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Abstract 
Knowledge of multiscale mechanisms in pathophysiology is the bedrock of clinical 

practice. If quantitative methods, predicting patient-specific behavior of these 

pathophysiology mechanisms, are to be brought to bear on clinical decision-making, 

the Human Physiome community and Clinical community must share a common 

computational blueprint for pathophysiology mechanisms. A number of obstacles 

stand in the way of this sharing - not least the technical and operational challenges 

that must be overcome to ensure that (i) the explicit biological meaning of the 

Physiome’s quantitative methods to represent mechanisms are open to articulation, 

verification and study by clinicians, and that (ii) clinicians are given the tools and 

training to explicitly express disease manifestations in direct contribution to 

modeling. To this end, the Physiome and Clinical communities must co-develop a 

common computational toolkit, based on this blueprint, to bridge the representation of 

knowledge of pathophysiology mechanisms (a) that is implicitly depicted in 

electronic health records and the literature, with (b) that found in mathematical 

models explicitly describing mechanisms. In particular, this paper makes use of a 

step-wise description of a specific disease mechanism as a means to elicit the 

requirements of representing pathophysiological meaning explicitly. The 

computational blueprint developed from these requirements addresses the Clinical 

community goals to (i) organize and manage healthcare resources in terms of relevant 

disease-related knowledge of mechanisms, and (ii) train the next generation of 

physicians in the application of quantitative methods relevant to their research and 

practice.  
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Introduction 
Practicing physicians and surgeons leverage knowledge of pathophysiology 

mechanisms to take clinical decisions. While the physiological community2 generated 

this knowledge as a result of precise quantitative analysis, the pathophysiology-based 

methods employed by the clinical community for the training and practice of 

medicine primarily rely on qualitative approaches (given, for instance, the heavy 

reliance on free text descriptions and static diagrams in both pathophysiology 

textbooks, as well as in clinical record-taking). This divergence in approaches 

between the Physiome and Clinical communities is at the root of considerable loss of 

opportunity to share knowledge and collaborate on the study of pathophysiology 

mechanisms relevant to: 

1) understanding disease processes, in terms of cause and consequence, 

2) developing and re-purposing drugs and devices, as well as  

3) planning diagnostic and therapeutic interventions. 

 

To allay the collaborative handicap caused by the above discrepancy, it is crucial to: 

A. identify the common ground – i.e. the knowledge scenarios in 

pathophysiology that the two communities have in common, 

B. understand the implications of the lack of formal convergence between the 

knowledge management strategies of these two communities, and  

C. provide solutions that improve cross-disciplinary convergence in 

pathophysiology knowledge management. 

 

In addressing points A to C above, this paper identifies and collates the 

representational requirements for the exchange of computer-readable knowledge 

about pathophysiology mechanisms between the Physiome and Clinical communities. 

This blueprint of requirements builds a shared view of pathophysiology mechanisms – 

a view that is consistent and compatible with the operational goals of both 

communities. In the conclusion section, we make recommendations for this blueprint 

as the basis of an open computational toolkit for the management of pathophysiology 

resources in tangible support of cross-disciplinary collaboration. 
																																																								
2	The	Physiome	community	is	distinct	from	the	physiological	community.	The	Physiome	community	
has	developed	modelling	and	data	standards,	and	associated	computational	tools	and	repositories,	to	
create	a	reproducible	multiscale	physiological	modelling	framework.	We	will	refer	to	both	the	
physiological	community	and	the	Physiome	community	from	here	on	as	the	‘Physiome’	community.	
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Point A: The common ground 
Knowledge of multiscale anatomy is leveraged by both Physiome and Clinical 

communities to organize knowledge about the: 

1) location of biomedical measurement, and 

2) routes linking locations of measurement. 

 

Both communities develop biophysical models, to a varying degree of formality, that 

take into account correlations between biomedical measurements. In some cases, it is 

important to understand how the route linking the locations of measurement 

contributes to the correlation. In addition, mathematical depictions of biophysical 

mechanisms, in both normal physiology and pathophysiology, may be represented in 

terms of rates of transfer over these routes.  

