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Abstract—This paper describes the ASPIRE reference archi-

tecture designed to tackle one major problem in this domain: the 

lack of a clear process and an open software architecture for the 

composition and deployment of multiple software protections on 

software applications. 
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I.  INTRODUCTION AND MOTIVATION 

     Software protection has been an intrinsic problem of soft-

ware engineering since software became a commercial prod-

uct. It is crucial to mitigate attacks such as reverse engineer-

ing, piracy, and tampering [1]. In general, software protection 

research aims at developing algorithms to protect the integrity 

of data and applications deployed on untrusted devices. Soft-

ware protection's scope spans a range of different heterogene-

ous research topics: obfuscation and cryptography [2], digital 

rights management [3], information hiding [4], reverse engi-

neering [5], compilers and code transformations [6], and dis-

tributed systems [7]. 

Recent trends increase end-user demand to use mobile de-
vices for a variety of applications that were until now limited to 
secured devices such as set-top boxes, online license servers, 
and desktops apps with USB dongles. The growing zoo of mo-
bile devices makes it inconvenient to require application-
specific security hardware, such as smart-cards or USB don-
gles: all offerings need to work on top of any (open) platform 
the user wants to use. Software-based software protection that 
can guarantee secure application execution has therefore be-
come utterly important. It can be a maker and a breaker in do-
mains like multi-screen mobile TV, software licensing, and 
credentials and sensitive data stored on mobile devices. To 
protect their assets, stakeholders in mobile devices, mobile 
services and mobile software need trustworthy and affordable 
software-based security solutions. 

In the European FP7 project ASPIRE [8], three leaders in 
security solutions team up with four academic partners. Gemal-
to is the world leader in the smart card business. SafeNet is the 
world leader in token-based software licensing. Nagra is the 
world's leading supplier of end-to-end security solutions for 
set-top box TV operators. All three of them are looking for 
ways to extend their product portfolios with more software-
based protections. Such software protections typically consist 
of components injected into software and of transformations 
applied to the original, non-protected software to invoke the 
protections. A non-trivial design problem is how to integrate 
multiple protections. With current tools, deploying software 

protections is either a cumbersome manual process or an “all or 
nothing” approach, where the use of one protection tool pre-
vents the use of complementary tools. For example, Metaforic 
is applied on the source code [9], with a mandatory finalization 
step on the binary that prevents any further protection tool from 
working. Cloakware requires extensive manual integration 
[10], making the implementation costs a substantial investment 
in time and effort, and often even requiring consultancy. The 
real world proves, however, that the required investment in 
security is typically underestimated, resulting in refusal to deal 
with required changes in the build process or not investing the 
time for understanding the available tools.  

This paper presents results of ASPIRE's R&D into a plugin-
based software protection tool chain and a corresponding soft-
ware architecture that support the combined deployment of a 
wide range of software protections developed largely inde-
pendently from each other. The protections can be deployed on 
software assets by means of source-code annotations, which 
greatly helps to increase the productivity of the software devel-
oper. We describe the considered security requirements, the 
ASPIRE software architecture designed to ease the integration 
and deployment of protections, and the ASPIRE Compiler Tool 
Chain (ACTC) designed to compose the protections. 

II. SECURITY ASSETS AND REQUIREMENTS 

The scope of the ASPIRE project entails protections against 
Man-At-The-End (MATE) attacks [11]. Their targets are assets 
embedded in natively compiled software stored and running on 
completely untrusted devices under full control of the attackers. 
Unless the vendors adequately protect their software, attackers 
(thank to tools such as disassemblers, de-compilers, and de-
buggers) have mostly complete access to the embedded assets. 
The considered assets are private or public and unique or glob-
al data, such as all kinds of cryptographic keys, credentials, and 
privacy-sensitive data; traceable code/data, such as water-
marks; as well as application code including software IP and 
security libraries and application execution, i.e., the functional 
behavior of an application, rather than its representation.  

Attackers can target the assets through static attacks, in 
which they study and manipulate code and data before the 
software is executed, or through dynamic attacks, in which 
they study and manipulate code and data during the software's 
execution. Hybrid attacks, that combine static and dynamic 
aspects, are possible as well. With respect to static techniques, 
ASPIRE considers attacks involving static structural code and 
data recovery methods, structural matching methods of multi-
ple binaries, and static tampering attacks. With respect to dy-
namic techniques, ASPIRE considers attacks involving com-
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munication channels (spoofing, sniffing, replay), fuzzing, de-
bugging, dynamic structure and data analysis, and dynamic 
tampering attacks such as code injection.   

