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Abstract 

 

Objective. The object of the present study is to advance our understanding of the cognitive 

profile of Rett Syndrome (RTT), an x-linked neurodevelopmental disorder caused by mutations 

in the MECP2 gene. We focus on sustained attention, which plays a critical role in driving 

cognitive growth, and use an innovative, gaze-based task that minimizes demands on the limited 

verbal and motor abilities associated with RTT.  

Method. The task required the ability to sustain attention on a visual target (a butterfly) whilst 

inhibiting a prepotent response to look to moving distractors (trees and clouds) presented in the 

peripheral visual field. The sample included children with RTT (N = 32) and their typically 

developing (TD) counterparts (N = 32), aged 2-12 years.  

Results. Our findings revealed that children with RTT had more difficulty sustaining attention 

(with the TD group averaging 60% looking at the butterfly vs only 25% for the RTT group). 

Furthermore, they showed that RTT was associated with difficulties in three fundamental factors 

influencing sustained attention: engagement, distractibility, and re-engagement.  The RTT group 

was slower to engage, more distractible, and slower to re-engage.  

Conclusion. Our findings suggest there may be a fundamental disruption to sustained attention 

in RTT, identifies factors related to this impairment, and points to cognitive areas that could be 

assessed in evaluating the usefulness of interventions.  

 

Public Statement. Rett syndrome is an x-linked neurodevelopmental disorder characterized by a 

developmental regression that typically begins between 6 and 18 months, robs the child of 

purposeful hand use and expressive language, and results in the development of numerous 

medical problems. These deficits make standard neuropsychological testing becomes all but 

impossible, and thus little is known about their cognitive abilities. We were able to by-pass the 

motoric and language problems using eye-tracking technology. Here we used an innovative 

gaze-based task to assess sustain attention, a core driver of cognitive growth. We found that 

children with Rett Syndrome showed impairments in sustained attention, and on three 
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fundamental factors influencing sustained attention: engagement, distractibility, and re-

engagement.  Children with Rett Syndrome were slower to engage, more distractible, and slower 

to re-engage than their age-matched peers. This work not only begins to elucidate the nature of 

the cognitive problems associated with Rett syndrome, but is essential for designing markers to 

assess the effects of pharmacological interventions. 

 

Key Words: Rett syndrome; sustained attention; gaze-based task; eye-tracking; cognition   
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Sustained Attention in the Face of Distractors: A Study of Children with Rett Syndrome 

 

Rett syndrome (Rett, 1966) is a severely disabling, x-linked neurodevelopmental disorder 

characterized by apparently normal early development followed by developmental regression 

between  6 and 18 months in which purposeful hand use and expressive language are lost and 

impaired gait and hand stereotypies appear (Chahrour & Zoghbi, 2007). Other symptoms include 

the development of seizures, apraxia, spasticity and scoliosis, breathing irregularities 

(hyperventilation, breath holding, apnea), and a slowing of brain and head growth (Neul et al., 

2010).  

This disorder, which affects about 1 in 10,000 females, is caused by spontaneous 

mutations in the MECP2 gene, located on the long arm of the X chromosome – Xq28 (Amir et 

al., 1999). The MECP2 gene encodes methyl-CpG-binding protein 2 (MeCP2), which is involved 

in regulating the transcription of other genes, synaptic development and maintenance (Guy, Gan, 

Selfridge, Cobb, & Bird, 2007), and is required for learning and memory (Moretti et al., 2006.).  

Mutations lead to a significant reduction in long-term potentiation after symptom onset in 

MECP2+/– females, with the magnitude of the defect similar to that reported in MeCP2-null 

mice (Guy et al., 2007).  

