
Forensic Malware Analysis:
The Value of Fuzzy Hashing Algorithms in

Identifying Similarities
Nikolaos Sarantinos∗, Chafika Benzaı̈d†, Omar Arabiat‡ and Ameer Al-Nemrat∗

∗School of Architecture, Computing & Engineering, UEL, London, UK
†Division Sécurité Informatique, CERIST, Alger, Algérie

‡AlBalqa Applied University

Abstract—This research aims to examine the effectiveness and
efficiency of fuzzing hashing algorithm in the identification of
similarities in Malware Analysis. More precisely, it will present
the benefit of using fuzzy hashing algorithms, such as ssdeep,
sdhash, mvHash and mrsh v2, in identifying similarities in
Malware domain. The obtained results will be compared with
the traditional and most common Cryptographic Hashes, such
as the MD5, SHA-1 and SHA-256. Furthermore, it will highlight
the pros and cons of fuzzy and cryptographic hashing, as well
as their adoption in real world applications.

I. INTRODUCTION

Anti-virus vendors, researchers and analysts are struggling
to keep up and to identify all the new malware types that
are created every day. Malware Authors have managed to
increase their malware’s sophistication to avoid detection
against anti-malware technics by “implementing new features
and specific modifications, such as encryption, polymorphism
and metamorphism to maximize their resilience.” [1]. How-
ever, anti-virus vendors and analysts managed to adapt their
identification techniques by relying “on automated analysis
methods, and tools in order to distinguish malicious from
benign code” [2], such as the traditional static analysis using
Cryptographic hashes with the MD5 and SHA256 being “the
most commonly used in Malware Research in 2013.” [3]. Be-
fore pursuing further the presentation of the relevant literature
review, with regards to static analysis and the hashing types,
it is worth defining the different malware types and presenting
their key characteristics and defense mechanisms used to avoid
detection.

II. HASH VALUES

The hash values, which are also called digest or checksum,
have been a standard procedure and the main tool used in the
traditional static malware analysis, and generally in any digital
forensic investigation. They have been used primarily for the
purpose of “identification, verification and authentication of
file data” [4]. They are widely spread because of their “two
basic properties: the compression and ease of computation,
where compression means that independent of the input length
the output (hash value) is of fixed size.” [5]. The output hash
value is “the unique identifier for the acquired data, and is
just as a DNA sequence or human fingerprint that identifies

an individual” [4], governed investigation process by its three
fundamental forensic hashing rules [6]:

1) You can’t predict the hash value of a file or device;
2) No two-hash values can be the same; (Note: Collisions

have occurred in research using supercomputers.)
3) If anything changes in the file or device, the hash value

must change.
In order for malware analysts and forensics investigators to

be able to detect the known malware and the “bad files” they
make use of white and black list filters. The Whitelist is mainly
a hash database, and it is used to reduce the amount of data
that requires further analysis. More precisely, it means that, “if
the file is ‘known-to-be good’, the analyst or investigator can
fade out the file from further investigation.” [7]. The Blacklist
is the opposite of the Whitelist, which means that “if the file
is ‘known-to-be-bad’, the analysts look at the file by hand and
check, if it actually is illicit.” [7]. However, the downside of
using this approach is that any change in a single bit of a file
or data means that their hash values will also change.

Finally, before discussing fuzzy hashing and its concept, we
must understand the functions and the differences between the
categories of hash algorithms, which are the Cryptographic,
the Rolling, and Piecewise Hashing.

III. CRYPTOGRAPHIC HASHES

Cryptographic hashes have been the traditional tool, for
both malware analysis and forensic investigations. According
to Dunham [3] the most used Cryptographic Hashes for
malware analysis to detect identical known malware signatures
are the MD5, SHA-1, and SHA-256. The main difference
between these Cryptographic Hashes is their hash value length,
despite they share the same concept “to perform known file
filtering” [8] by identifying identical matches.

As mentioned earlier, changing a single bit in a
file/document means that its hash value will also change,
which makes it impossible- arguably- to find any associations
or similarities between two files or to check if they are virtually
similar.

A. Rolling Hashes

The Rolling Hashes are generating ‘pieces’ of the traditional
hash strings by “producing a pseudo random value based only

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219375406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on the context of the input,” [9]. They are based on the
Rabin-Karp algorithm, which is defined as: “Given a string
P of length N and a string S of length M to find out all the
occurrences of P within S.” [10]. They are popular because
they are easy and fast to compute. They are “used to identify
similar strings in blocks of data” [11].

