A SCALABLE DESIGN FRAMEWORK FOR VARIABILITY MANAGEMENT
IN LARGE-SCALE SOFTWARE PRODUCT LINES

MUHAMMAD GARBA

MARCH 2016

A thesis submitted in partial fulfilment of the requirements of the
University of East London for the Degree of Doctor of Philosophy

Abstract

Variability management is one of the major challenges in software product line
adoption, since it needs to be efficiently managed at various levels of the
software product line development process (e.g., requirement analysis,
design, implementation, etc.).

One of the main challenges within variability management is the handling and
effective visualization of large-scale (industry-size) models, which in many
projects, can reach the order of thousands, along with the dependency
relationships that exist among them. These have raised many
concerns regarding the scalability of current variability management tools and
techniques and their lack of industrial adoption.

To address the scalability issues, this work employed a combination of
guantitative and qualitative research methods to identify the reasons behind
the limited scalability of existing variabilty management tools and
techniques. In addition to producing a comprehensive catalogue of existing
tools, the outcome form this stage helped understand the major limitations of
existing tools.

Based on the findings, a novel approach was created for managing variability
that employed two main principles for supporting scalability. First,
the separation-of-concerns principle was employed by creating multiple views
of variability models to alleviate information overload. Second, hyperbolic
trees were used to visualise models (compared to Euclidian space trees
traditionally used). The result was an approach that can represent models
encompassing hundreds of variability points and complex relationships. These
concepts were demonstrated by implementing them in an existing variability
management tool and using it to model a real-life product line with over a
thousand variability points.

Finally, in order to assess the work, an evaluation framework was designed
based on various established usability assessment best practices and
standards. The framework was then used with several case studies to

benchmark the performance of this work against other existing tools.

Acknowledgements

| would like to thank Dr. Rabih Bashroush, my Director of Studies, Reader in
Distributed Systems and Software Engineering, School of Architecture,
Computing and Engineering (ACE), University of East London, for his
intellectual guidance and constant support that has led to the completion of
this thesis. Thanks also to my second supervisor, Dr. Usman Naeem, for his
positive feedback and assistance in this research.

| am grateful to all people who provided their valuable insight to me, at
meetings, or via email. | am particularly thankful to Dr. Adel Noureddine and
Dr. Rick Rabiser for their incisive feedback. Thank you, my colleagues in the
Research Centre, School of Architecture Computing and Engineering, for the

many discussions that have contributed to my work in this thesis.

Finally, a special thanks to Alh. Wada Sani, for his moral and financial
support. My sincere gratitude to my family and friends for their constant caring
and support— this work would have not been possible without their sustained

understanding.

Contents

Y 01 1 = V! PSPPSR ii
ACKNOWIEAGEIMENTS ... iii
LISt Of TADIES ..., iX
GlOSSANY ..ttt f e X
N 04 oY 1¥ L] A o o FO RN 1
1.2 Problem Statement ..., 6

1.3 ReSearch CONteXt........coooeiiiiiiii e, 8

S LT {= = L (o] o 1Y 10

1.5 ReSearch QUESLIONSccuuiiiiiiiiie ettt e e aens 10

1.6 Research Methodology..........ieeiiiiiiiiiiicee e 11

1.7 Summary of CONtribUtIONScoooiiiiiiiie 13

1.8 TRESIS SIUCLUIE ..eveeii e e e e e e e e e 16

1.9 Bibliographical NOtES...........cuuiiiiiii e 19
PART |: STATE OF THE ART oottt e e e e e e s s nnnnanenaae s 20
2 Literature Review Methodologycceeii i 21
P22 A [011 {0 To [T i o T o PP 21

2.2 Research Methodcoovviiiiiiiiiiiii e 22

2.3 Data EXraction RESUILSuuiiiii i 35

3 Existing Variability Management Tools in Software Product Lines 44

R 700 [o1 1o o (U7X 1o o P 44

3.2 Variability Manag@meNntuuuuuuuuuuiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeneeene 45

3.3 Variability Management Tools in Software Product Lines 48

3.4 Commercial Tools and Tool Adoption in INAUSErY............ccvvviieineeeniinenn, 50

G 78S T S 1 | 11 = PP 55

4 Critical Analysis of Existing Approachescccciiiiiiiiiiiicee e, 57
o R [01 1 o o 11 od 1o o SRR 57

4.2 Key Characteristics of the Different TOOISccccooeiiiiiiiiiiiiiiis 59

4.3 Quality of the Research Conducted in the Reported Approaches........... 75

4.4 The Context Of RESEAICN.........ccciiiiiiiiiie e 81

45 Main Challenges Faced by Current Product Line Management (PLM)
Tools 83

4.6 SUMMEIY ..eeitiiiii e e ettt e e e e et eee et e e e e et et eebb s e e e eeeeeeeebbaaaaeeaeeennne 94
PART I MUSA L VS MUSA 2 ..ottt et e et e e e e 97
5 Theoretical Foundation of MUSA ... 98

o 00 R [10T ¥ Tod 1 o] o 98

5.2 Backgrounds and Motivation...............cuuuiiiiiiieei e 99

5.3 Concept of Multitouch Technology...........couvvviiiiiiiiiiiiiiiiiiiiiiiiiieeeee 100

5.4 MUSA Theoretical Background............ccccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 102

5.5 MUSA Technical Background............ccooeeiiiiiiiiiiiiiiieen e 104

5.6 Implementation of the Earlier Version of MUSA ToOlccccceeeeeen. 106

5.7 Screenshots and Descriptions of the MUSA Tool Version One............ 110

5.8 SUMMAIY ... e e e e e e 113

LY U= IV =T €] Lo o 114
G200 R [0T ¥ X1 o] o U 114

6.2 The MUSA TOO. ...t e 115

6.3 Functionality of MUSA Using Case Studiesccccceeeiiieiiiiiiiiiicenneeenn, 117

6.4 New Version of MUSA as Compared to Earlier Version....................... 129

6.5 SUMIMAIY ...ttt e e e e e e e e e e e nrnr e e eeeas 131
PART H1: VALIDATION L..iiiiiiiiiie e e e ettt e e sttt e e e e e e e st aaa e e e e e s snnnnnneeaaeens 132
7 Variability Management Evaluation Benchmark.............coooooieiiiiieeeeee, 133
4% R [10T ¥ Tod 1 o] o 133

7.2 MethOodOlOgYccevviiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 133

7.3 Related WOTKSccoiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 135

7.4 Benchmark ... 136

7.6 Setting up of the Evaluationccccccvvviiiiiiiiiiiiiie 146

8 1 U 1 .41 2 = Y 2P 148

8 Case Studies and Experimental Evaluation of the Tools.........ccccccceeee. 149

S 200 R [10T U Tod 1T} o U 149

8.2 CASE SHUAIES ...evvvuiii et 149

8.3 RESUILS e 151

8.4 Discussion, Lessons Learned and Recommendations........................ 162

8.5 SUMMAIY ... et e e 166
o 3 I RSP 168
CONCLUSION AND FUTURE WORK.......utiiiiiiiieeeiiiiiiiieeaee e e e ssiieneeeeaaeeaesnnnnnnees 168
9 Conclusions, Contributions, and FUtUre WorKcocoooveiieiiieiieeiein, 169

S IR R o T [od U1 T o 169

9.2 Review of CoNtribULIONSiiiiiiiiiie e 172

0.3 FULUIE WOTK...eeeeiieie e e e e e e e e e e 176
APPENDES ... oo 196
APPENTIX A 197
APPENTIX B 224

Appendix C

Vi

List of Figures

Figure 2.1: Systematic literature reView ProCESScccvvvvrriiiieieeereeeeiriiiiaaeeeeeeeeannns 23
Figure 2.2: SLR review protoCOl PrOCESSccuuuuuiiiieeeeieeeiiiiee e e e e e e eearia e e e aaeeennees 24
Figure 2.3: Study SEIECHION PrOCESS....uuui i i e e eiieeeiiiee e e e e e e e e e e e e e aaaene 29
Figure 2.4: Percentage of each publication type..........cccovviiiiiiiiiceiiiieccen e, 37
Figure 2.5: Distribution of primary studies over time ... 37
Figure 2.6: Gartner Hype Cycle reproduced based on (Linden and Fenn, 2003)..... 38
Figure 2.7: Phrase Map of studies published between 1997-2006........................... 40
Figure 2.8: Phrase Map of studies published between 2007-2015................ccceennn. 40
Figure 2.9: Summary of SLR reVIEW PrOCESS......uuuiiiieeeiiieiiiiiiie e ee e e e et eeeeeeaeens 40
Figure 3.1: Variability Meta-model for representing concepts in variability............... 46
Figure 4.1: Breakdown of tools based on the type of notation supported................. 61
Figure 4.2: Number of tools supporting each visualisation type............cccceeeeeeeeinnnns 62
Figure 4.3: Number of views per tool for tools with more than one view 70
Figure 4.4: Tools with various textual Notations ..., 71
Figure 4.5: Frequency analysis of quality scores for each question......................... 77
Figure 4.6: Distribution of total quality SCOresScooovviiiiiiiiieien 77
Figure 4.7: Frequency analysis of scores for each quality attribute.......................... 79
Figure 4.8: Research context of primary StUdi€S..........c.coovuiiiiiiiii e, 82
Figure 4.9: Relevance of primary StUdi€sccceeiiiiiiiiiiiiiiii e 83
Figure 5.1: Theoretical Foundation of MUSA........ccooo oo, 105
Figure 5.2: MUSA designed interface on MS-Surface showing the hierarchical view
.. 108
Figure 5.3: MUSA designed interface on Windows 7 showing the hierarchical view
.. 109
Figure 5.4: Main application window after successful log in...........cccccoeeeeiiiiiniinnnn, 110
Figure 5.5: Options menu to load atreecuvvieiiiieiiiiiicie e, 111
Figure 5.6: Viewing details of a selected featurecccoooeeeiiiiiiiiiiiiiee e, 111
Figure 5.7: Click Edit button to start editingcccoooeiiiiiiiiiiiieeeeeee e, 112
Figure 5.8: Mandatory and optional feature distinctioncccccviiieii e, 112
Figure 6.1: Description of MUSA’s architecturecccccooie 116
Figure 6.2: A new feature from SCratCh............cccooeeei e 118
Figure 6.3: Adding a name for the new feature............ccccoe oo 119
Figure 6.4: Select the Add BUttON ..., 122
Figure 6.5: Type a name and Select itS tYPEeuvvueeiiieeiiiiiiice e, 120
Figure 6.6: Sub-features of Test Feature- TFL-TFO.........ccooiiiiiiiiiiiiiiiiieee e, 120
Figure 6.7: Medium scale-siz€ MOdElooovviiiiiiiiiice e 121
Figure 6.8: MUSA’s main browser VIeW ..., 122
Figure 6.9: The search process in MUSA ... 125
Figure 6.10: The feature properties WiNdOWccoooviiiiiiiiiiiiieeeeeeeeee 126
Figure 6.11: MUSA’S dependencCy VIEWcooevviiiiiiiiiiiiee e 128
Figure 6.12: Generic_Product_Code_Parameter feature is mutually dependent on
Parameters 8-19, Production Mode and Product Type featurescceeeeeeee. 128
Figure 6.13: Mutually exclusive relationships between featurescccoe. 129
Figure 7.1: The quality attributes used ... 137
Figure 8.1: Understandability of very small-scale size model......................ooe. 154
Figure 8.2: Understandability of different scale sizeccccceeiiii, 155
Figure 8.3: Learnability of very small-scale size model................cccooeiiii. 156

Vii

file:///C:/Users/Muhammad/Dropbox/Thesis%20Final%20Draft/Thesis%20Final_draft.docx%23_Toc446966210

Figure 8.4:
Figure 8.5:
Figure Al:
Figure A2:
Figure A3:
Figure A4:
Figure A5:
Figure A6:
Figure A7:
Figure A8:
Figure A9:

Operability of very small-scale size modelscccooeveeeeiiiiiiiicennneen, 157

Scalability measure of various sample Sizes........ccccceevvieeeiiiiiiiiiieneeenn, 160
FeAatUIEIDEo e 241
FAMILIAR ..ottt ettt e et e e e e e e e e e e e e e e eaaeeeeaaeaeees 241
L@ 1Y 1o T | 242
CaPLAINFEALIUIE ...ttt nnnnenee 242
S 32 12 243
(@ 0 | Y£S71=) PSS 243
PLUDM . ..ottt 244
IMUSA ettt 244
PUMEIIVAINANTSciiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt 245

viii

List of Tables

Table 2.1: Electronic databases used for searching for primary studies 27
Table 2.2: Quality aSSESSMENt CHLEIMA.uuii i e e e 30
Table 2.3: Studies included in the final revieWccccciiiiiiiiiiiiiis 31
Table 2.4: Studies excluded in the final review ..., 33
Table 2.5: Data eXtraction fOrmMoouuiiiiiii e 34
Table 3.1: Identified tools with their year of introductionccccccciviiiininiinnnnnns 49
Table 4.1: Identified tools with assigned ID and their technical details..................... 58
Table 4.2: Tools with FODA-like visual NOtations.................uuuuiiiiiiiiiiiiiiiiiiiiniieiii. 63
Table 4.3: Tools with file Tree-like visualiSation...............cccocuveiiiiiiiiiiiiiiiiie. 65
Table 4.4: Tools with Graph, Logic Diagrams, UML and Hyperbolic Tree

VISUAIISALIONS ... 68
Table 4.5: Tools with Code-like textual NOtationS.............ccovvvvviiiiiiiii e, 71
Table 4.6: Tools with XML-based textual Notationsccoeevviiiiiieeerreeiiiciiee e, 72
Table 4.7: Tools with code based textual NOtationscceevviiiiiieeenriecee e, 73
Table 4.8: Results of the quality assessment of the primary studies........................ 76
Table 4.9: Quality attributes addressed by StUAIESccoiiiiiiiiiiiiiiieeccee e, 78
Table 4.10: Identified tools with the assessment summary results............ccccceeeee.. 80
Table 4.11: Research context of the primary studiesS...........ccccccvveeiiiieiiiieiicceee e, 81
Table 4.12: Summary results of VM tools challengesccccocvveeiiiieiiiiviiiiceee e, 93
Table 6.1: Comparisons between MUSAL and MUSA 2.........cccceeiviiiiiiiiiiiiiiinneeeen, 130
Table 7.1: Ordinal SCaAlE tYPE........uuuuiiiiiiiiiiiiii e 138
Table 7.2: TOOIS UESCIIPLIONuuuiiiiiiiiiiiiieeeiee bbb 143
Table 8.1: Usability of very small-scale size model.............ccouvveiiiiiiiiiiiiiiiiinneee, 153
Table 8.2: Usability of different scale Size............oouvveeiiiiiiiiiiiiici e, 154
Table 8.3: Scalability MEASUIEocviiiii e 159
Table 8.4: PerfOrmanCe MEASUIEuuuuuuuumuniiieiiniiiiininniannennnnennnneennnennennnnnnnnenes 161
Table 8.5: Integration MEASUIEMENT.........cciiiiiiiiiieiee e 161
Table 8.6: Summary results of the evaluation.............c.cccevvveiiiiiii e, 166

Glossary

ASADAL A System Analysis and Design Aid tooL

BVR Base-Variation-Resolution

CASE Computer-Aided Software Engineering

ConlPF Configuration in Industrial Product Families

CPP C-preprocessor

DOORS Rational Dynamic Object Oriented Requirements System

DOPLER Decision Oriented Product Line Engineering for Effective Re-use

EC Exclusion Criteria

EMF Eclipse Modelling Framework

EWSA European Workshop on Software Architecture
FODA Feature Oriented Domain Analysis

FORM Feature Oriented Reuse Method

GEMS Generic Eclipse Modelling Framework

GMF Graphical Modeling Framework

HCI Human Computer Interaction

IC Inclusion Criteria

ISMT4SPLs Integrated Software Management Tool for Adopting Software Product

Lines
LVAT Linux Variability Analysis Tools
MUSA Multitouch Variability Modelling Solution for Software Product Lines
NUI Natural User Interface
OoVM Orthogonal Variability Model
PLM Product Line Management
PLUSEE Product Line UML-Based Software Engineering Environment
RCP Rich Client Platform
RSEB Reuse-Driven Software Engineering Business
SLR Systematic Literature Review
SPL Software Product Line

SPLC Software Product Line Conference

SPLE Software Product Line Engineering

SPLOT Software Product Lines Online Tools

SXFM Simple XML Feature Model

UML Unified Modelling Language

VaMoS Workshop on Variability Modelling of Software Intensive Systems

VARMA VARIiability Modelling and Analysis

VisPLE International Workshop on Visualisation in Software Product Line
Engineering

VM Variability Management

VP Variation Points

WICSA Working International Conference on Software Architecture

WPF Windows Presentation Foundation

XML Extensible Markup Language

XSL EXtensible Stylesheet Language

Xi

Chapter 1

Introduction

Software Product Line Engineering (SPLE) is a paradigm of software
engineering for creating a portfolio or a collection of similar software products
with variations in their features and functions. The products can be software,
such as home automation system, as well as systems with software inside.
Typical example of these include; airplanes, automobiles, ships, cameras,

mobile phones, computers and tablets, among others (Krueger, 2007).

The SPLE technique provides a systematic way to reuse software assets.
These assets are the software artefacts or resources associated with your
products. The artefacts include, but are not limited to requirements analysis,
design specifications, software implementation, configuration, test plans, test
cases, etc. The assets are then engineered to be shared across the entire
product line, i.e., to be used in multiple products. Therefore, SPLE is a
technique that optimizes the reuse of existing software assets by creating
multiple applications that share many features, while still exhibiting certain
differences (Clements and Northrop, 2002, K. C. Kang et al., 2002). SPLE
allows for the planned reuse of artefacts among the software systems under

development.

Some of the key advantages of Software Product Line (SPL) development
over “one at a time” system development include: productivity gains (the core
assets and architecture are reused), decreased time-to-market of products,
large-scale productivity, low-cost production, increased product quality and
reliability, and increased customer satisfaction (Clements and Northrop,

2001).

Over the last two and a half decades, SPLE has increasingly gained the
attention of researchers and practitioners alike. This is due to the potential
economic advantages and business competitiveness the SPLE process can
bring (Clements and Northrop, 2002, Van der Linden et al.,, 2007). The
benefits can range from cutting the development cost and increasing software
quality, to enabling mass customisation, market dominance, and reduced time

to market (Clements and Northrop, 2002, Pohl et al., 2005).

In traditional software development, individual software systems are
developed from scratch, i.e., one software at a time. Typical software
development process requires going through stages such as requirements,
analysis, design, implementation and testing to be performed. In contrast,
SPLE is centered around multiple developments of similar software systems
from a common core asset (Clements and Northrop, 2002, Pohl et al., 2005).
This is achieved by explicitly capturing the commonalities and variabilities in

the family of systems that forms the product line (Gomaa, 2005).

In addition, the market benefits encourage both, the software as well as the

hardware industry, to recognise the significance of transitioning from single

software development to a product line approach. Various terminologies are
used to refer to SPL, such as software product families, system families, or

family of systems.

The SPLE process (Pohl et al.,, 2005, Bachmann and Clements, 2005)
involves studying and managing the common and varied features of the
different product line members, a process usually referred to as domain
engineering or development for reuse. Core (shared) assets — e.g.,
requirements, architecture, code, test cases — are then used as a basis to
derive products from the product line, a process usually referred to as

application engineering or development with reuse.

Correspondingly, defining and managing commonalities and variability in
software product lines is widely referred to as variability management and is a
key step of the SPL engineering process (Van Gurp et al., 2001). The
variability management process guides the construction of product line

variability models.

A lot of work has been conducted in the area which resulted in many
approaches including various techniques, methods, and tools. Typical
Examples of these include early methods: FODA (Kang et al., 1990) (Feature
Oriented Domain Analysis) for discovering and identification of prominent
distinctive features of software systems in a domain as well as presenting
commonalities among related software systems. FORM (Kang et al., 1998)

(Feature Oriented Reuse Method) a method that searches and captures

common and different features of an application and using the analysis results

to develop domain architecture and components.

Others are, FeatRSEB (Griss et al., 1998) (combination of the FODA method
and the Reuse-Driven Software Engineering Business method (RSEB)
(Jacobson et al., 1997)), this method includes domain engineering and feature
modelling into RSEB by extending the original feature diagram in FODA into a
network of features linked together using a unified modelling language (UML)

refinements. The method allows explicit representation of variation points.

Other approaches are: Decision-oriented modelling technique (Atkinson et al.,
2002), in which a set of questions (variation points) are described and a set of
possible answers or decisions to be choose from. This method offers
invaluable guidance to the development of product line variants using UML

within a Model Driven Architecture.

Furthermore, OVM (Pohl et al., 2005) (Orthogonal Variability Model) contains
the description of variation points (a representation of variability subject from
which possible selection can be made), variants (an identification of a single
option of variation point), and variability dependencies (constraints on variants
selection) and models the variability as a separate concern in a specific OVM
notations. ConlPF techniques pioneer by Bosch et al (Van Gurp et al., 2001),
which uniformly models variability in all abstraction layers of product families,

i.e. in the features, the architecture and component implementation layers.

Also, a number of tools evolved such as PLUSEE (Gomaa and Shin, 2007)

(Product Line UML Based Software Engineering Environment), provide an

automated product line engineering tool where a multiple view model of the
product line architecture and components are developed and stored in a
product line repository. Feature Mapper (Heidenreich, 2009), an eclipse plug-
in software product line tool that provides support for mapping features from
feature models to subjective modelling artefacts that are expressed by using
an Ecore-based languages such as UML2 and DSLs. DOPLER meta-tool
(Dhungana et al., 2011) (Decision Oriented Product Line Engineering for
Effective Re-use) supports variability modelling that helps define variability of

core assets, such as features, architectural elements or resources.

View Infinity (Stengel et al., 2011), is a Zoomable Interface for Feature-
Oriented Software Development. This tool offers seamless and semantic
zooming from the feature model level to file structure and the source code
level of different abstraction layers of SPL. ISMT4SPLs (Park et al., 2012) is
an Integrated Software Management Tool for Adopting Software Product
Lines that can provide traceability among the artefacts created at domain

engineering and application engineering stages.

BigLever Gears (BigLever), a commercial tool that allows defining arbitrary
reusable software assets and a product feature profile that describes products
in terms of features. Gears can be tailored to different environments with
parameter sets representing different kinds of variability. Pure::Variant
(Levent V, 1998, Beuche, 2008), is a tool that supports variant management
and product configuration based on feature models and has a strong focus on

interoperability and extensibility, among others. Further information and a

good overview of existing modelling approaches can be found in Czarnecki et
al. (Czarnecki et al., 2012), (Chen et al., 2009) and Sinnema et al. (Sinnema

and Deelstra, 2007).

However, surprisingly, very few of these approaches have actually made it to
industry. These are the BigLever Gears and Pure::Variants, and both of these
tools/companies were university spin-outs based on the work of two PhD
students in America and German respectively. A recent study shown that
71.43% of these approaches have never been evaluated against industrial

settings (Chen and Ali Babar, 2011).

1.2 Problem Statement

Variability models define the commonalities and variability of the product line
from a problem space (e.g., features, decisions, or variation points) and a
solution space (e.g., the reusable assets or variants) perspective along with
the relationships that exist between these two spaces and among the
elements in these spaces. Example of relationships include exclusivity (when
two features cannot exist in one product at the same time); inclusivity (when
the existence of one feature depends on another); and alternatives (when only

one of a number of alternative features can be supported), to name a few.

Variability models tend to be very large in size, in many cases comprising
thousands of features, and complex in nature due to the myriad of
relationships that could exist among the features. This makes the construction

of variability models manually a very tedious and error-prone process.

Accordingly, one of the major challenges within variability models of large-
scale (industry-size) is the handling and effective visualisation of the models,
which usually encompass a very large number of variation points as well as
the dependency relationships that exist among them (Bashroush, 2010,
Bashroush et al., 2011, Botterweck et al., 2008, Nestor et al., 2007, Pleuss
and Botterweck, 2012, Heuer et al., 2010). Product line developers are facing
problems with dependency management within variability models. An
excessive amount of time and effort is being spent on fixing dependencies to
ensure valid derivation of products (Berger et al., 2013, Sinnema et al., 20086,

Daizhong and Shanhui, 2009).

However, for more than two decades, numerous variability management tools
and techniques have been proposed and introduced from both academia and
the industry. The main goal of all these research works is to help practitioners
in the industry deal with variability management-related complexities (Chen
and Babar, 2010, Sinnema and Deelstra, 2007). In spite of all these significant
efforts, most of these approaches do not scale well when visualizing large-
scale variability models, besides, they offer limited or no mechanism for
managing dependency relationships that exist within the models. These have
raised many concerns regarding the feasibility and scalability of current

variability management tools and techniques.

As such, there has been an increasing demand for focus on making variability
management tools and techniques more scalable to handle the complexity of

real world industrial product lines (Chen and Babar, 2009).

The key scalability challenges are summarised below:

1.3

Challenge 1: Creating and visualising of large scale and complex
product line models (industry size models). Currently, existing
approaches focus on ad hoc software product line variability, and often
do not fully address real life product line variability required by SPL
practitioners.

Challenge 2: Visualising of hundreds of variants and their variation
points in a large scale product line model.

Challenge 3: Defining and visualising of constraints and dependency
relationships (such as variation point to variation point, variant to
variation point, or variant to variant) in a large scale product line model.
Challenge 4: Proper arrangement of constraints and dependency
relationships for better visualisation.

Challenge 5: Effective visualisation of the effect of constraints and
dependency relationships such as (inclusivity, alternativeness, or
multiplicity).

Challenge 6: Clear information to differentiate as to whether a feature

is mandatory, optional, or alternative.

Research Context

This thesis investigated the reasons behind the lack of scalability in current

variability management tools and techniques. Using a rigorous approach, we

have examined the types of tools developed and the characteristics of these

tools (visualisation techniques deployed, platform used, interoperability, etc.),

in order to understand the main challenges of the problem. We have also
explored the limitations faced by the current Product Line Management (PLM)

tools and techniques.

The overall goal of this research is to improve the scalability of modelling
variability by employing the idea of separation-of-concerns design principle, in
order to show how the dependency relationships (such as variation point to
variation point, variant to variation point, or variant to variant) of variability
models, can be captured and managed independently from the actual

variability representation.

This thesis introduced a new solution for capturing and managing
dependencies using logic circuit. A separate view is proposed (i.e.,
dependency view), for managing dependencies separately, in order to reduce
the problem of information overloading when viewing and managing large-
scale variability points from one view. Support for this was implemented by
redesigning and creating a new version of a Multitouch Variability Modelling
Solution for Software Product Lines (MUSA) tool suite (a proof-of-concept
variability management tool and framework that was developed within our
research group), that can address these challenges, and thus, lend itself to
industrial large-scale applications. This latest version of MUSA provides better
means to represent, visualise, and manage the variability of large and
complex product line models. This solution has been evaluated using a large-

scale, multifaceted case study.

1.4 Research Aims

One of the challenges with SPLE is the scalability of variability management
techniques. This has limited the adoption of SPLE to specific application
domains. The main reason behind this challenge is attributed to the inability
of current tools and techniques to scale to industry size applications. In this

research, we aim to:

1. Closely examine the current literature to identify the main reasons
behind the current limited scalability of variability management tools

and techniques.

2. ldentify the barriers to adoption of current tools and techniques.

3. Based on the findings of 1 and 2, design a tool and framework that

addresses the shortcomings identified.

4. Implement a working prototype of the system.

1.5 Research Questions

The thesis answered the following research questions:

1. What are the key limiting factors affecting the scalability of existing
variability management tools and techniques?

2. What are the barriers to industrial adoption of the current variability
management tools?

3. What can be done to address these limitations in current tools?

10

1.6 Research Methodology

A combination of qualitative and quantitative research methodologies were
used to address the research questions identified above over three parts or

stages of the project.

In the first part, a Systematic Literature Review (SLR) approach was used to
identify gaps in the body of knowledge and answer Q1/Q2. An SLR is a formal
and rigorous way used to carefully examine, evaluate and interpret identified
research evidence based on research questions or a particular research area
(Kitchenham and Charters, 2007). The aim was to systematically review the
reported literature on variability management tools in software product lines
(known as primary studies). The process of SLR involved three main phases

which are:

1) Planning the Review:- which has three stages:
¢ |dentifying the need for a review (importance)
e Indicating the research question(s)
e Developing and evaluating a review protocol
2) Conducting the Review:- which consists of four stages:
e |dentification of primary studies
e Selection of primary studies based on clear criteria
e Assessing the quality of primary studies
e Data extraction and synthesis

3) Reporting the Review: - which involves:

11

e Writing and Formatting the main report and

e Evaluating / drawing conclusions based on the findings
In the second part, a new version of the MUSA tool suit (Bashroush, 2010)
was built based on the findings of the first two stages in a way that addresses
the identified shortcomings. The tool has been ported to Java technology from
WPF (Windows Presentation Foundation). Among other features that have
been introduced to MUSA is an innovative visualisation technique based on
mind-mapping which is to replace the traditional tree structure for representing
variability models, and the use of logic circuit design to graphically represent

the dependency relationships.

After the completion of the tool’s redesign and the MUSA framework, in the
third part, we have evaluated the tool using multiple case studies, which
ranges from small, medium and large-scale. However, these case studies
were used as a basis to assess the scalability of MUSA as compared to other
tools such as Pure::variants, one of the most popular commercial tools that
we have access to. Among them, the largest sample is a case study for a
Frequency Power Drives product line, and was acquired from Danfoss Power
Electronics. Others include a case for Library Services product line
representing the variability modelling of a wide range of services offered by a

library to provide smooth and effective services to customers.

Further to that, is a case of a house automation system product line that

provides basic security, alarm, lighting, communication, and agenda services,

12

to mention a few. Chapter 8 provides detail description of the case studies

used in the evaluation.

1.7 Summary of Contributions

The main contributions of this thesis are summarized below:

Cl A systematic investigation and understanding of the state of the art
tools that can be utilised in contemporary software product line development:
This study is a contribution to knowledge, as it conducts a systematic review
of Variability Management tools according to the chronological order of
development, and provides a conclusive evaluation of these tools. The results
are intended to assist practitioners in selecting the best available tools, based
on their suitability for a particular industrial task. The analysis also identifies
gaps in the field that should be addressed through further research of product
line tools. Moreover, the analysis identifies gaps in research that should be
addressed in more studies. Based on these results, we have collected the

data and necessary requirements for the development of our new MUSA tool.

C2 Redesign of MUSA framework to improve the scalability of visualizing
and representing variability models: Although scalability was the main
motivation for developing the early version of MUSA, redesigning and
enhancing its capability to add more innovative visualisation techniques will
increase productivity, time-to-market and allow for the creation and
management of larger and more complex product families; hence, improving

its scalability.

13

C3 An additional view for -capturing and managing dependency
relationships that exist within the model separately: Using principle of
separation-of-concerns, we have proposed a separate view called,
‘dependency view” to capture and manage dependency interaction
independently from the actual representation of the models. This was
achieved using a logic circuit. The main idea is to reduce the complexities,
such as graphical overloading, when viewing and managing dependencies of

large variability points all from one view.

C4 A complete working prototype system will be implemented as a new
MUSA: Support for managing dependency relationships among variability
models has been implemented by redesigning and extending the current
version of the MUSA tool suite (a proof-of-concept variability management
tool and framework). This will allow the creation and management of larger

and more complex product families.

C5 The new version of MUSA will be available as a multi-platform
application: To make it more generic and maximise its functionality, the new
version of MUSA has been ported from Windows Presentation Foundation-
WPF to Java technology. This has solved the main problem of platform

dependency suffered by the existing version of MUSA.

C6 A benchmark for evaluating our approach: In order to evaluate the
MUSA tool in comparison with other tools, we developed a benchmark for
evaluating the quality attributes, important for practical use of SPL

engineering tools, which has been applied in the evaluation process. The

14

benchmark focused on measuring the four quality attributes: Usability,
Performance, Scalability, and Integration. In addition, an evaluation study was
conducted experimentally, and involved 10 feature-modelling tools. In order to
know and get an insight on how well, and to what extent these tools satisfy
these quality attributes, four case studies of different sizes were used as the

basis for the experiment.

C7 Literature review process (Chapter 2): This process contributes to
knowledge by providing empirical step-by-step guidelines to identify, collect,
and review papers with: 1) a scope of the review clearly identified in advance;
2) a comprehensive search conducted to find all relevant studies; 3) the use
of explicit criteria to include or exclude studies; 4) the establishment of
standards to critically appraise study quality; and 5) the provision of explicit
methods for extracting and synthesizing study findings. This process will
benefit both new and experienced researchers by helping them avoid what is
regarded as author’s bias in research, while also providing a reliable basis for

making decisions.

C8 Benchmarking process: The results of this will contribute to knowledge,
as it will assist both practitioners and researchers alike by providing a
standard and empirical approach to evaluating product line tools in the future.
It also helps to identify and recommend areas that require attention in future

tool design.

C9 The Context of Research: The distribution of the research context

presented in Figure 4.8 of Chapter 4 indicates that there is a need to bridge

15

the gaps between research in academia and industry through collaborative

efforts. The figure shows that most studies (68%) have been conducted in an

academic context, whereas only 16% of the studies are joint industrial

academic endeavours. In 16% of the studies, no information was provided on

the research context. Table 4.11 presents the list of all the studies with their

research context. Please refer to Chapter 4 for details on this contribution.

1.8

Thesis Structure

This thesis is structured in three parts and nine chapters.

1.8.1 Part |: State of The Art

Chapter 2 is organised in two main sections. We present and discuss
the research methodology used to collect data in the first part. This
includes the study’s research questions, search protocol, inclusion and
exclusion criteria, quality criteria, and the data extraction and synthesis
process. Section 2 provides an overall meta-analyses of the primary
studies identifying trends and developments in the field.

Chapter 3 introduces tools’ supporting variability management, and
discusses their usable functionality, i.e., the approach it uses in tackling
variability issue— the environment, or a platform and technology,
based on which a tool was developed and implemented, respectively. It
also identifies the notations type (graphical, textual, or a combination of
both), employed by a tool, and the category to which a tool belonged
to; whether, commercial, academic, or both. The chapter also assesses

the possibility of obtaining an evaluation copy.

16

1.8.2

Chapter 4 is a thorough analysis of the state-of-the-art technology in
the field, essentially for tools supporting variability management, to
understand the tools’ characteristics, maturity, and the challenges it
might be exposed to, in the field. Consequently, two parts were formed
during the analysis: in the first part, different tools were identified and
assigned with a unique ID, then their analysis was carried out, based
on certain key topics that were recognised as follows: development
environment; support for transformations (between different formats);
management of constraints and reasoning on variability models, and;
their proposed graphical and textual notations. In the second part, an
analysis was made, based on the quality of the research conducted in
the reported approaches, as well as the research context of the studies

as they have been conducted.

Part Il: Early Version of Musa Framework versus New Version

Chapter 5 presents the early version of MUSA (A Multitouch Variability
Modelling Solution for Software Product Lines) tool and its theoretical
foundation, upon which it was designed and developed. MUSA was
implemented as a proof-of-concept over the state-of-the-art Human
Computer Interaction (HCI), the Microsoft Surface and Windows 7
Multitouch platform.

Chapter 6 Introduces the new version of MUSA (i.e., version 2) tool,
and a framework that exhibits a number of features (multi-platform

support, dependency management, innovative visualisation technique,

17

1.8.3

1.8.4

etc.), for dealing with large-scale software product line models. This
version adopts the separation-of-concerns design principles and
provides multiple perspectives to the model, each of which conveys a

different set of information.

Part Ill: Validation

Chapter 7 presents a benchmark that focuses on two major aspects:
measuring the four quality attributes (usability, scalability, performance,
and integration), identified as important for practical use of SPL, and
the use of this benchmark as a basis to assess the scalability of our
(MUSA) approach, as compared to other variability management tools.
Chapter 8 describes the four case studies of varying sizes and data
elements that are used in the experimentation. Also, the results of the

experimental evaluation are presented.

Part IV: Conclusion and Future Research Work

Chapter 9 summarises and concludes this thesis and describes the
further work that could be conducted to improve the framework and tool

supporting it.

18

1.9 Bibliographical Notes

Some of the material presented in this thesis reuses and extends publications

of the author in the following papers:

Conference

1. Garba, M., Noureddine, A. and Bashroush, R. (2016) 'MUSA: A
Scalable Multi-Touch and Multi-Perspective Variability Management
Tool'. 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), Venice, Italy: IEEE Computer Society. (Chapter 6)

Under Review

2. Garba, M., Bashroush, R., Rabiser, R., Groher, |. and Botterweck, G.
(2015) 'CASE Tool Support for Variability Management in Software
Product Lines', ACM Computing Survey. (Chapter 2, 4)

3. Garba, M., Bashroush, R. and Naeem, U. (2016) 'Towards Bridging the
Gap Between Industry and Academia in CASE Tool Support for
Software Product Lines', IEEE Transactions on Systems, Man, and
Cybernetics. (Chapter 7, 8)

19

PART |: STATE OF THE ART

Chapter 2

Literature Review Methodology

2.1 Introduction

Now that we have introduced the main context of the thesis, it is time to put
these concepts into play. Earlier in this work, we have studied all the
published literature on Computer-Aided Software Engineering (CASE) tool
support for variability management over the last two decades, using a
systematic literature review as inspired by (Kitchenham and Charters, 2007).
The objective was to understand what tools have been produced, the
characteristics of these tools, their context, and the challenges and limitations

they faced.

This chapter presents and explains in its first part, the research method used
to collect and review papers, as well as the trend of analysis from the results
of the extracted data. The second section provides overall meta-analyses of

the primary studies, identifying trends and developments in the field.