The severe limitations in language and purposeful hand use associated with Rett 

syndrome (RTT) have precluded most neuropsychological testing of these children, with the 

result that little is known about the cognitive phenotype of the disorder.  However, recent studies 

using eye tracking technology have shown progress in characterizing the behavioral and 

cognitive profile of RTT.  These studies found that children with RTT showed a preference for 

socially weighted stimuli, as well as selective attention to salient areas and novel elements 
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(Djukic & Valicenti McDermott, 2012; Djukic, Valicenti McDermott, Mavrommatis, & Martins, 

2012 ). While they were able to recognize simple patterns, faces and some emotional 

expressions, their performance was significantly poorer than that of typically developing (TD) 

children, and appeared to be related to attentional difficulties (Djukic, Rose, Jankowski, & 

Feldman, 2014; Rose et al., 2013; Rose, Djukic, Jankowski, Feldman, & Rimler, 2016). These 

difficulties included less looking at the targets and frequent failure to look at critical aspects.   

These problems in attention are of particular concern because attention is a core 

dimension of cognitive growth that has a cascading effect on subsequent learning and 

development. Recent studies have shown that attention plays a pivotal role in gating the 

development of working memory (Astle & Scerif, 2009) as well as in driving the development of 

more complex outcomes, including IQ (Rose, Feldman, Jankowski, & Van Rossem, 2005, 2008), 

language (Rose, Feldman, & Jankowski, 2009; Whedon, Perry, Calkins, & Bell, 2016), executive 

functions (Rose, Feldman, & Jankowski, 2012), academic achievement (Bornstein, Hahn, & 

Wolke, 2013), and eventual employment status (Kalechstein, Newton, & van Gorp, 2003).  In 

our own lab, we identified a  developmental cascade in which elementary abilities evidenced in 

infancy (attention and speed)  influenced more complex abilities (memory and representational 

competence) that, in turn, influenced general cognition in toddlerhood and early adolescence 

(Cornish, Cole, Longhi, Karmiloff-Smith, & Scerif, 2012; Rose, Feldman, Jankowski, & Van 

Rossem, 2012; Rose et al., 2005, 2008; Rose, Feldman, Jankowski, & Van Rossem, 2011; Scerif, 

Longhi, Cole, Karmiloff-Smith, & Cornish, 2012). 

To understand the role of attention, we need to recognize that it is a multi-dimensional 

construct that includes a number of different processes, with different attentional functions 

subserved by distinct, but overlapping neural systems (Fan, McCandliss, Fossella, Flombaum, & 
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Posner, 2005; Posner & Petersen, 1990). Posner distinguished three specialized brain networks 

underlying attention – alerting, orienting, and executive attention (Petersen & Posner, 2012). 

Alerting, which involves the thalamus, as well as right frontal and parietal cortical sites, and is 

mediated primarily by the neuromodulator norepinephrine, achieves and maintains high 

sensitivity to stimuli (Aston-Jones & Cohen, 2005; Petersen & Posner, 2012). Orienting, which 

involves a dorsal network (including the frontal eye fields and superior parietal lobe), as well as 

a more ventral network (including the parietal-temporal junction), and is thought to be subserved 

primarily by cholinergic networks (Davidson & Marrocco, 2000), is important for the selection 

of stimuli from sensory input. Although it was previously thought that the dorsal network was 

endogenously driven, and the ventral network exogenously driven (Corbetta & Shulman, 2002), 

more recent evidence indicates that both networks are involved in re-orienting, showing that this 

process is endogenously as well as exogenously driven (Corbetta, Patel, & Shulman, 2008).  

Executive attention, which involves the anterior cingulate cortex and prefrontal areas, is 

important for situations involving conflict, where inhibition is necessary.   

The tasks used in our earlier work involved several aspects of attention in combination. 

One that figured prominently was sustained attention -- the ability to focus or concentrate 

attention on a task or maintain vigilance in the face of distractors. The present study attempts to   

better understand the difficulty Rett children have with this aspect of attention and identify   

factors influencing it. Sustained attention, which is thought to involve top-down connectivity 

extending from the anterior attention system, particularly prefrontal and parietal regions in the 

right hemisphere, right down into V1 (Grahn & Manly, 2012; Sarter, Givens, & Bruno, 2001; 

Silver, Ress, & Heeger, 2007), has repeatedly been found to be compromised across a wide 

range of neurological and psychiatric disorders, e.g., ADHD, autism, bipolar disorder and Fragile 
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X  (Cornish, Scerif, & Karmiloff-Smith, 2007; Cornish, Turk, & Levitas, 2007; Fortenbaugh et 

al., 2015; O'Connell, Bellgrove, Dockree, & Robertson, 2004)  

While sustained attention is often tested in adults with the continuous performance test, 

the verbal instructions and motoric requirements preclude using this task in children with RTT.  