Providing full protection against such attacks is impossible, 
as the attacker is assumed to have full access and control. Our 
goal is hence to delay an attacker, to increase his required in-
vestment for identifying an attack path, and to make it harder to 
exploit an identified path in a profitable manner. To that extent, 
it is necessary to combine multiple lines of defense: combina-
tions of many forms of protections that not only protect the 
original assets in the application, but also each other. In a 
sense, the correct deployment of a protection becomes an asset 
itself that needs just as much protection in order to resist de-
termined attackers. ASPIRE proposes five lines of defense: 
data hiding (data obfuscation and white-box crypto), code hid-
ing (code obfuscations, instruction set customization, server-
side execution, and on-the-fly code downloading), anti-
tampering (code guards and anti-debugging), remote attesta-
tion, and renewability. The latter denotes technique to generate 
not one, but multiple, renewed software instances. It includes 
spatial diversification to limit the scale at which an attack path 
can be exploited, and temporal diversification to limit the at-
tacker's window of opportunity to exploit an attack path. In an 
application, all the protections combined together should ideal-
ly protect all potential attack paths on all the embedded assets. 
As most forms of protection come with a significant run-time 
overhead and possibly with significant impact on the software 
development life cycle (SDLC), developers also have to trade 
off the provided protection for other criteria.  

In this scope, an initial set of requirements was elicited 
from three industrial use cases: a DRM library for Android's 
DRM framework, a software license manager for Android 
Dalvik apps, and a one-time password generator. The resulting 
requirements were then generalized to serve a wider list of ap-
plications. We specified three types of security requirements. 

Non-functional security requirements are properties the 
protected application must possess. They specify how the ap-
plication needs to behave and impose constraints on how the 
application needs to be protected. If the unprotected application 
does not meet them with respect to the embedded assets, the 
ASPIRE compilation infrastructure will need to ensure that the 
implementation is modified or compiled such that the protected 
application comprises these properties. The non-functional 
security requirements include confidentiality, integrity, priva-
cy, non-repudiation, and execution correctness.  

The validation of these requirements is challenging, as 
many requirements lack a commonly agreed validation meth-
odology. In the ASPIRE project, we try to combine attack 
modelling, software complexity metrics (incl. metrics to meas-
ure resilience against tools in the attacker's tool box), and secu-
rity audits by industry security experts to address this issue. 

Functional security requirements are security services 
that need to be provided by the application and its supporting 
ecosystem. With the latter, we define the complete system set-
up that includes a Trusted Entity. With this Trusted Entity, we 
capture the entity that hosts security services such as the re-
mote attestation verification, the distribution of updates, etc. In 
most cases, the Trusted Entity is controlled by the Application 

Vendor and its role is to ensure trustworthy execution of the 
ASPIRE-protected (client-side) application. Functional security 
requirements are system requirements that emerge from some 
security goals, and express which services need to be imple-
mented. If these services are not present in the original (unpro-
tected) application, the ASPIRE compilation infrastructure 
needs to inject them and enforce their deployment. These secu-
rity requirements are easy to validate, because the presence of 
the services in the application can easily be verified. Whereas 
non-functional security requirements can differ for multiple 
assets in the same application, the functional requirements are 
typically whole-application requirements.  

Software security assurance is the process of ensuring that 
software is developed and maintained to operate at a level of 
security that is consistent with the security goals and other re-
quirements of the SDLC. Hence, assurance security require-
ments describe activities during the entire SDLC to assure that 
the application is not subject to vulnerabilities. These require-
ments relate to the build process and the compilation infrastruc-
ture itself, in contrast to the previous two classes of require-
ments, which relate to the target application.  

One of the critical assurance security requirements in 
ASPIRE is the plug-in based nature of its ACTC. This stems on 
the one hand from the need to reuse existing public or proprie-
tary infrastructure where possible to lower the entry ticket price 
of software protection, but to support combining that infra-
structure with in-house developments on the other hand, to 
allow its users to differentiate themselves and to support securi-
ty through obscurity, which today remains popular in practice. 

Given the need for multiple lines of defense to protect mul-
tiple assets with different requirements, a protection tool chain 
clearly needs to support the composability of many protections, 
both at a fine-grained granularity for deploying multiple pro-
tections on the same code fragment or data structure, as on a 
coarse-grained granularity to apply multiple protections on the 
same application), and in functional compositions where one 
protection is applied to the code implementing another one. 

