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Abstract—Dependence clusters are (maximal) collections of
mutually dependent source code entities according to some
dependence relation. Their presence in software complicates
many maintenance activities including testing, refactoring, and
feature extraction. Despite several studies finding them common
in production code, their formation, identification, and overall
structure are not well understood, partly because of challenges
in approximating true dependences between program entities.
Previous research has considered two approximate dependence
relations: a fine-grained statement-level relation using control
and data dependences from a program’s System Dependence
Graph and a coarser relation based on function-level control-
flow reachability. In principal, the first is more expensive and
more precise than the second.

Using a collection of twenty programs, we present an empiri-
cal investigation of the clusters identified by these two approaches.
In support of the analysis, we consider hybrid cluster types
that works at the coarser function-level but is based on the
higher-precision statement-level dependences. The three types
of clusters are compared based on their slice sets using two
clustering metrics. We also perform extensive analysis of the
programs to identify linchpin functions – functions primarily
responsible for holding a cluster together. Results include evidence
that the less expensive, coarser approaches can often be used as
effective proxies for the more expensive, finer-grained approaches.
Finally, the linchpin analysis shows that linchpin functions can
be effectively and automatically identified.

I. Introduction

The need to repair and improve software involves a
number of challenging tasks such as impact analysis [1],
defect detection [2], software reuse [3], [4], and regression
testing [5]. Such tasks are facilitated by source code that
is easily separated (e.g., loosely coupled). For example, the
complexity of understanding the impact of a change is reduced
if only a subset of the code need be considered. Easily separated
code also simplifies more complex tasks such as extracting
software product lines from legacy applications [6]. In general,
the software maintenance and evolution process is aided by
separable software.

Unfortunately, a natural and inevitable aspect of all pro-
grams are dependences between components (e.g., statements,
functions, or classes). A dependence between two program
components means that the execution of one component
influences the other [7]. Both software engineers and the tools
they use must be aware of the connections dependences cause in
virtually every software engineering task involving the multiple
components.

A decade ago, Binkley and Harman demonstrated that soft-
ware was often not easily separable [8] when they empirically
observed that programs often include large clusters of mutually

dependent components. The presence of these dependence
clusters complicates software maintenance and evolution. For
example, if the impact of a change involves any part of a cluster
then it will involve the entire cluster. Furthermore, because
large clusters include much of a program’s code, it is very likely
that some member of the cluster will be encountered. Thus,
clusters, which can encompass 80% or more of a program [8],
can severely inhibit the effectiveness of engineers and the tools
that support them.

During the ensuing decade, studies have replicated the initial
findings with C programs, uncovering clusters in Java codes [9]–
[11] and in legacy Cobol systems [12]. Dependence clusters
are also known to be detrimental to the software development
process where they hinder a variety of activities including
maintenance, testing, and comprehension [13]–[17].

While still not well understood, clusters of dependence
seem to be an inherent property of source code; thus, current
research has focused on understanding their formation and
the possibilities for their removal or reduction. One of the
challenges in studying dependence clusters is the complexity of
the underlying program dependence analysis. The original work
used dependences from a program’s System Dependence Graph
(SDG) [18] whose computation involves solving several difficult
whole-program data-flow problems such as determining the
modified global variables that result from a procedure call [19]
and determining the points-to set for each pointer variable [20].

This complexity raises an interesting question: are there
approximations that provide better scalability without significant
loss of precision? The answer appears to be “yes.” One recent
example is static execute before (SEB) [21]. This coarser
relation is based on function-level control-flow reachability.
Preliminary experiments indicated that the SEB approximation
works well in practice [21]. Extending this work, this paper
makes the following contributions:

a) Cluster Comparison: It presents a more careful and
extensive look at the comparison of slice-based [8] dependence
clusters and the recently introduced SEB-based [22] dependence
clusters. To do so, it considers two hybrid cluster types that
are computed at the coarser function-level but based on the
higher-precision dependences from the SDG. All three types of
clusters are empirically compared using two different clustering
metrics.

b) Cluster Identification: This paper also explores the
identification of linchpins – a single program element (e.g., a
statement, a global variable, or a single function) that holds a
dependence cluster together. Specifically linchpin functions are
investigated. When the dependences of a linchpin function are
removed, the cluster(s) of the program vanish. At present, it is
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not well understood what makes a particular program element
a linchpin, how linchpins can be identified, or when there is a
refactoring that removes a linchpin. As a first step, it is useful
to be aware of a program’s linchpins. The experiments show
how linchpin functions can be effectively and automatically
identified.

After introducing the types of clusters considered, the bulk
of the paper presents an in depth analysis of the clusters
identified by each type of cluster and the linchpins found
within each. This is followed by a discussion of threats to
validity, related work, and finally a summary.

II. Background

The goal of this section is to define the five cluster types
studied in the paper. These five include the three mentioned
in the introduction plus two additional variations. To do so,
we first introduce the five slicing operators upon which the
cluster definitions are built. These range from fine-grained
statement-level relationship using control and data dependences
to the coarser relation based on function-level control-flow
reachability. Finally, we define the five cluster types.

