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evelopments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of
nal neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or
nnectivity, investigators can offer feedback of simple or complex neural signals/patterns back to
cipant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we
e some background methodology of the new developments in this field and give a perspective on
y may be used in neurorehabilitation in the future.

findings

lopment of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions
orks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific
al regions and in principle any region that can be monitored using fMRI including the cerebellum,
and spinal cord. In Parkinson’s disease and stroke, rt-fMRI-NF has been demonstrated to alter

ctivity after the self-regulation training was completed and to modify specific behaviours.

ry

ploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved
n neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled
rials is in its infancy.
europlasticity, Parkinson’s disease, real-time functional magnetic resonance

imaging, stroke
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cipant thereby affording him/her feedback of
er own brain activity. Now the participant is,
inciple, able to learn how to regulate complex
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e last quarter of a century, functional mag-
esonance imaging (fMRI) has become an
ant tool for the noninvasive monitoring
al activity in human participants undertak-
ide range of behaviours and altered neural
in neurological diseases such as Parkin-

disease (PD) and stroke. fMRI measures
s in the blood oxygen level dependent
) signal and thus provides a surrogate
e of neural activity. With the advent of
ingly fast processing tools, it has become
e to measure changes in task-related BOLD
for example during a hand grasp, and thus
activity of a ‘motor task network’, on a
al-time subsecond basis (more advanced
ing of raw data for large network connec-
easures still takes 1–5 s in practice) [1]. The
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estigator and enables better control over
ents, body motion during scanning and
g of fMRI data, for example [1,2].
ey conceptual switch was to offer the visual
ntation of the neural activity back to the
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KEY POINTS

� Patients with PD and stroke can learn to self-regulate
motor regions using real-time feedback of
neurovascular signals.

� So far, mainly cortical motor regions have been
targeted, but fMRI also allows an access to subcortical
areas.

� Although some promising clinical effects have been
published in PD, stroke results from formal clinical trials
are still outstanding.

� Future studies should also include a mechanistic
evaluation of neuroplastic effects of neurofeedback, for
example using imaging or transcranial stimulation
methods.

� Any clinical implementation will need to integrate
neurofeedback with other neurorehabilitation strategies.

Real-time functi

1350-754
activity in his/her own central nervous
; in practice, this is often achieved by the
ant varying a simplified representation of
plex brain activity pattern such as a virtual
meter. The crucial instructional behaviou-
ponent of the real-time fMRI-based neuro-
k (rt-fMRI-NF) technique is that the
ant is asked to undertake a task such as
imagery of hand movements in order to
e thermometer height. The task he/she

akes to vary the thermometer height is
tly contingent on varying the BOLD signal
in target region of interest, localized before-
y asking the participant to perform real
rasps in our example here. This localizer
egion, that is a region in the motor network
d grasps, is often part of the neural network
ed in the self-regulation task, in this case
imagery. Thus, the participant is now able to
ow to self-regulate the BOLD signal and
ably neural activity in a specific region
ork.
ce the first demonstrations of rt-fMRI-NF at
inning of the century, there has been an
ing literature describing increasingly elabor-
of rt-fMRI-NF, although the fundamental
ology has remained relatively unaltered
]. The range of uses of rt-fMRI-NF includes
ulation of brain regions or networks involved
umber of behavioural repertoires such as

acce
adhe
parti
men
strai
coun
area
scrib

T
clear
and
egies
brain
netw
tion
tion
mot

A
NF c
are t
skill
learn
susta
patie
regio
for n
dem
impo
as c
and
Ther
and
addr
nal control [9–14], pain control [15], auditory
sual performance [16–19], attention [20],
y performance [21–24], reward [25,26]

of t-fMRI-NF to appropriately designed clinical
tria
cav
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otor control [27–35] in healthy individuals.
ticular note, however, is that rt-fMRI-NF
to be differentially effective across different
regions of the brain, for example the
ic (visual) and intrinsic (default mode net-
odes of the cortex [36] – we will return to
portant point.
e important distinction in the implementa-
neurofeedback protocols is whether purely
on instrumental learning, as in most

encephalography-neurofeedback studies, or
r to use specific instructions or suggest strat-
at participantsmight employ to achieve self-
ion. An example of the latter approach
be providing information about the func-
ole of the target area and suggesting kinaes-
magery as a potential strategy in the example
or cortex upregulation introduced above.
proach has the advantage of potentially
ating training, which can be helpful for
nce in patient studies and reducing costs,
larly when using expensive imaging equip-
ts disadvantages are that it may overly con-
participants’ strategies – and then actually
ract training success – and restrict target
those with a well-documented and circum-
functional role.
next deployment of rt-fMRI-NF could