 

Furthermore, both communities take into account the creation, destruction and 

alteration of routes as leveraged by the body to regulate rates of transfer over a wide 

range of physical dynamic systems, for instance in: 

1) Normal Physiology 

i. immune system (e.g. the puncturing of cytosol-to-extracellular 

connections by the complement cascade to eliminate virus-infected and 

cancer cells, the repair of blood vessel leakage by coagulation), 

ii. cell signalling and metabolism (e.g. endocrine and exocrine cells fuse 

internal vesicles to plasma membrane to transfer secretory substances to 

the outside of the cell), 

iii. pumps/channels (e.g. connectivity route of urinary bladder to the outside 

is reversibly altered by pelvic sphincters for the purpose of waste 

elimination; voltage-gated of ion channels across the phospholipid 

bilayers), 

iv. development (e.g. the growth of the septum transversum – precursor to 

the diaphragm - that establishes a topological separation between the 

thoracic and abdominal cavities; the fusion of left and right endocardial 

tubes to form the primitive heart; intussusceptive angiogenesis in the 

creation of new blood vessels). 
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2) Pathophysiology 

i. infection (e.g. filariasis infestation leading to blockage of lymphatic 

channels, helicobacter pylori causing gastric ulcer perforation leading to 

abnormal communication between the stomach lumen and blood vessel 

lumen), 

ii. metabolic accumulation (e.g. atherosclerosis leading to mycardial 

infarction due to coronary artery blockage or artic valve regurgitation, and 

gallstone formation leading to acute pancreatitis due to blockage at the 

Ampulla of Vater, excessive communication between the dermis and the 

outside environment due to keratin/keratinocyte-adhesion weakness in 

epidermolysis bullosa and pemphigus vulgaris respectively; aortic valve 

incompetence due to atherosclerosis causing regurgitation between the left 

ventricle and the aorta), 

iii. external trauma (e.g. axonotmesis of the median nerve due to carpal 

tunnel syndrome, intestinal obstruction due to incarcerated hernia, 

fractured ribs causing an abnormal communication between the pleural 

space and the outside air in traumatic pneumothorax), 

iv. toxicity (e.g. tetrodotoxin poisoning leading to muscle paralysis due to 

blockage of fast voltage-gated sodium channels, cholera toxin results in 

diarrhoea due to massive salt and water secretion across the intestinal 

epithelium), 

v. congenital malformations (e.g. obstruction of the foramina of Luschka 

leading to hydrocephalus due to decrease in ventricular cerebrospinal fluid 

outflow, post-partum patent ductus arteriosus and atrial septal defect 

leading to abnormal pulmonary-artery-to-aorta and left-atrium-to-right-

atrium communication respectively). 

 

3) Therapeutic Intervention 

A number of therapeutic modalities seek to rectify disease conditions 

through the manipulation of anatomical routes. A number of drugs, for 

instance, directly affect membrane channels (e.g. Amiodarone blocking both 

sodium and potassium channels in the myocardium, omeprazole inhibiting 

the proton pump in the epithelium of the stomach) or the patency of vessels 

(e.g. adrenergic decongestants reduce respiratory mucosal hyperaemic 
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swelling and mucus production). In addition, there is much in the practice of 

surgery that consists of topological operations at a macroscopic level (e.g. a 

Roux-en-Y anastomosis that creates end-to-side route between stomach and 

jejunum or ileum, repair of gastric ulcer, coronary artery bypass graft). 

 

The common ground between Physiome and Clinical communities for the 

representation of pathophysiology mechanisms, therefore, consists of the application 

of topological concepts to describe routes of transfer across multiscale anatomical 

compartments. Two of the key obstacles for interoperability between the two 

communities are the lack of: 

1. a formal and shared topological reference map over which representations of 

mechanisms by Physiome and Clinical communities can be linked, together 

with 

2. agreed methods and communal tools to describe the location of measurement 

in terms of this map. 

 

The implications of these obstacles are discussed in the next section.  

Point B: Lack of convergence 
Considerable effort has been invested by: 

a) the Physiome community to ensure that the mathematical description of 

pathophysiology process correlations is formalized, standardized and 

shareable (e.g. models in CellML (1) and SBML (2)), and 

b) the Clinical community to develop shareable topographical models of anatomy 

for the interpretation of histological and radiological data (e.g. (3)(4)), as well 

as shareable data models for healthcare data management (e.g. (5)). 

 

However, the above investment has a somewhat limited effect on the consistent 

bridging of [i] the physiological meaning of mathematical models of processes to [ii] 

the physiological meaning of histological, radiological and healthcare models.  

 

Multiscale anatomical knowledge of measurement location, and routes linking such 

locations, is not formally described and shareable between the two communities. 

