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Abstract 

Alcohol is one of the most widely used and socially accepted psychoactive 

substances in the world, and its misuse was accountable for 3.3 million alcohol 

related deaths in the world in 2015. Whilst it is known that ethanol enhances the 

actions of the GABAB receptor, the role of the stimulation of this receptor in 

inducing acute and chronic effects, remains to be fully understood. The fruit fly, 

Drosophila melanogaster, offers the possibility to investigate behaviours such as 

preference and tolerance to alcohol, and to challenge them with pharmacological 

agents. In this study, the GABAB receptor agonist (SKF 97451) and antagonist 

(CGP 54626) were used to challenge the development of tolerance and the onset 

of preference to alcohol in wild type flies and in mutant lines with putative 

disruptions of GABAB receptor 1 or 2 subunit genes. Both compounds were able 

to alter the onset of tolerance measured as the time needed for half of a set of 

flies to be sedated by alcohol. Additionally, both drugs affected the preference 

developed by the flies towards alcohol containing food measure in a capillary 

feeder assay. The GABAB receptor mutant flies provided further evidence that 

the receptor is involved in the behavioural process studied.  Overall the results 

indicate that the GABAB receptors are indeed part of a complex mechanism that 

result in alcohol induced behavioural changes. The data supports the usefulness 

of the Drosophila model and the need of further investigations into the GABAB 

receptor and to other potential pathways and mechanisms that could be 

contributing to the onset of such behaviours.  
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Chapter 1: Introduction                                                            f 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
1.1. Alcohol Addiction 
Researching the acute and chronic effects of alcohol addiction has been a priority 

for researchers for many years because alcohol abuse has been identified as a 

problem worldwide. An estimated 3.3 million people die annually as a result of 

alcohol abuse and alcohol related incidences, equating to 5.9% of all deaths 

worldwide (World Health Organistation [1] 2015). 

 

Although the term addiction is controversial, throughout this thesis ‘addiction’ will 

refer to the way an individual subject shows a positive preference or positive 

tolerance as a result of the intake and or exposure to alcohol (Volkow et al. 2016). 

The words alcohol and ethanol will be used interchangeably throughout this 

thesis and when alcohol/ethanol is used when describing experimentations with 

the Drosophila melanogaster, it will always be referring to ethanol (EtOH) (Figure 

1.1) 

 
 

 

 

 

 

Figure 1.1: The chemical structure of ethanol. Image created with ChemDraw 
Direct version 1.5.1.190. 
 
 
1.2. Alcohol Users 
Alcohol Concern (2017) state that 16% of men and 9% of women who drink 

alcohol do so at least five of the seven days per week. It was reported that more 

than 9 million people in the UK drink more than the recommended daily limits. Of 

these 9 million alcohol users, 34% of men and 28% of women drank more than 

the recommended units per week (14 units per week) as dictated by the National 

Health Service (NHS) (National Health Service 2017). 

 
1.2.1. Alcohol Related Deaths 
The Office for National Statistics (ONS) reports that in the year 2015, in the UK 

there were 8,758 alcohol related deaths; this corresponds to a death rate of 14.2 

C2H6O	
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deaths per 100,000 people (Figure 1.2/Appendix 1) (Office for National Statistics 

2017). 

 
  

Figure 1.2: A graph to highlight the number of alcohol related deaths in the UK 

from 1994 to the year 2015. Figure created based upon data within a publication 

produced by the Office for National Statistics (2017). See Appendix 1 for raw 

data. 

ONS’s definition of an ‘alcohol related death’ includes “…underlying causes of 

death regarded as those being more directly due to alcohol consumption” (Office 

for National Statistics 2017). This report by the ONS is considered unbiased and 

a good true indication of an alcohol related death due to using a strict International 

Classification of Diseases (ICD) coding system (Table 1.1). It is also important to 

note that this definition and all statistics published from the OFN publication titled 

‘Alcohol-related deaths in the UK: registered in 2015’ excluded external causes 

of death as a result of alcohol related accidents, such as road traffic and other 

alcohol related accidental deaths as a result of intoxication from alcohol. This 

therefore gives a true reflection on the effect of alcohol on the human body. 
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Table 1.1: A table to portray the International Classification of Disease codes 

along with representing description of conditions.  

Table modified from Office for National Statistics (2017). See Appendix 2 for 

raw data. 

1.2.2. Alcohol Related Death Statistics 
From the year 1994 to 2015, it can be said that the age group including 50 to 54 

year old people from the UK have the highest number of alcohol related deaths. 

Excluding the 15 to 19 year old category due to 60% of the age group not being 

legal to purchase alcohol in the UK, the lowest number of alcohol related deaths 

is the 20-24 year old category (Figure 1.3/Appendix 2). It is at present 

unconfirmed, but it is assumed by the ONS that this is due to this age category 

being of legal age to drink alcohol for the least period of time and therefore having 

the least amount of time to develop alcohol related health conditions (Office for 

National Statistics 2017). 

 
 

ICD Code Description of Condition 

F10 Mental and behavioural disorders due to use of alcohol 

G31.2 Degeneration of nervous system due to alcohol 

G62.1 Alcoholic polyneuropathy 

I42.6 Alcoholic cardiomyopathy 

K29.2 Alcoholic gastritis 

K70 Alcoholic liver disease 

K73 Chronic hepatitis, not elsewhere classified 

K74 Fibrosis and cirrhosis of liver (Excluding Biliary Cirrhosis) 

K86.0 Alcohol induced chronic pancreatitis 

X45 Accidental poisoning by and exposure to alcohol 

X65 Intentional self-poisoning by and exposure to alcohol 

Y15 Poisoning by and exposure to alcohol, undetermined 
intent 
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Figure 1.3: A graph to highlight the number of alcohol related deaths in the UK 

from 1994 to the year 2015 categorised by age. Figure created based upon data 

within a publication produced by the Office for National Statistics, 2017. See 

Appendix 1 for raw data. 

1.2.3. Alcohol and UK Emergency Services Statistics 
Alcohol use is a huge burden to the society within the UK. The National Health 

Service (2017) estimates that alcohol abuse costs the emergency services 

around £21 billion GBP per year. The breakdown highlights that £3.5 billion GBP 

is spent by the NHS, £11 billion GBP is used to tackle alcohol-related crime and 

a total of approximately £7.3 billion GBP is due to loss of working hours (National 

Health Service 2017, Office for National Statistics 2017). 

 

Within England, the Office for National Statistics (2017) states that alcoholic liver 

disease is responsible for the highest number alcohol related deaths amongst all 

males and females in England with 63.3% of all deaths. Fibrosis and cirrhosis of 

the liver is the second largest ailment, accountable for 22.6% of all deaths, 

followed by mental and behavioural disorders due to alcohol use answerable for 

7.7% of all alcohol related deaths (Appendix 2).  
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It is well documented that alcohol is one of the most addictive and most harmful 

psychoactive substance (Nutt et al. 2010). Worryingly, whilst we are aware of the 

addictive properties of alcohol, there is at present a real absence of 

understanding of the development of addictive mechanisms at the cellular and 

molecular level. More work needs to be undertaken and much of this research 

will require the use of animal models to identify the key molecular players and 

potential targets of pharmacological intervention that would then help to combat 

the number of alcohol related deaths, and to alleviate the burden and strain that 

alcohol use is having on the UK emergency services.  

 

1.3. Animal Models 
In recent years, animal models have been documented as being of extreme 

importance for identifying the key mechanisms induced by acute and chronic 

consumption of alcohol. Mammalian studies have provided a good foundation 

into molecular mechanisms regarding ethanol consumption but there are certain 

ethical limitations that prevent unrestricted testing. Fadda et al. (2003), Vlachou 

et al. (2011), Crabbe (2014), Hwa et al. (2014), Meye et al. (2016) have all 

described successes when using the rodent as a model to study the mechanisms 

of alcohol addiction. However, the Drosophila melanogaster has been identified 

as being a better and truly unbiased model for studying the acute and chronic 

effects of alcohol abuse (Devineni and Heberlein 2009). The underlying 

fundamental when using any animal model to replicate a human disease, is to 

ensure simplicity, reproducibility and accuracy with respect to human behaviours 

and the Drosophila in this instance is a highly valuable model when used to study 

alcohol addiction (Kaun et al. 2012).   
 

1.4. ƴ -Aminobutyric Acid  
It is known that ƴ-Aminobutyric Acid (GABA) is an inhibitory neurotransmitter in 

the central nervous system and its principle role of action is in reducing neuronal 

excitability via the inhibition of nerve transmissions within the brain (Bowery et al. 

2002, Watanabe et al. 2002, Manev and Dzitoyeva 2010, Benarroch 2012). There 

are two classes of GABA receptor; ƴ-Aminobutyric Acid A receptors (GABAA) 

which are a ligand-gated ion channel complex that upon ligand binding, open a 

chloride channel, and ƴ-Aminobutyric Acid B receptors (GABAB) which are G-

protein coupled receptors responsible for modulating calcium and potassium 
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channels which in turn elicit both pre-synaptic and post-synaptic inhibitions 

(Figure 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Synthesis, release, binding and reuptake of GABA in a synapse. 

Image taken and modified with permission from Hyland and Cryan (2010). 

 

1.4.1. GABAB Receptors as a Potential Target for Alcohol Addiction 

Multiple researchers using different animal models have been successful in 

demonstrating a reduction in alcohol consumption by targeting the GABAB 

receptors with agonist ligands; Hwa et al. (2013) have used GABAB positive 

allosteric modulators (PAMS) to decrease voluntary ethanol intake in mice while 

Dzitoyeva et al. (2003) have documented that gene silencing of GABAB receptors 

in Drosophila leads to a reduction in the behaviour-impairing effects of ethanol. 