Our goal is hence to develop a protection tool chain that 
supports the integration of different protections developed by 
different partners in a plug-in fashion, and that facilitates their 
composed deployment through a unique interface consisting of 
source code annotations that mark the assets in the code, the 
threats on those assets, and the protections to be deployed. To 
achieve this goal, there is a clear need to define a reference 
protection architecture that documents how techniques operate 
and compose, and the common infrastructure they can build on. 
For that reason, the ASPIRE consortium investigated consider-
able effort in the ASPIRE Reference Architecture.  

III. THE ASPIRE REFERENCE ARCHITECTURE 

As a basis, we selected the multi-tier architecture structure 
depicted in Fig. 1. This captures the case where a multitude of 
client applications connect to a portal infrastructure, which 
manages the connection to a set of backend servers. The en-
semble of the portal infrastructure and backend servers is de-
noted as the ASPIRE security server. We adopt such infrastruc-
ture for the client-server communication of our network-based 



 

protections, and deploy this in parallel to the client-server 
communication that the original application might already use. 

A
S

P
IR

E
 P

o
rt

a
l

ASPIRE 
client a

ASPIRE 
client z

ASPIRE 
client c

ASPIRE 
client b

Application Service (optional)

ASPIRE backend-
service

ASPIRE backend-
service

ASPIRE backend-
service

ASPIRE security server

 

Fig. 1. ASPIRE multi-tier architecture: high-level view. 

This approach was selected for many reasons. Firstly, the 
co-existence of the ASPIRE client-server communication and 
the original client-server communication minimizes the impact 
on existing application services. This eases the real-world de-
ployment of protections in many scenarios, for example when 
time-to-market constraints are met by gradually deploying 
more protections over time. Additionally, this co-existence 
minimizes the dependencies between original client-server 
communications and ASPIRE communications. This is neces-
sary, because of the wide range of applications that ASPIRE 
targets, of which no a priori assumptions regarding their com-
munications can be exploited. The complete co-existence al-
lows the protections and the online security services to operate 
on applications that originally were offline applications, or in 
scenarios where the existing communication cannot be lever-
aged, e.g., when one-directional satellite communication serv-
ing live video cannot be exploited for remote attestation. Last 
but not least, the application service and the ASPIRE protec-
tion service may be the responsibility of different entities and 
may be running in different server infrastructure facilities. 

While we strive for minimal impact on the original client-
server communication, we also support interaction between the 
original server (if any) and the security services, through the 
ASPIRE portal. For example, the application server can ask an 
ASPIRE backend service to obfuscate a key for a particular 
protected client instance and to send that key. Another interest-
ing use of this interface is an application server requesting a 
trustworthiness status on particular clients, upon to let the serv-
er decide if and how to proceed with the original service.  

Secondly, a multi-tier architecture to support the ASPIRE 
protections was selected because its flexibility, scalability, and 
reusability. A portal service serves as a terminator for the se-
cure link between protected applications and the server-side; 
the individual protection services do not need to take the com-
munication protocol details into account. This portal would be 
a lightweight service that re-directs messages between protect-
ed applications and the relevant protection services. As such, 
protection services can be scaled onto different devices. This 
supports the adoption of the ASPIRE results in an industrial 
context. Additionally, this also facilitates concurrent develop-
ment of protection techniques within the ASPIRE consortium, 
as protection services can run completely independently and 
even be embodied in any given form, such as a script, a local 
process, or a service on a different physical machine – as long 

as the ASPIRE portal knows how to communicate with them. 
This logic abstracts the communication for the protection tech-
niques, as shown in Fig.2, to ease their individual development. 
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Fig. 2. ASPIRE architecture view on single client-server. 

To facilitate the communication between the client-side 
protection technique components and the corresponding server-
side support components via the ASPIRE portal (implemented 
on Nginx [12]), we introduce a special-purpose communication 
logic: the ASPIRE Client-side Communication Logic (ACCL), 
relying on curl native HTTP library [13] and on OpenSSL [14] 
to protect the communication from Man-in-the-Middle attacks.  