B. Piecewise Hashing

The Piecewise Hashing generates a final checksum for
the whole document like traditional hashes. They overcome
the limitations and the drawbacks of the latter as piecewise
hashes separates the whole file into fixed segments/pieces,
then generates a hash values for each of these segments. The
generated segments values are, at the end, forming the final
hash sequence. Furthermore, they were initially created to
reduce the potential errors during the forensic imaging, so
that the integrity of the data will be absolute, because only
one hash segment would be void.

IV. SIMILARITY - FUZZY HASHING

Fuzzy hashing (FH), which is also called Context Triggered
Piecewise Hashing (CTPH), is a combination of Cryptographic
Hashes (CH), Rolling Hashes (RH) and Piecewise Hashes
(PH), and according to [7] it can be perceived as: FH = CTPH
= PH + RH. Unlike the traditional hashes, which their hashes
(checksum) can be seen more as right or wrong, and as black
or white, CTPH is more like the “grey hash type, as it can
identify two files that may be near copies of one another that
normally may not be located using traditional hashing meth-
ods.” [3]. The identification between the two or more files is
presented by their syntax similarity using a “score percentage
between 0 and 100, where 0 is low similarity/probability and
100 is high similarity/probability [12].

The first version of CTPH was not initially meant for the
use of malware detection. In 1999 Andrew Tridgell created the
algorithm as a more effective and efficient way to find updates
of files, which was later modified to identify/filter spam mails
based on similarities and was called spamsum algorithm.
Kornblum [9] in 2006 adjusted the Tridgell’s spamsum “to
cope with files and released ssdeep. His main idea was to
compute cryptographic hashes not over the entire file, but
over parts of it, which are called segments or chunks” [7].
According to Roussev [8], fuzzy hashing was developed due
to some limitations of the Cryptographic Hashes and with the
purpose of addressing the following boundaries:
Identification of embedded/trace evidence

Given a piece of data, such as a JPEG, an investigator
needs to be able to search for (traces of) its existence inside
another document, archive, disk image, or network trace.

Identification of code versions
Modern software is dynamically patched and upgraded on
a daily basis; it is an infeasible to maintain crypto-hash
inventory of all the files for every single version.

Identification of related documents
Many documents undergo changes/transformations as they

are updated. It is often necessary to be able to identify and
trace the versions across multiple evidence sources.

Correlation of memory and disk sources
An investigator needs to be able to correlate memory
captures and disk images. The run-time layout and content
of an executable/document are different from the on-disk
representation so conventional hashes fail; however, identi-
fiable commonality is clearly present.

Correlation of network and disk sources
Transmitted files are fragmented and interleaved. Currently,
correlation requires time-consuming packet flow reconstruc-
tion and protocol parsing to extract transmitted files before
any hash filtering can be applied.
However, the efficiency of Fuzzy Hashing to identify sim-

ilarities between files depends only on one factor; it requires
a ‘sample’ that can be “compared to something, and therefore
having some sort of malware library greatly increases the ef-
fectiveness of using fuzzy hashes to determine if a suspect file
is malicious or not” [13]. More precisely, this means that fuzzy
hashing is only suitable for static and offline analysis, and the
overall process can turned out to be time consuming. However,
according to Breitinger [5], fuzzy hashing still remains a good
and promising technique against metamorphic malware. The
main four and common similarity hashing algorithms will be
presented in the following subsections.

A. ssdeep

Kornblum’s ssdeep (similarity digest) fuzzing tool was the
first fuzzing algorithm created that resolved some of the
margins of the block-bashed hashes. The algorithm follows
three steps:

(i) It uses Rolling Hashing to split the document “into a 6
bit value segments” [12] (blocks of variable length, which
are depended of the Rolling Hash Algorithm);

(ii) It uses another hash function, such as MD5 or SHA-1, to
produce a digest for each segment;

(iii) It links together all hash segments to form the hash
signature.

Although ssdeep is quite effective in finding similarities
between text files, because it was initially created for spam
detection, its detection rate for images and videos is low as
an active adversary can exploit it.

