

A SCALABLE DESIGN FRAMEWORK FOR VARIABILITY MANAGEMENT

IN LARGE-SCALE SOFTWARE PRODUCT LINES

MUHAMMAD GARBA

MARCH 2016

A thesis submitted in partial fulfilment of the requirements of the

University of East London for the Degree of Doctor of Philosophy

ii

Abstract

Variability management is one of the major challenges in software product line

adoption, since it needs to be efficiently managed at various levels of the

software product line development process (e.g., requirement analysis,

design, implementation, etc.).

One of the main challenges within variability management is the handling and

effective visualization of large-scale (industry-size) models, which in many

projects, can reach the order of thousands, along with the dependency

relationships that exist among them. These have raised many

concerns regarding the scalability of current variability management tools and

techniques and their lack of industrial adoption.

To address the scalability issues, this work employed a combination of

quantitative and qualitative research methods to identify the reasons behind

the limited scalability of existing variability management tools and

techniques. In addition to producing a comprehensive catalogue of existing

tools, the outcome form this stage helped understand the major limitations of

existing tools.

Based on the findings, a novel approach was created for managing variability

that employed two main principles for supporting scalability. First,

the separation-of-concerns principle was employed by creating multiple views

of variability models to alleviate information overload. Second, hyperbolic

trees were used to visualise models (compared to Euclidian space trees

traditionally used). The result was an approach that can represent models

encompassing hundreds of variability points and complex relationships. These

concepts were demonstrated by implementing them in an existing variability

management tool and using it to model a real-life product line with over a

thousand variability points.

Finally, in order to assess the work, an evaluation framework was designed

based on various established usability assessment best practices and

standards. The framework was then used with several case studies to

benchmark the performance of this work against other existing tools.

iii

Acknowledgements

I would like to thank Dr. Rabih Bashroush, my Director of Studies, Reader in

Distributed Systems and Software Engineering, School of Architecture,

Computing and Engineering (ACE), University of East London, for his

intellectual guidance and constant support that has led to the completion of

this thesis. Thanks also to my second supervisor, Dr. Usman Naeem, for his

positive feedback and assistance in this research.

I am grateful to all people who provided their valuable insight to me, at

meetings, or via email. I am particularly thankful to Dr. Adel Noureddine and

Dr. Rick Rabiser for their incisive feedback. Thank you, my colleagues in the

Research Centre, School of Architecture Computing and Engineering, for the

many discussions that have contributed to my work in this thesis.

Finally, a special thanks to Alh. Wada Sani, for his moral and financial

support. My sincere gratitude to my family and friends for their constant caring

and support– this work would have not been possible without their sustained

understanding.

iv

Contents

Abstract .. ii

Acknowledgements ... iii

List of Tables ... ix

Glossary .. x

1 Introduction ... 1

1.2 Problem Statement .. 6

1.3 Research Context .. 8

1.4 Research Aims .. 10

1.5 Research Questions .. 10

1.6 Research Methodology .. 11

1.7 Summary of Contributions ... 13

1.8 Thesis Structure .. 16

1.9 Bibliographical Notes ... 19

PART I: STATE OF THE ART ... 20

2 Literature Review Methodology ... 21

2.1 Introduction .. 21

2.2 Research Method .. 22

2.3 Data Extraction Results ... 35

3 Existing Variability Management Tools in Software Product Lines 44

3.1 Introduction .. 44

3.2 Variability Management ... 45

3.3 Variability Management Tools in Software Product Lines 48

3.4 Commercial Tools and Tool Adoption in Industry 50

3.5 Summary ... 55

4 Critical Analysis of Existing Approaches ... 57

4.1 Introduction .. 57

4.2 Key Characteristics of the Different Tools .. 59

4.3 Quality of the Research Conducted in the Reported Approaches 75

4.4 The Context of Research ... 81

4.5 Main Challenges Faced by Current Product Line Management (PLM)

Tools 83

4.6 Summary ... 94

PART II: MUSA 1 Vs MUSA 2 ... 97

5 Theoretical Foundation of MUSA ... 98

5.1 Introduction .. 98

v

5.2 Backgrounds and Motivation .. 99

5.3 Concept of Multitouch Technology ... 100

5.4 MUSA Theoretical Background .. 102

5.5 MUSA Technical Background .. 104

5.6 Implementation of the Earlier Version of MUSA Tool 106

5.7 Screenshots and Descriptions of the MUSA Tool Version One 110

5.8 Summary ... 113

6 Musa Version 2 ... 114

6.1 Introduction .. 114

6.2 The Musa Tool ... 115

6.3 Functionality of MUSA Using Case Studies ... 117

6.4 New Version of MUSA as Compared to Earlier Version 129

6.5 Summary ... 131

PART III: VALIDATION ... 132

7 Variability Management Evaluation Benchmark ... 133

7.1 Introduction .. 133

7.2 Methodology .. 133

7.3 Related Works ... 135

7.4 Benchmark .. 136

7.6 Setting up of the Evaluation ... 146

7.7 Summary ... 148

8 Case Studies and Experimental Evaluation of the Tools 149

8.1 Introduction .. 149

8.2 Case Studies ... 149

8.3 Results .. 151

8.4 Discussion, Lessons Learned and Recommendations 162

8.5 Summary ... 166

PART IV: ... 168

CONCLUSION AND FUTURE WORK... 168

9 Conclusions, Contributions, and Future Work ... 169

9.1 Conclusion ... 169

9.2 Review of Contributions ... 172

9.3 Future Work ... 176

APPENDES .. 196

Appendix A ... 197

Appendix B ... 224

vi

Appendix C ... 240

vii

List of Figures

Figure 2.1: Systematic literature review process ... 23

Figure 2.2: SLR review protocol process ... 24

Figure 2.3: Study selection process ... 29

Figure 2.4: Percentage of each publication type .. 37

Figure 2.5: Distribution of primary studies over time .. 37

Figure 2.6: Gartner Hype Cycle reproduced based on (Linden and Fenn, 2003) 38

Figure 2.7: Phrase Map of studies published between 1997-2006 40

Figure 2.8: Phrase Map of studies published between 2007-2015 40

Figure 2.9: Summary of SLR review process... 40

Figure 3.1: Variability Meta-model for representing concepts in variability 46

Figure 4.1: Breakdown of tools based on the type of notation supported 61

Figure 4.2: Number of tools supporting each visualisation type 62

Figure 4.3: Number of views per tool for tools with more than one view 70

Figure 4.4: Tools with various textual notations ... 71

Figure 4.5: Frequency analysis of quality scores for each question 77

Figure 4.6: Distribution of total quality scores .. 77

Figure 4.7: Frequency analysis of scores for each quality attribute 79

Figure 4.8: Research context of primary studies .. 82

Figure 4.9: Relevance of primary studies .. 83

Figure 5.1: Theoretical Foundation of MUSA ... 105

Figure 5.2: MUSA designed interface on MS-Surface showing the hierarchical view

 .. 108

Figure 5.3: MUSA designed interface on Windows 7 showing the hierarchical view

 .. 109

Figure 5.4: Main application window after successful log in 110

Figure 5.5: Options menu to load a tree .. 111

Figure 5.6: Viewing details of a selected feature ... 111

Figure 5.7: Click Edit button to start editing ... 112

Figure 5.8: Mandatory and optional feature distinction .. 112

Figure 6.1: Description of MUSA’s architecture ... 116

Figure 6.2: A new feature from scratch .. 118

Figure 6.3: Adding a name for the new feature .. 119

Figure 6.4: Select the Add button122

Figure 6.5: Type a name and select its type .. 120

Figure 6.6: Sub-features of Test Feature- TF1-TF9 ... 120

Figure 6.7: Medium scale-size model .. 121

Figure 6.8: MUSA’s main browser View .. 122

Figure 6.9: The search process in MUSA .. 125

Figure 6.10: The feature properties window .. 126

Figure 6.11: MUSA’s dependency view ... 128

Figure 6.12: Generic_Product_Code_Parameter feature is mutually dependent on

Parameters 8-19, Production Mode and Product Type features 128

Figure 6.13: Mutually exclusive relationships between features 129

Figure 7.1: The quality attributes used .. 137

Figure 8.1: Understandability of very small-scale size model 154

Figure 8.2: Understandability of different scale size .. 155

Figure 8.3: Learnability of very small-scale size model .. 156

file:///C:/Users/Muhammad/Dropbox/Thesis%20Final%20Draft/Thesis%20Final_draft.docx%23_Toc446966210

viii

Figure 8.4: Operability of very small-scale size models ... 157

Figure 8.5: Scalability measure of various sample sizes .. 160

Figure A1: FeatureIDE .. 241

Figure A2: FAMILIAR .. 241

Figure A3: CVM Tool ... 242

Figure A4: CaptainFeature .. 242

Figure A5: S2T2 .. 243

Figure A6: Odyssey ... 243

Figure A7: PLUM ... 244

Figure A8: MUSA .. 244

Figure A9: Pure::variants ... 245

ix

List of Tables

Table 2.1: Electronic databases used for searching for primary studies 27

Table 2.2: Quality assessment criteria ... 30

Table 2.3: Studies included in the final review ... 31

Table 2.4: Studies excluded in the final review .. 33

Table 2.5: Data extraction form ... 34

Table 3.1: Identified tools with their year of introduction .. 49

Table 4.1: Identified tools with assigned ID and their technical details 58

Table 4.2: Tools with FODA-like visual notations ... 63

Table 4.3: Tools with file Tree-like visualisation ... 65

Table 4.4: Tools with Graph, Logic Diagrams, UML and Hyperbolic Tree

visualisations ... 68

Table 4.5: Tools with Code-like textual notations ... 71

Table 4.6: Tools with XML-based textual notations ... 72

Table 4.7: Tools with code based textual notations ... 73

Table 4.8: Results of the quality assessment of the primary studies 76

Table 4.9: Quality attributes addressed by studies .. 78

Table 4.10: Identified tools with the assessment summary results........................... 80

Table 4.11: Research context of the primary studies ... 81

Table 4.12: Summary results of VM tools challenges .. 93

Table 6.1: Comparisons between MUSA1 and MUSA 2 .. 130

Table 7.1: Ordinal scale type ... 138

Table 7.2: Tools description .. 143

Table 8.1: Usability of very small-scale size model .. 153

Table 8.2: Usability of different scale size .. 154

Table 8.3: Scalability measure .. 159

Table 8.4: Performance measure .. 161

Table 8.5: Integration measurement .. 161

Table 8.6: Summary results of the evaluation .. 166

x

Glossary

ASADAL A System Analysis and Design Aid tooL

BVR Base-Variation-Resolution

CASE Computer-Aided Software Engineering

ConIPF Configuration in Industrial Product Families

CPP C-preprocessor

DOORS Rational Dynamic Object Oriented Requirements System

DOPLER Decision Oriented Product Line Engineering for Effective Re-use

EC Exclusion Criteria

EMF Eclipse Modelling Framework

EWSA European Workshop on Software Architecture

FODA Feature Oriented Domain Analysis

FORM Feature Oriented Reuse Method

GEMS Generic Eclipse Modelling Framework

GMF Graphical Modeling Framework

HCI Human Computer Interaction

IC Inclusion Criteria

ISMT4SPLs Integrated Software Management Tool for Adopting Software Product

Lines

LVAT Linux Variability Analysis Tools

MUSA Multitouch Variability Modelling Solution for Software Product Lines

NUI Natural User Interface

OVM Orthogonal Variability Model

PLM Product Line Management

PLUSEE Product Line UML-Based Software Engineering Environment

RCP Rich Client Platform

RSEB Reuse-Driven Software Engineering Business

SLR Systematic Literature Review

SPL Software Product Line

xi

SPLC Software Product Line Conference

SPLE Software Product Line Engineering

SPLOT Software Product Lines Online Tools

SXFM Simple XML Feature Model

UML Unified Modelling Language

VaMoS Workshop on Variability Modelling of Software Intensive Systems

VARMA VARiability Modelling and Analysis

VisPLE International Workshop on Visualisation in Software Product Line

Engineering

VM Variability Management

VP Variation Points

WICSA Working International Conference on Software Architecture

WPF Windows Presentation Foundation

XML Extensible Markup Language

XSL EXtensible Stylesheet Language

1

Chapter 1

Introduction

Software Product Line Engineering (SPLE) is a paradigm of software

engineering for creating a portfolio or a collection of similar software products

with variations in their features and functions. The products can be software,

such as home automation system, as well as systems with software inside.

Typical example of these include; airplanes, automobiles, ships, cameras,

mobile phones, computers and tablets, among others (Krueger, 2007).

The SPLE technique provides a systematic way to reuse software assets.

These assets are the software artefacts or resources associated with your

products. The artefacts include, but are not limited to requirements analysis,

design specifications, software implementation, configuration, test plans, test

cases, etc. The assets are then engineered to be shared across the entire

product line, i.e., to be used in multiple products. Therefore, SPLE is a

technique that optimizes the reuse of existing software assets by creating

multiple applications that share many features, while still exhibiting certain

differences (Clements and Northrop, 2002, K. C. Kang et al., 2002). SPLE

allows for the planned reuse of artefacts among the software systems under

development.

2

Some of the key advantages of Software Product Line (SPL) development

over “one at a time” system development include: productivity gains (the core

assets and architecture are reused), decreased time-to-market of products,

large-scale productivity, low-cost production, increased product quality and

reliability, and increased customer satisfaction (Clements and Northrop,

2001).

Over the last two and a half decades, SPLE has increasingly gained the

attention of researchers and practitioners alike. This is due to the potential

economic advantages and business competitiveness the SPLE process can

bring (Clements and Northrop, 2002, Van der Linden et al., 2007). The

benefits can range from cutting the development cost and increasing software

quality, to enabling mass customisation, market dominance, and reduced time

to market (Clements and Northrop, 2002, Pohl et al., 2005).

In traditional software development, individual software systems are

developed from scratch, i.e., one software at a time. Typical software

development process requires going through stages such as requirements,

analysis, design, implementation and testing to be performed. In contrast,

SPLE is centered around multiple developments of similar software systems

from a common core asset (Clements and Northrop, 2002, Pohl et al., 2005).

This is achieved by explicitly capturing the commonalities and variabilities in

the family of systems that forms the product line (Gomaa, 2005).

In addition, the market benefits encourage both, the software as well as the

hardware industry, to recognise the significance of transitioning from single

3

software development to a product line approach. Various terminologies are

used to refer to SPL, such as software product families, system families, or

family of systems.

The SPLE process (Pohl et al., 2005, Bachmann and Clements, 2005)

involves studying and managing the common and varied features of the

different product line members, a process usually referred to as domain

engineering or development for reuse. Core (shared) assets – e.g.,

requirements, architecture, code, test cases – are then used as a basis to

derive products from the product line, a process usually referred to as

application engineering or development with reuse.

Correspondingly, defining and managing commonalities and variability in

software product lines is widely referred to as variability management and is a

key step of the SPL engineering process (Van Gurp et al., 2001). The

variability management process guides the construction of product line

variability models.

A lot of work has been conducted in the area which resulted in many

approaches including various techniques, methods, and tools. Typical

Examples of these include early methods: FODA (Kang et al., 1990) (Feature

Oriented Domain Analysis) for discovering and identification of prominent

distinctive features of software systems in a domain as well as presenting

commonalities among related software systems. FORM (Kang et al., 1998)

(Feature Oriented Reuse Method) a method that searches and captures

4

common and different features of an application and using the analysis results

to develop domain architecture and components.

Others are, FeatRSEB (Griss et al., 1998) (combination of the FODA method

and the Reuse-Driven Software Engineering Business method (RSEB)

(Jacobson et al., 1997)), this method includes domain engineering and feature

modelling into RSEB by extending the original feature diagram in FODA into a

network of features linked together using a unified modelling language (UML)

refinements. The method allows explicit representation of variation points.

Other approaches are: Decision-oriented modelling technique (Atkinson et al.,

2002), in which a set of questions (variation points) are described and a set of

possible answers or decisions to be choose from. This method offers

invaluable guidance to the development of product line variants using UML

within a Model Driven Architecture.

Furthermore, OVM (Pohl et al., 2005) (Orthogonal Variability Model) contains

the description of variation points (a representation of variability subject from

which possible selection can be made), variants (an identification of a single

option of variation point), and variability dependencies (constraints on variants

selection) and models the variability as a separate concern in a specific OVM

notations. ConIPF techniques pioneer by Bosch et al (Van Gurp et al., 2001),

which uniformly models variability in all abstraction layers of product families,

i.e. in the features, the architecture and component implementation layers.

Also, a number of tools evolved such as PLUSEE (Gomaa and Shin, 2007)

(Product Line UML Based Software Engineering Environment), provide an

5

automated product line engineering tool where a multiple view model of the

product line architecture and components are developed and stored in a

product line repository. Feature Mapper (Heidenreich, 2009), an eclipse plug-

in software product line tool that provides support for mapping features from

feature models to subjective modelling artefacts that are expressed by using

an Ecore-based languages such as UML2 and DSLs. DOPLER meta-tool

(Dhungana et al., 2011) (Decision Oriented Product Line Engineering for

Effective Re-use) supports variability modelling that helps define variability of

core assets, such as features, architectural elements or resources.

View Infinity (Stengel et al., 2011), is a Zoomable Interface for Feature-

Oriented Software Development. This tool offers seamless and semantic

zooming from the feature model level to file structure and the source code

level of different abstraction layers of SPL. ISMT4SPLs (Park et al., 2012) is

an Integrated Software Management Tool for Adopting Software Product

Lines that can provide traceability among the artefacts created at domain

engineering and application engineering stages.

BigLever Gears (BigLever), a commercial tool that allows defining arbitrary

reusable software assets and a product feature profile that describes products

in terms of features. Gears can be tailored to different environments with

parameter sets representing different kinds of variability. Pure::Variant

(Levent V, 1998, Beuche, 2008), is a tool that supports variant management

and product configuration based on feature models and has a strong focus on

interoperability and extensibility, among others. Further information and a

6

good overview of existing modelling approaches can be found in Czarnecki et

al. (Czarnecki et al., 2012), (Chen et al., 2009) and Sinnema et al. (Sinnema

and Deelstra, 2007).

However, surprisingly, very few of these approaches have actually made it to

industry. These are the BigLever Gears and Pure::Variants, and both of these

tools/companies were university spin-outs based on the work of two PhD

students in America and German respectively. A recent study shown that

71.43% of these approaches have never been evaluated against industrial

settings (Chen and Ali Babar, 2011).

1.2 Problem Statement

Variability models define the commonalities and variability of the product line

from a problem space (e.g., features, decisions, or variation points) and a

solution space (e.g., the reusable assets or variants) perspective along with

the relationships that exist between these two spaces and among the

elements in these spaces. Example of relationships include exclusivity (when

two features cannot exist in one product at the same time); inclusivity (when

the existence of one feature depends on another); and alternatives (when only

one of a number of alternative features can be supported), to name a few.

Variability models tend to be very large in size, in many cases comprising

thousands of features, and complex in nature due to the myriad of

relationships that could exist among the features. This makes the construction

of variability models manually a very tedious and error-prone process.

7

Accordingly, one of the major challenges within variability models of large-

scale (industry-size) is the handling and effective visualisation of the models,

which usually encompass a very large number of variation points as well as

the dependency relationships that exist among them (Bashroush, 2010,

Bashroush et al., 2011, Botterweck et al., 2008, Nestor et al., 2007, Pleuss

and Botterweck, 2012, Heuer et al., 2010). Product line developers are facing

problems with dependency management within variability models. An

excessive amount of time and effort is being spent on fixing dependencies to

ensure valid derivation of products (Berger et al., 2013, Sinnema et al., 2006,

Daizhong and Shanhui, 2009).

However, for more than two decades, numerous variability management tools

and techniques have been proposed and introduced from both academia and

the industry. The main goal of all these research works is to help practitioners

in the industry deal with variability management-related complexities (Chen

and Babar, 2010, Sinnema and Deelstra, 2007). In spite of all these significant

efforts, most of these approaches do not scale well when visualizing large-

scale variability models, besides, they offer limited or no mechanism for

managing dependency relationships that exist within the models. These have

raised many concerns regarding the feasibility and scalability of current

variability management tools and techniques.

As such, there has been an increasing demand for focus on making variability

management tools and techniques more scalable to handle the complexity of

real world industrial product lines (Chen and Babar, 2009).

8

The key scalability challenges are summarised below:

 Challenge 1: Creating and visualising of large scale and complex

product line models (industry size models). Currently, existing

approaches focus on ad hoc software product line variability, and often

do not fully address real life product line variability required by SPL

practitioners.

 Challenge 2: Visualising of hundreds of variants and their variation

points in a large scale product line model.

 Challenge 3: Defining and visualising of constraints and dependency

relationships (such as variation point to variation point, variant to

variation point, or variant to variant) in a large scale product line model.

 Challenge 4: Proper arrangement of constraints and dependency

relationships for better visualisation.

 Challenge 5: Effective visualisation of the effect of constraints and

dependency relationships such as (inclusivity, alternativeness, or

multiplicity).

 Challenge 6: Clear information to differentiate as to whether a feature

is mandatory, optional, or alternative.

1.3 Research Context

This thesis investigated the reasons behind the lack of scalability in current

variability management tools and techniques. Using a rigorous approach, we

have examined the types of tools developed and the characteristics of these

tools (visualisation techniques deployed, platform used, interoperability, etc.),

9

in order to understand the main challenges of the problem. We have also

explored the limitations faced by the current Product Line Management (PLM)

tools and techniques.

The overall goal of this research is to improve the scalability of modelling

variability by employing the idea of separation-of-concerns design principle, in

order to show how the dependency relationships (such as variation point to

variation point, variant to variation point, or variant to variant) of variability

models, can be captured and managed independently from the actual

variability representation.

This thesis introduced a new solution for capturing and managing

dependencies using logic circuit. A separate view is proposed (i.e.,

dependency view), for managing dependencies separately, in order to reduce

the problem of information overloading when viewing and managing large-

scale variability points from one view. Support for this was implemented by

redesigning and creating a new version of a Multitouch Variability Modelling

Solution for Software Product Lines (MUSA) tool suite (a proof-of-concept

variability management tool and framework that was developed within our

research group), that can address these challenges, and thus, lend itself to

industrial large-scale applications. This latest version of MUSA provides better

means to represent, visualise, and manage the variability of large and

complex product line models. This solution has been evaluated using a large-

scale, multifaceted case study.

10

1.4 Research Aims

One of the challenges with SPLE is the scalability of variability management

techniques. This has limited the adoption of SPLE to specific application

domains. The main reason behind this challenge is attributed to the inability

of current tools and techniques to scale to industry size applications. In this

research, we aim to:

1. Closely examine the current literature to identify the main reasons

behind the current limited scalability of variability management tools

and techniques.

2. Identify the barriers to adoption of current tools and techniques.

3. Based on the findings of 1 and 2, design a tool and framework that

addresses the shortcomings identified.

4. Implement a working prototype of the system.

1.5 Research Questions

The thesis answered the following research questions:

1. What are the key limiting factors affecting the scalability of existing

variability management tools and techniques?

2. What are the barriers to industrial adoption of the current variability

management tools?

3. What can be done to address these limitations in current tools?

11

1.6 Research Methodology

A combination of qualitative and quantitative research methodologies were

used to address the research questions identified above over three parts or

stages of the project.

In the first part, a Systematic Literature Review (SLR) approach was used to

identify gaps in the body of knowledge and answer Q1/Q2. An SLR is a formal

and rigorous way used to carefully examine, evaluate and interpret identified

research evidence based on research questions or a particular research area

(Kitchenham and Charters, 2007). The aim was to systematically review the

reported literature on variability management tools in software product lines

(known as primary studies). The process of SLR involved three main phases

which are:

1) Planning the Review:- which has three stages:

 Identifying the need for a review (importance)

 Indicating the research question(s)

 Developing and evaluating a review protocol

2) Conducting the Review:- which consists of four stages:

 Identification of primary studies

 Selection of primary studies based on clear criteria

 Assessing the quality of primary studies

 Data extraction and synthesis

3) Reporting the Review: - which involves:

12

 Writing and Formatting the main report and

 Evaluating / drawing conclusions based on the findings

In the second part, a new version of the MUSA tool suit (Bashroush, 2010)

was built based on the findings of the first two stages in a way that addresses

the identified shortcomings. The tool has been ported to Java technology from

WPF (Windows Presentation Foundation). Among other features that have

been introduced to MUSA is an innovative visualisation technique based on

mind-mapping which is to replace the traditional tree structure for representing

variability models, and the use of logic circuit design to graphically represent

the dependency relationships.

After the completion of the tool’s redesign and the MUSA framework, in the

third part, we have evaluated the tool using multiple case studies, which

ranges from small, medium and large-scale. However, these case studies

were used as a basis to assess the scalability of MUSA as compared to other

tools such as Pure::variants, one of the most popular commercial tools that

we have access to. Among them, the largest sample is a case study for a

Frequency Power Drives product line, and was acquired from Danfoss Power

Electronics. Others include a case for Library Services product line

representing the variability modelling of a wide range of services offered by a

library to provide smooth and effective services to customers.

Further to that, is a case of a house automation system product line that

provides basic security, alarm, lighting, communication, and agenda services,

13

to mention a few. Chapter 8 provides detail description of the case studies

used in the evaluation.

1.7 Summary of Contributions

The main contributions of this thesis are summarized below:

C1 A systematic investigation and understanding of the state of the art

tools that can be utilised in contemporary software product line development:

This study is a contribution to knowledge, as it conducts a systematic review

of Variability Management tools according to the chronological order of

development, and provides a conclusive evaluation of these tools. The results

are intended to assist practitioners in selecting the best available tools, based

on their suitability for a particular industrial task. The analysis also identifies

gaps in the field that should be addressed through further research of product

line tools. Moreover, the analysis identifies gaps in research that should be

addressed in more studies. Based on these results, we have collected the

data and necessary requirements for the development of our new MUSA tool.

C2 Redesign of MUSA framework to improve the scalability of visualizing

and representing variability models: Although scalability was the main

motivation for developing the early version of MUSA, redesigning and

enhancing its capability to add more innovative visualisation techniques will

increase productivity, time-to-market and allow for the creation and

management of larger and more complex product families; hence, improving

its scalability.

14

C3 An additional view for capturing and managing dependency

relationships that exist within the model separately: Using principle of

separation-of-concerns, we have proposed a separate view called,

“dependency view” to capture and manage dependency interaction

independently from the actual representation of the models. This was

achieved using a logic circuit. The main idea is to reduce the complexities,

such as graphical overloading, when viewing and managing dependencies of

large variability points all from one view.

C4 A complete working prototype system will be implemented as a new

MUSA: Support for managing dependency relationships among variability

models has been implemented by redesigning and extending the current

version of the MUSA tool suite (a proof-of-concept variability management

tool and framework). This will allow the creation and management of larger

and more complex product families.

C5 The new version of MUSA will be available as a multi-platform

application: To make it more generic and maximise its functionality, the new

version of MUSA has been ported from Windows Presentation Foundation-

WPF to Java technology. This has solved the main problem of platform

dependency suffered by the existing version of MUSA.

C6 A benchmark for evaluating our approach: In order to evaluate the

MUSA tool in comparison with other tools, we developed a benchmark for

evaluating the quality attributes, important for practical use of SPL

engineering tools, which has been applied in the evaluation process. The

15

benchmark focused on measuring the four quality attributes: Usability,

Performance, Scalability, and Integration. In addition, an evaluation study was

conducted experimentally, and involved 10 feature-modelling tools. In order to

know and get an insight on how well, and to what extent these tools satisfy

these quality attributes, four case studies of different sizes were used as the

basis for the experiment.

C7 Literature review process (Chapter 2): This process contributes to

knowledge by providing empirical step-by-step guidelines to identify, collect,

and review papers with: 1) a scope of the review clearly identified in advance;

2) a comprehensive search conducted to find all relevant studies; 3) the use

of explicit criteria to include or exclude studies; 4) the establishment of

standards to critically appraise study quality; and 5) the provision of explicit

methods for extracting and synthesizing study findings. This process will

benefit both new and experienced researchers by helping them avoid what is

regarded as author’s bias in research, while also providing a reliable basis for

making decisions.

 C8 Benchmarking process: The results of this will contribute to knowledge,

as it will assist both practitioners and researchers alike by providing a

standard and empirical approach to evaluating product line tools in the future.

It also helps to identify and recommend areas that require attention in future

tool design.

C9 The Context of Research: The distribution of the research context

presented in Figure 4.8 of Chapter 4 indicates that there is a need to bridge

16

the gaps between research in academia and industry through collaborative

efforts. The figure shows that most studies (68%) have been conducted in an

academic context, whereas only 16% of the studies are joint industrial

academic endeavours. In 16% of the studies, no information was provided on

the research context. Table 4.11 presents the list of all the studies with their

research context. Please refer to Chapter 4 for details on this contribution.

1.8 Thesis Structure

This thesis is structured in three parts and nine chapters.

1.8.1 Part I: State of The Art

 Chapter 2 is organised in two main sections. We present and discuss

the research methodology used to collect data in the first part. This

includes the study’s research questions, search protocol, inclusion and

exclusion criteria, quality criteria, and the data extraction and synthesis

process. Section 2 provides an overall meta-analyses of the primary

studies identifying trends and developments in the field.

 Chapter 3 introduces tools’ supporting variability management, and

discusses their usable functionality, i.e., the approach it uses in tackling

variability issue— the environment, or a platform and technology,

based on which a tool was developed and implemented, respectively. It

also identifies the notations type (graphical, textual, or a combination of

both), employed by a tool, and the category to which a tool belonged

to; whether, commercial, academic, or both. The chapter also assesses

the possibility of obtaining an evaluation copy.

17

 Chapter 4 is a thorough analysis of the state-of-the-art technology in

the field, essentially for tools supporting variability management, to

understand the tools’ characteristics, maturity, and the challenges it

might be exposed to, in the field. Consequently, two parts were formed

during the analysis: in the first part, different tools were identified and

assigned with a unique ID, then their analysis was carried out, based

on certain key topics that were recognised as follows: development

environment; support for transformations (between different formats);

management of constraints and reasoning on variability models, and;

their proposed graphical and textual notations. In the second part, an

analysis was made, based on the quality of the research conducted in

the reported approaches, as well as the research context of the studies

as they have been conducted.

1.8.2 Part II: Early Version of Musa Framework versus New Version

 Chapter 5 presents the early version of MUSA (A Multitouch Variability

Modelling Solution for Software Product Lines) tool and its theoretical

foundation, upon which it was designed and developed. MUSA was

implemented as a proof-of-concept over the state-of-the-art Human

Computer Interaction (HCI), the Microsoft Surface and Windows 7

Multitouch platform.

 Chapter 6 Introduces the new version of MUSA (i.e., version 2) tool,

and a framework that exhibits a number of features (multi-platform

support, dependency management, innovative visualisation technique,

18

etc.), for dealing with large-scale software product line models. This

version adopts the separation-of-concerns design principles and

provides multiple perspectives to the model, each of which conveys a

different set of information.

1.8.3 Part III: Validation

 Chapter 7 presents a benchmark that focuses on two major aspects:

measuring the four quality attributes (usability, scalability, performance,

and integration), identified as important for practical use of SPL, and

the use of this benchmark as a basis to assess the scalability of our

(MUSA) approach, as compared to other variability management tools.

 Chapter 8 describes the four case studies of varying sizes and data

elements that are used in the experimentation. Also, the results of the

experimental evaluation are presented.

1.8.4 Part IV: Conclusion and Future Research Work

 Chapter 9 summarises and concludes this thesis and describes the

further work that could be conducted to improve the framework and tool

supporting it.

19

1.9 Bibliographical Notes

Some of the material presented in this thesis reuses and extends publications

of the author in the following papers:

Conference

1. Garba, M., Noureddine, A. and Bashroush, R. (2016) 'MUSA: A
Scalable Multi-Touch and Multi-Perspective Variability Management
Tool'. 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), Venice, Italy: IEEE Computer Society. (Chapter 6)

 Under Review

2. Garba, M., Bashroush, R., Rabiser, R., Groher, I. and Botterweck, G.
(2015) 'CASE Tool Support for Variability Management in Software
Product Lines', ACM Computing Survey. (Chapter 2, 4)

3. Garba, M., Bashroush, R. and Naeem, U. (2016) 'Towards Bridging the
Gap Between Industry and Academia in CASE Tool Support for
Software Product Lines', IEEE Transactions on Systems, Man, and
Cybernetics. (Chapter 7, 8)

PART I: STATE OF THE ART

Chapter 2

Literature Review Methodology

2.1 Introduction

Now that we have introduced the main context of the thesis, it is time to put

these concepts into play. Earlier in this work, we have studied all the

published literature on Computer-Aided Software Engineering (CASE) tool

support for variability management over the last two decades, using a

systematic literature review as inspired by (Kitchenham and Charters, 2007).

