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Abstract: 

Coxiella burnetii is a global distributed zoonotic γ-proteobacterium with an obligatory 

intracellular lifestyle. It is the causative agent of Q fever in humans and of coxiellosis 

amongst ruminants, albeit the agent is also detected in ticks, birds and various other 

mammalian species. Requirements for intracellular multiplication together with the 

necessity for biosafety level 3 facilities restrict the cultivation of C. burnetii to specialized 

laboratories. Development of a novel media formulation enabling axenic growth of C. 

burnetii has facilitated fundamental genetic studies. This review provides critical insights 

into direct diagnostic methods currently available for C. burnetii. It encompasses 

molecular detection methods, isolation and propagation of the bacteria and its genetic 

characterization. Differentiation of C. burnetii from Coxiella-like organisms is an 

essential diagnostic prerequisite, particularly when handling and analyzing ticks.  

 

  



INTRODUCTION 

Coxiella burnetii is a global distributed zoonotic γ-proteobacterium whose 

economic and health importance has recently been underscored following the largest ever 

reported outbreak, which has occurred in the Netherlands (Roest et al. 2011). Coxiella 

burnetii possesses several remarkable features including ability for proliferation 

within phagolysosome-like vacuoles of mononuclear phagocytes, a biphasic 

developmental life cycle, and a lipopolysaccharide phase variation (van Schaik et al. 

2013). Infections can either be asymptomatic or result in clinical disease. In humans, the 

disease is known as Q fever and varies from uncomplicated and self-limited febrile illness 

(acute Q fever) to long-lasting usually focal disease (chronic Q fever), which may result 

in fatality (Maurin and Raoult 1999, Million and Raoult 2015). Known as coxiellosis in 

animals, the disease predominantly manifests as reproductive disorder (Agerholm 2013). 

Sporadic or clustered cases, and large outbreaks have been described worldwide in both 

humans and animals (Smith 1989, Gilroy et al. 2001, Amitai et al. 2010, Roest et al. 2011, 

Georgiev et al. 2013).  

Coxiella burnetii can infect ticks, birds and mammals. Ticks are regarded as 

important vectors for agent transmission between wild animals and for amplification of 

enzootic cycles to the domestic environment (Cutler et al. 2007, Boarbi et al. 2015). 

Aerogenic transmission following environmental contamination has been demonstrated 

between flocks/herds and has resulted in human outbreaks (Hawker et al. 1998), however 

direct contact between and with infected animals additionally facilitate spread 

(Kruszewska and Tylewska-Wierzbanowska 1997, Alsaleh et al. 2011). Coxiella burnetii 

is excreted in vast numbers during normal parturition as well as abortion. Once 

aerosolized, the bacteria can be transmitted over long distances by the wind. During the 

biphasic developmental life cycle C. burnetii develops highly resistant “spore-like” 



structures, known as small cell variants (SCVs) providing long lasting environmental 

stability. Other body fluids and secretions are also infectious and may facilitate both 

vertical and sexual transmission (Kruszewska and Tylewska-Wierzbanowska 1997, 

Maurin and Raoult 1999, Milazzo et al. 2001, Miceli et al. 2010, Agerholm 2013). Small 

domestic ruminants are the most frequently infected species and are considered as the 

primary source of human infections.  

 

Eight decades after the first description of Q fever cases, diagnosis remains 

challenging. Case confirmation in humans and appropriate surveillance of animals 

depend mostly on the interest of the involved clinician/veterinarian and their diagnostic 

capabilities, mostly relying upon serology. In this review direct laboratory detection tests 

for C. burnetii will be reviewed, especially molecular diagnostic methods and recent 

improvements in pathogen isolation methods. 

