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Abstract

There is debate if phoneme or viseme units are the most effective for a lipreading
system. Some studies use phoneme units even though phonemes describe unique short
sounds; other studies tried to improve lipreading accuracy by focusing on visemes with
varying results. We compare the performance of a lipreading system by modeling visual
speech using either 13 viseme or 38 phoneme units. We report the accuracy of our
system at both word and unit levels. The evaluation task is large vocabulary continuous
speech using the TCD-TIMIT corpus. We complete our visual speech modeling via
hybrid DNN-HMMs and our visual speech decoder is a Weighted Finite-State Transducer
(WFST). We use DCT and Eigenlips as a representation of mouth ROI image. The
phoneme lipreading system word accuracy outperforms the viseme based system word
accuracy. However, the phoneme system achieved lower accuracy at the unit level which
shows the importance of the dictionary for decoding classification outputs into words.

1 Introduction
As lipreading transitions from GMM/HMM-based technology to systems based on Deep
Neural Networks (DNNs) there is merit in re-examining the old assumption that phoneme-
based recognition outperforms recognition with viseme-based systems. Also, given the
greater modeling power of DNNs, there is value in considering a range of rather primi-
tive features such as Discrete Cosine Transform (DCT) [1] and Eigenlips [6] which had
previously been disparaged due to their poor performance.

Visual speech units divide into two broad categories; phonemes and visemes. A phoneme
is the smallest unit of speech that distinguishes one word sound from another [3]. Therefore
it has a strong relationship with an acoustic speech signal. In contrast, a viseme is the basic
visual unit of speech that represents a gesture of the mouth, face and visible parts of the teeth
and tongue, the visible articulators. Generally speaking, mouth gestures have less variation
than sounds and several phonemes may share the same gesture so a class of visemes may
contain many different phonemes. There are many choices of visemes [5] and Table 1 shows
one of those mappings [18].
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Table 1: Neti [18] Phoneme-to-Viseme mapping.
Consonants Vowels Silence

Viseme TIMIT phonemes Description Viseme TIMIT phoneme Description Viseme TIMIT phoneme Description
/A /l/ /el/ /r/ /y/ Alveolar-semivowels /V1 /ao/ /ah/ /aa/ /er/ /oy/ /aw/ /hh/ Lip-rounding based vowels /S /sil/ /sp/ Silence
/B /s/ /z/ Alveolar-fricatives /V2 /uw/ /uh/ /ow/ "
/C /t/ /d/ /n/ /en/ Alveolar /V3 /ae/ /eh/ /ey/ /ay/ "
/D /sh/ /zh/ /ch/ /jh/ Palato-alveolar /V4 /ih/ /iy/ /ax/ "
/E /p/ /b/ /m/ Bilabial
/F /th/ /dh/ Dental
/G /f/ /v/ Labio-dental
/H /ng/ /g/ /k/ /w/ Velar
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Figure 1: Lipreading system construction techniques.

Conventional techniques to model visual speech are based around Hidden Markov Mod-
els (HMMs) [22]. The aim of the model is to find the most likely word or unit sequence
corresponding to the visual observation. HMMs comprise two probability distributions: the
transition probability and the probability density function (PDF) associated with the contin-
uous outputs. The transition probabilities represent a first-order Markov process. The PDF
of speech feature vectors is modeled by a Gaussian Mixture Model (GMM) that is parame-
terised by the mean and the variance of each component.

There are some weaknesses of GMM, that have been found in acoustic modeling [12].
First, it is statistically inefficient for modeling data that lie on or near a non-linear manifold
in the data space. Second, in order to reduce the computational cost by using a diagonal
rather than a full covariance matrix, uncorrelated features are needed. These deficiencies
motivate the consideration of alternative learning techniques.

The deep network structure can be considered as a feature extractor by using the number
of neurons in multiple hidden layers to learn the essential patterns from the input features
[16]. In addition, the backpropagation algorithm [11] with its appropriate learning criterion
is essentially optimizing the model to fit to the training data discriminatively.