The results of the study will: i) give practitioners access to a catalogue of
published tools and guide them in selecting the best tool for a given task
enhancing the accessibility of the published tools; ii) provide researchers in
the field with the main challenges and Ilimitations that require further

investigation, and; iii) provide new researchers with a good understanding of

the state-of-the-art in tool support for variability management in SPL

engineering.

2.2 Research Method

To achieve the objectives of this study, a SLR approach was adopted to
conduct the survey. An SLR, as stated in section 1.5 of chapter one is a
rigorous method for examining, evaluating, and interpreting all available
research evidence based on research question(s) or particular research

topic(s) (Kitchenham and Charters, 2007).

The study examines current literature on variability management tools in
SPLE engineering (known as primary studies) published over the last two
decades. Throughout the research study, the guidelines for SLRs were
followed as provided in (Kitchenham and Charters, 2007). This involves three
main phases: (1) Planning the review; (2) Conducting the review, and; (3)
Reporting the review. Figure 2.1 depicts the stages of SLRs, adapted from

(Brereton et al., 2007).

22

1. Specify research
Phase 1: ¥

Planning the ’ 2. Develop review
Review 3

3. Validate review

4. ldentify relevant

A 4
R 5. Select primary studies
Conducting the — m—) I
Review .
6. Assess study quality
A 4
7. Extract required data
A 4
8. Synthesize data
Phase 3:

Reporting the — 9. Write review report

Review

Figure 2.1: Systematic literature review process

An important element in SLRs is the development of a review protocol (Figure
2.2). This protocol specifies the background and procedures to be used by
researchers to ensure rigor while conducting the review and reduces the

possibility of researchers’ bias throughout the review process.

The systematic review protocol begins by defining research questions to be
answered followed by the search strategy to be followed to identify the
primary studies (described in Sections 2.2.1 and 2.2.2). Then, the study
selection criteria for determining which studies should be included or excluded
from the surveyed literature is defined (Section 2.2.3). Then, quality

assessment criteria are defined. These are used to assess the quality of the

23

primary studies (Section 2.2.4). Finally, procedures for extracting and

synthesizing data reported from primary studies are defined (Section 2.2.5).

Identify research questions

(Section 2.2.1)

Define search strategy

(Section 2.2.2)

Define study selection criteria

(Section 2.2.3)

Define quality assessment criteria

(Section 2.2.4)

Define data extraction and synthesis

(Section 2.2.5)

Figure 2.2: SLR review protocol process

2.2.1 Research Questions

In order to achieve the research aim and objectives of this study, we defined

the following 5 research questions.

RQ1: What tools have been developed to manage variability in software
product lines?

RQ2: What are the characteristics of these tools?

RQ3: What is the quality of the research conducted in the reported
approaches?

RQ4: What is the context of research?

24

RQ5: What are the main challenges faced by current Product Line

Management (PLM) tools?

2.2.2 Search Strategy

Following Kitchenham’s guidelines (Kitchenham and Charters, 2007), we
constructed a search string to help us identify the relevant primary studies to

answer our 5 research questions.

The guidelines followed were as follows:

Derive main terms from the topic being researched and research
guestions;
Determine and include synonyms, related terms and alternative
spellings for major terms;
Check the keywords in all relevant papers researchers already knew
and those returned by initial searches on relevant databases;
Include other relevant terms that increase the possibility of identifying
further related material;

Use logical operators such as "OR" and "AND" to link alternative spellings and

to join the synonym words or phrases to create one search string.

After constructing various search strings based on the guidelines above and
performing a series of test searches in diverse digital libraries and analysing

the outcome, the following search string was constructed:

25

<<Variability AND (Product Line* OR Software Product Lines OR Software
Product Family OR Software Product Families OR Product Family OR Product
Families* OR Systems Family OR Family of Systems) AND (Variability OR
Variability Management OR Variant OR Variation Point OR Feature Model OR
Feature Modelling or Feature Modelling) AND (Tool OR Tools OR Approach,
Approaches, Method* OR Methods)>>

Although it was not possible to apply only one search string for all the
electronic data sources, when varying the string for different sources we
ensured that if the syntactic nature of the strings were not the same, they

were all comparable semantically.

We also performed manual searches on different sources where SPL
researchers were known to publish their findings, this included conferences
and workshops. We searched for papers published between 1990 (i.e., when
the first Feature-Oriented Domain Analysis [FODA] technical report was
published (Kang et al., 1990)) up until February 2014 inclusive (when the
search stage of this study was completed). Although only data reported in
peer-reviewed published material was used in the analyses, we also
attempted to acquire the identified tools. Where the tools weren’t available for

download or use online, the respective authors were contacted.

Our search covered 11 digital data sources as shown in Table 2.1. The
manual search covered the proceedings of the following conferences and

workshops:

SPLC (Software Product Line Conference)

26

- VaMoS (Workshop on Variability Modelling of Software Intensive

Systems)

- VisPLE (International Workshop on Visualisation in Software Product

Line Engineering)

- WICSA (Working International Conference on Software Architecture)

EWSA (European Workshop on Software Architecture)

Table 2.1: Electronic databases used for searching for primary studies

S/No

Data Source Names

1.

2.

3.

10.

11.

IEEEXplore

ACM Digital Library

SpringerLink

ScienceDirect

CiteSeerXLibrary

Microsoft Academic Search

Scopus

IEEE Computer Society Digital Library
EBSCOhost E-Journal Services
Google Scholar

Web of Science

Finally, forward and backward reference checking (“snowballing”) was
conducted on the identified primary studies. Search engines were used to find
citations of the primary studies identified that could be of relevance to the
review (forward reference checking). The reference lists of the primary studies

were then checked for any potential relevant studies missed (backward

reference checking).

27

2.2.3 Study Selection Criteria

This section explains the study selection process and lists the inclusion and

exclusion criteria.

Inclusion Criteria (IC):

e |C1: The primary study is a peer-reviewed, scientific paper rather than
a PowerPoint presentation or a short/extended abstract paper.

e |C2: The primary study discusses a variability management tool.

e |IC3: When several reports of the same study existed in different
sources, the most complete and recent version of the study was
included in the review.

e |C4: The paper was written in English.

Exclusion Criteria (EC):

e EC1: The primary study does not address variability management
tools.

e EC2: The papers were published before January 1991 and after
February 2014.

e EC3: It is a short paper, PowerPoint file, poster presentation or
consists of lecture notes.

e EC4: The primary study consists of a compilation of work, for instance,

from a conference or workshop.

We found a total of 556 papers from different initial searches covering

digital libraries, manual searches, and the works of known authors.

28

After the initial screening of paper abstracts, in which papers
addressing non-SPL related topics were excluded by one researcher,
113 publications were selected. The full papers were then acquired and
four independent researchers reviewed the studies. 47 publications
were then selected through voting and discussions among the four
researchers in a first step. Finally, and after another round carefully
considering the inclusion and exclusion criteria, again through voting
and discussions in case of disagreements, 37 studies were selected.

Figure 2.3 below show a summary of the study selection process.

Identifying relevant
studies, searching
sl lelE s G« Produced: 556
publication outlets, and papers
known researcher
publication lists

Exclude studies of initial
screening based on * Produced: 113
title, abstract and papers
keywords

Basic review of the full
PDF papers of the
selected primary studies
(four reviewers
involved)

* Produced: 47
papers

Detailed evaluation of
the remaining studies
based on theidentified R s (els[{el=Ts HCY4
inclusion/exclusion papers
criteria (four reviewers
involved)

Figure 2.3: Study selection process

Finally, thirty-seven primary studies were analysed (see Table 2.3).

29

2.2.4 Quality Assessment Criteria

The quality of the reported research in the selected 37 papers was assessed
based on the eight-quality assessment questions listed in Table 2.2 below.
These were based on the quality assessment strategy defined in (Kitchenham
and Charters, 2007). The studies were assessed using a ternary scale where
each question was given a score of 1 (for Yes), 0.5 (for Perhaps) and 0 (for
No). This system allowed us some flexibility when answering some of the
guestions that were difficult to judge as Yes or No from the information
provided in the primary study. Once scores were allocated to questions, an
aggregate mark was then given to each study. This data was also used to

answer RQ3 (discussed in chapter 4).

Table 2.2: Quality assessment criteria

Questions

QA.Q1 s there a rationale for why the study was undertaken?

QA.Q2 Is there a description of the context (e.g., industry, laboratory setting, products
used, etc.) in which the research was carried out?

QA.Q3 Did the paper present enough details about the variability management tool to
enable us conduct the required analysis?

QA.Q4 Did the paper present an evaluation of the tool? If yes, did it include feedback from
end users?

QA.Q5 Are the substantive claims in the paper supported by reliable evidence?

QA.Q6 Do the authors compare and evaluate their own results against related work?
QA.Q7 Do the authors discuss the credibility of their findings?

QA.Q8 Are limitations of the study discussed explicitly?

2.2.5 Data Extraction and Synthesis

Following the selection process, the 37 primary studies identified are shown in

Table 2.3 below.

30

Table 2.3: Studies included in the final review

Paper Title Year of Author(s) Reference
Publication
[S1] DARE-COTS A Domain Analysis 1997 Frakes, W., Priet-Diaz, R., (Frakes et
Support Tool and Fox, C. al., 1997)
[S2] Intelligent Design of Product Lines in 2001 Succi, G., et al. (Succi et al.,
Holmes 2001)
[S3] Scaling Step-Wise Refinement 2004 Batory, D., et al. (Batory et al.,
2004)
[S4] XVCL: a mechanism for handling 2004 Zhang, H. and Jarzabek, (zhang and
variants in software product lines S. Jarzabek,
2004)
[S5] Tool Support for Software Variability 2004 Gomaa, H. and Shin, M., (Gomaa and
Management and Product Derivation in E. Shin, 2004b)
Software Product Lines
[S6] XML-Based Feature Modelling 2004 Cechticky, V., et al. (Cechticky et
al., 2004)
[ST7] On the Implementation of a Tool for 2006 Shakari, P. and Mgller- (Shakari and
Feature Modelling with a Base Model Pedersen, B. Mgller-
Twist Pedersen,
2006)
[S8] COVAMOF: A Framework for Modelling 2004 Sinnema, M., et al. (Sinnema et
Variability in Software Product Families al., 2004)
[S9] Towards Systematic Ensuring Well- 2009 Heidenreich, F. (Heidenreich,
Formedness of Software Product Lines 2009)
[S10] Odyssey: A Reuse Environment based 1999 Braga, R., M., M., Werner, (Bragaetal.,,
on Domain Models C., M., L., and Mattoso, M. 1999)
[S11] A NUI Based Multiple Perspective 2010 Bashroush, R. (Bashroush,
Variability Modelling CASE Tool 2010)
[S12] The DOPLER meta-tool for decision- 2011 Dhungana, D., (Dhungana
oriented variability modelling: a multiple Grunbacher, P., and et al., 2011)
case study Rabiser, R.
[S13] XToF — A Tool for Tag-based Product 2010 Gauthier, C., et al. (Gauthier et
Line Implementation al., 2010)
[S14] View Infinity: A Zoomable Interface for 2011 Stengel, M., et al. (Stengel et
Feature-Oriented Software Development al., 2011)
[S15] FeaturelDE: An Extensible Framework 2014 Thum, T., et al. (Thim et al.,
for Feature-Oriented Software 2014)
Development
[S16] FeaturePlugin: Feature Modelling Plug-In 2004 Antkiewicz, M. and (Antkiewicz
for Eclipse Czarnecki, K. and
Czarnecki,
2004)

31

[S17] An Integrated Software Management 2012 Park, K., et al. (Park et al.,
Tool for Adopting Software Product Lines 2012)
[S18] Kumbang Configurator — A Configuration 2005 Myllarniemi, V., et al. (Myllarniemi
Tool for Software Product Families et al., 2005)
[S19] Towards a Model-Driven Product Line for 2009 Martinez, J., et al. (Martinez et
Web systems al., 2009)
[S20] PuLSE-BEAT — A Decision Support Tool 2000 Schmid, K. and Schank, (Schmid and
for Scoping Product Lines M. Schank,
2000)
[S21] Moskitt4SPL: Tool Support for 2012 Goémez, M., et al. (Gbémez et
Developing Self-Adaptive Systems al., 2012)
[S22] BeTTy: Benchmarking and Testing on 2012 Segura, S., et al. (Segura et
the Automated Analysis of Feature al., 2012)
Models
[S23] An Analysis of Variability Modelling and 2007 Capilla, R., et al. (Capilla et
Management Tools for Product Line al., 2007)
Development
[S24] Visualisation of variability and 2012 Pleuss, A. and (Pleuss and
configuration options Botterweck, G. Botterweck,
2012)
[S25] ASADAL: A Tool System for Co- 2006 Kim, K., et al. (Kim et al.,
Development of Software and Test 2006)
Environment based on Product Line
Engineering
[S26] RequiLine: A Requirements Engineering 2003 von der MaRen, T. and (von der
Tool for Software Product Lines Lichter, H. MaRen and
Lichter,
2004)
[S27] ToolDAy: A Tool for Domain Analysis 2011 Lisboa, L., B., et al. (Lisboa et
al., 2011)
[S28] The Linux Kernel Configurator as a 2008 Sincero, J. and Schroder- (Sincero and
Feature Modelling Tool Preikschat, W. Schroder-
Preikschat,
2008)
[S29] Automating Product-Line Variant 2007 White, J., et al. (White et al.,
Selection for Mobile Devices 2007)
[S30] Managing Feature Models with 2011 Acher, M., et al. (Acher et al.,
FAMILIAR: a Demonstration of the 2011)
Language and its Tool Support
[S31] Easy-Producer — Product Line 2014 Eichelberger, H., et al. (Eichelberger
Development for Variant-Rich et al., 2014)

Ecosystems

32

[S32] OPTI-SELECT: an interactive tool for 2014 El Yamany, A. E. (Yamany et
user-in-the-loop feature selection in al., 2014)
software product lines Shaheen, M. and Sayyad,

A.

[S33] MPLM - MaTeLo product line manager: 2014 Samih, H. and Bogusch, (Samih and
[relating variability modelling and model- R. Bogusch,
based testing] 2014)

[S34] Variability code analysis using the VITAL 2014 Zhang, B. and Becker, M. (zhang and
tool Becker,

2014)

[S35] ViViID: a variability-based tool for 2014 Acher, M., et al. (Acher et al.,
synthesizing video sequences 2014)

[S36] VMC: recent advances and challenges 2014 Ter Beek, M. H. and (Ter Beek
ahead Mazzanti, F. and

Mazzanti,
2014)

[S37] WebFML: synthesizing feature models 2014 Bécan, G., et al. (Bécan et al.,

everywhere 2014)

Beside the 37 primary studies included in the study, we identified further 13
tools that did not meet the inclusion/exclusion requirements. These are shown

in Table 2.4 below, along with the criteria they didn’t meet.

Table 2.4: Studies excluded in the final review

Reasons Paper Title Year of Author(s) Reference
{o]3 Publication
Exclusion
EC3 FAMA Framework 2008 Trinidad, P., Benavides, (Trinidad et
D., Ruiz-Cort’es, A., al., 2008)
Segura, S., Jimenez, A.
EC1 Development of a Feature Modelling 2009 Fernandez, R., Laguna, (Fernandez
Tool using Microsoft DSL Tools M. A., Requejo, ,J., et al., 2009)
Serrano, N.
EC3 S.P.L.O.T. - Software Product Lines 2009 Mendonca, M., (Mendonca
Online Tools et al., 2009)
EC3 V-Manage 2002 European Software (SAP
Institute (ESI) Configurator)
EC2 PACOGEN : Automatic Generation of 2011 Hervieu, A., Baudry B., (Hervieu et
Pairwise Test Configurations from Gotlieb, A. al., 2011)
Feature Models

33

EC1 Variability Modelling in the Real: A 2010 Berger, T., She, S., (Berger et
Perspective from the Operating Lotufo, R., Wasowski, al., 2010)
Systems Domain A., Czarnecki, K.
EC1 MetaProgramming Text Processor Campbell, G. (Campbell)
EC1 An Algorithm for Generating t-wise 2012 Johansen, F., M., (Johansen et
Covering Arrays from Large Feature Haugen, 9., Fleurey, F. al., 2012)
Models
EC2&EC3 Varmod-Tool-Environment 2005 Pohl, K., Béckle, G., van (Klaus et al.,
der Linden, F. 2005)
EC3 Linux Variability Analysis Tools (LVAT) She, S. (She)
EC2 VARMA--VARIiability Modelling and 2012 Russell, G., Burns, F., (Russell et
Analysis Tool Yakovlev, A. al., 2012)
EC3 ZIPC SPLM 2009 NTTDaTa MSE (Gauthier et
Corporation al., 2010)
EC3 Hydra Tool 2009 Jose R. Salazar (Modeling)

Upon the completion of the primary study selection phase, and the primary
study quality assessment step, data extraction commenced. In order to
answer the research questions, the following data was extracted from every
primary study (see Table 2.5). The data extraction form below also shows the
relevance of each of the extracted data

elements to the study research questions.

Table 2.5: Data extraction form

Data Field Related
Concern/Research

Question
DE.Q1 Paper title Documentation
DE.Q2 Year of publication Documentation
DE.Q3 Type of publication (e.g. Journal, Conference, Workshop, etc.) Reliability of Review
DE.Q4 Publication outlet (conference name, etc.) Reliability of Review
DE.Q5 Paper brief description (synopsis) RQ1, RQ3

34

DE.Q6 The research rationale, challenges or problems as reported in the paper RQ3, RQ5

DE.Q7 Research Context (e.g. industry, academic, product, etc.) RQ4
DE.Q8 Tool Performance and Stability RQ2, RQ5
DE.Q9 Visualisation technique RQ2
DE.Q10 Textual notation RQ2
DE.Q11 Usability RQ2
DE.Q12 Tool environment/Platform RQ2
DE.Q13 Integration (e.g. with DOORS, etc.) RQ2
DE.Q14 Scalability (ability to deal with large-scale models) RQ2
DE.Q15 Relevance (Research or Practice) RQ4
DE.Q16 The research limitations as reported in the paper RQ5

2.3 Data Extraction Results

The next step after the data extraction step was the data synthesis and
analysis step. In this section, we provide meta-analyses of the primary studies
relating to their publication types, venues, trends and overall characteristics.
We analyse the collected data to address the 5 main research questions of

the study.

Based on the data collected, the research question one (RQ1) is then
addressed in details in chapter 3. In chapter 4, the remaining four questions
(RQ2, RQ3, RQ4, and RQ5) were then answered. In addition, the chapter 3
also discusses additional findings on commercial tools and tool adoption in
industry. Chapter 4 discusses the study limitations and threats to validity. And

finally, it rounds off the analysis with summary and conclusions.

35

2.3.1 Trend Analysis

The first search of the systematic literature review resulted in 556 papers. The
application of inclusion/exclusion criteria in several iterations resulted in 37

papers for the final review.

The primary studies included 18 conference papers, 6 journal papers, and 13
workshop papers. Figure 2.4 presents a pie chart showing the percentage for
each publication outlet. From the chart, it can be seen that conferences are
more prominent venues for research on variability management tools followed
by workshops, whereas journals seem to be less attractive outlets for
research on tools. The 37 papers are scattered over 24 different venues (see
Table 2.3). This distribution further highlights the importance of this systematic
review as a manual search of well-known conferences or journals could not

possibly identify all the relevant literature.

Figure 2.5 shows the distribution of studies over time; combined in 5-year
intervals (to avoid influence of events occurring every 18 or 24 months). The
chart shows that there has been considerable surge in new tools over the past
5 years. Our search did not identify any relevant paper published before 1997.
The figure shows that there was a peak in publishing research on variability
management tools from 2011 to 2015. There was a gradual uprising from
1996 to 2000, then a steady uptrend from 2001 to 2005 and 2006 to 2010.
The shape of the curve (spike, followed by trough, then slow pickup) aligns
nicely with Gartner’s technology maturity Hype Cycle model (Linden and

Fenn, 2003). Comparing the publication timeline (Figure 2.5) with Gartner’'s

36

Hype Cycle (Figure 2.6), it can be deduced that variability management tools
have now entered the slope of enlightenment/plateau of productivity stage.
This indicates that the benefits of variability management tools to the
enterprise are starting to become widely understood, while conservative

companies remain cautious.

Publication Outlets

Journal
16%

Figure 2.4: Percentage of each publication type

1996-2000 2001-2005 2006-2010 2011-2015

18
16
14
12
10

o N B OO

Figure 2.5: Distribution of primary studies over time

37

Visibility

Peak of
Technology inflated d‘ '_r”roqgh of |_Slr?pe of Plageau_ qf
trigger expectations isillusionment enlightenment productivity

Maturity

Each Hype Cycle drills down into the five key phases of a technology’s life cycle.

Technology Trigger: A potential technology breakthrough kicks things off. Early proof-of-concept stories and
media interest trigger significant publicity. Often no usable products exist and commercial viability is unproven.

Peak of Inflated Expectations: Early publicity produces a number of success stories—often accompanied by
scores of failures. Some companies take action; many do not.

Trough of Disillusionment: Interest wanes as experiments and implementations fail to deliver. Producers of the
technology shake out or fail. Investments continue only if the surviving providers improve their products to the
satisfaction of early adopters.

Slope of Enlightenment: More instances of how the technology can benefit the enterprise start to crystallize
and become more widely understood. Second- and third-generation products appear from technology providers.
More enterprises fund pilots; conservative companies remain cautious.

Plateau of Productivity: Mainstream adoption starts to take off. Criteria for assessing provider viability are more
clearly defined. The technology’s broad market applicability and relevance are clearly paying off.

Figure 2.6: Gartner Hype Cycle reproduced based on (Linden and Fenn, 2003)

38

2.3.2 Phrase Map Analysis

Phrase maps were used to conduct a thematic contextual analysis of the
complete text of the primary studies (excluding lists of references, author
descriptions and the most commonly occurring non-technical words like
introduction, figure, etc.) to try and identify evolving trends in the field. These
maps visualise two main features of the text: (1) connections between terms
are depicted by the grey lines, where a thicker line corresponds to a stronger
relationship between the terms; and (2) the centrality of the terms which are
portrayed by their font size (the bigger the font, the more frequently a term
appears in the text).

The primary studies were divided into two batches, the first batch contained
studies published between 1997 and 2006 inclusive, and the second batch
contained studies published between 2007 and 2015 inclusive. Then, phrase
maps were created to show the frequency and relationship of the most
common keywords in these groups of papers. The phrase maps showed the
top 40 occurring keywords (ignoring common and connecting words such as
‘and’, ‘the’, ‘of’ etc.) and used one place space between terms to determine
the connections between the terms. The phrase maps for the two batches can

be seen in Figure 2.7 and Figure 2.8.

39

methods architectural

programming dESiUII

features architecture compol
concepts

feature oSS, rolationships
domain analysis

requirements o
- characterisfics
g : variability
INeS products
commonality
{aker fional constanls isling
_______ conna functions
Figure 2.7: Phrase Map of studies published between 1997-2006
T LT
variants —
y |s proce s
. models
NE@ SJuS
a — e foatures
variability
mdd datsy tﬂD!S preach
mink
feature _
oh st HAEn:
implementation Yy nixgened dmd
fesign mﬁim v lpmed
afvae analysis feifng

visuaiizalon
Figure 2.8: Phrase Map of studies published between 2007-2015
The first observation that can be made when looking at the two phrase maps

is that in the first batch (1997-2006) fewer and simpler relationships existed

40

among words. There were classical associations between terms such as
features-requirements, commonality-variability, architecture-design, etc.
However, looking at the second batch (2007-2015), the associations between

words became more integrated and diverse.

The thematic characteristic of the 1997-2006 text shows several scattered
connections between two and three words (seen at the bottom of the map in
Figure 2.7). Figure 2.8, however, shows a tighter network of terms with
diverse relationships (and no isolated connections). This could be an
indication of the level of consolidation and maturity in the domain. Moreover,
in the first batch, basic variability management concerns seemed to dominate
(e.g., requirements, commonality, architecture, etc.). In the second batch,
there was an emergence of terms such as visualisation and analysis, which
emerged as key focus areas for tool developers. Figure 2.9 presents a

summary of the entire SLR review process.

41

Identification of the
need for a review

The review questions

Define appropriate research drive the entire
questions systematic review

methodology

N

This specifies the methods
that will be used to
Developing a review protocol undertake a specific

review
l Determine keywords and

)) headings, multiple
Identify appropriate electronic database

N

databases/sources searched by at least 2

reviewers
Researchers extract
Data extraction using a spreadsheet data including quality

template data, meet to resolve
disagreements on data

l Data synthesis involves
collating and summarising
Data Synthesis the results of the included
primary studies

NSNS

Figure 2.9: Summary of SLR review process

42

24 Summary

This chapter describes the method used to identify, collect, and review
papers, in the systematic literature review (SLR) process, using SLR to collect
data in order to achieve the objective of this research. This method involves:
identifying of the key research questions to be answered; the search strategy
used to identify the relevant primary studies; the study selection criteria used
in the process of inclusion or exclusion a paper, and; the quality assessment
criteria used to assess the quality of the selected papers together with the
data extraction and synthesis. The chapter also presents the overall meta-

analysis of the selected primary studies based on the data extraction results.

43

Chapter 3

Existing Variability Management Tools in Software
Product Lines

3.1 Introduction

This chapter introduces the concept of variability management, which is the
central activity used to manage the commonality and variability that provides
the ability to adapt and customise software artefacts for a particular context or
setting. The chapter also discusses the locations within software artefacts at
which variability actually occurs, usually referred to as variation points, as well
as their number of possible occurrences, known as the variants. It also

presents an overview of dependency management.

However, based on the information provided by the authors in the literature,
the chapter discusses on a number of tools supporting variability management
in terms of their usable functionality, i.e. the approach it uses in tackling
variability issues, the technology used and environment or a platform based
on which a tool was developed and, implemented respectively. The type of
notation (graphical, textual or a combination of both) employed by a tool and
the category to which a tool belonged to as commercial, academic, or both,

are also explicated (see Appendix A for details). Finally, the chapter assesses

whether a tool is an open source or if an evaluation copy could be obtained, in

addition to a discussion on commercial tools and tool adoption in industry.

3.2 Variability Management

Variability management remains the main challenge in software product line
(SPL) adoption, as it needs to be efficiently managed at different levels of the
SPL development process (for example, requirements analysis, software
design, implementation, etc.). However, effective management of variability is
essential for successful product line development, as it determines and

enables the creation of different products in a product line.

Variability has been defined in (Van Gurp et al., 2001) as the ability of a
software system or artefact to be changed or customised for use in a specific
context. This means that good variability for a software system should expect
changes and allow for the implementation of those changes over time
throughout the life cycle. Due to the large number of variability points within a
real-life industrial product line, some variation points depend on other
variation points. For instance, a variation point cannot be selected unless
another variation point is implemented (requires dependency). On the other
hand, it is possible that some variation points cannot be supported in the

same product at the same time (excludes dependency).

3.2.1 Variation Point

Variation points are locations in the design or implementation at which

changes occur (Jacobson et al., 1997), such as the type of screen size that a

45

mobile phone can offer (large size, medium size, and small size). Therefore,
variation points provide a description of existing differences. Hence, the
variability of a product line is defined by variation points. The variability of
features is usually represented as a tree in which variation points consist of a
parent feature, a group of child features called variants, and multiplicity that
specifies the possible number of variants that can be selected from the

variation point during the configuration of a product (Pohl et al., 2005).

For a better understanding of variability, we used a variability meta-model
based on the ideas in (Moon et al., 2005) and (Thiel and Hein, 2002) (see
Figure 3.1). The variability of SPL is represented by a variation point.
Associated with each variation point, there is one or more description(s) of

possible choices, called variants, to replace the variation point.

— Type
Variability
| | Cardinality
Variation Point Variation Point Specification Dependency
Binding Time
Variants
Resolution Rule
||

Figure 3.1: Variability Meta-model for representing concepts in variability
(reproduced from (Kadir and Mohammad, 2008))

46

However, for easy selection and adaptation, variation points need to be
specified as follows: (1) Variation type, which clarifies what varies and how it
varies, and has been divided into four types: computational, external, control,
and data types (Moon et al., 2005); (2) Variation point cardinality specifies the
minimum and maximum number of variants that can be selected for a
variation point (Halmans and Pohl, 2003); (3) Dependency represents the
relationships and constraints at one or more variation points (Sinnema et al.,
2006); (4) Binding time, which is the time when a variation point is bound to a
chosen variant (Krueger, 2006). Finally, resolution rules, according to (Thiel
and Hein, 2002) are the applied strategies when binding a variation point with
a conflict, and that must be resolved as part of the product architecture

design.

3.2.2 Variant

Variability enables the choice between different possibilities through variation
points; each of these various options is referred to as a variant. The variant
pinpoints a single choice of a variation point (Bachmann and Clements, 2005).
Using the same example given in Section 3.1, every different choice of screen
size for a particular mobile phone (big, medium or small) is represented by a
variant. Therefore, through the different choice of variants, one mobile phone
can differ from another in terms of size. Therefore, variants provide different

possibilities to satisfy variation points.

a7

3.2.3 Dependency Management

Variability dependencies are the constraints on the variant selection at one or
more variation points (Sinnema et al., 2006). Effective and scalable ways of
representing variability dependencies in a large-scale product line is a
challenge and of primary concern in software product line engineering. As
highlighted in Section 3, for instance, it is possible that Feature B must be
present if Feature A is selected (inclusivity), while the choice of Feature A is

based on a different condition.

3.3 Variability Management Tools in Software Product Lines

The efficient management of variability can give rise to the successful
customisation of software products, which can result in high market success
(Van Gurp et al.,, 2001). However, according to (Beuche et al., 2007),
variability in today’s software product lines has such complexity that the use of
appropriate tools to support it has become crucial. Therefore, the
management of variability needs sufficient tool support (Beuche and

Spinczyk, 2003).

In their work, (Zhang and Jarzabek, 2001) asserts that for the effective
handling of a scalability problem, a tool capable of interpreting and
manipulating domain models is necessary to provide analysts with customised
and simple domain views. (Jaring and Bosch, 2002) believe that tool support
is especially necessary when developing a large-scale system. (Djebbi and

Salinesi, 2006) ascertain that many notations can only be scalable if

48

supported by an appropriate tool.

Hence, tool support is of paramount

importance for variability management, since without proper automation or

tool support, the modelling variability of a large-scale model is boring, error-

prone and difficult to conduct (Ferber et al., 2002).

Researchers in the community, from both academia and industry, devoted

large amounts of time and resources in trying to find efficient and effective

ways to deal with variability-related challenges. As a result, a wide variety of

tools, approaches, techniques and methods were proposed.

Table 3.1 provides a list of all the tools identified in the SLR in chronological

order. For details on each of the tools listed in the table see Appendix A.

Table 3.1: Identified tools with their year of introduction

Tools Name

DARE-COT

Odyssey

PuLSE

Holmes

RequilLine

COVAMOF

Feature Modelling Plug-In

PLUSEE

XML-Based Feature Model

AHEAD
XVCL

KUMBANG
BVR: Base-Variation-Resolution

ASADAL (A System Analysis and
Design Aid tooL)

Technology/Imp
lementation

C-language on a
UNIX workstation
Java technology
Visual Basic
Java language
Java language
Java technology
Java language
Rational Rose
and Rational
Rose RT

XML technology
Java language
Java and XML
technology

Java language

Java Technology

Java Technology

49

Notations
Supported

Textual
notation
UML notations

Textual
notation
Textual
notations
Graphical
notation
Graphical
notation
Graphical and
textual
Graphical
notation

Textual
notation
Textual
notation
Textual
notation
UML-like
notations
Graphical
notation
Graphical
notation

Availability
Free/Evaluation
Copy

Open source
Open source
Not available

Not available

Not available
Open source

Not available

Not available
Open source
Open source
Open source
Open source

Not available

Year of

Introduction

1997

1999

2000

2001

2003

2004

2004

2004

2004

2004

2004

2005

2006

2006

Scatter Tool Eclipse Graphical Not available 2007
Generative notation
Modelling
Technology
VMWT PHP and Ajax Textual Open source 2007
notation
L K C- Feature Modelling Tool Linux technology = Graphical and Open source 2008
textual
FeatureMapper Eclipse Modelling = Graphical Open source 2009
Framework notation
PLUM Eclipse Modelling | Graphical Open source 2009
Framework notation
MUSA Java and XML Graphical Not available 2010
notation
XToF — A Tool for Tag-based Java and C Textual Open source 2010
Product Line Implementation languages, XML notation
ToolDay Eclipse’s Graphical Not available 2011
Graphical notation
Modelling
Framework
View Infinity Java technology Graphical Open source 2011
notation
FAMILIAR Java technology Graphical and Open source 2011
textual
DOPLER Java technology Graphical and Not available 2011
textual
FeaturelDE Java technology Graphical and Open source 2012
textual
ISMT4SPL Java technology Graphical and Not available 2012
textual
BeTTy Java technology Graphical Open source 2012
notation
MOSKitt4SPL Eclipse Modelling = Graphical Open source 2012
Framework notation
S2T2 Configurator Java technology Graphical Open source 2012
notation
Easy-Producer Java technology Graphical and Open source 2014
textual
OPTI-SELECT Simple XML Textual Open source 2014
Feature Model notation
MPLM-MaTeLo product line Eclipse Rich tree-like Not available 2014
manager Client Platform notations
Variability code analysis using the C-Preprocessor Textual Not available 2014
VITAL tool notation
ViViD: a variability-based tool for Xtext language Textual Not available 2014
synthesizing video sequences workbench notation
VMC: recent advances and HTML technology = Graphical Not available 2014
challenges ahead notation
WebFML: synthesizing feature JavaScript Graphical Not available 2014
models everywhere technology notation

3.4 Commercial Tools and Tool Adoption in Industry

In addition to our SLR, we conducted a web search on commercially available

variability management tools as well as studies on tool adoption in

50

industry/practice. In this section, we briefly discuss the commercial tools we

identified and the findings of these studies.

3.4.1 Commercial Variability Management Tools

We explicitly focus on tools developed to support variability management in
software product line engineering, thus leaving out commercial tools
developed in other communities such as the CWAdvisor (Felfernig et al.,
2001) or the SAP Configurator (SAP Configurator), which follow an Al-based
process or MetaEdit+ (Tolvanen and Kelly, 2009), which is a domain-specific
language and code generation environment. Industry also has extended other
commercial tools with support for variability management (Berger et al.,
2013), typically without following a particular product line engineering process.
For example, IBM Rational DOORS (IBM Rational DOORS) comes with a
requirements management add-on that allows to define variability in

requirements documents.

SparxSystems Enterprise Architect (SparxSystems Enterprise Architect) has
also been extended with variability management support. A very common
approach followed by industry is to use Microsoft Excel or Microsoft Word to

document the variability of their software systems.

All these commercial or industry solutions to variability management work
very well for the context they have been developed for, but do not follow any
particular product line engineering approach. We could only identify two

commercial tools developed for product line variability management, more

51

specifically, pure::variants (Beuche, 2008) and Gears (Krueger and Clements,

2014).

pure::variants (Beuche, 2008) is developed by pure-systems GmbH in
Magdeburg, Germany. The tool supports variant management and product
configuration based on feature models and has a strong focus on
interoperability and extensibility. For example, the tool can be integrated in
the Eclipse IDE, used with a web browser, as a command line client, and
even in a custom application. Several extensions to existing commercial-off-
the-shelf tools exist, e.g., to DOORS or SAP. Four types of models can be

created and managed with pure::variants:

(1) Feature Models represent the variability of a system. (2) Family Models
represent the variants of assets that can be selected. (3) Variant Description
Models are used to store the selected features and their values. (4) Result
Models based on 1-3 represent one concrete instance derived from a product
line. Constraints on model elements can be defined in a self-defined dialect of
the language prolog. A prolog-based constraint solver allows validating
selected configurations. The main benefits of pure::variants are (i) the strong
focus on interoperability and extensibility, (i) the high number of available
extensions, and (iii) the comprehensive support for model checking and

validation (also during product configuration).

The main drawbacks are that (i) the tool has mainly been designed for

engineers and (ii) the representation of features (tree-structure) does not

52

scale well for very large systems. pure::variants is well-suited for use in

industry as demonstrated by the various successful application in industry.

Gears (Krueger and Clements, 2014) is a commercial tool developed by
BigLever Software Inc., Austin, Texas, USA. The tool has been developed in
Java and supports the three-tiered methodology proposed by Krueger
(Krueger, 2007). The tool allows defining arbitrary reusable software assets
and a product feature profile that describes products in terms of features.
Gears focuses on products: feature profiles define the products that can be
built from assets and the optional and alternative choices that can be made
for each product. Product configuration is supported by the Gears
Configurator which automatically assembles and configures assets to produce
products based on feature choices made using feature profiles. Gears can be
tailored to different environments with parameter sets representing different
kinds of variability. Dependencies are modelled as global constraints that are

checked during configuration.

The main benefits of Gears are (i) its strong focus on producing products, (ii)
the possibility to use arbitrary assets, and (iii) its methodological foundation
given by the three-tiered methodology. The main drawback of Gears is that
applying the tool to a concrete industrial case requires significant tailoring of
the tool depending on the used assets and the environment to integrate it

with.

53

3.4.2 Tool Adoption in Industry

Djebbi et al. (Djebbi et al., 2007) report findings of a study on the ability of
product line management tools to answer industry needs. They identified 12
tools through an unsystematic search (we cover most of them on our SLR)
but only analysed four tools in detail based on their availability. These four
tools were RequilLine [S26], pure::variants (Beuche, 2008), XFeature [S6] and
DOORS-TREK (an add-on to IBM Rational DOORS)(DOORS-TREK). Djebbi
et al. describe these tools and discuss the support of these tools for variability
modelling as well as the support for management (such as reporting
capabilities) they provide. They conclude that tools developed in industry or in
industry projects work well for the context they have been developed for but

are hard to apply in other contexts.