To overcome these limitations, sustained attention was assessed here by building on tasks that 

have assessed how well children can visually concentrate on a target while ignoring distractors 

(Oakes, Kannass, & Shaddy, 2002; Richards, 1987; Ruff & Rothbart, 1996). We used an 

innovative, gaze-based task modeled after Wass and colleagues (Wass, Porayska-Pomsta, & 

Johnson, 2011). A target (a butterfly) was presented on the screen. When the child fixated on the 

target it moved from left to right and distractors (trees and clouds) scrolled in the opposite 

direction. When the child looked to any of the distractors, the display froze. The task has three 

key features. First, the movement of the butterfly is gaze-contingent (it moves only when fixated) 

and thus there is a reward component for sustaining attention.  Second, the necessity for motoric 

and verbal abilities is minimized.  Third, the task allows us to assess not only sustained attention, 

but also factors that impact it, including time to engage the target, distractibility, and re-

engagement.  This new task thus targets executive attention and the orienting network. Executive 

attention is involved in inhibiting attention to the distractors, and the orienting network when the 

child initially directs attention to the target at the outset of a trial or re-directs attention from the 

distractor to the butterfly during a trial.  

We hypothesize that the Rett children will show less sustained attention and more 

distractibility (time off task) than typically developing children, particularly as the number of 

distractors increases. This hypothesis is based on brain imaging studies of children with Rett 

showing global decreases in brain volume (Carter et al., 2008), selective reductions in frontal 



8 
 

white matter (Mahmood et al., 2010), and selective vulnerability of the frontal lobes (Naidu et 

al., 2001), all areas involved in inhibiting attention to distractors. We also hypothesized that 

group differences in orienting and re-orienting might be less marked, given data showing 

selective preservation of the occipital cortex, although selective reductions in dorsal parietal grey 

matter, an area involved in re-orienting, makes this hypothesis more tenuous (Carter et al., 2008).  

Method  

Participants   

This study was conducted on 32 females with clinically diagnosed classical Rett 

syndrome (Neul et al., 2010), consecutively recruited from the Rett Center at the Children’s 

Hospital of Montefiore (M=7.92 years; SD=2.89, range=2-12) and a comparison group of 32 

typically developing (TD) females (M=7.66 years; SD=2.83, range=2-12), t(62)=.35. The TD 

group, recruited from Outpatient Clinics of the same hospital, was drawn from children who 

were family members of patients with appointments at pediatric specialty clinics. The TD 

group was screened to exclude any children with significant neurological disorders (e.g., 

epilepsy, brain tumor), sensory impairment, neurodevelopmental disorders (e.g., autism, 

ADHD) or first-degree relatives with neurodevelopmental disorders.   

RTT was genetically confirmed in all Rett participants. Testing was attempted, but 

terminated, for an additional 3 Rett patients who could not successfully complete the 

calibration procedure (described below) and 5 who were too overactive/restless to complete 

the testing procedure; these eight did not differ in clinical/background factors from the rest of 

the RTT group (falling in the moderate range of the RSSS scale described below).   

Clinical characteristics of the Rett sample. Table 1 shows the genetic mutation, age at 

test, age at regression, scores on the Rett Syndrome Severity Scale (RSSS) (Kaufmann et al., 
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2012) and notes their status on two subscales of the RSSS – walking and seizures. Composite 

scores on the RSSS averaged 8.25 (SD =2.43), with 14 patients (43.8) scoring in the mild range 

(0–7), and the remainder (56.2%) in the moderate range (8–14).  Many (46.9%) were ambulatory 

(able to walk unaided or with support); 43.8% of the group had a history of seizures.  

 The protocol was approved by the institutional review board and written consent was 

obtained for all participants. 

__________________________ 

Table 1 goes about here. 