 

REALTIME PCR  

DNA amplification is most frequently used for direct detection of C. burnetii. This 

enables investigation of all sample types from vertebrates to ticks and environmental 

samples such as dust, soil and water. For acute human cases, whole-blood or buffy-coat 

aliquots collected in EDTA or citrate at onset of symptoms and prior to antibiotic 

treatment are most useful (Anderson et al. 2013). Serum, urine and throat swabs have also 

proven valuable for C. burnetii screening (Klaassen et al. 2009). In more protracted 

infections, tissue samples from focal regions of infection should be investigated, i.e 

valvular material from endocarditis, aneurism or vessels fragments in vascular infections, 

bone biopsies in osteomyelitis. In these cases, recent antibiotic use is not a limiting factor 

(authors’ experience). For livestock, aborted material (placental material and fetal 



organs), milk, vaginal swabs, feces and more rarely semen have proven to be valuable. 

On a cautionary note, if the herd has been recently vaccinated (first months following 

vaccination), PCR will not discriminate between the vaccine and wild type strains 

(Hermans 2011). As C. burnetii is shed intermittently, consecutive samples are preferred 

to single collections. Bulk tank milk is recommended for herd monitoring rather than 

individual samples because of its ease of collection, cost effectiveness, reduced 

contamination and sensitivity for evaluation of the pathogen at the herd level. However a 

single collection is not sufficient for detection of C. burnetii in flocks with low numbers 

of infected animals. Therefore two to three samples (collected two to three months apart) 

are more informative (Boarbi et al. 2014). For wildlife screening, blood, urine, feces, 

vaginal, cloacae and anal swaps can be useful (Bitar et al. 2014, Tozer et al. 2014, 

González-Barrio et al. 2015a). In case of dead animals (hunted, road-killed, euthanized, 

etc.) other samples such as spleen, lung, and liver should also be considered. As for 

domestic animals, short bacteraemia and intermittent shedding can also occur thus the 

collection of different sample types obtained during longer sampling periods, serve to 

overcome seasonal fluctuations of C. burnetii in wildlife (González-Barrio et al. 2015a). 

For DNA extraction, fresh or frozen samples are preferable, although paraffin-

embedded tissues have also been used successfully for the identification of chronic Q 

fever patients (Costa et al. 2015). DNA extraction protocols vary from column to 

magnetic particle-based methods. In either case, PCR general guidelines should be 

rigorously followed to limit sample cross-contamination that might  occur when high C. 

burnetii loads are present. Bacterial numbers are highly variable, with massive C. burnetii 

burdens in persistently infected tissue samples (as placental/foetal and valvular/vascular 

material) to very low agent loads in environmental samples, milk samples and usually in 

blood samples. For DNA amplification, several realtime PCR protocols targeting 



different genes are described in the literature as reviewed in Table 1. These have 

superseded previously used conventional and nested PCRs that are prone to cross-

contamination. The multi-copy IS1111 repetitive element is often used for agent´s 

detection as this provides increased sensitivity when compared to other targets, but since 

the exact copy number is unknown for most of the strains, except for C. burnetii Nine 

Mile I with 20 copies per genome, it cannot be used for quantification (Klee et al. 2006, 

Tilburg et al. 2010). When results are equivocal (Ct values 35 or greater), additional 

confirmation using another target or a different region within the same gene should be 

considered. Furthermore, when investigating arthropod vectors, it must be remembered 

that the specificity of the IS1111 realtime PCR might be compromised through detection 

of Coxiella-like variants (Elsa et al. 2015). Confirmation of findings can be verified when 

necessary by sequencing. 

 

GENOME AND GENETIC CHACTERIZATION 

The first whole genome sequence of C. burnetii, from the Nine Mile RSA 493 

reference strain, isolated in 1935 from an infected group of ticks (Dermacentor 

andersoni), was released in 2003. The sequence spans 1.995.275 base pairs and was 

obtained using the random shotgun method (Seshadri et al. 2003). Four years later, a 

second genome was published, strain Henzerling RSA 331, isolated from blood of an 

infected patient in Italy in 1945 (“J. Craig Venter Institute”-CVI, 2007). Later, three 

additional strains, « K » and « G » derived from human endocarditis and the « Dugway » 

rodent strain were published (Beare et al. 2009). Comparative analysis of these genomes 

highlighted their diversity regarding pseudogene content and number of insertion 

sequence (IS) elements, possibly explaining their biological differences (Beare et al. 

