

A Reference Architecture for Software Protection

Bjorn De Sutter
Ghent University

Belgium
 bjorn.desutter

@ugent.be

Paolo Falcarin
University of

East London

UK
falcarin@uel.ac.uk

Brecht Wyseur
NAGRA

 Switzerland
brecht.wyseur

@nagra.com

Cataldo Basile
Politecnico di

Torino, Italy

cataldo.basile@

polito.it

Mariano

Ceccato
Fondaz. Bruno

Kessler, Italy
ceccato@fbk.eu

Jerome

d’Annoville
Gemalto, France
jerome.d-annoville

@gemalto.com

Michael Zunke

SafeNet
Germany

 michael.zunke
@safenet-inc.com

Abstract—This paper describes the ASPIRE reference archi-

tecture designed to tackle one major problem in this domain: the

lack of a clear process and an open software architecture for the

composition and deployment of multiple software protections on

software applications.

Keywords— Security services, client-server architecture, soft-

ware protection tool chain, security requirements, composability

I. INTRODUCTION AND MOTIVATION

 Software protection has been an intrinsic problem of soft-

ware engineering since software became a commercial prod-

uct. It is crucial to mitigate attacks such as reverse engineer-

ing, piracy, and tampering [1]. In general, software protection

research aims at developing algorithms to protect the integrity

of data and applications deployed on untrusted devices. Soft-

ware protection's scope spans a range of different heterogene-

ous research topics: obfuscation and cryptography [2], digital

rights management [3], information hiding [4], reverse engi-

neering [5], compilers and code transformations [6], and dis-

tributed systems [7].

Recent trends increase end-user demand to use mobile de-
vices for a variety of applications that were until now limited to
secured devices such as set-top boxes, online license servers,
and desktops apps with USB dongles. The growing zoo of mo-
bile devices makes it inconvenient to require application-
specific security hardware, such as smart-cards or USB don-
gles: all offerings need to work on top of any (open) platform
the user wants to use. Software-based software protection that
can guarantee secure application execution has therefore be-
come utterly important. It can be a maker and a breaker in do-
mains like multi-screen mobile TV, software licensing, and
credentials and sensitive data stored on mobile devices. To
protect their assets, stakeholders in mobile devices, mobile
services and mobile software need trustworthy and affordable
software-based security solutions.

In the European FP7 project ASPIRE [8], three leaders in
security solutions team up with four academic partners. Gemal-
to is the world leader in the smart card business. SafeNet is the
world leader in token-based software licensing. Nagra is the
world's leading supplier of end-to-end security solutions for
set-top box TV operators. All three of them are looking for
ways to extend their product portfolios with more software-
based protections. Such software protections typically consist
of components injected into software and of transformations
applied to the original, non-protected software to invoke the
protections. A non-trivial design problem is how to integrate
multiple protections. With current tools, deploying software

protections is either a cumbersome manual process or an “all or
nothing” approach, where the use of one protection tool pre-
vents the use of complementary tools. For example, Metaforic
is applied on the source code [9], with a mandatory finalization
step on the binary that prevents any further protection tool from
working. Cloakware requires extensive manual integration
[10], making the implementation costs a substantial investment
in time and effort, and often even requiring consultancy. The
real world proves, however, that the required investment in
security is typically underestimated, resulting in refusal to deal
with required changes in the build process or not investing the
time for understanding the available tools.

This paper presents results of ASPIRE's R&D into a plugin-
based software protection tool chain and a corresponding soft-
ware architecture that support the combined deployment of a
wide range of software protections developed largely inde-
pendently from each other. The protections can be deployed on
software assets by means of source-code annotations, which
greatly helps to increase the productivity of the software devel-
oper. We describe the considered security requirements, the
ASPIRE software architecture designed to ease the integration
and deployment of protections, and the ASPIRE Compiler Tool
Chain (ACTC) designed to compose the protections.

