total porosity of LWA. Furthermore, water absorption values obtained 

over the firing range were considerably below the values obtained from Lytag and 

LECA. 

Figure 5.4c shows the effect of firing temperature on the compressive strength of EDC-

LWA. The average compressive strength remained stable at around 4.0 MPa over the 

range of 1180 °C to 1190 °C and this can be explained by the narrow sintering range 

observed for EDC. For this series of samples, increasing the firing temperature did 

not have an observable effect on pellets’ internal structure and therefore compressive 

strength remained roughly unchanged. EDC-LWA fired at 1175 °C were within the 

strength range of Lytag. 
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Figure 5.4 Effects of firing temperature on physical properties of EDC-LWA: (a) particle 

density, (b) water absorption, and (c) compressive strengths. Error bars are plus and minus 

one standard deviation. 
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5.3 Microstructure of LWA

For microstructural analysis, only EDC-LWA was investigated as the other two samples 

were not strong enough to withstand the SEM sample preparation and mounting. Figure 

5.5 shows SEM micrographs of EDC-LWA fired at 1180 °C and 1190 °C. The 

SEM micrographs were obtained from the core (fracture surface) and the surface of 

each sample. The pellets surface had a ragged texture with a large number of open pores 

and clusters of crystallised materials after being fired at 1180 °C and 1190 °C. For 

pellets fired at 1180 °C, a crystallised surface (possibly due to efflorescence 

phenomenon: migration and crystallization of soluble salts on the surface) with large 

open pores were observed, as illustrated in Figure 5.5a. The surface pores are likely to 

form as a result of oil burn-off channels created in the early stages of firing. The number 

of large pores decreased on the surface of pellets fired at 1190 °C possibly due to a 

higher degree of liquid phase sintering and material flow at the surface. However, as 

shown in Figure 5.5c the efflorescence effect became more recognisable as the 

crystalline structure had grown in size with the increase in temperature.

Figure 5.5b shows the fracture surface of the fired pellets at 1180 °C. The presence of a 

continuous phase composed of solid-sintered drill cutting particles with isolated roughly 

spherical pores is evident. The observed difference in the crystal size between the core 

and the surface can be associated both to the transfer of water soluble compounds to the 

surface during the drying stage and, the oxidative environment inside the furnace. Figure 

5.5b highlights semi-spherical pores with approximately 40 μm in diameter generated by 

bloating. It is seen that pore size distribution is broad, ranging from 10 μm to 500 μm 

(as shown in the attached overview image taken at a lower magnification). There were 

also evidence of open porosity in the microstructure (Figure 5.5b). Insufficient sintering 

causes the fracturing to happen, mainly between the particles. This can be associated to 

the low compressive strength measured for this series. In addition, hydrocarbons that 

remain in the core of LWA are burned off when the temperature is increased, leaving 

open cavity channels. These also keep particles apart from one other, reducing their fusion 

and thus, the sintering efficiency. This is similar to the negative effect of adding excessive 

water during pelletisation on bloating of final products, as discussed previously.

Figure 5.5d shows that increasing firing temperature to 1190 °C actually increased the 

average size of the large pores, with evidence for sizes as large as 3 mm. The temperature 

rise contribution to bloating could be due to both lowering the viscosity of the matrix and 
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increasing the pressure of the gases entrapped in the pore system. The increase in pore-

size can also affect the physical properties. This effect has been documented by other 

research works on LWA manufacture (Volland et al., 2014) however, as shown in Figure 

5.4 the physical properties pellets remained fairly stable when the firing temperature 

was increased from 1180 °C to 1190 °C.
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Figure 5.5 SEM micrographs of EDC-LWA: (a) outer surface fired at 1180 °C, (b) core (fracture surface) fired at 1180 °C, (c) outer surface fired at 1190 

°C and (d) core (fracture surface) fired at 1190 °C. 
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5.4 Mineralogy of LWA 

5.4.1 SDC-LWA 

Figure 5.6 shows the XRD patterns with markers at major crystalline phases for SDC-

LWA fired at 1190 °C (the temperature at which optimal physical properties were 

achieved). BaSO4 peaks were present in the fired pellet at slightly higher intensities while 

the other identified minerals in the raw sample including SiO2 (quartz), CaCO3, CaMgCO3 

and KAl2(Si3AlO10)(OH)2 were entirely transformed. The major neo-formed phases were 

diopside (MgCaSi2O6), CaSO4.2(H2O) and NaAlSi3O8. CaSO4·2H2O (020), (-121) and (-

141) reflections were obvious at 11.7 °2θ, 20.7 °2θ and 29.1 °2θ. This was interesting as 

it indicates the possibility for the highly reactive lime (the product of CaCO3 

decomposition) to react with some of BaSO4 (as the only sulphate bearing phase in the 

raw material) to form calcium sulphate. 

Table 5.2 shows the results of the Rietveld quantification analysis for SDC-LWA. BaSO4 

was quantified to be 61.3 wt.% of the total crystalline phase. NaAlSi3O8 was quantified 

as the second most abundant phase at 15.9 wt.%, followed by MgCaSi2O6 and 

CaSO4·2H2O, which were predicted at 6.0 wt.% and 5.1 wt.% respectively. The 

quantification analysis predicted negligible percentages of KAl2(Si3AlO10)(OH)2 because 

its decomposition takes place at above 800 °C (Liao et al., 2013). NaCl content was 

predicted to reduce to 1.6 wt.% in the fired pellets. However, this can still be sufficient to 

cause Cl− leaching problems. Celsian (barium feldspar: BaAl2Si2O8) was added to the 

analysis as a possible Ba bearing mineral. This would help to understand whether 

reactive BaO forms at high temperature, as discussed in section 4.5. BaAl2Si2O8 was 

quantified as 1.7 wt.% in the fired pellets and could indicate some degree of reactivity for 

BaSO4 phase (Maslennikova et al., 1974). The other quantified phases in the model were 

quantified at negligible concentrations. 

5.4.2 CDC-LWA 

Figure 5.6 shows the XRD patterns with markers for major crystalline phases for CDC-

LWA fired at 1220 °C (optimal temperature in the series). The main phase identified was 

larnite (also known as belite or C2S in Portland cement manufacturing). This was 

interesting to see that the mineralogy of CDC-LWA was similar to the material in 

Portland cement. Two high-intensity reflections of dicalcium silicate (larnite - Ca2SiO4) 

i.e. (-121) at 32.15 °2θ and (200) at 32.6 °2θ were detected. It should be noted that these
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peaks were identified in the region between 30 °2θ and 34 °2θ where the diffractogram 

showed considerable overlapping. Traces of Ca5(SiO4)2SO4 were identified with a 

distinctive peak at 31.3 °2θ associated to its (230) reflection. Other phases identified 

include Ca3Fe2Si3O12, NaAlSi3O8 and BaSO4.

Table 5.2 shows the results of the Rietveld quantification analysis for CDC-LWA. 

Ca2SiO4 was predicted to form 46.7 wt.% of the total crystalline phase. Other phases 

normally found in Portland cement chemistry namely tricalcium silicate (C3S), tricalcium 

aluminate (C3A), tetracalcium aluminoferrite (C4AF) and bredigite (Ca7Mg(SiO4)4) were 

added to the model but as seen in Table 5.2 (except for Ca7Mg(SiO4)4 that was quantified 

at 4.9 wt.%), the rest of the cement phases were less than 3 – 4 wt.%. BaSO4, 

Ca3Fe2Si3O12, NaAlSi3O8 and Ca5(SiO4)2SO4 were quantified at 19.1 wt.%, 9.8 wt.%, 4.6 

wt.% and 3.0 wt.%, respectively. BaSO4 was quantified almost at the same amount 

predicted in CDC prior to firing. BaAl2Si2O8 was also predicted to be present at a 

negligible quantity (0.5 wt.%). 

5.4.3 EDC-LWA 

Major crystalline phases of EDC-LWA are marked in Figure 5.6. XRD patterns were 

obtained after firing pellets at 1180 °C (optimal temperature in the series). The identified 

phases were CaMg(Si2O6), KAlSi3O8, CaSO4.2H2O, CaAl2Si2O8, CaSO4, Mg2SiO4 and 

BaSO4. 

Table 5.2 shows the results of the Rietveld quantification analysis for EDC-LWA. Among 

the newly formed mineral phases, MgCaSi2O6 was quantified as the most abundant phase 

in the fired samples (47.5 wt.%). MgCaSi2O6 neo-formation during LWA manufacture 

has been observed when firing mineral wastes such as washing aggregate sludge with 25 

wt.% fly ash at 1150 °C (González-Corrochano et al., 2012a) and class-F coal fly ash and 

25 wt.% waste glass at 1050 °C and 1250 °C (Wei et al., 2016). 

CaAl2Si2O8 and NaAlSi3O8 were quantified as the calcium and sodium endmembers of the 

feldspar group at 8.1 wt.% and 8.6 wt.%. CaAl2Si2O8 may have formed by solid-state 

reactions between KAl2(Si3AlO10)(OH)2 and the liberated CaO (Bethanis and Cheeseman, 

2005). However, it must be noted that the quantitative model showed that KAlSi3O8 

(potassium feldspar) decreased to 0.3 wt.% after firing indicating the possibility for its 

transformation to other alkali feldspars. 
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CaSO4 concentration reduced to 4.5 wt.%. This is mainly because the natural mineral of 

CaSO4 is thermodynamically stable up to 1180 °C (Sievert et al., 2005). It is also 

possible for some of the unreacted CaSO4 to hydrate as low quantities of neo-formed 

CaSO4·2H2O (3.2 wt.%) were predicted by the model.
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Figure 5.6 X-ray diffraction patterns with some important peak markers for crystalline phase identification in SDC-LWA fired at 1190 °C, CDC-LWA 

fired at 1230 °C and EDC-LWA fired at 1180 °C. Markers on b: BaSO4, h: NaCl, q: SiO2, g: CaSO4·2H2O, a: CaSO4, d: MgCaSi2O6, al: NaAlSi3O8, s: 

KAlSi3O8, an: CaAl2Si2O8, m: KAl2(Si3AlO10)(OH)2, f: Mg2SiO4, l: Ca2SiO4, t: Ca5(SiO4)2SO4 and ad: Ca3Fe2Si3O12. 
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Table 5.2 Results of Rietveld quantification analysis for SDC-LWA fired at 1190 °C, 

CDC-LWA fired at 1230 °C and EDC-LWA fired at 1180 °C.

Minerals Chemical formula SDC-

LWA 

(wt.%) 

CDC-

LWA 

(wt.%) 

EDC-

LWA 

 (wt.%) 

Quartz SiO2 1.7 - - 

Calcite CaCO3 0.1 - - 

Dolomite CaMg(CO3)2 0.7 - 0.6

Halite NaCl 1.6 0.0 14.5

Muscovite KAl2(Si3AlO10)(OH)2 2.2 0.0 0.0

Barite BaSO4 61.3 19.1 4.1

Gypsum CaSO4·2H2O 5.1 0.0 3.2

Anhydrite CaSO4 0.4 1.5 4.5

Diopside MgCaSi2O6 6.0 - 47.5

Albite NaAlSi3O8 15.9 4.6 8.6

Anorthite CaAl2Si2O8 1.2 - 8.1

Sanidine KAlSi3O8 1.2 - 0.6

Celsian BaAl2Si2O8 1.2 0.5 -

Forsterite Mg2SiO4 0.3 - 4.4

Wollastonite CaSiO3 - - 2.1

Sylvite KCl - - 2.7

Cristoblite SiO2 0.6 - - 

Corundum Al2O3 - - 0.4 

Andradite Ca3Fe2Si3O12 - 9.8 - 

Potassium sodium sulphate KNaSO4 - 1.2 - 

Bredigite Ca7Mg(SiO4)4 - 4.9 - 

Calcium sulphosilicate Ca5(SiO4)2SO4 - 3.0 - 

Dicalcium silicate Ca2SiO4 - 46.7 - 

Tricalcium silicate Ca3SiO5 - 0.6 - 

Tricalcium Aluminate Ca3Al2O6 - 2.3 - 

Tetracalcium aluminoferrite Ca4Al2Fe2O10 - 0.3 -
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5.5 Leaching analysis of LWA

Table 5.3 shows the results of compliance batch leaching test (BS EN 12457-2) at L/S 

ratio of 10 l/kg on SDC-LWA, CDC-LWA and EDC-LWA. The firing temperatures for 

each batch was set as those used for pellets characterised mineralogically i.e. SDC-LWA 

at 1190 °C; CDC-LWA at 1220 °C; and EDC-LWA at 1180 °C.

5.5.1 Heavy metals 

The leaching test results of SDC-LWA showed a noticeable increase in the concentration 

of leachable Ba to 158 mg/kg. Despite the presence of Ba in the form of stable BaSO4, 

there is a possibility for the formation of highly soluble free BaO when BaSO4 reacts with 

CaO to form calcium sulphate phases. Except Mo for which the concentration was 

measured 0.2 mg/kg, the rest of the heavy metals were found to be lower than ICP-OES 

instrumental limit of quantification. This was also the case for CDC-LWA after firing in 

which the concentration of Ba, Mo and Ni had reduced to below their associated 

quantification limits. However, the leachable concentration of Mo in EDC-LWA was 

increased to 1.2 mg/kg, as highlighted in Table 5.3. It is difficult to determine the exact 

cause of the increase in Mo leaching in the fired samples. Some authors have suggested 

that Mo phases formed at high temperatures are unstable under the atmospheric 

conditions when the material is rapidly cool down (Meima et al., 2002). This effect has 

also been observed through an increase in the fraction of phases with high Mo 

availability due to thermal treatments (González-Corrochano et al., 2012a).  It is also 

noted that the changes observed in the concentration of Mo before and after firing could 

also be due to the inherent variation of Mo in the raw materials. 

5.5.2 Cl−

The concentration of Cl− ions was reduced in SDC-LWA. Table 5.3 shows a 72%

decrease in Cl− (from 7366 mg/kg to 2100 mg/kg). This can happen with the 

evaporation of Cl− at high temperatures. However, some of the Cl− ions can be 

immobilized through a physical encapsulation mechanism in which the migration of 

ions is limited through decreasing the surface area exposed to the leaching agent and/or 

isolating the ions from the environment due to impermeable properties of the silicate-

based matrix (Chandler et al., 1997). 
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Cl− leaching reduced to below the IC limit of quantification in CDC-LWA, showing a

more than 95% reduction. CDC had the lowest silicate concentration necessary for matrix 

forming and immobilization by encapsulation mechanism compared to the other two 

samples. This indicates that the majority of Cl− were transferred to the gas phase at 1220

°C (firing temperature for CDC-LWA). 

The leachable concentrations of Cl− in EDC-LWA was 20,365 mg/kg, showing a 77%

reduction. This again shows the effectiveness of thermal treatments to reduce the Cl−

concentration. It is worth mentioning that the neo-formed minerals can also enhance the 

immobilization of leachable compounds. There are several neo-formed minerals that have 

been reported to effectively incorporate these ions into their structure. For example, 

MgCaSi2O6, which was also present as a neo-formed mineral in EDC-LWA, has 

applications in waste immobilization purposes due to its superior physical properties and 

the fact that the material has a strong fixing capacity for a number of leachable compounds 

(Donatello and Cheeseman, 2013).