                                                  __________________________ 

Apparatus 

Stimuli were presented on a 23-inch flat panel monitor (resolution, 1024  768 pixels) 

and integrated with a Tobii X2-60 eye-tracker, using Matlab and Psychtoolbox.  Talk2Tobii 

software was used to allow for a live gaze-contingent interface via Matlab during stimulus 

presentation. Manufacturer-supplied algorithms for pupil, corneal reflection, and face 

identification were used during eye-tracking; gaze data were sampled at 60 Hz. 

Calibration  

At the beginning of the session each participant’s point-of-gaze- was calibrated using a 5-

point calibration procedure. The calibration stimuli, five pulsing colored blocks (1° to 1.5°) were 

presented sequentially, at different locations on the screen, accompanied by a sound (‘Whee’).  

Point-of-gaze was calibrated by comparing each look to the known coordinates of the target, and 

results were inspected graphically. The quality of the calibration data was determined by the 

closeness of the fixation points to the calibration points. If the points did not cluster, or any 
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targets were missed, the calibration was repeated until a satisfactory calibration was achieved. 

Each calibration attempt took less than a minute.  

Stimuli and Procedure 

 Testing was conducted in a quiet room, with participants seated approximately 45 cm from 

the monitor. Ambient light levels were reduced to diminish distraction. Verbal instructions, limited 

to ‘Look at the TV,’ were used at the beginning of the session. To minimize body and head 

movement, all participants with RTT (and all TD  participants < 5 years) were seated on their 

parent’s lap. Parents kept their eyes closed during testing.  

Trials started with a target, a butterfly (subtending 6°), presented on the screen (Wass et 

al., 2011). When the child fixated the target, it moved, fluttering its wings and ‘flying” 

horizontally from left to right across the screen. Distractors, consisting of a house, a tree, and 

clouds (subtending 5-15°), scrolled in the opposite direction. The butterfly travelled at a rate of 

2.5 cm/s, while the distractors moved in the opposite direction at the same rate. When the child 

looked at any of the distractors they disappeared, with only the butterfly target remaining. On re-

fixating the target, it recommenced moving across the screen and fluttering its wings, and the 

distractors re-appeared and continued scrolling. Trials lasted 15 s and an engaging sound track 

(the melody, Zip-a-Dee-Doo-Dah) played throughout each trial.  There were two blocks of 9 

trials; each block contained three trials each with 1, 2, and 3 distractors, presented in pseudo-

random order.  The two blocks of trials, each lasting less than 2.5 minutes, were interleaved with 

two other attention tasks.  The entire testing session took about 10 min.  

Data Analyses 

All measures were examined for normality and outliers and analyzed using a mixed 

model 2 (Group: RTT vs TD) x 2 (Age: younger vs older) x 3 (number of distractors: 1, 2, or 3) 
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ANOVA, with repeated measures on the last factor. Age was dichotomized for these analyses 

using a median split (< 8 years vs ≥ 8 years, for both groups). Where necessary, measures were 

transformed to achieve normality, using a log or square root transform (see below). All effects 

were evaluated at a .05 level of significance; SPSS (version 24) was used in all analyses; 

Bonferroni-adjusted significance tests were used for all pairwise comparisons. 

Results 

Latency of first looks to the target.  The latencies of the child’s first look to the 

butterfly are shown in Table 2. (Data values were log10 transformed for analysis to correct for 

positive skew in the distributions.)  

As can be seen in Table 2, latencies were longer for the RTT group, F(1,60)=10.31, p < 

.05, ηp
2=.15, who took over 2.5 s to engage with the target (compared with slightly more than 1 s 

for  the TD group).  There was also a significant Group x Age interaction, F(1,60)=8.34, p < .01, 

ηp
2=.12 , reflecting the finding that latencies got shorter with age for the TD children but not for 

the RTT children.   

__________________________ 

Table 2 goes about here. 