II. SECURITY ASSETS AND REQUIREMENTS

The scope of the ASPIRE project entails protections against
Man-At-The-End (MATE) attacks [11]. Their targets are assets
embedded in natively compiled software stored and running on
completely untrusted devices under full control of the attackers.
Unless the vendors adequately protect their software, attackers
(thank to tools such as disassemblers, de-compilers, and de-
buggers) have mostly complete access to the embedded assets.
The considered assets are private or public and unique or glob-
al data, such as all kinds of cryptographic keys, credentials, and
privacy-sensitive data; traceable code/data, such as water-
marks; as well as application code including software IP and
security libraries and application execution, i.e., the functional
behavior of an application, rather than its representation.

Attackers can target the assets through static attacks, in
which they study and manipulate code and data before the
software is executed, or through dynamic attacks, in which
they study and manipulate code and data during the software's
execution. Hybrid attacks, that combine static and dynamic
aspects, are possible as well. With respect to static techniques,
ASPIRE considers attacks involving static structural code and
data recovery methods, structural matching methods of multi-
ple binaries, and static tampering attacks. With respect to dy-
namic techniques, ASPIRE considers attacks involving com-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219375106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

munication channels (spoofing, sniffing, replay), fuzzing, de-
bugging, dynamic structure and data analysis, and dynamic
tampering attacks such as code injection.

Providing full protection against such attacks is impossible,
as the attacker is assumed to have full access and control. Our
goal is hence to delay an attacker, to increase his required in-
vestment for identifying an attack path, and to make it harder to
exploit an identified path in a profitable manner. To that extent,
it is necessary to combine multiple lines of defense: combina-
tions of many forms of protections that not only protect the
original assets in the application, but also each other. In a
sense, the correct deployment of a protection becomes an asset
itself that needs just as much protection in order to resist de-
termined attackers. ASPIRE proposes five lines of defense:
data hiding (data obfuscation and white-box crypto), code hid-
ing (code obfuscations, instruction set customization, server-
side execution, and on-the-fly code downloading), anti-
tampering (code guards and anti-debugging), remote attesta-
tion, and renewability. The latter denotes technique to generate
not one, but multiple, renewed software instances. It includes
spatial diversification to limit the scale at which an attack path
can be exploited, and temporal diversification to limit the at-
tacker's window of opportunity to exploit an attack path. In an
application, all the protections combined together should ideal-
ly protect all potential attack paths on all the embedded assets.
As most forms of protection come with a significant run-time
overhead and possibly with significant impact on the software
development life cycle (SDLC), developers also have to trade
off the provided protection for other criteria.

In this scope, an initial set of requirements was elicited
from three industrial use cases: a DRM library for Android's
DRM framework, a software license manager for Android
Dalvik apps, and a one-time password generator. The resulting
requirements were then generalized to serve a wider list of ap-
plications. We specified three types of security requirements.

Non-functional security requirements are properties the
protected application must possess. They specify how the ap-
plication needs to behave and impose constraints on how the
application needs to be protected. If the unprotected application
does not meet them with respect to the embedded assets, the
ASPIRE compilation infrastructure will need to ensure that the
implementation is modified or compiled such that the protected
application comprises these properties. The non-functional
security requirements include confidentiality, integrity, priva-
cy, non-repudiation, and execution correctness.

The validation of these requirements is challenging, as
many requirements lack a commonly agreed validation meth-
odology. In the ASPIRE project, we try to combine attack
modelling, software complexity metrics (incl. metrics to meas-
ure resilience against tools in the attacker's tool box), and secu-
rity audits by industry security experts to address this issue.

Functional security requirements are security services
that need to be provided by the application and its supporting
ecosystem. With the latter, we define the complete system set-
up that includes a Trusted Entity. With this Trusted Entity, we
capture the entity that hosts security services such as the re-
mote attestation verification, the distribution of updates, etc. In
most cases, the Trusted Entity is controlled by the Application

Vendor and its role is to ensure trustworthy execution of the
ASPIRE-protected (client-side) application. Functional security
requirements are system requirements that emerge from some
security goals, and express which services need to be imple-
mented. If these services are not present in the original (unpro-
tected) application, the ASPIRE compilation infrastructure
needs to inject them and enforce their deployment. These secu-
rity requirements are easy to validate, because the presence of
the services in the application can easily be verified. Whereas
non-functional security requirements can differ for multiple
assets in the same application, the functional requirements are
typically whole-application requirements.