Developing a formal topological representation of biological structure across multiple 
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scales to address the above shortcoming is a considerable challenge. While, for 

instance, substantial investment by the Systems Biology community has gone into the 

clear cataloguing of well-characterized compendia of relevant biological structures 

(i.e. proteins (6), small molecules (7) and subcellular locations (8)) that participate in 

molecular mechanisms, the unmanageable size of the combinatorial space bearing 

every possible anatomical compartment has severely curbed the ability of any single 

structural model of multiscale anatomy to enumerate them all.  The challenge for the 

Physiome and Clinical communities remains, therefore, to provide the means to 

systematically map the anatomical location of a wide range of measurements. The 

following scenarios indicate some of the shortcomings to be surmounted: 

a) Clinical: 

i. Pharmaceutical – linking tissue data to pharmacokinetic models  

The pharmacokinetic (PK) modeling of processes of drug absorption, 

distribution, metabolism and elimination (ADME) is a core component 

in drug discovery and development. In physiology-based PK modeling 

(PBPK), account is taken of the key anatomical sites responsible for 

ADME functions, as well as the routes by which these sites 

communicate. Some examples of hand-drawn schematics showing key 

PBPK variables and rates of transfer over relevant anatomical 

compartments are depicted in Figure 1. A key bottleneck in the 

development of PBPK models is sourcing of data about measurements 

of gene expression (e.g. (9)) and drug permeability (e.g. (10)(11)) for 

tissues, relevant to the modeling of (i) drug effect/toxicity, and (ii) 

blood-to-tissue drug transitions in ADME.  

Shortcoming: there is currently no provision for the systematic and 

formal recording of anatomical location relevant to ADME PBPK 

model variables, gene expression or drug permeability. 

ii. Surgical – management challenges in patients with diabetes 

mellitus 

Diabetes mellitus (DM) complications interfere directly with drug 

ADME. Specifically, relevant complications include the following 

departures from normal ADME function (12)(13):  



	 7	

• Absorption: post-prandial blood pooling, stasis of stomach and 

gallbladder, intestinal hurry due to oversecretion or bacterial 

overgrowth in the small intestine, constipation,  

• Distribution: redistribution of blood volume, altered drug-to-

plasma protein binding, and changed volumes of drug 

distribution,  

• Metabolism: the ability of the liver to produce plasma protein 

(e.g. albumin) and to metabolize drugs is impaired, as well as 

• Elimination: impaired biliary and renal function that impact on 

drug biotransformation and excretion respectively.  

Shortcoming: the lack of a coherent representation of the routes over 

which ADME processes are hampered in DM is a key reason why 

pharmaceutical development of drugs does not take into account the 

wide alteration in ADME that typifies patients with DM. DM patients, 

therefore, are vulnerable to therapeutic errors and drug interactions 

because of this shortcoming. 

b) Physiome - bridging data and model variables  

The Physiome community have developed repositories to manage the storage 

and serving of models and data (e.g. (14)).  However finding data that is 

relevant to a particular model is still a considerable challenge. For example, 

data from anatomical sites relevant to blood pressure regulation need to be 

semantically matched to the variables in mechanistic models of hemodynamic 

control (e.g. (15)(16)). In particular, the challenge is to link: 

i. data such as blood pressure in the lumen of the segment of internal 

carotid artery containing the carotid sinus (Table 1., measurement A), 

rates of secretion of adrenalin from chromaffin cells in the adrenal 

medulla (measurement B), and rates of secretion of renin from granular 

cells in the juxtaglomerular apparatus in the kidney (measurement C), 

and 

ii. equation-linked variables from the Guyton model of circulation control 

(17)(18) as depicted in Figure 2 and further explained in Table 1.  

Both data and model variables are a type of measurement that is ascribed to a 

particular anatomical location. Identifying a functional link between the above 
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data and variables, therefore, requires the automated comparison of location 

knowledge for the measurements (i.e. data and variables) outlined in Table 1. 

A corresponding schematic that attempts to relate the locations of these 

entities in terms of anatomical routes relevant to the mechanisms of blood 

pressure control is shown in Figure 3.  

Shortcomings: 

a. the locations listed in Table 1 are described in free-text and, as such, do 

not provide not computer-readable knowledge supporting the inferencing 

of anatomical routes bridging these sites. The quality of these location 

descriptions, while very high to the human reader, is of limited utility to 

the automated management and integrative goals of an electronic 

repository for physiology modeling resources.  

b. similarly, while it was possible to manually develop Figure 2 to suggest 

the functional relationship between measurements and model variables, the 

means to automatically generate such circuitboard diagrams of anatomical 

routes given the locations in Table 1 as input, to our knowledge, does not 

exist. 

 

To allay the above shortcomings, the next section focuses on the step-wise depiction 

of a specific pathophysiology mechanism to elicit the representational requirements 

for the recording of (i) the location of measurements, and (ii) the routes over which 

processes responsible for the correlation of these measurements unfold. 