However, to decode a speech signal, temporal features and models that can capture the
sequential information in speech such as an observable Markov sequence in the HMM is still
necessary. Thus arises the DNN-HMM hybrid structure in which the DNN is used instead
of the GMM in the HMM. The method essentially combines the advantages from these two
algorithms.
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2.1 Feature extraction
The literature provides a variety of feature extraction methods, often combined with tracking
(which is essential if the head of the talker is moving). Here we focus on features that have
been previously described as “bottom-up” [17] meaning that they are derived directly from
the pixel data and require only a Region-Of-Interest, or ROI. Figure 2 illustrates a typical
ROI taken from the TCD-TIMIT dataset described later in Section 4.1 plus two associated
feature representations which we now describe.

Figure 2: Comparing the original ROIs image (left) and its reconstruction via 44-coefficient
DCT (middle) and 30-coefficient Eigenlip (right).

2.1.1 Discrete Cosine Transform (DCT)

The DCT is a popular transform in image coding and compression. DCT aims to represent
the frequency domain of signal periodically and symmetrically using the cosine function.
In particular, the DCT is a part of the Fourier Transform family but contains only the real
part (Cosine). Because of its popularity most modern processors execute it very quickly
(roughly O(N) for modern algorithms) so this also explains its ubiquity. For strongly cor-
related Markov processes the DCT approaches the Karhunen-Loeve transform in its com-
paction efficiency. Possibly this explains its popularity as a benchmark feature [18]. Here
we use DCT II with zigzag property [26], which means that the first elements of the feature
vector contain the low-frequency information. The resulting feature vector has 44 dimen-
sions.

2.1.2 Eigenlip

The Eigenlip feature is another appearance-based approach[15]. The Eigenlips feature has
been generated via Principal Component Analysis (PCA) [25]. Here, we use PCA to extract
the Eigenlip feature from grey-scale lip images, where we retain only 30-dimensions of PCA.
To construct the PCA, 25-ROIs images of each training utterance were randomly selected to
be the set of training images. Almost about 100k images in total were used to compute the
Eigenvector and Eigenvalue and use it for extracting training and testing utterances. Only 30
dimensions of principal components with high variation were retained.

2.2 Feature transformation

Raw	  feature	   FMLLR	  feature	  Splicing	   LDA	   MLLT	   FMLLR	  

Figure 3: FMLLR feature pre-processing pipeline.
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The raw features are 30-dimensional Eigenlip and 44-dimensional DCT features. These
raw features are then normalized by subtracting the mean of each speaker and the 15 con-
secutive frames are spliced onto the feature to add dynamic information. Second, Linear
Discriminant Analysis (LDA) [8] and Maximum Likelihood Linear Transform (MLLT) [9]
are applied to reduce and map the features to a new space to minimize the within-class dis-
tance and maximize the between-class distance, where the class is the HMM-state, whilst
simultaneously maximizing the observation likelihood in the original feature space.

Finally, feature-space Maximum Likelihood Linear Regression (fMLLR) [20],[9], also
known as the feature-space speaker adaptation technique, is employed to normalize the varia-
tion within a speaker. These new 40-dimensional fMLLR features are used as inputs (labeled
as feature pre-processing pipeline in Figure 3) to the subsequent machine learning. The use
of LDA is quite commonplace in lipreading and is derived in the HiLDA framework [19].
MLLT and fMLLR are commonplace in acoustic speech recognition but have only recently
been applied to visual speech recognition [2] albeit on smallish datasets.

2.3 Visual speech model training
Our DNN-HMM visual speech model training involves all five successive stages. Here, we
detail the development of the visual speech model that we employ in this work including all
steps and parameters.

2.3.1 Context-Independent Gaussian Mixture Model (CI-GMM)

The first step is to initialise a model by creating a simple CI-GMM model. This step creates a
time alignment for the entire training corpus by simply constructing a mono phoneme/viseme
model that contains 3-state GMM-HMMs for each speech unit.

The CI-GMMs are trained on the raw features, which are DCT and PCA, along with
its first and second derivative coefficients (∆+∆∆). We use 3-state GMM-HMMs on each
visual speech unit. Instead of setting the fixed number for increasing Gaussian mixture, we
have set the maximum number of Gaussian to be 1000 so that each state will keep increasing
independently until their variances reach the maximum. When the training process starts,
the time alignment of training data is equally segmented and updated in every iteration for
the first ten iterations, then updated every two iterations until a maximum of 40 iterations.