Software security assurance is the process of ensuring that
software is developed and maintained to operate at a level of
security that is consistent with the security goals and other re-
quirements of the SDLC. Hence, assurance security require-
ments describe activities during the entire SDLC to assure that
the application is not subject to vulnerabilities. These require-
ments relate to the build process and the compilation infrastruc-
ture itself, in contrast to the previous two classes of require-
ments, which relate to the target application.

One of the critical assurance security requirements in
ASPIRE is the plug-in based nature of its ACTC. This stems on
the one hand from the need to reuse existing public or proprie-
tary infrastructure where possible to lower the entry ticket price
of software protection, but to support combining that infra-
structure with in-house developments on the other hand, to
allow its users to differentiate themselves and to support securi-
ty through obscurity, which today remains popular in practice.

Given the need for multiple lines of defense to protect mul-
tiple assets with different requirements, a protection tool chain
clearly needs to support the composability of many protections,
both at a fine-grained granularity for deploying multiple pro-
tections on the same code fragment or data structure, as on a
coarse-grained granularity to apply multiple protections on the
same application), and in functional compositions where one
protection is applied to the code implementing another one.

Our goal is hence to develop a protection tool chain that
supports the integration of different protections developed by
different partners in a plug-in fashion, and that facilitates their
composed deployment through a unique interface consisting of
source code annotations that mark the assets in the code, the
threats on those assets, and the protections to be deployed. To
achieve this goal, there is a clear need to define a reference
protection architecture that documents how techniques operate
and compose, and the common infrastructure they can build on.
For that reason, the ASPIRE consortium investigated consider-
able effort in the ASPIRE Reference Architecture.

III. THE ASPIRE REFERENCE ARCHITECTURE

As a basis, we selected the multi-tier architecture structure
depicted in Fig. 1. This captures the case where a multitude of
client applications connect to a portal infrastructure, which
manages the connection to a set of backend servers. The en-
semble of the portal infrastructure and backend servers is de-
noted as the ASPIRE security server. We adopt such infrastruc-
ture for the client-server communication of our network-based

protections, and deploy this in parallel to the client-server
communication that the original application might already use.

A
S

P
IR

E
 P

o
rt

a
l

ASPIRE
client a

ASPIRE
client z

ASPIRE
client c

ASPIRE
client b

Application Service (optional)

ASPIRE backend-
service

ASPIRE backend-
service

ASPIRE backend-
service

ASPIRE security server

Fig. 1. ASPIRE multi-tier architecture: high-level view.

This approach was selected for many reasons. Firstly, the
co-existence of the ASPIRE client-server communication and
the original client-server communication minimizes the impact
on existing application services. This eases the real-world de-
ployment of protections in many scenarios, for example when
time-to-market constraints are met by gradually deploying
more protections over time. Additionally, this co-existence
minimizes the dependencies between original client-server
communications and ASPIRE communications. This is neces-
sary, because of the wide range of applications that ASPIRE
targets, of which no a priori assumptions regarding their com-
munications can be exploited. The complete co-existence al-
lows the protections and the online security services to operate
on applications that originally were offline applications, or in
scenarios where the existing communication cannot be lever-
aged, e.g., when one-directional satellite communication serv-
ing live video cannot be exploited for remote attestation. Last
but not least, the application service and the ASPIRE protec-
tion service may be the responsibility of different entities and
may be running in different server infrastructure facilities.

While we strive for minimal impact on the original client-
server communication, we also support interaction between the
original server (if any) and the security services, through the
ASPIRE portal. For example, the application server can ask an
ASPIRE backend service to obfuscate a key for a particular
protected client instance and to send that key. Another interest-
ing use of this interface is an application server requesting a
trustworthiness status on particular clients, upon to let the serv-
er decide if and how to proceed with the original service.

