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Abstract—Automatic speech recognition accuracy is affected 

adversely by the presence of noise. In this paper we present a 

novel noise removal and speech enhancement technique based on 

spiking neural network processing of speech data. The spiking 

network has a recurrent lateral topology that is biologically 

inspired, specifically by the inhibitory cells of the cochlear 

nucleus. The network can be configured for different acoustic 

environments and it will be demonstrated how the connectivity 

results in enhancement of temporal correlation between similar 

frequency bands and removal of uncorrelated noise sources. 

Demonstration of the speech enhancement capability will be 

provided with data taken from the TIMIT database with 

different levels of additive Gaussian white noise. Future 

directions for further development of this novel approach to 

noise removal and signal processing will also be discussed. 

Keywords—spiking neural networks; noise reduction; speech; 

lateral inhibition; 

I. INTRODUCTION 

Speech enhancement is a vital area of research in speech 
signal processing. Automatic speech recognition (ASR) 
accuracy is typically adversely affected by many noise sources. 
As the need for ASR applications to work in diverse 
environments increases, so too does the need to enhance 
speech by removing noise. In this context we will assume that 
noise is defined as anything other than speech. Traditionally, 
there are many existing techniques for removing noise from 
audio. The methodology advocated typically depends on the 
type of noise encountered, for example spectral subtraction [1] 
aims at removing wide-band noise whereas periodic speech 
enhancement is more suited to the removal of periodic noise 
such as that generated from the rotary motion of engines and 
other more structured types of sound.  

In this paper we advocate an alternative ethos to speech 
enhancement in that we develop a speech enhancement 
approach which is responsive to the spectro-temporal nature of 
the speech, rather than the type of noise. We draw inspiration 
from the biological processing of sound by the cochlea and 
cochlear nucleus. The cochlea can be viewed as transforming 
sound into the frequency domain in a way broadly similar to a 
Fourier transform. Hence, the cochlea produces a tonotopically 
organised stimulus, but it also encodes the stimulus into spikes, 
which are reflective of the complex spatio-temporal features of 
the sound. This spiking input is then further processed by the 
cochlear nucleus using lateral inhibition [2] to extract features 

from it. Lateral inhibitory connectivity in conjunction with 
correctly configured transportation delays can be used to 
induce near-synchronous states that aid neural computation [3]. 
It has been previously demonstrated how the connectivity of 
lateral inhibitory networks can be successfully parameterised to 
promote edge enhancement and noise removal [4], and to 
minimise information loss between successive layers [5]. In 
this paper we build on this work and demonstrate how lateral 
inhibitory networks can be employed successfully as a 
practical technique for speech enhancement.  

Section II discusses the transformation of the speech 
samples into spectrograms and the addition of noise. Section 
III describes the conversion of the spectrogram’s continuous 
data into discrete spike timing. Section IV outlines the 
processing of the lateral inhibitory networks. Section V 
describes how the processed spiking representation is used to 
transform the spectral representation back to sound. Section VI 
presents the results of this technique while Section VII 
discusses conclusions and future directions of this research.  

II. PRE-PROCESSING OF SPEECH SAMPLES 

The speech samples chosen to illustrate the lateral 
inhibitory networks are from the TIMIT database [6]. We have 
chosen four samples with different utterances of varying 
lengths, spoken by two male speakers and two female speakers, 
see TABLE I.  

TABLE I.  TIMIT SPEECH SAMPLES 

Name Speaker Description Length (s) 

SI969 Male 
‘If any of us miss, they can pick up the 

pieces.’ 
2.713 

SA2 Female 
‘Don't ask me to carry an oily rag like 

that.’ 
2.841 

SX52 Female 
‘Her classical performance gained 

critical acclaim.’ 
2.963 

SI976 Male 
‘Now a distinguished old man called on 

nine divinities to come and join us.’ 
3.718 

 
The processing of speech advocated in this paper is 

biologically inspired. In the brain, speech is processed by the 
cochlea which performs a spectral transformation to extract 
frequency information from sound waves. We will use a short-
term Fourier transform (STFT) to perform the analogue of this 
operation. Strictly speaking a true biological cochlea performs 
this using frequency bands tonotopically arranged on the Mel 
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scale. We simplify this and use an STFT, we make this 
simplification for the purposes of faster computation of the 
spectral transformation. We use the STFT version of the 
Fourier transform for its improved temporal rather than 
frequency resolution. 