A. Program Slicing

This section introduces the five slicing operators used
to create five instantiations of the general definition of a
dependence cluster. The first four compute (backward) slices
as the solution to a reachability problem over a program’s
System Dependence Graph (SDG) [18]. An SDG is comprised
of vertices, which essentially represent the statements of the
program and two kinds of edges: data dependence edges and
control dependence edges. A data dependence connects a
definition of a variable with each use of the variable reached
by the definition [23]. Control dependence connects a predicate
p to a vertex v when p has at least two control-flow-graph
successors, one of which can lead to the exit vertex without
encountering v and the other always leads eventually to v [23].
Thus p controls the possible future execution of v. When slicing
an SDG, a slicing criterion is a vertex from the SDG.

The four SDG-based slicing operators SliceVV , SliceVF,
SliceFV , and SliceFFdiffer on the slicing criteria considered
and on the set of elements returned as the result of the slice.
The first one, SliceVV , is the traditional vertex-level slicing [16]
where the slicing criterion is an SDG vertex and the result is a
set of vertices, V . With such a slice the criteria is dependent on
each of the vertices found in V . The second, SliceVF, has the
same slicing criteria, a vertex, but produces a set of functions
F rather than a set of vertices. In this case, the criteria is
dependent on the (entry-point vertices of the) functions in F.

Parallel to the first two, the output of the final two operators,
SliceFVand SliceFF , is a set of vertices V and a set of functions
F, respectively. These two differ in that the slice is taken with
respect to an entire function instead of a single SDG vertex.
For function f , this is done by taking the union of the slices
for each vertex that represents source code from f .

The final slicing operator, SliceSEB, is based on the SEB re-
lation [21]. SEB captures a conservative type of dependence
on functions that does not require the computation or use of
data dependences. Rather it uses only the possible control-
flow paths and call-structures inside functions. This approach

is more efficient but less accurate than SDG-based slicing,
and is defined as follows. For functions f and g, we say that
(g, f ) ∈ SEB if and only if it is possible that any part of f is
executed before any part of g in any one of the executions of
the program.

More formally, SEB is defined as

SEB = CALL ∪ SEQ ∪ RET ∪ ID

where

( f , g) ∈ CALL }
⇐⇒

f (indirectly) calls g
(g, f ) ∈ RET (or, g (indirectly) re-

turns into f )
( f , g) ∈ SEQ ⇐⇒ ∃h : f (indirectly)

returns into h, and
there is a control-flow
path to where h (indi-
rectly) calls g

( f , g) ∈ ID ⇐⇒ f = g

SEB is computed using a lightweight program representation
called the Interprocedural Component Control Flow Graph
(ICCFG) [21], which is composed of individual Component
Control Flow Graphs (CCFGs) for each procedure of the
program. Each CCFG represents a procedure’s intraprocedural
Control Flow Graph (CFG) [24] but only call site nodes and
corresponding flow edges are retained. The ICCFG consists of
the CCFGs of each procedure connected by call edges from
each call site (in a component) to the entry node of the called
function. A reachability algorithm is then used on the ICCFG,
similar to the SDG reachability algorithm, to compute a slice.
For any function f , SliceSEBon the criterion f produces the set
of functions on which f depends (i.e., the functions that are
predecessors of f according to the SEB relation).

B. Dependence Clusters

Having defined the five slicing operators, the next step
is to introduce the five dependence cluster kinds studied in
the empirical analysis. The term Dependence Cluster was
introduced by Binkley and Harman [8] as a set of program
elements that mutually depend upon one another. Dependence
Clusters are formalized in terms of mutually dependent sets:

Definition 1 (Mutually-Dependent Set and Cluster): A
mutually-dependent set (MDS) is a set of elements, E, such
that ∀x, y ∈ E : x depends on y. A dependence cluster is a
maximal MDS; thus, it is an MDS not properly contained
within another MDS.

Definition 1 implicitly builds on an underlying depends-on
relation. Ideally, this relation would precisely capture the
impact, influence, and dependence between program elements.
Unfortunately, such a relation is not computable [25]. However,
it can be approximated using program slicing [8]. Empirically
it has been shown that it is sufficient to test if two elements
have the same slice size as done in the following definition [8]:

Definition 2 (Same-Slice-Size MDS and Cluster): Given a
slicing operator S , a Same-Slice-Size MDS is a set of elements,



E, such that ∀x, y ∈ E : |S(x)| = |S(y)|. A same-slice-size
dependence cluster is a same-slice-size MDS contained within
no other same-slice-size MDS.

Instantiating in Definition 2, each of the five slicing
operators produces the following same-slice-size cluster types
shown in Table I. For ease of reading, the same-slice-size
clusters defined in Definition 2 are referred to simply as
“clusters” parameterised by the above notations in the rest
of the paper.