Secondly, a multi-tier architecture to support the ASPIRE
protections was selected because its flexibility, scalability, and
reusability. A portal service serves as a terminator for the se-
cure link between protected applications and the server-side;
the individual protection services do not need to take the com-
munication protocol details into account. This portal would be
a lightweight service that re-directs messages between protect-
ed applications and the relevant protection services. As such,
protection services can be scaled onto different devices. This
supports the adoption of the ASPIRE results in an industrial
context. Additionally, this also facilitates concurrent develop-
ment of protection techniques within the ASPIRE consortium,
as protection services can run completely independently and
even be embodied in any given form, such as a script, a local
process, or a service on a different physical machine – as long

as the ASPIRE portal knows how to communicate with them.
This logic abstracts the communication for the protection tech-
niques, as shown in Fig.2, to ease their individual development.

Protected Application

Application server

A
SP

IR
E

 p
o

rt
a

l

A
C

C
L

Application logic

Protection service Z Protection technique Z

Protection service B Protection technique B

Protection technique AIDi

Fig. 2. ASPIRE architecture view on single client-server.

To facilitate the communication between the client-side
protection technique components and the corresponding server-
side support components via the ASPIRE portal (implemented
on Nginx [12]), we introduce a special-purpose communication
logic: the ASPIRE Client-side Communication Logic (ACCL),
relying on curl native HTTP library [13] and on OpenSSL [14]
to protect the communication from Man-in-the-Middle attacks.

As for the protocol, the most important aspect is its high-
level behaviour, and in particular how different communica-
tions and services are initiated and invoked. From a practical
point of view, the best approach would be one in which the
individual protected applications take the initiative to query the
portal, and where the server-side response then depends on a
stateless computation. Indeed, this approach can support many
business models as it easily scales due to its statelessness, and
as it is independent of the client-side network infrastructure.
For example, clients can easily communicate with an HTTP
portal while being behind a firewall or while hopping between
different networks such as 3G and different Wi-Fi networks.

Along with the simple client-server interaction pattern, we
also allow active bi-directional communication between the
ASPIRE portal and the communication logic in protected client
applications, by using WebSocket [15] . Using this technology,
clients can initiate a channel with the ASPIRE portal, which
the portal can use at any time during the lifetime of that chan-
nel to invoke client-side operations when it wants.

Finally, the ACTC injects a unique ID into each generated
instance of the software. The ASPIRE database keeps track of
the valid IDs in use, such that the server can deliver the correct
security services for each running instance.

IV. THE ASPIRE TOOL CHAIN

As shown in Fig. 3, the ACTC comprises (i) plug-ins that
rewrite source code to deploy protections and that generate
additional code to implement certain protections, (ii) a stand-
ard compiler and linker that can link in additional protection
libraries such as the communication libraries discussed in the
previous section, and (iii) plug-ins that rewrite all of the binary
code. The ACTC produces a set of protected binaries and rele-
vant data for deploying the security services: one application

for the client mobile device, and one (or more) for the server if
applicable. Source-level plug-ins are implemented as rewrite
rules for TXL [16]. They are invoked in a well-chosen order,
with each of them taking as input and producing as output the
(partially protected) software in the form of pre-processed C or
C++ code. This facilitates the integration of new plug-ins. Bi-
nary-level plug-ins are developed as components of the open
source link-time binary code rewriting framework Diablo [17].
In this framework, an internal representation of the application
(a binary or shared library) and of the linked-in protection li-
braries is built, on which the different protection plug-ins are
then applied in sequence, each of them again producing a com-
plete program representation. By letting each plug-in produce a
full program representation available for manipulation by the
next plug-in, we ensure that later protections can be deployed
on protection components generated for earlier protections.
Depending on their nature and synergies with other protections,
some protections are better deployed during the source-level
rewriting, during the binary-level rewriting, or in a combina-
tion of both. The ability to use any standard-compliant compil-
er, like GCC or LLVM, and the ability to integrate their own
protection plug-ins are important assurance requirements of the
project's industrial partners.

Fig. 3. Abstract view of the ASPIRE Tool-Chain process.