 

Point C: Requirements for pathophysiology knowledge management 

This first part of this section describes the biological steps in the pathophysiology 

mechanism of hydronephrosis caused by calculus obstruction of the ureter. In the 

second part, this biological description is converted into a graph linking the locations 

of measurements, relevant to the evolution of this pathology, over an anatomical route 

that accounts for the correlation between measurements. Generalized representational 

requirements for a database of pathophysiology pathways are discussed in the third 

part.  
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1) The pathophysiology of hydronephrosis 

There are a number of conditions (19) that lead to urinary solutes precipitating out of 

solution to create calculi, for instance: 

a. Dehydration, which increases the concentration of all solutes due to the 

kidneys’ attempts to reduce the amount of water lost to urine; 

b. Secretory: certain urinary membrane channels may oversecrete a lithogenic 

ion (e.g. calcium, oxalate) or undersecrete an ion that keeps lithogenic ions in 

solution (e.g. magnesium, citrate); 

c. Sustained metabolic changes: e.g. altered diet or therapy (such as cancer 

chemotherapy, loop diuretics, carbonic anhydrase inhibitors) that increase the 

production of lithogenic solutes (e.g. urate) that have to be eliminated by the 

kidney; 

d. Inflammation (e.g. due to infection or autoimmune insult), which causes 

mucus proteoglycans to be excessively secreted into urine. The presence of a 

stone further increases epithelial irritation/inflammation and overlying 

infection; 

e. Strictures to urinary outflow (e.g. scarring of epithelial tube due to 

inflammation) leading to urinary stasis (i.e. more time for a solute to 

precipitate out of solution) and bacterial overgrowth (i.e. more mucus 

secretion); 

 

The calculus formation, therefore, increases the likelihood of further stone accretion 

by stimulating conditions #d and #e above. The growth of a stone in the pelvicalyceal 

region of the urinary tract provides the right conditions for a calculus to reach to a 

size that cannot be subsequently conveyed down the ureter (20). Such an accretion 

becomes lodged at the pelviureteric junction, reducing urinary outflow. This flow 

reduction is followed by a build up of upstream pressure as the nephrons in that 

kidney continue to produce urine. This urinary pressure build up goes on to compress 

the blood supply of the kidney in the hilum, leading to vascular strangulation and 

subsequent atrophy of that organ. 

 

2) Formal representation of cause and effect in the hydronephrosis scenario 

The above informal account of the pathophysiology mechanism of hydronephrosis 

implicitly describes a number of correlations of rate and state measurements drawn 
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from a range of locations along and across the renal epithelial (i.e. urinary tract) and 

endothelial (i.e. blood vessel) conduit systems. Therefore, we look to the basic 

geometric configuration of these conduit systems to motivate the organization of 

structural knowledge about the location of these measurements. The basic 

organizational features that need to be taken into account to represent routes linking 

measurement locations are that: 

iii. key biophysical interactions regulating the constitution, as well as the flow, of 

fluid in the lumen take place between the Wall (W) of the conduit and the 

Content (C) contained by the same conduit – two basic types of location, 

therefore, need to be distinguished: (C, W); 

iv. transfers between conduits systems transit through the connective tissue ‘glue’ 

that organizes bundles of endothelial, epithelial and neural conduits; 

v. the representation of long range material transfers (i.e. beyond the range of the 

diffusion limit) must take into account the topology of conduit arborisations to 

explicitly link tube types from different material properties that communicate 

along the same conduit system (e.g. ipsilateral nephrons and ureter). 

 

The type of biomedically relevant measurement in the above scenario is of two kinds: 

the state property of some Material (M) or the rate property of some Process (P). At 

the very least, therefore, there are four distinct types of located measurement entities, 

symbolized as follows: PW, PC, MW, MC. 

 

In this pathophysiology scenario, correlations of located measurements can be 

biophysically modeled over the six equations below (numbered I to VI). These 

functional relationships define transfers taking place within C, within W or across 

CW, as follows: 

 

I. The changing composition of urine; precipitation of salts  

The concentration of various biochemical substances in urine, such as calcium, urate, 

phosphate, etc ( , i=1,2…), changes with time at rates… 
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…dependent on various biochemical processes. At some point an ion such as calcium 

(concentration ) supersaturates and precipitates out of solution, at which point a 

kidney stone begins to form. 

 

II. Formation of calcified material 

The mass of calcified material, , accumulates at a rate… 

  

…dependent on the rate of decrease of calcium in solution ( ) and other factors 

such as inflammation ( , e.g. due to infection or irritation), which causes mucus 

proteoglycans to be excessively secreted into urine.  