The objective was to understand what tools have been produced, the

characteristics of these tools, their context, and the challenges and limitations

they faced.

This chapter presents and explains in its first part, the research method used

to collect and review papers, as well as the trend of analysis from the results

of the extracted data. The second section provides overall meta-analyses of

the primary studies, identifying trends and developments in the field.

The results of the study will: i) give practitioners access to a catalogue of

published tools and guide them in selecting the best tool for a given task

enhancing the accessibility of the published tools; ii) provide researchers in

the field with the main challenges and limitations that require further

investigation, and; iii) provide new researchers with a good understanding of

22

the state-of-the-art in tool support for variability management in SPL

engineering.

2.2 Research Method

To achieve the objectives of this study, a SLR approach was adopted to

conduct the survey. An SLR, as stated in section 1.5 of chapter one is a

rigorous method for examining, evaluating, and interpreting all available

research evidence based on research question(s) or particular research

topic(s) (Kitchenham and Charters, 2007).

The study examines current literature on variability management tools in

SPLE engineering (known as primary studies) published over the last two

decades. Throughout the research study, the guidelines for SLRs were

followed as provided in (Kitchenham and Charters, 2007). This involves three

main phases: (1) Planning the review; (2) Conducting the review, and; (3)

Reporting the review. Figure 2.1 depicts the stages of SLRs, adapted from

(Brereton et al., 2007).

23

Figure 2.1: Systematic literature review process

An important element in SLRs is the development of a review protocol (Figure

2.2). This protocol specifies the background and procedures to be used by

researchers to ensure rigor while conducting the review and reduces the

possibility of researchers’ bias throughout the review process.

The systematic review protocol begins by defining research questions to be

answered followed by the search strategy to be followed to identify the

primary studies (described in Sections 2.2.1 and 2.2.2). Then, the study

selection criteria for determining which studies should be included or excluded

from the surveyed literature is defined (Section 2.2.3). Then, quality

assessment criteria are defined. These are used to assess the quality of the

4. Identify relevant

research

5. Select primary studies

6. Assess study quality

7. Extract required data

8. Synthesize data

1. Specify research

questions

2. Develop review

protocol

3. Validate review

protocol

9. Write review report

Phase 1:

Planning the
Review

Phase 2:

Conducting the

Review

Phase 3:

Reporting the

Review

24

primary studies (Section 2.2.4). Finally, procedures for extracting and

synthesizing data reported from primary studies are defined (Section 2.2.5).

Figure 2.2: SLR review protocol process

2.2.1 Research Questions

In order to achieve the research aim and objectives of this study, we defined

the following 5 research questions.

RQ1: What tools have been developed to manage variability in software

product lines?

RQ2: What are the characteristics of these tools?

RQ3: What is the quality of the research conducted in the reported

approaches?

RQ4: What is the context of research?

Identify research questions

(Section 2.2.1)

Define search strategy

(Section 2.2.2)

Define study selection criteria

(Section 2.2.3)

Define quality assessment criteria

(Section 2.2.4)

Define data extraction and synthesis

(Section 2.2.5)

25

RQ5: What are the main challenges faced by current Product Line

Management (PLM) tools?

2.2.2 Search Strategy

Following Kitchenham’s guidelines (Kitchenham and Charters, 2007), we

constructed a search string to help us identify the relevant primary studies to

answer our 5 research questions.

The guidelines followed were as follows:

- Derive main terms from the topic being researched and research

questions;

- Determine and include synonyms, related terms and alternative

spellings for major terms;

- Check the keywords in all relevant papers researchers already knew

and those returned by initial searches on relevant databases;

- Include other relevant terms that increase the possibility of identifying

further related material;

Use logical operators such as "OR" and "AND" to link alternative spellings and

to join the synonym words or phrases to create one search string.

After constructing various search strings based on the guidelines above and

performing a series of test searches in diverse digital libraries and analysing

the outcome, the following search string was constructed:

26

<<Variability AND (Product Line* OR Software Product Lines OR Software

Product Family OR Software Product Families OR Product Family OR Product

Families* OR Systems Family OR Family of Systems) AND (Variability OR

Variability Management OR Variant OR Variation Point OR Feature Model OR

Feature Modelling or Feature Modelling) AND (Tool OR Tools OR Approach,

Approaches, Method* OR Methods)>>

Although it was not possible to apply only one search string for all the

electronic data sources, when varying the string for different sources we

ensured that if the syntactic nature of the strings were not the same, they

were all comparable semantically.

We also performed manual searches on different sources where SPL

researchers were known to publish their findings, this included conferences

and workshops. We searched for papers published between 1990 (i.e., when

the first Feature-Oriented Domain Analysis [FODA] technical report was

published (Kang et al., 1990)) up until February 2014 inclusive (when the

search stage of this study was completed). Although only data reported in

peer-reviewed published material was used in the analyses, we also

attempted to acquire the identified tools. Where the tools weren’t available for

download or use online, the respective authors were contacted.

Our search covered 11 digital data sources as shown in Table 2.1. The

manual search covered the proceedings of the following conferences and

workshops:

- SPLC (Software Product Line Conference)

27

- VaMoS (Workshop on Variability Modelling of Software Intensive

Systems)

- VisPLE (International Workshop on Visualisation in Software Product

Line Engineering)

- WICSA (Working International Conference on Software Architecture)

- EWSA (European Workshop on Software Architecture)

Table 2.1: Electronic databases used for searching for primary studies

S/No Data Source Names

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

IEEEXplore

ACM Digital Library

SpringerLink

ScienceDirect

CiteSeerXLibrary

Microsoft Academic Search

Scopus

IEEE Computer Society Digital Library

EBSCOhost E-Journal Services

Google Scholar

Web of Science

Finally, forward and backward reference checking (“snowballing”) was

conducted on the identified primary studies. Search engines were used to find

citations of the primary studies identified that could be of relevance to the

review (forward reference checking). The reference lists of the primary studies

were then checked for any potential relevant studies missed (backward

reference checking).

28

2.2.3 Study Selection Criteria

This section explains the study selection process and lists the inclusion and

exclusion criteria.

Inclusion Criteria (IC):

 IC1: The primary study is a peer-reviewed, scientific paper rather than

a PowerPoint presentation or a short/extended abstract paper.

 IC2: The primary study discusses a variability management tool.

 IC3: When several reports of the same study existed in different

sources, the most complete and recent version of the study was

included in the review.

 IC4: The paper was written in English.

Exclusion Criteria (EC):

 EC1: The primary study does not address variability management

tools.

 EC2: The papers were published before January 1991 and after

February 2014.

 EC3: It is a short paper, PowerPoint file, poster presentation or

consists of lecture notes.

 EC4: The primary study consists of a compilation of work, for instance,

from a conference or workshop.

We found a total of 556 papers from different initial searches covering

digital libraries, manual searches, and the works of known authors.

29

After the initial screening of paper abstracts, in which papers

addressing non-SPL related topics were excluded by one researcher,

113 publications were selected. The full papers were then acquired and

four independent researchers reviewed the studies. 47 publications

were then selected through voting and discussions among the four

researchers in a first step. Finally, and after another round carefully

considering the inclusion and exclusion criteria, again through voting

and discussions in case of disagreements, 37 studies were selected.

Figure 2.3 below show a summary of the study selection process.

Figure 2.3: Study selection process

Finally, thirty-seven primary studies were analysed (see Table 2.3).

Identifying relevant
studies, searching

digital libraries, known
publication outlets, and

known researcher
publication lists

• Produced: 556
papers

Exclude studies of initial
screening based on
title, abstract and

keywords

• Produced: 113
papers

Basic review of the full
PDF papers of the

selected primary studies
(four reviewers

involved)

• Produced: 47
papers

Detailed evaluation of
the remaining studies
based on the identified

inclusion/exclusion
criteria (four reviewers

involved)

• Produced: 37
papers

30

2.2.4 Quality Assessment Criteria

The quality of the reported research in the selected 37 papers was assessed

based on the eight-quality assessment questions listed in Table 2.2 below.

These were based on the quality assessment strategy defined in (Kitchenham

and Charters, 2007). The studies were assessed using a ternary scale where

each question was given a score of 1 (for Yes), 0.5 (for Perhaps) and 0 (for

No). This system allowed us some flexibility when answering some of the

questions that were difficult to judge as Yes or No from the information

provided in the primary study. Once scores were allocated to questions, an

aggregate mark was then given to each study. This data was also used to

answer RQ3 (discussed in chapter 4).

Table 2.2: Quality assessment criteria

 Questions

QA.Q1 Is there a rationale for why the study was undertaken?

QA.Q2 Is there a description of the context (e.g., industry, laboratory setting, products

used, etc.) in which the research was carried out?

QA.Q3 Did the paper present enough details about the variability management tool to

enable us conduct the required analysis?

QA.Q4 Did the paper present an evaluation of the tool? If yes, did it include feedback from

end users?

QA.Q5 Are the substantive claims in the paper supported by reliable evidence?

QA.Q6 Do the authors compare and evaluate their own results against related work?

QA.Q7 Do the authors discuss the credibility of their findings?

QA.Q8 Are limitations of the study discussed explicitly?

2.2.5 Data Extraction and Synthesis

Following the selection process, the 37 primary studies identified are shown in

Table 2.3 below.

31

Table 2.3: Studies included in the final review

Study

ID

Paper Title Year of

Publication

Author(s) Reference

[S1] DARE-COTS A Domain Analysis

Support Tool

1997 Frakes, W., Priet-Diaz, R.,

and Fox, C.

(Frakes et

al., 1997)

[S2] Intelligent Design of Product Lines in

Holmes

2001 Succi, G., et al. (Succi et al.,

2001)

[S3] Scaling Step-Wise Refinement 2004 Batory, D., et al. (Batory et al.,

2004)

[S4] XVCL: a mechanism for handling

variants in software product lines

2004 Zhang, H. and Jarzabek,

S.

(Zhang and

Jarzabek,

2004)

[S5] Tool Support for Software Variability

Management and Product Derivation in

Software Product Lines

2004 Gomaa, H. and Shin, M.,

E.

(Gomaa and

Shin, 2004b)

[S6] XML-Based Feature Modelling 2004 Cechticky, V., et al. (Cechticky et

al., 2004)

[S7] On the Implementation of a Tool for

Feature Modelling with a Base Model

Twist

2006 Shakari, P. and Møller-

Pedersen, B.

(Shakari and

Møller-

Pedersen,

2006)

[S8] COVAMOF: A Framework for Modelling

Variability in Software Product Families

2004 Sinnema, M., et al. (Sinnema et

al., 2004)

[S9] Towards Systematic Ensuring Well-

Formedness of Software Product Lines

2009 Heidenreich, F. (Heidenreich,

2009)

[S10] Odyssey: A Reuse Environment based

on Domain Models

1999 Braga, R., M., M., Werner,

C., M., L., and Mattoso, M.

(Braga et al.,
1999)

[S11] A NUI Based Multiple Perspective

Variability Modelling CASE Tool

2010 Bashroush, R. (Bashroush,
2010)

[S12] The DOPLER meta-tool for decision-

oriented variability modelling: a multiple

case study

2011 Dhungana, D.,

Grünbacher, P., and

Rabiser, R.

(Dhungana

et al., 2011)

[S13] XToF – A Tool for Tag-based Product

Line Implementation

2010 Gauthier, C., et al. (Gauthier et

al., 2010)

[S14] View Infinity: A Zoomable Interface for

Feature-Oriented Software Development

2011 Stengel, M., et al. (Stengel et

al., 2011)

[S15] FeatureIDE: An Extensible Framework

for Feature-Oriented Software

Development

2014 Thüm, T., et al. (Thüm et al.,

2014)

[S16] FeaturePlugin: Feature Modelling Plug-In

for Eclipse

2004 Antkiewicz, M. and

Czarnecki, K.

(Antkiewicz

and

Czarnecki,

2004)

32

[S17] An Integrated Software Management

Tool for Adopting Software Product Lines

2012 Park, K., et al. (Park et al.,

2012)

[S18] Kumbang Configurator – A Configuration

Tool for Software Product Families

2005 Myllärniemi, V., et al. (Myllärniemi

et al., 2005)

[S19] Towards a Model-Driven Product Line for

Web systems

2009 Martinez, J., et al. (Martinez et

al., 2009)

[S20] PuLSE-BEAT – A Decision Support Tool

for Scoping Product Lines

2000 Schmid, K. and Schank,

M.

(Schmid and

Schank,

2000)

[S21] Moskitt4SPL: Tool Support for

Developing Self-Adaptive Systems

2012 Gómez, M., et al. (Gómez et

al., 2012)

[S22] BeTTy: Benchmarking and Testing on

the Automated Analysis of Feature

Models

2012 Segura, S., et al. (Segura et

al., 2012)

[S23] An Analysis of Variability Modelling and

Management Tools for Product Line

Development

2007 Capilla, R., et al. (Capilla et

al., 2007)

[S24] Visualisation of variability and

configuration options

2012 Pleuss, A. and

Botterweck, G.

(Pleuss and

Botterweck,

2012)

[S25] ASADAL: A Tool System for Co-

Development of Software and Test

Environment based on Product Line

Engineering

2006 Kim, K., et al. (Kim et al.,

2006)

[S26] RequiLine: A Requirements Engineering

Tool for Software Product Lines

2003 von der Maßen, T. and

Lichter, H.

(von der

Maßen and

Lichter,

2004)

[S27] ToolDAy: A Tool for Domain Analysis

2011 Lisboa, L., B., et al. (Lisboa et

al., 2011)

[S28] The Linux Kernel Configurator as a

Feature Modelling Tool

2008 Sincero, J. and Schröder-

Preikschat, W.

(Sincero and

Schroder-

Preikschat,

2008)

[S29] Automating Product-Line Variant

Selection for Mobile Devices

2007 White, J., et al. (White et al.,

2007)

[S30] Managing Feature Models with

FAMILIAR: a Demonstration of the

Language and its Tool Support

2011 Acher, M., et al. (Acher et al.,

2011)

[S31] Easy-Producer – Product Line

Development for Variant-Rich

Ecosystems

2014 Eichelberger, H., et al.

(Eichelberger

et al., 2014)

33

[S32] OPTI-SELECT: an interactive tool for

user-in-the-loop feature selection in

software product lines

2014 El Yamany, A. E.

Shaheen, M. and Sayyad,

A.

(Yamany et

al., 2014)

[S33] MPLM - MaTeLo product line manager:

[relating variability modelling and model-

based testing]

2014 Samih, H. and Bogusch,

R.

(Samih and

Bogusch,

2014)

[S34] Variability code analysis using the VITAL

tool

2014 Zhang, B. and Becker, M. (Zhang and

Becker,

2014)

[S35] ViViD: a variability-based tool for

synthesizing video sequences

2014 Acher, M., et al.

(Acher et al.,

2014)

[S36] VMC: recent advances and challenges

ahead

2014 Ter Beek, M. H. and

Mazzanti, F.

(Ter Beek

and

Mazzanti,

2014)

[S37] WebFML: synthesizing feature models

everywhere

2014 Bécan, G., et al. (Bécan et al.,

2014)

Beside the 37 primary studies included in the study, we identified further 13

tools that did not meet the inclusion/exclusion requirements. These are shown

in Table 2.4 below, along with the criteria they didn’t meet.

Table 2.4: Studies excluded in the final review

Reasons

for

Exclusion

Paper Title Year of

Publication

Author(s) Reference

EC3 FAMA Framework 2008 Trinidad, P., Benavides,

D., Ruiz-Cort´es, A.,

Segura, S., Jimenez, A.

(Trinidad et

al., 2008)

EC1 Development of a Feature Modelling

Tool using Microsoft DSL Tools

2009 Fernández, R., Laguna,

M. A., Requejo, ,J.,

Serrano, N.

(Fernández

et al., 2009)

EC3 S.P.L.O.T. - Software Product Lines

Online Tools

2009 Mendonca, M., (Mendonca

et al., 2009)

EC3 V-Manage 2002 European Software

Institute (ESI)

(SAP

Configurator)

EC2 PACOGEN : Automatic Generation of

Pairwise Test Configurations from

Feature Models

2011 Hervieu, A., Baudry B.,

Gotlieb, A.

(Hervieu et

al., 2011)

34

EC1 Variability Modelling in the Real: A

Perspective from the Operating

Systems Domain

2010 Berger, T., She, S.,

Lotufo, R., Wasowski,

A., Czarnecki, K.

(Berger et
al., 2010)

EC1 MetaProgramming Text Processor Campbell, G. (Campbell)

EC1 An Algorithm for Generating t-wise

Covering Arrays from Large Feature

Models

2012 Johansen, F., M.,

Haugen, Ø., Fleurey, F.

(Johansen et

al., 2012)

EC2&EC3 Varmod-Tool-Environment 2005 Pohl, K., Böckle, G., van

der Linden, F.

(Klaus et al.,

2005)

EC3 Linux Variability Analysis Tools (LVAT) She, S. (She)

EC2 VARMA--VARiability Modelling and

Analysis Tool

2012 Russell, G., Burns, F.,

Yakovlev, A.

(Russell et

al., 2012)

EC3 ZIPC SPLM 2009 NTTDaTa MSE

Corporation

(Gauthier et

al., 2010)

EC3 Hydra Tool 2009 Jose R. Salazar (Modeling)

Upon the completion of the primary study selection phase, and the primary

study quality assessment step, data extraction commenced. In order to

answer the research questions, the following data was extracted from every

primary study (see Table 2.5). The data extraction form below also shows the

relevance of each of the extracted data

elements to the study research questions.

Table 2.5: Data extraction form

Data Field Related

Concern/Research

Question

DE.Q1 Paper title Documentation

DE.Q2 Year of publication Documentation

DE.Q3 Type of publication (e.g. Journal, Conference, Workshop, etc.) Reliability of Review

DE.Q4 Publication outlet (conference name, etc.) Reliability of Review

DE.Q5 Paper brief description (synopsis) RQ1, RQ3

35

DE.Q6 The research rationale, challenges or problems as reported in the paper RQ3, RQ5

DE.Q7 Research Context (e.g. industry, academic, product, etc.) RQ4

DE.Q8 Tool Performance and Stability RQ2, RQ5

DE.Q9 Visualisation technique RQ2

DE.Q10 Textual notation RQ2

DE.Q11 Usability RQ2

DE.Q12 Tool environment/Platform RQ2

DE.Q13 Integration (e.g. with DOORS, etc.) RQ2

DE.Q14 Scalability (ability to deal with large-scale models) RQ2

DE.Q15 Relevance (Research or Practice) RQ4

DE.Q16 The research limitations as reported in the paper RQ5

2.3 Data Extraction Results

The next step after the data extraction step was the data synthesis and

analysis step. In this section, we provide meta-analyses of the primary studies

relating to their publication types, venues, trends and overall characteristics.

We analyse the collected data to address the 5 main research questions of

the study.

Based on the data collected, the research question one (RQ1) is then

addressed in details in chapter 3. In chapter 4, the remaining four questions

(RQ2, RQ3, RQ4, and RQ5) were then answered. In addition, the chapter 3

also discusses additional findings on commercial tools and tool adoption in

industry. Chapter 4 discusses the study limitations and threats to validity. And

finally, it rounds off the analysis with summary and conclusions.

36

2.3.1 Trend Analysis

The first search of the systematic literature review resulted in 556 papers. The

application of inclusion/exclusion criteria in several iterations resulted in 37

papers for the final review.

The primary studies included 18 conference papers, 6 journal papers, and 13

workshop papers. Figure 2.4 presents a pie chart showing the percentage for

each publication outlet. From the chart, it can be seen that conferences are

more prominent venues for research on variability management tools followed

by workshops, whereas journals seem to be less attractive outlets for

research on tools. The 37 papers are scattered over 24 different venues (see

Table 2.3). This distribution further highlights the importance of this systematic

review as a manual search of well-known conferences or journals could not

possibly identify all the relevant literature.

Figure 2.5 shows the distribution of studies over time; combined in 5-year

intervals (to avoid influence of events occurring every 18 or 24 months). The

chart shows that there has been considerable surge in new tools over the past

5 years. Our search did not identify any relevant paper published before 1997.

The figure shows that there was a peak in publishing research on variability

management tools from 2011 to 2015. There was a gradual uprising from

1996 to 2000, then a steady uptrend from 2001 to 2005 and 2006 to 2010.

The shape of the curve (spike, followed by trough, then slow pickup) aligns

nicely with Gartner’s technology maturity Hype Cycle model (Linden and

Fenn, 2003). Comparing the publication timeline (Figure 2.5) with Gartner’s

37

Hype Cycle (Figure 2.6), it can be deduced that variability management tools

have now entered the slope of enlightenment/plateau of productivity stage.

This indicates that the benefits of variability management tools to the

enterprise are starting to become widely understood, while conservative

companies remain cautious.

Figure 2.4: Percentage of each publication type

Figure 2.5: Distribution of primary studies over time

Journal
16%

Conference
49%

Workshop
35%

Publication Outlets

0

2

4

6

8

10

12

14

16

18

1996-2000 2001-2005 2006-2010 2011-2015

38

Figure 2.6: Gartner Hype Cycle reproduced based on (Linden and Fenn, 2003)

Technology
trigger

Peak of
inflated

expectations

Trough of
disillusionment

Slope of
enlightenment

Plateau of
productivity

Maturity

V
is

ib
il

it
y

Each Hype Cycle drills down into the five key phases of a technology’s life cycle.

Technology Trigger: A potential technology breakthrough kicks things off. Early proof-of-concept stories and

media interest trigger significant publicity. Often no usable products exist and commercial viability is unproven.

Peak of Inflated Expectations: Early publicity produces a number of success stories—often accompanied by

scores of failures. Some companies take action; many do not.

Trough of Disillusionment: Interest wanes as experiments and implementations fail to deliver. Producers of the

technology shake out or fail. Investments continue only if the surviving providers improve their products to the

satisfaction of early adopters.

Slope of Enlightenment: More instances of how the technology can benefit the enterprise start to crystallize

and become more widely understood. Second- and third-generation products appear from technology providers.

More enterprises fund pilots; conservative companies remain cautious.

Plateau of Productivity: Mainstream adoption starts to take off. Criteria for assessing provider viability are more

clearly defined. The technology’s broad market applicability and relevance are clearly paying off.

39

2.3.2 Phrase Map Analysis

Phrase maps were used to conduct a thematic contextual analysis of the

complete text of the primary studies (excluding lists of references, author

descriptions and the most commonly occurring non-technical words like

introduction, figure, etc.) to try and identify evolving trends in the field. These

maps visualise two main features of the text: (1) connections between terms

are depicted by the grey lines, where a thicker line corresponds to a stronger

relationship between the terms; and (2) the centrality of the terms which are

portrayed by their font size (the bigger the font, the more frequently a term

appears in the text).

The primary studies were divided into two batches, the first batch contained

studies published between 1997 and 2006 inclusive, and the second batch

contained studies published between 2007 and 2015 inclusive. Then, phrase

maps were created to show the frequency and relationship of the most

common keywords in these groups of papers. The phrase maps showed the

top 40 occurring keywords (ignoring common and connecting words such as

‘and’, ‘the’, ‘of’ etc.) and used one place space between terms to determine

the connections between the terms. The phrase maps for the two batches can

be seen in Figure 2.7 and Figure 2.8.

40

Figure 2.7: Phrase Map of studies published between 1997-2006

 Figure 2.8: Phrase Map of studies published between 2007-2015

The first observation that can be made when looking at the two phrase maps

is that in the first batch (1997-2006) fewer and simpler relationships existed

41

among words. There were classical associations between terms such as

features-requirements, commonality-variability, architecture-design, etc.

However, looking at the second batch (2007-2015), the associations between

words became more integrated and diverse.

The thematic characteristic of the 1997-2006 text shows several scattered

connections between two and three words (seen at the bottom of the map in

Figure 2.7). Figure 2.8, however, shows a tighter network of terms with

diverse relationships (and no isolated connections). This could be an

indication of the level of consolidation and maturity in the domain. Moreover,

in the first batch, basic variability management concerns seemed to dominate

(e.g., requirements, commonality, architecture, etc.). In the second batch,

there was an emergence of terms such as visualisation and analysis, which

emerged as key focus areas for tool developers. Figure 2.9 presents a

summary of the entire SLR review process.

42

Figure 2.9: Summary of SLR review process

Data Synthesis

Data synthesis involves

collating and summarising

the results of the included

primary studies

Define appropriate research

questions

The review questions

drive the entire

systematic review

methodology

Identification of the

need for a review

Developing a review protocol

This specifies the methods

that will be used to

undertake a specific

review

Identify appropriate

databases/sources

Determine keywords and

headings, multiple

electronic database

searched by at least 2

reviewers

Data extraction using a spreadsheet

template

Researchers extract

data including quality
data, meet to resolve

disagreements on data

43

2.4 Summary

This chapter describes the method used to identify, collect, and review

papers, in the systematic literature review (SLR) process, using SLR to collect

data in order to achieve the objective of this research. This method involves:

identifying of the key research questions to be answered; the search strategy

used to identify the relevant primary studies; the study selection criteria used

in the process of inclusion or exclusion a paper, and; the quality assessment

criteria used to assess the quality of the selected papers together with the

data extraction and synthesis. The chapter also presents the overall meta-

analysis of the selected primary studies based on the data extraction results.

 Chapter 3

Existing Variability Management Tools in Software
Product Lines

3.1 Introduction

This chapter introduces the concept of variability management, which is the

central activity used to manage the commonality and variability that provides

the ability to adapt and customise software artefacts for a particular context or

setting. The chapter also discusses the locations within software artefacts at

which variability actually occurs, usually referred to as variation points, as well

as their number of possible occurrences, known as the variants. It also

presents an overview of dependency management.

However, based on the information provided by the authors in the literature,

the chapter discusses on a number of tools supporting variability management

in terms of their usable functionality, i.e. the approach it uses in tackling

variability issues, the technology used and environment or a platform based

on which a tool was developed and, implemented respectively. The type of

notation (graphical, textual or a combination of both) employed by a tool and

the category to which a tool belonged to as commercial, academic, or both,

are also explicated (see Appendix A for details). Finally, the chapter assesses

45

whether a tool is an open source or if an evaluation copy could be obtained, in

addition to a discussion on commercial tools and tool adoption in industry.

3.2 Variability Management

Variability management remains the main challenge in software product line

(SPL) adoption, as it needs to be efficiently managed at different levels of the

SPL development process (for example, requirements analysis, software

design, implementation, etc.). However, effective management of variability is

essential for successful product line development, as it determines and

enables the creation of different products in a product line.

Variability has been defined in (Van Gurp et al., 2001) as the ability of a

software system or artefact to be changed or customised for use in a specific

context. This means that good variability for a software system should expect

changes and allow for the implementation of those changes over time

throughout the life cycle. Due to the large number of variability points within a

real-life industrial product line, some variation points depend on other

variation points. For instance, a variation point cannot be selected unless

another variation point is implemented (requires dependency). On the other

hand, it is possible that some variation points cannot be supported in the

same product at the same time (excludes dependency).

3.2.1 Variation Point

Variation points are locations in the design or implementation at which

changes occur (Jacobson et al., 1997), such as the type of screen size that a

46

mobile phone can offer (large size, medium size, and small size). Therefore,

variation points provide a description of existing differences. Hence, the

variability of a product line is defined by variation points. The variability of

features is usually represented as a tree in which variation points consist of a

parent feature, a group of child features called variants, and multiplicity that

specifies the possible number of variants that can be selected from the

variation point during the configuration of a product (Pohl et al., 2005).

For a better understanding of variability, we used a variability meta-model

based on the ideas in (Moon et al., 2005) and (Thiel and Hein, 2002) (see

Figure 3.1). The variability of SPL is represented by a variation point.

Associated with each variation point, there is one or more description(s) of

possible choices, called variants, to replace the variation point.

Figure 3.1: Variability Meta-model for representing concepts in variability
(reproduced from (Kadir and Mohammad, 2008))

Dependency

 Type

Cardinality

Binding Time

Resolution Rule

Variation Point Specification

Variability

Variation Point

Variants

47

However, for easy selection and adaptation, variation points need to be

specified as follows: (1) Variation type, which clarifies what varies and how it

varies, and has been divided into four types: computational, external, control,

and data types (Moon et al., 2005); (2) Variation point cardinality specifies the

minimum and maximum number of variants that can be selected for a

variation point (Halmans and Pohl, 2003); (3) Dependency represents the

relationships and constraints at one or more variation points (Sinnema et al.,

2006); (4) Binding time, which is the time when a variation point is bound to a

chosen variant (Krueger, 2006). Finally, resolution rules, according to (Thiel

and Hein, 2002) are the applied strategies when binding a variation point with

a conflict, and that must be resolved as part of the product architecture

design.

3.2.2 Variant

Variability enables the choice between different possibilities through variation

points; each of these various options is referred to as a variant. The variant

pinpoints a single choice of a variation point (Bachmann and Clements, 2005).

Using the same example given in Section 3.1, every different choice of screen

size for a particular mobile phone (big, medium or small) is represented by a

variant. Therefore, through the different choice of variants, one mobile phone

can differ from another in terms of size. Therefore, variants provide different

possibilities to satisfy variation points.

48

3.2.3 Dependency Management

Variability dependencies are the constraints on the variant selection at one or

more variation points (Sinnema et al., 2006). Effective and scalable ways of

representing variability dependencies in a large-scale product line is a

challenge and of primary concern in software product line engineering. As

highlighted in Section 3, for instance, it is possible that Feature B must be

present if Feature A is selected (inclusivity), while the choice of Feature A is

based on a different condition.

3.3 Variability Management Tools in Software Product Lines

The efficient management of variability can give rise to the successful

customisation of software products, which can result in high market success

(Van Gurp et al., 2001). However, according to (Beuche et al., 2007),

variability in today’s software product lines has such complexity that the use of

appropriate tools to support it has become crucial. Therefore, the

management of variability needs sufficient tool support (Beuche and

Spinczyk, 2003).

In their work, (Zhang and Jarzabek, 2001) asserts that for the effective

handling of a scalability problem, a tool capable of interpreting and

manipulating domain models is necessary to provide analysts with customised

and simple domain views. (Jaring and Bosch, 2002) believe that tool support

is especially necessary when developing a large-scale system. (Djebbi and

Salinesi, 2006) ascertain that many notations can only be scalable if

49

supported by an appropriate tool. Hence, tool support is of paramount

importance for variability management, since without proper automation or

tool support, the modelling variability of a large-scale model is boring, error-

prone and difficult to conduct (Ferber et al., 2002).

Researchers in the community, from both academia and industry, devoted

large amounts of time and resources in trying to find efficient and effective

ways to deal with variability-related challenges. As a result, a wide variety of

tools, approaches, techniques and methods were proposed.

Table 3.1 provides a list of all the tools identified in the SLR in chronological

order. For details on each of the tools listed in the table see Appendix A.