B. sdhash

Roussev developed in 2010 the sdhash (Similarity Digest
hash), which uses Bloom Filters to encode the output hash
features identified with low empirical probability. Its results
are based on a “similarity score by calculating a normalized
entropy measure between the digests ... which ranges from 0 to
100, where 0 is a mismatch and 100 is a perfect match or a near
match” [12]. According to Roussev [8] (2011) and Breitinger
and Baier [5], the advantage of sdhash is that the entropy
calculation is performed for every 64-byte sequence (from 0
to 63, then from 1 to 64, etc.), and the identified features
are hashed with SHA-1 and inserted into a Bloom Filter. This



means that the sdhash can identify similarities between files
on condition that common features are identified.

C. mvHash

The mvHash (majority vote hash) algorithm is a Similarity
Preserving Digest (SPD), which has the “fastest computation
time than any other SPH algorithm, and is almost as fast as
SHA-1” [14]. The mvHash uses also the Bloom Filters, such
as sdhash, and the “inputs are similar if they have similar
underlying byte sequences” [14]. The algorithm has three
phases: first the majority vote is made on a bit level so that
any sequence will be transformed into 0s and 1s. The second
phase is the RLE (Run Length Encoding) and “is applied to
represent these sequence of 0s and 1s by its length (in bytes)”.
The last phase is the creation of the similarity digest.

D. mrsh v2

Multi-resolution similarity hashing (mrsh) is powerful vari-
ation of the ssdeep. The main difference between these two
SPHs is that ssdeep is using the rolling hash, and mrsh is using
a polynomial hash - djb2. Also, the mrsh uses the MD5 to
compute the hashes, and “generates a variable sized similarity
digest and adapts a technique from md5bloom that uses Bloom
filters to represent the MD5 chunk hashes”.

V. MALWARE DETECTION WITH HASHING

According to Sikorski and Honig [15], the first steps for
identifying any malware are to use Anti-virus Scanning soft-
ware and then calculate their hash values (i.e., Fingerprint the
Malware). Although, Cryptographic Hashes can only be used
to identify known malware, which have been already identi-
fied, based on their checksum, they are also used “for docu-
mentation and future integrity verification” [16]. Furthermore,
that way we can also sporadically check the program/malware
to see if it has been modified either automatically by itself or
manually by any user(s).

For calculating the hash values (MD5, SHA-1 and SHA-
256), a self-written bash script will be used, and the checksums
will be saved into text file to be compared with the database
of VirusTotal.

Below in Table I and Figure 1 are an example for the
Malware (504) with its checksums:

MD5 a5ce0c535a4f019a60b5be4a662794dd
SHA-1 c593257235490bcd5714016dabce608d3b93429a
SHA-256 39dcc1164c2a330c5dc32fef185287f496cf13219e48651e59010f9127eb6ef0

TABLE I
FILE INFORMATION OF MALWARE (504)

Fig. 1. Detection of Malware (504) via VirusTotal

The overall success rate of all tested cryptographic hashes
was 99.88%, as all provided Malware were identified apart

from one. Although, the Anti-Virus scanning software identi-
fied the Malware(1).sh as thread/malicious program, when
comparing the hash values with the VirusTotal database the
result was negative (See Table II and Figure 2).

MD5 53188c1c7adba6058a855e24cec42854
SHA-1 1112808a0c3c783e423d4d9d3e623783eb2a2712
SHA-256 631603fced37bc4da05abbd93d6e1cb76c5e08a1cef129ec3850ae1e495e0e09

TABLE II
FILE INFORMATION OF MALWARE (1).SH

Fig. 2. Detection of Malware (1).sh via VirusTotal

VI. FUZZY HASHING IMPLEMENTATION

Implementing fuzzy hashing for malware analysis is a
similar process to the one used in cryptographic hashes. This
means that the fuzzy checksums must be calculated for all
856 understudy malware, and afterwards the checksum of five
randomly chosen malwares will be taken and compared with
the rest 851 malwares. Doing so, we can detect other malware
and identify their similarities.

A. ssdeep

As mentioned in the literature review the Context Triggered
Piecewise Hash (CTPH) or ssdeep calculates a signature
(spamsum) for each input file, which can be later used to match
these signatures against other file signatures, and to find any
possible similarities or matches.

In order to proceed with the comparison we must create
the hashes of the 856 Malware using the following command:
ssdeepbrTSPYZBOT .

The command: ssdeepbrTSPYZBOT >
ssdeepHashes.txt enables us to save the hashes on
a text file (ssdeepHashes.txt) to be compared with the
understudy malware sample.