5.5.3 SO4
−2

The concentration of SO4
−2 ions was below the ICP-OES limit of quantification in SDC-

LWA. SO4
−2 ions had shown a low leachability in SDC as they were present in the form

of non-soluble BaSO4. It should be noted that the formation of CaSO4·2H2O in the fired

pellets did not affect the release of SO4
−2. This could be because at high pH values (as

measured for SDC-LWA), CaSO4·2H2O is not the controlling compound for SO4
−2

leaching (Quina et al., 2009).

The leaching of SO4
−2 in CDC-LWA increased to 9186 mg/kg after firing. This may have

been due to the formation of soluble SO4
−2 minerals such as Ca5(SiO4)2SO4 as predicted

by the XRD analysis. 

For EDC-LWA, the leachable concentration of SO4
−2 was reduced to 28,322 mg/kg,

around 62% lower than the EDC sample. CaSO4 was the main solubility controlling

mineral for SO4
−2 ions found after firing. Therefore, the observed reduction is likely due

to partial decomposition of CaSO4 during the firing stage.
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5.5.4 F−

The leachable concentration F− ions increased to 34.1 mg/kg and 64.5 mg/kg in fired

SDC-LWA and EDC-LWA, respectively. The most likely source of F− in drill cuttings

is the KAl2(Si3AlO10)(OH)2 phase (also quantified at 20.2 wt.% and 20.5 wt.% of 

crystalline phases in SDC and EDC) (Battaleb-Looie et al., 2012). Therefore, it can be 

assumed that the F− ions were incorporated into compounds with a higher solubility after

the decomposition of KAl2(Si3AlO10)(OH)2 phase during the firing stage. 

5.5.5 DOC 

DOC in all three samples of drill cuttings was reduced to below the instrumental limit of 

quantification, as the organic portion was expected to decompose and be completely 

consumed during the firing stage. 
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Table 5.3 Results of leaching test (BS EN 12457-2) on SDC-LWA fired at 1190 °C, CDC-

LWA fired at 1230 °C and EDC-LWA fired at 1180 °C. 

SDC-

LWA 

CDC-

LWA 

EDC-

LWA 

(mg/kg) (mg/kg) (mg/kg) 

As <1.582 <1.582 <1.582 

Ba 158.0 1.0 1.1 

Cd <0.071 <0.071 <0.071 

Cr <0.201 <0.201 0.2 

Cu <0.712 <0.712 <0.712 

Hg <1.158 <1.158 <1.158 

Mo 0.2 0.2 1.2 

Ni <0.325 <0.325 <0.325 

Pb <2.209 <2.209 <2.209 

Sb <0.858 <0.858 <0.858 

Se <1.008 <1.008 <1.008 

Zn <2.483 <2.483 <2.483 

Cl− 2100.1 <51.0 20,365.8 

F- 34.1 <20.3 64.5 

SO4
2- <37.3 9186.1 28,322.1 

DOC <300.00 <300.00 <300.00 

pH 11.93 10.03 9.4 

Conductivity (μS/cm) 2262 1405 3732 



5.6 Discussion 

This chapter dealt with firing treatment of drill cuttings pellets to investigate the 

feasibility of turning the waste into sintered LWA. In so doing, the samples of drill 

cuttings were pelletised and fired above their initial sintering temperature.

Firing SDC-LWA and CDC-LWA at temperatures above 1200 °C showed that samples 

of these origins could not effectively be sintered at conventional LWA industry 

temperature ranges, as discussed in Chapter 2. Insufficient sintering was evident for both 

samples - as very high water absorptions (25% - 35%) and low compressive strengths 

(<1.0 MPa) were measured. The main reason for these discrepancies among the samples 

was large quantities of BaSO4 and CaCO3 with high sintering temperatures in the samples, 

as determined in Chapter 4. Clay minerals in SDC had suitable sintering temperatures, 

however, their quantity was not sufficient to produce pellets with an acceptable 

structural integrity. The poor sintering capability of SDC and CDC necessitated 

the use of additional material to be incorporated in the raw mix. This is discussed in 

Chapter 7. 

EDC-LWA fired at 1180 °C formed sintered pelleted with physical properties 

comparable to commercial products. This was because, in EDC clay minerals were 

present together with other non-clay minerals such as feldspars and quartz in 

suitable proportions to enhance the matrix formation capable of entrapping the released 

gases, causing the pellets to bloat. The physical properties of EDC-LWA were related to 

the pellets microstructure developed during the firing stage. Bloating was observed in the 

pellets matrix including very large bubbles with diameters in the millimetres range. This 

produced pellets with particle densities of 1.25 g/cm³ to 1.45 g/cm³. The presence of 

highly bloated regions in the microstructure of LWA produced relatively weak pellets in 

the range of 4.0 MPa due to an uneven distribution of stress during compression testing. In 

addition, open channels were generated by hydrocarbon burn-off and an efflorescence 

effect was formed on the surface due to the migration of soluble salts. The release 

of large amounts of decomposition gas from the pellets extended these channels to 

the surface and further increased their water absorption capacity to around 10%. 

The mineral transformation of drill cuttings during the firing stage was investigated by 

XRD analysis. Finding similar trends on phase transformation can be used to predict the 

mineralogy of LWA manufactured from any given sample. The neo-formed minerals 

influence the properties of LWA and determine the suitability of their use in concrete 

products. More importantly, the new phases controlled the leaching of problematic
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constituents and can be used as an indicator to assess the environmental properties of 

LWA. The main neo-formed mineral in SDC was sodium feldspar (NaAlSi3O8). In CDC-

LWA, Ca2SiO4 (C2S) and other phases that are normally found in Portland cement were 

neo-formed because of large quantities of calcium carbonates capable of reacting with the 

present clay minerals at high temperatures. In EDC-LWA, pyroxene phase (MgCaSi2O6) 

was neo-formed. Some common trends in mineral transformation were found among 

samples. Most importantly, BaSO4 remained generally intact during firing but, there were 

evidence that some BaSO4 was decomposed and the resulting BaO could substitute in 

alkali feldspars to form BaAl2Si2O8. Furthermore, the released sulphur oxide can react 

with CaO (from decomposition of calcium carbonates) to produce calcium sulphate 

minerals (Allen and Hayhurst, 1996). The latter phases are less stable in comparison with 

the original BaSO4 and can significantly increase the release of SO4
−2 ions in water

(Bergmans et al., 2016).

In Chapter 4, it was observed that the total heavy metal content in all drill cutting 

samples was low and those soluble in strong acids had a suitable chemical fixation in the 

presence of water. However, the firing treatment appeared to be detrimental for Ba 

speciation as its leaching concentration was increased in SDC-LWA. This was due to the 

formation of free BaO in the material after the firing. However, other heavy metal 

concentrations in the leachate remained in the range of EoW criteria given in Table 3.2. 

Firing treatment produced 72% and 77% reductions in the concentration of leachable Cl− 

in SDC-LWA and EDC-LWA respectively, and to below IC quantification limits in CDC-

LWA. This was both because of the transfer of Cl− to the gas phase due to the high firing 

temperature used and physical encapsulation of ions in the fired pellets. The effect of 

firing on SO4
−2 leaching was complex since both an increasing mechanism (due to the

formation of soluble SO4
−2 phases) and a decreasing mechanism (due to decomposition of

calcium sulphates), can occur simultaneously.

Overall, despite the effectiveness of firing in mitigation of leachable compounds, its 

success can be hindered due to extremely high concentrations soluble salts in the raw 

materials. This was evident for EDC-LWA, in which high concentrations of Cl− were still 

present after the firing. Despite the superior physical properties of EDC-LWA the high 

levels of leaching would undermine its potential use in concrete due to the risk of Cl−-

induced corrosion in reinforced bars. To address this, the use of pre-treatments on EDC 

sample was investigated, as presented in Chapter 6.
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6 Chapter 6:  Effect of washing pre-treatments on properties of LWA 

In the previous chapter, the possibility of manufacturing LWA by firing samples of drill 

cuttings was investigated. It was observed that EDC-LWA were comparable with 

commercial products in terms of physical properties but had problematic levels of  Cl− 

leaching after firing. To address this issue, the research aimed to find a suitable pre-

treatment to be applied to EDC in order to reduce the inherent concentration of Cl− prior 

to firing. In so doing, the work considered a number of treatments that have already been 

successfully used in the mitigation of mobile constituents and soluble salts in various 

hazardous waste materials. Generally, treatments are applied either to transform the 

leachable constituents to a less mobile compound within the material matrix, as in 

chemical stabilization and carbonation; or to separate the constituents of concern from 

the material, as in electro-kinetic and washing treatments. Each treatment is reviewed in 

the following section and the most appropriate method suited to the characteristics of drill 

cuttings was then chosen for experimentation in this Chapter. 

6.1 Potential treatments for mitigation of Cl−

a) Chemical stabilization

In chemical stabilization, reagents such as hydroxides, sulphides, silicates, carbonates and 

phosphates are used to convert the leachable constituent to into less soluble or less mobile 

forms. At the end of the process, the chemically stabilized constituents remain bounded 

within the structure of the solid matrix through various mechanisms – including 

precipitation, absorption and detoxification (Quina et al., 2010). Many studies have 

investigated the chemical stabilization of mineral wastes (Huang and Lo, 2004, Geysen 

et al., 2004a, Geysen et al., 2004b, Hu, 2005) with the most common reagents used being 

soluble phosphates. Treatment with phosphoric acid allows the precipitation of several 

calcium phosphates such as Ca3(PO4)2, dicalcium phosphate (CaHPO4·2H2O), tricalcium 

phosphate (Ca4H(PO4)3·2.5H2O), apatite (Ca5(PO4)3(OH,Cl,F)), copper phosphate 

hydroxide (Cu2PO4OH), and other very insoluble minerals containing divalent metals like 

Pb and Zn (Quina et al., 2010). However, these studies have shown such treatments to be 

less efficient for stabilizing Cl−, (the problematic ion in evaporite minerals) and therefore

was considered disadvantageous for EDC. 
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b) Carbonation/weathering

Carbonation is another treatment that has been developed to reduce the toxicity of 

hazardous waste materials. The process reduces the environmental impact of waste and 

can be used as a mean for CO2 storage. Carbonation treatment has been successfully tested 

for treating contaminated land and waste produced from industrial thermal processes with 

high contents of mobile contaminant (Fernández Bertos et al., 2004).  

The process involves a reaction between CO2 and alkali earth hydroxides, oxides and 

silicates to form stable carbonates containing the mobile contaminant. This is either done 

under wet conditions where the waste is humidified at moderate temperatures (20 – 25 

°C) and pressures (1 – 10 bar) or in dry conditions where reactions are accelerated by 

applying higher temperature ranges (350 – 400 °C) (Baciocchi et al., 2009). Despite the 

success of carbonation treatments on mitigating the alkalinity and immobilization of 

heavy metals, there is a significant uncertainty over its effect on soluble salts, 

including Cl−. Only one study has reported a reduction in leaching of Cl− when this 

process was used for MSWI fly ashes (Li et al., 2007). While the majority of studies 

reported that Cl− remained mobile after carbonation (Wang et al., 2010, Todorovic and 

Ecke, 2006, Baciocchi et al., 2009). This is problematic for the high content of soluble 

salts in EDC. In addition, the high temperature range used during the firing stage 

decompose the carbonated compounds and increase their mobility. Therefore, 

carbonation was not considered for treating EDC. 

c) Electro-kinetic processes

Electro-kinetic (electro-remediation) processes involve the application of an electrical 

field (DC current) across a porous material (soil) to induce the movement of an electrolyte 

solution and the soluble contaminants towards the electrodes (Yuan and Weng, 2006). 

Removal of contaminants from porous media is accomplished by the mechanisms of 

electro-migration (movement/transport of ions toward the electrode of opposite charge), 

electro-osmosis (the hydraulic flow induced by the electric field), electro-phoresis 

(transport of charged particles or colloids under the influence of an electric field) and 

electrolysis of water which produces H+ and OH− in the anode and cathode, respectively 

(Ferri et al., 2009). The electro-kinetic process set-up is shown in Figure 6.1. Accordingly, 

highly mobile anions such as Cl− are attracted to the anode and cations such as Ni2+ and

Cr3+ are attracted to the cathode, where they can be collected using methods like
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electroplating, precipitation and complexing with ion-exchange resins (Al-Hamdan and 

Reddy, 2008). 

Electro-kinetic methods have been successfully used for contaminated soil (López-

Vizcaíno et al., 2014, Skibsted et al., 2018), waste sewage sludge (Ferri et al., 2009) and 

MSWI fly ash (Traina et al., 2009, Pedersen et al., 2005). Most of these studies have 

reported an effective reduction in the leaching of Cl− over the range of 80 – 98%. Despite

these findings, an electro-kinetic process was not considered to be a suitable treatment in 

this work because EDC also contained high concentrations of carbonates, which have 

been reported to negatively affect the process (Virkutyte et al., 2002). In addition, there 

are still uncertainties around large-scale electro-kinetic treatments due to the use of high-

voltages and power consumption, which significantly reduces the efficiency and 

sustainability of the process. 

d) Washing

Washing pre-treatments with water are often employed to remove soluble salts i.e. reduce 

their total content and thus, the availability for leaching (Sabbas et al., 2003). Washing 

has been used for several waste materials, such as MSWI fly ash and APCr with extremely 

high levels of Cl− (Nzihou and Sharrock, 2002, Lundtorp et al., 2003). Some studies

attempted to find optimal washing conditions for waste materials with high rates of 

removing impurities while keeping water consumption and the process costs to a 

minimum. Derie (1996) reported a general rule for effective washing to reduce the total 

Figure 6.1 Schematic representation of electro-kinetic cell modified from (Skibsted et 
al., 2018). 
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content of Cl− that are under the forms of alkaline chlorides: with L/S ratios in the range 

of 5 – 10 kg/l, a washing duration of one hour would be sufficient to remove most of the 

soluble alkaline chlorides. Chimenos et al. (2005) found that a two-stage wash followed 

by a further rinse at L/S ratio of 3 kg/l for one hour would be an ideal condition to wash 

APCr. Zhu et al. (2010) investigated the behaviour of various Cl− compounds in fly ash 

from MSWI during washing experiments and concluded that the amount of soluble Cl− 

including NaCl, KCl and CaCl2 decreases rapidly with the increase of L/S ratio or washing 

frequency. 

The main issue with washing treatments is the management of the resulted wastewater. 

Depending on the nature and quantity of contaminants in the treated waste material, 

washing can be impractical due to the criticality of managing either extremely polluted or 

massive quantities of produced wastewater (Abbas et al., 2003). This happens when the 

contamination is based on heavy metals or corrosive/toxic compounds usually found in 

hazardous and/or clinical waste. However, the nature of problematic leachable 

compounds in EDC was NaCl, for which the wastewater can easily be treated or if the 

environmental permits are available, discharged into the sea. In addition, low quantities of 

wastewater would be produced in the washing of EDC, due to the high solubility of NaCl 

in water (359 g/l). Therefore, washing was selected as the most appropriate method for Cl

− mitigation and so in this chapter, a novel combination of washing techniques with 

varying duration/contact time and liquid to solid ratio was designed based on the 

information obtained from material characterizations. 