Table 3.1: Identified tools with their year of introduction

Tools Name
Technology/Imp
lementation

Notations
Supported

Availability
Free/Evaluation
Copy

Year of
Introduction

DARE-COT

C-language on a
UNIX workstation

Textual
notation

Open source 1997

Odyssey

Java technology UML notations Open source 1999

PuLSE

Visual Basic Textual
notation

Not available 2000

Holmes

Java language Textual
notations

Not available 2001

RequiLine

Java language Graphical
notation

 2003

COVAMOF

Java technology Graphical
notation

Not available 2004

Feature Modelling Plug-In

Java language Graphical and
textual

Open source 2004

PLUSEE

Rational Rose
and Rational
Rose RT

Graphical
notation

Not available 2004

XML-Based Feature Model

XML technology Textual
notation

Not available 2004

AHEAD

Java language Textual
notation

Open source 2004

XVCL Java and XML
technology

Textual
notation

Open source 2004

KUMBANG Java language UML-like
notations

Open source 2005

BVR: Base-Variation-Resolution Java Technology Graphical
notation

Open source 2006

ASADAL (A System Analysis and
Design Aid tooL)

Java Technology Graphical
notation

Not available 2006

50

3.4 Commercial Tools and Tool Adoption in Industry

In addition to our SLR, we conducted a web search on commercially available

variability management tools as well as studies on tool adoption in

Scatter Tool Eclipse
Generative
Modelling
Technology

Graphical
notation

Not available 2007

VMWT PHP and Ajax Textual
notation

Open source 2007

L K C- Feature Modelling Tool Linux technology Graphical and
textual

Open source 2008

FeatureMapper Eclipse Modelling
Framework

Graphical
notation

Open source 2009

PLUM Eclipse Modelling
Framework

Graphical
notation

Open source 2009

MUSA Java and XML Graphical
notation

Not available 2010

XToF – A Tool for Tag-based
Product Line Implementation

Java and C
languages, XML

Textual
notation

Open source 2010

ToolDay Eclipse’s
Graphical
Modelling
Framework

Graphical
notation

Not available 2011

View Infinity Java technology Graphical
notation

Open source 2011

FAMILIAR Java technology Graphical and
textual

Open source 2011

DOPLER Java technology Graphical and
textual

Not available 2011

FeatureIDE Java technology Graphical and
textual

Open source 2012

ISMT4SPL Java technology Graphical and
textual

Not available 2012

BeTTy Java technology Graphical
notation

Open source 2012

MOSKitt4SPL Eclipse Modelling
Framework

Graphical
notation

Open source 2012

S2T2 Configurator Java technology Graphical
notation

Open source 2012

Easy-Producer Java technology Graphical and
textual

Open source 2014

OPTI-SELECT Simple XML
Feature Model

Textual
notation

Open source 2014

MPLM-MaTeLo product line
manager

Eclipse Rich
Client Platform

tree-like
notations

Not available 2014

Variability code analysis using the
VITAL tool

C-Preprocessor Textual
notation

Not available 2014

ViViD: a variability-based tool for
synthesizing video sequences

Xtext language
workbench

Textual
notation

Not available 2014

VMC: recent advances and
challenges ahead

HTML technology Graphical
notation

Not available 2014

WebFML: synthesizing feature
models everywhere

JavaScript
technology

Graphical
notation

Not available 2014

51

industry/practice. In this section, we briefly discuss the commercial tools we

identified and the findings of these studies.

3.4.1 Commercial Variability Management Tools

We explicitly focus on tools developed to support variability management in

software product line engineering, thus leaving out commercial tools

developed in other communities such as the CWAdvisor (Felfernig et al.,

2001) or the SAP Configurator (SAP Configurator), which follow an AI-based

process or MetaEdit+ (Tolvanen and Kelly, 2009), which is a domain-specific

language and code generation environment. Industry also has extended other

commercial tools with support for variability management (Berger et al.,

2013), typically without following a particular product line engineering process.

For example, IBM Rational DOORS (IBM Rational DOORS) comes with a

requirements management add-on that allows to define variability in

requirements documents.

SparxSystems Enterprise Architect (SparxSystems Enterprise Architect) has

also been extended with variability management support. A very common

approach followed by industry is to use Microsoft Excel or Microsoft Word to

document the variability of their software systems.

All these commercial or industry solutions to variability management work

very well for the context they have been developed for, but do not follow any

particular product line engineering approach. We could only identify two

commercial tools developed for product line variability management, more

52

specifically, pure::variants (Beuche, 2008) and Gears (Krueger and Clements,

2014).

pure::variants (Beuche, 2008) is developed by pure-systems GmbH in

Magdeburg, Germany. The tool supports variant management and product

configuration based on feature models and has a strong focus on

interoperability and extensibility. For example, the tool can be integrated in

the Eclipse IDE, used with a web browser, as a command line client, and

even in a custom application. Several extensions to existing commercial-off-

the-shelf tools exist, e.g., to DOORS or SAP. Four types of models can be

created and managed with pure::variants:

(1) Feature Models represent the variability of a system. (2) Family Models

represent the variants of assets that can be selected. (3) Variant Description

Models are used to store the selected features and their values. (4) Result

Models based on 1-3 represent one concrete instance derived from a product

line. Constraints on model elements can be defined in a self-defined dialect of

the language prolog. A prolog-based constraint solver allows validating

selected configurations. The main benefits of pure::variants are (i) the strong

focus on interoperability and extensibility, (ii) the high number of available

extensions, and (iii) the comprehensive support for model checking and

validation (also during product configuration).

The main drawbacks are that (i) the tool has mainly been designed for

engineers and (ii) the representation of features (tree-structure) does not

53

scale well for very large systems. pure::variants is well-suited for use in

industry as demonstrated by the various successful application in industry.

Gears (Krueger and Clements, 2014) is a commercial tool developed by

BigLever Software Inc., Austin, Texas, USA. The tool has been developed in

Java and supports the three-tiered methodology proposed by Krueger

(Krueger, 2007). The tool allows defining arbitrary reusable software assets

and a product feature profile that describes products in terms of features.

Gears focuses on products: feature profiles define the products that can be

built from assets and the optional and alternative choices that can be made

for each product. Product configuration is supported by the Gears

Configurator which automatically assembles and configures assets to produce

products based on feature choices made using feature profiles. Gears can be

tailored to different environments with parameter sets representing different

kinds of variability. Dependencies are modelled as global constraints that are

checked during configuration.

The main benefits of Gears are (i) its strong focus on producing products, (ii)

the possibility to use arbitrary assets, and (iii) its methodological foundation

given by the three-tiered methodology. The main drawback of Gears is that

applying the tool to a concrete industrial case requires significant tailoring of

the tool depending on the used assets and the environment to integrate it

with.

54

3.4.2 Tool Adoption in Industry

Djebbi et al. (Djebbi et al., 2007) report findings of a study on the ability of

product line management tools to answer industry needs. They identified 12

tools through an unsystematic search (we cover most of them on our SLR)

but only analysed four tools in detail based on their availability. These four

tools were RequiLine [S26], pure::variants (Beuche, 2008), XFeature [S6] and

DOORS-TREK (an add-on to IBM Rational DOORS)(DOORS-TREK). Djebbi

et al. describe these tools and discuss the support of these tools for variability

modelling as well as the support for management (such as reporting

capabilities) they provide. They conclude that tools developed in industry or in

industry projects work well for the context they have been developed for but

are hard to apply in other contexts.

Berger et al. (Berger et al., 2013) report the results of a survey on variability

modelling in industrial practice. Among other questions, they asked industrial

practitioners what variability modelling tools they use. Respondents could

select from 10 particular tools or specify an open answer. pure::variants

(Beuche, 2008) was the most used tool, followed by Gears (Krueger and

Clements, 2014). From the tools we identified in our SLR, FeatureIDE [S15],

DOPLER [S12], X-Feature [S6], and AHEAD [S3] were the only ones

mentioned by respondents. This confirms our findings on the difficulty of

research tool adoption in industry.

As Berger et al. conclude “all other tools play only a minor role in the

participating projects” and were only reported as being used once or twice.

55

The answers of the 42 survey respondents were analysed in detail and it was

found that many respondents use “other open source tools”, “other

commercial tools”, or “home-grown domain-specific tools”. A key finding

regarding variability modelling tool support of the survey was that there exists

a wide variety of home-grown solutions developed in industry that are

unknown to researchers. Our SLR would allow industrial practitioners to

check what research tools are available before implementing their own

solution.

Lettner et al. (Lettner et al., 2013) confirm the findings of Berger et al.’s

survey when they report that industry often develops custom solutions to

automate the configuration process of their variable software systems. These

solutions are often not based on variability models but describe configuration

knowledge directly in code or in simple XML files. Comparing a custom-

developed with a model-based configuration approach leads them to the

conclusion that using a model-based solution could be very beneficial for

industry. For instance, it would help to decouple configuration UI and

variability information and make the approach more adaptable and extensible.

Again, our SLR could be an important first source of information for industrial

practitioners thinking of implementing a variability management tool.

3.5 Summary

This chapter presents and discusses the concept of variability management,

variation points, variants and the dependency relationships that exist among

them. Finally, the chapter discusses an overview of 37 tools for managing

56

variability in software product lines, along with a number of commercial tools

and tools that have been adopted in industry. Such an overview mainly

focused on tool functionality, technology used for development and

implementation, and type of notations supported. Other key characteristics

being considered are whether a tool can be found for free or if an evaluation

copy can be obtained.

 Chapter 4

Critical Analysis of Existing Approaches

4.1 Introduction

After having each of the 37 variability management tools identified in the

survey examined in terms of their functionality and the platform on which they

were implemented, along with the commercial tools and tool adoption in

industry in the previous chapter, this chapter presents a detailed analysis of

the state-of-the-art for the research field, particularly in terms of tools

supporting variability management to understand the tools’ characteristics,

maturity, and the challenges in the field.

 In the first half of the chapter, we begin by identifying the different tools

(assigning a unique ID for each of the 37 tools identified) based on how they

will be studied (see Table 4.1). The tools were then analysed in terms of the

following topics: development environment; support for transformations

(between different formats); management of constraints and reasoning on

variability models; and their proposed graphical and textual notations. The

second half of the chapter presents an analysis based on the quality of the

research conducted in the reported approaches. We also present the

research context of the studies that have been conducted. This includes

whether studies are academically-based, joint academic-industrial

58

endeavours, or if no information was provided on the research context.

Finally, we discuss the main challenges faced by current Product Line

Management (PLM) tools.

Table 4.1: Identified tools with assigned ID and their technical details

Tools Name
Technology/Im
plementation

Notation

Supported

Availability

Free/Evaluatio
n Copy

Study ID

DARE-COT

C-language on
a UNIX
workstation

Textual
notation

Open source [S1]

Odyssey

Java
technology

UML notations Open source [S10]

PuLSE

Visual Basic Textual
notation

Not available [S20]

Holmes

Java language Textual
notations

Not available [S2]

RequiLine

Java language Graphical
notation

 [S26]

COVAMOF

Java
technology

Graphical
notation

Not available [S8]

Feature Modelling Plug-In

Java language Graphical and
textual

Open source [S16]

PLUSEE

Rational Rose
and Rational
Rose RT

Graphical
notation

Not available [S5]

XML-Based Feature Model

XML
technology

Textual
notation

Not available [S6]

AHEAD

Java language Textual
notation

Open source [S3]

XVCL Java and XML
technology

Textual
notation

Open source [S4]

KUMBANG Java language UML-like
notations

Open source [S18]

BVR: Base-Variation-Resolution Java
Technology

Graphical
notation

Open source [S7]

ASADAL (A System Analysis and
Design Aid tooL)

Java
Technology

Graphical
notation

Not available [S25]

Scatter Tool Eclipse
Generative
Modelling
Technology

Graphical
notation

Not available [S29]

VMWT PHP and Ajax Textual
notation

Open source [S23]

L K C- Feature Modelling Tool Linux
technology

Graphical and
textual

Open source [S28]

FeatureMapper Eclipse
Modelling
Framework

Graphical
notation

Open source [S9]

PLUM Eclipse
Modelling
Framework

Graphical
notation

Open source [S19]

MUSA Java and XML Graphical
notation

Not available [S11]

XToF – A Tool for Tag-based Product
Line Implementation

Java and C
languages,
XML

Textual
notation

Open source [S13]

ToolDay Eclipse’s
Graphical
Modelling

Graphical
notation

Not available [S27]

59

4.2 Key Characteristics of the Different Tools

4.2.1 Development Environment

The described tools are based on different development environments. The

most frequently named platform is Eclipse (16 studies), which includes tools

based on the Generic Eclipse Modelling Framework, GEMS (1 study); Eclipse

Rich Client Platform RCP application development (1study); and the Eclipse

Modelling Framework, EMF (9 studies). Within the latter group, two studies

reported usage of textual modelling frameworks, i.e., EMFText (Heidenreich

et al., 2009) and Xtext (Eysholdt and Behrens, 2010), and three reported

Framework

View Infinity Java
technology

Graphical
notation

Open source [S14]

FAMILIAR Java
technology

Graphical and
textual

Open source [S30]

DOPLER Java
technology

Graphical and
textual

Not available [S12]

FeatureIDE Java
technology

Graphical and
textual

Open source [S15]

ISMT4SPL Java
technology

Graphical and
textual

Not available [S17]

BeTTy Java
technology

Graphical
notation

Open source [S22]

MOSKitt4SPL Eclipse
Modelling
Framework

Graphical
notation

Open source [S21]

S2T2 Configurator Java
technology

Graphical
notation

Open source [S24]

Easy-Producer Java
technology

Graphical and
textual

Open source [S31]

OPTI-SELECT Simple XML
Feature Model

Textual
notation

Open source [S32]

MPLM-MaTeLo product line manager Eclipse Rich
Client Platform

tree-like
notations

Not available [S33]

Variability code analysis using the
VITAL tool

C-
Preprocessor

Textual
notation

Not available [S34]

ViViD: a variability-based tool for
synthesizing video sequences

Xtext language
workbench

Textual
notation

Not available [S35]

VMC: recent advances and
challenges ahead

HTML
technology

Graphical
notation

Not available [S36]

WebFML: synthesizing feature models
everywhere

JavaScript
technology

Graphical
notation

Not available [S37]

60

usage of graph-oriented UI frameworks, i.e., GMF (Eclipse) and prefuse (Heer

et al., 2005).

Two studies reported on tools based on commercial-off-the-shelf software,

such as Microsoft Excel or Word. Six tools directly support the usage of UML,

out of which two are based on commercial modelling tools, i.e., IBM Rational

Rose and Rhapsody. Additionally, one study reported on a tool based on C-

preprocessor (CPP) code parser. Finally, three studies were web-based.

In terms of implementation languages, tools in 14 studies are based on Java,

one tool is implemented in C# (RequiLine [S26]) and one in C (the Linux

Kernel Configurator [S19]). The remaining tools either do not state an

implementation language or are realized as extensions of existing tools.

4.2.2 Transformation

Twelve studies reported the usage of some transformation mechanism, e.g.,

to support generating output. Two used XSL ([S6] and [S22]); one used

dynamic loading of Simple XML Feature models (SXFM) [S32]; another used

XML and Java source files [S31]; and one used the DIMACS format (a widely

used standard for Boolean formulas in CNF) [S37].

4.2.3 Constraints and Reasoning

Fifteen studies reported on the usage of constraint languages or the usage of

automated reasoning based on constraints in the wider sense. SAT solvers

are used for instance by the S2T2 Configurator ([S24] and FAMILIAR [S30]),

61

a CSP solver is for instance used by Scatter [S29] and [S35]; SAT solvers by

[S36] and propositional formulas by [S37].

4.2.4 Graphical and Textual Notations

Among the thirty-seven tools identified in the primary studies, some supported

graphical notations only (15 tools), others textual notations only (13 tools),

and few supported multiple notations and views (9 tools). Additionally, there

were some that did not provide enough details on the notations supported.

Figure 4.1 summarises the breakdown of these notations based on the type of

notation supported. These are discussed in details in the following sub-

sections.

Figure 4.1: Breakdown of tools based on the type of notation supported

4.2.4.1 Graphical Notations

The graphical notations adopted by the tools reported in the primary studies

can be classified under the following six visualisations:

- FODA

Graphical

41%

Textual

35%

62

- File trees (vertical trees)

- Graphs

- Hyperbolic trees

- Logic diagrams (logic gates)

- UML

The figure below (Figure 4.2) shows the number of tools supporting each

visualisation type. The figure clearly shows that FODA and File tree

representations are still the most popular approaches.

Figure 4.2: Number of tools supporting each visualisation type

Tools in eleven studies are based on the FODA (Feature-Oriented Domain

Analysis (Kang et al., 1990)) approach. These are:

- [S10], FODA with UML

- [S11], FODA, hyperbolic trees, logic diagrams and file tree

- [S14], FODA, Zoomable interface to colour coded source code

1

1

1

3

13

11

Hyperbolic Tree

Logic Gate

UML

Graph

File Tree

FODA

63

- [S15] and [S25], FODA with colour coding

- [S17], FODA multiple trees per feature model

- [S21], FODA with colour coding and basic file tree

- [S22], FODA basic feature tree with attributes

- [S27], FODA, UML and basic file tree

- [S30], FODA, basic file tree and coding area

- [S37], FODA and basic file tree

Examples of these notations are shown in Table 4.2 below (snapshots taken

from the corresponding primary studies). Larger screenshots of these

examples are presented in Appendix B. As can be seen in the table, different

tools use different parts of the interface to display the FODA-like feature

model. As such, they are all prone to graphical overloading issues, where

once the feature model size gets into the hundreds, it becomes cumbersome

to browse and manage.

Table 4.1: Tools with FODA-like visual notations

Study Example Snapshot Study Example Snapshot

[S10]

[S21]

64

[S11]

[S22]

[S14]

[S25]

[S15]

[S27]

[S17]

[S30]

[S37]

65

Thirteen tools adopt file tree approaches of which eight-used basic right click

functionality to access information (tools reported in studies [S7], [S9], [S13],

[S26], [S28], [S31], [S32] and [S33]). Two studies are based on advanced

customization (colour, shapes, etc.) of feature icons (tools in studies [S12]

and [S16]). One-study reports file trees with semi circles representing

relationships among different features [S8]. Flow maps are also used in [S24].

A summary of these notations is shown in the Table 4.3 (see Appendix B for

larger screenshots). As can be seen in the table below, this family of tools

tends to be more scalable due to the inherent nature of the file tree navigation

mechanism. However, they are not as good as FODA-like tools in enabling

better intellectual control over the model (textual abstraction vs graphical

abstraction).

Table 4.3: Tools with file Tree-like visualisation

Study Example Snapshot Study Example Snapshot

[S7]

[S13]

66

[S8]

[S16]

[S9]

[S24]

[S11]

[S26]

67

Three tools support graph-based visualisations. One includes a configuration

interface using simple node-link graphs (user flows) with different objects [S2];

another supports the use of different objects for dependencies (circles,

triangles, etc.), file tree, and coding area [S8]; and one tool is based on

KOALA (Van Ommering et al., 2000) like graph visualisation, i.e., architecture

[S12]

[S28]

 [S31]

[S32]

 [S33]

68

centric [S18]. Finally, one tool adopts a logic diagram (schematics)

visualisation approach [S11]; another provides an UML-based visualisation

[S5]; and one adopts hyperbolic tree visualisation [S11].

Examples of these visualisations are shown in 4.4 below. Larger screenshots

of these visualisations are given in Appendix B. Looking at the table below, it

can be seen that notations that adopt hyperbolic views tend to have the best

balance between scalability and intellectual control (abstraction). While

managing to display the structure of the complete feature model, hyperbolic

trees allow for browsing the model by displaying more details about nodes

that are centered in the middle of the screen, allowing for smoother navigation

capabilities, especially when paired with Natural User Interface (NUI)

capabilities (e.g. pinching for zooming, etc.).

Table 4.4: Tools with Graph, Logic Diagrams, UML and Hyperbolic Tree

visualisations

Study Example Snapshot Study Example Snapshot

[S2]

[S11]

G
ra

p
h

H
y
p

e
rb

o
lic

 T
re

e

[S8]

[S5]

69

G
ra

p
h

U
M

L

[S18]

[S11]

G
ra

p
h

L
o

g
ic

 D
ia

g
ra

m
s

There are studies that do not provide enough details on the graphical notation

used in the tools described ([S19] and [S29]).

Overall, seven tools supported multiple views of the feature model, where

combination of a graph, a file tree, and a coding area are used by [S8]; Koala

and file tree is reported in [S18]; a file tree and a coding area are used in

[S13] and [S31]; FODA and basic file trees are used in [S21] and [S37];

70

FODA, a basic file tree and a coding area are reported in [S30], FODA, UML

and a basic file tree are used by [S27]; and FODA, hyperbolic trees, logic

gates and a file tree are reported in [S11] as summarized in Figure 4.3 below.

Figure 4.3: Number of views per tool for tools with more than one view

4.2.4.2 Textual Notations

For the textual notations, tools in thirteen studies reported the use of textual

notations. These can be classified under three different categories:

- Code-like: with syntax similar to programming languages

- XML-based: notations that are based on XML

- Code-based: notations that embed variability representation within

source code

Figure 4.4 below shows the number of tools supporting each textual notation

type.

3

4

2 2 2

3 3

2 2

1

2

4

[S8] [S11] [S13] [S18] [S21] [S27] [S30] [S31] [S37]

71

Figure 4.4: Tools with various textual notations

Code-like notations can be found in the tools described in [S3], [S18], [S28],

and [S30], [S34] and [S36]. Example snapshots of these notations can be

found in the Table 4.5 below.

Table 4.5: Tools with Code-like textual notations

Study Example Snapshot Study Example Snapshot

[S3] gui: main:common

 compile G compile A

 compile B

lnk: gui main compile C

 link gui main

 common:

common: compile X2

 compile X2

 gui:

clean: compile G

 delete *.gif

 super.clean lnk: gui main

 link gui main

 clean:

 delete *.gif

 delete *.class

[S28] config GPL

 boolean “ROOT”

 select M1

choice

 depends on GPL

 prompt “Graph Type”

 config DIRECTED

 boolean “Directed”

 config UNDIRECTED

 boolean “Undirected”

endchoice

config NUMBER

 default y if GPL

 requires (BFS ∥ DFS)
 boolean “Number”

---help---

Assigns a unique number to each

vertex as a result of a graph

[S18] Kumbang model KumbangExample

 root feature FSystem;

 root component CSystem

feature FSystem {

 subfeature

 (FeatureA, FeatureB) f;

[S30]

GraphicCard:

DirectX Bus [Vertex];

// Vertex is optional

DirectX: (v10 | v10.1)+; // Or-

group

0 1 2 3 4 5 6 7

CodeBased

XML Based

Code Like

72

 implementation

 instance_of(f, FeatureA) <==>

value($, attr) = a;

 instance_of(f, FeatureB) <==>

value($, attr) = b;

}

feature FeatureA, feature FeatureB only

are Lee EE usually really really hello

there closing are are are

component CSystem {

 attributes

 ABBalue attr;

}

attribute type ABValue = {a, b}

Bus: (n64 | n128);

// Alternative-group

n64 -> Vertex;

// Constraints

[S34]

Variability Code Metrics Supported in

 VITAL

Metric Description

VP Nesting Degree #ifde nesting level

 of a given VP

Var Tangling Degree #Vars used in a

 given VP

Var Fan-out on VPG #VPGs that contain

 a given Var

Var Fan-out on File #files that contain

 a given Var

 Var Fan-in on File #Vars included in

 a given File

 VP Fan-in on File #VP included in a

 given file

[S36]

Station(I,N,J,M) =

([N = 0]

nobike(I).Station(I,N,J,M) +

[N > 0] bike(I).Station(I,N-1,J,M)

) +

return(I).Station(I,N+1,J,M) +

redistribute(may,?FROM,?TO,?K).

([TO = I] Station(I,N+K,J,M) +

[TO /= I] Station(I,N,J,M)) +

[N > M] redistribute(may,I,J,N-

M).Station(I,M,J,M)

Users(I,J) =

request(I).

(bike(I).return(J).Users(I,J) +

nobike(I).Users(I,J))

XML-based notations are supported in [S4], [S8], and [S22]. Samples of these

notations are presented in the Table 4.6 below.

Table 4.6: Tools with XML-based textual notations

Study Example Snapshot Study Example Snapshot

[S4]
<<x-frame name=„Being“ language=“java“>

<set var=“BEING_CLASS“ value=“Being“/>

<break name=“BEING_PARAMETERS“/>

class <value-of expr=“?@BEING_CLASS?“/>{

String Name;

int Age;

double Weight;

double Height;

<break name=“BEING_BODY“/>

public String getName(){return Name;}

public int getAge(){return Age;}

public double getWeight(){return

Weight;}

public double getHeight(){return

Height;}

[S22] //STEP 1: Specify the user’s

preferences for the generation

(characteristics)

GeneratorCharacteristics

characteristics = new

GeneratorCharacteristics();

//number of features

characteristics.setNumberOfFeatures

(30);

//percentage of constraints

characteristics.setPercentageCTC(10

);

//Max number of products of the

feature model to be generated

characteristics.setMaxProducts(1000

);

//STEP 2: Generate the model with

73

<break name=“BEING_NEW_METHODS“/>

};

</x-frame>

the specific characteristics (FaMa

metamodel is used)

IGenerator generator = new

MetamorphicFMGenerator(

 new

FMGenerator());

FaMaFeatureModel fm =

(FaMaFeatureModel)generator.generat

eFM(characteristics);

System.out.println(“Number of

products of the feature

 model generated: “ +

generator.getNumberOfProducts());

//STEP 3: Save the model and the

products

FMWriter writer = new FMWriter();

writer.saveFM(fm, “./model.xml”);

//FaMa XML format

writer.saveFM(fm, “./model.afm”);

//FaMa textual format

[S8] <variationpoint id=”[id]”>

 <artefact>

 [artefact identifier]

 </artefact>

 <abstractionlayer>

 [abstraction layer]

 </abstractionlayer>

 <description>

 [description]

 </description>

 <type>

 optional | alternative | optional

 variant |variant | value

 <type>

 <variants> <!-- if not type=value -->

 <variant id=”[id]”>

 . . .

 <variant id=”[id]”>

 </variants>

 <range>

 [range specification]

 </range> <!-- if type=value -->

 <state>

 open | closed

 </state>

 <mechanism>

 [mechanism]

 </mechanism>

 <bindingtime>

 [bindingtime]

 </bindingtime>

 <rationale>

 [rationale]

 </rationale>

</variationpoint>

Finally, Code-based notations are found in [S7], [S13], [S14] and [S35]. These

are demonstrated in the Figure 4.7 below.

Table 4.7: Tools with code based textual notations

Study Example Snapshot Study Example Snapshot

74

[S7] class Watch {

Color color;

Waterproof waterproof;

Depth depth;

...

}

class Color {...}

class Yellow extends Color {...}

class Metallic extends Color {...}

class Depth {...}

class 50m extends Depth {...}

class 100m extends Depth {...}

[S14] class Test {

 static Exp e;

 public static void main

(String args[]) {

 Test.printtest();

 Test.evaltest();

 }

 static void evaltest() {

 e = new Num(1);

 System.out.println(“eval (1)

= “ + e.e

 e = new Neg (new Num

(1);

System.out.println(“

eval(Neg(1) =”

e = new Plus (new

Num(1), new Num(2));

System.out.println(“

eval(1+2)=” + e.e

 e = new Neg(new

Plus(new Num(1), new Num

 System.out.println(“eval(-

(1+2))=” +

 }

 static void printtest() {

 e = new Num(3);

 System.out.println(“print(3)

= “ + e)

 e = new Neg(new

Num(5));

 System.out.println(“print(Ne

g(5)) = “

 e = new plus(new

Num(5), new Num(7));

 System.out.println(“print

(5+7) = “ +

 }

[S13] // The syntax of feature tags is:

<fcomment> ::= "/*@feature:" <flist>

"@*/" [<filetag>]

<flist> ::= <featurename> (":" <flist>

) *

<filetag> ::= "/*@!file_feature!@*/"

// where <featurename> identifies a

// feature of the FD.

[S35] Relationships: 2 sequence { 3

signal_quality 4 cloneBetween 0 and

5 vehicle 5 //. . . 6 } 7 8

Attributes: 9 @NT string

sequence.comment 10 @RT int

vehicle.speed [0..130] delta 5

default 4 0 11 @ND int *.cost [0 ..

1000] default 150 12 real

signal_quality.luminance_mean 13

[0.0 .. 3 2.0] delta 2.0 14 [3 2.0

.. 224.0] delta 8.0 15 [224.0 ..

255.0] delta 2.0 16 default 7 2.5 5

17 //. . . 18 19 Descriptions: //.

. . 20 21 Constraints: //. . . 22

23 Objectives: 24 objective

generate_low_cost_configurations {

25 min (sum (*.cost)) 26 } 27

Configurations: //. . .

75

Looking at the samples in the three tables above, it can be said that it is

equally difficult for humans to read these descriptions, whether they are

written in code-like, code-based or XML format. Accordingly, it would be best

to choose the format that makes it easier for machines to parse textual

notations, and focus on providing GUI based access to feature information for

human use. As such, there is a need to develop a standardised description

format to allow better exchange of information among the different tools.

Competition between different tools would then be based on the quality of

presentation and intuitiveness of navigation of such information by end-users.

Finally, there were six further notations that did not provide enough details

about the textual notations they support, namely [S1], [S6], [S15], [S20],

[S23], and [S24].

4.3 Quality of the Research Conducted in the Reported Approaches

We analysed the quality of research using the quality scores (0, 0.5, 1) for the

eight quality questions (cf. section 2.2.4 of Chapter 2) and also assessed how

the studies address four different quality attributes important for tools usability,

integration, scalability, and performance.

Table 4.8 presents the results of the quality assessment of the 37 studies

included in the final review according to the quality questions. A frequency

analysis of the scores for each quality question is presented in Figure 4.5.

Most studies provide a rationale for why the study was undertaken (Q1).

Almost half of the studies describe the context in which the research was

carried out (Q2). More than half of the papers described the variability

76

management tool in enough detail to be able to perform an in-depth analysis

of the capabilities of the tool (Q3). Very few studies present an evaluation of

their proposed tools including feedback from end users (Q4). This could be

one of the main factors limiting the industrial adoption of these tools. Less

than a third of the studies support substantive claims made in the paper with

reliable evidence (Q5). Less than a third of the studies compare and evaluate

their own results against related work (Q6). Finally, very few studies discuss

the credibility of their findings (Q7) and limitations (Q8).

Figure 4.6 shows the distribution of total quality scores. The maximum

possible total score is 8 (a score of 1 across all quality questions). Most

studies received scores around 3 and 4. The total average was 4.05 with a

standard deviation of 1.84. This indicates that although the minimum quality

requirement is met, there is plenty of potential for improvement.

In general, the authors provided a motivation and a description of the

research context but papers lacked data to support the claims and findings.

Also, authors seldom provided critical reflection of their results. Most

variability management tools presented were not well evaluated, especially

with respect to feedback from end users.

Table 4.8: Results of the quality assessment of the primary studies

 No (0) Partial (0,5) Yes (1) Average
Score

Q1 1 2 34 0,95
Q2 12 10 15 0,54
Q3 1 14 22 0,78
Q4 23 12 2 0,22
Q5 11 15 11 0,50
Q6 19 7 11 0,39
Q7 16 15 6 0,36
Q8 23 8 6 0,27

77

Figure 4.5: Frequency analysis of quality scores for each question

Figure 4.6: Distribution of total quality scores

Table 4.9 presents different quality attributes we focused on in our review

(usability, integration, scalability, and performance) and how well they were

addressed by the studies. The quality attributes were identified through an

0

5

10

15

20

25

30

35

40

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

F
re

q
u

e
n

c
y
 o

f
s
c
o

re
s

Quality questions

no

partial

yes

0

1

2

3

4

5

6

7

1 2 3 3.5 4 4.5 5 6.5 7.5 8

F
re

q
u

e
n

c
y
 o

f
to

ta
l
s
c
o

re
s

Total score

78

interview-based survey conducted with a number of SPL practitioners who

were asked to list their five most important attributes of an SPL tool. Figure

4.7 shows the frequency analysis of the results for each quality attribute. As

can be seen, most studies do not mention the attributes with only few studies

providing contributions to the different areas of the quality attributes. The lack

of attention of researchers to these quality attributes, which are high up in the

priority list of practitioners, can be seen as another reason behind the very

limited industrial adoption of these tools.

Table 4.9: Quality attributes addressed by studies

 Does Not
Mention

(0)

Mentions
(1)

Contribution
(2)

Contribution
and

Evaluation
(3)

Average
Score

Usability 19 8 10 0 0,76

Integration 21 0 13 3 0,97

Scalability 24 8 4 1 0,51

Performance 24 4 8 1 0,62

79

Figure 4.7: Frequency analysis of scores for each quality attribute

As per Table 4.9 and Figure 4.7, the assessment of how well the studies

addressed the four different attributes (usability, integration, scalability, and

performance) important for tools, was taken using the four levels distinguished

as follows:

 Does not mention:

o When a study does not mention the attribute to be satisfied at

all.

 Mentions:

o When a study mentions evaluation of the attribute as a

challenge or research topic but includes no further discussion.

 Provides a contribution:

o When a study provides contribution in the area.

 Provides a contribution and evaluation:

o When a study provides contribution and evaluation in the area.