This therefore suggests a putative role for the Drosophila GABAB receptors in 

alcohols mechanism of action.  

As part of other addiction studies, it was identified by Fadda et al. (2003), Vlachou 

et al. (2011) that when stimulating the GABAB receptor with an agonist ligand, the 

addictive behaviours associated with both nicotine and cocaine are suppressed, 

further reinforcing that GABAB receptors play a role in addiction behaviours of 

addictive compounds including alcohol.  
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The work detailed within this thesis builds upon previously published works on 

identifying the role of the GABAB receptor in establishing and maintaining alcohol 

like addiction behaviours in the Drosophila melanogaster. 

1.5. Overall Aim  
The overall aim of this thesis is to expand on current knowledge and to provide a 

better understanding on the role of GABAB receptors with respect to modulating 

alcohol induced behaviours.  

  
1.5.1. Objectives  
• To refine and continue to develop the Drosophila melanogaster as a suitable 

model to study the effects of ethanol induced addiction like behaviours. 

• To determine whether flies in which the GABAB genes have been altered 

behave differently in response to alcohol  

• To investigate if administration of a GABAB receptor agonist or antagonist can 

affect tolerance or preference to ethanol development. 

• To determine if a developed preference or tolerance to ethanol can be 

reversed by the administration of a GABAB receptor agonist or antagonist. 

 
1.5.2. Research Hypothesis  
It is hypothesised that the GABAB receptor plays a modulatory role in response 

to alcohol, initiating and/or maintaining tolerance and preference behaviours 

associated with addictive traits. It is further hypothesised that the GABAB receptor 

is responsible or at the very least part of a pathway that is responsible for the 

onset and maintenance of ethanol induced behaviours. 
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Chapter 2: Materials and Methods                                             a 
d                                                                                                                     
2.1. Drosophila Husbandry 
Drosophila were raised and assayed whilst housed in an incubator at 25°C unless 

stated otherwise. Drosophila stocks were housed at 18°C to slow growth and 

keep metabolism low. At both temperatures, flies were kept in incubators that had 

a twelve-hour light/dark cycle with between 60-80% relative humidity.  

 

Drosophila were placed into large 220g round bottom bottles measuring 59mm 

(ø) x 130mm (h) (Genesee Scientific, USA) or smaller vials measuring 25mm (ø) 

x 95mm (h) (Dutscher, France). Dry pre-mixed Drosophila food (Phillip Harris, 

UK) was prepared according to manufacturer’s guidelines and was placed into 

vials/bottles approximately 10-15mm deep. Cotton or sponge like vial/bottle plugs 

were used to prevent escapees of flies (Genesee Scientific, USA and Dutscher, 

France). 

 
2.2. Drosophila Strains 
Drosophila strains used within this project include Wild type Canton-S and mutant 

GABAB R1 and GABAB R2 knock out flies (Table 2.1). All Drosophila strains were 

obtained from Bloomington Drosophila Stock Centre (Indiana, USA). 

 
Table 2.1: Summary of Drosophila lines used 

Fly Line BDSC ID Information 

Wild Type (Canton-S) 64349 Wild type Drosophila containing no genetic 
modifications. 

GABAB Receptor 1 Knock Out 44860 Contains a transposon insertion (Mic 
cassette) in the GABAB R1 gene. Insertion 
location between nucleotide numbers 
15,033,257 and 15,033,257 on the second 
chromosome. 

GABAB Receptor 2 Knock Out 59503 Contains a transposon insertion (Mic 
cassette) in the GABAB R2 gene. Insertion 
location on the between nucleotide 
numbers 21,773,501 and 21,773,501 on 
the third chromosome. 
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2.3. Drosophila Standardisation 
All Drosophila used were collected when aged between 1-5 Days after eclosion 

to minimise assay variance between age groups. All initial control experiments 

were carried out on both male and female flies to explore the differences in 

preference and tolerance. In later stages when there were pharmacological 

interventions, experimentations were conducted on only male flies for all fly lines. 

Flies were sorted into vials by sex under a stereo microscope whilst under light 

carbon dioxide (CO2) anaesthesia. 

 
2.4. Behavioural Assays 
In order to measure behavioural effects as a result of exposure to ethanol, various 

assays were used to identify the level of tolerance and preference to ethanol 

(Figure 2.1). The tolerance assay was used to measure how the response to 

ethanol changed over a set period of time as described by Maples and Rothenfluh 

(2011). A consumption based capillary feeder (CAFE) was used to evaluate the 

preference to ethanol containing food or non-ethanol containing food as first 

described by Ja et al. (2007) and further optimised and refined by Devineni and 

Heberlein (2009). Preference was further explored in a conditional preference 

assay by associating ethanol with neutral smelling odours through ‘training’ 

exposures and allowing free movement during a ‘test’ session in which flies made 

a choice for the odour in absence of ethanol, following a methodology similar to 

that by Tempel et al. (1983), Simonnet et al. (2014).  
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         (a)                                       (b) 
 

  
  
 

 
 

 
 

  
 

 
 
 

 
 
 

 
 

 
 
           (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Pictures highlighting the behavioural assays used. (a) Tolerance 
Assay, (b) Preference Assay and (c) Conditional Preference Assay. 
 
 
2.4.1. Tolerance Assay 
Sensitivity to ethanol is more commonly descibed as ‘tolerance’, and refers to 

“…the need of an individual either sub-consciencsly or consciencly, engageing in 

Cotton Plug with EtOH 

Cotton Plug to reduce 
volume of chamber  

Tolerance Chamber 

Halved Cotton Plug with 
Truncated Pipette Tips 

 Glass Capillaries 

Cotton Plug to reduce 
volume of chamber  

Glass Capillaries 
with EtOH 

Odour A/B and 
EtOH/H2O 

Test Flies 

Air Pump 

Odour A/B and 
EtOH/H2O 

Test Flies 

Air Pump 
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a particular behaviour at a relatively greater rate/level than previously, to achieve 

a greater effect than before” as described by Sussman and Sussman (2011). 

 

Tolerance assays as described by Scholz et al. (2000), Maples and Rothenfluh 

(2011) were modified to meet personal and laboratory equipment specifications 

and were conducted using a method as detailed below (Figure 2.2).  

 

Ten male/female flies (sex is dependent on assay and is stated within results 

legend) were anesathised and sorted into sexes the day before assay was due 

to begin to allow recovery from CO2 anaesthsia (Step 1 in Figure 2.2). At the time 

of assay, flies were transferred with no anaesthatisation to the ‘tolerance 

chamber’ (Step 2 in Figure 2.2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Pictorials highlighting the key stages in a tolerance assay.	 
 
Step 1: Image shows sorted test flies recovering from C02 anaesthesia (for at least 12 
hours) housed in an empty vial ready for transfer to tolerance chamber. Step 2: Flies are 
transferred to tolerance chamber with no anaesthsia. Step 3: 500µl of 100% EtOH is 

																Step	1	 	 																			 											Step	2	

	

	

	

	

	

	

	

	Step	3		 	 	 	 											Step	4		

Cotton	Plug	 Cotton	Plug	

Cotton	Plug	 Cotton	Plug	 Cotton	Plug	 Cotton	Plug	

100%	EtOH	 100%	EtOH	 100%	EtOH	 100%	EtOH	
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added to a cotton plug and placed onto tolerance chamber vial. Step 4: 100% EtOH 
exposure occurs until ST50 (Time to 50% of flies sedated) occurs. 
 
 
This modified vial contained a cotton vial plug placed into the bottom of the 

tolerance chamber to reduce the volume of the chamber and thus increase 

ethanol concentrations and to decrease sedation times. The addition of the cotton 

vial plug to the tolerance chamber reduced the total air volume of 91.40cm3 and 

the flying height to 55mm, compared with the standard total air volume of 

237.50cm3 and flying height of 95mm. This is a reduction of 61.5% air volume 

and 42% flying height compared to the standard vial. 

 
Flies once transferred, were exposed to 500µl of 100% ethanol by placing this 

liquid onto the centre of a cotton vial plug and inverting it into the vial (Step 3 in 

Figure 2.2). Flies were left to be exposed until 50% of the total number of flies 

were sedated; this time point was defined as ST50 (Time to 50% of flies sedated). 

Flies were tapped three times onto the lab bench once per minute to disorientate 

and startle the Drosophila and to knock them to the bottom of the vial (Step 4 in 

Figure 2.2). Flies were observed for 10 seconds and the number of stationary 

flies was recorded for each minute. It was important to determine and standardise 

what ‘stationary’ and ‘sedated’ was. Sedation/stationary for this assay was 

determined as upon being knocked to the bottom of the vial, flies were unable to 

upright themselves within the 10 second observation time. Any leg movement or 

vibrating of the wings were ignored and if the flies were still upon their backs with 

the inability to self right, they were recorded as sedated. 