Berger et al. (Berger et al., 2013) report the results of a survey on variability
modelling in industrial practice. Among other questions, they asked industrial
practitioners what variability modelling tools they use. Respondents could
select from 10 particular tools or specify an open answer. pure::variants
(Beuche, 2008) was the most used tool, followed by Gears (Krueger and
Clements, 2014). From the tools we identified in our SLR, FeaturelDE [S15],
DOPLER [S12], X-Feature [S6], and AHEAD [S3] were the only ones
mentioned by respondents. This confirms our findings on the difficulty of

research tool adoption in industry.

As Berger et al. conclude “all other tools play only a minor role in the

participating projects” and were only reported as being used once or twice.

54

The answers of the 42 survey respondents were analysed in detail and it was
found that many respondents use “other open source tools”, “other
commercial tools”, or “home-grown domain-specific tools”. A key finding
regarding variability modelling tool support of the survey was that there exists
a wide variety of home-grown solutions developed in industry that are
unknown to researchers. Our SLR would allow industrial practitioners to
check what research tools are available before implementing their own

solution.

Lettner et al. (Lettner et al., 2013) confirm the findings of Berger et al.’s
survey when they report that industry often develops custom solutions to
automate the configuration process of their variable software systems. These
solutions are often not based on variability models but describe configuration
knowledge directly in code or in simple XML files. Comparing a custom-
developed with a model-based configuration approach leads them to the
conclusion that using a model-based solution could be very beneficial for
industry. For instance, it would help to decouple configuration Ul and
variability information and make the approach more adaptable and extensible.
Again, our SLR could be an important first source of information for industrial

practitioners thinking of implementing a variability management tool.

3.5 Summary

This chapter presents and discusses the concept of variability management,
variation points, variants and the dependency relationships that exist among

them. Finally, the chapter discusses an overview of 37 tools for managing

55

variability in software product lines, along with a number of commercial tools
and tools that have been adopted in industry. Such an overview mainly
focused on tool functionality, technology used for development and
implementation, and type of notations supported. Other key characteristics
being considered are whether a tool can be found for free or if an evaluation

copy can be obtained.

56

Chapter 4

Critical Analysis of Existing Approaches

4.1 Introduction

After having each of the 37 variability management tools identified in the
survey examined in terms of their functionality and the platform on which they
were implemented, along with the commercial tools and tool adoption in
industry in the previous chapter, this chapter presents a detailed analysis of
the state-of-the-art for the research field, particularly in terms of tools
supporting variability management to understand the tools’ characteristics,

maturity, and the challenges in the field.

In the first half of the chapter, we begin by identifying the different tools
(assigning a unique ID for each of the 37 tools identified) based on how they
will be studied (see Table 4.1). The tools were then analysed in terms of the
following topics: development environment; support for transformations
(between different formats); management of constraints and reasoning on
variability models; and their proposed graphical and textual notations. The
second half of the chapter presents an analysis based on the quality of the
research conducted in the reported approaches. We also present the
research context of the studies that have been conducted. This includes

whether studies are academically-based, joint academic-industrial

endeavours, or if no information was provided on the research context.

Finally, we discuss the main challenges faced by current Product Line

Management (PLM) tools.

Table 4.1: Identified tools with assigned ID and their technical details

Tools Name Study ID
Technology/Im Notation Availability
plementation Supported Free/Evaluatio
n Copy
C-language on | Textual Open source [S1]
DARE-COT a UNIX notation
workstation
Java UML notations Open source [S10]
Odyssey technology
Visual Basic Textual Not available [S20]
PuLSE notation
Java language | Textual Not available [S2]
Holmes notations
Java language | Graphical [S26]
RequilLine notation
Java Graphical Not available [S8]
COVAMOF technology notation
Java language | Graphical and Open source [S16]
Feature Modelling Plug-In textual
Rational Rose Graphical Not available [S5]
PLUSEE and Rational notation
Rose RT
XML Textual Not available [s6]
XML-Based Feature Model technology notation
Java language | Textual Open source [S3]
AHEAD notation
XVCL Java and XML Textual Open source [S4]
technology notation
KUMBANG Java language | UML-like Open source [S18]
notations
BVR: Base-Variation-Resolution Java Graphical Open source [S7]
Technology notation
ASADAL (A System Analysis and Java Graphical Not available [S25]
Design Aid tooL) Technology notation
Scatter Tool Eclipse Graphical Not available [S29]
Generative notation
Modelling
Technology
VMWT PHP and Ajax Textual Open source [S23]
notation
L K C- Feature Modelling Tool Linux Graphical and Open source [S28]
technology textual
FeatureMapper Eclipse Graphical Open source [S9]
Modelling notation
Framework
PLUM Eclipse Graphical Open source [S19]
Modelling notation
Framework
MUSA Java and XML Graphical Not available [S11]
notation
XToF — A Tool for Tag-based Product | Java and C Textual Open source [S13]
Line Implementation languages, notation
XML
ToolDay Eclipse’s Graphical Not available [S27]
Graphical notation
Modelling

58

Framework

View Infinity Java Graphical Open source [S14]
technology notation

FAMILIAR Java Graphical and Open source [S30]
technology textual

DOPLER Java Graphical and Not available [S12]
technology textual

FeaturelDE Java Graphical and Open source [S15]
technology textual

ISMT4SPL Java Graphical and Not available [S17]
technology textual

BeTTy Java Graphical Open source [S22]
technology notation

MOSK:itt4SPL Eclipse Graphical Open source [S21]
Modelling notation
Framework

S2T2 Configurator Java Graphical Open source [S24]
technology notation

Easy-Producer Java Graphical and Open source [S31]
technology textual

OPTI-SELECT Simple XML Textual Open source [S32]
Feature Model notation

MPLM-MaTeLo product line manager Eclipse Rich tree-like Not available [S33]
Client Platform | notations

Variability code analysis using the C- Textual Not available [S34]

VITAL tool Preprocessor notation

ViViD: a variability-based tool for Xtext language | Textual Not available [S35]

synthesizing video sequences workbench notation

VMC: recent advances and HTML Graphical Not available [S36]

challenges ahead technology notation

WebFML: synthesizing feature models | JavaScript Graphical Not available [S37]

everywhere technology notation

4.2 Key Characteristics of the Different Tools

4.2.1 Development Environment

The described tools are based on different development environments. The
most frequently named platform is Eclipse (16 studies), which includes tools
based on the Generic Eclipse Modelling Framework, GEMS (1 study); Eclipse
Rich Client Platform RCP application development (1study); and the Eclipse
Modelling Framework, EMF (9 studies). Within the latter group, two studies
reported usage of textual modelling frameworks, i.e., EMFText (Heidenreich

et al., 2009) and Xtext (Eysholdt and Behrens, 2010), and three reported

59

usage of graph-oriented Ul frameworks, i.e., GMF (Eclipse) and prefuse (Heer

et al., 2005).

Two studies reported on tools based on commercial-off-the-shelf software,
such as Microsoft Excel or Word. Six tools directly support the usage of UML,
out of which two are based on commercial modelling tools, i.e., IBM Rational
Rose and Rhapsody. Additionally, one study reported on a tool based on C-

preprocessor (CPP) code parser. Finally, three studies were web-based.

In terms of implementation languages, tools in 14 studies are based on Java,
one tool is implemented in C# (RequiLine [S26]) and one in C (the Linux
Kernel Configurator [S19]). The remaining tools either do not state an

implementation language or are realized as extensions of existing tools.

4.2.2 Transformation

Twelve studies reported the usage of some transformation mechanism, e.g.,
to support generating output. Two used XSL ([S6] and [S22]); one used
dynamic loading of Simple XML Feature models (SXFM) [S32]; another used
XML and Java source files [S31]; and one used the DIMACS format (a widely

used standard for Boolean formulas in CNF) [S37].

4.2.3 Constraints and Reasoning

Fifteen studies reported on the usage of constraint languages or the usage of
automated reasoning based on constraints in the wider sense. SAT solvers

are used for instance by the S2T2 Configurator ([S24] and FAMILIAR [S30]),

60

a CSP solver is for instance used by Scatter [S29] and [S35]; SAT solvers by

[S36] and propositional formulas by [S37].

4.2.4 Graphical and Textual Notations

Among the thirty-seven tools identified in the primary studies, some supported
graphical notations only (15 tools), others textual notations only (13 tools),
and few supported multiple notations and views (9 tools). Additionally, there
were some that did not provide enough details on the notations supported.
Figure 4.1 summarises the breakdown of these notations based on the type of
notation supported. These are discussed in details in the following sub-

sections.

Graphical Textual

35%
41%

Figure 4.1: Breakdown of tools based on the type of notation supported

4.2.4.1 Graphical Notations

The graphical notations adopted by the tools reported in the primary studies

can be classified under the following six visualisations:

FODA

61

File trees (vertical trees)
Graphs

Hyperbolic trees

Logic diagrams (logic gates)

UML

The figure below (Figure 4.2) shows the number of tools supporting each
visualisation type. The figure clearly shows that FODA and File tree

representations are still the most popular approaches.

FODA _ 11

Fie Tree | 1
crepn [N 3
ume I 1

Logic Gate - 1

Hyperbolic Tree F 1

Figure 4.2: Number of tools supporting each visualisation type

Tools in eleven studies are based on the FODA (Feature-Oriented Domain

Analysis (Kang et al., 1990)) approach. These are:

[S10], FODA with UML
[S11], FODA, hyperbolic trees, logic diagrams and file tree

[S14], FODA, Zoomable interface to colour coded source code

62

[S15] and [S25], FODA with colour coding

[S17], FODA multiple trees per feature model
[S21], FODA with colour coding and basic file tree
[S22], FODA basic feature tree with attributes
[S27], FODA, UML and basic file tree

[S30], FODA, basic file tree and coding area

[S37], FODA and basic file tree

Examples of these notations are shown in Table 4.2 below (snapshots taken
from the corresponding primary studies). Larger screenshots of these
examples are presented in Appendix B. As can be seen in the table, different
tools use different parts of the interface to display the FODA-like feature
model. As such, they are all prone to graphical overloading issues, where
once the feature model size gets into the hundreds, it becomes cumbersome

to browse and manage.

Table 4.1: Tools with FODA-like visual notations

Study Example Snapshot Study Example Snapshot

[S10]

63

[S11]

B e e Yo mm.mw.\w.q

[S22]

Name: Aftribute0
Domain: Integer [14,19]
Value: 14

Name: Attributed
Domain: Integer [14,19]
Name: Attribute

Domain: Integer [44,70]
Value: 60

Name: Aftribute 1
Domain: Integer [44,70]
Value: 50

Name: Altributed
Domain: Integer [44,70]
Value: 52

Name: Attribute1
Domain: Integer [14,19]
Value: 15

[S14]

class Test |
static mp e

public static void main(String argall] {
Tast.printtest

i (b)

BT O O OOCON T [

|wemnm A

» static void printtest() | =
21 o = new omi3)
P tam. ou

» & - e Fis e Ml e Hon(
» Syotem. out.. it (5+7) C
5 \ =

" ,

[S25]

Feature Binding Units & Relationship : Automatically Generated
Feature Binding Time : Manually Defined From User After Analysis

< Feature Model > < Feature Binding Analysis Model >
ol S27] e o . .
{ v
[315] Fie Edt Nevgste Sesch Project Run Windom Hep S27 I 5 | /;) \ nr«ny/ 2
S [Bonmeoms =) ';;.;‘_;m -
attarl Ganes.gf Q(nllx i
; D ‘Z‘"@i h
[ru Jn:s x:»u- Horzont:
o s o ’
= e, P =
— — Level .
> @ 4 Mencatory
/ v
Y . T . Y oo e
Weght | DFS | BFS | | OniyNeghbors | Edges I AR
=]
: Mandstory Dwected Undirected Weghted | UnWeigthed rie e A =5
W Connected = Undrected A Search = =y
A\ Arematve Cycle = GraphType A DFS 7
Abstract Shortest » Directed A Weighted "
Concrete |
| prees Rt v ol
J
.
E]

[S17]

G
0G00I G 0 0/ 0 @ 06 G G 06 G G 0

u
c

c
BoGGT

[S30]

i i

o | e |
e [, e [et

64

Thirteen tools adopt file tree approaches of which eight-used basic right click
functionality to access information (tools reported in studies [S7], [S9], [S13],
[S26], [S28], [S31], [S32] and [S33]). Two studies are based on advanced
customization (colour, shapes, etc.) of feature icons (tools in studies [S12]
and [S16]). One-study reports file trees with semi circles representing

relationships among different features [S8]. Flow maps are also used in [S24].

A summary of these notations is shown in the Table 4.3 (see Appendix B for
larger screenshots). As can be seen in the table below, this family of tools
tends to be more scalable due to the inherent nature of the file tree navigation
mechanism. However, they are not as good as FODA-like tools in enabling
better intellectual control over the model (textual abstraction vs graphical

abstraction).

Table 4.3: Tools with file Tree-like visualisation

Study Example Snapshot Study Example Snapshot
[S7] == e “ [S13] [omiemm los e 8 ce

@) placform resourcejtestiMy cofesturamodeier

.
e

65

S8 et S16
[] R o B i [] - [;l ESth
= & Payment
- fe PaymentTypes
[
[CreditCard
[DebitCard
O PurchaseCrder
[FraudDetection
= [Shipping
-
- [¥ customiethads
-1 %" [0..*] Method (String)
‘s FlatRate (Float)
3 - -
-1 ® Method {('FreeShipping' : String)
[
. # FlatRate ('0.0': Float)
SRR cMelhod ("StandardShipping' © String)
® FlatRate ('10.0' : Float)
+-[ShippingGateways
- ‘. PasswordPolicy
=.“® Expiration
LG
[InDays (‘30" : Integer)
O Never
- “# Chars
o A <24=
[LowerCase
[UpperCase
[Digits
[specialChars
[S9] [S24]
@ cHleR ad= %
pial tfresourceicse-2008-demojrodelMappingtodel.
[SIE-F -
4 Group
4 Featurs Addresses
4 Feature Relationships
4 Featire Contact Oppartunities
4 Featire Motes
= 4 Feature Groups
T
4 Faskura Multiple Assignmert \
< Fedurz arbiray Depth . \
Currznt Expression |4}_‘u‘| lm \\
— d
4 Feature Relationships ‘||
Selected Blemerts 4 { o /
4 Feature Addresses ///
. Automatic
{Jomem
‘# PowerLocks
[Sll] " 4YM - (Prototype) - Network Emulator Feature Model EI@IEI [826]
File Edit Search Yiew Project Help
Business View |H|erard'ica|lBehaviu.lal View | Dependency/Interaction View | Intermediate view | N @ |
= Network Emulator o oaeer
+ 4 Application Interface P
- @ Effects
& Ppacket Classifier
& Bandwidth Limiter
& Delay Rt
& Jitter
= & Queuing B — e
& FIFo o = = =
& RED - :w 0 O~ 3
& 5o e == : e :
Q v ezl (L
& Token Bucket i re=ea9) . =
" -
& Packet Loss Toggle Open/Closed 'f-:'_‘ e
4 Packet Router T ‘n.w'\.:.;' Puum/tuine | doms Soboen
+ 4 SendReceive Packi Implementation Time h‘i:'"m Wastemecn |t veiun
et as Negative et »
Properties " e N [R e o | Contedey | P i

66

[828] File Option Help
O | E
Gptia
~-@noot
= Graph Type
- ®Directed

==

(NUMBER)

Assigns a unicue number to each vertex a5 2 result of a graph traversal.

[S31]

Configuration

EASy—Producer
Instantiators

VIL&VTL

Instantiation

[332] v ﬁ' o1 Web Portal(web_portal)
v ﬁ .0 Additional Services(add_services)
v E .0 Site Statistics(site_stats)
[:m Basic(pasic)
v ﬁ .0 Site Search(site_search)
[:0Images(images)
v (& 0 Texi(text)
[:m HTML(htmiI)
[:0 Dynamic(dynamic)
v (& :0 Ad Server(ad_server)
[} :m Reports(reports)
[} :0 Pop-ups(popups)
L4 ﬁ :m Banners({banners)
[} :m Image(ban_img)

@

wnation Slemert = Vanant Display real reference obyecss

Selected Object V.. reference odjects. Mot 1zem O

Three tools support graph-based visualisations. One includes a configuration

interface using simple node-link graphs (user flows) with different objects [S2];

another supports the use of different objects for dependencies (circles,

triangles, etc.), file tree, and coding area [S8]; and one tool is based on

KOALA (Van Ommering et al., 2000) like graph visualisation, i.e., architecture

67

centric [S18]. Finally, one tool adopts a logic diagram (schematics)
visualisation approach [S11]; another provides an UML-based visualisation

[S5]; and one adopts hyperbolic tree visualisation [S11].

Examples of these visualisations are shown in 4.4 below. Larger screenshots
of these visualisations are given in Appendix B. Looking at the table below, it
can be seen that notations that adopt hyperbolic views tend to have the best
balance between scalability and intellectual control (abstraction). While
managing to display the structure of the complete feature model, hyperbolic
trees allow for browsing the model by displaying more details about nodes
that are centered in the middle of the screen, allowing for smoother navigation
capabilities, especially when paired with Natural User Interface (NUI)
capabilities (e.g. pinching for zooming, etc.).
Table 4.4: Tools with Graph, Logic Diagrams, UML and Hyperbolic Tree

visualisations

Study Example Snapshot Study Example Snapshot

CANE e—— o [S11]
Dy || 005 || vewoe || Sowewe 3

g

Graph
Hyperbolic Tree

[S8] [S5]

68

Produt Line R
Repository < KBRET
A
Rose MDL
l]x!u for
g 3 5
3 s
I0) -]
Use Case \hk‘T Class. .\l.\H
2 o == = e
N Mooz Asscam e/ Acsm (Rase RT oully)
[S18] [S11]
=
-1 =
33
P&
ik
nnnnnnnnnnnn e 2}
[3] Famrremosrmnca > E
@ & ©
1 i =
< ‘ >
=3 o]
o j ' a "
© L 5 % £
2 5 i3
-
H
=
3
&
=
i
2
g
£
2
S
g
B

There are studies that do not provide enough details on the graphical notation

used in the tools described ([S19] and [S29])).

Overall, seven tools supported multiple views of the feature model, where
combination of a graph, a file tree, and a coding area are used by [S8]; Koala
and file tree is reported in [S18]; a file tree and a coding area are used in

[S13] and [S31]; FODA and basic file trees are used in [S21] and [S37];

69

FODA, a basic file tree and a coding area are reported in [S30], FODA, UML
and a basic file tree are used by [S27]; and FODA, hyperbolic trees, logic

gates and a file tree are reported in [S11] as summarized in Figure 4.3 below.

[s8] [S11] [S13] [S18] [S21] [S27] [S30] [S31] [S37]

Figure 4.3: Number of views per tool for tools with more than one view

4242 Textual Notations

For the textual notations, tools in thirteen studies reported the use of textual

notations. These can be classified under three different categories:

- Code-like: with syntax similar to programming languages
- XML-based: notations that are based on XML
- Code-based: notations that embed variability representation within

source code

Figure 4.4 below shows the number of tools supporting each textual notation

type.

70

Code Like

CodeBased

Figure 4.4: Tools with various textual notations

Code-like notations can be found in the tools described in [S3], [S18], [S28],
and [S30], [S34] and [S36]. Example snapshots of these notations can be

found in the Table 4.5 below.

Table 4.5: Tools with Code-like textual notations

Study Example Snapshot Study Example Snapshot

[S3] gui: main:common [S28] config GPL
compile G compile A boolean “ROOT”
compile B select M1
Ink: gui main compile C
link gui main choice
common : depends on GPL
common : compile X2 prompt “Graph Type”
compile X2
gui: config DIRECTED
clean: compile G boolean “Directed”
delete *.gif
super.clean Ink: gui main config UNDIRECTED
link gui main boolean “Undirected”
endchoice
clean:
delete *.gif config NUMBER
delete *.class default y if GPL
requires (BFS || DFS)
boolean “Number”
-—-help---
Assigns a unique number to each
vertex as a result of a graph
[S18] Kumbang model KumbangExample [S30]
root feature FSystem; GraphicCard:
root component CSystem DirectX Bus [Vertex];

// Vertex is optional

feature FSystem {

subfeature DirectX: (v10 | v10.1)+; // Or-
(FeatureA, FeatureB) f; group

71

implementation

instance of (f, Featured) <==>
value ($, attr) = a;

instance of (f, FeatureB) <==>
value ($, attr) = b;

}

feature FeatureA, feature FeatureB only
are Lee EE usually really really hello
there closing are are are

component CSystem {
attributes
ABBalue attr;
}

attribute type ABValue = {a, b}

Bus: (n64 | nl28);
// Alternative-group

n64 -> Vertex;
// Constraints

Variability Code Metrics Supported in
[834] VITAL

Metric Description

VP Nesting Degree #ifde nesting level

of a given VP

#Vars used in a
given VP

Var Tangling Degree

#VPGs that contain
a given Var

Var Fan-out on VPG

#files that contain
a given Var

Var Fan-out on File

#Vars included in
a given File

Var Fan-in on File

#VP included in a
given file

VP Fan-in on File

[S36]

Station(I,N,J,M) =

([N = 0]

nobike (I).Station(I,N,J,M) +

[N > 0] bike(I).Station(I,N-1,J,M)
) +

return(I).Station(I,N+1,J,M) +
redistribute (may, ?FROM, ?TO, ?K) .

([TO = I] Station(I,N+K,J,M) +
[TO /= I] Station(I,N,J,M)) +
[N > M] redistribute (may,I,J,N-
M) .Station(I,M, J,M)

Users(I,J) =

request (I) .

(bike(I).return(J) .Users(I,dJ) +
nobike (I) .Users(I,J))

XML-based notations are supported in [S4], [S8], and [S22]. Samples of these

notations are presented in the Table 4.6 below.

Table 4.6: Tools with XML-based textual notations

Study Example Snapshot Study Example Snapshot

[54]
<<x-frame name=,Being"“ language=“java“>
<set var=“BEING_CLASS“ value=“Being"“/>
<break name=“BEING_PARAMETERS"“/>

class <value-of expr=“"?@BEING CLASS?“/>{

String Name;

int Age;

double Weight;

double Height;

<break name=“BEING BODY“/>
public String getName () {return Name;}
public int getAge () {return Age;}
public double getWeight () {return
Weight;}

public double getHeight () {return
Height;}

[S22]

//STEP 1: Specify the user’s
preferences for the generation
(characteristics)
GeneratorCharacteristics
characteristics = new

GeneratorCharacteristics () ;
//number of features
characteristics.setNumberOfFeatures
(30) ;

//percentage of constraints
characteristics.setPercentageCTC (10
) i

//Max number of products of the
feature model to be generated
characteristics.setMaxProducts (1000
) i

//STEP 2: Generate the model with

72

<break name=“BEING_NEW_ METHODS"“/> the specific characteristics (FaMa
Y metamodel is used)
</x-frame> IGenerator generator = new
MetamorphicFMGenerator (
new

FMGenerator ());
FaMaFeatureModel fm =
(FaMaFeatureModel)generator.generat
eFM (characteristics);
System.out.println (“Number of
products of the feature

model generated: “ +

generator.getNumberOfProducts ()) ;
//STEP 3: Save the model and the

products
FMWriter writer = new FMWriter();
writer.saveFM(fm, “./model.xml”);

//FaMa XML format

writer.saveFM(fm, “./model.afm”);
//FaMa textual format

[SS] <variationpoint id="[id]”>

<artefact>
[artefact identifier]

</artefact>

<abstractionlayer>
[abstraction layer]

</abstractionlayer>

<description>
[description]

</description>

<type>
optional | alternative | optional
variant |variant | value

<type>

<variants> <!-- if not type=value -->
<variant id="[id]"”>

<variant id="[id]”>
</variants>
<range>

[range specification]
</range> <!-- if type=value -->
<state>

open | closed
</state>
<mechanism>

[mechanism]
</mechanism>
<bindingtime>

[bindingtime]
</bindingtime>
<rationale>

[rationale]
</rationale>

</variationpoint>

Finally, Code-based notations are found in [S7], [S13], [S14] and [S35]. These

are demonstrated in the Figure 4.7 below.

Table 4.7: Tools with code based textual notations

Study Example Snapshot Study Example Snapshot

73

[S7] class Watch { [S14] class Test {
Color color; static Exp e;
Waterproof waterproof; (Strd publlﬁ)sﬁatlc void main
tring args
D h h; ,
epth dept Test.printtest();
c Test.evaltest ()
}
class Color {...} }
class Yellow extends Color {...}
class Metallic extends Color {...} static void evaltest() {
class Depth {...} e = new Num(1);
class 50m extends Depth {...} System.out.println(“eval (1)
class 100m extends Depth {...} -4 oe.e
e = new Neg (new Num
(1) 7
System.out.println ("
eval (Neg (1) ="
e = new Plus (new
Num (1), new Num(2));
System.out.println ("
eval (1+2)=" + e.e
e = new Neg (new
Plus (new Num(1), new Num
System.out.println (“eval (-
(1+2))=" +
}
static void printtest () {
e = new Num(3),;
System.out.println (“print(3)
="+ e)
e = new Neg(new
Num(5)) ;
System.out.println(“print (Ne
g(s5)) =*"
e = new plus(new
Num(5), new Num(7));
System.out.println(“print
(5+7) = ™ +
}
[S13] // The syntax of feature tags is: [S35] Relationships: 2 sequence { 3
signal quality 4 cloneBetween 0 and
<fcomment> ::= "/*Q@feature:" <flist> 5 veh;cle 5 g/é - - 63178
. Attributes: NT string
"@x/" [<filetag>
il{ ['%_e ?g : W Cf15 sequence.comment 10 @RT int
<flist> ::= <featurename> (" <flist> vehicle.speed [0..130] delta 5
) default 4 0 11 @ND int *.cost [0
<filetag> ::= "/*Q!file feature!@*/" 1000] default 150 12 real

// where <featurename> identifies a
// feature of the FD.

signal quality.luminance mean 13
[0.0 .. 3 2.0] delta 2.0 14 [3 2.0

224.0] delta 8.0 15 [224.0
255.0] delta 2.0 16 default 7 2.5 5
17 //. . . 18 19 Descriptions: //.

20 21 Constraints: //. . . 22

23 Objectives: 24 objective
generate low_cost_configurations ({
25 min (sum (*.cost)) 26 } 27
Configurations: //.

74

Looking at the samples in the three tables above, it can be said that it is
equally difficult for humans to read these descriptions, whether they are
written in code-like, code-based or XML format. Accordingly, it would be best
to choose the format that makes it easier for machines to parse textual
notations, and focus on providing GUI based access to feature information for
human use. As such, there is a need to develop a standardised description
format to allow better exchange of information among the different tools.
Competition between different tools would then be based on the quality of

presentation and intuitiveness of navigation of such information by end-users.

Finally, there were six further notations that did not provide enough details
about the textual notations they support, namely [S1], [S6], [S15], [S20],

[S23], and [S24].

4.3 Quality of the Research Conducted in the Reported Approaches

We analysed the quality of research using the quality scores (0, 0.5, 1) for the
eight quality questions (cf. section 2.2.4 of Chapter 2) and also assessed how
the studies address four different quality attributes important for tools usability,

integration, scalability, and performance.

Table 4.8 presents the results of the quality assessment of the 37 studies
included in the final review according to the quality questions. A frequency
analysis of the scores for each quality question is presented in Figure 4.5.
Most studies provide a rationale for why the study was undertaken (Q1).
Almost half of the studies describe the context in which the research was

carried out (Q2). More than half of the papers described the variability

75

management tool in enough detail to be able to perform an in-depth analysis
of the capabilities of the tool (Q3). Very few studies present an evaluation of
their proposed tools including feedback from end users (Q4). This could be
one of the main factors limiting the industrial adoption of these tools. Less
than a third of the studies support substantive claims made in the paper with
reliable evidence (Q5). Less than a third of the studies compare and evaluate
their own results against related work (Q6). Finally, very few studies discuss

the credibility of their findings (Q7) and limitations (Q8).

Figure 4.6 shows the distribution of total quality scores. The maximum
possible total score is 8 (a score of 1 across all quality questions). Most
studies received scores around 3 and 4. The total average was 4.05 with a
standard deviation of 1.84. This indicates that although the minimum quality

requirement is met, there is plenty of potential for improvement.

In general, the authors provided a motivation and a description of the
research context but papers lacked data to support the claims and findings.
Also, authors seldom provided critical reflection of their results. Most
variability management tools presented were not well evaluated, especially

with respect to feedback from end users.

Table 4.8: Results of the quality assessment of the primary studies

No (0) Partial (0,5) Yes (1) Average
Score
Q1 1 2 34 0,95
Q2 12 10 15 0,54
Q3 1 14 22 0,78
Q4 23 12 2 0,22
Q5 11 15 11 0,50
Q6 19 7 11 0,39
Q7 16 15 6 0,36
Q8 23 8 6 0,27

76

35
[%2]
(]
S
(@]
[&]
(]
—
o
> Eno
e
o = partial
>S5
g myes
i

QT Q2 Q3 Q4 Q5 Q6 Q7 Q8
Quality questions

Figure 4.5: Frequency analysis of quality scores for each question

aa o N

N

N

Frequency of total scores

[

o
-
N
w

35 4 45 5 6.5 7.5 8
Total score

Figure 4.6: Distribution of total quality scores

Table 4.9 presents different quality attributes we focused on in our review
(usability, integration, scalability, and performance) and how well they were

addressed by the studies. The quality attributes were identified through an

77

interview-based survey conducted with a number of SPL practitioners who
were asked to list their five most important attributes of an SPL tool. Figure
4.7 shows the frequency analysis of the results for each quality attribute. As
can be seen, most studies do not mention the attributes with only few studies
providing contributions to the different areas of the quality attributes. The lack
of attention of researchers to these quality attributes, which are high up in the
priority list of practitioners, can be seen as another reason behind the very

limited industrial adoption of these tools.

Table 4.9: Quality attributes addressed by studies

Does Not | Mentions | Contribution | Contribution | Average
Mention 1) (2) and Score
(0) Evaluation
3)
Usability 19 8 10 0 0,76
Integration 21 0 13 3 0,97
Scalability 24 8 4 1 0,51
Performance 24 4 8 1 0,62

78

Performance
Contribution and
. Evaluation
Scalability o
m Contribution
] = Mentions
Integration
m Does Not Mention
Usability
0 10 20 30

Figure 4.7: Frequency analysis of scores for each quality attribute

As per Table 4.9 and Figure 4.7, the assessment of how well the studies
addressed the four different attributes (usability, integration, scalability, and

performance) important for tools, was taken using the four levels distinguished

as follows:

e Does not mention:

o When a study does not mention the attribute to be satisfied at

all.
e Mentions:
o When a study mentions evaluation of the attribute as a
challenge or research topic but includes no further discussion.
e Provides a contribution:
o When a study provides contribution in the area.
e Provides a contribution and evaluation:

o When a study provides contribution and evaluation in the area.

79

Table 4.10 provides a list of all the tools identified in the study in chronological

order, along with the assessment results summary for how the studies

addressed the four different attributes important for VM tools. An abbreviated

symbol (CE) signifies “contribution and evaluation”, (C) denotes “contribution”,

(blank space) indicates “does not mention”, and (E) only indicates “mentions

of evaluation”.

Table 4.10: Identified tools with the assessment summary results

S/No Tool Name Usability | Integration | Scalability | Performance
1 DARE-COT
2 Odyssey C C
3 PuLSE-BEAT E C
4 Holmes
5 RequilLine E C E E
6 COVAMOF
7 Feature Modelling Plug-In E
8 PLUSEE CE
9 XML-Based Feature Model C
10 AHEAD E E
11 XVCL E E
12 KUMBANG C C
13 BVR: Base-Variation-Resolution
ASADAL (A System Analysis and Design Aid
14 tool) C E
15 Scatter Tool CE CE
16 VMWT C C
17 L K C — Feature Modelling Tool
18 FeatureMapper C E C
19 PLUM
20 MUSA E C
XToF — A Tool for Tag-based Product Line
21 Implementation C
22 ToolDay E C
23 Zoomable C E
24 FAMILIAR E C
25 DOPLER C E C
26 FeaturelDE C C
27 ISMT4SPL
28 BeTTy C
29 MOSKitt4SPL
30 S2T2 Configurator C E
31 Easy-Producer C C CE
32 OPTI-SELECT C
33 MPLM-MaTeLo product line manager C C C
34 Variability code analysis using the VITAL tool C C
ViViD: a variability-based tool for synthesizing
35 video sequences C E C C
36 VMC: recent advances and challenges ahead C C
WebFML: synthesizing feature models
37 everywhere E CE

4.4 The Context of Research

The distribution of the research context of the studies is presented in Figure
4.8. The figure shows that most studies (68%) have been conducted in an
academic context. Only 16% of the studies are joint industrial academic
endeavours. In 16% of the studies, no information was provided on the
research context. Table 4.11 presents a list of all studies with their research

context.

Although the primary research context of some studies was academic, few
still had practical relevance. Figure 4.9 shows the distribution of the relevance
of the primary studies. Almost half of the studies (41%) are relevant to
academia only. 36% of the studies are relevant to both academia and
industry. Finally, 10% of the studies are relevant to practice only. While 13%

provide no sufficient data to be judged.

Table 4.11: Research context of the primary studies

academia industry and no information

academia

S1 X

S2 X

S3 X

S4 X

S5 X

S6 X

S7 X

S8 X

S9 X

S10 X

S11 X

S12 X

S13 X

S14 X

S15 X

S16 X

S17 X

S18 X

S19 X

S20 X

S21 X

S22 X

S23 X

S24 X

S25 X

81

S26 X

s2r X
S28 X

s29 X
S30 X

S32 X

$ss8XxX
S34 X

T
S36

X

industry and
academia
16%

Figure 4.8: Research context of primary studies

82

No sufficient

/ data

13%

Practice
Research

and practice
36%

Research
41%

Figure 4.9: Relevance of primary studies

45 Main Challenges Faced by Current Product Line Management

(PLM) Tools

Our last part of the analysis aimed at analysing the main challenges faced by
current tools as well as limitations of the tools. We therefore analysed the 37
selected studies regarding the challenges and limitations of current variability
management tools they discuss. Using the coding technique (Seaman, 1999),
we first scanned the studies looking for keywords “challenge”, “issue”,
“‘limitation”, and “drawback” and then extracted the related text (statements on
challenges and/or limitations). This allowed us to find out which studies do not
discuss any limitations or challenges (no statements extracted); which studies
at least mention challenges or limitations (statements extracted list challenges
or limitations, but do not discuss them); and which studies actually discuss
challenges or limitations (statements extracted list and discuss challenges or

limitations). 56% do not discuss limitations at all, 27% at least mention some

83

limitations without further discussing them, and only about 17% actually
discuss limitations. We find this a general weakness of publications on
variability management tools, i.e., that they do not discuss their own

limitations, which makes it hard to assess tools’ usefulness.

Challenges are more frequently discussed (73% provide a discussion, 13% at
least mention challenges, only 13% do not even mention challenges), i.e.,
authors mention what was the challenging part of implementing their tool

and/or what challenges their tool addresses.

We eventually analysed the extracted statements and (through discussion
and refinement among researchers) came up with ten categories for
challenges and limitations, in which we could group the extracted statements
on challenges and limitations discussed in detail below (ordered by the

number of studies providing input to the category).

The key challenge of variability management tools is scalability of models, i.e.,
how to develop variability models that are still useful despite their size and
complexity. 40% of the selected studies discuss this challenge and suggest

different solutions as described above.

The second most discussed challenge is checking models for consistency and
correctness (23%), especially how to keep the models consistent with the
underlying architecture and check that the models represent the variability of
the product line correctly. Mapping problem and solution space (20%) is also
discussed as a key challenge to be addressed by variability management

tools. Many tools only take care of creating and managing the variability

84

models representing variability but not of how to map variability (e.g.,
represented by features or decisions) with the actual artefacts realizing this

variability.

Visualisation/Graphical Overload is discussed as a challenge by 17% of the
selected studies. Variability management tools must provide ways to cope
with the size and complexity of variability models to help users suffering from
graphical overload with visualisations. Other important challenges are
usability and maintenance and evolution of variability models (both 13%).
Addressing both challenges is essential for tools to be useful and successful

in practice in the long run.

Integration of variability management and (legacy) software (development),
i.e., the question of how to adopt a variability management tool in practice, is
also still an important issue and discussed by 10% of the selected studies.
Process Improvement/Automation through variability management (7%) is
explicitly discussed by 2 selected studies, even though this is actually the key

goal of variability management tools anyway.

Two further challenges, which are discussed by one study each, are
supporting the modelling of non-functional properties in variability
management (e.g., resource consumption constraints) and compliance (with

standards/quality policies/regulations).

85

4.5.1 Scalability of (variability) Models (12 studies)

In an initial discussion, we had called this category “working with one large
model vs. working with several separate models”. However, through our
discussion we found out that the statements we categorized here actually are

all about challenges regarding the scalability of (variability) models.

For instance, the authors of [S17] report experiences from empirical case
studies that confirm that the complexity of variability management stems from
the need to work with (too) large models. Study [S4] highlights the importance
of compositional approaches to product line representation/implementation to
address this challenge. Study [S21] report on a tool supporting variability
management in self-adaptive systems, which again adds to the challenge of

scalability of models.