0 10 20 30

Usability

Integration

Scalability

Performance

Contribution and
Evaluation

Contribution

Mentions

Does Not Mention

80

Table 4.10 provides a list of all the tools identified in the study in chronological

order, along with the assessment results summary for how the studies

addressed the four different attributes important for VM tools. An abbreviated

symbol (CE) signifies “contribution and evaluation”, (C) denotes “contribution”,

(blank space) indicates “does not mention”, and (E) only indicates “mentions

of evaluation”.

Table 4.10: Identified tools with the assessment summary results

S/No

Tool Name Usability Integration Scalability Performance

1 DARE-COT

2 Odyssey C C

3 PuLSE-BEAT E C

4 Holmes

5 RequiLine E C E E

6 COVAMOF

7 Feature Modelling Plug-In E

8 PLUSEE CE

9 XML-Based Feature Model C

10 AHEAD E E

11 XVCL E E

12 KUMBANG C C

13 BVR: Base-Variation-Resolution

14
ASADAL (A System Analysis and Design Aid

tooL) C E

15 Scatter Tool CE CE

16 VMWT C C

17 L K C – Feature Modelling Tool

18 FeatureMapper C E C

19 PLUM

20 MUSA E C

21
XToF – A Tool for Tag-based Product Line

Implementation C

22 ToolDay E C

23 Zoomable C E

24 FAMILIAR E C

25 DOPLER C E C

26 FeatureIDE C C

27 ISMT4SPL

28 BeTTy C

29 MOSKitt4SPL

30 S2T2 Configurator C E

31 Easy-Producer C C CE

32 OPTI-SELECT C

33 MPLM-MaTeLo product line manager C C C

34 Variability code analysis using the VITAL tool C C

35
ViViD: a variability-based tool for synthesizing

video sequences C E C C

36 VMC: recent advances and challenges ahead C C

37
WebFML: synthesizing feature models

everywhere E CE

81

4.4 The Context of Research

The distribution of the research context of the studies is presented in Figure

4.8. The figure shows that most studies (68%) have been conducted in an

academic context. Only 16% of the studies are joint industrial academic

endeavours. In 16% of the studies, no information was provided on the

research context. Table 4.11 presents a list of all studies with their research

context.

Although the primary research context of some studies was academic, few

still had practical relevance. Figure 4.9 shows the distribution of the relevance

of the primary studies. Almost half of the studies (41%) are relevant to

academia only. 36% of the studies are relevant to both academia and

industry. Finally, 10% of the studies are relevant to practice only. While 13%

provide no sufficient data to be judged.

Table 4.11: Research context of the primary studies

 academia industry and
academia

no information

S1 X
S2 X
S3 X
S4 X
S5 X
S6 X
S7 X
S8 X
S9 X
S10 X
S11 X
S12 X
S13 X
S14 X
S15 X
S16 X
S17 X
S18 X
S19 X
S20 X
S21 X
S22 X
S23 X
S24 X
S25 X

82

S26 X
S27 X
S28 X
S29 X
S30 X
S31 X
S32 X
S33 X
S34 X
S35 X
S36 X
S37 X

Figure 4.8: Research context of primary studies

academia
68%

industry and
academia

16%

no
information

16%

83

Figure 4.9: Relevance of primary studies

4.5 Main Challenges Faced by Current Product Line Management

(PLM) Tools

Our last part of the analysis aimed at analysing the main challenges faced by

current tools as well as limitations of the tools. We therefore analysed the 37

selected studies regarding the challenges and limitations of current variability

management tools they discuss. Using the coding technique (Seaman, 1999),

we first scanned the studies looking for keywords “challenge”, “issue”,

“limitation”, and “drawback” and then extracted the related text (statements on

challenges and/or limitations). This allowed us to find out which studies do not

discuss any limitations or challenges (no statements extracted); which studies

at least mention challenges or limitations (statements extracted list challenges

or limitations, but do not discuss them); and which studies actually discuss

challenges or limitations (statements extracted list and discuss challenges or

limitations). 56% do not discuss limitations at all, 27% at least mention some

No sufficient
data
13%

Practice
10%

Research
41%

Research
and practice

36%

84

limitations without further discussing them, and only about 17% actually

discuss limitations. We find this a general weakness of publications on

variability management tools, i.e., that they do not discuss their own

limitations, which makes it hard to assess tools’ usefulness.

Challenges are more frequently discussed (73% provide a discussion, 13% at

least mention challenges, only 13% do not even mention challenges), i.e.,

authors mention what was the challenging part of implementing their tool

and/or what challenges their tool addresses.

We eventually analysed the extracted statements and (through discussion

and refinement among researchers) came up with ten categories for

challenges and limitations, in which we could group the extracted statements

on challenges and limitations discussed in detail below (ordered by the

number of studies providing input to the category).

The key challenge of variability management tools is scalability of models, i.e.,

how to develop variability models that are still useful despite their size and

complexity. 40% of the selected studies discuss this challenge and suggest

different solutions as described above.

The second most discussed challenge is checking models for consistency and

correctness (23%), especially how to keep the models consistent with the

underlying architecture and check that the models represent the variability of

the product line correctly. Mapping problem and solution space (20%) is also

discussed as a key challenge to be addressed by variability management

tools. Many tools only take care of creating and managing the variability

85

models representing variability but not of how to map variability (e.g.,

represented by features or decisions) with the actual artefacts realizing this

variability.

Visualisation/Graphical Overload is discussed as a challenge by 17% of the

selected studies. Variability management tools must provide ways to cope

with the size and complexity of variability models to help users suffering from

graphical overload with visualisations. Other important challenges are

usability and maintenance and evolution of variability models (both 13%).

Addressing both challenges is essential for tools to be useful and successful

in practice in the long run.

Integration of variability management and (legacy) software (development),

i.e., the question of how to adopt a variability management tool in practice, is

also still an important issue and discussed by 10% of the selected studies.

Process Improvement/Automation through variability management (7%) is

explicitly discussed by 2 selected studies, even though this is actually the key

goal of variability management tools anyway.

Two further challenges, which are discussed by one study each, are

supporting the modelling of non-functional properties in variability

management (e.g., resource consumption constraints) and compliance (with

standards/quality policies/regulations).

86

4.5.1 Scalability of (variability) Models (12 studies)

In an initial discussion, we had called this category “working with one large

model vs. working with several separate models”. However, through our

discussion we found out that the statements we categorized here actually are

all about challenges regarding the scalability of (variability) models.

For instance, the authors of [S17] report experiences from empirical case

studies that confirm that the complexity of variability management stems from

the need to work with (too) large models. Study [S4] highlights the importance

of compositional approaches to product line representation/implementation to

address this challenge. Study [S21] report on a tool supporting variability

management in self-adaptive systems, which again adds to the challenge of

scalability of models.

As discussed by the authors of [S3] a key “challenge is to show how scaling

can be accomplished in a principled manner so that product line variability

management tools are not just ad-hoc collections of tools using an

incomprehensible patchwork of techniques”. More specifically, they argue that

“generators are a technological statement that the development of software in

a domain is understood well enough to be automated. However, we must

make the same claim for generators: The complexity of generators must also

be controlled and must remain low as application complexity scales;

otherwise, generator technology will unlikely have wide-spread adoption.”

The BVR tool [S7], for instance, proposes to have separate models related to

a base model instead of one large model or completely separate models to

87

allow working with product lines of a realistic size. DOPLER [S12] allows both,

creating one big model and several small but related models. The DSL tool

FAMILIAR [S30] suggests separating, relating, and composing several feature

models while automating the reasoning on their compositions. FAMILIAR

focuses mainly on textual representation because, as they claim, this favours

readability of the specified operations and leads to more usability and

productivity when dealing with compositional operations on feature models.

They, however, also argue that graphical visualisation has proved to assist

users, for example, during the configuration process. This is why they

integrated their DSL with the Feature IDE tool.

The author of [S11] presents a NUI-based multiple perspective variability

modelling tool to help working with large-scale models, i.e., multi-touch

interfaces to allow working with large models (and their visualisations/different

views) to address the scalability challenge.

ViewInfinity [S14] provides seamless and semantic zooming of different

abstraction layers of an SPL. The tool described in [S5] provides multiple

product line views (using the feature model as a unifying view). Study [S8]

focuses on the hierarchical organization of variability, the first class

representation of simple and complex dependencies (“dependencies that

affect the binding of a large number of variation points, e.g., quality attributes”

[S8]); and argues that relations between dependencies should be explicitly

represented. The Odyssey Reuse environment [S10] specifies “patterns

based on both architectural styles and specific information from the

88

application domain to create a complete reuse environment, which defines

software architectures and conceptual model representations on a high level

of abstraction”.

4.5.2 Checking Models for Consistency and Correctness (7 studies)

Checking the models underlying the variability management tools for

consistency and correctness is considered as a key challenge by seven of the

30 studies. For instance, the authors of RequiLine [S26] argue that semantic

information is needed for an automated consistency check in variability

management tools. Study [S5] highlights that consistency checking among the

multiple views in a product line (as provided by their tool) is essential.

FeatureMapper [S9] provides diverse visualisations to support the SPL

engineer in verifying the correctness of the models (feature models, mapping

models, solution space models) and argues this is very important.

The authors of Odyssey [S10] suggest specifying the “operations that will be

performed on models, as well as to systematize these operations, to facilitate

the consistent creation of models”. The DOPLER tools [S12] have an

integrated consistency checking component that checks the consistency on

different levels, i.e., in problem space, in solution space, and between

problem and solutions space. ToolDAy [S27] is one of the few studies that

discuss their limitations, i.e., that complex consistency rules cannot be

described in their tool. The authors of study [S3] highlight the use of model

checkers in their tool as important future work.

89

4.5.3 Mapping Problem and Solution Space (6 studies)

Six studies highlight the challenges and limitations of mapping problem and

solution space, i.e., mapping the variability representation with the actual

product line architecture. For instance, ISMT4SPL [S17] discusses

“traceability between decisions in variability/feature models and the

corresponding implementation artefacts” as a key challenge for variability

management tools. The authors of study [S16] report about a limitation of their

tool, i.e., that the support for mapping problem and solution space is missing.

FeatureMapper [S9] explicitly focuses on this aspect by introducing mapping

models to map feature models and solution space models. Kumbang [S18]

explicitly integrates architecture models (i.e., Koalish, an architecture

description language/component model based on Koala ADL but adding

variability concepts) with feature models within its tool support. DOPLER

[S12] uses explicit asset models to represent the solution space and links

these models with the problem space decision models via so-called inclusion

conditions. Code tagging tools such as XToF [S13] do not map both spaces

but rather integrate the representation of the problem space into the solution

space, or, as could be argued, just represent solution space variability (i.e.,

variability in code).

4.5.4 Visualisation/Graphical Overload (5 studies)

Five studies argue that visualisation of variability easily leads to a graphical

overload of the tool user and is a key challenge. For instance, the author of

90

study [S11] argues that “it is important for a variability management

mechanism to be able to extract and present relevant information about a

variability model in dedicated views for different groups of stakeholders

(users, system analysts, developers, etc. to alleviate the graphical overload

when showing all the information in one view.”

ViewInfinity [S14] provides seamless and semantic zooming of different

abstraction layers of an SPL. Study [S8] argues that variability models should

“represent variation points as first class entities in all abstraction layers (from

features to code); provide a hierarchical organization of variability; focus on

the first class representation of simple and complex dependencies

(dependencies that affect the binding of a large number of variation points,

e.g. quality attributes); and explicitly represent dependencies”. ST2T [S24]

provides sophisticated visualisation and interaction techniques to address the

challenge that handling variability and configurations is hard due to the

complexity on a cognitive level as human engineers reach their limits in

identifying, understanding, and using all relevant details. Study [S16]

highlights this as a key limitation of their tool, i.e., that a graphical

representation missing.

4.5.5 Maintenance and Evolution of Variability (models) (4 studies)

Four studies report on the challenges and limitations regarding maintenance

and evolution of variability (models). The BVR tool [S7] suggests to not use

annotations of features but “relations between feature models and elements of

a base model” to express/capture variability. Study [S30] confirms that with

91

current technologies manipulating and evolving large-scale feature model is

challenging and error-prone. Study [S29] argues that not all devices and their

characteristics can be known in advance – “their unique capabilities must be

discovered and dealt with efficiently and correctly”. Study [S6] reports that

ambiguities in existing feature meta-models negatively affect maintenance.

4.5.6 Usability (4 studies)

Only one study RequiLine [S26] mentions usability to be a limitation of their

tool support. However, most tools suffer from this limitation in our own

experience. The authors of [S4] admit that the understandability of their

variability modelling language/tool must be improved. DOPLER [S12] puts a

special emphasis on usability, however, only on the configuration side, i.e.,

the configuration tools are optimized to allow their use by sales staff. ST2T

[S24] provides sophisticated visualisation and interaction techniques to make

complex variability models usable by engineers.

4.5.7 Integration of Variability Management and Legacy Software (3

studies)

Three studies report about the challenge of integrating variability management

support into legacy software. The development of XToF [S13], for instance,

was motivated by industrial needs. One of the key goals was to develop

support for variability management that does not require changing current

development practices in the organization requesting support. Thus a code-

tagging approach was applied. The authors argue that it is important to

92

provide tool support for variability management, but this support must be

nicely integrated with existing tools and processes. The development of

FeatureIDE [S15] was challenged by the difficulty to integrate variability

management and Eclipse. The author of the ToolDAy [S27] argues that

supporting integration with tools like DOORS is essential (though not

supported by ToolDAy).

4.5.8 Process Improvement/Automation through Variability

Management (2 studies)

Two studies describe the challenge of improving development processes

through automation provided by variability management tools. The authors of

study [S19], for instance, argue that “on the one hand, the non-existence of a

unified way to introduce the contents [leads to] an unnecessary waste of time

for the employees to learn new technologies and feel comfortable with the

new platforms. On the other hand, a rapid prototyping platform is also

desirable for showing their customers a working prototype at an early stage.”

The authors of study [S1] highlight the need for models that are expressive

enough for automation.

4.5.9 Compliance (with standards/quality policies/regulations) (1 study)

Study [S13] stresses the need for compliance, i.e., they argue that it is also

important that variability management/modelling tools do not violate with

standards/quality policies/regulations in the organizations in which they are

used.

93

4.5.10 Non-functional Properties in Variability Management (1 study)

Study [S29] argues that resource consumption constraints are not taken into

account by existing configuration approaches and tools.

Table 4.12 below, presents a summary list all the challenges faced by current

tools as well as limitations of the tools a long with number of studies that

discusses each problem.

Table 4.12: Summary results of VM tools challenges

Challenge/problem Number of studies Total (%) of occurrence

Scalability of variability models 12 40%

Checking models for consistency
and correctness

7 23%

Mapping problem and solution space 6 20%

Visualisation/graphical overload is
discussed as a challenge

5 17%

Usability 4 13%

Maintenance and evolution of
variability models

4 13%

94

Integration of variability management
and legacy software

3

10%

Process improvement/automation
through variability management

2 7%

Compliance (with standards/quality
policies/regulations)

1 3.5%

Non-functional properties in
variability management

1 3.5%

4.6 Summary

This chapter presents a critical analysis of the 37 variability management

tools identified and reported in a survey, and contains a systematic literature

review to understand the tools’ characteristics and maturity, as well as the

challenges in the field. The tools are based on diverse development

environments, apply diverse technologies, and support different variability

modelling approaches. Most tools support a feature modelling approach.

Different graphical and textual notations are provided by the tools, with a

focus on tree-based visualisations of features. Only few tools provide multiple

views, e.g., a graphical view of features together with a text-based

representation of source code variability.

While most studies about variability management tools provide a good

motivation and a description of the research context they often lack data, e.g.,

from empirical studies with tool users, to support the claims made and the

95

findings reported. Also, studies seldom provide a critical reflection of the

presented tools and their limitations. Most variability management tools were

not well evaluated, especially with respect to feedback from end users.

Quality attributes important for the practical use of tools such as usability,

integration, scalability, and performance are out of scope for most of the

analysed studies. This might be explained by the fact that most studies have

been conducted in an academic context. Only 6 of 37 studies are joint

industrial academic endeavours.

Many studies discuss challenges, i.e., what was the challenging part of

implementing the tool and/or what challenges related with variability

management and SPL engineering the tool addresses. A detailed analysis of

these challenges has been performed to guide future research.

The chapter concludes that the key challenge of variability management tools

is scalability of models, i.e., how to support the development of variability

models that are still useful despite their size and complexity. The second most

discussed challenge is checking models for consistency and correctness,

especially with regard to how to keep the models consistent with the

underlying architecture and how to check that the models represent the

variability of the product line correctly. This is also related with the third most

important challenge, i.e., providing support for mapping problem and solution

space. Visualisation of models and the resulting potential graphical overload

of users are also recognized as important challenges. While these challenges,

together with the importance of usability of variability management tools, are

recognized as important challenges in many studies, only few actually

96

address them or provide empirical proof that the reported tool helps to

address the challenges.

Further challenges mentioned as important for variability management tools

are support for the maintenance and evolution of variability models,

integration of variability management and (legacy) software (development),

process improvement and automation through variability management,

managing non-functional properties (e.g., resource consumption constraints),

as well as compliance with standards, quality policies, and regulations.

The analysis presented in this chapter do not only provides a good overview

of existing variability management tools and the challenges for variability

management tool support, but also establishes criteria and concepts for

comparison of such tool support. The main hope is the study will encourage

authors of approaches and tools to report on those aspects (particularly

empirical studies on tool usefulness) and compare their tools with others.

PART II: MUSA 1 Vs MUSA 2

98

Chapter 5

Theoretical Foundation of MUSA

5.1 Introduction

So far, we have introduced a number of tools and techniques for managing

variability in software product lines, together with a detailed analysis of the

state-of-the-art of the research field. Within these techniques, feature

modelling approach has been the most widely used, to represent, manage,

and visualise the variability of product families and their configurations.

In chapter 4, we analysed and critically discussed about a number of

variability management tools and modelling techniques, and the approaches

they used in tackling variability-related challenges. We have also described

the characteristics, maturity, and technology, based on which they were

implemented. We have also discussed about their limitations and challenges

in the field.

This chapter presents the early version of MUSA, implemented based on our

theoretical foundation on multiple perspective-based Variability Management–

the Four View Model (4VM)–which is aimed to alleviate the problem of

information overloading. MUSA was implemented on Microsoft Surface and

99

Windows 7, with touch pack platforms. The chapter also describes the

theoretical background as well as the technical background, which explained

a series of funds received in order to implement MUSA as a proof of concept.

Some of the functionalities of the early version of the MUSA tool were also

presented.

5.2 Backgrounds and Motivation

In a real life project, software product lines can generate a large number of

features that are extremely interconnected, both hierarchically, and in a non-

hierarchical order; this is typically in the order of thousands in many cases

(SCALE’09, 2009). The model usually goes beyond the control of human

cognitive abilities and is too challenging for automated reasoning. Although

feature modelling techniques are widely used to represent and visualise

variability features, evidence from practice shows that this method has limited

scalability (Reiser and Weber, 2006). These include, among others: (1)

difficulties in providing effective supports of the artefacts representing different

elements in the model, and (2) creating, editing, and interpreting specific

features of interest.

However, other information visualisation techniques that focused on

representing large and structured information were also explored. These are:

(1) the node-link (Holten et al., 2011) – represented as a graph layout, in

which a node represents the individual elements of the information and

relationships between these elements, which are represented as edges, and

(2) the treemap (Shneiderman and Plaisant, 2004) – a technique that provides

100

a holistic visualisation of hierarchical data, using a set of nested rectangles,

where each rectangle binds with smaller rectangles to form sub-branches.

These information visualisation techniques are effective and efficient to

support a software product line development process by allowing large

variability models to be represented and visualised appropriately. In addition

to providing mechanisms for navigation within a large data, they also reduce

the complexity of the data models, making them understandable for the

stakeholders. Unfortunately, most of these techniques suffer from visual

clutter when the number of child nodes grow exponentially in the order of 2n,

thus raising a scalability issue that requires an exponential amount of space

for the data to be displayed more appropriately.

On the other hand, hyperbolic trees (Lamping et al., 1995) provide an

adequate layout for visualising large scale data and hierarchies. Hyperbolic

trees use hyperbolic space, which provides more room for appropriate

representation of data as compared to other techniques such as Euclidean

Geometry space. However, the focus of a hyperbolic tree is typically on

contextual visualisation, helping users focus on a particular element of

information. When applied to product line engineering, hyperbolic trees can

offer more appropriate and clear representation of variability, variation points,

and their variants, hierarchically.

5.3 Concept of Multitouch Technology

From a computing perspective, multi-touch is a technology that enables

devices (touchscreen or trackpad) to recognize and respond to two or more

101

simultaneous touch inputs, allowing one or more users to interact with

computer applications through various gestures and pressure created by

fingers on a surface. This is in contrast to single-point input devices, such as a

mouse or a traditional touchpad, where users can select a single point, drag

and drop, push and slide. Multi-touch technology allows users to swipe, pinch,

rotate, and perform other actions that allow for richer, more immediate

interaction with digital content.

Multi-touch technologies have a long history, but the first one designed for

human input to a computer system began in 1982, when the University of

Toronto introduced a system that used a frosted-glass panel with a camera

placed behind the glass. When a finger or several fingers pressed on the

glass, the camera would detect the action as one or more black spots on an

otherwise white background, allowing it to be registered as an input (Mehta,

1982). Following this was the introduction of the first multi-touch screen

capable of simultaneously capturing  multiple touch‐points on a display,

which was developed by Bob Boie in 1984. This used a transparent capacitive

array of touch sensors overlaid on a CR, and allowed for manipulating

graphical objects with one’s fingers with excellent response time. This

eventually led to the release of what has been considered the world’s first

smartphone by IBM and Bell south in 1992 ('Bellsouth, IBM,' 1993).

5.3.1 The Benefits of Multi-touch over Single Touch

Multi-touch technology expands the functionality of traditional input devices,

such as the keyboard, mouse and stylus, with new ways of interacting with

102

information. For instance, two fingers can allow users to zoom in and out, or

scale the display. The need for two activation points has been widely

recognized in the industrial environment, that is, to have both the user’s hands

on the screen.

Furthermore, secure keyless entry to a room can be implemented with a

fingerprint via touch display. Different security paradigms can be combined to

implement a high level of security, e.g., unique gestures on the touchscreen

display serve as the new password, while the meeting schedule further

secures entry.

Another good example is building automation: imagine that your building is big

enough that when the floor plan fills a display, the details are rendered too

small to see. At this level, all you can do is get an overview, which may be

enough for new visitors trying to find their way around, but proves insufficient

for more specific needs.

Likewise, if a user needs to read a manual, multi-touch enables two-finger

scrolling, pinching, spreading and rotating without a complicated learning

curve.

5.4 MUSA Theoretical Background

MUSA (A Multi-touch Variability Modelling Solution for Software Product

Lines) is designed to implement our theoretical work (Bashroush et al., 2008,

Bashroush et al., 2011) on multiple perspective-based variability

management, which provides a successful modelling framework while using

103

the concept of separation-of-concerns to alleviate the problem of information

overloading. As stakeholders have an interest in the different views of a

product line variability model (Nuseibeh et al., 1994), it is important for a

variability model to be able to represent and extract relevant information

without overloading the graphical representation of the model.

The Four View Model for Variability Management (4VM) aims to alleviate this

overload (Bashroush, 2010). The design and implementation of the MUSA

tool was achieved by following the 4VM model. The model proposes the

distribution of feature modelling information into four views, with each view

dedicated to a particular theme and group of stakeholders. The views are:

 Business View: In this, the information associated to the project

management, cost/benefit analysis, closed/open sets of features and

others is presented. Project managers are the main targets with a view

where they can specify feature costs, open and closed features,

feature introduction time, etc.

 Hierarchical & Behavioural View: This is where the different features

are organised (usually presented in a tree structure), along with the

behaviour attached to each feature is presented. The main concerns of

this view are twofold: the software architects, and end users’

requirements, need to be captured. This view is currently the most

widely adopted by many feature-modelling techniques.

 Dependency & Interaction View: Here the dependency and

interaction among the features (e.g., inclusion, exclusion, etc.) are

104

presented. The focus of this view is towards architects, and offers a

suitable basis for capturing feature dependency and feature interaction.

The view is a complement of the Hierarchical & Behavioural View.

 Intermediate View: Is where some design decisions are inserted into

the feature model to take it one step further towards the architecture

domain, in an effort to bridge the gap between the feature model and

the system architecture. This view is centred towards architects, and

provides a transition stage towards the architecture.

5.5 MUSA Technical Background

To demonstrate the theoretical groundwork in 4VM, the European RD Fund,

through INI funded MUSA as a proof of concept project under the Proof of

Concept funding scheme [2008-2010]. Further funding was received under

the Challenge Fund scheme at the University of East London [2010-2011].

MUSA implements this theory using a mind-mapping modelling approach over

the state-of-the-art in HCI (Human Computer Interaction), the multi-touch

Microsoft Surface (Dietz and Eidelson, 2009). This offers a scalable solution

that taps on the latest technology in Natural User Interface (NUI) (Microsoft,

2008) design, providing an intuitive and large display for Variability models. In

addition, the MUSA provides solutions over the Windows 7 platform, using its

native multi-touch pack.

As part of its innovative support for product line variability, MUSA provides a

comprehensive collaborative interface for eliciting variability and requirements

management from stakeholders, while at the same time allowing for suitable

105

access to the variability model to different teams, such as requirement

engineers, architects, implementation, testing and evaluation teams, etc.

MUSA provides end-to-end variability solution, in addition to automation of

model verification using SAT solvers. It allows consistency between the

different views to be maintained with the help of a centralised database (see

Figure 5.1).

Development Team

Stakeholders /

Project Managers

Testing & Evaluation

Team

Requirements Engineers

& Architects

Deployment Team

Figure 5.1: Theoretical Foundation (adapted from (Bashroush, 2010)

During the first official demonstration of the MUSA system, the focus was

mainly on the interface that is used to manage variability and requirements

elicitation, targeting mainly the architects/requirements engineers. The main

functionalities are: (1) it provides large gesture-based interface for the

106

modelling of variability in SPL. (2) It uses 360-D User Interface (UI) design

principles and Natural User Interface (NUI) to provide a multi-user interface

simultaneous interaction and collaboration, and (3) It uses mind-mapping

techniques (hyperbolic tree) in the implementation of the variability model,

providing a potential scalability in a large model.

5.6 Implementation of the Earlier Version of MUSA Tool

The MUSA tool suite was initially implemented on the Microsoft Surface

platform and Windows 7, with a touch pack platform. It used hyperbolic trees

and supporting gesture-based interaction (multi-touch interaction) for

representing and visualising the variability models, which makes it a powerful

solution for creating and managing large-scale product lines.

However, the initial version of MUSA was developed as a prototype due to

some limitations with the surface platform, such as hardware issues inherited

from surface technology, and software issues such as platform dependency.

For this reason, many practitioners did not adopt MUSA; hence, there is need

for making it more generic. Although Microsoft has recently rolled out cheaper

and more portable versions of Surface, the earlier version of Surface was a

bulky piece of hardware that came along with a table for it to be mounted

upon. This made it very heavy and non-portable as a piece of hardware. In

addition, there is also the fact that the Surface was too expensive when it

initially hit the market. Figure 5.2 is a MUSA architect interface showing a

hierarchical view, and displaying a set variability models on a MS-Surface.

107

Figure 5.3 is a Windows 7 interface, showing variability models displayed on a

hierarchical view of the MUSA tool.

From these two figures, it can be noticed that different features are

distinguished using colour coding; namely, optional (blue), and mandatory

features (yellow). The existing Microsoft Surface-based MUSA system

requires user access cards that can be placed over the surface interface and

get recognised by the system. Appropriate access is then granted in

accordance with user privileges. Once the user has successfully logged in,

among others, he can select and load the existing feature trees that are

structured in the hierarchical model and stored using xml file, from which the

user can browse through the features, view the details of the features, and its

sub-features.

The user can also recognise feature types (Mandatory and optional).

However, depending on the user privilege, he can make changes to the

feature model. This implementation of the MUSA system over Natural User

Interface (NUI) was considered among the very first of its kind in order to

overcome scalability issues. This, however, improves the interactivity and

visualisation of the product line variability models. On the other hand, the

Windows 7 platform login process does not require an access card as it does

not support optical processing capabilities. Instead, it uses a standard login

screen on which a user can login with valid credentials.

108

Figure 5.2: MUSA designed interface on MS-Surface showing the hierarchical view

109

Figure 5.3: MUSA designed interface on Windows 7 showing the hierarchical view

110

5.7 Screenshots and Descriptions of the MUSA Tool Version One

The application loads a default tree structure as the main application screen,

as shown in Figure 5.4. The user can also load and view a different feature

tree by clicking or touching the load button, which opens up the Open-File-

Dialog window, from which the user can select and load the needed feature

file, as shown in Figure 5.5. Once the feature tree has been loaded into the

application, the user can navigate through it, as well as view the details of its

features. Touching a feature will automatically load its details, as shown in

Figure 5.6. Other functionalities include editing features (Figure 5.7),

distinction between mandatory and optional features (Figure 5.8), placing the

nodes in focus in the centre, searching for a feature to locate its position in the

feature tree, etc.

Figure 5.4: Main application window after successful log in

111

Figure 5.5: Options menu to load a tree

Figure 5.6: Viewing details of a selected feature

112

Figure 5.7: Click Edit button to start editing

Figure 5.8: Mandatory and optional feature distinction

113

5.8 Summary

This chapter describes the early version of MUSA tool and framework,

implemented as a proof-of-concept on two different (the Microsoft Surface and

Windows 7 touch) platforms. This implementation was based on the four view

model (4VM), a successful work on multiple-perspective-based variability

management, which provides a modelling framework while using the

separation-of-concerns approach to alleviate the challenge of information

overloading. MUSA uses a mind-mapping modelling technique (hyperbolic

tree) in the implementation of this theory, over the state-of-the-art in Human

Computer Interaction (HCI).

Chapter 6

Musa Version 2

6.1 Introduction

The previous chapter presents and describes the theoretical foundation on the

basis of which the first version of the MUSA tool and framework was

developed, along with its implementation and the limitations that motivated the

redesign of the framework. In this chapter, a new version of the MUSA tool,

which exhibits a number of features that enable it to deal with large-scale

systems, is presented. MUSA adopts the separation-of-concerns design

principle by providing multiple perspectives to the model, each of which

conveys a distinct set of information. The tool was demonstrated on an

industrial case study consisting of more than 1,000 features. The

demonstration was conducted to show the Structural View, which is displayed

using a mind-mapping visualisation technique (hyperbolic trees), and the

Dependency View, which is graphically represented using Logic gates.

In this study, we still recognize the use of the mind mapping approach using a

hyperbolic tree as the best-known technique in making better use of a screen

by representing large amounts of data without the problem of graphical

overloading. It is better than any other approach, like traditional tree browsing

interfaces, a space tree, file tree-like structures, and so on, which can be

115

cumbersome to use as soon as the number of variants reach about a

hundred.

6.2 The Musa Tool

The new version of the MUSA tool is implemented in Java and uses XML files

to input/output data. It provides two different collaborative interfaces (i.e.,

views) for managing variability models, and their consistencies are maintained

with the help of a centralised database (see Figure 6.1). The

Development/Browser View is the default view when the application is initially

launched. The main functionalities covered by this view include: (1)

Representation of product line variability models using a hyperbolic browser;

(2) creation of new feature trees for managing variability; and (3) editing

existing feature models (e.g., changing a feature’s name, its properties, and

description; adding and deleting features, etc.).

116

Figure 6.1: Description of MUSA’s architecture

The hyper-tree browser uses hyperbolic geometry to place nodes around the

root and provides smooth and continuous animation of the tree so that users

can bring other nodes into focus by clicking, tapping on or dragging them. The

advantage of using hyperbolic trees is reducing visual clutter compared to

standard trees when the number of child nodes grows exponentially. The

former employs hyperbolic space, which provides more room than Euclidean

space. Using hyperbolic trees gives this MUSA tool an important advantage in

scalability. The tool can display models with a large number of features;

counting more than 1000+ features are in the relevant case study of this

research (see Section 6.3).