TABLE I. Slicing Operators and Cluster Types

Slicing Operator (S) Cluster Type (C)

SliceVV C VV

SliceVF C VF

SliceFV C FV

SliceFF C FF

SliceSEB C SEB

III. Empirical Study

The five slicing operators are related by containment: given
a criteria c, SliceVV (c) ⊆ SliceVF(c) and SliceFV (c) ⊆ SliceFF(c)
⊆ SliceSEB(c) (provided that vertex-level slicing results are
aggregated to function-level). However, these subsumptions
may not translate to the corresponding dependence cluster
types. Similarly, the existence of a linchpin in one cluster type
does not necessarily imply a linchpin in another type.

The experiment presented in this section empirically ex-
plores the relationships between the clusters produced by the
different slicing operators and the corresponding linchpins. We
first compare the underlying slices and the clusters by objective
measurements (RQ1). Then, we use a manual classification
of cluster structures and associated linchpins to investigate
the clusters and their breaking (RQ2). Finally, we consider
how two metrics, AREA and REGX [21], perform at cluster
and linchpin analysis with respect to a manual classification
(RQ3). Based on the results we verify to what extent a less
expensive dependence analysis, such as SEB, can be used as
a proxy for a more precise and more expensive analysis with
respect to dependence clustering. In greater detail, we frame
the investigation using the following research questions:

RQ1 How well can SEB-based cluster analysis be used
as a proxy for the more expensive slice-based
cluster (vertex-level and function-level) analysis?

RQ1.1 How do the slice sets compare to SEB sets?
RQ1.2 What are the differences between cluster structures

produced by slice sets and SEB sets?
RQ1.3 How well do the different clusterization metrics

perform for the clusters?
RQ1.4 How does vertex-level clustering compare to

function-level clustering?
RQ2 What patterns of clusterization (slice and SEB-

based) indicate the presence of linchpin functions?
RQ3 How well could the clusterization metrics be used

for the identification of linchpins and is there any
difference in terms of different slice types?

RQ3.1 How different are rankings produced by different
metrics used to characterize clusterization?

RQ3.2 What is the Average Precision of metric-based
cluster identification with respect to the manually
identified linchpins?

TABLE II. Subject Programs

SDG
Subject C LOC Vertex Function Description

Files Count Count
acct-6.3.2 26 6,278 6,032 100 Process monitoring
barcode-0.98 16 4,204 5,574 67 Barcode generator
bc-1.05 20 5,077 5,361 103 Calculator
byacc-1.9 13 6,626 9,669 178 Parser generator
compress-4.0 3 1,937 1,010 24 File compressor
copia 1 1,168 3,824 242 ESA signal processing
ctags-5.0 49 16,015 20,251 530 C tagging
diffutils-2.7 25 15,775 15,698 218 File differencing
ed-1.6 16 9,765 14,334 98 Line text editor
epwic-1.0 30 7,943 9,020 126 Wavelet image encoder
flex-2.4.7 18 14,336 10,832 153 Lexical analyzer
ftpd-1.0.29 49 18,804 19,368 263 File transfer daemon
gnuchess-5.08 38 16,866 15,145 267 Chess player
go-3.0.0 36 29,629 30,679 372 Go player
indent-2.2.9 24 11,539 9,819 116 Text formatter
sudoku-1.11 1 1,983 2,362 38 Sudoku player
time-1.7 9 1,315 988 13 CPU resource meter
userv-0.95.0 17 7,908 13,805 247 Access control
wdiff-0.5 6 1,862 1,554 29 Diff front end
wu-ftpd-2.5.0 8 7,674 9,309 74 File transfer daemon

Sum 405 186,704 204,634 3,258
Average 20 9,335 10,232 163

A. Environment and Experiment Process

For the different slice types to be maximally comparable we
used a common analysis tool setup to the last point where the
different slice computation methods diverge. Particularly, we
used GrammaTech’s CodeSurfer [26] to compute the common
internal program representation, the System Dependence Graph
(SDG). The SDG was used to compute the four SDG-based
slice types using the two pass traversal algorithm by Horwitz
et al. [18]. To compute SliceSEB, we created the ICCFG from
the same SDGs and applied a reachability algorithm [21].

We computed dependence clusters, clusterization metrics,
and other program parameters based on the slices. To aid
linchpin determination we used the brute-force method first
employed by Binkley and Harman [14]. For each slice type,
we excluded each potential linchpin function one by one, and
then recompute the dependence clusters and the clusterization
metrics. Big relative changes in metric value is taken as an
indicator of the presence of a linchpin.

We then used the clustering information from both the
unreduced programs and the versions where potential linchpins
had been removed to create input data for the manual and
automatic characterization of the programs in the subsequent
phases of our study. We used Monotone Slice-size Graphs
(MSGs) [8] and the relative changes in the clusterization metrics
for this purpose.

B. Subjects

Table II lists the subject programs used in the experiments.
Columns 2–6 provide basic metrics and a description of the
programs. The programs cover various domains and are taken
from previous studies on dependence clusters. The source codes
for the subject programs are available online (see Section VII).