As discussed by the authors of [S3] a key “challenge is to show how scaling
can be accomplished in a principled manner so that product line variability
management tools are not just ad-hoc collections of tools using an
incomprehensible patchwork of techniques”. More specifically, they argue that
“generators are a technological statement that the development of software in
a domain is understood well enough to be automated. However, we must
make the same claim for generators: The complexity of generators must also
be controlled and must remain low as application complexity scales;

otherwise, generator technology will unlikely have wide-spread adoption.”

The BVR tool [S7], for instance, proposes to have separate models related to

a base model instead of one large model or completely separate models to

86

allow working with product lines of a realistic size. DOPLER [S12] allows both,
creating one big model and several small but related models. The DSL tool
FAMILIAR [S30] suggests separating, relating, and composing several feature
models while automating the reasoning on their compositions. FAMILIAR
focuses mainly on textual representation because, as they claim, this favours
readability of the specified operations and leads to more usability and
productivity when dealing with compositional operations on feature models.
They, however, also argue that graphical visualisation has proved to assist
users, for example, during the configuration process. This is why they

integrated their DSL with the Feature IDE tool.

The author of [S11] presents a NUI-based multiple perspective variability
modelling tool to help working with large-scale models, i.e., multi-touch
interfaces to allow working with large models (and their visualisations/different

views) to address the scalability challenge.

Viewlinfinity [S14] provides seamless and semantic zooming of different
abstraction layers of an SPL. The tool described in [S5] provides multiple
product line views (using the feature model as a unifying view). Study [S8]
focuses on the hierarchical organization of variability, the first class
representation of simple and complex dependencies (“dependencies that
affect the binding of a large number of variation points, e.g., quality attributes”
[S8]); and argues that relations between dependencies should be explicitly
represented. The Odyssey Reuse environment [S10] specifies “patterns

based on both architectural styles and specific information from the

87

application domain to create a complete reuse environment, which defines
software architectures and conceptual model representations on a high level

of abstraction”.

4.5.2 Checking Models for Consistency and Correctness (7 studies)

Checking the models underlying the variability management tools for
consistency and correctness is considered as a key challenge by seven of the
30 studies. For instance, the authors of RequiLine [S26] argue that semantic
information is needed for an automated consistency check in variability
management tools. Study [S5] highlights that consistency checking among the
multiple views in a product line (as provided by their tool) is essential.
FeatureMapper [S9] provides diverse visualisations to support the SPL
engineer in verifying the correctness of the models (feature models, mapping

models, solution space models) and argues this is very important.

The authors of Odyssey [S10] suggest specifying the “operations that will be
performed on models, as well as to systematize these operations, to facilitate
the consistent creation of models”. The DOPLER tools [S12] have an
integrated consistency checking component that checks the consistency on
different levels, i.e., in problem space, in solution space, and between
problem and solutions space. ToolDAy [S27] is one of the few studies that
discuss their limitations, i.e., that complex consistency rules cannot be
described in their tool. The authors of study [S3] highlight the use of model

checkers in their tool as important future work.

88

4.5.3 Mapping Problem and Solution Space (6 studies)

Six studies highlight the challenges and limitations of mapping problem and
solution space, i.e., mapping the variability representation with the actual
product line architecture. For instance, ISMT4SPL [S17] discusses
“traceability between decisions in variability/feature models and the
corresponding implementation artefacts” as a key challenge for variability
management tools. The authors of study [S16] report about a limitation of their

tool, i.e., that the support for mapping problem and solution space is missing.

FeatureMapper [S9] explicitly focuses on this aspect by introducing mapping
models to map feature models and solution space models. Kumbang [S18]
explicitly integrates architecture models (i.e., Koalish, an architecture
description language/component model based on Koala ADL but adding
variability concepts) with feature models within its tool support. DOPLER
[S12] uses explicit asset models to represent the solution space and links
these models with the problem space decision models via so-called inclusion
conditions. Code tagging tools such as XToF [S13] do not map both spaces
but rather integrate the representation of the problem space into the solution
space, or, as could be argued, just represent solution space variability (i.e.,

variability in code).

4.5.4 Visualisation/Graphical Overload (5 studies)

Five studies argue that visualisation of variability easily leads to a graphical

overload of the tool user and is a key challenge. For instance, the author of

89

study [S11] argues that “it is important for a variability management
mechanism to be able to extract and present relevant information about a
variability model in dedicated views for different groups of stakeholders
(users, system analysts, developers, etc. to alleviate the graphical overload

when showing all the information in one view.”

Viewlinfinity [S14] provides seamless and semantic zooming of different
abstraction layers of an SPL. Study [S8] argues that variability models should
“represent variation points as first class entities in all abstraction layers (from
features to code); provide a hierarchical organization of variability; focus on
the first class representation of simple and complex dependencies
(dependencies that affect the binding of a large number of variation points,
e.g. quality attributes); and explicitly represent dependencies”. ST2T [S24]
provides sophisticated visualisation and interaction techniques to address the
challenge that handling variability and configurations is hard due to the
complexity on a cognitive level as human engineers reach their limits in
identifying, understanding, and using all relevant details. Study [S16]
highlights this as a key limitation of their tool, i.e., that a graphical

representation missing.

4.5.5 Maintenance and Evolution of Variability (models) (4 studies)

Four studies report on the challenges and limitations regarding maintenance
and evolution of variability (models). The BVR tool [S7] suggests to not use
annotations of features but “relations between feature models and elements of

a base model” to express/capture variability. Study [S30] confirms that with

90

current technologies manipulating and evolving large-scale feature model is
challenging and error-prone. Study [S29] argues that not all devices and their
characteristics can be known in advance — “their unique capabilities must be
discovered and dealt with efficiently and correctly”. Study [S6] reports that

ambiguities in existing feature meta-models negatively affect maintenance.

4.5.6 Usability (4 studies)

Only one study RequiLine [S26] mentions usability to be a limitation of their
tool support. However, most tools suffer from this limitation in our own
experience. The authors of [S4] admit that the understandability of their
variability modelling language/tool must be improved. DOPLER [S12] puts a
special emphasis on usability, however, only on the configuration side, i.e.,
the configuration tools are optimized to allow their use by sales staff. ST2T
[S24] provides sophisticated visualisation and interaction techniques to make

complex variability models usable by engineers.

4.5.7 Integration of Variability Management and Legacy Software (3

studies)

Three studies report about the challenge of integrating variability management
support into legacy software. The development of XToF [S13], for instance,
was motivated by industrial needs. One of the key goals was to develop
support for variability management that does not require changing current
development practices in the organization requesting support. Thus a code-

tagging approach was applied. The authors argue that it is important to

91

provide tool support for variability management, but this support must be
nicely integrated with existing tools and processes. The development of
FeaturelIDE [S15] was challenged by the difficulty to integrate variability
management and Eclipse. The author of the ToolDAy [S27] argues that
supporting integration with tools like DOORS is essential (though not

supported by ToolDAYy).

4.5.8 Process Improvement/Automation through Variability

Management (2 studies)

Two studies describe the challenge of improving development processes
through automation provided by variability management tools. The authors of
study [S19], for instance, argue that “on the one hand, the non-existence of a
unified way to introduce the contents [leads to] an unnecessary waste of time
for the employees to learn new technologies and feel comfortable with the
new platforms. On the other hand, a rapid prototyping platform is also
desirable for showing their customers a working prototype at an early stage.”
The authors of study [S1] highlight the need for models that are expressive

enough for automation.

4.5.9 Compliance (with standards/quality policies/regulations) (1 study)

Study [S13] stresses the need for compliance, i.e., they argue that it is also
important that variability management/modelling tools do not violate with
standards/quality policies/regulations in the organizations in which they are

used.

92

4.5.10 Non-functional Properties in Variability Management (1 study)

Study [S29] argues that resource consumption constraints are not taken into

account by existing configuration approaches and tools.

Table 4.12 below, presents a summary list all the challenges faced by current
tools as well as limitations of the tools a long with number of studies that

discusses each problem.

Table 4.12: Summary results of VM tools challenges

Challenge/problem Number of studies Total (%) of occurrence
Scalability of variability models 12 40%
Checking models for consistency 7 23%

and correctness

Mapping problem and solution space 6 20%

Visualisation/graphical overload is 5 17%
discussed as a challenge

Usability 4 13%

Maintenance and evolution of 4 13%
variability models

93

Integration of variability management 3 10%
and legacy software

Process improvement/automation 2 7%
through variability management

Compliance (with standards/quality 1 3.5%
policies/regulations)

Non-functional properties in 1 3.5%
variability management

4.6 Summary

This chapter presents a critical analysis of the 37 variability management
tools identified and reported in a survey, and contains a systematic literature
review to understand the tools’ characteristics and maturity, as well as the
challenges in the field. The tools are based on diverse development
environments, apply diverse technologies, and support different variability
modelling approaches. Most tools support a feature modelling approach.
Different graphical and textual notations are provided by the tools, with a
focus on tree-based visualisations of features. Only few tools provide multiple
views, e.g., a graphical view of features together with a text-based

representation of source code variability.

While most studies about variability management tools provide a good
motivation and a description of the research context they often lack data, e.g.,

from empirical studies with tool users, to support the claims made and the

94

findings reported. Also, studies seldom provide a critical reflection of the
presented tools and their limitations. Most variability management tools were
not well evaluated, especially with respect to feedback from end users.
Quality attributes important for the practical use of tools such as usability,
integration, scalability, and performance are out of scope for most of the
analysed studies. This might be explained by the fact that most studies have
been conducted in an academic context. Only 6 of 37 studies are joint

industrial academic endeavours.

Many studies discuss challenges, i.e., what was the challenging part of
implementing the tool and/or what challenges related with variability
management and SPL engineering the tool addresses. A detailed analysis of

these challenges has been performed to guide future research.

The chapter concludes that the key challenge of variability management tools
is scalability of models, i.e., how to support the development of variability
models that are still useful despite their size and complexity. The second most
discussed challenge is checking models for consistency and correctness,
especially with regard to how to keep the models consistent with the
underlying architecture and how to check that the models represent the
variability of the product line correctly. This is also related with the third most
important challenge, i.e., providing support for mapping problem and solution
space. Visualisation of models and the resulting potential graphical overload
of users are also recognized as important challenges. While these challenges,
together with the importance of usability of variability management tools, are

recognized as important challenges in many studies, only few actually

95

address them or provide empirical proof that the reported tool helps to

address the challenges.

Further challenges mentioned as important for variability management tools
are support for the maintenance and evolution of variability models,
integration of variability management and (legacy) software (development),
process improvement and automation through variability management,
managing non-functional properties (e.g., resource consumption constraints),

as well as compliance with standards, quality policies, and regulations.

The analysis presented in this chapter do not only provides a good overview
of existing variability management tools and the challenges for variability
management tool support, but also establishes criteria and concepts for
comparison of such tool support. The main hope is the study will encourage
authors of approaches and tools to report on those aspects (particularly

empirical studies on tool usefulness) and compare their tools with others.

96

PART Il: MUSA 1 Vs MUSA 2

Chapter 5

Theoretical Foundation of MUSA

51 Introduction

So far, we have introduced a number of tools and techniques for managing
variability in software product lines, together with a detailed analysis of the
state-of-the-art of the research field. Within these techniques, feature
modelling approach has been the most widely used, to represent, manage,

and visualise the variability of product families and their configurations.

In chapter 4, we analysed and critically discussed about a number of
variability management tools and modelling techniques, and the approaches
they used in tackling variability-related challenges. We have also described
the characteristics, maturity, and technology, based on which they were
implemented. We have also discussed about their limitations and challenges

in the field.

This chapter presents the early version of MUSA, implemented based on our
theoretical foundation on multiple perspective-based Variability Management—
the Four View Model (4VM)—which is aimed to alleviate the problem of

information overloading. MUSA was implemented on Microsoft Surface and

98

Windows 7, with touch pack platforms. The chapter also describes the
theoretical background as well as the technical background, which explained
a series of funds received in order to implement MUSA as a proof of concept.
Some of the functionalities of the early version of the MUSA tool were also

presented.

5.2 Backgrounds and Motivation

In a real life project, software product lines can generate a large number of
features that are extremely interconnected, both hierarchically, and in a non-
hierarchical order; this is typically in the order of thousands in many cases
(SCALE’09, 2009). The model usually goes beyond the control of human
cognitive abilities and is too challenging for automated reasoning. Although
feature modelling techniques are widely used to represent and visualise
variability features, evidence from practice shows that this method has limited
scalability (Reiser and Weber, 2006). These include, among others: (1)
difficulties in providing effective supports of the artefacts representing different
elements in the model, and (2) creating, editing, and interpreting specific

features of interest.

However, other information visualisation techniques that focused on
representing large and structured information were also explored. These are:
(1) the node-link (Holten et al., 2011) — represented as a graph layout, in
which a node represents the individual elements of the information and
relationships between these elements, which are represented as edges, and

(2) the treemap (Shneiderman and Plaisant, 2004) — a technique that provides

99

a holistic visualisation of hierarchical data, using a set of nested rectangles,

where each rectangle binds with smaller rectangles to form sub-branches.

These information visualisation techniques are effective and efficient to
support a software product line development process by allowing large
variability models to be represented and visualised appropriately. In addition
to providing mechanisms for navigation within a large data, they also reduce
the complexity of the data models, making them understandable for the
stakeholders. Unfortunately, most of these techniques suffer from visual
clutter when the number of child nodes grow exponentially in the order of 2",
thus raising a scalability issue that requires an exponential amount of space

for the data to be displayed more appropriately.

On the other hand, hyperbolic trees (Lamping et al., 1995) provide an
adequate layout for visualising large scale data and hierarchies. Hyperbolic
trees use hyperbolic space, which provides more room for appropriate
representation of data as compared to other techniques such as Euclidean
Geometry space. However, the focus of a hyperbolic tree is typically on
contextual visualisation, helping users focus on a particular element of
information. When applied to product line engineering, hyperbolic trees can
offer more appropriate and clear representation of variability, variation points,

and their variants, hierarchically.

5.3 Concept of Multitouch Technology

From a computing perspective, multi-touch is a technology that enables

devices (touchscreen or trackpad) to recognize and respond to two or more

100

simultaneous touch inputs, allowing one or more users to interact with
computer applications through various gestures and pressure created by
fingers on a surface. This is in contrast to single-point input devices, such as a
mouse or a traditional touchpad, where users can select a single point, drag
and drop, push and slide. Multi-touch technology allows users to swipe, pinch,
rotate, and perform other actions that allow for richer, more immediate

interaction with digital content.

Multi-touch technologies have a long history, but the first one designed for
human input to a computer system began in 1982, when the University of
Toronto introduced a system that used a frosted-glass panel with a camera
placed behind the glass. When a finger or several fingers pressed on the
glass, the camera would detect the action as one or more black spots on an
otherwise white background, allowing it to be registered as an input (Mehta,
1982). Following this was the introduction of the first multi-touch screen
capable of simultaneously capturing multiple touch-points on a display,
which was developed by Bob Boie in 1984. This used a transparent capacitive
array of touch sensors overlaid on a CR, and allowed for manipulating
graphical objects with one’s fingers with excellent response time. This
eventually led to the release of what has been considered the world’s first

smartphone by IBM and Bell south in 1992 ('‘Bellsouth, IBM," 1993).

5.3.1 The Benefits of Multi-touch over Single Touch

Multi-touch technology expands the functionality of traditional input devices,

such as the keyboard, mouse and stylus, with new ways of interacting with

101

information. For instance, two fingers can allow users to zoom in and out, or
scale the display. The need for two activation points has been widely
recognized in the industrial environment, that is, to have both the user’s hands

on the screen.

Furthermore, secure keyless entry to a room can be implemented with a
fingerprint via touch display. Different security paradigms can be combined to
implement a high level of security, e.g., unique gestures on the touchscreen
display serve as the new password, while the meeting schedule further

secures entry.

Another good example is building automation: imagine that your building is big
enough that when the floor plan fills a display, the details are rendered too
small to see. At this level, all you can do is get an overview, which may be
enough for new visitors trying to find their way around, but proves insufficient

for more specific needs.

Likewise, if a user needs to read a manual, multi-touch enables two-finger
scrolling, pinching, spreading and rotating without a complicated learning

curve.

5.4 MUSA Theoretical Background

MUSA (A Multi-touch Variability Modelling Solution for Software Product
Lines) is designed to implement our theoretical work (Bashroush et al., 2008,
Bashroush et al., 2011) on multiple perspective-based variability

management, which provides a successful modelling framework while using

102

the concept of separation-of-concerns to alleviate the problem of information

overloading. As stakeholders have an interest in the different views of a

product line variability model (Nuseibeh et al., 1994), it is important for a

variability model to be able to represent and extract relevant information

without overloading the graphical representation of the model.

The Four View Model for Variability Management (4VM) aims to alleviate this

overload (Bashroush, 2010). The design and implementation of the MUSA

tool was achieved by following the 4VM model. The model proposes the

distribution of feature modelling information into four views, with each view

dedicated to a particular theme and group of stakeholders. The views are:

Business View: In this, the information associated to the project
management, cost/benefit analysis, closed/open sets of features and
others is presented. Project managers are the main targets with a view
where they can specify feature costs, open and closed features,

feature introduction time, etc.

Hierarchical & Behavioural View: This is where the different features
are organised (usually presented in a tree structure), along with the
behaviour attached to each feature is presented. The main concerns of
this view are twofold: the software architects, and end users’
requirements, need to be captured. This view is currently the most
widely adopted by many feature-modelling techniques.

Dependency & Interaction View: Here the dependency and

interaction among the features (e.g., inclusion, exclusion, etc.) are

103

presented. The focus of this view is towards architects, and offers a
suitable basis for capturing feature dependency and feature interaction.

The view is a complement of the Hierarchical & Behavioural View.

¢ Intermediate View: Is where some design decisions are inserted into
the feature model to take it one step further towards the architecture
domain, in an effort to bridge the gap between the feature model and
the system architecture. This view is centred towards architects, and

provides a transition stage towards the architecture.

5.5 MUSA Technical Background

To demonstrate the theoretical groundwork in 4VM, the European RD Fund,
through INI funded MUSA as a proof of concept project under the Proof of
Concept funding scheme [2008-2010]. Further funding was received under
the Challenge Fund scheme at the University of East London [2010-2011].
MUSA implements this theory using a mind-mapping modelling approach over
the state-of-the-art in HCI (Human Computer Interaction), the multi-touch
Microsoft Surface (Dietz and Eidelson, 2009). This offers a scalable solution
that taps on the latest technology in Natural User Interface (NUI) (Microsoft,
2008) design, providing an intuitive and large display for Variability models. In
addition, the MUSA provides solutions over the Windows 7 platform, using its
native multi-touch pack.

As part of its innovative support for product line variability, MUSA provides a
comprehensive collaborative interface for eliciting variability and requirements

management from stakeholders, while at the same time allowing for suitable

104

access to the variability model to different teams, such as requirement

engineers, architects, implementation, testing and evaluation teams, etc.

MUSA provides end-to-end variability solution, in addition to automation of
model verification using SAT solvers. It allows consistency between the
different views to be maintained with the help of a centralised database (see

Figure 5.1).

Requirements Engineers Development Team
& Architects

Testing & Evaluation
Team

Stakeholders /
Project Managers

Figure 5.1: Theoretical Foundation (adapted from (Bashroush, 2010)

During the first official demonstration of the MUSA system, the focus was
mainly on the interface that is used to manage variability and requirements
elicitation, targeting mainly the architects/requirements engineers. The main

functionalities are: (1) it provides large gesture-based interface for the

105

modelling of variability in SPL. (2) It uses 360-D User Interface (Ul) design
principles and Natural User Interface (NUI) to provide a multi-user interface
simultaneous interaction and collaboration, and (3) It uses mind-mapping
techniques (hyperbolic tree) in the implementation of the variability model,

providing a potential scalability in a large model.

5.6 Implementation of the Earlier Version of MUSA Tool

The MUSA tool suite was initially implemented on the Microsoft Surface
platform and Windows 7, with a touch pack platform. It used hyperbolic trees
and supporting gesture-based interaction (multi-touch interaction) for
representing and visualising the variability models, which makes it a powerful

solution for creating and managing large-scale product lines.

However, the initial version of MUSA was developed as a prototype due to
some limitations with the surface platform, such as hardware issues inherited
from surface technology, and software issues such as platform dependency.
For this reason, many practitioners did not adopt MUSA; hence, there is need
for making it more generic. Although Microsoft has recently rolled out cheaper
and more portable versions of Surface, the earlier version of Surface was a
bulky piece of hardware that came along with a table for it to be mounted
upon. This made it very heavy and non-portable as a piece of hardware. In
addition, there is also the fact that the Surface was too expensive when it
initially hit the market. Figure 5.2 is a MUSA architect interface showing a

hierarchical view, and displaying a set variability models on a MS-Surface.

106

Figure 5.3 is a Windows 7 interface, showing variability models displayed on a

hierarchical view of the MUSA tool.

From these two figures, it can be noticed that different features are
distinguished using colour coding; namely, optional (blue), and mandatory
features (yellow). The existing Microsoft Surface-based MUSA system
requires user access cards that can be placed over the surface interface and
get recognised by the system. Appropriate access is then granted in
accordance with user privileges. Once the user has successfully logged in,
among others, he can select and load the existing feature trees that are
structured in the hierarchical model and stored using xml file, from which the
user can browse through the features, view the details of the features, and its

sub-features.

The user can also recognise feature types (Mandatory and optional).
However, depending on the user privilege, he can make changes to the
feature model. This implementation of the MUSA system over Natural User
Interface (NUI) was considered among the very first of its kind in order to
overcome scalability issues. This, however, improves the interactivity and
visualisation of the product line variability models. On the other hand, the
Windows 7 platform login process does not require an access card as it does
not support optical processing capabilities. Instead, it uses a standard login

screen on which a user can login with valid credentials.

107

J03R[NWIS IdeUNS

B L

C
=
=

103epUeA 1ys und

Figure 5.2: MUSA designed interface on MS-Surface showing the hierarchical view

108

-DETECT:NG]

“Dg YEUION
“ Morioy
"""’l\lnom;\,5

“Action

{SE(UR_,W)
“INTRUSION

|
=
5

Figure 5.3: MUSA designed interface on Windows 7 showing the hierarchical view

109

5.7 Screenshots and Descriptions of the MUSA Tool Version One

The application loads a default tree structure as the main application screen,
as shown in Figure 5.4. The user can also load and view a different feature
tree by clicking or touching the load button, which opens up the Open-File-
Dialog window, from which the user can select and load the needed feature
file, as shown in Figure 5.5. Once the feature tree has been loaded into the
application, the user can navigate through it, as well as view the details of its
features. Touching a feature will automatically load its details, as shown in
Figure 5.6. Other functionalities include editing features (Figure 5.7),
distinction between mandatory and optional features (Figure 5.8), placing the

nodes in focus in the centre, searching for a feature to locate its position in the

feature tree, etc.

AvtsnAIRITINE
& ST

P cuy|
4 INTHACN

4 e

W01
PACHTTORRA e 1NN

4 AZTON

FOOLOPPATON)

Figure 5.4: Main application window after successful log in

110

Figure 5.5: Options menu to load a tree

| Feature Name

ISMOKE_SENSOR] .m

Feature Deta's

‘ Motion sensors detect movement of peaple or animals i ts proximiy

Figure 5.6: Viewing details of a selected feature

111

T
|
Feature Name :

- [MOTION SENSOR

—— Feature Detalls:

Tonsenson |

Motion sensors detect movement of peaple or il inits prosimit

Edit
o)

Figure 5.7: Click Edit button to start editing

FIRE

Mandatory FLOOD

Optional

Figure 5.8: Mandatory and optional feature distinction

112

5.8 Summary

This chapter describes the early version of MUSA tool and framework,
implemented as a proof-of-concept on two different (the Microsoft Surface and
Windows 7 touch) platforms. This implementation was based on the four view
model (4VM), a successful work on multiple-perspective-based variability
management, which provides a modelling framework while using the
separation-of-concerns approach to alleviate the challenge of information
overloading. MUSA uses a mind-mapping modelling technique (hyperbolic
tree) in the implementation of this theory, over the state-of-the-art in Human

Computer Interaction (HCI).

113

Chapter 6

Musa Version 2

6.1 Introduction

The previous chapter presents and describes the theoretical foundation on the
basis of which the first version of the MUSA tool and framework was
developed, along with its implementation and the limitations that motivated the
redesign of the framework. In this chapter, a new version of the MUSA tool,
which exhibits a number of features that enable it to deal with large-scale
systems, is presented. MUSA adopts the separation-of-concerns design
principle by providing multiple perspectives to the model, each of which
conveys a distinct set of information. The tool was demonstrated on an
industrial case study consisting of more than 1,000 features. The
demonstration was conducted to show the Structural View, which is displayed
using a mind-mapping visualisation technique (hyperbolic trees), and the

Dependency View, which is graphically represented using Logic gates.

In this study, we still recognize the use of the mind mapping approach using a
hyperbolic tree as the best-known technigue in making better use of a screen
by representing large amounts of data without the problem of graphical
overloading. It is better than any other approach, like traditional tree browsing

interfaces, a space tree, file tree-like structures, and so on, which can be

cumbersome to use as soon as the number of variants reach about a

hundred.

6.2 The Musa Tool

The new version of the MUSA tool is implemented in Java and uses XML files
to input/output data. It provides two different collaborative interfaces (i.e.,
views) for managing variability models, and their consistencies are maintained
with the help of a centralised database (see Figure 6.1). The
Development/Browser View is the default view when the application is initially
launched. The main functionalities covered by this view include: (1)
Representation of product line variability models using a hyperbolic browser;
(2) creation of new feature trees for managing variability; and (3) editing
existing feature models (e.g., changing a feature’s name, its properties, and

description; adding and deleting features, etc.).

115

Development/Browser Dependency

Figure 6.1: Description of MUSA's architecture

The hyper-tree browser uses hyperbolic geometry to place nodes around the
root and provides smooth and continuous animation of the tree so that users
can bring other nodes into focus by clicking, tapping on or dragging them. The
advantage of using hyperbolic trees is reducing visual clutter compared to
standard trees when the number of child nodes grows exponentially. The
former employs hyperbolic space, which provides more room than Euclidean
space. Using hyperbolic trees gives this MUSA tool an important advantage in
scalability. The tool can display models with a large number of features;
counting more than 1000+ features are in the relevant case study of this

research (see Section 6.3).

116

6.3 Functionality of MUSA Using Case Studies

In this section, the main features of the new MUSA tool are presented by
using real-life product line case studies. This is accomplished by showing how
a new feature can be created from scratch, and then a variability model
consisting of 100 features is shown. The full functionalities are then described
using a large case study that consists of more than 1,000 features. The aim is
to show how effective the approach is when applied to product lines of
different sizes (i.e., it is capable of managing large or small-size variability
without any overhead or extra effort) in terms of managing and visualising
variability models. The use of these case studies enables the determination
and assessment of the extent to which MUSA satisfies design needs, as
compared to other tools available today. A video demo of the new version of

MUSA tool in action can be found in: https://youtu.be/Oql18Wv8czUI.

6.3.1 Creating a New Feature from Scratch

A new feature can be created from scratch by tapping or clicking on the file
menu and then selecting ‘New Root’. The new root feature will be placed at

the centre of the window view, as shown in Figure 6.2.

117

https://youtu.be/Oq18Wv8czUI
https://youtu.be/Oq18Wv8czUI

New Nodg

Figure 6.2: A new feature from scratch

To change the name of the new node, touch-hold it -> using the pop-up
window shown in Figure 6.3, a new name can be typed in the text box, along
with the description of the feature. As an example, the feature node was
named as a ‘Test’ feature. Finally, select ‘OK’ to validate or ‘Cancel’ to end

the process.

118

Mod Node Description 2

Node Name |Test

Description
New Node

‘ Cancel Ok

Figure 6.3: Adding a name for the new feature

Now, to add sub-features to the original root (Test) feature, double tap it ->
select the ‘Add Button’ from the options that appear (see Figure 6.4), type a
name for the new sub-feature, and then move down a bit and select its type
as either mandatory, optional or alternative. A description associated with the
feature can also be added, as shown in Figure 6.5. Finally, select ‘OK’ to
validate or ‘Cancel’ to terminate the process. As an example, TF1-TF9 has

been added (see Figure 6.6).

119

(| Mod Node * | £/ Add Node

[Add H Delete H Dependency | Node Name: |TF 1| |
Node Type: ® mandatory (optional (alternative
Description:

Mandatory! Cancel H OK }

s
I
Figure 6.4: Select the Add button :

i Cancel H OK ‘

Figure 6.5: Type a name and select its type

TF8

TF6

TF1

TF4

kS

Figure 6.6: Sub-features of Test Feature- TF1-TF9

Note that the different colours associated with these features are for

mandatory, optional and alternative: the light yellow is for mandatory and the

120

green is for optional, while the burnt orange colour is for alternative. From

here, more features can be added as required.

6.3.2 Medium and Large Scale-Size Models

Moving to one of the case studies used to evaluate the capability of MUSA,
one can look at the top left corner of Figure 6.7 and see that this case study
consists of 101 features. In fact, handling a variability of around 100 features
is one of the limitations of most current variability management tools. Looking
at the model, there are only five features attached directly to the root feature,
leaving a wide gap between them. Therefore, to show that more features can
be added without any overhead, another real-life case study with more than

1000 features has been used (see Figure 6.8).

[£] Model contains 101 features =
File

®
&

inte

-ont fr (user acc) (cd)
55575 (uzerace) 90
soft
(open/) contie interli printe
e
e
=
he
-
®
(G} =) _gn
vide
G
g Operatin
R i (e
message sen
messag connect (linuxJ

Figure 6.7: Medium scale-size model

121

[JoN] Model contains 1122 features
File

(REFnp)
@ (oo
[P
D :
o)
R
-
(fesD
i Basic fun U
G @
lagnose
(CoN)
'
— -Proramma m‘m
GG
&=
Q
o)
--Neate
)
(Bt o) |
Bus Com @I
(oD)

Oen © e "

Figure 6.8: MUSA’s main browser View

With reference to Figure 6.8, MUSA’s browser view shows all the features of
the model in the case study in a hyperbolic tree. By default, the root of the
tree is centred, while further leaf hames are hidden (but their connections
remain in order to provide visual feedback for the user). The user can cycle
through the features by swiping in any direction with a mouse or directly on a
touchscreen. Selecting a feature will centre the screen over it, zooming if
necessary, and displaying more connections to related features. Double-
clicking anywhere on the background will centre the view back to the root of
the model. When focusing on a particular node, MUSA places it at the centre
of the screen with all its children, while out of focus nodes will reduce in size

and be displayed towards the edge of the view.

122

However, upon double-tapping a feature node, the option menu with a
number of possible options will pop up; this can be used to add a new feature
to the existing tree, delete a feature from the tree, or view the dependency
relationships that exist among the features (see Figure 6.4). Users can also
use different gestures, such as pinching (for expanding nodes), panning (by
moving two fingers on the screen to shift the feature model), or tapping with

three fingers to centre the model to its root node.

Search in MUSA is straightforward by ‘touching and holding’ on any space (or
right clicking), which brings up the search box. In the popup box, users can
type the desired search keyword and a list of potential features will be
displayed. Touching or clicking any result will centre the view on that
particular feature. Figure 6.9 illustrates the search process. Adding or
removing a feature in the model can be achieved by double-tapping or clicking
on a feature node. A menu will appear with options to add or remove features.
If, for instance, the Add button is selected, the user will be prompted with a
window where she can type the name of a feature, such as TestFeature, and
select its type as mandatory, optional or alternative (see Figure 6.5). The
same menu displays an option to view dependencies in a different view. Upon
tapping or clicking on the dependency option, the Dependency View will open,
showing the selected feature with all its associated relationships. From this
view, different kinds of dependency relationships can be created, edited or

modified using Logic visualisation.

123

However, viewing the properties and the descriptions of a feature can be
achieved by touch-holding or right-clicking it, and a window will then appear
containing the details of the selected feature. Figure 6.10 is a properties
display window of a feature called Analogue Input Features

(Analogue_Input_Features).

124

oo @ o

Search Results

Please choose a feature to navigate to:
Search for a feature: s

> Product Type (Product_Type) <

-i? |PmduCt | — v Product Type (Product_Type)
PRODUCT_IS_CANOPEN
Product_x

Cancel _ EXTENDEDSTATUSWORD_PRODUCTIONMODE
PRODUCT_IS_AKDLON
PRODUCT_IS_MCB15X
PRODUCT_IS_DEVICENET
OEM_FCBUS_IN_PRODUCTION
eoce e Product Type (Product_Type)

©s)
@)
FaoD .
e
(%1
VLT_SIM
(oma) (2)
LCP
(BRIVE) (T0)
DD00111479 xSl
(Displa]
@, BUS PAR

(Application) (MOTOR_ORIE

Figure 6.9: The search process in MUSA

125

[] Mod Mede Description

Mode Ma... Analogue Input Features (Analogue_Input_Features)
Descripti...

Properties

ps:Source:
fa7437

ps:Created:
2010-08-23T08:27:29.3627

ps:ChangedBy:
f47437

ps:Changed:
2011-05-18T06:13:36.6057

Cancel Ok

Figure 6.10: The feature properties window

6.3.3 Managing Feature Dependencies using Logic Circuits

From the dependency perspective, a separate view is proposed within the
MUSA tool by using Logic Design to capture and model the dependency
relationships. Once the user makes his/her selection of features from the
browser view, the dependency model will take the user-selected feature set
as an input and verify it against the model, pointing out any dependency

relationships associated with that feature. At the same time, if no relationship

126

for that selection exists, then a new window in the dependency view opens to
create new dependencies, if needed. This provides simplicity in managing
dependency relationships within large and complex variability models. This
study used three basic Logic gate (AND, OR and NOT) symbols from which a
user, such as an architect, can generate and resolve any relationship (from

simple to complex dependency).

The dependency diagram in Figure 6.11 shows that the
Generic_Product_Code_Parameter feature requires three other features to
fulfil its tasks: the Parameters 8-19, the Production Mode and the Product
Type. Figure 6.12 illustrates this. It also shows that one of the required
features, the Product Type, is mutually dependent on the two other features
(Quality Features and Production Mode). Therefore, any selection of this
feature will inclusively imply their selection. However, the diagram shows that
a conflict exists between the Product Type and the Operation Mode;
therefore, they cannot be chosen for the same product configuration, that is,
they are mutually exclusive to each other (see Figure 6.13 for a breakdown).

Hence, a bi-directional exclusive relationship exists between the two features.

127

Clear Save Delete Undo Edit

&)

e

NOT Gate

&)

i '
OR Cate
&)

D

AND Cate

Paramerers 8-19

GEMERIC_PRODUCT_CODE_PARAMETER.

Froduction Mode

Operationmode

Product Type

Input Quality Features

-

Output

Praduction Made

text

"Text"

Figure 6.11: MUSA’s dependency view

Clear Save Delete Undo Edit

<]

e

NOT Cate

Output PARAMETERS 8-19

D GEMNERIC_PRODUCT_CODE PARAMETER
taxt

PRODUCTION MODE

PRODUCT TYPE

Figure 6.12: Generic_Product_Code_Parameter feature is mutually dependent on

Parameters 8-19, Production Mode and Product Type features

128

Clear Save Delete Undo

FRODUCTION MODE
&)
D PRODUCT TYPE
AND Gate

OPERATION MODE

-
QUALITY FEATURES

Output

Text

"Taxt”

Figure 6.13: Mutually exclusive relationships between features

6.4 New Version of MUSA as Compared to Earlier Version

This section takes a look at some of the improvements of the new version of

the MUSA tool suite over its predecessor.

The new MUSA system, as compared to its earlier version, is now
independent of any specific technological platform, as it can be directly run on
any hardware platform (PC, Mac, SunSparc, etc.) or software platform
(MacOS, Unix, Windows, Linux, etc.). However, in addition to the inclusion of
all functionalities of the previous version, a separate view has been introduced
to the new MUSA to manage dependencies. This has alleviated the problem
of graphical overloading when viewing and managing large variability models

along with their dependencies, all from one view.

This version has also introduced a new mechanism for identifying alternative

features (i.e., when exactly one feature in a group must be selected; if the

129

parent feature is selected), which was lacking in the previous version. This is
in addition to various improvements (such as innovative visualisation
technique), that have been shown earlier in this chapter. On the other hand,
the MUSA system was initially implemented based on Microsoft surface
technology and Windows 7, with a touch pack platform. It used hyperbolic
trees and supporting gesture-based interaction (Multitouch interaction) for
representing and visualising variability models. This makes it a successful

solution for creating and managing large-scale product lines.

However, due to some limitations with the surface platform, such as hardware
issues inherited from surface technology, as well as software issues, such as
platform dependency, MUSA was not adopted by many practitioners, leaving
it as a prototype system. Although Microsoft has recently rolled out cheaper
and portable versions of Surface, the earlier version of Surface was a bulky
piece of hardware that came along with a table for it to be mounted upon. This
made it very heavy and non-portable as a piece of hardware. In addition, the

Surface was also too expensive when it initially hit the market.

Table 6.1: Comparisons between MUSA1 and MUSA 2

MUSA 1 MUSA 2
Multi-Platform support No Yes
Innovative visualisation technique Yes Yes
Dependency management No Yes
Feature interaction Yes Yes

130

Multiple views

No

Yes

Modelling and management of
variability

Yes

Yes

Identifying alternative features

No

Yes

Support for multitouch

Yes

Yes

6.5 Summary

This chapter introduces and describes the new version of MUSA that has
been redesigned to better represent, visualise, and manage the variability of
software product line models. This new version adopts the separation-of-
concerns design principle and uses a mind-mapping approach (hyperbolic
trees) to represent variability, as well as logic circuits to graphically represent
the dependency and constraint relationships separately. This chapter also
presents the different views showing the visualisation specifications and

various functionalities of MUSA when populated with real data from case

studies of different sizes.