be directed toward neurological conditions
developing novel neurorehabilitation strat-
hereby the patient learns to self-regulate
ctivity in an injured/disordered region or
k. Here, we focus on control of motor execu-
d motor skill learning to illustrate a transla-
framework for exploiting rt-fMRI-NF in
neurorehabilitation.
ey initial step is to demonstrate that rt-fMRI-
lead to regulation of brain regions which
ught to be involved in motor execution and
rning. The next step is to demonstrate that
self-regulation of neural activity leads to a
ed change in brain activity, for example that
s with a brain injury can reactivate injured
or upregulate other regions to compensate
ronal damage. A further important step is to
strate that rt-fMRI-NF leads to a clinically
ant change in impaired behaviour such
ical motor impairment of hand grasping
it in our illustrated neurological conditions.
are many design-based, mechanism-based
inical-based factors that are yet to be
ed in translating the fundamental model

onal magnetic resonance imaging Linden and Turner
and we will highlight some important
.
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TIME FUNCTIONAL MAGNETIC
NANCE IMAGING NEUROFEEDBACK
LTHY INDIVIDUALS: MODULATING

D OXYGEN LEVEL DEPENDENT
L IN MOTOR-RELATED REGIONS OR
ORKS
on of complex movements such as reaching,
g or locomotion involves a distributed
k of brain regions including primary motor
(M1), supplementary motor area (SMA), pre-
cortex (PMC), parietal cortex, basal ganglia,
lum, brainstem and spinal cord [37–39].
performance is optimized by integrating
nsforming sensory feedback signals, mainly
nd kinesthetic inputs related to movement
tion and execution, through visual and
riate pathways, spinal cord, thalamus and
sensory cortex (SSC) [40–42]. Within these
ks,meta-analysis using activation likelihood
es (ALEs) of learning novel motor skills has
hted significant roles for dorsal PMC, SMA,
C, superior parietal lobule (SPL), thalamus,
tamen of the basal ganglia and cerebellum
hus, on the face of it, applying rt-fMRI-NF
late neural activity in one or combinations
se regions or the connectivity between
could enhancemotor control, performance
ll learning. This would be an important first
facilitate the processes of neuroplasticity,
are thought to operate in highly skilled
performers and during recovery from brain
[44–47].
e approach to choosing the ‘correct’ target
s) for rt-fMRI-NF might be to contrast the
motor network required for execution and
arning against a similar network for motor
y, because this is the preferred method used
to learn self-regulation of motor execution-
regions [27–35]. A meta-analysis using ALE
ed that motor imagery activates several
lusters spanning over both hemispheres,
nsiderable overlap with the motor control
k described above [48]. Consistently acti-
egions during motor imagery include bilat-
erior frontal gyri, precentral gyrus anterior
or cortex (i.e. PMC), middle frontal gyrus,
nd regions of the anterior insula. In the
l lobes, the bilateral SPL and supramarginal
ere also consistently activated. Subcortical
included the left putamen (basal ganglia),
halamus and area VI (bilateral) and the
of the cerebellum.
wever, contrasting ALE-based meta-analyses
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on. This may explain why it has proven
t to use the M1 as a single target region for
self-regulation in some rt-fMRI-NF para-

to date [27–35,49]. Improved learned self-
ion has been demonstrated, however, when
silateral and contralateral motor cortices
bined targets [50]. Self-regulation of the

signal can also be achieved in the ventral
ith rt-fMRI-NF [34] and, interestingly, the
ual rate of learned self-regulation in PMC
early related to baseline intracortical facili-
within circuits in M1 (i.e. in the motor
on network) measured with transcranial
tic stimulation [51]. This may be a result
extensive connections between PMC and
elf-regulation of PMC as a single target can
ad to increased connectivity in the wider
imagery network and in particular is related
initial strength of PMC-parietal cortex con-
ty before the rt-fMRI-NF training pro-
e [31]. The current evidence suggests that
a known single target region involved in
imagery for rt-fMRI-NF can lead to changes
tical network connectivity, which may
nclude M1, even though M1 is not
ed robustly by motor imagery per se. In
ords, there may be indirect paths to target
ction and thus motor execution via, for

le rt-fMRI-NF of PMC [52,53,54
&

]. This may
rofound impact for the development of rt-
n motor cortex or inputs to motor cortex
aged.