The hashes of five malwares were randomly chosen and
saved into a text to be compared with their signatures in the
ssdeepHashes.txt. The malware chosen were: Malware (132),
Malware (298), Malware (535), Malware (790), and Malware
(803).

After performing the comparison of the signatures between
the malwares of the two files, using the command “ssdeep -
x ssdeepHashes.txt Malware.txt”, the following results were
received (See Table III):

Malware.txt ssdeepHashes.txt Similarity
Malware Name x matches out of 856 Max 100
Malware (132) 297 (same matches with Malware 535 and 803) 97 - 100
Malware (298) 1 100
Malware (535) 297 (same matches with Malware 132 and 803) 81 - 100
Malware (790) 1 100
Malware (803) 297 Matches (same matches with Malware 132 and 535) 96 - 100

TABLE III
RESULTS OF COMPARING THE FUZZY SIGNATURES USING SSDEEP



The malware signatures of Malware (298) and (790) were
matched only with themselves. The results for the other three-
malware signatures that were used to match similarities from
the ssdeepHashes.txt ranged a similarity of 96 − 100%, with
a median of 98%. This also means that ssdeep is suitable for
matching similarities not only from malware that belong to the
same family, but also from emerging families, considering that
the matched signatures were the same for all 3 malwares. The
only change identified is related to the similarity score. It is
worth mentioned here that all matched malware have different
Cryptographic Hash value. Below is an example of the first 5
identified similarity matches (See Table IV).

Malware Match Malware Similarity
Malware.txt:Malware (132) matches ssdeepHashes.txt:Malware (504) 97
Malware.txt:Malware (132) matches ssdeepHashes.txt:Malware (249) 97
Malware.txt:Malware (132) matches ssdeepHashes.txt:Malware (629) 97
Malware.txt:Malware (132) matches ssdeepHashes.txt:Malware (340) 97
Malware.txt:Malware (132) matches ssdeepHashes.txt:Malware (844) 97
· · · · · · · · · · · ·
Malware.txt:Malware (803) matches ssdeepHashes.txt:Malware (504) 97
Malware.txt:Malware (803) matches ssdeepHashes.txt:Malware (249) 97
Malware.txt:Malware (803) matches ssdeepHashes.txt:Malware (629) 97
Malware.txt:Malware (803) matches ssdeepHashes.txt:Malware (340) 97
Malware.txt:Malware (803) matches ssdeepHashes.txt:Malware (844) 97
· · · · · · · · · · · ·

TABLE IV
MALWARE SIMILARITIES WITHIN THREE MALWARE

In order to confirm the above statement, we will use the
option “-brp” to recalculate and compare all the spamsums of
the malwares provided for this research that belong to same
malware family.

Of the 856 Malware identified to belong to the same
malware family, only 482 were identified to have some degree
of similarity. 364 Malware did not demonstrate any similar-
ity. The similarity among the 482 malware ranged between
30100%, with a median of 67%. Table V shows a sample of
the identified similarities:

Malware Match Malware Similarity
Malware (597) matches Malware (180) 30
Malware (546) matches Malware (239) 30
Malware (180) matches Malware (597) 30
Malware (97) matches Malware (55) 30
Malware (239) matches Malware (546) 30
· · · · · · · · · · · ·
Malware (361) matches Malware (855) 100
Malware (332) matches Malware (639) 100
Malware (399) matches Malware (757) 100
Malware (813) matches Malware (580) 100
Malware (725) matches Malware (623) 100

TABLE V
SAMPLE OF SIMILARITIES BASED ON SSDEEP

The results presented by Table V prove that ssdeep can
match similarities from malware that belong to the same
malware family, but not necessarily from emerging ones.
Furthermore, based on the sample tested, only the malwares
with a similarity score of 30% and above were matched.
Finally, the 364 malwares that did not score any similarity,
were all files smaller than 100kb, which actually confirms that
ssdeep is only accurate in identifying similarities in files that
are bigger than 100kb.

B. sdhash
The main difference between sdhash and ssdeep, is that

sdhash uses Bloom Filters and compares the files using Ham-
ming distance. In order to compare two files with sdhash, , a

list of Bloom Filters (.sdbf) of given Malware folder needs to
be created. To this end the following command is executed:
sdhash -r ¡Malware folder pathname¿ ¿ sdhashMalwares.sdbf.