__________________________ 

Percentage of time looking at the target. As can be seen in Table 3, the RTT group 

looked at the butterfly for only about half as long as the TD group, F(1,60)=132.39, p < .001, ηp
2 

=.69.  A significant Age effect, F(1, 60)=12.50, p = .001, ηp
2 =.17, coupled with a Group x Age 

interaction, F(1, 60)= 4.84, p=.03, ηp
2 =.08, indicated that  older children showed more sustained 

attention than  younger children, although such  age-related improvement was largely restricted 

to  the TD group. There was also a significant Distractor effect, F(2,120)=3.12 p=.04, ηp
2 =.05,  
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due to looking at the target decreasing as the number of distractors increased; a marginally 

significant Group x Distractor interaction,  F(2,120)=2.72, p=.07, ηp
2 =.04, indicated that the fall-

off in performance was most pronounced for  the RTT children.    

__________________________ 

Table 3 goes about here. 

__________________________ 

 Time off target (Number of looks to the distractors). Given that the TD group spent 

more time looking at the target than the RTT group, they had more opportunities to look away. 

To adjust for this factor, the number of looks away was divided by looking time to the target.  

These values, number of looks away from the target (per s), were created for each trial and then 

averaged over trials for each of the three distractor conditions.   (Scores were log10 transformed 

for analysis to correct for positive skew.) 

As can be seen in Table 4, the RTT group showed more looks away from the target per 

second than the TD group, F(1,60)=43.28, p < .001, ηp
2=.42.  There was also a Group x Age 

interaction, F(1, 60)= 4.27, p=.03, ηp
2 =.07, indicating that distractibility decreased with age for 

the TD children, but not for the RTT group. The Distractor effect indicated that, as expected, the 

number of looks away per second increased for both groups as the number of distractors 

increased, F(2,120) = 9.59, p<.001, ηp
2= . 14.  

__________________________ 

Table 4 goes about here. 

__________________________ 

Time to re-focus on the target after looking at distractors.  The average time to re-

engage the target after each off-target look is shown in Table 5. (A square root transformation 
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was used to normalize these distributions for analysis.)  The difference between groups is 

marked, with the Rett group taking about three times as long to re-engage as the TD group, 

F(1,60)=157.01, p <.001,  ηp
2= .72.  There was also an Age effect, F(1,60)=11.10, p=.001,  ηp

2= 

.16, with older children re-engaging faster than their younger counterparts. Although this effect 

was particularly marked in the TD group, the interaction was not statistically significant. 

Additionally, there was a Distractor effect, F(2,120)=6.16, p <.01,  ηp
2= .09, and a Group x 

Distractor interaction, F(2,120)=4.48, p =.01,  ηp
2= .07 reflecting longer re-engagement times 

with two distractors in the RTT group.  These last two effects were unexpected, given that the 

distractors disappeared as soon as they were attended to.  

__________________________ 

Table 5 goes about here. 

__________________________ 

Clinical characteristics of the Rett children and performance.  None of the clinical 

characteristics of the Rett sample listed in Table 1 correlated significantly with any measure of 

performance. 

Discussion 

 In this study, we examined the degree to which sustained attention is affected in children 

with Rett syndrome (aged 2-12 years), and the role of factors that impact sustained attention, 

including time to engage, distractibility, and re-engagement. We used an innovative task which 

required the child to maintain their gaze on a moving target while ignoring distractors that 

moved in the opposite direction (Wass et al., 2011).  The movement of the target was gaze-

contingent – that is, the butterfly moved across the screen only when the child looked at it, thus 

rewarding the child for sustaining attention to it. The verbal and motor requirements of this task 
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are minimal, making it uniquely suited for use with the RTT population. We varied the number 

of distractors, to make the task more or less taxing, and examined age-related effects by using a 

median split on age.  

While the RTT children were able to sustain attention on the butterfly, they did so for 

only 25% of the time, while the TD group did so for more than 60%.  One factor that appears to 

underlie their difficulty is distractibility, with RTT children being drawn to the distractors nearly 

twice as often as TD children. Moreover, while performance for both groups tended to fall off as 

the number of distractors increased, this effect was accentuated in the RTT group. That is, as the 

number of distractors increased, they showed a more marked downturn in the time spent looking 

at the butterfly and looked away more often to the distractors.  A second factor that had an 

impact on the ability of the RTT children to sustain attention was the latency to re-engage the 

butterfly after having their attention pulled away from it.  Indeed, once they looked to the 

distractors, the RTT children took nearly three times as long to re-engage with the butterfly as 

did the TD group.  