2009). Recently, along with the development of powerful sequencing platforms, the 



numbers of sequenced genomes has blossomed to more than 40, 26 being publically 

available (D'Amato et al. 2014, Karlsson et al. 2014, Sidi-Boumedine et al. 2014, Walter 

et al. 2014, D'Amato et al. 2015, Hammerl et al. 2015). Despite the large number of 

genome records for C. burnetii since 2003, only 9 genomes are fully sequenced and 

annotated as closed circular genomes, the remainder are available as fragmented 

scaffolds, contigs or whole genome shot gun sequences in various genome databases 

(https://www.patricbrc.org/portal/portal/patric/Home, 

https://www.ncbi.nlm.nih.gov/genome/genomes/543). 

To obtain high quality and host cell- free DNA from an intracellular organism for 

deep sequencing analyses is a challenging task but has benefitted more recently from the 

use of axenic cultivation. When using in vitro cell cultures or embryonated hen eggs 

particular care should be taken to complete removal of host DNA. Classical DNA 

isolation methods are suitable (as cited for realtime PCR). However, bioinformatic filters 

are required to subtract the host genome sequence. Depending on the degree of host DNA 

contamination (sometimes in excess of 60%), additional sequencing may be required to 

obtain a complete genomic coverage for C. burnetii (median genome length 2Mb). Whole 

genome sequencing is becoming more affordable, but data analyses remains time 

consuming and requires specific knowledge and extra funding. Though still not used in 

routine diagnostics, access and use of whole genome sequence data are steadily increasing 

and tools for outbreak investigations and trace-back studies applicable in routine 

diagnostic laboratories will become available. Till then, traditional genotyping 

approaches are the best choice. Genotyping methods for C. burnetii were fully revised 

elsewhere (Massung et al. 2012) and therefore will be only briefly described in this 

review.  

https://www.patricbrc.org/portal/portal/patric/Home


The choice on the most appropriate typing option may depend on the research 

objectives. The simplest and direct tests (lacking further sequencing), with a good 

discriminatory power and lowest DNA demands are mostly used for rapid tracking of 

outbreaks. Examples include the multiple-locus variable-number tandem repeat analysis 

(MLVA), particularly applicable when adapted to capillary electrophoresis for estimation 

the number of repeats (Klaassen et al. 2009, Tilburg et al. 2012a), and single-nucleotide-

polymorphism (SNP) genotyping (Huijsmans et al. 2011, Hornstra et al. 2011). Both 

typing approaches were used for the Dutch outbreak investigation (Klaassen et al. 2009, 

Tilburg et al. 2012a, Huijsmans, 2011). Presently, these methods are reviewed towards 

harmonization and standardized nomenclature (http://mlva.u-

psud.fr/mlvav4/genotyping/view.php, Huijsmans et al. 2011, Hornstra et al. 2011). 

A more robust and conservative typing system, preferably supported by large 

databases and broadly accepted/used would provide the best overall option for eco-

epidemiological investigations and data integration, at both local and global scale. Multi-

spacer sequence typing (MST) is a good example of this case (Glazunova et al. 2005, 

Tilburg et al., 2012b). It has the advantage of using standardized nomenclature and 

genotypes can be identified using a web-based MST database (http://ifr48.timone.univ-

mrs.fr/mst/coxiella_burnetii/), enabling comparison of results between laboratories.  