 
Tolerance was measured over a period of three days and the ST50 was 

measured for each vial for each day (Figure 2.3). Tolerance is identified as being 

an increase in ST50 over consecutive days of exposure with ethanol having a 

reduced effect on sedation and subsequently resulting in an increased ST50 than 

for prior ethanol exposures (Scholz et al. 2000, Atkinson 2009, Maples and 

Rothenfluh 2011, Chan et al. 2014) 
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       Day 1          Day 2          Day 3 

                              24 Hour Recovery                   24 Hour Recovery 
 
Figure 2.3: A flow chart highlighting the tolerance assay schedule 
 
 
2.4.2. Preference to Ethanol Assay (CAFE Assay) 
The CAFE assay is a tool that allows consumption of liquid foods to be measured 

in real-time. The capillaries used (Jaytec, UK), are 59mm in length and have a 

total volume of 5µl and consumption of liquid foods is clearly measurable by 

viewing the decreasing capillary meniscus. The consumption of ingested liquid 

foods can be measured in a group or individuals Drosophila for time periods 

ranging from one minute to an entire lifespan. This project used the CAFE assay 

for a period of 3 hours once per day after a starvation period of approximately 2 

hours prior to each assay. This was to ensure that consumption was high enough 

to be measured (Figure 2.4). The CAFE assay is an extremely useful tool used 

by many to measure food consumptions, preferences to different drugs, 

substances, foods, environments or even treatment regimens to name a few (Ja 

et al. 2007, Devineni and Heberlein 2009, Pohl et al. 2012, Peru et al. 2014). 

 
            0 Hours      2 Hours                 2.25 Hours                   5.25 Hours                  5.5 Hours 
 
 
   
 
 
 
  

 
 
24 Hour Recovery on Standard Solid Food and then next day is started as above 
 
Figure 2.4: A flow chart highlighting the preference assay schedule for one day. 
 
 
The CAFE assay apparatus consisted of a standard plastic vial (as described in 

chapter 2.1.1.) that had been altered to provide 2 chambers (Figure 2.5); one 

chamber for Drosophila, and one chamber to provide humidity separated with a 

ST50	
Recorded	

ST50	
Recorded	

ST50	
Recorded	
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halved cotton vial plug. Four capillaries were used to provide the liquid food to 

the Drosophila and were held in place by placing the capillaries into truncated 

200µl pipette tips as explained by Ja et al. (2007), Devineni and Heberlein (2009) 

(Figure 2.5). Flies had a flying height in chamber 1 of 35mm and the second 

chamber had a water saturated Kimwipe (Kimtech Science, USA) to help raise 

and maintain humid air in the vial and prevent dehydration of the Drosophila. Prior 

to the CAFE assay, flies were sorted into groups (depending on assay 

requirements) of 5 or 10 flies by CO2 anaesthetisation and were placed into the 

assay vial. Vials were kept at 25°C with a relative humidity of between 60-80%, 

except when the meniscus level of the capillaries was being recorded. A replicate 

CAFE vial was always used during experimentations to record evaporation and 

subtract this from all capillary meniscus readings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: Schematic of the CAFE assay vial set up with one capillary shown 
 
During all CAFE assays, there were two different liquid foods used in a total of 

four capillaries per vial (Figure 2.6). The standard liquid food was composed of 

5% yeast extract and 5% sucrose solution dissolved in distilled water and the 

ethanol containing food was composed of 5% yeast extract and 5% sucrose 

solution dissolved in 15% ethanol. Preference was measured by providing two of 

each capillary and allowing consumption for a set period of time dependent on 

assay. Ja et al. (2007), Devineni and Heberlein (2009) illustrate how the 

preference index was measured for all CAFE assays during this project: 

Capillary	with	liquid	
food	and	visible	

Truncated	200µl	
pipette	tip	
Chamber	1:	
Drosophila	
Halved	cotton	vial	
plug	
Chamber	2:	
Saturated	Kimwipe	

Preference	Index:	Ethanol	Containing	Food	Consumed	–	Non-Ethanol	Containing	Food	Consumed	
																																																																Total	Volume	of	Food	Consumed	
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The preference index (PI) is a way of standardising the level of preference that 

the Drosophila have for one food over another (Peru et al. 2014). The PI is scored 

from -1 whereby there is a 100% negative preference to a food, to +1 whereby 

there is a 100% positive preference to the experimental food in question (Ja et 

al. 2007, Devineni and Heberlein 2009, Pohl et al. 2012, Peru et al. 2014).  

 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
Figure 2.6: CAFE vial highlighting the capillary containing liquid foods. Image 
used with permission from Devineni and Heberlein (2009). 
 
 
 
2.4.3. Conditional Preference Assay 
The conditional preference assay was built and designed around a ‘Y maze’ 

design and concept. The assay consisted of 2 parts: 1) a conditioning/ odour 

association training phase, and 2) an unbiased free choice preference test 

(Figure 2.1 and 2.7). This assay was configured to allow the Drosophila to make 

an unbiased choice to show preference to ethanol or not. Two neutral smelling 

odours, 4-Methylcyclohexanol (MCH) and 3-Octanol (OCT) (Sigma, UK) were 

used as association odours to either 50% EtOH or a H20 control. 

 

Following methodologies similar to those used by Tempel et al. (1983), Masek 

and Heisenberg (2008), Yarali et al. (2009), Simonnet et al. (2014), a Y maze test 

vial and training apparatus was constructed (Figure 2.1 and 2.7). Part 1 of the 

assay was the conditioning/training phase of the assay. Drosophila were first 

placed into vials with modified cotton vial plugs. Holes were placed into the vial 
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plug to allow 200µl pipette tips to be placed through the holes, allowing odour to 

be pumped into the vial via rubber hosing. An air pump pumped air at a rate of 

21.4 litres per minute into two glass bottles filled with a 5ml total of either 1% 

MCH or 0.5% OCT dissolved in dH2O and 50% EtOH or dH2O (See Step 1&2 in 

Figure 2.7). Flies were exposed to the first odour and EtOH/dH2O for ten minutes 

and were then given the second odour and EtOH/dH2O followed by a one hour 

recovery period to rest the olfactory systems. The training occurred a total of three 

times. Vials were kept at 25°C with a relative humidity of between 60-80%, except 

when the training exposures were taking place. 

 

The Y maze preference test was conducted 24 hours after the last training 

session (See Step 3 in Figure 2.7). Flies were given an unbiased choice of 

moving through the Y maze arms to the OCT odour or the MCH odour and the 

number of flies making either choice was recorded. In separate experiments 

ethanol was associated with different odours, to ensure that the preference was 

for EtOH and was not dependent on the associated odour instead. Flies had free 

movement in the Y maze for 3 minutes to make their choice.  
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Step 1      Step 2 
 

 
 
 
 

 
 

 
 

 
 
 
 
Figure 2.7: A schematic showing training and test schedule for conditional 
preference assay. 
 
 
Preference was measured in a similar way as described in chapter 2.2.6 based 

upon the preference index used by Ja et al. (2007), Devineni and Heberlein 

(2009). The conditional preference for ethanol was calculated in the following 

way: 

 

It is important to note that only flies that made a choice to move into one of the Y 

arms were included within the preference index. Flies that remained in the holding 

vial at the bottom or remained stationary in the entrance neck of the Y maze were 

not included to remain true to unbiased preference.  
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2.5. Drug Administration 
Known selective GABAB receptor drugs were sourced from Tocris Bioscience, 

part of the BioTechne, UK brand. An angonist (SKF 97541) and antagonist (CGP 

54626) were sourced and are detailed within table 2.2 and figure 2.8. Drugs were 

administered within the Drosophila’s ready mixed standard food. The water 

normally used to prepare the flies ready mixed dry food, was substituted for the 

drug dissolved in distilled water at the relevant concentration. 

 

Table 2.2: A table documenting properties of GABAB receptor ligands 

 
 
(A) CGP 54626 antagonist ligand      (B) SKF 97541 agonist ligand

 
 

  
 
 
 
 

 
 
Figure 2.8: Drawings highlighting the chemical structure of the GABAB ligands 
used. Images created with ChemDraw Direct version 1.5.1.190. 
 
During the project, drug delivery was executed in two ways: for 24 hours prior to 

the behavioural assay or for 24 hours between the second and third ethanol 

exposure.  

 

Drug 
Name 

Chemical Name Chemical 
Formula 

Molecular 
Weight 

Biological Activity 

CGP 
54626 

[S-(R*,R*)]-[3-[[1-(3,4-
Dichlorophenyl)ethyl]am

ino]-2-
hydroxypropyl](cyclohex

ylmethyl) phosphinic 
acid 

C18H28Cl2NO3PHCl 

 

444.76 

 

Selective GABAB 
receptor antagonist 

SKF 
97541 

3-
Aminopropyl(methyl)pho

sphinic acid 

 

 
C4H12NO2P 

 

137.12 

 

Very potent selective 
GABAB receptor 

agonist 
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2.6. Molecular Assays 
In order validate the wild type and mutant fly lines for the functionality or not, 

reverse transcriptase polymerase chain reactions (RT-PCR) were attempted to 

assess the presence of a gene expression. 

 
2.6.1. Primer Design 
Primers were designed for the GABAB receptor 1 subunit and GABAB receptor 2 

subunit. Primers were designed and purchased from Eurofins Genomics 

(Germany). 

 

The GABAB R1 primer pair was derived by first obtaining the insertion point of the 

transposon. The sequence of the exon containing the insertion and locating the 

next exon were identified and the primer was designed on the two flanking exons. 

The intron was deemed to be 6572 bp (Table 2.3).  

 

The GABAB R2 primer pair was obtained by again locating the insertion point of 

the transposon. The primer was designed on the exons flanking the insertion 

(Table 2.3). 