The same command is used for the five Malwares that were
used to find similarities by ssdeep. To compare both files
5Malware.sdbf and sdhashMalwares.sdbf, the “-c” option is
used.

After comparing the results of the two files, sdhash has
matched more similarities compared to ssdeep. The similarity
score has ranged from 1100% (See Table VI). According to
Roussev [8], even if the score is 100, it does not necessarily
mean that the two files are exactly identical. However, this is
not an issue, as we use sdhash to identify/match similarities
and not to identify the exact same files.

5Malware.sdbf sdhashMalwares.sdbf Similarity
Malware Name x matches out of 856 Max 100
Malware (132) 755 1 - 100
Malware (298) 515 1 - 100
Malware (535) 765 1 - 100
Malware (790) 506 1 - 100
Malware (803) 757 1 - 100

TABLE VI
SDHASH RESULTS OF COMPARING THE 5 MALWARES WITH THE SAMPLE

Although the majority of the matched similarities were
ranged from 1 to 56%, sdhash has identified similarities.
Furthermore, Roussev [8] claims that the results will be more
accurate if we use a threshold of 21. Therefore, we run the
same test with a threshold of 21. The obtained results are
summarized in Table VII.

5Malware.sdbf sdhashMalwares.sdbf Similarity
Malware Name x matches out of 856 Max 100
Malware (132) 305 34 - 100
Malware (298) 10 36 - 100
Malware (535) 305 34 - 100
Malware (790) 7 35 - 100
Malware (803) 305 34 - 100

TABLE VII
SDHASH RESULTS OF COMPARING THE 5 MALWARES WITH THRESHOLD 21

The identified similarities were less with the threshold 21,
but the identified match score was ranged between 99 -
100%, which was much higher than before, especially with
the Malware (535) and (803). The same test will be conducted
now for all Malware. Tables VIII and IX show a sample of the
identified similarities without threshold and with a threshold
of 21.

Malware Malware Score
Malware (0).sh Malware (10) 1
Malware (10) Malware (100) 1
Malware (100) Malware (106) 35
Malware (101) Malware (107) 9
Malware (11) Malware (147) 18
· · · · · · · · ·

TABLE VIII
SDHASH RESULTS FROM ALL MALWARE WITHOUT THRESHOLD

sdhash has identified from the 856 Malware 853 (without
threshold) with a similarity score ranging between 1100%, and
with threshold (21) 795 with the similarity ranging 21100%.
The overall results for sdhash were better compared to ss-
deep, as sdhash has identified more malware based on their
similarity. Apart from that, sdhash has matched similarities
to the Malware (0).sh (180%), that was not identified neither



Malware Malware Score
Malware (108) Malware (158) 100
Malware (109) Malware (247) 53
Malware (11) Malware (353) 72
Malware (110) Malware (450) 100
Malware (111) Malware (462) 42
· · · · · · · · ·

TABLE IX
SDHASH RESULTS FROM ALL MALWARE WITH THRESHOLD 21

with the cryptographic hashes or the ssdeep. Table X shows
a sample of similarity matching between Malware (0).sh and
other malwares.

Malware Malware Score
Malware (0).sh Malware (106) 35
Malware (0).sh Malware (189) 58
Malware (0).sh Malware (247) 52
Malware (0).sh Malware (260) 59
Malware (0).sh Malware (353) 73
· · · · · · · · ·

TABLE X
SDHASH RESULTS FROM ALL MALWARE WITH THRESHOLD 21

C. mvHash

The mvHash is also a similarity preserving hash (SPH),
which is based on the compression technique run length, and
it is designed to be an approximate matching algorithm.

Following the same comparison scenario as in ssdeep and
sdhash, the results summarized in Table XI were obtained.

Chosen malware All malwares Similarity
Malware Name x matches out of 856 Max 100
Malware (132) 315 3 - 100
Malware (298) 0 0
Malware (535) 182 8 - 100
Malware (790) 0 0
Malware (803) 33 3 - 100

TABLE XI
MVHASH RESULTS OF COMPARING THE 5 MALWARES WITH THE SAMPLE

Overall, mvHash has identified and matched 854 out of 856
Malware, with a similarity range score 3100%.

D. mrsh v2

The last SPH that will be tested is the mrsh. The mrsh
(multi-resolution similarity hashing) is powerful variation of
the ssdeep. The main difference between these two SPHs is
that ssdeep is using the rolling hash, and mrsh is using a
polynomial hash - djb2.