Once the STFT is calculated the magnitude of the complex 
Fourier transform is determined and then log scaled to obtain 
the spectrogram. Fig. 1 shows the spectrogram generated for 
the SI969 speech sample. This particular sample was chosen 
arbitrarily and will be used throughout this paper to illustrate 
the noise removal steps.  

 

Fig. 1. Spectrogram of original speech sample (SI969 from TIMIT) 

 

Fig. 2. Spectrogram of the original speech with noise added, the noise is 

Gaussian white and has the the same amount of power as the orginal speech.  

The signal to noise ratio (SNR) defines how much of the 
original signal has been corrupted by noise. In the case of this 
research, the original signal corresponds to the TIMIT database 
speech samples and noise relates to the addition of white 
Gaussian noise. SNR can be defined as: 

 𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 

where 𝑃 is the average power.  
A range of SNRs were chosen for this task: (0.1; 1; 10), dB 

levels for the additive noise were based on the measurement of 
the power of the clean signal. The Matlab awgn function was 
used to incorporate the white Gaussian noise into the speech 

signals. The top left panel of Fig. 12 maps the original speech 
signal against the same input when noise is added resulting in a 
signal with an SNR of 1, i.e. the added noise has the same 
amount of power as the original speech. Consequently, the 
spectrogram of the speech signal has been greatly affected, as 
seen in Fig. 2.  

III. SPIKE ENCODING 

 The cochlea in addition to the spectral transformation 
encodes the frequency information into trains of action 
potentials or ‘spikes’. Arguably it is the timing of the 
individual spikes that is responsible for the encoding of the 
sound stimulus and not the spiking amplitude. Hence we 
employ a deconvolution algorithm to convert the continuous 
spectrogram data into digital spikes. We simplify the spiking 
representation and simply use the integer 1 to represent a spike 
and 0 otherwise in our data storage. Despite the additional 
memory overhead this creates in the data structures that store 
the spikes as compared to a sparse representation that simply 
stores the spike times, we have found that this provides the 
ability to pre-allocate the data structures and simplify the 
subsequent network programming. Similar to our previously 
published experiments, we have used Ben’s Spiker Algorithm 
(BSA) [7] to convert this continuous data into discrete spike 
timing. This algorithm utilises a convolution/deconvolution 
filter which was optimised for encoding/decoding using a 
genetic algorithm optimised to minimise the error between the 
deconvolution encoding using the BSA algorithm, and the 
convolution decoding, which can be performed using a linear 
filter with the same BSA filter coefficients. 

In an effort to ensure our results are more in line with the 
speech recognition domain of research, we have generated 
spike trains for 128 frequency channels ranging between 0 Hz 
and 8 kHz. Fig. 3 illustrates the different spike trains that begin 
firing, end firing, and fire maximally at specific times. The 
literature describes these features of sound signals as onsets, 
offsets and peak firing rates respectively [8]. The aim of this 
research is to remove noise, such as background sound, from 
the speech signal using spiking neural network connectivity 
regimes; thus facilitating the extraction of these features for 
enhanced speech processing.  

All neurons in the lateral inhibitory layer are implemented 
using a leaky integrate and fire (LIF) neuron [9], it is one of the 
simplest, computationally efficient and most popular models of 
a spiking neuron: 

 𝜏𝑚𝑒𝑚
𝑑𝑣

𝑑𝑡
= −𝑣 + 𝑅𝑖𝑛𝐼𝑠𝑦𝑛(𝑡) 

where 𝜏𝑚𝑒𝑚  refers to the membrane time constant of the 
neuron, 𝑣 is the membrane potential, and 𝑅𝑖𝑛 is the membrane 
resistance, driven by the synaptic current 𝐼𝑠𝑦𝑛(𝑡) . Fig. 3 

illustrates the spike encoded output of the original signal and 
Fig. 4 illustrates the spike encoded output of the original 
speech signal when it has been embedded with white Gaussian 
noise. Reflecting the differences between the two spectrograms 
from Fig. 1 and Fig. 2, the task for the lateral inhibitory layer 
of spiking neurons is to remove the spikes resulting from the 
noise and enhance the original speech signal. 

For comparison purposes the spiking representation of the 
original speech and the noisy speech are shown in Fig. 3 and 



Fig 4 respectively. Hence it will be the aim of the spiking 
neural network processing to process the noisy spiking input to 
realise the clean spiking representation. Whilst this is a 
somewhat artificial example (since we have artificially added 
noise to clean speech) we do this to demonstrate how the 
spiking processing enhances speech and removes noise.  