6.2 Designing the washing pre-parameters 

It was noted that a standard washing procedure for pre-treatment of wastes does not exist 

and washing conditions are chosen mainly based on factors such as mineralogy, 

concentration and solubility of the present ions. The most influential washing parameters 

including the nature of the washing medium, L/S ratio, duration and washing frequency 

(the number of steps) were determined for two washing pre-treatments. Deionised water 

was selected as the washing medium since the problematic Cl− was present in the form of 

NaCl which has high levels of solubility in water. L/S ratio was kept constant at 10 kg/l to 

be in the same range as in the leaching test conducted to measure the concentration of 
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water-soluble constituents. Two washing pre-treatments were designed by varying 

duration and frequency as given in Table 6.1. 

Table 6.1 Washing parameters determined for the pre-treatment of EDC. 

W1 W5 

Washing medium Deionised water Deionised water 

L/S ratio (l/kg) 10 10 

Duration (hour) 1 1 (first step) + 5* (second step) 

Number of steps 1 2 

* The second step involved agitation in a rotary tumbler.

The washing methods are described as follows: 

a) Single-step washing (W1): deionised water at L/S ratio of 10 l/kg was added to 

EDC and the mix was stirred at 10 min intervals. After one hour, the water, 

containing the soluble ions, was removed by decanting and the resulting slurry 

was vacuum filtered. At the end of the filtration process, the filtrate was rinsed 

with deionised water to remove any remaining ions. Samples of EDC after W1 

pre-treatment were named W1EDC.

b) Two-step washing (W5): EDC were firstly washed with deionised water at L/S 

ratio of 10 l/kg for one hour as in W1. In the second stage, deionised water at L/S 

ratio of 10 l/kg was added to the slurry and the mixture was agitated in a rotary 

tumbler (shown in Figure 3.4) for five hours, at a rotational speed of 10 rpm. 

The mix was then vacuum filtered and rinsed as in washing method W1. 

Samples of EDC after W5 pre-treatment were named W5EDC. 

W1EDC and W5EDC were pelletised and fired according to the LWA manufacturing

method described in Chapter 3. The fired pellets were named W1EDC-LWA and 

W5EDC-LWA accordingly. In this chapter, the effect of washing pre-treatment on 

physical properties, microstructure, mineralogy and leaching behaviour of manufactured

LWA were investigated.
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6.3 Effect of washing on structural characteristics 

Figure 6.2 shows images of W1EDC-LWA and W5EDC-LWA. Initially, it was observed 

that washing had reduced the temperature at which sintering starts to 1160 °C and 

influenced the quality of the surface. As outlined in Figure 6.2, washing pre-treatments 

increased the surface homogeneity of LWA, compared to that for pellets made from 

untreated EDC. This can be attributed to the removal of soluble salts from the raw 

material that would otherwise form a build-up layer and deteriorate the outer surface of 

LWA. 

W1EDC-LWA exhibited a minor degree of bloating at 1160 °C. Large cellular pores 

started to develop in the internal structure of pellets fired at 1170 °C. The increased 

bloating optimised the pore structure developed at 1170 °C. However, at temperatures 

above 1170 °C, the material suffered from an excessive bloating. At 1190 °C, pellets did 

not retain their shape and some amount of melted material adhered to the refractory 

plate. The excessive bloating was problematic because it resulted in inconsistent internal 

structure and in many cases a non-uniform pore size distribution was obtained. In 

addition, a prevalent structure for pellets with excessive bloating could be identified; with 

a densified core in the centre surrounded by a gap incorporating pore bottle-

necks connected to a shell. Such a structure is not symmetrical and could 

cause inconsistency in LWA physical properties.

W5EDC-LWA had a sintered core without any significant bloating at 1160 °C. Some 

degree of bloating was observed at 1170 °C, but this was not sufficient for an ideal LWA. 

Bloating increased with firing temperature and reached its maximum at 1190 °C. 

However, the overall degree of bloating was lower compared to W1EDC-LWA. This may 

have been due to the removal of gas-releasing compounds, such as calcium sulphate, 

when a more intense washing pre-treatment was applied (this hypothesis is verified by 

XRD analysis in section 6.5). No significant build-up layer was found on the LWA 

surface, however above 1180 °C the development of melted phases caused the W5EDC-

LWA to appear smoother. This showed that the removal of soluble compounds had 

affected the thermal behaviour of the material. 
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Figure 6.2 Appearance of the surface and internal structure for LWA manufactured from 

EDC subjected to W1 and W5 pre-treatments. 



6.4 Effect of washing on physical properties 

6.4.1 Particle density 

Figure 6.3a shows the effect of firing temperature on the particle densities of W1EDC-

LWA. The average particle density decreased from 1.88 g/cm³ to 1.29 g/cm³ as the firing 

temperature was increased from 1160 °C to 1180 °C. This was due to the bloating effect, 

which was intensified with increasing firing temperatures. At 1190 °C, the particle density 

increased to 1.44 g/cm³ as the LWA were fired near their melting point which can cause 

local densification in pellets. It must be noted that a similar trend in the particle density 

variation over the firing range on EDC-LWA was also observed. The lowest density was 

obtained for W1EDC-LWA at 1180 °C which was comparable to Lytag (1.27 g/cm³) 

and higher than LECA (0.77 g/cm³), as given in Table 5.1.

The obtained particle densities for W5EDC-LWA between 1160 °C and 1180 °C were at 

a higher range compared to W1EDC-LWA series. The densities at this range were above 

2.0 g/cm³ which did not comply with the British Standard (BS EN 13055-1) for 

LWA. As discussed previously, W5 (with a longer washing duration) can remove some 

of the gas-releasing and fluxing compounds and increase the softening point of the 

material, resulting in LWA with high densities. It was only at 1190 °C when bloating 

occurred, and the particle density decreased to 1.38 g/cm³.  

6.4.2 Water absorption 

Figure 6.3b shows the average water absorption of W1EDC-LWA was 5.3% at 1160 °C. 

This decreased to its lowest value at 2.7% indicating an increase in the degree of sintering. 

However, the water absorption increased to 5.7% at 1190 °C as LWA was bloated 

indicating the formation of pores with a higher degree of connectivity. It was obvious that 

washing reduced the water absorption and the measured values were remarkably lower 

than those measured for Lytag (20.5%) and LECA (32.7%). This can be explained by the 

formation of a non-porous shell over the LWA surface. Washing can inhibit the 

efflorescence effect (accumulation of soluble ions which migrate to the pellets surface 

during the drying stage), producing a more homogeneous and impermeable surface 

during the firing stage (Wei et al., 2008). 

A similar trend (decrease with a subsequent increase) on the effect of firing temperature 

on water absorption of W5EDC-LWA was observed. Initially, the average water 

absorption decreased from 9.4% to 4.8% as the temperature increased from 1160 °C to 
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1180 °C indicating a reduction in open porosity. Subsequently, the water absorption 

increased to 8.9% at 1190 °C due to the formation of water accessible pores produced 

through LWA bloating. 

6.4.3 Compressive strength 

Figure 6.3c shows that the average compressive strength of W1EDC-LWA decreased 

drastically from 21.0 MPa to 2.7 MPa, as the temperature increased from 1160 °C to 1190 

°C. The initial strength development in the material confirms the extension of sintering 

range to lower temperatures after being subjected to W1 pre-treatment. This is because 

the majority of the soluble salts in drill cuttings are not cable of sintering and thus their 

removal produces stronger LWA at lower temperatures. However, as the temperature 

increased to 1180 °C, pellets showed an excessive bloating which resulted in an uneven 

distribution of stress in pellets causing 80% decrease in compressive strength.

W5EDC-LWA also showed some strength development from 12.4 MPa to 14.6 MPa as 

the temperature increased from 1160 °C to 1170 °C. This was in accordance with the 

assumption of an enhanced degree of sintering as a result of washing pre-treatment. 

Above 1170 °C pellets exhibited a similar decreasing trend in compressive strength 

which can be associated to the increase in the degree of bloating. The large gas bubbles 

which were developed during bloating can act as weak points in LWA 

structure. 6.3 MPa compressive strength measured at 1190 °C was higher than 

W1EDC-LWA fired at the same temperature and higher than those measured for Lytag 

(3.2 MPa) and LECA (1.7 MPa). Overall, W5EDC-LWA was recognized as the 

product with optimal physical properties among the batches tested for the washing 

experiment, as they showed low density and water absorption, and comparable 

compressive strength to commercial products. 
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Figure 6.3 Effects of firing temperature on physical properties of W1EDC-LWA and 

W5EDC-LWA: (a) particle density, (b) water absorption, and (c) compressive strengths. 

Error bars are plus and minus one standard deviation. 
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6.5 Effect of washing on microstructure 

6.5.1 W1EDC-LWA 

Figure 6.4 shows the SEM micrographs of the fracture surface and the outer surface of 

W1EDC-LWA. Figure 6.4a shows for pellets fired at 1160 °C a pore structure 

comprised of uniform closed nearly-spherical pores with sizes decreasing towards the 

surface. The observed low-temperature bloating effect generated micropores with 

diameters ranging between 10 μm to 500 μm. This effect did not appear in the untreated 

sample. It is likely that the removal of soluble salts due to washing has resulted in a 

continuous matrix necessary for bloating.

Figure 6.4b shows the effect of increasing the temperature to 1190 °C on the core 

microstructure. A very large bubble formed in the middle of the pellet due to excessive 

bloating caused by a simultaneous occurrence of the gas release and very low pyro-plastic 

viscosity of the matrix. This effect that was prevalent in all pellets fired above 1180 °C. 

However, it is observed that despite the extreme bloating, there was a low degree of 

connectivity between the central hollow sphere and the shell water-accessible pores. This 

was also consistent with water absorption capacity measured for this batch (4.3%). 

Figure 6.4c to Figure 6.4d show two distinct regions on the outer surface of the pellet 

fired at 1190 °C. A lower magnification overview image was also attached to both 

images showing the locations where they were captured. A crystallized surface texture 

in Figure 6.4c belongs to the efflorescence effect due to the accumulation of 

remaining soluble compounds on the surface. This layer was incapable of expansion 

and therefore, showed cracking in order to give way to the bloated core. Figure 6.4d 

shows a clearly different microstructure, predominantly composed of a melted/

densified phase on build-up free regions. It is likely that these phases were pushed 

toward the surface during the bloating stage and solidified in place. These observations 

indicated that despite the improvement in the material bloating capability, W1 pre-

treatment was not adequate to inhibit the accumulation and crystallization of soluble 

compound on the surface. 

6.5.2 W5EDC-LWA 

Figure 6.5 shows the SEM micrographs of W5EDC-LWA. The images were captured 

from the outer surface and core fracture surface of LWA fired at 1160 °C and 1190 °C. It 

is observed that the solid build-up is almost absent from the surface of both pellets in 

Figure 6.5a and Figure 6.5b. Some melted phase with open pores is present on the surface 
139 
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at 1160 °C however, the lack of bloating and pore formation in the core produced LWA 

with very low water absorption. At 1190 °C, the surface condition was clearly improved 

in terms of homogeneity compared to that for W1EDC-LWA. Therefore, the increased 

the washing duration was found to be effective in removing the constituents of the 

build-up layer.

Figure 6.5c to Figure 6.5d were acquired from the core fracture surface of W5EDC-LWA 

fired at 1160 °C and 1190 °C, respectively. Figure 6.5c shows very low-viscosity phases 

producing a cellular open network with minimal bloating. This is consistent with the high 

particle density measured for LWA fired at 1160 °C. Figure 6.5d shows bloating with the 

formed bubbles having minimal connectivity as well as thick (up to 100 μm) bottle-necks 

in W5EDC-LWA core. The result was a strong, but bloated, matrix with relatively low 

water absorption and explained the optimal physical properties that were achieved for 

W5EDC-LWA.
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Figure 6.4 SEM micrographs of W1EDC-LWA: (a) core (fracture surface) at 1160 °C, (b) core (fracture surface) at 1190 °C, (c) regions on the outer 

surface with a build-up layer and (d) regions on the outer surface with solidified phases. 
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Figure 6.5 SEM micrographs of W5EDC-LWA: (a) outer surface fired at 1160 °C, (b) outer surface at 1190 °C, (c) core (fracture surface) at 1160 °C 

and (d) core (fracture surface) at 1190 °C.
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6.6 Effect of washing on mineralogy 

Figure 6.6 showed the XRD patterns of W1EDC. The analysis showed the same mineral 

phases as those found in EDC including SiO2 (quartz), CaSO4, CaSO4.2H2O, CaCO3, 

CaMg(CO3)2, BaSO4 and KAl3Si3O10(OH)2. However, the patterns showed that all NaCl 

peaks were disappeared after only one hour of washing. In Table 6.2, the Rietveld 

quantification analysis also showed the reduction of NaCl from 10.9 wt.% to almost zero. 

W5 pre-treatment produced similar results in terms of major phases identified and the 

absence of the NaCl peak. 

CaSO4·2H2O (020) reflection at 11.7 °2θ became visible after the applying W1 and its 

intensity increased after W5. The Rietveld analysis showed that minor quantities of 

CaSO4·2H2O 3.4 wt.% and 3.9 wt.% were formed after W1 and W5, respectively. It is 

well understood that CaSO4 can be hydrated into CaSO4·2H2O in contact with water 

(Kirby and Rimstidt, 1994, Sievert et al., 2005) and it may have been the reason that the 

analysis resulted in higher amounts of CaSO4·2H2O for W5EDC. After the washing, the 

contribution of CaSO4 in the total crystalline phase present did not reduce as 12.1 wt.% 

and 16.4 wt.% CaSO4 were quantified in W1EDC and W5EDC, respectively. 

Figure 6.7 shows the major neo-formed phase in W1EDC-LWA and W5EDC-LWA fired 

at 1190 °C was CaMg(Si2O6). This was quantified as 54.2 wt.% in W1EDC-LWA and as 

49.3 wt.% in W5EDC-LWA. These results are consistent with the amount of MgCaSi2O6 

found in EDC-LWA. This indicates to a common trend regarding the neo-formation of 

MgCaSi2O6 which involves the transformation of quartz and KAl2(Si3AlO10)(OH)2 

alongside the decomposition of CaCO3 and CaMgCO3 resulting in the formation of 

MgCaSi2O6 and feldspars. These neo-formed phases can either be crystallized from a 

silicate melt or formed from a solid-phase reaction between the liberated alkali oxides 

and aluminosilicates during the firing stage (Vassilev and Vassileva, 1996). 

16.4 wt.% and 7.5 wt.% KAlSi3O8 in W1EDC-LWA and W5EDC-LWA were quantified 

respectively. Some reductions in the share of BaSO4 from the total crystalline phase in 

W1EDC-LWA and W5EDC-LWA down to 1.7 wt.% and 1.3 wt.% was 

determined, respectively. BaSO4 is non-soluble in water and the observed reductions can 

be due to the reaction of BaO released from the decomposition of BaSO4 and the 

aluminosilicate phases present in EDC. 1.4 wt.% and 2.9 wt.% neo-formed BaAl2Si2O8 

were present in W1EDC-LWA and W5EDC-LWA confirming the fate of the free BaO. 
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The intensity of the CaSO4·2H2O (020) reflection at 11.7 °2θ showed an increase 

compared to the XRD patterns of EDC-LWA. However, in W5EDC-LWA the intensity 

of the CaSO4·2H2O peak was considerably reduced. The results of Rietveld quantification 

analysis in Table 6.2 showed reductions in calcium sulphate phases in W5EDC-LWA. 