C. Dependence Sets

The first experiment seeks to verify the relationship among
the different slice types in terms of their relative precision and
recall (RQ1.1). By definition, slice types with the same kind of



acct barcode bc byacc compress

copia ctags diffutils ed epwic

flex ftpd gnuchess go indent

sudoku time userv wdiff wu-ftpd

Fig. 1. Subject program MSGs. The lowest solid red line shows SliceFV , the middle dotted green line shows SliceFF , and the upper black line shows SliceSEB.
Both axes on the graphs follow the number of program elements (vertices or functions, depending on the slice type) relative to all elements.

criteria (vertices or functions) differ only in how we determine
the elements of the slice since they are computed by the
same underlying algorithm. Hence SliceVV (c) ⊆ SliceVF(c) and
SliceFV (c) ⊆ SliceFF(c) for any slicing criterion, c (with vertices
aggregated to functions in the results). SliceFF(c) ⊆ SliceSEB(c)
should also hold due to the definition of SEB relation and the
fact that we used the same underlying program representation
in all cases. We empirically verified these properties, which
hold for all possible criteria in all programs.

In earlier work [21], we showed that the SEB relation is
less precise than the SDG-based slices, but only to a small

amount. This suggests that SEB may be a viable alternative
for the analysis of large and complex systems (for which the
traditional slicing algorithms are difficult to scale). These early
experiments were done using a different set of tools and subject
programs. In the present work, we replicate and extend the
comparison to include all five slice types.

As expected, slice sizes were comparable with the different
slice types. This experiment confirmed our earlier findings
that the SEB slices are not much larger than SliceFFslices: the
difference is between 3%–48%, the average being 11%, and
the outliers are all in the very small programs. The difference



TABLE III. ClusterizationMetrics and Dependence Cluster Classification

Subject Clusterization level AREA REGX
C FV C FF C SEB C FV C FF C SEB C FV C FF C SEB

acct none none small 0.18 0.28 0.39 0.02 0.19 0.52
barcode high high high 0.60 0.79 0.82 0.00 0.91 0.94
bc high high high 0.65 0.77 0.93 0.04 0.77 0.92
byacc small small medium 0.29 0.31 0.55 0.09 0.27 0.57
compress small small medium 0.43 0.45 0.50 0.22 0.57 0.70
copia huge huge huge 0.49 0.99 1.00 0.94 0.99 1.00
ctags large large large 0.62 0.80 0.88 0.02 0.84 0.93
diffutils medium medium medium 0.26 0.24 0.29 0.10 0.59 0.75
ed large large large 0.66 0.78 0.80 0.08 0.88 0.90
epwic none none small 0.11 0.11 0.13 0.30 0.27 0.37
flex small medium medium 0.51 0.61 0.78 0.05 0.56 0.76
ftpd medium medium medium 0.39 0.49 0.51 0.03 0.69 0.74
gnuchess large large large 0.54 0.62 0.72 0.13 0.70 0.82
go huge huge huge 0.90 0.95 0.96 0.01 0.96 0.98
indent large large large 0.43 0.62 0.68 0.00 0.78 0.88
sudoku small large huge 0.41 0.50 0.98 0.00 0.41 0.97
time none none none 0.25 0.43 0.69 0.00 0.08 0.50
userv large large large 0.41 0.54 0.60 0.10 0.72 0.85
wdiff none none medium 0.26 0.37 0.68 0.07 0.07 0.68
wu-ftpd none none none 0.07 0.13 0.16 0.03 0.22 0.21
Average 0.4230 0.539 0.6525 0.1115 0.5735 0.7495

between the two function-level slices SliceFFand SliceFVare
also very similar: on average it was 12%.

The other interesting observation from the data is that the
difference between pairs of slices that differ in the criteria
used, but not the counting granularity (SliceVVvs. SliceFVand
SliceVFvs. SliceFF, respectively) was small, about 2% on
average for both cases. Based on this observation and to
reduce the complexity of further analyses we limit our further
investigations to the three slice types that take functions as their
criteria, namely SliceFF, SliceFVand SliceSEB. We expect that
this simplification does not materially influence our findings.

D. Dependence Clusters

To answer RQ1.2, we performed the following study. A
proven approach to investigate cluster structures is to use the
Monotone Slice-size Graphs (MSGs). An MSG for a program
is a graphical representation of all the program’s slices drawn
in monotonically increasing order along the x-axis from left
to right. An MSG allows easy visual identification of cluster
structures as horizontal plateaus in the graph. Figure 1 shows
MSGs for the original (unreduced) versions of the investigated
programs. In this work, we show a combined MSG in which
all three slice types are shown on the same graph. Note, that
since these slice types share the same slicing criteria, the x-axis
of the MSG is common, but due to the different granularity
of the slice elements, the slices of SliceFVwere scaled on the
y-axis. The MSGs enable a manual identification of various
clusterization patterns. The first observation one can make about
the graphs in Figure 1 is that the three slice types typically
produce MSGs with very similar shape. In only a few cases
is there a significant difference (e.g., sudoku). A more careful
investigation revealed some subtle differences though, which
we will address in a later section.

At this point we manually classified each program according
to its clusterization level. Following the practice used in
previous research, we used the five-level Likert scale (“none”,

“small”, “medium”, “large” and “huge”), which allowed us a
systematic and relatively fine grained analysis of the cluster
structures. The result of the assessment is shown in the columns
2–4 of Table III. As mentioned, clusterization was quite similar
in many cases, but there are significant differences as well. For
instance, while slice-based clusters for wdiff cannot be identified,
a clearly visible cluster can be found with SEB.