TIME FUNCTIONAL MAGNETIC
NANCE IMAGING NEUROFEEDBACK
LTHY INDIVIDUALS: SUSTAINING
ACTIVITY AFTER SELF-

LATION TRAINING HAS STOPPED

e rt-fMRI-NF studies, a single follow-up
r’ session has been conducted at a time
fter the neurofeedback sessions to test for
able modulation of brain activity. The
r session consists of testing the ability to
ulate a target region but without the feed-
omponent. Four weeks (12 sessions) of
-NF resulted in a significant transfer effect
rgeting the contralateral and ipsilateral M1
ignal difference [50]. The measure taken to
nt sustainable impact of rt-fMRI-NF can
modulation of brain networks using rest-

te fMRI, wherein sustainable changes were

strated one day after the end of self-
ion training [55]. Finally, when the rt-
F sessions are followed up with similar
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oural practice (with no explicit feedback)
weeks, then sustained changes in motor
on networks can occur compared with no
oural practice suggesting a possible role of
-NF in facilitating motor skill learning –
gh the performance was only rated subjec-
nd not by objective means in this case [49].

the r
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lity of the effects of rt-fMRI-NF requires
ubstantiation in future.

TIME FUNCTIONAL MAGNETIC
NANCE IMAGING NEUROFEEDBACK
LTHY INDIVIDUALS: MODULATING

VIOUR IN AN APPROPRIATE
ER

rent evidence would suggest that rt-fMRI-NF
n motor imagery is most effective when it is
modulate activity (BOLD signal) in target
outside M1. The next challenge is to show

is neurofeedback training (or neurofeedback-
ed imagery training) can result in appropri-
nges in behaviour such as motor perform-
nd skill learning in healthy individuals.
lation of M1 with rt-fMRI-NF did not change
finger reaction time [29]. However, in

r study, the degree of upregulation of BOLD
uring motor imagery correlated with motor
ance (pinch force) [28] suggesting that
-by-subject variability in motor imagery
s (and ability to change BOLD per se) may
n important role in successful changes in
performance.
regulation of left ventral PMC BOLD signal
duce ipsilateral, intracortical inhibitory drive
but this neural response to rt-fMRI-NF did not
r to a better response in a visuomotor tracking
].Upregulationof right PMCBOLD signalwas
ted with the degree of functional interhemi-
PMC-parietal cortex connectivity during

imagery and right cerebellum to left M1
tivity during right hand motor execution.
hanges were associated with an increase in
al finger tapping speed using the right hand
hen the SMA is used as a target region for
-NF with motor imagery, the individual abil-
pregulate the BOLD signal in SMA was corre-
ith only a small reduction in motor reaction
5]. Therefore, there appear to be rather more
x relationships between rt-fMRI-NF and
performance than merely a simple cause–
etween regulation of the neural target and
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of rt-fMRI-NF in enhancingmotor skill learn-
not been studied to date, beyond subjective
orting of improved performance [49]. This
eem to be an essential challenge to overcome

onal magnetic resonance imaging Linden and Turner
isms of recovery in neurological conditions
g the motor system.

TIME FUNCTIONAL MAGNETIC
NANCE IMAGING NEUROFEEDBACK
TIENTS WITH MOTOR DISORDERS:
INSON’S DISEASE AND STROKE

idence for clinical effects of rt-fMRI-NF in
gical motor conditions is currently limited
from small proof-of-principle studies and

andomized trials [56].
o small studies have explored the feasibility
RI-NF in PD. Five patients in the early stages
Hoehn and Yahr stages I–III) were trained in
regulation of activity in the SMA over two
s, separated by 2–6 months [57]. As com-
with a control group engaged in motor
y without feedback, the patients in the
-NF group achieved higher activation levels,
improved motor fluidity (as assessed by

apping speed) and improved on the motor
the Unified PD Rating Scale, a standard scale
assessment of changes in motor symptoms
e. Because of the long interval between the

-NF sessions, patients were instructed to
e their imagery strategies regularly at home.
quirement for the home-based practice high-
ne of the challenges – as well as opportuni-
of rt-fMRI-NF; because of the cost and
ility of the equipment, only a relatively small
r of sessions will be available, which entails
d for appropriate ‘homework’ and therefore
transfer protocols. A study using a similar
l in a single patient (and three healthy
ers) confirmed feasibility of upregulation
although responses on a sequenced motor
re slower after the training [58]. Larger stud-
combinations of quantitative motor assess-

and standardized clinical scales are clearly
.
e open question is whether upregulation of
A is the most appropriate protocol for PD.
gh some studies have reported hypoactiva-
SMA in PD, others have reported hyperacti-
and regional differences in activation have
bserved within the SMA itself [56]. Further
ooking at the stage-dependence (and state-

ence) of SMA activation patterns and intra-
ferences, may therefore be needed in order to
the selection of targets for self-regulation
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g in PD. It may be the case that the optimal
l selection will vary across stages of the dis-
eyond the choice of the ‘correct’ target area
region), other parameters that can be varied
the level of desired upregulation and the
riate activation pattern. Furthermore, the
of target area can be influenced by the mech-
model of the intervention. In the case of PD,
ght aim to influence the regionsmost directly
by the pathophysiological process, such as