Following the same comparison scenario as in ssdeep,
sdhash and mvHash, the results summarized in Table XII were
obtained.

Chosen malware All malwares Similarity
Malware Name x matches out of 856 Max 100
Malware (132) 316 3 - 100
Malware (298) 1 100
Malware (535) 316 3 - 100
Malware (790) 1 100
Malware (803) 316 3 - 100

TABLE XII
MRSH - V2 RESULTS OF COMPARING THE 5 MALWARES WITH THE SAMPLE

VII. SUMMARY OF RESULTS

This section will discuss the above results in relation to the
identification and similarity rates of each algorithm, as well
as the computation time that was required. The results for the

fuzzy hashing algorithms are based on using the option against
all comparison.

Fig. 3. Identified Malware (× out of 856)

Although, we cannot really compare the functionality of the
cryptographic with the fuzzy hashes, it is worth mentioning
that the cryptographic hashes have the highest identification
rate based on the database of VirusTotal. For fuzzy hashing
(see Figure 3), the sdhash and the mvHash have the highest
identification rate based on similarities, followed by the mrsh
v2 and lastly the ssdeep. A possible explanation for the low
ratings of the ssdeep is that the algorithm did not match any
malwares that were smaller than 100kb, but its computation
time was better compared to sdhash and mrsh v2. Further-
more, another explanation for the low results of ssdeep and
mrsh v2 is that both of them match similarities only if the
digest difference is not too big, and only if they are in the
same range.

ssdeep sdhash mvHash mrsh - v2
real 0m18.734s real 1m22.054s real 0m4.433s real 1m17.304s
user 0m7.452s user 0m12.050s user 0m1.773s user 0m50.985
sys 0m6.312s sys 0m0.751s sys 0m0.627s sys 0m0.844s

TABLE XIII
COMPUTATION TIME

According to results summarized in Table XIII, mvHash has
the fastest computation time from all fuzzing hashes that were
tested, but its identification rate was really low, as it matched
84% of the TSPY ZBOT malwares with zero similarities, and
almost 0% (0.01%) with a similarity match ranging between
4170. The only other fuzzy hashing algorithm that matched
the less similarities between all given malware was sdhash, but
without using the suggested threshold (i.e., 21). The ssdeep’s
precursor, the mrsh v2 had the second largest running time
after sdhash, but it matched similarities between the given
malware, even to malware that their size was smaller than
100kb and were not identified by ssdeep.

Overall, sdhash has outperformed all other fuzzy hashes, but
only when used with threshold. The only disadvantage found
on sdhash was its running time, but this slight disadvantage
can be over-weighted by the main two strengths that relate to
the given sdhash’s options and its similarity matched accuracy.
In other words, sdhash’s configuration options make its use
much simpler, and the way the results are presented makes
the analysis and comparison of the matched malware quite
visible the different malware groups, based on their similarity
score. This specific option is missing from all other compared
hashes, apart from ssdeep.



Fig. 4. Similarity Score from each algorithm using Against-All Comparison
option

ssdeep sdhash mvHash mrsh - v2
Similarity Frequency Frequency Frequency Frequency

0 0 0 307098 0
5 0 0 11445 6404
10 0 0 2630 44
15 0 0 348 35
20 0 0 4 26
25 0 149 0 15
30 3 36 0 8
35 5 1579 0 16
40 4 255 0 1
45 5 668 0 0
50 5 9 1 0
55 3 909 1 2
60 1 1237 1 3
65 7 673 28 2
70 6 410 2 9
75 7 964 1 17
80 5 664 5 17
85 11 125 3 3
90 30 67 242 110
95 440 427 726 654
100 43820 43822 43504 43549

TABLE XIV
ALL FUZZY HASHES - FREQUENCY OF SIMILARITIES

VIII. CONCLUSION

The implementation of fuzzy hashing can be considered as a
successful one in the identification and matching similarities
between the same and/or emerging malware families. How-
ever, its success depends solely on two factors: first of all,
the fuzzy (SPH) algorithm that we are using to identify and
match similarities. Secondly and more importantly the hash
sample from one or more malware(s), which is required to
enable us to use it and find any other similarities. Although,
the use of more than one fuzzy hash for malware analysis is
recommended to cross-reference the final results, based on this
research results the recommended one is sdhash as its results
were more accurate compared to all the others that were tested.