Note, that it is to be expected that the lines do not cross
in the combined MSGs because of the underlying slice-set
containment relationship; however, in a few cases we can
observe such phenomenon. In each such case, the crossing is
an artifact of the scaling used on the y-axis.

E. Clustering Metrics

To characterize programs with dependence cluster forma-
tions in an objective way, some objective measurements are
required (this addresses RQ1.3). The traditional approach for
this purpose is to use the area under MSG, that is the sum of
sizes of all slices [27]. This metric, used as an indicator of
relative change after the removal of a program element may be
used to detect linchpins. However, it has the drawback that it
does not take into account the structure of cluster formations,
so it produces false positives. For example, when there is a
uniform reduction in slice size, which has no effect on the
cluster structures. Thus it may be misleading. In previous
work [22] we experimented with several other measurements
that in certain situations are better indicators of clusterization.
In this paper we will rely on two clusterization metrics: the area
under MSG, denoted AREA, and the regularity metric REGX,
defined in the mentioned article.

We want the two metrics to be comparable for a given
program, so we normalize them to the interval [0, 1], where 0
means no clusterization and 1 indicates maximum clusterization.
For the AREA metric, we normalize using the maximum
possible area. More formally, for a given program P and slice
type S :



TABLE IV. Manual Classification of Linchpins

Number of Number of
Gold-Standard Silver-Standard

linchpins linchpins Most obvious linchpin(s)
Subject C FV & C FF C SEB C FV & C FF C SEB All cluster types
acct – – – 2
barcode 1 1 1 1 Barcode_Encode
bc 1 1 1 1 dc_func
byacc – – 3 3
compress – – 3 3 spec_select_action
copia 2 2 2 2 seleziona, scegli
ctags – – 2 4 createTagsForFile
diffutils – – 2 3
ed – 1 1 1 exec_command
epwic – – – –
flex – – 1 1
ftpd 1 1 3 3 parser
gnuchess 2 2 3 3 main, parse_input
go – – 4 4 get_reasons_for_moves
indent 2 2 3 3 indent_main_loop
sudoku – – 1 1
time – – – –
userv – – 4 4
wdiff – – – 2
wu-ftpd – – – –

AREA =
1

|C| · |E|

∑
c∈C

|S(c)| ,

where C is a set of slicing criteria, S(c) denotes the slice on
criterion c ∈ C, and E is the set of program elements that are
possible members of a slice. The AREA metric is equivalent
to the average slice size for a program.

The intuition behind REGX is that the number of different
slice sets formed when slicing a program captures how “regular”
the slices are. If there are many different sets, the program
probably does not have dependence clusters, whereas a very
low number of different sets potentially indicates a large cluster.
REGX is normalized over the largest possible number of slice
sets and assumes that |C| > 1:

REGX =
|C| − |D|
|C| − 1

,

where D =
{
S(c)

∣∣∣ c ∈ C
}

is the set of unique slices.

In the experiments, elements of C and E are either SDG
vertices or program functions, so both AREA and REGX can
be interpreted for all slice types by substituting the respective
criteria and program element sets. Table III provides the AREA
and REGX metrics for each unreduced program and the three
investigated slice types. These metrics serve as a baseline when
searching for linchpin functions. Comparing the manual cluster
classifications from Table IV to the metric values, generally it is
not obvious which metric best reflects the level of clusterization.
There are obvious cases such as programs copia and go, where
large dependence clusters can be easily identified by large AREA
values. However, there are cases, such as wdiff, byacc, and ctags,
where AREA alone is not enough to determine clusterization.
Here, REGX could provide additional information about the
regularity of different set sizes. For instance, in the case of wdiff
we observe a medium SEB-based cluster, which is reflected
by the relative high value of REGX while the same metric
for the other two slice types is low, indicating the absence of
clusters. Another example is ctags, which is classified as highly
clustered. In this case the REGX metrics are bigger than AREA

metrics, which indicates that in these cases REGX may be a
better indicator than AREA.

F. Vertex-Level vs. Function-Level Analysis

RQ1.4 deals with the difference between vertex-level and
function-level clustering. To summarize our findings from
previous sections, the different clustering levels generally tend
to show similar behavior. This is especially true for programs
where there are large to huge dependence clusters. In these
cases the difference is merely in the average slice size but the
clusterization structures are very similar. Also, with programs
which are obviously clusterless, this property is found by all
slice types (and the corresponding metrics). There are only
a few cases where there is observable difference between
clusterization patterns at different levels (examples include
bc, sudoku, wdiff, byacc), which suggests at this point (together
with the overall small difference in the slice sets themselves)
that function-level analysis is indeed a good approximation to
vertex-level analysis.