View 2 View 1

Development/Browser Dependency

Feature Model

117

6.3 Functionality of MUSA Using Case Studies

In this section, the main features of the new MUSA tool are presented by

using real-life product line case studies. This is accomplished by showing how

a new feature can be created from scratch, and then a variability model

consisting of 100 features is shown. The full functionalities are then described

using a large case study that consists of more than 1,000 features. The aim is

to show how effective the approach is when applied to product lines of

different sizes (i.e., it is capable of managing large or small-size variability

without any overhead or extra effort) in terms of managing and visualising

variability models. The use of these case studies enables the determination

and assessment of the extent to which MUSA satisfies design needs, as

compared to other tools available today. A video demo of the new version of

MUSA tool in action can be found in: https://youtu.be/Oq18Wv8czUI.

6.3.1 Creating a New Feature from Scratch

A new feature can be created from scratch by tapping or clicking on the file

menu and then selecting ‘New Root’. The new root feature will be placed at

the centre of the window view, as shown in Figure 6.2.

https://youtu.be/Oq18Wv8czUI
https://youtu.be/Oq18Wv8czUI

118

Figure 6.2: A new feature from scratch

To change the name of the new node, touch-hold it -> using the pop-up

window shown in Figure 6.3, a new name can be typed in the text box, along

with the description of the feature. As an example, the feature node was

named as a ‘Test’ feature. Finally, select ‘OK’ to validate or ‘Cancel’ to end

the process.

119

Figure 6.3: Adding a name for the new feature

Now, to add sub-features to the original root (Test) feature, double tap it ->

select the ‘Add Button’ from the options that appear (see Figure 6.4), type a

name for the new sub-feature, and then move down a bit and select its type

as either mandatory, optional or alternative. A description associated with the

feature can also be added, as shown in Figure 6.5. Finally, select ‘OK’ to

validate or ‘Cancel’ to terminate the process. As an example, TF1-TF9 has

been added (see Figure 6.6).

120

 Figure 6.5: Type a name and select its type

Figure 6.6: Sub-features of Test Feature- TF1-TF9

Note that the different colours associated with these features are for

mandatory, optional and alternative: the light yellow is for mandatory and the

Figure 6.4: Select the Add button

121

green is for optional, while the burnt orange colour is for alternative. From

here, more features can be added as required.

6.3.2 Medium and Large Scale-Size Models

Moving to one of the case studies used to evaluate the capability of MUSA,

one can look at the top left corner of Figure 6.7 and see that this case study

consists of 101 features. In fact, handling a variability of around 100 features

is one of the limitations of most current variability management tools. Looking

at the model, there are only five features attached directly to the root feature,

leaving a wide gap between them. Therefore, to show that more features can

be added without any overhead, another real-life case study with more than

1000 features has been used (see Figure 6.8).

Figure 6.7: Medium scale-size model

122

Figure 6.8: MUSA’s main browser View

With reference to Figure 6.8, MUSA’s browser view shows all the features of

the model in the case study in a hyperbolic tree. By default, the root of the

tree is centred, while further leaf names are hidden (but their connections

remain in order to provide visual feedback for the user). The user can cycle

through the features by swiping in any direction with a mouse or directly on a

touchscreen. Selecting a feature will centre the screen over it, zooming if

necessary, and displaying more connections to related features. Double-

clicking anywhere on the background will centre the view back to the root of

the model. When focusing on a particular node, MUSA places it at the centre

of the screen with all its children, while out of focus nodes will reduce in size

and be displayed towards the edge of the view.

123

However, upon double-tapping a feature node, the option menu with a

number of possible options will pop up; this can be used to add a new feature

to the existing tree, delete a feature from the tree, or view the dependency

relationships that exist among the features (see Figure 6.4). Users can also

use different gestures, such as pinching (for expanding nodes), panning (by

moving two fingers on the screen to shift the feature model), or tapping with

three fingers to centre the model to its root node.

Search in MUSA is straightforward by ‘touching and holding’ on any space (or

right clicking), which brings up the search box. In the popup box, users can

type the desired search keyword and a list of potential features will be

displayed. Touching or clicking any result will centre the view on that

particular feature. Figure 6.9 illustrates the search process. Adding or

removing a feature in the model can be achieved by double-tapping or clicking

on a feature node. A menu will appear with options to add or remove features.

If, for instance, the Add button is selected, the user will be prompted with a

window where she can type the name of a feature, such as TestFeature, and

select its type as mandatory, optional or alternative (see Figure 6.5). The

same menu displays an option to view dependencies in a different view. Upon

tapping or clicking on the dependency option, the Dependency View will open,

showing the selected feature with all its associated relationships. From this

view, different kinds of dependency relationships can be created, edited or

modified using Logic visualisation.

124

However, viewing the properties and the descriptions of a feature can be

achieved by touch-holding or right-clicking it, and a window will then appear

containing the details of the selected feature. Figure 6.10 is a properties

display window of a feature called Analogue Input Features

(Analogue_Input_Features).

125

Figure 6.9: The search process in MUSA

126

Figure 6.10: The feature properties window

6.3.3 Managing Feature Dependencies using Logic Circuits

From the dependency perspective, a separate view is proposed within the

MUSA tool by using Logic Design to capture and model the dependency

relationships. Once the user makes his/her selection of features from the

browser view, the dependency model will take the user-selected feature set

as an input and verify it against the model, pointing out any dependency

relationships associated with that feature. At the same time, if no relationship

127

for that selection exists, then a new window in the dependency view opens to

create new dependencies, if needed. This provides simplicity in managing

dependency relationships within large and complex variability models. This

study used three basic Logic gate (AND, OR and NOT) symbols from which a

user, such as an architect, can generate and resolve any relationship (from

simple to complex dependency).

The dependency diagram in Figure 6.11 shows that the

Generic_Product_Code_Parameter feature requires three other features to

fulfil its tasks: the Parameters 8-19, the Production Mode and the Product

Type. Figure 6.12 illustrates this. It also shows that one of the required

features, the Product Type, is mutually dependent on the two other features

(Quality Features and Production Mode). Therefore, any selection of this

feature will inclusively imply their selection. However, the diagram shows that

a conflict exists between the Product Type and the Operation Mode;

therefore, they cannot be chosen for the same product configuration, that is,

they are mutually exclusive to each other (see Figure 6.13 for a breakdown).

Hence, a bi-directional exclusive relationship exists between the two features.

128

Figure 6.11: MUSA’s dependency view

Figure 6.12: Generic_Product_Code_Parameter feature is mutually dependent on

Parameters 8-19, Production Mode and Product Type features

129

Figure 6.13: Mutually exclusive relationships between features

6.4 New Version of MUSA as Compared to Earlier Version

This section takes a look at some of the improvements of the new version of

the MUSA tool suite over its predecessor.

The new MUSA system, as compared to its earlier version, is now

independent of any specific technological platform, as it can be directly run on

any hardware platform (PC, Mac, SunSparc, etc.) or software platform

(MacOS, Unix, Windows, Linux, etc.). However, in addition to the inclusion of

all functionalities of the previous version, a separate view has been introduced

to the new MUSA to manage dependencies. This has alleviated the problem

of graphical overloading when viewing and managing large variability models

along with their dependencies, all from one view.

This version has also introduced a new mechanism for identifying alternative

features (i.e., when exactly one feature in a group must be selected; if the

130

parent feature is selected), which was lacking in the previous version. This is

in addition to various improvements (such as innovative visualisation

technique), that have been shown earlier in this chapter. On the other hand,

the MUSA system was initially implemented based on Microsoft surface

technology and Windows 7, with a touch pack platform. It used hyperbolic

trees and supporting gesture-based interaction (Multitouch interaction) for

representing and visualising variability models. This makes it a successful

solution for creating and managing large-scale product lines.

However, due to some limitations with the surface platform, such as hardware

issues inherited from surface technology, as well as software issues, such as

platform dependency, MUSA was not adopted by many practitioners, leaving

it as a prototype system. Although Microsoft has recently rolled out cheaper

and portable versions of Surface, the earlier version of Surface was a bulky

piece of hardware that came along with a table for it to be mounted upon. This

made it very heavy and non-portable as a piece of hardware. In addition, the

Surface was also too expensive when it initially hit the market.

Table 6.1: Comparisons between MUSA1 and MUSA 2

 MUSA 1 MUSA 2

Multi-Platform support No Yes

Innovative visualisation technique Yes Yes

Dependency management No Yes

Feature interaction Yes Yes

131

Multiple views No Yes

Modelling and management of

variability

Yes Yes

Identifying alternative features No Yes

Support for multitouch Yes Yes

6.5 Summary

This chapter introduces and describes the new version of MUSA that has

been redesigned to better represent, visualise, and manage the variability of

software product line models. This new version adopts the separation-of-

concerns design principle and uses a mind-mapping approach (hyperbolic

trees) to represent variability, as well as logic circuits to graphically represent

the dependency and constraint relationships separately. This chapter also

presents the different views showing the visualisation specifications and

various functionalities of MUSA when populated with real data from case

studies of different sizes.

PART III: VALIDATION

133

Chapter 7

Variability Management Evaluation Benchmark

7.1 Introduction

In this chapter, we present a benchmark for the evaluation of software quality

attributes, as well as the quality attributes found to be important for software

product line practice. These quality attributes are as follows: usability,

performance, scalability, and integration. The purpose is to determine and

gain a detailed understanding of where and how the quality of variability

management tools could be improved. The study identified and selected 10

product line variability management tools which were based on their

availability and support for feature models, and these were to be evaluated

using the benchmark, in order to identify whether and to what extent these

tools provided support for the identified quality attributes.

7.2 Methodology

In this section, the methodology used to collect data and underpin the entire

study is presented.

In order to carry out this study, we applied a research methodology that

combined both the features of qualitative and quantitative research

134

methodologies. In the first step, a benchmark was developed, to be used

consistently as a guideline in the evaluation process. As a crucial stage in the

benchmarking design, we explored product line industries in order to know

precisely what matters for the practitioners. We, therefore, used the outcome

of an interview-based survey that involved a number of software product line

practitioners, in which they were asked to list five quality attributes they

deemed important for practical use of SPLs Variability Management (VM)

tools. The identified quality attributes (usability, scalability, performance, and

integration) were then used as key criteria to assess (i.e., how well the tools

addressed them) the capability of SPLs-VM tools in the evaluation phase.

Details of these quality attributes are given in section 7.4.

In the second step, the study focused on measuring the identified quality

attributes, so as to ascertain their meanings and position. Hence, a further

exploration into a number of internationally recognised standards and some

respected reference models were carried out; these included ISO/IEC 9126

(ISO/IEC, 2001, ISO/IEC, 2003) (International Standard for Evaluation of

Software Quality) and IEEE Standard 610.12 (IEEE Standard Glossary of

Software Engineering Terminology). Among the other is the well-known

Software Quality Metrics book (Fenton and Pfleeger, 1998), as well as An

Effort-Based Framework for Evaluating Software Usability (Tamir et al., 2013).

Having completed the survey and investigations on the identified quality

attributes, and in the third step, the results of a study (presented in Chapter 2

and 4) were used. This study reported on a survey in which 37 existing

product line-variability management tools were identified and analysed using

135

a systematic literature review, from which 8 tools were selected, based on

their availability and support for the graphical notations. However, 2 more

publicly available tools were added using a separate search, making a total of

10 tools used in the evaluation process. The details of the identified tools and

the criteria used when selecting a tool are given in section 7.5.

Finally, in the fourth step, an experimental evaluation was conducted (see

Chapter 8), using 4 sample case studies of different sizes, and this was

achieved by steadily applying the benchmark. The purpose was to assess

how well the identified tools addressed the four quality attributes. This was

followed by an opinion-based evaluation method that uses a questionnaire to

obtain more insight into the user’s opinion of the experience using the system.

This was to know the extent to which the system is attractive.

7.3 Related Works

Many works have been reported by various authors within the SPL community

in order to analyse, compare, or evaluate some of the existing variability

management methods, tools, and techniques. However, to the best of our

knowledge, no one has specifically evaluated these quality characteristics

important for practical use of tools that support variability in SPLs.

For example, in (El Dammagh and De Troyer, 2011), a quality evaluation of

nine feature modelling tools was conducted with the specific focus on quality

criteria of usability, safety, and functional usability features. The main aim of

the investigation was how to improve the quality in feature modelling tools, in

general.

136

Study (Djebbi et al., 2007) evaluated four product line tools against certain

criteria defined based on three perspectives; 1) criteria relating to product line

engineering (2) criteria relating to tools capabilities and (3) criteria concerning

project management. This is to determine their ability to satisfy industry

expectations. In study (Simmonds et al., 2011), eight tools and techniques for

variability modelling in software product line (SPL) or business process

management (BPM) were evaluated based on various formalisms used in

specifying software process variability.

The study analysed the tools in order to investigate their suitability for

modelling variability in the software process. However, in order to assist

engineers in selection of a suitable tool that best fits their needs, the authors

in (Pereira et al., 2013) conducted an exploratory study that compares and

analyses two feature modelling tools, based on data collected from 56

participants who experimentally used the tools. The study focused on

evaluating the four common functionalities provided by feature modelling

tools. These are: feature model editor, automated analysis of feature model,

product configuration and tool notation.

7.4 Benchmark

This section presents the four quality attributes measured, sub-characteristics

of each quality attribute and their detailed definitions. The section also gives

in detail, how the measurement was carried out.

137

7.4.1 Quality Attributes

The four quality attributes this study measured are: usability, scalability,

performance, and integration. These attributes were gathered from a study

that used an interview based survey involving a number of software product

line practitioners, in which they were asked to list five most important quality

attributes for practical use of SPL tools. Figure 7.1 depicts the four quality

attributes with their sub-characteristics.

Figure 7.1: The quality attributes used

7.4.1.1 Usability Measure

Basics of sub-quality attributes under usability

i. Understandability: Complexity in using the software

ii. Learnability: Time required to fulfil a specified task

Quality Attributes

Usability

Understandability Complexity

Learnability Time Required

Operability Effort Required

Attractiveness
Enjoyable and

pleasing

Scalability

number of nodes
supported

Dependencies

Performance

Task Completion
Time

Search Capability

Integration
Integration with

other Tools

138

iii. Operability: Effort required to carry out a basic task

iv. Attractiveness: Is the software attractive to the target audience?

In order to determine and understand the main aspects that influence

usability, this study based the measurement on the ISO 9126 (ISO/IEC, 2001,

ISO/IEC, 2003) on software quality and measurement, which defined usability

as ‘the capability of the software to be understood, learned, used and liked by

the user, when used under specified conditions’. The standard identifies four

to five key components of usability of a software product. Below are the

detailed breakdown and the definitions of these sub-quality characteristics of

usability:

i. Understandability

Can the software be understood easily? That is, the ability of the software

product to enable the user to understand whether the software is suitable, and

how it can be used for particular tasks and given the conditions of use.

Understandability helps determine how easily the user can comprehend and

use the software. We based the measurement of Understandability on study

(Fenton and Pfleeger, 1998) where an ordinal scale was used as our

measurement scale type (see Table 7.1) to measure the complexity of using

the software. The ordinal scale provides a list of ordered alternatives from

which respondents can select an option.

Table 7.1: Ordinal scale type

Value Meaning

1
Trivial: commonly encountered (no exceptional effort

needed)

139

2 Simple: Easy to manage and uncomplicated

3 Moderate: Being within average limit

4 Complex: Not easy to manage of being intricate

5
Incomprehensible: Impossible to manage of being not

clear

ii. Learnability

Can the software be learnt easily? That is, the ability of the software product

to enable the user to learn its application. Learnability is measured as the time

that is required to fulfil a specified task. The specified task for this study is the

need to add, delete, and edit a feature. This is in addition to the modelling of

its dependency.

Learnability = Total Time required to Add, Delete or Edit a feature +

Dependency Management

iii. Operability

Can the software be operated with minimal effort? That is, the capacity of the

software product to allow the user to operate and control it. Operability was

measured based on the efforts needed to accomplish the specified tasks (in

this case) of adding, deleting, and editing a feature, together with the

modelling dependency. Consequently, this effort equals the number of mouse

clicks or screen touch (mc/st) + number of keyboard hits (kh). This

measurement method is based on (Tamir et al., 2013).

Operability = Efforts needed to Add, Delete or Edit a feature +

Dependency Management

140

Efforts = Number of mouse click or equivalent + Number of Keyboard

strikes

iv. Attractiveness

Is the interface of the software engaging? That is, the capability of the

software product to be liked by the user. To measure attractiveness, this study

based on (Fenton and Pfleeger, 1998) where a 5-point Likert scale is used to

rank the software attractiveness, given a user a statement with which the user

agrees or disagrees. The statement used for this study is:

The software is attractive (i.e. Enjoyable and pleasing).

1- Strongly Agree 2- Agree 3- Neither agree nor disagree 4-Disagree

5- Strongly Disagree

v. Compliance

Does the software meet existing usability standards?

From the above definitions, usability can be measured by the degree to which

a software product can satisfy the individual aspects of the definitions, i.e. to

learn, understand, operate, and be attractive, while at the same time the

software is compliant with and meets the existing usability standards. This is

to be achieved under specified conditions in which a user or group of users

carry out certain practical tasks.

7.4.1.2 Scalability Measure

Scalability, as it has been defined by (Berg et al., 2005), is the ability of the

modelling approach to continue to meet its throughput objectives despite

141

increasing or decreasing the amount of assets and elements that make up the

models. A scalable variability modelling approach is the one that is useful

when applied to a product line of any size (i.e. It should be capable of

managing large or small size variability without any overhead or extra effort).

Therefore, an approach will not be regarded as scalable if scaling only in one

direction (i.e. downwards or upwards). However, a survey study on scalability

aspects in (Chen and Babar, 2009) pointed out that, dependency

relationships (such as variants to variants, variants to variation points or

variation points to variation points) within variability models are the most

discussed aspects in tackling scalability by modelling approaches. Hence,

based on these studies, we used sample case studies of various sizes to

serve as our basis for the experimental process of measuring scalability.

These cases were then classified into three different categories, which were

then used to validate the selected tools with respect to this quality aspect.

Section 8.2 of chapter 8 provides more details about the case studies.

The sample models are: (1) Small size, when a tool supports the development

and management of 10-50 features before it starts to freeze or slow down. (2)

Medium size, when the ability of variability management tool is to offer

support for the development and management of 10-100 features when used,

and (3) Large size, when it supports the development and management of

variability models between 100-1000. At each level of testing of these various

sample models, there was a practical investigation to see if the tools provide

good support for dependency management and how it works. The scalability

142

measure has been achieved experimentally, in order to gain a clear

understanding of how and to what level the selected tools offer quality support

for this attribute during the modelling process. Please note that it is not our

purpose to measure the visualisation techniques deployed by these tools, but

rather focus on the number of nodes they support.

7.4.1.3 Performance Measure

Performance evaluation according to (Ferrari, 1983) and(Kleinrock, 1976)

includes externally observable system performance characteristics, such as

response times and completion rates. However, IEEE standard 610.12

defined performance as the degree at which a system or a component

completes designated tasks within given limits, such as speed, accuracy, or

memory usage (IEEE, 1990). In this study, Performance is measured in

relation to the scalability as the time it takes for each tool to validate the

sample feature models assigned to it. That is, performance is measured as

task completion time plus the search capability provided by the tools. Due to a

large growth in size of the model, it becomes mandatory to investigate

whether a tool can allow its user to search for a particular element of interest

given several features.

7.4.1.4 Integration Measure:

The ability of a software tool to provide the means to either fully or partially

integrate with other tools so that both tools can operate on the same set of

data.

143

In this context, we will be using characteristics as follows:

Y = Yes, when a tool provides means to be fully integrated with other tools,

and therefore operate on same set of data.

P = Partial, when a tool provides only half the features required for integration.

N = No, when a tool provides no means of integration.

7.5 Tools identification

This section provides a brief description of each tool used in the study.

However, to make it easy for reading, the account is made in tabular form as

shown in Table 7.2 where there are seven columns, in which the first column

gives the name of each tool. The second column provides a brief description

of each tool. While the third column presents the environment or platform

based on which the tools were implemented, as well as whether the tool is run

as a standalone application, plugin, or web services, together with the

technology used to develop the tool. We also investigate the type of operation

the tool supported i.e. the type of graphical notations used, as shown in the

fourth column. The file format used by each tool is in column five. We further

consider whether the tool is solely for commercial purpose, academic or both,

shown in column six. Conversely, we inspect whether the tool is free and

open source software or its evaluation copy could be obtained in column

seven.

Table 7.2: Tools description

Tools Description Environment/

Platform

Graphical

Notation

File

Format

Comme

rcial/Ac

Open

Source/

144

Types ademic Evaluation

copy

FeatureIDE FeatureIDE: an Eclipse plug-

in tool that support all

phases of Feature-Oriented

software development for

SPL development. The tool

provides a configuration

editor for creating and

editing of configurations and

provides support for valid

product derivations. This is

in addition to the detection

and highlighting of dead

features (Kästner et al.,

2009).

Runs on

Windows and

Linux.

Implemented as

an eclipse plug-

in developed

using Java

technology.

Graphical

and text

based

Notations

Feature

model file

in a

supported

format

(default:

xml)

C/A Free under

L-GPL

license v3

MUSA Case

Tool

MUSA Case Tool: is a multi-

touch variability modelling

solution for software product

line. It is a tool and

framework that supports

gesture based interaction for

creating, visualizing, and

maintaining large scale

software product lines.

MUSA was developed to

address the scalability issue

when (graphical

overloading) visualizing

large scale models

(Bashroush, 2010).

Runs on

Windows, Linux

and Mac as

stand-alone

application.

Developed

using Java

technology.

Graphical

using

Hyperbolic

Tree

notations

XML A Neither free

nor

evaluation

copy

S2T2 S2T2 Configurator: A tool for

interactive visual

configuration of feature

models with a formal

reasoning engine that

supports interactive

functionality, such as

calculating the

consequences of user

decisions based on the

formal semantics of the

feature modelling language

(Pleuss and Botterweck,

2012).

Windows and

Mac.

Implemented in

Java.

Graphical

Notations

Conjunctiv

e Normal

Form

(CNF)

A Free

CVM Tool CVM tool: A (Compositional

Variability Management) for

feature modelling and

configuration, implemented

as an experimental

variability management tool

for the evaluation of

research approaches

developed with close

industry cooperation (Abele

et al., 2010)

Runs on

Windows and

Mac. It is based

on Java

technology.

Graphical

Notations

based on

Graphical

Editing

Framework

(GEF)

XMI import

and

export.

C/A Free

145

Familiar Familiar: a fully integrated

modelling environment that

supports the development,

manipulating and reasoning

about feature models.

Familiar provides different

solutions including a

standalone application,

standalone console mode,

and as a plugin for Eclipse

platform (Acher et al., 2013).

Runs on

Windows, Linux

and Mac.

Developed in

Java language

using XText.

Both Textual

and

Graphical

Notations.

.treeml,

other

input/expor

t are XML,

fmprimitive

s, .tvl and

.m

A Free

CaptainFeat

ure

CaptainFeature: a feature

modelling tool with an

integrated configurator for

selecting features from the

feature model

(CaptainFeature, 2005).

Runs on

Windows, Linux

and Mac.

The tool was

implemented as

a standalone

application

Developed in

Java

Graphical

through

metamodelli

ng notations.

XML A Free

Odyssey Odyssey: A reuse

Environment that contains

various tools to construct a

reuse infrastructure based

on Product Lines, Domain

Models and Component

based Development. It

provides support for

domain engineers, domain

specialists and software

engineers who are

responsible for the

development of application

within that domain (Braga et

al., 1999).

Run on

Windows and

Linux. Used as

a

Standalone

application.

Developed

using Java

Technology.

Graphical

using UML

notation

XMI

Import/Exp

ort

No Free under

GNU

License.

XFEATURE XFeature Tool: an Eclipse

plug-in tool supports the

modelling of SPL and the

applications instantiated

from them. The tool is used

to build model of a set of

configurable software assets

by permitting the user to

define their own feature

meta-model (Pasetti and

Rohlik, 2005).

Runs on

Windows and

Mac OS's.

Implemented

using Eclipse

and XML

Technology.

Graphical

Notation

XML and

XMI

A Free

Under GPL

(General

Public

License).

PLUM PLUM (Product Line Unified
Modeller) a tool suit that
follows a model Model-
Driven Software
Development approach. It is
intended to provide support
for the design,
implementation and
management of software
product line. PLUM allows
the product variability to be
captured in what is so called
a decision model, which
implies analysing domain
variability in terms of
decisions and establishing
dependencies among them
(Aldazabal and Erofeev,

Eclipse Plug-in Graphical

using UML

notation

 C Free

146

2008).

Pure::Variant

s

Pure::Variant: a tool support
for software product line
development and realization.
It supports the creation and
management of diverse
variants of such product line.
The tools are used to
support various models from
description of the problem
domain of the PL, to the
description of the
implementation and for the
selection of a specific
product (Beuche, 2008) .

Runs on

Windows, Mac

or Linux.

Standalone or

also used as

Web services.

Graphical

Notations

XML-

based

exchange

format.

C Evaluation

7.6 Setting up of the Evaluation

The evaluation was achieved in two phases, both of which were carried out

experimentally; in the first phase, an experiment was conducted using very

small-scale models. This involves five PhD students, three of whom were from

the domain of software engineering and the other two from the field of

computing and technology possessing good modelling skills. During the

experimentation, they were asked to create a very small feature diagram

containing 8 feature nodes, two feature groups, and one feature constraint.

Each one was provided with two tools.

A prior training session on how to use the tools was conducted to familiarize

the users with the tools. The experimental evaluation in this stage was mainly

to test the usability as a quality criterion, in order to gain a better

understanding of how these tools could offer and support this quality attribute.

147

However, the use of a very small-scale model helps determine the readiness

of these tools when used for larger case models.

While in the second phase of the experiment, unlike the first stage, the focus

was not only on usability but also on scalability and performance. As stated in

sections 7.4.1.2 and 7.4.1.3, scalability and performance were measured by

dividing the experimental activities into three sub-divisions. Under each

division, the following were examined: (1) the maximum number of features

that a tool can accommodate. That is, in which of the three sub-divisions it

falls: is it small, medium, or large. (2) What time it takes for a tool to

accomplish the specific task assigned in such division and (3) what is the

usability of a tool when accomplishing the task. For each of these sub-tasks,

scalability is measured as the maximum number of features at which a tool

starts to suffer a graphical overloading or slow down.

Furthermore, performance was measured as the time it takes for a tool to

complete the specified task in the division. Finally, the usability of a tool while

accomplishing the task was assessed as understandability, operability, and

attractiveness. At this point, learnability was not taken into consideration

because the performance of a tool can be more accurately measured when

dealing with large scale models. In order to measure performance,

learnability, and operability, a screen activity recorder software called Steps

Recorder(Steps Recorder) was used to record the time taken, images, and

the step by step activities of the experimental process.

148

7.7 Summary

This chapter describes a benchmark that was used persistently as the

guideline to evaluate the MUSA tool, in comparison with other tools. The aim

of this benchmark is to measure the four quality attributes (usability,

scalability, performance, and integration), which were identified from an

interview-based survey that involved a number of variability management

(VM) practitioners. The chapter also presents and describes the 10 selected

VM tools which are to be used in the experiment, as well as the criteria

followed when choosing a tool. Finally, it explains how the evaluation was set

to be carried out experimentally.

Chapter 8

Case Studies and Experimental Evaluation of the Tools

8.1 Introduction

This chapter applies the benchmark presented in the previous chapter, which

served as our guideline. It first describes the four case studies of different

sizes and data elements which were used in the experimentation; this

includes how they were acquired (e.g. from industry) or formulated from the

various sources. These sample cases were used to assess how well the

identified feature modelling tools satisfied the four different quality attributes,

as compared to our MUSA approach. The chapter presented and described

the results of the evaluation. Finally, the lessons that were learned and a set

of recommendations were described.

8.2 Case Studies

To illustrate how well and to what extent the selected tools satisfy the four

quality attributes identified, we used multiple case studies out of which the

largest scale case was acquired from Danfoss Power electronics. The case

study is for Frequency Power Drives Product Line consisting of (1,300

variation points). The aim of this product line is to design and develop power

drive to support any automation application and provide major energy savings

150

and capability to control torque, acceleration, synchronization, position, and

the overall performance (IBM Rational DOORS).

The remaining case studies were gathered from the results of careful

examination of a large body of research work in the area of software product

lines, from which feature models of various sizes were formed and used in the

experimental process. The formulated models were therefore gathered from

various sources and involved the formation of small, medium and large scale

models. Among them is a case study (Thörn and Sandkuhl, 2009) for Library

Services product line demonstrating the variability modelling of a wide range

of services offered by a library to provide smooth and effective services to

customers. This case study consists of 24 features.

In addition, a case of a house automation system product line that provides

basic security, alarm, lighting, communication, and agenda services was also

considered. This system is designed to serve as a middleware capable of

interacting with other in-house physical devices such as heating equipment,

lamps, and sensors in order to manage their functionality. This case study

contained 20 features (Istoan et al., 2009). Another case study used was an

email client adapted from (Akram and Abbas, 2009), used for sending and

receiving e-mail. The product line model represents variations between

different components of an email such as message editor, type of connection,

operating system running, user practices and policies, communication

protocols, and several other services. This case study had 18 features.

However, in study (Mendonca, 2009), a simple feature model for a web

search engine product line has been used. This case study represents various

151

services offered by a search engine; these include page translation, doc-type,

page preview, and ability for a user to search by language. This model had 14

features.

Finally, a mobile application product line that provides the ability to a user to

search and buy products from an online catalogue in (Parra, 2011) was also

used. This mobile application product line model among others contained its

different expected services; among which are items catalogue, notification,

authentication, history of items bought, shopping cat etc. The model had 23

features.

On the other hand, in order to build a small-scale variability model case study,

we joined together three different cases and formed a model that consisted of

more than 50 features based on which the experiment for the small case

study was conducted. The three different models used are: email client, library

services, and search engine-PL. However, we formulated a medium scale

study by combining the five different cases, which gives us a single case

study with 100 features serving as the medium scale model used in the

experiment.

 8.3 Results

This section presents and describes the results of the evaluation process of

various quality attributes that have been assessed during experimentation,

starting with the usability measurement under which its four sub-components

were experimentally tested using the various sizes of sample models. That is,

152

very small size, small size, medium and, large size, followed by scalability,

Performance, and Integration respectively.

8.3.1 Usability

As stated above, usability was measured with respect to its four individual

sub-components: understandability, learnability, operability, and

attractiveness. For each of these components, two separate experiments took

place: (1) usability was measured when a tool was applied to a very small-

scale variability model (a model with only 8 features), and (2) usability when

different sizes of variability models were applied (small, medium, and large

scale sizes).

8.3.1.1 Understandability

By using an ordinal scale type, our dependent variables (comprehension and

usage) were measured by asking the participants to specify their feeling about

how easily they comprehend and use the tools or vice versa. The items in this

scale are ordered with series of options or ranking order, with 1 being the

most easy to manage and comprehend and 5 being the most difficult.

Therefore, with respect to this quality, all the four sub-processes, Add, Delete,

Edit, and Dependency, were carefully checked; therefore, when applied to

very small-scale model, three tools (FeatureIDE, Familiar, and Pure::variants)

score better in understandability with ranking 2 (simple), as depicted in

column 1 of Table 8.1. Other four tools (MUSA, S2T2, CVM and

CaptainFeature) scores 3, which is moderate. The poorest results obtained

153

are for the Odyssey, XFeature, and PLUM with scores of 4 being complex.

Consequently, none of the tools were given the maximum rating by each of

the participants. Figure 8.1 summarizes the distribution of scores in a bar

chart.

Table 8.1: Usability of very small-scale size model

Tools

Usability

Understandability=
Comprehending and Usage

Learnability= Task
Completion Time

Operability= Effort (mouse
click or equivalent +
Number of Keyboard

strikes + dragging etc.)

Attractive
ness

Ad
d

Del
ete

E
dit

Depend
ency

Ad
d

Del
ete

E
dit

Depend
ency

Ad
d

Del
ete

E
dit

Depend
ency

FeatureID
E

2 4:31 80 3

MUSA 3 6:55 103 2

S2T2 3 4:00 105 2

CVM Tool 3 8:31 184 2

Familiar 2 5:57 48 2

CaptainFe
ature

3 5:27 180 3

Odyssey 4 10:00 294 4

Pure::Vari
ants

2 4:52 91 2

XFEATUR
E

4 12:38 217 4

PLUM 4 10:20 291 3

154

Figure 8.1: Understandability of very small-scale size model

Conversely, usability was measured when applied to variability models of

different size (small, medium, and large), in that, only MUSA scores well in

understandability (see Table 8.2 column 1) with ranking 2 while offering

support for each of the four sub-processes. Following it were FeatureIDE,

Familiar, CaptainFeature, Pure::Variants, and PLUM with ranking of 3

representing a moderate level of understanding; the worst results acquired

were for S2T2, CVM, Odyssey, and XFeature with rank of 4, which is complex

to understand. See Figure 8.2.