 
A b Actin housekeeping gene primer was used as a known control. The primer 

was previously designed by a group member and was not designed specifically 

for this project. 
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Table 2.3: A table to portray the properties of the GABAB receptor subunit primers 

and b Actin control primers. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2.6.2. RNA Extraction 
Ten Drosophila heads (5 male and 5 female) were dissected from each fly line 

and immediately snap frozen in liquid nitrogen for 5-10 minutes and was placed 

into RNA Later (Qiagen, USA) to both stabilised the RNA and to prevent RNA 

degradation. The heads of each fly line were then stored at -80ºC until the 

extraction. The RNA extraction was carried out using an RNeasy Mini Kit (Qiagen, 

USA) according to the manufactures instructions. The eluted RNA sample was 

then stored at -80ºC. 

 

 

 

 

Primer 
ID  

Sequence (5’ to 3’) Product 
Length (bp) 

Tm (ºC) 

GABAB 
Receptor 
1 Subunit 
Forward 

TCGAACCTCATTTGCTCAGCG 
(21) 

 

 

 

921 

59.8 

GABAB 
Receptor 
1 Subunit 
Reverse 

ATTTCAACGCCAGCCTCCAT 
(20) 

57.3 

GABAB 
Receptor 
2 Subunit 
Forward 

AACCAGTCAAATGGGTGGGG 
(20) 

426 

59.4 

GABAB 
Receptor 
2 Subunit 
Reverse 

ACGTCTTCGAGAACATGGCT 
(20) 

57.3 

b Actin 
Control 

Forward 

GCGTCGGTCAATTCAATCTT 
(20) 

138 

55 

b Actin 
Control 

Reverse 

AAGCTGCAACCTCTTCGTCA 
(20) 

55 



	
	

	 21	

2.6.3. RT-PCR  
The RT-PCR was executed using a reverse transcriptase kit (New England 

Biolabs, USA). The kit was used to synthesise cDNA as per the manufacturer’s 

instructions. A PCR kit was then used (New England Biolabs, USA) following the 

manufacturers guidelines once more.  

 

RT-PCR was performed to test for the presence of GABAB receptor subunit gene 

expression in the heads of wild type and mutant flies. The primers used for 

amplifying the PCR products of interest are listed in table 2.3.  

For the cDNA synthesis, 20µl of RNA was used with a 10µl master mix containing 

a buffer, random primers, oligo-DT primers and dNTPs and reverse transcriptase; 

this reaction was carried out at 45°C for 20 min. The PCR reaction was carried 

out using 13µl of template cDNA from the previous reverse transcriptase reaction, 

2.5µl of standard taq reaction buffer, 0.5µl of 10mM dNTP's, 1µl of 

forward/reverse primer mix (100µM), 0.125µl of taq DNA polymerase and 

12.875µl of nuclease free water. The PCR was conducted within a thermocycler 

(Bio-Rad, USA) with a preheated block lid at 105ºC. The thermocycler was 

programmed as follows: initial denaturation at 95ºc for 2 minutes followed by 30 

cycles of 10 seconds of denaturation at 95ºC, an annealing/extension at 56-60ºC 

for 30-60 seconds and a final extension for 5 minutes at 60ºC. Products were 

analysed on a 1% (w/v) agarose gel supplemented with Sybr Safe DNA gel stain 

(ThermoFisher Scientific, UK). 
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Chapter 3: Results                                                                 l          
                                                                                                            
3.1. Ethanol Toxicity 
To initiate the project, it was deemed important to establish what concentration 

of ethanol the Drosophila could consume before ethanol toxicity lead to high 

mortality. Many researchers such as Greenspan (2004), Ja et al. (2007), Stocker 

et al. (2008), Devineni and Heberlein (2009), Wong et al. (2009), Devineni and 

Heberlein (2012), Pohl et al. (2012), Peru et al. (2014) use concentrations within 

the range of 12-25% ethanol when administering ethanol in food. In order to 

investigate the validity of the reported data and to set standards for my 

experimentations, ethanol toxicity tests were executed by exposing and housing 

flies on standard dry mix food containing ethanol concentrations between 0% and 

25% for 72 hours. 72 hours was decided as this was the maximum duration of 

time that the flies would ever be exposed to the ethanol for (Figure 3.1). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 3.1: Percentage Survivability of Drosophila at various ethanol containing 
food concentrations. 

10 males and 10 females aged 0-5 days were placed into separate vials with 0%, 5%, 10%, 
15%, 20% or 25% ethanol containing dry mix solid foods for 72 hours. Vials were housed 
at 25°C. Number of mortalities was recorded per vial and calculated as a percentage. 
Values are ± SEM with n= 2 vials per sex (40 flies total). 
 
The results from the toxicity testing indicate that the 20% and 25% ethanol 

containing foods resulted in greater than 75% mortality. Consequently, 10% and 

15% ethanol containing foods resulted in around 30% mortality which was 

deemed acceptable. The food containing 5% ethanol resulted in almost no 
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10 males and 10 females aged 0-5 days were placed into vials with 0%, 5%, 
10%, 15%, 20% or 25% ethanol containing foods for 72 hours. Vials were 

housed at 25°C. Number of mortalities was recorded per vial and calculated as 
a percentage. Values are ± SEM with n= 2 vials (40 flies total).
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mortality but from other studies within the lab, it is known that 5% ethanol induces 

very small behavioural changes. It was therefore decided that for all preference 

consumption experimentations, 15% would be the best concentration to use. The 

ability of the flies to survive at the lower concentrations of ethanol without 

mortality is consistent with their natural behaviour of seeking fermenting (ethanol 

containing) food for egg laying as previously stated by Pohl et al. (2012). 

 

3.2. Tolerance Development in Wild Type and GABAB Mutant Drosophila 
In Wild Type flies, repeated exposure to ethanol leads to a reduced sensitivity 

(tolerance) to its effect. To verify this phenomenon, tolerance was measured in 

wild type flies and compared to that of GABAB mutant flies (Figure 3.2). The 

mutants are putative functional knock outs (KO) for GABAB receptor subunits 1 

(GABAB R1 KO) and 2 (GABAB R2 KO). 

 

 
 
 
Figure 3.2: Tolerance development in three Drosophila lines for both A) Males, 
and B) Females. 
 
Tolerance of wild type, GABAB R1 KO and GABAB R2 KO male (A) and female (B) 
Drosophila. In each group 10 male/female flies were exposed to 500µL of 100% EtOH 
until ST50 was recorded. Values are mean ± SEM with n= 6 vial of 10 flies. A two-way 
ANOVA with Bonferroni post-hoc testing was performed with ***P<0.001 tolerance 
development for each individual fly line over the three days.  
 

Figure 3.2 demonstrates that time taken by half of the flies in the vial to become 

sedated increased in the wild type, GABAB R1 KO and GABAB R2 KO male and 
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female Drosophila strains indicating that they are all capable of developing 

tolerance to ethanol in a similar way. These findings strengthen and reinforce 

previously published works that the Drosophila melanogaster is a suitable model 

to study the development of tolerance to alcohol as an addiction like behaviour 

(Scholz et al. 2000, Atkinson 2009, Maples and Rothenfluh 2011). The fact that 

the GABAB mutants do not appear to behave differently from wild type does not 

necessarily invalidate their use, as discussed later. 

  
3.3.  GABAB Receptor Antagonist/Agonist Toxicity 
There is no sufficient published data on what would be an effective and safe dose 

of CGP 54626 (GABAB receptor antagonist) or SKF 97541 (GABAB receptor 

agonist) in Drosophila, therefore a toxicity test was carried out.  At all 

concentrations used, there were no ‘abnormal’ mortality patterns and it was 

decided to use the drugs at a concentration of 500nM, 250nM and 50nM (Toxicity 

data not shown). 

 

3.4. The Effect of GABAB Receptor Drugs on the Development of 
Tolerance  

Both GABAB receptor agonists and antagonists were administered for 24 hours 

prior to day 1 of the tolerance assay.  
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Figure 3.3: Effect of GABAB receptor antagonist CGP 54626 administered for 24 
hours prior to the 3 day tolerance assay. 

Tolerance of Wild Type (A), GABAB R1 KO (B) and GABAB R2 KO (C) male Drosophila. 
GABAB receptor antagonist CGP 54626 was administered for 24 hours prior to day 1 of the 
tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% 
EtOH until ST50 was recorded.  Values are mean ± SEM with n= 3 vials of 10 flies (30 flies 
total) and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni 
post-hoc testing was performed with * P<0.05, **P<0.01, ***P<0.001 ns= P>0.05 when 
compared to the relevant control for the corresponding day.   