stantia nigra [26], or circuits that potentially
t compensatory mechanisms [59].
stroke, unlike PD, the lesion(s) that leads to
mpairment may occur in a variety of cortical
subcortical regions and brainstem and may
size. Thus, the choice of neural targets for rt-
F in order to improve motor impairment
s more difficult. Nevertheless, there are
f-principle studies using rt-fMRI-NF in stroke
y.
o chronic subcortical stroke patients with
ild upper limb motor impairment (Fugl–
scores of 55/66 and 60/66, where a score of
ll use of the upper limb) were trained over
essions per day for 3 days with rt-fMRI-NF
elf-chosen strategies to upregulate BOLD sig-
he ventral PMC. The stroke patients were able
gulate ventral PMC to a similar degree as
individuals and upregulation persisted

an fMRI task of motor imagery without feed-
mediately after training although visuo-
tracking behaviour was not consistently
ed [51].
another small feasibility study, four moder-
evere upper limb motor-impaired patients
rtical or cortical and subcortical first-ever
lesions (Fugl–Meyer scores of 13–28/66)
ook motor imagery-based rt-fMRI-NF focus-
imagining movement in the affected hand
e target in this case was ipsilesional primary
cortico-thalamic connectivity measures

than the single neural target approach of,
mple, the PMC. Three from four patients
le to upregulate ipsilesional cortical-subcort-
nnectivity successfully and maintain the
while imagining without feedback immedi-
ter the last rt-fMRI-NF training session. There
o behavioural performance measures under-
nd there were no clinical outcome measures
ed post rt-fMRI-NF training to test for clin-
ignificant improvements.
largest study using real-time neurofeed-
stroke recovery used an alternative but
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s in oxygenated hemoglobin [61,62
&

].
s were at least 12 weeks post their first-ever
with moderate-to-severe motor impairment
rage Fugl–Meyer score of 21). The PMC was
a single neural target region for rt-fNIRS-NF
x sessions of 20 min of imagery of distal
inger motor tasks over 2 weeks. The 10
patients who received ‘real’ neurofeedback
lesional PMC activation during imagery
significantly upregulate the oxygenated
lobin signal, whereas the 10 patients receiv-
am’ neurofeedback (irrelevant randomized
ignals) did not. Importantly, the level of rt-
F induced activation in PMC was corre-
ith an improvement in the finger (distal)
e of the Fugl–Meyer score, but not the more
al subscale suggesting an imagery task-
relationship between rt-fNIRS-NF and

l improvements. Taken together, the pre-
y evidence suggests that rt-fMRI-NF may
ul in improving clinical measures of motor
ment in stroke recovery. The neural mech-
ed regions or networks involved in stroke
y remain to be explored.

INING CHALLENGES AND FUTURE
TIONS

ng the ‘correct’ target region or connection
MRI-NF will likely differ between different
gical motor conditions. A framework for
ring possible targets might be enhanced
sidering each condition as a ‘network’ prob-
cent studies have analyzed network connec-
n a brain-wide level in PD patients and
ted motor symptoms to path-specific hypo-
andhyper involving basal ganglia, SMAand
ronto-parietal networks [63–65]. Similarly,
ke, there is now ample evidence to demon-
hat a focal lesion can lead to disruption of
tivity across the motor execution network
deed beyond [45,66–68]. This has led to
ing how to improve motor function by
vating higher motor targets that can then
impact on the damaged connections and/
nce healthy regions in order to compensate
our in the light of established damage
54

&

,57,62
&

].
s far, we have assumed that the ‘core’ net-
r self-regulation of brain activity is operative
PD and stroke. A recent meta-analysis of rt-
F to date suggested that this core network

d in rt-fMRI-NF independent of target region
d mainly the anterior insula and basal
[69]. If either or both of these regions are
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ed by PD or stroke, then success in using rt-
F might be compromised.
ewise, motor imagery is a common behav-
tool with which to self-regulate brain
especially in the motor network. It is
that motor imagery can be disrupted or

e chaotic after a stroke and PD [70–72] and
or motor imagery vividness is associated
sions in the left putamen (i.e. basal ganglia),
tral PMC and long association fibers link-
ieto-occipital regions with the dorsolateral
or and prefrontal areas [73]. Furthermore,
otor execution network connectivity can
in well-recovered stroke patients, the

imagery network connectivity may not
recover in synchrony [74]. Thus, motor
y brain networks may be disrupted in motor
ons and this might impact on the effective-
using motor imagery as a tool in rt-fMRI-
the contrary, there is some promising
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