Why is the RTT group so much more distractible than the TD group? The most likely 

possibility, often discussed in regard to distractibility in ADHD, is impairment in inhibitory 

systems (Barkley, 1997; Nigg, 2001). That is, children with ADHD are thought to be unable to 

resist the pull of irrelevant stimuli when completing a task. The same problem may be operating 

here as well.  That is, the RTT children may not have the inhibitory control ability needed to 

ignore the distractors, even though the distractors disappear as soon as the child turns to them, 

and thus there is little pay off in continuing to turn to them. The RTT children clearly found the 

moving distractors compelling, and were less able than the TD group to resist their draw, 

especially as their number increased.     
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Why are the RTT children so much slower than the TD group to re-engage the butterfly 

after being distracted?  This finding is more difficult to explain. After all, the distractors have 

disappeared.  Oculomotor factors cannot fully account for this difference given that, despite 

similar oculomotor demands, the re-engagement latencies in the RTT group were substantially 

longer than their initial latencies to engage the target, t(31) = 3.88, p = .001, d = .69. One 

possibility is that the RTT children have more difficulty making the complex set of adjustments 

involved in the interaction of the dorsal and ventral frontoparietal systems involved in re-

orienting (Corbetta & Shulman, 2008). This possibility receives some support from a recent 

study which showed that states of high global integration of neural networks are associated with 

better performance (Shine, 2016). Any differences that exist between groups in arousal level may 

also have affected re-orienting, since the integration of networks tracks with fluctuations in 

arousal (Shine, 2016), and attention has been shown to be modulated by arousal (Aston-Jones & 

Cohen, 2005; de Barbaro, Clackson, & Wass, in press). Another possibility is that the RTT 

children are slower to re-calibrate, and in appraising the situation realize that there is no pay-off 

in continuing to look to locations where the distractors had been. This possibility is consistent 

with earlier findings where children with RTT had difficulty learning the rule underlying event 

sequences (Rose et al., 2016).   

The effects of age were examined using a median split for both groups.  Children in the 

TD group showed improvement over age for all measures, significantly so for latency to first 

look and sustained attention (time spent looking at the target) and marginally so for re-

engagement. There were no age effects for the RTT group, a finding consistent with previous 

work (Rose et al., 2013). It is probable that any tendency to improve over age is counteracted by 

the progressive nature of the disorder.  
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The gaze-based task would appear to be a useful way for testing sustained attention in 

other populations where verbal and motoric impairments preclude using other tasks, such as the 

continuous performance test. In the latter, often treated as the ‘gold standard’ for assessing 

sustained attention, a button is to be pressed as quickly as possible each time a target appears, 

while distractors are to be ignored; the critical measure is errors of omission (failures to press 

when the target appears).  Two of the typical effects found with this task -- a strong negative 

effect of distractors and age-related improvement in sustained attention (Conners, Epstein, 

Angold, & Klaric, 2003)  --  also prominent effects for the TD children on the gaze-based task 

used in the present study. This agreement in findings supports the usefulness of the gaze-based 

task for assessing sustained attention.      

In summary, the present work identified difficulties in sustained attention associated with 

RTT and determined at least two factors implicated in these difficulties – distractibility and 

slowness to re-engage after distraction. This work helps to elucidate the nature of the cognitive 

problems associated with RTT, is essential for the design of intervention, and begins to indicate 

functions and tasks that could serve as markers for the effects of pharmacological interventions.  
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Table 1 

Clinical and Genetic Characteristics of the Children with Rett Syndrome 

Patient Genetics 
Age 

(years) 

Age at 
Regression 
(months) 