 

The antagonist CGP 54626 was able to enhance and increase the tolerance 

development in the wild type and GABAB R1 KO when compared to the control 

(Figure 3.3) in day 1 and day 2 of the assay but not in day 3. It is worth noting 

that within these experiments the drug was only administered before the assay 

and not during the three day assay.  Conversely from the effect on GABAB 

receptor R1 KO, CGP 54626 had no significant effect on GABAB R2 KO 

(Compared to Day 1 R2 KO control: 50nM P=>0.9999 250nM P=0.9999, 500nM 

P=0.7018).  
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Tolerance of Wild Type male Drosophila. GABAB receptor antagonist CGP 54626 was administered for 24 hours prior to 
day 1 of the tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH until ST50 
was recorded.  Bars represent standard deviation. Values are mean ± SEM with n= 3 vials of 10 flies (30 flies total) and 

control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed with 
***P<0.001 when compared to the Wild Type control for the corresponding day. 
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Tolerance of GABAB R1 KO male Drosophila. GABAB receptor antagonist CGP 54626 was administered for 24 hours prior to 
day 1 of the tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH until ST50 was 
recorded.  Bars represent standard deviation. Values are mean ± SEM with n= 3 vials of 10 flies (30 flies total) and control n= 6 
vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed with * P<0.05, **P<0.01 and 

ns= P>0.05 indicating no statistical significance when compared to the GABAB R1 KO control for the corresponding day. 
compared to the GABAB R1 KO control for the corresponding day. 
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Tolerance of GABAB R2 KO male Drosophila. GABAB receptor antagonist CGP 54626 was administered for 24 hours 
prior to day 1 of the tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH 

until ST50 was recorded.  Bars represent standard deviation. Values are mean ± SEM with n= 3 vials of 10 flies (30 flies 
total) and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed 

with ns= P>0.05 with no statistical significance recorded when compared to the GABAB R2 KO control for the 
corresponding day. 
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Tolerance of GABAB R2 KO male Drosophila. GABAB receptor antagonist CGP 54626 was administered for 24 hours 
prior to day 1 of the tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH 

until ST50 was recorded.  Bars represent standard deviation. Values are mean ± SEM with n= 3 vials of 10 flies (30 flies 
total) and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed 

with ns= P>0.05 with no statistical significance recorded when compared to the GABAB R2 KO control for the 
corresponding day. 
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Figure 3.4: Effect of GABAB receptor agonist SKF 97451 administered for 24 
hours prior to the 3 day tolerance assay. 

Tolerance of Wild Type (A), GABAB R1 KO (B) and GABAB R2 KO (C) male Drosophila. 
GABAB receptor agonist SKF 97541 was administered for 24 hours prior to day 1 of the 
tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% 
EtOH until ST50 was recorded.  Values are mean ± SEM with n= 3 vials of 10 flies (30 flies 
total) and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni 
post-hoc testing was performed with * P<0.05, **P<0.01, ***P<0.001 when compared to the 
relevant control for the corresponding day. ns= P>0.05 indicating no statistical significance 
when compared to the relevant control for the corresponding day.  

 

The effect of the agonist SKF 97541 was also tested on wild type and mutant flies 

(Figure 3.4). The agonist and the antagonist acted in a similar way, and both were 

able to enhance and increase the tolerance development in the wild type and 

GABAB R1 KO when compared to the control (Figure 3.4). The GABAB R2 KO 

was again, unable to develop a significant increase in tolerance (Compared to 

Day 1 R2 KO control: 50nM P=>0.9999 250nM P=0.3350, 500nM P=0.0434). 

  

When compared to the antagonist, certain comparisons are evident between the 

agonist and antagonist drugs delivered prior to the tolerance assay. Both drugs 

appear to lose efficacy after day 2/3; this is suspected to be as a result of the 
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Tolerance of GABAB R2 KO male Drosophila. GABAB receptor antagonist CGP 54626 was administered for 24 hours 
prior to day 1 of the tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH 

until ST50 was recorded.  Bars represent standard deviation. Values are mean ± SEM with n= 3 vials of 10 flies (30 flies 
total) and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed 

with ns= P>0.05 with no statistical significance recorded when compared to the GABAB R2 KO control for the 
corresponding day. 
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 24 hour GABAB receptor agonist delivery prior to GABAB R2 KO tolerance assay

Control

500nM

250nM

50nM

ns ns

ns
ns

*



	
	

	 27	

drug being metabolised. In order to maintain effect, the drug would need to be 

administered on a daily basis Interestingly, the agonist and the antagonist appear 

to be working in a similar way. Based on published literature, it would be expected 

that the agonist and antagonist would work in opposite ways. A possible reason 

for why this is not occurring is that the agonist is operating as a partial agonist 

and is reducing the effect of the endogenous GABA just like the antagonist. 

 
3.5. Reversing the Development of Tolerance with GABAB Receptor 

Drugs  
Using a modified protocol to the experiments described in the previous section, 

tolerance was developed in the Drosophila for two days and after the second day, 

the GABAB receptor antagonist and agonist were administered for 24 hours 

before day 3 of the tolerance experiment whilst the control vials were 

administered a standard dry food placebo. This delivery was used to challenge 

an established ethanol tolerance via administration of GABA-B receptor agonists 

and antagonists.  

 
 

Figure 3.5: The effect of GABAB receptor antagonist CGP 54626 on flies pre-
exposed to ethanol for 2 days in the tolerance assay.  

GABAB receptor antagonist CGP 54626 was administered to Wild Type (A), GABAB R1 KO 
(B) and GABAB R2 KO (C) male Drosophila. for 24 hours after day 2 of the tolerance assay. 
In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH until ST50 
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6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed with ***P<0.001 and ns= 

P>0.05 with no statistical significance recorded when compared to the Wild Type control for the corresponding day. 
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Tolerance of GABAB R2 KO male Drosophila. GABAB receptor antagonist CGP 54626 was administered for 24 hours 
prior to day 1 of the tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH 
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with ns= P>0.05 with no statistical significance recorded when compared to the GABAB R2 KO control for the 
corresponding day. 
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ns= P>0.05 indicating no statistical significance when compared to the GABAB R1 KO control for the corresponding day. 
compared to the GABAB R1 KO control for the corresponding day. 
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total) and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed 

with ns= P>0.05 with no statistical significance recorded when compared to the GABAB R2 KO control for the 
corresponding day. 
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was recorded.  Values are mean ± SEM with n= 3 vials of 10 flies (30 flies total) and control 
n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was 
performed with * P<0.05, ***P<0.001 Ns (not significant) = P>0.05 when compared to the 
relevant control for the corresponding day.  

 
The results shown in figure 3.5, indicate that in wild type flies, the CGP 54626 

antagonist when administered after day 2 does not increase tolerance as it had 

been observed when administered before starting the tolerance assay (figure 3.3) 

but at the highest dose actually decreases ST50. This reversal of the tolerance 

effect is even more evident in the GABAB R1 KO but is not statistically significant 

in the GABAB R2 KO flies.    

 

 
 

 
  

Figure 3.6: The effect of GABAB receptor agonist SKF 97451 on flies pre-
exposed to ethanol for 2 days in the tolerance assay.  
 
GABAB receptor agonist SKF 97541 was administered for 24 hours to Wild Type (A), 
GABAB R1 KO (B) and GABAB R2 KO (C) male Drosophila. after day 2 of the tolerance 
assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH 
until ST50 was recorded.  Values are mean ± SEM with n= 3 vials of 10 flies (30 flies total) 
and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc 
testing was performed with *P<0.05, ***P<0.001, ns (not significant) = P>0.05 when 
compared to the relevant control for the corresponding day.    
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The GABAB agonist used after day 2 of tolerance development appears to act in 

the same way that the administered antagonist does on tolerance for the wild type 

and GABAB R1 KO mutant after the drug has been administered (Figure 3.5/ 3.6). 

 

Remaining consistent to all previous results described in section 3.3 and section 

3.4, the GABAB R2 KO mutant does not respond to the drug delivered and shows 

no changes to tolerance when challenged after two days of tolerance 

development (Figure 3.6). Whilst the graph appears to show a decrease in 

tolerance development, the results indicate no statistical significance (Compared 

to Day 3 R2 KO control: 50nM P=>0.9999, 250nM P=0.9442, 500nM P= 0.6012). 

 
 
3.6.  Preference Development in Wild Type and GABAB Mutant 

Drosophila 
 
In Wild Type flies, repeated exposures to liquid foods with or without ethanol over 

a period of time leads to an increased preference to one food or another. To 

validate this process, Drosophila were allowed to consume the liquid food or 

ethanol containing food presented to them in separate capillary tubes and the 

preference index for the two types of food was calculated based upon the 

consumption rates of each food. The preference index of GABAB mutant flies 

were compared to that of Wild Type flies (Figure 3.7). 
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Figure 3.7:  Preference development in males and females of three Drosophila 
lines  
 
The preference assays were repeated for 3 consecutive days for wild type, GABAB R1 KO 
and GABAB R2 KO male (A) and female (B) Drosophila aged 0-5 days. Drosophila were 
housed on standard dry mix food in between assays. Preference Index (consumption of 
ethanol containing food against non-ethanol containing food) is reported as mean ± SEM 
with n= 6 vials of 10 flies (60 flies total).  Data was analysed by two-way ANOVA with 
Bonferroni post-tests. * P<0.05, ** P<0.01, *** P<0.001 when compared to the WT control 
of the same day.  
 
 

Figure 3.7 demonstrates that preference to 15% ethanol liquid food was 

developed by the wild type, GABAB R1 KO and GABAB R2 KO male and female 

Drosophila over three days and strengthens and reinforces previously published 

works that the Drosophila melanogaster is a suitable model to study preference 

as an addiction like behaviour to alcohol (Ja et al. 2007, Devineni and Heberlein 

2009, Pohl et al. 2012, Peru et al. 2014). 

 

It can be said, that by looking at the preference development over days for all fly 

lines, that preference for ethanol containing food vs non-ethanol containing liquid 

food occurs much quicker in the wild type and the GABAB R2 KO mutant than the 

GABAB R1 KO mutant. This is not coincidental as both the male and female 

groups act in the same way and are statistically different from the wild type 

species with no GABAB receptor transgenic mutation. (Figure 3.7).  
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3.7. The Effect of GABAB Receptor Drugs on Development of 
Preference 

As tolerance development to alcohol was affected by GABAB drugs (section 3.3), 

it was questioned whether preference could be too. The same GABAB antagonist 

CGP 54626 used for tolerance interference and as described in section 2.5 was 

used during this assay. The antagonist was administered to male Drosophila for 

24 hours prior to day 1 of the preference assay (Figure 3.8). Only males were 

used due to project time constraints. 
 