 

III. Changing flow in the ureter 

Flow in the ureter, , depends on the diameter of the ureter at the point of stone 

formation ( ), the mass of the kidney stone ( ), the filtrate flow rate 

( ) and the viscosity of urine ( ): 

  

If the stone grows large enough to block the ureter, the flow will stop, but the 

consequences of stone formation is felt upstream well before this point is reached. 

 

IV. Distension of the renal calyces and the renal pelvis   

The difference between filtrate flow ( ) and flow in the ureter downstream of 

the stone ( ) is absorbed by distension of the renal calyces and the renal pelvis 

(which have a total volume ): 

  

The fluid pressure in this space ( ) depends on both the volume  and the elasticity 

 of the surrounding tissue: 
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V. Pressure in the surrounding tissue 
The pressure  in the surrounding tissue depends on the pressure  in the renal 

calyces and the renal pelvis and on the elasticity  of the tissue:  

  

 
VI. Compression of the renal vasculature   
The increasing pressure in the surrounding tissue  compresses the renal vasculature 

and increases the resistance to arterial blood flow , which also depends upon 

geometric and material properties  of the vascular wall and the pressure  in the 

blood: 

  
 

The above relations provide the topology of a graph of C- and W-located M and P 

measurements depicting the key types of transfer relevant to the pathology of 

hydronephrosis. A schematic illustration of this graph is shown in Figure 4. The 

direction of the arrows in this figure indicates the implied causal influence from RHS 

to LHS of equations I to VI. This graph also provides two examples of long-range 

transfers, namely: 

a. (Fig. 4A) between conduit systems: the compression of renal vessels by the 

expanding pelvicalyceal conduits in the renal hilum is depicted in the 

sequence of transfer of pressure from the urinary fluid in the pelvis and 

calyces to the tissue fluid in the connective tissue linking blood vessels to the 

urinary tubing, subsequently compressing renal vasculature thereby reducing 

blood flow. 

b. (Fig. 4B) along a conduit system:  the flow of urine from kidney to bladder is 

represented over three distinct locations, namely: (i) nephron and collecting 

systems, (ii) ureter, and (iii) ureterovesical junction. These contiguous 

locations represent the entire epithelial tract connecting Bowman’s capsule to 

bladder. 

 

The edges of the above graph represent pairwise transfers from one location to 

another. To determine the route between the two locations, however, an 

independent computer-readable topological model of kidney structure is required 
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to determine if, at the level of granularity of this model, the two locations are 

contiguous. If the two locations share a border according to the structural model, 

then the route for transfer consists of the union of the two contiguous locations. If 

there is no contiguity between the two sites, then path-finding calculations over 

the structure of kidney conduits is necessary to determine path through other 

contiguous locations that constrain the transfer. 

 

3) Blueprint: generalized requirements for pathophysiology pathways 

So far, we have described a graph of transfers relevant to the mechanism of a single 

pathology. On a more general level, Point A above outlined a spectrum of transfer 

scenarios drawn from normal physiology as well as disease. As this spectrum of 

physical dynamic systems are also amenable to interpretation and representation in 

terms of energetic operations, the provision of a coherent computational blueprint to 

record these graphs is a key first step to developing a resource of physiology and 

pathology mechanisms shared by the Physiome and Clinical communities. The 

development of a Resource for Pathophysiology Mechanism (RPM) needs to address 

the following high-level requirements in its blueprint: 

a. The RPM will manage: 

i.  knowledge about anatomical location for the annotation of located 

state and rate measurements, and the routes of transfer that link these 

measurements; 

ii. information about experimentally or clinically determined correlations 

of sets of measurements that are to be represented as transfers; 

iii. documentation and provenance data about publications or peer-

reviewed mathematical models from which the above correlations are 

derived; 

b. At the core of the RPM , there must be an open and independent topological 

model of multiscale anatomy that provides formally-represented knowledge of 

different conduit systems (e.g. epithelial, endothelial and neural, as discussed 

in (21)). This model must: 

i. supply location knowledge across any scale for the annotation of 

state/rate measurements; 

ii. contain a reference communication map of standard transfers for the 

principal hydraulic systems for body fluids, such as: blood, lymph, 
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cerebrospinal fluid, urine, bile, chyme/chyle, pulmonary air, tissue 

fluid and cytosol; 

iii. support the representation of population variation in the arborisation 

patterns of the above hydraulic and pneumatic systems; 

iv. semantically link locations with community-supported reference 

ontologies of biological structure (e.g. (22)(23)(24), see also (21) for a 

fuller discussion of key semantic standards) to ensure interoperability 

with external community resources; 

v. be amenable to automated inferencing that enable the calculation of 

transfer routes, given a pair of locations from measurements that 

correlate; 