 

Fig. 3. Spike raster representation of the original (noiseless) speech sample 

 

Fig. 4. Spike raster corresponding to the noisy speech sample 

IV. LATERAL INHIBITORY NETWORKS 

The spiking topology that is used in this work to process 
the audio is inspired by the seminal paper by Abbot [10]. In 
this paper, Abbot clarifies the role of laterally inhibitory 
neurons that was successfully proposed in response to an 
international challenge by Hopfield and Brody [11] to propose 
a mechanism by which neurons in disparate parts of the brain 
synchronise their activity. This of course is attempting to 
address the long-held variable binding problem. The winning 
solution was proposed by Wills and Mackay [8] and then 
elegantly demonstrated by the experiment illustrated in Fig. 5 
[10]. The figure shows the interaction between two LIF 
neurons with lateral inhibitory connections, connecting to an 
excitatory output neuron which sums the output. Each neuron 
in the input layer receives as input the inhibitory output of the 
other. Each of these neurons has its own excitatory input, one 
receives a fixed firing rate of 25 Hz, the other a firing rate 
linearly changing from 28.5 Hz to 21.5 Hz. When the two input 

neurons are firing at different frequencies, the input neurons 
take turns at suppressing the output of one another, depending 
on spike timing. The output neuron, neuron 3, fires maximally 
(coincidently) when the two input neurons are firing at the 
same frequency. Similar to two people trying to pass one 
another in a narrow space, the laterally connected neurons take 
turns inhibiting one another, preventing and delaying each 
other from firing until they are ‘in-sync’. 

 
Fig. 5. A simple three-neuron SNN (top left) used to test the ability of 

laterally connected neurons to produce coincidental firing and synchrony [10]. 

The SNN receives two input spike trains, one with a firing rate reducing from 

28.5 to 21.5 Hz, the other with a constant firing rate of 25 Hz (top right). The 

bottom two subplots show the actual input and output spike rasters of inputs 1 
and 2 (i/p 1 and i/p 2) and resultant spike output for neurons 1, 2, and 3 

respectively.  

Expanding on this simple example from Abbot, Glackin et 
al. employed layers of neurons with similar lateral inhibitory 
connections to produce synchronised spiking activity from 
tonotopically arranged sound information [4-5]. The lateral 
connectivity of the input layer was designed in terms of a 
connection length parameter and a neighbourhood radius.  

As the output of the STFT and subsequent BSA encoding 
of spike trains is tonotopically arranged, it does not necessarily 
make sense to associate every input neuron and hence sound 
frequency with every other, as this disregards the tonotopic 
arrangement. It seems more likely that the lateral connectivity 
of the input layer can be described in terms of a connection 
length parameter. A particular connection length of c would 
mean that each input layer neuron is laterally connected to c 
neurons either side of it. Fig. 6 illustrates this idea, the black 
lines of various styles represent connection lengths between 1 
and 3 for an example layer of laterally connected neurons. In 
this way, a layer of N neurons can have a maximum connection 
length of 𝑐𝑚𝑎𝑥 = 𝑁 − 1.  

The concept of a neighbourhood in the connectivity of 
neurons was introduced by Kohonen with the ‘winner-take-all’ 



competitive learning algorithm [12]. Essentially, ‘winning’ 
neurons had their weights increased along with neurons 
topologically close to them, i.e. in the same neighbourhood. In 
terms of the spiking neural networks in this paper, the 
neighbourhood radius describes how neurons that are 
tonotopically close to one another are not connected laterally. 
Fig. 7 illustrates this idea.  

 

Fig. 6. Neurons connected laterally as determined by a connection length 

parameter 

 

Fig. 7. Incorporating the neighbourhood radius parameter to layers of lateral 

connectivity specified by the connection length parameter 

When the layer of spiking neurons is presented with the 
noisy spiking input from Fig. 4, the lateral inhibitory 
processing removes spikes. The spikes that remain are densely 
packed by necessity in order to survive this process. 
Contrastingly, areas of spikes which are not densely packed are 
removed. This removal of noisy spikes is an important feature 
for the pre-processing of speech signals which will then be 
used as input to an ASR system.  