CaSO4·2H2O and CaSO4 contribution in the total crystalline phase was estimated at 7.0 

wt.% and 3.5 wt.% in W1EDC-LWA respectively, while those in W5EDC-LWA were 

0.8 wt.% and 1.5 wt.%. These results indicated to the effectiveness of W5 pre-treatment 

in the removal of soluble calcium sulphates from W5EDC-LWA. However, the main 

contributor to this reduction was the decomposition of CaSO4 during the firing stage – a 

mechanism that was also in play for EDC-LWA (discussed in Chapter 5). 
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Figure 6.6 X-ray diffraction patterns with some important peak markers for crystalline phase identification in W1EDC and W5EDC. Markers on q: SiO2, 

a: CaSO4, g: CaSO4.2H2O, c: CaCO3, dl: CaMg(CO3)2, b: BaSO4, m: KAl3Si3O10(OH)2 and h: NaCl. 



Figure 6.7 X-ray diffraction patterns with some important peak markers for crystalline phase identification in W1EDC-LWA and W5EDC-LWA fired 

at 1190 °C. Markers on q: SiO2, a: CaSO4, g: CaSO4.2H2O, b: BaSO4, h: NaCl, d: CaMgSi2O6, al: NaAlSi3O8, s: KAlSi3O8, an: CaAl2Si2O8 and f: Mg2SiO4. 
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Table 6.2 Results of XRD Rietveld quantification analysis for EDC after washing pre-

treatments and LWA fired at 1190 °C. 

Minerals Chemical formula W1EDC W5EDC W1EDC-

LWA 

W5EDC-

LWA 

(wt.%) (wt.%) (wt.%) (wt.%) 

Quartz SiO2 7.4 8.3 0.0 0.4 

Calcite CaCO3 4.6 5.2 0.0 0.0 

Dolomite CaMg(CO3)2 17.1 18.5 0.8 0.9 

Halite NaCl 0.0 0.2 1.3 0.9 

Barite BaSO4 5.6 9.2 1.7 1.3 

Muscovite KAl3Si3O10(OH)2 25.2 21.5 0.0 0.0 

Diopside MgCaSi2O6 5.0 3.7 54.2 49.3 

Anhydrite CaSO4 12.1 16.4 3.5 1.5 

Gypsum CaSO4.2H2O 3.4 3.9 7.0 0.8 

K-feldspar K(AlSi3O8) 12.4 0.0 16.4a 7.5b

Albite NaAlSi3O8 0.0 8.1 3.2 0.0 

Anorthite CaAl2Si2O8 5.6 3.8 5.9 28.0 

Kaolinite Al2Si2O5(OH)4 0.0 0.0 - - 

Corundum Al2O3 1.4 1.2 1.4 0.0 

Forsterite Mg2SiO4 - - 2.6 4.0 

Celsian BaAl2Si2O8 - - 1.4 2.9 
a as sanidine. 
b as orthoclase. 
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6.7 Effect of washing on contaminant leaching from LWA 

Table 6.3 shows the results of leaching test (BS EN 12457-2) on W1EDC-LWA and 

W5EDC-LWA fired at 1190 °C. 

6.7.1 Heavy metals 

The concentration of leachable Mo ions was measured 1.5 mg/kg in W1EDC-LWA. 

Intensifying the washing conditions did not improve this effectively as 1.3 mg/kg 

leachable Mo was measured for W5EDC-LWA. A similar concentration range was 

measured for EDC-LWA. However, the acid-soluble concentration of Mo in EDC was 

below the ICP-OES limit of quantification. Therefore, the appearance of Mo ions in the 

leachate can again be associated to the formation of unstable Mo-bearing phases at high 

temperatures, as discussed in Chapter 5. Ba concentration remained at approximately 1.0 

mg/kg and below the EoW inert criteria given in Table 3.2. 

6.7.2 Cl−

The concentration of leachable Cl− ions in W1EDC-LWA was 1463 mg/kg. This

indicates that W1 pre-treatment was effective in mitigating the release of Cl−. There was

approximately a 93% reduction in leachable Cl− ions compared EDC-LWA and 98.3%

reduction compared to EDC. This demonstrates the rapid kinetics of Cl− release in water

during relatively short washing durations. Studies have reported this to occur in only a 

few seconds (Lampris et al., 2008). Applying W5 pre-treatment resulted in the 

concentration of Cl− ions to further drop to 70.9 mg/kg which is safely below the EoW

criteria. 

6.7.3 SO4
−2

The measured concentration of water-soluble SO4
−2 from W1EDC-LWA was 28,366

mg/kg (Table 6.3), which was similar to that of EDC-LWA (28,322 mg/kg in Table 5.3).

In W5EDC-LWA SO4
−2 concentration was 24,467 mg/kg, 14% lower than that of

W1EDC-LWA. It is important to note that for mineral wastes with high SO4
−2 content,

CaSO4 solubility can explain the SO4
−2 release when pH values are in the range of 9 to 11

(Eighmy et al., 1995) and below that, CaSO4·2H2O solubility would become the

controlling factor (Astrup et al., 2006, Dijkstra et al., 2006). Both CaSO4 and CaSO4·2H2O

were present in XRD analysis of W1EDC-LWA and W5EDC-LWA. In addition, the

leaching test was conducted at the material own pH which was measured to be 10.58 and 
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10.29 for W1EDC-LWA and W5EDC-LWA, respectively. This suggests that despite the 

decomposition of calcium sulphates during the firing stage, the remaining unreacted 

CaSO4 was responsible for the leaching of SO4
−2 from the manufactured LWA.

6.7.4 F−

Leaching of F− ions increased to 77.5 mg/kg and 46.6 mg/kg in W1EDC-LWA and

W5EDC-LWA, respectively. A similar trend (the increase of F− leachability after firing)

was observed for EDC-LWA in section 5.5.4. This was because KAl2(Si3AlO10)(OH)2 

was the main source of F− in EDC (XRD analysis in Table 4.3) and its decomposition

during the firing stage can increase the mobility of the F− ions.
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Table 6.3 Results of leaching test (BS EN 12457-2, 2002) on W1EDC-LWA and 

W5EDC-LWA fired at 1190 °C. 

W1EDC-LWA W5EDC-LWA 

(mg/kg) (mg/kg) 

As <1.582 <1.582 

Ba 0.8 1.0 

Cd <0.071 <0.071 

Cr <0.201 <0.201 

Cu <0.712 <0.712 

Hg <1.158 <1.158 

Mo 1.5 1.3 

Ni <0.325 <0.325 

Pb <2.209 <2.209 

Sb <0.858 <0.858 

Se <1.008 <1.008 

Zn <2.483 <2.483 

Cl− 1463.5 70.9 

F- 77.5 46.6 

SO42- 28,366.5 24,467.0 

DOC <300.00 <300.00 

pH at 20 °C 10.58 10.29 

Conductivity (μs/cm) 4311 4322 
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6.8 Discussions 

This chapter aimed to investigate the effect of washing on properties of LWA made from 

EDC samples – for which high concentrations of NaCl had been measured in Chapter 4. 

Single-step (W1) and two-step (W5) washing pre-treatments were designed based on 

mineralogical information from EDC and applied to the raw materials. Both washing pre-

treatments were shown to decrease the initial sintering temperature, which is important 

for energy saving at large scale LWA manufacture. In addition, washing improved the 

viscosity of the pyro-plastic phase to such extent that bloating occurred effectively. LWA 

with optimal physical properties comparable with commercial products were produced 

over a wide firing range. W5EDC-LWA fired at 1190 °C was identified as the optimal 

batch with 1.38 g/cm³ particle density, 8.9% water absorption and 6.3 MPa compressive 

strength. 

SEM microstructural analysis showed that washing could inhibit the formation of the 

built-up layer, reducing the surface porosity and thus, affecting the water absorption. W5 

pre-treatment completely removed the efflorescence effect on the surface of fired pellets 

observed on EDC-LWA in Chapter 5. SEM images obtained from the fracture surface of 

the fired pellets confirmed the prevalence of low-viscosity glass phases in the matrix. 

XRD analysis showed that the NaCl phase contribution in EDC was reduced to below 1.0 

wt.% after W1 pre-treatments. The analysis showed the complete removal of NaCl after 

W5 pre-treatment and resulted in Cl− concentration in the manufactured W5EDC-LWA 

to reduce below the EoW inert criteria. W5EDC-LWA can be recognised as a successful 

case for the beneficial reuse of waste drill cuttings with high Cl− contents. In addition, 

CaMgSi2O6 as the major neo-formed phase can enhance the performance of LWA in 

concrete products. This is because the expansive alkali-silica gel forming reactions 

between cement and the amorphous silica can be inhibited when LWA mineralogy is rich 

in CaMgSi2O6 (Rodriguez et al., 2018). 

Despite the evidence for calcium sulphates decomposition during the firing stage, the 

remaining solubility controlling CaSO4 caused some levels of SO4
−2 leaching. W5EDC-

LWA showed 14% reduction in water-soluble SO4
−2 content compared to W1EDC-LWA.

These results suggested that both washing pre-treatments were not effective to completely

remove the sulphate salts in EDC. To address this issue, using a more intense washing

pre-treatment by further increasing the L/S ratio in the range of 200 l/kg to 300 l/kg may
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be required (Abbas et al., 2003). High levels of SO4
−2 in aggregates can be detrimental to

the durability of concrete products. Although, aggregates produced from construction and

demolition waste often contain high levels of SO4
−2 similar to those measured in W5EDC-

LWA. This suggests that attention must be paid to the end-use application of W5EDC-

LWA and perhaps incorporated where the presence of SO4
−2 is tolerated – such as in

combination with sulphate resistance Portland cement.
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7 Chapter 7: Effect of glass addition on properties of LWA 

In Chapter 5, it was observed that SDC and CDC samples could not be effectively 

sintered over the firing temperature ranges that are usually achievable in LWA 

manufacturing kilns and thus, would jeopardise the technical viability of the process. 

The aim of this chapter was to address the issue by exploring the use of a secondary 

material to be incorporated into the SDC-LWA and CDC-LWA (prior to the firing 

stage). This material needs to be capable of forming a matrix (network) and enhance the 

sintering of unreacted drill cutting particles. The study also aimed to incorporate an 

additional material in EDC-LWA as an alternative solution to reduce the observed 

leaching problem of Cl−, discussed in Chapter 5. Similarly, the suitable material should 

be capable of matrix forming which can provide physical encapsulation of the leachable 

constituents within the LWA structure. This approach was successfully tested for 

mitigation of heavy metals from hazardous mineral waste, such as APCr (Quina et al., 

2014b, Roether et al., 2010), however, its effectiveness on the leaching of anions has not 

been fully investigated. This experiment also allowed for comparisons to be made with 

results from the washing treatments employed in Chapter 6. 

7.1 Potential secondary material for incorporation in LWA

Silica and/or aluminosilicate-based materials are known for their effective matrix 

(network) forming properties (Lin and Chang, 2006) and therefore were deemed fit for 

the purpose of this experiment. Naturally-available silica and/or aluminosilicate 

geological materials such as bentonite clay, sand, etc. were suitable for addressing the 

problem. However, these were not considered for the experiment due to the criticality of 

using natural resources (as doing so would undermine the sustainable use of materials 

which was the ultimate goal of this research). In Chapter 2, a number of secondary waste 

materials that were successfully used for LWA manufacturing were reviewed. In this 

chapter, the aim was to select a waste material to be incorporated in LWA that can 

provide technical advantages including matrix forming and bloating capabilities, 

inertness, large-scale availability and sustainability. In the following sections, 

information on potential secondary materials are provided and the most advantageous 

material was then selected for experimentation: 
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a) Pulverised Fuel Ash (PFA)

PFA is the by-product of coal-fired power stations. It has been frequently used as a 

secondary material for civil engineering applications such as Portland cement 

replacement in concrete products, soil stabiliser in road construction and as a raw 

material for manufacturing Lytag (Molineux et al., 2016). Typical chemical 

composition data for PFA produced in the UK is given in Table 7.1. The material is 

predominantly comprised of silica (50.1 wt.%), alumina (28.1 wt.%) and iron oxide 

(11.7); suggesting sufficient capability of the material to form a network and enhance 

the sintering of drill cuttings particles. In addition, PFA is classified as a non-

hazardous waste making it an ideal material for use in LWA manufacturing. 

However, the availability of PFA is reducing due to the move away from coal-fired power 

stations in the UK and EU (Jones et al., 2006). In addition, PFA desirable pozzolanic 

properties has shifted the attention to alternative reuse applications, as in supplementary 

cementitious material (SCM) in concrete products (Rayment, 1982, M. D. A. Thomas and 

Pettifer, 1991, Davies and Kitchener, 1996, Escalante García et al., 2006, Liu, 2010), and 

this is likely to limit its availability for LWA production (Sarabèr et al., 2012, Molineux et 

al., 2016). For these reasons, it was considered unsuitable for use in this experiment. 

b) Municipal Solid Waste Incinerator (MSWI) bottom ash

MSWI bottom ash is the residue of combustion in energy from waste (EfW) plants. It can 

be a candidate for incorporation in drill cuttings LWA because it has advantageous 

sintering properties, which can react with drill cutting particles to form an 

aluminosilicate-based matrix. MSWI bottom ash usually has lower sintering temperature 

ranges compared to PFA and that is due to high total flux contents in the material, as 

shown in Table 7.1 (Bourtsalas et al., 2015). 

MSWI bottom ash production in the UK is estimated to be in the range of 3.7 million 

tonnes per annum indicating the vast availability of this secondary material (Dou et al., 

2017). MSWI bottom ash has been used in LWA manufacturing (Cheeseman et al., 2005) 

however, a number of studies on characterization of MSWI bottom ash have noted a large 

amount of variability in the waste (Bethanis et al., 2002). The variability arises from the 

material ferrous and non-ferrous metals (including heavy metals), ceramics, glass, other 

non-combustibles and residual organic matter. The extreme heterogeneity of MSWI 

bottom ash, together with the presence of heavy metals, is the main issue regarding its 
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inertness. The characterization of drill cuttings showed negligible heavy metal contents 

in Chapter 4 and the incorporation of MSWI bottom ash will adversely affect the leaching 

properties of drill cuttings LWA. Therefore, MSWI bottom ash was also considered 

unsuitable for use in this chapter. 

c) Incineration Sewage Sludge Ash (ISSA)

Sewage sludge is a by-product of water treatment which is normally incinerated to reduce 

the waste by approximately 70% by mass and 90% by volume, leaving behind ISSA 

(Lynn et al., 2015). ISSA is aluminosilicate-based waste material with compositions 

favourable for the formation of a liquid phase during sintering and thus a potential 

candidate for incorporation in LWA. As reported in the literature, ISSA is a polyphasic 

material comprised of ~60% crystalline and ~40% amorphous phase. The chemical 

composition reported in Table 7.1 shows that ISSA is mainly composed of Si, Ca, P and 

Al. These are usually found in the forms of SiO2 (quartz) and whitlockite (Ca3(PO4)2), 

while Al is typically present in feldspar and amorphous glassy phases (Cyr et al., 2007). 

As shown in Table 7.1, the amount of CaO and P2O5 are high (~26%) compared to the 

other secondary materials reviewed while SiO2 and Al2O3 are present less than 50%. 