Table 8.2: Usability of different scale size

4444

333

222

Incomprehensible Complex Moderate Simple Trivial

Tools Understandability=

Comprehending and Usage

Operability= Effort (mouse click or

equivalent + Number of Keyboard strikes

+ dragging etc.)

Attractiveness

 10-50 10-100 100-1000

FeatureIDE 3 214 433 No 3

MUSA 2 249 500 Yes 2

S2T2 4 341 572 No 3

CVM Tool 4 327 685 No 3

Familiar 3 376 697 No 2

CaptainFeature 3 601 1,311 No 3

Odyssey 4 338 No No 4

155

Figure 8.2: Understandability of different scale size

8.3.1.2 Learnability

Task completion time given in column 3 of Table 8.1 shows the results of the

investigation on the time it takes for each tool to complete the task of adding,

deleting, editing, and modelling dependency when applied to very small-scale

model. In this, S2T2 was observed with least time to model variability of this

size, followed by FeatureIDE, Pure::Variants, CaptainFeature, Familiar,

MUSA, CVM, Odyssey and PLUM respectively, while XFeature consumed

more time to accomplish the specified task. See Figure 8.3.

4444

33333

2

Incomprehensible Complex Moderate Simple Trivial

Pure::Variants 3 253 439 No 3

XFEATURE 4 430 777 No 3

PLUM 3 220 No No 4

156

Figure 8.3: Learnability of very small-scale size model

8.3.1.3 Operability

The effort needed which includes mouse click, gesture based interaction,

number of keyboard hits and dragging etc. shown in column 4 of Table 8.1.

The operability of tools when applied to a very small sample size model:

Familiar scores best with list number of efforts. Following it were FeatureIDE,

Pure::Variants, MUSA, S2T2, CaptainFeature, CVM, XFeature, and PLUM

respectively. Subsequently, Odyssey required more efforts to accomplish the

task. See Figure 8.4.

4.31

6.55

4

8.31

5.57

5.27

4.52

10

12.38

10.2

0 2 4 6 8 10 12 14

FeatureIDE

MUSA

S2T2

CVM

Familiar

CaptainFeature

Pure::Variants

Odyssey

Xfeature

PLUM

157

Figure 8.4: Operability of very small-scale size models

On the other hand, when applied to different scale variability models, (see

Table 8.2 column 3, sub-column 1) the observations were: first, on applying to

models that contain 10-50 features, FeatureIDE scores best, while PLUM,

MUSA, Pure::Variants, CVM, Odyssey, S2T2, Familiar, and XFeature

followed it respectively. With the CaptainFeature turned out with the worst

results by requiring more efforts to carry out the task.

Secondly, when applied to sample models of size 10-100, FeatureIDE is still

the best with less number of required operations, followed by Pure::Variants,

MUSA, S2T2, CVM and Familiar respectively; the CaptainFeature required

more operational efforts, as depicted in Table 8.2 column 3, sub-column 2.

Unfortunately, tools like PLUM and Odyssey provide no mechanism to

80

103

105

184

48

180

294

91

217

291

0 50 100 150 200 250 300 350

FeatureIDE

MUSA

S2T2

CVM

Familiar

CaptainFeature

Odyssey

Pure::Variants

Xffeature

PLUM

Effort

158

support a model with such number of features. Finally, when applied to

variability models of size 100-1000, MUSA was the only tool capable of

accommodating such large scale models (see Table 8.2 column 3, sub-

column 3).

8.3.1.4 Attractiveness

The 5-point Likert scale (stated in 4) of Chapter 7) from which participants

chose to rank the software attractiveness indicates that with very small size

models, five tools were ranked with 2, i.e. ‘Agree’ by the participants. These

include MUSA, S2T2, CVM, Familiar and Pure::Variants. While FeatureIDE,

CaptainFeature and PLUM follow them with rank of 3, i.e. ‘Neither agree nor

disagree’. The worst results were obtained for Odyssey and XFeature tools

which were ranked with 4, i.e. ‘Disagree’ as can be seen in column 5 of Table

8.1. On the perspective of different size models, MUSA and Familiar tools

score best with ‘Agree’, while FeatureIDE, S2T2, CVM, CaptainFeature,

Pure::Variants and XFeature are following them with ‘Neither Agree nor-

Disagree’. Odyssey and PLUM are the worst with ‘Disagree’ in this

perspective. However, none of the tools scores ‘strongly Agree’ which is the

highest score. See column 4 of Table 8.2.

8.3.2 Scalability

As stated in section 7.4.3 of Chapter 7, scalability was measured with respect

to the number of feature nodes that a tool can accommodate, that is, in both

upward and downward directions without any overhead. As indicated in Table

8.3 column 2, eight tools out of ten (FeatureIDE, MUSA, S2T2, CVM, Familiar,

159

CaptainFeature, and Pure::Variants) were able to make it when applied to a

small-scale variability model that contains 10-50 features. While unfortunately,

three tools (Odyssey, XFeature, and PLUM) were only partially able to

accommodate 50 features, with only Odyssey slightly accommodating more

than 40 features; XFeature and PLUM were the only products to

accommodate nearly 40 features. See Figure 8.5 for details.

Conversely, scalability when applied to a medium scale sample size

containing 10-100 features showed that 7 of the ten tools (FeatureIDE,

MUSA, S2T2, CVM, Familiar, CaptainFeature and Pure::Variants)

successfully supported the sample of this size as well as managed the

dependencies that existed among them. Three tools (Odyssey, XFeature and

PLUM) turned out total failures in accommodating the sample size of this kind.

See Table 8.3 column 3.

However, when applied to a large scale sample model that contained 100-

1000 features, only MUSA tool was found to be capable of accommodating

such features as depicted in Table 8.3 column 4. The overall summary results

of scalability measure of the various sample sizes used in the experimentation

are presented in Figure 8.5. The summary results of usability measures when

applied to a very small-scale model are also presented in the figure.

Table 8.3: Scalability measure

Tools Small size 10-50 Medium size 50-100 Large size 100-1000

FeatureIDE Yes Yes No

MUSA Yes Yes Yes

S2T2 Yes Yes No

160

Figure 8.5: Scalability measure of various sample sizes

8.3.3 Performance

Performance was measured hand in hand with scalability as the time it took

each tool to validate the assigned sample size plus the investigation if a tool

provided a search mechanism for finding a particular feature of interest.

Please refer to Table 8.4 for the summary of the overall results of

8 8 8 8 8 8 8 8 8 8
50 50 50 50 50 50 42 50 39 38

100 100 100 100 100 100

1000

0

200

400

600

800

1000

1200

Scalability Measure

Very Small Small Medium Large

CVM Tool Yes Yes No

Familiar Yes Yes No

CaptainFeature Yes Yes No

Odyssey Partially No No

Pure::Variants Yes Yes No

XFEATURE Partially No No

PLUM Partially No No

161

performance measurement. In this, only MUSA and Pure::Variants provide

search mechanism.

Table 8.4: Performance measure

8.3.4 Integration

As stated in section 7.4.1.5 of Chapter 7, Integration was measured as the

ability of a tool to provide the means to either fully or partially integrate with

other tools so that both tools can operate on the same set of data. Tools

integration has not been found as an issue for majority of the tools

(FeatureIDE, S2T2, CVM, Familiar, XFeature, PLUM and Pure::Variants) are

all found to be integrated either as Eclipse plugins or integrated with other in

house developed tools. We found only three tools out of ten (MUSA,

CaptainFeature and Odyssey) not integrated with any other one.

See Table 8.5 for the distribution of measurement.

Table 8.5: Integration measurement

Tools Y = Yes P = Partial N = No Integration with

FeatureIDE Y Eclipse plug-in

MUSA N

S2T2 Y Eclipse plug-in

Tools Task Completion Time Search Capability

 10-50 50-100 100-1000

FeatureIDE 16:35 18:57 No No

MUSA 18:33 16:38 Yes Yes

S2T2 22:49 19:01 No No

CVM Tool 16:09 17:22 No No

Familiar 21:27 22:14 No No

CaptainFeature 31:22 33:58 No No

Odyssey 19:28 No No No

Pure::Variants 18:17 21:27 No Yes

XFEATURE 24:41 No No No

PLUM 22:30 No No No

162

CVM Y Eclipse plugin

Familiar Y Plugin for Eclipse and
Integrated with FeatureIDE

CaptainFeature N

Odyssey N

XFEATURE Y plug-in for the Eclipse
platform

PLUM Y plug-in for the Eclipse
platform

Pure::Variants Y Integrated into IDE’s such
as Eclipse or Rational
Software Architect.

8.4 Discussion, Lessons Learned and Recommendations

This section presents the discussion of the results, the lesson learned, and

the recommendations from the participant’s comments.

The finding from this study as can be seen in section 8.3 has revealed that,

with respect to the usability (see Table 8.1), majority of the tools were able to

make it with either simple or moderate level in understandability when a very

small-scale model is used. Likewise, many of them were able to fulfil their

allocated task in less than 10 minutes. Similarly, only three of those tools

required more than 200 operations to accomplish their given tasks. However,

in regards to attractiveness, only 2 tools were rated with ‘not- agree’ on the

basis of whether they are enjoyable and appealing when used.

163

On the other hand, this study also revealed that majority of these tools start to

decline except (Bashroush, 2010) as soon as the number of features grow

larger making them less usable. Likewise, they cannot scale well with the

current situation where variability models are becoming very large and difficult

to manage, especially in the real world industrial product line. Therefore, the

study discovered that majority of these tools suffer scalability issues when the

models start to reach around hundreds of attributes. In this regard, six tools

(FeatureIDE, MUSA, CVM, Pure::Variants, Familiar and CaptainFeature)

accommodated up to 100 features, which is the order of medium scale

variability models. While three (Odyssey, XFeature and PLUM) tools failed to

effectively support the small-scale model that contained 50 features.

Finally, with respect to the large scale model, which is the peak point for

determining scalability in this study, only one tool MUSA was capable of

accommodating more than a 1000 features. It is therefore the only tool that

scaled in both directions; that is in upward and downward directions.

Following are the comments from the participants who used the tools during

the experimental process using a very small-scale model:

On FeatureIDE: the user commented that the tool supports all the functionality

expected from it with only slightly difficult to manage feature constraints.

MUSA was found very effective specifically when creating and managing

large variability features, but it is a bit difficult to model dependency using

logic circuit. S2T2 Configurator was easy to use but managing dependency is

a bit daunting as you need to click outside and then inside again before you

164

can add a text for the dependency. CVM is workable, but managing

constraints could only be achieved using a straight line arrow, which causes

interruptions with other nodes in a large model. Familiar provides efficient

ways of managing and handling growth of features by allowing zooming in

and out of the entire feature tree. Unlike other tools, where the user has to

scroll up or down to view the hidden features, Familiar enables moving around

the entire feature tree from one place to another, making it easy to view the

hidden features; however, managing constraints among features is a bit

difficult to tackle. For CaptainFeature, users found its constraint dependency

not simple and felt it would be difficult to use in large scale scenarios.

Odyssey seems not easy to understand as it is difficult to identify the

alternative option representation. It also seems not supporting the ‘OR’

feature grouping. The tool is more towards UML based rather than feature

modelling approach. Pure::Variants is an easy to use tool and has rich

functionality such as different layouts (vertical and horizontal) zoom in and

out, collapsing and expanding of elements or even to hide elements if one

wishes to. It is easy to create and manage features. Editing is very easy in

Pure::Variants and advance search mechanism is provided and constraints

are managed in a separate view.

The tool, XFeature is complex to use; specifically, using the constraints

between features is an issue and to identify the alternative feature grouping is

difficult. PLUM seems easy to use, but to some extent creating and managing

variability models is not straightforward. For example, connecting features is

165

difficult to accomplish. Likewise, maintaining feature groups (i.e. OR and

alternative) are not seen as easy to implement.

Based on these findings, it is of significant importance that the product line

tool designers should realise and focus towards the increasing demand for

making variability management tools more scalable to handle the complexity

of the real world industrial product lines, as was also recommended in study

(Chen and Babar, 2009). However, it is also recommended that the future tool

deigns should be capable of managing both the small and large size variability

models without any difficulty or extra labour. That is, there is need to make

future tool designs more generic, instead of only focusing on ad-hoc designs

that solve only a particular problem. This is of paramount importance from

both scalability and usability aspects.

In addition, there is need to make future tool designs more flexible and

straightforward when used, rather than requiring a user going into technical

details in order to perform a simple operation. This has strong effects on

usability, especially with respect to understandability and the tools’

performance. Finally, providing support for integration with other tools could

ease their adoption in practice by reducing the possibility of requiring

changing the entire current practice. Please see the Appendix C for the

screen shots of the tools’ experimentation.

Table 8.6 summarizes the overall results of the evaluation. This indicates that

the MUSA tool satisfied the four quality attributes, as compared to other tools,

with the exception of one attribute, i.e. integration, which is part of our future

166

work. Note that the alphabets U, O, and A under the usability column are for

understandability, operability and attractiveness, respectively, while T and S

under the performance column represent task and search.

Table 8.9: Summary results of the evaluation

8.5 Summary

This chapter complements Chapter 7 by using the benchmark it presented, to

conduct an experimental evaluation of MUSA tool as coppered to other 9

existing tools. It used four different case studies including: (1) for Frequency

Power Drives Product Line consisting of (1,300 variation points). (2) A Library

Services product line demonstrating the variability modelling of a wide range

of services which were offered by a library with 24 features. (3) A house

Tools Usability Scalability Performance Integration

 U O A 10-50 10-100 100-1000 T S

FeatureIDE X X X X

MUSA X X X X X X X X

S2T2 X X X

CVM Tool X X X

Familiar X X X

CaptainFeature X X

Odyssey

Pure::Variants X X X X X

XFEATURE X

PLUM X

167

automation system product line, that provided basic security and contained 20

features, and (4) a mobile application product line that provided the ability to

the user to search and buy products from an online catalogue with 23

features, together with the description of how they were gathered. The use of

these case samples was to assess how the identified feature modelling tools

satisfied the four different quality attributes. The chapter described the results

of evaluation, the lessons learned, and the recommendations for future

development.

PART IV:

CONCLUSION AND FUTURE

WORK

169

Chapter 9

Conclusions, Contributions, and Future Work

9.1 Conclusion

The work proposed in this thesis investigated the reasons behind the lack of

scalability with regards to the current variability management tools and

techniques, something that will help us and other researchers accurately

focus on the future efforts. The study not only provides a good overview of the

existing variability management tools and the challenges for variability

management tool support, but it also establishes the criteria and concepts for

the comparison of such items. Based on the conclusions drawn from the

survey, we proposed a new framework and a support tool for variability

management that would address the scalability issue, which was the key

challenge identified for variability management. The research also showed

that managing dependency relationships separately from the actual

representation of the variability models can significantly improve the scalability

of a model’s visualization, by reducing the complexity of viewing and

managing them all from one view. Support for this was implemented by

redesigning and creating a new version of the MUSA tool suite (a proof-of-

concept variability management tool and framework was developed within our

research group) that could address these challenges, and thus, lend itself to

170

industrial large-scale applications. Such a development would ultimately allow

for the creation and management of larger and more complex product lines.

The new MUSA system was evaluated using a large-scale, multifaceted case

study.

In part I of this document, we discussed about a systematic literature review

survey which was conducted to have a better understanding of the main

reasons behind the lack of scalability in the current variability management

tools and techniques. We described the method used to identify, collect, and

review the relevant papers in Chapter 2. We studied and presented an

overview of 37 tools for managing the variability in software product lines,

along with a number of commercial tools and the tools that have been

adopted in the industry, with a focus on tool functionality, the technology used

for development and implementation, and the type of notations supported in

Chapter 3. We notably found that the key challenge of variability management

tools is the scalability of models, that is, how to support the development of

variability models that are still useful despite their size and complexity

(Chapter 4).

We have also redesigned the MUSA (A Multitouch Variability Modelling

Solution for Software Product Lines) framework and practical tool support, to

allow the creation and management of larger and more complex product

families and increase the productivity and the time-to-market of products. The

variability model itself is implemented using a mind-mapping approach based

on hyperbolic trees, providing an unprecedented potential for scalability. We

171

described how effective the approach is when applied to the product lines of

different sizes.

In part II, we described the earlier version of the MUSA tool in Chapter 5, as

compared to the newer version in Chapter 6. A few of the key changes and

improvements in the new MUSA over its predecessor are: (1) Applying the

idea of separation-of-concerns design principle, and the use of logic circuit

design, which is an additional view (Dependency view) for capturing and

managing the dependency relationships that exist within the model that has

been introduced. (2) Seamless support for cross-platform without any

interruptions in the software. (3) Ability to recognise the presence of

‘Alternative’ feature set. (4) More innovative visualisation techniques that

provide support for larger product line, etc.

In part III, we show how our approach met the design requirements, by

evaluating our approach in comparison with other similar approaches. In

Chapter 7, we described a benchmark that has been used steadily as a

guideline during the evaluation process. The main focus while designing this

benchmark was to know precisely what matters for the practitioners. For that

reason, we used the outcome of an interview-based survey that involved a

number of software product line practitioners, in which, they were asked to list

five quality/attributes that they deemed important for the practical use of

product lines variability management (VM) tools.

From this, four quality attributes were identified, which were usability,

scalability, performance, and integration. In Chapter 8, we described the

172

results of the experimental evaluation conducted, using multiple case studies,

together with the lessons learned from the study, and closed the chapter with

a set of recommendations.

In part IV, we concluded the thesis by summarising the contributions and

discussing future work.

In summary, our evaluation results indicate that the MUSA tool and framework

have significantly addressed the scalability challenges when dealing with

large and complex product line models, as well as the shortcomings of

usability and performance identified in the existing tools and techniques. This

was achieved by ensuring that it was designed in line with industry

requirements, thus maximizing the chances of it being adopted by industry, a

major impact achievement for any researcher in this area. The findings show

that MUSA can now be brought to industry for practical implementation.

9.2 Review of Contributions

This thesis contributes to the ongoing research on variability management in

the field of software product line engineering by (1) identifying the key limiting

factors affecting the scalability of the current variability management tools and

techniques, through a close examination of the current literature in the field.

(2) Identifying the barriers to industrial adoption of the current variability

management tools. (3) Based on the findings of 1 and 2, we designed a tool

and framework that addressed the identified shortcomings. (4) We finally

implemented a working prototype of the system. We summarized the main

contributions of this thesis below:

173

C1 A systematic investigation and understanding of the state of the art

tools that can be utilised in contemporary software product line development:

This study is a contribution to knowledge, as it conducts a systematic review

of Variability Management tools according to the chronological order of

development, and provides a conclusive evaluation of them. The results are

intended to assist the practitioners in selecting the best available tools, which

is based on their suitability towards a particular industrial task. The analysis

also identifies the gaps in the field that should be addressed through further

research of product line tools. Moreover, the analysis identifies the gaps in the

research that should be addressed in more studies. Based on these results,

we have collected the data and the necessary requirements for the

development of our new MUSA tool.

C2 Redesign of MUSA framework to improve the scalability of visualizing

and representing variability models: Although scalability was the main

motivation for developing the early version of MUSA, redesigning and

enhancing its capability to add more innovative visualisation techniques will

increase its productivity, time-to-market, and allow for the creation and

management of larger and more complex product families; hence, improving

its scalability is required.

C3 An additional view for capturing and managing dependency

relationships that exist within the model separately: Using the principle of

separation-of-concerns, we have proposed a separate view called,

“dependency view”, to capture and manage dependency interaction

174

independent from the actual representation of the models. This was achieved

using a logic circuit. The main idea is to reduce the complexities, such as

graphical overloading, when viewing and managing the dependencies of large

variability points, all from one view.

C4 A complete working prototype system of this has been implemented as

a new MUSA: Support for managing dependency relationships among the

variability models has been implemented by redesigning and extending the

current version of the MUSA tool suite (a proof-of-concept variability

management tool and framework). This will allow for the creation and

management of larger and more complex product families.

C5 The new version of MUSA will be available as a multi-platform

application: To make it more generic and maximise its functionality, the new

version of MUSA has been ported from Windows Presentation Foundation-

WPF to Java technology. This has solved the main problem of platform

dependency which is suffered by the existing version of MUSA.

C6 A benchmark for evaluating our approach: In order to evaluate the

MUSA tool in comparison with other tools, we developed a benchmark for

evaluating the quality attributes that are important for the practical use of SPL

engineering tools, which has been applied in the evaluation process. The

benchmark focused on measuring the four quality attributes are as follows:

Usability, Performance, Scalability, and Integration. In addition, an evaluation

study was conducted experimentally, and involved 10 feature-modelling tools.

In order to know and get an insight on how well, and to what extent these

175

tools satisfy these quality attributes, four case studies of different sizes were

used as the basis for the experiment.

C7 Literature review process (Chapter 2): This process contributes to

knowledge by providing empirical step-by-step guidelines to identify, collect,

and review papers with: 1) a scope of the review clearly identified in advance;

2) a comprehensive search conducted to find all relevant studies; 3) the use

of explicit criteria to include or exclude studies; 4) the establishment of

standards to critically appraise study quality; and 5) the provision of explicit

methods for extracting and synthesizing study findings. This process will

benefit both new and experienced researchers by helping them avoid what is

regarded as author’s bias in research, while also providing a reliable basis for

making decisions.

 C8 Benchmarking process: The results of this will contribute to knowledge,

as it will assist both practitioners and researchers alike by providing a

standard and empirical approach to evaluating product line tools in the future.

It also helps to identify and recommend areas that require attention in future

tool design.

C9 The Context of Research: The distribution of the research context

presented in Figure 4.8 of Chapter 4 indicates that there is a need to bridge

the gaps between research in academia and industry through collaborative

efforts. The figure shows that most studies (68%) have been conducted in an

academic context, whereas only 16% of the studies are joint industrial

academic endeavours. In 16% of the studies, no information was provided on

176

the research context. Table 4.11 presents a list of all the studies with their

research context. Please refer to Chapter 4 for details on this contribution.

9.3 Future Work

This thesis contributes fundamentally on how to overcome the scalability

challenges when dealing with a large-scale product line model. However,

looking at how important the usability aspect is in the software development

perspective, we therefore, recognised it’s significant throughout this research.

In fact, it was one of the qualities we tested during the evaluation process.

But, we still we need to consider improving the usability of the new

dependency view in our future work. Likewise, integrating MUSA with other

tools is also of paramount important. We summarised the key areas of focus

in our feature work, which are as follows:

 Usability of models when using the Logic Circuit

Dependencies are generally the ‘rules’ that have to be observed (or

conditions that need to be satisfied). The use of logic circuit can

significantly simplify the expressing of those rules, but, from the results

of our evaluation in Chapter 8, there is a need to simplify the usage

and make the view more interactive. However, there is also a need to

consider more complex dependencies, such as “motor A requires that

at least 3 motors B are selected”, or “motor A requires motor B with a

power above 200”.

177

 Integration with other tools or IDEs

To allow easy adoption of our MUSA tool, we need to consider

integrating it with other tools, such as IBM Rational DOORs, or

Integrated Development Environments (IDEs), such as Eclipse

Modelling Framework (EMF), to allow either full or partial

interoperability, or to allow third parties to integrate their automated

reasoning techniques into a workspace where some basic services can

be provided by default.

178

Bibliography

Abele, A., Papadopoulos, Y., Servat, D., Törngren, M. and Weber, M. (2010)
'The CVM Framework - A Prototype Tool for Compositional Variability
Management'. Proceedings Fourth International Workshop on Variability
Modelling of Software-Intensive Systems VaMoS 2010, Linz, Austria, 101-
105.

Acher, M., Alférez, M., Galindo, J. A., Romenteau, P. and Baudry, B. (2014)
'ViViD: a variability-based tool for synthesizing video sequences'. Proceedings
of the 18th International Software Product Line Conference: Companion
Volume for Workshops, Demonstrations and Tools, Florence, Italy: ACM, 143-
147.

Acher, M., Collet, P., Lahire, P. and France, R. B. (2011) 'Managing Feature
Models with FAMILIAR: a Demonstration of the Language and its Tool
Support'. Proceedings of the 5th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS) Belgium: ACM, 91-96.

Acher, M., Collet, P., Lahire, P. and France, R. B. (2013) 'FAMILIAR: A
domain-specific language for large scale management of feature models',
Science of Computer Programming (SCP), 78(6), pp. 657-681.

Akram, A. and Abbas, Q. (2009) Comparison of Variability Modeling
Techniques. Tekniska Högskolan i Jönköping.

Aldazabal, A. and Erofeev, S. (2008) 'PLUM (Product Line Unified Modeller).
Eclipse based Variability Management Tool'. Proceedings of the Eclipse
Summit Europe, Ludwigsburg, Germany.

Antkiewicz, M. and Czarnecki, K. (2004) 'FeaturePlugin: Feature Modeling
Plug-In for Eclipse'. proceedings of the OOPSLA Workshop on Eclipse
Technology eXchange (ETX 2004), Vancouver, British Columbia, Canada:
ACM Press, 67-72.

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Peach, B., Wust, J. and Zettel, J. (2002) Component-based
product line engineering with UML. London: Addison-Wesley.

179

Bachmann, F. and Clements, P. (2005) Variability in Software Product Lines,
Pittsburgh, USA,: Software Engineering Institute (Technical Report CMU/SEI-
2005-TR-012.

Bashroush, R. (2010) 'A NUI Based Multiple Perspective Variability Modeling
CASE Tool'. Proceedings of the 4th European Conference on Software
Architecture (ECSA '10), Copenhagen, Denmark: LNCS, 523-526.

Bashroush, R., Al-Nemrat, A., Bachrouch, R. and Jahankhani, H. (2011)
'Visualizing Variability Models Using Hyperbolic Tree'. Proceedings of the
23rd International Conference on Advanced Information Systems Engineering
Forum (CAiSE), London, 113-120.

Bashroush, R., Spence, I., Kilpatrick, P., Brown, J. and Gillan, C. (2008) 'A
Multiple Views Model for Variability Management in Software Product Lines'.
Proceedings of the Second International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS2008), Duisburg-Essen, Germany.

Bassett, P. (1997) Framing Software Reuse: Lessons from the Real World.
Prentice-Hall.

Batory, D. (2004) 'Feature-Oriented Programming and the AHEAD Tool Suite'.
Proceedings of the 26th International Conference on Software Engineering
(ICSE’04) IEEE Computer Society, 702-703.

Batory, D., Sarvela, J. N. and Rauschmayer, A. (2004) 'Scaling step-wise
refinement', The IEEE Transactions on Software Engineering, 30(6), pp. 355-
371.

Bécan, G., Nasr, S. B., Acher, M. and Baudry, B. (2014) 'WebFML:
synthesizing feature models everywhere'. Proceedings of the 18th
International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools, Florence, Italy: ACM, 12-116.

'Bellsouth, IBM', (1993) Mobile Phone News: Bellsouth and IBM Unveil

Personal Communicator Phone.

Berg, K., Bishop, J. and Muthig, D. (2005) 'Tracing software product line
variability: from problem to solution space'. Proceedings of the 2005 annual

180

research conference of the South African institute of computer scientists and
information technologists on IT research in developing countries, South Africa,
182 - 191.
Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K. and
Wąsowski, A. (2013) 'A survey of variability modeling in industrial practice'.
Proceedings of the Seventh International Workshop on Variability Modelling of
Software-intensive Systems, Pisa, Italy: ACM, 7.

Berger, T., She, S., Lotufo, R., Wasowski, A. and Czarnecki, K. (2010)
'Variability Modeling in the Real: A Perspective from the Operating Systems
Domain'. Proceedings of the 25th IEEE/ACM International Conference on
Automated Software Engineering, Antwerp, Belgium: IEEE/ACM, 73-82.

Beuche, D. (2008) 'Modeling and Building Software Product Lines with
pure::variants'. Proceedings of the 12th International Software Product Lines
Conference (SPLC 2008), Limerick, Ireland, 8-12 Sept. 2008: IEEE Computer
Society, 358.

Beuche, D., Birk, A., Dreier, H., Fleischmann, A., Galle, H., Heller, G., Janzen,
D., John, I., Kolagari., R. T., Maßen, T. v. d. and Wolfram, A. (2007) 'Using
Requirements Management Tools in Software Product Line Engineering: The
State of the Practice'. Software Product Line Conference, 2007. SPLC 2007.
11th International: IEEE, 84-96.

Beuche, D. and Spinczyk, O. (2003) 'Variant management for embedded
software product lines with pure::consul and AspectC++'. Proceedings of
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA 2003),
Anaheim, CA, USA: ACM, 108-109.

BigLever, S. I. Product Line Engineering Solutions for Systems and Software.
Available at: http://www.biglever.com/solution/solution.html (Accessed: August
22 2012).

Botterweck, G., Janota, M. and Schneeweiss, D. 'A Design of a Configurable
Feature Model Configurator'. Proceedings of the 3rd International Workshop
on Variability Modelling of Software-Intensive Systems (VAMOS 09), Seville,
Spain: Universität Duisburg-Essen, 165-168.

http://www.biglever.com/solution/solution.html

181

Botterweck, G., Thiel, S., Nestor, D., Abid, S. b. and Cawley, C. (2008) 'Visual
Tool Support for Configuring and Understanding Software Product Lines'.
12th International Software Product Line Conference: IEEE, 77-86.
Braga, R. M. M., Werner, C. M. L. and Mattoso, M. (1999) 'Odyssey: a reuse
environment based on domain models'. Proceedings of the IEEE Symposium
on Application-Specific Systems and Software Engineering and Technology
(ASSET'99), Richardson, TX, USA: IEEE, 50-57.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M. and Khalil, M. (2007)
'Lessons from applying the systematic literature review process within the
software engineering domain', The Journal of Systems and Software, 80, pp.
571–583.

Campbell, G. MTP TOOL- The MetaProgramming Text Processor: Prosperity
Heights Software. Available at: http://www.domain-specific.com/index.html.

Capilla, R., Sánchez, A. and Dueñas, J. C. (2007) 'An Analysis of Variability
Modeling and Management Tools for Product Line Development'.
Proceedings of the Software and Services Variability Management Workshop
Concepts, Model and Tools, Helsinki, Finland: Helsinki University of
Technology Software Business and Business Institute, 32-47.

Capilla, R., Sierra, A. and Serrano, J. M. VMWT: Variability Modeling Web
Tool. University Juan Carlos of Madrid. Available at:
http://triana.escet.urjc.es/VMWT.

CaptainFeature (2005). Available at: http://captainfeature.sourceforge.net/
2014).

Cechticky, V., Pasetti, A., Rohlik, O. and Schaufelberger, W. (2004) 'XML-
Based Feature Modelling'. Proceedings of the International Conference on
Software Reuse (ICSR 2004), Madrid, Spain: Springer-Verlag, 101-114.

Chen, L. and Ali Babar, M. (2011) 'A systematic review of evaluation of
variability management approaches in software product lines', Information and
Software Technology, 53, pp. 344–362.

Chen, L., Ali Babar, M. and Ali, N. (2009) 'Variability Management in
Software Product Lines: A Systematic Review'. Proceedings of the 13th
International Software Product Line Conference (SPLC), San Francisco, CA,
USA, 81-90.

http://www.domain-specific.com/index.html
http://triana.escet.urjc.es/VMWT
http://captainfeature.sourceforge.net/

182

Chen, L. and Babar, M. (2010) 'Variability Management in Software Product
Lines: An Investigation of Contemporary Industrial Challenges', in Bosch, J. &
Lee, J. (eds.) Software Product Lines: Going Beyond Lecture Notes in
Computer Science: Springer Berlin Heidelberg, pp. 166-180.

Chen, L. and Babar, M. A. (2009) 'A Survey of Scalability Aspects of
Variability Modeling Approaches'. Proceedings of the 13th International
Software Product Lines Conference, San Francisco, USA.

Clements, P. and Northrop, L. (2002) Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering Massachusetts: Addison-
Wesley.

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K. and Wąsowski, A.
'Cool Features and Tough Decisions: A Comparison of Variability Modeling
Approaches'. Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems, 01/25/2012: ACM, 173-182.