 
 

 
 
 
 

 
 
 

Figure 3.8: Effect of GABAB receptor antagonist CGP 54626 administered for 24 
hours prior to 3 day preference assay. 
 
GABAB receptor antagonist CGP 54626 was administered for 24 hours to (A) Wild Type, 
(B) GABAB R1 KO and (C) GABAB R2 KO male Drosophila aged 0-5 days. The preference 
assays were repeated for 3 consecutive days with no further exposure to the antagonist. 
Drosophila were housed on standard dry mix food in between assays. Preference Index 
(consumption of ethanol containing food against non-ethanol containing food) is reported 
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as mean ± SEM with n= 3 vials of 10 flies (30 flies total) and control n= 6 vials of 10 flies 
(60 flies total).  Data was analysed by two-way ANOVA with Bonferroni post-tests. * P<0.05, 
** P<0.01, *** P<0.001 when compared to the WT control of the same day.  
 
The consumption of the antagonist CGP 54626, produced a developmental 

response in the different fly lines (Figure 3.8), whereas the agonist SKF 97541 

(Figure 3.9) consumed by the Drosophila prior to day 1 of the initial preference 

assay appear to have a delayed mechanism of action. For all Drosophila lines at 

all doses and drugs administered for the preference assay (with the exception of 

GABAB R1 KO at 500nM agonist and GABAB R2 KO at 250nM antagonist), there 

is no significant impact and no statistically significant antagonist or agonist activity 

on preference from the drug on day 1 of the preference assay.  

 

 
 
 
 
 

 
 
 
 

Figure 3.9: Effect of GABAB receptor agonist SKF 97451 administered for 24 

hours prior to the 3 day preference assay. 
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Tolerance of GABAB R2 KO male Drosophila. GABAB receptor antagonist CGP 54626 was administered for 24 hours 
prior to day 1 of the tolerance assay. In each vial, 10 male flies aged 0-5 days old were exposed to 500µL 100% EtOH 

until ST50 was recorded.  Bars represent standard deviation. Values are mean ± SEM with n= 3 vials of 10 flies (30 flies 
total) and control n= 6 vials of 10 flies (60 flies total). A two-way ANOVA with Bonferroni post-hoc testing was performed 

with ns= P>0.05 with no statistical significance recorded when compared to the GABAB R2 KO control for the 
corresponding day. 
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sucrose/15% ethanol liquid food. PI is measured from 1 to -1. Values are mean ± SEM with n= 3 

experiments with one vial each. Two-way ANOVA was used with Bonferroni post-tests. * = P<0.05, *** = 
P<0.001 when compared to the 0µM control. 
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GABAB receptor agonist SKF 97541 was administered for 24 hours to (A) Wild Type, (B) 
GABAB R1 KO and (C) GABAB R2 KO male Drosophila aged 0-5 days. The preference 
assays were repeated for 3 consecutive days with no further exposure to the agonist. 
Drosophila were housed on standard dry mix food in between assays. Preference Index 
(consumption of ethanol containing food against non-ethanol containing food) is reported 
as mean ± SEM with n= 3 vials of 10 flies (30 flies total) and control n= 6 vials of 10 flies 
(60 flies total).  Data was analysed by two-way ANOVA with Bonferroni post-tests. ** 
P<0.01, *** P<0.001 when compared to the WT control of the same day.  
 
 
3.8. Conditional Preference Assay Validity/Controls 
In order to confirm and validate the Drosophila as a model for observing unbiased 

preference development to alcohol, the conditional preference assay was carried 

out where flies are pre-trained to associate alcohol vapours with one of two 

neutral odour and then are observed making choice for the odours in absence of 

any alcohol vapours as described in section 2.4.3. 

 

 
 
 
 
 
Figure 3.10:   Conditional preference to ethanol in males and females from three 
Drosophila lines. 
 
Conditional preference was measured in Wild Type, GABAB R1 KO and GABAB R2 KO 
male (A) and female (B) Drosophila aged 0-5 days. Flies were kept in vials at 25°C and 
at room temperature whilst training. Flies were trained for a total of 30 minutes on each 
odour (Odour A + EtOH & Odour B + H2O) for 10-minute training sessions separated 
with a 10 minute rest. MCH was EtOH associated odour and OCT was H2O associated 
odour. In the conditional preference test (24 hours after the last training session) flies 
were presented with odours via opposite ends of the ‘Y Maze’ test apparatus at a rate of 
1.71 litres per minute Preference Index (movement to ethanol associated odour against 
movement to H2O associated odour within 3 min) is reported as mean ± SEM with n= 6 
vials of 20 flies (120 flies total). Data was analysed by one-way ANOVA with Bonferroni 
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post-test. * P<0.05 ** P<0.01 and ns (not significant) = P>0.05 indicating no statistical 
significance when differences compared between indicated species. 
 
 
By looking at the data presented in Figure 3.10, it can be concluded that both male 

and female wild type and GABAB R2 KO Drosophila lines, when given an unbiased 

movement choice, prefer to move to the ethanol associated odour and show a 

strong positive preference after odour association training. The GABAB R1 KO 

however for both sexes show a negative preference to the ethanol associated 

odour.  

 

This assay is valuable in reinforcing the preference assay behavioural results 

(section 3.6). This conditional preference assay allows the Drosophila a free 

unbiased choice to show preference to an ethanol associated odour or a water 

associated odour. The main differences in the design of the two preference based 

assays is that within the conditional preference, the Drosophila never come into 

direct contact with the ethanol, indicating consumed and olfactory preference to 

ethanol and ethanol is not present during the assay (only during training). 

 

3.9. RT-PCR 
Despite several attempts at validating the Drosophila wild type and mutants used 

within this project no products were obtained from the RT-PCR amplifications. 

Unfortunately, these validation experiments were executed at the end of the 

project and there was not enough time to trouble shoot the ineffectiveness of the 

assay other than varying the annealing temperature (56-60°C) and the extension 

time (30-60 sec). The most likely explanations are the mRNA preparations were 

not of good enough quality or one of the enzymes used was not functioning as 

expected.  

 

 

 

 

 

 

 

 



	
	

	 35	

Chapter 4: Discussion                                                              l          
                                                                                                                                                                                                                                    
4.1. Drosophila as Model for Studying Addiction 
Alcohol misuse is a problem worldwide and was responsible for 3.3 million deaths 

in the year 2015 (World Health Organistation [1] 2015). Alcohol is thus 

responsible for more global deaths than chronic obstructive pulmonary disease 

deaths (3.1 million), trachea, bronchus and lung cancers (1.7 million) and 

diabetes mellitus (1.6 millions deaths) (World Health Organistation [2] 2017). 

It is because of the number of alcohol related deaths and the socio-economic 

impact of alcohol addiction that an intervention is necessary and should be a 

focus of researchers. It is in this context that this project was aimed at 

understanding the role of the GABAB receptor in preference and tolerance to 

alcohol to lay foundations for future work and to assess if the receptor could be 

used as a possible pharmacological target to address addiction like behaviours. 

One of the main objectives of the project was to investigate further the role and 

suitability of the Drosophila melanogaster as a model for studying alcohol induced 

behaviours and their underlying molecular mechanisms. The results obtained in 

this study confirm that following ethanol exposures over three consecutive days, 

the wild type Drosophila can develop a significant increase in their ST50 values 

which can be identified as tolerance (Figure 3.2). In the second assay employed 

in this project, where the wild type Drosophila have free choice and access to 

both ethanol containing food and non-ethanol containing food, it is evident from 

figure 3.7 that the wild type Drosophila consume more ethanol containing food 

over consecutive days, resulting in an increased preference index. Thus, a 

stronger preference to ethanol is established over time with repeated exposures 

to ethanol. In the third assay employed in this project, when flies were exposed 

to two different neutral olfaction odours at separate times alongside ethanol or 

H2O, the wild type Drosophila when placed into a Y maze testing apparatus made 

a free choice to move towards the ethanol associated odour (Figure 3.9). This 

reinforces the results from the primary preference assay within figure 3.7, that a 

positive preference to ethanol can be established and demonstrated as an 

addiction like behaviour in wild type Drosophila. 

The ability to develop and maintain these behaviours further confirms the works 

as described by Scholz et al. (2000), Ja et al. (2007), Devineni and Heberlein 
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(2009), Maples and Rothenfluh (2011), Kaun et al. (2012), Pohl et al. (2012), 

Simonnet et al. (2014), Umukoro (2015), Koyyada (2016) and confirms the fruit 

fly as being a suitable model to study the mechanisms and effects of alcohol 

addiction. 

 

4.2. GABAB Receptor Ligands  
Initial evidence of addiction like behaviours being suppressed by GABAB receptor 

agonists (Hwa et al. 2013), and the report that silencing the GABAB receptor gene 

reduced the behaviour impairing effects of ethanol (Dzitoyeva et al. 2003), led to 

the selection of the GABAB receptor as the main focus of this study and, in 

particular, the role of this receptor in the development of tolerance and preference 

was targeted. The GABAB receptor antagonist selected was compound CGP 

54626 and was selected as it is described as being a ‘selective GABAB 

antagonist’ (Tocris [1] 2016). The GABAB receptor agonist selected was 

compound SKF 97541 and was chosen based upon the description given from 

the supplier detailing ‘Very potent GABAB agonist, at least ten times more active 

than baclofen’ (Tocris [2] 2016). The supplier’s statements that the drugs were 

potent and specific receptor ligands were of great appeal for this project. It is 

important to note that some GABAB drugs do not have an effect on the Drosophila   

such as the highly used GABAB receptor agonist Baclofen (Manev and Dzitoyeva 

2010). 