131

PART lIl: VALIDATION

Chapter 7

Variability Management Evaluation Benchmark

7.1 Introduction

In this chapter, we present a benchmark for the evaluation of software quality
attributes, as well as the quality attributes found to be important for software
product line practice. These quality attributes are as follows: usability,
performance, scalability, and integration. The purpose is to determine and
gain a detailed understanding of where and how the quality of variability
management tools could be improved. The study identified and selected 10
product line variability management tools which were based on their
availability and support for feature models, and these were to be evaluated
using the benchmark, in order to identify whether and to what extent these

tools provided support for the identified quality attributes.

7.2 Methodology

In this section, the methodology used to collect data and underpin the entire
study is presented.
In order to carry out this study, we applied a research methodology that

combined both the features of qualitative and quantitative research

133

methodologies. In the first step, a benchmark was developed, to be used
consistently as a guideline in the evaluation process. As a crucial stage in the
benchmarking design, we explored product line industries in order to know
precisely what matters for the practitioners. We, therefore, used the outcome
of an interview-based survey that involved a number of software product line
practitioners, in which they were asked to list five quality attributes they
deemed important for practical use of SPLs Variability Management (VM)
tools. The identified quality attributes (usability, scalability, performance, and
integration) were then used as key criteria to assess (i.e., how well the tools
addressed them) the capability of SPLs-VM tools in the evaluation phase.
Details of these quality attributes are given in section 7.4.

In the second step, the study focused on measuring the identified quality
attributes, so as to ascertain their meanings and position. Hence, a further
exploration into a number of internationally recognised standards and some
respected reference models were carried out; these included ISO/IEC 9126
(ISO/IEC, 2001, ISO/IEC, 2003) (International Standard for Evaluation of
Software Quality) and IEEE Standard 610.12 (IEEE Standard Glossary of
Software Engineering Terminology). Among the other is the well-known
Software Quality Metrics book (Fenton and Pfleeger, 1998), as well as An
Effort-Based Framework for Evaluating Software Usability (Tamir et al., 2013).
Having completed the survey and investigations on the identified quality
attributes, and in the third step, the results of a study (presented in Chapter 2
and 4) were used. This study reported on a survey in which 37 existing

product line-variability management tools were identified and analysed using

134

a systematic literature review, from which 8 tools were selected, based on
their availability and support for the graphical notations. However, 2 more
publicly available tools were added using a separate search, making a total of
10 tools used in the evaluation process. The details of the identified tools and

the criteria used when selecting a tool are given in section 7.5.

Finally, in the fourth step, an experimental evaluation was conducted (see
Chapter 8), using 4 sample case studies of different sizes, and this was
achieved by steadily applying the benchmark. The purpose was to assess
how well the identified tools addressed the four quality attributes. This was
followed by an opinion-based evaluation method that uses a questionnaire to
obtain more insight into the user’s opinion of the experience using the system.

This was to know the extent to which the system is attractive.

7.3 Related Works

Many works have been reported by various authors within the SPL community
in order to analyse, compare, or evaluate some of the existing variability
management methods, tools, and techniques. However, to the best of our
knowledge, no one has specifically evaluated these quality characteristics

important for practical use of tools that support variability in SPLs.

For example, in (El Dammagh and De Troyer, 2011), a quality evaluation of
nine feature modelling tools was conducted with the specific focus on quality
criteria of usability, safety, and functional usability features. The main aim of
the investigation was how to improve the quality in feature modelling tools, in

general.

135

Study (Djebbi et al., 2007) evaluated four product line tools against certain
criteria defined based on three perspectives; 1) criteria relating to product line
engineering (2) criteria relating to tools capabilities and (3) criteria concerning
project management. This is to determine their ability to satisfy industry
expectations. In study (Simmonds et al., 2011), eight tools and techniques for
variability modelling in software product line (SPL) or business process
management (BPM) were evaluated based on various formalisms used in

specifying software process variability.

The study analysed the tools in order to investigate their suitability for
modelling variability in the software process. However, in order to assist
engineers in selection of a suitable tool that best fits their needs, the authors
in (Pereira et al., 2013) conducted an exploratory study that compares and
analyses two feature modelling tools, based on data collected from 56
participants who experimentally used the tools. The study focused on
evaluating the four common functionalities provided by feature modelling
tools. These are: feature model editor, automated analysis of feature model,

product configuration and tool notation.

7.4 Benchmark

This section presents the four quality attributes measured, sub-characteristics
of each quality attribute and their detailed definitions. The section also gives

in detail, how the measurement was carried out.

136

7.4.1 Quality Attributes

The four quality attributes this study measured are: usability, scalability,
performance, and integration. These attributes were gathered from a study
that used an interview based survey involving a number of software product
line practitioners, in which they were asked to list five most important quality
attributes for practical use of SPL tools. Figure 7.1 depicts the four quality

attributes with their sub-characteristics.

— Understandability — Complexity

— Learnability —— Time Required

Usability =

— Operability —— Effort Required

Enjoyable and

Attractiveness .
pleasing

_| number of nodes
supported

Scalability —

Quality Attributes —

— Dependencies

Task Completion
Time

Performance

Search Capability

Integration with
other Tools

Integration —

Figure 7.1: The quality attributes used

7.4.1.1 Usability Measure

Basics of sub-quality attributes under usability

i. Understandability: Complexity in using the software

ii. Learnability: Time required to fulfil a specified task

137

iii. Operability: Effort required to carry out a basic task

iv. Attractiveness: Is the software attractive to the target audience?

In order to determine and understand the main aspects that influence
usability, this study based the measurement on the 1ISO 9126 (ISO/IEC, 2001,
ISO/IEC, 2003) on software quality and measurement, which defined usability
as ‘the capability of the software to be understood, learned, used and liked by
the user, when used under specified conditions’. The standard identifies four
to five key components of usability of a software product. Below are the
detailed breakdown and the definitions of these sub-quality characteristics of

usability:

i. Understandability
Can the software be understood easily? That is, the ability of the software
product to enable the user to understand whether the software is suitable, and
how it can be used for particular tasks and given the conditions of use.
Understandability helps determine how easily the user can comprehend and
use the software. We based the measurement of Understandability on study
(Fenton and Pfleeger, 1998) where an ordinal scale was used as our
measurement scale type (see Table 7.1) to measure the complexity of using
the software. The ordinal scale provides a list of ordered alternatives from

which respondents can select an option.

Table 7.1: Ordinal scale type

Value Meaning

Trivial: commonly encountered (no exceptional effort
needed)

138

2 Simple: Easy to manage and uncomplicated

3 Moderate: Being within average limit

4 Complex: Not easy to manage of being intricate

Incomprehensible: Impossible to manage of being not
clear

ii. Learnability

Can the software be learnt easily? That is, the ability of the software product
to enable the user to learn its application. Learnability is measured as the time
that is required to fulfil a specified task. The specified task for this study is the
need to add, delete, and edit a feature. This is in addition to the modelling of

its dependency.

Learnability = Total Time required to Add, Delete or Edit a feature +
Dependency Management
lii. Operability
Can the software be operated with minimal effort? That is, the capacity of the
software product to allow the user to operate and control it. Operability was
measured based on the efforts needed to accomplish the specified tasks (in
this case) of adding, deleting, and editing a feature, together with the
modelling dependency. Consequently, this effort equals the number of mouse
clicks or screen touch (mc/st) + number of keyboard hits (kh). This

measurement method is based on (Tamir et al., 2013).

Operability = Efforts needed to Add, Delete or Edit a feature +

Dependency Management

139

Efforts = Number of mouse click or equivalent + Number of Keyboard

strikes

iv. Attractiveness

Is the interface of the software engaging? That is, the capability of the
software product to be liked by the user. To measure attractiveness, this study
based on (Fenton and Pfleeger, 1998) where a 5-point Likert scale is used to
rank the software attractiveness, given a user a statement with which the user

agrees or disagrees. The statement used for this study is:

The software is attractive (i.e. Enjoyable and pleasing).

1- Strongly Agree 2- Agree 3- Neither agree nor disagree 4-Disagree

5- Strongly Disagree

v. Compliance

Does the software meet existing usability standards?

From the above definitions, usability can be measured by the degree to which
a software product can satisfy the individual aspects of the definitions, i.e. to
learn, understand, operate, and be attractive, while at the same time the
software is compliant with and meets the existing usability standards. This is
to be achieved under specified conditions in which a user or group of users

carry out certain practical tasks.

7.4.1.2 Scalability Measure

Scalability, as it has been defined by (Berg et al., 2005), is the ability of the

modelling approach to continue to meet its throughput objectives despite

140

increasing or decreasing the amount of assets and elements that make up the
models. A scalable variability modelling approach is the one that is useful
when applied to a product line of any size (i.e. It should be capable of
managing large or small size variability without any overhead or extra effort).
Therefore, an approach will not be regarded as scalable if scaling only in one
direction (i.e. downwards or upwards). However, a survey study on scalability
aspects in (Chen and Babar, 2009) pointed out that, dependency
relationships (such as variants to variants, variants to variation points or
variation points to variation points) within variability models are the most
discussed aspects in tackling scalability by modelling approaches. Hence,
based on these studies, we used sample case studies of various sizes to

serve as our basis for the experimental process of measuring scalability.

These cases were then classified into three different categories, which were
then used to validate the selected tools with respect to this quality aspect.

Section 8.2 of chapter 8 provides more details about the case studies.

The sample models are: (1) Small size, when a tool supports the development
and management of 10-50 features before it starts to freeze or slow down. (2)
Medium size, when the ability of variability management tool is to offer
support for the development and management of 10-100 features when used,
and (3) Large size, when it supports the development and management of
variability models between 100-1000. At each level of testing of these various
sample models, there was a practical investigation to see if the tools provide

good support for dependency management and how it works. The scalability

141

measure has been achieved experimentally, in order to gain a clear
understanding of how and to what level the selected tools offer quality support
for this attribute during the modelling process. Please note that it is not our
purpose to measure the visualisation techniques deployed by these tools, but

rather focus on the number of nodes they support.

7.4.1.3 Performance Measure

Performance evaluation according to (Ferrari, 1983) and(Kleinrock, 1976)
includes externally observable system performance characteristics, such as
response times and completion rates. However, IEEE standard 610.12
defined performance as the degree at which a system or a component
completes designated tasks within given limits, such as speed, accuracy, or
memory usage (IEEE, 1990). In this study, Performance is measured in
relation to the scalability as the time it takes for each tool to validate the
sample feature models assigned to it. That is, performance is measured as
task completion time plus the search capability provided by the tools. Due to a
large growth in size of the model, it becomes mandatory to investigate
whether a tool can allow its user to search for a particular element of interest

given several features.

7.4.1.4 Integration Measure:

The ability of a software tool to provide the means to either fully or partially
integrate with other tools so that both tools can operate on the same set of

data.

142

In this context, we will be using characteristics as follows:

Y = Yes, when a tool provides means to be fully integrated with other tools,

and therefore operate on same set of data.

P = Partial, when a tool provides only half the features required for integration.

N = No, when a tool provides no means of integration.

7.5 Tools identification

This section provides a brief description of each tool used in the study.
However, to make it easy for reading, the account is made in tabular form as
shown in Table 7.2 where there are seven columns, in which the first column
gives the name of each tool. The second column provides a brief description
of each tool. While the third column presents the environment or platform
based on which the tools were implemented, as well as whether the tool is run
as a standalone application, plugin, or web services, together with the
technology used to develop the tool. We also investigate the type of operation
the tool supported i.e. the type of graphical notations used, as shown in the
fourth column. The file format used by each tool is in column five. We further
consider whether the tool is solely for commercial purpose, academic or both,
shown in column six. Conversely, we inspect whether the tool is free and
open source software or its evaluation copy could be obtained in column

seven.

Table 7.2: Tools description

Tools Description Environment/ Graphical File Comme | Open
Platform Notation Format rcial/Ac | Source/

143

Types ademic Evaluation
copy
FeaturelDE FeaturelDE: an Eclipse plug- | Runs on | Graphical Feature C/A Free under
in tool that support all | Windows and | and text | model file L-GPL
phases of Feature-Oriented | Linux. based ina license v3
software development for | Implemented as | Notations supported
SPL development. The tool | an eclipse plug-
provides a configuration | in developed format
editor for creating and | using Java (default:
editing of configurations and | technology. xml)
provides support for valid
product derivations. This is
in addition to the detection
and highlighting of dead
features (Ké&stner et al,
2009).
MUSA Case | MUSA Case Tool: is a multi- | Runs on | Graphical XML A Neither free
Tool touch variability modelling | Windows, Linux | using nor
solution for software product | and Mac as | Hyperbolic evaluation
line. It is a tool and | stand-alone Tree copy
framework that supports | application. notations
gesture based interaction for | Developed
creating, visualizing, and | using Java
maintaining large scale | technology.
software product lines.
MUSA was developed to
address the scalability issue
when (graphical
overloading) visualizing
large scale models
(Bashroush, 2010).
S2T2 S2T2 Configurator: A tool for | Windows and | Graphical Conjunctiv | A Free
interactive visual | Mac. Notations e Normal
configuration of feature | Implemented in Form
models with a formal | Java. (CNF)
reasoning engine that
supports interactive
functionality, such as
calculating the
consequences of user
decisions based on the
formal semantics of the
feature modelling language
(Pleuss and Botterweck,
2012).
CVM Tool CVM tool: A (Compositional | Runs on | Graphical XMI import | C/A Free
Variability Management) for | Windows and | Notations and
feature modelling and | Mac. It is based | based on | export.
configuration, implemented | on Java | Graphical
as an experimental | technology. Editing
variability management tool Framework
for the evaluation of (GEF)
research approaches
developed with close

industry cooperation (Abele
et al., 2010)

144

Familiar Familiar: a fully integrated | Runs on | Both Textual | .treeml, A Free
modelling environment that | Windows, Linux | and other
supports the development, | and Mac. | Graphical input/expor
manipulating and reasoning | Developed in | Notations. t are XML,
about feature models. | Java language fmprimitive
Familiar provides different | using XText. s, .tvl and
solutions including a .m
standalone application,
standalone console mode,
and as a plugin for Eclipse
platform (Acher et al., 2013).
CaptainFeat CaptainFeature: a feature | Runs on | Graphical XML A Free
ure modelling tool with an | Windows, Linux | through
integrated configurator for | and Mac. metamodelli
selecting features from the ng notations.
feature model | The tool was
(CaptainFeature, 2005). implemented as
a standalone
application
Developed in
Java
Odyssey Odyssey: A reuse | Run on | Graphical XMI No Free under
Environment that contains | Windows and | using UML | Import/Exp GNU
various tools to construct a | Linux. Used as | notation ort License.
reuse infrastructure based | a
on Product Lines, Domain
Models and Component | Standalone
based Development. It | application.
provides support for
domain engineers, domain | Peveloped
specialists and software using Java
engineers who are Technology.
responsible for the
development of application
within that domain (Braga et
al., 1999).
XFEATURE XFeature Tool: an Eclipse | Runs on | Graphical XML and | A Free
plug-in tool supports the | Windows and | Notation XMl
modelling of SPL and the | Mac 0S's. Under GPL
applications instantiated | Implemented (General
from them. The tool is used | using Eclipse Public
to build model of a set of | and XML License).
configurable software assets | Technology.
by permitting the user to
define their own feature
meta-model (Pasetti and
Rohlik, 2005).
PLUM PLUM (Product Line Unified | Eclipse Plug-in Graphical C Free
Modeller) a tool suit that using UML
follows a model Model- notation
Driven Software

Development approach. It is
intended to provide support
for the design,
implementation and
management of software
product line. PLUM allows
the product variability to be
captured in what is so called
a decision model, which
implies analysing domain
variability in terms of
decisions and establishing
dependencies among them
(Aldazabal and Erofeev,

145

2008).

Pure::Variant | Pure::Variant: a tool support | Runs on | Graphical XML- C Evaluation
s for software product line | Windows, Mac | Notations based

development and realization. | or Linux. exchange

It supports the creation and | standalone or format.

management of diverse | 550 used as
variants of such product line.
The tools are wused to
support various models from
description of the problem
domain of the PL, to the
description of the
implementation and for the
selection of a specific
product (Beuche, 2008) .

Web services.

7.6 Setting up of the Evaluation

The evaluation was achieved in two phases, both of which were carried out
experimentally; in the first phase, an experiment was conducted using very
small-scale models. This involves five PhD students, three of whom were from
the domain of software engineering and the other two from the field of
computing and technology possessing good modelling skills. During the
experimentation, they were asked to create a very small feature diagram
containing 8 feature nodes, two feature groups, and one feature constraint.

Each one was provided with two tools.

A prior training session on how to use the tools was conducted to familiarize
the users with the tools. The experimental evaluation in this stage was mainly
to test the usability as a quality criterion, in order to gain a better

understanding of how these tools could offer and support this quality attribute.

146

However, the use of a very small-scale model helps determine the readiness

of these tools when used for larger case models.

While in the second phase of the experiment, unlike the first stage, the focus
was not only on usability but also on scalability and performance. As stated in
sections 7.4.1.2 and 7.4.1.3, scalability and performance were measured by
dividing the experimental activities into three sub-divisions. Under each
division, the following were examined: (1) the maximum number of features
that a tool can accommodate. That is, in which of the three sub-divisions it
falls: is it small, medium, or large. (2) What time it takes for a tool to
accomplish the specific task assigned in such division and (3) what is the
usability of a tool when accomplishing the task. For each of these sub-tasks,
scalability is measured as the maximum number of features at which a tool

starts to suffer a graphical overloading or slow down.

Furthermore, performance was measured as the time it takes for a tool to
complete the specified task in the division. Finally, the usability of a tool while
accomplishing the task was assessed as understandability, operability, and
attractiveness. At this point, learnability was not taken into consideration
because the performance of a tool can be more accurately measured when
dealing with large scale models. In order to measure performance,
learnability, and operability, a screen activity recorder software called Steps
Recorder(Steps Recorder) was used to record the time taken, images, and

the step by step activities of the experimental process.

147

7.7 Summary

This chapter describes a benchmark that was used persistently as the
guideline to evaluate the MUSA tool, in comparison with other tools. The aim
of this benchmark is to measure the four quality attributes (usability,
scalability, performance, and integration), which were identified from an
interview-based survey that involved a number of variability management
(VM) practitioners. The chapter also presents and describes the 10 selected
VM tools which are to be used in the experiment, as well as the criteria
followed when choosing a tool. Finally, it explains how the evaluation was set

to be carried out experimentally.

148

Chapter 8

Case Studies and Experimental Evaluation of the Tools

8.1 Introduction

This chapter applies the benchmark presented in the previous chapter, which
served as our guideline. It first describes the four case studies of different
sizes and data elements which were used in the experimentation; this
includes how they were acquired (e.g. from industry) or formulated from the
various sources. These sample cases were used to assess how well the
identified feature modelling tools satisfied the four different quality attributes,
as compared to our MUSA approach. The chapter presented and described
the results of the evaluation. Finally, the lessons that were learned and a set

of recommendations were described.

8.2 Case Studies

To illustrate how well and to what extent the selected tools satisfy the four
quality attributes identified, we used multiple case studies out of which the
largest scale case was acquired from Danfoss Power electronics. The case
study is for Frequency Power Drives Product Line consisting of (1,300
variation points). The aim of this product line is to design and develop power

drive to support any automation application and provide major energy savings

and capability to control torque, acceleration, synchronization, position, and

the overall performance (IBM Rational DOORS).

The remaining case studies were gathered from the results of careful
examination of a large body of research work in the area of software product
lines, from which feature models of various sizes were formed and used in the
experimental process. The formulated models were therefore gathered from
various sources and involved the formation of small, medium and large scale
models. Among them is a case study (Thérn and Sandkuhl, 2009) for Library
Services product line demonstrating the variability modelling of a wide range
of services offered by a library to provide smooth and effective services to

customers. This case study consists of 24 features.

In addition, a case of a house automation system product line that provides
basic security, alarm, lighting, communication, and agenda services was also
considered. This system is designed to serve as a middleware capable of
interacting with other in-house physical devices such as heating equipment,
lamps, and sensors in order to manage their functionality. This case study
contained 20 features (Istoan et al., 2009). Another case study used was an
email client adapted from (Akram and Abbas, 2009), used for sending and
receiving e-mail. The product line model represents variations between
different components of an email such as message editor, type of connection,
operating system running, user practices and policies, communication
protocols, and several other services. This case study had 18 features.
However, in study (Mendonca, 2009), a simple feature model for a web

search engine product line has been used. This case study represents various

150

services offered by a search engine; these include page translation, doc-type,
page preview, and ability for a user to search by language. This model had 14

features.

Finally, a mobile application product line that provides the ability to a user to
search and buy products from an online catalogue in (Parra, 2011) was also
used. This mobile application product line model among others contained its
different expected services; among which are items catalogue, notification,
authentication, history of items bought, shopping cat etc. The model had 23

features.

On the other hand, in order to build a small-scale variability model case study,
we joined together three different cases and formed a model that consisted of
more than 50 features based on which the experiment for the small case
study was conducted. The three different models used are: email client, library
services, and search engine-PL. However, we formulated a medium scale
study by combining the five different cases, which gives us a single case
study with 100 features serving as the medium scale model used in the

experiment.

8.3 Results

This section presents and describes the results of the evaluation process of
various quality attributes that have been assessed during experimentation,
starting with the usability measurement under which its four sub-components

were experimentally tested using the various sizes of sample models. That is,

151

very small size, small size, medium and, large size, followed by scalability,

Performance, and Integration respectively.

8.3.1 Usability

As stated above, usability was measured with respect to its four individual
sub-components: understandability, learnability, operability, and
attractiveness. For each of these components, two separate experiments took
place: (1) usability was measured when a tool was applied to a very small-
scale variability model (a model with only 8 features), and (2) usability when
different sizes of variability models were applied (small, medium, and large

scale sizes).

8.3.1.1 Understandability

By using an ordinal scale type, our dependent variables (comprehension and
usage) were measured by asking the participants to specify their feeling about
how easily they comprehend and use the tools or vice versa. The items in this
scale are ordered with series of options or ranking order, with 1 being the
most easy to manage and comprehend and 5 being the most difficult.
Therefore, with respect to this quality, all the four sub-processes, Add, Delete,
Edit, and Dependency, were carefully checked; therefore, when applied to
very small-scale model, three tools (FeaturelDE, Familiar, and Pure::variants)
score better in understandability with ranking 2 (simple), as depicted in
column 1 of Table 8.1. Other four tools (MUSA, S2T2, CVM and

CaptainFeature) scores 3, which is moderate. The poorest results obtained

152

are for the Odyssey, XFeature, and PLUM with scores of 4 being complex.
Consequently, none of the tools were given the maximum rating by each of

the participants. Figure 8.1 summarizes the distribution of scores in a bar

chart.
Table 8.1: Usability of very small-scale size model
Usability
Tools Operability= Effort (mouse
Understandability= Learnability= Task e Attractive
Comprehending and Usage Completion Time N}meer o Ke_yboard ness
strikes + dragging etc.)
Ad Del E Depend Ad Del E Depend @ Ad Del E = Depend
d ete | dit ency d ete | dit ency d ete | dit ency
Featureld 2 4:31 80 3
MUSA 3 6:55 103 2
S2T2 3 4:00 105 2
CVM Tool 3 8:31 184 2
Familiar 2 5:57 48 2
CaptainFe 3 5:27 180 3
ature
Odyssey 4 10:00 294 4
Pure::Vari .
ants 2 4:52 91 2
XFEATUR 4 12:38 217 4
PLUM 4 10:20 291 3

153

4 4 4
3
2
N & N 3N @
Q\’o &\)Q‘ ﬁ\,bQ \\%Q’Q! (5\0
F P&
« @ @
Qo Q’bQ

Incomprehensible Complex

» o <V X %
NN S
'b((\ @) ®> \)g@
< N\ R
QQ)
Moderate Simple e Trivial

Figure 8.1: Understandability of very small-scale size model

Conversely, usability was measured when applied to variability models of

different size (small, medium, and large), in that, only MUSA scores well in

understandability (see Table 8.2 column 1) with ranking 2 while offering

support for each of the four sub-processes. Following it were FeaturelDE,

Familiar, CaptainFeature, Pure::Variants, and PLUM with ranking of 3

representing a moderate level of understanding; the worst results acquired

were for S2T2, CVM, Odyssey, and XFeature with rank of 4, which is complex

to understand. See Figure 8.2.

Tools

FeaturelDE
MUSA

S2T2

CVM Tool
Familiar
CaptainFeature
Odyssey

Table 8.2: Usability of different scale size

Understandability=
Comprehending and Usage

ArwwpsrhrdNDW

Operability= Effort (mouse click or
equivalent + Number of Keyboard strikes
+ dragging etc.)

10-50 10-100 100-1000
214 433 No

249 500 Yes

341 572 No

327 685 No

376 697 No

601 1,311 No

338 No No

154

Attractiveness

AW DNWWNW

Pure::Variants 3 253 439 No 3
XFEATURE 430 77 No
PLUM 3 220 No No 4

N
w

e_b
N

[©

/O((_ w

< Z N S v
SR G P RN
R ?'S R 1) d % A@ S N
.\3((’ & © > 5 ((0'0
Q\) O’bQ
mmmm Incomprehensible mmsm Complex = Moderate Simple e Trivial

Figure 8.2: Understandability of different scale size

8.3.1.2 Learnability

Task completion time given in column 3 of Table 8.1 shows the results of the
investigation on the time it takes for each tool to complete the task of adding,
deleting, editing, and modelling dependency when applied to very small-scale
model. In this, S2T2 was observed with least time to model variability of this
size, followed by FeaturelDE, Pure::Variants, CaptainFeature, Familiar,
MUSA, CVM, Odyssey and PLUM respectively, while XFeature consumed

more time to accomplish the specified task. See Figure 8.3.

155

PLUM

Xfeature
Odyssey
Pure::Variants
CaptainFeature
Familiar

CVM

S2T72

MUSA

FeaturelDE

0 2 4 6 8 10 12 14

Figure 8.3: Learnability of very small-scale size model

8.3.1.3 Operability

The effort needed which includes mouse click, gesture based interaction,
number of keyboard hits and dragging etc. shown in column 4 of Table 8.1.
The operability of tools when applied to a very small sample size model:
Familiar scores best with list number of efforts. Following it were FeaturelDE,
Pure::Variants, MUSA, S2T2, CaptainFeature, CVM, XFeature, and PLUM
respectively. Subsequently, Odyssey required more efforts to accomplish the

task. See Figure 8.4.

156

PLUM
Xffeature
Pure::Variants
Odyssey

CaptainFeature

||I|'||IH

Familiar
CVM
S2T2
MUSA
FeaturelDE
0 50 100 150 200 250 300 350
u Effort

Figure 8.4: Operability of very small-scale size models

On the other hand, when applied to different scale variability models, (see
Table 8.2 column 3, sub-column 1) the observations were: first, on applying to
models that contain 10-50 features, FeaturelDE scores best, while PLUM,
MUSA, Pure::Variants, CVM, Odyssey, S2T2, Familiar, and XFeature
followed it respectively. With the CaptainFeature turned out with the worst

results by requiring more efforts to carry out the task.

Secondly, when applied to sample models of size 10-100, FeaturelDE is still
the best with less number of required operations, followed by Pure::Variants,
MUSA, S2T2, CVM and Familiar respectively; the CaptainFeature required
more operational efforts, as depicted in Table 8.2 column 3, sub-column 2.

Unfortunately, tools like PLUM and Odyssey provide no mechanism to

157

support a model with such number of features. Finally, when applied to
variability models of size 100-1000, MUSA was the only tool capable of
accommodating such large scale models (see Table 8.2 column 3, sub-

column 3).

8.3.1.4 Attractiveness

The 5-point Likert scale (stated in 4) of Chapter 7) from which participants
chose to rank the software attractiveness indicates that with very small size
models, five tools were ranked with 2, i.e. ‘Agree’ by the participants. These
include MUSA, S2T2, CVM, Familiar and Pure::Variants. While FeaturelDE,
CaptainFeature and PLUM follow them with rank of 3, i.e. ‘Neither agree nor
disagree’. The worst results were obtained for Odyssey and XFeature tools
which were ranked with 4, i.e. ‘Disagree’ as can be seen in column 5 of Table
8.1. On the perspective of different size models, MUSA and Familiar tools
score best with ‘Agree’, while FeaturelDE, S2T2, CVM, CaptainFeature,
Pure::Variants and XFeature are following them with ‘Neither Agree nor-
Disagree’. Odyssey and PLUM are the worst with ‘Disagree’ in this
perspective. However, none of the tools scores ‘strongly Agree’ which is the

highest score. See column 4 of Table 8.2.

8.3.2 Scalability

As stated in section 7.4.3 of Chapter 7, scalability was measured with respect
to the number of feature nodes that a tool can accommodate, that is, in both
upward and downward directions without any overhead. As indicated in Table

8.3 column 2, eight tools out of ten (FeaturelDE, MUSA, S2T2, CVM, Familiar,

158

CaptainFeature, and Pure::Variants) were able to make it when applied to a
small-scale variability model that contains 10-50 features. While unfortunately,
three tools (Odyssey, XFeature, and PLUM) were only partially able to
accommodate 50 features, with only Odyssey slightly accommodating more
than 40 features; XFeature and PLUM were the only products to

accommodate nearly 40 features. See Figure 8.5 for details.

Conversely, scalability when applied to a medium scale sample size
containing 10-100 features showed that 7 of the ten tools (FeaturelDE,
MUSA, S2T2, CVM, Familiar, CaptainFeature and Pure::Variants)
successfully supported the sample of this size as well as managed the
dependencies that existed among them. Three tools (Odyssey, XFeature and
PLUM) turned out total failures in accommodating the sample size of this kind.

See Table 8.3 column 3.

However, when applied to a large scale sample model that contained 100-
1000 features, only MUSA tool was found to be capable of accommodating
such features as depicted in Table 8.3 column 4. The overall summary results
of scalability measure of the various sample sizes used in the experimentation
are presented in Figure 8.5. The summary results of usability measures when

applied to a very small-scale model are also presented in the figure.

Table 8.3: Scalability measure

Tools Small size 10-50 Medium size 50-100 Large size 100-1000
FeaturelDE Yes Yes No

MUSA Yes Yes Yes

S2T2 Yes Yes No

159

CVM Tool Yes Yes No

Familiar Yes Yes No
CaptainFeature Yes Yes No
Odyssey Partially No No
Pure::Variants Yes Yes No
XFEATURE Partially No No
PLUM Partially No No

Scalability Measure

1200
1000
1000
800
600
400
200
100 10 100 100 100 100
5 5 5 5 5 50 5
8 8 8 (] 8 Ol 8 Ol 8 842 8 Ol 839 838
O - — — - — — - — — —
& e 9V B] Y))
& F LS ¢ P F S
S A\ «® «@ N RG @ <
> & o +
<® 4 \4
S >

mVery Small = Small ®Medium mLarge

Figure 8.5: Scalability measure of various sample sizes

8.3.3 Performance

Performance was measured hand in hand with scalability as the time it took
each tool to validate the assigned sample size plus the investigation if a tool
provided a search mechanism for finding a particular feature of interest.

Please refer to Table 8.4 for the summary of the overall results of

160

performance measurement. In this, only MUSA and Pure::Variants provide

search mechanism.

Table 8.4: Performance measure

Tools Task Completion Time Search Capability
10-50 50-100 100-1000
FeaturelDE 16:35 18:57 No No
MUSA 18:33 16:38 Yes Yes
S2T2 22:49 19:01 No No
CVM Tool 16:09 17:22 No No
Familiar 21:27 22:14 No No
CaptainFeature 31:22 33:58 No No
Odyssey 19:28 No No No
Pure::Variants 18:17 21:27 No Yes
XFEATURE 24:41 No No No
PLUM 22:30 No No No

8.3.4 Integration

As stated in section 7.4.1.5 of Chapter 7, Integration was measured as the
ability of a tool to provide the means to either fully or partially integrate with
other tools so that both tools can operate on the same set of data. Tools
integration has not been found as an issue for majority of the tools
(FeaturelDE, S2T2, CVM, Familiar, XFeature, PLUM and Pure::Variants) are
all found to be integrated either as Eclipse plugins or integrated with other in
house developed tools. We found only three tools out of ten (MUSA,

CaptainFeature and Odyssey) not integrated with any other one.

See Table 8.5 for the distribution of measurement.

Table 8.5: Integration measurement

Tools Y =Yes P = Partial N = No Integration with
FeaturelDE Y Eclipse plug-in
MUSA N

S2T2 Y Eclipse plug-in

161

CVM

Eclipse plugin

Familiar

Plugin for Eclipse and
Integrated with FeaturelDE

CaptainFeature

Odyssey

XFEATURE plug-in for the Eclipse
platform

PLUM plug-in for the Eclipse

platform

Pure::Variants

Integrated into IDE’s such
as Eclipse or Rational
Software Architect.

8.4 Discussion, Lessons Learned and Recommendations

This section presents the discussion of the results, the lesson learned, and

the recommendations from the participant’'s comments.

The finding from this study as can be seen in section 8.3 has revealed that,

with respect to the usability (see Table 8.1), majority of the tools were able to

make it with either simple or moderate level in understandability when a very

small-scale model is used. Likewise, many of them were able to fulfil their

allocated task in less than 10 minutes. Similarly, only three of those tools

required more than 200 operations to accomplish their given tasks. However,

in regards to attractiveness, only 2 tools were rated with ‘not- agree’ on the

basis of whether they are enjoyable and appealing when used.

162

On the other hand, this study also revealed that majority of these tools start to
decline except (Bashroush, 2010) as soon as the number of features grow
larger making them less usable. Likewise, they cannot scale well with the
current situation where variability models are becoming very large and difficult
to manage, especially in the real world industrial product line. Therefore, the
study discovered that majority of these tools suffer scalability issues when the
models start to reach around hundreds of attributes. In this regard, six tools
(FeaturelIDE, MUSA, CVM, Pure:Variants, Familiar and CaptainFeature)
accommodated up to 100 features, which is the order of medium scale
variability models. While three (Odyssey, XFeature and PLUM) tools failed to

effectively support the small-scale model that contained 50 features.

Finally, with respect to the large scale model, which is the peak point for
determining scalability in this study, only one tool MUSA was capable of
accommodating more than a 1000 features. It is therefore the only tool that

scaled in both directions; that is in upward and downward directions.

Following are the comments from the participants who used the tools during

the experimental process using a very small-scale model:

On FeaturelDE: the user commented that the tool supports all the functionality
expected from it with only slightly difficult to manage feature constraints.
MUSA was found very effective specifically when creating and managing
large variability features, but it is a bit difficult to model dependency using
logic circuit. S2T2 Configurator was easy to use but managing dependency is

a bit daunting as you need to click outside and then inside again before you

163

can add a text for the dependency. CVM is workable, but managing
constraints could only be achieved using a straight line arrow, which causes
interruptions with other nodes in a large model. Familiar provides efficient
ways of managing and handling growth of features by allowing zooming in
and out of the entire feature tree. Unlike other tools, where the user has to
scroll up or down to view the hidden features, Familiar enables moving around
the entire feature tree from one place to another, making it easy to view the
hidden features; however, managing constraints among features is a bit
difficult to tackle. For CaptainFeature, users found its constraint dependency

not simple and felt it would be difficult to use in large scale scenarios.

Odyssey seems not easy to understand as it is difficult to identify the
alternative option representation. It also seems not supporting the ‘OR’
feature grouping. The tool is more towards UML based rather than feature
modelling approach. Pure::Variants is an easy to use tool and has rich
functionality such as different layouts (vertical and horizontal) zoom in and
out, collapsing and expanding of elements or even to hide elements if one
wishes to. It is easy to create and manage features. Editing is very easy in
Pure::Variants and advance search mechanism is provided and constraints

are managed in a separate view.

The tool, XFeature is complex to use; specifically, using the constraints
between features is an issue and to identify the alternative feature grouping is
difficult. PLUM seems easy to use, but to some extent creating and managing

variability models is not straightforward. For example, connecting features is

164

difficult to accomplish. Likewise, maintaining feature groups (i.e. OR and

alternative) are not seen as easy to implement.

Based on these findings, it is of significant importance that the product line
tool designers should realise and focus towards the increasing demand for
making variability management tools more scalable to handle the complexity
of the real world industrial product lines, as was also recommended in study
(Chen and Babar, 2009). However, it is also recommended that the future tool
deigns should be capable of managing both the small and large size variability
models without any difficulty or extra labour. That is, there is need to make
future tool designs more generic, instead of only focusing on ad-hoc designs
that solve only a particular problem. This is of paramount importance from

both scalability and usability aspects.

In addition, there is need to make future tool designs more flexible and
straightforward when used, rather than requiring a user going into technical
details in order to perform a simple operation. This has strong effects on
usability, especially with respect to understandability and the tools’
performance. Finally, providing support for integration with other tools could
ease their adoption in practice by reducing the possibility of requiring
changing the entire current practice. Please see the Appendix C for the

screen shots of the tools’ experimentation.

Table 8.6 summarizes the overall results of the evaluation. This indicates that
the MUSA tool satisfied the four quality attributes, as compared to other tools,

with the exception of one attribute, i.e. integration, which is part of our future

165

work. Note that the alphabets U, O, and A under the usability column are for
understandability, operability and attractiveness, respectively, while T and S

under the performance column represent task and search.