2.3.2 Context-Dependent Gaussian Mixture Model (CD-GMM)

The context-dependent viseme models (CD-GMMs) is specified on the same feature as in
CI-GMM system. Here we use tied-state of 3-context visual speech model, where the tied-
states are obtained from the data-driven approach tree-clustering [21]. We have specified
the maximum number of leaf nodes to be 2000, which limits the number of states. The
maximum number of Gaussians is set to 10K. The training iterations continue until there is
convergence which in practice is fewer than 35 iterations. We realign every 10 iterations.

2.3.3 CD-GMM with LDA-MLLT feature transformation

This training step also uses CD-GMMs, but trained on the LDA-MLLT features. The 40-
dimensional LDA-MLLT features are formed by splicing 15 frames of the current frame
(seven on the left and seven on the right) then reducing, via LDA, to 40 dimensions per
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frame. This compact set of LDA-MLLT feature parameterizes to the 40-dimension that best
associates with the visual speech unit and also comprises the dynamic of visual speech over
150ms. Again, the different set of tied-state CD-GMM has been constructed considered to
the current feature. The maximum number of leaf nodes is set to 2,500, and the total number
of Gaussians is 15K. This step utilises the equivalent number of training iterations and the
realignment as those used in the previous step.

2.3.4 CD-GMM with Speaker Adaptive Training (SAT)

In a Speaker Adaptive Training (SAT) system, the CD-GMM are built on an fMLLR trans-
formation on top of LDA-MLLT features by estimating a transform for each speaker. The
same training process in the preceding step is then applied on the 40-dimensions of fMLLR
feature, where the number of leaf nodes and Gaussian are identical.

2.3.5 Context-Dependent Deep Neural Networks (CD-DNN)

We construct the CD-DNNs model on the hybrid DNN-HMMs architecture. The CD-DNNs
are trained and optimized by minimizing frame-based cross-entropy between the prediction
and the PDF target. The PDF refers to the tied-state context-dependent label, which is gen-
erated from the SAT system, that aligned every frame. The feature we adopted for all DNN
training is based on LDA+MLLT+fMLLR features with mean and variance normalization.

The CD-DNNs model is trained on six hidden layers with 2048 neurons per layer, where
we use the sigmoid non-linearity function in each neuron. The input layer is the fMLLR
feature with temporally spliced 11 consecutive frames. The model is initialized by a stacking
of Recurrent Boltzman Machines (RBM) with three iterations on a single-GPU machine.
The learning rate for RBM training is 0.4 and applying L2 penalty (weight decay) at 0.0002.
The learning rate for fine-tuning has been set to 0.008 with dropout of 0.1. We use the
minibatch-Stochastic Gradient Descent (SGD) for fine-tuning with minibatch size of 256.
We produce a development set for tuning the network by randomly selecting 10% of training
data. Every DNN training iteration is required to have a cross-validation loss is lower than
the previous training iteration. If a iteration is rejected then one retries with a new stochastic
gradient descent parameter. The terminating condition is that the new loss is little different
from the old loss (specifically we use a difference smaller than 0.001 of the loss as a suitable
terminating condition).

2.4 Decode lipreading with WFST Decoder
Weighted Finite-state Transducer decoders have been increasingly used to decode speech
signal in Large Vocabulary Continuous Speech Recognition (LVCSR) tasks and have also
become a state-of-the-art decoder [13]. To decode a visual speech signal, we need a visual
speech model, a language model, and a lexicon or as so called, a pronunciation dictionary.

Our lipreading decoder comprises the visual speech DNN-HMM model,the TCD-TIMIT
pronunciation dictionary and the word bi-gram language model. We generate the decoding
graph as a finite-state transducer (FST) via the Kaldi toolkit [21] .Beam width pruning is
applied every 25 frames where we use 13.0 for the Viterbi pruning beam [24] and 8.0 for
the lattice beam and the visual speech model scale is 0.1. The lattice that contains the entire
surviving path is re-scored by applying the bigram language model with the scaling factor
over the range 5−15. Only the lowest word error rates after LM re-scoring are used.
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3 Analysis of the pronunciation dictionary
Reducing the set of speech units, such as reducing a set of phonemes to a set of visemes,
reduces the discriminative power of the classification model whilst increasing the complexity
of pronunciation dictionary by increasing the volume of homophonic words. This suggests
that word accuracy of a viseme based system will be lower than a phoneme based system.
The counter argument is that visemes might be simpler to classify (because there are fewer
of them and they are meant to be better matched to the visual signal) so there is clearly a
trade-off between homopheny and unit accuracy [7].