RSSS 
Total Scorea 

Ambulatoryb Seizuresc 

1 R133C 7 15 8 0 0
2 R306C 11 18 5       1* 1 
3 R133C 7 15 7 0 0 
4 deletion 6 12 9 0 1
5 R270X  5 30 5 0 0 
6 deletion  11 27 8 1* 0 
7 deletion 9 18 6 0 1
8 R168X 7 15 9 1* 1 
9 R255X 10 2 14 0 1 
10 C916T 4 24 7 0 0
11 R168X 4 15 7 1 0 
12 deletion 11 18 6 0 3 
13 T158M 12 12 11 1* 1
14 T158M 4 13 4 1* 0 
15 R168X 9 36 10 0 0 
16 R294X 5 NA 7 0 0
17 R168X 4 32 11 1* 0 
18 R168X 2 6 9 1 0 
19 T158M 9 18 12 1* 1
20 deletion 9 18 9 1* 1 
21 R270X  7 12 10 0 0 
22 R133C 8 18 13 0 1
23 deletion 8 30 7 1* 1 
24 P450L 6 18  5 0 0 
25 deletion 11 33 8 0 0 
26 T158M 3 22 9 0 0 
27 R168X 5 10 7 1* 1 
28 P322S 12 15  5 1* 0 
29 R168X 10 36 10 0 1 
30 R294X 4 14 8 0 0 
31 P152A 6 12  6 1* 0 
32 P152R 11 12 11 0 1 

aRSSS, the summary score of the expanded Rett Syndrome Severity Scale,15 comprises clinical 
ratings on seven parameters (seizure frequency/manageability, respiratory irregularities, 
scoliosis, ability to walk, hand use, speech, and sleep problems). Each parameter is rated on a 4-
point Likert scale from 0 (absent/normal) to 3 (severe).  
bWalking: 0, no walking; 1, unsupported walking; 1*, walking with support. 
cSeizures (subscale of RSSS): 0, absent; 1, mild; 2, moderate; 3, severe  
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Table 2 

Latency of First Look to the Target (ms)  

   Number of Distractors 
   One  Two  Three 
Group N  M SD  M SD  M SD 
Rett Syndrome           
     Younger (2-7 yrs) 16  2628 1648  2377 1561  3113 2626
     Older (8-12 yrs) 16  2868 1620 2473 1895  2937 2329
      
Typically Developing      
     Younger (2-7 yrs) 16  1738 891 1568 1127  1793 1037
     Older (8-12 yrs) 16  744 410  688 412  729 473
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Table 3 

Time Spent Looking at the Target (%)  

   Number of Distractors 
   One  Two  Three 
Group N  M SD  M SD  M SD 
Rett Syndrome           
     Younger (2-7 yrs) 16  26.84 10.12  18.98 11.21  21.16 12.88 
     Older (8-12 yrs) 16  29.23 16.53 26.62 15.91  24.26 11.34
           
Typically Developing           
     Younger (2-7 yrs) 16  52.12 16.91 55.40 18.19  51.00 16.30
     Older (8-12 yrs) 16  72.63 11.72  72.40 16.58  69.93 16.11 
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Table 4 

Number of Looks Away from the Target to the Distractors (per s)  

   Number of Distractors 
   One  Two  Three 
Group N  M SD M SD  M SD
Rett Syndrome           
     Younger (2-7 yrs) 16  1.44 1.30  1.33 0.73  2.19 1.60
     Older (8-12 yrs) 16  1.80 1.50  1.94 1.93  2.22 1.75
         
Typically Developing         
     Younger (2-7 yrs) 16  0.85 0.56  0.74 0.45  0.98 0.50
     Older (8-12 yrs) 16  0.51 0.23  0.54 0.39  0.67 0.41
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Table 5 

Time to Re-engage Attention to the Target (msec)  

   Number of Distractors 
   One  Two  Three 
Group N  M SD  M SD  M SD 
Rett Syndrome           
     Younger (2-7 yrs) 16  3680 1776  5691 2142  3908 1786
     Older (8-12 yrs) 16  3650 1879 4610 2624  3558 1822
      
Typically Developing      
     Younger (2-7 yrs) 16  1473 807 1494 1092  1352 818
     Older (8-12 yrs) 16  647 304  863 701  689 353
           
 

 

 

 