ISSA is currently landfilled in the UK, however, due to its superior pozzolanic and 

sintering properties, a number of reuse applications including its used in LWA have been 

investigated (Donatello and Cheeseman, 2013). LWA was produced by firing ISSA and 

clay at a temperature range of between 1050 °C and 1070 °C (Cheeseman and Virdi, 

2005). However, the main issue for the use of ISSA in LWA is the low Si/Al ratio of the 

material as shown in Table 7.1. This was addressed by Tsai et al. (2006) showing ISSA 

derived LWA require additional matrix forming components such a glass cullet for 

improving physical properties. The Si/Al ratio in drill cuttings shown in Table 4.1 was 

also measured at similar ranges to ISSA. This indicated that ISSA itself would not solve 

the inherent lack of aluminosilicate content in drill cuttings samples and therefore, was 

again not a suitable candidate for incorporation in LWA for this experiment. 

d) Excavated clay

Clay is another aluminosilicate-based candidate for incorporation in drill cuttings LWA. 

The possibility of using waste clay in the manufacture of LWA was reviewed in Chapter 

2. It was discussed that the use of waste clay generated by major infrastructure

development projects to make LWA has a positive environmental impact and contributes 



towards a more circular economy. For example, construction of the Crossrail 1 

underground tunnel in London UK, resulted in more than 4 million tonnes of waste 

London clay which was primarily used in land reclamation (Boarder et al., 2016). The 

composition of a typical London clay is given in Table 7.1. However, the main issue with 

the use of waste clay as a matrix forming material is the inherent compositional variation 

based on the location and depth of excavation. This adds to the variability observed in 

drill cuttings and produces LWA with inconsistent properties. 

e) Waste glass

Glass is a silica-based secondary material with excellent matrix forming capability, 

inertness and compositional consistency. In materials science, the term ‘glass’ refers 

to solids with amorphous crystalline structures lacking any ordered molecular 

arrangement. The most common glasses are based on a SiO2 network in which various 

metal oxides are incorporated to reduce the mix melting point. For example, soda 

(Na2O: 10 – 16%), lime (CaO: 5 – 14%) and minor amounts of magnesia (MgO) and 

alumina (Al2O3) are added to reduce the melting point of pure silica (1723 °C) to 

below 1100 °C and produce soda-lime glass (Haldimann et al., 2008, Khatib, 2016). 

Glass represents a sustainable resource in construction and packaging applications - as it 

can be easily reprocessed/recycled to make materials with similar properties to the 

original (Chiellini, 2008). According to the European Container Glass Federation (FEVE) 

the average glass recycling rate in the UK reached 67% in 2014 with the remaining 23% 

being sent to landfill. The remaining fraction of total produced glass is often referred to 

as ‘waste glass’ and so alternative recycling options have received a great deal of interest, 

particularly in the construction materials sector. 

Table 7.1 shows typical compositions of waste glass. Studies have examined the use of 

waste glass as concrete aggregate and reported promising results (Degirmenci et al., 2011, 

Sikora et al., 2015). However, a major concern over this application has been the 

expansive nature of alkali–silica reactions between cement and the amorphous silica, 

which comprises up to 70% of the aggregate (Ducman et al., 2002). Foamed materials 

with superior engineering properties have been produced from waste glass (Arulrajah et 

al., 2015, Blengini et al., 2012, Gong et al., 2016). The fluxing properties of glass should 

reduce the temperature range at which the materials soften and bind non-reactive particles 

together (Velis et al., 2014). Milled waste glass has also been used as an admixture in the 

manufacture of LWA from industrial by-products, such as coal fly-ash (Ilic et al., 2003, 
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Wei et al., 2016); waste silica sludge, waste clay and granite polishing residue (Ducman 

and Mirtič, 2009); harbour sediments (Wei et al., 2011); sewage sludge (Tuan et al., 

2013); and MSWI fly ash (Lu et al., 2015). In these studies, the glass addition has been 

reported to serve mainly as a fluxing agent during the sintering process, it also improved 

physical properties of LWA – in particular, their water absorption capacities. Based on 

all these benefits waste glass seemed to be the best fit material for inclusion into the 

samples and was therefore selected as the suitable candidate for incorporation in 

LWA for this study. 

Table 7.1 Typical oxide compositions of matrix forming secondary materials reviewed 

for incorporation in LWA. 

Oxide 

compositions 

PFA 

(Ilic et 

al., 

2003) 

MSWI bottom 

ash (del Valle-

Zermeño et al., 

2013) 

ISSA (Cyr 

et al., 2007) 

London 

clay (Zhou 

et al., 2017) 

Waste glass 

(Tuan et al., 

2013) 

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) 

SiO2 50.1 47.8 34.2 45.8 74.0 

Al2O3 28.1 12.2 12.6 12.8 6.0 

Fe2O3 11.7 7.8 4.7 7.7 0.3 

CaO 1.6 15.6 20.6 1.1 9.7 

MgO 1.5 2.02 1.9 1.8 0.0 

Na2O 0.3 6.5 1.0 0.9 8.2 

K2O 0.6 1.3 1.7 3.7 0.8 

SO3 - 0.4 2.8 1.3 0.2 

P2O3 - - 14.8 0.1 0.1 
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7.2 Incorporation of glass in LWA 

For the experiment, a sample of 20 kg crushed amber glass was supplied by Waste Care 

Group Limited. Amber glass was selected from other types of waste glass because it has 

the lowest recycling rate in the UK - British Glass Manufacturers Confederation reported 

that only 25% of the produced amber glass is being recycled (British Glass, 2008). The 

crushed glass was ball milled and sieved through a 250 μm mesh. The SEM images of 

waste glass powder were shown in Appendix I. The prepared glass powder was then 

added to the milled drill cuttings prior to the pelletisation. 40 wt.% glass addition was 

used based on the work of Kourti and Cheeseman (2010). These authors tested a series of 

LWA with different glass levels and suggested 40 wt.% substitution level for achieving 

the optimum physical properties. Half of this quantity, 20 wt.%, was also selected for the 

substitution level to further investigate the effect of glass addition on physical properties 

and microstructure of LWA.

Initially, to evaluate the effectiveness of glass addition on the sintering behaviour of the 

material, a similar experimental approach to the previous chapters was applied. A sample 

of waste glass was characterised for chemical composition by XRF and the results were 

shown in Table 7.2. The new compositional locations of drill cuttings/glass mixes were 

plotted in a Riley diagram (Figure 7.1). It can be seen that the compositions are moving 

toward the ‘bloating area’ and thus an improved bloating behaviour can be expected. 
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Table 7.2 Oxide compositions measured by XRF analysis for waste glass sample used for 

incorporation in LWA. 

Oxide compositions (wt.%) 

SiO2 71.45 

Al2O3 2.16 

Fe2O3 0.53 

MgO 2.51 

CaO 10.11 

Na2O 11.79 

K2O 0.91 

TiO2 0.09 

MnO 0.02 

SO3 0.05 

P2O5 0.02 

Figure 7.1 Compositional location of drill cuttings after addition of glass in Riley 

diagram. 
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7.3 Effect of glass addition on structural characteristics

The addition of milled glass to SDC and CDC significantly reduced the initial sintering 

temperature to 1110 °C (compared to 1190 °C and 1200 °C measured respectively in 

Chapter 4) and increased the structural integrity of pellets after firing. This showed glass 

was an effective matrix forming material for incorporation in drill cuttings LWA. 

7.3.1 SDC-LWA 

Figure 7.2a shows images of the outer surface and fracture surface of SDC-LWA with 40 

wt.% added glass and fired between 1110 °C and 1170 °C. Fired pellets were brighter and 

had a smoother surface where the waste glass was added. Bloating appeared at 1110 °C 

and reached a suitable degree at 1150 °C. Firing at 1170 °C was detrimental as pellets 

lost their structural integrity and became agglomerated.

7.3.2 CDC-LWA 

Figure 7.2b shows CDC-LWA with 40 wt.% added glass fired, between 1110 °C and 

1170 °C. The empty pockets of space due to decomposition of carbonate minerals 

observed in CDC-LWA were sealed with glass, improving both structural integrity and 

surface quality of the pellets. However, some defects were still present on the surface at 

lower firing temperatures. The LWA also exhibited the ability to bloat, indicating 

sufficient quantities of silica-based phases to retain the decomposition reaction gases, but 

bloating behaviour did not noticeably vary over the applied firing temperature range. 

7.3.3 EDC-LWA 

Figure 7.2c shows the EDC-LWA with 40 wt.% added glass. No significant reduction in 

the initial sintering temperature was observed and pellets with an acceptable structural 

integrity were formed above 1160 °C. Some degree of bloating appeared over the applied 

firing range up until 1190 °C. However, the bloating was poor despite the compositional 

location (SiO2/Al2O3/Σ flux ratio) being shifted closer to the bloating area (Figure 7.1). 
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Figure 7.2 Appearance of the surface and internal structure of (a) SDC-LWA, (b) CDC-

LWA and (c) EDC-LWA with 40 wt.% added glass. 
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7.4 Effect of glass addition on physical properties 

7.4.1 Particle density 

Figure 7.3a shows the effect of firing temperature on particle densities of SDC-LWA with 

20 wt.% and 40 wt.% glass. The average particle density of SDC-LWA with 20 wt.% 

glass showed a slight increase over the firing range, from 1.83 g/cm³ at 1110 °C to 1.99 

g/cm³ at 1170 °C. These particle densities were above those obtained for SDC-LWA 

(between 1.56 g/cm³ and 1.69 g/cm³) at a higher firing range (above 1200 °C). 

Conversely, the average particle density of SDC-LWA with 40 wt.% glass showed a 

moderate decrease with the increase in temperature, 1.94 g/cm³ at 1110 °C to 1.76 g/cm³ 

at 1150 °C. This was attributed to the bloating effect observed in the internal structure of 

the pellets. In this series, the particle density and other physical properties of pellets fired 

at 1170 could not be measured - as this temperature caused melting and agglomeration 

(as shown in Figure 7.2a). Particle densities at both glass concentrations were higher than 

those measured for Lytag (1.29 g/cm³) and LECA (0.77 g/cm³), as given in Table 5.1.

Figure 7.3b shows the effect of firing temperature on particle densities of CDC-LWA 

with 20 wt.% and 40 wt.% glass. Both series show gradually increasing trends over the 

firing range. This was likely because the pores generated by the decomposition of 

carbonates were filled with the glass viscous flow. The average particle density after a 

20 wt.% glass addition was 1.08 g/cm³ at 1110 °C and this increased to 1.27 g/cm³ at 

1170 °C. This was higher after 40 wt.% addition, 1.28 g/cm³ at 1110 °C and a further 

increase to 1.71 g/cm³ at 1170 °C were measured. It is worth pointing out that with 20 

wt.% the material particle densities at the lower firing range were comparable to those 

measured for Lytag. 

Figure 7.3c shows the effect of firing temperature on particle densities of EDC-LWA 

with 20 wt.% and 40 wt.% added glass. For the 20 wt.% series, the average particle 

density increased from 1.35 g/cm³ to 1.86 g/cm³ when the firing temperature was 

increased from 1160 °C to 1190 °C. This was a small increase compared to those 

measured for EDC-LWA at the equivalent firing temperatures. The increase was more 

evident when the glass content was doubled. For the 40 wt.% series the average particle 

density was 1.9 g/cm³ and reached its maximum of 2.1 g/cm³ at 1180 °C. This increase 

was because glass had a negative effect on bloating capability of EDC, which 

was investigated by SEM microstructural analysis in section 7.5.3. Overall particle 

densities were higher than those measured for Lytag and LECA in both series. 
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Figure 7.3 Effects of firing temperature on particle density of (a) SDC-LWA, (b) CDC-

LWA and (c) EDC-LWA with 20 wt.% and 40 wt.% glass. Error bars are ± one standard 

deviation. 
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7.4.2 Water absorption 

Figure 7.4a shows the effect of firing temperature on 24-hour water absorption of SDC-

LWA with 20 wt.% and 40 wt.% glass. For 20 wt.% series, the average water absorption 

decreased from 10.7% to 3.8% when the firing temperature was increased from 1110 °C to 

1170 °C. This indicated an increase in sintering efficiency and thus reductions in open 

porosity of pellets. The water absorptions of SDC-LWA were in the range of 22.8% to 

27.1% (Figure 5.2b). The effect of glass was more pronounced for pellets with 40 

wt.% substitution where the water absorption remained stable between 2.5% and 

2.8% over the applied firing temperature range. Obviously, water absorptions at both 

glass concentrations were lower than those measured for Lytag (20.5%) and LECA 

(32.7%). 

Figure 7.4b shows water absorption of CDC-LWA with 20 wt.% and 40 wt.% glass. 

Two similar decreasing trends with an increase in firing temperature was observed in 

both series. The average water absorption for the series with 20 wt.% added glass was 

highest (39.3%) at 1110 °C and this decreased to 27.3% at 1170 °C. The 40 wt.% 

series, gave 20.5% at 1110 °C and this decreased to 5.3% at 1170 °C. These trends 

clearly showed the effect of glass on formation of a water-tight matrix and the fact that 

the degree of sintering increased with temperature. This experiment showed that for

CDC-LWA adding 40 wt.% glass together with firing temperatures above 1130 °C 

were necessary to produce LWA with water absorption lower that Lytag. 

Figure 7.4c shows a substantial reduction in the average water absorption of EDC-LWA 

with 20 wt.% glass from 30.4% at 1160 °C to 8.1% at 1190 °C. This indicates 

incomplete sintering at 1160 °C despite the presence of 20 wt.% of waste glass in the 

mix. This is possibly because the chemical composition of EDC produced a higher 

softening point and 20 wt.% glass was insufficient to reach the eutectic point (Kim, 

2011). Only when 40 wt.% glass was added, it served as an effective sintering promoter 

reducing the average water absorption to 8.7% at 1160 °C and 0.4% at 1190 °C. 

Positively, 0.4% water absorption was the lowest achieved in the experiment on all the 

samples. 
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Figure 7.4 Effects of firing temperature on water absorption of (a) SDC-LWA, (b) CDC-

LWA and (c) EDC-LWA with 20 wt.% and 40 wt.% glass. Error bars are ± one standard 

deviation. 
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7.4.3 Compressive strength 

Figure 7.5a shows the effect of firing temperature on the compressive strength of SDC-

LWA containing 20 wt.% and 40 wt.% glass. For 20 wt.% series, the average 

compressive strength was 5.8 MPa at 1110 °C. It increased to 8.4 MPa with a 20 °C 

temperature rise and then decreased back to 5.8 MPa at 1170 °C. Despite the observed 

fluctuation, these compressive strengths were above those obtained for SDC-LWA 

where values below 1.0 MPa at higher firing temperatures had been obtained. This 

confirms the effective role of glass as a matrix forming material for use in drill 

cuttings LWA. For SDC-LWA containing 40 wt.% glass a compressive strength of 

10.4 MPa at 1110 °C was measured and increasing the temperature reduced the strength 

to 7.9 MPa at 1130 °C and 8.7 MPa at 1150 °C due to the bloating effect. However, the 

measured particle density and water absorption of SDC-LWA after the glass addition 

revealed that a 40 wt.% substitution level was necessary for manufacturing LWA 

with comparable properties to those of commercial products (which is in agreement 

with the Kourti and Cheeseman (2010). The compressive strength values after adding 

glass increased above the Lytag (3.2 MPa) and LECA (1.7 MPa). 

Figure 7.5b shows the compressive strength of CDC-LWA with 20 wt.% and 40 wt.% 

glass. The average compressive strength for both series increased with temperature. At 

1170 °C, it was measured 3.7 MPa for 20 wt.% series and 10.7 MPa for 40 wt.% series. 