Daizhong, L. and Shanhui, D. (2009) 'Feature Dependency Modeling for
Software Product Line'. Computer Engineering and Technology, ICCET '09.
International Conference on, 256-260.

Damithc, l., Manasgupta, Jarzabek S. (2008) XML-based Variant
Configuration Language. Available at:
http://sourceforge.net/projects/fxvcl/files/.

Dhungana, D., Grünbacher, P. and Rabiser, R. (2010) 'The DOPLER meta-
tool for decision-oriented variability modeling: a multiple case study',
Automated Software Engineering, 18(1), pp. 77–114.

Dhungana, D., Grünbacher, P. and Rabiser, R. (2011) 'The DOPLER meta-
tool for decision-oriented variability modeling: a multiple case study',
Automated Software Engineering, 18(1), pp. 77–114.

Dietz, P. H. and Eidelson, B. D. (2009) 'SurfaceWare: Dynamic Tagging for
Microsoft Surface'. Proceedings of the 3rd International Conference on
Tangible and Embedded Interaction (TEI'09), Cambridge, UK, Feb 16-18
2009: ACM, 249-254.

http://sourceforge.net/projects/fxvcl/files/

183

Djebbi, O. and Salinesi, C. (2006) 'Criteria for Comparing Requirements
Variability Modeling Notations for Product Lines'. Fourth International
Workshop on Comparative Evaluation in Requirements Engineering CERE
'06.: IEEE, 20-35.
Djebbi, O., Salinesi, C. and Fanmuy, G. (2007) 'Industry Survey of Product
Lines Management Tools: Requirements, Qualities and Open Issues'.
Proceedings of the 15th IEEE International Requirements Engineering
Conference, New Delhi, India: IEEE, 301-306.

DOORS-TREK. Available at: http://www-
01.ibm.com/support/docview.wss?uid=swg24032035 (Accessed: July 16
2014).

Dos Santos, R. F. and Frakes, W. B. (2009) 'DAREonline:A Web-Based
Domain Engineering Tool'. Proceedings of the 11th International Conference
on Software Reuse: Formal Foundations of Reuse and Domain Engineering
(ICSR 2009), Virginia Tech's Northern Virginia Center in Falls Church, VA,
USA: Lecture Notes in Computer Science, 246-257.

Eclipse Graphical Modeling Framework (GMF, Eclipse Modeling
subproject). Available at: http://www.eclipse.org/gmf/ (Accessed: September
16 2015).

Eichelberger, H., El-Sharkawy, S., Kröher, C. and Schmid, K. (2014) 'EASy-
producer: product line development for variant-rich ecosystems'. Proceedings
of the 18th International Software Product Line Conference: Companion
Volume for Workshops, Demonstrations and Tools: ACM, 133-137.

El Dammagh, M. and De Troyer, O. (2011) 'Feature Modeling Tools:
Evaluation and Lessons Learned'. Proceedings of the 30th International
Conference on Advances in Conceptual Modeling: Recent Developments and
New Directions (ER'11), Variability Workshop on Software Variability
Management (Variability@ER11): Springer-Verlag Berlin Heidelberg, 120-
129.

Eysholdt, M. and Behrens, H. (2010) 'Xtext: Implement Your Language Faster
than the Quick and Dirty Way'. Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion: ACM, 307-309.

http://www-01.ibm.com/support/docview.wss?uid=swg24032035
http://www-01.ibm.com/support/docview.wss?uid=swg24032035
http://www.eclipse.org/gmf/

184

Felfernig, A., Friedrich, G., Jannach, D. and Zanker, M. (2001) 'Intelligent
Support for Interactive Configuration of Mass Customized Products.’ 14th Int’l
Conf. on Industrial & engineering applications of artificial intelligence and
expert systems: Springer, 746–756.

Fenton, N. E. and Pfleeger, S. L. (1998) Software Metrics: A Rigorous and
Practical Approach. 2 edn. Boston, USA: PWS Publishing Company.

Ferber, S., Haag, J. and Savolainen, J. (2002) 'Feature Interaction and
Dependencies: Modeling Features for Reengineering a Legacy Product Line'.
Proceedings of the Second International Conference on Software Product
Lines, SPLC 2, San Diego, CA, USA, August 19–22, 2002: Springer-Verlag,
37-60.

Fernández, R., Laguna, M. A., Requejo, J. and Serrano, N. (2009)
Development of a Feature Modeling Tool using Microsoft DSL Tools
[Technical Report], University of Valladolid. Available at:
http://www.giro.infor.uva.es/fmt.pdf.

Ferrari, D. (1983) Measurement and Tuning of Computer Systems. New York:
Prentice Hall.

Frakes, W., Prieto-Diaz, R. and Fox, C. (1997) 'DARE-COTS: A domain
analysis support tool'. Proceedings of the 17th International Conference of the
Chilean Computer Science Society (SCCC '97), Santiago, Chile, 10-15 Nov
1997: IEEE Computer Society, 73-77.

Frakes, W., Prieto-Diaz, R. and Fox, C. (1998) 'DARE: Domain Analysis and
Reuse Environment', Annals of Software Engineering, 5, pp. 125-141.

Gauthier, C., Classen, A., Storey, M.-A. and Mendonca, M. (2010) 'XToF: A
Tool for Tag-based Product Line Implementation'. Proceedings of the 4th
International Workshop on Variability Modeling of Software Intensive Systems
(VaMoS 2010), Linz, Austria: University of Duisburg-Essen, 163-166.

Gomaa, H. (2005) Designing software product lines with UML: from use cases
to pattern-based software architectures. The Addison-Wesley object
technology series Boston: Addison-Wesley.

http://www.giro.infor.uva.es/fmt.pdf

185

Gomaa, H. and Shin, M. E. (2004) 'A Multiple-View Meta-modeling Approach
for Variability Management in Software Product Lines'. Proceedings of the 8th
International Conference on Software Reuse: Methods, Techniques and Tools
(ICSR), Madrid, Spain: LNCS, 274-285.

Gomaa, H. and Shin, M. E. (2004) 'Tool Support for Software Variability
Management and Product Derivation in Software Product Lines'. Proceedings
Workshop on Software Variability Management for Product Derivation,
Software Product Line Conference, Boston, USA.

Gomaa, H. and Shin, M. E. (2007) 'Automated Software Product Line
Engineering and Product Derivation'. Proceedings of the 40th Hawaii
International Conference on System Sciences, Waikoloa, Big Island, HI, USA:
IEEE Computer Society, 1530-1605.

Gómez, M., Mansanet, I., Fons, J. and Pelechano, V. (2012) 'Moskitt4SPL:
Tool Support for Developing Self-Adaptive Systems'. Proceedings of the 17th
Conference on Software Engineering and Databases (JISBD'12), Jornadas
SISTEDES, Almeria, Spain.

Griss, M. L., Favaro, J. and d’Alessandro, M. (1998) 'Integrating Feature
Modeling with the RSEB'. Proceedings of the 5th International Conference on
Software Reuse, Vancouver, BC, Canada, 76-85.

Halmans, G. and Pohl, K. (2003) 'Communicating the variability of a software-
product family to customers', Software and Systems Modeling, 2(1), pp. 15-
36.

Heer, J., Card, S. K. and Landay, J. A. 'Prefuse: a toolkit for interactive
information visualization'. Proceedings of the SIGCHI conference on Human
factors in computing systems: ACM, 421-430.

Heidenreich, F. (2009) 'Towards Systematic Ensuring Well-Formedness of
Software Product Lines'. Proceedings of the 1st International Workshop on
Feature-Oriented Software Development (FOSD’09), Denver, Colorado, USA:
ACM, 69-74.

Heidenreich, F., avga, I. S. and Wende, C. (2008) 'On Controlled
Visualisations in Software Product Line Engineering'. 2nd International
Workshop on Visualisation in Software Product Line Engineering (ViSPLE

186

2008) collocated with the 12th International Software Product Line
Conference (SPLC 2008), Limerick, Ireland, September 8 - 12, 2008, 388.

Heidenreich, F., Jan, K. and Christian, W. (2008) 'FeatureMapper: Mapping
Features to Models'. Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany: ACM Digital Library,
943-944.

Heidenreich, F., Johannes, J., Karol, S., Seifert, M. and Wende, C. 'Derivation
and refinement of textual syntax for models'. Model Driven Architecture-
Foundations and Applications: Springer Berlin Heidelberg, 114-129.

Hervieu, A., Baudry, B. and Gotlieb, A. (2011) 'PACOGEN: Automatic
Generation of Pairwise Test Configurations from Feature Models'.
Proceedings of the 22nd Annual International Symposium on Software
Reliability Engineering (ISSRE 2011), Hiroshima, japan, Nov. 29 2011-Dec. 2
2011, 120-129.

Heuer, A., Lauenroth, K., Müller, M. and Scheele, J.-N. (2010) 'Towards
Effective Visual Modeling of Complex Software Product Lines'. Proceedings of
the 14th International Conference on Software Product Line, {SPLC} 2010,
Jeju Island, South Korea, 229-238.

Holten, D., Isenberg, P., van Wijk, J. J. and Fekete, J.-D. (2011) 'An extended
evaluation of the readability of tapered, animated, and textured directed-edge
representations in node-link graphs'. IEEE Pacific Visualization Symposium
(PacificVis 2011): IEEE, 195-202.

IBM Rational DOORS. Available at: www.ibm.com (Accessed: July 23 2014).

IEEE (1990): IEEE Standard Glossary of Software Engineering Terminology.

ISO (2001): ISO/IEC 9126-1: Software Engineering-Product Quality-Part 1:
Quality Model. Geneva Switzerland: International Standards Organization.

ISO (2003): ISO/IEC 9126-1: Software Engineering-Product Quality, Part-2,
External Metrics. Geneva, Switzerland: International Organization for
Standardization.

http://www.ibm.com/

187

Istoan, P., Nain, G., Perrouin, G. and Jézéquel, J.-M. (2009) 'Dynamic
Software Product Lines for Service-Based Systems'. Ninth IEEE International
Conference on Computer and Information Technology, CIT '09, 11-14 Oct.
2009: IEEE, 193-198.

Jacobson, I., Griss, M. and Jonsson, P. (1997) Software Reuse: Architecture,
Process and Organization for Business Success. New York: Addison-Wesley-
Longman.

Jaring, M. and Bosch, J. (2002) 'Representing Variability in Software Product
Lines: A Case Study'. Software Product Lines SPLC 2, Springer Berlin, 219-
245.

Jarzabek, S., Bassett, P., Zhang, H. and Zhang, W. (2003) 'XVCL: XML-
based variant configuration language'. Proceedings of the 25th International
Conference on Software Engineering (ICSE '03), Portland, Oregon, USA, 3-
10 May 2003: IEEE Computer Society, 810-811.

Johansen, M. F., Haugen, Ø. and Fleurey, F. (2012) 'An Algorithm for
Generating t-wise Covering Arrays from Large Feature Models'. Proceedings
of the 16th International Software Product Line Conference (SPLC 2012),
Salvador, Brazil: ACM.

Kadir, W. M. N. W. and Mohammad, R. (2008) Advances in Software
Engineering Research and Practice.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. and Peterson, A. S.
(1990) Feature Oriented Domain Analysis (FODA) feasibility study, Software
Engineering Institute, Carnegie Mellon University CMU/SEI-90-TR-21.

Kang, K. C., Kim, S., Lee, J., Kim, K., Kim, G. J., Shin, E. and Huh, M. (1998)
'FORM: A feature-oriented reuse method with domain-specific reference
architectures', Annals of Software Engineering, 5(1), pp. 143-168.

Kang, K. C., Lee, J. and Donohoe, P. (2002) 'Feature-Oriented Product Line
Engineering', IEEE Software, 19, pp. 58-65.

Kästner, C., Thüm, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F. and
Apel, S. (2009) 'FeatureIDE: Tool Framework for Feature-Oriented Software

188

Development.'. Proceedings of the 31th International Conference on Software
Engineering (ICSE), Vancouver, Canada: IEEE Computer Society, 611–614.

Kim, K., Kim, H., Ahn, M., Seo, M., Chang, Y. and Kang, K. C. (2006)
'ASADAL: A Tool System for Co-Development of Software and Test
Environment based on Product Line Engineering'. Proceedings of the 28th
International Conference on Software Engineering (ICSE), Shanghai, China:
ACM, 783-786.

Kitchenham, B. and Charters, C. (2007) Guidelines for Performing Systematic
Literature Reviews in Software Engineering, Keele University, UK EBSE-
2007-1.

Klaus, P., Böckle, G. and van der Linden, F. (2005) VARMOD Tool [Internet]:
Software Systems Engineering. Available at: http://www.sse.uni-
essen.de/swpl/SEGOS-VM-Tool/index.html 18/05/2012).

Kleinrock, L. (1976) Queueing Systems, Volume I: Theory, and Volume 2:
Computer Applications. New York: Wiley.

Krueger, C. and Clements, P. (2014) 'Systems and software product line
engineering with gears from BigLever software'. Proceedings of the 18th
International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools, Florence, Italy: ACM.

Krueger, C. W. (2006) 'Introduction to the Emerging Practice Software
Product Line Development', Methods & Tools, (no. 3).

Krueger, C. W. (2007) 'The 3-Tiered Methodology: Pragmatic Insights from
New Generation Software Product Lines'. Proceeding of the 11th International
Software Product Line Conference (SPLC 2007), Kyoto, Japan: IEEE, 97-106.

Lamping, J., Rao, R. and Pirolli, P. (1995) 'A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies'. In Proceedings of
the Conference on Human Factors in Computing Systems: ACM, 401-408.

Lettner, D., Petruzelka, M., Rabiser, R., Angerer, F., Prähofer, H. and
Grünbacher, P. (2013) 'Custom-Developed vs. Model-based Configuration
Tools: Experiences from an Industrial Automation Ecosystem'.

http://www.sse.uni-essen.de/swpl/SEGOS-VM-Tool/index.html
http://www.sse.uni-essen.de/swpl/SEGOS-VM-Tool/index.html

189

MAPLE/SCALE 2013, Workshop at the 17th International Software Product
Line Conference (SPLC 2013), Tokyo, Japan: ACM, 52-58.

Levent V, O. (1998) 'Storage and retrieval of database constraints',
Information Systems, 23(6), pp. 401-421.

Linden, A. and Fenn, J. (2003) Understanding Gartner's hype cycles:
Strategic Analysis Report No R-20-1971. Gartner, Inc.

Lisboa, L. B. (2008) ToolDAy - A Tool for Domain Analysis. Masters, Federal
University of Pernambuco, Recife, Brazil.

Lisboa, L. B., Garcia, V. C., de Almeida, E. S. and de Lemos Meira, S. R.
(2011) 'ToolDAy: a tool for domain analysis', International Journal on Software
Tools for Technology Transfer (STTT) archive, 13(4), pp. 337-353.

Martinez, J., Lopez, C., Ulacia, E. and del Hierro, M. (2009) 'Towards a
Model-Driven Product Line for Web systems'. Proceedings of the 5th Model-
Driven Web Engineering Workshop MDWE in conjuction with the
International Conference in Web Engineering (ICWE 2009), San Sebastian,
Spain, 1-15.

Mehta, N. (1982) A Flexible Machine Interface. Masters Thesis, University of

Toronto.

Meinicke, J., Thüm, T., Schröter, R., Krieter, S., Benduhn, F., Saake, G. and
Leich, T. (2016) 'FeatureIDE: Taming the Preprocessor Wilderness'.
Proceeding of the International Conference on Software Engineering, Austin,
TX: ACM and IEEE CS.

Mendonca, M. (2009) Efficient Reasoning Techniques for Large Scale
Feature Models. Doctor of Philosophy PhD, University of Waterloo.

Mendonca, M., Branco, M. and Cowan, D. (2009) 'S.P.L.O.T.: software
product lines online tools'. Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages
and applications, Orlando, FL, USA, 10/25/2009: ACM, 761-762.

Microsoft (2008) NUI. Available at: http://research.microsoft.com/en-
us/collaboration/focus/nui/ (Accessed: December 10 2015).

http://research.microsoft.com/en-us/collaboration/focus/nui/
http://research.microsoft.com/en-us/collaboration/focus/nui/

190

Modeling, H. F. Available at: http://caosd.lcc.uma.es/spl/hydra/index.htm
(Accessed: July 11 2012).

Moon, M., Yeom, K. and Chae, H. (2005) ' An Approach to Developing
Domain Requirements as a Core Asset Based on Commonality and Variability
Analysis in Product Line', IEEE Transactions on Software Engineering 31(7),
pp. 551-569.

Myllärniemi, V., Asikainen, T., Männistö, T. and Soininen, T. (2005) 'Kumbang
configurator—A configuration tool for software product families'. Proceedings
of the IJCAI-05 Workshop on Configuration In conjunction with the 19th
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland.

Myllärniemi, V., Raatikainen, M. and Männistö, T. (2007) 'Kumbang tools'.
Proceedings of the 11th International Software Product Line Conference
(SPLC 2007), Kyoto, Japan: IEEE Computer Society, 135--136.

Nestor, D., O’Malley, L., Quigley, A., Sikora, E. and Thiel, S. (2007)
'Visualisation of Variability in Software Product Line Engineering'.
Proceedings of the 2007 conference of the center for advanced studies on
Collaborative research: ACM.

Nuseibeh, B., Kramer, J. and Finkelstein, A. (1994) 'A framework for
expressing the relationships between multiple views in requirements
specification', IEEE Transactions on Software Engineering, 20(10), pp. 760–
773.

Park, K., Ryu, D. and Baik, J. (2012) 'An Integrated Software Management
Tool for Adopting Software Product Lines'. Proceedings of the 11th
IEEE/ACIS International Conference on Computer and Information Science
(ICIS 2012), Shanghai, China, May 30 2012-June 1 2012, 553-558.

Parra, C. (2011) Towards Dynamic Software Product Lines: Unifying Design
and Runtime Adaptations Doctor of Philosophy, Lille 1 University - Science
and Technology.

Pasetti, A. and Rohlik, O. (2005) Technical Note on a CONCEPT FOR THE
XFEATURE TOOL, P&P Software GmbH / ETH Zurich (PP-TN-XFT-0001.
Available at: www.pnp-software.com.

http://caosd.lcc.uma.es/spl/hydra/index.htm
http://www.pnp-software.com/

191

Pereira, J. A., Souza, C., Figueiredo, E., Abilio, R., Vale, G., Heitor and Costa,
A. X. 'Software Variability Management- An Exploratory Study with Two
Feature Modeling Tools'. VII Brazilian Symposium on Software Components,
Architectures and Reuse: IEEE.

Pleuss, A. and Botterweck, G. (2012) 'Visualization of variability and
configuration options', International Journal on Software Tools for Technology
Transfer (STTT), 14(5), pp. 497-510.

Pohl, K., Böckle, G. and van der Linden, F. (2005) Software Product Line
Engineering: Foundations, Principles and Techniques. Germany: Springer-
Verlag Heidelberg.

Rabiser, R., Dhungana, D., Heider, W. and Grünbacher, P. (2009) 'Flexibility
and End-User Support in Model-Based Product Line Tools'. Proceedings of
the 35th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA '09), Patras, Greece, 27-29 Aug. 2009: IEEE Computer
Society, 508-511.

Reiser, M.-O. and Weber, M. 'Managing Highly Complex Product Families
with Multi-Level Feature Trees'. Proceeding of the 14th IEEE International
Conference on Requirements Engineering (RE’06), Minneapolis/St. Paul, MN:
IEEE Computer Society, 149-158.

Russell, G., Burns, F. and Yakovlev, A. (2012) 'VARMA—VARiability
modelling and analysis tool'. Proceedings of the IEEE 15th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS 2012), Tallinn, Estonia, 18-20 April 2012, 378-383.

Samih, H. and Bogusch, R. (2014) 'MPLM - MaTeLo product line manager:
[relating variability modelling and model-based testing]'. Proceedings of the
18th International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools, Florence, Italy: ACM, 138-142.

SAP Configurator. Available at: www.sap.com (Accessed: July 16 2014).

SCALE’09 'Workshop on Scalable Modeling Techniques for Software Prod-
uct Lines (SCALE’09)'. San Francisco, USA.

http://www.sap.com/

192

Schmid, K. and Schank, M. (2000) 'PuLSE-BEAT — A Decision Support Tool
for Scoping Product Lines'. Proceedings of the International Workshop
Software Architectures for Product Families IW-SAPF-3, Las Palmas de Gran
Canaria, Spain: Lecture Notes in Computer Science, 65-75.

Seaman, C. B. (1999) 'Qualitative Methods in Empirical Studies of Software
Engineering', IEEE Transactions on Software Engineering, 25(4), pp. 557-
572.

Segura, S., Galindo, J. A., Benavides, D., Parejo, J. A. and Ruiz-Cortés, A.
(2012) 'BeTTy: Benchmarking and Testing on the Automated Analysis of
Feature Models'. Proceedings of the 6th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS'12), Leipzig, Germany:
ACM, 63–71.

Shakari, P. and Møller-Pedersen, B. (2006) 'On the Implementation of a Tool
for Feature Modeling with a Base Model Twist'. Proceedings of the Norwegian
Informatics Conference (NIK 2006), University of Oslo, Norway, Nov., 81-93.

She, S. Linux Variability Analysis Tools (LVAT). Available at:
http://code.google.com/p/linux-variability-analysis-tools/ (Accessed: July 16
2012).

Shneiderman, B. and Plaisant, C. (2004) Treemap 4.1.1: University of
Maryland. Available at: http://www.cs.umd.edu/hcil/treemap-history/
(Accessed: August 12 2015).

Simmonds, J., Bastarrica, M. C., Silvestre, L. and Quispe, A. (2011) Analysing
Methodologies and Tools for Specifying Variability in Software Processes:
Universidad de Chile, Santiago, Chile.

Sincero, J. and Schroder-Preikschat, W. (2008) 'The linux kernel configurator
as a feature modeling tool'. Proceedings of the 12th International Conference
on Software Product Lines SPLC (2), Limerick, Ireland: Lero Int. Science
Centre, University of Limerick, Ireland, 257-260.

Sinnema, M. and Deelstra, S. (2007) 'Classifying Variability Modeling
Techniques', Information and Software Technology, 49(7), pp. 717–739.

http://code.google.com/p/linux-variability-analysis-tools/
http://www.cs.umd.edu/hcil/treemap-history/

193

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J. (2004) 'COVAMOF: A
Framework for Modeling Variability in Software Product Families'.
Proceedings of the 3rd International Conference on Software Product Lines -
SPLC, Boston, MA, USA: Springer-Verlag Berlin Heidelberg, 197-213.

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J. (2006) 'Modeling
dependencies in product families with COVAMOF'. Proceedings of the 13th
Annual IEEE International Symposium and Workshop on Engineering of
Computer Based Systems, (ECBS 2006), 307.

SparxSystems Enterprise Architect. Available at: www.sparxsystems.com
(Accessed: July 16 2014).

Stengel, M., Frisch, M., Apel, S., Feigenspan, J., Kästner, C. and Dachselt, R.
(2011) 'View infinity: a zoomable interface for feature-oriented software
development'. Proceedings of the 33rd International Conference on Software
Engineering (ICSE 2011), Waikiki, Honolulu, Hawaii, USA, 21-28 May 2011,
1031-1033.

Steps Recorder. Available at:
http://pcsupport.about.com/od/termsp/p/problem-steps-recorder.htm.

Succi, G., Eberlein, A., Yip, J., Luc, K., Nguy, M. and Tan, Y. (1999) 'The
design of Holmes: a tool for domain analysis and engineering'. Proceedings of
the IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, Canada, 365-368.

Succi, G., Pedrycz, W., Yip, J. and Kaytazov, I. (2001) 'Intelligent design of
product lines in Holmes'. Proceedings of the Canadian Conference on
Electrical and Computer Engineering, 75-80.

Succi, G., Yip, J. and Liu, E. (2000) 'Analysis of the Essential Requirements
for a Domain Analysis Tool'. Proceedings of the ICSE Workshop on Software
Product Lines: Economics, Architectures and Implications, Limerick, Ireland:
ACM.

Succi, G., Yip, J., Liu, E. and Pedrycz, W. (2000) 'Holmes: a system to
support software product lines'. Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), Limerick Ireland, 786.

http://www.sparxsystems.com/
http://pcsupport.about.com/od/termsp/p/problem-steps-recorder.htm

194

Tamir, D., Mueller, C., J and Komogortsev, O., V (2013) 'An Effort-Based
Framework for Evaluating Software Usability Design', ARPN Journal of
Systems and Software, 3(4), pp. 65-77.

Ter Beek, M. H. and Mazzanti, F. (2014) 'VMC: Recent Advances and
Challenges Ahead'. Proceedings of the 18th International Software Product
Line Conference: Companion Volume for Workshops, Demonstrations and
Tools, Florence, Italy: ACM, 70-77.

Thiel, S. and Hein, A. (2002) 'Systematic Integration of Variability into Product
Line Architecture Design'. Proceedings of the 2nd International Conference on
Software Product Lines: Springer Berlin Heidelberg, 130-153.

Thörn, C. and Sandkuhl, K. (2009) Feature Modeling: Managing Variability in
Complex Systems. Complex Systems in Knowledge-based Environments:
Theory, Models and Applications: Springer Berlin Heidelberg, p. 129-162.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G. and Leich, T.
(2014) 'FeatureIDE: An Extensible Framework for Feature-Oriented Software
Development', Science of Computer Programming, 79, pp. 70-85.

Tolvanen, J.-P. and Kelly, S. (2009) 'MetaEdit+: defining and using integrated
domain-specific modeling languages'. In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems
languages and applications: ACM, 819-820.

Trinidad, P., Benavides, D., Ruiz-Cort´es, A. and Segura, S. (2008) 'FAMA
Framework'. Proceedings of the 12th International Software Product Line
Conference (SPLC '08), Limerick, Ireland, 8-12 Sept. 2008, 359-359.

Van der Linden, F. J., Schmid, K. and Rommes, E. (2007) Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Berlin: Springer-Verlag.

Van Gurp, J., Bosch, J. and Svahnberg, M. (2001) 'On the Notion of Variability
in Software Product Lines'. Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA), Amsterdam, Netherlands, 45-55.

195

Van Ommering, R., Van Der Linden, F., Kramer, J. and Magee, J. (2000) 'The
Koala Component Model for Consumer Electronics Software', Computer,
33(3), pp. 78-85.

von der Maßen, T. and Lichter, H. (2004) 'RequiLine: A Requirements
Engineering Tool for Software Product Lines'. Proceedings of the 5th
International Workshop on Product Family Engineering (PFE), Siena, Italy:
Springer LNCS 168-180.

White, J., Schmidt, D. C., Wuchner, E. and Nechypurenko, A. (2007)
'Automating Product-Line Variant Selection for Mobile Devices'. Proceedings
of the 11th International Software Product Line Conference (SPLC 2007),
Kyoto, Japan, 10-14 Sept. 2007: IEEE Computer Society, 129-140.

Yamany, A. E. E., Shaheen, M. and Sayyad, A. S. (2014) 'OPTI-SELECT: an
interactive tool for user-in-the-loop feature selection in software product lines'.
Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools, Florence,
Italy: ACM, 126-129.

Zhang, B. and Becker, M. (2014) 'Variability code analysis using the VITAL
tool'. Proceedings of the 6th International Workshop on Feature-Oriented
Software Development, Florence, Italy: ACM, 17-22.

Zhang, H. and Jarzabek, S. (2001) 'XML-based method and tool for handling
variant requirements in domain models'. Proceedings of the 5th IEEE
International Symposium on Requirements Engineering, 2001, Toronto, Ont.:
IEEE, 166 - 173.

Zhang, H. and Jarzabek, S. (2004) 'XVCL: a mechanism for handling variants
in software product lines', Science of Computer Programming, 53, pp. 381–
407.

196

APPENDES

197

Appendix A

DARE-COTS: DARE (Domain Analysis and Reuse Environment) is a tool

implemented using commercial-off-the-shelf (COTS) and freeware that

provides automated support for domain engineering activities, which includes

identifying the common and variable features within a family of systems.

DARE assists domain experts in different ways, such as carrying out analysis

by providing useful high level guidance, recording and extracting domain

information from documents and code using a stored section of the domain

book (Frakes et al., 1997, Frakes et al., 1998). The tool was implemented as

a standalone and was also used in-house as a web service developed at the

College of Engineering, Department of Computer Science, VaginiaTech.

DARE supports textual notation using MS Word and using a form-base

component. The tool has been developed using various technologies as

prototypes of different versions. These include the first version, which was

developed in 1994 in C-language on a UNIX workstation. In 1995, the second

prototype version was based on Visual Basic 3 on a PC running Windows.

Another prototype version was created using commercial off-the-shelf tools

(COTS) and freeware to provide automated support for domain analysis (Dos

Santos and Frakes, 2009). DARE is not available as free and open source,

nor could an evaluation copy be obtained.

Odyssey: A reuse environment that has been conceived as a framework

consisting of various tools to construct a reuse infrastructure based on

Product Lines, Domain Models and Component-Based Development. It

198

provides support for conceptual models (e.g., use cases, feature models and

other object oriented models using UML notation), architectural models (e.g.,

architectural and design pattern system in combining object-oriented models),

and implementation models (e.g., reuse components set). Odyssey assists

three different categories of users – domain engineers, domain specialists

and software engineers – who are responsible for the development of

applications within that domain (Braga et al., 1999). The Odyssey

environment was developed as a stand-alone application using java

technology at the Computer Science Department, Federal University of Rio de

Janeiro. It provides support for development using graphical UML notations.

With respect to Odyssey, no information has been provided to enable

categorisation of the tool as either academic or commercial. The Odyssey

reuse environment is a free and open source tool that is available under GNU

license.

PuLSE-BEAT (Product Line Software Engineering Basic Eco Assistance

Tool): An automated decision support tool for the analysis of data used by

PuLSE-Eco to determine the scope of a product line during product line

development activities. The tool was developed at the Fraunhofer Institute for

Experimental Software Engineering (IESE) and provides support for both

domain expert and method experts by delivering three different scopes:

possible candidates, likely candidates, and strongly recommended

candidates. These are in relation to thresholds of 0.5, 0.6 and 0.75,

respectively. PuLSE-BEAT was developed based on Excel worksheets using

Visual Basic for Applications and supports textual notations implemented

199

based on a tabular form. Support for traceability and consistency

management between these worksheets has been provided by the tool.

PuLSE belongs to the category of academic tools. It is however, not available

as free and open source, nor could an evaluation copy be obtained (Schmid

and Schank, 2000).

Holmes: A collection of tools that supported product line (SPL) domain

analysis and engineering, designed to endorse Sherlock (a DA&E

methodology aimed at the development of object-oriented frameworks) SPL

methodology by giving an additional functional interface and making better

use of existing technologies and standards. Holmes aimed at providing varied

support for SPL development, including market analysis and strategy,

modelling, design, and development of the resulting product. This is achieved

through the use of a critiquing system that provides semantic support for

Holmes users by analysing the products and domain models (Succi et al.,

1999, Succi et al., 2000b, Succi et al., 2000a, Succi et al., 2001). The tool was

developed using Java language and implemented as a web service using

Java Space technology and XML at the Department of Electrical and

Computer Engineering, University of Alberta, Canada. The tool supports

textual notations based on a matrix with rows and columns for the projections

of the number of variants for variation points. It is recognised as an academic

tool, rather than a commercial one. It is also not available as free and open

source, and no evaluation copy could be obtained.

COVAMOF (ConIPF Variability Modelling Framework): A software variability

modelling tool that represents variation points and dependencies as first-class

200

citizens and provides ways to model the relationships among the complex and

simple dependencies at all levels of abstraction. The tool supports software

engineers during both the domain engineering and application engineering

processes (Sinnema et al., 2004). In COVAMOF, the product family is divided

into three abstraction layers – the features, the architecture and the

component implementations. The variability occurs in all the abstraction

layers, and is modelled by the COVAMOF Variability View (CVV). The CVV

encompasses the variability in terms of variation points and dependencies.

COVAMOF and all its functionality has been developed in Java and

implemented as a stand-alone application. It has also been partly

implemented as an extension to the Eclipse platform (Sinnema et al., 2006). It

supports graphical notation for representing the variation points, variants and

dependency. The tool was developed at the Department of Mathematics and

Computing Science, University of Groningen, Netherlands, as part of the

research sponsored by Configuration in Industrial Product Families (ConIPF),

which was aimed at defining and validating methodologies for product

derivation that are applicable in industrial applications. Neither a free version

nor an evaluation copy of COVAMOF could be obtained.