Being able to interfere with the development/maintenance of the addiction like 

behaviours that the Drosophila have demonstrated in section 4.1.1 was an area 

of interest in this project. By administering both drugs independently, it was of 

interest as to how the behaviours would change in the presence of ethanol. Drugs 

were either administered 24 hours prior to the first exposure to ethanol or 

administered for 24 hours after two days exposure to ethanol to investigate if the 

behaviour would change.  

 

4.3. Efficacy of GABAB Receptor Drugs on the Development of 
Tolerance in Wild Type and Mutant Drosophila 

The wild type and mutant Drosophila at all stages of this project developed 

tolerance addiction behaviours upon exposure to ethanol. When a GABAB 

receptor ligand was administered for 24 hours prior to the tolerance assay, there 
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was some changes in the development of tolerance and this was different for 

each fly line in the presence of the agonist or antagonist. 

 

Administration of GABAB receptor antagonist to wild type Drosophila for 24 hours 

prior to the first ethanol exposure of the tolerance assay caused a significant 

increase of ST50 at all concentrations tested (50nM, 250nM and 500nM) This 

increase was sustained for day 1 and day 2 but not day 3 of the tolerance assay 

(Figure 3.3a). A possible explanation for this is that CGP 54626 is fully 

metabolised after 48 hours. 

 

Mutant flies in which the GABAB receptor 1 subunit has been putatively knocked 

out by a genetic insertion (GABAB R1 KO) acts in a similar way to the wild type 

fly for the first day, but for days 2 and 3, there is an apparent decrease in the 

efficacy of the antagonist (Figure 3.3b). It must be noted however, that there was 

no significance at 50nM when compared to the control on day 1.  

 

Mutant flies in which the GABAB receptor 2 subunit has been putatively knocked 

out by a genetic insertion (GABAB R2 KO) had no statistical difference for any 

day after being administered the antagonist CGP 54626 for 24 hours (Figure 

3.3c). For day 1, visually there could be some difference for the 500nM 

concentration, but data analysis indicates no statistical significance (n=3 for 

treated and n=6 for control). More repeats of this fly line may give a greater 

indication and a true representation for the population and may in turn lead to 

significance. If this fly was to be a true knock out of the GABAB receptor 2 subunit, 

it indicates that the R2 subunit is needed for the increase of ST50 induced by 

CGP 54626.  

The GABAB receptor agonist (SKF 97541) administration was also carried out for 

24 hours prior to the first ethanol exposure of the tolerance assay, and 

interestingly, the agonist, like the antagonist, also significantly increased the 

ST50 of the wild type Drosophila (Figure 3.4a). The ST50 of agonist treated flies 

at all concentrations were significantly increased when compared to the control 

for that day. The effect remained for all three days of tolerance assay. It would be 

difficult to determine whether the drug is still present in the flies after three days. 

Therefore, it would be useful to continue the assay over a greater number of days 
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to investigate the duration of the drug effect. If the effect of the drug were to 

continue and be significant over more consecutive days, it would indicate that 

there has been some lasting changes in the Drosophila that had been exposed 

to the GABAB agonist. It would be of interest to determine the longevity of the 

drug but it would probably require extraction and a highly sensitive 

chromatography approach to detect the metabolism of the drug in the flies. It 

would be of even greater interest to determine if there are indeed any permanent 

behavioural changes caused by the drug exposure.  

 

In these tolerance experiments, the agonist induced the same behavioural effect 

as an antagonist by increasing the ST50 of wild type Drosophila. When these 

conditions occur, a simple explanation is that the agonist is acting as a partial 

agonist rather than a full agonist. A partial agonist would be an agonist with lower 

efficacy than the endogenous agonist and thus by competing with the 

endogenous agonist, the partial agonist will have a similar effect as an antagonist.  

It can also be noted from the data that the lower concentration (50nM) of the 

agonist, has a statistically greater effect on increasing the ST50 value than the 

higher concentration (500nM) (P<0.05). There is no clear explanation for this 

observation, but it may suggest that the role of the GABAB receptor on the 

development of tolerance is more complex than first envisaged. One potential 

reasoning for this is that the drugs bind at two distinct sites; At low ligand 

concentrations, the high affinity binding site initiates ‘effector 1’ that is responsible 

for increasing the ST50/ sensitivity to ethanol and at higher ligand concentrations, 

the drug binds to a low affinity binding site that induces ‘effector 2’ and this is 

responsible for decreasing the ST50 and subsequently, the flies sensitivity to 

ethanol by altering the equilibrium of this mechanism (Figure 4.1). 
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Figure 4.1: Concept of a high affinity/low affinity design for ligand concentration 
effects on tolerance behaviours.  
 
At low ligand concentrations, the high affinity binding site initiates ‘effector 1’ that is 
responsible for increasing the ST50/ sensitivity to ethanol and at higher ligand 
concentrations, the drug binds to a low affinity binding site that induces ‘effector 2’ and 
this is responsible for decreasing the ST50 and subsequently, the flies sensitivity to 
ethanol. 
 
 
4.4. Efficacy of GABAB Receptor Drugs on the Interference of 

Tolerance Development in Pre-Exposed Wild Type and Mutant 
Drosophila 

In the experiments discussed in section 4.3, the GABAB receptor ligands were 

given before the ethanol exposures. Figures 3.5 and 3.6 portray a new set of 

experiments that were carried out whereby the drugs were administered for 24 

hours after the second ethanol exposure. The rationale for this was to test 

whether the drugs were able to affect the development of tolerance after 
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tolerance development had already been initiated. There were some changes in 

the development of tolerance and this was different for each fly line in the 

presence of the agonist or antagonist. 

 

For the wild type fly line, when the GABAB receptor antagonist CGP 54626 was 

administered for 24 hours after the second day tolerance assay, there was some 

change in the ST50 tolerance development (Figure 3.5a). At the higher 

concentration level (500nM), there was a significant (P<0.001) decrease in ST50 

compared to the control on day 3. This result equalled the control of day 2 (before 

the administration of the antagonist) and therefore shows that the antagonist at 

this concentration is able to reverse tolerance development when administered 

after some tolerance development. The lower concentrations (50nM and 250nM) 

produced no statistically significant effects compared to the control and it can be 

said therefore that a higher concentration leads to lowering the ST50 trend. In 

future works, it would be interesting to see if a higher than 500nM concentration 

of the antagonist CGP 54626 could lower the ST50 further; potentially to the day 

1 control tolerance level or potentially even lower. 

 

The GABAB R1 KO mutant line, acts in a similar way to the wild type, with only 

the higher concentrations inducing an effect and showing a significant difference 

on tolerance ST50 after administration of the antagonist after day 2 of the 

tolerance assay (Figure 3.5b). However, the two fly lines differ in how much of an 

effect the drug can induce. The GABAB receptor ligand at the 250nM and 500nM 

were able to interfere with tolerance development and reduce the ST50 to 

between the tolerance controls for days 1 and 2. This was greater than the effect 

of the antagonist induced on the wild type Drosophila. 

 

The GABAB R2 KO was not responsive to any concentration of the antagonist 

CGP 54626 (Figure 3.5c). This fly line, with only an active GABAB receptor 1 

subunit, has similarities with the wild type Drosophila line. With this fly line and 

the wild type showing little to no tolerance development changes in the presence 

of an antagonist, this highlights and presents evidence that the R2 subunit is 

involved with the reversal of tolerance as the GABAB R1 KO (Figure 3.5b). 
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When the GABAB receptor agonist SKF 97541 was administered in the same way 

as the antagonist after day 2 for 24 hours, the results for the wild type Drosophila 

and mutant GABAB R1 and R2 KO lines, were nearly identical to the those 

obtained from the antagonist results (Figure 3.6). The higher concentrations of 

the drug were the only ones responsible for inducing an effect and overcoming 

the presence and sensitivity to the ethanol. The GABAB R1 KO acted the same 

as the wild type fly line as it has done in previous experiments, and as previously 

seen, the R2 KO was seen to still show no change when administered a GABAB 

receptor ligand, indicating the importance of the receptor 2 subunit once more. 

 

4.5. Efficacy of GABAB Receptor Drugs on the Development of 
Preference in Wild Type and Mutant Drosophila 

Administration of the GABAB receptor antagonist CGP 54626 for 24 hours prior 

to the first preference assay, affected the development and maintenance of 

preference to ethanol in the wild type Drosophila (Figure 3.8a). For the first and 

second day, whilst visually lower than the control preference index for the 

corresponding day, there is no statistical significance when compared to the 

treated flies. The statistical significance interestingly becomes apparent when the 

CAFE assay is conducted for the third time (day 3): the preference index is 

significantly different (P<0.001) for all three antagonist concentrations when 

compared to the control. This data therefore suggests that there is a delay in the 

antagonist taking affect in the wild type fly line.  

 

The GABAB R1 KO appears to be more sensitive to the effect of the antagonist 

as the results differ from the control from the second day of the preference assay 

(Figure 3.8b). Whilst this is difficult to understand, this could indicate that the R2 

receptor is very responsive and plays a big part in preference development. 