 

CULTIVATION 

Though cultivation is not usually required for a definitive diagnosis, it is valuable 

when new clinical presentations or atypical epidemiological situations in association with 

a C. burnetii infection occur. Isolation and propagation of strains from clinical samples 

enables phenotypic and genotypic characterization using molecular typing methods or 

deeper genetic analyses such as whole genome sequencing. Cultivation is also of 



paramount importance to build strain collections to aid further research. It is laborious, 

time consuming, and success largely depends upon sample quality, freshness and 

pathogen load. Further technical expertise and availability of suitable laboratory biosafety 

level 3 (BSL3) facilities are essential. Handling and processing of samples or cultures 

with a high bacterial load bear the risk of generating contaminated aerosols and sets 

involved personnel at risk as demonstrated by several laboratory-acquired infections 

(Johnson and Kadull 1966, Curet and Paust 1972, Hall et al. 1982, Graham et al. 1989, 

Wurtz et al. 2016). Despite this, increasing numbers of isolates are now available. 

 

ISOLATION FROM CLINICAL SAMPLES 

In vitro isolation  

 Several in vitro cell lines support C. burnetii replication, including those from 

macrophage, (P388D1, J774, DH82) fibroblast (L929, HEL) and epithelial lineages (Vero 

E6) (Maurin and Raoult 1999, Mediannikov et al. 2010, Santos et al, 2012). The human 

embryonic lung fibroblast cell line – HEL is one of the most widely used as it is easy to 

maintain, preserves monolayer integrity during prolonged incubations, and is highly 

susceptible to infection (Gouriet et al. 2005, Lagier et al. 2015). The canine malignant 

histiocytic macrophage cell line - DH82 (ATCC CRL-10389), traditionally used for 

culturing other mononuclear leucocytes targeting bacteria, such as Ehrlichia canis and E. 

chaffeensis, has been increasingly adopted as an in vitro system for C. burnetii 

(Mediannikov et al. 2010, Santos et al. 2012, Lockhart et al. 2012, Cumbassa et al. 2015). 

In vitro isolation is usually performed using the shell-vial technique (Gouriet et al. 2005, 

Santos et al. 2012). Cultures are incubated at 37ºC and 5% CO2 atmosphere for 2 months 

possibly extending up to 4-5 months, with periodical evaluation of microbial growth 

using either light or fluorescence microscopy. During this period, supplementation by 



partial replacement of culture medium is required with a frequency adapted according to 

the cell line in use. Fetal bovine serum (FBS) concentration can be reduced to 5% (v/v) 

in culture medium to decrease cell proliferation and maintain monolayer longevity. 

Appearance of parasitophorous vacuoles can be checked directly using an inverted 

microscope (magnification 20 to 40X). Monthly assessment of culture aliquots should 

also be undertaken with initial cytoconcentration, stained by Giménez and examined by 

microscopy (by immersion at 1000X) for the characteristic tightly packed C. burnetii 

vacuoles (Giménez, 1964). Positive findings should be confirmed by PCR (see section 

above).  

 Various fresh or frozen samples (< -80ºC) can be used with the shell-vial 

technique, including anticoagulated whole-blood, buffy-coat, other biological fluids, 

tissue biopsies or necropsies, ticks etc. Fluids are directly inoculated whilst tissue samples 

should be macerated with a pestle or disrupted with a scalpel in culture medium before 

being inoculated into the shell-vial. An important pre-requisite is the absence of microbial 

contaminants, which is challenging when working with post-mortem or aborted tissues, 

ticks and environmental samples. Ticks can be surface decontaminated by serial passages 

in bleach 10% or alcohol 70%, and rinsed in sterile water before further manipulations. 

For placenta, fetal and other samples that are associated with high C. burnetii loads (Ct 

values <25), a tissue homogenate filtration step can increase recovery. Briefly, samples 

are homogenized in FBS-free medium, exposed to frozen-thaw cycles and low speed 

centrifugation, with the resulting supernatant subjected to sequential filtration, using 1µm 

and 0.45 µm syringe filters, and directly inoculated into shell-vials. During the initial days 

of cultivation, a broad spectrum antibiotic-antifungal cocktail containing 10,000 units/mL 

of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of Fungizone® (amphotericin 

B) can be added to culture medium to limit unwanted microbial growth.  