Table 2: Example of phoneme and viseme dictionary with its corresponding IPA symbols.
Word Entry IPA Symbol Phoneme Dictionary Viseme Dictionary
TALK t Ok t ao k C V1 H
TONGUE t 2N t ah ng C V1 H
DOG d Og d ao g C V1 H
DUG d 2g d ah g C V1 H
CARE k e r k eh r H V3 A
WELL w e l w eh l H V3 A
WHERE w e r w eh r H V3 A
WEAR w e r w eh r H V3 A
WHILE w ai l w ay l H V3 A

Table 2 shows examples of the homophoneme and homoviseme words that occur in the
TCD-TIMIT dictionary. Figure 4 describes the homophone problem in two ways. On the left
words are binned according to how many homophones they have. Thus the column labelled
“1 occur” is the count of all unique words, the column labelled “2 occur” is the count of
words that have one other homophone and so on. It is evident the switch to visemes causes
more homophones particularly large numbers of high-multiplicity homophones. This effect
can also be seen in the dictionary size (right of Figure 4). Homophones cause dictionary
entries to merge so the visual dictionary is smaller than the acoustic one.

No. of occurrences
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
o.

 o
f w

or
ds

100

101

102

103

104

105

106
Phoneme
Viseme

The actual size of the dictionary
1000 2000 3000 4000 5000 *8697 10000 20000 30000 40000 50000 100000**156518

N
um

be
r o

f w
or

d 
di

st
in

tiv
e

#104

0

2

4

6

8

10

12

14
Phoneme Viseme Vocab size

Figure 4: Frequency of duplicated pronunciation in TCD-TIMIT dictionary (left) and vocab-
ulary size (right) for both phoneme and viseme units.

4 Experiment methodology

4.1 Data and Benchmarks
We use the TCD-TIMIT [10] corpus containing 59 volunteer speakers. We chose this dataset
because it is the largest vocabulary audio-visual speech corpus available in the public do-
main. The WFST operates on a vocabulary of almost 6,000 words from a dictionary of
160,000 entries. This dataset provides lists of non-overlapping utterances for training and
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evaluation in two scenarios: speaker-dependent (SD) and speaker-independent (SI). In the
SD scenario, visual models are trained on 3,752 utterances and evaluated on 1,736 utter-
ances. Whereas in the SI experiment, 3,822 utterances from 39 talkers are in the training set
and we evaluate on the remaining 17 talkers containing a total 1,666 utterances.

The TCD-TIMIT release includes a baseline viseme accuracy for both speaker dependent
and speaker independent settings using Jeffers and Barley [14] visemes. The best viseme
accuracy of recognizing 12 viseme units reported on TCD-TIMIT is 34.77% in speaker in-
dependent tests and 34.54% on speaker dependent tests. The context independent viseme
models (referred to as mono-viseme in the paper) were trained on 44-coefficient DCT fea-
ture with 4-state HMMs and 20 Gaussian mixtures per state.

5 Results

5.1 Viseme-based lipreading experiment

One fundamental measure of the performance of an automatic lipreading system is viseme
accuracy. Since the viseme recognizer requires no dictionary or language model, it is quicker
to build and optimise.

Table 3 lists the accuracies achieved with our viseme based lipreading system. In compar-
ison to the viseme accuracies benchmarked with the TCD-TIMIT corpus, our best SD viseme
accuracy is 46.61% with Eigenlips, compared to 34.54%, an improvement of 12.07%. Our
best SI viseme accuracy is 44.61% which improves on the benchmark 34.77% by 10.16%,
again with the Eigenlips features.

Table 3: Viseme-based lipreading accuracy (%).
Model Feature Viseme accuracy (%) Word accuracy (%)

SD SI SD SI
CD-GMM + SAT DCT 44.66 42.48 14.37 10.47
CD-DNN 43.67 38.00 23.89 9.17
CD-GMM + SAT Eigenlips 45.59 44.61 16.71 12.15
CD-DNN 46.61 44.60 33.06 19.15

Word accuracy achieved with visemes, albeit lower than the viseme accuracy, also shows
that Eigenlip features outperform the DCT: we achieved 33.06% in speaker dependent tests,
and 19.15% in speaker independent tests.