From previous experiments [5], we found that a less than 
maximum connection length has interesting effects on small 
neighbourhoods. The small neighbourhood radius and slightly 
larger connection length do not result in a synchronous state. 
Synchronous states typically show entire populations of 
neurons firing in phase. But if all neurons are firing at the same 
time, how could synchrony produce selectivity to particular 
stimuli? Using multiple spiking layers of lateral inhibitory 
processing with a sparser connectivity, noisy spikes can be 
removed and a clearer representation of the sound signal can be 
extracted by sharpening the main contours of the spike 
distribution. Fig. 8 and Fig. 9 show the output after two 
iterative layers of synchrony on the noisy spiking input.  

The network used has fixed weights and connectivity 
parameters. The connection length and neighbourhood was set 
to 22 and 5 for layer 1 and 25 and 5 for layer 2. The 
connectivity parameters were tuned heuristically to gradually 
suppress noise whilst taking care not to suppress the speech 

parts of the signal. The weights were tuned according to the 
amount of lateral inhibitory connectivity dictated by the 
connection length and neighbourhood radius. The inhibitory 
and excitatory weights were set to 1.4 and -0.5 for layer 1 and 
1.5 and -0.2 for layer 2. The slight difference in the parameters 
chosen for layer 2 ensured gentle inhibition with sharper more 
defined contours. The tuning process was not difficult but in 
future work we will investigate how to do this in a more 
principled automated way. 

 

Fig. 8. Spike encoded output after passing through first spiking layer of 

lateral inhibitory processing. Areas of spikes which were not densely packed 

in the input, are removed.  

 

Fig. 9. Spike encoded output after passing through second spiking layer of 

lateral inhibitory processing. Spikes that remain after passing through the first 
layer, have become denser and more tightly packed.   

V. DECODING 

As mentioned previously, convolution with the linear filter 
containing the original BSA filter coefficients can accurately 
convert the processed spectral stimulus from the discrete 
spiking domain back to the continuous domain. However, the 
resulting processed spectrogram is not easily invertible. This of 
course has nothing to do with the spike decoding but instead is 
due to the lossy nature of spectrograms. Specifically the 
conversion of the complex Fourier spectrum to the power 
values results in a loss of phase information. Consequently, 
without modelling the phase in some way, performing the 
inverse STFT on the spectrogram can only be done by 



assuming the magnitude and phase are the same, which results 
in phase distortion in the inverse STFT.  

Many ASR systems are now employing end-to-end deep 
neural network topologies which process spectrograms. 
Therefore the phase distortion issue for such ASR systems is 
irrelevant if the aim of this speech enhancement technique is to 
improve ASR accuracy in such systems. However for 
illustrative purposes we now use the processed spectrogram as 
a mask for the original STFT representation. The mask is 
simply applied by element-by-element multiplying the 
processed spectrogram to both the real and imaginary parts of 
the original noisy spectral representation. For illustrative 
purposes we decode and perform the masking operation at 
successive layers of the network. The reconstructed 
spectrograms from the spike encoded outputs of both iterative 
layers of synchrony can be seen in Fig. 10 and Fig. 11  for 
layers 1 and 2. The figures demonstrate how the spectrograms 
from layers 1 and 2 successively remove the noise and enhance 
the speech pattern. 

 

Fig. 10. Reconstructed spectrogram after the first spiking layer’s output is 

used to mask the original STFT.  

 

Fig. 11. Final reconstructed spectrogram after the noisy spiking has passed 
through two iterative layers of synchrony  

By using the layer 2 output as a mask for the original noisy 

STFT we can then perform the inverse STFT operation and 

transform the spectral representation back to sound. Fig. 12 

shows the noisy signal (top right), the reconstructed signal after 

processing by the SNN (bottom right), and for comparison 

purposes we also show the original noise free signal (top left), 

and the processed noise free signal output (bottom left).  As 

can be seen the reconstructed signal is qualitatively similar to 

the noise-free signal.  

 

Fig. 12. Original signal (top left panel), noisy signal (top right panel), 

reconstructed signal after one pass through lateral inhibitory layer (bottom left 

panel), reconstructed signal after second pass through lateral inhibitory layer 
(bottom right panel) 

VI. RESULTS 

During the setup of these experiments, informal subjective 
listening tests were carried out at each stage of the algorithm’s 
development to determine how successfully the lateral 
inhibitory networks performed when applied to the TIMIT 
speech samples outlined in TABLE I. However, once the 
algorithm was complete, from encoding the original noisy 
speech signal to reconstructing the processed speech output, 
objective tests using metrics could be performed to fully 
evaluate the output, taking advantage of the clean speech 
reference signal. Hence we can directly measure the 
improvement in SNR using Equations (3-5): 