G. Manual Linchpin Identification

Our next set of experiments dealt with RQ2, the search
for patterns in the clusterization. As a first step, we wanted to
find out if we can identify linchpin functions in the programs
by manually investigating the changing of cluster formations
as we apply the brute-force method of linchpin identification.
More precisely, for each program we performed a series of
code analyses, slice and cluster computations by removing one
function at a time from a program. This way we got a series of
cluster structures represented in form of MSG graphs, which
we investigated visually. To be able to handle the large number
of graphs to look at we ordered them according to the different
associated clusterization metrics. We thus got 2 × 3 different
orderings which we interchangeably used, but most of the times
ordering by AREA for C SEB was most helpful. The graphical
representation of metric changes in form of combined 3D bar
charts as exemplified with Figure 4 were a useful aid as well.

To make the classification of linchpins more structured we
applied a 5-level scheme: 5 (cluster broken), 4 (almost a 5),



3 (a bit of breaking is evident), 2 (almost a 1) and 1 (clearly
no breaking or just a drop in slice size). For each program
we then identified all potential linchpin functions (separately
for each slice type), resulting in the total of 69 functions for
the whole subject set. We then further classified the linchpins
into what we call a “gold standard” and a “silver standard,”
which form the basis for further statistical analysis. These two
classifications capture the author’s intuition as to the level of
clusterization with the gold standard being more rigorous and
representing very obvious cases, while silver standard is more
relaxed (and is a superset of the gold standard). We decided
not to include any of linchpin candidates falling into categories
1–2, thus sliver standard included candidates of categories 3–5,
and gold standard consisted of only category 5 linchpins. Note,
that in this step we deliberately did not use any predefined
thresholds of the metric values to decide on the categories, we
relied on visual inspection only.

Four columns in the middle of Table IV contain the number
of manually identified linchpins organized by gold and silver
standard and by the different slice types. It can be observed that
C FV and C FF did not produce any differences, while in several
cases C SEB clusters resulted in different linchpins (typically more
could be identified with this slice type). In the last column of
the table we listed the most obvious linchpin functions, the ones
that can be identified with all cluster types, and are typically
parts of the gold standard.

In Figures 2 and 3 we present examples of gold and silver
standard functions, respectively. If we compare the MSGs
shown with their unreduced versions from Figure 1, we can
clearly see the effect of linchpin removal: in the case of gold
standard it is significant, while it is less pronounced with silver
standard. The example, in the case of barcode all slice types
produce significant cluster break, however with ed only C SEB

produces a break, the slice-based clusters do not vanish, they are
just reduced. Considering example silver standard reductions
(Figure 3), the reduction for go is significant, however, a big
cluster remains. Program byacc is the least evident: in fact, with
C FV and C FF different linchpins could be identified than with
C SEB-based ones. The example shows a function that resulted
in the slight break of clusters with C SEB but slice-based clusters
were unaffected. This last example is also a good demonstrator
where the drop in AREA metric could not indicate a linchpin,
while the change in the cluster pattern could be captured by
the REGX metric.

Barcode_Encode(library.c) exec_command(main.c)

Fig. 2. Gold Standard Patterns. Functions from barcode (left) and ed (right)

read_grammar(reader.c) get_reasons_for_moves(g23.c)

Fig. 3. Silver Standard Patterns. Functions from byacc (left) and go (right)

H. Metric-Based Linchpin Identification

In our final set of experiments our goal was to verify to
what extent clusterization metrics can be used to guide the
linchpin identification process (RQ3). In the previous section we
explained how the brute-force method of linchpin identification
results in a set of reduced cluster structures and associated
metric values. We use these “reduced” metric values in form
of their relative change percentage compared to the unreduced
ones. Thus we obtain six (potentially) different rankings of
functions for each program. Figure 4 shows examples of how
different the rankings can be. The series of bars are given in
decreasing order of a relative decrease of the metric compared
to the unreduced program. Note, that since the rankings are
computed individually, the bars at the same rank position may
represent different functions. The upper part of the figure shows
the results for program bc, where we can clearly observe that
the first element in the rank list is much higher than the rest
in all three AREA metrics and in one of the REGX metrics
(in this case the first element was the same), which clearly
indicates a linchpin. However, the other example in this figure
(from program ctags) exemplifies a different pattern. Here, just
by looking at the ranks we could not clearly say if the first one
or more elements might be linchpins. In fact, in the case of
this program it turned out that the ranking according to REGX
was closer to manual assessment than the AREA-based.

To address the research question RQ3, we assessed these
rankings from two angles: (RQ3.1) how do they compare to
each other (i.e. is there any significant difference among them),
and (RQ3.2) how well do the rankings reflect the manual
assessment presented in the previous section?

To answer the first question, we compared the different
rankings using correlation analysis. We computed Kendall and
Spearman correlations between the rank lists for each program
and each combination of metrics. Results are shown in Tables V
and VI, respectively. Since the two sets of results are very
similar we discuss only Kendall in detail.