Table 8.9: Summary results of the evaluation

Tools Usability Scalability Performance Integration
u o A 10-50 10-100 100-1000 T S

FeaturelDE X X X X
MUSA X X X X X X X X
S2T2 X X X
CVM Tool X X X
Familiar X X X
CaptainFeature X X
Odyssey
Pure::Variants X X X X X
XFEATURE X
PLUM X

8.5 Summary

This chapter complements Chapter 7 by using the benchmark it presented, to
conduct an experimental evaluation of MUSA tool as coppered to other 9
existing tools. It used four different case studies including: (1) for Frequency
Power Drives Product Line consisting of (1,300 variation points). (2) A Library
Services product line demonstrating the variability modelling of a wide range

of services which were offered by a library with 24 features. (3) A house

166

automation system product line, that provided basic security and contained 20
features, and (4) a mobile application product line that provided the ability to
the user to search and buy products from an online catalogue with 23
features, together with the description of how they were gathered. The use of
these case samples was to assess how the identified feature modelling tools
satisfied the four different quality attributes. The chapter described the results
of evaluation, the lessons learned, and the recommendations for future

development.

167

PART IV:

CONCLUSION AND FUTURE

WORK

Chapter 9

Conclusions, Contributions, and Future Work

9.1 Conclusion

The work proposed in this thesis investigated the reasons behind the lack of
scalability with regards to the current variability management tools and
techniques, something that will help us and other researchers accurately
focus on the future efforts. The study not only provides a good overview of the
existing variability management tools and the challenges for variability
management tool support, but it also establishes the criteria and concepts for
the comparison of such items. Based on the conclusions drawn from the
survey, we proposed a new framework and a support tool for variability
management that would address the scalability issue, which was the key
challenge identified for variability management. The research also showed
that managing dependency relationships separately from the actual
representation of the variability models can significantly improve the scalability
of a model’s visualization, by reducing the complexity of viewing and
managing them all from one view. Support for this was implemented by
redesigning and creating a new version of the MUSA tool suite (a proof-of-
concept variability management tool and framework was developed within our

research group) that could address these challenges, and thus, lend itself to

169

industrial large-scale applications. Such a development would ultimately allow
for the creation and management of larger and more complex product lines.
The new MUSA system was evaluated using a large-scale, multifaceted case
study.

In part | of this document, we discussed about a systematic literature review
survey which was conducted to have a better understanding of the main
reasons behind the lack of scalability in the current variability management
tools and techniques. We described the method used to identify, collect, and
review the relevant papers in Chapter 2. We studied and presented an
overview of 37 tools for managing the variability in software product lines,
along with a number of commercial tools and the tools that have been
adopted in the industry, with a focus on tool functionality, the technology used
for development and implementation, and the type of notations supported in
Chapter 3. We notably found that the key challenge of variability management
tools is the scalability of models, that is, how to support the development of
variability models that are still useful despite their size and complexity

(Chapter 4).

We have also redesigned the MUSA (A Multitouch Variability Modelling
Solution for Software Product Lines) framework and practical tool support, to
allow the creation and management of larger and more complex product
families and increase the productivity and the time-to-market of products. The
variability model itself is implemented using a mind-mapping approach based

on hyperbolic trees, providing an unprecedented potential for scalability. We

170

described how effective the approach is when applied to the product lines of

different sizes.

In part I, we described the earlier version of the MUSA tool in Chapter 5, as
compared to the newer version in Chapter 6. A few of the key changes and
improvements in the new MUSA over its predecessor are: (1) Applying the
idea of separation-of-concerns design principle, and the use of logic circuit
design, which is an additional view (Dependency view) for capturing and
managing the dependency relationships that exist within the model that has
been introduced. (2) Seamless support for cross-platform without any
interruptions in the software. (3) Ability to recognise the presence of
‘Alternative’ feature set. (4) More innovative visualisation techniques that

provide support for larger product line, etc.

In part Ill, we show how our approach met the design requirements, by
evaluating our approach in comparison with other similar approaches. In
Chapter 7, we described a benchmark that has been used steadily as a
guideline during the evaluation process. The main focus while designing this
benchmark was to know precisely what matters for the practitioners. For that
reason, we used the outcome of an interview-based survey that involved a
number of software product line practitioners, in which, they were asked to list
five quality/attributes that they deemed important for the practical use of

product lines variability management (VM) tools.

From this, four quality attributes were identified, which were usability,

scalability, performance, and integration. In Chapter 8, we described the

171

results of the experimental evaluation conducted, using multiple case studies,
together with the lessons learned from the study, and closed the chapter with

a set of recommendations.

In part IV, we concluded the thesis by summarising the contributions and

discussing future work.

In summary, our evaluation results indicate that the MUSA tool and framework
have significantly addressed the scalability challenges when dealing with
large and complex product line models, as well as the shortcomings of
usability and performance identified in the existing tools and techniques. This
was achieved by ensuring that it was designed in line with industry
requirements, thus maximizing the chances of it being adopted by industry, a
major impact achievement for any researcher in this area. The findings show

that MUSA can now be brought to industry for practical implementation.

9.2 Review of Contributions

This thesis contributes to the ongoing research on variability management in
the field of software product line engineering by (1) identifying the key limiting
factors affecting the scalability of the current variability management tools and
techniques, through a close examination of the current literature in the field.
(2) Identifying the barriers to industrial adoption of the current variability
management tools. (3) Based on the findings of 1 and 2, we designed a tool
and framework that addressed the identified shortcomings. (4) We finally
implemented a working prototype of the system. We summarized the main

contributions of this thesis below:

172

Cl A systematic investigation and understanding of the state of the art
tools that can be utilised in contemporary software product line development:
This study is a contribution to knowledge, as it conducts a systematic review
of Variability Management tools according to the chronological order of
development, and provides a conclusive evaluation of them. The results are
intended to assist the practitioners in selecting the best available tools, which
is based on their suitability towards a particular industrial task. The analysis
also identifies the gaps in the field that should be addressed through further
research of product line tools. Moreover, the analysis identifies the gaps in the
research that should be addressed in more studies. Based on these results,
we have collected the data and the necessary requirements for the

development of our new MUSA tool.

C2 Redesign of MUSA framework to improve the scalability of visualizing
and representing variability models: Although scalability was the main
motivation for developing the early version of MUSA, redesigning and
enhancing its capability to add more innovative visualisation techniques will
increase its productivity, time-to-market, and allow for the creation and
management of larger and more complex product families; hence, improving

its scalability is required.

C3 An additional view for capturing and managing dependency
relationships that exist within the model separately: Using the principle of
separation-of-concerns, we have proposed a separate view called,

“‘dependency view”, to capture and manage dependency interaction

173

independent from the actual representation of the models. This was achieved
using a logic circuit. The main idea is to reduce the complexities, such as
graphical overloading, when viewing and managing the dependencies of large

variability points, all from one view.

C4 A complete working prototype system of this has been implemented as
a new MUSA: Support for managing dependency relationships among the
variability models has been implemented by redesigning and extending the
current version of the MUSA tool suite (a proof-of-concept variability
management tool and framework). This will allow for the creation and

management of larger and more complex product families.

C5 The new version of MUSA will be available as a multi-platform
application: To make it more generic and maximise its functionality, the new
version of MUSA has been ported from Windows Presentation Foundation-
WPF to Java technology. This has solved the main problem of platform

dependency which is suffered by the existing version of MUSA.

C6 A benchmark for evaluating our approach: In order to evaluate the
MUSA tool in comparison with other tools, we developed a benchmark for
evaluating the quality attributes that are important for the practical use of SPL
engineering tools, which has been applied in the evaluation process. The
benchmark focused on measuring the four quality attributes are as follows:
Usability, Performance, Scalability, and Integration. In addition, an evaluation
study was conducted experimentally, and involved 10 feature-modelling tools.

In order to know and get an insight on how well, and to what extent these

174

tools satisfy these quality attributes, four case studies of different sizes were

used as the basis for the experiment.

C7 Literature review process (Chapter 2): This process contributes to
knowledge by providing empirical step-by-step guidelines to identify, collect,
and review papers with: 1) a scope of the review clearly identified in advance,;
2) a comprehensive search conducted to find all relevant studies; 3) the use
of explicit criteria to include or exclude studies; 4) the establishment of
standards to critically appraise study quality; and 5) the provision of explicit
methods for extracting and synthesizing study findings. This process will
benefit both new and experienced researchers by helping them avoid what is
regarded as author’s bias in research, while also providing a reliable basis for

making decisions.

C8 Benchmarking process: The results of this will contribute to knowledge,
as it will assist both practitioners and researchers alike by providing a
standard and empirical approach to evaluating product line tools in the future.
It also helps to identify and recommend areas that require attention in future

tool design.

C9 The Context of Research: The distribution of the research context
presented in Figure 4.8 of Chapter 4 indicates that there is a need to bridge
the gaps between research in academia and industry through collaborative
efforts. The figure shows that most studies (68%) have been conducted in an
academic context, whereas only 16% of the studies are joint industrial

academic endeavours. In 16% of the studies, no information was provided on

175

the research context. Table 4.11 presents a list of all the studies with their

research context. Please refer to Chapter 4 for details on this contribution.

9.3 Future Work

This thesis contributes fundamentally on how to overcome the scalability
challenges when dealing with a large-scale product line model. However,
looking at how important the usability aspect is in the software development
perspective, we therefore, recognised it's significant throughout this research.
In fact, it was one of the qualities we tested during the evaluation process.
But, we still we need to consider improving the usability of the new
dependency view in our future work. Likewise, integrating MUSA with other
tools is also of paramount important. We summarised the key areas of focus

in our feature work, which are as follows:

e Usability of models when using the Logic Circuit
Dependencies are generally the ‘rules’ that have to be observed (or
conditions that need to be satisfied). The use of logic circuit can
significantly simplify the expressing of those rules, but, from the results
of our evaluation in Chapter 8, there is a need to simplify the usage
and make the view more interactive. However, there is also a need to
consider more complex dependencies, such as “motor A requires that
at least 3 motors B are selected”, or “motor A requires motor B with a

power above 200”.

176

Integration with other tools or IDEs

To allow easy adoption of our MUSA tool, we need to consider
integrating it with other tools, such as IBM Rational DOORs, or
Integrated Development Environments (IDEs), such as Eclipse
Modelling Framework (EMF), to allow either full or partial
interoperability, or to allow third parties to integrate their automated
reasoning technigues into a workspace where some basic services can

be provided by default.

177

Bibliography

Abele, A., Papadopoulos, Y., Servat, D., Torngren, M. and Weber, M. (2010)
‘The CVM Framework - A Prototype Tool for Compositional Variability
Management'. Proceedings Fourth International Workshop on Variability
Modelling of Software-Intensive Systems VaMoS 2010, Linz, Austria, 101-
105.

Acher, M., Alférez, M., Galindo, J. A., Romenteau, P. and Baudry, B. (2014)
'ViViD: a variability-based tool for synthesizing video sequences'. Proceedings
of the 18th International Software Product Line Conference: Companion
Volume for Workshops, Demonstrations and Tools, Florence, Italy: ACM, 143-
147.

Acher, M., Collet, P., Lahire, P. and France, R. B. (2011) 'Managing Feature
Models with FAMILIAR: a Demonstration of the Language and its Tool
Support'. Proceedings of the 5th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS) Belgium: ACM, 91-96.

Acher, M., Collet, P., Lahire, P. and France, R. B. (2013) 'FAMILIAR: A
domain-specific language for large scale management of feature models’,
Science of Computer Programming (SCP), 78(6), pp. 657-681.

Akram, A. and Abbas, Q. (2009) Comparison of Variability Modeling
Techniques. Tekniska Hogskolan i Jonkdping.

Aldazabal, A. and Erofeev, S. (2008) 'PLUM (Product Line Unified Modeller).
Eclipse based Variability Management Tool'. Proceedings of the Eclipse
Summit Europe, Ludwigsburg, Germany.

Antkiewicz, M. and Czarnecki, K. (2004) 'FeaturePlugin: Feature Modeling
Plug-In for Eclipse'. proceedings of the OOPSLA Workshop on Eclipse
Technology eXchange (ETX 2004), Vancouver, British Columbia, Canada:
ACM Press, 67-72.

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Peach, B., Wust, J. and Zettel, J. (2002) Component-based
product line engineering with UML. London: Addison-Wesley.

178

Bachmann, F. and Clements, P. (2005) Variability in Software Product Lines,
Pittsburgh, USA,: Software Engineering Institute (Technical Report CMU/SEI-
2005-TR-012.

Bashroush, R. (2010) ‘A NUI Based Multiple Perspective Variability Modeling
CASE Tool'. Proceedings of the 4th European Conference on Software
Architecture (ECSA '10), Copenhagen, Denmark: LNCS, 523-526.

Bashroush, R., Al-Nemrat, A., Bachrouch, R. and Jahankhani, H. (2011)
'Visualizing Variability Models Using Hyperbolic Tree'. Proceedings of the
23rd International Conference on Advanced Information Systems Engineering
Forum (CAISE), London, 113-120.

Bashroush, R., Spence, I., Kilpatrick, P., Brown, J. and Gillan, C. (2008) 'A
Multiple Views Model for Variability Management in Software Product Lines'.
Proceedings of the Second International Workshop on Variability Modelling of
Software-intensive Systems (VaMo0S2008), Duisburg-Essen, Germany.

Bassett, P. (1997) Framing Software Reuse: Lessons from the Real World.
Prentice-Hall.

Batory, D. (2004) 'Feature-Oriented Programming and the AHEAD Tool Suite'.
Proceedings of the 26th International Conference on Software Engineering
(ICSE’04) IEEE Computer Society, 702-703.

Batory, D., Sarvela, J. N. and Rauschmayer, A. (2004) 'Scaling step-wise
refinement’, The IEEE Transactions on Software Engineering, 30(6), pp. 355-
371.

Bécan, G., Nasr, S. B., Acher, M. and Baudry, B. (2014) 'WebFML:
synthesizing feature models everywhere'. Proceedings of the 18th
International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools, Florence, Italy: ACM, 12-116.

'‘Bellsouth, IBM', (1993) Mobile Phone News: Bellsouth and IBM Unveil
Personal Communicator Phone.

Berg, K., Bishop, J. and Muthig, D. (2005) 'Tracing software product line
variability: from problem to solution space'. Proceedings of the 2005 annual

179

research conference of the South African institute of computer scientists and
information technologists on IT research in developing countries, South Africa,
182 - 191.

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K. and
Wasowski, A. (2013) 'A survey of variability modeling in industrial practice'.
Proceedings of the Seventh International Workshop on Variability Modelling of
Software-intensive Systems, Pisa, Italy: ACM, 7.

Berger, T., She, S., Lotufo, R., Wasowski, A. and Czarnecki, K. (2010)
‘Variability Modeling in the Real: A Perspective from the Operating Systems
Domain'. Proceedings of the 25th IEEE/ACM International Conference on
Automated Software Engineering, Antwerp, Belgium: IEEE/ACM, 73-82.

Beuche, D. (2008) 'Modeling and Building Software Product Lines with
pure::variants'. Proceedings of the 12th International Software Product Lines
Conference (SPLC 2008), Limerick, Ireland, 8-12 Sept. 2008: IEEE Computer
Society, 358.

Beuche, D., Birk, A., Dreier, H., Fleischmann, A., Galle, H., Heller, G., Janzen,
D., John, I, Kolagari., R. T., Mal3en, T. v. d. and Wolfram, A. (2007) 'Using
Requirements Management Tools in Software Product Line Engineering: The
State of the Practice'. Software Product Line Conference, 2007. SPLC 2007.
11th International: IEEE, 84-96.

Beuche, D. and Spinczyk, O. (2003) 'Variant management for embedded
software product lines with pure::consul and AspectC++'. Proceedings of
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA 2003),
Anaheim, CA, USA: ACM, 108-109.

BigLever, S. I. Product Line Engineering Solutions for Systems and Software.
Available at: http://www.biglever.com/solution/solution.htm! (Accessed: August
22 2012).

Botterweck, G., Janota, M. and Schneeweiss, D. 'A Design of a Configurable
Feature Model Configurator'. Proceedings of the 3rd International Workshop
on Variability Modelling of Software-Intensive Systems (VAMOS 09), Seuville,
Spain: Universitat Duisburg-Essen, 165-168.

180

http://www.biglever.com/solution/solution.html

Botterweck, G., Thiel, S., Nestor, D., Abid, S. b. and Cawley, C. (2008) 'Visual
Tool Support for Configuring and Understanding Software Product Lines'.
12th International Software Product Line Conference: IEEE, 77-86.

Braga, R. M. M., Werner, C. M. L. and Mattoso, M. (1999) 'Odyssey: a reuse
environment based on domain models'. Proceedings of the IEEE Symposium
on Application-Specific Systems and Software Engineering and Technology
(ASSET'99), Richardson, TX, USA: IEEE, 50-57.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M. and Khalil, M. (2007)
'‘Lessons from applying the systematic literature review process within the
software engineering domain', The Journal of Systems and Software, 80, pp.
571-583.

Campbell, G. MTP TOOL- The MetaProgramming Text Processor: Prosperity
Heights Software. Available at: http://www.domain-specific.com/index.html.

Capilla, R., Sdnchez, A. and Duefias, J. C. (2007) 'An Analysis of Variability
Modeling and Management Tools for Product Line Development.
Proceedings of the Software and Services Variability Management Workshop
Concepts, Model and Tools, Helsinki, Finland: Helsinki University of
Technology Software Business and Business Institute, 32-47.

Capilla, R., Sierra, A. and Serrano, J. M. VMWT: Variability Modeling Web
Tool. University Juan Carlos of Madrid. Available at:
http://triana.escet.urjc.es/VMWT.

CaptainFeature (2005). Available at: http://captainfeature.sourceforge.net/
2014).

Cechticky, V., Pasetti, A., Rohlik, O. and Schaufelberger, W. (2004) 'XML-
Based Feature Modelling'. Proceedings of the International Conference on
Software Reuse (ICSR 2004), Madrid, Spain: Springer-Verlag, 101-114.

Chen, L. and Ali Babar, M. (2011) 'A systematic review of evaluation of
variability management approaches in software product lines', Information and
Software Technology, 53, pp. 344-362.

Chen, L., Ali Babar, M. and Ali, N. (2009) 'Variability Management in
Software Product Lines: A Systematic Review'. Proceedings of the 13th
International Software Product Line Conference (SPLC), San Francisco, CA,
USA, 81-90.

181

http://www.domain-specific.com/index.html
http://triana.escet.urjc.es/VMWT
http://captainfeature.sourceforge.net/

Chen, L. and Babar, M. (2010) 'Variability Management in Software Product
Lines: An Investigation of Contemporary Industrial Challenges', in Bosch, J. &
Lee, J. (eds.) Software Product Lines: Going Beyond Lecture Notes in
Computer Science: Springer Berlin Heidelberg, pp. 166-180.

Chen, L. and Babar, M. A. (2009) 'A Survey of Scalability Aspects of
Variability Modeling Approaches'. Proceedings of the 13th International
Software Product Lines Conference, San Francisco, USA.

Clements, P. and Northrop, L. (2002) Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering Massachusetts: Addison-
Wesley.

Czarnecki, K., Grunbacher, P., Rabiser, R., Schmid, K. and Wasowski, A.
'‘Cool Features and Tough Decisions: A Comparison of Variability Modeling
Approaches'. Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems, 01/25/2012: ACM, 173-182.

Daizhong, L. and Shanhui, D. (2009) 'Feature Dependency Modeling for
Software Product Line'. Computer Engineering and Technology, ICCET '09.
International Conference on, 256-260.

Damithc, |, Manasgupta, Jarzabek S. (2008) XML-based Variant
Configuration Language. Available at:
http://sourceforge.net/projects/fxvcl/files/.

Dhungana, D., Grinbacher, P. and Rabiser, R. (2010) 'The DOPLER meta-
tool for decision-oriented variability modeling: a multiple case study/,
Automated Software Engineering, 18(1), pp. 77-114.

Dhungana, D., Grinbacher, P. and Rabiser, R. (2011) 'The DOPLER meta-
tool for decision-oriented variability modeling: a multiple case study’,
Automated Software Engineering, 18(1), pp. 77-114.

Dietz, P. H. and Eidelson, B. D. (2009) 'SurfaceWare: Dynamic Tagging for
Microsoft Surface'. Proceedings of the 3rd International Conference on
Tangible and Embedded Interaction (TEI'09), Cambridge, UK, Feb 16-18
2009: ACM, 249-254.

182

http://sourceforge.net/projects/fxvcl/files/

Djebbi, O. and Salinesi, C. (2006) 'Criteria for Comparing Requirements
Variability Modeling Notations for Product Lines'. Fourth International
Workshop on Comparative Evaluation in Requirements Engineering CERE
'06.: IEEE, 20-35.

Djebbi, O., Salinesi, C. and Fanmuy, G. (2007) 'Industry Survey of Product
Lines Management Tools: Requirements, Qualities and Open Issues'.
Proceedings of the 15th IEEE International Requirements Engineering
Conference, New Delhi, India: IEEE, 301-306.

DOORS-TREK. Available at: http://www-
01.ibm.com/support/docview.wss?uid=swg24032035 (Accessed: July 16
2014).

Dos Santos, R. F. and Frakes, W. B. (2009) 'DAREonline:A Web-Based
Domain Engineering Tool'. Proceedings of the 11th International Conference
on Software Reuse: Formal Foundations of Reuse and Domain Engineering
(ICSR 2009), Virginia Tech's Northern Virginia Center in Falls Church, VA,
USA: Lecture Notes in Computer Science, 246-257.

Eclipse Graphical Modeling Framework (GMF, Eclipse Modeling
subproject). Available at: http://www.eclipse.org/amf/ (Accessed: September
16 2015).

Eichelberger, H., EI-Sharkawy, S., Kréher, C. and Schmid, K. (2014) 'EASy-
producer: product line development for variant-rich ecosystems'. Proceedings
of the 18th International Software Product Line Conference: Companion
Volume for Workshops, Demonstrations and Tools: ACM, 133-137.

El Dammagh, M. and De Troyer, O. (2011) 'Feature Modeling Tools:
Evaluation and Lessons Learned'. Proceedings of the 30th International
Conference on Advances in Conceptual Modeling: Recent Developments and
New Directions (ER'11), Variability Workshop on Software Variability
Management (Variability@ER11): Springer-Verlag Berlin Heidelberg, 120-
129.

Eysholdt, M. and Behrens, H. (2010) "Xtext: Implement Your Language Faster
than the Quick and Dirty Way'. Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion: ACM, 307-309.

183

http://www-01.ibm.com/support/docview.wss?uid=swg24032035
http://www-01.ibm.com/support/docview.wss?uid=swg24032035
http://www.eclipse.org/gmf/

Felfernig, A., Friedrich, G., Jannach, D. and Zanker, M. (2001) 'Intelligent
Support for Interactive Configuration of Mass Customized Products.” 14th Int’l
Conf. on Industrial & engineering applications of artificial intelligence and
expert systems: Springer, 746—756.

Fenton, N. E. and Pfleeger, S. L. (1998) Software Metrics: A Rigorous and
Practical Approach. 2 edn. Boston, USA: PWS Publishing Company.

Ferber, S., Haag, J. and Savolainen, J. (2002) 'Feature Interaction and
Dependencies: Modeling Features for Reengineering a Legacy Product Line'.
Proceedings of the Second International Conference on Software Product
Lines, SPLC 2, San Diego, CA, USA, August 19-22, 2002: Springer-Verlag,
37-60.

Fernandez, R., Laguna, M. A., Requejo, J. and Serrano, N. (2009)
Development of a Feature Modeling Tool using Microsoft DSL Tools
[Technical Report], University of Valladolid. Available at:
http://www.giro.infor.uva.es/fmt.pdf.

Ferrari, D. (1983) Measurement and Tuning of Computer Systems. New York:
Prentice Hall.

Frakes, W., Prieto-Diaz, R. and Fox, C. (1997) 'DARE-COTS: A domain
analysis support tool'. Proceedings of the 17th International Conference of the
Chilean Computer Science Society (SCCC '97), Santiago, Chile, 10-15 Nov
1997: IEEE Computer Society, 73-77.

Frakes, W., Prieto-Diaz, R. and Fox, C. (1998) 'DARE: Domain Analysis and
Reuse Environment', Annals of Software Engineering, 5, pp. 125-141.

Gauthier, C., Classen, A., Storey, M.-A. and Mendonca, M. (2010) 'XToF: A
Tool for Tag-based Product Line Implementation'. Proceedings of the 4th
International Workshop on Variability Modeling of Software Intensive Systems
(VaMoS 2010), Linz, Austria: University of Duisburg-Essen, 163-166.

Gomaa, H. (2005) Designing software product lines with UML: from use cases
to pattern-based software architectures. The Addison-Wesley object
technology series Boston: Addison-Wesley.

184

http://www.giro.infor.uva.es/fmt.pdf

Gomaa, H. and Shin, M. E. (2004) 'A Multiple-View Meta-modeling Approach
for Variability Management in Software Product Lines'. Proceedings of the 8th
International Conference on Software Reuse: Methods, Techniques and Tools
(ICSR), Madrid, Spain: LNCS, 274-285.

Gomaa, H. and Shin, M. E. (2004) 'Tool Support for Software Variability
Management and Product Derivation in Software Product Lines'. Proceedings
Workshop on Software Variability Management for Product Derivation,
Software Product Line Conference, Boston, USA.

Gomaa, H. and Shin, M. E. (2007) 'Automated Software Product Line
Engineering and Product Derivation'. Proceedings of the 40th Hawaii
International Conference on System Sciences, Waikoloa, Big Island, HI, USA:
IEEE Computer Society, 1530-1605.

Gomez, M., Mansanet, |., Fons, J. and Pelechano, V. (2012) 'Moskitt4SPL:
Tool Support for Developing Self-Adaptive Systems'. Proceedings of the 17th
Conference on Software Engineering and Databases (JISBD'12), Jornadas
SISTEDES, Almeria, Spain.

Griss, M. L., Favaro, J. and d’Alessandro, M. (1998) 'Integrating Feature
Modeling with the RSEB'. Proceedings of the 5th International Conference on
Software Reuse, Vancouver, BC, Canada, 76-85.

Halmans, G. and Pohl, K. (2003) '‘Communicating the variability of a software-
product family to customers', Software and Systems Modeling, 2(1), pp. 15-
36.

Heer, J., Card, S. K. and Landay, J. A. 'Prefuse: a toolkit for interactive
information visualization'. Proceedings of the SIGCHI conference on Human
factors in computing systems: ACM, 421-430.

Heidenreich, F. (2009) 'Towards Systematic Ensuring Well-Formedness of
Software Product Lines'. Proceedings of the 1st International Workshop on
Feature-Oriented Software Development (FOSD’09), Denver, Colorado, USA:
ACM, 69-74.

Heidenreich, F., avga, I. S. and Wende, C. (2008) 'On Controlled
Visualisations in Software Product Line Engineering'. 2nd International
Workshop on Visualisation in Software Product Line Engineering (ViSPLE

185

2008) collocated with the 12th International Software Product Line
Conference (SPLC 2008), Limerick, Ireland, September 8 - 12, 2008, 388.

Heidenreich, F., Jan, K. and Christian, W. (2008) 'FeatureMapper: Mapping
Features to Models'. Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany: ACM Digital Library,
943-944.

Heidenreich, F., Johannes, J., Karol, S., Seifert, M. and Wende, C. 'Derivation
and refinement of textual syntax for models’. Model Driven Architecture-
Foundations and Applications: Springer Berlin Heidelberg, 114-129.

Hervieu, A., Baudry, B. and Gotlieb, A. (2011) 'PACOGEN: Automatic
Generation of Pairwise Test Configurations from Feature Models'.
Proceedings of the 22nd Annual International Symposium on Software
Reliability Engineering (ISSRE 2011), Hiroshima, japan, Nov. 29 2011-Dec. 2
2011, 120-129.

Heuer, A., Lauenroth, K., Mdller, M. and Scheele, J.-N. (2010) 'Towards
Effective Visual Modeling of Complex Software Product Lines'. Proceedings of
the 14th International Conference on Software Product Line, {SPLC} 2010,
Jeju Island, South Korea, 229-238.

Holten, D., Isenberg, P., van Wijk, J. J. and Fekete, J.-D. (2011) 'An extended
evaluation of the readability of tapered, animated, and textured directed-edge
representations in node-link graphs'. IEEE Pacific Visualization Symposium
(PacificVis 2011): IEEE, 195-202.

IBM Rational DOORS. Available at: www.ibm.com (Accessed: July 23 2014).

IEEE (1990): IEEE Standard Glossary of Software Engineering Terminology.

ISO (2001): ISO/IEC 9126-1: Software Engineering-Product Quality-Part 1:
Quality Model. Geneva Switzerland: International Standards Organization.

ISO (2003): ISO/IEC 9126-1: Software Engineering-Product Quality, Part-2,
External Metrics. Geneva, Switzerland: International Organization for
Standardization.

186

http://www.ibm.com/

Istoan, P., Nain, G., Perrouin, G. and Jézéquel, J.-M. (2009) 'Dynamic
Software Product Lines for Service-Based Systems'. Ninth IEEE International
Conference on Computer and Information Technology, CIT '09, 11-14 Oct.
2009: IEEE, 193-198.

Jacobson, I., Griss, M. and Jonsson, P. (1997) Software Reuse: Architecture,
Process and Organization for Business Success. New York: Addison-Wesley-
Longman.

Jaring, M. and Bosch, J. (2002) 'Representing Variability in Software Product
Lines: A Case Study'. Software Product Lines SPLC 2, Springer Berlin, 219-
245.

Jarzabek, S., Bassett, P., Zhang, H. and Zhang, W. (2003) 'XVCL: XML-
based variant configuration language'. Proceedings of the 25th International
Conference on Software Engineering (ICSE '03), Portland, Oregon, USA, 3-
10 May 2003: IEEE Computer Society, 810-811.

Johansen, M. F., Haugen, &. and Fleurey, F. (2012) 'An Algorithm for
Generating t-wise Covering Arrays from Large Feature Models'. Proceedings
of the 16th International Software Product Line Conference (SPLC 2012),
Salvador, Brazil: ACM.

Kadir, W. M. N. W. and Mohammad, R. (2008) Advances in Software
Engineering Research and Practice.

Kang, K. C., Cohen, S. G., Hess, J. A.,, Novak, W. E. and Peterson, A. S.
(1990) Feature Oriented Domain Analysis (FODA) feasibility study, Software
Engineering Institute, Carnegie Mellon University CMU/SEI-90-TR-21.

Kang, K. C., Kim, S., Lee, J., Kim, K., Kim, G. J., Shin, E. and Huh, M. (1998)
'FORM: A feature-oriented reuse method with domain-specific reference
architectures', Annals of Software Engineering, 5(1), pp. 143-168.

Kang, K. C., Lee, J. and Donohoe, P. (2002) 'Feature-Oriented Product Line
Engineering’, IEEE Software, 19, pp. 58-65.

Kastner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F. and
Apel, S. (2009) 'FeaturelDE: Tool Framework for Feature-Oriented Software

187

Development.'. Proceedings of the 31th International Conference on Software
Engineering (ICSE), Vancouver, Canada: IEEE Computer Society, 611-614.

Kim, K., Kim, H., Ahn, M., Seo, M., Chang, Y. and Kang, K. C. (2006)
'ASADAL: A Tool System for Co-Development of Software and Test
Environment based on Product Line Engineering'. Proceedings of the 28th
International Conference on Software Engineering (ICSE), Shanghai, China:
ACM, 783-786.

Kitchenham, B. and Charters, C. (2007) Guidelines for Performing Systematic
Literature Reviews in Software Engineering, Keele University, UK EBSE-
2007-1.

Klaus, P., Bockle, G. and van der Linden, F. (2005) VARMOD Tool [Internet]:
Software Systems Engineering. Available at: http://www.sse.uni-
essen.de/swpl/SEGOS-VM-Tool/index.html 18/05/2012).

Kleinrock, L. (1976) Queueing Systems, Volume I: Theory, and Volume 2:
Computer Applications. New York: Wiley.

Krueger, C. and Clements, P. (2014) 'Systems and software product line
engineering with gears from BigLever software'. Proceedings of the 18th
International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools, Florence, Italy: ACM.

Krueger, C. W. (2006) 'Introduction to the Emerging Practice Software
Product Line Development', Methods & Tools, (no. 3).

Krueger, C. W. (2007) 'The 3-Tiered Methodology: Pragmatic Insights from
New Generation Software Product Lines'. Proceeding of the 11th International
Software Product Line Conference (SPLC 2007), Kyoto, Japan: IEEE, 97-106.

Lamping, J., Rao, R. and Pirolli, P. (1995) 'A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies'. In Proceedings of
the Conference on Human Factors in Computing Systems: ACM, 401-408.

Lettner, D., Petruzelka, M., Rabiser, R., Angerer, F., Prahofer, H. and
Grinbacher, P. (2013) 'Custom-Developed vs. Model-based Configuration
Tools: Experiences from an Industrial Automation Ecosystem'.

188

http://www.sse.uni-essen.de/swpl/SEGOS-VM-Tool/index.html
http://www.sse.uni-essen.de/swpl/SEGOS-VM-Tool/index.html

MAPLE/SCALE 2013, Workshop at the 17th International Software Product
Line Conference (SPLC 2013), Tokyo, Japan: ACM, 52-58.

Levent V, O. (1998) 'Storage and retrieval of database constraints',
Information Systems, 23(6), pp. 401-421.

Linden, A. and Fenn, J. (2003) Understanding Gartner's hype cycles:
Strategic Analysis Report No R-20-1971. Gartner, Inc.

Lisboa, L. B. (2008) ToolDAy - A Tool for Domain Analysis. Masters, Federal
University of Pernambuco, Recife, Brazil.

Lisboa, L. B., Garcia, V. C., de Almeida, E. S. and de Lemos Meira, S. R.
(2011) 'ToolDAy: a tool for domain analysis', International Journal on Software
Tools for Technology Transfer (STTT) archive, 13(4), pp. 337-353.

Martinez, J., Lopez, C., Ulacia, E. and del Hierro, M. (2009) Towards a
Model-Driven Product Line for Web systems'. Proceedings of the 5th Model-
Driven Web Engineering Workshop MDWE in conjuction with the
International Conference in Web Engineering (ICWE 2009), San Sebastian,
Spain, 1-15.

Mehta, N. (1982) A Flexible Machine Interface. Masters Thesis, University of
Toronto.

Meinicke, J., Thim, T., Schréter, R., Krieter, S., Benduhn, F., Saake, G. and
Leich, T. (2016) 'FeaturelDE: Taming the Preprocessor Wilderness'.
Proceeding of the International Conference on Software Engineering, Austin,
TX: ACM and IEEE CS.

Mendonca, M. (2009) Efficient Reasoning Techniques for Large Scale
Feature Models. Doctor of Philosophy PhD, University of Waterloo.

Mendonca, M., Branco, M. and Cowan, D. (2009) 'S.P.L.O.T.: software
product lines online tools'. Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages
and applications, Orlando, FL, USA, 10/25/2009: ACM, 761-762.

Microsoft (2008) NUI. Available at: http://research.microsoft.com/en-
us/collaboration/focus/nui/ (Accessed: December 10 2015).

189

http://research.microsoft.com/en-us/collaboration/focus/nui/
http://research.microsoft.com/en-us/collaboration/focus/nui/

Modeling, H. F. Available at: http://caosd.lcc.uma.es/spl/hydra/index.htm
(Accessed: July 11 2012).

Moon, M., Yeom, K. and Chae, H. (2005) ' An Approach to Developing
Domain Requirements as a Core Asset Based on Commonality and Variability
Analysis in Product Line', IEEE Transactions on Software Engineering 31(7),
pp. 551-5609.

Myllarniemi, V., Asikainen, T., Mannisto, T. and Soininen, T. (2005) 'Kumbang
configurator—A configuration tool for software product families'. Proceedings
of the IJCAI-05 Workshop on Configuration In conjunction with the 19th
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland.

Myllarniemi, V., Raatikainen, M. and Mannistd, T. (2007) 'Kumbang tools'.
Proceedings of the 11th International Software Product Line Conference
(SPLC 2007), Kyoto, Japan: IEEE Computer Society, 135--136.

Nestor, D., O’'Malley, L., Quigley, A., Sikora, E. and Thiel, S. (2007)
'Visualisation of Variability in Software Product Line Engineering'.
Proceedings of the 2007 conference of the center for advanced studies on
Collaborative research: ACM.

Nuseibeh, B., Kramer, J. and Finkelstein, A. (1994) 'A framework for
expressing the relationships between multiple views in requirements
specification’, IEEE Transactions on Software Engineering, 20(10), pp. 760—
773.

Park, K., Ryu, D. and Baik, J. (2012) 'An Integrated Software Management
Tool for Adopting Software Product Lines'. Proceedings of the 11th
IEEE/ACIS International Conference on Computer and Information Science
(ICIS 2012), Shanghai, China, May 30 2012-June 1 2012, 553-558.

Parra, C. (2011) Towards Dynamic Software Product Lines: Unifying Design
and Runtime Adaptations Doctor of Philosophy, Lille 1 University - Science
and Technology.

Pasetti, A. and Rohlik, O. (2005) Technical Note on a CONCEPT FOR THE
XFEATURE TOOL, P&P Software GmbH / ETH Zurich (PP-TN-XFT-0001.
Available at: www.pnp-software.com.

190

http://caosd.lcc.uma.es/spl/hydra/index.htm
http://www.pnp-software.com/

Pereira, J. A., Souza, C., Figueiredo, E., Abilio, R., Vale, G., Heitor and Costa,
A. X. 'Software Variability Management- An Exploratory Study with Two
Feature Modeling Tools'. VIl Brazilian Symposium on Software Components,
Architectures and Reuse: IEEE.

Pleuss, A. and Botterweck, G. (2012) ‘'Visualization of variability and
configuration options', International Journal on Software Tools for Technology
Transfer (STTT), 14(5), pp. 497-510.