 

In vivo isolation 

In vivo isolation using rodent models, mice or guinea pigs, has proven particularly 

well suited for contaminated samples, such as environmental (such as, ticks, etc.) or 

veterinary field samples including as milk or products of conception. Inoculation of the 

sample into a vertebrate host provides a buffer against unwanted microbial contamination. 

Furthermore, in vivo models are essential for maintenance of the native virulent form 

(phase I) of C. burnetii. The mouse strain OF1 is the genetic lineage frequently used for 

isolation, because of its relative sensitivity compared to either BALB/c or C57/BL6 mice 

(authors’ experience). Milk samples should be decreamed first by simple decantation. 

Inoculum being aspirated from just under the fat layer can be directly injected 

intraperitoneally into adult (> 50 days mice), with volumes complying with ethical 

requirements. Successive injections (up to three) five to seven days apart can be used 

where material permits and low microbial load is suspected (Ct values >32). For abortive 

material, tissues should be macerated and diluted at least twice in physiological water or 

PBS prior to injection. Following inoculation, the host should be monitored for clinical 

signs and by indirect serology (Mori et al. 2013), or post mortem evaluation, at 3 to 5 

weeks post-infection. The spleen, liver and lungs are preferred organs for C. burnetii 

monitoring by either microscopy or realtime PCR. Infection it typically accompanied by 

measurable splenomegaly caused by massive C. burnetii propagation.  

 

PROPAGATION OF BACTERIAL ISOLATES 

Embryonated eggs inoculation 

Propagation of highly concentrated C. burnetii cultures is achieved through use of 

yolk sac infection. This method was historically used for direct isolation but it is no longer 



recommended in favor of in vitro or in vivo protocols (see above). Nonetheless, it remains 

useful for massive propagation in specific settings (vaccine production, fundamental 

studies) and therefore the protocol will be briefly reviewed. Surface disinfected seven-

day old specific-pathogen-free (SPF) chicken eggs are candled to locate the yolk sac. 

Once identified, the edge of the air sac should also be localised and marked on the 

eggshell. Inoculation with a suspension containing C. burnetii infected material is 

injected through a hole drilled few mm above the marked air sac. Inoculation material 

might arise from in vitro or in vivo isolation procedures (see paragraphs above), including 

cell culture suspensions or macerated mouse organs. The latter might require a 1:2 to 1:10 

dilution in physiological water or PBS prior injection. The eggshell holes are sealed with 

scotch tape or solvent-free glue and the eggs are incubated at 35-37°C until day 21. 

Bacterial growth may result in death of the embryo, but only eggs dying after day five 

post-injection are collected. Once opened, the yolk sac should be harvested by 

detachment, washed several times in physiological water or PBS and then macerated and 

processed for further use.  

 

Axenic media 

Over the last decades our understanding has evolved regarding the physiological 

and structural characteristics of the destructive phagolysosomal-like compartment with 

its acidic pH (∼4.5) and anti-microbial factors, such as hydrolytic and proteolytic 

enzymes, yet it is this same environment that provides the required intracellular niche of 

C. burnetii. Early studies demonstrated the necessity of an acidic pH for metabolic 

activation (transport of nutrients, glucose and glutamate, and intracellular replication) 

(Hackstadt and Williams 1981). Understanding this acid activation and the ability to 

decipher the metabolic pathways of C. burnetii by genome analyses, led to the 



development an axenic medium, namely Complex Coxiella Medium (CCM), that 

supports metabolic activity of C. burnetii (Omsland et al. 2008, Omsland and Heinzen 

2011). This axenic medium has subsequently been refined to its third generation 

formulation, the defined Acidified Citrate Cysteine Medium  (ACCM-D) which contains 

amino acids, glutamine as carbon source and methyl-β-cyclodextrin to sequester 

inhibitory metabolites (Omsland et al. 2011). It has a low pH of 4.75 and cultivation 

requires specific microaerophilic atmosphere conditions of 5% CO2 and 2,5% O2 

achieved by the use of a dual-gas incubator or alternatively using an anaerobic pouch in 

case of a mono-gas incubator (Omsland et al. 2009, 2011). ACCM-D supports the bi-

phasic transition from the SCV to the replicative large cell variant (LCV) of C. burnetii 