First thing to observe is that the AREA-based rankings are
very similar: C FV and C FF show a correlation of 0.74, and C SEB

is aligned with the other two as well. Specifically, results for
C SEB are more strongly correlated with C FF , which is to be
expected because these two slice types are more similar. The
REGX-based rankings show a different picture. Only the two
slice-based metrics are correlated, while C SEB shows a negative



Fig. 4. Linchpin Rankings by Different Metrics (shown are bc and ctags)

TABLE V. Kendall Correlations Among Rankings

AREA REGX
C FV C FF C SEB C FV C FF C SEB

C FV 1.0 0.74 0.6 -0.44 -0.28 0.41
AREA C FF 0.74 1.0 0.8 -0.44 -0.3 0.49

C SEB 0.6 0.8 1.0 -0.42 -0.3 0.54
C FV -0.44 -0.44 -0.42 1.0 0.32 -0.37

REGX C FF -0.28 -0.3 -0.3 0.32 1.0 -0.28
C SEB 0.41 0.49 0.54 -0.37 -0.28 1.0

correlation. Based on earlier observations, where REGX metrics
performed best with C SEB , we conclude that the slice-based
REGX metrics are typically less useful. This can be supported
also by looking at the correlation between AREA and REGX
metrics: only in the case of C SEB can we observe positive
correlation. As noted earlier, AREA-based metrics are good
predictors in most of the cases of the existence of linchpins,
however in less evident cases, REGX could be used in addition.
This experiment supported this observation and revealed that
this is typically the case with C SEB slice types.

Finally, we address RQ3.2 by comparing the rankings to
the manually identified linchpins. For this purpose, we used the
Average Precision (AP) and Mean Average Precision (MAP)

TABLE VI. Spearman Correlations Among Rankings

AREA REGX
C FV C FF C SEB C FV C FF C SEB

C FV 1.0 0.85 0.73 -0.53 -0.34 0.49
AREA C FF 0.85 1.0 0.87 -0.51 -0.34 0.55

C SEB 0.73 0.87 1.0 -0.48 -0.34 0.59
C FV -0.53 -0.51 -0.48 1.0 0.33 -0.4

REGX C FF -0.34 -0.34 -0.34 0.33 1.0 -0.29
C SEB 0.49 0.55 0.59 -0.4 -0.29 1.0

measures, typically used in Information Retrieval for similar
purposes [28]. Average Precision is more appropriate for ranked
information retrieval than traditional precision and recall, which
do not take the ranks into account, because it does not require
the selection of an arbitrary set of retrieved documents. In
short, AP is precision (at each rank position) at each relevant
document (linchpin in our case) averaged over the number of
relevant documents, while the MAP value is the mean of the
Average Precision values over all sets of queries (programs in
our case).

We computed AP values for each combination of program
and ranking (determined by the different metrics and slice
types), using both the gold and silver standard linchpins as the
relevant documents. Table VII shows the Average Precision
values for the gold standard linchpins, while Table VIII contains
the same for silver standard linchpins.

TABLE VII. Gold Standard Average Precision
AREA REGX

Subject C FV C FF C SEB C FV C FF C SEB

barcode 1.00 1.00 1.00 1.00 1.00 1.00
bc 1.00 1.00 1.00 1.00 1.00 1.00
copia 1.00 1.00 1.00 1.00 0.32 1.00
ctags 1.00 1.00 – 1.00 0.27 –
ed 1.00 1.00 1.00 1.00 0.25 1.00
ftpd 1.00 1.00 1.00 1.00 0.50 1.00
gnuchess 1.00 1.00 1.00 1.00 1.00 1.00
indent 1.00 1.00 1.00 1.00 1.00 0.81
userv 0.50 0.50 – 0.33 0.00 –
MAP 0.94 0.94 1.00 0.93 0.59 0.97

TABLE VIII. Silver Standard Average Precision
AREA REGX

Subject C FV C FF C SEB C FV C FF C SEB

barcode 1.00 1.00 1.00 1.00 1.00 1.00
bc 1.00 1.00 1.00 1.00 1.00 1.00
byacc 0.37 0.35 0.44 0.81 0.17 0.79
compress 1.00 1.00 1.00 1.00 0.92 1.00
copia 1.00 1.00 1.00 1.00 0.32 1.00
ctags 0.91 0.89 0.89 1.00 0.27 0.58
diffutils 1.00 1.00 0.92 0.83 0.58 1.00
ed 1.00 1.00 1.00 1.00 0.25 1.00
flex – – 0.50 – – 1.00
ftpd 1.00 1.00 1.00 0.81 0.44 0.78
gnuchess 1.00 1.00 1.00 0.87 1.00 0.83
go – – 0.89 – – 0.67
indent 1.00 1.00 1.00 1.00 1.00 0.81
sudoku – – 1.00 – – 1.00
userv 0.50 0.50 0.92 0.33 0.00 0.84
wdiff – – 0.50 – – 1.00
MAP 0.90 0.90 0.88 0.89 0.58 0.89

The most obvious thing to observe from the data is that the
metric based ranking performs exceptionally well, especially
for gold standard linchpins. In other words, if the existence
of linchpins is evident, it can be found by metric-based
approach with high success. Particularly, AP is 1.00 for most
of the programs in the gold standard category with the AREA
metrics. Typically, the REGX metric is also a good indicator
in these cases as it usually “follows” AREA in the case of
high clusterization and evident linchpins. For silver standard
linchpins, the situation is slightly different. MAP values are
again very high almost in all cases, but here we can distinguish
interesting cases that require further discussion.