The obtained compressive strengths show clearly that the added glass can improve pellet 

strength and produce superior LWA at lower temperature ranges. Compressive strength 

increased to values above those measured for Lytag after a 40 wt.% glass addition. 

Figure 7.5c shows the compressive strength of EDC-LWA with 20 wt.% and 40 wt.% 

glass. The average compressive strength increased both as a function of temperature 

and the amount of glass added. The highest compressive strength, with 20 wt.% 

glass, was obtained at 1190 °C (5.75 MPa) which was also higher than those for EDC-

LWA fired at the same temperature (3.78 MPa in Figure 5.4c). After a 40 wt.% 

addition, the average compressive strength reached 25.2 MPa at 1190 °C (which was the 

highest achieved in all fired batches in this study). This can be explained through the 

effect of liquid phase sintering as a result of a sufficient amount of flux and temperature 

- bringing the mixture above its eutectic point. 
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Figure 7.5 Effects of firing temperature on the compressive strength of (a) SDC-LWA, 

(b) CDC-LWA and (c) EDC-LWA with 20 wt.% and 40 wt.% glass. Error bars are ± 

one standard deviation. 
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7.5 Effect of glass addition on microstructure 

7.5.1 SDC-LWA 

Figure 7.6 shows the SEM micrographs of SDC-LWA with 20 wt.% and 40 wt.% glass. 

For this analysis, the firing temperature was kept constant at 1150 °C (also 

optimum temperature for physical properties) to focus on the effect of different amounts 

of added glass on microstructure. Images were obtained from the core fracture 

surface and the outer surface of LWA. 

The microstructure of fracture surface for SDC-LWA with 20 wt.% glass at 2000x 

magnification (shown in Figure 7.6a) appeared to be mainly composed of a continuous 

glass network holding the drill cutting particles together. No distinct pore formation 

with diameters in the range of 10 – 100 μm occurred however, the presence of spherical 

micropores in the continuous phase indicates some sort of local bubbling mechanism, as 

marked in the image. This is because the remaining space between relatively large 

particles of drill cuttings can produce a pathway for gases to escape, making the 

material incapable of bloating. 

Figure 7.6b shows the outer surface of this sample. Some of the glass phase had 

migrated to the surface but not enough to close all the surface pores. Figure 7.6c shows 

the fracture surface after a 40 wt.% glass addition, where a well-formed dense matrix 

was effective in entrapping the gases and produced bubbles with >300 μm in diameter. 

It appears that most of the unreacted particles were transformed and re-crystallized/

devitrified within the glass phase. 

The outer surface of this pellet is shown in Figure 7.6d. It was observed that at a 40 wt.% 

glass addition, most of the surface pores were sealed by the continuous glass phase. This 

effect can be associated with the negligible water absorption capacity of this series (̴ 

2.5%) as previously measured (Figure 7.5a).
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Figure 7.6 SEM micrographs of SDC-LWA fired at 1150 °C with: a) 20 wt.% glass (core fracture surface), b) 20 wt.% glass (outer surface), c) 40 wt.% 

glass (core fracture surface) and d) 40 wt.% glass (outer surface).



170 

7.5.2 CDC-LWA 

Figure 7.7shows SEM micrographs of CDC-LWA with 20 wt.% and 40 wt.% glass. 

Pellets were chosen from the batch fired at 1150 °C (optimum temperature for physical 

properties). The SEM image of the fracture surface (Figure 7.7a) shows that 20 wt.% 

glass was effective in forming a matrix. Disconnected spherical pores with 10 – 30 μm 

in diameter were also present showing some degree of bloating. However, similar to 

SDC-LWA with 20 wt.% added glass, unreacted drill cutting particles are visible - 

hindering the material's potential for capturing the gas and provide water accessible 

routes to the matrix (water absorption up to 35% was measured for this batch). The 

outer surface of pellets (shown in Figure 7.7b) revealed an insufficient degree of 

particle fusion and large irregular macro-pores. 

Figure 7.7c and show that the addition of 40 wt.% glass had a significant effect on both 

the closure of cavities and dissipation of drill cutting particles into the glass phase. A 

distinctive bloating with bubbles in the 10 – 100 μm range appeared in the matrix (the 

overview image of Figure 7.7c) however this did not cause a substantial decrease in the 

particle density since it was offset by a densifying (pore-filling) effect caused be the 

liquid flow of the glass phase. An important feature observed Figure 7.7d was the 

presence of hollow pointed pores on the pellets’ outer surface. These were most likely the 

unreacted drill cutting particles that had a weak bond to the glass matrix and possibly 

detached during sample preparation.
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Figure 7.7 SEM micrographs of CDC-LWA fired at 1150 °C with: a) 20 wt.% glass (core fracture surface), b) 20 wt.% glass (outer surface), c) 40 wt.% 

glass (core fracture surface) and d) 40 wt.% glass (outer surface).



172 

7.5.3 EDC-LWA 

Figure 7.8 shows the SEM micrographs of EDC-LWA with 20 wt.% and 40 wt.% glass. 

Pellets were chosen from the batch fired at 1180 °C (optimum temperature for physical 

properties). SEM images revealed a different microstructure compare to the other two 

samples. The fracture surface of pellets with 20 wt.% glass (Figure 7.8a) shows an open 

pore network with cavities smaller than 10 μm in diameter, which can significantly 

increase the materials capillary water absorption (Mueller et al., 2015). 

The image of pellets outer surface (Figure 7.8b) outlines the prevalence of the same 

microstructural features on the surface. The effect of increasing the added glass is 

obvious, as seen in Figure 7.8c, which shows that the majority of the cavities were filled 

as a result of the glass flow at high temperatures. This effect was also observed in SDC-

LWA and CDC-LWA with the increase in the glass substitution level, and as discussed 

previously, would allow for the densification of the matrix (highlighted by an increase of 

particle density from 1.53 g/cm³ to 2.11 g/cm³) and thus, enhance the compressive 

strength of the pellets (1.16 MPa to 12.68 MPa). Figure 7.8c also highlights the formation 

of bubbles, showing some degree of bloating in the matrix. This resulted in spherical 

pores (associated with bloating effect) seen at two different size ranges: those with 

average 10 μm in diameter and located in the vicinity of drill cutting particles (the 

presence which could provide the necessary gas phase for bloating), and those with an 

average diameter below 1 μm – that were isolated within the glass phase with limited 

gas to capture. However, the observed bloating effect was minimal and failed to reduce 

the density of EDC-LWA to below 2 g/cm3.

The latter pores could also be found in the continuous glass phase for other series. The 

effect of increasing the added glass from 20 wt.% to 40 wt.% can be visibly seen on the 

outer surface of the pellets (Figure 7.8d). The glass phase had covered most of the 

pellets’ surface providing one of the lowest water absorption capacity measured in 

this study (1.7%).   
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Figure 7.8 SEM micrographs of EDC-LWA fired at 1180 °C with: a) 20 wt.% glass (core fracture surface), b) 20 wt.% glass (outer surface), c) 40 wt.% 

glass (core fracture surface) and d) 40 wt.% glass (outer surface).
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7.6 Effect of glass addition on mineralogy 

7.6.1 SDC-LWA 

For XRD analyses, a 40 wt.% glass addition was chosen to ensure the detection of phases 

neo-formed from the reaction of drill cuttings and waste glass. Figure 7.9 shows XRD 

patterns with markers at major crystalline phases for SDC-LWA containing 40 wt.% glass 

and fired at 1150 °C (the temperature at which optimal physical properties were 

achieved). The strongest BaSO4 (211) reflection at 32.8 °2θ reduced indicating the 

possibility for incorporation of Ba into the amorphous phase. The quantification analysis 

(Table 7.3) also showed the contribution of BaSO4 in the total crystalline phase to drop 

from 61.3% to 8.8%. The major neo-formed phases after the addition of glass were 

wollastonite (CaSiO3) and gehlenite (Ca2Al(SiAl)O7). These phases contributed to 38.6 

wt.% and 16.8 wt.% of the crystalline phase respectively. They are formed due to the 

reaction of CaO from decomposition of calcium carbonate minerals with the present silica 

(from the added glass) and aluminosilicate compounds from dihydroxylation and/or 

decomposition of clay minerals (KAl2(Si3AlO10)(OH)2 in the case of SDC (Polettini et 

al., 2004, Erol et al., 2008). The formation of CaSiO3 phase has been associated to the 

enhancement of sintering behaviour (due to its relatively lower melting point), as well as 

improvement of immobilization capacity for leachable compounds (Wei et al., 2016). 

Dicalcium silicate (Ca2SiO4), and bredigite (Ca7Mg(SiO4)4) were also predicted to be 

present at 6.6 wt.% and 8.5 wt.%, respectively. High-temperature polymorphs of SiO2 

including cristobalite and tridymite were formed during the firing stage and quantified 

at 5.9 wt.% and 3.0 wt.%, respectively. 

7.6.2 CDC-LWA 

Figure 7.9 shows the XRD patterns for CDC-LWA with 40 wt.% added glass and fired at 

1150 °C (the temperature of optimal physical properties). The main neo-formed phases 

identified were CaSiO3, Ca2Al(SiAl)O7 and Ca2SiO4. Results of the quantification model 

shown in Table 7.3 predicted the contribution of these minerals to the total crystalline 

phase to be at 38.9 wt.%, 12.3 wt.% and 16.7 wt.%, respectively. Similar mechanisms for 

the formation of CaSiO3 and Ca2Al(SiAl)O7 to those observed for SDC-LWA with added 

glass can be recognised. However, the abundance of CaO in CDC-LWA at high 

temperatures has evidently favoured the formation of Ca2SiO4 (16.7 wt.%). Minor 

amounts of hedenbergite (CaFeSi2O6: 4.0 wt.%) were predicted by the quantification 
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analysis; this could be explained due to the high concentration of iron oxide in CDC which 

could have been incorporated into the glass matrix to produce hedenbergite as a 

devitrification product (Müller and Rübner, 2006). High-temperature polymorphs of SiO2 

i.e. cristobalite and tridymite were also formed in this batch and their quantities were 

predicted to be 1.6 wt.% and 8.5 wt.%, respectively. 

7.6.3 EDC-LWA 

Figure 7.9 also shows the XRD patterns with markers for major crystalline phases for 

EDC-LWA with 40 wt.% added glass and fired at 1180 °C (the temperature at which 

optimal physical properties were achieved). The main neo-formed phases identified were 

MgCaSi2O6 and sulpho-silicate hauyne (Na3Ca(Si3Al3)O12(SO4)). MgCaSi2O6 was 

quantified at 71.2 wt.% of the total crystalline phase; as was the dominant neo-formed 

pyroxene in EDC-LWA found throughout the study. This was because the type of 

minerals from the solid solution series of the pyroxene group was dependent on elements 

such as Ca, Mg, Fe, etc. made available for reaction by decomposition of those phases 

present in the drill cutting samples (Polettini et al., 2004). For samples of EDC, high 

concentrations of CaMgCO3 favour the Mg/Ca/Fe ratio and thus, promote the formation 

of MgCaSi2O6. Na3Ca(Si3Al3)O12(SO4) was quantified at 8.8 wt.% indicating the 

incorporation of SO4
−2 into the aluminosilicate matrix.
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Figure 7.9 X-ray diffraction patterns with some important peak markers for crystalline phase identification in SDC-LWA, CDC-LWA and EDC-LWA 

with 40 wt.% glass. Markers on b: BaSO4, h: NaCl, g: CaSO4·2H2O, (d: MgCaSi2O6), al: NaAlSi3O8, l: Ca2SiO4, w: CaSiO3, ge: Ca2Al(SiAl)O7, tr: SiO2 

(tridymite), br: Ca7Mg(SiO4)4 and cr: SiO2 (cristobalite).
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Table 7.3 Results of Rietveld quantification analysis for SDC-LWA, CDC-LWA and 

EDC-LWA with 40 wt.% glass. 

Mineral Chemical formula SDC-LWA CDC-LWA EDC-LWA 

Wollastonite CaSiO3 38.6 38.9 5.7 

Dicalcium 

silicate (C2S) 

Ca2SiO4 6.6 16.7 - 

Gehlenite Ca2Al(SiAl)O7 16.8 12.3 - 

Bredigite Ca7Mg(SiO4)4 8.5 - - 

Barite BaSO4 8.8 11.0 3.8 

Tridymite SiO2 3.0 8.5 6.2 

Halite NaCl 0.7 1.6 0.6 

Hedenbergite CaFeSi2O6 - 4.0 - 

Albite NaAlSi3O8 1.7 1.5 1.2 

K-feldspar KAlSi3O8 0.0 0.9 - 

Quartz SiO2 3.4 1.9 0.8 

Enstatite MgSiO3 4.6 - - 

Cristobalite SiO2 5.9 1.6 - 

Diopside MgCaSi2O6 1.0 - 71.2 

Hauyne Na3Ca(Si3Al3)O12(SO4) - - 8.0 
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7.7 Effect of glass addition on leaching characteristics 

Table 7.4 shows the results of the batch leaching test (BS EN 12457-2) on SDC-

LWA, CDC-LWA and EDC-LWA with 40 wt.% glass. The manufacturing conditions 

used for this experiment were those of XRD analyses (also the conditions at which 

optimal physical properties had been measured). Therefore, the firing temperature used 

for SDC-LWA and CDC-LWA was 1150 °C, and 1180 °C for EDC-LWA.

7.7.1 Heavy metals 

The leaching test results showed 0.6 mg/kg of Ba, 0.4 mg/kg of Cr and 0.7 mg/kg of Mo 

in SDC-LWA with 40 wt.% glass (Table 7.4). The release of other heavy metals 

measured remained below the ICP-OES quantification limit. This suggested that the 

addition of glass did not interfere with the speciation of heavy metals in SDC as 

their release remained unchanged. Similar effects were observed for CDC-LWA and 

EDC-LWA where the concentrations of Cr and Mo were measured as 4.9 mg/kg and 1.4 

mg/kg, and 0.5 mg/kg and 0.4 mg/kg, respectively. As discussed previously, the minor 

increase in solubility of these metals was due to the heat treatment and therefore was 

independent of the glass addition.

7.7.2 Cl−

Table 7.4 shows that adding 40 wt.% glass to SDC-LWA reduced the concentration of 

leachable Cl− from 7366 mg/kg in SDC and 2100 mg/kg in SDC-LWA without glass 

addition, down to 996.7 mg/kg.  These results highlighted the dilution effect that glass 

addition had on Cl− and indicate that 40 wt.% replacement was sufficient to meet the 

EoW criteria. 

For CDC-LWA pellets with 40 wt.% glass (Table 7.4), the concentration of leachable Cl− 

was measured as 3890 mg/kg. This was a significant reduction from Cl−measured as 

11,946 mg/kg in CDC but more than that measured in CDC-LWA without glass addition,

which was found to be below the ICP-OES detection limit (Table 4.6 and Table 5.3). As 

previously discussed in Chapter 5, the complete removal (evaporation) of Cl− in CDC-

LWA was due to the higher temperature (1220 °C) used during the firing stage. However, 

in this chapter, Cl− was expected to remain in the material during the firing stage because at 

temperatures around 1150 °C, Cl−can only partially evaporate based on previous results
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in earlier chapters. Therefore, the observed reduction was mainly associated to the 

dilution effect caused by the incorporation of glass. 