Finally, as mentioned above we cannot compare the cryp-
tographic with the fuzzy hashes, but the use of both of
them is required for the purpose of malware detection and
identification. The use of Cryptographic hashes assists in
identifying one known malware. On the other hand, fuzzy
hashes can find new malware given the matched similarities.

Furthermore, the effectiveness and feasibility of fuzzy
hashing in analysing similarities and malware detection has
been this researchs primary objective. This objective was met
through the the experiment discussed above. According to the
results of all tested fuzzy algorithms, all of them have their
strengths and limitations. For example mvHash has the fastest

computation time, and its identification rate was similar with
the sdhashs. The mrsh-v2 had also a high computation rate, as
did the sdhash, and both of them matched a similarity score
of 71100% in 88% of the identified given malware. The only
difference was that sdhash identified similarities in 885 of the
856 malwares, but mrsh v2 presented similarities for only 551
malwares. The only one that identified almost the half of the
given malwares was ssdeep, but it has a fast computation time,
and the similarities that identified matched a score 71100%.

As a whole fuzzy hashing is the best option for static
malware analysis, that does not require a lot of resources,
time, and specialist personal. Also with fuzzy hashing it could
be possible to identify new malwares, which can be from the
same or an emerging malware family, based only on saved
fuzzy hashing checksums.

However, fuzzy hashing is weak in identifying similarities in
binary packets, and this is a point that requires further research
and improvement. Another issue with fuzzy hashing is that at
the moment there is no way that we could automatically test
if a result is positive or negative, which means that the only
safe method is manually. This specific issue could be partially
solved, as mentioned above, on condition that a master dataset
exists as the one in place for the cryptographic hashes. [17]

REFERENCES

[1] R. Paleari, “Dealing with next-generation malware,” 2011.
[2] M. Lindorfer, C. Kolbitsch, and P. Comparetti, “Detecting environment-

sensitive malware,” pp. 338 – 357, 2011.
[3] K. Dunham, “A fuzzy future in malware research,” 2013.
[4] D. L. Lewis, “The hash algorithm dilemma-hash value collisions,” [On-

line] Available from: http://www.forensicmag.com/print/235. [Accessed:
02 August 2014].

[5] F. Breitinger and H. Baier, “Properties of a similarity preserving hash
function and their realization in sdhash,” pp. 1 – 8, 2012.

[6] B. Nelson, A. Phillips, and S. C, “Guide to computer forensic and
investigations,” Boston: Cengage Learning, 2009.

[7] H. Baier and F. Breitinger, “Security aspects of piecewise hashing in
computer forensics,” In Proc. of The Sixth International Conference on
IT Security Incident Management and IT Forensics (IMF), pp. 21 – 36,
May 2011.

[8] V. Roussev, “An evaluation of forensic similarity hashes,” digital inves-
tigation, vol. 8, pp. 34 – 41, 2011.

[9] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital investigation, vol. 3, pp. 91 – 97, 2006.

[10] C. Negruseri, “Rolling hash, rabin karp, palindromes,
rsync and others,” [Online] infoarena.ro. Available at:
http://www.infoarena.ro/blog/rolling-hash [Accessed: 9 August 2014].

[11] K. Candan and M. Sapino, “Data management for multimedia retrieva,”
1st ed. Cambridge University Press, 2010.

[12] J. Oliver, C. Cheng, and Y. Chen, “Tlsh – a locality sensitive hash,” pp.
7 – 13, 2013.

[13] K. Timm, “Malware validation techniques,” [on-
line] blogs@Cisco - Cisco Blogs. Available at:
http://blogs.cisco.com/security/malware validation techniques/
[Accessed 10 Aug. 2014].

[14] F. Breitinger, K. Astebol, H. Baier, and C. Busch, “mvhash-b - a new
approach for similarity preserving hashing,” In Proc. of The Seventh
International Conference on IT Security Incident Management and IT
Forensics, 2013.

[15] M. Sikorski and A. Honig, “Practical malware analysis,” 1st ed. San
Francisco: No Starch Press, 2012.

[16] C. Malin, J. Aquilina, E. Casey, and C. Rose, “Malware forensic field
guide for linux systems,” 1st ed.

[17] M. Labs, “Threats report fourth quarter 2013,” [Online] Available
at: http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-
2013.pdf. [Accessed: 05 August 2014].