(Sandoz et al. 2016). Typically, there is an initial lag phase of 2 days, followed by an 

exponential phase until day 8 and transition into stationary phase. The second generation 

formula, ACCM-2, has occasionally been used for direct isolation of C. burnetii from in 

vivo experimental or clinical samples (Omsland et al. 2011, Boden et al. 2015). ACCM-

2 or ACCM-D may not support growth of all C. burnetii strains and therefore axenic 

cultivation is more frequently used for amplification of bacteria from cell culture, or 

inoculation of macerated organs into mice. The sensitivity of axenic cultivation has been 

estimated to fall between 10 to 100 GE/ml (genome equivalents), depending on the 

quality of sample (authors’ experience). The impact of repeated axenic propagation on 

the virulence remains to be fully elucidated (Kersh et al. 2011, Kuley et al. 2015).  

 

COXIELLA-LIKE ORGANISMS 

Initially the Coxiella genus was thought to be comprised of solely C. burnetii 

species, but is now recognised to contain other members, namely Coxiella cheraxi and 

novel Coxiella-like organism identified in birds and in non-vertebrate species. C. cheraxi 



was first isolated in 2000 from connective and hepato-pancreatic tissues of a dead crayfish 

displaying inclusion bodies with Rickettsia-like Gram-negative bacteria (Tan and Owens 

2000). The partial 16rDNA, sodB and com1 sequences of C. cheraxi (strain TO-98) 

shared highest homology with C. burnetii sequences achieving similarity of 96%, 96% 

and 100%, respectively (Tan and Owens 2000, Cooper et al. 2007). Birds are commonly 

infected with C. burnetii without apparent clinical signs, but in contrast show pathology 

when infected with Candidatus Coxiella avium, a pleomorphic Coxiella-like organism 

multiplying in macrophage vacuoles and leading to inflammation of liver, lung and spleen 

or systemic infection and death of the host (Shivaprasad et al. 2008, Vapniarsky et al. 

2012). Further diversity amongst the genus has been described with reports of Coxiella-

like organisms as endosymbionts among several species of ticks (Duron et al. 2015), with 

extremely high (close to 100%) infection frequency. Indeed, it has been postulated that 

these might represent ancestral species of C. burnetii (Duron et al. 2015). The genetic 

classification of these organisms within the Coxiella genus is complex, with common 

patterns of co-divergence within tick-species (tick species-specific clades) and horizontal 

gene transfer events complicating the phylogenetic separation (Duron et al. 2015). The 

genome is further reduced in comparison with that of C. burnetii (Smith et al. 2015) and 

traditional cultivation methods for C. burnetii have been unsuccessful to date (Duron et 

al. 2015). Importantly, several IS1111 sequence haplotypes are present in Coxiella-like 

tick endosymbionts (Duron 2015), consequently caution is needed to avoid 

misidentification between Coxiella-like bacteria and C. burnetii, as previous mentioned 

in the above realtime PCR section. Table 2 summarizes PCR assays used to screen 

samples for Coxiella-like bacteria. 

 

CONCLUSION 



Direct detection of C. burnetii though challenging, fulfils a much-needed 

diagnostic gap. Recovery of isolates is essential to address our evolving understanding of 

this pathogen and to decipher our understanding of the intricate interactions between this 

microbe and its vertebrate host. This will pave the way for better-targeted intervention 

and control strategies. Furthermore, direct detection is essential to provide categorical 

association of emerging clinical sequalae with C. burnetii infection. Finally, the 

discriminatory methods reviewed above furnish us with tools to detect hitherto 

undescribed species expanding our understanding of the Coxiella genus and highlighting 

potential limitations of our current diagnostic tools. 
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