Pohl, K., Bockle, G. and van der Linden, F. (2005) Software Product Line
Engineering: Foundations, Principles and Techniques. Germany: Springer-
Verlag Heidelberg.

Rabiser, R., Dhungana, D., Heider, W. and Griinbacher, P. (2009) 'Flexibility
and End-User Support in Model-Based Product Line Tools'. Proceedings of
the 35th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA '09), Patras, Greece, 27-29 Aug. 2009: IEEE Computer
Society, 508-511.

Reiser, M.-O. and Weber, M. 'Managing Highly Complex Product Families
with Multi-Level Feature Trees'. Proceeding of the 14th IEEE International
Conference on Requirements Engineering (RE’06), Minneapolis/St. Paul, MN:
IEEE Computer Society, 149-158.

Russell, G., Burns, F. and Yakovlev, A. (2012) 'VARMA—VARIiability
modelling and analysis tool'. Proceedings of the IEEE 15th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS 2012), Tallinn, Estonia, 18-20 April 2012, 378-383.

Samih, H. and Bogusch, R. (2014) 'MPLM - MaTeLo product line manager:
[relating variability modelling and model-based testing]'. Proceedings of the
18th International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools, Florence, Italy: ACM, 138-142.

SAP Configurator. Available at: www.sap.com (Accessed: July 16 2014).

SCALE’09 'Workshop on Scalable Modeling Techniques for Software Prod-
uct Lines (SCALE’09)'. San Francisco, USA.

191

http://www.sap.com/

Schmid, K. and Schank, M. (2000) 'PuLSE-BEAT — A Decision Support Tool
for Scoping Product Lines'. Proceedings of the International Workshop
Software Architectures for Product Families IW-SAPF-3, Las Palmas de Gran
Canaria, Spain: Lecture Notes in Computer Science, 65-75.

Seaman, C. B. (1999) 'Qualitative Methods in Empirical Studies of Software
Engineering’, IEEE Transactions on Software Engineering, 25(4), pp. 557-
572.

Segura, S., Galindo, J. A., Benavides, D., Parejo, J. A. and Ruiz-Cortés, A.
(2012) 'BeTTy: Benchmarking and Testing on the Automated Analysis of
Feature Models'. Proceedings of the 6th International Workshop on Variability
Modelling of Software-intensive Systems (VaMo0S'12), Leipzig, Germany:
ACM, 63-71.

Shakari, P. and Mgller-Pedersen, B. (2006) 'On the Implementation of a Tool
for Feature Modeling with a Base Model Twist'. Proceedings of the Norwegian
Informatics Conference (NIK 2006), University of Oslo, Norway, Nov., 81-93.

She, S. Linux Variability Analysis Tools (LVAT). Available at:
http://code.google.com/p/linux-variability-analysis-tools/ (Accessed: July 16
2012).

Shneiderman, B. and Plaisant, C. (2004) Treemap 4.1.1: University of
Maryland. Available at: http://www.cs.umd.edu/hcil/treemap-history/
(Accessed: August 12 2015).

Simmonds, J., Bastarrica, M. C., Silvestre, L. and Quispe, A. (2011) Analysing
Methodologies and Tools for Specifying Variability in Software Processes:
Universidad de Chile, Santiago, Chile.

Sincero, J. and Schroder-Preikschat, W. (2008) 'The linux kernel configurator
as a feature modeling tool'. Proceedings of the 12th International Conference
on Software Product Lines SPLC (2), Limerick, Ireland: Lero Int. Science
Centre, University of Limerick, Ireland, 257-260.

Sinnema, M. and Deelstra, S. (2007) 'Classifying Variability Modeling
Techniques', Information and Software Technology, 49(7), pp. 717-739.

192

http://code.google.com/p/linux-variability-analysis-tools/
http://www.cs.umd.edu/hcil/treemap-history/

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J. (2004) 'COVAMOF: A
Framework for Modeling Variability in Software Product Families'.
Proceedings of the 3rd International Conference on Software Product Lines -
SPLC, Boston, MA, USA: Springer-Verlag Berlin Heidelberg, 197-213.

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J. (2006) 'Modeling
dependencies in product families with COVAMOF'. Proceedings of the 13th
Annual IEEE International Symposium and Workshop on Engineering of
Computer Based Systems, (ECBS 2006), 307.

SparxSystems Enterprise Architect. Available at: www.sparxsystems.com
(Accessed: July 16 2014).

Stengel, M., Frisch, M., Apel, S., Feigenspan, J., Kastner, C. and Dachselt, R.
(2011) 'View infinity: a zoomable interface for feature-oriented software
development'. Proceedings of the 33rd International Conference on Software
Engineering (ICSE 2011), Waikiki, Honolulu, Hawaii, USA, 21-28 May 2011,
1031-1033.

Steps Recorder. Available at:
http://pcsupport.about.com/od/termsp/p/problem-steps-recorder.htm.

Succi, G., Eberlein, A., Yip, J., Luc, K., Nguy, M. and Tan, Y. (1999) 'The
design of Holmes: a tool for domain analysis and engineering'. Proceedings of
the IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, Canada, 365-368.

Succi, G., Pedrycz, W., Yip, J. and Kaytazov, I. (2001) 'Intelligent design of
product lines in Holmes'. Proceedings of the Canadian Conference on
Electrical and Computer Engineering, 75-80.

Succi, G., Yip, J. and Liu, E. (2000) 'Analysis of the Essential Requirements
for a Domain Analysis Tool'. Proceedings of the ICSE Workshop on Software
Product Lines: Economics, Architectures and Implications, Limerick, Ireland:
ACM.

Succi, G., Yip, J., Liu, E. and Pedrycz, W. (2000) 'Holmes: a system to
support software product lines'. Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), Limerick Ireland, 786.

193

http://www.sparxsystems.com/
http://pcsupport.about.com/od/termsp/p/problem-steps-recorder.htm

Tamir, D., Mueller, C., J and Komogortsev, O., V (2013) 'An Effort-Based
Framework for Evaluating Software Usability Design', ARPN Journal of
Systems and Software, 3(4), pp. 65-77.

Ter Beek, M. H. and Mazzanti, F. (2014) 'VMC: Recent Advances and
Challenges Ahead'. Proceedings of the 18th International Software Product
Line Conference: Companion Volume for Workshops, Demonstrations and
Tools, Florence, Italy: ACM, 70-77.

Thiel, S. and Hein, A. (2002) 'Systematic Integration of Variability into Product
Line Architecture Design'. Proceedings of the 2nd International Conference on
Software Product Lines: Springer Berlin Heidelberg, 130-153.

Thorn, C. and Sandkuhl, K. (2009) Feature Modeling: Managing Variability in
Complex Systems. Complex Systems in Knowledge-based Environments:
Theory, Models and Applications: Springer Berlin Heidelberg, p. 129-162.

Thim, T., Kastner, C., Benduhn, F., Meinicke, J., Saake, G. and Leich, T.
(2014) 'FeaturelDE: An Extensible Framework for Feature-Oriented Software
Development’, Science of Computer Programming, 79, pp. 70-85.

Tolvanen, J.-P. and Kelly, S. (2009) 'MetaEdit+: defining and using integrated
domain-specific modeling languages'. In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems
languages and applications: ACM, 819-820.

Trinidad, P., Benavides, D., Ruiz-Cort’es, A. and Segura, S. (2008) 'FAMA
Framework'. Proceedings of the 12th International Software Product Line
Conference (SPLC '08), Limerick, Ireland, 8-12 Sept. 2008, 359-359.

Van der Linden, F. J., Schmid, K. and Rommes, E. (2007) Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Berlin: Springer-Verlag.

Van Gurp, J., Bosch, J. and Svahnberg, M. (2001) '‘On the Notion of Variability
in Software Product Lines'. Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA), Amsterdam, Netherlands, 45-55.

194

Van Ommering, R., Van Der Linden, F., Kramer, J. and Magee, J. (2000) 'The
Koala Component Model for Consumer Electronics Software', Computer,
33(3), pp. 78-85.

von der MalRen, T. and Lichter, H. (2004) 'RequiLine: A Requirements
Engineering Tool for Software Product Lines'. Proceedings of the 5th
International Workshop on Product Family Engineering (PFE), Siena, Italy:
Springer LNCS 168-180.

White, J., Schmidt, D. C., Wuchner, E. and Nechypurenko, A. (2007)
'‘Automating Product-Line Variant Selection for Mobile Devices'. Proceedings
of the 11th International Software Product Line Conference (SPLC 2007),
Kyoto, Japan, 10-14 Sept. 2007: IEEE Computer Society, 129-140.

Yamany, A. E. E., Shaheen, M. and Sayyad, A. S. (2014) 'OPTI-SELECT: an
interactive tool for user-in-the-loop feature selection in software product lines'.
Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools, Florence,
Italy: ACM, 126-129.

Zhang, B. and Becker, M. (2014) 'Variability code analysis using the VITAL
tool'. Proceedings of the 6th International Workshop on Feature-Oriented
Software Development, Florence, Italy: ACM, 17-22.

Zhang, H. and Jarzabek, S. (2001) 'XML-based method and tool for handling
variant requirements in domain models'. Proceedings of the 5th IEEE
International Symposium on Requirements Engineering, 2001, Toronto, Ont.:
IEEE, 166 - 173.

Zhang, H. and Jarzabek, S. (2004) 'XVCL: a mechanism for handling variants
in software product lines', Science of Computer Programming, 53, pp. 381
407.

195

APPENDES

196

Appendix A

DARE-COTS: DARE (Domain Analysis and Reuse Environment) is a tool
implemented using commercial-off-the-shelf (COTS) and freeware that
provides automated support for domain engineering activities, which includes
identifying the common and variable features within a family of systems.
DARE assists domain experts in different ways, such as carrying out analysis
by providing useful high level guidance, recording and extracting domain
information from documents and code using a stored section of the domain
book (Frakes et al., 1997, Frakes et al., 1998). The tool was implemented as
a standalone and was also used in-house as a web service developed at the
College of Engineering, Department of Computer Science, VaginiaTech.
DARE supports textual notation using MS Word and using a form-base
component. The tool has been developed using various technologies as
prototypes of different versions. These include the first version, which was
developed in 1994 in C-language on a UNIX workstation. In 1995, the second
prototype version was based on Visual Basic 3 on a PC running Windows.
Another prototype version was created using commercial off-the-shelf tools
(COTS) and freeware to provide automated support for domain analysis (Dos
Santos and Frakes, 2009). DARE is not available as free and open source,

nor could an evaluation copy be obtained.

Odyssey: A reuse environment that has been conceived as a framework
consisting of various tools to construct a reuse infrastructure based on

Product Lines, Domain Models and Component-Based Development. It

197

provides support for conceptual models (e.g., use cases, feature models and
other object oriented models using UML notation), architectural models (e.g.,
architectural and design pattern system in combining object-oriented models),
and implementation models (e.g., reuse components set). Odyssey assists
three different categories of users — domain engineers, domain specialists
and software engineers — who are responsible for the development of
applications within that domain (Braga et al.,, 1999). The Odyssey
environment was developed as a stand-alone application using java
technology at the Computer Science Department, Federal University of Rio de
Janeiro. It provides support for development using graphical UML notations.
With respect to Odyssey, no information has been provided to enable
categorisation of the tool as either academic or commercial. The Odyssey
reuse environment is a free and open source tool that is available under GNU

license.

PuLSE-BEAT (Product Line Software Engineering Basic Eco Assistance
Tool): An automated decision support tool for the analysis of data used by
PUuLSE-Eco to determine the scope of a product line during product line
development activities. The tool was developed at the Fraunhofer Institute for
Experimental Software Engineering (IESE) and provides support for both
domain expert and method experts by delivering three different scopes:
possible candidates, likely candidates, and strongly recommended
candidates. These are in relation to thresholds of 0.5, 0.6 and 0.75,
respectively. PULSE-BEAT was developed based on Excel worksheets using

Visual Basic for Applications and supports textual notations implemented

198

based on a tabular form. Support for traceability and consistency
management between these worksheets has been provided by the tool.
PULSE belongs to the category of academic tools. It is however, not available
as free and open source, nor could an evaluation copy be obtained (Schmid

and Schank, 2000).

Holmes: A collection of tools that supported product line (SPL) domain
analysis and engineering, designed to endorse Sherlock (a DA&E
methodology aimed at the development of object-oriented frameworks) SPL
methodology by giving an additional functional interface and making better
use of existing technologies and standards. Holmes aimed at providing varied
support for SPL development, including market analysis and strategy,
modelling, design, and development of the resulting product. This is achieved
through the use of a critiquing system that provides semantic support for
Holmes users by analysing the products and domain models (Succi et al.,
1999, Succi et al., 2000b, Succi et al., 2000a, Succi et al., 2001). The tool was
developed using Java language and implemented as a web service using
Java Space technology and XML at the Department of Electrical and
Computer Engineering, University of Alberta, Canada. The tool supports
textual notations based on a matrix with rows and columns for the projections
of the number of variants for variation points. It is recognised as an academic
tool, rather than a commercial one. It is also not available as free and open

source, and no evaluation copy could be obtained.

COVAMOF (ConlPF Variability Modelling Framework): A software variability

modelling tool that represents variation points and dependencies as first-class

199

citizens and provides ways to model the relationships among the complex and
simple dependencies at all levels of abstraction. The tool supports software
engineers during both the domain engineering and application engineering
processes (Sinnema et al., 2004). In COVAMOF, the product family is divided
into three abstraction layers — the features, the architecture and the
component implementations. The variability occurs in all the abstraction
layers, and is modelled by the COVAMOF Variability View (CVV). The CVV
encompasses the variability in terms of variation points and dependencies.
COVAMOF and all its functionality has been developed in Java and
implemented as a stand-alone application. It has also been partly
implemented as an extension to the Eclipse platform (Sinnema et al., 2006). It
supports graphical notation for representing the variation points, variants and
dependency. The tool was developed at the Department of Mathematics and
Computing Science, University of Groningen, Netherlands, as part of the
research sponsored by Configuration in Industrial Product Families (ConlIPF),
which was aimed at defining and validating methodologies for product
derivation that are applicable in industrial applications. Neither a free version

nor an evaluation copy of COVAMOF could be obtained.

Feature Modelling Plug-In (fmp): an Eclipse based tool supporting feature
modelling editing and configuration purposes. It models variability based on
feature diagrams, and uses cardinality-based feature modelling, specialisation
and configuration. The tool was implemented as either stand-alone in
Eclipse, or together with an fm2rsm plug-in in Rational Software Modeller

(RSM), or Rational Software Architecture. Fmp2rsm integrates fmp with RSM

200

and enables product line modelling in UML (Antkiewicz and Czarnecki, 2004).
The fmp tool supports software product line developers in checking the
consistency of the model, generating valid configurations, and checking partial
configurations. The tool was developed at the University of Waterloo, Canada,
based on the Java language and supports both graphical and textual
notations using UML and XML, respectively. Although the project has been
completed and the tool is no longer maintained, fmp is an open-source project

hosted on SourceForge.

PLUSEE (Product Line UML Based Software Engineering Environment): an
automated product line engineering tool in which a multiple-view model of the
product line architecture and components are developed and stored in a
product line repository. The multiple-view model describes the different
features of a product family, including the common and variable
characteristics of member products. The multiple-view model is represented
using UML modelling notations. PLUSEE addresses the product line life cycle
in three different phases: 1) the Product Line Requirements Modelling,
consisting of the use case model view, which tackles the functional
requirements of a product line in terms of use cases and actors; 2) The
Product Line Analysis Modelling, comprising four different views — the Static
Model View, the Collaborative Model View, the State Chart View and the
Feature Model View. In the Static Model View, the fixed structural aspects of a
software product line are addressed using classes and relationships among
them, whereas the Collaborative Model View and the State Chart View work

collaboratively. The dynamic aspects of a software product line are handled in

201

the Collaborative Model View, while the State Chart View determines the state
and state transitions for each of the dependent kernel, optional, and variant
classes. The Feature Model View captures and represents the variability of a
product line together with their dependency relationships. Finally, 3) the
Product Line Design Modelling, which is the phase where the architecture of a
product line is developed (Gomaa and Shin, 2004b, Gomaa and Shin, 2007,
Gomaa and Shin, 2004a). PLUSEE was developed at the Department of
Information and Software Engineering, George Mason University, using
Rational Rose and Rational Rose RT graphical editors to support the multiple
views. The tool supports graphical notation using UML and has been
categorised as an academic tool. PLUSEE is not available for free or as an

evaluation copy.

XML-Based Feature Model: An XML-based feature modelling tool that
provides support for defining feature models and the enforcement of the
relationships’ instantiation between models and their meta-models. It offers a
means to decompose a large feature diagram into extensible and self-
contained modules. The tool, however, provides explicit support for both the
modelling of the system family and of the applications instantiated from it. In
addition, it outlines and provides support based on an XML approach, which is
a way to the develop and express feature modelling tool at a low-cost
(Cechticky et al., 2004). The tool was developed at the Swiss Federal Institute
of Technology (ETH) in Zurich, Switzerland, in collaboration with P & P
Software, which is a research spin-out of the Institute. It has been developed

based on XML technology and therefore allows for the automatic derivation of

202

XML schema from the family model. It also supports textual notations and has
been identified as an academic tool. The tool is not available for free, and no

evaluation copy could be obtained.

AHEAD (Algebraic Hierarchical Equations for Application Design): a collection
of Java-based tools that support product lines by way of compositional
programming, in which features are the building blocks of the system. AHEAD
is a toolset that supports multiple programs and multiple non-code
representations written in different languages. The main tool of AHEAD is
called the composer, which receives an equation as an input and then
interprets the equation into its nested collective equivalents. After this, a
composite feature directory will be created with the name of the input
equation. Other tools comprised by AHEAD are for the implementation of the
composition for non-code artefacts, such as HTML files, make files, design
rule files, XML files and BNF-grammar files, among others (Batory et al.,
2004, Batory, 2004). AHEAD tools were developed at the Department of
Computer Sciences, University of Texas at Austin. The tools were not based
on pure Java, but were developed using Java extended embedded domain
specific languages (DSLs) for refinements, state machines, and
metaprogramming. Therefore, it supports different Java dialects. The tools
support textual notation based on expressions. AHEAD tools are available as

free and open source for download.

XVCL (XML-based Variant Configuration Language): a variability
management mechanism that comprises a method and a supported tool that

can be applied to configure variants of various kinds of software product line

203

assets, including architecture, code generation, UML modelling, test cases
and documentation in the SPL approach. It supports product line developers
to easily perform domain analysis in order to capture the common and
variable requirements in a feature diagram. It then enables the building of
reusable product line assets, comprising the domain model, product line
architecture and generic components (Zhang and Jarzabek, 2004, Jarzabek
et al., 2003). XVCL was developed at the National University of Singapore, to
serve as a modern and versatile version of its predecessor, Bassett's frames
(Bassett, 1997), a technology that has been successfully applied in industry
for synthesising large COBOL and Java business applications. The tool was
implemented using Java and XML technology, where frame-programming
concepts were expressed as a mark-up language similar to XML, separating
each frame called x-frame from an XML file. It supports textual notation
designed as XML tags. XVCL is an open-source software available at

SourceForge (damithc, 2008).

KUMBANG: a toolset for managing software product line variability that
comprises two different, but mutually dependent, aspects — Kumbang
Modeller and Kumbang Configurator. The Modeller allows for the creation and
modification of models to capture product line variability from feature and
architecture points of view. With Modeller, a user can specify the features of
the system family and the architectural elements, as well as constraints and
dependency relationships. On the other hand, the Configurator allows for
deriving the configuration of individual product members through binding

variability in the Modeller (Myllarniemi et al., 2005, Myllarniemi et al., 2007).

204

The Configurator assists users (such as architects) during the configuration
process by providing a graphical interface to allow for entering requirements
for individual products, in addition to checking to ensure that configuration is
consistent and complete. Kumbang was developed at the Software Business
and Engineering Institute, Helsinki University of Technology. The tool enables
creating and editing configuration models graphically using UML-like

notations. Kumbang is an open-source tool that can be downloaded online.

BVR (Base Variability Resolution): a prototype feature modelling tool that is
characterised by establishing and maintaining the relationships between
models: 1) Base model, which can be in a given language; 2) Variation model
for variability specification, which usually contains variation elements and
each element will be referenced to a base model, and is subject to variation,
whereas those elements that are not subject to variation will be figured out; 3)
Resolution model, for defining variability, as well as binding its specification
that can be used to drive one or more new products in a product family. The
BVR tool has been developed based on Java Development Technology (JDT)
and Java programs for representing the Base model and the resolution of
variation, respectively. In addition, the implementation was based on the
Eclipse modelling framework (EMF). It supports graphical notation using basic
right-click functionality. BVR is an open-source software available as an

Eclipse plugin (Shakari and Mgller-Pedersen, 2006).

ASADAL (A system Analysis and Design Aid toolL): a based-on FORM
(Feature-Oriented Reuse Method) method that supports the entire product

line development lifecycle, including domain analysis, architecture and

205

component design, software code generation and verification and validation.
ASADAL assists its users by providing various editors, including a feature
analysis editor for feature selection and a feature-binding analysis modelling
editor. Other design modelling editors include: i) a conceptual architecture
model for stating abstract high-level functional elements of a product line, and
control flow between them, ii) a process architecture model for demonstrating
executable elements and relationships among them, iii) a component
architecture model for expressing reusable concrete components to be used
in system development, and iv) a design object model for component
implementation. It generates executable code, such as Java, based on the
information gathered from combined feature selection, processing macros
embedded in various design models and components (Kim et al., 2006). The
ASADAL tool was developed at the Computer Science and Engineering
Department, Pohang University of Science and Technology, South Korea. It
supports graphical notation using FODA (Feature-Oriented Domain Analysis)
format. ASADAL has not been available in either a free open source or

evaluation copy.

Scatter: a tool that supports architecture design for mobile devices by
automating variant selection for mobile devices whose inputs are: i) the
requirements of product line architecture and ii) the resources available on
discovered mobile devices. The expected production is an optimal variant that
can be used in the construction of mobile devices. Scatter helps developers
visually model the product line architecture components, manage the

dependencies and constraints among them, and handle the non-functional

206

requirements associated with each component (White et al., 2007). Scatter
was developed at Vanderbilt University Nashville, TN, USA, in collaboration
with Siemen AG, Corporate Technology (SE 2) Munich, Germany. It was,
however, implemented based on the Eclipse Generative Modelling
Technology (GMT) project, using its open-source Generic Eclipse Modelling
System (GEMS). The tool supports graphical notation that defines domain
specific modelling language using a visio-like environment. There exists a
compiler that converts the graphical models produced by the Scatter into a
prolog knowledge base and constraints satisfaction problem (CSP) and, which
is operated using a prolog constraint solver. The Scatter tool is characterised
as an academic tool and could not be found either as an evaluation copy or as

an open source tool.

VMWT (Variability Modelling Web Tool): a web-based variability management
tool that allows for creating and storing product line projects. Adding variants
and their associated variation points to a particular code component can allow
the products configuration. Afterwards, a range of numeric values or an
enumerated list will be specified. Once all the variants are added, all the
variation points will then be added to the code components. VMWT supports
management of the dependency and constraints that might exist within the
added variation points and variants using Boolean relationships, such as
AND, OR, XOR and NONE, or even the use of requires and exclude for the
case of a complex decency. However, it enables checking for the
completeness of the computed dependency and constraints. VMWT has

been conceived as a prototype research at the University Rey Juan Carlos of

207

Madrid. The first version of the work was implemented as a web-based
application, built with PHP and Ajax, running over Apache 2.0 (Capilla et al.).
Although, the tool’s link is still available in the published literature, it is no

longer in existence anywhere. VMWT is an open-source tool.

LKC (Linux Kernel Configurator): a feature modelling tool delivered within the
Linux Kernel that enables feature selection in a product line model. LKC
comprises two main components that are used as its backbone. These
include a parser and a dependency checker. LKC allows configuration options
(feature selection) to be defined in a configuration database organised in a
tree structure. The configuration database consists of a collection of
configuration options built as a set of entries, where each entry comes with its
own dependencies to be used in determining its visibility based on only one
condition, that is, if its entry is also visible (Sincero and Schroder-Preikschat,
2008). The LKC tool was developed at the Department of Computer Science,
Friedrich-Alexander University Erlangen-Nuremberg, firstly, as a prototype in
2002, whereas the current version is 1.3. The tool provides support for
multiple notations, such as graphical based on basic right-click functionality,
textual using strictly an LKC syntax, and command-line, among others. It
belongs to the group of academic tools and was released as an open-source

tool under (GNU) General Public License.

FeatureMapper: an Eclipse plugin tool used to map features from feature
model to subjective modelling artefacts expressed by means of Ecore-based
languages, such as Unified Modelling Language (UML2), Domain Specific

Languages (DSLs) that could be defined based on the Eclipse Modelling

208

Framework (EMF), and text-based languages defined using EMFText. The
tool provides support for both manual and automatic mapping and offers
various views for mapping features. These include: 1) the realisation view,
that specifies the features that need to be mapped to specific features, as well
as the model elements that do not participate in the realisation; 2) the variant
view, which point outs all the model elements of a specific product line variant,
that is, all elements that are common to all products in a product line that are
not yet mapped; 3) the context view, for colouring of features and model
elements in a feature model. The colours are used for easy realisation of
features; and 4) the properties changes-view, which allows for the changing of
model elements, such as feature cardinality, names of elements or values
initialisation. In this view, properties affected by the changes will be
highlighted (Heidenreich et al., 2008b, Heidenreich, 2009, Heidenreich et al.,
2008a). FeatureMapper was developed at Technische Universidad, Dresden,
and the implementation was based on Eclipse Graphical Editing Framework
(GEM). It supports different means of visualisation (both graphical and tree-
based editors). Although there was not enough information available,
FeatureMapper belongs to the category of academic tools and is available for

free from the tool’s website.

PLUM (Product Line Unified Modeller): a tool suite for Product Line
Engineering that follows a Model-Driven Software Development approach to
capture and analyse the product line variability in terms of decisions and
establishes the dependencies among them. The tool allows product line

developers to design, implement and manage product lines through a guided

209

variability resolution process of the decision models. The variability resolution
process consists of assigning values to the decisions in order to define a
product of interest. This gives rise to the application model to represent
concrete products of the product line. The PLUM tool suite has been
developed at the European Software Institute (ESI) based on the concepts
from the results of past International Research Projects (such as FAMILIES,
ESAPS or CAFE and FLEXI), for representing product lines and its variability
into model. The tool was implemented as an Eclipse plug-in using a wide
range of eclipse framework technologies, such as EMF (Eclipse Modelling
Framework) for providing basic building blocks for the models and their
editors. GMF (Graphical Modelling Framework) for graphical assets editors.
OCL (Object Constraint Language) for decision model's dependency engine
and BIRT (Business Intelligence and Reporting Tools) for representing
valuable SPL’s metrics (Aldazabal and Erofeev, 2008, Martinez et al., 2009).
It supports graphical notations using UML, and belongs to the category of
commercial tools. PLUM is an open-source tool suite available on the ESI

website.

XToF: an integrated tool support for product line development that lets users
create feature diagrams, tagged blocks of code, classes and packages in
object-oriented programs, feature configurations and the automatic generation
of products by running the source code. The tool allows programmers to
define, maintain, visualise and exploit traceability links between a feature
diagram and a code base. It uses the capabilities of an open-source Eclipse

plug-in called TagSEA, which provides mechanisms to filter tags, as well as

210

define and list waypoints. XToF uses these mechanisms to link the TagSEA
waypoints to features and blocks of code. Feature diagrams are to be loaded
in the SXFM format of an XML file, the XToF then displays it and enables tags
to be added, navigated and configured. The loaded feature diagram is then
saved into the project folder, giving its path as property of the project. This
allows all the project contributors to work in parallel by getting access to the
project folder (Gauthier et al., 2010). XToF was developed as a result of
collaborative efforts between three different institutions: the University of
Victoria, the University of Waterloo and the University of Namur. It was
implemented as a plug-in on the Eclipse platform and supports tag-based
implementation in Java and C languages. XToF has been deployed in the
industry and is therefore categorised as a commercial tool. It is available as

an open-source tool.

ToolDay: a domain analysis tool aimed at supporting domain analysts to
achieve an effective and systematic reuse of software artefacts through a
semi-automation of the entire project. It is architecturally a three-layer-based
view consisting of a graphical user interface layer (GUI), which allows a
friendly environment for the users, a business layer that holds each ToolDay’s
group components, i.e., planning, domain modelling, domain validation and
product validation, and a data persistency layer for saving information (Lisboa
et al., 2011, Lisboa, 2008). ToolDay was developed at the Federal University
of Pernambuco, Brazil and implemented using Eclipse’s Graphical Modelling
Framework (GMF). However, using the Eclipse standard, the tool saves

information as XML files, where each file has its proper XML document,

211

making it easy for other tools to import information from ToolDay. It supports
graphical notation using the Eclipse platform through its Rich Client Platform
(CRP). ToolDay is listed in the category of academic tools. Consequently, the

tool is not available as either free open source software or as an evaluation

copy.

View Infinity. a software product line (SPL) tool that supports visualisation
and zooming functionality of different abstraction layers of SPL content,
including feature model, file structure and source code. It offers seamless and
semantic zooming of the feature model and source code that can be edited in
other product line tools. This allows for a better, step-by-step visualisation of
project data, while zooming the details of the presented information. The View
infinity interface consists of three different views, including the feature model
view, which allows for exploration of SPL’s feature tree at its most abstract
level. In this view, the feature model is viewed as a graph consisting of
hierarchically-connected feature nodes. The user can disable and enable
features to create a specific variant. However, from this view, a subsequent
zooming of active features can take place, allowing one to deeply explore the
actual implementation level of these features; first, it allows for zooming into
the file view, where the details of a file structure are revealed. A more
subsequent zooming would allow viewing into the detail implementation of
individual code fragments of that particular feature. That is the code view
(Stengel et al.,, 2011). View infinity was developed at the University of
Magdeburg and implemented based on Java technology. The tool supports

graphical notation based on FODA and textual notation using color-coded

212

source code. The tool is open-source software available from the tool's

website.

FAMILIAR (FeaAture Model script Language for manipulation and Automatic
Reasoning): a language and tool environment for the management of
variability feature models developed based on domain-specific language
(DSL). It provides support for various operations related to variability
management tasks, such as importing, exporting editing, composing,
decomposing, configuring and reasoning about feature models. FAMILIAR
was initially developed at I3S laboratory and is currently jointly and openly
managed by the Triskell team (INRIA/IRISA/University of Rennes 1), the
MODALIS team (I3S laboratory, University of Nice Sophia Antipolis) and the
Colorado State University, USA. It was developed in Java language using
XText, a framework for DSLs development. The tool was, however,
implemented in different solutions for use. These includes: 1) FAMILIAR Tool
that is fully integrated as a standalone modelling app executed as a JAR file;
2) A plugin for the Eclipse platform, integrated with XText and FeaturelDE,
and 3) as a standalone version that supports console mode only (Acher et al.,
2011, Acher et al., 2013). The tool supports both textual script for performing
a series of operations on feature models and graphical notations for the
visualisation and editing of feature models. FAMILIAR is available as a free

open-source tool at GitHub pages.

DOPLER: (Decision-Oriented Product Line Engineering for effective Reuse):

a flexible and extensible tool suit for variability modelling that allows for the

213

creation of a meta-model to define the asset types (such as features,
architectural elements, resources or properties), attributes and dependencies.
The tool allows users to make decisions based on the models and are
capable of determining the required assets of a product (Dhungana et al.,
2010). Since 2006, Dopler has been under continuous development at
Christian Dopler Laboratory for Automated Software Engineering, Johannes
Kepler University, Linz, in partnership with Siemens VAl and Siemens CT.
The tool was developed based on Java Technology and supports both textual
and graphical notation. It has been a proprietary of Siemen VAI and therefore
neither its evaluation copy nor a free version is available. Service-oriented
software development, Eclipse-based development and enterprise resource
planning, among others, are the other domains in which Dopler can be used

(Dhungana et al., 2011, Rabiser et al., 2009).

FeaturelDE: an Eclipse-based tool and framework aimed at supporting entire
development process of Feature-Oriented Software Development (FOSD) for
the development of SPLs. Among others: 1) it allows variabilities and
commonalities of a software system to be captured for the purpose of domain
analysis; 2) it eases the implementation of all software systems of the domain,
while at the same time, mapping code assets to features; 3) it provides the
means to map requirements to features within the domain and feature
configurations for a customised software system; and 4) allows the automatic
generation of the software system. Since 2005, when it was first developed at
the University of Magdeburg, FeatureIDE has been under constant

development, resulting in various improvements; among others are full

214

integration in Eclipse, support for both textual and graphical notations, Iin
which features models can be edited (categorised using generalisations or
specialisations or none of these), the highlighting of dead and false-optional
features along with their corresponding constraints, a configuration editor for
creating and editing configurations, a view for displaying statistics about the
software product line, and so on (Thum et al., 2014, Meinicke et al., 2016,
Kastner et al., 2009). The implementation was based on Java technology, but
provides support for other implementations, such as AspectJ extension and
FeatureC++ extension. FeaturelIDE is an academic tool and can be

downloaded either directly from its website or in the Eclipse MarketPlace.

MOSKIitt4SPL: a tool for modelling software product lines and the application
of model-driven development distributed as a platform-independent plugin to
be installed on any Eclipse modelling tools (EMT). M4SPL is based on the
Eclipse Modelling Framework (EMF), Graphical Modelling Framework (GMF)
and Atlas Transformation Language (ATL). The tool is designed to help
software developers in analysing, designing and developing adaptive software
systems. However, various editors have been provided by the tool to simplify
the specification of self-adaptive systems, including: (1) Feature Models Editor
for representing and describing the variability of a system in terms of features
and from which possible configurations for different systems can evolve; (2)
Feature Model Configuration Editor, in which variations of different systems
can be defined; and (3) Resolution Model Editor, which provides declarative
support among different system configurations (Gomez et al., 2012). M4SPL

was developed at The Technical University of Valencia, Spain. It supports

215

graphical notations based on various editors. The MOSKIitt tool is a free
open-source tool that can be downloaded along with the installation guides via
a link by filling and submitting a contact form available from the tool's website.
It can be used either as a standalone plug-in on Eclipse or integrated in the

Model Driven Everything (MDE) MOSKIitt environment.

ISMT4SPL (Integrated Software Management Tool for Adopting Software
Product Lines): a based-on orthogonal variability model (OVM) approach to
provide a method to reduce the complexity of variability management and
allows traceability within the artefacts between domain and application
engineering. It also supports dependency management among variants and
their variation points by allowing for the automatic generation of variability
models. Architecturally, ISMT4SPL comprises three abstraction layers: (1)
System layer to ensure all fundamental functions, such as Legacy
Requirements Management System function, Legacy Design Management
System function and Legacy Configuration management System function; (2)
Product line Layer for traceability management, variability management and
Product line adapter that plays a role of intermediate function between the
system layer and user interface layer; (3) User Interface layer that comprises
various views, including the requirement view, design view and configuration
view. All the views display a variability model window and project explorer
window (Park et al., 2012). The tool was developed at the Korea Advanced
Institute of Science (KAIST) and supports both graphical and textual notation.
However, it belongs to the category of academic tools and neither an

evaluation copy nor a free open-source version can be obtained.

216

BeTTy: an extensible and configurable tool and framework supporting
benchmarking and testing on the analysis of feature models by examining
their set of products sufficiently. Among others, BeTTy supports the
automated detection of faults in feature models. Also, it supports the
automated generation of test data for a number of operations performed on
feature models based on the input data. It also includes an algorithm for
feature model generation, which maximises user-defined optimisation criteria.
When a feature model is generated in BeTTy, a more complex and extended
feature models can be generated that reveals the performance of tools in
pessimistic cases. On the framework end, BeTTy allows for the generation of
several components for simplifying the performance evaluation of feature
model analysis tools. The tool was developed at the University of Seville,
Spain. It was implemented in Java and distributed as a jar file, which gives it
the ability to be integrated into external projects, as well as through a web
interface that facilitates the generation of customised random feature models.
This can be used to assess the average performance of other tools during
analysis process. BeTTy belongs to the category of academic tools, and it has
also been freely distributed under GPL v3 license, available from the BeTTy

website.

S2T2 Configurator: a feature configuration tool that supports the generation of
a visual collaborative representation of the feature model and offers a proper
explanation of the effects of the user’s actions using its reasoning engine. The
reasoning engine depends on SAT solver and therefore requires the

Conjunction Normal Form (CNF). Also, using its architectural design, it allows

217

for mapping among visual components and their matching formal
representations. The S2T2 configurator can validate complex Boolean
constraints and textually represent them in a separate window. The tool’s
behaviour of focusing on the task of feature model configuration allows other
forms of feature models, developed from other tools like SPLOT and AHEAD,
to be imported. The tool was developed at the University of Limerick and
implemented in Java, specified as a plug-in in Eclipse IDE. It supports both
graphical notation using vertical node-link layout, where each feature group is
represented by node link and dependencies and constraints are represented
using FODA-like notation (Botterweck et al., 2009, Pleuss and Botterweck,
2012). It also allows the tree layout to be collapsed and expanded, similar to
file explorer. From a textual perspective, it uses the notation to denote
whether a feature’s state has been set by the user. The S2T2 Configurator

belongs to the category of academic tools and is a free open-source tool.