By means of well-known, standard compiler features such
as pragmas and attributes, the ACTC offers a convenient meth-
od for developers to annotate and the assets in their software, to
which the software protections will then be applied automati-
cally. This allows for a clean separation of software protections
from the logic of the software application. The specification of
the annotations will be published in 2016. The annotations are
extracted from the source code before compilation, and passed
to the link-time rewriter, which identifies the annotated code
regions in the binary code by means of standard DWARF [18]
debug information in the compiled object files. Again, this fa-
vours deployment and integration in the real world.

The annotations and the ACTC JSON-based configuration
features allow the ACTC's users to select which protections to
apply where. Furthermore, the necessary configuration options
are available to describe composability constraints. An ACTC
super-user or developer can set the latter configuration once
during the integration of his plug-ins, after which the ACTC
will automatically inform ordinary tool chain users (i.e., appli-
cation developers) about impossible compositions of protec-
tions. This helps them to balance conflicting requirements and
to make a trade-off taking into account composability and
phase-ordering issues, as well as protection requirements.

V. CONCLUSIONS AND FUTURE WORK

We described the ASPIRE reference architecture, the un-
derlying requirements, and the ACTC to ease the composition
and the deployment of software protections. Within the
ASPIRE project, the application of the tool chain and the refer-
ence architecture has been validated successfully on three in-
dustrial user cases. Like the iterative design of the ASPIRE tool
chain, the full ASPIRE architecture, which details how all
ASPIRE protections operate and fit in the discussed reference
architecture, is publicly available online [8].

In the rest of the project, we will also validate the provided
protection strength by means of security audits, and publicly
demonstrate our contributions. We are also developing auto-
mated decision support to help users of the ACTC with the
selection and deployment of the best combinations of protec-
tions, given their assets and SDLC constraints.

ACKNOWLEDGMENT AND NOTE

The ASPIRE project has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 609734. During the course of
the project, Gemalto acquired SafeNet; the problem to solve
and the selected use cases remained unchanged.

REFERENCES

[1] C. Collberg, J. Nagra. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Addison
Wesley, 2009.

[2] S. Garg, S., C. Gentry, et al. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In proc. IEEE Annual
Symposium on Foundations of Computer Science, 2013, 40–49.

[3] W. Zeng, H. Yu, and C.-Y. Lin, eds. Multimedia security technologies
for digital rights management. Vol. 18. Academic Press, 2011.

[4] Brecht Wyseur, "White-box cryptography: hiding keys in software."
NAGRA Kudelski Group (2012).

[5] T.E. Dube, B.D. Birrer, et al. Hindering Reverse Engineering: Thinking
Outside the Box, IEEE Security & Privacy, 2008, Vol 6(2), 58–65

[6] B. Coppens, B. De Sutter, J. Maebe, Feedback-Driven Binary Code
Diversification, ACM Transactions on Architecture and Code
Optimization, Vol. 9 Nr. 4, Art. 24, January 2013.

[7] R. Scandariato, Y. Ofek, P. Falcarin, and M. Baldi, “Application-
Oriented Trust in Distributed Computing,” in Proc. 2008 Third Int'l
Conf. on Availability, Reliability and Security. IEEE, 2008, 434–439.

[8] EU FP7 ASPIRE project (Advanced Software Protection: Integration,
Research and Exploitation). Online at http://www.aspire-fp7.eu/

[9] Metaforic product information.Online at http://metaforic.com/products .

[10] Irdeto information about ActiveCloak. Online at
http://irdeto.com/products/products.html

[11] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski. "Guest Editors'
Introduction: Software Protection." Software, IEEE 28(2), 2011: 24–27.

[12] Nginx web server, On-line at http://nginx.org

[13] Curl open source library, On-line at http://curl.haxx.se

[14] OpenSSL project. On-line at https://www.openssl.org/

[15] Internet Engineering Task Force (IETF), “The WebSocket Protocol”,
RFC 6455, December 2011, http://tools.ietf.org/html/rfc6455

[16] J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow, "Txl: A rapid
prototyping system for programming language dialects", Computer
Languages, vol. 16, no. 1, pp. 97–107, 1991.

[17] Diablo project. On-line at http://diablo.elis.ugent.be/

[18] The DWARF Debugging Standard. On-line at http://dwarfstd.org/