Such cases are byacc and ctags, where we can observe that
REGX outperforms AREA in precision of identifying linchpin



functions. A typical linchpin for byacc can be seen in Figure 3.
Comparing it to the unreduced MSG, we can observe that there
was no significant drop in the average slice sizes, but the cluster
structures changed so that the plateau representing a cluster in
the C SEB case disappeared. This change could not be captured
by AREA metrics, only by REGX.

The final conclusion is that in the cases where the drop in
clusterization metric AREA is significant it will indicate the
existence of a linchpin function with great probability. However,
where the metric changes and the associated ranking are less
evident, REGX could be an additional source of information.

I. Discussion

As a conclusion to the set of experiments overviewed above,
we may say that SEB could be a viable alternative to dependence
cluster analysis, because:

1) SEB is a lightweight analysis and is more scalable than
SDG-based slicing. This topic has not been covered
in the present paper, but previous works (e.g., [21],
[22], [29]) showed the viability of the method for very
large systems as well.

2) The SEB sets are only slightly less precise than slice
sets.

3) Typically, there are no big differences between the
cluster structures formed by SDG and SEB-based
slices.

4) Linchpins can be identified in both approaches using a
metrics based method with AREA and REGX, and the
identified linchpins are aligned in most of the cases
in slice and SEB-based analyses.

The other conclusion we may make from the experiments
is that AREA is a good indicator of clusterization in many
cases, especially where the average slice sets are big as well.
However, REGX may be called upon in less evident situations,
which can highlight subtle differences in cluster structures.

IV. Threats to Validity

Although we chose a set of twenty open-source and
industrial programs of various sizes and from different domains,
external threat arises from the possibility that the programs
selected are not representative of programs in general, causing
uncertainty of the generality of the conclusions. The manual
identification of linchpin functions is subjective raising threats
to validity of the metrics-based linchpin identification results.
The other possible threat to construct validity arises from the
potential faults in the slicers. A mature and widely used slicing
tool (CodeSurfer) and slicing algorithm implementations used
in previous research were used to mitigate this concern.

V. RelatedWork

Binkley and Harman [8] introduced the notion of depen-
dence clusters and employed program slicing at the vertex-
level to identify them. Harman et al. [16] later extended
this initial study with a large-scale study of 45 programs
and gave clustering definitions based on the direction of
dependence (backward/forward). They found that vertex-level
slice-based clusters were a common phenomenon in systems and
empirically identified patterns of clustering. In a recent work,

Islam et al. [30] introduced coherent dependence clusters, which
combine the backward and forward slice-based dependence
clusters, and then used them to identify logical functionality
of the program. Recently, Beszédes et al. [22] introduced
the instantiation of dependence clusters using function-level
program dependences computed based on the Static Execute
Before (SEB) relationship [21].

There has been much interest in dependence clusters and
clusters have been identified in various programming languages
and systems [12], [13], [21]. Jiang et al. [31] proposed the
use of search-based program slicing to identify dependence
structures in programs. Another interesting approach to locate
interrelated program elements is based on applying community
structure analysis on software dependence graphs [32], [33].

Lehnert [1] has considered the relationship between depen-
dence clusters and impact analysis and found that clustering
can be used to determine the ripple-effect during software
maintenance. Beszédes et al. [9] looked at the relationship
between SEB dependencies, and software maintenance and
found that SEB can be used to identify hidden dependencies
and thus help in many maintenance tasks, including change
propagation and regression testing. Subsequent work [21]
identified a connection between the SEB-based dependence
clusters and performance of change impact analysis.

The current view is that large dependence clusters hinder
many different software engineering activities, including impact
analysis, maintenance, program comprehension and software
testing [13], [16], [17]. In light of this view, this paper compares
two approaches to clustering. We also consider two hybrid
cluster definitions, which conceptually lie between the levels
of abstraction offered by the previously proposed types.

VI. Summary and Future work

This paper studies the relation between several kinds
of dependence-clusters including two existing kinds and a
previously unstudied hybrids. This is done using a general
framework for defining dependence clusters, which it instan-
tiated using five different slicing operators. In summary, the
coarser approximation works well and thus extends dependence
cluster and linchpin analysis to a wider range of programs.
Thus, our research expands the applicability of dependence
cluster analysis in software engineering practice.

Looking forward, this line of research is promising. Future
projects will consider finding more efficient linchpin identifica-
tion methods, such as heuristic algorithms. Another interesting
topic is to consider sets of potential linchpins rather than single
linchpin functions. Finally, we could work towards forming
a better understanding of the effects of dependence clusters
on every day software engineering. To this end, we plan to
empirically investigate the relationship between dependence
clusters and software quality.

VII. Online Dataset

The source codes for the subject programs and ani-
mated graphics for linchpin functions can be found at
www.cs.ucl.ac.uk/external/s.islam/archives.html#icsme15.

http://www.cs.ucl.ac.uk/external/s.islam/archives.html#icsme15
http://www.cs.ucl.ac.uk/external/s.islam/archives.html#icsme15
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