Another explanation could be that the antagonist CGP 54626 is working through 

an alternative receptor/mechanism and this would be strengthened by the results 

that show when the GABA receptor 1 subunit is knocked out, this potentiates the 

effect of the agonist (Figure 4.2).  
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Figure 4.2: Theoretical dual mechanism of action for CGP 54626 antagonist in 
conjunction with the GABAB receptor 1 subunit.  
 
CGP 54626 is a GABAB receptor antagonist that when administered could be mediated 
via an unknown receptor (labelled X). This would explain that when removing the GABA 
receptor 1 subunit, this potentiates the effect of the agonist. 
 

On the other hand, whilst the GABAB R2 KO had no significance in the presence 

of the GABAB receptor agonist or antagonist with the two tolerance administration 

assays, there appears to be some behavioural preference changes in the 

presence of the antagonist. This indicates that this fly line is less sensitive to the 

ethanol exposures in the presence of the drug, indicating a potential importance 

of the receptor 1 subunit. 

 

The agonist SKF 97541 administration has similar effects to the antagonist 

administration for all fly lines (Figure 3.9). For the wild type fly line, there is a 

delayed action and effect to the agonist with a notable change not occurring until 

the third day of the preference assay (Figure 3.9a). The most noticeable change 

as a result of the agonist administration appears in figure 3.9b with the GABAB 

R1 KO. This fly appears to have a negative preference to alcohol on day 1 but 

then shows a preference to ethanol on day 2. This occurs before day 3, when 

there is then a significant (P<0.001) decrease in preference for ethanol when 

compared to the untreated control for this day. This could indicate that the GABAB 

receptor agonist SKF 97541 works on both the GABAB receptor 1 subunit and 
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another receptor (Figure 4.3). Whilst this is a confusing phenomenon to explain, 

it is possible that the drug works through an unknown receptor/s and the GABAB 

as on day 2, the drug shows to not alter the preference index in the R1 KO line 

(Figure 3.9b) and on day 3, there is a sudden decrease in the preference index. 

This shows that on day 3, the drug is no longer bound to the unknown receptor 

but to just the receptor 1 subunit. Again, this discussion and results shown 

highlight the potential importance of the receptor 1 subunit in the development of 

preference. 

 

 

 

 

 

 

 

 

 

Figure 4.3: Theoretical dual mechanism of action for SKF 97541 agonist in 
conjunction with the GABAB receptor 1 subunit.  
 
SKF 97541 is a GABAB receptor agonist that when administered could work through both 
an unknown receptor/s (Receptor X/Y) and the GABAB receptor 1 subunit. This is 
because, on day 2, the GABAB R1 KO does not respond with reducing preference and 
has a delayed effect. 
 
 

4.6. Project Findings 

When a KO mutant fly line causes a behavioural change, it indicates that the gene 

is directly or indirectly involved in the development of the behaviour. If there is no 

change however, it suggests that the gene is either not involved or its action can 

be compensated by another gene or mechanism of action.  

 

By looking at the results shown in chapter 3, and discussions within sections 4.3, 

4.4 and 4.5, it can be said that both the GABAB receptor antagonist CGP 54626 
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and GABAB receptor agonist SKF 97541 appear to have a similar mechanism of 

action on the wild type and mutant Drosophila used within this project whilst 

examining tolerance in the presence of ethanol. Pin and Prezeau (2007) have 

reported partial agonist activity when exploring the mechanism of action of the 

GABAB receptor for therapeutic interventions reporting similar partial agonist 

actions to those described within this thesis. It is suspected that the partial agonist 

would be an agonist with lower efficacy than the endogenous agonist and thus 

by competing with the endogenous agonist, the partial agonist will have a similar 

effect as an antagonist and this correlates with results shown and described. 

 

The results portrayed and reviewed in sections 3.4 and 4.3 are hard to explain 

regarding the tolerance assay results described. The confusion occurs as a result 

of a drug administered at a lower concentration having more of a behavioural 

change than a drug administered at a higher dose. As shown in figure 4.1, one 

possible logical explanation is that at lower concentrations, the high affinity 

binding site initiates ‘effector 1’ that is responsible for increasing the ST50. This 

is compared with higher drug concentrations, whereby the drug binds to a low 

affinity binding site that induces ‘effector 2’ and this is responsible for decreasing 

the ST50 and subsequently, interfering with the equilibrium of the tolerance 

mechanisms. It can be thought from looking at this preliminary data however, that 

the GABAB R2 subunit plays a role in tolerance development in the Drosophila. 

 

The preference assay results analysed in sections 3.7, 3.8 and 4.5 are equally 

as difficult to explain as the tolerance behaviours. The GABAB R1 KO appears to 

be more sensitive to effect of the administered CGP 54626 antagonist and the 

SKF 97541 agonist, and this potentially highlights the importance that the GABAB 

receptor 1 subunit has to play in preference development. It could also be 

suspected that the ligands are working through another receptor in addition to the 

R1 subunit. This development process is by no means simple and it would be 

naïve to think that one receptor has the sole responsibility of preference 

development. However, this data can be used as the foundations going forward 

for further research and thoughts. 
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4.7. Future Works 
Throughout this project, the validity of the two mutant fly lines has been a 

concern. The mutant flies were dispatched to the university from Bloomington 

Drosophila Stock Centre (BDSC), a reputable depository located at Indiana 

University, USA, that has been used worldwide as a depository since 1913. More 

recently, the BDSC in 2016 was responsible for holding 59,126 Drosophila fly 

stock lines and distributed 217,072 subcultures (Bloomington Drosophila Stock 

Center 2017). It is thought therefore that the fly is what it is described as by the 

centre. After discussions with four laboratories (Both in the UK, and USA), it has 

been brought to the groups attention that whilst it is not common practice to take 

the time and make the effort to validate the work carried out by the BDSC, if 

interesting results have been obtained, it is sometimes worthwhile to carry out 

internal molecular assays to investigate this further. As described in chapter 2, a 

polymerase chain reaction was carried out and repeated a few times but was 

unsuccessful. It is not known at what stage the assay was unsuccessful; in the 

primer design or with the execution of the PCR itself but regardless, further 

refinement is needed as going forward with validating the results, it is of definite 

benefit to validate the KO subunits in each mutant and also to inspect that there 

is indeed a fully functioning receptor in the wild type. It is also extremely important 

to note that each mutant fly line has the same genetic background as one another 

and has therefore been genetically modified from the same wild type fly line. 

 

Continuing with this project and contributing to literature available, it would be 

useful to continue the preference and tolerance assays over a greater number of 

days to investigate the duration of the drug effect. If the effect of the drug were to 

continue and be significant over more consecutive days, it would indicate that 

from results in chapter 3, that there have been some lasting changes in the 

Drosophila that would need to be investigated and described further. It would also 

be of interest to determine the longevity of the drug and to also determine if there 

are any permanent effects of the drug affecting this receptor or otherwise. 

 

In addition, it would be wise to repeat the experiments a greater number of times 

to ensure a quality cohort of results and data obtained. This will ensure clear and 

confident statements can be made and presented. It is a great shame that time 

restraints limited a wider range of concentrations from being used for this project 
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as it would have been a great benefit. It would also be interesting to create a 

greater number of variables with regards to ethanol exposures. Maximising the 

number of days for the preference and tolerance assays would have given useful 

data and information into the behaviours of the addiction behaviours and the 

functions of the drugs but it is felt that this project has reinforced the evidence 

that the GABAB receptor contributes to addiction related behaviours and it has 

provided further compulsion towards unravelling GABAB receptor complex role.  

It is hoped that with a greater understanding of the GABAB receptor function 

amongst other systems, it will be possible to have an impact of further alcohol 

related morbidity and mortality. 

 

(Tempel et al. 1983, Wolff and Wingate 1998, Adams et al. 2000, Scholz et al. 2000, Reiter et al. 2001, Bowery et al. 2002, Watanabe et al. 2002, Dzitoyeva et al. 2003, Fadda et al. 
2003, Lee et al. 2003, Greenspan 2004, Leal et al. 2004, Ja et al. 2007, Pin and Prezeau 2007, Wu et al. 2007, Masek and Heisenberg 2008, Stocker et al. 2008, Atkinson 2009, 

Devineni and Heberlein 2009, Wong et al. 2009, Yarali et al. 2009, Hyland and Cryan 2010, Manev and Dzitoyeva 2010, Tyacke et al. 2010, Maples and Rothenfluh 2011, Sussman 
and Sussman 2011, Vlachou et al. 2011, Benarroch 2012, Devineni and Heberlein 2012, Kaun et al. 2012, Pohl et al. 2012, Aso et al. 2014, Chan et al. 2014, Crabbe 2014, Hwa et al. 

2014, Peru et al. 2014, Simonnet et al. 2014, Umukoro 2015, World Health Organistation [1] 2015, Koyyada 2016, Meye et al. 2016, Perisse et al. 2016, Tocris [1] 2016, Tocris [2] 
2016, Volkow et al. 2016, Alcohol Concern 2017, Lyndon et al. 2017, National Health Service 2017, Office for National Statistics 2017, Park et al. 2017, World Health Organistation [2] 

2017) 
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Appendices 

Appendix 1.1:  A table to highlight data used regarding number of alcohol 
related deaths from 2001 to 2015 categorised by age. Taken and modified from 
the Office for National Statistics (2017) publication titled ‘Alcohol-related deaths 
in the UK: registered in 2015’.  
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Appendix 1.2:  A table to highlight data used regarding number of alcohol 
related deaths from 2001 to 2015 categorised by condition. Taken and modified 
from the Office for National Statistics (2017) publication titled ‘Alcohol-related 
deaths in the UK: registered in 2015’.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