𝑆𝑁𝑅𝐴 = 10𝑙𝑜𝑔10 ∗ (
𝑣𝑎𝑟(𝑥𝑘)

𝑣𝑎𝑟(𝑛𝑘)
)   (3) 

𝑆𝑁𝑅𝐵 = 10𝑙𝑜𝑔10 ∗ (
𝑣𝑎𝑟(𝑦𝑘)

𝑣𝑎𝑟(𝑛𝑘)
)  (4) 

𝑆𝑁𝑅𝐼𝑀𝑃 = 𝑆𝑁𝑅𝐵 − 𝑆𝑁𝑅𝐴  (5) 

where 𝑥𝑘 is the clean speech signal; 𝑛𝑘 is the added noise; 𝑦𝑘  
is the processed speech signal; and 𝑆𝑁𝑅𝐼𝑀𝑃  measures the 
improvement between the original clean speech signal 𝑆𝑁𝑅𝐴 
and the output processed and reconstructed speech signal  
𝑆𝑁𝑅𝐵. 

TABLE II. presents the SNR values for the clean speech 
samples and the resulting SNR after each pass through the 
layer of spiking neurons for the three different levels of added 
white Gaussian noise. While TABLE III. presents the 
individual improvement between the original clean speech 
samples and the processed and reconstructed outputs and the 
average and standard deviation across the four speech samples 
tested. From both the figures included throughout this paper 



and the objective test results presented, it can be seen that layer 
1 processing removes a considerable amount of noise from the 
speech signal while layer 2 processing continues to remove 
noise but also ensures that the portions of the signals that 
remain are bolstered and become sharper.  In terms of SNR, a 
clear improvement across all speech samples tested has been 
demonstrated; with an average improvement of 19.003 dB with 
a standard deviation measure of 1.8682 dB.  

TABLE II.  EXPERIMENTAL RESULTS 

Sample 
SNR 

‘measured’ 

Orig. 

SNR 

Layer 1 

output 

SNR 

Layer 2 

output 

SNR 

SI969 

0.1 0.0985 18.337 20.363 

1 0.9985 19.734 21.697 

10 9.9985 30.779 32.491 

SA2 

0.1 0.1175 15.867 18.7 

1 1.0175 18.365 20.707 

10 10.0175 29.161 31.178 

SX52 

0.1 0.1235 14.985 17.503 

1 1.0235 16.4 18.296 

10 10.0235 23.545 26.652 

SI976 

0.1 0.1042 15.967 17.621 

1 1.0042 16.585 18.198 

10 10.0042 28.217 29.056 

TABLE III.  ANALYSIS 

Sample 
SNR 

‘measured’ 

SNR Layer 1 

Improvement 

SNR Layer 2  

Improvement 

SI969 

0.1 18.2385 20.2649 

1 18.7359 20.6982 

10 20.78 22.492 

SA2 

0.1 15.7491 18.5829 

1 17.347 19.6898 

10 19.1437 21.1607 

SX52 

0.1 14.862 17.3797 

1 15.3767 17.2728 

10 13.5217 16.6289 

SI976 

0.1 15.8626 17.6211 

1 15.5808 17.1937 

10 18.2123 19.0516 

Average 16.9508 19.003 

STD 2.1142 1.8682 

VII. CONCLUSIONS 

Most of the techniques in the speech enhancement literature 
advocate an ethos that models the noise so that it can be 

extracted from audio. Contrastingly with the spiking approach 
in this paper, the spiking network strengthens the spectro-
temporal correlations in the audio and naturally suppresses any 
uncorrelated noise, and hence makes this approach a novel one 
in the literature. The spiking topology is one suggestion as to 
possible inhibitory connectivity that could exist in the biology. 
However in the biology a much larger population of neurons is 
devoted to auditory processing in the cochlear nucleus. Hence 
it is likely that many configurations of spiking networks could 
be used to extract and be attentive to different aspects of the 
different sounds they perceive.  

In future work we would like to replace the described 
masking process with some form of phase reconstruction. In 
addition, in the future we will expose this technique to more 
varieties of noise. 

The spiking networks presented do not employ any form of 
learning yet in the configuration of the network. As previously 
described, the weights were fixed and in future work we will 
investigate how to modify the weights to perform some form of 
unsupervised learning. Despite the minor limitations in some 
aspects of the methodology, there is little doubt as to the 
effectiveness of the noise removal and speech enhancement. 
Even for the extreme case where the additive Gaussian white 
noise has the same power as the underlying signal, the effect is 
dramatic.  
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