An implication to points iv and v above is that any external data that is already 
annotated with standard reference ontologies will be, from inception, 
compatible with this topological model. The ontology-based annotation of 
legacy data that is currently not annotated by any ontology will be incentivized 
given the added benefits of finding novel communication relationships 
between locations previously not achievable by inferencing directly over the 
standard reference ontologies. 
 

c. Provide a formalism for the representation of transfer between anatomical 

locations that is able to address both the quantitative character of mathematical 

correlations as well as the qualitative character of located measurement 

defined against the reference model. One such formalism under investigation 

is the Bond Graph approach, which also allows for a graphical representation 

of a physical dynamic system (e.g.(25)(26)(27)(28)). A current difference is 

that the edges indicating transfer in Fig. 4 are unidirectional, while the Bond 

Graph formalism expects transfers to be bi-directional. 

d. The RPM must provide shared and open tools for the two communities to: 

a. maintain and contribute knowledge to the topological model of 

multiscale anatomy; 

b. maintain and contribute transfer graphs representing documented 

correlations between located state/rate measurements; 

c. infer routes between anatomical location and visualize relevant 

knowledge from the topological model of multiscale anatomy and 

transfer graphs; 
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d.  link to external resources such as disease terminologies, gene 

expression data or mathematical models in community repositories. 

In practice, the technical solution may take the form of an application program 

interface (API) for core methods that articulate and maintain the topological 

model, such that calls to this API can be embedded within specialist tools 

serving either community. 

 

Conclusion 
 

The biomedical meaning of electronic health record (EHR) content is organized using 

disease terminologies such as SNOMED-CT (29)(30). One avenue of semantically 

bridging the biomedical meaning of Physiome models with that of EHRs is to develop 

a map between disease terms and variables in process models. The hydronephrosis 

(SNOMED-CT ID D7-14106) scenario is just one example of the definition of a 

standard disease entity in terms of a transfer graph of located measurements. While 

the manual curation of a single disease mechanism is achievable, the coherent 

coverage of pathology mechanisms over the entirety of the SNOMED-CT disease 

terminology requires both a community collaborative effort, together with the 

appropriate tools to effect such collaboration. The requirements collected in this work 

set out the blueprint of such a toolkit. The implementation of such a blueprint will 

provide a key means for the Clinical community to explicitly contribute and collect its 

knowledge about pathophysiology mechanisms to improve the integration of 

Physiome models in for training and healthcare decision support. 

The implementation of the blueprint will be discussed in our future work. 
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FIGURES 
 
Figure 1. Three schematics for the anatomical routes relevant to the absorption, 
distribution, metabolism and elimination of (A) Propofol [diagram from (31)], (B) 
Valproic Acid (32) and (C) Docetaxel [diagram from (33)]. 
 
 
Figure 2. An example of a connected dependency series of six variables (rounded 
boxes) extracted from the Guyton 1992 model, linked via five equations (circles). 
Independent variables are linked to equation nodes via input arrows, dependent 
variables via output arrows (therefore, PRA is both an independent variable to Eq2 
and a dependent variable to Eq1). Each equation may involve more than one 
independent variable (hence the dotted vertical arrows). The free-text definition 
associated with each variable symbol has been copied verbatim from the available 
documentation of the original model.  
 
 
Figure 3. A sketch of depicting cardiovascular and neural anatomical routes between 
functionally-related compartments involved in conveying the interaction between 
measurements A, B and C as well as model variables VRE, PRA, ANPR2 and 
AAR (shown in pink, see also Table 1). Here, compartments are represented in the 
shape of either boxes (e.g. adrenal medulla) or connecting lines (e.g. Vagus Nerve). 
The drawing of symmetrically duplicated compartments (e.g. right and left kidneys) 
was avoided in this diagram to reduce complexity of illustration. The following 
references were used in building this circuit: (34), (35), (36). 
  
 
 
Figure 4. A transfer graph for the hydronephrosis pathophysiology scenario. The 
nodes in the graph consist of located measurements. The main types of measurement 
are Process rate (P) or Material state (M). The type of biophysical (e.g. pressure, 
mass) measurement is depicted in red in the top right corner of the node symbol. In 
the bottom right, the location of the measurement is indicated geometrically as 
conduit Wall (W) or Content (C), as well as in more detail in free text (red). The 
direction of the edges (green) indicates the location with respect to the equals sign in 
equations I to VI, from RHS to LHS. The subgraphs highlighted by regions A and B 
are discussed in the text. A mapping between the above nodes and the variables in 
equations I to VI is provided in Figure 5. 
 