As for the protocol, the most important aspect is its high-
level behaviour, and in particular how different communica-
tions and services are initiated and invoked. From a practical 
point of view, the best approach would be one in which the 
individual protected applications take the initiative to query the 
portal, and where the server-side response then depends on a 
stateless computation. Indeed, this approach can support many 
business models as it easily scales due to its statelessness, and 
as it is independent of the client-side network infrastructure. 
For example, clients can easily communicate with an HTTP 
portal while being behind a firewall or while hopping between 
different networks such as 3G and different Wi-Fi networks. 

Along with the simple client-server interaction pattern, we 
also allow active bi-directional communication between the 
ASPIRE portal and the communication logic in protected client 
applications, by using WebSocket [15] . Using this technology, 
clients can initiate a channel with the ASPIRE portal, which 
the portal can use at any time during the lifetime of that chan-
nel to invoke client-side operations when it wants. 

Finally, the ACTC injects a unique ID into each generated 
instance of the software. The ASPIRE database keeps track of 
the valid IDs in use, such that the server can deliver the correct 
security services for each running instance. 

IV. THE ASPIRE TOOL CHAIN 

As shown in Fig. 3, the ACTC comprises (i) plug-ins that 
rewrite source code to deploy protections and that generate 
additional code to implement certain protections, (ii) a stand-
ard compiler and linker that can link in additional protection 
libraries such as the communication libraries discussed in the 
previous section, and (iii) plug-ins that rewrite all of the binary 
code. The ACTC produces a set of protected binaries and rele-
vant data for deploying the security services: one application 



 

for the client mobile device, and one (or more) for the server if 
applicable. Source-level plug-ins are implemented as rewrite 
rules for TXL [16]. They are invoked in a well-chosen order, 
with each of them taking as input and producing as output the 
(partially protected) software in the form of pre-processed C or 
C++ code. This facilitates the integration of new plug-ins. Bi-
nary-level plug-ins are developed as components of the open 
source link-time binary code rewriting framework Diablo [17]. 
In this framework, an internal representation of the application 
(a binary or shared library) and of the linked-in protection li-
braries is built, on which the different protection plug-ins are 
then applied in sequence, each of them again producing a com-
plete program representation. By letting each plug-in produce a 
full program representation available for manipulation by the 
next plug-in, we ensure that later protections can be deployed 
on protection components generated for earlier protections. 
Depending on their nature and synergies with other protections, 
some protections are better deployed during the source-level 
rewriting, during the binary-level rewriting, or in a combina-
tion of both. The ability to use any standard-compliant compil-
er, like GCC or LLVM, and the ability to integrate their own 
protection plug-ins are important assurance requirements of the 
project's industrial partners. 

 

Fig. 3. Abstract view of the ASPIRE Tool-Chain process. 

By means of well-known, standard compiler features such 
as pragmas and attributes, the ACTC offers a convenient meth-
od for developers to annotate and the assets in their software, to 
which the software protections will then be applied automati-
cally. This allows for a clean separation of software protections 
from the logic of the software application. The specification of 
the annotations will be published in 2016. The annotations are 
extracted from the source code before compilation, and passed 
to the link-time rewriter, which identifies the annotated code 
regions in the binary code by means of standard DWARF [18] 
debug information in the compiled object files. Again, this fa-
vours deployment and integration in the real world.  

The annotations and the ACTC JSON-based configuration 
features allow the ACTC's users to select which protections to 
apply where. Furthermore, the necessary configuration options 
are available to describe composability constraints. An ACTC 
super-user or developer can set the latter configuration once 
during the integration of his plug-ins, after which the ACTC 
will automatically inform ordinary tool chain users (i.e., appli-
cation developers) about impossible compositions of protec-
tions. This helps them to balance conflicting requirements and 
to make a trade-off taking into account composability and 
phase-ordering issues, as well as protection requirements. 

V. CONCLUSIONS AND FUTURE WORK 

We described the ASPIRE reference architecture, the un-
derlying requirements, and the ACTC to ease the composition 
and the deployment of software protections. Within the 
ASPIRE project, the application of the tool chain and the refer-
ence architecture has been validated successfully on three in-
dustrial user cases. Like the iterative design of the ASPIRE tool 
chain, the full ASPIRE architecture, which details how all 
ASPIRE protections operate and fit in the discussed reference 
architecture, is publicly available online [8].  

In the rest of the project, we will also validate the provided 
protection strength by means of security audits, and publicly 
demonstrate our contributions. We are also developing auto-
mated decision support to help users of the ACTC with the 
selection and deployment of the best combinations of protec-
tions, given their assets and SDLC constraints.  
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