Table 7.4 shows that the addition of 40 wt.% glass to EDC-LWA further reduced the 

leachable Cl− from a previously reported 72% reduction (observed for EDC-LWA 

without glass incorporation in Table 5.3) to more than 92% as the leachable Cl−

concentration was reduced to 6593 mg/kg (from 85,712 mg/kg measured for EDC). These 

results again indicate the lack of physical encapsulation as a result of adding glass and 

the observed reduction in Cl− was due to the dilution effect. 

7.7.3 SO4
−2

The concentration of leachable SO4
−2 in SDC-LWA with 40 wt.% glass increased to

17,263 mg/kg, as given in Table 7.4. SO4
−2 concentration of SDC and SDC-LWA without

glass addition were 206.7 mg/kg and below the ICP-OES quantification limit, despite the

presence of BaSO4 at high quantities (Table 4.6 and Table 5.3). Therefore, this indicates

the formation of SO4
−2 phases with high solubility from a possible reaction between the

added glass and BaSO4 at high temperatures. As shown in Figure 7.9, the appearance of

a peak around 11.7 °2θ associated to calcium sulphate dihydrate (CaSO4·2H2O) can

support this hypothesis. In addition, a number of other SO4
−2-bearing phases can also be

formed, each with a concentration below the Rietveld quantification analysis limit of

quantification. It must also be noted that the use of a lower firing temperature, 1150 °C,

would reduce the decomposition rate of any soluble SO4
−2 bearing phases that may have

had neo-formed in the material.

Table 7.4 shows that for CDC-LWA with 40 wt.% glass, the concentration of leachable 

SO4
−2 increased to 23,741.8 mg/kg compared to CDC and CDC-LWA without glass

addition in which SO4
−2 were measured as 1111 mg/kg and 9186 mg/kg. This again

confirmed the possibility for formation of soluble SO4
−2 bearing compounds due to the

reaction of glass with other SO4
−2 bearing phases present during the firing stage.

The concentration of leachable SO4
−2 in EDC-LWA with 40 wt.% was 11,068 mg/kg, as

shown in Table 7.4. Comparing the measured concentration to those of EDC and EDC-

LWA without added glass (45,248 mg/kg and 28,322 mg/kg, respectively), a significant

reduction in SO4
−2 was evident. The formation of soluble SO4

−2 bearing phases during the

firing stage was negligible due to the low concentration of BaSO4 compared to SDC and

CDC. Consequently, the observed reduction in SO4
−2 points to the added glass having a
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diluting effect but also the partial decomposition of CaSO4 (the major SO4
−2 bearing phase

in EDC) should not be ruled out. 

7.7.4 F−

The concentration of leachable F− ions remained below the ICP-OES limit of

quantification in samples of SDC-LWA with 40 wt.% added glass (Table 7.4). For CDC-

LWA and EDC-LWA with 40 wt.% glass, this was 67.4 mg/kg and 34.5 mg/kg, 

respectively. These results showed that the addition of glass did not affect the leaching 

of F−.
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Table 7.4 Results of batch leaching test (BS EN 12457-2) on SDC-LWA, CDC-LWA and 

EDC-LWA with 40 wt.% added glass. 

SDC-LWA with 

40 wt.% glass 

CDC-LWA with

40 wt.% glass 

EDC-LWA with 

40 wt.% glass 

(mg/kg) (mg/kg) (mg/kg) 

As <1.582 <1.582 <1.584 

Ba 0.6 0.5 0.4 

Cd <0.071 <0.071 <0.071 

Cr 0.4 4.9 0.5 

Cu <0.712 <0.712 <0.712 

Hg <0.353 <1.158 <1.158 

Mo 0.7 1.4 0.4 

Ni <0.325 <0.325 <0.325 

Pb <2.209 <2.209 <2.209 

Sb <0.858 <0.858 <0.858 

Se <1.008 <1.008 <1.008 

Zn <2.483 <2.483 <2.483 

Cl− 996.7 3890.2 6593.3 

F− <20.3 67.4 34.5 

SO4
−2 17,263.7 23,741.8 11,068.3 

DOC <300.00 <300.00 <300.00 

pH 10.19 11.78 9.98 

Conductivity (μS/cm) 5684 4898 3732 
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7.8 Discussions 

In this chapter, milled waste glass was initially identified as a suitable matrix forming 

material for incorporation in drill cuttings in order to improve structural/physical and 

leaching properties of the manufactured LWA. It was observed that the glass addition 

provided an extended sintering range and more importantly (in case of SDC-LWA and 

CDC-LWA) produced LWA with structural integrity at significantly reduced optimum 

firing temperature ranges (between 1110 °C to 1150 °C). This was up to 100 °C lower 

compared to LWA manufactured without glass addition and thus showed an important 

technological improvement for LWA manufacturing, both in terms of energy savings and 

control over the sintering process. This effect was less pronounced in EDC-LWA as the 

effective sintering range was extended to between 1160 °C and 1190 °C which was 15 °

C lower that measured in Chapter 4. 

Similar trends on how glass affected the physical properties of all three drill cutting 

samples were observed. Particle density increased as more glass was incorporated into 

LWA; mainly due to pore-filling effects that would occur due to the glass viscous flow. 

Furthermore, glass also formed a matrix capable of bloating. This reduced the particle 

density of SDC-LWA with 40 wt.% glass, however, the effect of bloating on density was 

generally less dominant compared to the pore-filling mechanism. The particle densities 

of EDC-LWA obtained after 40 wt.% glass addition increased to between 1.9 g/cm³ and 

2.1 g/cm³, which were in the range of normal weight aggregates. 

The addition of glass also had a positive effect on water absorption due to a similar 

mechanism. This was evident in CDC-LWA where the open porosity produced by the 

decomposition of carbonates were filled with the glass flow, reducing water absorption 

from 36% to 5% (after 40 wt.% glass addition). The very low water absorptions of drill 

cuttings derived LWA is beneficial to the concrete mix. This is because properties of 

hardened concrete are highly sensitive to variations in water-to-cement (w/c) ratios that 

are caused by LWA with high water absorbency (Nadesan and Dinakar, 2017). 

The greatest influence of glass addition was arguably on the LWA compressive strength. 

An increasing effect on compressive strength with the amount glass and temperature was 

observed in most cases - but especially in case of SDC-LWA and CDC-LWA, the addition 

of glass was found to be essential at shifting the strength from below 1 MPa to ideal 

values in the range of 8 – 10 MPa. 



Batches with optimal physical properties were identified for SDC-LWA and CDC-LWA 

(densities of EDC-LWA were not in the range of the British Standard (BS EN 13055-1) 

for LWA). These batched include:

1. SDC-LWA with 40 wt.% glass fired at 1150 °C – produced sintered pellets with

1.70 g/cm³ particle density, 2.5% water absorption and 8.7 MPa compressive

strength.

2. CDC-LWA with 40 wt.% glass fired at 1150 °C – produced sintered pellets with

1.58 g/cm³ particle density, 9.5% water absorption and 9.2 MPa compressive

strength.

The effect of glass addition on physical properties could be observed in LWA 

microstructure. A continuous glassy phase appeared both on the core fracture surface and 

the outer surface of LWA, which hold unreacted drill cutting particles together, reduced 

the porosity generated due to decomposition reactions, and in case of EDC, filled the oil 

burn-off open channels. Another prevalent microstructural feature was the 

appearance of devitrification products in the continuous phase indicating neo-formed 

phases from the reaction of glass and drill cuttings. These all contributed to the 

improvement of physical properties.

Similar neo-formation mechanisms were seen in LWA following the reaction of the added 

glass with certain minerals in drill cuttings, yet the nature of these neo-formed phases was 

greatly influenced by the concentration of other major metal oxides in the mix. Since all 

three samples of drill cuttings were rich in carbonate minerals, glass could react with 

highly-reactive CaO at high temperatures to form minerals belonging to the inosilicate 

group (including pyroxene and pyroxenoid). The neo-formed phases were affected 

by the proportions of Ca/Mg/Fe. SDC and CDC (rich in CaCO3) reactions with glass 

produced CaSiO3. The presence of Fe2O3 promoted the formation of CaFeSi2O6 in 

CDC-LWA. EDC (rich in CaMgCO3) reaction with glass produced MgCaSi2O6 

as the most abundant neo-formed pyroxene phase. 

The addition of glass did not affect the concentration of leachable heavy metals in the 

manufactured LWA and most of the measured concentrations remained below the EoW 

criteria or ICP-OEC limit of quantification. Glass had a diluting effect on the 

concentration of leachable Cl−, since the amount of Cl− leached per mass of drill cuttings 

was almost equal after the addition of waste glass to the mix (Leonard and Stegemann,

2010). This was effective to reduce the Cl− to below the EoW criteria in SDC-LWA after 
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184 

40 wt.% glass addition. However, it was evident that glass despite its excellent matrix 

forming capabilities did not provide any effective physical encapsulation mechanism and 

the Cl− concentration remained significant in EDC-LWA after 40 wt.% of waste glass

was added. This shows that for samples of drill cuttings with high initial Cl− content (such

as in EDC: >85,000 mg/kg), employing a washing treatment would be a better option for 

mitigation, as shown in Chapter 6. The effect of glass on the release of SO4
−2 was variable

(inconclusive). The formation of soluble SO4
−2 bearing compounds during firing increased

and both dilution and decomposition decreased the concentration of leachable SO4
−2.
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8 Chapter 8 Estimation of energy and CO2 emissions for production 

of drill cuttings LWA 

The CO2 emissions for the production LWA come mainly from excavation, transportation 

of the raw materials and the manufacturing process. These need to be taken into account 

for a comprehensive and accurate estimation of the CO2 emissions (Syngros et al., 2017). 

However, the use of mineral wastes such as drill cuttings in LWA can be associated with 

significant CO2 saving. This is because the CO2 associated with excavation of raw material 

can be eliminated, as the waste is normally available from industrial processes such as 

drilling operations for oil and gas extraction. Ideally, the CO2 emissions from the 

production of a typical LWA can be estimated from an accurate Life Cycle 

Assessment (LCA) in which the transportation of raw materials to a LWA 

manufacturing plant will be highly site-specific (Napolano et al., 2016). This 

produces a significant variability in the estimated CO2 emissions in different 

scenarios based on the distance between the plant and the waste stream.

The focus of this chapter was to calculate LWA CO2 emissions during the manufacturing 

process of LWA, for which limited information is currently available. This was based on 

a new approach involving the construction of an energy balance to compare the energy 

produced within the system from the combustion of the drill cuttings oil fraction and the 

burner fuel and, the energy consumed during the drying and firing stage. For each type of 

drill cuttings sample under the study, the batch with optimal properties was selected for 

the calculation. These included SDC-LWA and CDC-LWA with 40 wt.% glass fired at 

1150 °C and W5EDC-LWA fired at 1190 °C, as identified in the previous chapters. The 

results were compared to an estimation of CO2 emissions conducted for LWA 

manufactured from PFA using sinter strand technology and that for a management 

scenario involving microwave-assisted thermal desorption. 

8.1 Energy and CO2 emissions 

For LWA manufacturing, the main energy consuming stages are pellet drying and kiln 

firing, together with the energy lost from the system. The energy consumed during the 

mineral transformation and solid-phase sintering was assumed to be negligible compared 

to other sources and was therefore excluded from the calculations. Energy is generated in 

the system through combustion of hydrocarbons i.e. drilling fluids and burner fuels. 
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To reach a balanced energy flow in the system: 

Qd + Qk + Ql = Qc1 + Qc2 8.1 

Qd: Energy for pellet drying; 

Qk: Kilning energy; 

Ql: Energy loss; 

Qc1: Energy provided by burner; 

Qc2: Combustion of drilling fluids; 

Therefore, for each drill cuttings sample with specific oil content, the amount of energy 

available in the system can be calculated and compared to that required for 

the manufacturing process. For a system with optimal performance, these energies 

should be in the same range. If extra energy is provided from combustion, CO2 

emissions increase unnecessarily and, if there is a lack of combustion energy in the 

system, extra energy should be supplied by the burner to increase the kiln contents 

temperature for sintering to occur. 

Pellets leaving the dryer were assumed to undergo 20 wt.% moisture reduction. It is 

estimated that industrial convection dryers typically consume 3.6 MJ/kg of water 

removed (Robinson et al., 2009). This way, the amount of removed water and the required 
energy for drying (Qd) was estimated. 

The energy required in the kiln was calculated as: 

Qk = mmCp,mΔT 8.2 

Cp,m = ∑ XiCp,i
Ni
i=1 8.3 

[Where, Qk is the kilning energy for the temperature rise of both solids and gases in J. 

mm is the mass of kiln contents in kg, Cp,m is the mix specific heat capacity (SHC) in kJ/

kg.°C, Xi is the weight fraction of each component (solids and gases), and ΔT is the kiln 

content temperature rise.] 

SHC of dried pellets was calculated using the weight fractions of dry cuttings, drilling 

fluid and added glass. The values for materials SHC are shown in Table 8.1. SHC 
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estimated for clay was used for cuttings (Martin et al., 2003). From TPH analysis in 

Chapter 3, the majority of absorbed hydrocarbons in drill cuttings was determined to be 

poly-alpha-olefins with a chain length between C10 to C25. For simplification, 

eicosane (C20H42: 282.556 g/mol and 47.01 MJ/kg heating value) was assumed as the 

synthetic-based drilling fluid (Bureau et al., 2002, Takai et al., 2005, Zamora et al., 2013). 

The heat loss from the kiln was calculated based on the modelling of heat transfer 

through a pilot-scale rotary kiln (Martin et al., 2003). The kiln was assumed to be 1.5 m 

in length and 0.5 m in diameter with 90 mm alumina fibre insulation and stainless-steel 

cladding at 80 °C. 

Table 8.1 Specific heat capacities used for mass and energy balance. 

Qc1 and Qc2 for the burner fuel and drilling fluid combustion are calculated as: 

Qc  =  Qc1 + Qc2 = m1Hv,p1 +  m2Hv,p2 8.4 

[Where, Hv,p, is the heating value (enthalpy of combustion) of hydrocarbons in J/kg and 

m is the mass of the fuel combusted in kg.] 

To calculate Qc1, the amount of burner fuel that can provide a temperature rise of kiln 

contents until the flash point of drilling fluids, was calculated using 8.2 and 8.4. The

flash point temperature (FPT) of drilling fluids is the minimum temperature at 

which sufficient vapour is produced to form a mixture capable of combustion after 

being ignited with the burner (Albahri, 2003). As the source of ignition is 

provided by the burner, the combustion can be assumed to be self-sustaining when 

the kiln contents are above FTP. In addition, the energy released from the combustion 

of drilling fluids can be used to elevate the kiln contents to the desired sintering 

temperature. 

Specific heat capacity Materials (J/kg °C) Reference 

Cp,c (J/kg °C) Cuttings 880 (Martin et al., 2003) 

Cp,w (J/kg °C) Water 4180 - 

Cp,h (J/kg °C) Eicosane 2128 (Prosen and Rossini, 1954) 

Cp,g (J/kg °C) Glass 840 (Kandare et al., 2011) 

Cp,air (J/kg °C) Air 1005 -
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The initial temperature-rise for kiln contents (supplied by the burner) was assumed to be 

from 20 °C to 150 °C (FPT of eicosane). Burner fuel was assumed propane with 50.4 

MJ/kg heating value with following combustion reaction: 

C3H8 + 5O2 → 3CO2 + 4H2O 8.5 

The energy generated from combustion of drilling fluid (Qc2) was used for the 

temperature-rise of kiln contents from 150 °C to 1150 °C (for W5EDC-LWA a 

temperature-rise to 1190 °C was used). The amount of air required for combustion was 

calculated based on the required oxygen to complete the drilling fluid combustion. For 

the calculations, air/oxygen ratio of 4.32 and 30% excess dry air for combustion were 

used. 