5.2 Phoneme-based lipreading experiment

Table 4 shows the word and phoneme accuracies achieved with our phoneme-based lipread-
ing system. This system achieved the most accurate lipreading with a word accuracy of
48.74%. It is interesting that with the phoneme recogniser, word accuracy is greater than
phoneme accuracy, because in the viseme recogniser, this is vice versa.

Again, highest accuracy is achieved with Eigenlip features rather than DCT. One inter-
esting observation apparent in Tables 3 and 4 is that the introduction of the DNN makes little
difference to the unit accuracy but a bigger difference to a word accuracy for both DCT and
eignlips features.
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Table 4: Phoneme-based lipreading accuracy(%).
Model Feature Phoneme accuracy (%) Word accuracy (%)

SD SI SD SI
CD-GMM + SAT DCT 28.22 27.37 21.88 17.72
CD-DNN 29.18 28.08 37.40 33.87
CD-GMM + SAT Eigenlips 31.14 29.59 28.79 24.57
CD-DNN 33.44 31.10 48.74 42.97

5.3 Discussion
Figure 5 plots all of our experimental results comparing unit accuracies (along the x-axis)
against the word accuracies (on the y-axis) along with errorbars showing ±1 standard error.
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Figure 5: Lipreading system performance in GMM system.

Figure 5 has two clusters: one, in the bottom right, represents the viseme experiments
and the other, on the upper left the phonemes. Here we are representing viseme classifiers
with circles (filled represents the DNN, open the GMM) and the phonemes with squares
(either filled or open depending on the classifier). The colours represent the various SI/SD
or DCT/Eigenlips combinations.

The phoneme recogniser naturally obtained lower unit accuracy scores because it has
three times more phoneme classes than viseme classes (13 to 38 respectively). But this
does not mean that phoneme classes have less power to model a visual gesture. This is
visualised in the confusion matrices in Figure 6 where the colour patterns are consistent
between phoneme classes (on the left of Fig 6 and between viseme classes on the right of
Fig 6).

We note that reducing the set of visual speech units also reduces the discriminant power
of the classification model whilst increasing the complexity of pronunciation dictionary by
increasing the volume of homophone (homoviseme) words. This suggests that word accu-
racy of a viseme based system will be less likely to outperform the phoneme based system.

One of the disadvantages of the DNN is that it is not easy to examine to internals of
the network to discover from where it is getting its performance. However there is a clue
in the previous observation which is that the DNN appears to make the most difference
to word accuracy rather than unit accuracy. Visual speech is notorious for extensive co-
articulation so the implication is that either there are significant differences in the window
length between the GMM and the DNN or the DNN is better able to model co-articulation
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Figure 6: Comparison of visemes confusion matrix (left) vs phomemes confusion matrix
(right).

than the GMM. Although there are variations in the window length, here the GMM has a
slightly longer span of 150ms compared to 110ms for the DNN, it is latter explanation is the
most likely. In other work [23] we were able to use identical features and we also found the
DNN superior furthermore we know the DNN to be better able to learn data structured on
non-linear manifolds so we believe this is the most likely explanation for the success of the
DNN.

One caveat is that we have not optimised the scaling factor used in our language models
so there is probably more performance to come when measured as word accuracy.

6 Conclusion

One observation we found is that DNN-HMM viseme recognizers can easily overfit to the
training observations, this is shown in the performance disparity between SD and SI config-
urations. It could potentially be interesting to use visemes as an initialisation for phoneme
recognition in a hierarchical training method similar to that in [4] in the future.

We have added more evidence to the argument that phoneme classifiers can outperform
those of visemes. Whilst there is still debate about visemes, we can not forget them, but
given the evidence showing a significant improvement in word accuracy from the reduction
in homophonic words in a pronunciation dictionary, we suggest that phonemes are the current
optimal class labels for lipreading.

We have also illustrated the noticeable performance gain by changing visual represen-
tation from DCT to Eigenlips. The best word accuracy in this work is 48.74% on SD and
42.97% on SI achieved with the DNN-HMM phoneme unit recognizer trained on Eigenlip
features. However, the disadvantage of Eigenlip feature is a learned linear mapping that
needs to be trained.

Conventional systems have shown speaker independence to be a challenge, here with a
novel DNN-HMM architecture, we have reduced the effect between these arrangements. We
speculate that the success of the DNN is likely to do its ability to better model the effects of
co-articulation which is a well known bugbear of human and machine lip-readers.
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