 
 
Figure 5. A mapping between the above nodes and the variables in equations I to VI. 
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TABLES 
 

Dataset	or	
Variable	

Anatomical	Compartment	

A	 The	portion	of	blood	in	the	lumen	of	the	segment	of	
internal	carotid	arteries	containing	carotid	sinuses.	

B	 The	entire	pool	of	chromaffin	cells	in	both	adrenal	
medullas.	

C	 The	entire	pool	of	granular	cells	in	juxtaglomerular	
apparatuses	in	both	kidneys.		

VRE	 The	portion	of	blood	contained	in	the	right	atrium.	

PRA	 The	portion	of	blood	contained	in	the	right	atrium.	

ANPR	 The	entire	wall	of	the	right	atrium.	

ANP	 Plasma	membrane	of	myocardial	cells	in	both	atria.	

ANPC	 The	entire	pool	of	blood	plasma.	

AAR	 The	entire	pool	of	afferent	arterioles	in	both	kidneys.	
Table	1.	A	map	linking	physiology	data	and	variables	(see	Figs	2	&	3)	to	their	
respective	anatomical	compartments	of	these	located	measurements.	

 



	 18	

REFERENCES 
 
1.  Nickerson DP, Ladd D, Hussan JR, Safaei S, Suresh V, Hunter PJ, et al. Using 

CellML with OpenCMISS to Simulate Multi-Scale Physiology. Front Bioeng 
Biotechnol. 2014;2:79.  

2.  Keating SM, Le Novère N. Supporting SBML as a model exchange format in 
software applications. Methods Mol Biol Clifton NJ. 2013;1021:201–25.  

3.  Sirinukunwattana K, Snead D, Rajpoot N. A Stochastic Polygons Model for 
Glandular Structures in Colon Histology Images. IEEE Trans Med Imaging. 2015 
May 15;  

4.  Fonseca CG, Backhaus M, Bluemke DA, Britten RD, Chung JD, Cowan BR, et 
al. The Cardiac Atlas Project--an imaging database for computational modeling 
and statistical atlases of the heart. Bioinforma Oxf Engl. 2011 Aug 
15;27(16):2288–95.  

5.  Ulriksen G-H, Pedersen R, Wynn R, Ellingsen G. How to organize for a large-
scale openEHR-based Electronic Patient Record. Stud Health Technol Inform. 
2015;210:808–12.  

6.  Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein 
data. Database J Biol Databases Curation. 2011;2011:bar009.  

7.  Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, et al. The ChEBI 
reference database and ontology for biologically relevant chemistry: 
enhancements for 2013. Nucleic Acids Res. 2013 Jan 1;41(D1):D456–63.  

8.  Gene Ontology Consortium, Blake JA, Dolan M, Drabkin H, Hill DP, Li N, et al. 
Gene Ontology annotations and resources. Nucleic Acids Res. 2013 
Jan;41(Database issue):D530–5.  

9.  Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. NCBI 
GEO: archive for functional genomics data sets--10 years on. Nucleic Acids Res. 
2011 Jan;39(Database issue):D1005–10.  

10.  Lennernäs H. Modeling gastrointestinal drug absorption requires more in vivo 
biopharmaceutical data: experience from in vivo dissolution and permeability 
studies in humans. Curr Drug Metab. 2007 Oct;8(7):645–57.  

11.  Johnson BM, Charman WN, Porter CJH. Application of compartmental modeling 
to an examination of in vitro intestinal permeability data: assessing the impact of 
tissue uptake, P-glycoprotein, and CYP3A. Drug Metab Dispos Biol Fate Chem. 
2003 Sep;31(9):1151–60.  

12.  Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 
2007 Jan 23;115(3):387–97.  

13.  Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on 
pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 
2012 Aug 1;51(8):481–99.  



	 19	

14.  Yu T, Lloyd CM, Nickerson DP, Cooling MT, Miller AK, Garny A, et al. The 
Physiome Model Repository 2. Bioinformatics. 2011 Mar 1;27(5):743–4.  

15.  Tsioufis C, Dimitriadis K, Thomopoulos C, Doumas M, Papademetriou V, 
Stefanadis C. Renal and cardiac effects of renal sympathetic denervation and 
carotid baroreceptor stimulation. Curr Vasc Pharmacol. 2014 Jan;12(1):55–62.  