Feature Modelling Plug-In (fmp): an Eclipse based tool supporting feature

modelling editing and configuration purposes. It models variability based on

feature diagrams, and uses cardinality-based feature modelling, specialisation

and configuration. The tool was implemented as either stand-alone in

Eclipse, or together with an fm2rsm plug-in in Rational Software Modeller

(RSM), or Rational Software Architecture. Fmp2rsm integrates fmp with RSM

201

and enables product line modelling in UML (Antkiewicz and Czarnecki, 2004).

The fmp tool supports software product line developers in checking the

consistency of the model, generating valid configurations, and checking partial

configurations. The tool was developed at the University of Waterloo, Canada,

based on the Java language and supports both graphical and textual

notations using UML and XML, respectively. Although the project has been

completed and the tool is no longer maintained, fmp is an open-source project

hosted on SourceForge.

PLUSEE (Product Line UML Based Software Engineering Environment): an

automated product line engineering tool in which a multiple-view model of the

product line architecture and components are developed and stored in a

product line repository. The multiple-view model describes the different

features of a product family, including the common and variable

characteristics of member products. The multiple-view model is represented

using UML modelling notations. PLUSEE addresses the product line life cycle

in three different phases: 1) the Product Line Requirements Modelling,

consisting of the use case model view, which tackles the functional

requirements of a product line in terms of use cases and actors; 2) The

Product Line Analysis Modelling, comprising four different views – the Static

Model View, the Collaborative Model View, the State Chart View and the

Feature Model View. In the Static Model View, the fixed structural aspects of a

software product line are addressed using classes and relationships among

them, whereas the Collaborative Model View and the State Chart View work

collaboratively. The dynamic aspects of a software product line are handled in

202

the Collaborative Model View, while the State Chart View determines the state

and state transitions for each of the dependent kernel, optional, and variant

classes. The Feature Model View captures and represents the variability of a

product line together with their dependency relationships. Finally, 3) the

Product Line Design Modelling, which is the phase where the architecture of a

product line is developed (Gomaa and Shin, 2004b, Gomaa and Shin, 2007,

Gomaa and Shin, 2004a). PLUSEE was developed at the Department of

Information and Software Engineering, George Mason University, using

Rational Rose and Rational Rose RT graphical editors to support the multiple

views. The tool supports graphical notation using UML and has been

categorised as an academic tool. PLUSEE is not available for free or as an

evaluation copy.

XML-Based Feature Model: An XML-based feature modelling tool that

provides support for defining feature models and the enforcement of the

relationships’ instantiation between models and their meta-models. It offers a

means to decompose a large feature diagram into extensible and self-

contained modules. The tool, however, provides explicit support for both the

modelling of the system family and of the applications instantiated from it. In

addition, it outlines and provides support based on an XML approach, which is

a way to the develop and express feature modelling tool at a low-cost

(Cechticky et al., 2004). The tool was developed at the Swiss Federal Institute

of Technology (ETH) in Zurich, Switzerland, in collaboration with P & P

Software, which is a research spin-out of the Institute. It has been developed

based on XML technology and therefore allows for the automatic derivation of

203

XML schema from the family model. It also supports textual notations and has

been identified as an academic tool. The tool is not available for free, and no

evaluation copy could be obtained.

AHEAD (Algebraic Hierarchical Equations for Application Design): a collection

of Java-based tools that support product lines by way of compositional

programming, in which features are the building blocks of the system. AHEAD

is a toolset that supports multiple programs and multiple non-code

representations written in different languages. The main tool of AHEAD is

called the composer, which receives an equation as an input and then

interprets the equation into its nested collective equivalents. After this, a

composite feature directory will be created with the name of the input

equation. Other tools comprised by AHEAD are for the implementation of the

composition for non-code artefacts, such as HTML files, make files, design

rule files, XML files and BNF-grammar files, among others (Batory et al.,

2004, Batory, 2004). AHEAD tools were developed at the Department of

Computer Sciences, University of Texas at Austin. The tools were not based

on pure Java, but were developed using Java extended embedded domain

specific languages (DSLs) for refinements, state machines, and

metaprogramming. Therefore, it supports different Java dialects. The tools

support textual notation based on expressions. AHEAD tools are available as

free and open source for download.

XVCL (XML-based Variant Configuration Language): a variability

management mechanism that comprises a method and a supported tool that

can be applied to configure variants of various kinds of software product line

204

assets, including architecture, code generation, UML modelling, test cases

and documentation in the SPL approach. It supports product line developers

to easily perform domain analysis in order to capture the common and

variable requirements in a feature diagram. It then enables the building of

reusable product line assets, comprising the domain model, product line

architecture and generic components (Zhang and Jarzabek, 2004, Jarzabek

et al., 2003). XVCL was developed at the National University of Singapore, to

serve as a modern and versatile version of its predecessor, Bassett’s frames

(Bassett, 1997), a technology that has been successfully applied in industry

for synthesising large COBOL and Java business applications. The tool was

implemented using Java and XML technology, where frame-programming

concepts were expressed as a mark-up language similar to XML, separating

each frame called x-frame from an XML file. It supports textual notation

designed as XML tags. XVCL is an open-source software available at

SourceForge (damithc, 2008).

KUMBANG: a toolset for managing software product line variability that

comprises two different, but mutually dependent, aspects – Kumbang

Modeller and Kumbang Configurator. The Modeller allows for the creation and

modification of models to capture product line variability from feature and

architecture points of view. With Modeller, a user can specify the features of

the system family and the architectural elements, as well as constraints and

dependency relationships. On the other hand, the Configurator allows for

deriving the configuration of individual product members through binding

variability in the Modeller (Myllärniemi et al., 2005, Myllärniemi et al., 2007).

205

The Configurator assists users (such as architects) during the configuration

process by providing a graphical interface to allow for entering requirements

for individual products, in addition to checking to ensure that configuration is

consistent and complete. Kumbang was developed at the Software Business

and Engineering Institute, Helsinki University of Technology. The tool enables

creating and editing configuration models graphically using UML-like

notations. Kumbang is an open-source tool that can be downloaded online.

BVR (Base Variability Resolution): a prototype feature modelling tool that is

characterised by establishing and maintaining the relationships between

models: 1) Base model, which can be in a given language; 2) Variation model

for variability specification, which usually contains variation elements and

each element will be referenced to a base model, and is subject to variation,

whereas those elements that are not subject to variation will be figured out; 3)

Resolution model, for defining variability, as well as binding its specification

that can be used to drive one or more new products in a product family. The

BVR tool has been developed based on Java Development Technology (JDT)

and Java programs for representing the Base model and the resolution of

variation, respectively. In addition, the implementation was based on the

Eclipse modelling framework (EMF). It supports graphical notation using basic

right-click functionality. BVR is an open-source software available as an

Eclipse plugin (Shakari and Møller-Pedersen, 2006).

ASADAL (A system Analysis and Design Aid tooL): a based-on FORM

(Feature-Oriented Reuse Method) method that supports the entire product

line development lifecycle, including domain analysis, architecture and

206

component design, software code generation and verification and validation.

ASADAL assists its users by providing various editors, including a feature

analysis editor for feature selection and a feature-binding analysis modelling

editor. Other design modelling editors include: i) a conceptual architecture

model for stating abstract high-level functional elements of a product line, and

control flow between them, ii) a process architecture model for demonstrating

executable elements and relationships among them, iii) a component

architecture model for expressing reusable concrete components to be used

in system development, and iv) a design object model for component

implementation. It generates executable code, such as Java, based on the

information gathered from combined feature selection, processing macros

embedded in various design models and components (Kim et al., 2006). The

ASADAL tool was developed at the Computer Science and Engineering

Department, Pohang University of Science and Technology, South Korea. It

supports graphical notation using FODA (Feature-Oriented Domain Analysis)

format. ASADAL has not been available in either a free open source or

evaluation copy.

Scatter: a tool that supports architecture design for mobile devices by

automating variant selection for mobile devices whose inputs are: i) the

requirements of product line architecture and ii) the resources available on

discovered mobile devices. The expected production is an optimal variant that

can be used in the construction of mobile devices. Scatter helps developers

visually model the product line architecture components, manage the

dependencies and constraints among them, and handle the non-functional

207

requirements associated with each component (White et al., 2007). Scatter

was developed at Vanderbilt University Nashville, TN, USA, in collaboration

with Siemen AG, Corporate Technology (SE 2) Munich, Germany. It was,

however, implemented based on the Eclipse Generative Modelling

Technology (GMT) project, using its open-source Generic Eclipse Modelling

System (GEMS). The tool supports graphical notation that defines domain

specific modelling language using a visio-like environment. There exists a

compiler that converts the graphical models produced by the Scatter into a

prolog knowledge base and constraints satisfaction problem (CSP) and, which

is operated using a prolog constraint solver. The Scatter tool is characterised

as an academic tool and could not be found either as an evaluation copy or as

an open source tool.

VMWT (Variability Modelling Web Tool): a web-based variability management

tool that allows for creating and storing product line projects. Adding variants

and their associated variation points to a particular code component can allow

the products configuration. Afterwards, a range of numeric values or an

enumerated list will be specified. Once all the variants are added, all the

variation points will then be added to the code components. VMWT supports

management of the dependency and constraints that might exist within the

added variation points and variants using Boolean relationships, such as

AND, OR, XOR and NONE, or even the use of requires and exclude for the

case of a complex decency. However, it enables checking for the

completeness of the computed dependency and constraints. VMWT has

been conceived as a prototype research at the University Rey Juan Carlos of

208

Madrid. The first version of the work was implemented as a web-based

application, built with PHP and Ajax, running over Apache 2.0 (Capilla et al.).

Although, the tool’s link is still available in the published literature, it is no

longer in existence anywhere. VMWT is an open-source tool.

LKC (Linux Kernel Configurator): a feature modelling tool delivered within the

Linux Kernel that enables feature selection in a product line model. LKC

comprises two main components that are used as its backbone. These

include a parser and a dependency checker. LKC allows configuration options

(feature selection) to be defined in a configuration database organised in a

tree structure. The configuration database consists of a collection of

configuration options built as a set of entries, where each entry comes with its

own dependencies to be used in determining its visibility based on only one

condition, that is, if its entry is also visible (Sincero and Schroder-Preikschat,

2008). The LKC tool was developed at the Department of Computer Science,

Friedrich-Alexander University Erlangen-Nuremberg, firstly, as a prototype in

2002, whereas the current version is 1.3. The tool provides support for

multiple notations, such as graphical based on basic right-click functionality,

textual using strictly an LKC syntax, and command-line, among others. It

belongs to the group of academic tools and was released as an open-source

tool under (GNU) General Public License.

FeatureMapper: an Eclipse plugin tool used to map features from feature

model to subjective modelling artefacts expressed by means of Ecore-based

languages, such as Unified Modelling Language (UML2), Domain Specific

Languages (DSLs) that could be defined based on the Eclipse Modelling

209

Framework (EMF), and text-based languages defined using EMFText. The

tool provides support for both manual and automatic mapping and offers

various views for mapping features. These include: 1) the realisation view,

that specifies the features that need to be mapped to specific features, as well

as the model elements that do not participate in the realisation; 2) the variant

view, which point outs all the model elements of a specific product line variant,

that is, all elements that are common to all products in a product line that are

not yet mapped; 3) the context view, for colouring of features and model

elements in a feature model. The colours are used for easy realisation of

features; and 4) the properties changes-view, which allows for the changing of

model elements, such as feature cardinality, names of elements or values

initialisation. In this view, properties affected by the changes will be

highlighted (Heidenreich et al., 2008b, Heidenreich, 2009, Heidenreich et al.,

2008a). FeatureMapper was developed at Technische Universidad, Dresden,

and the implementation was based on Eclipse Graphical Editing Framework

(GEM). It supports different means of visualisation (both graphical and tree-

based editors). Although there was not enough information available,

FeatureMapper belongs to the category of academic tools and is available for

free from the tool’s website.

PLUM (Product Line Unified Modeller): a tool suite for Product Line

Engineering that follows a Model-Driven Software Development approach to

capture and analyse the product line variability in terms of decisions and

establishes the dependencies among them. The tool allows product line

developers to design, implement and manage product lines through a guided

210

variability resolution process of the decision models. The variability resolution

process consists of assigning values to the decisions in order to define a

product of interest. This gives rise to the application model to represent

concrete products of the product line. The PLUM tool suite has been

developed at the European Software Institute (ESI) based on the concepts

from the results of past International Research Projects (such as FAMILIES,

ESAPS or CAFÉ and FLEXI), for representing product lines and its variability

into model. The tool was implemented as an Eclipse plug-in using a wide

range of eclipse framework technologies, such as EMF (Eclipse Modelling

Framework) for providing basic building blocks for the models and their

editors. GMF (Graphical Modelling Framework) for graphical assets editors.

OCL (Object Constraint Language) for decision model’s dependency engine

and BIRT (Business Intelligence and Reporting Tools) for representing

valuable SPL’s metrics (Aldazabal and Erofeev, 2008, Martinez et al., 2009).

It supports graphical notations using UML, and belongs to the category of

commercial tools. PLUM is an open-source tool suite available on the ESI

website.

XToF: an integrated tool support for product line development that lets users

create feature diagrams, tagged blocks of code, classes and packages in

object-oriented programs, feature configurations and the automatic generation

of products by running the source code. The tool allows programmers to

define, maintain, visualise and exploit traceability links between a feature

diagram and a code base. It uses the capabilities of an open-source Eclipse

plug-in called TagSEA, which provides mechanisms to filter tags, as well as

211

define and list waypoints. XToF uses these mechanisms to link the TagSEA

waypoints to features and blocks of code. Feature diagrams are to be loaded

in the SXFM format of an XML file, the XToF then displays it and enables tags

to be added, navigated and configured. The loaded feature diagram is then

saved into the project folder, giving its path as property of the project. This

allows all the project contributors to work in parallel by getting access to the

project folder (Gauthier et al., 2010). XToF was developed as a result of

collaborative efforts between three different institutions: the University of

Victoria, the University of Waterloo and the University of Namur. It was

implemented as a plug-in on the Eclipse platform and supports tag-based

implementation in Java and C languages. XToF has been deployed in the

industry and is therefore categorised as a commercial tool. It is available as

an open-source tool.

ToolDay: a domain analysis tool aimed at supporting domain analysts to

achieve an effective and systematic reuse of software artefacts through a

semi-automation of the entire project. It is architecturally a three-layer-based

view consisting of a graphical user interface layer (GUI), which allows a

friendly environment for the users, a business layer that holds each ToolDay’s

group components, i.e., planning, domain modelling, domain validation and

product validation, and a data persistency layer for saving information (Lisboa

et al., 2011, Lisboa, 2008). ToolDay was developed at the Federal University

of Pernambuco, Brazil and implemented using Eclipse’s Graphical Modelling

Framework (GMF). However, using the Eclipse standard, the tool saves

information as XML files, where each file has its proper XML document,

212

making it easy for other tools to import information from ToolDay. It supports

graphical notation using the Eclipse platform through its Rich Client Platform

(CRP). ToolDay is listed in the category of academic tools. Consequently, the

tool is not available as either free open source software or as an evaluation

copy.

View Infinity: a software product line (SPL) tool that supports visualisation

and zooming functionality of different abstraction layers of SPL content,

including feature model, file structure and source code. It offers seamless and

semantic zooming of the feature model and source code that can be edited in

other product line tools. This allows for a better, step-by-step visualisation of

project data, while zooming the details of the presented information. The View

infinity interface consists of three different views, including the feature model

view, which allows for exploration of SPL’s feature tree at its most abstract

level. In this view, the feature model is viewed as a graph consisting of

hierarchically-connected feature nodes. The user can disable and enable

features to create a specific variant. However, from this view, a subsequent

zooming of active features can take place, allowing one to deeply explore the

actual implementation level of these features; first, it allows for zooming into

the file view, where the details of a file structure are revealed. A more

subsequent zooming would allow viewing into the detail implementation of

individual code fragments of that particular feature. That is the code view

(Stengel et al., 2011). View infinity was developed at the University of

Magdeburg and implemented based on Java technology. The tool supports

graphical notation based on FODA and textual notation using color-coded

213

source code. The tool is open-source software available from the tool’s

website.

FAMILIAR (FeaAture Model script Language for manipulation and Automatic

Reasoning): a language and tool environment for the management of

variability feature models developed based on domain-specific language

(DSL). It provides support for various operations related to variability

management tasks, such as importing, exporting editing, composing,

decomposing, configuring and reasoning about feature models. FAMILIAR

was initially developed at I3S laboratory and is currently jointly and openly

managed by the Triskell team (INRIA/IRISA/University of Rennes 1), the

MODALIS team (I3S laboratory, University of Nice Sophia Antipolis) and the

Colorado State University, USA. It was developed in Java language using

XText, a framework for DSLs development. The tool was, however,

implemented in different solutions for use. These includes: 1) FAMILIAR Tool

that is fully integrated as a standalone modelling app executed as a JAR file;

2) A plugin for the Eclipse platform, integrated with XText and FeatureIDE,

and 3) as a standalone version that supports console mode only (Acher et al.,

2011, Acher et al., 2013). The tool supports both textual script for performing

a series of operations on feature models and graphical notations for the

visualisation and editing of feature models. FAMILIAR is available as a free

open-source tool at GitHub pages.

DOPLER: (Decision-Oriented Product Line Engineering for effective Reuse):

a flexible and extensible tool suit for variability modelling that allows for the

214

creation of a meta-model to define the asset types (such as features,

architectural elements, resources or properties), attributes and dependencies.

The tool allows users to make decisions based on the models and are

capable of determining the required assets of a product (Dhungana et al.,

2010). Since 2006, Dopler has been under continuous development at

Christian Dopler Laboratory for Automated Software Engineering, Johannes

Kepler University, Linz, in partnership with Siemens VAI and Siemens CT.

The tool was developed based on Java Technology and supports both textual

and graphical notation. It has been a proprietary of Siemen VAI and therefore

neither its evaluation copy nor a free version is available. Service-oriented

software development, Eclipse-based development and enterprise resource

planning, among others, are the other domains in which Dopler can be used

(Dhungana et al., 2011, Rabiser et al., 2009).

FeatureIDE: an Eclipse-based tool and framework aimed at supporting entire

development process of Feature-Oriented Software Development (FOSD) for

the development of SPLs. Among others: 1) it allows variabilities and

commonalities of a software system to be captured for the purpose of domain

analysis; 2) it eases the implementation of all software systems of the domain,

while at the same time, mapping code assets to features; 3) it provides the

means to map requirements to features within the domain and feature

configurations for a customised software system; and 4) allows the automatic

generation of the software system. Since 2005, when it was first developed at

the University of Magdeburg, FeatureIDE has been under constant

development, resulting in various improvements; among others are full

215

integration in Eclipse, support for both textual and graphical notations, in

which features models can be edited (categorised using generalisations or

specialisations or none of these), the highlighting of dead and false-optional

features along with their corresponding constraints, a configuration editor for

creating and editing configurations, a view for displaying statistics about the

software product line, and so on (Thüm et al., 2014, Meinicke et al., 2016,

Kästner et al., 2009). The implementation was based on Java technology, but

provides support for other implementations, such as AspectJ extension and

FeatureC++ extension. FeatureIDE is an academic tool and can be

downloaded either directly from its website or in the Eclipse MarketPlace.

MOSKitt4SPL: a tool for modelling software product lines and the application

of model-driven development distributed as a platform-independent plugin to

be installed on any Eclipse modelling tools (EMT). M4SPL is based on the

Eclipse Modelling Framework (EMF), Graphical Modelling Framework (GMF)

and Atlas Transformation Language (ATL). The tool is designed to help

software developers in analysing, designing and developing adaptive software

systems. However, various editors have been provided by the tool to simplify

the specification of self-adaptive systems, including: (1) Feature Models Editor

for representing and describing the variability of a system in terms of features

and from which possible configurations for different systems can evolve; (2)

Feature Model Configuration Editor, in which variations of different systems

can be defined; and (3) Resolution Model Editor, which provides declarative

support among different system configurations (Gómez et al., 2012). M4SPL

was developed at The Technical University of Valencia, Spain. It supports

216

graphical notations based on various editors. The MOSKitt tool is a free

open-source tool that can be downloaded along with the installation guides via

a link by filling and submitting a contact form available from the tool’s website.

It can be used either as a standalone plug-in on Eclipse or integrated in the

Model Driven Everything (MDE) MOSKitt environment.

ISMT4SPL (Integrated Software Management Tool for Adopting Software

Product Lines): a based-on orthogonal variability model (OVM) approach to

provide a method to reduce the complexity of variability management and

allows traceability within the artefacts between domain and application

engineering. It also supports dependency management among variants and

their variation points by allowing for the automatic generation of variability

models. Architecturally, ISMT4SPL comprises three abstraction layers: (1)

System layer to ensure all fundamental functions, such as Legacy

Requirements Management System function, Legacy Design Management

System function and Legacy Configuration management System function; (2)

Product line Layer for traceability management, variability management and

Product line adapter that plays a role of intermediate function between the

system layer and user interface layer; (3) User Interface layer that comprises

various views, including the requirement view, design view and configuration

view. All the views display a variability model window and project explorer

window (Park et al., 2012). The tool was developed at the Korea Advanced

Institute of Science (KAIST) and supports both graphical and textual notation.

However, it belongs to the category of academic tools and neither an

evaluation copy nor a free open-source version can be obtained.

217

BeTTy: an extensible and configurable tool and framework supporting

benchmarking and testing on the analysis of feature models by examining

their set of products sufficiently. Among others, BeTTy supports the

automated detection of faults in feature models. Also, it supports the

automated generation of test data for a number of operations performed on

feature models based on the input data. It also includes an algorithm for

feature model generation, which maximises user-defined optimisation criteria.

When a feature model is generated in BeTTy, a more complex and extended

feature models can be generated that reveals the performance of tools in

pessimistic cases. On the framework end, BeTTy allows for the generation of

several components for simplifying the performance evaluation of feature

model analysis tools. The tool was developed at the University of Seville,

Spain. It was implemented in Java and distributed as a jar file, which gives it

the ability to be integrated into external projects, as well as through a web

interface that facilitates the generation of customised random feature models.

This can be used to assess the average performance of other tools during

analysis process. BeTTy belongs to the category of academic tools, and it has

also been freely distributed under GPL v3 license, available from the BeTTy

website.

S2T2 Configurator: a feature configuration tool that supports the generation of

a visual collaborative representation of the feature model and offers a proper

explanation of the effects of the user’s actions using its reasoning engine. The

reasoning engine depends on SAT solver and therefore requires the

Conjunction Normal Form (CNF). Also, using its architectural design, it allows

218

for mapping among visual components and their matching formal

representations. The S2T2 configurator can validate complex Boolean

constraints and textually represent them in a separate window. The tool’s

behaviour of focusing on the task of feature model configuration allows other

forms of feature models, developed from other tools like SPLOT and AHEAD,

to be imported. The tool was developed at the University of Limerick and

implemented in Java, specified as a plug-in in Eclipse IDE. It supports both

graphical notation using vertical node-link layout, where each feature group is

represented by node link and dependencies and constraints are represented

using FODA-like notation (Botterweck et al., 2009, Pleuss and Botterweck,

2012). It also allows the tree layout to be collapsed and expanded, similar to

file explorer. From a textual perspective, it uses the notation to denote

whether a feature’s state has been set by the user. The S2T2 Configurator

belongs to the category of academic tools and is a free open-source tool.

EASy-Producer: a tool supporting product line engineering by facilitating the

development of variant-rich ecosystems. The tool reduces the complexity that

is likely to result in losing all control during product configuration when

variability models of various product lines from various organisations are

composed in an ecosystem. EASy-Producer uses a technique called product

line specialisation, which binds variability in an ecosystem through partial

instantiation. Among others, using a specific table-based editor, the tool

supports product configurations based on the variables filtered by the user.

The configuration can also be validated through a reasoner that recognises

conflicting values within the model. The tool supports two textual languages

219

for product instantiation; these are the Variability Instantiation Language (VIL)

and the Variability Template Language (VTL). The VIL assists engineers in

specifying the artefacts’ instantiation and during the process of product line

production in a rule-based style. EASy-Producer was developed at the

University of Hildesheim and implemented as both standalone application and

plug-in for Eclipse. It supports both graphical (intended for non-expert users)

and textual notation (largely intended for experts) (Eichelberger et al., 2014).

The most recent version of the EASy-Producer’s source can be found on the

project website.

Opti-Select: an interactive multi-objective product line configuration tool

designed based on the idea of UIL (User-In-the-loop) for the analysis and

optimisation of features. It uses optimisation techniques and algorithms to

merge the experience of both the analysts and stakeholders. The interactive

feature of the tool allows it to integrate set techniques that provide a step-by-

step modelling of features and their configuration, dependency and constraint

management, solution optimisation and user exploration capability for the

better satisfaction of stakeholders. Opti-Select was developed at the College

of Computing and Information Technology, Arab Academy for Science,

Technology, and Maritime Transport, Cairo, Egypt. Using a file tree format,

the tool graphically allows the loading of the Simple XML Feature Model

(SXFM) format. Configuration attributes can either be loaded or saved to a

separate file, which can then be linked with relevant features. Once the SXFM

file is loaded to the application, the complemented attributes will be displayed

so that a user can alter the values of each attribute associated with every

220

feature in order to make the necessary changes according to system

requirements. In this, a selected feature or its attribute values can be changed

(Yamany et al., 2014). Opti-Select is an academic tool. It is also a free open-

source tool and an evaluation copy could be obtained.

MPLM-MaTeLo-product line manager: a product line management tool

designed based on the Eclipse Rich Client Platform (RCP) as an extension of

the industrial MaTeLo tool chain, to offer a model-based testing formalism

from which variants can be generated for MaTeLo to allow the derivation of

specific test cases for product line variants. Thus, it gives the ability to

generate test cases for each variant. It allows formal communications among

features and requirements by relating product line model usage with a

variability model. In summary, the tool assists the product line development by

defining the product to be developed, configuring features, establishing a link

between requirements and features, building a link between products and

features, creating new products, generating test plans and creating test

models for a product. The MPLM model variability uses the Orthogonal

Variability Modelling approach and therefore associates the product line

features with that of OVM model. Product configuration is achieved by

selecting the desired features (Samih and Bogusch, 2014). The tool was

developed at ALL4TEC/INRIA Rennes and supports graphical notation using

file tree-like notations. MPLM-MaTeLo has been applied in an industrial

setting, and therefore belongs to the category of industry tools.

221

VITAL (Variability ImprovemenT Analysis): a variability code analysis

toolset that can automatically extract variability models from variability code

and allows code visualisation and measurement. Parsing variability code can

be achieved using the conditional compilation method. Once the potential

variability code is passed, further analyses are conducted at the semantic

level to extract reflexion models, with their various elements as well as

dependencies. The variability code extraction is implemented as a macro

constant, while a variation point is implemented as an ‘ifdef’ block using Vars

in its ‘ifdef’ statement. The tool was developed at the University of

Kaiserslautern, in collaboration with the Fraunhofer Institute of Experimental

Software Engineering (IESE), both in Germany. Although different techniques

may be used in the identification of and parsing of variability elements,

currently, the C-Preprocessor (CPP) code parser has been used in

implementation. This enables industries to filter and get the analysis of

variability code. The tool supports textual notation using CPP code (Zhang

and Becker, 2014). It belongs to both academic and industry tools. The VITAL

tool is not available to download as free open-source software, and likewise,

no evaluation copy can be obtained.

ViViD: a variability management tool for synthesising variants for video

sequences for realisations of videos with different characteristics, such as

distinctions of luminance and the calculation of vehicles and people to cover a

range of testing scenarios. Among others, the tool supports variability

modelling language and an environment to enable the modelling of variations

within a video sequence. It also allows for the generation of testing

222

configurations for the variants of video sequences corresponding to those

configurations. In addition, based on the valid number of configurations in a

variability model, the tool supports prioritisation for pair-wise configurations

while maintaining the maximum and minimum ad-hoc objective functions

(Acher et al., 2014). ViViD was developed at the University of Rennes in close

collaboration with MOTIV industrial partners. It supports textual notations

created based on the open-source Xtext language workbench. The tool has

been applied in industry, and therefore belongs to both academic and

commercial tool categories. Although the ViViD tool is not available as an

open-source tool, all the tool’s components can be downloaded from its

website.

VMC (Variability Model Checker): a software product line tool supporting

modelling and analysis concepts that can be specified in a value-passing

process algebra, supplemented with a set of optional variability constraints.

As inputs, it takes a product family model, together with variability constraints,

and then using its variability-aware version of action (v-ACTL), it offers a

logical analysis on the behavioural variability of a product family to its valid

products. VMC advances SPL development processes by means of

variability-aware logic interpreted over a Model Transition System (MTS) with

some additional variability constraints. VMC was developed at the Institute of

National Research Council of Italy, ISTI-CNR, and developed in Ada language

to allow its compilation on various platforms, including Windows, Linux, Mac

OS-X and Solaris. Its computational model was based on a combination of

automata formed from a series of algebraic processes originated from the

223

value-passing Calculus of Communicating Systems and Communicating

Sequential Processes (CCS/CSP) like calculus. It supports textual notation

constituted by command-line prompt. It also supports graphical notation using

html-oriented GUI and when integrated with graph-drawing tools (Ter Beek

and Mazzanti, 2014). The tool is not open-source software; likewise, an

evaluation copy cannot be obtained.

WebFML: a product line online environment for synthesising feature models

from different kinds of software artefacts, such as propositional formula and

dependencies using graphs or matrices. It provides interactive support via

logical heuristics (a technique used in problem-solving), clusters (contains the

desired set of parents and children features), and ranking list (a list of parent

candidates for every feature) to allow multiple choices of substantial and

desired hierarchy. It also provides a mechanism for translating variability

artefacts into feature models, in addition to speeding up and supervising the

building process of feature models. This tool helps practitioners minimise their

efforts while handling complex variability models. The tool supports partial

integration with other tools, such as FAMILIAR, so that the scripts files

computed on those tools can be managed with the help of an integrated

console. The tool was developed at Inria/IRISA, University of Rennes 1,

France, and implemented using JavaScript based on Dagre and D3 libraries

(Bécan et al., 2014). Its web interface supports graphical notations using the

tree explorer view. The tool demo is publicly available from the tool’s website.

224

Appendix B

Table 4.2: Tools with FODA-like visual notations

[S10]

[S21]

225

[S11]

[S22]

226

[S14]

[S25]

227

[S15]

[S27]

228

[S17]

[S30]

229

[S37]

230

Table 4.3: Tools with file Tree-like visualisation

[S7]

[S13]

231

[S8]

[S16]

232

[S9]

[S24]

233

[S11]

[S26]

234

[S12]

[S28]

235

[S31]

[S32]

236

[S33]

Table 4.4: Tools with Graph, Logic Diagrams, UML and Hyperbolic Tree

visualisations

[S2]

237

[S11]

[S8]

238

[S5]

[S18]

239

[S11]

240

Appendix C

This appendix presents the screen-shots of an experimental implementation

that was discussed in Chapter 8, using the four different case studies, and a

number of variability management tools which are selected, based on certain

criteria as described in Chapter 7. The experimentation mainly focused on

determining how those tools addressed the four quality attributes: Usability,

Performance, Scalability, and Integration.

The screen-shots are, therefore, exposed how these tools addressed the case

studies of various sizes (small, medium, and large) and data elements. For

instance, tools in (Figure A1, Figure A2, Figure A3, Figure A4, Figure A8, and

Figure A9) accommodated up to 100 features, which is the medium scale size

variability model. This indicates that majority of these tools suffer from

scalability issues, when the models start to have around hundreds features.

However, other tools, such Odyssey and PLUM (Figure A6 and Figure A7),

failed to effectively support the small-scale model that contained 50 features.

On the other hand, for the large scale model, which is the peak point for

determining scalability in the experimentation, only one tool, MUSA, was

capable of accommodating more than 1000 features.

241

Figure A1: FeatureIDE

Figure A2: FAMILIAR

242

Figure A3: CVM Tool

Figure A4: CaptainFeature

243

Figure A5: S2T2

Figure A6: Odyssey

244

Figure A7: PLUM

Figure A8: MUSA

245

Figure A9: Pure::variants