To simplify the calculation of the energy required for kiln gases temperature rise, it is 

assumed that the kiln environment is filled with air, water and CO2 generated from the 

burner (equation 8.5) and combustion of drilling fluid (equation 8.6): 

2C2OH40 + 61O2 →  40CO2 + 42H2O 8.6 

The propane and drilling fluid (eicosane) combustion reactions (8.5 and 8.6, respectively) 

were used for the calculation of CO2 emissions from combustion. 



8.2 Results and discussions 

Table 8.2 showns the results of energy and CO2 emissions for 1.0 tonne of LWA 

produced from each type of drill cuttings. For SDC-LWA with 40 wt% added 

glass, it was calculated that 4770 MJ energy is generated from the combustion of 

drilling fluid and burner fuel. This is more than 2808 MJ required for the pellets 

drying, kiln content temperature rise and energy loss. This provides 1962 MJ extra 

energy in the system that should be removed from the system to avoid melting. For 

CDC-LWA with 40 wt.% glass, the excess energy from combustion was calculated to 

be higher at 2909 MJ due to the high drilling fluid content in CDC. The difference 

was calculated as the lowest amount (921.7 MJ) for W5EDC-LWA highlighting a 

system operating closer to the balanced point; where the energy available from 

combustion is sufficient to be used for pellet drying and kiln firing. 

To compare these results with CO2 emissions data of PFA-LWA, a transportation scenario 

with 150 km distance (used by Sarabèr et al. (2012)) between the waste stream and 

production plant was assumed. Total CO2 emissions for the three optimal batches of drill 

cuttings were given in Table 8.2. The CO2 emissions for 1.0 tonne of SDC-LWA with 40 

wt.% glass were calculated as 336.7 kg while the lowest emissions were for production 

of W5EDC-LWA as 236.0 kg. The CO2 emissions for W5EDC-LWA was also 

comparable with that of PFA-LWA. For this reason, W5EDC-LWA was identified as 

the optimal product manufactured in this study in terms of both CO2 emissions and, 

physical and environmental properties discussed in the previous chapters.  

These results show the importance of the reaming fraction of drilling fluids on cuttings 

as the main contributor to the release of CO2. High drilling fluid contents (despite being 

beneficial in providing the kilning energy) can be disadvantageous for LWA CO2 

emissions and thus, should be avoided if possible. The reduction of oil content can be 

achieved through common separation techniques such as shale shaker, hydro-cyclones 

and centrifuge decanting, as discussed in section 2.1.3, however, the estimated 

results suggest that the addition of waste glass to the mix, to dilute the total hydrocarbon 

content, could also be considered as a viable option. 

An estimation of CO2 emissions for microwave-assisted thermal desorption of 1.0 tonne of 

waste drill cuttings, including the transport and solid waste final disposal, was also given 

in Table 8.2. The case study calculation used a multi-criteria LCA for drill cuttings 

produced in the offshore Brazilian pre-salt area (de Almeida et al., 2017). The estimation 
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showed approximately 1566 MJ energy consumption for a management 

scenario involving microwave treatment. As discussed in Chapter 2, thermal desorption 

techniques require high amounts of energy to elevate the temperature of drill 

cuttings to approximately 600 °C. CO2 emissions were accordingly high for this 

management scenario (409 kg CO2 per 1.0 tonne of drill cuttings) due to the 

additional CO2 associated with transport and disposal of the treated solid waste at the 

end of the process. This shows that the CO2 emissions calculated for drill cuttings 

LWA compare favourably to that of a management scenario involving microwave 

assisted thermal desorption.
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Table 8.2 Estimation of energy required and total CO2 for the manufacture of 1.0 tonne

drill cuttings LWA. 

Cuttings type SDC-

LWA 

CDC-

LWA 

W5EDC-

LWA 

PFA-LWA 

(Sarabèr et 

al., 2012) 

Microwave and 

disposal (de 

Almeida et al., 

2017) 

Glass (wt.%) 40 40 - 

TPH (wt.%) 12.3 14.3 5.6 

H2O1 (wt.%) 10.2 8.1 6.2 

T2 (°C) 1150 1150 1190 

Qd (MJ) 245.3 190.4 237.9 

Qk (MJ) 2549.4 2823.8 2088.4 

Ql (MJ) 13.5 13.5 13.5 

Total (MJ) 2808.2 3027.7 2339.8 

Qc1
3 (MJ) 366.6 407.4 288.7 

Qc2 (MJ) 4404.2 5529.6 2972.8 

4770.8 5937.0 3261.5 

CO2 production 

(kg) 

314.2 364.3 214.5 

CO2 

transportation4 

(kg) 

22.5 22.5 22.5 

Total energy 

(MJ) 

2.214.0 1566.0 

Total CO2 (kg) 336.7 386.8 236.0 221.0 409.0 
1 Moisture content calculated by a gravimetric method after extracting the TPH content 
and drying at 105 °C for 24 hours. 
2 T: Firing temperature. 
3 Minimum burner energy required to elevate the kiln content to 150 °C with propane as 
fuel and efficiency of 95%. 
4 CO2 per tonne per150 km for road transportation (Eurostat).  
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9 Chapter 9 Conclusions and future works 

9.1 Conclusions 

This research has investigated the use of waste drill cuttings from the oil and gas 

extraction operations in the North Sea, as a raw material for the manufacture of 

LWA. Samples of drill cuttings were characterised for chemical compositions, 

mineralogy, thermal behaviour, particle morphology and contaminant 

leaching. Properties of LWA manufactured by pelletising and firing drill cuttings were 

evaluated. The effect of washing on mitigating the release of soluble 

compounds was investigated. The addition of milled waste glass to the raw 

materials was explored and the effects on sintering properties, mineralogy, 

microstructure and leaching behaviour were determined. The carbon dioxide emissions 

for production of 1.0 tonne of LWA was estimated to determine the economic and 

environmental viability of the proposed reuse application for waste drill cuttings.

The main conclusions that can be drawn from this research are: 

1) Different types of rock associated with petroleum geology, such as shale (source

rock), carbonate (reservoir rock) and evaporite (seal or cap rock) were present in

drill cutting samples. In addition, different offshore separation techniques for

drilling fluids produce further compositional variabilities especially in the

remaining additives such as weighting agent for drilling deep wells and

the absorbed hydrocarbons on drill cuttings which act as major sources of

contamination.

2) In shale-based (SDC) and carbonate-based (CDC) drill cuttings large

quantities of BaSO4 and CaCO3 negatively affected the materials sintering

efficiency and matrix formation during the firing stage and produced LWA with

poor physical properties. Therefore, the incorporation of additional silica or

aluminosilicate-based phases was essential to produce viable LWA. The research

identified waste glass as a suitable matrix-forming material with an inert

nature, large-scale availability and minimal compositional variability.

3) A 40 wt.% glass addition to SDC-LWA and CDC-LWA produced pellets with

physical properties comparable to commercial products at 1150 °C: SDC-LWA

had a particle density of 1.76 g/cm3, water absorption of 2.5% and compressive
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strength of 8.7 MPa; CDC-LWA had a particle density of 1.58 g/cm3, 

water absorption of 9.5% and compressive strength of 9.2 MPa. 

Microstructures of LWA were also improved, as the glass viscous flow filled 

the pores generated from decomposition reactions, forming a matrix 

capable of bloating with gas bubbles in the size range of 10 µm to 

500 µm. This effect produced low-density but high strength LWA. 

The migration of the glass phase to the pellets surface 

produced pore-free regions and reduced the water absorption. The low 

water absorptions obtained after the addition of glass made the 

manufactured LWA suitable for applications in concrete products.

4) The water-soluble concentrations of heavy metals in LWA were negligible. This was a 

long-term environmental advantage over other waste-derived LWA. However, in the 

case of evaporite-based drill cuttings (EDC), 85,812 mg/kg concentration of water-

soluble Cl− caused a substantial leaching problem. Firing reduced this by 77% 

through volatilization of Cl−. Although some of the  Cl− release was reduced due to 

the impermeable properties of the LWA matrix formed at high temperatures. 

Nevertheless, the effectiveness of firing in mitigation of Cl− was only partially 

successful as the manufactured LWA were still non-viable for concrete applications 

due to the criticality of the Cl−- induced corrosion of steel in reinforced concrete 

structures. Using a single-step washing pre-treatment (W1) at L/S ratio of 10 l/kg 

and duration of one hour for EDC, provided a 98% reduction in water-soluble Cl− in 

the fired samples. A two-step washing (W5) with a higher contact time further 

decreased the concentrations of Cl− in LWA to comply with the EoW criteria. 

W5EDC-LWA with an ideal pore structure and optimal properties i.e. particle 

densities of 1.38 g/cm3, water absorption of 8.9% and compressive strength of 6.3 

MPa was successfully manufactured at 1190 °C.

5) Firing led to the formation of pyroxenes (mainly MgCaSi2O6) and fledspars (mainly 

NaAlSi3O8 and CaAl2Si2O8). The type of pyroxyne neo-formed was affected 

by the proportions of Ca/Mg/Fe in drill cuttings. CaSiO3 was the most 

abundant mineral in SDC-LWA and CDC-LWA due to high concentrations of 

carbonates whilst MgCaSi2O6 was quantified up to 71 wt.% of the crystalline 

phase in EDC-LWA, with high concentrations of Mg-bearing CaMgCO3. The 

formation of MgCaSi2O6 was another advantage for the performance of LWA in 
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6)

7) The amount of CO2 emissions for production of drill cuttings LWA was also

comparable to commercial products. CO2 emissions were calculated as 

236.0 kg for production of 1.0 tonne of W5EDC-LWA and compared 

favourably to current management scenario for waste drill cuttings such as 

microwave assisted thermal desorption. The major source of CO2 emissions 

was the absorbed drilling fluid in the raw material. It was 

concluded that high concentrations of absorbed drill fluid (despite 

being beneficial in supplying the kilning energy) should be avoided. 

The optimization of this oil content can be achieved through separation 

techniques or with the addition of waste glass which results in a 

dilution effect of the oil content – reducing the release of CO2 emissions to 

ranges acceptable for the sustainability of manufacturing building materials.

concrete products as it inhibits the expansive nature of alkali-silica reaction 

between cement and aggregate.

Firing drill cuttings with high drilling fluid contents (as in SDC and CDC) was 

problematic for SO4-2 leaching because BaSO4 became reactive at high 

temperatures. BaSO4 also reacted with glass and increased the leaching of SO4-2 

however in drill cuttings with low drilling fluid contents (EDC) glass had a 

dilution effect and reduced the release of SO4-2. The mitigation of SO4-2 

remained a challenge and therefore must be considered for end-use applications 

where the presence of SO4-2 can be tolerated.
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9.2 Contribution to knowledge 

1) A novel reuse application for problematic waste drill cuttings in the manufacture 

of LWA has been developed. This involved the expansion of knowledge on the 

chemical composition, mineralogy and environmental characteristics of waste 

drill cuttings. A production process framework for manufacturing LWA with 

optimal physical and environmental properties from various types of waste drill 

cuttings was constructed as shown in Figure 9.1.

2) To produce LWA with comparable properties to commercial products, pre-

treatments, such as washing, and incorporation of secondary materials, such as 

waste glass, were investigated.

3) The study of crystalline phase transformations at high temperature, including the 

interaction of drill cuttings particles and those sintered with added glass, provided 

insight on the mechanism through which the neo-formed phases affect the 

leaching characteristics of LWA.

4) The research provided an improved understanding of the microstructure of LWA 

surface and internal porosity and their relation to physical properties of LWA –

including particle density, water absorption and compressive strength.

5) A new approach for estimation of carbon dioxide emissions during production 

of LWA was presented. The research demonstrated that carbon dioxide emissions 

of drill cutting LWA, comparable to other waste-derived LWA, is achievable. 
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9.3 Production process framework 

Figure 9.1 shows the production process framework for manufacturing LWA with 

optimal physical and environmental properties from various types of waste drill cuttings. 

The framework necessitates an initial comprehensive material characterization stage to 

determine the subsequent production method. If the presence of sufficient quantities of 

aluminosilicate phases, capable of forming a matrix and producing suitable pyro-plastic 

viscosity for bloating is confirmed (verified with methods such as x-ray fluorescence and 

x-ray diffraction analysis), drill cuttings can be used for LWA manufacturing. The

sintering range for kiln firing can be determined through heating microscopy. The lack of 

matrix forming phases and high sintering ranges can be addressed by incorporating waste 

milled glass into the mix prior to firing. If drill cuttings contain high chloride contents, 

the framework suggests the use of a washing pre-treatment with deionised water. The

pre-processing includes drying, milling and pelletisation. Optimum firing temperature

should be based on the type of drilling cuttings available, as shown in Figure 9.1. The last 

stage is the analysis of the LWA physical and environmental properties, which must be 

determined and compared with technical and regulatory requirements. 
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Figure 9.1 Production process framework for manufacturing drill cuttings LWA. 
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9.4 Recommendations for future work 

This research has successfully manufactured LWA from SBM drill cuttings waste on a 

laboratory-scale. The feasibility for industrial/commercial scale-up is therefore vital since 

currently, no viable recycling option for drilling waste exists. Considering the state of oil 

and gas industry, it is clear that increased quantities of drilling waste will be produced 

and with no existing reuse technology being available, more waste is destined to landfills 

for the foreseeable future. 

Manufacturing on a pilot scale using a gas-fired rotary kiln is strongly recommended. The 

discrepancies in properties of LWA manufactured on a laboratory-scale and pilot-scale 

due to pelletization methods, kiln entry temperature and, heating and cooling rates must 

be recognized. In addition, the assessment of technical viability for the manufacture of 

large quantities of LWA should involve the measurement of Cl− and volatile metals 

emissions during the firing stage. Furthermore, to evaluate the commercial aspects LWA 

manufacture, feasibility studies looking at the logistics of building a production plant near 

onshore reception points/landfills would be valuable. 

The removal of sulphates from drill cuttings with high initial concentration of anhydrite  

and gypsum via pre-treatments is a promising research topic. In addition, methods for
transforming highly leachable SO4

−2 (produced at high temperatures) to non-soluble

compounds should be in investigated. 

Other available standard leaching tests capable of simulating LWA end-use application 

scenarios such as backfilling, landscaping, and gardening should be explored.  Column 

leaching test over a varying range of L/S ratios (0.1 l/kg to 10 l/kg) and pH-dependence 

leaching tests are recommended to simulate more extreme conditions.

The performance of LWA in concrete should also be studied and compared with 

commercial LWA such Lytag and LECA. Preliminary tests on the influence of drill 

cuttings LWA on the properties of concrete has been positive. In-depth studies on 

lightweight concrete mix-design for drill cuttings LWA and concrete durability should 

be examined with attention to the long-term release of sulphates. 
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Appendix I (SEM images of drill cuttings samples) 

(a) SDC 
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(b) CDC 
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(c) EDC 
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(d) Waste glass 
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Appendix II  

Rietveld quantification analysis results for EDC (Yellow is the original trace; red is the 
best fit modelled trace; blue is the weighted profile R-factor).  

 

 