16.  Thames MD. Contribution of cardiopulmonary baroreceptors to the control of the 
kidney. Fed Proc. 1978 Apr;37(5):1209–13.  

17.  Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu Rev 
Physiol. 1972;34:13–46.  

18.  Guyton AC, Taylor AE, Granger HJ, Gibson WH. Regulation of interstitial fluid 
volume and pressure. Adv Exp Med Biol. 1972;33(0):111–8.  

19.  Omar M, Abdulwahab-Ahmed A, Chaparala H, Monga M. Does Stone Removal 
Help Patients with Recurrent Urinary Tract Infections? J Urol. 2015 
Oct;194(4):997–1001.  

20.  Persky L, Storaasli JP, Austen G. Mechanism of hydronephrosis: newer 
investigative techniques. Postgrad Semin Am Urol Assoc North Cent Sect. 
1954;67–72.  

21.  de Bono B, Safaei S, Grenon P, Nickerson DP, Alexander S, Helvensteijn M, et 
al. The Open Physiology workflow: modeling processes over physiology 
circuitboards of interoperable tissue units. Front Physiol. 2015;6:24.  

22.  Rosse C, Mejino JLV Jr. A reference ontology for biomedical informatics: the 
Foundational Model of Anatomy. J Biomed Inform. 2003 Dec;36(6):478–500.  

23.  Bard J, Rhee SY, Ashburner M. An ontology for cell types. Genome Biol. 
2005;6(2):R21.  

24.  Ashburner M, Lewis S. On ontologies for biologists: the Gene Ontology--
untangling the web. Novartis Found Symp. 2002;247:66–80; discussion 80–3, 
84–90, 244–52.  

25.  Zadpoor A, Arshi A, Nikooyan A. A Bond Graph Approach to the Modeling of 
Fluid-Solid Interaction in Cardiovascuular System’s Pulsatile Flow. Conf Proc 
Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 
2005;3:2319–22.  

26.  Le Rolle V, Hernandez AI, Richard PY, Buisson J, Carrault G. A bond graph 
model of the cardiovascular system. Acta Biotheor. 2005;53(4):295–312.  

27.  Chen S, Zhang S, Gong Y, Dai K, Sui M, Yu Y, et al. The role of the autonomic 
nervous system in hypertension: a bond graph model study. Physiol Meas. 2008 
Apr;29(4):473–95.  

28.  Gawthrop PJ, Crampin EJ. Energy-based analysis of biochemical cycles using 
bond graphs. Proc Math Phys Eng Sci R Soc. 2014 Nov 8;470(2171):20140459.  



	 20	

29.  Monsen KA, Finn RS, Fleming TE, Garner EJ, LaValla AJ, Riemer JG. Rigor in 
electronic health record knowledge representation: lessons learned from a 
SNOMED CT clinical content encoding exercise. Inform Health Soc Care. 2015 
Aug 21;1–15.  

30.  Gøeg KR, Chen R, Højen AR, Elberg P. Content analysis of physical examination 
templates in electronic health records using SNOMED CT. Int J Med Inf. 2014 
Oct;83(10):736–49.  

31.  Gill KL, Gertz M, Houston JB, Galetin A. Application of a physiologically based 
pharmacokinetic model to assess propofol hepatic and renal glucuronidation in 
isolation: utility of in vitro and in vivo data. Drug Metab Dispos Biol Fate Chem. 
2013 Apr;41(4):744–53.  

32.  Ogungbenro K, Aarons L, CRESim & Epi-CRESim Project Groups. A 
physiologically based pharmacokinetic model for Valproic acid in adults and 
children. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2014 Oct 15;63:45–52.  

33.  Bradshaw-Pierce EL, Eckhardt SG, Gustafson DL. A physiologically based 
pharmacokinetic model of docetaxel disposition: from mouse to man. Clin Cancer 
Res Off J Am Assoc Cancer Res. 2007 May 1;13(9):2768–76.  

34.  Dampney R a. L, Coleman MJ, Fontes M a. P, Hirooka Y, Horiuchi J, Li YW, et 
al. Central mechanisms underlying short- and long-term regulation of the 
cardiovascular system. Clin Exp Pharmacol Physiol. 2002 Apr;29(4):261–8.  

35.  Coote JH. A role for the paraventricular nucleus of the hypothalamus in the 
autonomic control of heart and kidney. Exp Physiol. 2005 Mar;90(2):169–73.  

36.  Cano G, Card JP, Sved AF. Dual viral transneuronal tracing of central autonomic 
circuits involved in the innervation of the two kidneys in rat. J Comp Neurol. 
2004 Apr 12;471(4):462–81.  

 