EASy-Producer: a tool supporting product line engineering by facilitating the
development of variant-rich ecosystems. The tool reduces the complexity that
is likely to result in losing all control during product configuration when
variability models of various product lines from various organisations are
composed in an ecosystem. EASy-Producer uses a technique called product
line specialisation, which binds variability in an ecosystem through partial
instantiation. Among others, using a specific table-based editor, the tool
supports product configurations based on the variables filtered by the user.
The configuration can also be validated through a reasoner that recognises

conflicting values within the model. The tool supports two textual languages

218

for product instantiation; these are the Variability Instantiation Language (VIL)
and the Variability Template Language (VTL). The VIL assists engineers in
specifying the artefacts’ instantiation and during the process of product line
production in a rule-based style. EASy-Producer was developed at the
University of Hildesheim and implemented as both standalone application and
plug-in for Eclipse. It supports both graphical (intended for non-expert users)
and textual notation (largely intended for experts) (Eichelberger et al., 2014).
The most recent version of the EASy-Producer’s source can be found on the

project website.

Opti-Select: an interactive multi-objective product line configuration tool
designed based on the idea of UIL (User-In-the-loop) for the analysis and
optimisation of features. It uses optimisation techniques and algorithms to
merge the experience of both the analysts and stakeholders. The interactive
feature of the tool allows it to integrate set techniques that provide a step-by-
step modelling of features and their configuration, dependency and constraint
management, solution optimisation and user exploration capability for the
better satisfaction of stakeholders. Opti-Select was developed at the College
of Computing and Information Technology, Arab Academy for Science,
Technology, and Maritime Transport, Cairo, Egypt. Using a file tree format,
the tool graphically allows the loading of the Simple XML Feature Model
(SXFM) format. Configuration attributes can either be loaded or saved to a
separate file, which can then be linked with relevant features. Once the SXFM
file is loaded to the application, the complemented attributes will be displayed

so that a user can alter the values of each attribute associated with every

219

feature in order to make the necessary changes according to system
requirements. In this, a selected feature or its attribute values can be changed
(Yamany et al., 2014). Opti-Select is an academic tool. It is also a free open-

source tool and an evaluation copy could be obtained.

MPLM-MaTeLo-product line manager. a product line management tool
designed based on the Eclipse Rich Client Platform (RCP) as an extension of
the industrial MaTeLo tool chain, to offer a model-based testing formalism
from which variants can be generated for MaTelLo to allow the derivation of
specific test cases for product line variants. Thus, it gives the ability to
generate test cases for each variant. It allows formal communications among
features and requirements by relating product line model usage with a
variability model. In summary, the tool assists the product line development by
defining the product to be developed, configuring features, establishing a link
between requirements and features, building a link between products and
features, creating new products, generating test plans and creating test
models for a product. The MPLM model variability uses the Orthogonal
Variability Modelling approach and therefore associates the product line
features with that of OVM model. Product configuration is achieved by
selecting the desired features (Samih and Bogusch, 2014). The tool was
developed at ALLATEC/INRIA Rennes and supports graphical notation using
file tree-like notations. MPLM-MaTeLo has been applied in an industrial

setting, and therefore belongs to the category of industry tools.

220

VITAL (Variability ImprovemenT Analysis): a variability code analysis
toolset that can automatically extract variability models from variability code
and allows code visualisation and measurement. Parsing variability code can
be achieved using the conditional compilation method. Once the potential
variability code is passed, further analyses are conducted at the semantic
level to extract reflexion models, with their various elements as well as
dependencies. The variability code extraction is implemented as a macro
constant, while a variation point is implemented as an ‘ifdef’ block using Vars
in its ‘ifdef statement. The tool was developed at the University of
Kaiserslautern, in collaboration with the Fraunhofer Institute of Experimental
Software Engineering (IESE), both in Germany. Although different techniques
may be used in the identification of and parsing of variability elements,
currently, the C-Preprocessor (CPP) code parser has been used in
implementation. This enables industries to filter and get the analysis of
variability code. The tool supports textual notation using CPP code (Zhang
and Becker, 2014). It belongs to both academic and industry tools. The VITAL
tool is not available to download as free open-source software, and likewise,

no evaluation copy can be obtained.

ViViD: a variability management tool for synthesising variants for video
sequences for realisations of videos with different characteristics, such as
distinctions of luminance and the calculation of vehicles and people to cover a
range of testing scenarios. Among others, the tool supports variability
modelling language and an environment to enable the modelling of variations

within a video sequence. It also allows for the generation of testing

221

configurations for the variants of video sequences corresponding to those
configurations. In addition, based on the valid number of configurations in a
variability model, the tool supports prioritisation for pair-wise configurations
while maintaining the maximum and minimum ad-hoc objective functions
(Acher et al., 2014). ViViD was developed at the University of Rennes in close
collaboration with MOTIV industrial partners. It supports textual notations
created based on the open-source Xtext language workbench. The tool has
been applied in industry, and therefore belongs to both academic and
commercial tool categories. Although the ViViD tool is not available as an
open-source tool, all the tool's components can be downloaded from its

website.

VMC (Variability Model Checker): a software product line tool supporting
modelling and analysis concepts that can be specified in a value-passing
process algebra, supplemented with a set of optional variability constraints.
As inputs, it takes a product family model, together with variability constraints,
and then using its variability-aware version of action (v-ACTL), it offers a
logical analysis on the behavioural variability of a product family to its valid
products. VMC advances SPL development processes by means of
variability-aware logic interpreted over a Model Transition System (MTS) with
some additional variability constraints. VMC was developed at the Institute of
National Research Council of Italy, ISTI-CNR, and developed in Ada language
to allow its compilation on various platforms, including Windows, Linux, Mac
OS-X and Solaris. Its computational model was based on a combination of

automata formed from a series of algebraic processes originated from the

222

value-passing Calculus of Communicating Systems and Communicating
Sequential Processes (CCS/CSP) like calculus. It supports textual notation
constituted by command-line prompt. It also supports graphical notation using
html-oriented GUI and when integrated with graph-drawing tools (Ter Beek
and Mazzanti, 2014). The tool is not open-source software; likewise, an

evaluation copy cannot be obtained.

WebFML: a product line online environment for synthesising feature models
from different kinds of software artefacts, such as propositional formula and
dependencies using graphs or matrices. It provides interactive support via
logical heuristics (a technique used in problem-solving), clusters (contains the
desired set of parents and children features), and ranking list (a list of parent
candidates for every feature) to allow multiple choices of substantial and
desired hierarchy. It also provides a mechanism for translating variability
artefacts into feature models, in addition to speeding up and supervising the
building process of feature models. This tool helps practitioners minimise their
efforts while handling complex variability models. The tool supports partial
integration with other tools, such as FAMILIAR, so that the scripts files
computed on those tools can be managed with the help of an integrated
console. The tool was developed at Inria/IRISA, University of Rennes 1,
France, and implemented using JavaScript based on Dagre and D3 libraries
(Bécan et al., 2014). Its web interface supports graphical notations using the

tree explorer view. The tool demo is publicly available from the tool's website.

223

Appendix B
Table 4.2: Tools with FODA-like visual notations

[S10]

Feature Model Conceptual Pattern System

Domain
Pattern
Support
Analysis
Pattern

Related OO Models
Class Diagrams
Interaction Diagrams
State Diagrams
..gﬁ'sew trace
; bl ~—— .
" trace O ; i 5)

) 0O State Diagra

[S21]

S o b e s e

File Edit Diagram Navigate Search Project Run Window Help

DrEEE S I F-0-Q HOY E®S

E[Tahoma v ~| B l’|‘,Z_v/ﬁv.)v—)vlu;ﬂ'i&ivﬂ%vg—é}vl;'|
[£ Package Explorer &2 = O[S FM_S2.cmdspl_diagram 52)
BEg|le~ =
4 ot myFirstProjectM4SPL
£ CM.cmdspl
.& CM.cmdspl_diagram
gnb FM_S2.cméspl
|&% FM_S2.cmdspl_diagram|
& FM.fmdspl
.’. FM.fmédspl_diagram
% RM.rmdspl
L3 SM.smdspl

é% SM.smdspl_diagram

4 »
O- . » e o = = 7 =
o Outline &3 « B v g [£¢ Probl ‘ @ Javadoc ﬂ% Declaration | -] Properties = HEY 8

&% Undefined

Core Property Value

Rulers & Grid Name Configuration_S2

Appearance Feature Model FM

&% Configuration Model

224

[S11]

i 4YM - (Prototype) - Network Emulator Feature Model E]@@
File Edt Search View Project Help
Business View Hierar ioural View | o jon View | ate View |
P T EQjaCE
Packet classifier ‘ Bandwidth Limiter I Delay I ’ Jitter ‘ ‘ Queuing I ‘ Packel Loss
FIFO ‘ | RED | | cBQ ‘ ‘ WFQ | ‘ Token Bucket ‘ ‘ Leaky Bucket
|
[S22]
MName: Attribute0 raot Name: Attribute0
Domain: Integer [14,19] . -~{ Domain: Integer [14,19]
walue: 16 } I." Value: 14
MName: Attribute MName: Attribute1
Domain: Integer [44,70] i ' --| Domain: Integer [44,70]
Value: 60 i ¥ Value: 50
F1 F2 F3 }
L
MName: Attribute1 Name: Attributed
Domain: Integer [14,19] |- - Domain: Integer [44,70]
T F4 - Value: 52

Yalue: 15

225

BUEBBNRERY
BEEBENRERRREER

oS ssataar B 2BBBYRGY

static void printtest() {

e
—
NN

e = new Plus(new Num(5), new Num(7)):
System.out.println("print(5+7) = " + e);

}

interface Exp {

int eval():
String toString();

[S25]

eling
Coniroller

Code
Generation

{Function
Simulator

0 Viewmes Iy Simulator Generation
| & - :
Spatial Basic or{Function
Relation Monitor Simulator > Viewer

1

1

Spatial
Interaction

Inference Engine

Spatial
Constraint

226

[S15]
FeaturelIDE - GPL-AHEAD/model.xml - Eclipse SDK

X

Connected = Undirected A Search
Cycle = GraphType A DFS
Shortest = Directed A Weighted

eincluding subfeatures

[Mandatory (Double Clicky

[S27]

5. Navigator 23' = O || @ attari_games.tda_diagram &3 =8

3 Attari games

Constraints = Cannot be movable

Feature Type I= NotSet @
Name = Obstacle

Priority 0= Low

Rationale = Increases the difficult of the game

Semantic Description ! Represents a static object in the game

227

'35—- Vanabiity Model
v - -
ﬁ & [—g o~ w g [+] a
) Comerarmi 1 Comeraid Displaying Survaslance Camera 10 VPN VL V]
1 G 10 et 24 characters v aw [~
12 Camersidloc 1 must be possible for users 10 locate camers 10 on the screen v n L]
13 |G possitie upponied Wy MM
121 |G wported v M~ V]
132 ComersidCholarg 1 must be posartée that Charese camars id 15 supporied v n o u
133 C "ot d 18 supported v B 2
2 Suto Expoaure v o]
21 | AaBrightress st be possitie et users sel brightress VeV S0 [~
211 st that users D vteps v 0 8
212 be users 65 steps v oA [~
22 heige ¥ must be poswitie that wuto gan conicl 8 supporied v (Vi]
23 huster cortrol in supporied v (ML [~
24 | AeLowShuser ¥ must be possible that low shutter control is supporied v (V1L]
3 |awe uto e Balaece |vew g
31 AabRgain R st be possible that users set R-gan level v (v I
12 | AwbGosn ¥ st be possibée that users sel G-gain leved | Mo [~
33 AabBgein ¥ must be possitie hat users et 8-gan level v " [~
P Ao Focun ey " [+]
41 Mol e v (“ (] w
42 | Atho supported v g]
43 | MZoom | pported Il [~ 1L ¥}
431 | AlZoom10x 10x z00m capabilty 18 supoored v oA V]
432 | MZoom20x | must be possible Bt 20x zoom capsbiity (s supponied v A [~
§ ! i
433 | AZoomAOx | sugponed v (Vi) v] 1
- | | I]
B fml 2 = O]9 FAMILIAR environment 22 =0)
run "segmBraini. fml" Name Tiype IValue T
P sugebraing, bl csegm1 CONFIGURATION selected: [Form
run “segmBrain3. fml 5
rn Sxsgalrating fa1® segmBrain2 FEATURE_MODEL Segmentation: |
segmBrain4 FEATURE_MODEL Segmentation: |
= foreach (sgm in segmBrain®) do segmMethodBrain4 FEATURE_MODEL Method: (Model
fmi = extract sgm.Medicallmage @ newFtName STRING OutputBrain
// rename features of fmi with prefix "Output" 2 i
a foreach CEE 1 fal.®) do segmentationBrainCi FEATURE_MODEL False g
nameFt = name ft segmentationBrain FEATURE_MODEL Segmentation: |
newFtName = strConcat "Output™ nameft namefFt STRING Brain
renameFeature ft as newFtName segmBrainl FEATURE_MODEL Segmentation: |
.Mts = segmBrain3 FEATURE_MODEL Segmentation: |
rootSgm = sgm 2 2
X segmMIBrain4 FEATURE_MODEL Segmentation: |
£
e insert fmi into rootSgm with opt 3 sy FEATURE Seginentation
0l fmi FEATURE_MODEL OutputMedicall
@ segmBrainl FM 2 || *csegm1.equation £)| @
© g wcuanaye =1
-
Feature Diagram | Source | Feature Order | [SemiAutomatic v
2. Problems | @ Javadoc [, | Console 5[Properties| 3" FM Zest A Bufl 2 B- 03 = 0O)
FAMILIAR Console
FAMILIAR (for FeAture Model script Language for manipulation and Automatic Reasoning) version 0.9.5.1 (beta)
University of Nice Sophia Antipolis, UMR CNRS 6070, I3S Laboratory
hitps:/inyx.unice friprojectsfamiliar/
fml> eal O
res0: (BOOLEAN) true
fmi> csegm1 = configuration segmBrain1
csegm1: (CON [Format, ty. Method, Brain, [}
fmi> counting segmBrain1
rest: (INTEGER) 6
mi>

228

[S37]

= @rrepository s

& fmwikl.dimacs
B user_study.fml
B fm2.dimacs
&tk fm

& fm1dimacs

FAMILIAR interpreter
Synthesising in progress
fml e fmiki b

ad fm 4

FML Editor KSynthesis

AMILIAR code

fmwiki ~
Ranking lists Smith Waterm ~ Clustering Smith Waterm + 0,5 Wundo MRedo Complete Save badfmvakl -
. Wiki: License Storage ["Programming
Preview Language”| ; License: ("Proprietary
License"|"Open Source) ; Storage:
(PostgreSOL |MySQL) ; "Programming
Language® (JavalPHP) : (‘Proprietary License”
Programming Language”); (PostgreSol
“Proprietary License")
[Programming Lungulge] [License] [Storage]
Ranking Lists Clusters Cliques
= Proprietary License > >
Fe— License Storage
Proprietary License License
Wik > S Wik
Storage v nn
Storage ~ >
@ PostgresQL PostgreSQL
PosigasoL » 2 MysQL Proprietary License
+ PostgresQL >
+ MysQL MySQL

over fmiki

229

Open Source

Table 4.3: Tools with file Tree-like visualisation

4_, Resource Set

[S7]
P My.oofeaturemodeler X
- Resource Set
=] @ platform: fresourceftest/My. oofeaturemodeler
. New Child 4

Load Resource. ..
Generate New Model
Unset Base Model
Refresh
Show Properties Yiew

[S13]

3 @ platform fresourceftest/My.oofeaturemodeler

Fealure Selechon Dlalog

Please Select/type a feature name:

Feature Name:

"14) Echojava 58 4] CommandLine java | |J] EchoMain java

|J] CommandLine java = 8@ vrD viewer 52 =t

pockage simplefchoSPL;

public class Echo {

= public String echo(String msg) {

J_l%wzlfuﬂ* T

- simpleEcho
> umn [Unsaved)
¥ @ simple_echo
¥ ® additional_features

String display = I have been told that : "smsg; E
Systez . aut?pr?nt In{display); - : coumk words
return display; “ keep_history
© command_line
} v @ display
= display_number_of_use
5 /*®feature:simple_echo.command_line@*/ « display_number_words
public String echolommandResult{String msg) {
String display = "Comand Result : "+msg;
System.out.printin(display); @
return display;
}
}
9 7agseA 53 .2 Consote| Fg) C/C++ Projects| &) Error Log| 3| %[t~ @°=0
Tags
[type filter text type filter text i
—" m—r Message |Location |
@ d:i?a:lt @ ; 15 Feature : features.cfdp_library.grp.pus.pus_copy | features.cfdp_lii ctest.c LocalFeature line 16
»asc =T % Feature : features.simple_echo.additional_features.count_words | History.java LocalFeature line 43 9
. waafeatures @38 ﬁfnture features. simple_echo.additional_features.count_words | Historyjava LocalFeature line 8
» @ cfdp_Jit @2 ﬁ Feature : !ulures..umm echn.addmorul feuufes count_words | Hlslnty Jjava LocalFeature Ilne 8
@ pus_ret @ 1 n - 12
oot 01 || 1€ > o
> @ simple. & 5:

230

fle Edt Vew Project Buld Debug Tools Window Help
P-O-cE@ ¥BRE - - F-B) o 2| g 1.Swn FAEHRF-,
BRUWUMEEZES|4%%K.
?J«Rx fc_inteface.c w| fc_label_constrast.c | fc_label_gle.c | fc_label_jsolated.c | fc_label I _plate_edges.c | fc_label_morph.c | fc_tabel_polarity_check.c | fc 4 » X wmugvn 3 x
gl Sl #rcenoresmaicomoent Z DOV A% @ COVAMOF
'* Copyright notice: B _j + J% Festures al
* Copyright (c) 2005 DACOLIAN B.V., All rights reserved # % Achtecture
E= - ./ 4 |= 2% Components
#include "fc_int.h” ¥ @ Stacksize
= # @ Min Gradient
® Low Pass Fiteang
) @ Stack image Height of Sauare Plates
5 int FcRemoveSmallComponents (FcConfig config, FcContext context,FcData data) i ms a '°°m"'d ORI PR
t Y
. ®

.00t Stk Jack
{oon Vegte of Spam
CA =

);ér‘

el

P | (2 ﬁuum
_Vanton Paint View | Dependency View | Denvation Assistart. VP View | Devaion Asstart: View Zom —f———
[Ready I I
[S16]

= o8 EShop Feature Model
= A& Payment
= ® PaymentTypes
= A
= CreditCard
-~ m DehitCard
- ™ PurchaseOrder
- © FraudDetection
=AM Shipping
LA

= =™ CustomMethods
= [1..*] Method (String)
. ® FlatRate (Float)
[+ ™ ShippingGateways
=M PasswordPolicy
= & Expiration
= A
- m InDays {(Integer)
o Never
= & Chars
= AN <2-4>
- ™ LowerCase
= UpperCase
= Digits
i - m SpecialChars
=4 EShop
-~ = ref: Payment
o ref: Shipping
» ref: PasswordPolicy

231

[S9]

@ = H = Sl =
pla s Iresourceficse-2008-demofmodelMappingModel,

BB Feature Contack Management
= < Groupd
4 Feature Addresses
4 Feature Relationships
4 Feature Contact Opportunities
4 Feabire Motes
[4 Featire Groups
< Sroup 0
<4 Fastura Mulipls Assigrimeart
4 Feature Arbirary Depth

Current Expression |4}_1r|

4 Feature Relatonships

®

Selected Bemerts L qp

4 Feature Addresses

®

[S24]

GroupHasParent
FeatureHasOptionalSubfeature ——— AlternativeGroup

FeatureHasMandatorySubfeature GroupHasChild

[4] Configurator

(J[carme

| KeylessEntry
| PowerLocks

Requires OrGroup — MutualExclusive J

232

[S11]

i 4YM - (Prototype) - Network Emulator Feature Model E}@@
File Edit Search View Project Help

Business Yiew lHierarchical,fBehavioural View | Dependency/Interaction View | Intermediate Yiew I

= Metwork Emulator
- Application Interface
- & Effects
& Packet Classifier
& Bandwidth Limiter
& Delay
& Jitter
=& Queuing
& FIFO
& RED
& BQ
& wrQ
& Token Bucket

& Packet Loss
i+ i Packet Router
+ i SendjReceive Pac

Toggle OpenfClosed

Implementation Time
Set as Megative
Properties

[S26]

% Requil ine - Version 1.01 (06.02.2003) - User vdmass - Connected to Database. - [|
w5 Project Element Queries Tooks User Config Window Help -8 x
ProductLine Features” | Requirements |

~ Details

Humber: [FE-0o0007 Get Next Number

Graphical Display Hame |Operation
HMI

Information to display Desciiption
Interaction Concept

IRDA

Local Operation

Dperation

Dperation with closed cover

Dperation with keys

Parametenzation, Coniguration

Presentation of Device State Rationzt
Remote Haidware

Remote Operation

Text Display

Visuakzation of Process Values

special products

State: [Proposed 5 Ritk: [iow

Version [0 Stabilky: |low

HMI
= Tiansmiltes-1 Pronty]‘m| :] Satisfaction IW

Lol Lod L

HMI
pamtieha o [aw -~ &
Parametenzation, Configuriation Release:
Visuaization of Process Values
= Tiansmiltes-2 ¢ l
Access Control
Commissioning Data
fizphical Disgby 1 Source: [vdmass Ciealed I
HMI
Infoimahion lo display
Interaction Concept
Local Dpetation
Opesation
Opavation with cloted cover
Opesation with keys
= Transmitter-3 v

& i 2 > Save SrowDependecies | Deiste | New | CopploFeposoy | Fler [nolsel) =

w7 LastChanged | 06.065.2003 10,0754

06.052003 1007 54

Pistom / Produets | Ascoc. Flequk | SupotrgMasid | DomsnRelsions |

MuuaDesendencies | Amoc UseCases | Hisoy ol Chenges | Festwe Sets |

233

[S12]

Ardpn 2

BEERE R |8

Specify variability modeling language for your domain

Details of Component

.
requires ¥
contributesTo
contributesTo

Ce

+ e

Oomain SiemensVAI

[S28]

File Option Help

~
i » Name | Component » phral | Components
» Properties [lisabstracttype » Icon [assetis.png » order [0 3]
¥ Description [
» Parenttype |Asset |
2 Attributes
» Create new { | » Type [V‘E] Inherited attributes
@ File File ‘ g g::‘c; e
&) variantType Boolean - ptashons
|
< >
2 Relationships
» Addnewlnk | v| » cardnaity [* %] » totarget | [+ ([@
warequires . ;| Component 1]
a-arequires » Property \
sacontributesTo ¥ Component |
3 sacontributesTo i Resource \l

gconf (on fauid8a)

o @l |l E]

Option

Option

=-EROOT

= Graph Type

\-@ Directed
- Undirected
=~ Weighted

i@ Weighted
L.QUnweighted
[=l- Search

-@DFS

- BFS
-ONone

-- [Strong Connected Comp.
- [Cycle Checking
.- Single Shortest Path

Number (NUMBER)

Assigns a unigue number to each vertex as a result of a graph traversal.

234

v

[S31]

3 2
1= project PL_yws_Platform {

Product Configuration Editor: PL_YMS_Platform

[Instantiate Product | | & Propagate Values | | <.« Freeze All

version v@;

enum SchedType {next,fitting};

compound DdsService {
SchedType SchedulingType;
colean i }

Rt BB e ounun

ling. Language
Boolean showGpsLocationsMap; I

Boolean useGpsCoords;
Boolean showSatelite;

¥

DdsService ddsService;
Jockeyservice jockeyservice;

Configuration

mcwmm;mcwmmsmr[mm

e———r—"
o s | FE T —
B v e 0 cobpre €3G | U i smeten () Gt b ntartian b

Bl

« piw

EASy-Producer

Instantiators

Instantiation

[S32]

v (& r Web Portal(web_portal)
¥ ﬁ 0 Additional Services(add_services)
¥ ﬁ 0 Site Statistics(site_stats)
| 5| :m Basic(basic)
¥ ﬁ .0 Site Search(site_search)
[:0 Images(images)
¥ (& 0 Textitext)
|5 :m HTML(htmi)
E] :0 Dynamic(dynamic)
v ﬁ .0 Ad Server(ad_server)
| %1 :m Reports(reports)
(| :0 Pop-ups{popups)
¥ ﬁ ‘m Banners(banners)
[:m Image(ban_img)

235

[S33]

File Edit Navigate Search Reports Run Window Help
invE® _ 5 (M MPLM |/ Edition ¥
ey [8, Type Filter Text (2 = any character, * = any String) | =
Y 2
e BB ﬁji";‘
= B Sferion “|
) 4 @ SferionAssist500 e
=] ™| Variant Display real reference objects

= ™ Variant ELOP (Elbit)

S ™ Variant HELLAS (CAS)

5 &1 Variant Check for no ground

) ™ Variant HOCAS GE Aviation Systems

= ™1 Variant HOCAS Honeywell

5 ™ Variant HMS/D Thales

™1 Variant HMS/D Elbit

=5 T Variant Check for obstacles

— 4 @ SferionAssist300

™) Variant Display visual 3D cues
™! Variant Check for no ground -
£ Properties 52 BErmre =0
Property Value
uuID -
Variation Element T Variant Display real reference objects
it Selected Object: V.. reference objects || ~ 37Mof128M | -
Table 4.4: Tools with Graph, Logic Diagrams, UML and Hyperbolic Tree
visualisations
[S2]

in Charactenzation

Client Application Environment
Domain Specific Language
Metrics

Output Storage

Server Environment

(a) (b)

236

[S11]

- | - | Y
-T & 38 >

Finger Movement > 30% initial distance

Ble Edt Vew Poject Guid Detug Tods Yindow Hep
H-o-c@0 8 - - F-B o - g 15m L REBRF-,
!E'ﬁ\-”“—"r";:l Sle%% R,
ﬁl_nm.c | fe_teface.c ‘fcbabelc | fc_label constrast.c | fc_label de.c | fc_label_isolated.c | fc_abel ¥ _piste_edges.c | fc_isbel morphc | fc_label polanty_chedk.c | fc 4 b X x|
g [(Goba =/ [siemoreamat -l [}JL{] 2 £ -ﬂ.alo COVAMOF
* Copyright notice: - + &% Features E]
= ot Copyright (c) 2005 DACOLIAN B.V., All rights reserved # % Archtecture
» / 4 |= 2% Componerts
#include “fc_int.h"] Stack-sze
st - Min Gradert
R Low Pass Fiteing
@ Stack image Height of Square Plates
I3 int 1 config, et DAL BRE) ® s::h-nwdwm
= w
®

237

[S5]

Product Line
Repository —» KBRET
<+— GuU
1
Classes T
; Knowledge-
Rose Product Line Basededg
MDL regate !
A Dependent Requirements
File for Knowledge Elicitation
Domain - Base (PLDKB) Tool
Use Case (KBRET)
A
Rose MDL Target Target = Target System Target System
li:lle for idy[s;illl Rose System Relations Feature Set
arget Relations :
System Generator Fatenetos
Rational
[Resesw]_, %
‘_
User
Use Case Model | | Collaboration Model Class Model Statechart Model Target System
1L o> Executable
% |Object1 = Oljectzl lClassl '_Iclasszl | State 1| >| Smrezl Component
Message Association Event/ Action (Rose RT only)
[S18]
I Kumbang Configuration Client =101
File View Configuration
RN G corvorers | | AZMSMIERHARN T Gorporrt dwara |
Component configuration [al[e] R[] [f]
% root System J/: LIRS @ fo
@ [B client ootSvstem
@ [clientiD]:ExtendedClient
@ DB calleriRpe2
& caller|Rpe2-» clientl0]: EdendedClient
@ [client[1]:BasicClient I e
@ DI calleriRpe IE” L
B callerIRpe-»
@ [B server L)
© (3 senerssnai2 AT
< encryption = none ee:lRpc2
@ [callee:lRpc2
& callee:lRpc2-= ® v
B callee:lRpe2-»
€ 1B dbase
@ [dbase:Db setver(1-2
@ [queryiRpc2 [
8- guery.lRpc2- k
client[2-3]
l
T)
Conguration propeMiss e
Name - ClientServer L ERmpETEILE
LR = Name server Subcompanents Interfaces Attributes
Type Server2 dhase:Dh EY llee:IRpe2 tion =
Configuration is complete. ase g Fanaeinac @ ENERRLoN=nona @
[e»] Expon % %
Save

238

[S11]

5 4YM - (Prototype) - Network Emulator Fea

File Edit Search View Project Help

Business Yiew] Hierarchical/Behavioural View | Dependency/Interaction View | Intermediate Yiew

Architect Fealure Selected Feature Mutually FhinoEats é\;[:‘"mg;“n';
Selection Dependency feature set Interaction exclusive ’gp e L
Model Model feature set @rchitecture
Modify/ O Modify/ Modify/
Encode IP Encode IP Encode IP
sendt O ¢ Send/ Send/
Receive IP Receive IP Receive IP
Secure o Secure 5— Modify/ -odelPSecPacket
Comm Comm Encode -
IPSec scDecodelPSecPacket
The Set of variability the architect The set of features selected based New feature is introduced to abstract
can select from. The circle next to on the architect's choice validated feature interaction (Modify/Ecode
the feature name represents an by the dependency model. IPSec). This allows one to many
optional feature mapping to architectural components

239

Appendix C

This appendix presents the screen-shots of an experimental implementation
that was discussed in Chapter 8, using the four different case studies, and a
number of variability management tools which are selected, based on certain
criteria as described in Chapter 7. The experimentation mainly focused on
determining how those tools addressed the four quality attributes: Usability,

Performance, Scalability, and Integration.

The screen-shots are, therefore, exposed how these tools addressed the case
studies of various sizes (small, medium, and large) and data elements. For
instance, tools in (Figure Al, Figure A2, Figure A3, Figure A4, Figure A8, and
Figure A9) accommodated up to 100 features, which is the medium scale size
variability model. This indicates that majority of these tools suffer from
scalability issues, when the models start to have around hundreds features.
However, other tools, such Odyssey and PLUM (Figure A6 and Figure A7),
failed to effectively support the small-scale model that contained 50 features.
On the other hand, for the large scale model, which is the peak point for
determining scalability in the experimentation, only one tool, MUSA, was

capable of accommodating more than 1000 features.

240

File Edt Novgate Seach Project Run Window Help

ol & HBBCERnmiE o -

@ CarModel | 9 Feature Model of D Sizes Model 9 Feature Model of Diff_Szes Model | 9 SampleSmaillsize Mode! £ | @ imitives_diagram

" = —————————— e T P —

e e e) s e e [] i]] R

Figure Al: FeaturelDE

griee *HBBELAMRYE Q- 4 B-Evero- [k ViR @b x|
m'lm;lm VA FesturelDE (7 Festure Modeling 8) XVCL Deselopment |{ 9
ToP. 0 BaMo = 01| 9 CarModel 9 Feature Modelof D Saes Model @ Feature Model of Dff Szes Model 9 SampleSmail_size Model 4 mitives diagam | 3] CY it « iagram 1 52 =a
8% - A Pl 3
4 e
> @ Carsample @

>

‘: g::m-wdwj \i\\’— —/ \ W
» &
@ z:ww«m . Y

4 Reference Mode
} Parent/ Child
} Feature Link

> | Ofeture
> (@ HypeDemo2 | @ Internet servces |G Beoking of study place G Page trans <G BOT Ry G Sesrch by language [§ Pagepreven| @ Mapstores “TON 5 gy
» & HyperDemal P .
» & HypeDemoWin 2) SubEntity
s@Mga e, m (] EntityPart
» @ $2T2_Small_to Medium TS o I % Application
B A Searching |G User accout| | @ Single place |G Group room| [@ Heml /ﬁ‘wlovm G Portuguese Gm Bow
s & Smplesmailsze |/
+ & Small Sze IDE B FeatureConfig
m = ¢
| G Etemal Dbase @ Comp Avalable | G Multimeds avalable (G G 6| B é"“‘
i - N i Ted
3 Rectangle
© Blipse

Figure A2: FAMILIAR

241

file Script Display Console Reasoning Synthesis Help

e o

]
MessageSender] interLibraroans mﬂ/ [Btudymat | BookingofStuyolace Searchbylanguage | [Paagepreview M
Eotes] [er]
A\
[Exgis?]
lee] o] [o]

[HTPS

iy

Figure A3: CVM Tool

File Edit View Help

SEIEIEIES)

-

D smeoigorr___ |1 | bawamtotorsampesmotroogum

S Smalltomedumsize |4
¢ €] Model

¢ CIMETA

X SYSTEM_FEATY

X SYSTEM_FEAT|

X SYSTEM_CARN|

o v 5200 | oo e]
Z SamplemailTg

A
B smaliToMedun]
B Emall Client
=t
E] Application proutar avatatl | [Muimedis avaabls |
Bl Builang

B Searcn Engine
B Connection
] Message editor| |
B message sendf
Bl message receny
B operating systeq
Bun

B wun

Bl orrs

B HrTP
1=

B web

B Btemal

B map

B Por3

B windows

B Linux

E] smbian

B swaymat

B InterLibrary loarf
B Printing

o a

o
Page translation

Figure A4: CaptainFeature

242

File Edit Diagram MNavigate Search Project Run Window Help
B-ORE :.:%Q@{Egﬁxe Qr 4~ FefletGroy
S =R v B8 |

’ Car Model |’ Feature_Model of Diff_Sizes Model |’ Feature_Model of Diff_Sizes Model |, SampleSmaill_size Model [@ default fmprimitives_diagram % } E] default.fmprimitives_diagram ‘

W szmple 10-30

Tahoma vio vIBI A d->~

LI sarch en=gme ‘ E appﬂaiuv-\ ‘ E buiding ‘ E

A NZAPZAR
sx <t vl et - ot v e

=3 W g (]
N 2 %

Figure A5: S2T2

® Pause Record o Stop Record Eﬁ Add Comment o

e ST
« JEIL » |

=B New Domain

+-[3] Context View .
[=-[B] Features View <«Conceptual>>

EHTTP Small ko Medium

Message editor it
[E HrTPS
E Hre
[E] map U
[symbian wZE <<Communication Link>|
Windows scfugegonal>> <<Functional>>
[Linux Email d';‘{ Library services
[F Por3 2B SEQRAL
[E] External
[E web
Eers <<Commamatofit
[E wan <<Functional>>
E an C“""":t“?n Message editor Message Sender Message recsiver
[£] Opreating system i S <Communication Link>> e

[E] Message receiver
[E] Message Sender i ink>> unication Link>>> \\
£2 nESRAREERGTk>> _ Sxea e s AN v
Message editor <<Commurication Link>> (i
')

[E] Connection ')y
[E] Application : <<Fur|\-c’éi\t|3nﬂl>>

[E] Buiding y

[E serach engine H
[E Library services
[E] Email client

1 Conall b Wi e

ARRRREAAEIEEEr £ SAPRBRTRL (Ben D
Features Diagram | Diagram Properties | Additional Documents|

<

<<Communication Link>> <<Communication Linkz>

<<Functionsl>> <<Functional>>
Building | Application

P ST

<<Functional>>
serach engine.

P

ink>>

- - <<Communication Link>>
<<Functional>> <<Functional>> <<Functional>>

murication Link>>
dan Link>>

<<Functional>>
Opreating system
<< Communication Link>>

[<<Functi;:|:|al>> <<Functional>>
T wWLeN — Vel SPE

- h
<<Functional>>
R

T

O

Figure A6: Odyssey

243

File Edit Diagram Navigate Search Project Run PLUM Window Help
4 0|88 H-F-vere
vlo VB r|AY By s LY M B 3| 100% v
) SempleCar.spl (. MyCar.spl ﬂE default.dm (@ default.dm WMySampleFM.spl]IE CarFModel.dm]

[D] Small size mQQD'

(& Module

& Workflow

[5] Flexible Component b
¥ Flexible Component

[D] Decision Model
Application Model

F Email clien1 PLim& servl(ej

.......... 1

"3 Reference

A Connecﬂ [A] Message editor [A] Message sendej r Message receiv;l” A] Operating system r Study Maj

! @ call
@5 Use
; % DM Creation

Figure A7: PLUM

(&) EOCERmD Creks) @Ry
& W) EDE

(Air Con)
(Moo Fau)

%E

e 220} @

Fault Fandiing and Prot

(Qualiy Faaures (quan)
- (om @ Froduct Type (Produ -
E@@ »
(HAS)
(@is)

(L)
S
D oo &

Figure A8: MUSA

244

s - - nt Management - SamplefDifSizes S0xim - Elpse ltform -0
File Edit Navigate Search Project Run Window Help
N-ERE & Q-ifr fi~Froora-én|fal 12 (7 Varsnt Mana..
(v = = =8\ S L) (] o =
B Varant Projects 3 m =1 1 O 1 Help| 47 Search 2
= BT (&4) - % =
— 37| L N : [T corpemraine] g _ [E= AT
W Contiondl Docurients b ~ o pcc T BovingorSuaypece] 7 Groushoon < Chilren (2) No search results available, Start seaich
(& Fragment Bample Tu werey ¥ Code from the search dislog..
& samp ¥ CreditCard
& SempleFM < Parent (1)
& SampleODifSizes # ShoppingCart
& SampleSmalisiz 7 PageTransac
& SampleSmallSize
& Simple Car Example
(& Standard Transformation Exa
/ 4 CrediCard|
7 UserPreferences){ 1 Poyment
] Sarpieto_100] N £ \'
18 [sopcatonc]) [7 Evauston] [X temBougnt]
: '
Bz oui 22\ 6rvisw| =08
3 [Tl
Label 3 [Tss]
B 1 Agends
1 som
£ 1 Application
21 dpptenc X [@ 5]
£ 1 BookingofStudyPlace
&1 Buiding X GRS [8y0ate]
£ Comen
B Catdog 7 2
¥ Communication
B 1 Connection @ Eypreterences 4
&1 Contrl ;
ol) Tree | Table =3 Graph| @ Constaints|
e Bl e SN “m sem

Figure A9: Pure:.variants

245

